
Jose Julio Alferes · Leopoldo Bertossi
Guido Governatori · Paul Fodor
Dumitru Roman (Eds.)

 123

LN
CS

 9
71

8

10th International Symposium, RuleML 2016
Stony Brook, NY, USA, July 6–9, 2016
Proceedings

Rule Technologies
Research, Tools, and Applications

Lecture Notes in Computer Science 9718

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Jose Julio Alferes • Leopoldo Bertossi
Guido Governatori • Paul Fodor
Dumitru Roman (Eds.)

Rule Technologies

Research, Tools, and Applications

10th International Symposium, RuleML 2016
Stony Brook, NY, USA, July 6–9, 2016
Proceedings

123

Editors
Jose Julio Alferes
Universidade Nova de Lisboa
Lisboa
Portugal

Leopoldo Bertossi
Carleton University
Ottawa, ON
Canada

Guido Governatori
NICTA Queensland
Brisbane, QLD
Australia

Paul Fodor
Stony Brook University
Stony Brook, NY
USA

Dumitru Roman
SINTEF/University of Oslo
Oslo
Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-42018-9 ISBN 978-3-319-42019-6 (eBook)
DOI 10.1007/978-3-319-42019-6

Library of Congress Control Number: 2016943419

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The annual International Web Rule Symposium (RuleML) is an international confer-
ence on research, applications, languages, and standards for rule technologies. It has
evolved from an annual series of international workshops since 2002, international
conferences in 2005 and 2006, and international symposia since 2007. RuleML 2016
was the 10th symposium of this series, co-located in New York State with the 25th
International Joint Conference on Artificial Intelligence (July 9–15, 2016) and the Joint
Multi-Conference on Human-Level Artificial Intelligence 2016 (July 16–19, 2016).

RuleML is a leading conference aiming to build bridges between academia and
industry in the field of rules and its applications, especially as part of the semantic
technology stack. It is devoted to rule-based programming and rule-based systems
including production rule systems, logic programming rule engines, and business rule
engines and business rule management systems, Semantic Web rule languages and rule
standards (e.g., RuleML, SWRL, RIF, PRR, SBVR, DMN, CL, Prolog), rule-based
event processing languages (EPLs) and technologies, and research on inference rules,
transformation rules, decision rules, and ECA rules.

This annual symposium is the flagship event of RuleML. The RuleML Initiative
(http://ruleml.org) is a non-profit umbrella organization with a Steering Committee, an
advisory board, taskforces, and technical groups, whose participants from academia,
industry, and government work on rule technology and its applications. Its aim is to
promote the study, research, and use of rules in heterogeneous distributed environments
such as the Web. RuleML maintains effective links with other major international
societies and acts as intermediary between various “specialized” rule vendors, appli-
cations, industrial and academic research groups, as well as standardization efforts
from, e.g., W3C, OMG, OASIS, and ISO. One of its major contributions is the unifying
RuleML system of families of rule languages, serialized in XML and spanning across
all industrially relevant kinds of Web rules.

The technical program of RuleML 2016 included presentations of novel rule-based
technologies, such as Semantic Web rule languages and standards, rule engines, formal
and operational semantics, rule-based systems, as well as new emerging topics relevant to
rules. Besides the regular research track, RuleML 2016 included six special research
tracks: Smart Contracts, Blockchain, and Rules; Constraint Handling Rules; Event-Driven
Architectures and Active Database Systems; Legal Rules and Reasoning; Rule- and
Ontology-Based Data Access and Transformation; Rule Induction and Learning. These
tracks reflect the significant role of rules in several research and application areas, which
include: blockchains and smart contract, ontology-based data access, active databases and
rules, legal rules, constraint handling rule, and rule induction and learning.

After a successful industry track at RuleML 2015, RuleML 2016 again included
such a track, describing practical applications of rules, and aspects of the state of the art
of rule-based business cases.

http://ruleml.org

The highlights of this year’s RuleML Symposium included the following invited
presentations:

Two keynote talks:

• Richard Waldinger, from Artificial Intelligence Center, SRI International, USA,
presenting “Natural Language Access to Data: It Needs Reasoning”

• Bruce Silver from Bruce Silver Associates, presenting “DMN as a Decision
Modeling Language”

Two tutorials:

• “Programming in Picat” by Neng-Fa Zhou, City University of New York
• “Practical Knowledge Representation and Reasoning in Ergo” by Michael Kifer,

Theresa Swift and Benjamin Grosof (Coherent Knowledge Systems)

A RuleML standards talk:

• “The RuleML Knowledge-Interoperation Hub” by Harold Boley, Faculty of
Computer Science, University of New Brunswick

In addition, the program included the 10th International Rule Challenge, dedicated
to practical experiences with rule-based applications, the 6th RuleML Doctoral Con-
sortium, which focused on PhD research in the area of rules, and finally, the Deci-
sionCAMP 2016.

The contributions in this volume include a set of invited papers and research track
papers. Invited presentations include two full papers and three abstracts for the key-
notes, tutorials, and standards talk. Research papers include a selection of 20 papers,
which were presented during the technical program of RuleML 2016. The research
papers were selected from 36 submissions through a peer-review process. Each paper
was reviewed by at least three members of the Program Committee.

RuleML 2016, like its predecessors, offered a high-quality technical and applica-
tions program, which was the result of the joint effort of the members of the RuleML
2016 Program Committee.

Special thanks are due to the Track Chairs, the excellent Program Committee, and
the additional reviewers for their hard work in reviewing the submitted papers. Their
criticisms and very useful comments and suggestions were instrumental in achieving a
high-quality publication. We also thank the symposium authors for submitting high-
quality papers, responding to the reviewers’ comments, and abiding by our production
schedule. We further wish to thank the invited speakers for contributing their inspiring
presentations. RuleML 2016 was financially supported by industrial companies and
scientific journals and was technically supported by several professional societies. We
wish to thank our sponsors, whose financial support helped us to offer this event, and
whose technical support allowed us to attract high-quality submissions. Last, but not
least, we would like to thank the development team of the EasyChair conference

VI Preface

management system and our publisher, Springer, for their support in the preparation of
this volume and the publication of the proceedings.

May 2016 Jose Julio Alferes
Leopoldo Bertossi
Guido Governatori

Paul Fodor
Dumitru Roman

Preface VII

Organization

General Chair

Paul Fodor Stony Brook University, USA

Scientific Program Co-chairs

Jose Julio Alferes Universidade Nova de Lisboa, Portugal
Leopoldo Bertossi Carleton University, Canada
Guido Governatori NICTA, Australia

Track Chairs

Smart Contracts, Blockchain, and Rules Track

Sudhir Agarwal Stanford University, USA
Alex Oberhauser Sigimera, USA
Dumitru Roman SINTEF/University of Oslo, Norway

Event-Driven Architectures and Active Database Systems Track

Darko Anicic Siemens AG, Germany
Chitta Baral Arizona State University, USA

Constraint Handling Rules Track

Thom Fruehwirth University of Ulm, Germany

Legal Rules and Reasoning Track

Monica Palmirani Università di Bologna, Italy
Shashishekar Ramakrishna Freie Universität Berlin, Germany

Rule- and Ontology-Based Data Access and Transformation Track

Andrea Cali University of London, Birkbeck College, UK
Martin Giese University of Oslo, Norway

Rule Induction and Learning Track

Cèsar Ferri Ramirez Technical University of Valencia, Spain
Maria José Ramirez

Quintana
Universidad Politécnica de Valencia (UPV), Spain

Industry Track

Tara Athan Athan Services, USA
Marc Proctor Red Hat, UK

Proceedings Chair

Dumitru Roman SINTEF/University of Oslo, Norway

Doctoral Workshop Chair

Kia Teymourian Rice University, USA

10th International Rule Challenge Co-chairs

Adrian Giurca Brandenburg University of Technology
Cottbus–Senftenberg, Germany

William Van Woensel Dalhousie University, Canada
Rolf Grütter Swiss Federal Research Institute, Switzerland

DecisionCAMP

Jacob Feldman Open Rules, USA

Web Chair

Tiantian Gao Stony Brook University, USA

Local and Finance Chair

Christine Cesaria Stony Brook University, USA

Program Committee

Slim Abdennadher German University in Cairo, Egypt
Martin Atzmueller University of Kassel, Germany
Ebrahim Bagheri Ryerson University, Canada
Christopher Baker UNB Saint John, Canada
Nick Bassiliades Aristotle University of Thessaloniki, Greece
Bernhard Bauer University of Augsburg, Germany
Andrea Bracciali University of Stirling, UK
Lars Braubach University of Hamburg, Germany
Christoph Bussler Oracle Corporation, USA
Jean-Paul Calbimonte EPFL, Switzerland
Henning Christiansen Roskilde University, Denmark
Gökhan Coskun Universität Bonn, Germany

X Organization

Claudia D’Amato University of Bari, Italy
Célia Da Costa Pereira Université Nice Sophia Anipolis, France
Agnieszka Dardzinska Bialystok University of Technology, Poland
Primavera De’Filippi National Center of Scientific Research (CNRS) in Paris,

France
Emanuele Della Valle DEIB, Politecnico di Milano, Italy
Juergen Dix Clausthal University of Technology, Germany
Gregory Duck National University of Singapore, Singapore
Vadim Ermolayev Zaporozhye National University, Ukraine
Luis Ferreira Pires University of Twente, Italy
Giorgos Flouris FORTH-ICS, Crete
Enrico Francesconi ITTIG-CNR, Italy
Fred Freitas Universidade Federal de Pernambuco (UFPE), Brazil
Johannes Fürnkranz TU Darmstadt, Germany
Daniel Gall Ulm University, Germany
Aldo Gangemi Université Paris 13 and CNR-ISTC, France
Marco Gavanelli University of Ferrara, Italy
Matthias Grabmair Intelligent Systems Program, University of Pittsburgh,

USA
Brigitte Grau LIMSI, CNRS, France
Christophe Gravier Université Jean Monnet, France
Sergio Greco University of Calabria, Italy
Todd Green LogicBlox, USA
Giancarlo Guizzardi Ontology and Conceptual Modeling Research Group

(NEMO)/Federal University of Espirito Santo
(UFES), Italy

Peter Haase metaphacts, Germany
Margaret Hagan Stanford, USA
Ioannis Hatzilygeroudis University of Patras, Greece
José Hernández-Orallo Universitat Politecnica de Valencia, Italy
Martin Holena Institute of Computer Science, Czech Republic
Yuh-Jong Hu National Chengchi University, Taiwan
Efstratios Kontopoulos CERTH-ITI, Greece
Manolis Koubarakis University of Athens, Greece
Nicolas Lachiche University of Strasbourg, France
Ho-Pun Lam Data61, CSIRO, Australia
Edmund Lam University of Hong Kong, SAR China
Evelina Lamma ENDIF, University of Ferrara, Italy
Steffen Lamparter KIT, Germany
Florian Lemmerich University of Würzburg, Germany
Maurizio Lenzerini University of Rome La Sapienza, Italy
Francesca Alessandra Lisi Università degli Studi di Bari Aldo Moro, Italy
Emiliano Lorini IRIT, France
Markus Luczak-Rösch University of Southampton, UK
Michael Maher University of New South Wales, Canberra, Australia
Marco Manna University of Calabria, Italy

Organization XI

Andrew Miller University of Wollongong, Australia
Angelo Montanari University of Udine, Italy
Grzegorz J. Nalepa AGH University of Science and Technology, Poland
Sergey Nazarov SmartContract.com, USA
Alex Norta Tallinn University of Technology, Estonia
Philipp Obermeier University of Postdam, Germany
Jose Ignacio Panach

Navarrete
Universitat de València, Spain

Gareth W. Peters University College London, UK
Andreas Pieris Vienna University of Technology, Austria
Zbigniew Ras University of North Carolina, USA
Oliver Ray University of Bristol, UK
Fabrizio Riguzzi University of Ferrara, Italy
Mariano Rodríguez Muro IBM Research, USA
Fariba Sadri Imperial College London, UK
Giovanni Sartor EUI/CIRSFID, Italy
Uli Sattler University of Manchester, UK
Ute Schmid Universität Bamberg, Germany
Rolf Schwitter Macquarie University, Australia
Ralph Schäfermeierz Freie Universität Berlin, Germany
Omair Shafiq University of Calgary, Canada
Rishabh Singh MIT, USA
Martin G. Skjæveland University of Oslo, Norway
Ahmet Soylu University of Oslo, Norway
Francois Levy LIPN, University of Paris, France
Petros Stefaneas National Technical University of Athens, Greece
Christian De Sainte Marie IBM, Paris, France
Giorgos Stoilos National Technical University of Athens, Greece
Umberto Straccia ISTI-CNR, Italy
Olga Streibel National Institute of Informatics, Russia
Martin Sulzmann Karlsruhe University of Applied Sciences, Germany
Melanie Swan IEET, USA
Ioan Toma STI Innsbruck, Austria
David Toman University of Waterloo, Canada
Emilio Tuosto University of Leicester, UK
Wamberto Vasconcelos University of Aberdeen, UK
George Vouros University of Piraeus, Greece
Renata Wassermann University of São Paulo, Brazil
Frank Wolter University of Liverpool, UK
Adam Wyner University of Aberdeen, UK
Michael Zakharyaschev Birkbeck College London, UK
Amal Zouaq Royal Military College of Canada, Canada
Leon van der Torre University of Luxembourg, Luxembourg
Özgür Lütfü Özcep Institute of Information Systems, University of Lübeck,

Germany

XII Organization

Additional Reviewers

Leif Harald Karlsen
Francesco Parisi
Riccardo Zese
Nada Sharaf

Kalliopi Kravari
Marcelo Finger
Elena Bellodi
Amira Zaki

RuleML 2016 Sponsors

Organization XIII

XIV Organization

Invited Papers Abstracts

Natural Language Access to Data:
It Needs Reasoning

Richard Waldinger

Artificial Intelligence Center, SRI International

Researchers have been working on natural language access to data for decades. We
argue that to do a good job, we must have knowledge of the subject domain and the
ability to reason with that knowledge. We are interested in queries for which the answer
does not exist explicitly in any one data source but must be deduced or computed from
information provided by many sources. Furthermore, we consider queries which are not
be expressed in a single question but are distributed over a sequence of questions, each
one refining or elaborating on earlier ones. We have adopted a deductive approach to
this problem, in which the query is translated into a logical form, which is submitted as
a conjecture to a theorem prover; answers are extracted from proofs. A proof is con-
ducted over an axiomatic theory of the subject domain; symbols in the theory are linked
to tables in appropriate databases, which may be consulted as the proof is underway.
Reasoning is necessary to link the query to the relevant databases, to compose answers
from information provided by those databases, and to resolve ambiguities in the
English query. We illustrate the approach with the SAP Quest system, which answers
questions in a business enterprise domain.

DMN as a Decision Modeling Language

Bruce Silver

Bruce Silver Associates

Decision Model and Notation (DMN) is a relatively new decision modeling standard
maintained by the Object Management Group. Based on a formal metamodel, it
combines a business-oriented graphical notation with precise rule-based decision logic
semantics. As such, DMN tools allow non-technical users to define, validate, and
maintain executable decision logic themselves, as opposed to the traditional error-prone
approach of writing business requirements for programmers. In the notation, the
dependencies of a complex decision on other supporting decisions and input data are
represented graphically by a Decision Requirements Diagram (DRD). The decision
logic of each decision node in the DRD is defined by a variety of tabular formats called
boxed expressions, and DMN also specifies a new expression language, FEEL, used in
the boxed expressions. In combination, the DRD, boxed expressions, and FEEL
constitute a powerful decision modeling language standard. In fact, the XML serial-
ization of a DMN model captures all the essential semantic details of the notation, so
that it can be validated for completeness and consistency, and supplied with input data
values directly executed on a suitable engine.

This keynote talk reviews the structure and key features of DMN 1.1 as a decision
modeling language.

Programming in Picat

Neng-Fa Zhou

CUNY Brooklyn College and Graduate Center, Brooklyn, USA
zhou@sci.brooklyn.cuny.edu

Abstract. Picat (picat-lang.org) is a logic-based multi-paradigm programming
language that integrates logic programming, functional programming, constraint
programming, and scripting. Picat takes many features from other languages,
including logic variables, unification, backtracking, pattern-matching rules,
functions, list/array comprehensions, loops, assignments, tabling for dynamic
programming and planning, and constraint solving with CP (constraint pro-
gramming), SAT (satisfiability), and MIP (mixed integer programming). These
features make Picat more convenient than Prolog for scripting and modeling,
and more suitable than functional languages (such as Haskell and F#) and
scripting languages (such as Python and Ruby) for symbolic computations. This
article provides a quick introduction to Picat using examples from Google Code
Jam (GCJ).

Practical Knowledge Representation
and Reasoning in Ergo

Michael Kifer, Theresa Swift, and Benjamin N. Grosof

Coherent Knowledge Systems, LLC

This tutorial covers the latest progress in Ergo1, a cutting-edge practical knowledge
representation and reasoning system. Ergo is the most complete and highly optimized
implementation of Rulelog, an expressive yet scalable extension of Datalog and logic
programs. Some of the salient (and often unique) features of Ergo include:

– frame-based object syntax [5]
– higher-order statements [3, 12]
– support for general quantification and general formulas [4]
– dynamically evolving knowledge [2]
– hypothetical reasoning
– modularity
– argumentation-based defeasible reasoning [10, 11]
– user-defined functions, which provide a limited form of functional programming
– ErgoText, which relates controlled natural language phrases (sprinkled with vari-

ables and other syntactic elements) to logic sentences
– explanations that are fully detailed, interactively navigable, and presented in natural

language – understandable by those who are not expert in logic or programming [1]
– flexible probabilistic reasoning, including distribution semantics [9], evidential

probability [6], and tight integration with inductive machine learning

Ergo also has connectors for fast loading of data, SQL and SPARQL querying,
graph databases, Java and C interfaces, and more. Probabilistic uncertainty and
machine learning capabilities are under development. In case studies, Ergo enables
cost-effective, agile development of knowledge bases for automated decisions/analytics
support in finance, defense, e-commerce, health, and in domains that utilize complex
knowledge such as terminology mappings, policies, regulations, contracts, and science.

Much of this tutorial will be dedicated to Ergos development environment, Ergo
Studio, especially to its unique advanced support for debugging knowledge. For
instance, execution of Ergo queries can be paused and the state of the evaluation
examined. Information that can be gleaned at that point includes the various statistics as
well as indication of whether the query may be inefficient or even that it might not
terminate. Ergos Terminyzer [7, 8] is a tool that performs a more detailed analysis and
can point to the specific parts of the knowledge base that are likely to cause objec-
tionable behavior. The user can also set up various tripwires, which would trigger

1 Ergo is a product of Coherent Knowledge (coherentknowledge.com). It is available free of
charge to selected academic researchers.

various actions if certain conditions are met. Last, but not least, Ergo can be asked to
explain the answers it returns as well as the answers it does not return. These expla-
nations can use either logical expressions or English sentences (through ErgoText).

In conclusion, we will also briefly discuss key frontiers for research, including
probabilistic, machine learning, natural language, and multi-processor inferencing.

This tutorial requires prerequisite knowledge of neither Ergo nor Rulelog. How-
ever, familiarity with logic rules, semantic technology, and logic programming is very
desirable.

References

1. Andersen, C., Benyo, B., Calejo, M., Dean, M., Fodor, P., Grosof, B.N., Kifer, M., Liang, S.,
Swift, T.: Advanced knowledge base debugging for rulelog. In: Joint Proceedings of the 7th
International Rule Challenge, the Special Track on Human Language Technology and the
3rd RuleML Doctoral Consortium, Seattle, USA, July 11–13, 2013 (2013). http://ceur-ws.
org/Vol-1004/paper8.pdf

2. Bonner, A., Kifer, M.: Transaction logic: Unifying declarative and procedural knowledge
(1993), manuscript

3. Chen, W., Kifer, M., Warren, D.: HiLog: a foundation for higher-order logic programming.
J. Logic Program. 15(3), 187–230 (1993)

4. Grosof, B.: Rapid text-based authoring of defeasible higher-order logic formulas, via textual
logic and rulelog. In: Morgenstern, L., Stefaneas, P., Lvy, F., Wyner, A., Paschke, A. (eds.)
RuleML 2013, LNCS 8035, pp. 2–11. Springer, Heidelberg (2013). http://dx.doi.org/10.
1007/978-3-642-39617-5_2

5. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based
languages. J. ACM 42, 741–843 (1995)

6. Kyburg, H., Teng, C.: Uncertain Inference. Cambridge University Press (2001)
7. Liang, S., Kifer, M.: A practical analysis of non-termination in large logic programs. Theor.

Pract. Logic Program. 13, 705–719 (2013)
8. Liang, S., Kifer, M.: Terminyzer: an automatic non-termination analyzer for large logic

programs. In: Sagonas, K. (ed.) PADL 2013, LNCS 7752, pp. 173–189. Springer, Heidel-
berg (2013)

9. Riguzzi, F., Swift, T.: Well-definedness and efficient inference for probabilistic logic pro-
gramming under the distribution semantics. Theor. Pract. Logic Program. 13(2), 279–302
(2013)

10. Wan, H., Grosof, B., Kifer, M., Fodor, P., Liang, S.: Logic programming with defaults and
argumentation theories. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009, LNCS 5649, pp. 432–
448. Springer, Heidelberg (2009)

11. Wan, H., Kifer, M., Grosof, B.: Defeasibility in answer set programs with defaults and
argumentation rules. Semant. Web J. (2014)

12. Yang, G., Kifer, M.: Reasoning about anonymous resources and meta statements on the
Semantic Web. In: Spaccapietra et al. (eds.) Journal on Data Semantics 1, LNCS 2800,
pp. 69–98. Springer, Heidelberg (2003)

Practical Knowledge Representation and Reasoning in Ergo XXI

http://ceur-ws.org/Vol-1004/paper8.pdf
http://ceur-ws.org/Vol-1004/paper8.pdf
http://dx.doi.org/10.1007/978-3-642-39617-5_2
http://dx.doi.org/10.1007/978-3-642-39617-5_2

The RuleML Knowledge-Interoperation Hub

Harold Boley

Faculty of Computer Science, University of New Brunswick, Fredericton,
Canada

harold[DT]boley[AT]unb[DT]ca

Abstract. The RuleML knowledge-interoperation hub provides for syntactic/
semantic representation and internal/external transformation of formal knowl-
edge. The representation system permits the configuration of textbook and
enriched Relax NG syntax as well as the association of syntax with semantics.
The transformation tool suite includes serialized formatters (normalizers and
compactifiers), polarized parsers and generators (the RuleML$POSL tool and
the RuleML!PSOA/PS generator and PSOA/PS!AST parser), as well as
importers and exporters (the importer from Dexlog to Naf Datalog RuleML and
the exporter from FOL RuleML languages to TPTP). An N3-PSOA-Flora
knowledge-interoperation use case is introduced for illustration.

Contents

Invited Papers

Programming in Picat . 3
Neng-Fa Zhou

The RuleML Knowledge-Interoperation Hub . 19
Harold Boley

General RuleML Track

Handling Complex Process Models Conditions Using First-Order
Horn Clauses . 37

Stefano Ferilli

Business Rules Uncertainty Management with Probabilistic
Relational Models . 53

Hamza Agli, Philippe Bonnard, Christophe Gonzales,
and Pierre-Henri Wuillemin

A Declarative Semantics for a Fuzzy Logic Language Managing
Similarities and Truth Degrees . 68

Pascual Julián-Iranzo, Ginés Moreno, Jaime Penabad,
and Carlos Vázquez

Controlling the Average Behavior of Business Rules Programs 83
Olivier Wang, Leo Liberti, Claudia D’Ambrosio,
Christian de Sainte Marie, and Changhai Ke

Bridge Rules for Reasoning in Component-Based Heterogeneous
Environments . 97

Stefania Costantini and Giovanni De Gasperis

Choreographic Compilation of Decentralized Comprehension Patterns 113
Iliano Cervesato, Edmund Soon Lee Lam, and Ali Elgazar

Minimal Objectification and Maximal Unnesting in PSOA RuleML 130
Gen Zou and Harold Boley

Smart Contracts, Blockchain and Rules

Setting Standards for Altering and Undoing Smart Contracts 151
Bill Marino and Ari Juels

http://dx.doi.org/10.1007/978-3-319-42019-6_1
http://dx.doi.org/10.1007/978-3-319-42019-6_2
http://dx.doi.org/10.1007/978-3-319-42019-6_3
http://dx.doi.org/10.1007/978-3-319-42019-6_3
http://dx.doi.org/10.1007/978-3-319-42019-6_4
http://dx.doi.org/10.1007/978-3-319-42019-6_4
http://dx.doi.org/10.1007/978-3-319-42019-6_5
http://dx.doi.org/10.1007/978-3-319-42019-6_5
http://dx.doi.org/10.1007/978-3-319-42019-6_6
http://dx.doi.org/10.1007/978-3-319-42019-6_7
http://dx.doi.org/10.1007/978-3-319-42019-6_7
http://dx.doi.org/10.1007/978-3-319-42019-6_8
http://dx.doi.org/10.1007/978-3-319-42019-6_9
http://dx.doi.org/10.1007/978-3-319-42019-6_10

Evaluation of Logic-Based Smart Contracts for Blockchain Systems 167
Florian Idelberger, Guido Governatori, Régis Riveret,
and Giovanni Sartor

Blockchain Temporality: Smart Contract Time Specifiability
with Blocktime . 184

Melanie Swan

Constraint Handling Rules

A Numerical Optimisation Based Characterisation of Spatial Reasoning. 199
Carl Schultz and Mehul Bhatt

Why Can’t You Behave? Non-termination Analysis of Direct Recursive
Rules with Constraints . 208

Thom Frühwirth

Translation of Cognitive Models from ACT-R to Constraint Handling Rules . . . 223
Daniel Gall and Thom Frühwirth

Legal Rules and Reasoning

Enabling Reasoning with LegalRuleML . 241
Ho-Pun Lam, Mustafa Hashmi, and Brendan Scofield

SBVR to OWL 2 Mapping in the Domain of Legal Rules 258
Firas Al Khalil, Marcello Ceci, Kosala Yapa, and Leona O’Brien

Rule- and Ontology-Based Data Access and Transformation

OBDA Constraints for Effective Query Answering 269
Dag Hovland, Davide Lanti, Martin Rezk, and Guohui Xiao

A Framework Enhancing the User Search Activity Through Data Posting . . . 287
Nunziato Cassavia, Elio Masciari, Chiara Pulice, and Domenico Saccà

Rule Induction and Learning

PRIMER – A Regression-Rule Learning System for Intervention
Optimization. 307

Greg Harris, Anand Panangadan, and Viktor K. Prasanna

Event Driven Architectures and Active Database Systems

Rule-Based Real-Time ADL Recognition in a Smart Home Environment 325
George Baryannis, Przemyslaw Woznowski, and Grigoris Antoniou

XXIV Contents

http://dx.doi.org/10.1007/978-3-319-42019-6_11
http://dx.doi.org/10.1007/978-3-319-42019-6_12
http://dx.doi.org/10.1007/978-3-319-42019-6_12
http://dx.doi.org/10.1007/978-3-319-42019-6_13
http://dx.doi.org/10.1007/978-3-319-42019-6_14
http://dx.doi.org/10.1007/978-3-319-42019-6_14
http://dx.doi.org/10.1007/978-3-319-42019-6_15
http://dx.doi.org/10.1007/978-3-319-42019-6_16
http://dx.doi.org/10.1007/978-3-319-42019-6_17
http://dx.doi.org/10.1007/978-3-319-42019-6_18
http://dx.doi.org/10.1007/978-3-319-42019-6_19
http://dx.doi.org/10.1007/978-3-319-42019-6_20
http://dx.doi.org/10.1007/978-3-319-42019-6_20
http://dx.doi.org/10.1007/978-3-319-42019-6_21

SmartRL: A Context-Sensitive, Ontology-Based Rule Language
for Assisted Living in Smart Environments . 341

William Van Woensel, Patrice C. Roy, and Syed Sibte Raza Abidi

Author Index . 351

Contents XXV

http://dx.doi.org/10.1007/978-3-319-42019-6_22
http://dx.doi.org/10.1007/978-3-319-42019-6_22

Invited Papers

Programming in Picat

Neng-Fa Zhou(B)

CUNY Brooklyn College and Graduate Center, Brooklyn, USA
zhou@sci.brooklyn.cuny.edu

Abstract. Picat (picat-lang.org) is a logic-based multi-paradigm pro-
gramming language that integrates logic programming, functional pro-
gramming, constraint programming, and scripting. Picat takes many
features from other languages, including logic variables, unification, back-
tracking, pattern-matching rules, functions, list/array comprehensions,
loops, assignments, tabling for dynamic programming and planning, and
constraint solving with CP (constraint programming), SAT (satisfiabil-
ity), and MIP (mixed integer programming). These features make Picat
more convenient than Prolog for scripting and modeling, and more suit-
able than functional languages (such as Haskell and F#) and scripting
languages (such as Python and Ruby) for symbolic computations. This
article provides a quick introduction to Picat using examples from Google
Code Jam (GCJ).

1 Introduction

Picat is a simple, and yet powerful, logic-based multi-paradigm programming
language. The desire for a logic-based general-purpose programming language
that is as powerful as Python for scripting, and on a par with OPL [8] and
MiniZinc [11] for modeling combinatorial problems, led to the design of Picat.
Early attempts to introduce arrays and loops into Prolog for modeling failed to
produce a satisfactory language: most noticeably, array accesses are treated as
functions only in certain contexts; and loops require the declaration of global
variables in ECLiPSe [14] and local variables in B-Prolog [16].

Picat departs from Prolog in many aspects, including the successful intro-
duction of arrays and loops. Picat uses pattern-matching rather than unification
in the selection of rules. Unification might be a natural choice in Horn clause
resolution [9] for theorem proving, but its power is rarely needed for general pro-
gramming tasks. Pattern-matching rules are fully indexed, and therefore Picat
can be more scalable than Prolog. Unification can be considered as an equa-
tion over terms [4], and just like constraints over finite domains, Picat supports
unification as an explicit call.

Non-determinism, a powerful feature of logic programming, makes concise
solutions possible for many problems, including simulation of non-deterministic
automata, parsers of ambiguous grammars, and search problems. Nevertheless,
non-determinism is not needed for deterministic computations. In Prolog, Horn
clauses are backtrackable by default. As it is undecidable to detect determin-
ism in general [5], programmers tend to excessively use the cut operator to
c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-42019-6 1

4 N.-F. Zhou

prune unnecessary clauses. Picat supports explicit non-determinism, which ren-
ders the cut operator unnecessary. Rules are deterministic unless they are explic-
itly denoted as backtrackable.

Picat supports functions, like many other logic-based languages, such as
Curry [7], Erlang [2], and Mozart-Oz [13]. In Prolog, it’s often that queries fail,
but the system gives no clue about the source of the failure. Functions should
be used instead of relations, unless multiple answers are required. Functions are
more convenient to use than predicates because (1) functions are guaranteed
to succeed with a return value; (2) function calls can be nested; and (3) the
directionality of functions enhances the readability.

Many combinatorial problems can be formulated as constraint satisfaction
problems (CSPs). There are three kinds of systematic solvers for solving CSPs,
namely, Constraint Programming (CP), Mixed Integer Programming (MIP), and
SAT solving. CP uses constraint propagation to prune search spaces, and uses
heuristics to guide search [12]. MIP relies on LP relaxation and branch-and-cut
to find optimal integer solutions [1]. SAT performs unit propagation and clause
learning to prune search spaces, and employs heuristics and learned clauses to
perform non-chronological backtracking [10]. No solver is superior all the time;
sometimes, extensive experimentation is necessary to find a suitable solver.

Picat provides a common interface with CP, SAT, and MIP solvers for solving
CSPs. For each solver, Picat provides a separate module of built-ins for creating
decision variables, specifying constraints, and invoking the solver. The common
interface allows for seamless switching from one solver to another. The basic
language constructs, such as arrays and loops, make Picat a powerful modeling
language for these solvers.

The PicatSAT compiler [20] employs hybrid encodings to translate finite-
domain variables and constraints into compact and efficient CNF (conjunctive-
normal-form) codes. The SAT module is superior to the CP module for not only
Boolean problems but also many problems that involve arithmetic and global
constraints.

Tabling [15] can be employed to cache the results of certain calculations
in memory and reuse them in subsequent calculations through a quick table
lookup. As computer memory grows, tabling is becoming increasingly important
for offering dynamic programming solutions for many problems. Picat’s tabling
system is inherited from B-Prolog [22].

Picat has a planner module. For a planning problem, the programmer only
needs to specify conditions on the final states and the set of actions, and to call
the planner on an initial state to find a plan or an optimal plan. The planner,
which is implemented by the use of tabling, performs a state-space search and
tables every state that is encountered during search.

A joint effort by the system and the programmer is needed to deal with the
state explosion problem. The Picat system stores all structured ground terms
in a table, so ground terms that are shared by states are only tabled once. The
enhanced hash-consing technique [19] also stores hash codes in order to speed
up computation of hash codes and equality tests of terms. The Picat system

Programming in Picat 5

also performs resource-bounded tabled search, which prunes parts of the search
space that cannot lead to acceptable plans. In order to exploit these techniques,
the programmer needs to design a good representation for states that facilitates
sharing and removes symmetries. For certain problems, the programmer can also
employ domain knowledge and heuristics to help prune the search space.

Picat’s planner has produced surprising and encouraging results [3,17]. It
overwhelmingly outperforms the cutting-edge ASP and PDDL planners on many
benchmarks used in recent ASP and IPC competitions.

This paper gives programs inPicat for severalGoogleCode Jam (GCJ) practice
problems. The objective is to provide a quick introduction to the Picat language,
the library, and the programming techniques. More details of the Picat language
can be found in the User’s Guide [18]. The constraint programming and planning
modules are detailed in the book [21], which includes a short account, by Agostino
Dovier, of the history of logic programming that led to the design of Picat. Solu-
tions in Picat for several GCJ problems that utilize tabling and constraints can be
found in [6]. Many more programs for GCJ problems can be found at:

http://picat-lang.org/gcj/index.html

2 Store Credit

Store Credit is another easy practice problem1. A test case consists of an integer
C, which is the store credit you receive, and a sequence of integers, which are
prices of the available items. The output for a test case consists of the indices,
i and j (i < j), of the two items whose prices add up to the store credit. It is
assumed that each test case will have exactly one solution.

main =>

T = read_int(),

foreach (TC in 1..T)

C = read_int(),

N = read_int(),

Items = {read_int() : _ in 1..N},

do_case(TC, C, Items)

end.

do_case(TC, C, Items),

between(1, len(Items)-1, I),

between(I+1, len(Items), J),

C == Items[I]+Items[J]

=>

printf("Case #%w: %w %w\n", TC, I, J).

1 https://code.google.com/codejam/contest/351101/dashboard#s=p0.

http://picat-lang.org/gcj/index.html
https://code.google.com/codejam/contest/351101/dashboard#s=p0

6 N.-F. Zhou

The function read int() reads an integer from the standard input stdin. The
main predicate reads T, the number of test cases. For each test case number
TC, the foreach loop reads the store credit C, the number of available items N,
and the sequence of prices of the items Items. For each test case, the predicate
do case searches for two indices, I and J (I < J), that satisfies the condition
C == Items[I]+Items[J], and prints out the answer.

The expression {read int() : in 1..N} is called an array comprehen-
sion, which returns an array consisting of N integers read from stdin.

The array comprehension {read int() : in 1..N} is equivalent to:

[read_int() : _ in 1..N].to_array()

which creates a list using a list comprehension, and converts the list to an array.
Since the array comprehension creates a temporary list, the following code is
more efficient:

Items = new_array(N),

foreach (I in 1..N)

Items[I] = read_int()

end,

The function new array(N) returns a new array of N elements. Initially, all the
elements are distinct variables. The foreach loop fills in the array with integers
from the input.

In Picat, the function len(L) returns the length of L, and the index operator
L[I] returns the Ith element of L. While len(L) and L[I] take constant time
when L is an array, they take linear time when L is a list. For this reason the
program uses an array, rather than a list, to store the prices.

The do case predicate uses a failure-driven loop to enumerate I, over the
range 1..len(Items)-1, and J, over the range I+1..len(Items), until a pair of
indices is found that satisfies the condition C == Items[I]+Items[J]. It encodes
the generate-and-test algorithm. The predicate call between(From, To,X) is
a choice point, which non-deterministically selects a value from the range
From..To for X. It first binds X to From. When execution backtracks to the
call, it binds X to From+ 1 if From+ 1 is not greater than To. Execution can
backtrack to the call as long as there are untried values in the range. The call
fails when execution backtracks to it, and all values have been tried. When this
calls fails, execution will continue to backtrack to another call that is a choice
point.

The operator == tests if two terms are identical, and the operator = performs
unification on two terms. The unification T1 = T2 is true if term T1 and term
T2 can be made identical by binding some of the variables to values.

The do case predicate can be implemented as follows using a foreach loop:

do_case(TC, C, Items) =>

foreach(I in 1..len(Items)-1, J in I+1..len(Items))

if (C == Items[I]+Items[J]) then

printf("Case #%w: %w %w\n", TC, I, J)

end

end.

Programming in Picat 7

Nevertheless, this implementation is not as preferable as the failure-driven loop,
because the foreach loop continues to check all the remaining pairs, even after a
satisfying pair has been found. Picat does not provide statements like the break
or return statements in procedural languages that can terminate loops early.

The above program takes O(n2) time, where n is the number of items. It can
be improved by using a map to speed up search. The following gives an improved
version:

main =>

T = read_int(),

foreach (TC in 1..T)

C = read_int(),

N = read_int(),

Items = {read_int() : _ in 1..N},

Map = new_map(),

foreach (I in N..-1..1)

Is = Map.get(Items[I], []),

Map.put(Items[I],[I|Is])

end,

do_case(TC, C, Items, Map)

end.

do_case(TC, C, Items, Map),

between(1, len(Items)-1, I),

Js = Map.get(C-Items[I], []),

member(J, Js),

I < J

=>

printf("Case #%w: %w %w\n", TC, I, J).

The function new map() returns a new map. The function put(Map, Key,
Value) puts the pair (Key, Value) into Map. The function get(Map, Key,
DefaultVal) returns the value associated with Key in Map; it returns DefaultVal
if Map does not contain Key.

The foreach loop below new map() inserts a key-value pair for each price
into the map, where the key is the price, and the value is a list of indices at which
the price occurs in the array. Note that the loop iterates over the indices from N
down to 1. The indices associated with each price are added to the front of the
list, from the largest to the smallest. In this way, the resulting list of indices for
each price will be sorted in ascending order.

The do case predicate does the following: For each I in 1..len(Items)-1,
and for each J in Js (which is the list of indices associated with the value
C-Items[I]), if I < J, then (I, J) is a satisfying pair of indices. The call
member(J, Js) non-deterministically selects a value from Js for J.

8 N.-F. Zhou

3 Minimum Scalar Product

This problem is from Round 1 A 20082. Given two vectors v1 = (x1, x2, . . . , xn)
and v2 = (y1, y2, . . . , yn), the problem is to choose a permutation of v1 and a
permutation of v2 such that the scalar product of these two permutations is the
smallest possible, and output that minimum scalar product.

Like many other GCJ problems, this problem requires insightful reasoning.
The brute-force approach that enumerates all of the permutations cannot be
scaled to handle large vectors. Let v1 = (x1, x2) and v2 = (y1, y2). Assume
x1 ≤ x2 and y1 ≤ y2. It is not difficult to prove that

x1 × y2 + x2 × y1 ≤ x1 × y1 + x2 × y2.

In general, in order to get the minimum product, we can sort v1 in ascending
order and sort v2 is descending order, and multiply the sorted vectors.

main =>

T = read_int(),

foreach (I in 1..T)

do_case(I)

end.

do_case(TC) =>

N = read_int(),

V1 = [read_int() : _ in 1..N].sort(),

V2 = [read_int() : _ in 1..N].sort_down(),

Prod = sum([E1*E2 : {E1,E2} in zip(V1,V2)]),

printf("Case #%w: %w%n", TC, Prod).

The sort(L) function returns a sorted list of L in ascending order, and the
sort down(L) function returns a sorted list of L is descending order. These sort
functions can be utilized to sort a list of any terms. The expression

sum([E1*E2 : {E1,E2} in zip(V1,V2)])

gives the product of the two vectors V1 and V2. The function zip(V1,V2) returns
a zipped list of pairs from V1 and V2. For example, zip([1,2],[3,4]) returns
a list of two pairs: {1,3} and {2,4}. This expression sums E1*E2 for each pair
{E1,E2} in the zipped list of V1 and V2. For this expression, the Picat compiler
generates code for evaluating the expression without actually creating a zipped
list or a list for the list comprehension.

Let’s see how to implement the brute-force algorithm for the problem. We
don’t need to try all permutations of both vectors. We can fix v1 and choose a
permutation of v2 such that the product of v1 and the permutation is minimum.
This brute-force algorithm is not efficient, but it can handle the small test.

2 https://code.google.com/codejam/contest/32016/dashboard#s=p0.

https://code.google.com/codejam/contest/32016/dashboard#s=p0

Programming in Picat 9

import util.

main =>

T = read_int(),

foreach (I in 1..T)

do_case(I)

end.

do_case(Case) =>

N = read_int(),

V1 = [read_int() : _ in 1..N],

V2 = [read_int() : _ in 1..N],

minof(scalar_prod(V1,V2,Prod),Prod),

printf("Case #%w: %w%n", Case, Prod).

scalar_prod(V1,V2,Prod) =>

permutation(V2,V22),

Prod = sum([E1*E2 : {E1,E2} in zip(V1,V22)]).

The predicate permutation(V2,V22), which is defined in the util module,
non-deterministically binds V22 to a permutation of V2. For a permutation
V22 of V2, the predicate scalar prod(V1,V2,Prod) binds Prod to the prod-
uct of V1 and V22. Since the permutation predicate is non-deterministic,
the scalar prod predicate is also non-deterministic. The built-in predicate
minof(scalar prod(V1,V2,Prod),Prod) returns an instance of the predicate
call scalar prod(V1,V2,Prod) that has the smallest Prod3.

It is also possible to iterate over all of the permutations to find the best
permutation that gives the minimum product4. Nevertheless, the backtracking-
based approach is more memory efficient than the iterative approach, since it
does not use any memory to store all the permutations.

The following shows how the permutation predicate is implemented in Picat:

permutation([], P) => P = [].

permutation(L, P) =>

P = [X|P1],

select(X, L, L1),

permutation(L1, P1).

select(X, [Y|L], L1) ?=> Y = X, L1 = L.

select(X, [Y|L], L1) => L1 = [Y|L2], select(X, L, L2).

3 The minof predicate, which takes another predicate call as the first argument, is
called a higher-order predicate. Picat provides several higher-order built-ins. For
example, maxof(Goal,Exp), find all(Template,Goal), and count all(Goal).

4 The function permutations(L), which is defined in the util module, returns a list
of permutations of L.

10 N.-F. Zhou

This implementation utilizes pattern-matching rules, where the heads contain
non-variable patterns. The first rule states that the permutation of [] is []. For
a non-empty list L, the second rule is applied. The call P = [X|P1] binds P to
the list constructed by the cons operator [X|P1]. The call select(X, L, L1)
non-deterministically selects an element X from L, resulting in a new list L1. The
last call permutation(L1, P1) generates a permutation P1 of L1.

The implementation of select uses a backtrackable rule, as denoted by the
operator ? =>.Because of theuse of this backtrackable rule, this predicatebecomes
non-deterministic, and it is able to return multiple answers. For example:

Picat> select(X,[1,2,3],L1)

X = 1

L1 = [2,3] ?;

X = 2

L1 = [1,3] ?;

X = 3

L1 = [1,2] ?;

no

After Picat returns an answer, you can type a semicolon immediately after the
answer to let the system backtrack; the system reports no if no answer remains.

4 Alien Numbers

This is Problem A in the set of practice problems5. The objective of the prob-
lem is to convert a number from one alien numeral system, called the source
language, to another alien numeral system, called the target language. Each
numeral system consists of a set of “digits”, and the size of the set is the base.

For a number in the source language, the conversion can be done in two steps:
first convert the number to adecimal number, and then convert the decimal number
to the target language. For each language, we use a map in order to map the digits
to their values, the first digit to 0, the second digit to 1, and so on.

import util. % use split

main =>

T = to_int(read_line()),

foreach (TC in 1..T)

[Num,SDs,TDs] = read_line().split(),

do_case(TC, Num, SDs, TDs)

end.

do_case(TC, Num, SDs, TDs) =>

SMap = new_map(),

SBase = len(SDs),

foreach ({D, DVal} in zip(SDs, 0..SBase-1))

5 https://code.google.com/codejam/contest/32003/dashboard#s=p0.

https://code.google.com/codejam/contest/32003/dashboard#s=p0

Programming in Picat 11

SMap.put(D,DVal)

end,

source_to_decimal(Num, SBase, SMap, 0, SVal),

%

TMap = new_map(),

TBase = len(TDs),

foreach ({D, DVal} in zip(TDs, 0..TBase-1))

TMap.put(DVal,D)

end,

decimal_to_target(SVal, TBase, TMap, TNum),

printf("Case #%w: %s\n", TC, TNum).

source_to_decimal([], _Base, _Map, Val0, Val) => Val = Val0.

source_to_decimal([D|Ds], Base, Map, Val0, Val) =>

source_to_decimal(Ds, Base, Map, Val0*Base+Map.get(D), Val).

decimal_to_target(0, _Base, Map, Num) => Num = [Map.get(0)].

decimal_to_target(Val, Base, Map, Num) =>

Ds = [],

while (Val !== 0)

DVal := Val mod Base,

Val := Val div Base,

Ds := [Map.get(DVal)|Ds]

end,

Num = Ds.

Each test case consists of a number string Num, a list of digits SDs in the source
language, and a list of digits TDs in the target language. For the source language,
the program uses SMap to map the digits to the values, and stores the base in
SBase.

Let [Dn−1,Dn−2, . . . , D1,D0] be a number string of the source language that
has the base B. This string represents the decimal value: Dn−1 ∗Bn−1 +Dn−2 ∗
Bn−2+ . . .+D1∗B1+D0. The predicate source to decimal(Num, Base, Map,
Val0, Val) uses tail recursion to convert the number string Num into decimal: If
Num is empty, then the result Val is bound to the accumulator Val0; otherwise,
if Num is a list [D|Ds], then it recurses on Ds using Val0*Base+Map.get(D)
as the new accumulator value. The accumulator value in the initial call to
source to decimal is 0.

Let Dn−1 ∗ Bn−1 + Dn−2 ∗ Bn−2 + . . . + D1 ∗ B1 + D0 be the decimal value
and B be the base of the target language. The digits can be extracted using the
divide-by-base algorithm. When the value is divided by the base B, the remainder
is D0, and the quotient is Dn−1 ∗Bn−2 +Dn−2 ∗Bn−3 + . . .+D1. This division
step is repeatedly applied to the value until the value becomes 0. The predicate
decimal to target(Val, Base, Map, Num) converts the decimal value Val to
a number string of the target language. If Val is 0, then the string only consists
of the 0-value digit. Otherwise, the predicate uses the divide-by-base algorithm
to extract the digits.

12 N.-F. Zhou

The predicate decimal to target illustrates the use of the while loop and
the assignment operator := in Picat. A while loop takes the form

while (Cond)
Goal

end

It repeatedly executes Goal as long as Cond succeeds. For the assignment
X := Exp, Picat introduces a new variable to hold the value of Exp; after
that, this new variable replaces all of the occurrences of X in the scope. Because
of variable cloning, no values can be returned using assignments. For example,
if the unification Num = Ds in the decimal to target predicate were changed
to Num := Ds, then the result would never be returned to the caller through the
variable Num.

5 Alien Language

Alien Language involves matching words in an alien language against patterns6.
A pattern consists of tokens, where each token is either a single lowercase letter
or a group of unique lowercase letters surrounded by parentheses (and). For
example: (ab)d(dc) means the first letter is either a or b, the second letter is
definitely d, and the last letter is either d or c. Therefore, the pattern (ab)d(dc)
can stand for any one of these 4 possibilities: add, adc, bdd, bdc. Each test case
is a pattern. The output for the case indicates how many of the given words
match the pattern.

The problem can be solved by pattern matching. For a letter in a word, if the
token is also a letter, then the match succeeds iff the two letters are identical;
otherwise, if the token is a group, then the match succeeds iff the letter is included
in the group.

import util.

main =>

[_L,D,T] = [to_int(W) : W in read_line().split()],

Words = [read_line() : _ in 1..D],

foreach(TC in 1..T)

do_case(TC, Words)

end.

do_case(TC, Words) =>

trans_pattern(read_line(), P),

printf("Case #%w: %w%n", TC,

sum([1 : Word in Words, match(Word, P)])).

trans_pattern([], P) => P = [].

6 https://code.google.com/codejam/contest/90101/dashboard#s=p0&a=1.

https://code.google.com/codejam/contest/90101/dashboard#s=p0&a=1

Programming in Picat 13

trans_pattern([’(’|S], P) =>

P = [G|PR],

trans_pattern_group(S, SR, G),

trans_pattern(SR, PR).

trans_pattern([X|S], P) =>

P = [X|PR],

trans_pattern(S, PR).

trans_pattern_group([’)’|S], SR, G) =>

G = [], S = SR.

trans_pattern_group([X|S], SR, G) =>

G = [X|GR],

trans_pattern_group(S, SR, GR).

match([], []) => true.

match([A|As], [A|Ps]) =>

match(As, Ps).

match([A|As], [L|Ps]), member(A,L) =>

match(As, Ps).

The first line in the body of the main predicate reads three integers from the
input: the length of each of the words L, the number of words D, and the number
of test cases T. The value L is not used later in the program7. The list com-
prehension [read line() : in 1..D] reads D lines into a list. For each test
case, the do case predicate reads the pattern, transforms the pattern into a list,
and counts the words that match the pattern.

The predicate trans pattern(S, P) transforms the pattern string S into
a list P. A letter is copied into the list. For a group that is surrounded by
parentheses, the call trans pattern group(S, SR, G) extracts the letters from
the group and puts them into the list G; SR holds the remainder of S after the
extraction. For example, for the pattern "(ab)d(dc)", the list obtained after
transformation is [[a,b],d,[d,c]]. The matching of a word against a pattern
is done by the match predicate.

Since a group is represented as a list, it takes O(n) time to check if a letter
is in a group of size n. The above program can be improved by using a set for
each group.

trans_pattern([], P) => P = [].

trans_pattern([’(’|S], P) =>

P = [G|PR],

G = new_set(),

trans_pattern_group(S, SR, G),

trans_pattern(SR, PR).

trans_pattern([X|S], P) =>

7 Picat does not issue singleton variable warnings for variable names that begin with
the underscore .

14 N.-F. Zhou

P = [X|PR],

trans_pattern(S, PR).

trans_pattern_group([’)’|S], SR, _G) => S = SR.

trans_pattern_group([X|S], SR, G) =>

G.put(X),

trans_pattern_group(S, SR, G).

match([], []) => true.

match([A|As], [P|Ps]), atom(P) =>

A == P,

match(As, Ps).

match([A|As], [G|Ps]), G.has_key(A) =>

match(As, Ps).

The call new set() returns a new empty set. For each pattern group that
begins with ’(’, the call trans pattern group(S, SR, G) adds every letter
X in the group into set G using the function G.put(X). The match predicate uses
G.has key(A) to test if letter A is in group G.

6 Egg Drop

Egg Drop is an optimization problem that involves three parameters: the number
of floors F in a building, the number of drops D that you are allowed to perform,
and the number of eggs B that you can break8. You are assumed to have at least
D eggs. All eggs are identical in terms of the shell’s strength. If an egg breaks
when dropped from floor i, then all eggs are guaranteed to break when dropped
from any floor j ≥ i. Likewise, if an egg doesn’t break when dropped from floor i,
then all eggs are guaranteed to never break when dropped from any floor j ≤ i.
For each floor in the building, you want to know whether or not an egg dropped
from that floor will break.

The problem can be posted in three different ways, depending on which
parameter is to be optimized. The first variant is to determine the maximum
number of floors that can be examined when D and B are given. If D = 0 or
B = 0, then no floors can be examined, so F = 0. If B = 1, then what you
can do is to try the floors, starting at floor 1, until the egg breaks or you have
dropped D times; so F = D. In general, let f(D,B) be the number of floors that
can be examined with D drops and B breaks. There are two possible outcomes
when dropping an egg from floor k, an optimal floor number to start. If the egg
breaks, then the k−1 floors that are below floor k need to be examined, and the
number of remaining breaks becomes B − 1. If the egg does not break, then the
floors above floor k need to be examined, and the number of remaining breaks
remains to be B. The function can be defined recursively as:

8 https://code.google.com/codejam/contest/32003/dashboard#s=p2.

https://code.google.com/codejam/contest/32003/dashboard#s=p2

Programming in Picat 15

f(0, _) = 0.
f(_, 0) = 0.
f(D, B) = f(D-1, B) + f(D-1, B-1) + 1.

This function grows exponentially, and dynamic programming can be used to
speed up the computation. Since the problem requires outputting -1 if the value
is greater than or equal to 232 for given B and D, calls with large arguments are
guaranteed to return -1, and therefore do not need to be tabled.

The second variant of the problem is to find the minimum number of drops
D given F and B, and the third variant is to find the minimum number of
breaks B given F and D. These variants can also be solved using dynamic
programming. However, since the input values can be as large as 2 billion, the
dynamic programming approach is not feasible. A more efficient approach is
to use binary search to find the smallest value for which the F floors can be
examined.

main =>

T = read_int(),

foreach (TC in 1..T)

F = read_int(), D = read_int(), B = read_int(),

do_case(TC, F, D, B)

end.

do_case(TC, F, D, B) =>

MF = max_f(D, B),

min_d(F, MD, B),

min_b(F, D, MB),

printf("Case #%w: %w %w %w\n", TC, MF, MD, MB).

% maximize F for given D and B

max_f(D, B) = F, D >= 100000, B >= 2 => F = -1.

max_f(D, B) = F, D >= 10000, B >= 3 => F = -1.

max_f(D, B) = F, D >= 1000, B >= 4 => F = -1.

max_f(D, B) = F, B > D => F = max_f(D, D).

max_f(D, B) = f(D, B).

table

f(_, 0) = 0.

f(D, 1) = D.

f(0, _) = 0.

f(1, _) = 1.

f(D, B) = F =>

F1 = f(D-1,B),

F2 = f(D-1,B-1),

if F1 == -1 ; F2 == -1 then

F = -1

else

F0 = F1+F2+1,

16 N.-F. Zhou

F = cond(F0 >= 2**32, -1, F0)

end.

% minimize D for given F and B

min_d(F, D, B) =>

bsearch_d(0, F, F, D, B).

bsearch_d(From, To, F, D, B), From >= To =>

D = cond((max_f(From, B) >= F ; max_f(From, B) == -1), From, From+1).

bsearch_d(From, To, F, D, B) =>

Mid = (From+To) div 2,

if max_f(Mid, B) == F then

D = Mid

elseif max_f(Mid, B) == -1 ; max_f(Mid, B) > F then

bsearch_d(From, Mid-1, F, D, B)

else

bsearch_d(Mid+1, To, F, D, B)

end.

% minimize B for given F and D

min_b(F, D, B) =>

bsearch_b(0, F, F, D, B).

bsearch_b(From, To, F, D, B), From >= To =>

B = cond((max_f(D, From) >= F ; max_f(D, From) == -1), From, From+1).

bsearch_b(From, To, F, D, B) =>

Mid = (From+To) div 2,

if max_f(D, Mid) == F then

B = Mid

elseif max_f(D, Mid) == -1 ; max_f(D, Mid) > F then

bsearch_b(From, Mid-1, F, D, B)

else

bsearch_b(Mid+1, To, F, D, B)

end.

The function max f(D, B) returns the maximum number of floors that can be
examined with D drops and B breaks. It returns -1 for certain combinations of
values of D and B, where f(D, B) ≥ 232. It is necessary to filter out these cases
because the function f(D, B) takes O(D×B) table space.

In the implementation of function f(D, B), the values from f(D-1, B) and
f(D-1, B-1) are combined in such a way that -1 is returned if either value is -1
or if f(D-1, B) + f(D-1, B-1) + 1 is greater than or equal to 232.

The min d(F, D, B) and min b(F, D, B) predicates implement binary
search for finding the minimum D and the minimum B, respectively. In Picat,
(A;B) is a disjunction, (A, B) is a conjunction, and cond(C, A, B) is a condi-
tional expression, which gives the value of A if C if true and the value of B if C
is false. Since ‘;’ has lower precedence than ‘,’, C must be parenthesized if it is
a disjunction.

Programming in Picat 17

7 Summary

This article has provided a quick introduction to Picat using examples from GCJ.
The Picat implementation is generally as fast as the Python implementation; for
programs that use tail recursion, Picat can be significantly faster than Python
because Picat performs tail recursion optimization.

Despite a young language, Picat has attracted considerable attention recently.
Several contestants have used Picat in recent GCJ competitions. In order to
perform well in a competition like GCJ, one requires a comprehensive set of skills,
including reading, reasoning, coding, and testing skills. Picat’s features allow for
concise description of problem solutions, and can give contestants a competitive
edge in coding. GCJ problems tend to have insidious smart algorithms. Picat
sometimes can provide an alternative way to solve a problem in case one cannot
come up with the insight during a competition.

Acknowledgement. The author would like to thank Sergii Dymchenko for bring GCJ
to his attention, and the following people for giving very helpful comments on early drafts
of this article: Roman Barták, Peter Bernschneider, Mike Bionchik, Jonathan Fruhman,
H̊akan Kjellerstrand, Annie Liu, Claudio Cesar de Sá, and Bo Yuan (Bobby) Zhou.

References

1. Appa, G.M., Pitsoulis, L., Springer, H., Williams, P.: Handbook on Modelling for
Discrete Optimization. International Series in Operations Research & Management
Science. Springer, New York (2010)

2. Armstrong, J.: Programming Erlang, 2nd edn. Pragmatic Press, Dallas (2013)
3. Barták, R., Dovier, A., Zhou, N.-F.: On modeling planning problems in tabled

logic programming. In: Proceedings of the 17th ACM International Symposium
on Principles and Practice of Declarative Programming, PPDP 2015, pp. 31–42
(2015)

4. Colmerauer, A.: Equations and inequations on finite and infinite trees. In: Pro-
ceedings of FGCS, pp. 85–99. ICOT (1984)

5. Debray, S.K.: Static inference of modes and data dependencies in logic programs.
ACM Trans. Program. Lang. Syst. 11(3), 418–450 (1989)

6. Dymchenko, S., Mykhailova, M.: Declaratively solving Google Code Jam problems
with Picat. In: Pontelli, E., Son, T.C. (eds.) PADL 2015. LNCS, vol. 9131, pp.
50–57. Springer, Heidelberg (2015)

7. Hanus, M.: Functional logic programming: from theory to Curry. In: Voronkov,
A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 123–168.
Springer, Heidelberg (2013)

8. Van Hentenryck, P.: Constraint and integer programming in OPL. INFORMS J.
Comput. 14, 345–372 (2002)

9. Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artif. Intell.
2(3–4), 227–260 (1971)

10. Malik, S., Zhang, L.: Boolean satisfiability: from theoretical hardness to practical
success. Commun. ACM 52(8), 76–82 (2009)

11. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: CP, pp. 529–543 (2007)

18 N.-F. Zhou

12. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

13. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Program-
ming. MIT Press, Cambridge (2004)

14. Schimpf, J.: Logical loops. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp.
224–238. Springer, Heidelberg (2002)

15. Warren, D.S.: Memoing for logic programs. Commun. ACM, Special Sect. Logic
Program. 35, 93–111 (1992)

16. Zhou, N.-F.: The language features and architecture of B-Prolog. Theory Pract.
Logic Program., Special Issue Prolog Syst. 12(1–2), 189–218 (2012)

17. Zhou, N.-F., Bartak, R., Dovier, A.: Planning as tabled logic programming. Theory
Pract. Logic Program. 15, 543–558 (2015)

18. Zhou, N.-F., Fruhman, J.: A User’s Guide to Picat. http://picat-lang.org
19. Zhou, N.-F., Have, C.T.: Efficient tabling of structured data with enhanced hash-

consing. Theory Pract. Logic Program. 12(4–5), 547–563 (2012)
20. Zhou, N.-F., Kjellerstrand, H.: The Picat-SAT compiler. In: Gavanelli, M., Reppy,

J. (eds.) PADL 2016. LNCS, vol. 9585, pp. 48–62. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-28228-2 4

21. Zhou, N.-F., Kjellerstrand, H., Fruhman, J.: Constraint Solving and Planning with
Picat. SpringerBriefs in Intelligent Systems. Springer, Heidelberg (2015)

22. Zhou, N.-F., Sato, T., Shen, Y.-D.: Linear tabling strategies and optimizations.
Theory Pract. Logic Program. 8(1), 81–109 (2008)

http://picat-lang.org
http://dx.doi.org/10.1007/978-3-319-28228-2_4

The RuleML Knowledge-Interoperation Hub

Harold Boley(B)

Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
harold.boley@unb.ca

Abstract. The RuleML knowledge-interoperation hub provides for syn-
tactic/semantic representation and internal/external transformation of
formal knowledge. The representation system permits the configuration
of textbook and enriched Relax NG syntax as well as the association
of syntax with semantics. The transformation tool suite includes serial-
ized formatters (normalizers and compactifiers), polarized parsers and
generators (the RuleML↔POSL tool and the RuleML→PSOA/PS gen-
erator and PSOA/PS→AST parser), as well as importers and exporters
(the importer from Dexlog to Naf Datalog RuleML and the exporter
from FOL RuleML languages to TPTP). An N3-PSOA-Flora knowledge-
interoperation use case is introduced for illustration.

1 Introduction

RuleML focuses on structured knowledge, as used, e.g., in data, domain, and
process modeling. Such knowledge is often represented with ontologies and
rules, which may be combined in hybrid or homogeneous ways. Description log-
ics, underlying various ontologies, can be homogeneously combined with the
decidable Datalog± [1], a compact rule language including head existentials;
corresponding rule engines are being increasingly used for efficient ontology rea-
soning [2]. Similarly, ontological subsumption axioms and rule-based mappings
can be combined for uniform Rule-Based Data Access [3]. Moreover, Inductive
(Functional-Logic) Programming is based on the rule paradigm, and employed
in industrial applications [4]. When decidability of querying is not aimed for,
knowledge-representation expressivity can be extended from Datalog, Datalog±,
and description logics to, e.g., Datalog+, Horn logic, as well as FOL and higher-
order rule languages.

This article presents the RuleML hub for interoperating structured knowledge
formalized via a system of rule families ranging from declarative/deliberative
condition-conclusion rules to stateful/reactive event-condition-action rules.

Formal rule knowledge can be collected in knowledge bases (KBs) and trans-
formed on a network such as an intranet or the Internet, specifically the Web.
Utilizing a hub and spoke model, knowledge interoperation benefits from a canon-
ical knowledge-representation language allowing knowledge transformation via
translators mapping through this canonical form. RuleML as an open non-profit
organization has developed a series of rule specifications leading to Version 1.021

1 http://wiki.ruleml.org/index.php/Specification of RuleML 1.02.

c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 19–33, 2016.
DOI: 10.1007/978-3-319-42019-6 2

http://wiki.ruleml.org/index.php/Specification_of_RuleML_1.02

20 H. Boley

of the RuleML system, whose novel Consumer RuleML family achieves an initial
integration of the main Deliberation and Reaction RuleML families.

The Web-based RuleML tools for knowledge interoperation (representation
and transformation) have reached a critical mass, where synergies are becom-
ing possible such as novel chains of translators mapping through RuleML/XML.
A variety of useful interoperation tools is described on, or linked from, the cate-
gorized RuleML Wiki2 (currently consisting of 1247 pages), although they have
not yet been discussed in a synthesis article, in spite of interoperation being
central to RuleML.

The current presentation thus gives a top-down account of the RuleML
knowledge-interoperation hub, focusing on advances in syntactic/semantic
representation and internal/external transformation. The two main knowledge-
interoperation components will be expanded in Sect. 2, on knowledge repre-
sentation, and Sect. 3, on knowledge transformation, followed, in Sect. 4, by a
knowledge-interoperation use case and, in Sect. 5, conclusions.

2 Knowledge Representation System

The RuleML knowledge-representation architecture consists of a system of
families of languages of XML-serialized instance documents (containing KBs
and queries) specified syntactically through schemas (for Deliberation RuleML,
normatively in Relax NG, from which XSD is generated) and associated with
semantic profiles through syntax-semantics-pairing logics as appropriate. For
each pair logic = (language, profile), language is predefined but profile and logic
are predefined or user-defined (where logic can be predefined only if profile is).

2.1 Configuration of Textbook and Enriched Relax NG Syntax

RuleML’s modular schemas permit rule interchange with high precision. Delib-
eration RuleML 1.0 introduced a modularization approach based on the schema
language Relax NG [5], restricted to be monotonic: When two modules are com-
bined, e.g. by including them both into a larger schema, the language defined
by the larger schema contains both of the languages defined by the modules.
Because of this monotonicity property, the more than fifty Deliberation RuleML
1.02 schema modules may be freely combined to define a fine-grained poset lat-
tice of languages, with a partial order based on syntactic language containment.

To select from the many resulting predefined languages of the Deliberation
RuleML family, the Modular sYNtax confiGurator (MYNG) application [6] was
developed for providing a unified parameterized schema accessible either directly,
using a REST interface, or through a GUI that exposes the REST interface.

MYNG may be used to configure a RuleML language with a set of desired
features. Relax NG schemas configured using MYNG 1.023 may be employed

2 http://wiki.ruleml.org/index.php/Special:Categories.
3 http://deliberation.ruleml.org/1.02/myng/.

http://wiki.ruleml.org/index.php/Special:Categories
http://deliberation.ruleml.org/1.02/myng/

The RuleML Knowledge-Interoperation Hub 21

outside of MYNG for schema-aware authoring, instance validation, or parser
generation through XML tools such as oXygen XML and JAXB.

All MYNG-configured RuleML languages have a unique myng-code URL.
Members of the subset of anchor languages additionally have a (composite)
name. An example from Deliberation RuleML is the anchor language Datalog+

(more precisely, the language defined by its Relax NG schema4). Starting with its
Version 1.01, an “Instructive KB”5 has been made available including examples
from [1]. This KB (with embedded queries) has acted as a Datalog+ RuleML par-
adigm also for the Rulebase Competition 2014 held at the 8th International Rule
Challenge6, whose KBs from the RCC-geospatial, investment-regulation, and
car-insurance domains, along with their descriptions in the proceedings papers,
are collected in one place7.

RuleML – as a rich knowledge modeling system supporting, e.g., Web rules –
comes with supplementary features for (Semantic) Web applications such as
(optional) IRIs, OIDs, types, and slots in its specification of anchor languages,
including Datalog(+), Hornlog(+), and FOLog. For users who just need unsup-
plemented languages (where such features are not even optional), RuleML has
started to introduce “textBooK” (BK) language versions without any sup-
plementary features, including DatalogBK(+), HornlogBK(+), and FOLogBK.
Since myng-codes for such unsupplemented languages already exist amongst the
vast variety [6] of myng-codes of the language lattice, once identified, they can
be easily designated as BK anchor languages.

2.2 Logics Associating Syntactic Languages
with Semantic Profiles

Rather than assuming a default semantics for syntactically defined languages,
RuleML 1.02 leaves their semantics unspecified by default; this is motivated by
concerns for security, scalability, refinability, and application requirements.8

Instead, each RuleML 1.02 document permits to prominently refer to a logic.
RuleML logics are syntax-semantics pairs, associating a syntactic language

with a semantic profile. The syntax is a predefined language as MYNG-configured
in Sect. 2.1. The semantics is defined by a profile of descriptors including:
(a) a classification distinguishing Proof(-theoretic) vs. Model(-theoretic), with
the former being subclassified as Resolution vs. ASP etc., the latter as
Herbrand vs. Tarski, all of which can be further qualified by fine distinctions;
(b) a reference to a Web-published semantics and a mapping between its syntax
and RuleML/XML syntax.

The two components constituting a logic allow for many-to-many relation-
ships, where multiple syntaxes can have one semantics (see Sect. 3), and one
syntax can have multiple semantics, as exemplified next.
4 http://deliberation.ruleml.org/1.02/relaxng/datalogplus min relaxed.rnc.
5 http://deliberation.ruleml.org/1.02/exa/DatalogPlus/datalogplus min.ruleml.
6 http://2014.ruleml.org/challenge.
7 http://deliberation.ruleml.org/1.02/exa/RulebaseCompetition2014/.
8 http://wiki.ruleml.org/index.php/Specification of RuleML 1.02.

http://deliberation.ruleml.org/1.02/relaxng/datalogplus_min_relaxed.rnc
http://deliberation.ruleml.org/1.02/exa/DatalogPlus/datalogplus_min.ruleml
http://2014.ruleml.org/challenge
http://deliberation.ruleml.org/1.02/exa/RulebaseCompetition2014/
http://wiki.ruleml.org/index.php/Specification_of_RuleML_1.02

22 H. Boley

The predefined logics of RuleML 1.02 include Horn-Herbrand, associating the
Hornlog RuleML syntax with Herbrand semantics. For a user group requiring
Tarski models, this logic can be complemented by a user-defined logic Horn-
Tarski, associating the same syntax with Tarski semantics (in a future RuleML
version, this might also become predefined). Moreover, both components of Horn-
Herbrand can be refined, e.g. for negation-as-failure, leading to, e.g., NafHorn-
HerbrandWF (Naf with Well-Founded semantics) or to NafHorn-HerbrandSM
(Naf with Stable Model semantics).

Positional-Slotted, Object-Applicative RuleML (PSOA RuleML) [7,8]9 uses
psoa atoms which permit the application of a predicate (acting as a relation) to
be [in an oidless /oidful dimension] without or with an Object IDentifier (OID) –
typed by the predicate (acting as a class) – and the predicate’s arguments to be
[in an orthogonal dimension] positional, slotted, or combined.

PSOA RuleML’s presentation syntax PSOA/PS [7] was complemented by
an XML syntax [8] defined by an XSD schema10, which can be translated to a
Relax NG schema called HornPSOA.

PSOA RuleML has a Tarski semantics [7], which could be complemented
by a Herbrand semantics. Both semantics provide a model theory for PSOA
RuleML, whose object identifiers lead to (head-)existential rules (which can be
Skolemized to Horn rules). While the Tarski semantics of PSOA RuleML refers to
the online version of [7], its Herbrand semantics could refer to a direct definition
or to a definition with the domain of a PSOA RuleML semantic structure in [7]
becoming the set of all equivalence classes over the Herbrand PSOA RuleML
universe, adapting the Herbrand RIF-FLD Subframework11.

The resulting predefined logic HornPSOA-Tarski could be complemented by a
user-defined logic HornPSOA-Herbrand (in a future RuleML version, this might
also become predefined).

An interoperation use case for bidirectional SQL-PSOA-SPARQL transfor-
mation (schema/ontology mapping) of – flat and nested – addresses is developed
in the PSOA RuleML tutorial [8]. For a geospatial use case see [9].

3 Knowledge Transformation Tool Suite

Based on the RuleML knowledge representation of Sect. 2, we now proceed to
the suite of tools for (semantics-preserving) knowledge transformation (Rule-
ML/XML is the ‘machine-oriented’ RuleML serialization syntax; RuleML/short
stands for ‘human-oriented’ RuleML shorthand syntaxes such as POSL and
PSOA/PS; foreign stands for non-RuleML syntaxes such as Prolog and RIF/PS):

9 http://wiki.ruleml.org/index.php/PSOA RuleML.
10 http://wiki.ruleml.org/index.php/PSOA RuleML API.
11 https://www.w3.org/TR/rif-fld/#Appendix: A Subframework for Herbrand

Semantic Structures.

http://wiki.ruleml.org/index.php/PSOA_RuleML
http://wiki.ruleml.org/index.php/PSOA_RuleML_API
https://www.w3.org/TR/rif-fld/#Appendix:_A_Subframework_for_Herbrand_Semantic_Structures
https://www.w3.org/TR/rif-fld/#Appendix:_A_Subframework_for_Herbrand_Semantic_Structures

The RuleML Knowledge-Interoperation Hub 23

– Internal: RuleML-to-RuleML
• Serialized: RuleML/XML-to-RuleML/XML

∗ Upgraders (e.g., to Version 1.0212)
∗ Formatters (e.g., for Version 1.0213)

· Normalizer (Sect. 3.1)
· Compactifiers (Sect. 3.1)

• Polarized (Sect. 3.2): Between-RuleML/XML-and-RuleML/short
∗ Parsers: RuleML/short-to-RuleML/XML
∗ Generators: RuleML/XML-to-RuleML/short

– External: Between-RuleML/XML-and-foreign14
• Importers (Sect. 3.3): foreign-to-RuleML/XML
• Exporters (Sect. 3.3): RuleML/XML-to-foreign

On the top-level, this tool-suite taxonomy distinguishes transformations that are
Internal to RuleML from those that are External in the sense of mapping – in
either direction – between RuleML and foreign syntaxes. The more deeply differ-
entiated Internal branch is then divided into Serialized transformations (staying
within the XML syntax of RuleML) and Polarized transformations (having both
a RuleML/XML and a RuleML/short side). The Parsers and Generators under
the Polarized sub-branch of the Internal branch as well as the Importers and
Exporters of the External branch can be composed. This creates transformation
chains mapping through RuleML/XML as in the following compositions, where
POSL and PSOA/PS are two ‘shorthand’ syntaxes for a Deliberation RuleML
subset,15 while Dexlog [10] and TPTP refer to subsets of two ‘foreign’ syntaxes:

– Internal-Internal: POSL−→RuleML/XML−→PSOA/PS
– External-External: Dexlog−→RuleML/XML−→TPTP
– Internal-External: POSL−→RuleML/XML−→TPTP
– External-Internal: Dexlog−→RuleML/XML−→PSOA/PS

The following subsections will traverse this taxonomy, expanding on a selec-
tion of its leaf nodes.

3.1 Serialized Formatters

Normalizer. RuleML has always allowed abbreviated serialization (skipped
edge tags) and some freedom in the ordering of elements. XSLT stylesheets
have been developed16 for normalizing the syntax used in a given Version 1.02
instance, filling in any skipped edges and sorting elements into a canonical order.
12 http://wiki.ruleml.org/index.php/Specification of Deliberation RuleML 1.02#

XSLT-Based Upgrader.
13 http://wiki.ruleml.org/index.php/Specification of Deliberation RuleML 1.02#

XSLT-Based Formatters.
14 External transformations should be defined via the normative RuleML/XML, rather

than via any RuleML/short, while foreign may be any normative XML or other
format.

15 On the other hand, Prova is a shorthand syntax for a Reaction RuleML subset.
16 http://deliberation.ruleml.org/1.02/xslt/normalizer/.

http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.02#XSLT-Based_Upgrader
http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.02#XSLT-Based_Upgrader
http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.02#XSLT-Based_Formatters
http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.02#XSLT-Based_Formatters
http://deliberation.ruleml.org/1.02/xslt/normalizer/

24 H. Boley

The goals of the RuleML Normalizer include the following:

– Reconstruct all skipped edge tags to produce a fully striped form [since edge
tags correspond to (RDF) properties, this simplifies interoperation between
RuleML/XML and directed labeled (RDF) graphs]

– Perform canonical ordering of sibling elements [this reduces the complexity of
equality comparison across RuleML/XML serializations, for both humans and
machines]

As a first example, the Existential Datalog+ rule

<Forall>

<Var>H</Var>

<Implies>

<Atom>

<Rel>human</Rel>

<Var>H</Var>

</Atom>

<Exists>

<Var>M</Var>

<Atom>

<Rel>hasMother</Rel>

<Var>H</Var>

<Var>M</Var>

</Atom>

</Exists>

</Implies>

</Forall>

is normalized to

<Forall>

<declare><Var>H</Var></declare>

<formula>

<Implies>

<if>

<Atom>

<op><Rel>human</Rel></op>

<arg index="1"><Var>H</Var></arg>

</Atom>

</if>

<then>

<Exists>

<declare><Var>M</Var></declare>

<formula>

<Atom>

<op><Rel>hasMother</Rel></op>

<arg index="1"><Var>H</Var></arg>

<arg index="2"><Var>M</Var></arg>

</Atom>

</formula>

The RuleML Knowledge-Interoperation Hub 25

</Exists>

</then>

</Implies>

</formula>

</Forall>

As a second example, the compact version17 of the Datalog+ example is
normalized to the expanded version18.

Normalization is a preparatory step for many other transformations such as
the compactifiers (cf. Sect. 3.1) and the TPTP exporters (cf. Sect. 3.3).

Compactifiers. The compactifier XSLTs19 specify formatting into a compact
serialization, which has fewer elements (i.e. is more compact) than the normalized
serialization.

Two variations of this formatter specification are provided due to some lim-
itations of XSD schemas. Both first apply the normalizer of Sect. 3.1 to sort the
child nodesets into the canonical order. Then the “full” compactifier specifies the
removal of all skippable RuleML stripes, while the “ifthen” compactifier retains
<if> and <then> edges to provide disambiguating contexts for certain elements.

For example, as two inversions of the first example in Sect. 3.1, the full and
ifthen compactifiers transform the expanded version to their compact versions
without (shown there) and with retained <if> and <then> edges, respectively.

3.2 Polarized Parsers and Generators

RuleML↔POSL Parser & Generator Tool. The POsitional-SLotted
(POSL) shorthand syntax of Hornlog RuleML combines the essence of Prolog’s
positional and F-logic’s slotted syntaxes [11]20.

A pair of inverse translators has been developed for polarized internal trans-
formation under a common GUI: A parser building RuleML-serialization syntax
from POSL-shorthand syntax and a generator working in the opposite direc-
tion. Currently in Version 1.0, the tool is available online through its “Java Web
Start” implementation.21

These translators have enabled writing KBs in the POSL shorthand
while deploying them in the RuleML/XML serialization, as well as getting
RuleML/XML rendered as POSL. Several Hornlog KBs22 have been built in
POSL and serialized with the RuleML←POSL parser, initializing the RuleML
knowledge hub.

17 http://deliberation.ruleml.org/1.02/exa/DatalogPlus/datalogplus min.ruleml.
18 http://deliberation.ruleml.org/1.02/exa/DatalogPlus/datalogplus min normal.

ruleml.
19 http://deliberation.ruleml.org/1.02/xslt/compactifier/.
20 http://ruleml.org/submission/ruleml-shortation.html.
21 http://www.jdrew.org/oojdrew/demo.html.
22 http://wiki.ruleml.org/index.php/Rulebases:Master.

http://deliberation.ruleml.org/1.02/exa/DatalogPlus/datalogplus_min.ruleml
http://deliberation.ruleml.org/1.02/exa/DatalogPlus/datalogplus_min_normal.ruleml
http://deliberation.ruleml.org/1.02/exa/DatalogPlus/datalogplus_min_normal.ruleml
http://deliberation.ruleml.org/1.02/xslt/compactifier/
http://ruleml.org/submission/ruleml-shortation.html
http://www.jdrew.org/oojdrew/demo.html
http://wiki.ruleml.org/index.php/Rulebases:Master

26 H. Boley

RuleML→PSOA/PS Generator and PSOA/PS→AST Parser. The
RIF-like presentation syntax of PSOA RuleML (PSOA/PS) is a shorthand that
goes beyond RIF/PS by capturing PSOA RuleML’s integration of, e.g., relation-
ships and frames [7,8].

The PSOA RuleML API23 supports creating and manipulating abstract syn-
tax objects (ASOs) using factory-based Java methods. These are employed
to read the XML-based concrete syntax (serialization) of PSOA RuleML into
ASOs, and render ASOs as PSOA/PS. This read-render composition, developed
with the API, amounts to a generator of the presentation syntax from PSOA
RuleML’s XML syntax. The PSOA RuleML API is wrapped into an online demo
Web application24, which shows a list of PSOA RuleML/XML rulebases25 and
generates their equivalent forms in the presentation syntax.

For the inverse direction, RuleML←PSOA/PS, the PSOATransRun imple-
mentation26 of PSOA RuleML provides a parser of PSOA/PS into ANTLR
abstract syntax trees (ASTs). From there, it generates either TPTP [12] or Pro-
log but does not currently transform ASTs into RuleML/XML, although this
should be easy, since XML trees are structurally similar to the ASTs themselves.

3.3 Importers and Exporters

Importer from Dexlog to Naf Datalog RuleML. Dexter [10]27 is a browser-
based, domain-independent data explorer for the everyday user.

Dexter among other things allows to create, edit and query tables locally in
the browser, to define (integrity and derivation) rules in Dexlog, an extension
of Datalog using negation-as-failure, sets, tuples, aggregates, and built-in arith-
metic and comparison operators, as well as to import data, and export data and
rules.

One Dexter export format (which becomes imported to RuleML) is Naf Dat-
alog RuleML/XML. It was developed in a joint effort by the Stanford Logic
Group and RuleML.28 The JavaScript-implemented translator maps tables and
rules from a subset of Dexlog to a subset of Naf Datalog RuleML.

For example, the Dexlog rules (without negation-as-failure etc.)

ancestor(X, Y) :- parent(X, Y)

ancestor(X, Y) :- parent(X, Z) & ancestor(Z, Y)

are translated to the following rules, valid w.r.t. Naf Datalog RuleML (which can
be strengthened to validity w.r.t. RuleML’s Datalog and BinDatalog and to their
textbook versions – according to Sect. 2.1 – DatalogBK and BinDatalogBK):

23 http://wiki.ruleml.org/index.php/PSOA RuleML API.
24 http://psoa-rulemlapi.rhcloud.com/psoaxml2ps/.
25 http://wiki.ruleml.org/index.php/PSOA RuleML#Test Cases.
26 http://wiki.ruleml.org/index.php/PSOA RuleML#PSOATransRun.
27 http://dexter.stanford.edu.
28 http://wiki.ruleml.org/index.php/Dexter and RuleML.

http://wiki.ruleml.org/index.php/PSOA_RuleML_API
http://psoa-rulemlapi.rhcloud.com/psoaxml2ps/
http://wiki.ruleml.org/index.php/PSOA_RuleML#Test_Cases
http://wiki.ruleml.org/index.php/PSOA_RuleML#PSOATransRun
http://dexter.stanford.edu
http://wiki.ruleml.org/index.php/Dexter_and_RuleML

The RuleML Knowledge-Interoperation Hub 27

<?xml version="1.0" encoding="UTF-8"?>

<?xml-model href="http://deliberation.ruleml.org/1.01/xsd/nafdatalog.xsd"?>

<RuleML xmlns="http://ruleml.org/spec">

<Assert>

<Forall>

<Var>X</Var>

<Var>Y</Var>

<Implies>

<Atom>

<Rel>parent</Rel>

<Var>X</Var>

<Var>Y</Var>

</Atom>

<Atom>

<Rel>ancestor</Rel>

<Var>X</Var>

<Var>Y</Var>

</Atom>

</Implies>

</Forall>

<Forall>

<Var>X</Var>

<Var>Z</Var>

<Var>Y</Var>

<Implies>

<And>

<Atom>

<Rel>parent</Rel>

<Var>X</Var>

<Var>Z</Var>

</Atom>

<Atom>

<Rel>ancestor</Rel>

<Var>Z</Var>

<Var>Y</Var>

</Atom>

</And>

<Atom>

<Rel>ancestor</Rel>

<Var>X</Var>

<Var>Y</Var>

</Atom>

</Implies>

</Forall>

</Assert>

</RuleML>

An inverse translator, from a subset of Naf Datalog RuleML to a subset
of Dexlog, could be built with the PSOA RuleML API of Sect. 3.2, where the
generation of PSOA/PS is replaced with Dexlog generation.

Exporters from Datalog+/Hornlog+/FOL RuleML to TPTP. “Thou-
sands of Problems for Theorem Provers” (TPTP [12]29) is a widely used syn-
29 http://www.cs.miami.edu/∼tptp/.

http://www.cs.miami.edu/~tptp/

28 H. Boley

tax and library for Automated Theorem Proving (ATP) test/benchmark prob-
lems. RuleML2TPTP30 is an XSLT 2.0-based translator from Deliberation
RuleML/XML 1.01 to TPTP. Originally implemented for Datalog+ RuleML,
it was later extended to Hornlog+ RuleML, and then to all of FOL RuleML
(with Equality).

RuleML2TPTP first uses the RuleML Normalizer (cf. Sect. 3.1) to transform
Deliberation RuleML/XML to its normalized version. With the fully striped
normalization avoiding conditional branching between stripe-skipped and striped
forms, the XSLT stylesheet31 then performs recursive case analysis to linearize
XML trees to TPTP texts. The generated TPTP can finally be validated and
executed with an ATP system via the “System on TPTP” page32 such as with
Vampire and the E prover.

For instance, the first example’s input in Sect. 3.1 will be normalized to the
output shown there. This is then transformed to the following TPTP:

fof(example,axiom,(

! [H] :

(human(H) =>

? [M] : hasMother(H,M)))).

RuleML2TPTP has been used, e.g., to translate the “Instructive KB” for
Datalog+ in Sect. 2.1 to TPTP;33 also, on an OpenRuleBench-derived RuleML
version of the well-known Wine Ontology, generating a TPTP KB for the
Semantic Web.34

Preparatory planning for an inverse translator, TPTP2RuleML35, has
started, whose implementation is intended as a joint endeavor of the RuleML
and TPTP communities.

4 N3-PSOA-Flora Knowledge-Interoperation Use Case

While Sect. 3 discussed various interoperation test cases under the perspective
of the tool-suite taxonomy, the present section proposes a use case bridging the
gap between two languages of particular relevance to the rule-based Seman-
tic Web, both also supporting the (light-weight-)ontology-based Semantic Web:
N3 [13] and Flora-2/F-logic [14]36. The N3-PSOA-Flora use case is focusing
on the interoperation from N3 to Flora-2/F-logic, although the opposite direc-
tion can be easily constructed from the alignment provided. This also demon-
strates the role of PSOA RuleML [7,8] as an intermediate (canonical) format that

30 http://wiki.ruleml.org/index.php/TPTP RuleML.
31 https://github.com/RuleML/RuleML2TPTP/archive/v1.02.zip.
32 http://www.cs.miami.edu/∼tptp/cgi-bin/SystemOnTPTP.
33 http://deliberation.ruleml.org/1.01/exa/DatalogPlus/datalogplus min/.
34 http://ruleml.org/usecases/wineonto#Step%204:%20RuleML%201.

0%20-%20RuleML%201.01%20Conversion.
35 http://wiki.ruleml.org/index.php/TPTP RuleML#TPTP2RuleML.
36 With “Flora-2/F-logic” we refer to the current F-logic version as part of Flora-2.

http://wiki.ruleml.org/index.php/TPTP_RuleML
https://github.com/RuleML/RuleML2TPTP/archive/v1.02.zip
http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP
http://deliberation.ruleml.org/1.01/exa/DatalogPlus/datalogplus_min/
http://ruleml.org/usecases/wineonto#Step%204:%20RuleML%201.0%20-%20RuleML%201.01%20Conversion
http://ruleml.org/usecases/wineonto#Step%204:%20RuleML%201.0%20-%20RuleML%201.01%20Conversion
http://wiki.ruleml.org/index.php/TPTP_RuleML#TPTP2RuleML

The RuleML Knowledge-Interoperation Hub 29

focuses entirely on the knowledge-representation layer rather than programming-
language details, but makes syntactic assumptions (e.g. quantifiers) explicit.
After having introduced the central rule of this use case in (controlled) English,
the rule and a fact will be given as the N3 source, as the Flora-2/F-logic target,
and as three variants of the PSOA RuleML canonical form.

English: “If the relation addressRel holds between a name, a street, and a town,
then there exists an object, addressObj, with a name slot and a place slot for
which there exists an object, placeObj, with a street slot and a town slot.”

Source: N3 fact and rule, where the default namespace (N3’s “:” prefix) is
RuleML’s GeospatialRules [9] and rel:arglist is an N3 property defined in
the PSOA RuleML namespace for an N3 vocabulary that emulates relations:

@prefix : <http://psoa.ruleml.org/GeospatialRules#>.

@prefix rel: <http://psoa.ruleml.org/n3/vocab/rel#>.

[a :addressRel;

rel:arglist ("Computer Science" "Engineering Dr" "Stony Brook, NY 11794")].

{

[a :addressRel;

rel:arglist (?Name ?Street ?Town)]

}

=>

{

[a :addressObj;

:name ?Name;

:place [a :placeObj;

:street ?Street;

:town ?Town]]

}.

Target: Flora-2/F-logic fact and rule, where the compiler option for experts
enables the use of the embedded ISA-literal (Flora-2’s “:” infix) in the rule
head, as described in [14], Sect. 48:

:- compiler_options{expert=on}.

addressRel(’Computer Science’,’Engineering Dr’,’Stony Brook, NY 11794’).

\#(?Name,?Street,?Town):addressObj[

name->?Name,

place->\#(?Name,?Street,?Town):placeObj[

street->?Street,

town->?Town]] :-

addressRel(?Name,?Street,?Town).

Canonical, presentation syntax: PSOA RuleML/PS fact and rule, where
the rule, from [8], uses FOL-style explicit quantifiers (adapted from FOL
RuleML/XML as well as W3C RIF/XML and RIF/PS):

30 H. Boley

addressRel("Computer Science" "Engineering Dr" "Stony Brook, NY 11794")

Forall ?Name ?Street ?Town (

Exists ?O1 ?O2 (?O1#addressObj(name->?Name

place->?O2#placeObj(street->?Street

town->?Town))) :-

addressRel(?Name ?Street ?Town)

)

Canonical, compact serialization: Stripe-skipped PSOA RuleML/XML for
the fact and rule:

<Atom>

<Rel>addressRel</Rel>

<Data>Computer Science</Data>

<Data>Engineering Dr</Data>

<Data>Stony Brook, NY 11794</Data>

</Atom>

<Forall>

<Var>Name</Var>

<Var>Street</Var>

<Var>Town</Var>

<Implies>

<Atom>

<Rel>addressRel</Rel>

<Var>Name</Var>

<Var>Street</Var>

<Var>Town</Var>

</Atom>

<Exists>

<Var>O1</Var>

<Var>O2</Var>

<Atom>

<oid><Var>O1</Var>></oid>

<Rel>addressObj</Rel>

<slot><Ind>name</Ind><Var>Name</Var></slot>

<slot>

<Ind>place</Ind>

<Atom>

<oid><Var>O2</Var></oid>

<Rel>placeObj</Rel>

<slot><Ind>street</Ind><Var>Street</Var></slot>

<slot><Ind>town</Ind><Var>Town</Var></slot>

</Atom>

</slot>

</Atom>

</Exists>

</Implies>

</Forall>

The RuleML Knowledge-Interoperation Hub 31

Canonical, normalized serialization:37 Fully striped PSOA RuleML/XML:

<Atom>

<op><Rel>addressRel</Rel></op>

<arg><Data>Computer Science</Data></arg>

<arg><Data>Engineering Dr</Data></arg>

<arg><Data>Stony Brook, NY 11794</Data></arg>

</Atom>

<Forall>

<declare><Var>Name</Var></declare>

<declare><Var>Street</Var></declare>

<declare><Var>Town</Var></declare>

<formula>

<Implies>

<if>

<Atom>

<op><Rel>addressRel</Rel></op>

<arg><Var>Name</Var></arg>

<arg><Var>Street</Var></arg>

<arg><Var>Town</Var></arg>

</Atom>

</if>

<then>

<Exists>

<declare><Var>O1</Var></declare>

<declare><Var>O2</Var></declare>

<formula>

<Atom>

<oid><Var>O1</Var></oid>

<op><Rel>addressObj</Rel></op>

<slot><Ind>name</Ind><Var>Name</Var></slot>

<slot>

<Ind>place</Ind>

<Atom>

<oid><Var>O2</Var></oid>

<op><Rel>placeObj</Rel></op>

<slot><Ind>street</Ind><Var>Street</Var></slot>

<slot><Ind>town</Ind><Var>Town</Var></slot>

</Atom>

</slot>

</Atom>

</formula>

</Exists>

</then>

</Implies>

</formula>

</Forall>

37 Normalization here refers to PSOA RuleML (edge-)stripe reconstruction etc. like in
RuleML 1.02, rather than to unnesting using PSOATransRun 1.1 (cf. footnote 9).

32 H. Boley

The central rule of this use case also clarifies a point – shown in parts (A)
and (B) – that may be surprising to readers new to the rule-based Semantic
Web:38

(A) The rule can (1) be enriched by light-weight-ontological knowledge in the
form of taxomic subsumptions – using PSOA’s “##” infix – such as addressObj##
geoObj and placeObj##geoObj and (2) be employed to align (transform) given
facts/instances populating a relational address ontology such as the addressRel
fact/instance from above with (into) derivable facts/instances for populating an
object-centered address ontology such as the following derivable fact/instance:

skolem1#addressObj(name->"Computer Science"

place->

skolem2#placeObj(street->"Engineering Dr"

town->"Stony Brook, NY 11794"))

(B) But, following up on Sect. 3, such a rule, e.g. in the above normalized serial-
ization variant, is itself the subject of interoperation, e.g. using XSLT for trans-
formation. Moreover, the rule-transformation rules, e.g. XSLT templates, could
again be interoperated. This could also be done based on the RuleML hub tech-
nology by encoding the RuleML rules as RuleML facts39 and transcribing the
XSLT templates into RuleML metarules translating those rule-encoding facts.
Since XSLT templates can be conceived as term-rewriting rules over XML trees,
this could employ Functional RuleML40.

5 Conclusions

RuleML has become a hub for the interoperation of formal knowledge by provid-
ing a foundational representation layer topped by a transformation layer. Ongo-
ing representation work includes Deliberation RuleML’s PSOA, Higher-Order,
Modal, and Defeasible subfamilies as well as the further formalization – and
transition from XSD to Relax NG – of Reaction RuleML. Novel transformation
chains are already emerging from unexpected translator compositions such as
between subsets of Dexlog, Datalog RuleML/XML, and TPTP. Future develop-
ment of the hub should give rise to further interoperation pathways for knowledge
sharing and reuse. Readers are invited to consult the links and references about
some of the RuleML features and tools not detailed in this article.

Acknowledgements. Thanks to my RuleML 1.02 Taskforce colleagues Tara Athan
and Adrian Paschke, as well as to Gen Zou, Sadnan Al Manir, Adrian Giurca, Alexandre
Riazanov, Michael Genesereth, Sudhir Agarwal, Marcel Ball, Meng Luan, Leah Bidlake,
and many others, for their contributions leading to the RuleML hub. Thanks also to
Paul Fodor and the entire Organizing Committee chairing RuleML 2016.

38 The canonical PSOA RuleML format, presentation variant, is employed here, from
which the other two formats can be obtained via their alignments.

39 http://ruleml.org/indoo/indoo.html#Programs-as-Data.
40 http://ruleml.org/fun/.

http://ruleml.org/indoo/indoo.html#Programs-as-Data
http://ruleml.org/fun/

The RuleML Knowledge-Interoperation Hub 33

References

1. Cali, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. J. Web Semant. 14, 57–83 (2012)

2. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-
scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367,
pp. 3–20. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25010-6 1

3. Boley, H., Grütter, R., Zou, G., Athan, T., Etzold, S.: A Datalog+ RuleML 1.01
architecture for rule-based data access in ecosystem research. In: Bikakis, A.,
Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 112–126. Springer,
Heidelberg (2014)

4. Hernández-Orallo, J., Muggleton, S.H., Schmid, U., Zorn, B.: Approaches and
applications of inductive programming (Dagstuhl seminar 15442). Dagstuhl Rep.
5(10), 89–111 (2016)

5. Athan, T., Boley, H.: Design and implementation of highly modular schemas for
XML: customization of RuleML in Relax NG. In: Palmirani, M. (ed.) RuleML
2011 - America. LNCS, vol. 7018, pp. 17–32. Springer, Heidelberg (2011)

6. Athan, T., Boley, H.: The MYNG 1.01 suite for Deliberation RuleML 1.01: Taming
the language lattice. In: Patkos, T., Wyner, A., Giurca, A. (eds.) Proceedings of the
RuleML 2014 Challenge, at the 8th International Web Rule Symposium. CEUR,
vol. 1211, August 2014

7. Boley, H.: A RIF-style semantics for RuleML-integrated positional-slotted, object-
applicative rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML
2011 - Europe. LNCS, vol. 6826, pp. 194–211. Springer, Heidelberg (2011)

8. Boley, H.: PSOA RuleML: integrated object-relational data and rules. In: Faber,
W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 114–150.
Springer, Heidelberg (2015)

9. Zou, G.: PSOA RuleML integration of relational and object-centered geospatial
data. In: Bassiliades, N., Fodor, P., Giurca, A., Gottlob, G., Kliegr, T., Nalepa,
G.J., Palmirani, M., Paschke, A., Proctor, M., Roman, D., Sadri, F., Stojanovic,
N. (eds.) Proceedings of the RuleML 2015 Challenge, Berlin, Germany, 2–5 August
2015. CEUR Workshop Proceedings, vol. 1417. CEUR-WS.org (2015)

10. Agarwal, S., Mohapatra, A., Genesereth, M., Boley, H.: Rule-based exploration of
structured data in the browser. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke,
A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 161–175. Springer,
Heidelberg (2015)

11. Boley, H.: Integrating positional and slotted knowledge on the Semantic Web. J.
Emerg. Technol. Web Intell. 4(2), 343–353 (2010)

12. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43(4), 337–362 (2009)

13. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: A logical
framework for the World Wide Web. Theory Pract. Logic Program. (TPLP) 8(3),
249–269 (2008)

14. Kifer, M., Yang, G., Wan, H., Zhao, C.: ERGOLite (a.k.a. F lora-2): User’s Manual,
v1.1 (2015). http://flora.sourceforge.net/docs/floraManual.pdf

http://dx.doi.org/10.1007/978-3-319-25010-6_1
http://flora.sourceforge.net/docs/floraManual.pdf

General RuleML Track

Handling Complex Process Models Conditions
Using First-Order Horn Clauses

Stefano Ferilli(B)

University of Bari, Bari, Italy
stefano.ferilli@uniba.it

Abstract. WorkFlow Management Systems provide automatic support
to learn process models or to check compliance of process enactment to
correct models. The expressive power of the adopted formalism for rep-
resenting process models is fundamental to determine the effectiveness
or even feasibility of a correct model. In particular, a desirable feature is
the possibility of expressing complex conditions on some elements of the
model. The formalism used in the WoMan framework for workflow man-
agement, based on First-Order Logic, is more expressive than standard
formalisms adopted in the literature. It allows tight integration between
the activity flow and the conditions, and it allows one to express con-
ditions that take into account contextual information and various kinds
of relationships among the involved entities. This paper discusses such a
formalism, especially concerning conditions, and provides an explicative
example of how this can be applied in practice.

Keywords: Business process modeling · Process mining · Logic pro-
gramming

1 Introduction

Critical processes, of which our society is pervaded, are typically very complex.
WorkFlow Management Systems (WFMSs for short) are designed to help, sup-
ported by computers, in accomplishing several process-related tasks of interest.
E.g., they may supervise process enactment to check whether it is compliant to
the expected behavior, or they may simulate process enactment to show possi-
ble behaviors that may be expected from a process, or they may guess which
are the next activities that will be performed in a certain status of the process
execution. To carry out these tasks, WFMSs require some kind of formal model
of the process to be available. Due to the said complexity of the processes, corre-
sponding models are in turn very hard to set up and to formalize manually [13].
Skilled experts are needed to make such a formalization, which means that it
is a costly activity. Even worse, the resulting model might not be the correct
one, both due to human errors and because the perspective of experts on a given
process may be different than that of the practitioners that actually carry out

c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 37–52, 2016.
DOI: 10.1007/978-3-319-42019-6 3

38 S. Ferilli

the involved activities. This problem motivated a further task in Workflow Man-
agement concerned with automatically learning a model from sample executions
of a process (known as Process Mining [25]).

In this landscape, the importance of defining and using suitable representa-
tion formalisms for expressing process models is already apparent. Nevertheless,
it becomes even more crucial if one considers that the formalism may enforce,
or prevent, the fulfillment of several desirable properties proposed in the liter-
ature for the models. A process model should indeed be complete (i.e., able to
recognize or generate all sample executions used to build it), irredundant (able
to recognize or generate as few executions as possible that are different from
the sample executions used to build it), and minimal (as simple and compact
as possible) [1,4,13,25]. Accuracy (i.e., completeness and irredundancy [4]) is
typically in contrast with minimality (more compact models are more general,
and thus tend to recognize or generate more executions).

To express the models of complex processes, powerful representation for-
malisms are needed. While most research on this topic focused on the flow of
activities, little attention was paid to the possibility of setting conditions along
the model to determine if and when activating its components. Since conditions
may prevent undesired executions of activities, they provide further support to
irredundancy. The few works that introduced this topic proposed to model the
conditions using decision trees. These are some of their shortcomings: (1) they do
not provide any specific contribution to, nor strict integration with, the process
model representation aspects; (2) they are based on propositional approaches,
which are unable to represent and handle relationships; (3) conditions have been
usually associated with tasks because they have been considered as expressing
causal dependencies between tasks, but also other elements of a process may
be associated with conditions. All these aspects are very important for condi-
tion handling, especially in real-world, complex domains. When determining and
checking conditions, one should be able to: (1) take into account the whole his-
tory of process enactment; (2) consider interactions among the involved entities
and their properties, possibly at different time points, and the history of process
enactment; (3) have a more fine-grained control of the process enactment.

This paper deals with the above shortcomings and needs. It proposes a
process modeling formalism based on a fragment of First-Order Logic (FOL for
short) that tightly integrates both the activity flow aspects and the conditions
aspects in a single framework. It extends the formalism proposed in [2,8,10] with
the capability of handling agents, to generalize sequential information, and to
express new types of pre-and post-conditions. The integrated formalism, alone,
significantly improves the support to the desirable properties of process models.
Moreover, the use of the FOL setting for the conditions further enhances the
power of this representation. While increasing the power and expressiveness of
the models, this poses some new problems that were not investigated in previous
literature. This paper proposes a way to overcome these problems, as well.

After introducing basic concepts and related work in Sect. 2, Sect. 3 reports
the details of the representational framework. Then, Sect. 4 shows how the pro-

Handling Complex Process Models Conditions 39

posed formalism is applied in practice. It can be used as a running example,
taken from a Process Mining task, to better understand Sect. 3. Finally, Sect. 5
concludes the paper and outlines future work issues.

2 Background and Related Work

Let us first quickly introduce some process-related concepts and their defini-
tions, and then review relevant literature concerning the formalisms for process
modeling and the use of conditions.

A process consists of a combination of different, inter-related tasks performed
by agents (humans or artifacts). A task is a generic piece of work to be executed.
An activity is the actual execution of a task by an agent. Activities spanning
some significant period of time are represented by the interval between their
start and end events. A case is a particular execution of tasks according to
a given workflow. Case traces are lists of events associated with steps (time
points). Events of several traces may be collected and interleaved in logs. A
process model (or workflow) is a formal specification of how a set of tasks can
be composed to result in valid processes. Allowed compositional schemes include
sequential, concurrent, conditional, or iterative execution. Especially relevant
for determining the complexity of a model is whether it is purely sequential or
it allows a concurrent flow, and whether many activities referred to the same
task are allowed or not. Further complexity is introduced by the presence of
synchronization among tasks and of invisible or duplicate tasks. Using the above
terminology, Process Mining aims at using a set of sample case traces to infer
process models automatically. An overview of the current state-of-the-art on
Process Mining can be found in [15,22].

Several models have been proposed in the literature for representing
processes. In Finite State Machines [5], nodes are associated with states, and
edges represent activities. In Hidden Markov Models [11], states represent nodes,
and activities correspond to output symbols. Neither of these formalisms can
model concurrency, which is a serious limitation. A more specialized formalism
that distinguishes several types of nodes (Begin, End, Activity, Decision, Split,
Join) connected by edges was proposed in [12,14]. Activity nodes are associ-
ated with tasks and edges can be labeled with probabilities and/or conditions.
More recent works have established Petri nets, or a restriction thereof, called
WorkFlow nets (WF-nets) [21], as the current standard formalism to represent
process models. In fact, they were purposely developed to express the control
flow in a process. E.g., models in the form of WF-nets are learned in [21,25];
‘sound Structured WF-nets’ (a further, very limited restriction of WF-nets that
can handle parallelism between pairs of tasks only and does not permit syn-
chronization between tasks) are learned in [26]; Petri nets which do not involve
duplicate tasks nor more than one place with the same input and output tasks
are learned in [6].

Declarative Process Mining is specifically concerned with logic formalisms for
process specification. Instead of completely specifying process flow, it imposes

40 S. Ferilli

only a (minimal) set of constraints that must be satisfied when executing the
process activities. This approach has been recognized to be very important when
dealing with particularly complex models and domains [19]. Interesting works
in this field proposed the Declarative Process Model Learner [16], and its incre-
mental version [3]. In particular, the latter supports the usefulness of model
refinement with respect to batch learning in this field.

A few works in the literature considered the possibility of handling simple
Boolean conditions, that determine whether a task is to be executed or not
depending on the particular situation that holds at that moment in the specific
execution. Preconditions must be satisfied in the current state of the world to
enable the execution of a task. Postconditions must hold after the task execu-
tion. Triggers are additional external conditions that, if satisfied in the current
state of a case, cause the execution of a task. Triggers can be automatic, if the
task is triggered just because it is enabled, or determined by some kind of user
interaction, or by a message notifying an external event, or by a clock reaching
a pre-determined time [21]. Specifically, [1,12,20] propose the use of decision
trees as classification models, and corresponding learning techniques. However,
only [20] provides some details about this issue. Using decision trees means
focusing on propositional approaches, based on attribute-value representations
to describe the status on which the decision is to be taken, i.e., whether a given
activity is to be carried out or not is determined according to the content of
feature vectors describing the status of the execution when the decision is to
be carried out. This is a significant limitation, because fixed-size feature vectors
cannot capture variability in the number of objects involved in the observations,
and relationships among them and between situations. FOL can do this.

Strictly related to the question of condition handling are two current ‘hot’
topics in the process mining field: the need to consider contextual informa-
tion [23] and the importance of efficient and declarative approaches [18]. Con-
ditions can be based on the current state of the process and/or on the context
in which the decision is to be taken. Especially the contextual perspective is
very important, because it allows one to consider, and to include in the model,
external factors that are outside the realm of pure activity flow.

Recently, the WoMan framework for workflow learning and management has
been introduced [8,10]. Incrementality, expressiveness, and efficiency are its most
outstanding features. Incremental learning allows one to refine a given model as
long as new evidence becomes available, without starting each time from scratch.
This yields much efficiency, but is more complex, because only partial knowledge
is available for learning at any given time. This is why little work can be found in
the literature on this kind of approach, especially in the FOL setting. WoMan’s
input, output, and internal representations are all based on the Logic Program-
ming formalism [17] (which is, syntactically, a fragment of FOL). In particular,
WoMan models include both the activity flow and associated conditions, both
expressed using this formalism. So, WoMan naturally overcomes some of the
limitations of past works in the workflow management literature, by allowing to
describe and handle in the same framework not only information about tasks

Handling Complex Process Models Conditions 41

and control flow, but relevant contextual observations as well. Of course, also
the conditions must be learned incrementally. For this purpose WoMan embeds
InTheLEx [7], an incremental learner of FOL rules.

3 The WoMan Formalism

The Logic Programming formalism [17] is based on Horn clauses, i.e., implica-
tions represented in Prolog style as l0 :- l1, . . . , ln., where l0 (called the head) is
the conclusion and l1, . . . , ln (called the body) is a conjunction of pre-conditions.
Each li is an atom, i.e., a predicate applied to terms as arguments. WoMan works
in Datalog, which allows only constants or variables as terms. Clauses having
only the head are called facts, and represented as just l0. Clauses having both
the head and the body are called rules.

According to foundational literature, trace elements can be considered as 6-
tuples 〈T,E,W,P,A,O〉, where: T is the event timestamp, E is the type of the
event (begin process, begin activity, end activity, or end process1), W
is the name of the workflow the process refers to, P is a unique identifier for each
process execution, A is the name of the activity, and O is the progressive number
of occurrence of that activity in that process [1,13]. An optional field, R, can be
added to specify the agent that carries out activity A. They are represented in
WoMan as facts

entry(T,E,W,P,A,O,R).

To describe also the context in which the activities take place, WoMan exploits a
further kind of event, context description. When E = context description,
A is a FOL description of the context at time T consisting of a set of atoms built
on domain-specific predicates.

WoMan models are expressed as sets of facts built on four predicates:

task(t,C): task t occurred in training cases C.
transition(I,O, p, C): transition2 p, occurred in training cases C, is enabled

if all input tasks in I = [t′1, . . . , t
′
n] are active; if fired, after stopping the

execution of all tasks in I (in any order), the execution of all output tasks
in O = [t′′1 , . . . , t

′′
m] is started (again, in any order). Transitions represent the

allowed connections between activities. If several instances of a task can be
active at the same time, I and O are multisets, and application of a transition
consists of closing as many instances of active tasks as specified in I and of
opening as many activations of new tasks as specified in O.

task agent(t, R): task t can be carried out by an agent matching one of the
roles3 in R.

1 Specifically, task start and end events are needed to properly handle time span and
parallelism of tasks [24].

2 Note that this interpretation differs from the one given in Petri Nets, where ‘transi-
tions’ represent tasks.

3 In an obvious representation, R may be a simple set of roles, but other kinds of
representation formalism can be used as well (e.g., intensional description, reference
to hierarchies, etc.).

42 S. Ferilli

transition agent([R′
1, . . . , R

′
n], [R′′

1 , . . . , R
′′
m], p,C, q): transition p, involving

input tasks I = [t′1, . . . , t
′
n] and output tasks O = [t′′1 , . . . , t

′′
m], may occur

provided that each task t′i ∈ I, i = 1, . . . , n is carried out by an agent match-
ing one of the roles in R′

i, and that each task t′′j ∈ O, j = 1, . . . ,m is carried
out by an agent matching one of the roles in R′′

j ; several combinations can
be allowed, numbered by progressive q, each encountered in cases C.

Argument C in these predicates is the multiset of identifiers of the cases in
which the associated task/transition occurred. It is a multiset because a task or
transition may occur several times in the same case. When supervising process
executions, it is useful in at least 3 ways:

1. It allows one to check that the whole flow of activities that are taking place
was encountered in at least one training/sample case. In this way, it is possible
to avoid recognizing as valid a new execution that mixes partial execution
flows taken from different sample cases.

2. It allows one to set limits on the number of repetitions of loops. Indeed, when
loops are enacted, one may check that the new execution does not repeat the
involved tasks/transitions more times than seen in sample/training cases.

3. It allows one to compute statistics. Given a model involving overall n sam-
ple/training cases, if a task or transition t is associated with cases Ct, then
its probability may be approximated by its relative frequency |Ct|/n.

WoMan models can specify conditions on three kinds of items: tasks (in gen-
eral), transitions, and tasks within transitions. Conditions on tasks (resp., tran-
sitions) define what must be true in general for carrying out those tasks (resp.,
transitions). Conditions on tasks in transitions specify further constraints for
allowing a task to be run in the context of a specific transition (provided that its
general conditions are met), and may be applied only to output tasks of transi-
tions. It is possible to specify pre-conditions, post-conditions, and triggers, but
only pre- and post-conditions are learned automatically. Indeed, pre-conditions
express permission, post-conditions express constraints that can be checked pos-
terior to process execution, and triggers express obligation. So, while pre- and
post-conditions can be learned autonomously by the system from observations of
what happens before and after tasks or transitions, triggers require a supervisor
that purposely indicates when a task or transition is to be immediately applied.
Since WoMan performs unsupervised learning, in the following we will focus on
pre- and post-conditions only.

WoMan expresses conditions as FOL rules. The rule head predicate specifies
the task, transition, or task within a transition for which the condition is set,
applied to an argument expressing the moment at which the test is carried out.
For transitions, this is the step at which the first output activity is started. The
rule body expresses the actual condition using the following predicates:

act start(s): at step s the case execution begins;
act stop(s): at step s the case execution terminates;
activity(s, t, a): at step s task t is executed by agent a;

Handling Complex Process Models Conditions 43

after(s′, s′′, [n′,n′′], [m′,m′′]): step s′′ follows step s′ after a number of steps
ranging between n′ and n′′, and after a time ranging between m′ and m′′;

after(c′, c′′, context, [n′,n′′], [m′,m′′]): contextual step c′′ follows contextual
step c′ after a number of contextual steps ranging between n′ and n′′, and
after a time ranging between m′ and m′′;

context(s, c): the activity associated with step s is carried out in context c;
act A(a): a denotes activity A;
agent A(a): a denotes agent A;
suitable domain-dependent predicates (different from the previous ones)

that describe the context in which the various activities take place in terms
of the entities involved, their properties, and the relationships that come into
play among entities, among steps, and between entities and steps.

Each (activity or context) step is denoted by a unique identifier. Predicates
after/4 and after/5, borrowed from the formalism used in InTheLEx to han-
dle sequential information [9], describe two different dimensions (for activities
and contexts flow, respectively), and induce ordering relationships on the corre-
sponding sets of steps. The flow-of-activities dimension, associated with after/4
atoms, may involve concurrent executions, possibly nested. The beginning of a
concurrent execution corresponds to several after/4 atoms having the same s′,
while several after/4 atoms having the same s′′ correspond to the end of some
concurrent activities. Due to concurrency, after/4 induces a partial ordering.
Conversely, after/5 atoms induce a total ordering, because the flow-of-contexts
dimension is a strictly linear flow. Together with activity/3, after/4 allows
one to describe the flow of activities in a case. So, they ensure seamless integra-
tion of the flow-of-activity part of the model with the conditions part.

An example to learn or test a condition consists of a label (expressing the
occurrence of a task, transition, or task-in-transition) referred to an observation.
The observation uses the above predicates to provide a (complete or partial)
account of the flow of activities, along with the relevant context(s) for that flow
of activities. Observations are automatically built from the log events as follows.

The begin process event generates a unique activity step sb, and introduces
in the observation description an atom:

act start(sb)

Events of type begin activity or end activity are used to build the flow of
activities account. Each begin activity event, reporting that activity t is car-
ried out by agent a, generates a unique activity step s, and introduces in the
observation description three atoms:

activity(s, t, a), act T (t), agent A (a)

where T and A are replaced by the names of the activity and of the agent,
respectively, which are domain-dependent. It also generates example labels for
the task, transition, or task-in-transition that is taking place. Suppose that the
above activity t is carried out in transition p; then, the following labels/examples
are generated:

44 S. Ferilli

act T (s), act T p(s)

Moreover, if t is the first output activity of p, also the following label/example
is generated:

p(s)

Whenever an activity t′, associated with step s′, is followed by another activ-
ity t′′, associated with step s′′ (meaning, in a nutshell, that the begin activity
event of the latter is successive to the end activity event of the former, and
that there is no other activity whose begin activity and end activity events
are both in the middle) an atom:

after(s′, s′′, [1, 1], [d, d])

is introduced in the observation description, where d expresses some kind of
distance between the two activities (e.g., the clock time between them)4.

The end process event generates a unique activity step se, and introduces
in the observation description an atom:

act stop(se)

For all activities a, associated with step s, such that the current description does
not contain an atom after(s, s′, [1, 1], [d, d]) (i.e., the latest concurrent activities
in the current process enactment), an atom:

after(s, se, [1, 1], [d, d])

is introduced in the observation description, where d has the same meaning as
above5. This is sufficient to provide an account of the flow of actions that take
place in the process enactment.

Concerning the contexts, each event of type context description generates
a unique context step c, and introduces in the observation description an atom6:

after(c′, c,context, [1, 1], [d, d])

where c′ is the step associated with the previous event of type con-
text description (if any). This context will be associated with any subsequent
activities, until the next context description event is encountered, through
atoms of the form:

context(s, c)

meaning that the activity carried out at step s took place in the context c. More-
over, the list of atoms reported in parameter A of the context description log
entry is added to the description. To allow the linking of contextual descriptions
4 Actually, in its internal representation, WoMan uses a simplified notation
next(s′, s′′, d) with exactly the same meaning.

5 Again, the simplified notation next(s, se, d) is actually used.
6 In this case, the simplified notation next(c′, c, context, d) is actually used.

Handling Complex Process Models Conditions 45

to the steps, the system automatically replaces any occurrence of the substring
timestamp in the constants by the context step name c.

Depending on the specific experimental needs, examples descriptions can
be reduced, filtering out useless or irrelevant information. E.g., only the most
recent context and activity steps might be considered, along with the associ-
ated information. The choice about whether filtering the descriptions, and about
what to filter out, is of course context-dependent. During the supervision stage,
whenever an activity is carried out, corresponding examples for the task and
task-in-transition conditions (and, if the activity starts a transition, also for the
transition condition) are generated and checked for compliance with the cur-
rently available model. During the learning stage, InTheLEx is run to revise the
currently available model for conditions according to these examples. The avail-
ability of negative examples is not standard in process mining [6], because only
actual executions of a process are logged by process management systems, and
they are assumed to be correct. Otherwise, traces should be manually labeled
as positive or negative, which may be unrealistic in some domains. While most
machine learning systems are unable to learn if provided with positive examples
only (without negative examples to impose some kind of biases to prevent over-
generalization, they would learn models that just accept everything), InTheLEx
embeds a generalization operator that tries to keep as much information as pos-
sible in the model, and has shown to be able to effectively learn conditions for
process models from positive examples only [2].

4 Sample Application

This section shows a practical application of the WoMan formalism on a toy
problem. To give an idea of how a model reflects a set of cases, the example is
taken from a Process Mining task. The same model might be considered as an
abstract specification of a workflow by just ignoring the training cases and how
it is built from them. In such a case, the case identifiers in the model would
represent different kinds of allowed behavior, and their occurrences would reflect
the frequency of these behaviors. Figure 1 shows the possible flows of activities for
a hypothetical ‘afternoon’ smart environment process, aimed at supporting the
user in his afternoon routines. It involves many complex features for most process
mining systems: short loops (‘videogame’/‘phone’), duplicated tasks (‘football’
and ‘eat’), concurrent activities (e.g., ‘clean’, ‘radio’, and ‘cook’). Albeit not
apparent in the graph, there are optional tasks, in that, between ‘videogame’
and ‘bed’, ‘football’ or ‘play cards’ may or may not be carried out.

Figure 2 reports the log of a hypothetical case ‘day4’ of the smart environment
process in Fig. 1 (only the first two events expressing contextual descriptions are
reported). Here, all activities are carried out by agent ‘steve’. Concurrency is
evident in activities that begin when previous activities have not ended yet.

The process model underlying Fig. 1 can be easily represented in WoMan
formalism as reported in Fig. 3 (the part concerning agents has been stripped). In
Fig. 3 it is associated with 5 sample cases (corresponding to training cases if the

46 S. Ferilli

Fig. 1. Activity flow for an ‘afternoon’ smart environment process.

entry(201509281400, begin process, afternoon, day4, start, 1, steve).
entry(201509281401, context description, afternoon, day4,

[good weather(timestamp), status(h12,timestamp, status h12 timestamp),
off(status h12 timestamp), heater(h12), . . .],1).

entry(201509281404, begin activity, afternoon, day4, football, 1, steve).
entry(201509281600, end activity, afternoon, day4, football, 1, steve).
entry(201509281645, begin activity, afternoon, day4, eat, 1, steve).
entry(201509281715, end activity, afternoon, day4, eat, 1, steve).
entry(201509281718, context description, afternoon, day4,

[bad weather(timestamp), status(h12,timestamp,status h12 timestamp),
off(status h12 timestamp), heater(h12), . . .], 1).

entry(201509281720, begin activity, afternoon, day4, radio, 1, steve).
entry(201509281727, begin activity, afternoon, day4, cook, 1, steve).
entry(201509281743, begin activity, afternoon, day4, clean, 1, steve).
entry(201509281801, end activity, afternoon, day4, cook, 1, steve).
entry(201509281822, end activity, afternoon, day4, clean, 1, steve).
entry(201509281823, end activity, afternoon, day4, radio, 1, steve).
entry(201509281825, begin activity, afternoon, day4, tv, 1, steve).
entry(201509281834, begin activity, afternoon, day4, eat, 2, steve).
entry(201509281926, end activity, afternoon, day4, eat, 2, steve).
entry(201509281931, end activity, afternoon, day4, tv, 1, steve).
entry(201509281938, begin activity, afternoon, day4, videogame, 1, steve).
entry(201509282156, end activity, afternoon, day4, videogame, 1, steve).
entry(201509282219, begin activity, afternoon, day4, bed, 1, steve).
entry(201509290700, end activity, afternoon, day4, bed, 1, steve).
entry(201509290700, end process, afternoon, day4, stop, 1, steve).

Fig. 2. Event-based representation of a case.

model was learned from examples), including case day4 in Fig. 2 (corresponding
to case #4 in the model). Some tasks are carried out in all cases (‘eat’, ‘clean’,
‘radio’, ‘cook’, ‘tv’, ‘videogame’, ‘bed’). All the others may or may not take
place depending on the specific process enactment. Some tasks and transitions
are carried out more than once in the same case (e.g., ‘eat’ is always carried out
twice; ‘phone’ is carried out 0, 1, or 2 times depending on the case). Transitions

Handling Complex Process Models Conditions 47

task(stop,[1,2,3,4,5]).
task(play cards,[2]).
task(relax,[2,3]).
task(bed,[1,2,3,4,5]).
task(phone,[2,2,5]).
task(videogame,[1,2,2,2,3,4,5]).
task(tv,[1,2,3,4,5]).
task(clean,[1,2,3,4,5]).
task(cook,[1,2,3,4,5]).
task(radio,[1,2,3,4,5]).
task(eat,[1,1,2,2,3,3,4,4,5,5]).
task(football,[1,2,4,5]).
task(start,[1,2,3,4,5]).

transition([start],[football],p1,[1,4]).
transition([football],[eat],p2,[1,4]).
transition([eat],[clean,radio,cook],p3,[1,2,3,4,5]).
transition([clean,radio,cook],[eat,tv],p4,[1,2,3,4,5]).
transition([eat,tv],[videogame],p5,[1,2,3,4,5]).
transition([videogame],[phone],p6,[2,2,5]).
transition([phone],[videogame],p7,[2,2,5]).
transition([videogame],[bed],p8,[1,4]).
transition([bed],[stop],p9,[1,2,3,4,5]).
transition([start],[relax],p10,[2,3]).
transition([relax],[eat],p11,[2,3]).
transition([videogame],[football],p12,[2,5]).
transition([football],[bed],p13,[2,5]).
transition([videogame],[play cards],p14,[3]).
transition([play cards],[bed],p15,[3]).

Fig. 3. ‘Afternoon’ workflow model in WoMan formalism

p1 and p10 start alternative routes: in p1 the user plays football, while in p10 he
relaxes. Also transitions p8, p12, and p14 start alternative routes before the user
goes to bed: in p8 he goes to bed directly, while in p12−p13 he first plays football
and in p14−p15 he first plays cards. So, p12−p13 and p14−p15 express optional
tasks that are not carried out in p8. It is possible to note that task ‘phone’ occurs
in only 2 cases (#2,#5) out of 5, and thus has frequency 0.4. Also, it was carried
out at most twice in the same case (specifically, in case #2), which can be used
as an upper limit to the number of accepted executions of this task in future
executions. Task ‘play cards’, and associated transitions p14 and p15, occur in
only 1 case out of 5, yielding a probability of 0.2.

Let us now show how condition-related information is represented, by trans-
lating an initial excerpt of the log in Fig. 2. The first event (begin process)
gets step s0, and adds to the description the following atom:

act start(s0)

Then, the first context event is found in the log (meaning that at timestamp
201509281401 the weather is good, the status of the heater h12 is ‘off’, etc.).
This piece of information generates context step identifier c1 associated with
timestamp 201509281401, and adds the following atoms to the observation:

good weather(c1), status(h12,c1,status h12 c1), off(status h12 c1),

heater(h12), ...

Then, activities ‘football’ and ‘eat’ are carried out, associated with steps s1 and
s2, respectively, and contribute to the observation with the following atoms:

next(s0,s1,4), activity(s1,football,steve), act football(football),

next(s1,s2,161), activity(s2,eat,steve), act eat(eat), agent steve(steve)

48 S. Ferilli

where 4 is the number of minutes in between activities ‘start’ and ‘football’, and
161 is the number of minutes in between activities ‘football’ and ‘eat’. Also, both
activities (actually, their corresponding steps) are associated with context c1 :

context(s1, c1), context(s2, c1)

Then, the next context-related event is found in the log. It gets context step
identifier c2, associated with timestamp 201509281718, and causes the following
contextual information to be added to the observation:

next(c1, c2, context, 197), bad weather(c2), status(h12,c2,status h12 c2),

off(status h12 c2), heater(h12), ...

meaning that in context c2, following context c1 after 197 min, the weather is
bad and the status of the heater h12 is still ‘off’. And so on.

Let us show some conditions. For instance, the task precondition:

football(X) :-

after(Y ,X,[1,10],[3,437]), act start(Y), context(X,C),

good weather(C), available(C,B), ball(B), status(C,B,S),
inflated(S).

says that, in order to play football at step X, the beginning of the process, at
step Y , must have happened between 1 and 10 steps, and between 3 and 437 min,
before X. Indeed it is one step for the leftmost occurrence in Fig. 1, while for the
rightmost occurrence it is 6 steps (if activity ‘phone’ was never carried out), or
8 (if ‘phone’ was carried out just once), or 10 (if it was carried out twice, which
is the upper limit for each single case). Moreover, in the context C associated
with the time of playing football, the ball B must be available, and its status S
must be ‘inflated’. The task post-condition:

football(X) :-

after(Y ,X,[1,10],[3,437]), act start(Y), context(X,C),

good weather(C), available(C,B), ball(B), status(C,B,S),
inflated(S), after(C,D,context,[1,4],[127,439]),

clothes hamper(H), status(D,H,T), not empty(T).

say that, after playing football at step X in context C (which required the pre-
condition for activity ‘football’ to be fulfilled), there will be a later context D
(coming between 1 and 4 contextual steps, and between 127 and 439 min, after
C) in which the clothes hamper is not empty.

As regards transitions, a precondition might be:

p4(X) :-

act stereo(R), status(X,R,S), off(S), act oven(O),

status(X,O,T), off(T), agent steve(U), after(Y ,X,[1,1],[38,46]),

activity(Y ,A,U), act clean(A), after(Z,X,[1,1],[61,73]),

activity(Z,B,U), act radio(B), after(W,X,[1,1],[54,62]),

activity(W,C,U), act cook(C).

Handling Complex Process Models Conditions 49

This rule means that transition p4 may be fired (i.e., either activity ‘eat’ or
activity ‘tv’ may be started, possibly depending on their specific pre-conditions)
at step X if both the stereo and the oven are off, and the most recent activities
(step intervals [1,1]) terminated by user ‘steve’ are ‘clean’, ‘radio’ and ‘cook’
(i.e., the input activities required by transition p4), which were carried out
between 38 and 46 min before (‘clean’), between 61 and 73 min before (‘radio’),
and between 54 and 62 min before (‘cook’), respectively. The post-condition of
transition p1 might be:

p1(X) :-

after(Y ,X,[1, 1],[3,43]), act start(Y), context(X,C),

good weather(C), available(C,B), ball(B), status(C,B,S),
inflated(S), after(X,Z,[5,5],[487,501]), activity(Y ,U,V),

act bed(U), agent steve(V).

i.e., if transition p1 is carried out at step X (which means playing football at
step X, since this is the only output task in transition p1), then in a sequence of
exactly 5 steps (and in a time ranging from 487 to 501 min) activity ‘bed’ will
be carried out. This means that when football is played in the early evening,
the user in the evening goes straight to bed after playing videogames, and he
never uses the phone while playing videogames. Note that a special case of the
general precondition for activity ‘football’ is specified (the step and time ranges
separating Y from X are sub-ranges of those in the general precondition).

Finally, as regards the tasks in the context of specific transitions, consider
task ‘football’ in transition p12. The precondition might be:

football p12(X) :-

after(Y ,Z,[1, 1],[6, 19]), act start(Y), after(Z,X,[7, 9],[413, 418]),
activity(Z,R,U), act relax(R), agent steve(U), context(X,C),

good weather(C), available(C,B), ball(B), status(C,B,S),
inflated(S).

i.e., to play football in transition p12, in addition to the usual preconditions,
the user must have relaxed in the early afternoon (i.e., he must not have played
football already). Note that the after/4 intervals in the pre-condition have been
split to consider the intermediate step at which activity ‘relax’ was carried out.
The post-condition for activity ‘relax’ in transition p10 might be:

relax p10(X) :-

after(Y ,X,[1,1],[2,19]), act start(Y), after(X,Z,[9,9],[417,425]),

activity(Z,A,U), act football(A), agent steve(U), context(X,C),

good weather(C), available(C,B), ball(B), status(C,B,S),
inflated(S).

relax p10(X) :-

after(Y ,X,[1,1],[2,19]), act start(Y), after(X,Z,[5,5],[436,452]),

activity(Z,A,U), act play cards(A), agent steve(U),

context(X,C), bad weather(C), available(C,B), card deck(B).

50 S. Ferilli

It is expressed by two alternative rules: after relaxing, either after exactly 9
steps (and between 417 and 425 min) the user plays football if the weather is
good and an inflated ball is available, or after exactly 5 steps (and between 436
and 452 min) he plays cards if the weather is bad and a card deck is available.

5 Conclusions

WorkFlow Management Systems provide automatic support to learn process
models or to check compliance of process enactment to correct models. The
expressive power of the adopted formalism for representing process models is
fundamental to determine the effectiveness or even feasibility of a correct model.
In particular, a desirable feature is the possibility of expressing complex condi-
tions on some elements of the model. The formalism used in the WoMan frame-
work for workflow management, based on First-Order Logic, is more expressive
than standard formalisms adopted in the literature. It allows tight integration
between the activity flow and the conditions, and it allows one to express con-
ditions that take into account contextual information and various kinds of rela-
tionships among the involved entities. This paper discusses an extended version
of this formalism, and provides an explicative example of its use.

Due to the increased expressive power of the proposed formalism with respect
to the state-of-the-art in process mining and management systems, we could not
find process logs that could fully exploit it. So, we are currently building a
dataset to run experiments aimed at assessing the behavior and performance of
WoMan in using all features of the proposed formalism. However, preliminary
experiments carried out on the available datasets already show interesting and
promising results, also concerning runtime [2] (some notes on the complexity
of the proposed approach can be found in [8]). We are also exploring advanced
representation and learning approaches for dealing with the generalization of
agent roles involved in the process, based on a given taxonomy.

References

1. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 467–483. Springer, Heidelberg (1998)

2. De Carolis, B., Ferilli, S., Redavid, D.: Incremental learning of daily routines as
workflows in a smart home environment. ACM Trans. Interact. Intell. Syst. 4, 1–23
(2015)

3. Cattafi, M., Lamma, E., Riguzzi, F., Storari, S.: Incremental declarative process
mining. In: Szczerbicki, E., Nguyen, N.T. (eds.) Smart Information and Knowledge
Management. SCI, vol. 260, pp. 103–127. Springer, Heidelberg (2010)

4. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-
based data. Technical Report CU-CS-819-96, Department of Computer Science,
University of Colorado (1996)

Handling Complex Process Models Conditions 51

5. Cook, J.E., Wolf, A.L.: Event-based detection of concurrency. Technical Report
CU-CS-860-98, Department of Computer Science, University of Colorado (1998)

6. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process
mining: an experimental evaluation. Data Min. Knowl. Discov. 14, 245–304 (2007)

7. Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy theory revision:
induction and abduction in InTheLEx. Mach. Learn. J. 38(1/2), 133–156 (2000)

8. Ferilli, S.: WoMan: logic-based workflow learning and management. IEEE Trans.
Syst. Man Cybern. Syst. 44, 744–756 (2014)

9. Ferilli, S., Esposito, F.: A heuristic approach to handling sequential information
in incremental ILP. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.)
AI*IA 2013. LNCS, vol. 8249, pp. 109–120. Springer, Heidelberg (2013)

10. Ferilli, S., Esposito, F.: A logic framework for incremental learning of process mod-
els. Fundamenta Informaticae 128, 413–443 (2013)

11. Herbst, J.: Dealing with concurrency in workflow induction. In: Proceedings of the
European Concurrent Engineering Conference, pp. 175–182. SCS Europe (2000)

12. Herbst, J., Karagiannis, D.: Integrating machine learning and workflow manage-
ment to support acquisition and adaptation of workflow models. In: Proceedings
of the 9th International Workshop on Database and Expert Systems Applications,
pp. 745–752. IEEE (1998)

13. Herbst, J., Karagiannis, D.: An inductive approach to the acquisition and adap-
tation of workflow models. In: Proceedings of the IJCAI 1999 Workshop on Intel-
ligent Workflow and Process Management: The New Frontier for AI in Business,
pp. 52–57 (1999)

14. Herbst, J.: A machine learning approach to workflow management. In: Lopez de
Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194.
Springer, Heidelberg (2000)

15. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194.
Springer, Heidelberg (2012)

16. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic program-
ming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.)
ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008)

17. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987)

18. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285.
Springer, Heidelberg (2012)

19. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

20. Rozinat, A., van der Aalst, W.M.P.: Decision mining in business processes. In: WP
164, BETA Working Paper Series. Eindhoven University of Technology (2006)

21. van der Aalst, W.M.P.: The application of petri nets to workflow management. J.
Circ. Syst. Comput. 8, 21–66 (1998)

22. van der Aalst, W.M.P.: Process mining overview and opportunities. ACM Trans.
Manage. Inf. Syst. 3, 7.1–7.17 (2012)

23. van der Aalst, W.M.P., Dustdar, S.: Process mining put into context. IEEE Internet
Comput. 16, 82–86 (2012)

52 S. Ferilli

24. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16, 1128–1142
(2004)

25. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from
event-based data. In: Proceedings of 11th Dutch-Belgian Conference of Machine
Learning (Benelearn 2001), pp. 93–100 (2001)

26. Wen, L., Wang, J., Sun, J.: Detecting implicit dependencies between tasks from
event logs. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.)
APWeb 2006. LNCS, vol. 3841, pp. 591–603. Springer, Heidelberg (2006)

Business Rules Uncertainty Management
with Probabilistic Relational Models

Hamza Agli1(B), Philippe Bonnard1, Christophe Gonzales2,
and Pierre-Henri Wuillemin2

1 IBM France Lab, Gentilly, France
{hamza.agli,philippe.bonnard}@fr.ibm.com

2 Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 7606 LIP6, Paris, France
{christophe.gonzales,pierre-henri.wuillemin}@lip6.fr

Abstract. Object-oriented Business Rules Management Systems
(OO-BRMS) are a complex applications platform that provide tools for
automating day-to-day business decisions. To allow more sophisticated
and realistic decision-making, these tools must enable Business Rules
(BRs) to handle uncertainties in the domain. For this purpose, several
approaches have been proposed, but most of them rely on heuristic mod-
els that unfortunately have shortcomings and limitations. In this paper
we present a solution allowing modern OO-BRMS to effectively inte-
grate probabilistic reasoning for uncertainty management. This solution
has a coupling approach with Probabilistic Relational Models (PRMs)
and facilitates the inter-operability, hence, the separation between busi-
ness and probabilistic logic. We apply our approach to an existing BRMS
and discuss implications of the knowledge base dynamicity on the prob-
abilistic inference.

Keywords: Business rules management systems · Uncertainty manage-
ment · Probabilistic Relational Models · Bayesian Networks

1 Introduction and Related Work

OO-BRMS are very popular tools for decision-making automation. They are con-
sidered as the evolution of rule-based expert systems. In a separation between
application and business logic, these systems facilitate authoring, checking,
deploying and executing day-to-day companies operational business policies.
Indeed, business professionals and IT specialists can collaborate relatively inde-
pendently using such systems. This is because they provide double level artifacts
that align IT practices with business needs [3,9].

Whereas BRMS are well adapted to deal with structured and complete
data using classical Boolean inference, they face difficulties when they take into
account uncertain or incomplete data. To tackle the issue of uncertainties in the
domain, three approaches are commonly used:

c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 53–67, 2016.
DOI: 10.1007/978-3-319-42019-6 4

54 H. Agli et al.

– Heuristic models to weight rules with a degree of truth, e.g., certainty factors
(CF) and likelihood ratios (LR) [5,10]. These deal with uncertainty in the
knowledge (rules) not the data. However probabilistic interpretation given to
CF is incoherent with probability theory [11]. On the other hand, the condi-
tional independence between evidence and rules actions in LR is rarely satisfied
in real applications and LR-based expert systems have poor performance [16].

– Fuzzy logic (FL) [21] to capture the uncertainty and imprecision by associat-
ing variable values to fuzzy sets, but in essence, FL is not conceived to deal
with incomplete data or to express relations between variables in the knowl-
edge base as in OO frameworks. Besides, fuzzy logic when applied to systems
that performs chains of inference, such as BRMS may lead to inconsistent
conclusions [7].

– Bayesian techniques, which are essentially based on Bayesian Networks (BNs)
[17], to consistently model domains with uncertainty. In addition, several algo-
rithms have been proposed to learn their graphical structure and their condi-
tional probability tables (CPTs) parameters. Even if they are a very popular
tool to deal with uncertainty, BNs are not suited for complex systems, in which
they involve high design and maintenance costs [13,15]. Besides, they do not
support well object-oriented and dynamic systems.

One can also find hybrid approaches that combine, for instance, BNs with
CF [4,14]. Obviously these methods incur in problems discussed previously.
Moreover they are developed for specific use and cannot handle effectively the
frequent changes of business policies, where BRMS perform better. Another app-
roach is Probabilistic Logic Programming [6]. But this is not suited for the BRs
procedural side effects and the OO-BRMS upon which we build our application.
To summarize, current BRMS uncertainty management state-of-the-art face the-
oretical and practical limitations, do not exploit structural information encoded
in the knowledge base and face scaling difficulties.

To overcome the previous limitations, we propose to couple BRMS with Prob-
abilistic Relational Models (PRMs) [12,18,19], an object-oriented extension of
BNs that enables handling very large systems. Their object paradigm and rela-
tional model allow them to be a good candidate for managing uncertainty in an
OO-BRMS. In addition, PRMs are equipped with sophisticated inference engines
that enable to answer efficiently various types of probabilistic queries.

In this paper, we describe a method that allows modern OO-BRMS to rea-
son under uncertainty using a coupling approach that separates uncertainty and
rules management. There are many reasons for this separation. First, trying to
manage PRM inference and update inside BRMS would be inefficient and diffi-
cult since the rule engine is non-monotonic and is by essence a procedural engine
on object data. Second, separating concepts and architectures simplifies the soft-
ware maintaining and offers more control over the framework complexity. Last,
such a coupling gives a mathematically sound interpretation of the uncertainty
and is based on a framework that is essentially designed to cope with large and
complex systems. This work is the continuation of [1] that proves the feasibility
and describes the coupling framework.

PRMs for BRMS 55

The remainder of this paper is organized as follows: in the next section, we
briefly introduce OO-BRMS and PRMs. Then, we present the coupling apporach
in Sect. 3, as a solution that allows OO-BRMS to deal with uncertainty. Then
Sect. 4 describes how we implemented this solution in practice. Finally, some
conclusion and future works are provided in Sect. 5.

2 Preliminaries

2.1 Object-Oriented BRs

BRs are rules in the form “IF condition THEN action” that are exploited for rea-
soning by forward chaining inference engines. OO-BRRMS execute BRs against
an object model (OM) that describes the application objects. Let us illustrate this
through a simplified example from an insurance application. Assume the model
consist of three classes representing a healthcare professional, a subscriber and a
reimbursement request. Figure 1 gives a UML class diagram for this application.

Reimbursement
type : enum
price : enum

HealthcareProvider
subs : Subscriber[]
 age : int
 sex : enum
 location : enum

Subscriber
reimbs:Reimbursement[]
 age : int

Fig. 1. UML diagram for a simplified insurance application

In a fraud detection context, we want to verify, using BRs-based approach,
whether the healthcare professional is fraudulent. In such a way, anomalies that
indicate fraud are detected by executing a set of rules and using scoring heuris-
tics. For instance, if a fraud detection rule says that an excessive invoice alert
must be raised on a healthcare provider who submits a high price reimburse-
ment request for one of his subscribers, the corresponding object-oriented BR in
Rule 1.1 will look for objects in the working memory (WM) that corresponds to
providers with subscribers requesting reimbursements with a high price.

Rule 1.1. Detect invoice anomaly

1 IF hp has type Hea l thcareProv ider & sub has type Subsc r ibe r &

reimb has type Reimbursement & sub in hp . subs & reimb in sub .

reimbs & reimb . p r i c e == high

2 THEN ra i s eA l e r tExce eded Invo i c ePr i c e (hp)

Similarly, another rule says that a lens age anomaly alert must be raised on a
healthcare provider who submits a lens reimbursement request for a subscriber
under age 10. Rule 1.2 shows its pseudo-code.

56 H. Agli et al.

Rule 1.2. Detect lens anomaly

1 IF hp has type Hea l thcareProv ider & sub has type Subsc r ibe r &

reimb has type Reimbursement

2 & sub in hp . subs & reimb in sub . reimbs & sub . age < 10 &

reimb . type=l en s

3 THEN raiseAlertLensAgeAnomaly (hp)

When the data is completely known and well adapted to classical logic para-
digm, such rules are well handled using variant of pattern matching algorithms,
e.g., enhanced RETE [8] or stateless sequential execution. However, in front of
uncertain or missing data, such rules cannot be executed. The next paragraph
introduce theoretical foundations to handle such a situation using PRMs.

Reimbursement

typeprice

Subscriber

age exists texists p

risk

reimbs

HealthcareProvider

age sex location

subs

exists stexists sp

risk

type riskprice risk

fraud

Fig. 2. PRM dependency schema for the fraud example

2.2 PRMs

One reason why standard BNs do not scale well is because they do not exploit
the structure of the data. Instead, PRMs share the same class concept used in
the object models. Indeed, the idea is that in complex systems, one can often
identify repeated patterns, which can be abstracted as classes. Each pattern
represents a fragment of a BN over its random variables. These correspond to
the class descriptive attributes. PRMs also define the mechanism of reference
slot allowing the navigation between attributes of different classes, and hence,

PRMs for BRMS 57

the good definition of conditional probability distribution. They use aggregators
to express many-to-one instance relations and get around the issue of multiple
class definitions w.r.t variable number of configurations depending on relation
arities. Finally, PRMs define a relational skeleton that represents the instance
graph. This corresponds to the PRM system: classes that are instantiated and
linked using reference slots. To sum up, a class corresponds to a set of random
variables that share common relations (abstraction of repeated patterns) and
are gathered in a BN fragment. Classes communicate through reference slots.

It is easy to see that the PRM can, not only represent the object model, but
also the relation or causal/influence directions between the model attributes.
Given an attribute, these relations are expressed through an arc connection
between this attribute and its immediate predecessors, which are called “parents”
in the graphical structure. In this paper, both relations and CPTs are assumed
to be provided by a domain expert or obtained from a learning process.

One possible PRM representation of the fraud detection example is showed
in Fig. 2. For instance, the attribute reimbs of class Subscriber is a multiple
reference slot, which shows that the class points to a set of Reimbursement. In
the running example, a divide-and-conquer approach is used to build aggrea-
gators: we first determine whether the Subscriber has a Reimbursement
with a high price (by exists p aggregator); second, we determine if the
HealthcareProvider is linked to a Subscriber satisfying the previous con-
dition (by exists sp). We follow the same reasoning to generate the aggregator
exists st.

Figure 3 depicts an example of a relational skeleton obtained from the fraud
example instances. A dashed arc stands for a reference slot, for instance sub1
references reimb1 and reimb2. Further details bout the PRMs extension used
in this work might be found in [20].

hp: HealthcareProvider

sub1:Subscriber

sub2:Subscriber

reimb1:Reimbursement

reimb2:Reimbursement

reimb3:Reimbursement

Fig. 3. An instance relational skeleton for the fraud example

3 Coupling BRs and PRMs

In the previous paragraph, we highlighted the common OO paradigm that ties OO-
BRMS and PRMs and we illustrated this through the fraud example. Using PRMs
allows for more model abstraction, while using classical BNs methods results in

58 H. Agli et al.

a repetition of objects creation, model dependence ins rules and inference ineffi-
ciency for large systems. In this paragraph, we suggest to extend the BRs data
meta-model, compilation and runtime to specify relations and probability model.

3.1 Probabilistic Rules

We propose to use the aforementioned similarity to invoke probabilistic instruc-
tions within the rules, e.g., marginal distribution computation and evidence post-
ing.For this reason, probabilistic attributes in the rules aredirectlymapped to their
equivalent PRM attributes (see Sect. 2). Assume that the OM against which the
rules are executed is extended to include all the nodes in the dependency network
on Fig. 2 as attributes of the corresponding classes. Assume further that a prob
operator1 is introduced in the syntax and allows triggering inference process of the
probabilistic engine. As we discussed previously, PRM relates attributes of differ-
ent classes, and those of generated instances consequently, to permit the creation
of complex networks covering multiple instances. Although, RVs are generated
from the same classes, they should be regarded as distinct variables with their own
life-cycle. We know from Fig. 2 that price risk attribute is linked to attributes
of classes Subscriber and Reimbursement in the PRM by reference mechanism,
hence, in this new extension, there is no need to evaluate conditions that can be
processed by probabilistic inference. When the engine encounters the prob opera-
tor, it immediately launches the probabilistic process, which queries the underly-
ing PRM. In such an extension, probabilistic data is explicitly identified and can
be processed by PRM engines. Now, instead of Rule 1.1, which says basically, that
an alert must be raised when a healthcare provider submits a fraudulently expen-
sive price reimbursement for a subscriber, we can have Rule 1.3 that says that an
excessive invoice alert must be raised on a healthcare provider if there is a 80%
probability that the price of a reimbursement request is excessive.

Rule 1.3. Detect invoice anomaly with probability

1 IF hp has type HealthcareProvider

2 & prob(hp.price_risk=high) >.8

3 THEN raiseAlertExceededInvoicePrice (hp)

3.2 BRs Object Model Extension

We suggest to extend both rules, by adding new attributes as in the previous
section, and their data meta-model by adding probabilistic annotations. This
has two advantages. The first is moving probabilistic definitions from rules to
their data meta-model. In making this move, BRs can externalize probabilistic
inference and allow for separate management of business and probabilistic logic.
Second, this enables the model to be more independent w.r.t the rules, which
means an independent evolution of both. Annotations are a type of meta-data
that enriches the meta-model at hand. In this work, they are added to indicate
1 For probability.

PRMs for BRMS 59

that a class contains probabilistic information, as well as that an attribute is
mapped to a PRM attribute and is parametrized by its corresponding CPT and
parents. If the attribute is an aggregator, annotations show its type, its domain
and the concerned modalities, i.e., random variables (RVs) possible states. As
we can see, such annotations allow for a natural mapping between OM and
PRMs. Therefore, an OM class (resp. attribute) is mapped to a PRM class (resp.
attribute) and the probabilistic data and how classes are related to each other
is extracted from the OM annotations. In the OM, a restricted type represents
a type whose domain is restricted, for instance an integer that is restricted to
{0, 1, 2}. Only discrete RVs are supported in PRMs, they can be user-labeled
(e.g., state type) or built-in types (e.g., boolean,int). Thanks to these anno-
tations, rules engine can generate the underlying PRM classes and system at
compile time. Before the generation process, the model is parsed and checked.
For example we check if the given list of a PRM attribute parents is valid and
consistent with its CPT. This latter is also checked to verify it represents a
well defined probability distribution. Actually, there are two possible modes for
PRM system definition. The first is a static declaration, which assumes that all
WM instances are known at compile-time. The PRM system is then generated
either by directly processing the WM instance graph, or by an explicit decla-
ration inside a special annotated class, which also specifies necessary relations.
The second mode allows a dynamic definition in addition to the previous mode.
Here, rules execution may also update the system by incrementally inserting new
instances or modifying relations for instance. The last mode is obviously much
more interesting since it reflects BRs and WM dynamic nature. The mapping we
use allows the rules to generate complex probabilistic networks via the simple
mechanism of class instanciation and reference slot. This power property enables
the rules, for instance to handle many sets of RVs, which are obtained for free,
just by means of linking instantiated classes.

4 Implementation

To illustrate all the concepts introduced in previous sections, we implemented
a prototype that couples IBM Operational Decision Manager (ODM)2 as an
OO-BRMS with A Graphical Universal Model (aGrUM)3 as a probabilistic
engine. However, the methodology we applied can be easily generalized to any
OO-BRMS as we showed previously. ODM execute BRs against an eXecutable
OM, hereafter XOM, using the Ilog Rule Language (IRL). The latter is a Java-
like language, which is also based on the OO paradigm. In practice, this model
can be build from Java sources for instance. The XOM is a class model that
describes the application objects and data of the WM. ODM allows also busi-
ness professionals to enter rules using the Business Action Language (BAL),
which describes rules4 in a more human readable format. Finally, ODM provides
an automated mapping between both BAL business and IRL technical rules5.
2 http://www-03.ibm.com/software/products/en/odm.
3 http://agrum.lip6.fr.
4 The series of “if-then(-else)” statements.
5 Actually, this automation is not always defined, but may require IT specialist insight.

http://www-03.ibm.com/software/products/en/odm
http://agrum.lip6.fr

60 H. Agli et al.

Fig. 4. Subscriber and System classes

To begin with, let us show the IRL classes obtained for Subscriber and the sys-
tem of our running example. Consider Fig. 4 line 1, the annotation @PrmClass is
a mark to express that the class contains probabilistic information. The corre-
sponding probabilistic attributes are annotated with @PrmAttribute and carry
information needed to describe their counterpart PRM attributes. For instance,
age in line 7 has no parents and a CPT describing whether the subscriber is under
the age of 10 is given. Note that AgeType at line 7 is an Integer restricted type.
@PrmAgg marks the attribute as an aggregator. In line 15, the annotation speci-
fies a list of the attribute parents and its CPT. In this example, we implemented
the static mode. So, instances are specified as internal attributes of the system
class that is annotated with @PrmSystemClass in line 19. Reference slots are set
inside the class constructor at line 25. Finally, the relational skeleton in Fig. 3 is
generated from this system class.

PRMs for BRMS 61

4.1 Compilation Process

The compilation process is based on a series of model rewritings. This is a pow-
erful tool that allows ODM, not only to abstract instructions from their imple-
mentation, but also to conserve the rule paradigm. Practically, the IRL rules
life-cycle is completely separated from that of BAL rules. As a consequence,
changing the implementation is possible without altering every BR.

When BRs are entered using the BAL, they are first translated into IRL rules
by a rewriting procedure. Second, the resulting rule-set is checked and parsed
to obtain a rule-set semantic model as Abstract Syntax Tree (AST). At this
level, the result may undergo recursive rewritings, on top of which one can plug
different APIs. Then, the rule-set AST is compiled while taking into account
the chosen algorithm. Again this phase can be parametrized by various plugins
according to the algorithm to be used, e.g. RETE. The output at this stage is
optimized and transformed to obtain the semantic OM. This latter is a pow-
erful meta-model, it can be seen as an extension of the Java meta-model that
allows compilation, sources processing and model definition. There is no longer
semantic rule-sets here, but instead, an object model that encodes the semantics
inside the generated classes and methods. Other operations may appear such
as the BAL/IRL mapping and the linkage with outside application via services
mechanism. The final result is persisted and jitted into an archive that can be
deployed in the desired platform, e.g. Java, C# and Script. Note that this chain
is executed in pipe-line and the order is controlled by the plugins execution in
the chain. Our proposed prototype, called BIS for Bayesian Insight System, can
be plugged on top of the rules compilation process as an additional rewriting of
the rule-set. The plugging choice is motivated by our desire to take advantage
of an existing compilation framework, rather than building such a process from
scratch. Additionally, a plugging approach facilitates the conceptual and techni-
cal integration in the product architecture. Figure 5 depicts an overall schema of
the compilation process. In particular, a compilation factory is implemented
to adapt the probabilistic context to the compilation chain. The IRL-based
Rule 1.4 illustrates the results after rewriting the Rule 1.3. In this example,
we move from function rewriting to proper call of the probabilistic engine with
current arguments.

Rule 1.4. Detect invoice anomaly with probability

1 rule detectInvoiceAnomaly{

2 when{

3 hp:HealthcareProvider(ProbabilisticEngine .this.

calculateProbability(this ,"price_risk", "high") > 0.8)

;

4 }

5 then{

6 raiseAlertExceededInvoicePrice (hp);

7 }

8 }

62 H. Agli et al.

When the extended IRL is compiled, annotations serve to extract PRM
attributes, CPTs and relations. When the checking is completed, the final model
is written into the PRM text format and processed for inference. We give another
way to introduce the probability in rules using the IRL evaluate operator.
Rule 1.5 evaluates the risk that a Subscriber is participating in a fraud.

Rule 1.5. Evaluate subscriber risk with probability

1 rule evaluatSubscriberRisk{

2 when{

3 hp:HealthcareProvider ();

4 sub: Subscriber () in hp.subs;

5 evaluate(prob(sub.risk==true)| hp.risk==true) >.8);

6 }

7 then{

8 alertRiskedSubscriber(sub);

9 }

10 }

The vertical bar in the rule stands for “knowing that” and corresponds formally
to conditional probability of a RV. In this rule, the RV sub.risk is connected to
HealthcareProvider’s attributes through the reference subs. In the expression
prob(sub.risk==true)| hp.risk==true), the conditional context is explicitly
mentioned, which refers to computing the probability of sub.risk given some
information on hp.risk. However, we want to simplify more the syntax by con-
sidering implicitly every fact in the WM. As a consequence, prob should be
stateful to facilitate the rule writing without bothering oneself with the underly-
ing PRM. Thus, the previous expression is reduced to prob(sub.risk==true),
which is implicitly equivalent to prob(sub.risk==true|WM), where WM is sim-
ply reduced to "hp.risk==true". Finally, one can similarly manage the intro-
duction of other operators such as likelihood and entropy.

IRL
Parsing

Checking
SemRuleset

Ruleset
rewriting

SemRuleset Compiling

SemObjectModel

Deployment

BIS

data process plugin

Fig. 5. ODM compiling chain

PRMs for BRMS 63

4.2 Advanced Probabilistic Rules

At rules level, one is interested in decision-making, to which the notion of risk
is relevant6, not in how probabilistic query is performed. So another easy, yet
interesting, approach to express probability in the rules, is to parametrize the
whole condition by probabilistic activation threshold while allowing the coupling
introduced in Sect. 3. Doing so helps the rule engine agenda to determine which
rule should be executed. In practice, we need to introduce a general probability
operator that governs rules eligibility by testing if the probability of the corre-
sponding tuple pattern matching equals or exceeds the probabilistic threshold.

Rule 1.6. Evaluate subscriber risk with probability

1 rule evaluatSubscriberRisk{

2 probability >= .8;

3 when{

4 hp:HealthcareProvider ();

5 sub:Subscriber(sub.risk==true|hp.risk==true) in hp.subs;

6 }

7 then{

8 alertRiskedSubscriber(sub);

9 }

10 }

The probability operator in Rule 1.6 involves all the RVs occurring in the condi-
tion part. However, since PRM engines cannot directly deal with such conditions
but only with variables, one must specify the rule conditions, which are really
participating in computations, and identify the underlying probabilistic vari-
ables. This is a challenging task that involves a difficult compilation process.
Actually, in this approach, we need to analyze rules, extract information that
is relevant to probabilistic inference and avoid non probabilistic variables for
instance. Then, one must transform the result into the adequate probabilistic
query7. Many operators that are present in the compilation process are complex
to evaluate and need to be detected. This means introducing new operations in
the compilation in order for the probabilistic engine to deal with different con-
ditions including different tests (variable and class conditions), aggregators and
generators. Fortunately, both models share some high level operators, e.g., min,
max, for all, exists aggregators, which can be automatically extracted from rules
conditions, thanks to the compilation, and mapped to their PRM counterparts
if any. Otherwise they can be used to complete the PRM definition with new
attributes.

Now, using this general operator, every logical production rule can be given
a probabilistic meaning by considering non probabilistic variables as a Dirac
distribution and by imposing probability operator to be equal to 1. In this way,
we can give probabilistic meaning to Rule 1.1 as showed in Rule 1.7.
6 For instance, the risk of not executing a rule that should be executed (false negative).
7 In general, one must specify how every language construct is compiled to be processed

by this general operator and assure the preservation of queries operational semantic
after the rewriting, but this is beyond the scope of this paper.

64 H. Agli et al.

Rule 1.7. Detect invoice anomaly

1 rule detectInvoiceAnomaly{

2 probability =1;

3 when{

4 hp:HealthcareProvider ();

5 sub:Subscriber () in hp.subs();

6 exists Reimbursement(price ==’high’) in sub.reimbs ();

7 }

8 then{

9 raiseAlertExceededInvoicePrice (hp);

10 }

11 }

Compile/Exec
APIs

Business Rules
Engine

Probabilistic
Engine

PRMsBRs

request, change

posteriors

Fig. 6. BIS coupling

4.3 A Loosely Coupling-Based Execution

The declarative aspect of the rules facilitates efficient instances generation for
the PRM system. At run-time, a hundred of RVs with complex relations can
be easily obtained just by means of instanciation; this is an advantage over the
classical BNs approach. In addition to the compilation API discussed previously,
BIS is also endowed with an execution API. Both insure different services com-
municating following the schema shown in Fig. 6. This allows for a coupling
between both BRs and probabilistic engines, which are implemented as services.
Actually, our framework is not restricted to one implementation, but is open to
any other probabilistic engine, which can be seen as a plugged service implemen-
tation. For instance, the current work is using aGrUM that can deal with PRMs.
We have also tested JSmile8 as a probabilistic engine, however, we were limited

8 See https://dslpitt.org/genie/wiki/JSMILE and Smile.NET for more details.

https://dslpitt.org/genie/wiki/JSMILE_and_Smile.NET

PRMs for BRMS 65

by the lack of relations and object concepts in such a framework. Recall that
the compilation part performs a rewriting from the rules semantic model, which
encompasses probabilistic data, to run-time functions, which actually call the
probabilistic engine. In our case the PRM is generated by XOM compilation and
read by probabilistic engine. It is also possible to read both models from external
files. Furthermore, our architecture allows for a good inter-operability between
both engines. On the one hand, rules execution can change the state of the
WM and consequently the RVs in the PRM system by posting evidence, adding,
removing new instances or setting new relations. For instance, the action part of
Rule 1.8, update the WM by adapting the risk attribute. Through additional
process of rewriting and compilation, one can even discover particular variables
to post soft evidence on their corresponding probabilistic ones9.

Rule 1.8. Detect invoice anomaly with probability

1 rule detectInvoiceAnomaly{

2 when{

3 hp:HealthcareProvider(prob(type_risk ==high) >.8));

4 sub: Subscriber () in hp.subs;

5 }

6 then{

7 update sub{risk=true;}

8 }

9 }

EngineServiceRuleEngine

ProbaEngine

aGrUMEngine JSmileEngine

EngineObserver
update

update notification

prob query

Fig. 7. PRM plugin as a service

On the other hand, when the rules trigger the inference process, the proba-
bilistic engine computes the needed probability for the query and may also notify
the WM to update some attributes for rules reevaluation.

In Fig. 7 engines are related via an observation mechanism and both are
notified, through the observer, when any change occurs in the WM. That is,
9 Constrains on probability distribution.

66 H. Agli et al.

each time an incremental change, such as object or relation insertion/retraction
occurs in the WM, the underlying PRM is notified for the update, e.g., reference
slot change. Both probabilistic and rules engine perform inference in a lazy way.
The former records every incremental WM update until the next rule query eval-
uation. Then it accordingly updates the PRM system to answer the probabilistic
query. The latter seeks to minimize evaluations in the RETE network.

5 Conclusion

This paper introduced an effective approach to integrate probabilistic reasoning
into modern BRMS. The solution we proposed couples BRMS with PRMs. We
highlighted the natural mapping between both paradigms and gave an opera-
tional method to assure it. Finally we proposed a general architecture of the
coupling platform prototype. The technical contribution is implemented as an
embedded prototype in the ODM product.

Our work opens many other research perspectives. In particular, due to the
dynamic aspect of the WM, a probabilistic inference algorithm should be devel-
oped to insure the PRM inference adaptability. For this purpose, we are currently
working on an adaptation of the incremental junction tree inference algorithm,
which is proposed in [2]. Moreover, as soon as we deal with aggregators/genera-
tors in the rules, e.g., from,in, it becomes necessary to automatically generate
their PRM counterpart as and when we compile the rules. This immediately
opens the issue of PRMs non-supported operators and the idea of extending
this model. Another difficult compilation aspect, yet more interesting, is the
use of several operators within the same rule and how this impacts the PRM
construction.

After each WM update, the RETE algorithm tries to optimize the expression
re-evaluations, while taking into account the previous state. It would be interest-
ing to develop a two-sided optimization that supervises PRM and WM updates,
e.g., take into consideration the PRM variables independence. Or better yet, to
try to optimize updates propagation as part of a tight coupling but to the cost
of algorithmic complexity and finding a trade-off between implementation and
performance. Finally, this work also opens doors to introduce uncertain reason-
ing in rules temporal expressions to process complex events over uncertain data
or events.

Acknowledgments. This work was partially supported by IBM France Lab/ANRT
CIFRE under the grant #421/2014. The authors would like to thank Christian De
Sainte Marie for useful discussions and insights.

References

1. Agli, H., Bonnard, P., Wuillemin, P., Gonzales, C.: Uncertain reasoning for business
rules. In: Proceedings of the 8th International Web Rule Symposium Doctoral
Consortium (2014)

PRMs for BRMS 67

2. Agli, H., Bonnard, P., Wuillemin, P., Gonzales, C.: Incremental junction tree
inference. In: Proceedings of the 16th Information Processing and Management
of Uncertainty in Knowledge-Based Systems International Conference (2016, to
appear)

3. Berstel-Da Silva, B.: Verification of Business Rules Programs. Springer, Heidelberg
(2014)

4. Bobek, S., Nalepa, G.J.: Compact representation of conditional probability for
rule-based mobile context-aware systems. In: Bassiliades, N., Gottlob, G., Sadri,
F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 83–96.
Springer, Heidelberg (2015)

5. Buchanan, B.G., Shortliffe, E.H.: Rule Based Expert Systems: The Mycin Exper-
iments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading
(1984)

6. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach.
Learn. 100(1), 5–47 (2015)

7. Elkan, C.: The paradoxical success of fuzzy logic. In: IEEE Expert, pp. 698–703
(1993)

8. Forgy, C.L.: RETE: a fast algorithm for the many pattern/many object pattern
match problem. Artif. Intell. 19(1), 17–37 (1982)

9. Graham, I.: Business Rules Management and Service Oriented Architecture: A
Pattern Language. Wiley, Chichester (2006)

10. Hart, P.E., Duda, R.O., Einaudi, M.T.: PROSPECTOR–a computer-based consul-
tation system for mineral exploration. J. Int. Assoc. Math. Geol. 10(5), 589–610
(1977)

11. Heckerman, D.E., Shortliffe, E.H.: From certainty factors to belief networks. Artif.
Intell. Med. 4(1), 35–52 (1992)

12. Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: Proceedings of the
15th National Conference on Artificial Intelligence (AAAI), pp. 580–587 (1998)

13. Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp. 302–313
(1997)

14. Korver, M., Lucas, P.J.F.: Converting a rule-based expert system into a belief
network. Med. Informatics 18, 219–241 (1993)

15. Mahoney, S.M., Laskey, K.B.: Network engineering for complex belief networks. In:
Proceedings of the Twelfth International Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 389–396 (1996)

16. Ng, K.C., Abramson, B.: Uncertainty management in expert systems. IEEE Expert
Intell. Syst. Appl. 5(2), 29–48 (1990)

17. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo (1988)

18. Pfeffer, A.J.: Probabilistic Reasoning for Complex Systems. Ph.D. thesis, Stanford
University (2000)

19. Torti, L., Gonzales, C., Wuillemin, P.H.: Speeding-up structured probabilistic infer-
ence using pattern mining. Int. J. Approximate Reasoning 54(7), 900–918 (2013)

20. Wuillemin, P.H., Torti, L.: Structured probabilistic inference. Int. J. Approximate
Reasoning 53(7), 946–968 (2012)

21. Zadeh, L.A.: Fuzzy sets. Inform. Control 8(3), 338–353 (1965)

A Declarative Semantics for a Fuzzy Logic
Language Managing Similarities and Truth

Degrees

Pascual Julián-Iranzo1, Ginés Moreno2(B), Jaime Penabad3,
and Carlos Vázquez2

1 Department of Technologies and Information Systems, UCLM,
13071 Ciudad Real, Spain
Pascual.Julian@uclm.es

2 Department of Computing Systems, UCLM, 02071 Albacete, Spain
{Gines.Moreno,Carlos.Vazquez}@uclm.es

3 Department of Mathematics, UCLM, 02071 Albacete, Spain
Jaime.Penabad@uclm.es

Abstract. This work proposes a declarative semantics based on a fuzzy
variant of the classical notion of least Herbrand model for the so-called
FASILL language (acronym of “Fuzzy Aggregators and Similarity Into a
Logic Language”) which has been recently designed and implemented in
our research group for coping with implicit/explicit truth degree anno-
tations, a great variety of connectives and unification by similarity.

Keywords: Fuzzy logic programming · Similarity · Herbrand model

1 Introduction

The challenging research area of Fuzzy Logic Programming is devoted to intro-
duce fuzzy logic concepts into logic programming in order to explicitly deal with
vagueness in a natural way. It has provided an extensive variety of Prolog dialects
along the last three decades. Fuzzy logic languages can be classified (among other
criteria) according to the emphasis they assign to fuzzifying the original unifica-
tion/resolution mechanisms of Prolog. Whereas some approaches are able to cope
with similarity/proximity relations at unification time [1,6,22,24], others extend
their operational principles (maintaining syntactic unification) for managing a
wide variety of fuzzy connectives and truth degrees on rules/goals beyond the
simpler case of true or false [13,15,19].

The first line of integration, where the syntactic unification algorithm is
extended with the ability of managing similarity/proximity relations, is of special
relevance for this work. Similarity/proximity relations associate the elements of
a set with a certain approximation degree and serve for weakening the notion of

Work supported by the EU (FEDER), and the Spanish MINECO Ministry (Minis-
terio de Economı́a y Competitividad) under grant TIN2013-45732-C4-2-P.

c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 68–82, 2016.
DOI: 10.1007/978-3-319-42019-6 5

A Declarative Semantics for a Fuzzy Logic Language Managing Similarities 69

equality and, hence, to deal with vague information. With respect to this line,
the related work can be summarized as follows:

In [24], an extension of the declarative paradigm of classic logic programming
is proposed by considering similarity-based computations (the weakening of the
equality notion is managed by means of fuzzy similarity relations for dealing
with vague information) which allows to perform approximate inferences. Also,
it describes the notion of fuzzy least Herbrand model and proves the equivalence
with the fixpoint semantics of logic programs with similarity. Moreover, a graded
notion of logical consequence can be considered and the operational semantics
is designed by introducing a modified version of SLD resolution, by using a
generalized notion of most general unifier that provides a numeric value which
gives a measure of the exploited approximation.

In [24] (work that extends the precedent [23]) an operational semantics and
a fixpoint semantics are defined and related, as well as a fuzzy extension of the
least Herbrand model is given. Also in [2], that proposes the logic program-
ming language Likelog (LIKEness in LOGic) which relies on similarity too, an
operational semantics and a fix-point semantics are defined.

A more general notion called proximity relation was introduced in [5] by
omitting the transitivity axiom. The Bousi∼Prolog language [11] is a fuzzy logic
programming language with an operational semantics which is an adaptation of
the SLD resolution, incorporating a fuzzy unification algorithm based on prox-
imity relations.

A different generalization of similarity-based logic programming is the SQLP
scheme (see S imilarity-based reasoning in qualified logic programming, [3]),
designed as an innovative extension of the QLP scheme (Quantitative Logic Pro-
grams of [25]), in which the authors show that the similarity-based logic program-
ing approach presented in [24] can be reduced to Qualified Logic Programing in
the QLP(D) scheme introduced in [21], which supports logic programming with
attenuated program clauses over a parametrically given domain D. The SQCLP
scheme is a notable extension of [13,25] which supports qualification values (ele-
ments of a domain of qualification), proximity relations and notions coming from
CLP (Constraint Logic Programming). In this framework, the authors present a
declarative semantics for SQCLP that is based on observables, providing fixpoint
and proof-theoretical characterizations of least program models.

Ending this section, it is important to say that our research group has
been involved both on the development of similarity-based logic programming
systems and those that extend the resolution principle, as reveals the design
of the Bousi∼Prolog language1 [11,12,22], where clauses cohabit with similar-
ity/proximity equations, and the development of the FLOPER system,2 which
manages fuzzy programs composed by rules richer than clauses [16,18]. Our uni-
fying approach is somehow inspired by [4], but in our framework we admit a wider
set of connectives inside the body of programs rules. In this paper, we propose
the declarative semantics of the FASILL (acronym of “Fuzzy Aggregators and

1 Two different programming environments for Bousi∼Prolog are available at http://
dectau.uclm.es/bousi/.

2 The tool is freely accessible from the Web site http://dectau.uclm.es/floper/.

http://dectau.uclm.es/bousi/
http://dectau.uclm.es/bousi/
http://dectau.uclm.es/floper/

70 P. Julián-Iranzo et al.

Similarity Into a Logic Language”) language, whose operational semantics has
been recently embedded into the FLOPER system. Following the same scheme of
[9,11], this paper introduces the declarative semantics of the FASILL language,
since it was proposed as a pending task in [7].

The structure of this paper is as follows. Firstly, in Sect. 2 we formally define
and illustrate the syntax of the FASILL language, whose operational semantics
was initially presented too in [7]. Next, Sect. 3 details its declarative semantics
by introducing the concept of Herbrand model and least Herbrand model of
a FASILL program. Finally, in Sect. 4 we present our conclusions and future
research lines.

2 The FASILL Language

FASILL is a first order language built upon a signature Σ, that contains the ele-
ments of a countably infinite set of variables V, function symbols, and predicate
symbols with an associated arity –usually expressed as pairs f/n or p/n where
n represents its arity–, the implication symbol (←), and a wide set of other
connectives ς (t-norms, t-conorms and aggregators). The language combines the
elements of Σ as terms, atoms, rules, and formulas. A constant c is a function
symbol with arity zero. A term is a variable, a constant or a function symbol f/n
applied to n terms t1, . . . , tn, and is denoted as f(t1, . . . , tn). We allow values of
a lattice L as part of the signature Σ, whose formal definition follows.

Definition 1 (Complete lattice). A complete lattice is a partially ordered set
(L,≤) such that every subset S of L has infimum and supremum elements. Then,
it is a bounded lattice, i.e., it has bottom and top elements, denoted by ⊥ and
�, respectively. L is said to be the carrier set of the lattice, and ≤ its ordering
relation.

More precisely, we allow the existence of a set of truth degree literals, ΣL, as
part of the signature Σ. These literals are written exactly as they have meant to
be interpreted as values of a lattice of truth degrees L3. Therefore, a well-formed
formula can be either:

– r, if r ∈ ΣL (which will be interpreted as itself, that is, as the truth degree
r ∈ L),

– p(t1, . . . , tn), if t1, . . . , tn are terms and p/n is an n-ary predicate. This for-
mula is called atom. Particularly, atoms containing no variables are called
ground atoms, and atoms built from nullary predicates are called propositional
variables,

– ς(F1, . . . ,Fn), if F1, . . . ,Fn are well-formed formulas and ς is an n-ary con-
nective.

3 This convention is quite standard and even used in a pure logic language like Prolog,
where the reserved words true and fail -which directly resemble the pair of elements
conforming the fixed lattice of truth degrees associated to any Prolog program- can
be freely used on goals and clause bodies.

A Declarative Semantics for a Fuzzy Logic Language Managing Similarities 71

The language is equipped with a set of connectives ς4 interpreted on the lattice,
including

– aggregators denoted by @, whose truth functions @̇ fulfill the boundary con-
dition: @̇(�,�) = �, @̇(⊥,⊥) = ⊥, and monotonicity: (x1, y1) ≤ (x2, y2) ⇒
@̇(x1, y1) ≤ @̇(x2, y2).5

– t-norms and t-conorms [20] (also named conjunctions and disjunctions, that
we denote by & and |, respectively) whose truth functions fulfill the following
properties:
· Commutative: &̇(x, y) = &̇(y, x) |̇(x, y) = |̇(y, x)

· Associative: &̇(x, &̇(y, z)) = &̇(&̇(x, y), z) |̇(x, |̇(y, z)) = |̇(|̇(x, y), z)

· Identity element: &̇(x,�) = x |̇(x,⊥) = x

· Monotonicity in each argument:

z ≤ t ⇒
{

&̇(z, y) ≤ &̇(t, y) &̇(x, z) ≤ &̇(x, t)

|̇(z, y) ≤ |̇(t, y) |̇(x, z) ≤ |̇(x, t)

Example 1. In the (complete) lattice ([0, 1],≤), where ≤ is the usual ordering
relation on real numbers, it is possible to consider three sets of connectives
corresponding to the fuzzy logics of Gödel, �Lukasiewicz and Product, defined in
Fig. 1, where labels L, G and P mean respectively �Lukasiewicz logic, Gödel logic,
and product logic (with different capabilities for modeling pessimistic, optimistic,
and realistic scenarios –see [20] for a description of these scenarios–).

&̇P(x, y) x ∗ y |̇P(x, y) x + y − xy Product

&̇G(x, y) min(x, y) |̇G(x, y) max(x, y) Gödel

&̇L(x, y) max(0, x + y − 1) |̇L(x, y) min(x + y, 1)

Fig. 1. Conjunctions and disjunctions in [0, 1] for Product, �Lukasiewicz, and Gödel
fuzzy logics

It is possible to include also other connectives. For instance, the arithmetical
average, defined by connective @aver (with truth function @̇aver(x, y) � x+y

2),
that is a stated, easy to understand connective that does not belong to a standard
fuzzy logic. Connectives with arities different from 2 can also be used, like the
@very aggregation, defined by @̇very(x) � x2, that is a unary connective or
modifier.
4 Here, the connectives ς are binary operations but we usually generalize them with

an arbitrary number of arguments, that is, with truth function ς̇ : Ln → L.
5 Note that, in the antecedent of this implication we use the order for pairs, (which

is defined as (x1, y1) ≤ (x2, y2) if, and only if, x1 ≤ x2 and y1 ≤ y2), while in the
consequent the usual order on the interval [0, 1] is considered. Similarly, it is possible
to extend the usual order on [0, 1], for n-ary connectives.

72 P. Julián-Iranzo et al.

Definition 2 (Similarity relation). Given a domain U and a lattice L with
a fixed t-norm ∧, a similarity relation R is a fuzzy binary relation on U , that is
a fuzzy subset on U × U (namely, a mapping R : U × U → L), such that fulfils
the following properties:6

– Reflexive: R(x, x) = �,∀x ∈ U ,
– Symmetric: R(x, y) = R(y, x),∀x, y ∈ U ,
– Transitive: R(x, z) ≥ R(x, y) ∧ R(y, z),∀x, y, z ∈ U .

Certainly, we are interested in fuzzy binary relations on a syntactic domain.
We primarily define similarities on the symbols of a signature, Σ, of a first order
language. This makes possible to treat as indistinguishable two syntactic symbols
which are related by a similarity relation R. Moreover, a similarity relation R
on the alphabet of a first order language can be extended to terms by structural
induction in the usual way [24]. That is, the extension, R̂, of a similarity relation
R is defined as:

1. let x be a variable, R̂(x, x) = R(x, x) = 1,
2. let f and g be two n-ary function symbols and let t1, . . . , tn, s1, . . . , sn be

terms, then R̂(f(t1, . . . , tn), g(s1, . . . , sn)) = R(f, g) ∧ (
∧n

i=1 R̂(ti, si))
3. otherwise, the approximation degree of two terms is zero.

Analogously for atomic formulas. In this work conditional formulas of the form
C : A ← B, where A is an atom, have a special relevance (see below). For this
kind of formulas we use a different and more restrictive notion of similarity than
the one defined in [24]. The idea is that a conditional formula C is similar to
another conditional formula C′ if their heads are similar but maintain the same
body. Hence, given C : A ← B and C′ : A′ ← B′, R̂(C, C′) = R̂(A,A′) if B = B′;
otherwise R̂(C, C′) = 0. That is, a conditional formula C is similar to another
conditional formula C′ in the same degree that their heads provided that they
have the same body.

Note that, in the sequel, we shall not make a notational distinction between
the relation R and its extension R̂.

Example 2. A similarity relation R on U = {vanguardist, elegant,metro,
taxi, bus} is defined by the following matrix:

R vanguardist elegant metro taxi bus

vanguardist 1 0.6 0 0 0

elegant 0.6 1 0 0 0

metro 0 0 1 0.4 0.5

taxi 0 0 0.4 1 0.4

bus 0 0 0.5 0.4 1

It is easy to check that
R fulfills the reflexive,
symmetric, and transitive
properties. Particularly,
using the Gödel conjunc-
tion as the t-norm ∧, we
have that: R(taxi,metro) ≥
R(metro, bus)∧ R(bus, taxi)
= 0.5 ∧ 0.4.

6 For convenience, R(x, y), also denoted xRy, refers to both the syntactic expression
(that symbolizes that the elements x, y ∈ U are related by R) and the membership
degree μR(x, y), i.e., the affinity degree of the pair (x, y) ∈ U × U with the verbal
predicate (or fuzzy predicate) R.

A Declarative Semantics for a Fuzzy Logic Language Managing Similarities 73

Furthermore, the extension R̂ of R determines that the terms elegant(taxi)
and vanguardist(metro)7 are similar: R̂(elegant(taxi), vanguardist(metro)) =
R(elegant, vanguardist) ∧ R̂(taxi,metro) = 0.6 ∧ R(taxi,metro) = 0.6 ∧
0.4 = 0.4.

Definition 3 (Rule and goal). A rule has the form A ← B, where A is an
atomic formula called head and B, called body, is a well-formed formula (ulti-
mately built from atomic formulas B1, . . . , Bn, truth values of L, and connec-
tives). In particular, when the body of a rule is r ∈ L (an element of lattice L),
this rule is called fact and can be written as A ← r (or simply A if r = �).
A goal is a body submitted as a query to the system.

Definition 4 (Program). A FASILL program (or simply program) is a tuple
〈Π,R, L〉 where Π is a set of rules, R is a similarity relation between the ele-
ments of Σ, and L is a complete lattice.

Example 3. The set of rules Π given below, the similarity relation R of Example
2, and lattice L = ([0, 1],≤) of Example 1, form a program P = 〈Π,R, L〉.⎧⎪⎪⎨
⎪⎪⎩

R1 : vanguardist(hydropolis) ← 0.9
R2 : elegant(ritz) ← 0.8
R3 : close(hydropolis, taxi) ← 0.7
R4 : good hotel(x) ← @aver(elegant(x),@very(close(x,metro)))

Figs. 2 and 3 show two screenshots of an on-line work session with the FLOPER
system when introducing and executing (according the operational semantics
described in [7]) the program above.

3 Declarative Semantics of FASILL

In logic programming, the declarative semantics for a program is traditionally
formulated on the basis of the least Herbrand model (conceived as the infimum
of a set of interpretations). In this section, we formally introduce the semantic
notions of Herbrand interpretation, Herbrand model and least Herbrand model
for a FASILL program P, in order to characterize the declarative semantics for
this kind of fuzzy programs. The process follows the guidelines of [14] and also
generalizes the model-theoretic semantics defined in [9] for multi-adjoint logic
programs and in [17] for X-MALP programs.8 That is, if L is a multi-adjoint
lattice and P is a multi-adjoint program (see [8,15] for a description of these
concepts), or L is a complete lattice and P is a X-MALP program, it is easy
to see that our Herbrand model I coincides with the one corresponding to this
framework.

7 Note that elegant(taxi) and vanguardist(metro) are 1-ary predicates, whereas that
taxi, metro are terms with arity 0, i.e. constants.

8 Note that, X-MALP programs do not rely on adjoint pairs.

74 P. Julián-Iranzo et al.

Fig. 2. Screenshot of the FLOPER online tool input

In what follows, we will consider that BP is the Herbrand base of the FASILL
program P, that is, the set of all ground atoms which can be formed by using
the symbols in Π and in the similarity relation R of P.

Definition 5 (Herbrand Interpretation). Let P = 〈Π,R, L〉 be a FASILL
program. A Herbrand interpretation is a mapping I : BP → L, where BP is the
Herbrand base of P.

Let H be the set of Herbrand interpretations whose order is induced from
the order of L, I1 ≤ I2 ⇐⇒ I1(A) ≤ I2(A),∀A ∈ BP . It is trivial to check that
(H,≤) inherits the structure of complete lattice from (L,≤).

A Herbrand interpretation I can be extended in a natural way to the set of
ground formulae of the language by simply making use of the following definition:

I(ς(A1, . . . , An)) = ς̇(I(A1), . . . , I(An))

A Declarative Semantics for a Fuzzy Logic Language Managing Similarities 75

Fig. 3. Screenshot of the FLOPER online tool output

where ς is an arbitrary connective and A1, . . . , An ground atoms. Note that, by
abuse of language we use the same symbol for the Herbrand interpretation and
its extension.

In order to interpret a non ground (closed and universally quantified) formula
∀A, it suffices to take

I(∀A) = inf{I(Aϑ) : ϑ is a variable assignment}
where a variable assignment ϑ is a ground substitution that applied to a syntactic
expression E transforms it into a ground instance Eϑ.

Moreover, in order to interpret a conditional formula we give the following
definition.

76 P. Julián-Iranzo et al.

Definition 6 (Herbrand Model). A Herbrand interpretation I satisfies or is
a Herbrand model of a conditional formula H ← B if, and only if, it verifies
that I(Hϑ) ≥ I(Bϑ), for all assignment ϑ.

A direct naive translation of the classical concept of Herbrand model of a pro-
gram P (as a Herbrand interpretation I which satisfies all the rules in P) does
not work in the context of a FASILL program, since it is equipped with a similarity
relation. We need a new definition supported by an extended notion of program
which are going to contain the meaning introduced by a similarity relation into
the core of the program.

But first, we need to introduce some necessary technical definitions to cope
with some problems that appear when rules have nonlinear atoms in their heads.
A term or atom is linear if it does not contain multiple occurrences of the same
variable. Any term or atom that is not linear is said to be nonlinear. Given a
nonlinear atom A, the linearization of A (as defined in [3]) is a process by which
the structure 〈Al, Cl〉 is computed, where: Al is a linear atom built from A by
replacing each one of the ni multiple occurrences of the same variable xi by new
fresh variables yk(1 ≤ k ≤ ni); and Cl is a set of similarity constrains xi ∼ yk
(with 1 ≤ k ≤ ni). The operator “s ∼ t” is asserting the similarity of two terms
s and t and when interpreted, I(s ∼ t) = R(s, t), whatever the interpretation I
of L. Now, let R = A←B be a rule and 〈Al, Cl〉 be the linearization of A, where
Cl = {x1 ∼ y1, . . . , xn ∼ yn}, lin(R) = Al←x1 ∼ y1 ∧ · · · ∧ xn ∼ yn ∧ B. For a
set Γ of rules, lin(Γ) = {lin(R) : R ∈ Γ}.

The following example discusses the need of linearization.

Example 4. Consider the program

Π =
{

R1 : p(a)
R2 : q(x, x)← p(x)

Assume also that constants a and b are considered similar with a certain degree.
This implies that p(a) and p(b) are similar atoms, as well as q(a, a) and q(b, b).
But it is important to also note that the last pair of atoms are similar again to
q(a, b) and q(b, a) (obviously, all the atoms mentioned so far conform the Her-
brand base of the program). As we are going to see in what follows, this last
couple of atoms must necessarily be included in the minimal Herbrand model of
the program, which will previously require to linearize the second program rule
for obtaining lin(q(x, x)←p(x)) = q(y1, y2)←x ∼ y1 ∧ x ∼ y2 ∧ p(x).

At this point, we wish to recall from [10] our notion of “Similarity-based
Strict Equality” (sse in brief) which is strongly connected with the ∼ operator
used when linearizing rules. In fact, we can conceive the new predicate sse as
a high level implementation of ∼ in the sense that a set of FASILL rules coding
sse suffices for emulating the behavior of ∼ when using the FLOPER system.

For instance, assuming in our example that the similarity relation R is
described by the condition R(a, b) = 0.8, then the following set of FASILL facts
are enough to model sse in our case: sse(a, a)←1, sse(a, b)←0.8, sse(b, a)←0.8

A Declarative Semantics for a Fuzzy Logic Language Managing Similarities 77

Fig. 4. Screen-shot of FLOPER managing a linearized FASILL program

and sse(b, b)←1. And now, rule R2 can be linearized by using sse to become
q(y1, y2)←sse(x, y1) ∧ sse(x, y2) ∧ p(x).

For putting in practice all these ideas with FLOPER in the previous rule we
assign the Gödel conjunction to ∧ and we also delay the calls to sse at the
end of the body for gaining efficiency (see [10] for details). So, after loading the
following program into the system:

p(a).
q(Y1,Y2) <- p(X) &godel sse(X,Y1) &godel sse(X,Y2).
sse(a,a) <- 1.
sse(a,b) <- 0.8.
sse(b,a) <- 0.8.
sse(b,b) <- 1.

78 P. Julián-Iranzo et al.

and running goal p(X,Y), we obtain the following desired four solutions associ-
ated to the derivation tree shown in Fig. 4:

< 1, {Y/a,X/a} >
< 0.8, {Y/b,X/a} >
< 0.8, {Y/a,X/b} >
< 0.8, {Y/b,X/b} >

After this observation, we define the notion of extended program. Given a FASILL
program, P = 〈Π,R, L〉, where Π is a set of rules, R is a similarity relation, and
L is a complete lattice. The set of rules which are similar to the rules in lin(Π)

K(Π) = {H ′←α ∧ B : H←B ∈ lin(Π),R(H ′,H) = α > ⊥}
are reflecting the meaning induced by the similarity relation R into the set of rules
Π. That meaning is measured through the approximation degrees R(H ′,H) =
α ∈ L.

Note that K(Π) is a FASILL program too. In general, lin(Π) ⊆ K(Π).

Definition 7 (Herbrand Model). Let P = 〈Π,R, L〉 be a FASILL program,
where Π is a set of rules, R is a similarity relation, and L is a complete lattice.
An interpretation I is a Herbrand model9 of the program P iff it is a model for
each ground instance H ′ϑ←α ∧ Bϑ of a rule in K(Π). That is, α ∧ I(Bϑ) ≤
I(H ′ϑ) for each assignment ϑ and rule in K(Π).

Definition 8 (Least Herbrand Model). Let P = 〈Π,R, L〉 be a FASILL pro-
gram. The interpretation IP = inf{Ij : Ij is Herbrand model of P} is called the
least fuzzy Herbrand10 model of P.

The following result justifies that the previous interpretation IP can be really
understood as the least fuzzy Herbrand model.

Theorem 1. Let P = 〈Π,R, L〉 be a FASILL program. The Herbrand interpre-
tation IP = inf{Ij : Ij is a Herbrand model of P} is the least Herbrand model
of P.

Proof. Let M be the set of Herbrand models of P, that is, M = {Ij : Ij is a
Herbrand model of P}. M is not empty, being as the Herbrand interpretation
I = sup(H), defined on each A ∈ BP by I(A) = sup(L), is a Herbrand model
of P.

Then, if we denote IP = inf(M), IP is a Herbrand interpretation: since
(H,≤) is a complete lattice, there exists the infimum of the subset M ⊂ H and
it is a member of H. We will prove that IP is a Herbrand model of P, that
is, it satisfies all rules of P. Consider a rule R = H ′ ← α ∧ B ∈ K(Π), where
R(H,H ′) = α and H is a head of rule in Π, and Ij ∈ M (Ij is a model of

9 Sometimes we will abbreviate writing “fuzzy model” or simply “model”.
10 Sometimes we will abbreviate writing “least fuzzy model” or simply “least model”.

A Declarative Semantics for a Fuzzy Logic Language Managing Similarities 79

P). Since IP is the infimum of M, IP ≤ Ij , for all model Ij of P. Therefore,
IP(A) ≤ Ij(A) for each atom A ∈ BP .

Moreover, given that Ij is a Herbrand model of P, Ij is a Herbrand model
of R, that is, by Definition 7: if H ′ is an atom such that R(H,H ′) = r, then
Ij(H ′θ) ≥ r∧Ij(Bθ), for all ground instances Hθ,H ′θ of H and H ′; in particular,
Ij(H) ≥ Ij(B).

Consider, then, an atom H ′ verifying R(H,H ′) = r. Using the monotonicity
of (truth function of) ∧,

IP(H ′θ) = inf{Ij(H ′θ) : Ij is a Herbrand model of P}
≥ inf{r ∧ Ij(Bθ) : Ij is a Herbrand model of P}
≥ r ∧ inf{Ij(Bθ) : Ij is a Herbrand model of P} = r ∧ IP(Bθ)

So, as the condition IP(H ′θ) ≥ r ∧ IP(Bθ) is fulfilled, IP is a Herbrand model
of the rule R ∈ K(Π) and (since it analogously is a Herbrand model of all rules
in P) it is a Herbrand model of P, as we expected. Finally, since IP = inf(M),
using again the definition of infimum, IP ≤ Ij ,∀j, so IP is the least Herbrand
model of P, which concludes the proof.

The need for linearizing the program Π in order to obtain the suitable least
Herbrand model is suggested in Example 4. Indeed, given the set of rules Π
of that example, as well as the similarity relation R described by the condition
R(a, b) = 0.8, if the linearization process is omitted, the least Herbrand model of
the program P = 〈Π,R, [0, 1]〉 is the interpretation I that fulfills the following
conditions

I(p(a)) = 1 I(p(b)) = 0.8 I(q(a, a)) = 1 I(q(b, b)) = 0.8.

On the other hand, with linearization, the least Herbrand model of P is
the interpretation I which, in addition to the above conditions, satisfies that
I(q(a, b)) = 0.8 and I(q(b, a)) = 0.8.

In the next example we illustrate how to calculate the least Herbrand model
IP of a FASILL program and, in general, how to calculate a Herbrand model I
of program P.

Example 5. Let P = 〈Π,R, L〉 be a FASILL program, where Π and the lattice
(L,≤) are given in the following diagram ((L,≤) is stated by its Hasse diagram)
and the relation R is the one establishing that R(a, a′) = α and R(b, b′) = β.

If we assume that the truth function ∨̇G for connective ∨G is defined by
∨̇G(x, y) = sup{x, y}, the least Herbrand model IP is determined by IP(p(a)) =
γ, IP(p(b)) = δ, IP(p(a′)) = α, IP(p(b′)) = β, IP(q(a)) = γ, IP(q(a′)) = α,
IP(r(b)) = δ, IP(r(b′)) = β, as shown in the next table (where atoms interpreted
as ⊥ have been omitted).

80 P. Julián-Iranzo et al.

�

ω

γ δ

α β

⊥

Π =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R1 : r(b) ← δ

R2 : q(a) ← γ

R3 : p(x) ← q(x) ∨G r(x)

K(Π) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 : r(b) ← δ

R′
1 : r(b′) ← β ∧ δ

R2 : q(a) ← γ

R′
2 : q(a′) ← α ∧ γ

R3 : p(x) ← q(x) ∨G r(x)

p(a) p(a′) p(b) p(b′) q(a) q(a′) r(b) r(b′)

IP γ α δ β γ α δ β

Indeed, by Definition 7 (note that in this example lin(Π) = Π),

· I is Herbrand model of R1 iff I(r(b)) ≥ δ
· I is Herbrand model of R′

1 iff I(r(b′)) ≥ β∧̇δ = β
· I is Herbrand model of R2 iff I(q(a)) ≥ γ
· I is Herbrand model of R′

2 iff I(q(a′)) ≥ α∧̇γ = α

· I is Herbrand model of R3 iff

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I(p(a)) ≥ I(q(a) ∨ r(a)) = I(q(a))∨̇I(r(a))

I(p(b)) ≥ I(q(b) ∨ r(b)) = I(q(b))∨̇I(r(b))

I(p(a′)) ≥ R(a, a′)∧̇I(q(a))∨̇I(r(a))

I(p(b′)) ≥ R(b, b′)∧̇I(q(b))∨̇I(r(b))

that is, I fulfills

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I(p(a)) ≥ γ∨̇⊥ = γ

I(p(b)) ≥ ⊥∨̇δ = δ

I(p(a′)) ≥ α∧̇γ = α

I(p(b′)) ≥ β∧̇δ = β

Note that this process allows us to calculate the least Herbrand model IP and
also suggests how to obtain all Herbrand models I of P.

IP
vanguardist(hydropolis) 0.9
vanguardist(ritz) 0.6
elegant(hydropolis) 0.6
elegant(ritz) 0.8
close(hydropolis, taxi) 0.7
close(hydropolis, metro) 0.4
close(hydropolis, bus) 0.5
good hotel(hydropolis) 0.38
good hotel(ritz) 0.4

Following the same method-
ology explained so far, the
interested reader can easily
check that the least Herbrand
model for the program illus-
trated in Sect. 2 is the one
given in the adjoint table
(where the interpretations for
all atoms not included on it
are assumed to be 0).

A Declarative Semantics for a Fuzzy Logic Language Managing Similarities 81

4 Conclusions and Future Work

FASILL is a fuzzy logic programming language with implicit/explicit truth
degree annotations, a great variety of connectives and unification by similarity.
In [7] we have recently provided the syntax, operational semantics, and imple-
mentation issues11 of this language which in essence integrates and extends
features coming from MALP (Multi-Adjoint Logic Programming, a fuzzy logic
language with explicitly annotated rules) and Bousi∼Prolog (which uses a weak
unification algorithm and is well suited for flexible query answering). Hence, it
properly manages similarity and truth degrees in a single framework combining
the expressive benefits of both languages. In this work we have focused on the
formulation of a least model declarative semantics for FASILL, being this action
a mandatory task in the development of the design of this framework. Obviously,
a pending task for the immediate future consists in establishing the connections
between our new fuzzy version of the least Herbrand model and the operational
semantics of FASILL programs, in order to prove the correctness of the whole
framework.

References

1. Arcelli, F.: Likelog for flexible query answering. Soft Comput. 7(2), 107–114 (2002)
2. Arcelli, F., Formato, F.: Likelog: a logic programming language for flexible data

retrieval. In: Proceedings of the ACM Symposium on Applied Computing, SAC
1999, San Antonio, Texas, pp. 260–267. ACM, Artificial Intelligence and Compu-
tational Logic (1999)

3. Caballero, R., Rodŕıguez-Artalejo, M., Romero-Dı́az, C.A.: Similarity-based rea-
soning in qualified logic programming. In: Proceedings of the 10th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Program-
ming, PPDP 2008, pp. 185–194. ACM, New York (2008)

4. Caballero, R., Rodŕıguez-Artalejo, M., Romero-Dı́az, C.A.: A transformation-based
implementation for CLP with qualification and proximity. Theory Pract. Logic
Program. 14(1), 1–63 (2014)

5. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Acad-
emic Press, New York (1980)

6. Formato, F., Gerla, G., Sessa, M.I.: Similarity-based unification. Fundamenta Infor-
maticae 41(4), 393–414 (2000)

7. Julián Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A fuzzy logic programming
environment formanaging similarity and truth degrees. In: Escobar, S. (ed.) Proceed-
ings of XIV Jornadas sobre Programación y Lenguajes, PROLE 2014, Cádiz, Spain.
EPTCS, vol. 173, pp. 71–86 (2015). http://dx.doi.org/10.4204/EPTCS.173.6

8. Julián, P., Moreno, G., Penabad, J.: On fuzzy unfolding. A multi-adjoint approach.
Fuzzy Sets Syst. 154, 16–33 (2005)

9. Julián, P., Moreno, G., Penabad, J.: On the declarative semantics of multi-adjoint
logic programs. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.)
IWANN 2009, Part I. LNCS, vol. 5517, pp. 253–260. Springer, Heidelberg (2009)

11 The last version of the FLOPER system which copes with similarity relations can be
freely downloaded from http://dectau.uclm.es/floper/?q=sim and it can be tested
on-line through http://dectau.uclm.es/floper/?q=sim/test.

http://dx.doi.org/10.4204/EPTCS.173.6
http://dectau.uclm.es/floper/?q=sim
http://dectau.uclm.es/floper/?q=sim/test

82 P. Julián-Iranzo et al.

10. Julián-Iranzo, P., Moreno, G., Vázquez, C.: Similarity-based strict equality in
a fully integrated fuzzy logic language. In: Bassiliades, N., Gottlob, G., Sadri,
F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 193–207.
Springer, Heidelberg (2015)

11. Julián-Iranzo, P., Rubio-Manzano, C.: A declarative semantics for Bousi∼Prolog.
In: Proceedings of 11th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, PPDP 2009, Coimbra, Portugal, pp.
149–160. ACM (2009)

12. Julián-Iranzo, P., Rubio-Manzano, C.: An efficient fuzzy unification method and its
implementation into the Bousi∼Prolog system. In: Proceedings of the 2010 IEEE
International Conference on Fuzzy Systems, Barcelona, Spain, pp. 1–8 (2010).
http://dx.doi.org/10.1109/FUZZY.2010.5584193

13. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic program-
ming and its applications. J. Logic Program. 12, 335–367 (1992)

14. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1987)
15. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-

adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)
16. Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: A practical management of

fuzzy truth-degrees using FLOPER. In: Dean, M., Hall, J., Rotolo, A., Tabet, S.
(eds.) RuleML 2010. LNCS, vol. 6403, pp. 20–34. Springer, Heidelberg (2010)

17. Moreno, G., Penabad, J., Vázquez, C.: Beyond multi-adjoint logic programming.
Int. J. Comput. Math. 92(9), 1956–1975 (2014)

18. Moreno, G., Vázquez, C.: Fuzzy logic programming in action with FLOPER. J.
Softw. Eng. Appl. 7, 237–298 (2014)

19. Muñoz-Hernández, S., Ceruelo, V.P., Strass, H.: RFuzzy: Syntax, semantics and
implementation details of a simple and expressive fuzzy tool over Prolog. Inform.
Sci. 181(10), 1951–1970 (2011)

20. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & Hall,
Boca Ratón (2006)

21. Rodŕıguez-Artalejo, M., Romero-Dı́az, C.A.: Quantitative logic programming revis-
ited. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989,
pp. 272–288. Springer, Heidelberg (2008)

22. Rubio-Manzano, C., Julián-Iranzo, P.: A fuzzy linguistic prolog and its applica-
tions. J. Intell. Fuzzy Syst. 26(3), 1503–1516 (2014)

23. Sessa, M.I.: Translations and similarity-based logic programming. Soft Comput.
5(2), 160–170 (2001). http://dx.doi.org/10.1007/PL00009891

24. Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution. Theoret.
Comput. Sci. 275(1–2), 389–426 (2002)

25. van Emden, M.H.: Quantitative deduction and its fixpoint theory. J. Logic Pro-
gram. 3(1), 37–53 (1986)

http://dx.doi.org/10.1109/FUZZY.2010.5584193
http://dx.doi.org/10.1007/PL00009891

Controlling the Average Behavior of Business
Rules Programs

Olivier Wang1,2, Leo Liberti2(B), Claudia D’Ambrosio2,
Christian de Sainte Marie1, and Changhai Ke1

1 IBM France, 9 Rue de Verdun, 94250 Gentilly, France
2 CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France

olivier.wang@polytechnique.edu, liberti@lix.polytechnique.fr

Abstract. Business Rules are a programming paradigm for non-
programmer business users. They are designed to encode empirical
knowledge of a business unit by means of “if-then” constructs. The clas-
sic example is that of a bank deciding whether to open a line of credit to
a customer, depending on how the customer answers a list of questions.
These questions are formulated by bank managers on the basis of the
bank strategy and their own experience. Banks often have goals about
target percentages of allowed loans. A natural question then arises: can
the Business Rules be changed so as to meet that target on average? We
tackle the question using “machine learning constrained” mathematical
programs, which we solve using standard off-the-shelf solvers. We then
generalize this to arbitrary decision problems.

1 Introduction

For the purpose of this work, a Business Rule (BR) program is an ordered list
of sentences of the form:
if cond(p, x) then

x ← act(p, x)
end if

where p is a control parameter symbol vector which encodes a possible “tuning”
of the program (e.g. thresholds which can be adjusted by the user), x ∈ X ⊆ R

d

is a variable symbol vector of dimension d representing intermediate and final
stages of computation, cond is a boolean function, and act a function with values
in X. We call rule such a sentence, condition an expression cond(p, x) and action
an instruction x ← act(p, x), which indicates a modification of the value of x. If
P is the BR program, we write the final value of the variable x as xf = P (p, q),
where q is an input parameter symbol vector representing a problem instance
and equal to the initial value of x. Although in general BR programs may have
any type of output, many BR programs encode decision problems, in which case
the part of the output that matters can be represented by a single bit (one
component of x is a binary variable).

BR programs are executed in an external loop construct which is transparent
to the user. Without getting into the details of BR semantics, the loop executes
c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 83–96, 2016.
DOI: 10.1007/978-3-319-42019-6 6

84 O. Wang et al.

a single action from a BR whose condition is True at each iteration. Which BR
is executed depends on a conflict resolution strategy with varying complexity.
De Sainte Marie et al. [22] describe typical operational semantics, including
conflict resolution strategy, for industrial BR management systems. In this paper,
the list of rules is ordered and the loop executes the first BR of the list with
a condition evaluating to True at each iteration. The loop only terminates once
it satisfies a termination condition, which we assume to be that none of the
conditions of the BRs is True at the last iteration (as is usual). We proved in [27]
that there is a universal BR program which can simulate any Turing Machine
(TM), which makes the BR language Turing-complete.

The BR language is useful as a “programming tool for non-programmers”,
since it hides the two aspects of imperative computer programming which most
non-programmers find confusing: loops and function calls. As mentioned above,
BR programs only have a single loop, which is part of the interpreter, and exter-
nal to the language itself. The BR language replaces function calls (up to a
point) by factorizing many code fragments into a single ‘rule’. The BR interpreter
instantiates each rule into as many code fragments as possible by matching all
consistent variable types at compile time.

The BR language is often used in medium-to-large sized corporations to
encode their policies and empirical knowledge – often easily representable as “if-
then” type statements. Such business processes are often embedded in a database
of BRs representing a mix of regulations, organizational policies and operational
knowledge. The latter can be collected from multiple employees over a possibly
long period of time. BR interpreters are implemented by all BR management
systems, e.g. [14].

The aim of this paper is to describe a method for changing the control para-
meters of BR programs as little as possible so that they approximately meet a
given “average behavior” goal. This issue arises in the following setting:

– the BR program P (p, q) encoding the business process has a (non-empty)
control parameter symbol vector p;

– the BR program is run using the parameter vector p0;
– the corporation owning the business process has an average goal to meet on a

function f , with values in R, of the outcomes of the BR program;
– the average of P (p0, q) where q ranges over a (possibly large but finite) set Q

of instances is different from the goal.

We discuss the concrete example of a bank using a BR program in order to
decide whether to grant a loan to a customer or not. The BR program depends on
a variable vector x and initializes its parameter vector (a component of which is
the minimum income level) to p0. The BR program is used to decide whether the
bank will reject the loan request, and therefore has a binary return value. Assume
that the bank high-level strategy requires that no more than 40 % of loans should
be rejected automatically, and that the BR program currently rejects about 60 %.
Our aim is to adjust p, e.g. modifying the income level, so that the BR program
satisfies the bank’s goal regarding automatic loan rejection. This adjustment of

Controlling the Average Behavior of Business Rules Programs 85

parameters could be required after a change of internal or external conditions,
for example.

Let g ∈ R be the desired goal. Then the problem can be formalized as:

min
p,x

‖p − p0‖∣∣Eq∈Q

[
f
(
P (p, q)

)] − g
∣∣ ≤ ε,

}
(1)

where ‖ · ‖ is a given norm, p, q must satisfy the semantics of the BR program
P (p, q) when executed within the loop of a BR interpreter, E is the usual notation
for the expected value and ε is a given tolerance. This formalization is closer to
the reality of BR users than the reverse (minimizing E(P)−g while constraining
p−p0), as corporations will often consider goals more rigidly than changes to the
business process, and the value of the objective will speak to them more as a kind
of quantification of the changes to be made. The form this quantification takes,
from minimizing the variation of each parameter in p to minimizing the number
of parameters whose value is modified, depends on the definition of the norm ‖·‖.
By using a linearizable norm, such as ‖·‖1 or ‖·‖∞, we can solve Eq. (1) for linear
BR programs using MILP solvers, through a pre-processing reformulation. While
this problem looks like a supervised learning problem at first glance, standard
supervised learning algorithms cannot help here as there is no ‘correct’ answer
for each separate instance q. Rather, a global approach is necessary as, in the
general case, the correct classifier is defined as a frequency distribution over the
set of all instances Q. In this paper we consider the simplified case where the
expected value serves as the classifier, which is equivalent to having the frequency
distribution in the common case of a binary output.

Traditionally, this problem would be solved heuristically by treating P as a
black-box, or by replacing it by means of a simplified model, such as e.g. a low-
degree polynomial. Our approach is different: we model the algorithmic dynamics
of P by means of Mixed-Integer Programming (MIP) constraints, in view to
solving Eq. (1) with an off-the-shelf solver. That this is at all possible in full
generality follows because Mathematical Programming (MP) is itself Turing-
complete [16].

We make a number of simplifying assumptions in order to obtain a practi-
cally useful methodology, based on solving a Mixed-Integer Linear Programming
(MILP) reformulation of Eq. (1) using a solver such as CPLEX [13] or BonMin [3]:

1. We replace Q by a smaller “training set” S for which we know the BR out-
come. We choose S small enough that solving the MILP is (relatively) com-
putationally cheap.

2. We assume a finite BR program with a known bound (n − 1) on the number
of iterations of the loop for any input q (industrial BR programs often have
a low value of n relative to the number of rules). This in turn implies that
the values taken by x during the execution of the BR program are bounded.
We assume that M � 1 is an upper bound of all absolute values of all p, q,
and x, as well as any other values appearing in the BR program. It serves as
a “big M” for the MP described in the rest of the paper.

86 O. Wang et al.

3. We assume that the conditions and actions of the BR program give rise to
constraints for which an exact MILP reformulation is possible. In order to
have a linear model, each BR must thus be “linear”, i.e. have the form:
if L ≤ x ≤ G then

x ← Ax + B
end if

with L,G,B ∈ R
d and A ∈ R

d×d. We see in Sect. 3 that an actual MILP
actually requires A ∈ {0, 1}d×d in some cases.

We shall attempt to relax some or all of these assumptions in later works.
We also remark that this setting easily generalizes to any class of decision

problems depending on a “tuning” parameter p, for which an average behavior
is prescribed.

For the rest of the paper, we make the following simplifying assumptions
(all of which afford no loss of generality).

1. We assume that the dimension of p is one, making it a scalar. Consequently,
we choose the norm in Eq. 1 to be the absolute value for the rest of the paper.
Additional parameters correspond to additional constraints that mirror the
ones used for the first parameter.

2. We assume that the relevant function of the outcome f is the projection on
the first dimension: f(x) = x1. Any linear f can be used instead with no
difference in the constraints, but BR programs usually have a projection of
the variable x as their output.

1.1 Related Works

Business Rules (also known as Production Rules) are well studied as a knowledge
representation system [8,10,18], originating as a psychological model of human
behavior [19,20]. They have further been used to encode expert systems, such
as MYCIN [6,25], EMYCIN [6,23], OPS5 [5,11], or more recently ODM [14] or
OpenRules. On the business side of things, they have been defined broadly and
narrowly in many different ways [12,15,21]. We consider Business Rules as a
computational tool, which to the best of our knowledge has not been explored
in depth before.

Supervised Learning is also a well studied field of Machine Learning, with
many different formulations [2,17,24,26]. There exist many algorithms for this
problem, from simple linear regression to neural networks [1] and support vector
machines [9]. When the learner does not have as many known output values
as it has items in the training set, the problem is known as Semi-Supervised
Learning [7]. Similarly, there has been research into machine learning when the
matching of the known outputs values to the inputs is not certain [4]. However,
the fact that each known value corresponds to a single input item has not been
questioned before, to the best of our knowledge.

Controlling the Average Behavior of Business Rules Programs 87

2 MIP Constraints for the BR Program Dynamics

We study a BR program with a rule set {Rr | r ≤ ρ} containing rules of the
form:
if Lr ≤ x ≤ Gr then

x ← Arx + Br

end if
with rule R1 being instead:

if L1 ≤ x ≤ G1 then
x ← Ap

1x + B1

end if
where Ap

1 is a d × d matrix satisfying:{∀k1, k2 ∈ D, k1 	= 1 ∨ k2 	= 1 ⇒ (Ap
1)k1,k2 = (A1)k1,k2

(Ap
1)1,1 = p

with D = {1, . . . , d}.
In the rest of this paper, we concatenate indices so that (Lr)k = Lr,k,

(Gr)k = Gr,k, (Ar)k1,k2 = Ar,k1,k2 and (Br)k = Br,k. We assume that rules
are meaningful, such that Lk ≤ Gk.

2.1 Modeling a BR Program

We exhibit a set of MIP constraints (Fig. 1) modeling the execution of the BR
program. The iterations of the execution loop are indexed by i ∈ I = {1, . . . , n}
where n − 1 is the upper bound on the number of iterations, the final value of
x corresponds to iteration n. The rules are indexed by r ∈ R = {1, . . . , ρ}. We
use an auxiliary binary variable yi,r with the property: yi,r = 1 iff the rule Rr

is executed at iteration i. The vectors of binary variables yg
i,r and yl

i,r are used
to enforce this property. In the rest of this section, the parameter is assumed to
take the place of A1,1,1, so we note a an additional variable initialized to a = A
except for a1,1,1 = p. Similar sets of constraints exists for when the parameter p
takes the place of a scalar in Br, Lr or Gr.

We note (C1), (C2), etc. the constraints related to the evolution of the exe-
cution and (IC1), (IC2), etc. the constraints related to the initial conditions of
the BR program:

– (C1) represents the evolution of the value of the variable x
– (C2) represents the property that at most one rule is executed per iteration
– (C3) represents the fact that a rule whose condition is False cannot be executed
– (C4) through (C6) represent the fact that only the first rule whose condition

is True can be executed
– (IC1) through (IC3) represent the initial value of a
– (IC4) represents the initial value of x

88 O. Wang et al.

Fig. 1. Set of constraints modeling the execution of a BR program with
e = (1, . . . , 1) ∈ R

d a vector of all ones

Theorem 1. The MIP constraints from Fig. 1 correctly model the execution of
the BR program with input (p, q). The value of xn after applying the constraints
is then the output of the BR program: xn = P (p, q).

Proof. We begin by proving that for a given i ∈ I, it is true that yi,r = 1 iff xi

fulfills the condition for rule Rr and does not fulfill the condition for any rule
Rr′ where r′ < r. Suppose yi,r = 1. (C3) ⇒ Lr ≤ xi ≤ Gr implies that xi fulfills
the condition for rule Rr. Let us now set r′ < r.

C2 ⇒ yi,r′ = 0 ∧
∑

r′′<r′
yi,r′′ = 0

C6 ⇒ ∃k ∈ D : yg
i,r′,k = 0 ∨ yl

i,r′,k = 0

As we also have:
yg
i,r′,k = 0 ∧ C4 ⇒ xi

k ≥ Gr′,k

yl
i,r′,k = 0 ∧ C5 ⇒ xi

k ≤ Lr′,k

We have one of xi
k ≥ Gr′,k or xi

k ≤ Lr′,k. Either of those means that xi does not
fulfill the condition for rule Rr′ .

Conversely, suppose that xi fulfills the condition for rule Rr and does not
fulfill the condition for any rule Rr′ where r′ < r. Reasoning by induction over
r′, we see that assuming

∑
r′′<r′

yi,r′′ = 0 (which is true for r′ = 1) we have:

Controlling the Average Behavior of Business Rules Programs 89

C4 ∧ C5 ∧ C6 ⇒ yi,r′ = 0

because the condition for Rr′ is not fulfilled. We thus have
∑
r′<r

yi,r′ = 0. This

and the fact that the condition for Rr is fulfilled means that yi,r = 1.
A simple inductive proof over the i ∈ I then proves that the xi are the

successive values taken by x during the execution of the BR program as long as∑
r∈R

yi,r = 1 and that the value of xi does not change as long as
∑
r∈R

yi,r = 0,

which corresponds to the stopped execution of the BR program. This also proves
xn = P (p, q). ��

2.2 A MIP Formulation

Having modeled the dynamics of a single execution of the BR program by means
of the constraints of the previous section, we now come back to our original
purpose: we exhibit a MIP that finds a value of p satisfying Eq. 1 in Fig. 2.

We index the instances in S with j ∈ J = {1, . . . , m}, where m = |S| is the
number of instances in the training set S. The parameter p is now one of the
variables. We note e = (1, . . . , 1) ∈ R

d the vector of all ones.
As modifying the parameter means modifying the BR program, the assump-

tions made regarding the finiteness of the program might not be verified when
optimizing over p. One of those which might lead to unusable solutions is the
assumption that the computations terminate in less than n−1 iterations. In the
case where the MIP finds a value of p for which the BR program is stopped by
this limit on the loop rather than by the proper termination condition, the MIP

Fig. 2. MIP Formulation for Solving Eq. 1 with e = (1, . . . , 1) ∈ R
d a vector of

all ones

90 O. Wang et al.

would not actually solve Eq. 1. We therefore limit ourselves to solutions which
result in computations that terminate in less than n − 1 rule executions.

Any constraints numbered as before fulfills the same role. The additional
constraints are:

– (C7) represents the need for the computation to have terminated after n − 1
executions

– (C8) represents the goal from Eq. 1, that is a constraint over the average of
the final values of x.

Theorem 2. The MIP from Fig. 2 finds a value of p that satisfies Eq. 1.

The proof derives directly from Theorem 1.

3 A MILP Reformulation

The problem as written in Eq. 2 is not linear. A linear reformulation exists for
when the parameter p takes the place of a scalar in Br, Lr or Gr. Figure 3
describes such a MILP when p takes the place of B1,1. We linearize the products
of Arx

i,j+br by yi,j,r and xi,j by yi,j,r in (C1) using factorization and an auxiliary
variable w ∈ R

I×J×R. We arrange to have wi,j,r = (Arx
i,j + br − xi,j)yi,j,r,

i.e. wi,j,r = Arx
i,j + br −xi,j (the difference between the new and the old values

of xj) iff rule r is executed, and 0 otherwise.

Theorem 3. This MILP finds a value of p that satisfies Eq. 1, when p takes the
place of B1,1. A similar MILP exists for when p takes the place of another scalar
in Br,k, Lr,k and Gr,k.

The proof derives directly from Theorem2, by factoring constraint (C1) in Fig. 2
and studying the possible values of yi,j,k.

When the parameter takes the place of A1,1,1, a linear formulation is only
possible if A1,1,1 is a discrete variable. For the purpose of this article, we only use
the case where A1,k1,k2 are binary variables. The associated MILP is in Fig. 4. In
that case, we have the additional product of ax to linearize, so we use another
auxiliary variable z ∈ R

I×J×R×D2
such that zi,j,r,k1,k2 = ar,k1,k2xi,j,k2 .

Theorem 4. The MILP in Fig. 4 finds a value of p that satisfies Eq. 1, when p
takes the place of A1,1,1 and A1,k1,k2 are binary variables.

The proof derives from Theorem 3 and a study of the possible values of
A1,k1,k2 and yi,j,r. We can trivially expand the MILP to optimize over more
than one parameter, adding constraints similar to constraints (IC1), (IC2) and
(IC3) or (IC1”), (IC2”) and (IC3”) in Fig. 1 or Fig. 3 as necessary and having
an objective of

∑
p

‖p0 − p‖.

Controlling the Average Behavior of Business Rules Programs 91

Fig. 3. MILP Formulation with p Taking the Place of B1,1 with e = (1, . . . , 1) ∈
R

d a vector of all ones

Fig. 4.MILP Formulation with p Taking the Place of A1,1,1 with e = (1, . . . , 1) ∈
R

d a vector of all ones

92 O. Wang et al.

Table 1. Experimental values for the scalability of the MILP method

Value of ρ Proportion of instances Average solver times Average objective values

solvable in an hour over solvable instances over solvable instances

1 1.0 2.0877 0.9772

2 0.98 22.9848 2.1363

3 0.96 265.3536 4.0421

4 0.89 737.6687 6.9834

5 0.66 929.3174 7.771

4 Implementation and Experiments

We use a Python script to randomly generate samples of 100 BR programs and
corresponding sets of instances with d = 3, n = 10 and m = 100. We define the
space X as X ⊆ R × R × Z. The BR programs are sets of a variable number ρ
of rules of the type:
if Lr ≤ x ≤ Gr then

x ← Arx + Br

end if

where Lr, Gr, Br are vectors of scalars in [−5, 5]; Lr ≤ Gr and Ar are d × d
matrices of binary variables. The instances are vectors qj with values in [−5, 5].
All values are generated using a uniform distribution. We use a variable value
of ε. For each BR program, we try to obtain a goal g = 0 by optimizing over
φ = 5ρ randomly chosen parameters.

We use these BR programs to study the computational properties of the
MILP. The value of M used is customized according to each constraint, and is
ultimately bounded by 51 (strictly greater than five times the range of possible
values for x). We write the MILP as an AMPL model, and solve it using the
CPLEX solver on a Dell PowerEdge 860 running CentOS Linux.

4.1 Scalability

We set a fixed ε value of 1. This corresponds to a very high tolerance (20 % of
the range of possible values). We observe the average solving time and optimal
objective for different values of ρ (Table 1) among the solvable MILP instances.
An instance is considered unsolvable if it is infeasible or it has no integer solution
after 1 h (3600 s) of solver time.

While it could be argued that the increase in the number of parameters has
an obvious effect over the difficulty of the problem, the study of an increase in ρ
without the proportional increase in φ leads to a drastic and predictable increase
in infeasible instances. Even with our setup, the proportion of solvable instances
is lower as ρ increases, although that is mostly due to the solver exceeding the
time limit. As a high value of ρ is the main issue when scaling up to industrial
BR programs, it still seems worth studying.

Controlling the Average Behavior of Business Rules Programs 93

Fig. 5. Variation of computational time (in seconds) with ρ (the number of rules in
the BR program)

Unfortunately, we observe that the direct solving of the MILP described in
Sect. 3 is not practical for learning parameters in industrial-sized BR programs.
Furthermore, the increase in computational time is not linear with the number of
ρ, but rather exponential as seen on Fig. 5. The increase in the optimal objective
value is intuitive and does not seem drastic, which indicates that the experi-
mental setup is somewhat realistic. A reformulation of the MILP to improve the
solving time of the MILP is a possible follow-up area of research.

Another possibility we plan on researching is to check whether using sparse
matrices for L, G, A and B significantly improves the computational experience:
most industrial business processes do not use complex rules, but rather many
rules each applying to one or two components of the variable x. This does not
immediately imply a better performance as the value of n would realistically
need to be increased to compensate.

4.2 Accuracy

We fix the number of rules to ρ = 4 and so the number of parameters is 20.
This is much lower than the number of rules used by BR programs destined
to industrial usage. We observe the average solving time and the proportion of
solvable MILP instances among all instances for different values of ε. In this
case, it means we have only generated one hundred BR programs, on which we
test the accuracy of our method.

For each BR program, we start with ε = 1. If the instance is solvable, we
decrease ε using ε ← ε− 0.2 until we reach an unsolvable instance; otherwise we

94 O. Wang et al.

increase ε using ε ← 1.5ε until we reach a solvable instance or ε ≥ 5, whichever
happens first.

An instance is considered unsolvable if it is infeasible or it has no integer
solution after fifteen minutes (900 s) of solver time.

Fig. 6. Proportion of solvable instances for varying values of ε

Figure 6 shows the proportion of solvable instances as a function of ε. Being
careful of the nonlinear scale of the figure, ε seems to have a greater influence on
solvability when small and a reduced influence as it grows. In other words, our
method will relatively easily find the best parameter in most cases, but difficult
problems remain difficult even when allowing for a greater distance to the desired
average f .

Furthermore, with random BR problems that include both unsolvable and
already optimal situations, we solve 50 percent of problems with ε = 0.4 which
means allowing E(f) ∈ [−0.4, 0.4]. This is too low for industrial applications,
but approaching the desired average by 8 percent of the possible range in half
the cases is a promising start. Our method as it is described cannot currently be
used as a general tool as too many BR programs cannot be solved accurately.

The restriction to n = 10 for those orders of ρ accurately models real business
processes where BRs rarely loop. The sample size of m = 100 is also somewhat
realistic. The dimension d = 3 is arbitrary and much lower than can be expected
in actual business processes, where dimensionality can be over an order of mag-
nitude higher.

Controlling the Average Behavior of Business Rules Programs 95

5 Conclusion, Discussion and Future Work

We have presented a way to use mathematical programming to model learning
problems of an unusual type: learning the parameters of a BR program so that
its average output over a set of instances Q meets a target g. This can be
extended to learning the parameters of any program where the semantics of
an execution are well-defined, to reach a targeted average output. In such a
program, the semantics lead directly to mathematical constraints defining a MIP,
with the execution being modeled by indexing the variables over the steps of
the computation. Depending on the program, solving can then be easy, if the
program is linear like in our case, or lead to more complex optimization methods.
Where standard supervised learning algorithms are difficult to apply with a
target defined on average, our method can help fill the blanks.

While the computational performance indicates that directly solving the
MILP formulation described in this article is impractical, it does hold promise.
In particular, the optimal values obtained when scaling up prove that if the com-
putational cost can be reduced, the methodology has possible industrial impli-
cations. The potential avenues of research in this direction are working on the
MILP itself (e.g. through reformulations) and experimenting on BR programs
closer to the reality of business processes (e.g. through sparse matrices).

A better methodology for choosing the best possible ε might also be needed,
as the current one only yields a broad estimate. A possible avenue of research
pertaining to the accuracy of our method is evaluating the risk of over-fitting,
through the generation of additional samples q ∈ Q\S and using a parameter-less
version of the MILP in Fig. 3 to evaluate the average 1

m

∑
j∈J

xn,j
1 .

As many real-life applications use rules with a linear structure, our model has
direct applications in many industries that rely on BR programs to automate
decisions, some of which might not even need additional refinements depending
on the size of the BR programs they use.

Acknowledgments. The first author (OW) is supported by an IBM France/ANRT
CIFRE Ph.D. thesis award.

References

1. Atiya, A.: Learning algorithms for neural networks. Ph.D. thesis, California Insti-
tute of Technology, Pasadena, CA (1991)

2. Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., Vishwanathan,
S.: Predicting Structured Data (Neural Information Processing). The MIT Press,
Cambridge (2007)

3. Bonami, P., Lee, J.: BONMIN user’s manual. Technical report, IBM Corporation,
June, 2007

4. Brodley, C., Friedl, M.: Identifying mislabeled training data. J. Artif. Intell. Res.
11, 131–167 (1999)

96 O. Wang et al.

5. Brownston, L., Farrell, R., Kant, E., Martin, N.: Programming Expert Systems
in OPS5: An Introduction to Rule-based Programming. Addison-Wesley Longman
Publishing Co., Boston (1985)

6. Buchanan, B., Shortliffe, E. (eds.): Rule Based Expert Systems: The Mycin Experi-
ments of the Stanford Heuristic Programming Project. (The Addison-Wesley Series
in Artificial Intelligence). Addison-Wesley Longman Publishing Co., Boston (1984)

7. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press,
Cambridge (2010)

8. Clancey, W.: The epistemology of a rule-based expert system: a framework for
explanation. Artif. Intell. 20(3), 215–251 (1983)

9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

10. Davis, R., Buchanan, B., Shortliffe, E.: Production rules as a representation for a
knowledge-based consultation program. Artif. Intell. 8(1), 15–45 (1977)

11. Forgy, C.: OPS5 User’s Manual. Department of Computer Science, Carnegie-Mellon
University, Pittsburgh (1981)

12. Knolmayer, G., Herbst, H.: Business rules. Wirtschaftsinformatik 35(4), 386–390
(1993)

13. IBM: ILOG CPLEX 12.2 User’s Manual. IBM, New York (2010)
14. IBM: Operational Decision Manager 8.8 (2015)
15. Kolber, A., et al.: Defining business rules - what are they really? Project report 3,

The Business Rules Group (2000)
16. Liberti, L., Marinelli, F.: Mathematical programming: turing completeness and

applications to software analysis. J. Comb. Optim. 28(1), 82–104 (2014)
17. Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retr.

3(3), 225–331 (2009)
18. Lucas, P., Gaag, L.V.D.: Principles of Expert Systems. Addison-Wesley Longman

Publishing Co., Boston (1991)
19. Newell, A.: Production systems: models of control structures. In: Chase, W. (ed.)

Visual Information Processing, pp. 463–526. Academic Press, New York (1973)
20. Newell, A., Simon, H.: Human Problem Solving. Prentice-Hall, Upper Saddle River

(1972)
21. Ross, R.: Principles of the Business Rule Approach. Addison-Wesley Longman

Publishing Co., Boston (2003)
22. de Sainte Marie, C., Hallmark, G., Paschke, A.: RIF Production Rule Dialect. 2nd

edn. Recommendation, W3C (2013)
23. Scott, A., Bennett, J., Peairs, M.: The EMYCIN Manual. Department of Computer

Science, Stanford University, Stanford (1981)
24. Settles, B.: Active learning literature survey. Computer Sciences Technical report

1648, University of Wisconsin-Madison (2009)
25. Shortcliffe, E.: Computer-Based Medical Consultations: MYCIN. Elsevier,

New York (1976)
26. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
27. Wang, O., Ke, C., Liberti, L., de Sainte Marie, C.: The learnability of business

rules. In: International Workshop on Machine Learning, Optimization, and Big
Data (MOD 2016) (2016)

Bridge Rules for Reasoning
in Component-Based Heterogeneous

Environments

Stefania Costantini(B) and Giovanni De Gasperis

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, Via Vetoio snc, L’Aquila, Italy

{stefania.costantini,giovanni.degasperis}@univaq.it

Abstract. Multi-Context Systems (MCS) model in Computational
Logic distributed systems composed of heterogeneous sources, or “con-
texts”, interacting via special rules called “bridge rules”. In this paper
we consider how to enhance flexibility and generality of such systems; in
particular, we discuss aspects that might be improved to increase prac-
tical applicability.

1 Introduction

Multi-Context Systems (MCSs) have been proposed in Artificial Intelligence and
Knowledge Representation to model information exchange among several diverse
sources [1–3]. MCSs are designed so as to deal with heterogeneous sources: in fact,
the approach explicitly considers their different representation languages and
semantics. Heterogeneous sources are called “contexts” (or, equivalently, we will
call them “sources”, or “modules”), and interact through special inter-context
rules called bridge rules, similar in format to datalog rules with negation1.

The reason why MCSs are particularly interesting is that they aim at mod-
eling in a formal way real applications requiring access to sources distributed on
the web. Among the relevant domains where the adoption of MCSs can bring real
advances is for instance health care (see, e.g., the running example in [6]). In view
of such practical applications it is important to notice that, being logic-based,
contexts may encompass logical agents, to which MCSs have in fact already been
extended (cf. [7,8]).

Despite the importance of MCSs for practical knowledge representation and
reasoning, their definition is under some aspects too abstract, and the functioning
modalities of such systems are considered under ideal circumstances. In this
paper we try to tackle in a formal way the practical aspects related to these
systems, and attempt at a systematization that should also provide guidelines for
implementations. The paper proposes some substantial technical improvements
concerning bridge rules, also in relation to the evolution of an MCS over time.

The paper is organized as follows. In Sect. 2 we introduce Multi-Context Sys-
tems. In Sect. 3 we propose a motivating application scenario, and with respect
1 Cf. [4,5] for standard datalog, logic programming and prolog terminology.

c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 97–112, 2016.
DOI: 10.1007/978-3-319-42019-6 7

98 S. Costantini and G. De Gasperis

to such scenario we outline some aspects where the original MCS definition is not
fully adequate in practice. In Sect. 4 we propose some variations, enhancements
and extensions to the basic approach, that introduce improvements concerning
these aspects. Finally, in Sect. 5 we conclude.

2 Bridge Rules and Multi-Context Systems: Background

Heterogeneous Multi-Context systems have been introduced in the seminal work
of [9] in order to integrate different inference systems without resorting to non-
classical logical systems.

Later, the idea has been further developed and generalized to non-monotonic
reasoning domains in [1–3,6] and other related papers. There, (managed) Multi-
Context systems aim at making it possible to build systems that need to access
multiple possibly heterogeneous data sources, called “contexts”, by modeling the
necessary information flow via “bridge rules”, whose form is similar to datalog
rules with negation (cf., e.g., [5]). Bridge rules allow for inter-context interaction:
in fact, each element in their “body” explicitly includes the indication of the
context from which information is to be obtained.

In order to account for heterogeneity, each context is supposed to be based
on its own logic. Reporting from [2], a logic L is a triple (KBL;CnL;ACCL),
where KBL is the set of admissible knowledge bases of L, that are sets of
KB-elements (“formulas”); underlying (though here implicitly) there is a sig-
nature ΣL including sets of constants, predicate and function symbols, and a
set of variables; KBL elements are thus specified over this signature and involve
terms that can be either variables or constants or compound terms built out of
function symbols and other terms; atoms are defined as the application of a pred-
icate over a set of terms, according to the predicate’s arity; a term/atom/formula
is “ground” if there are no variables occurring therein; a logic is relational if in
its signature the set of function symbols is empty, so its terms are variables and
constants only. CnL is the set of possible sets of consequences of knowledge bases
in KBL; sets in CnL can be called “belief sets” or “data sets”, as their elements
are data items or “beliefs” or “facts”, that we assume to be ground. The function
ACCL : KBL → 2CnL defines the semantics of L by assigning to each knowledge
base “acceptable” sets of consequences; so, only some (or possibly none) of the
possible sets of consequences in CnL are acceptable.

A multi-context system (MCS) M = (C1, . . . , Cn) is a collection of contexts
Ci = (Li; kbi; bri) where Li is a logic, kbi ∈ KBLi

is a knowledge base and bri

is a set of bridge rules. Each such rule ρ is of the following form, where the
left-hand side s is called the head, denoted as hd(ρ), the right-hand side is called
the body, also denoted as body(ρ), and the comma stand for conjunction.
s ← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : pm).

For each bridge rule included in context Ci the head s can be any formula
in Li. It is required that kbi ∪ s belongs to KBLi

and, for every k ≤ m, ck is a
constant denoting a context included in M (in the original definitions ck is simply
be an integer number i ≤ n, though more expressive “names” can be used), and

Bridge Rules for Reasoning in Component-Based Heterogeneous 99

each pk belongs to some set in CnLk
, i.e., it is a possible consequence of context

ck’s knowledge base according to the logic in which ck is defined. The head s is
any formula in Li, where however kbi ∪ {s} ∈ KBLi

. A relational MCS [10] is
a variant where all the involved logics are relational, and aggregate operators in
database style are admitted in bridge-rule bodies.

A data state of MCS M is a tuple S = (S1, . . . , Sn) such that for 1 ≤ i ≤
n, Si ∈ CnLi

. Thus, a data state associates to each context a possible set of
consequences.

Given data state S, app(S) is the set composed of the heads of those bridge
rules which are applicable in S as their body is entailed by S; i.e., those such
that for every positive literal (ci : pi) in the body, 1 ≤ i ≤ j, pi ∈ Si and for
every negative literal not (ck : pk) in the body, j + 1 ≤ k ≤ m, pk �∈ Sk.

In managed MCSs (mMCSs)2 the conclusion s, which represents the “bare”
bridge-rule result, becomes o(s) where o is a special operator. The meaning is
that the result computed by a bridge rule is not blindly incorporated into the
“destination” context’s knowledge base: rather, it is processed by operator o,
that can possibly perform any elaboration, such as format conversion, belief
revision, etc.

More precisely, for given logic L, FL = {s ∈ kb | kb ∈ KBL} is the set
of formulas occurring in its knowledge bases. A management base is a set of
operation names (briefly, operations) OP , defining elaborations that can be per-
formed on formulas, e.g., addition of, revision with, etc. For a logic L and a
management base OP , the set of operational statements that can be built from
OP and FL is FOP

L = {o(s) | o ∈ OP, s ∈ FL}. The semantics of such state-
ments is given by a management function, which maps a set of operational
statements and a knowledge base into a modified knowledge base. In particular,
a management function over a logic L and a management base OP is a func-
tion mng : 2FOP

L × KBL → 2KBL \ ∅. We assume a management function to
be deterministic, i.e., to produce a unique new knowledge base. Each context
in an mMCS has its specific management function mngi, which is crucial for
knowledge incorporation from external sources. Notice that each mngi can be
non-monotonic, i.e., it may imply deletion of formulas. Now, we can see a context
as Ci = (ci;Li; kbi; bri;OPi;mngi) where ci is a constant acting as the context
“name” that, if omitted, is assumed to be integer number i.

Desirable data states, called equilibria, are those which encompass bridge-
rules application. In fact in (m)MCSs equilibria are those data states S where
each Si is acceptable according to function ACCi associated to Li, given that
every applicable bridge rule has indeed been applied. Formally, a data state S
is an equilibrium for an MCS iff, for 1 ≤ i ≤ n,

Si ∈ ACCi(mngi(app(S), kbi)) (1)

2 We introduce mMCSs in a simplified form with respect to [6]: in fact, they generalize
from a logic to a “logic suite”, where one can select the desired semantics among a
set of possibilities, while we define mMCS simply over logics.

100 S. Costantini and G. De Gasperis

I.e., one (i) applies all Ci’s bridge rules which are applicable in data state
S; (ii) applies the management function which, by incorporating bridge-rule
results into Ci’s knowledge base kbi, computes a new knowledge base kb′

i; (iii)
determines via ACCi the set of acceptable sets of consequences of kb′

i. In an
equilibrium such set includes Si, i.e., an equilibrium is “stable” w.r.t. bridge-
rule application.

Conditions for existence of equilibria have been studied [1], and basically
require cyclic application of bridge rules to be avoided. The complexity of decid-
ing whether some equilibrium exists depends upon composing contexts’ com-
plexity, basically upon the complexity of computing formula (1).

Algorithms for computing equilibria have recently been proposed [2,11,12].
Methods also exist [6] to detect and enforce MCS’s consistency, i.e., to ensure
that an equilibrium does not include inconsistent data sets (local consistency)
and that the composing data sets are mutually consistent (global consistency).
It has been proved that local consistency is achieved whenever all management
functions are (lc-) preserving, i.e., if they always determine a kb′ which is con-
sistent.

Bridge rules as defined in mMCSs are basically a reactive device, as a bridge
rule is applied whenever applicable. In dynamic environments, a bridge rule in
general will not be applied only once, and it does not hold that an equilibrium,
once reached, lasts forever. In fact, contexts may be able to incorporate new data
items, e.g., as discussed in [3] for Reactive MCSs (rMCSs), the input provided by
sensors (“observations”). Therefore, a bridge rule can be in principle re-evaluated
upon new observations, thus leading to evolving equilibria and to the notion of
a “run” of an rMCS.

3 Motivating Scenario and Discussion

Some of the reasons of our interest in (m)MCSs and bridge-rules stem from a
project where we are among the proponents [13], concerning smart Cyber Phys-
ical Systems with particular attention (though without restriction) to applica-
tions in the e-Health field. The general scenario of such “F&K” (“Friendly-and-
Kind”) systems is depicted in Fig. 1.

We have a set of computational entities, of knowledge bases and of sensors,
all immersed in the “Fog” of the Internet of Everything. All components can, in
time, join or leave the system. Some computational components will be agents.
In the envisaged e-Health application for instance, an agent will be in charge
of each patient. The System’s engine will keep track of the present system’s
configuration, and will enable the various classes of rules to work properly. Ter-
minological rules will allow for more flexible knowledge exchange via Ontologies.
Pattern Rules will have the role of defining and checking coherence/correctness
of system’s behavior. Bridge rules are the vital element, as they allow knowl-
edge to flow among components in a clearly-specified principled way: referring
to Fig. 1, devices for bridge-rule functioning can be considered as a part of the
System’s engine. Therefore, F&Ks are “knowledge-intensive” systems, providing

Bridge Rules for Reasoning in Component-Based Heterogeneous 101

Fig. 1. Motivating scenario

flexible access to dynamic, heterogeneous, and distributed sources of knowledge
and reasoning, within a highly dynamic computational environment. We basi-
cally consider such systems to be (enhanced) mMCSs: as mentioned in fact,
suitable extensions to include agents and sensors in such systems already exist.

In the perspective of such kind of systems, the definition of (m)MCS recalled
in Sect. 2 is, though neat, quite abstract. Some limitations can be identified, that
we list below.

Grounded Knowledge Assumption. Bridge rules are by definition ground, i.e.,
they do not contain variables. In [6] it is literally stated that [in their examples]
they “use for readability and succinctness schematic bridge rules with variables
(upper case letters and ‘ ’ [the ‘anonymous’ variable]) which range over asso-
ciated sets of constants; they stand for all respective instances (obtainable by
value substitution)”. Basic definition of mMCS do not require either contexts’
knowledge bases or bridge rules to be finite sets. Though contexts’ knowledge
bases will in practice be finite, they cannot be assumed to necessarily admit a
finite grounding, and thus a finite number of bridge-rules’ ground instances. This
assumption can be reasonable, e.g., for standard relational databases and logic
programming under the answer set semantics [14]. In other kinds of logics, for
instance simply “plain” general logic programs, it is no longer realistic. In prac-
tical applications however, there should either be a finite number of applicable

102 S. Costantini and G. De Gasperis

(ground instances of) bridge-rules, or some suitable device for run-time dynamic
bridge-rule instantiation and application should be provided. The issue of bridge-
rule grounding has been discussed in [15] for relational MCSs, where however
the grounding is performed over a carefully defined finite domain, composed of
constants only.

Logical Omniscience and Unbounded Resources Assumption. A bridge rule is
supposed to be applied whenever its body is entailed by the current data state.
However, contexts will hardly compute their full set of consequences beforehand.
So, practical bridge rule application will presumably consist in posing queries
to other contexts which are situated somewhere in the nodes of a distributed
systems. Each source will need time to compute and deliver the required result,
and might even never be able do so, in case of reasoning with limited resources
or of network failures.

Update Problem. Considering inputs from sensor networks as done in [3] is a
starting point: however, sources can be updated in many ways via the interaction
with their environment. For instance, agents are supposed to continuously modify
themselves via the interaction with the environment, but even a plain relational
database can be modified by its users/administrators.

Static System Assumption. The definition of mMCS might realistically be
extended to a setting where the set of contexts changes over time, maybe because
some context gets momentarily disconnected, or because components may freely
either join or abandon the system. Moreover inter-context reachability might be
limited, e.g., via authorizations of some kind.

Full System Knowledge Assumption. A context might know the role of another
context it wants to query (e.g., a diagnostic knowledge base) but not its “name”,
that could be, for instance, its URI or anyway some kind of reference that allows
for actually posing a query.

Unique Source Assumption. In the body of bridge rules, each literal mentions a
specific context. In practice, that context might not be able to return a result
while another context with the same role instead might.

Uniform Knowledge Representation Format Assumption. Different contexts
might represent similar concepts in different ways: this aspect is taken into
account in [8], where ontological definitions can be exchanged among contexts,
and a possible global ontology is also considered.

Equilibria Computation and Consistency Check Assumption. Algorithms for
computing equilibria are practically applicable only if open access to contexts’
contents is granted. The same holds for local and global consistency checking.
However, the potential of MCSs is in our view that of modeling real distributed
systems where contexts in general keep their knowledge bases private. Therefore,
in practice one will often just assume the existence of consistent equilibria.

Bridge Rules for Reasoning in Component-Based Heterogeneous 103

4 Proposed Extensions

Below we consider the points raised in previous section and provide, when-
ever not already existing, related extensions/enhancements to the basic mMCS
paradigm.

4.1 Grounded Knowledge Assumption

To the best of our knowledge, the problem of loosening the constraint of bridge-
rules groundedness has not been so far extensively treated in the literature. The
issue has been discussed in [15] for relational MCSs, where however the grounding
of bridge rules is performed over a carefully defined finite domain, composed of
constants only. Instead, we intend to consider any, even infinite, domain.

The procedure for computing equilibria that we propose for the case of non-
ground bridge rules is, informally, the following. (i) We consider an initial data
state S0 composed of finite sets; this is without loss of generality because, as
seen below, it does not actually limit the grounding to finite domains. (ii) We
instantiate bridge rules over the finite number of (ground) terms occurring in S0;
we thus obtain an initial finite grounding relative to S0; (iii) we evaluate whether
S0 is an equilibrium, i.e., if S0 coincides with the data state S1 resulting from
applicable bridge rules. (iv) In case S0 is not an equilibrium, bridge rules can now
be grounded w.r.t. terms occurring in S1, and so on, until either an equilibrium
is reached, or no more applicable bridge rules are generated.

It is reasonable to start the procedure from a basic data state consisting
of finite ground instances of the initial contexts’ knowledge bases, obtained by
substituting variables with constants. By definition, a ground instance of a con-
text’s Ci knowledge base is in fact in Cni, i.e., it is indeed a set of possible
consequences, though in general it is not acceptable. Notice that starting from
a finite data state does not guarantee however neither the existence of a finite
equilibrium, nor that an equilibrium can be reached in a finite number of steps.

Consider as an example an MCS composed of two contexts C1 and C2, both
based upon plain logic programming and concerning the representation of nat-
ural numbers. Assume such contexts to be characterized respectively by the
following knowledge bases and bridge rules (where C1 has no bridge rule).
%kb1

nat(0).
%kb2

nat(suc(X)) ← nat(X).
%br2

nat(X) ← (c1 : nat(X)).
The unique equilibrium is reached in one step from basic data state S0 =

({nat(0)}, ∅) via the application of br2 which “communicates” fact nat(0) to C2.
In fact, due to the the recursive rule, we have the equilibrium (S1, S2) where
S1 = {nat(0)} and S2 = {nat(0), nat(suc(0)), nat(suc(suc(0))), . . .}〉
I.e., S2 is an infinite set representing all natural numbers. If we assume to add
a third context C3 with empty knowledge base and a bridge rule br3 defined

104 S. Costantini and G. De Gasperis

as nat(X) ← (c2 : nat(X)), then the equilibrium would be (S1, S2, S3) with
S3 = S2. There in fact, br3 would be grounded on the infinite domain of the
terms occurring in S2, thus admitting an infinite number of instances.

The next example is a variation of the former one where C1 “produces” the
even natural numbers (starting from 0) and C2 the odd ones. There is clearly a
unique equilibrium, that cannot however be reached in finite time.

%kb1
nat(0).

%br1
nat(suc(X)) ← (c2 : nat(X)).

%kb2
∅

%br2
nat(suc(X)) ← (c1 : nat(X)).

We may notice that the contexts in the above example enlarge their knowl-
edge by means of mutual “cooperation”. Let us consider, according to our pro-
posed method, again the basic data state S0 = ({nat(0)}, ∅).

As stated above, we ground bridge rules on the terms occurring therein. S0

is not an equilibrium for the given MCS: in fact, the bridge rule in kb2, once
grounded on constant 0, is applicable but not applied. The data set resulting from
the application, i.e., S′ = ({nat(0)}, {nat(suc(o))}) is not an equilibrium either,
because now the bridge rule in kb1 (grounded on suc(0)) is in turn applicable
but not applied.

We may go on, as S′′ = ({nat(0), nat(suc(suc(0)))}, {nat(suc(o))}) leaves
the bridge rule in kb2 to be applied (grounded on suc(suc(0))), and so on. The
unique equilibrium, that cannot be reached in finite time, is composed of two
infinite sets, the former one representing the even natural numbers (including
zero) and the latter representing the odd natural number. The equilibrium may
be represented as:
E = ({nat(0), nat(suck(0))), k mod 2 = 0}, {nat(suck(o)), k mod 2 = 1})

We have actually devised and applied an adaptation to non-ground bridge
rules of the operational characterization introduced in [1] for the grounded equi-
librium of a definite MCS, as in fact (according to the conditions stated therein)
C1 and C2 are monotonic and admit at each step a unique set of consequences,
and bridge-rule application is not unfounded (cyclic). In our more general set-
ting the set of ground bridge rules associated to given knowledge bases cannot
be computed beforehand, and the step-by-step computation must take contexts
interactions into account.

Since reaching equilibria finitely may have advantages in practical cases, we
show below a suitable reformulation of the above example. We require a minor
modification in bridge-rule syntax: we assume in particular that whenever in
some element the body of a bridge rule the context is omitted, i.e., we have
just pj instead of (cj : pj), then we assume that pj is proved locally from
the present context’s knowledge base. Previous example can be reformulated as

Bridge Rules for Reasoning in Component-Based Heterogeneous 105

follows, where we assume the customary prolog’s syntax, and prolog’s procedural
semantics where elements in the body of a rule are proved/executed left-to-right.
The knowledge bases and bridge rules now are:

%kb1
nat(0).
count(0).
threshold(t).

%br1
new(nat(suc(X))) : − count(C), threshold(T), C < T, (c2 : nat(X))).

%kb2
count(0).
threshold(t).

%br2
new(nat(suc(X))) : − count(C), threshold(T), C < T, (c1 : nat(X)).

In the new definition there is a counter (initialized to zero) and some thresh-
old, say t. We will exploit a management function that suitably defines the
operator new which is now applied to bridge-rule results. A logic programming
definition of such management function might be the following, where the counter
is incremented and the new natural number asserted. Notice that such definition
is by no means not logical, as we can shift to the “evolving logic programming”
extension [16].

new(nat(Z)) : − assert(nat(Z)), increment(C).
increment(C) : − retract(count(C)),

C1 is C + 1, assert(count(C1)).
Consequently, bridge rules will now produce a result only until the counter

reaches the threshold, which guarantees the existence of a finite equilibrium.
Below we formalize the procedure that we have empirically illustrated via the

examples, so as to generalize to mMCS with non-ground bridge rules the oper-
ational characterization of [1] for monotonic MCSs (i.e., those where each con-
text’s knowledge base admits a single set of consequences, which grows monoton-
ically when information is added to the context’s knowledge base). Following [1],
for simplicity we assume bridge-rules bodies to include only positive literals, and
the formula s in its head o(s) to be an atom. So, we will be able to introduce the
definition of grounded equilibrium of grade κ. Preliminarily, in order to admit
non-ground bridge rules we have to specify how we obtain their ground instances,
and how to establish applicability.

Definition 1. Let r ∈ bri be a non-ground bridge rule occurring in context Ci

of a given mMCS M with belief state S. A ground instance ρ of r w.r.t. S is
obtained by substituting every variable occurring in r (i.e., occurring either in
the elements (cj : pj) in the body of r or in its head o(s) or in both) via (ground)
terms occurring in S.

For mMCS M , data state S and ground bridge rule ρ, let app|=
g(ρ, S) be a

Boolean function which checks, in the ground case, bridge-rule body entailment
w.r.t. S. Let thus redefine bridge-rule applicability.

106 S. Costantini and G. De Gasperis

Definition 2. The set app(S) relative to ground bridge rules which are applica-
ble in a data state S of a given mMCS M = (C1, . . . , Cn) is now defined as
follows.

app(S) = {hd(ρ) | ρ is a ground instance w.r.t. S of some
bridge rule r ∈ bri, 1 ≤ i ≤ n,
and app|=

g(ρ, S) = true}
We assume, analogously to [1], that given mMCS is monotonic, which here

means that for each Ci: (i) ACCi is monotonic w.r.t. additions to the context’s
knowledge base, and (ii) mngi is monotonic, i.e., it allows to only add formulas
to Ci’s knowledge base. Let, for context Ci, function ACC ′

i be a variation of
ACCi which selects one single set Ei among those generated by ACCi. I.e.,
given context Ci and knowledge base k̂b ∈ KBLi

, ACC ′
i(k̂b) = Ei where Ei ∈

ACCi(k̂b). Let ∞ be the first infinite ordinal number isomorphic to the natural
numbers.

Definition 3. Consider mMCS M = (C1, . . . , Cn) with no negative literals in
bridge-rule bodies, and assume arbitrary choice of function ACC ′

i for each com-
posing context Ci. Let, for 1 ≤ i ≤ n, gr(kbi) be the grounding of kbi w.r.t. the
constants occurring in any kbj, 1 ≤ j ≤ n. A data state of grade κ is obtained
as follows.

For i ≤ n and α = 0, we let kb0i = gr(kbi), and we let Sα = S0 = (kb01, . . . , kb0n)
For each α > 0, we let Sα = (Sα

1 , . . . , Sα
n) and Sα

i = ACC ′
i(kbα

i)
where for finite κ and α ≥ 0 we have

kbα+1
i = mngi(app(Sα), kbα

i) if α < κ,
kbα+1

i = kbα
i otherwise

while if κ = ∞ we have kb
∞
i =

⋃
α≥0 kbα

i

Differently from [1], the computation of a new data state element is provided
here according to mMCSs, and thus involves the application of the management
function to the present knowledge base so as to obtain a new one. Such data
state element is then the unique set of consequences of the new knowledge base,
as computed by the ACC ′

i function.
The result can be an equilibrium only if the specified grade is sufficient to

account for all potential bridge-rules applications. In the terminology of [1] it
would then be a grounded equilibrium, as it is computed iteratively and deter-
ministically from the contexts’ initial knowledge bases. We have the following.

Definition 4. Let M = (C1, . . . , Cn) be a monotonic mMCS with no negative
literals in bridge-rule bodies. A belief state S = (S1, . . . , Sn) is a grounded equi-
librium of grade κ of M iff ACC ′

i(mngi(app(S), kbκ
i) = Si, for 1 ≤ i ≤ n.

Several grounded equilibria may exist, depending upon the choice of ACC ′
i.

The required grade for obtaining an equilibrium would be κ = ∞ in the former
version of the example, where in the latter version if setting threshold t we would
have κ = t. We can state the following relationship with [1]:

Bridge Rules for Reasoning in Component-Based Heterogeneous 107

Proposition 1. Let M = (C1, . . . , Cn) be a definite MCS (in the sense of [1]),
and let S = (S1, . . . , Sn) be a grounded equilibrium for M , reachable in δ steps.
Then, there exists a choice of function ACC ′

i for each context Ci of M such that
S is a grounded equilibrium of grade δ for the mMCS M ′ obtained from M by
choosing, for i ≤ n, a management function mngi that just adds to kbi every s
such that o(s) ∈ app(S).

In an implemented mMCS, as remarked in [15], “...computing equilibria and
answering queries on top is not a viable solution.” So, they assume a given MCS
to admit an equilibrium, and define a query-answering procedure based upon
some syntactic restriction on bridge-rule form, and involving the application
and a concept of “unfolding” of positive atoms in bridge-rule bodies w.r.t. their
definition in the “destination” context. Still, they assume an open system, where
every context’s contents are visible to others (save some possible restrictions). We
assume instead contexts to be opaque, i.e., that contexts’ contents are accessible
from the outside only via queries.

Also, we assume that bridge-rule application is not necessarily reactive but
that, according to a context’s own logic, other modalities of application may
exist; for instance, the modalities introduced in [7,8] cope with “Logical Omni-
science and Unbounded Resources Assumption” by detaching (proactive) bridge-
rule application from the processing of the management function. Thus, in our
case the grounding of literals in bridge rule bodies w.r.t. the present data state
will most presumably be performed at run-time, whenever a bridge rule is actu-
ally applied. Such grounding, and thus the bridge-rule result, can be obtained
for instance by “executing” or “invoking” literals in the body (i.e., querying
contexts) left-to-right in prolog style. In practice, we can allow bridge rules to
have negative literals in their body. To this aim, we introduce a syntactic limita-
tion in the form of non-ground bridge rules very common in logic programming
approaches, i.e., we assume that (i) every variable occurring in the head of a
non-ground bridge rule r also occurs in some positive literal of its body; and (ii)
in the body of such rule, positive literals occur (in a left-to-right order) before
negative literals.

So, at run-time variables in a bridge rule will be incrementally and coherently
instantiated via results returned by contexts. Each positive literal (ci : pi) in the
body may fail (i.e., ci will return a negative answer), if none of the instances
of pi given the partial instantiation computed so far is entailed by ci’s present
data state. Otherwise, the literal succeeds and subsequent ones are instantiated
to its results. Negative literals not (cj : pj) make sense only if pj is ground at the
time of invocation, and succeed if pj is not entailed by cj ’s present data state. In
case either some literal fails or a non-ground negative literal is encountered, the
overall bridge rule evaluation fails without returning results. Otherwise the eval-
uation succeeds, and the result can be elaborated by the management function
of the “destination” context. It is easy to prove that the invocation of a bridge
rule leads to success if and only if, given its ground instance obtained via the
above-specified evaluation pattern, the body is entailed by the present system’s
data state (which is hopefully an equilibrium) and thus the rule is applicable

108 S. Costantini and G. De Gasperis

(according to the previously-reported notions of applicability). We omit formal
definitions and proofs for lack of space. However, we may notice that asynchro-
nous application of bridge rules determine evolving equilibria.

4.2 Update Problem

In dynamic environments, contexts are in general able to incorporate new data
items, e.g., as discussed in [3], the input provided by sensors. We intend to explic-
itly take into account not only sensor input, but more generally the interaction
of contexts with an external environment. As a premise we assume, similarly
to what is done in Linear Time Logic (LTL), a discrete, linear model of time
where each state/time instant can be represented by an integer number. States
t0, t1, . . . can be seen as time instants (or ‘time points’) in abstract terms, though
in practice we have ti+1 − ti = δ, where δ is the actual interval of time after
which we assume a given system to have evolved.

We assume then that each context is subjected at each time point to
a (possibly empty) finite update. Thus, for mMCS M = (C1, . . . , Cn) let
ΠT = 〈Π1

T , . . . Πn
T 〉 be a tuple composed of the finite updates performed to

each module at time T , where for 1 ≤ i ≤ n Πi
T is the update to Ci. Let

Π = Π1,Π2, . . . be a sequence of such updates performed at time instants
t1, t2, Let us assume that each context copes with updates in its own partic-
ular way, so let Ui, 1 ≤ i ≤ n be the update operator that module Ci employs for
incorporating the new information, and let U = {U1, . . . ,Un} be the tuple com-
posed of all these operators. We assume Ui to encompass all possible updated
performed to a module, included sensor input. So (analogously to the manage-
ment function) let the update base uopsi be a set of update operations which are
admitted on context Ci. Then we have: Ui : 2uops × KBL → 2KBL \ ∅. Notice
that updates can be non-monotonic.

Consequently, we allow contexts’ knowledge bases and data states to evolve
in time: a timed data state at time T is a tuple ST = (ST

1 , . . . , ST
n) such that

each ST
i is an element of Cni at time T . We assume the timed data state S0 to

be an equilibrium according previous definitions. Later on however, transition
from a timed data state to the next one, and consequently the definition of an
equilibrium, is determined both by the update operators and by the application
of bridge rules. An mMCS at time 0 is as defined previously, while at time T +1
its knowledge base, and thus its data states and equilibria, will have evolved,
where also the notion of bridge-rule applicability is now performed according to
Definitions 1 and 2, but relatively to a timed data state ST .

Therefore, by letting, for each Ci i ≤ n, kb0i = kbi we have that

Definition 5. A timed data state of mMCS M at time T + 1 is an equilibrium
iff, for 1 ≤ i ≤ n,

ST+1
i ∈ ACCi(mngi(app(ST), kbT+1

i))
where kbT+1

i = Ui(kbT
i ,Πi

T).

The meaning is that an equilibrium is now a data state which encompasses
bridge rules applicability on the updated contexts’ knowledge bases. Notice that,

Bridge Rules for Reasoning in Component-Based Heterogeneous 109

in practice, for each bridge rule applicable at time T the state when its result
will actually affect the destination context is in general unpredictable. In fact,
contexts occurring in bridge-rule bodies will require some amount of time for
returning their results.

4.3 Static System and Full System Knowledge Assumption

A heterogeneous collection of distributed sources will not necessarily remain
static in time. New contexts can be added to the system, or can be removed, or
can be momentarily unavailable due to network problems. Moreover, a context
may be known by the others only via the role(s) that it assumes or the services
which it provides within the system. Although not explicitly specified in the
original MCS definition, context names occurring in bridge-rule bodies must
represent all the necessary information for reaching and querying a context, e.g.,
names might be URIs. It is however useful for a context to be able to refer to
other contexts via their roles, without necessarily being explicitly aware of their
names. Also, a context which joins an MCS will not necessarily make itself visible
to every other context: rather, there might be specific authorizations involved.
These aspects may be modeled by means the following extensions:

Definition 6. A dynamic managed Multi-Context System (dmMCS) at time T
is a set MT = (C1, . . . , Cn,Dir ,Reach) of contexts where M = (C1, . . . , Cn,)
is an mMCS and Dir and Reach are special contexts without associated bridge
rules where:

– Dir is a directory which contains the list of the contexts, namely C1, . . . , Cn,
participating in the system at time T where, for each Ci, its name is associ-
ated with its roles. We assume Dir to admit queries of the form ’role@Dir’,
returning the name of some context with role ’role’, where ’role’ is assumed
to be a constant.

– Reach contains a directed graph determining which other contexts are reach-
able from each context Ci. For simplicity, we may see Reach as composed of
couples of the form (Cr, Cs) meaning that context Cs is (directly or indirectly)
reachable from context Cr.

For now, let us assume that a query role@Dir = c where c ∈ {C1, . . . , Cn},
i.e., returns a unique result. The definition of timed data state remains
unchanged. Bridge rule syntax must instead be extended accordingly:

Definition 7. Given a dmMCS (at time T) MT , each (non-ground) bridge rule
r in the composing contexts C1, . . . , Cn has the form:
s ← (C1 : p1), . . . , (Cj : pj),

not (Cj+1 : pj+1), . . . , not (Cm : pm).
where for 1 ≤ k ≤ m the expression Ck is either a context name, or an expression
rolek@Dir.

Bridge-rule grounding and applicability must also be revised. In fact, for
checking bridge rule applicability: (i) each expressions rolek@Dir must be sub-
stituted by its result and (ii) every context occurring in bridge rule body must
be reachable from the context where the bridge rule occurs.

110 S. Costantini and G. De Gasperis

Definition 8. Let MT be a dmMCS (at time T) and ST be a timed data state
for MT . Let r be a bridge rule in the form specified in Definition 7. The pre-
ground version r′ of r is obtained by substituting each expression rolek@Dir
occurring in the body of r with its result ck obtained from Dir.

Notice that r′ is a bridge rule in “standard” form, and that r and r′ have
the same head, where their body differ since in r′ all context names are specified
explicitly.

Definition 9. Let r′ be a pre-ground version of a bridge rule r occurring in
context Ĉ of dmMCS MT (at time T) with timed data state ST . Let ρ be a
ground instance w.r.t. ST of r′. We have now hd(ρ) ∈ app(ST) if ρ fulfills
the conditions for applicability w.r.t. ST and, in addition, for each context C̃
occurring in the body of ρ we have that (Ĉ, C̃) ∈ Reach.

The definition of equilibria is basically unchanged, save the extended bridge-
rule applicability. However, suitable update operators (that we do not discuss
here) will be defined for both Dir and Reach, to keep both the directory and
the reachability graph up-to-date with respect to the actual system state. The
question may arise of where such updates might come from. This will in general
depend upon the application at hand: the contexts might themselves generate
an update when joining/leaving a system, or some kind of monitor (that might
be one of the composing contexts, presumably however equipped with reactive,
proactive and reasoning capabilities) might take care of such task.

4.4 Unique Source Assumption

There might sometimes be the case where a specific context is not able to return
a required answer, while another context with the same role instead would. More
generally, we may admit a query role@Dir to return not just one, but possibly
several results, representing the set of contexts which, in the given dmMCS, have
the specified role. So, the extension that we propose in this section can be called
a multi-source option. In particular, for dmMCS MT , composed at time T of
contexts C1, . . . , Cn, the expression rolek@Dir occurring in bridge rule r ∈ brs

will now denote some nonempty set SCk ⊆ ({C1, . . . , Cn}\{Cs}), indicating the
contexts with the required role (where Cs is excluded as a context would not
look for itself). Technically, there will be now several pre-ground versions of a
bridge rule, which differ relative to the contexts occurring in their body.

Definition 10. Let MT be a dmMCS (at time T) and ST be a timed data
state for MT . Let r ∈ brs be a bridge rule in the form specified in Definition 7
occurring in context Cs. A pre-ground version r′ of r is obtained by substituting
each expression rolek@Dir occurring in the body of r with c ∈ SCk.

Bridge-rule applicability is still as specified in Definition 9, and the definition
of equilibria is also basically unchanged.

In practice, one may consider to implement the multi-source option in bridge-
rule run-time application by choosing an order for querying the contexts with a

Bridge Rules for Reasoning in Component-Based Heterogeneous 111

certain role as returned by the directory. The evaluation would proceed to the
next one in case the answer is not returned within a time-out, or if the answer
is under some respect unsatisfactory (according to the management function).

A further refinement might consist in considering, among the contexts
returned by role@Dir , only the preferred ones.

Definition 11 (Preferred Source Selection). Given a query role@Dir with
result SC, a preference criterion P returns a (nonempty) ordered subset
SCP ⊆ SC.

Different preference criteria can be defined according to several factors such
as trust, reliability, fast answer, and others. Approaches to preferences in logic
programming might be adapted to the present setting: cf., among many, [3] and
the references therein, [17–19]). The definition of a context will now be as follows.

Definition 12. A context Ci included in a dmMCS (except for Dir and Reach)
is defined as Ci = (Li; kbi; bri;Pi) where Li, kbi and bri are as defined before,
and Pi is a preference criterion as specified in Definition 11.

5 Concluding Remarks

In this paper we have discussed and extended mMCSs, which are a general
and powerful framework for modeling systems composed by several heteroge-
neous and possibly distributed sources (contexts), that interact via so-called
bridge rules. The proposed extensions improve practical applicability of mMCSs
by: making bridge rules more general and flexible; introducing explicit time so
as to model contexts’ updates and consequent system’s evolution; introducing
concepts of inter-context reachability and contexts’ role, and preferences among
reachable contexts with desired role. We believe that implementations of mMCSs
might profit from the enhancements that we have introduced here.

Future work involves in fact the implementation as an mMCS of a smart
Cyber-Physical System in the e-Health domain for intelligent monitoring of
patients with comorbidities [13]. This will allow us to experiment, refine and
further develop the new features.

References

1. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: Proceedings of 22nd AAAI Conference on Artificial Intelligence, pp.
385–390. AAAI Press (2007)

2. Brewka, G., Eiter, T., Fink, M.: Nonmonotonic multi-context systems: a flexible
approach for integrating heterogeneous knowledge sources. In: Balduccini, M., Son,
T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic
Reasoning: Essays Dedicated to Michael Gelfond on the Occasion of His 65th
Birthday. LNCS, vol. 6565, pp. 233–258. Springer, Heidelberg (2011)

112 S. Costantini and G. De Gasperis

3. Brewka, G., Ellmauthaler, S., Pührer, J.: Multi-context systems for reactive rea-
soning in dynamic environments. In: Schaub, T. (ed.) Proceedings of 21st European
Conference on Artificial Intelligence, ECAI 2014. IJCAI/AAAI (2014)

4. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)
5. Apt, K.R., Bol, R.N.: Logic programming and negation: a survey. J. Log. Program.

19–20, 9–71 (1994)
6. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In:

Walsh, T. (ed.) Proceedings of 22nd International Joint Conference on Artificial
Intelligence, IJCAI 2011, pp. 786–791. IJCAI/AAAI (2011)

7. Costantini, S.: Knowledge acquisition via non-monotonic reasoning in distributed
heterogeneous environments. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.)
LPNMR 2015. LNCS, vol. 9345, pp. 228–241. Springer, Heidelberg (2015)

8. Costantini, S., De Gasperis, G.: Exchanging data and ontological definitions in
multi-agent-contexts systems. In: Paschke, A., Fodor, P., Giurca, A., Kliegr, T.
(eds.) Proceedings of RuleMLChallenge Track, CEUR Workshop Proceedings.
CEUR-WS.org (2015)

9. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: how we can do
without modal logics. Artif. Intell. 65(1), 29–70 (1994)

10. Fink, M., Ghionna, L., Weinzierl, A.: Relational information exchange and aggre-
gation in multi-context systems. In: Delgrande, J.P., Faber, W. (eds.) LPNMR
2011. LNCS, vol. 6645, pp. 120–133. Springer, Heidelberg (2011)

11. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed evaluation of
nonmonotonic multi-context systems. J. Artif. Int. Res. (JAIR) 52, 543–600 (2015)

12. Eiter, T., Šimkus, M.: Linking open-world knowledge bases using nonmonotonic
rules. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS,
vol. 9345, pp. 294–308. Springer, Heidelberg (2015)

13. Aielli, F., Ancona, D., Caianiello, P., Costantini, S., De Gasperis, G., Di Marco, A.,
Ferrando, A., Mascardi, V.: FRIENDLY & KIND with your health: human-friendly
knowledge-INtensive dynamic systems for the e-Health domain. In: Hallenborg, K.,
Giroux, S. (eds.) International Workshop on Agents and Multi-agent Systems for
AAL and e-HEALTH (A-HEALTH) at PAAMS 2016, Proceedings of Communica-
tions in Computer and Information Science. Springer (2016)

14. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation. Elsevier,
Amsterdam (2007)

15. Barilaro, R., Fink, M., Ricca, F., Terracina, G.: Towards query answering in rela-
tional multi-context systems. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013.
LNCS, vol. 8148, pp. 168–173. Springer, Heidelberg (2013)

16. Alferes, J.J., Brogi, A., Leite, J., Moniz Pereira, L.: Evolving logic programs. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol.
2424, pp. 50–61. Springer, Heidelberg (2002)

17. Bienvenu, M., Lang, J., Wilson, N.: From preference logics to preference languages,
and back. In: Proceedings of 12th International Conference on the Principles of
Knowledge Representation and Reasoning (KR 2010), pp. 414–424 (2010)

18. Brewka, G., Niemelä, I., Truszczyński, M.: Preferences and nonmonotonic reason-
ing. AI Mag. 29(4), 69 (2008)

19. Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on
resource consumption and production in ASP. J. Algorithms Cogn. Inform. Log.
64(1), 3–15 (2009)

Choreographic Compilation of Decentralized
Comprehension Patterns

Iliano Cervesato(B), Edmund Soon Lee Lam, and Ali Elgazar

Carnegie Mellon University, Doha, Qatar
{iliano,aee}@cmu.edu, sllam@andrew.cmu.edu

Abstract. We develop an approach to compiling high-level specifica-
tions of distributed applications into code that is executable on individual
computing nodes. The high-level language is a form of multiset rewrit-
ing augmented with comprehension patterns. It enables a programmer
to describe the behavior of a distributed system as a whole rather than
from the perspective of the individual nodes, thus dramatically reducing
opportunities for programmer errors. It abstracts away the mechanics of
communication and synchronization, resulting in concise and declarative
specifications. Compilation generates low-level code in a syntactic frag-
ment of this same formalism. This code forces the point of view of each
node, and standard state-of-the-art execution techniques are applicable.
It is relatively simple to show the correctness of this compilation scheme.

1 Introduction

Rule-based programming, a model of computation by which rules modify a
global state by concurrently rewriting disjoint portions of it, is emerging as an
effective paradigm for implementing complex distributed applications [1,4,8,12].
Rule-based languages are declarative, which promises simpler reasoning than
conventional languages, and even a safeguard against many of the pitfalls of con-
currency [2]. Their main benefit, however, is that they can capture the behav-
ior of a distributed application as a single entity [8], giving the programmer
a bird’s-eye view that abstracts away the tedium of explicitly managing com-
munication and the intricacies of implementing synchronization. The resulting
system-centric specifications are concise, high-level, and again declarative. Now,
because a distributed application ultimately runs on an ensemble of communi-
cating devices, such system-centric specifications need to be compiled into code
that runs on the individual devices, node-centric code. The translation from
high-level system-centric specifications to lower level node-centric code is called
choreographic compilation [9]. It automatically weaves in the code that handles
messaging and synchronization, which are notorious sources of concurrency bugs

This paper was made possible by grants NPRP 4-341-1-059, NPRP 4-1593-1-260,
and JSREP 4-003-2-001, from the Qatar National Research Fund (a member of the
Qatar Foundation). The statements made herein are solely the responsibility of the
authors.

c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 113–129, 2016.
DOI: 10.1007/978-3-319-42019-6 8

114 I. Cervesato et al.

(especially in the hands of novice programmers). Choreographic compilation is
especially effective when the resulting code is in a fragment of the source, rule-
based, language, as their declarative nature enables simple proofs of correctness,
verifiable complexity bounds, and other forms of assurance.

In this paper, we develop a choreographic compilation scheme for a specific
class of rule-based languages, namely multiset rewriting languages with support
for multiset comprehension patterns. Multiset rewriting languages represent the
state of an ensemble as a multiset of located facts, each describing informa-
tion held by a participating node. Computation happens by applying rules that
rewrite a fixed number of facts into new facts. Comprehension patterns allow
a programmer to write rules that operate not only on a fixed multiset of facts,
but on all the facts that match a given pattern, ensemble-wide. This yields more
readable, concise and declarative programs that coordinate large amounts of
data or use aggregate operations. We implemented this idea into Comingle [8],
a rule-based language for programming mobile distributed applications.

Compiling comprehension patterns in a distributed setting requires address-
ing the compounded effects of two challenges. The first is that multiset rewrit-
ing rules are executed atomically. This entails that a high-level rule, which may
involve multiple locations, needs to be compiled into a set of node-centric rules,
each taking the point of view of a single location, plus coordination rules that
provide the illusion of atomicity [9]. The second challenge is that comprehension
patterns operate maximally [6]: they identify all facts that match them in the
ensemble.

We limit the discussion to the common rule format where one node has a
direct connection to all other nodes participating in the rule, thereby ruling out
multi-hop communications. At its core, atomicity is achieved by running a two-
phase commit protocol centered on this primary node. A naive way to achieve
maximality is to lock all nodes involved, so that no concurrently executing code
can consume or add facts while this rule is undergoing piecemeal execution.
We mitigate the obvious adverse effect on performance by locking only facts
that appear in relevant comprehension patterns. This already gives all Comingle
programs we have developed an acceptable running time.

Altogether, this paper makes the following main contributions:

– We identify a practical class of system-centric rules with comprehensions that
enable effective choreographic compilation.

– We give a mathematical description of this transformation for a large fragment.
– We prove that the node-centric code produced by this compilation scheme

retains the behavior of the source system-centric program.

Section 2 of this paper introduces our language through an example, with Sect. 3
formally defining it. We discuss rule topology in Sect. 4 and give selected details
of our choreographic compilation scheme in Sect. 5. Correctness results are pre-
sented in Sect. 6. We review related work in Sect. 7 and outline further devel-
opments in Sect. 8. Omitted details can be found in a companion technical
report [7].

Choreographic Compilation of Decentralized Comprehension Patterns 115

2 A Motivating Example

Consider the problem of computing the average temperature from the readings
of an ensemble of networked sensors. Traditionally, this involves writing at least
three programs: one that probes each sensor, computes the average temperature
and reports the result; the second is a sensor-side program that returns a reading
when probed; the last expects the result.

Comingle takes a different approach. The information held by each device is
stored as a series of facts. For example, a temperature reading of 16.3 degrees
could be expressed as the fact temp(16.3). We visualize the node where a fact
is held as a located fact, writing for example [�23]temp(16.3) to express that
the reading at node �23 is 16.3 degrees. Located facts are used for all kinds of
information. Here, the topology of the sensor network could be given as located
facts of the form [�]neighbor(�′), expressing that �′ is directly connected to �.
Similarly, the request for node � to compute the temperature average A of its
neighbors and report it to node �′ would be written as located facts [�]getAvg(�′)
and [�′]report(A), respectively.

Programs in Comingle take the form of a collection of rules that consume
some of the facts held in the ensemble and replace them with other facts, possibly
at different nodes. For our example, a single rule suffices. A buggy solution that
always reports 25.0 degrees without consulting the sensors would have the form

∀X,Y. [X]getAvg(Y) � [Y]report(25.0) (1)

This rule is parametric in the locations involved: X is the node computing the
average and Y is the location where to deliver the result. Whenever the ensemble
contains an instance, say [�12]getAvg(�9), of the left-hand side, this rule can be
applied with the effect of replacing this fact with [�9]report(25.0). Observe that
this effect is global: it consumes a fact from one node and creates a related fact
in a different node. This reading makes rule (1) system-centric as it describes a
computation that views the ensemble as a single entity.

But of course this rule comes short of correctly solving our problem. Node X,
which does the polling, needs to collect the temperature of all its neighbors.
Comingle provides multiset comprehension patterns as a convenient primitive for
this kind of actions. The comprehension pattern �[X]neighbor(N)�N�Ns collects
all the neighbors N of X into a multiset Ns. While this is a local computation
occurring at X, comprehension patterns do not need to be local: the comprehen-
sion �[N]temp(T) | N ∈ Ns�T�Ts collects the temperature reading [N]temp(T)
held at each node N among Ns into a multiset Ts. At this point, the average
is simply computed by adding up the values in Ts and dividing by the number
of such values, all primitive operations in Comingle. The overall computation is
captured by the rule

∀
[

�[X]neighbor(N)�N�Ns ,

�[N]temp(T) | N ∈ Ns�T�Ts

] ∖
[X]getAvg(Y) � [Y]report(A)

where A = sum(Ts)/size(Ts)

(2)

116 I. Cervesato et al.

where the facts matched by the expressions before “\” are consulted but not
deleted by the rule application, while the fact after it is consumed. The “where”
clause denotes a side computation, something we will generalize into the notion
of a guard. Both are convenience syntax that are not part of the core language.

Rule (2) is system-centric too, even more so than our first example. Its appli-
cation is atomic and maximal: from the point of view of the programmer, the
matching of facts on the left-hand side of � and the rewriting on its right-hand
side happen in one go, moreover all facts matching [X]neighbor(N) are collected
in Ns, and similarly for Ts.

While rule (2) captures exactly the process of solving our example problem,
and in a most concise way, it is impossibly abstract from the point of view of
the nodes in a distributed system: such nodes are only able to send and receive
messages, and perform local computation. We bridge this abstraction gap by
transforming rule (2) into a set of rules that look much more like rule (1).
This rule has, in fact, a simple operational interpretation in a decentralized
ensemble of computing nodes: its left-hand side, [X]getAvg(Y), performs some
local computation at node X (here retrieving the value of a stored fact), while
its right-hand side can be understood as sending the message report(25.0) to
node Y — the underlying networking middleware will take care of delivering it
to Y as a fact that it can then use. Rule (1) has therefore also a node-centric
interpretation, that can be used operationally. The main challenges of designing
a choreographic compilation scheme for Comingle — i.e., a transformation of
each abstract, system-centric, rule into an equivalent set of operational, node-
centric, rules — is to maintain the illusion of atomicity and maximality at the
operational level. This is the subject of the remainder of this paper and of the
technical report [7].

3 Core Comingle

In this section, we formalize the core syntax and semantics of Comingle — the
full language is described in [7,8]. We begin by introducing some notation. We
write o for a multiset of syntactic objects o. We denote the extension of a multiset
o with an object o as “o, o”, with ∅ indicating the empty multiset. We also write
“o1, o2” for the union of multisets o1 and o2. The literal multiset containing
o1, . . . , on is denoted �o1, . . . , on�. Given a multiset of labels I, the multiset of
objects oi for i ∈ I is denoted � �i∈I oi. We write �o for a tuple of o’s and [�t/�x]o for
the simultaneous substitution within object o of all free occurrences of variable
xi in �x with the corresponding term ti in �t. A generic substitution is denoted θ.
Substitution implicitly α-renames bound variables as needed to avoid capture.
We write FV (o) for the set of free variables in o.

Syntax. Figure 1 defines the abstract syntax of Comingle. Locations � are names
that uniquely identify computing nodes, and the set L of all nodes participat-
ing in a Comingle computation is called an ensemble. At the Comingle level,
computation happens by rewriting located facts F of the form [�]p(�t) where p

Choreographic Compilation of Decentralized Comprehension Patterns 117

Fig. 1. Abstract syntax of core Comingle

is a predicate symbol and �t is a tuple of terms. We will simply refer to them
as facts. The semantics of Comingle is largely agnostic to the specific language
of terms — in this paper, we assume a first-order term language extended with
primitive multisets. We write [�]f for a generic fact f located at node �.

Computation in Comingle happens by applying rules of the form ∀�x.H |
g � B. We refer to H as the head of the rule, to g as its guard and to B as its
body. The head of a rule consists of atoms F and of comprehension patterns of the
form �F | g��x�ts (written �F | g��x�ts in the body — the direction of the arrow
is suggestive of the flow of information). An atom F is a located fact [�]p(�t) that
may contain variables in the terms �t or even as the location �. Guards in rules
and comprehensions are Boolean-valued expressions constructed from terms and
are used to constrain the values that the variables can assume. Just like for
terms we keep guards abstract, writing |= g to express that ground guard g is
satisfiable. Two types of guards used pervasively in this paper are term equal-
ity t = t′ and multiset membership t ∈ ts. We drop the guard from rules and
comprehensions when it is the always-satisfiable constant �. A comprehension
pattern �F | g��x �

� ts represents a multiset of facts that match the atom F and
satisfy guard g under the bindings of variables �x that range over ts, a multiset
of tuples called the comprehension range. We call F the subject of the compre-
hension. The scope of �x is the atom F and the guard g. We implicitly α-rename
bound variables to avoid capture. A comprehension pattern �[x]p(�t) | g��x �

� ts is
system-centric whenever x appears in �x. The body B of a rule is also a multiset
of atoms and comprehension patterns.

The universal variables �x in a rule ∀�x.H | g � B account for all the free
variables in H, g and B, and we often write ∀ (H | g � B) for succinctness.
Moreover, we only consider safe rules where FV (B) ⊆ FV (H, g). We will occa-
sionally use rules of the form ∀�x.Hr\Hc | g � B, viewed as an abbreviation
for ∀�x. (Hc,Hr) | g � (B,Hr); we then refer to Hr and Hc as the retained and
consumed heads of the rule.

A Comingle program is a collection of rules.

Semantics. We describe the computation of a Comingle system by means of a
small-step transition semantics. Its basic judgment has the form P � St �−→ St ′

where P is a program, St is a store and St ′ is a store that can be reached in one
(abstract) step of computation. A store St is a multiset of ground located facts
[�]p(�t).

Rule (rw) in Fig. 2 describes a step of computation that applies a rule
∀ (H |g�B). This involves identifying a closed instance of the rule obtained

118 I. Cervesato et al.

Fig. 2. Abstract semantics of Comingle

by means of a substitution θ. The instantiated guard must be satisfiable (|= θg)
and we must be able to partition the store into two parts StH and St . The
instance of the head must match StH (θH �head StH), while the remaining frag-
ment St must not match any comprehension in it (θH �¬

head St). The rule body
instance θB is then unfolded (θB ≫body StB) into StB which replaces StH in
the store. A reading of these auxiliary judgments is given in Fig. 2. A formal
description can be found in [7,8].

Rule (rw) embodies a system-centric abstraction of the rewriting semantics of
Comingle as it atomically accesses facts at arbitrary locations. Indeed, it views
the facts of all participating locations in the ensemble as one virtual collection.
This abstract notion of rule application needs to be compiled into a concurrent,
node-centric model of computation, where each node manipulates its local facts
and sends messages to other nodes.

4 Neighbor Restriction

In this section, we identify a syntactic class of Comingle rules that support effi-
cient node-level execution. Characteristic of these 1-neighbor restricted rules is
that, in any instance, there is one node that has every other location participat-
ing in the rule as a neighbor. Operationally, the execution of the rule can use this
primary location as a communication hub to all the other participating nodes,
called forwarding locations. For brevity, we provide only the intuition behind
most definitions. See [7] for full details.

To start with, consider a rule R = ∀ (H � B) with an empty guard and
without comprehension patterns in its head. A node X has Y as a its neighbor
in R if the head H contains a fact [X]p(�t) such that Y occurs in �t. For simplicity,
we take this as a proxy for a direct communication link — in actuality only
certain facts may be used to describe point-to-point messaging.

Guards somewhat complicate this definition as they are often used to cal-
culate new values, including locations, on the basis of existing values. Let g be
a guard with free variables �x and �y. We say that �x determines �y in g, written
�x

g
�=⇒ �y, if for every ground substitution �t/�x there is at most one substitution

�s/�y that makes g satisfiable, i.e., such that |= [�t/�x,�s/�y]g. We write �x
g
�=⇒ y if

Choreographic Compilation of Decentralized Comprehension Patterns 119

y is among such �y. Then, Y is a neighbor of X in rule ∀ (H | g � B) if the
set of variables occurring in facts located at X in H determines Y . In symbols,
{x ∈ FV (E) : E = [X]f in H} g

�=⇒ Y .
Comprehension patterns further complicate this definition as theymay identify

participating locations indirectly through their comprehension range — for exam-
ple N in �[N]temp(T) | N ∈ Ns�T�Ts but also Ns in �[X]neighbor(N)�N�Ns .
Thus, a (possibly bound) variable Y in �[Y]f | gY ��y�ts is a neighbor of X in rule
∀ (H | g � B) if {x ∈ FV (E) : E =[X]f ′ or E =�[X]f ′ | g′��x�ts′ in H} g,gY

�===⇒ Y .

Given this definition of neighbor, a location Xn is n hops away from X0 in rule
R if n is the smallest number such that there are nodes X1, . . . Xn−1 such that Xi

has Xi+1 as its neighbor for each i from 0 to n−1. Rule R is n-neighbor restricted
with primary location X, something we denote 	n

NB R
 X, if every location Y
such that [Y]f appears in R is at most n hops away from X. Each such Y other
than X is called a forwarding location. A Comingle rule that is not n-neighbor
for any n has mutually unreachable nodes and therefore cannot be concretely
executed on a distributed collection of nodes as it would require out-of-band
synchronization that bypasses the underlying communication infrastructure. We
are particularly interested in rules where n = 1. In fact, 1-neighbor restricted
rules are such that the primary location has a direct communication link to
every other location participating in the rule, which entails that device-level
code that implements it only needs to use point-to-point messaging primitives to
and from the primary location, thereby avoiding complex routing. Furthermore,
1-neighbor restricted rules where all head facts are at the primary location are
such that local computation is sufficient to determine applicability, i.e., if there
is a match for their head in the computing state — their body may however
locate facts at other nodes. We call such rules node-centric. Rule (1) from Sect. 2
is node centric with primary location X as its head contains a single atom
located at X. Rule (2) is 1-neighbor restricted with primary location X (but not
node-centric) as the comprehension �[X]neighbor(N)�N�Ns (locally) determines
the contents of the multiset Ns from which the value of every location N in
�[N]temp(T) | N ∈ Ns�T�Ts is drawn. Thus each value T held in [N]temp(T)
can be accessed in one hop from X.

A Comingle program is 1-neighbor restricted if all its constituent rules are
such. All applications we have developed using Comingle have naturally been
1-neighbor restricted [8], and therefore we will limit our discussion to this class
of programs. We will use programs consisting solely of node-centric rules (node-
centric programs) as the target of the compilation of 1-neighbor restricted pro-
grams. See [9] for a generalization in the absence of comprehensions.

5 Choreographic Transformation

Choreographic compilation elaborates each system-centric rewrite rule R into
a set �R� of node-centric rewrite rules that execute portions of R at the par-
ticipating locations. The challenge is to design �R� so that it behaves exactly

120 I. Cervesato et al.

like R, i.e., that it is applicable whenever R is and eventually achieves its effects
(completeness), and that it does not introduce any new effects (soundness), espe-
cially partial execution. In Sect. 6, we spell out these requirements and outline
proofs that our compilation satisfies them.

In the absence of comprehension patterns, Comingle is monotonic:

Property 1 (Monotonicity).

If P � St �−→ St ′, then P � St ,St ′′ �−→ St ′,St ′′ for any St ′′.

This property, typical of traditional multiset rewriting, allows processing head
atoms incrementally, both in a centralized [3] and in a distributed [9] setting.
Incremental processing is precisely what is done by the node-centric rules �R� a
system-centric rule R is compiled into: a primary location combines data incre-
mentally from the forwarding locations.

However, because comprehension patterns have a maximal semantics,
monotonicity does not hold for full Comingle [6].Anaive approach to incrementally
matching the head of a system-centric rule, as adapted from [9] for example, would
be unsound. Consider the rule head [X]p(Y1, Y2), �[Y1]q(�x)��x�ts1

, �[Y2]q(�x)��x�ts2
where incremental execution proceeds from left to right, say. By the time X has
received the facts collected at Y2, new facts matching [Y1]q(�x) may have arrived
at Y1, violating maximality. We recover soundness by locking all facts that can
thus compromise incremental processing. In general, these are facts headed by a
predicate p such that the atom [�]p(�x) occurs as the subject F of a comprehen-
sion �F | g��x�ts anywhere in the program.We call themnon-monotonic predicates.
Predicates that never appear within a comprehension pattern are monotonic, and
we do not need to take special precautions for them.

5.1 An Example

As an example, consider the following Comingle rule, which we call swp:

∀
⎡
⎣ [X]swap(Y, P), [Y]okSwap

�[X]data(N) | N ≤ P �N�Ns

�[Y]data(M) | M ≥ P �M�Ms

⎤
⎦ �

[
�[X]data(M)�M�Ms

�[Y]data(N)�N�Ns

]

This rule lets two parties X and Y atomically swap values up to a threshold
P . It is triggered when node X holds a fact swap(Y, P) while node Y holds
okSwap. It retrieves all the facts data(N) held at X such that N ≤ P (that
is �[X]data(N) | N ≤ P �N�Ns) and sends them to Y (with body expression
�[Y]data(N)�N�Ns). At the same time, it transfers all data(M) such that M ≥ P
from Y (i.e., �[Y]data(M) | M ≥ P �M�Ms) to X (as �[X]data(M)�M�Ms). The
mention of Y as an argument of swap makes this rule 1-neighbor restricted with
X as its primary location and Y the only forwarding location.

This rule is compiled into the six node-centric rules (execswp
X to abortswp

X) dis-
cussed next. Each of these rules executes an aspect of the overall system-centric
rewriting embodied by rule swp. It makes use of various auxiliary predicates,

Choreographic Compilation of Decentralized Comprehension Patterns 121

which we capitalize for ease of identification, and it introduces new variables,
which we write in lower case. We write the auxiliary predicates as a root possibly
superscripted by a rule or predicate name, and possibly subscripted by a relevant
location variable, for example Reqswp

Y below. We further highlight them using
various background colors, that the reader may safely ignore. The new facts are
categorized as follows.

– Locking facts have the form [X]Freep . For emphasis, we will highlight lock-
ing facts with a light-blue background . Such facts are a means to lock non-
monotonic predicates p in order to guarantee maximality: a rule that makes
use of such a predicate at some location X, either in its head or in its body,
will be compiled into a rule that acquires [X]Freep , thereby inhibiting the
execution of other rules that make use of p at X. This fact is put back into
X’s local state once the rule execution has completed successfully, or if it gets
aborted.

– Transaction facts are of the form [X]Next(n), [X]Trans(e), [X]Done(e) or
[X]Abort(e). We highlight them in pale orange . Their purpose is to keep
track of and manage ongoing system-centric rule execution attempts, which
we call transactions. The variable n is a counter incremented each time node
X initiates a transaction, while e is another number computed from n and the
location name X to act as a global transaction identifier. The fact [X]Next(n)
holds the current value of X’s counter n, the fact [X]Trans(e) indicate that
transaction e is ongoing at X, while [X]Done(e) and [X]Abort(e) signal that
e has either completed successfully or is being aborted.

– There are three types of staging facts for each rule R (identified by some
unique name r), all highlighted in a pale green background for ease of identi-
fication. With the fact [Y]ReqrY (e,X, �x) , primary location X issues a request
to Y to gather relevant local facts in the head of R as part of transaction e.
The parameters �x list the information that X was able to secure and that
may be useful to Y . The answer �y is returned to X by means of the fact
[X]AnsrY (e, Y, �y) . Finally, X can remember information �z for its own records
by means of the fact [X]Waitr (�z) . They are used to implement the various
stages of a two-phase commit among the parties involved.

The first compiled node-centric rule is to be executed at the primary location,
X:

∀
⎡
⎣ [X]swap(Y, P),

�[X]data(N) | N ≤ P �N�Ns ,

[X]Freedata , [X]Next(n)

⎤
⎦ �

⎡
⎢⎣ [Y]Reqswp

Y (e,X,Ns , P) ,

[X]Waitswp(e, Y,Ns , P) ,

[X]Trans(e) , [X]Next(n′)

⎤
⎥⎦

where e = H(X,n) and n′ = n + 1.

(execswp
X)

The head of this rule contains all the expressions that our original rule could
match locally, namely [X]swap(Y, P) and �[X]data(N) | N ≤ P �N�Ns . Because
predicate data occurs within a comprehension — it is non-monotonic — this rule
also acquires a lock on it ([X]Freedata). Finally, it increments the local counter

122 I. Cervesato et al.

n (retrieved as [X]Next(n) and reasserted as [X]Next(n′) with n′ = n+1). The
function H(X,n) combines the value of this counter and the primary location’s
identity into a globally unique value e which will act as a transaction identifier,
recorded as fact [X]Trans(e) . The body of this rule also includes the staging
fact [Y]Reqswp

Y (e,X,Ns , P) to request the matching data values from node Y .
Note that the arguments mention the transaction identifier e, who to return the
results to (X), and the variables corresponding to data that X could compute
locally (a more refined compilation scheme could optimize Ns away as it is not
needed by Y). Node X also asserts the staging fact [X]Waitswp(e, Y,Ns , P) for
its own records, so that it can continue execution once it receives a response
from Y .

The forwarding location Y can respond to X in one of two ways: by returning
the requested data, or by aborting the transaction. A successful response begins
with the following rule:

∀
[

[Y]okSwap, �[Y]data(M) | M ≥ P �M�Ms ,

[Y]Freedata , [Y]Reqswp
Y (e,X,Ns, P)

]

�
[

[Y]Trans(e) ,

[X]Ansswp
Y (e, Y,Ms)

]

(execswp
Y)

Here, Y retrieves its part of the original rule head, �[Y]data(M) | M ≥ P �M�Ms

and [Y]okSwap, and locks the non-monotonic predicate data (with [Y]Freedata).
It notes that it is engaged in transaction e with the fact [Y]Trans(e) and sends
X the expected answer, [X]Ansswp

Y (e, Y,Ms) . Observe that, at this point, it is
still in the transaction.

Next, X resumes execution by asserting the body of swp:

∀
[

[X]Waitswp(e, Y,Ns, P) ,

[X]Ansswp
Y (e, Y,Ms)

]
�
[

�[X]data(M)�M�Ms , �[Y]data(N)�N�Ns ,

�[l]Freedata �l��X,Y �
, �[l]Done(e)�l��X,Y �

]
(succswp

X)

With it, X combines the values it had computed locally ([X]Waitswp(e, Y,Ns , P))
and the values obtained from Y (as [X]Ansswp

Y (e, Y,Ms)) and asserts the body
of the original rule (�[X]data(M)�M�Ms , �[Y]data(N)�N�Ns). It also releases all
locks (�[l]Freedata �l��X,Y �

) and signals that the transaction has completed suc-

cessfully (�[l]Done(e)�l��X,Y �
).

One last clean-up rule is needed to remove all facts associated with a com-
pleted transaction e, namely �[Z]Trans(e)� , [Z]Done(e) . It does this at every
participating node Z.

∀
(

�[Z]Trans(e)� , [Z]Done(e) � ∅

)
(done)

The transaction started by rule (execswp
X) can fail for one of two reasons:

either because the forwarding node Y does not have the requested data (e.g., if
there is no okSwap at Y), or because Y is already engaged in possibly conflicting
transactions. Although comprehension patterns are able to express the absence
of a fact (or class of facts) in the state, we will approximate the first option by

Choreographic Compilation of Decentralized Comprehension Patterns 123

non-deterministically aborting the transaction (see the note below). Transaction
failure is then captured by the following rule, executed at Y :

∀
(

�[Y]Trans(e′)�e′
�es \ [Y]Reqswp

Y (e,X,Ns, P) | e �̇ es � [X]Abort(e)
)

where e �̇ es iff es = ∅ or for some e′ ∈ es and e < e′ (failswp
Y)

Upon receiving the staging fact [Y]Reqswp
Y (e,X,Ns , P) , node Y collects all of

its active transactions in the multiset es. The guard e ̇ es succeeds in one
of two circumstances. The first is when there is no other ongoing transaction
(which approximates an unsuccessful match). The second is when some other
ongoing transaction e′ has a larger identifier (e < e′). This guarantees that at
least one transaction (the “strongest”) will delay its decision to abort, until all
others at the same location have terminated (with either success or failure).
This avoids livelocks between transactions attempting to acquire the same facts.
Conversely, the uniqueness of transaction identifiers guarantees that only one
such transaction at a location delays its abort — otherwise we risk inducing
deadlocks. Because rules (execswp

X) and (failswp
Y) are competing for the same

staging fact [Y]Reqswp
Y (e,X,Ns , P) , exactly one of them is applicable in general,

and only the latter is enabled when Y does not have the data requested by X.1
Rule (failswp

Y) is followed by rule (abortswp
Y), examined next. It is executed

at X:

∀
[

[X]Trans(e) , [X]Abort(e) ,

[X]Waitswp(e, Y,Ns, P)

]
�
[
[X]swap(Y, P), �[X]data(N)�N�Ns ,

[X]Freedata

]
(abortswp

Y)

It aborts transaction e by consuming the fact [X]Trans(e) and reverting X’s
local computation, recorded in [X]Waitswp(e, Y,Ns , P)), back into the state.

5.2 Choreographic Compilation

We now describe Comingle’s choreographic compilation scheme on the basis of
this intuition for one form of rules — see [7] for the general case. We write
NM (P) for the set of all non-monotonic predicate names in program P and
NMP(E) for the subset of NM (P) that occur in expressions E (see [7] for a
formal definition).

The choreographic compilation �P� of a 1-neighbor restricted program P is
a node-centric program equivalent to P, a program that consists only of node-
centric rules. The compiled program �P� is comprised of the compilation �R�P

1 A version of rule (failswp
Y) that is mutually exclusive with rule (execswp

X) is as follows:

∀
(

�[Y]Trans(e′)�
e′�es

\ [Y]Req
swp
Y

(e,X,Ns, P) , �[Y]okSwap�()�os | e �̇ es & os = ∅ � [X]Abort(e)
)

where the underlined components check that Y does not hold a fact okSwap. A
general treatment of negation as absence, as this feature is known, is beyond the
scope of this paper.

124 I. Cervesato et al.

Fig. 3. Compilation of simple rule ∀ ([x]Hx , [I]HI | gx ∧ gI ∧ g � [x]Bx , [I]BI , [K]BK)

of each source rule R in P, plus rule (done) above — this rule is “global” in that
it is shared by the encoding of all rules in P.

�P� =

{
� �R∈P �R�P (rule names given below)

∀j, e. � [j]Trans(e) �, [j]Done(e) � ∅ (done)

Simple 1-Neighbor Restricted Rules. We consider simple 1-neighbor restricted
rules, that contain only localized comprehension patterns. The location of the
subject of such patterns is bound outside the comprehension itself. Thus,
in rule (2), the comprehension �[X]neighbor(N)�N�Ns was localized, but
�[N]temp(T) | N ∈ Ns�T�Ts is not. The case study in Sect. 5.1 consisted of a
simple rule.

Using some abbreviations of convenience (explained next), a source rule R
with such characteristics can be written as follows:

∀x, I,K. [x]Hx , [I]HI | gx ∧ gI ∧ g � [x]Bx , [I]BI , [K]BK

Here, x is the primary location of R and Hx collates all the facts in R’s
head located at x. These can be either atoms [x]f or localized comprehensions
�[x]f | g�z�zs . Similarly, Bx refers to the body expressions located at x. The set I
contains all forwarding nodes that locate facts in the head of R. We write [I]HI
for � �i∈I Hi where each Hi follows the same conventions as Hx, and similarly
for body expressions BI . The set K, disjoint from x and I, lists all forwarding
nodes that locate expressions only in the body of R — we call them receiving
locations. The guard of R is partitioned into fragment gx whose satisfiability can
be determined locally by x, i.e., such that FV (Hx)

gx
�==⇒ �y for some �y, into similar

fragments gi for each i ∈ I which we abbreviate as gI , and into a final fragment
g which cannot be determined locally by any of these nodes.

Choreographic Compilation of Decentralized Comprehension Patterns 125

Fig. 4. Possible execution sequences of a compiled system-centric rule

Figure 3 defines the compilation �P�R of a simple system-centric rule R
named r. The constituent node-centric rules implement a two-phase commit
with the same behavior as R. The possible executions patterns are sketched
in Fig. 4. The encoding �P�R relies on further abbreviations: given a location
j among x, I,K, we write [j]Free for � �p∈NMP(Hj ,Bj)

[j]Freep , the locks of
all non-monotonic predicates mentioned by j. Furthermore, we write [J]Free
for � �j∈J [j]Free , the locks of any location j in set J . We also write “ ” for
irrelevant terms, realized in a rule as an appropriate number of single-occurrence
variables.

Rule (execr
x) initiates execution at the primary location x by matching local

facts ([x]Hx), locking non-monotonic predicates ([x]Free) and setting up a new
transaction e as discussed in Sect. 5.1. It sends a request to each forwarding
location (� �j∈I∪K [j]Reqrj (e,FV (Hx))) and prepares for their response with

[x]Waitr (e,FV (Hx)) . Rule (execr
j) implements a successful reply by a forward-

ing location j: it locks its non-monotonic predicates ([j]Free), records the trans-
action ([j]Trans(e)) and returns a response ([x]Ansrj (e, j,FV (Hj))) — in the
case of a receiving location in K this amounts to just locking non-monotonic
predicates. Execution then continues at x with rule (succr

x) which collates all the
responses (� �j∈I∪K [x]Ansrj (e, j,FV (Hj))), checks the remaining guards g, rolls
out the body of R, frees all non-monotonic predicates and prepares for clean-up
using rule (done). This execution sequence is shown on the left of Fig. 4.

As described in Sect. 5.1, rule (failrj) aborts execution at a forwarding node
j in response to a match failure or to preempt livelock. This is followed by
rules (abortrj) and (abortrx) with which primary location x rolls back all head
facts that had been consumed and frees the locks. This possibility is sketched in
the central portion of Fig. 4.

One more behavior, which was not possible in the example in Sect. 5.1, is
depicted on the right-hand side of Fig. 4. Here, primary x has collected responses
from all forwarding locations, but they cannot be combined as prescribed by R
because the guard g is not satisfiable. In this case, rule (failrx) is applicable and
triggers the abort rules just described.

126 I. Cervesato et al.

Generic 1-Neighbor Restricted Rules. The techniques deployed for simple rules
form the core of the compilation of generic 1-neighbor restricted rules whose
full treatment can be found in [7], for space reasons. The treatment of system-
centric comprehension patterns, whose subject [z]f is located at a bound variable
z, requires some care as such z may be among I or K, or could be x itself above.
Naively sending separate requests for different predicates would stall execution
as the first request would lock the non-monotonic predicates, thereby preventing
the others from making progress. We address this issue by having each node
involved acquire all information it needs in one go.

Store. The node-centric encoding of a store St , denoted �St�P
�c , extends St with,

for each location � in an ensemble L, (a) a locking fact [�]Freep for each non-
monotonic predicate p of P and (b) a local transaction counter c� in �c for �. It
is defined as follows:

�St�P
�c =

⎧⎪⎪⎨
⎪⎪⎩

St ,

� ��∈L � �p∈NM (P) [�]Freep ,

� ��∈L [�]Next(c�)

6 Formal Results

In this section, we present some properties of the transformation in the previous
section, and give sketches of their proof. Details can be found in [7]. Specifically,
we show that choreographic compilation is sound and complete: it transforms a
system-centric program into node-centric rules with what amounts to the same
behavior. We also note that the computation carried out by a compiled rule can
never get stuck midway.

For the convenience of the reader, we distinguish between source and encoded
rewrite states by denoting the former St and the latter Et . The operation �Et�P

that decodes a compiled state Et back into a corresponding source state St , rela-
tive to a 1-neighbor restricted program P is defined in [7]. It does so by discard-
ing all locking and transaction facts, by keeping source facts, and by reverting
request and waiting facts to the source fact they had replaced. Other staging
facts are ignored. We write obligations(P, E) for the result of this extraction on
a staging fact E.

To begin with, the following property shows that for every reachable encoded
state Et , we can always derive another state Et ′ such that it does not contain
“stuck” transactions. Specifically, there are no encoded matching obligations
in Et ′.

Theorem 1 (Progress). If �P� � �St�P
�c �−→∗ Et, then �P� � Et �−→∗ Et ′

for some Et ′ such that obligations(P,Et ′) = ∅.

Proof. By structural induction on our choreographic transformation schemes,
we first show that any individual transaction e can always be concluded as an

Choreographic Compilation of Decentralized Comprehension Patterns 127

abort or a successful application of a system-centric rewriting. In either case,
encoded matching obligations are consumed. This result is extended to an arbi-
trary number of transactions, which the antecedent of the theorem may be exe-
cuting concurrently.

Next, we show that every derivation of a compiled program �P� is derivable
in its source states. Hence the choreographic transformation is sound.

Theorem 2 (Soundness). If �P� � �St�P
�c �−→∗ Et, thenP � St �−→∗ �Et�P .

Proof. The proof starts by considering a single step, where it induces the def-
inition of our choreographic transformation. Specifically, we show that every
encoded derivation step corresponds to either a source derivation step or a stut-
tering step (i.e., zero step P � St �−→∗ St). This involves showing that for deriv-
able states of each choreographic transformation, every removal of a matching
obligation (i.e., [j]Hj) is accompanied by an addition of a corresponding encoded
matching obligation (e.g., [j]Waitr (e, j, �v)), hence via the decoding operation,
source facts are never wrongfully omitted. A simple induction lifts this result to
the multiple step case.

Theorem 3 states that every derivation of a source program P can be simu-
lated by �P�. Hence the choreographic transformation is complete.

Theorem 3 (Completeness). IfP �St �−→∗ St ′, then�P���St�P
�c �−→∗ Et ′

for some Et ′ such that �Et ′�P = St ′.

Proof. The proof proceeds by structural induction on our transformation. Specif-
ically, we show that, using Theorem 1, we can always simulate each source deriva-
tion step with a series of encoded derivation steps that applies a transaction of
the corresponding source derivation. Therefore, Et ′ exists. A further induction
is used to stretch this result to multiple derivation steps.

7 Related Works

An extension of Datalog for implementing network protocols is explored in [12].
This paper defines link-restricted Datalog rules and rule localizing encodings
which are specific instances of neighbor restriction and choreographic transfor-
mation discussed here.

Our work draws inspiration from research on choreographic programming
(e.g., [10]). An example of a coordination language in this domain is Jolie [11],
which is targeted at service-oriented web applications. By and large, these works
focus on choreographic projections of lower-level imperative-style programming
languages, our transformation share the same goals and intuition, at a higher
level of abstraction, though.

The execution model underlying Comingle is inspired by the run-time archi-
tecture of Constraint Handling Rules [3] (CHR). Also based on rule-based multi-
set rewriting, the CHR language can be viewed as an ancestor of Comingle. There

128 I. Cervesato et al.

is abundant research on exploiting CHR as a parallel execution model, of exam-
ple as an extension of the actor model [13] and for programming FGPAs [14].

Comingle is a logic programming framework aimed at simplifying the devel-
opment of applications distributed over multiple mobile devices. The original
prototype [5,8] targeted the Android SDK, and has recently been extended to
x86 devices running Java, thereby supporting mobile applications over hetero-
geneous platforms.

8 Conclusions

In this paper, we develop a choreographic compilation scheme for multiset rewrit-
ing languages with support for multiset comprehension patterns. This choreo-
graphic compilation scheme preserves soundness: it transforms a system-centric
Comingle program into a node-centric encoding that ensures both atomicity of
the rule application and maximality of comprehension patterns. Node-centric
encodings have a straightforward node-centric operational interpretations (mes-
sage passing), and thus are immediately executable by individual computing
nodes. In all, our work here provides a foundational bridge between high-level
system-centric specifications of decentralized multiset rewriting with comprehen-
sion patterns, and their lower-level node-centric operational interpretations.

References

1. Ashley-Rollman, M.P., Lee, P., Goldstein, S.C., Pillai, P., Campbell, J.D.: A lan-
guage for large ensembles of independently executing nodes. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 265–280. Springer, Heidelberg (2009)

2. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010)

3. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press, Cambridge
(2009)

4. Grumbach, S., Wang, F.: Netlog, a rule-based language for distributed program-
ming. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 88–103.
Springer, Heidelberg (2010)

5. Lam, E.S.L.: Comingle: Distributed Logic Programming Language for Android
Mobile Ensembles (2014). https://github.com/sllam/comingle

6. Lam, E.S.L., Cervesato, I.: Optimized compilation of multiset rewriting with com-
prehensions. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 19–38.
Springer, Heidelberg (2014)

7. Lam, E.S.L., Cervesato, I.: Decentralized compilation of multiset comprehensions.
Technical report CMU-CS-16-101, Carnegie Mellon University (2016)

8. Lam, E.S.L., Cervesato, I., Fatima, N.: Comingle: distributed logic programming
for decentralized mobile ensembles. In: Holvoet, T., Viroli, M. (eds.) COORDINA-
TION 2015. LNCS, vol. 9037, pp. 51–66. Springer, Heidelberg (2015)

9. Lam, E.S.L., Cervesato, I.: Decentralized execution of constraint handling rules for
ensembles. In: PPDP 2013, Madrid, Spain, pp. 205–216 (2013)

https://github.com/sllam/comingle

Choreographic Compilation of Decentralized Comprehension Patterns 129

10. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. In: SEFM 2008, pp. 323–332
(2008)

11. Lanese, I., Montesi, F., Zavattaro, G.: The evolution of Jolie. In: De Nicola, R.,
Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 506–
521. Springer, Heidelberg (2015)

12. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis,
P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking: language,
execution and optimization. In: SIGMOD 2006, pp. 97–108 (2006)

13. Sulzmann, M., Lam, E.S.L., Van Weert, P.: Actors with multi-headed message
receive patterns. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS,
vol. 5052, pp. 315–330. Springer, Heidelberg (2008)

14. Triossi, A., Orlando, S., Raffaetà, A., Frühwirth, T.: Compiling CHR to parallel
hardware. In: PPDP 2012, New York, NY, USA, pp. 173–184 (2012)

Minimal Objectification and Maximal Unnesting
in PSOA RuleML

Gen Zou(B) and Harold Boley(B)

Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
{gen.zou,harold.boley}@unb.ca

Abstract. The paper introduces two connected advancements of
Positional-Slotted, Object-Applicative RuleML: (1) a model-theoretic
semantics, realized transformationally, that directly handles atoms
(i.e., predicate applications) without object identifiers (e.g., relationships
as in Prolog) and (2) a transformational semantics that handles nested
atomic formulas (e.g., nested frames as in Flora-2/F-logic). For (1), the
model theory is extended to atoms with optional OIDs, the transforma-
tion is developed from static to dynamic objectification, and the correct-
ness of the realization is proved. For (2), the unnesting transformation
is defined to decompose nested atomic formulas into equivalent conjunc-
tions.

1 Introduction

The relational and graph (object-centered) modeling paradigms have been widely
used for knowledge representation in AI and the Semantic Web. The rela-
tional paradigm (e.g., classical logic and logic programming) is built on top
of relationships with positional arguments, while the object-centered paradigm
(e.g., RDF, N3, and F-logic) is built on top of frames with a globally unique
Object IDentifier (OID), usually typed by a class, and an unordered collec-
tion of slotted (attribute-value) arguments. To facilitate interoperation between
the two paradigms, e.g. for expressing mappings between frames and relational
databases in rule-based data access, combined object-relational paradigms have
been studied. F-logic [1,2] and RIF-BLD [3] employ a heterogeneous approach
to allow the combined use of relationships and frames. In contrast, the Web rule
language PSOA RuleML [4] employs a homogeneous approach by generalizing
relationships and frames to positional-slotted object-applicative (psoa) terms1,
which permit the application of a predicate (acting as a relation) to be [in an
oidless/oidful dimension] without or with an OID – typed by the predicate (act-
ing as a class) – and the predicate’s arguments to be [in an orthogonal dimension]
positional, slotted, or combined.

PSOA RuleML allows the interchangeable use of oidless and oidful atoms
(i.e., predicate applications) through the objectification transformation, which

1 We use the upper-cased “PSOA” as a qualifier for the language and the lower-cased
“psoa” for its terms.

c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 130–147, 2016.
DOI: 10.1007/978-3-319-42019-6 9

Minimal Objectification and Maximal Unnesting in PSOA RuleML 131

creates an OID for each oidless atom. Earlier, OIDs needed to be statically
generated for each oidless psoa term before applying the model-theoretic seman-
tics [4,5]. This is inappropriate for expressions (i.e., function applications) since
their functions cannot act as classes. It also causes overhead for an atom whose
predicate in the clauses of the Knowledge Base (KB) is used only as a Prolog-
like relation, in particular does not occur with an OID or slots (the latter also
requires an OID for slotribution, explained in Sect. 2). To address these issues,
the model theory is extended so that atoms and expressions can be interpreted
without the need for an explicit OID, and an equivalence between an oidless atom
and its existential oidful form is guaranteed. A novel static/dynamic objectifi-
cation transformation – which is minimal by performing as little as possible in a
static manner – is introduced to realize this semantics while leaving unchanged
as many of the oidless atoms as possible, allowing better use of the underlying
Prolog engine in our PSOATransRun [6] implementation since version 1.0, and
better interoperation with ground facts in relational databases.

Frames are often nested. PSOA RuleML’s presentation syntax (PSOA/PS)
generally permits embedded atoms almost everywhere. However, the semantics
of embedded atoms has not been clearly defined in the earlier version of the
language. In this paper, the unnesting transformation is formally defined to
decompose nested atomic formulas into equivalent conjunctions, augmenting our
implementation in the PSOATransRun 1.1 release.2 It recursively extracts oidful
atoms from an atomic formula, e.g. another atom, leaving behind their OIDs
in the “trimmed” version. Unnesting is maximal by extracting atoms not only
from other atoms but also from expressions. This transformational semantics is
applied to every atomic formula before the model-theoretic semantics is applied.

The rest of the paper is organized as follows. Section 2 reviews the PSOA
RuleML language. Section 3 gives the new semantics with minimal objectification
and discusses different objectification transformations. Section 4 discusses the
syntax of embedded atoms as well as the unnesting transformation. Section 5
concludes the paper.

2 PSOA RuleML

In this section we introduce the basics of the object-relational Web rule language
PSOA RuleML [4], which generalizes RIF-BLD [3] and POSL [7] by introducing
psoa terms of the following general forms:

Oidless : f([t1,1 . . . t1,n1] . . . [tm,1 . . . tm,nm] p1->v1 . . . pk->vk) (1)
Oidful : o#f([t1,1 . . . t1,n1] . . . [tm,1 . . . tm,nm] p1->v1 . . . pk->vk) (2)

Both (1) and (2) apply a function or predicate f, possibly identified by an OID
o through a membership o # f of o in f (acting as a class), to a bag of tupled

2 Available from http://psoa.ruleml.org/transrun/1.1/local/.

http://psoa.ruleml.org/transrun/1.1/local/

132 G. Zou and H. Boley

arguments [ti,1 . . . ti,ni], i = 1, . . . ,m, and to a bag of slotted arguments
pj->vj, j = 1, . . . , k, representing attribute-value pairs. For the most often used
special case of single-tuple psoa terms (m=1), the square brackets enclosing the
tuple may be omitted.

A psoa term can be interpreted as a psoa expression or a psoa atom, depend-
ing on whether f is a function or predicate. The interpretation as an expression
was earlier allowed for both oidless and oidful psoa terms (i.e., (1) and (2) above)
but will be restricted to oidless psoa terms here, as explained in Sect. 4. The inter-
pretation as an atom is permitted for both (1) and (2) on the top-level, while
restricted to (2) when embedded, as explained in Sect. 4.

The OID, tuples, and slots in a psoa atom are all optional. For an oidless
psoa atom, without a ‘user’ OID, objectification can introduce a ‘system’ OID to
make it oidful, as detailed in Sect. 3. Untyped objects are notated by using the
root class Top as their type f. An oidful psoa atom of the form (2) is equivalent
to a conjunction

And(o#f o# Top(t1,1 . . . t1,n1) . . . o# Top(tm,1 . . . tm,nm)

o# Top(p1->v1) . . . o# Top(pk->vk))

of its class membership, its bag of object-centered tuples (tupribution), and its
bag of object-centered slots (slotribution). This distribution (tupribution and/or
slotribution) could be physically implemented on the Web. A systematics of
special kinds of psoa atoms, including (oidless) relationships f(t1 . . . tn) and
(oidful) frames o#f(p1->v1 . . . pk->vk), is elaborated in [5] with many examples.

The alphabet of PSOA RuleML includes a single set Const of individual,
function, and predicate constants – to prepare functional-logic integration as,
e.g., in Relfun, Hilog, and RIF – as well as a set Var of variables. Constants
include Top, denoting the root class, and ‘ ’-prefixed local constants (e.g., a).
Variables are ‘?’-prefixed (e.g., ?X).

The syntax of PSOA RuleML is built on terms. A simple term is a con-
stant or a variable. An atomic formula is a psoa atom in the form of terms (1)
or (2), a subclass term c1##c2, an equality term t1=t2, or an external term
External(f(...)). Complex formulas can be constructed using the Horn-like
subset of first-order logic (FOL), including conjunctions And(τ1 . . . τn), disjunc-
tions Or(τ1 . . . τn) in the rule body, top-level rule implications τ1 :- τ2, existen-
tial quantification Exists ?X1 . . . ?Xn (τ1), and top-level universal quantifica-
tion Forall ?X1 . . . ?Xn (τ1). A group formula Group(τ1 . . . τn) wraps a set of
facts and rules into a KB.

The model-theoretic semantics of PSOA RuleML is defined through semantic
structures [4]. A semantic structure I is a tuple <TV , DTS , D , D ind, D func,
IC, IV, I psoa, I sub, I=, I external, I truth>. Here D is a non-empty set called
the domain of I. D ind and D func are subsets of D for individual and function
interpretations. IC and IV interpret constants and variables. I psoa interprets
predicates/functions of psoa terms as semantic functions, which will be shown
in Sect. 3.1. I sub, I=, and I external interpret subclass, equality, and external
terms. A generic mapping I from terms to D can be defined using the above

Minimal Objectification and Maximal Unnesting in PSOA RuleML 133

interpretation mappings. I truth maps domain elements to the set of truth values
TV = {t, f}. We will write I.D , I.IV, etc.,. for the components of I in the rest
of the paper.

Truth evaluation for formulas is determined by a recursive evaluation function
TValI defined in [4]. A semantic structure I is called a model of a KB φ if
TValI(φ) = t and I conforms to all semantic restrictions (e.g., subclass and
slotribution/tupribution restrictions), denoted by I |= φ. A PSOA KB φ is said
to entail a formula ψ, denoted by φ |= ψ, if for every model I of φ, I |= ψ holds.

We illustrate the syntax and semantics through an example, previewing key
concepts, e.g. non-relational and virtual OID.

Example 1. Consider the following KB:

Group (
Forall ?Pers ?JobTitle ?Comp1 ?Comp2 (

_transfer(?Pers ?Comp1 ?Comp2) :-
And(_work(?Pers ?Comp1 ?JobTitle)

_acquire(_buyer->?Comp2 _seller->?Comp1)))
_e1#_transfer(_Tony _Rho4biz _Chi4corp _bonus->20000)
_work(_Kate _Rho4biz "Director")
_a1#_acquire(_buyer->_Chi4corp _seller->_Rho4biz)

)

We will query this KB as follows, without (left) and with (right) an OID:

_work(?P ?C ?J) ?O#_work(?P ?C ?J)
_transfer(?P ?C1 ?C2) ?O#_transfer(?P ?C1 ?C2)

The work fact is relational while the acquire fact has two slots centered
on the object a1. The transfer rule uses premises satisfied by these facts.
Its acquire premise needs to be objectified to ?1# acquire(buyer->?Comp2
seller->?Comp1), so that the generated fresh OID variable ?1 unifies with a1.
The transfer fact is non-relational, centered on the graph-node-like object e1
– typed by transfer acting as a class – and having one tuple of arguments as
well as a slot for an optional bonus. Since transfer acts as a non-relational
predicate in this KB atom, it is a non-relational predicate in the entire KB
(although it acts as a relation in the rule).

Let us query the KB: The query work(?P ?C ?J) uses the relational KB
predicate work in a relationship, while the query ?O# work(?P ?C ?J) uses
work non-relationally with an OID variable ?O, which can be bound to a virtual
OID created by objectification. The transfer(?P ?C1 ?C2) query uses the
non-relational KB predicate transfer without an OID. The transfer rule
is invoked, binding ?P to Kate, ?C1 to Rho4biz, and ?C2 to Chi4corp. The
second solution is dependent on query objectification, introducing the existen-
tial OID variable ?1, yielding Exists ?1 (?1# transfer(?P ?C1 ?C2)); the
transfer fact is retrieved with the bonus slot ignored, binding ?P to Tony,
?C1 to Rho4biz, and ?C2 to Chi4corp (the ?1 binding to e1 is not shown

134 G. Zou and H. Boley

because of its Exists encapsulation). In the query ?O# transfer(?P ?C1 ?C2),
transfer acts as a class – i.e., as a non-relational predicate – with an explicit
OID variable ?O. For successful query answering, the transfer rule (e.g., its
conclusion) requires objectification while the fact can be used directly.

More (e.g., geospatial) examples and the open-source implementation of
PSOA are available online,3 for explorations in its operational semantics.

3 Minimal Objectification

In PSOA RuleML, each oidless psoa atom σ is understood as having an implicit
OID, which allows the interchangeable use of oidless and oidful atoms of the
respective term forms (1) and (2) in Sect. 2. The earlier semantics can only
interpret an oidless psoa term after static objectification, which generates OIDs
for all of the KB’s oidless terms. This causes reasoning overhead for an atom
whose predicate in the KB clauses is used only as a Prolog-like relation, e.g.
does not occur with an OID or slots. Moreover, since it will turn out that it is
inappropriate to give OIDs to expressions, the earlier semantics cannot deal with
expression terms. In this section, we will thus first introduce a modified model-
theoretic semantics to allow the direct interpretation of oidless psoa terms. Then
we will discuss an objectification systematics for oidless atoms, including undif-
ferentiated and differentiated static objectification transformations, as well as a
novel static/dynamic transformation. Static/dynamic objectification is minimal
in the sense that it generates as few explicit OIDs as possible, instead construct-
ing virtual OIDs as query variable bindings. The current section assumes that the
only allowed embedded complex terms are expressions, which can be achieved
by maximal unnesting of embedded atoms – the central theme of Sect. 4.

3.1 New Semantics for Oidless Psoa Terms

The earlier semantics of PSOA RuleML [4] defined the interpretation of a psoa
term as follows, where I is a generic mapping for interpreting any term:

I (o#f([t1,1 . . . t1,n1] . . . [tm,1 . . . tm,nm] p1->v1 . . . pk->vk) =

I psoa(I (f))(I (o),

{〈I (t1,1), . . . , I (t1,n1)〉, . . . , 〈I (tm,1), . . . , I (t1,nm)〉},
{〈I (p1), I (v1)〉, . . . , 〈I (pk), I (vk)〉})

(3)

I first gives a domain element interpretation in D to each component of the
psoa term, including: the OID o; the predicate/function f; each positional argu-
ment ti,j, 1 ≤ i ≤ m, 1 ≤ j ≤ ni; each slot name ph and filler vh, 1 ≤ h ≤ k.
Then I psoa maps I (f) ∈ D to a semantic function of the general form
D ind × SetOfFiniteBags(D* ind) × SetOfFiniteBags(D ind × D ind) → D ,
which takes the following three arguments and returns an element d ∈ D :
3 See PSOA’s entry to the RuleML website: http://psoa.ruleml.org.

http://psoa.ruleml.org

Minimal Objectification and Maximal Unnesting in PSOA RuleML 135

– The interpreted OID I (o) ∈ D ind;
– The bag of interpreted tuples {〈I (ti,1), . . . , I (ti,ni)〉 | 1 ≤ i ≤ m}

∈ SetOfFiniteBags(D* ind), where D* ind denotes the set of all finite-length
tuples over D .

– The bag of interpreted slots {〈I (ph), I (vh)〉 | 1 ≤ h ≤ k}
∈ SetOfFiniteBags(D ind × D ind).

I psoa can be applied to I (f) no matter f is a predicate or function symbol,
where I psoa(I (f)) must be a D ind-valued semantic function if f is a function.
Notice that in the above definitions, the mappings I and I psoa are only defined
for oidful psoa terms and their predicates/functions, hence all psoa terms need
to be objectified before applying the semantics. This has several shortcomings:

– Expressions should not have OIDs, which will be explained in Sect. 4.
– Atoms are required to have OIDs before they can be semantically evaluated,

which creates overhead for each atom whose predicate in the KB clauses is
used only as a Prolog-like relation.

In order to resolve these problems, we will redefine I and I psoa to allow a
direct interpretation of oidless psoa terms, and also incorporate the objectifi-
cation virtually into the semantics using a logical equivalence. Specifically, the
following changes are introduced:

1. The definition of I for oidful psoa terms is changed to

I (o#f([t1,1 . . . t1,n1] . . . [tm,1 . . . tm,nm] p1->v1 . . . pk->vk)) =

I psoa(I (f))({I (o)},
{〈I (t1,1), . . . , I (t1,n1)〉, . . . , 〈I (tm,1), . . . , I (t1,nm)〉},
{〈I (p1), I (v1)〉, . . . , 〈I (pk), I (vk)〉})

(4)

where the first argument of the semantic function I psoa(I (f)) is wrapped
into a singleton set {I (o)}. This allows defining I for oidless psoa terms
separately, by using the empty set {} as the first argument:

I (f([t1,1 . . . t1,n1] . . . [tm,1 . . . tm,nm] p1->v1 . . . pk->vk)) =

I psoa(I (f))({},
{〈I (t1,1), . . . , I (t1,n1)〉, . . . , 〈I (tm,1), . . . , I (t1,nm)〉},
{〈I (p1), I (v1)〉, . . . , 〈I (pk), I (vk)〉})

(5)

2. The definition of I psoa is changed to map D to semantic functions
of the form SetOfPhiSingletons(D ind) × SetOfFiniteBags(D* ind) ×
SetOfFiniteBags(D ind × D ind) → D , where SetOfPhiSingletons(D ind)
is defined as {{}} ∪ {{o} | o ∈ D ind}, whose elements contains the empty
set {} and a singleton set {o} for each o ∈ D ind. With this definition, the
semantic function I psoa(I (f)) can be correctly applied to the arguments in
Eqs. (4) and (5).

136 G. Zou and H. Boley

3. Define truth evaluation for oidless psoa terms used as atoms as follows.

TValI(f([t1,1 . . . t1,n1] . . . [tm,1 . . . tm,nm] p1->v1 . . . pk->vk)) =
I truth(I (f([t1,1 . . . t1,n1] . . . [tm,1 . . . tm,nm] p1->v1 . . . pk->vk)) (6)

Here, the following objectification restriction is required to capture the logical
equivalence between an oidless atom (notice the absence of “o#” in front of
“f(...)”) and its existentially objectified form:

TValI(f([t1,1 . . . t1,n1] . . . [tm,1 . . . tm,nm] p1->v1 . . . pk->vk)) = t

if and only if

TValI(Exists ?O (?O#f([t1,1 . . . t1,n1] . . . [tm,1 . . . tm,nm] p1->v1 . . . pk->vk))) = t

where ?O is a fresh variable representing the postulated virtual OID of the
atom. Notice that the restriction applies only to atoms – after unnesting
(cf. Sect. 4) occurring only the top-level – but not to – embedded – expres-
sions, which do not have a truth value. In the rest of the paper, we will
call the semantics with and without objectification restriction objectification-
including and objectification-excluding semantics, respectively.

Next we define the objectification transformation, which realizes the objecti-
fication-including semantics by transforming KBs and queries such that entail-
ment can be established under the objectification-excluding semantics.

Definition 1. (Entailment under objectification-excluding/-including seman-
tics) An interpretation I is an objectification-excluding (resp., objectification-
including) model of φ, written as I |=-o φ (resp., I |=+o φ), iff TValI(φ) = t and
TValI conforms to all other semantic restrictions [4] (e.g., slotribution/tupribu-
tion), while it does not (resp., does) guarantee the objectification restriction. A
KB φ entails a query q under the objectification-excluding (resp. objectification-
including) semantics, written as φ |=-o q (resp., φ |=+o q), iff for every I such
that I |=-o φ (resp. I |=+o φ), I |=-o q (resp. I |=+o q) holds.

Since the default semantics is objectification-including, we will use the short
notation |= for |=+o in the rest of the paper.

Definition 2. (Objectification Transformation) An objectification transforma-
tion obj with respect to a set of KBs Φ and a set of queries Q is a transformation
Φ × Γ → Γ , where Φ and Q are subsets of Γ , such that for every KB φ ∈ Φ and
query q ∈ Q, φ |= q iff obj(φ,φ) |=-o obj(φ, q). For convenience, we write obj(q)
for obj(φ, q) if obj(φ, q) is independent of φ, and obj(φ) for obj(φ,φ).

The second argument of obj is the input formula to be transformed, while
the first argument is the corresponding KB of the formula providing necessary
context information. Next, we define a schema for constructing such a transfor-
mation obj for KBs and queries from a transformation defined only for atoms.

Minimal Objectification and Maximal Unnesting in PSOA RuleML 137

Definition 3. Given a set of KBs Φ and a set of queries Q, for any φ ∈ Φ, if
obj(φ, τ) has been defined, with τ being any atom, then obj(φ, τ) can be extended
for τ being a formula other than an atom, where (1) for a subclass or an equality,
obj(φ, τ) = τ is just a projection; (2) for other formulas, obj(φ, τ) is obtained by
recursively applying obj to each subformula of τ , while keeping the surrounding
formula structure unchanged.

Note that obj(φ, τ) is the same as the formula obtained by replacing every
atom ω in τ with obj(φ,ω); for some ω’s, this is just a projection obj(φ,ω) = ω.
In the rest of the paper we assume every obj is constructed using Definition 3.

In order to prove φ |= q iff obj(φ) |=-o obj(φ, q), as required by Definition 2
for any particular obj, one can prove φ |= q iff obj(φ) |= obj(φ, q) and obj(φ) |=
obj(φ, q) iff obj(φ) |=-o obj(φ, q). The next lemma gives a sufficient condition
for φ |= q iff obj(φ) |= obj(φ, q), where we write Var(τ) for the set of all free
variables in a formula τ , M(Var(τ),D) for the set of all mappings from Var(τ)
to D , and v(I, IV) for an interpretation that coincides with IV on all variables
it interprets, and with I on everything else.

We say that a formula has a positive occurrence if it is in a fact or a rule
conclusion, and a negative occurrence if in a query or a rule premise. A semantic
structure I is called a counter-model for φ |= q if I |= φ and I �|= q.

Lemma 1. Given a KB φ, a query q, and a transformation obj, φ |= q iff
obj(φ) |= obj(φ, q) holds if obj has the following properties:

(1) For every counter-model I for φ |= q, there exists I ′ s.t. for every KB/query
atom ω, IV ∈ M(Var(ω), I.D),

(1.a) if ω is positive and v(I, IV) |= ω, then v(I ′, IV) |= obj(φ,ω);
(1.b) if ω is negative and v(I ′, IV) |= obj(φ,ω), then v(I, IV) |= ω.

(2) For every counter-model I ′ for obj(φ) |= obj(φ, q), there exists I s.t. for
every KB/query atom ω, IV ∈ M(Var(ω), I ′.D),

(2.a) if ω is positive and v(I ′, IV) |= obj(φ,ω), then v(I, IV) |= ω,
(2.b) if ω is negative and v(I, IV) |= ω, then v(I ′, IV) |= obj(φ,ω).

Proof. (Sketch) Proving φ |= q iff obj(φ) |= obj(φ, q) is equivalent to proving
φ �|= q iff obj(φ) �|= obj(φ, q). We first prove the ‘if’ part. If obj(φ) �|= obj(φ, q),
then there exists a counter-model I ′ for obj(φ) |= obj(φ, q). Using condition
(2.a), we can prove by induction that for every positive formula τ and IV ∈
M(Var(τ), I.D), if TValv(I′,IV)(obj(φ, τ)) = t then TValv(I,IV)(τ) = t. Using
condition (2.b), we can also prove by induction that for every negative formula
τ , if TValv(I,IV)(τ) = t then TValv(I′,IV)(obj(φ, τ)) = t.

Then we can prove that for each top-level formula τ in φ, TValI(obj(φ, τ)) = t.

– If τ is a ground fact, τ is a positive formula so TValI(obj(φ, τ)) = t.
– If τ is a rule of the form Forall ?X1 . . . ?Xn (τ1 :- τ2), TValI′(τ) = t

means for every IV∗ ∈ M({?X1, . . . , ?Xn}, I.D), TValv(I′,IV∗)(τ1) = t or
TValv(I′,IV∗)(τ2) = f holds. Since τ1 is positive and τ2 is negative, either
TValv(I,IV∗)(τ1) = t or TValv(I,IV∗)(τ2) = f holds for every IV*. So TValI(τ) = t.

138 G. Zou and H. Boley

– If τ is a non-ground fact, it can be seen as a rule with an empty premise, so
that the above proof for general rules still apply.

Hence I |= φ. Also since the query q is negative, hence I �|= q. Thus φ �|= q.
The ‘only if’ part can be proved using a similar approach based on the exis-

tence of a counter-model I ′ for obj(φ) |= obj(φ, q).

Corollary 1. Given a KB φ, a query q, and a transformation obj, φ |= q iff
obj(φ) |= obj(φ, q) holds if for every KB/query atom ω and semantic structure
I∗, I∗ |= ω iff I∗ |= obj(φ,ω) holds.

Proof. We will show that obj has the properties (1) and (2) in Lemma 1. For
property (1), if I is a counter-model for φ |= q, then we can choose I ′ = I. For
every IV ∈ M(Var(ω), I.D), according to the assumption where I∗ becomes
v(I, IV), we have v(I, IV) |= ω iff v(I, IV) |= obj(φ,ω). Hence (1.a) and (1.b)
are satisfied and obj has property (1).

That obj has property (2) can be proved similarly by choosing I = I ′.

Lemma 2 gives a sufficient condition for obj(φ) |= obj(φ, q) iff obj(φ) |=-o
obj(φ, q).

Lemma 2. Given a KB φ′ and a query q′, φ′ |= q′ iff φ′ |=-o q′ holds if for each
counter-model I ′′ for φ′ |=-o q′ there exists a counter-model I ′ for φ′ |= q′.

Proof. We first prove the ‘if’ part. For every I ′ s.t. I ′ |= φ′, I ′ |=-o φ′ since
|= more restricted than |=-o . Also since φ′ |=-o q′, I ′ |=-o q′. Because I ′ |= φ′,
I ′ guarantees the objectification restriction. Hence I ′ |= q′ always holds and
φ′ |= q′ is proved.

Next we prove the ‘only if’ part, which is equivalent to φ′ �|= q′ if φ′ �|=-o q′.
If φ′ �|=-o q′, there exists a counter-model I ′′ for φ′ |=-o q′. According to the
assumption of the lemma, there exists a counter-model I ′ for φ′ |= q′, hence
φ′ �|= q′ is proved.

The next subsections will discuss different objectification transformations.

3.2 Static Objectification Transformations

The static objectification objs(α) of a KB/query α is obtained by replacing each
oidless atom σ with its objectified form objs(σ) having a generated OID. The
generation can adopt either an undifferentiated method objs= , which uniformly
transforms σ everywhere, or a differentiated method objs �= [6], which transforms
σ differently based on its occurrence.

Definition 4. (Undifferentiated static objectification) The undifferentiated sta-
tic objectification objs=(ω) of atom is (a) ω if ω is oidful; (b) Exists ?i
(?i#f(...)) if ω is oidless, where ?i is a fresh variable in the clause chosen
from ?1, ?2, ...

objs= is extended for other formulas according to Definition 3.

Minimal Objectification and Maximal Unnesting in PSOA RuleML 139

In Example 1, objs= of the KB and the queries replaces all oidless transfer,
work, and acquire atoms with their existential forms.

The following theorem shows the correctness of objs= .

Theorem 1. objs= is an objectification transformation for any KB and query.

Proof. We first show that for every KB / query atom ω and semantic structure
I∗, I∗ |= ω iff I∗ |= objs=(ω) holds. If ω is oidful, then objs=(ω) = ω, and the
statement holds trivially. Otherwise ω is oidless. If I∗ |= ω, then I∗ guarantees
the objectification restriction. So TValI∗(objs=(ω)) = TValI∗(ω) = t, and I∗ |=
objs=(ω) holds. Similarly, if I∗ |= objs=(ω), I∗ |= ω also holds. Hence I∗ |= ω iff
I∗ |= objs=(ω) holds also for oidless atoms. Thus the condition of Corollary 1 is
fulfilled and φ |= q iff objs=(φ) |= objs=(q).

Next we will show that for each objs=(φ) and objs=(q), the condition of
Lemma 2 is fulfilled. If there exists a counter-model I ′′ for φ |= q, then it can be
made into a model I ′ that guarantees the objectification restriction, by redefining
TValI′(ω) for every atom ω that is oidless to be the same as TValI′′(objs=(ω)).
Since the change only affect oidless atoms, which neither exist in objs=(φ) nor
in objs=(q), TValI′(φ) = TValI′′(φ) = t and TValI′(q) = TValI′′(q) = f. Hence
I ′ is a counter-model for φ |= q and the condition of Lemma 2 is fulfilled. Thus
objs=(φ) |= objs=(q) iff objs=(φ) |=-o objs=(q).

So φ |= q iff objs=(φ) |=-o objs=(q) and the theorem is proved.

Definition 5. (Differentiated static objectification) For an atom ω, the differ-
entiated static objectification objs �=(ω) is defined as ω if ω is oidful, or as follows
if ω is oidless:

Case 1: If ω is a ground fact, objs �=(ω) = i # f(...), where i is a fresh local
constant symbol chosen from 1, 2, ..., which neither occurs elsewhere in the
KB nor is used for the objectification of other atoms.

Case 2: If ω is a non-ground fact, a rule conclusion atom, or a query atom,
objs �=(ω) = Exists ?j (?j # f(...)).

Case 3: If ω is a rule premise atom, objs �=(ω) = ?j # f(...), where ?j is a fresh
variable scoped universally by the enclosing rule.

objs �= is extended for other formulas according to Definition 3.

In Example 1, differentiated static objectification generates a fresh OID con-
stant for the work ground fact according to Case 1, replaces the oidless work
and transfer atoms in the rule conclusion and in the queries with existentials
according to Case 2, and generates fresh universal OID variables for the work
and acquire atoms in the rule premise according to Case 3.

It is easy to prove the correctness of objs �= by showing that it leads to the
same set of entailed queries as objs= .

Lemma 3. Given a KB φ and a query q, if q does not use a generated OID
constant symbol 1, 2, ..., then objs=(φ) |=-o objs=(q) iff objs �=(φ) |=-o objs �=(q).

140 G. Zou and H. Boley

Proof. According to their definitions, both methods transform oidless query
atoms into the same existential form, hence objs=(q) = objs �=(q) for any query q.
Thus objs �=(φ) |=-o objs=(q) iff objs �=(φ) |=-o objs �=(q).

For KB atoms, the two methods are identical in Case 2 and differ in Case 1
and 3. The transformation of a rule premise atom in Case 3 using a universal
OID variable on the top-level is equivalent to using an embedded existentially
quantified formula with an existential OID variable in the rule premise. For a
ground fact ω handled by Case 1, objs �=(ω) can be seen as a Skolemized version
of objs=(ω) using Skolem constants 1, 2, ..., hence they entail the same set of
queries as long as these queries do not use the Skolem constants, thus avoiding a
clash of constant symbols. Hence we have objs=(φ) |=-o objs=(q) iff objs �=(φ) |=-o
objs=(q). So objs=(φ) |=-o objs=(q) iff objs �=(φ) |=-o objs=(q), and the lemma
holds.

Theorem 2. objs= is an objectification transformation with respect to a set of
KBs Φ and to a set of queries Q that do not use constants 1, 2, ...

Proof. For any φ ∈ Φ and q ∈ Q, by Theorem 1 we have φ |= q iff objs=(φ) |=-o
objs=(q). By Lemma 3, objs=(φ) |=-o objs=(q) iff objs �=(φ) |=-o objs �=(q). Hence
φ |= q iff objs �=(φ) |=-o objs �=(q). So the statement holds by Definition 2.

3.3 Static/Dynamic Objectification Transformation

For KBs in which most or all of the predicates are Prolog-like relations, it is
often not necessary to generate OIDs for their oidless atoms explicitly. In this
subsection, a novel static/dynamic objectification approach is introduced to keep
unchanged as many of the KB’s oidless atoms as possible, instead constructing
virtual OIDs at query time when bindings for OID variables are being queried.

In order to apply static/dynamic objectification to a KB φ and its queries,
the set of KB predicates PredKB(φ) will be partitioned into two disjoint subsets.
PredKB(φ) is defined as {Pred(λ) | λ is an atom in φ}, where Pred(λ) denotes
the predicate symbol of λ. The partitioning of PredKB(φ) is defined next.

Definition 6. (Non-relational and relational predicates) Given a KB φ, a pred-
icate f ∈ PredKB(φ) is non-relational in φ if f occurs at least once in a multi-
tuple, oidful, or slotted atom of φ, or in a subclass formula of φ. Conversely, f
is relational in φ if it has no such occurrence. The sets of non-relational and
relational predicates of φ are written as PredKBNR(φ) and PredKBR(φ), respec-
tively.

For atoms using a relational predicate in PredKBR(φ), their OIDs can be
virtualized by dynamic objectification:

Definition 7. (Dynamic objectification) The dynamic objectification objd(φ,ω)
of an atom ω with respect to a KB φ, where Pred(ω) ∈ PredKBR(φ), is defined
as ω if ω is a KB atom in φ, or as the following rewriting if ω is a query atom:

Case 1: If ω is a relationship, objd(φ,ω) = ω.

Minimal Objectification and Maximal Unnesting in PSOA RuleML 141

Case 2: If ω has a non-variable (e.g., constant or expression) OID or a slot,
objd(φ,ω) = Or(), where Or() is an encoding of explicit falsity.

Case 3: If ω has an OID variable and m > 0 tuples, being of
the form ?O#f([t1,1 . . . t1,n1] . . . [tm,1 . . . tm,nm]), equivalent (via ‘class-
reproducing’ tupribution) to a conjunction separately applying ?O#f to all
tuples,

And(?O#f([t1,1 . . . t1,n1]) . . . ?O#f([tm,1 . . . tm,nm])),

abbreviated to

And(?O#f(t1,1 . . . t1,n1) . . . ?O#f(tm,1 . . . tm,nm)),

then objd(φ,ω) is a relational conjunction querying the oidless versions of
these applications while using explicit equalities between the OID variable ?O
and an OID-constructor function oidcons applied to the predicate and the
elements of each tuple (where the ?O equalities also enforce tuple unification,
so that the m single-tuple f relationships can be satisfied by a single KB
clause, thus realizing special ‘virtual multi-tuple’ psoa atoms as queries):

And(f(t1,1 . . . t1,n1) ?O = oidcons(f t1,1 . . . t1,n1)

. . .

f(tm,1 . . . tm,nm) ?O = oidcons(f tm,1 . . . tm,nm))

In the special case of m = 1, the query atom ?O#f(t1 . . . tn) becomes

And(f(t1 . . . tn) ?O = oidcons(f t1 . . . tn))

The function oidcons is employed to universally construct OIDs for all
relationships so that it needs to take the predicate symbol as the first argument
to distinguish between relationships with different predicates.

Case 4: If ω is a membership of the form ?O#f, objd(φ,ω) is a disjunction of
k formulas objd(?O#f(?X1 . . . ?Xni)), where n1, . . . , nk are the k different
arities of f in the KB:

Or(objd(?O#f(?X1 . . . ?Xn1)) . . . objd(?O#f(?X1 . . . ?Xnk)))

Case 5: If ω of the form f(. . .) has no OID but m tuples, m > 1, objd(φ,ω) =
Exists ?O (objd(?O#f(...))), where ?O is a fresh variable in the query.

Definition 8. (Static/dynamic objectification) Let objs be a transformation
chosen from {objs �= , objs=} and φ be a KB. The static/dynamic objectification
objs+d(φ,ω) of an atom is objs(φ,ω) if Pred(ω) ∈ PredKBNR(φ), or objd(φ,ω)
if Pred(ω) ∈ PredKBR(φ). objs+d is extended for the KB φ and other formulas,
using Definition 3, if the following conditions are satisfied:

(i) For every KB clause, universal variables occurring in its conclusion must also
occur in its premise (e.g., prohibiting non-ground facts).

142 G. Zou and H. Boley

(ii) There does not exist a predicate variable or an untyped (Top-typed) atom with
positional arguments in the premise of a rule or in the top-level query.

In Example 1, conditions (i) and (ii) are satisfied so that static/dynamic
objectification can be applied. In the KB, the predicate work is relational while
the others are non-relational. Thus, all oidless work atoms are kept unchanged
while for the other oidless atoms OIDs are introduced via one of the two sta-
tic methods. The query ?O# work(?P ?C ?J) is rewritten into the conjunction
And(work(?P ?C ?J) ?O= oidcons(work ?P ?C ?J)) according to Case 3 of
Definition 7.

In the following we will show the correctness of objs=+d and objs �=+d, which
correspond to the two objs+d versions using objs= and objs �= for the static part.

Lemma 4. Let φ be a KB and q be a query without oidcons and let φ and q
comply to the above conditions (i) and (ii). Then objs=+d has the properties (1)
and (2) of Lemma 1 with respect to φ and q.

Proof. (Sketch) If I is a counter-model for φ |= q, we can define I ′ to be
modified from I by adding interpretation of oidcons so that for every rela-
tionship ω where Pred(ω) ∈ PredKBR(φ), being of the form f(t1 . . . tn),
TValI′(oidcons(f t1 . . . tn)#f(t1 . . . tn)) = t. This is done by making
I (oidcons(f t1 . . . tn)) the domain element that represents the OID of ω.
We can prove that I ′ fulfills the conditions (1.a) and (1.b) for every KB/query
atom ω and IV ∈ M(Var(ω), I.D) performing a case-by-case analysis for ω. We
can also prove that objs=+d satisfies conditions (2) by choosing I = I ′ and doing
a case-by-case analysis.

Lemma 5. Let φ be a KB and q be a query without oidcons, let φ and q
comply to the above conditions (i) and (ii), and let φ′ = objs=+d(φ) and q′ =
objs=+d(φ, q). Then φ′ and q′ fulfill the conditions of Lemma 2.

Proof. (Sketch) If I ′′ is a counter-model for φ′ |=-o q′, then I ′′ |=-o φ′ and I ′′ �|=-o
q′. We modify I ′′ into a semantic structure I ′ that guarantees the objectification
restriction using the following redefinitions:

(a) For every oidful atom ω′ in φ′ and q′, we redefine TValI′(ω) for its oidless
form ω to be the same as TValI′′(ω′).

(b) For every oidless atom ω′ in φ′ and q′ of the form f(t1 . . . tn),
let o(ω′) be the virtual OID oidcons(f t1 . . . tn); we redefine
TValI′(o(ω′)#f(t1 . . . tn)), TValI′(o(ω′)#f), and TValI′(o(ω′)#Top(t1 . . . tn))
to be the same as TValI′′(ω′). All other atoms that have a component o(ω′)
are required to evaluate to false.

If Pred(ω′) ∈ PredKBNR(φ′), definition (a) applies, and the redefinition would
not affect the truth evaluation for formulas in φ′ and q′ since ω does not occur
in φ′.

If Pred(ω′) ∈ PredKBR(φ′), definition (b) applies, and the objectification
restriction is guaranteed. We will show that the redefinition would not affect the

Minimal Objectification and Maximal Unnesting in PSOA RuleML 143

truth evaluation for top-level formulas in φ′ and q′. Since f ∈ PredKBR(φ′), it does
not occur in an oidful or multi-tuple atom. So I ′ preserves the truth evaluation
of all atoms with the predicate f. We discuss different top-level formulas τ in φ′:

– For τ being a ground fact, if Pred(τ) ∈ PredKBR(φ′) then TValI′(τ) =
TValI′′(τ) = t. Otherwise, its components cannot be interpreted to any o(ω′)
so TValI′(τ) = TValI′′(τ) = t still holds.

– τ being a non-ground fact is disallowed by condition (i).
– For τ being a rule Forall ?X1 . . . ?Xn (τ1 :- τ2), for every IV ∈

M({?X1, . . . , ?Xn}, I ′′.D), if for some i, IV(?Xi) interprets to any o(ω′), then
it can be shown that TValv(I′,IV)(τ2) = f always holds based on Conditions
(i) and (ii). So TValv(I′,IV)(τ1 :- τ2) = t. Otherwise, TValv(I′,IV)(τ1 :- τ2) =
TValv(I′′,IV)(τ1 :- τ2) = t. Hence TValI′(τ) = t.

I ′ can also be verified to conform to the subclass and slotribution/tupribu-
tion restrictions. So I ′ is a counter-model for φ′ |= q′, and the lemma holds.

Theorem 3. objs=+d is an objectification transformation with respect to a set
of KBs Φ and a set of queries Q that do not use oidcons and satisfy conditions
(i) and (ii).

Proof. By Lemmas 4, φ |= q iff objs=+d(φ) |= objs=+d(φ, q). By Lemmas 5
and 5, objs=+d(φ) |= objs=+d(φ, q) iff objs=+d(φ) |=-o objs=+d(φ, q). Hence φ |= q
iff objs=+d(φ) |=-o objs=+d(φ, q) and the theorem is proved.

Theorem 4. objs �=+d is an objectification transformation with respect to KBs
Φ and queries Q that do not use constants oidcons, 1, 2, ... and satisfy
conditions (i) and (ii).

Proof. (Sketch) This can be proved similarly to Theorem 2 by first proving a
corresponding version of Lemma 3 for objs �=+d and objs=+d.

4 Maximal Unnesting

In this section we first discuss the syntax and semantics of embedded psoa terms
and then formally define the unnesting transformation of nested atomic formulas.
Unnesting is maximal in the sense that it can extract atoms not only from other
atoms but also from expressions, which may themselves be embedded at any
level.

4.1 Syntax and Semantics of Embedded Psoa Terms

In PSOA RuleML, embedded psoa terms can be semantically classified into
expressions or atoms, and syntactically classified into oidful or oidless terms. We
will discuss different combinations of the two dimensions in the following.

144 G. Zou and H. Boley

Expressions. A psoa expression is a psoa term interpreted as a function appli-
cation. Like in classical logic and logic programming languages, we require a
(psoa) expression to be oidless, having the form f(. . .), with f acting as a func-
tion, hence leading to an arbitrary value. The expression cannot be given an
OID and have the form o#f(. . .), because this would make f act the class of o,
hence lead to a truth value.

The semantics for expressions uses the I and I psoa mappings defined in
Sect. 3.1. However, because these expressions must be oidless, I psoa interprets
I (f) into a semantic function that takes the empty set for oidless psoa terms,
besides a bag of tuples and a bag of slots, and returns an arbitrary domain
element. The lack of an OID for an expression also prevents its slotribu-
tion/tupribution, thus avoiding that its arbitrary value gets ‘distributed over’
the resulting conjunction of single-slot/tuple expressions or ‘absorbed by’ its
truth value.4

Atoms. A psoa atom is a psoa term interpreted as a predicate application.
Embedded atoms have been widely used in object-centered languages such as
RDF, N3 [8], and Flora-2/F-logic [9] as a shorthand notation. An atomic formula
containing an embedded atom can be unnested into a conjunction of trimmed
formulas, which will be illustrated in Sect. 4.2.

In RDF and N3, embedded atoms are oidless and are ‘objectified-while-
embedded’ using blank nodes, while in Flora-2/F-logic they are oidful. Because
in PSOA/PS the set Const of constants contains both functions and predicates
(cf. Sect. 2), an oidless embedded atom cannot be distinguished from an expres-
sion through the alphabet, hence we use the syntactic distinction between an
embedded oidless term for an expression and an embedded oidful term for an
atom. The distinction applies only to embedded psoa terms but not to top-level
terms, where both oidful and oidless forms are interpreted as atoms. To indi-
cate an RDF/N3-like embedded blank node, the atom can use an explicit OID,
thus: (1) #f(...) in ground facts, where ‘ ’ is the fresh-constant generator;
(2) Exists ?O (... ?O#f(...) ...) in non-ground facts and rule conclusions;
and (3) ?#f(...) in queries/rule premises, where ‘?’ is the anonymous variable.

4.2 Unnesting Transformation for Embedded Psoa Atoms

In this section we will define the unnesting transformation Unnest(α) for a given
atomic formula α, which is extended from the definition in [10]. Before per-
forming Unnest(α), anonymous OID constants and variables in α need to be
eliminated, because they cannot be used as co-references for the same con-
stant/variable in two separate formulas. The elimination can be done by replac-
ing ‘ ’ with a fresh constant and ‘?’ with a fresh variable.

4 Relfun’s valued conjunctions of functional-logic expressions only retain the value of
the right-most, ‘&’-prefixed conjunct: http://www.relfun.org.

http://www.relfun.org

Minimal Objectification and Maximal Unnesting in PSOA RuleML 145

In the following we give the definition of Unnest(α) based on the recursive
Atoms. Here, Oid(t) denotes the OID of an oidful term t. Also, Parts(t) denotes
the set of top-level components of an atomic formula or a term t, including,
optionally, Oid(t), its positional arguments, slot names, slot fillers, as well as its
predicate/function.

Unnest(α) :: = And(σ1 . . . σn) s.t. {σ1, . . . ,σn} = ∪t∈Parts(α)Atoms(t)
⋃

{Trim(α)}

Atoms(t) :: =

⎧⎨
⎩

∅ t is a simple term
∪s∈Parts(t)Atoms(s) t is oidless (expression)

∪s∈Parts(t)Atoms(s)
⋃{Trim(t)} t is oidful (atom)

Trim(t) :: = Term/Formula obtained by replacing every s ∈ Parts(t) in t with Retain(s)

Retain(t) :: =

⎧⎨
⎩

t t is a simple term
Trim(t) t is oidless (expression)
Retain(Oid(t)) t is oidful (atom)

Unnest(α) is a conjunction of formulas σi without embedded atoms. Each
σi is a trimmed version of the top-level formula α or of some embedded psoa
atom. The set Atoms(t) contains each σi trimmed from an atom embedded in
t or t itself. It is constructed by recursively traversing through each component
s ∈ Parts(t), collecting Atoms(s) into Atoms(t), and then adding Trim(t) to
Atoms(t) if t is oidful, which indicates that t is an atom. The transformation
Trim(t) splits off all embedded atoms from t and leaves behind its ‘ultimate’
OID for each of them. It is constructed by replacing each s ∈ Parts(t) with
Retain(s), which defines the left-behind term for each embedded term s.

In the following we use an example to explain the unnesting transformation.
Let the input formula α be o1#c(p->f(o2#c#d)). Note that ‘#’ is left-associative,
hence the embedded atom o2#c#d is interpreted to have the OID o2#c and the
class d. The conjuncts of Unnest(α) are constructed as follows:

{σ1, . . . ,σn} = ∪t∈Parts(α) Atoms(t)
⋃

{Trim(α)}
=(Atoms(o1) ∪ Atoms(c) ∪ Atoms(p) ∪ Atoms(f(o2#c#d))

⋃
{Trim(α)}

=Atoms(f(o2#c#d))
⋃

{Trim(α)}
=(Atoms(f) ∪ Atoms(o2#c#d))

⋃
{Trim(α)}

=Atoms(o2#c#d)
⋃

{Trim(α)}
=(Atoms(o2#c) ∪ Atoms(d) ∪ {Trim(o2#c#d)})

⋃
{Trim(α)}

=Atoms(o2#c)
⋃

{Trim(o2#c#d)}
⋃

{Trim(α)}
=(Atoms(o2) ∪ Atoms(c) ∪ {Trim(o2#c)})

⋃
{Trim(o2#c#d)}

⋃
{Trim(α)}

= {Trim(o2#c),Trim(o2#c#d),Trim(α)}

The Trim transformations work as follows, using the recursive Retain trans-
formation:

146 G. Zou and H. Boley

Trim(o2#c) =Retain(o2)#Retain(c) = o2#c

Trim(o2#c#d) =Retain(o2#c)#Retain(d)
=Retain(Oid(o2#c))#d = Retain(o2)#d = o2#d

Trim(α) =Trim(o1#c(p->f(o2#c#d)))
=Retain(o1)#Retain(c)(Retain(p)->Retain(f(o2#c#d)))
= o1#c(p->Retain(f)(Retain(o2#c#d)))
= o1#c(p->f(Retain(Oid(o2#c#d))))
= o1#c(p->f(Retain(o2#c)))
= o1#d(p->f(o2))

Hence, the unnesting Unnest(α) results in And(o2#c o2#d o1#c(p->f(o2))).
The unnesting transformation has been implemented in the latest release of

PSOATransRun 1.1 using a separate ANTLR tree walker.

5 Conclusions

This paper discusses advanced objectification and unnesting transformations for
the PSOA RuleML language as well as a novel model-theoretic semantics.

The refined semantics is introduced to allow a direct interpretation of oidless
psoa terms. It includes the objectification restriction to establish the equivalence
between an oidless atom and its existentially objectified form. Based on the
new semantics, a systematics of three objectification transformations is defined,
whose correctness is proved. A novel static/dynamic objectification approach for
oidless atoms is introduced, which is minimal in that it generates as few explicit
OIDs as possible, instead constructing virtual OIDs as query variable bindings.
This approach provides better efficiency for the PSOATransRun implementation
by allowing direct use of the underlying Prolog engine.

The unnesting transformation is formalized to decompose nested atomic
formulas into equivalent conjunctions before applying the model-theoretic
semantics. Unnesting is maximal in that it can recursively extract oidful atoms
– leaving behind their OIDs – not only from other atoms but also from expres-
sions, which may themselves be embedded at any level. Since embedded oidless
terms are interpreted as expressions (usable, e.g., as ‘passive’ data construc-
tors), rather than as atoms to be ‘objectified-while-embedded’, for embedded
atoms OIDs need to be explicitly provided to enable unnesting. The unnesting
transformation has been implemented in PSOATransRun 1.1.

Future work includes exploring further optimizations for objectification and
complementing the unnesting transformation with a flattening transformation
for extracting ‘active’ expressions from both atoms and expressions. For this,
PSOATransRun’s flattening of expressions calling built-in functions can be easily
transferred to expressions with equality-defined functions.

Minimal Objectification and Maximal Unnesting in PSOA RuleML 147

References

1. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42(4), 741–843 (1995)

2. Yang, G., Kifer, M.: Reasoning about anonymous resources and meta statements
on the Semantic Web. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal
on Data Semantics I. LNCS, vol. 2800, pp. 69–97. Springer, Heidelberg (2003)

3. Boley, H., Kifer, M.: RIF Basic Logic Dialect, 2nd edn. W3C Recommendation.
http://www.w3.org/TR/rif-bld

4. Boley, H.: A RIF-Style semantics for RuleML-integrated positional-slotted, object-
applicative rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML
2011 - Europe. LNCS, vol. 6826, pp. 194–211. Springer, Heidelberg (2011)

5. Boley, H.: PSOA RuleML: Integrated object-relational data and rules. In: Faber,
W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 114–150.
Springer, Heidelberg (2015)

6. Zou, G., Boley, H.: PSOA2Prolog: Object-relational rule interoperation and imple-
mentation by translation from PSOA RuleML to ISO prolog. In: Bassiliades, N.,
Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol.
9202, pp. 176–192. Springer, Heidelberg (2015)

7. Boley, H.: Integrating positional and slotted knowledge on the Semantic Web. J.
Emerg. Technol. Web Intell. 4(2), 343–353 (2010)

8. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: A logical
framework for the World Wide Web. Theor. Pract. Logic Program. (TPLP) 8(3),
249–269 (2008)

9. Kifer, M., Yang, G., Wan, H., Zhao, C.: ERGOLite (a.k.a.F lora-2): User’s Manual,
v1.1 (2015). http://flora.sourceforge.net/docs/floraManual.pdf

10. Boley, H., Kifer, M.: RIF Basic Logic Dialect (Working Draft) W3CWorking Draft.
https://www.w3.org/TR/2007/WD-rif-bld-20071030/

http://www.w3.org/TR/rif-bld
http://flora.sourceforge.net/docs/floraManual.pdf
https://www.w3.org/TR/2007/WD-rif-bld-20071030/

Smart Contracts, Blockchain and Rules

Setting Standards for Altering
and Undoing Smart Contracts

Bill Marino1(&) and Ari Juels2

1 Cornell Tech, New York, USA
wlm67@cornell.edu

2 Cornell Tech (Jacobs Institute), New York, USA
juels@cornell.edu

Abstract. Often, we wish to let parties alter or undo a contract that has been
made. Toward this end, contract law has developed a set of traditional tools for
altering and undoing contracts. Unfortunately, these tools often fail when
applied to smart contracts. It is therefore necessary to define a new set of
standards for the altering and undoing of smart contracts. These standards might
ensure that the tools we use to alter and undo smart contracts achieve their
original (contract law) goals when applied to this new technology. This paper
develops such a set of standards and, then, to prove their worth as a framework,
applies to them to an existing smart contract platform (Ethereum).

Keywords: Smart contracts � Contract law � Blockchain � Ethereum

1 Introduction

If a covenant be made wherein neither of the parties perform presently, but trust one another, in
the condition of mere nature … upon any reasonable suspicion, it is void: but if there be a
common power set over them both, with right and force sufficient to compel performance, it is
not void.

— Thomas Hobbes, Leviathan (1651)

The purpose of contracts is to solve a game-theoretic problem: it is to our mutual benefit to
cooperate in some way. But if we cooperate, then one of us can do even better by defecting.

— sirclueless [psued.], comment on What is Ethereum?, Hacker News (2015)

Tyrell Corporation, manufacturer of replicant humans in Philip K. Dick’s Do
Androids Dream of Electric Sheep?, famously touted their wares as “more human than
human”. Riffing on that motto, we might say that smart contracts are able to beat analog
contracts at their own game and are therefore “more contract than contract”.

This is because the “fundamental function of contract law (and recognized as such
at least since Hobbes’s day) is to deter people from behaving opportunistically toward
their contracting parties” [1]. And that is something a smart contract — at least, in its
paradigmatic form — does better than any analog contract ever could. In fact, a

© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 151–166, 2016.
DOI: 10.1007/978-3-319-42019-6_10

well-designed smart contract drives the probability of opportunistic breach toward zero
as such behavior becomes impossible or, at least, “expensive (if desired, sometimes
prohibitively so) for the breacher” [2].

Mind you, this feat is not possible for a contract that is merely “a set of promises,
specified in digital form” [2] — i.e., a digital contract. Breaching a contract recorded in
binary is no harder than breaching one recorded in ink. What lets smart contracts rise
above their brethren is that they additionally include “protocols within which the
parties perform on … promises” [2]. These protocols beget smart contracts’ hallmark
ability to “automatically enforce” [2] themselves, a quality that, in turn, eliminates the
need for “trusted intermediaries” [3] and, of course, court enforcement [4].

Smart contracts’ performance protocols take many forms, as there are countless
ways to embed promises in technology so as to make breach infeasible or unduly
expensive. They include the controller and motors of the “humble vending machine”
[5], embedding, as they do, the promise of the vendor to deliver a Mr. Pibb to anyone
inserting a dollar. They include the blockchain-dwelling bytecode of an evergreen loan
contract on Ethereum, embedding, as it does, a creditor’s promise to issue a new
cryptocurrency loan to the debtor who repays a prior one [6].

Observe what these examples share: security. When promises are embedded in
technology, one (perhaps the only) way to breach them is to disrupt that technology.
Most smart contracts include security measures aimed at deterring this type of breach.
To breach the vending machine’s smart contract, you must break into its lockbox. To
breach the blockchain loan contract, you must compromise the blockchain’s consensus
protocol. In this manner, security mechanisms form the archstone in the promise of
smart contracts to transcend analog contracts. The problem, however, is that securing
contracts against disruption for the purpose of breach often means securing them
against disruption of any sort. And that is not always a desirable result.

The fact is, as “performance unfolds, circumstances change, often unforeseeably”
[7]. External events like price shifts may degrade a contract’s value in the eyes of the
parties. It may come to light that there is a typo in the contract, or that one party was
defrauded during its creation. When such events arise, the parties — and sometimes
courts and or even the public — may find themselves wanting the contract to be
performed differently (or not at all). This is why contract law has a well-honed set of
tools for undoing and altering contracts, including termination and rescission (for
undoing contracts) as well as modification and reformation (for altering contracts).

Unfortunately, these traditional tools often fail when applied to smart contracts.
True, they successfully undo the legal agreement that a smart contract manifests. If
these tools are exercised, no court will enforce the agreement. The problem, of course,
is that technology still might. What is needed, then, is to define new standards for these
tools as applied to smart contracts, making sure they remain robust for this new
medium. That is the goal of this paper.

152 B. Marino and A. Juels

2 Termination and Rescission of Smart Contracts

2.1 Termination and Rescission Generally

“Rescission”, the 1912 edition of Black’s Law Dictionary tells us, “is where a contract
is canceled, annulled, or abrogated by the parties, or one of them” [8]. Importantly, this
definition turns out to be somewhat half-baked, with another corner of Henry Campbell
Black’s own oeuvre — 1916’s A Treatise On the Rescission of Contracts and Can-
cellation of Written Instruments— cautioning that “[t]o rescind a contract is not merely
to terminate it” and “release the parties from further obligation” but to “restore the
parties to the relative positions which they would have occupied if no such contract had
ever been made” [9]. After highlighting this restorative aspect of rescission, the latter
text outlines three situations in which rescission may be implemented. These, like the
definition that precedes them, have endured:

First, rescission may be implemented when “a right to take this action [is] reserved
to either or both of the parties in the contract itself [9]. If reserved, such a right “may
then be exercised without other grounds for it than the mere will of the party
rescinding” [9]. Today, this is called “termination by right” (“Termination by Right”).

Second, there may be a “rescission by the mutual agreement of the parties to the
contract” [9]. This is, “in effect the discharge of both parties from the legal obligations
admittedly existing thereunder, by a subsequent agreement made before the complete
performance of the original contract” [9]. In modern times, this is called “mutual
rescission” or “rescission by agreement” (“Rescission by Agreement”).

Third, “one of the parties may declare a rescission of the contract, without the
constant of the other … if a legally sufficient ground therefor exists, such, for instance,
as fraud, false representations, [unilateral] mistake, duress, or infancy” [9]. The
rescinding party may then ask a court to “set aside” the contract “by the equity decree”
[10]. The modern label for this is simply “rescission” (“Rescission by Court”).

Let us examine each of these three versions of rescission as applied to smart
contracts, sketching new standards for each as we proceed:

2.2 Termination by Right

At law, Termination by Right is implemented passively: it bars future breach of con-
tract actions [11]. For smart contracts, unfortunately, this approach often fails. If a
smart contract is terminated at law, and nothing more is done, the smart contract will
still automatically perform (“auto-perform”) the parties’ promises (as it is designed to
do), negating the termination. Accordingly, the first standard we will set for smart
contract Termination by Right is that, when the right is exercised, auto-performance
indeed ceases. To permit otherwise means the termination is an empty gesture.

A second standard is this: the smart contract must ensure that Termination by Right
is implemented if and only if the party holding the right exercises it. No other party
may initiate termination. To permit otherwise, again, undermines the goals of contract
law by rewarding opportunistic breach by non-right holding parties.

Setting Standards for Altering and Undoing Smart Contracts 153

A third standard is this: echoing Black’s emphasis on restoration, before imple-
menting a Termination by Right, the smart contract’s machinery must ensure that all
partial performance that has occurred is compensated. For example, partial payments
sent by either party must be returned. If this is not done, then parties will resort to
courts to enforce restitution of that partial performance, undoing one of the primary
efficiency benefits of smart contracts.

A fourth standard is this: the smart contract’s machinery must ensure that all
conditions placed on the termination right are met before termination is implemented.
For example, if payment of a termination fee is a condition of the right, the contract
must pay such a fee to the appropriate party (or otherwise ensure that it is paid) before
initiating termination. To permit otherwise undermines the aim of contract law by
rewarding opportunistic breach by the right holder. To summarize:

• Smart contract Termination by Right halts all auto-performance;
• Smart contract Termination by Right is enabled if and only if the party holding that

right exercises it;
• Smart contract Termination by Right automatically compensates partial

performance;
• Smart contract Termination by Right is enabled if and only if any termination

conditions are satisfied.

2.3 Rescission by Agreement

Rescission, like termination, is implemented passively at law: when there has been a
valid rescission, there is “no longer a cause of action for breach” [12]. Again, for smart
contracts, this passive approach fails. Accordingly, our first standard for smart contract
Rescission by Agreement is the same as our first standard for smart contract Termi-
nation by Right: automated performance must be halted.

Our second stand is unique to Rescission by Agreement: unlike with Termination
by Right, the power to rescind a smart contract by mutual agreement may not lie with
one party. An agreement to rescind, like the initial contract, takes the “form of an offer
by one and an acceptance by the other” [13]. So this brand of smart contract rescission
must be conditioned, by the smart contract, on mutual agreement: an offer to rescind by
one party and acceptance of that offer by all other parties. To allow otherwise con-
travenes the goals of contract law by encouraging opportunistic breach.

Our final standard for smart contract rescission is this: smart contract Rescission by
Agreement, like smart contract Termination by Right, should include restoration of any
partial performance. To summarize:

154 B. Marino and A. Juels

• Smart contract Rescission by Agreement halts all auto-performance;
• Smart contract Rescission by Agreement is enabled and if all parties mutually agree

to it;
• Smart contract Rescission by Agreement automatically compensates partial

performance.

2.4 Rescission by Court

Of the grounds for rescission, unilateral mistake (when one party thinks the smart
contract does one thing, while the other party knows it does another) is of particular
interest to smart contracts. Due to the introduction of code to the agreement-making
process, unilateral mistake may be a greater danger than ever before. Few feel confident
reading “legalese”; even fewer feel confident reading code.

In light of this, our first standard is a familiar one: when there is a unilateral mistake—
or when any of the other bases for Rescission by Court exist— and a court orders a smart
contract rescinded, auto-performance must cease.

Our second standard is more unique: the power to order Rescission by Court may
only lie with and be exercised by the appropriate court. Neither party may have the
power to jeopardize that right. Naturally, that would undermine the goals of contract
law (by encouraging opportunistic breach).

Our third demand is this: upon rescission by a court, restoration must occur, just as
it would in the case of Termination by Right or Rescission by Agreement. If partial
performance is not automatically compensated, parties may petition the court to enforce
restitution of that performance, erasing one of the primary efficiency benefits of smart
contracts. To summarize:

• Smart contract Rescission by Court halts all auto-performance;
• Smart contract Rescission by Court is enabled if and only if triggered by an

appropriate court;
• Smart contract Rescission by Court automatically compensates partial performance.

3 Modification and Reformation of Smart Contracts

3.1 Modification and Reformation of Smart Contracts

Sometimes, we do not wish to wholly discard an agreement, but merely wish to alter
some of its terms. Such alteration provides an “efficient mechanism for changing
agreements in response to altered circumstances … saving a deal that would otherwise
have ended in an inefficient breach” [14]. Like the undoing of a contract, the alteration
of a contracts comes in three flavors:

Setting Standards for Altering and Undoing Smart Contracts 155

The first is where “[u]nilateral-modification clauses give one party the unfettered
right to amend … the underlying contract, often with neither notice to, nor consent
from, the other party [15]. This is called “modification by right” (“Modification by
Right”). (Note that some courts will uphold this right, while others will not [16]).

Second, contracting parties have a well-established right “to modify their original
contract by mutual agreement” [17]. Such a modification is itself a contract [18] and
must be based on mutual assent and supported by its own consideration [19]. This is
referred to as “modification by agreement” (“Modification by Agreement”).

Third, a court may, in some cases, order a modification of a contract even over the
objections of one or more parties. It may do so based on three grounds: mistakes
mutual to all parties [20], fraud [21], and “unconscionable” terms — i.e., terms born
out of “an absence of meaningful choice” for one party and “unreasonably favorable to
the other” [22]. This is type of modification is called “reformation” (“Reformation”).

3.2 Modification by Right

If undoing a smart contract calls for an axe — a blanket action turning the entire
contract off all at once — modifying it calls for a scalpel. Specifically, modification
must halt auto-performance of only the terms that are intended to be modified while
simultaneously initiating auto-performance of the new versions intended to replace
them.

With that said, our first standard is this: upon Modification by Right of a smart
contract term, auto-performance of that term’s original iteration must cease, while
auto-performance of its new iteration must, concurrently, initialize.

Our second standard is a familiar one: modification of a term can be initiated if and
only if a party holding the right to modify that term wills it.

Our third standard is also a familiar one: if the modification is conditioned on the
occurrence of events, such as the payment of a modification fee, those events must
occur before modification can take place.

Our final standard is a twist on a standard previously forth for the ways of undoing
smart contracts: a smart contract must automatically compensate for any partial per-
formance that has occurred and which is tied to obligations embedded in the terms
being removed during modification. (It need not compensate for partial performance of
any terms that, though modified, remain active; those terms will be compensated
through the performance of the contract.) To summarize:

• Smart contract Modification by Right simultaneously halts auto-performance of
original, modified terms and instantiate auto-performance of new ones;

• Smart contract Modification by Right is enabled if and only if the party holding the
right exercises it;

156 B. Marino and A. Juels

• Smart contract Modification by Right automatically compensates partial perfor-
mance of deleted terms;

• Smart contract Modification by Right is enabled if and only if any modification
conditions are satisfied.

3.3 Modification by Agreement

The issues faced when implementing Modification by Agreement resemble those faced
during Modification by Right. So our standards are similar. The key difference is that a
Modification by Agreement must be approved by all parties. To summarize:

• Smart contract Modification by Agreement simultaneously halts auto-performance
of original, modified terms and instantiate auto-performance of new ones;

• Smart contract Modification by Agreement is enabled if and only if all parties
mutually agree to it;

• Smart contract Modification by Agreement automatically compensates partial per-
formance of deleted terms.

3.4 Reformation

Some grounds for reformation are of special interest to smart contracts. That includes
mutual mistake, which covers the so-called “scrivener’s error”, an “accidental deviation
from the parties’ agreement” made while recording the agreement in writing [19]. In
smart contracts, the risk of this error is high because of, again, the introduction of code
to contracting. Fraud and unconscionability are high risks for the same reason:
code-savvy parties are in a position to defraud or force unconscionable terms on
code-naive parties. For these reasons, Reformation of smart contracts is likely to occur.

Our first standard for Reformation is familiar: it must halt auto-performance of the
original versions of modified terms and instantiates auto-performance of the new
version of modified terms.

Second, the power to reform the contract, like the power for Rescission by Court,
must lie strictly with the court. And our third standard is a familiar one as well: once
triggered, the Reformation must compensate for the partial performance of any terms
that are being deleted. To summarize:

• Smart contract Reformation simultaneously halts auto-performance of original,
reformed terms and instantiate auto-performance of new ones;

• Smart contract Reformation is enabled if and only if triggered by an appropriate
court;

• Smart contract Reformation automatically compensates partial performance of
deleted terms.

Setting Standards for Altering and Undoing Smart Contracts 157

4 Testing Our New Standards on Ethereum

4.1 Ethereum Generally

Let’s put our new standards for altering and undoing smart contracts to the test on an
existing smart contract platform: Ethereum. Can smart contract alteration and undoing
on this platform meet our standards? How?

Ethereum, “arguably the most ambitious crypto-ledger project,” [25] is built on a
blockchain. Ethereum blockchain stores both transaction data (concerning its native
cryptocurrency, Ether) and the code of computer programs called, for better or for
worse [26], “contracts.” The code for these contracts is injected onto the blockchain
when a personal account sends contract code in the data field of an unaddressed
transaction. After this, the contract is added to a block and assigned an address, at
which point its code becomes immutable [27]. Importantly, what is not immutable is
the contract’s state. Specifically, the nodes in the Ethereum network, besides being able
to add transactions to the ledger, also run contract code and maintain and adjust
contract states in a virtual machine they all host, the Ethereum Virtual Machine.

Contracts on Ethereum can hold balances of Ether. Like objects in object oriented
programming, they can also have variables and functions that, if called, adjust those
variables or do other nifty things, like send Ether to other contracts or accounts on
Ethereum. Note that these functions cannot “wake” on their own and, in order to
execute, must be called (by parties to the contract, third parties, or other contracts).

One of Ethereum’s high level languages, Solidity, is a cross “between JavaScript
and C++ but with a number of syntactic additions to make it suitable for writing
contracts within Ethereum” [28] and is what we will use to prototype below.

4.2 Undoing Contracts on Ethereum

There are at least two ways to undo contracts (i.e., implement Termination by Right,
Rescission by Agreement, or Rescission by Court) on Ethereum. The first, the global
selfdestruct function, is easy to implement and effective. That said, it is also a blunt
instrument, lacking the nuance of the second way, which is to turn the entire contract
“off” at the function level using a combination of Solidity’s modifiers and enums.

Undoing Contracts on Ethereum Using Selfdestruct. As stated, Ethereum contract
code, once on the blockchain, cannot be altered. But it can be deleted. The global
selfdestruct function, if called from inside a contract, sends the contract’s Ether balance
to the address this function takes as its sole argument, then deletes the contract’s code
from the blockchain going forward. This means the contract’s functions cannot be
called. Since Ethereum contract functions cannot self-wake, this halts auto-performance
and thus satisfies the first (shared) standard we set for smart contract Termination by
Right, Rescission by Agreement, and Rescission by Court.

It is also easy, on Ethereum, to satisfy the second (shared) standard for each of these
tools by granting the power to selfdestruct a contract only to those entities that should
have it. If that is a single party (which is the case for Termination by Right and
Rescission by Court), this can be done by wrapping selfdestruct function inside a

158 B. Marino and A. Juels

conditional statement that checks if the address calling it belongs to the rightful
exerciser:

If multiple parties must approve the undoing, as in Rescission by Agreement, there
are a few ways to achieve this. One is to use Solidity’s modifiers and enums (user
defined types) to create states that log the consent of parties and then to throw
exceptions when selfdestruct is called and those states do not reflect the necessary
values:

Next is the third standard, shared by each of these tools, that demands that any
partial performance that has occurred be compensated automatically before the contract
is undone. With selfdestruct, this is easy to engineer. All that is needed is a variable that
tracks the level of performance, a function that lets one party suggest a new value for
that variable, and a second function that lets the counterparty approve the new value.
When the contract is undone, the latest value for the variable will be paid out.

Termination by Right is the only version of contract undoing with a fourth stan-
dard. It comes in many shapes, but we can address the simplest here. This is where the
right is conditioned on the payment of a termination fee. To satisfy this standard, we
can use a much more streamlined version of this approach used to satisfy the third
standard.

Here is contract code that ties together all of the above, satisfying the conditions for
our three methods of undoing contracts by creating functions for Termination by Right,
Rescission by Agreement, and Rescission by Court, giving the power over those

Setting Standards for Altering and Undoing Smart Contracts 159

functions to the right parties, and paying out termination and partial performance fees
when required. To simplify things, let us assume partial performance is only possible
for one party (e.g., it is a labor contract that the hirer has endowed with the full
payment, such that partial performance is only an issue for the laborer):

160 B. Marino and A. Juels

While this code does not cover edge cases (such as the situation where conditions
placed upon Termination by Right represent the occurrence of real world events), we
have shown that our standards can reasonably be applied — and to some extent,
satisifed — using one of the methods for undoing smart contracts (selfdestruct) on
Ethereum. Now let us repeat the process for a second (and arguably superior) method
for undoing smart contracts on the same platform:

Undoing Contracts on Ethereum Using Modifiers and Enums. The selfdestruct
function is a convenient “one-stop” solution for undoing contracts. But Solidity’s
modifiers and enums are a more nuanced tool for this — one that, as we will see later,
meshes well with existing tools for altering contracts.

We used modifiers and enums above, in conjunction with selfdestruct. We can extend
the same strategy to implement Termination by Right, Rescission by Agreement, and
Rescission by Court without selfdestruct. Specifically, we can create two states: one for

Setting Standards for Altering and Undoing Smart Contracts 161

a contract that has been undone— let’s call it ContractUndone— and one for a contract
that is not undone— let’s call it ContractNotUndone. Upon instantiation, we can set the
state as ContractNotUndone. Then, we can create a function that enables the state to be
toggled to ContractUndone (but not toggled in the other direction). Lastly, we can can
cause all other functions to throw if the ContractUndone state exists. This will halt
performance of the contract, satisfying the first standard for our three methods of
undoing contracts. Then we can also satisfy the other standards for undoing smart
contracts in the same ways we set forth above for selfdestruct.

4.3 Modifying Contracts on Ethereum

Modifying contracts (i.e., implementing Modification by Right, Modification by
Agreement, and Reformation) on Ethereum is more nuanced than undoing contracts on
Ethereum. Roughly speaking, there are three ways to achieve modification on Ether-
eum: modification of variable-captured terms, deletion of function-captured terms, and
addition or alteration of function-captured terms.

Modifying Variable-Captured Terms. Contract terms like price (or labor hours, etc.)
will often be captured as variables in smart contract code. When this is the case,
modifying these terms is simple as assigning a new value to the variable using a
set-type function. If such a function exists, this method of modification satisfies the first
(shared) standard of our three flavors of modifying contracts: it halts performance of the
old term and instantiates performance of the new one. If the set function is narrowly
tailored to this variable, then this method of modification also satisfies the second
standard of Termination by Right: that the scope must be hard-coded into the smart
contract during formation. Satisfying the remaining standards for Modification by
Right, Modification by Agreement, and Reformation can all be accomplished in much
the same way there were accomplished above, for Termination by Right, Rescission by
Agreement, and Rescission by Court.

Modifying Function-Captured Terms. Sometimes, contract terms are captured by
functions and not variables. In that case, modification means deleting, adding, or
swapping the relevant function(s). This must be handled differently than variable-level
modification because, while variables can be changed freely, the functions in an
Ethereum contract code are immutable once it is issued to the blockchain.

Deleting Function-Captured Terms. Of the types of function-level changes, the easiest
to implement is deletion: i.e., subtraction of terms. For that, we can recycle the
approach taken for Termination by Right, Rescission by Agreement, and Rescission by

162 B. Marino and A. Juels

Court: using modifiers and enums to create and toggle states, then causing functions to
throw exceptions if the states do not exist. Using this method, we can build functions
that can be turned off, on demand, if the parties agree to a deletion-style modification.
This will halt performance much as it did above, satisfying the first standard for our
three ways of undoing a contract. Beyond that, the remaining standards can be satisfied
much as they were above for variable-captured functions.

Adding or Modifying Function-Captured Terms. Adding wholly new functions and
replacing existing functions is accomplished in a similar fashion. The difference
between the two that, if a function is being replaced, the initial version of it must also
be turned off. (This can be accomplished using the methods described above for
deletion of functions.) On Ethereum, there are at least two ways to add or swap
functions in a contract. Both demand a bit of prognostication.

The first is to use modifiers and enums can be used to turn functions “off”, they can
be used to turn functions “on”. Of course, in order to be turned on, those functions must
be in the contract to begin with. Since contract code is immutable after initialization,
this means functions that the parties suspect they may later wish to turn “on” during a
modification must be included in the initial contract in an “off” state. That said, if this
can be accomplished, then the standards for all three flavors of contract modification
can be satisfied much as they would be for variable-captured functions.

A second way to add or modify function-captured terms — and, seemingly, the one
endorsed by Ethereum’s architects [6]— is to create, at the outset, satellite contracts that
capture certain function-terms. The addresses of these satellite contracts can be stored in
address variables or an arrays of address variables in the central contract. Using these
pointers, the central contract can to call out to the satellite contracts when it needs to
reference certain terms. If this is architected properly, modifying function-terms is as
simply as changing the pointers.

As an example, suppose the parties wish to build flexibility into their price term. They
can initialize a central contract with pointers to a satellite price calculation contract.
Changing the price calculation method (e.g., swapping price datafeeds or formulas) is as
simple as changing the pointers in the central contract. The code for such a contract
might look like the code below, which contains a pair of functions that let one party
suggest a new satellite contract and let the other approve the suggestion before making
the change (note that, in order to call an outside contract’s functions on Ethereum, the
code for the outside contract must appear in the code for your present contract):

Setting Standards for Altering and Undoing Smart Contracts 163

As is, this contract satisfies the first standard for all three flavors of modifying
contracts; by de-linking the original satellite contract and linking the new one, it
simultaneously halts auto-performance of the original versions of modified terms and
instantiates auto-performance of the new versions. If it contains code to ensures that the
party initiating the pointer swap is the correct one and additionally contains code that
tracks and compensates partial performance in the event of a modification, then it can
satisfy the second and third conditions of all three flavors of modification as well.
Finally, it can satisfy the fourth condition of Modification by Right by additionally
including code that prohibits modification unless certain conditions have been met.

164 B. Marino and A. Juels

5 Conclusion and Future Work

Contract law has developed a well-honed and necessary set of tools for altering and
undoing contracts. Unfortunately, these tools often fail when applied to smart contracts.
It is therefore crucial to define a new set of standards against which we can create a
similar set of tools for altering and undoing smart contracts. These standards should be
drawn from the principals of contract law but work for the new technology. We have
sketched such standards. Further, by applying these standards to the present methods
for altering and undoing smart contracts on Ethereum, we have proven that there is
value to such a framework. Let the smart contract community take note. It is essential
that the architects of this new technology, like the architects of contracts, create viable
ways to alter and undo them.

References

1. Posner, R.: Economic Analysis of Law. Little Brown and Co., Boston (1986)
2. Szabo, N.: Smart Contracts: Building Blocks for Digital Markets (1996)
3. Juels, A., Kosba, A., Shi, E.: The Ring of Gyges: Investigating the Future of Criminal Smart

Contracts (2015)
4. Szabo, N.: Smart Contracts (1994)
5. Szabo, N.: The Idea of Smart Contracts (1997)
6. Buterin, V.: Ethereum White Paper (2014)
7. Posner, R.: Let us never blame a contract breaker. Mich. Law Rev. 107, 1360 (2009)
8. Black, H.C.: Black’s Law Dictionary, p. 1025 (1910)
9. Black, H.C.: A Treatise on the Rescission of Contracts and Cancellation of Written

Instruments, vol. 1 (1916)
10. Koford, H.S.: Recessions at law and in equity. Calif. Law Rev. 36, 608 (1948)
11. Atlas Trucking v. City of Lompoc, S224878, 2015 Cal. LEXIS 2165 (Sup. Ct. Cal., 15 April

2015)
12. Great American Ins. v. General Builders, 934 p. 2d 257, 262 n. 6 (Nev. 1997)
13. Corbin, A.L.: Corbin on Contracts, vol. 5A (1964)
14. Russell, I.S.: Reinventing the deal: a sequential approach to analyzing claims for

enforcement of modified sales contracts. Fla. Law Rev. 53, 51 (2001)
15. DeMichele, M.L., Bales, R.A.: Unilateral-modification provisions in employment arbitration

agreements. Hofstra Employ. Law J. 24, 64 (2006)
16. Carey v. 24 Hour Fitness, USA, Inc., 669 F.3d 202 (5th Cir. 2012)
17. Christine, C.: Contracts as bilateral commitments: a new perspective on contract

modification. J. Legal Stud. 26, 204 (1997)
18. Hillman, R.A.: A study of uniform commercial code methodology: contract modification

under article two. N. C. Law Rev. 59, 339 (1981)
19. Williston, S., Lord, R.: Williston on Contracts (1992)
20. Moffett, Hodgkins & Clarke Co. v. Rochester, 178 U.S. 373, 385 (1900)
21. Link v. Kroenke, 909 S.W.2d 740, 745 (Mo. App. W.D. 1995)
22. Williams v. Walker-Thomas Furniture Co., 350 F.2d 445, 449 (D.C. Cir. 1965)
23. The Great Chain of Being Sure About Things. The Economist (2015)

Setting Standards for Altering and Undoing Smart Contracts 165

24. Marino, B.: https://medium.com/@ConsenSys/unpacking-the-term-smart-contract-e63238f
7db65

25. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by Step Towards Creating a
Safe Smart Contract: Lessons and Insights from a Cryptocurrency Lab (2015)

26. Wood, G.: https://github.com/ethereum/wiki/wiki/Solidity,-Docs-and-ABI

166 B. Marino and A. Juels

https://medium.com/%40ConsenSys/unpacking-the-term-smart-contract-e63238f7db65
https://medium.com/%40ConsenSys/unpacking-the-term-smart-contract-e63238f7db65
https://github.com/ethereum/wiki/wiki/Solidity%2c-Docs-and-ABI

Evaluation of Logic-Based Smart Contracts
for Blockchain Systems

Florian Idelberger1(B), Guido Governatori2(B),
Régis Riveret2(B), and Giovanni Sartor1(B)

1 European University Institute, Fiesole, Italy
{florian.idelberger,Giovanni.Sartor}@eui.eu
2 Data61 - CSIRO - NICTA, Brisbane, Australia

{guido.governatori,regis.riveret}@data61.csiro.au

Abstract. While procedural languages are commonly used to program
smart contracts in blockchain systems, logic-based languages may be
interesting alternatives. In this paper, we inspect what are the possi-
ble legal and technical (dis)advantages of logic-based smart contracts in
light of common activities featuring ordinary contracts, then we provide
insights on how to use such logic-based smart contracts in combination
with blockchain systems. These insights lead us to emphasize a funda-
mental challenge - algorithms for logic approaches have to be efficient,
but they also need to be literally cheap as measured within the envi-
ronment where they are deployed and according to its economic rules.
We illustrate this with different algorithms from defeasible logic-based
frameworks.

Keywords: Smart contract · Blockchain · Programming paradigm ·
Logic

1 Introduction

A smart contract is a computer program that both expresses the contents of
a contractual agreement and operates the implementation of that content, on
the basis of triggers provided by the users or extracted from the environment.
Smart contracts are currently promoted as means to leverage efficiency, security
and impartiality in the execution of an agreement, thereby reducing the costs in
implementing contracts and increasing trust between parties.

While imperative languages, especially procedural languages, are mostly used
to code smart contracts in current blockchain platforms, declarative languages
for such contracts, and in particular logic-based rule languages, should also be
considered to better represent and reason upon them, towards a concept that
we may call declarative smart contracts, in particular the concept of logic-based
smart contracts.

Combinations of logic frameworks and blockchain systems may lead to smart
contracts that are easier to work with for jurists and developers and have tech-
nical advantages over procedural coding of the contracts. These combinations
may also lead to new opportunities for applications for these logic frameworks.
c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 167–183, 2016.
DOI: 10.1007/978-3-319-42019-6 11

168 F. Idelberger et al.

In this paper, we investigate the utility of logic-based smart contracts and
possible ways to use them in combination with blockchain systems:

– to understand what legal and technical (dis)advantages logic-based smart
contracts can provide w.r.t. their procedural counterparts, we structure this
investigation in light of a common contract lifecycle;

– to show how logic-based smart contracts can be used in combination of
blockchain systems, we inspect different combinations for leveraging logic-
based languages to operate smart contracts in combination with such sys-
tems.

These insights will lead us to emphasize a foundational challenge to fully take
advantage of logic-based smart contracts with blockchain systems: algorithms for
logic approaches have to be efficient, but they also need to be literally cheap in
execution. Since logic models of defeasible reasoning are often advocated to cap-
ture legal knowledge and reasoning (see e.g. [16]), we will illustrate our discourse
with defeasible rules and associated logic frameworks.

This paper is organised as follows. In Sect. 2, we outline some basic elements
and mechanisms of blockchain systems. In Sect. 3, we define and illustrate logic-
based smart contracts and in Sect. 4 we examine the possible legal and technical
utility of such logic-based smart contracts compared to procedural smart con-
tracts, and we do so in light of common legal activities. In Sect. 5, we investi-
gate different options for the operation of smart contracts in combination with
blockchain systems, before concluding.

2 Blockchain Systems

A blockchain system consists of a network of computing nodes, sharing a common
data structure (the blockchain) with consensus about the state of this structure.

The most prominent example of such a system is Bitcoin [13], which estab-
lished a distributed network of accounts and transactions (a ledger), where revi-
sions or tampering is made prohibitively difficult due to the algorithm used
in conjunction with economic consensus. Since Bitcoin is the most prominent
example, most explanations regarding blockchain systems below will be based
on this system; the functioning of different blockchains may differ in detail but
such differences fall outside of the scope of this paper.

The data structure backing a blockchain system is distributed because it is
replicated amongst the nodes (i.e. computers) of the system. As new blocks of
recent transactions are added to the distributed data structure, they include
a reference back to the previous blocks, so that any node can consequentially
verify the integrity of the data structure. This chain of blocks of transactions is
called a blockchain.

Transactions on the blockchain are not cost-free. Miners have to spend com-
puting power (tied to hardware) and energy to integrate blocks of transactions
into the blockchain. As incentives, if a miner ‘discovers’ the solution of the prob-
lem to include a block, such miner receives economic incentives in the form of

Logic-Based Smart Contracts in Blockchains 169

new Bitcoins (block reward) and transaction fees. It is presently unclear how this
system will function once the algorithmically predetermined number of Bitcoins
has been reached.

The transaction fee is an incentive for a miner to include this transaction in
their block. For advanced blockchain systems, the fee may also cover the cost of
the computational steps required to operate the transaction, in particular when
the transactions are associated with extra instructions. The computation of the
amount of the fee is outside of the scope of this paper, but as rule of thumb, the
simpler a transaction in terms of computational complexity, the less it costs.

Since transactions can be costly, it is often advanced that heavy computation
should occur ‘off-chain’ instead of ‘on-chain’. In off-chain scenarios, computation
is performed outside the blockchain-based system, e.g. on the server of an inter-
mediation service, while, in on-chain scenarios, computation is performed and
validated in the blockchain-based system by the miners. Of course, off-chain
computation results can be recorded in a blockchain, however parties may prefer
to avoid off-chain intermediation services that can be performed on-chain, for
example to increase trust.

While blockchain technology was initially used as a distributed ledger of
crypto-currency transactions (namely Bitcoin transactions), such a technology
can also be used to manage smart contracts and associated transactions.

3 Logic-Based Smart Contracts

The term smart contract was originally introduced in the 90s by Szabo [17],
stemming from the idea that a more technological legal framework would help
commerce and cut down on disputes. Lately the idea came to popularity again
with the rise and expanding capabilities of blockchain based systems. Parts of a
smart contract can correspond to a legal contract or a clause in a legal contract,
but they do not have to.

When there is a condition to which certain legal consequences are attached,
the smart contract executes the corresponding statements and any potential
contractual consequences. Examples for applying smart contracts are program-
matic banking functions (see e.g. Automated Escrow, Savings), decentralized
markets (e.g. OpenBazaar, EtherMarket), prediction markets (Augur, Gnosis),
distribution of music royalties (Ujo) and encoding of virtual property (Ascribe).

Smart contracts in blockchains are typically programmed in a procedural lan-
guage. On the platform Ethereum [5,18], developers can encode smart contracts
in a procedural language called Solidity1. When programming in a procedural
language, the programmer writes an explicit sequences of steps that are executed
to produce what has to be done. The programmer has to write what has to be
done and how to achieve it.

Example 1. This example is based on the structure of the example provided in
[7] to illustrate some intricacies of the logical formalisation of legal reasoning

1 Solidity. Available at https://ethereum.github.io/solidity.

https://ethereum.github.io/solidity

170 F. Idelberger et al.

Let us consider the following licensing contractual clauses for the evaluation of
a product.

Article 1. The Licensor grants the Licensee a licence to evaluate the Product.
Article 2. The Licensee must not publish the results of the evaluation of the

Product without the approval of the Licensor; the approval must be obtained
before the publication. If the Licensee publishes results of the evaluation of
the Product without approval from the Licensor, the Licensee has 24 h to
remove the material.

Article 3. The Licensee must not publish comments on the evaluation of the
Product, unless the Licensee is permitted to publish the results of the evalu-
ation.

Article 4. If the Licensee is commissioned to perform an independent evaluation
of the Product, then the Licensee has the obligation to publish the evaluation
results.

Article 5. This license will terminate automatically if Licensee breaches this
Agreement.

Suppose that the licensee evaluates the product and publishes on their web-
site the results of the evaluation without having received an authorisation from
the licensor. The licensee realises that they were not allowed to publish the
results of the evaluation, and they remove the published results from their web-
site within 24 h from the publication. Is the licensee still able to legally use
the product? Since the contract contains a compensatory clause, it is possible
to argue that the license to use the product still holds. Suppose now that the
licensee, right after publishing the results, posted a tweet about the evaluation
of the product and that the tweet counts as commenting on the evaluation. In
this case, we have a violation of Article 3, since, even if the results were pub-
lished, according to Article 2 the publication was not permitted. Thus, they are
no longer able to legally use the product under the term of the license. The final
situation we want to analyse is when the publication and the tweet actions take
place after the licensee was commissioned to perform an independent evaluation
from the licensor. In this case, the licensee has the obligation to publish the
result, which then means that they were also permitted to publish the result,
and thus they were free to post the tweet. Accordingly, they can continue to use
the product under the terms of the licence. �

Algorithm 1 gives a pseudo-code example of how a procedural smart contract
can implement the contractual clause of Example 1. The smart contract includes
a sequence of instructions updating the normative states (obligations, prohibi-
tions and permissions in force) depending on what actions have been done and
then the current state. The program has to set the initial state for the contract,
then the procedure EvaluationLicenseContract has to be invoked every
time there is a trigger for the program. Notice that the order of the instruc-
tions in the procedure does not reflect the natural order of the contract clauses
expressed in natural language. The programmer has to come up with such an
order, and also the programmer has to manually determine how a trigger changes

Logic-Based Smart Contracts in Blockchains 171

Algorithm 1. Pseudo-code of the licensing contractual clauses.
1: Initialise getLicence, getApproval, getCommission, use, publish, comment, remove
2: [Forblicensee] use ← true
3: [Forblicensee] publish ← true
4: [Forblicensee] comment ← true
5: violation ← false
6:
7: procedure EvaluationLicenseContract
8: if getLicence = true then
9: [Forblicensee] use ← false

10: [Permlicensee] use ← true � Article 1
11:
12: if getLicence = true and (getApproval = true or getCommission = true) then
13: [Forblicensee] publish ← false
14: [Permlicensee] publish ← true � Article 2, 4
15:
16: if getLicence = true and
17: getApproval = false and
18: getCommission = false and
19: publish = true then
20: [Obllicensee] remove ← true � Article 2
21:
22: if [Permlicensee] publish = true then
23: [Forblicensee] comment ← false
24: [Permlicensee] comment ← true � Article 3
25:
26: if getLicence = true and getCommission = true then
27: [Forblicensee] publish ← false
28: [Obllicensee] publish ← true
29: [Permlicensee] publish ← true � Article 4
30:
31: if ([Forblicensee] use = true and use = true) or
32: ([Forblicensee] publish = true and publish = true) or
33: ([Obllicensee] publish = true and publish = false) or
34: ([Forblicensee] comment = true and comment = true) or
35: ([Obllicensee] remove = true and remove = false) then
36: violation ← true
37: if violation = true then
38: [Forblicensee] use ← true
39: [Forblicensee] publish ← true
40: [Forblicensee] comment ← true
41: [Permlicensee] use ← false
42: [Permlicensee] publish ← false
43: [Permlicensee] comment ← false
44: [Obllicensee] publish ← false � Article 5

172 F. Idelberger et al.

the state of the normative provisions (i.e., obligations, permissions and prohi-
bitions), and to propagate the changes according to the meaning. This means
that the programmer is responsible to perform the legal reasoning implied by
the contract clauses. For example, when a permission becomes true, the corre-
sponding prohibition should be set to false; similarly, when we set an obligation
as true, the corresponding permission should be set to true as well. For large
and complex smart contracts, an alternative is to set an auxiliary procedure to
be invoked, when the state of a normative provision has to be changed, and
propagate the changes to all related normative provisions.

The process of writing a procedural program corresponding to a contract can
be cumbersome and error prone since the order of instruction affects the correct-
ness of the resulting smart contract. A possible solution to alleviate this problem
is to create a state machine for the contract (Fig. 1 shows a state machine for
the contract in Example 1). Then, the programmer can use the state machine
as a guide to derive the procedural code. Alternatively, the state machine could
be represented directly in the program and a state machine engine could then
be used to execute the resulting smart contract. This approach can grow expo-
nentially large in the number of states and transitions for non-trivial contracts,
and the programmer still remains in charge of the legal reasoning implied by the
contract.

Fig. 1. State machine of the licensing contractual clauses.

Besides imperative languages for smart contracts, one may consider declar-
ative languages (in particular logic-based languages). When programming in
a declarative language, the programmer does not have to explicitly write the
sequence of steps to produce what has to be done. Instead the programmer
describes what has to be done, but not how to do it. In particular, languages

Logic-Based Smart Contracts in Blockchains 173

for logic programming can be used to represent and reason upon the rules rep-
resented by smart contracts. With the logic approach, contractual clauses are
rephrased into explicit formal statements which are separated from the embed-
ding program, and the program has inferential functionalities to reason upon
these statements. In practice, the contractual clauses would be encoded into
logic rules, and a rule-based engine would reason upon the rules.

Example 2. Since logic-based models of defeasible reasoning are often advocated
to capture legal knowledge and reasoning (see e.g. [16]), let us consider the
representation of the contract given in Example 1 provided by the (deontic)
defeasible logic (Formal Contract Logic, FCL) of [6] and implemented by the
defeasible logic engine SPINdle [10].

Article1.0: => [Forb_licensee] use

Article1.1: getLicense => [Perm_licensee] use

Article2.1: => [Forb_licensee] publish [Compensated] [Obl_licensee]remove

Article2.2: getApproval => [Perm_licensee] publish

Article3.1: => [Forb_licensee] comment

Article3.2: [Perm_licensee] publish => [Perm_licensee] comment

Article4.1: getCommission => [Obl_licensee] publish

Article4.2: getCommission => getLicense

Article5: violation => [Forb_licensee] use

% Superiority relation

Article1.1 > Article1.0, Article5 > Article1.1,

Article2.2 > Article2.1, Article3.2 > Article3.1

The order of the rules is irrelevant, and as should be visible, the declarative
rules are shorter than procedural code and easier to use, they would later then
be evaluated by a rule engine on the blockchain or deployed in conjunction with
a rule engine.

If there are no triggers, then Article1.0. Article2.1 and Article3.1
fire and we conclude the prohibitions of use, publish and comment. When,
getLicense and publish hold, then Article1.1 overrides Article1.0 thus we
have the permission of use, but we continue to have the prohibition to publish,
thus the publication contravenes Article 2, and we can use rule Article2.1 to
derive the mandated compensation, that is the obligation of removing the mate-
rial is now in force, i.e., we conclude [Obl licensee] remove. See [6] for the
details of FCL. �

4 Utility of Logic-Based Smart Contracts

The successes of blockchain-based systems for smart contracts, or at least the
amounts of investments in such systems suggest the viability of ‘procedural smart
contracts’, while the utility of logic-based smart contracts has been hardly inves-
tigated.

In this section, we consider the utility of the logic approach w.r.t. its proce-
dural counterpart. Too bridge the gap between smart contracts and legal con-
tracts, this is done in the light of the lifecycle of a contract.

174 F. Idelberger et al.

Formation and Negotiation. Based on the ‘freedom to contract’, any legal
entities are free to form contracts, within the limits of the law. Necessary condi-
tions for the formation are the ‘meeting of the minds’ (i.e. the parties have the
intentions to form the contract) and the ‘Offer and Acceptance’ (i.e. the expres-
sion of an offer to contract on certain terms by one person to another person,
and its acceptance of those terms). In practice, parties often negotiate the terms
until they reach an agreement.

As any ordinary contracts, a smart contract can be negotiated i.e. the smart
contract program is coded, and this creation can occur through a negotiation. In
a blockchain system, agreement about what a contract should perform is defined
before deploying the contract in the blockchain system. After creation and giving
assent by calling the contract in the required way, the contract establishes legal
relations between the parties. Often, a contract is first created in a natural
language (as in the case of the creation using a template), and then this contract
is translated into a smart contract. However, a smart contract program can be
created without a natural language counterpart, the same as normal computer
programs.

Using procedural languages, fairly sophisticated smart contracts can be
formed already. However, the procedural coding of a smart contract may appear
difficult to apprehend, slowing down its negotiation and formation. As the pro-
cedural code may appear difficult to understand, one can wonder whether the
contractual clauses are properly coded. In this regard, the procedural code can be
‘validated’ (unit testing etc.) to determine whether this smart contract is fit for
use, but testing procedural code is well-known to be time consuming and error
prone. In logic-based smart contracts, as logic statements can be understood as
high-level specifications, they constitute executable specifications of smart con-
tracts, i.e. specifications that can be directly executed by the smart contracts,
thereby decreasing the risks of errors in the implementation. Moreover, a logic
representation can ease validation by taking advantage of logic-based techniques,
such as formal verification, to detect if certain properties hold. This can be auto-
mated, but since such techniques are often heavy in terms of computation, they
will most likely occur off-chain. Furthermore, a logic representation may ease
the formation of a smart contract resulting from a negotiation between par-
ties. When the formation and negotiation are delegated by humans to artificial
agents, the logic approach may particularly facilitate these activities (w.r.t. a
procedural counterpart) since in this case such activities require, presumably,
some artificial intelligence to represent and reason upon contractual terms.

Contract Storage/Notarizing. A contract can be binding in many forms,
such as by oral agreement, hand shake or intangible agreement. Thus, in principle
there are little formalities required (though exceptions apply). The real problem
arises when there is contention on whether there was a contract or not, and what
its contents were. In those cases, it helps to have a written record of what was
agreed stored and certified. To be extra certain, contracts can be certified by a
trusted third party, a notary. For non-digital contracts, the content has to be
described in natural language and a date manually inserted.

Logic-Based Smart Contracts in Blockchains 175

Contract storage can be straightforwardly related to the storage of smart
contracts using file systems or database systems. Instead of storing the smart
contract into the machine(s) of particular entities (such as the parties and inter-
mediaries), one can use a blockchain system to store it (its bytecode) with a
relatively accurate timestamp.

There are no particular restrictions on the types of data that can be stored in
blockchains, and therefore smart contracts with logic statements can be stored
in them. As logic statements (e.g. the set of rules stored within a procedural
smart contract and meant to be passed to a rule engine) are generally more
compact than its procedural counterpart, the logic approach may decrease the
cost of storage, in particular when there is an explosion of possible states on
which rules can be applied.

Enforcement and Monitoring. Once a contract is formed, it has to be per-
formed; the parties have to take appropriate actions to fulfil the contractual
clauses. If parties are encouraged or forced to perform their required actions,
this is called enforcement for the purposes of this paper.2 Monitoring is the
activity of checking whether the appropriate actions are taken. Enforcement and
monitoring can be described as the deployment and the execution of a program,
which can to some degree be automated by the blockchain consenus code.

The efficient execution and monitoring of a smart contract is a necessary
condition for the use of such a contract, in particular in regard to the worst-case
scenarios. While the computational complexity of the execution of a procedural
smart contract can be quite easily controlled, the complexity of a logic-based
smart contract relies on the complexity of the underlying inference mechanisms
(we will further instigate this point in the next section). Concerning monitoring,
‘controls’ can be typically integrated in the procedural code of a smart contract,
while in logic contracts, monitoring can take advantage of more formal run-time
compliance techniques. Furthermore, the execution and monitoring of a contract
is not necessarily meant to occur in isolation. On the contrary, when executing
smart contracts, contractual clauses may have to be considered w.r.t. exogenous
(legal) information, such as rules from other contracts or the embedding norma-
tive environments (the law in particular). While procedural smart contracts can
interact with each other rudimentarily, a logic approach would take advantage of
efforts in rule interchange languages (such as LegalRuleML [2]) to express rules
and ease interoperability amongst the contracts and other rule systems.

Modification. If all parties perform their contractual duties, then a contract
may in principle not be unilaterally modified. If a party fails to perform or if
a predetermined condition in the contract is activated, then a change in the
contractual relationship can be invoked. If all parties to a contract agree to a
change, the contract can be amended accordingly.

These considerations for non-smart contracts also hold for smart contracts.
In current blockchain systems, a contract cannot be modified but the data stored
in it can be updated. As such, one model to enable flexible solutions is the ‘hub

2 While encouragement is not enforcement in all meanings of the word, it is either a
precursor or a part of it.

176 F. Idelberger et al.

and spoke’ model where one main smart contract holds addresses/pointers to all
other necessary contracts that contain the specific clauses and functionality.

The hub and spoke model allows the modification of smart contracts, but
it may appear quite coarse. In logic-based smart contracts, the statements of
the knowledge base can be coded as ‘public’ variables, thus allowing more fine-
grained updates. A modified knowledge base can also be passed to an existing
contract, which then acts accordingly, similar to how in the hub and spoke model
addresses of subcontracts are exchanged. Moreover, the order of instructions
and procedures is fundamental in the procedural approach (as illustrated in
Algorithm 1), and thus the hub and spoke model may cause some issues in that
regard. As the order of the statement in a knowledge base does not matter w.r.t.
the conclusions that can be derived from it, a logic-based language can greatly
help to tackle modifications.

Dispute Resolution. A dispute regarding a contract may occur, and thus such
a dispute has to be resolved. Two major types of dispute resolution exist: (i)
adjudicative resolution, such as litigation or arbitration, where a judge, jury or
arbitrator determines the outcome, and (ii) consensual resolution, such as collab-
orative law, mediation, conciliation, or negotiation, where the parties attempt
to reach agreement.

Smart contracts can be disputed too, and adjudicative resolution as well as
consensual resolution can be attempted. The final arbiter of legal technological
innovation is always acceptance by the courts. At the moment there is no useful
case law on this for smart contracts, but this would also depend strongly on
the nature of the smart contract, i.e. whether it is linked to a contract in nat-
ural language as well as other factors. In principle, based on Bitcoin case law
and the freedom to contract, it can be said that smart contracts are binding
[19, pp. 11–24].

With regard to a consensual resolution, a smart contract could specify a
committee of human or computational arbitrators that should be consulted first.
It is unclear at present how a court would interpret such a choice of law or
arbitration clause in a smart contract.

In principle smart contracts can be considered to be legally valid (exceptions
notwithstanding); to this end, it likely does not matter if the smart contract is
programmed using an imperative or a declarative language. Nevertheless, one
may argue that, as some imperative code (and, to a lesser extent, some proce-
dural code), may be difficult to comprehend, it may be the case that the control
structures of these smart contracts rebut jurists and hamper their interpretation
of the contract (this would lead to the emergence of case law setting precedent
on how to interpret smart contracts; however so far this does not exist). On
the contrary, as logic rules are meant to reflect contractual clauses, their logic
representation will ease the work of jurists, in particular to structure, evaluate,
and compare legal arguments constructed from formal statements. However, if
there are legal rules that a human has to be told to what he agrees to, there has
to be a natural language equivalent anyway. Then the logic rules might make the
implementation or the interpretation of the contract easier, but they may not

Logic-Based Smart Contracts in Blockchains 177

be close enough to natural language to be a substitute, particularly to people
who might not be technical experts.

In summary, the logic approach has the potential to advantageously com-
plement its procedural counterpart for each activity thereof. Whilst advantages
are clearly backed by technical considerations, it is less evident whether a logic
approach provides a stronger legal foundation to smart contracts. As previously
alluded to, one may argue that a full representation of a smart contract has to
explicitly establish and link the normative effects (rights, obligation, transfers
of entitlement) resulting from the contract, and the procedure for implementing
these rights and obligations though the computational actions performed by the
contract, in the given infrastructure. Thus, a hybrid approach combining logic
and procedural components may help to bridge the gap between smart contracts
and their legal counterparts.

5 Use of Logic-Based Smart Contracts with Blockchain
Systems

In this section, we investigate different technical options to use logic-based smart
contracts in combination with blockchain systems, and we will discuss these
options w.r.t. the legal activities we previously identified.

Given a set of statements, inferences can be performed in different manners.
Every inferential mechanism has its own characteristics, and the adoption of a
particular mechanism to execute logic contractual clauses should be based on
these characteristics.

Example 3. Considering a defeasible logic framework for the representation of
the contractual clauses; conclusions can be derived by using dialectic proofs
(DPs) [14] or an algorithm based on the fixed-point of the characteristic func-
tion of the grounded semantics [4] (FP), see e.g. [12], more efficient algorithms
stemming from Defeasible Logic (DL) [1,11] or even equation-based approaches
(EB), see e.g. [15] and neuro-symbolic systems (NS), see e.g. [3]. In most cases,
it is preferable to use the algorithm with the lowest computational complexity,
but for some reasons, one may prefer other algorithms to provide, for example,
more intelligible inferences. How to use these mechanisms to deal with smart
contracts in blockchain-based systems? �

Beside the characteristics of the inferential mechanisms, it is important to
notice that inferences can occur on-chain or off-chain.

1. On-chain: inferences are made within the blockchain platform;
2. Off-chain: inferences are made outside the blockchain system, e.g. on a third

party server.

The distinction of on-chain and off-chain inferences leads us to distinguish off-
chain options for logic-based smart contracts and on-chain options.

178 F. Idelberger et al.

5.1 Off-Chain Options

When miners are processing transactions into blocks to append to the blockchain,
the security model of the virtual machine in which smart contracts on existing
blockchain platforms operate and the co-processing by nodes does not allow
to call outside resources. Thus, we must discard the option where an off-chain
inferential mechanism is called by the smart contract.

Though an off-chain inferential mechanism cannot be called from a smart
contract, another off-chain option simply consists in recording the smart con-
tract (i.e. knowledge base and the reference to the semantics) and the inferential
conclusions in the blockchain. On the basis of the inferential conclusions, proce-
dural code of the contract can then execute particular transactions. Activities
that we identified in the previous section are accommodated as follows.

Formation and negotiation. The contract can be formed and negotiated off-
chain or on-chain.

Contract storage/notarizing. A contract is stored off-chain (so that it can
be executed off-chain) and in the blockchain.

Enforcement and monitoring. Enforcement and monitoring are achieved off-
chain, the conclusions can be stored in the blockchain.

Modification. If a contract is modified, then the off-chain smart contract
will be updated, and stored in the blockchain. If the knowledge base can
be updated, then the smart contract can be updated without interrupting
associated processes.

Dispute resolution. One can check whether an off-chain contract matches a
blockchain code (bytecode). Thus in case of a dispute, the parties can check
whether the recorded conclusions are proper conclusions of the smart contract
(w.r.t. the given semantics).

The main advantage of this off-chain option is the lower cost of associated trans-
actions, since the inferences are performed off-chain. The disadvantage is that
such an off-chain inferential mechanism may be simply seen as an intermediary
service, while the parties may prefer to avoid such intermediation and associated
costs or trust issues.

5.2 On-Chain Options

Instead of an off-chain inferential mechanism, one may prefer an on-chain mech-
anism. The availability of a logic-based language to program smart contracts
shall facilitate such options, but a procedural language can also be used to write
meta-programs (i.e. programs with the ability to treat programs as their data).
For example, a rule-engine can be integrated in a smart contract to derive some
conclusions given a particular knowledge base. Based on the results, some pro-
cedural code can execute the transactions. The rule-engine can also be a smart
contract script of its own, so that smart contracts can always refer to this smart
contract. Having the inference engine as an immutable contract on the blockchain

Logic-Based Smart Contracts in Blockchains 179

Fig. 2. Off-chain option. Agents A and B form a (smart) contract which is stored on
a blockchain. The contract is executed in a server external to the blockchain system,
and transactions can be recorded in the blockchain.

allows participants’ confidence into the smart contract engine to increase over
time (test once, utilize n-fold).

Formation and negotiation. The contract can be formed and negotiated off-
chain or on-chain.

Contract storage/notarizing. A contract can be stored off-line, but it has to
be stored in the blokchain (so that it can be executed on-chain).

Enforcement and monitoring. Enforcement and monitoring is achieved on-
chain, the conclusions can be stored in the blockchain.

Modification. If the knowledge base can be updated, then the contract can be
updated without interrupting associated processes.

Dispute resolution. One can check whether an off-chain contract matches a
blockchain code. Thus in case of a dispute, the parties can check whether the
recorded conclusions are proper conclusions of the smart contract (w.r.t. the
given semantics).

The major advantages of on-chain solutions is that some off-chain intermediation
services are eliminated, and the inferential mechanisms (e.g. the rule engine) are
themselves recorded in the blockchain, resulting into more scrutinizable and
trustful inferences.

The main disadvantage of on-chain solutions may regard the costs. To address
the costs of on-chain inferences, algorithms with low computational complexity
shall be favoured. If the selected algorithm provides inferences which appears
sufficiently efficient but insufficiently intelligible for human operators, then more
intelligible inferences can be used to explain the results off-chain.

Example 4. Considering DPs, FP or DL algorithms for the on-chain option, DPs
have higher complexity than FP algorithms, which have higher complexity than
algorithms from DL [8]. Consequently, one shall prefer DL algorithms to derive
conclusions on-chain. �

Interestingly, it is also possible to propose an on-chain option, that we may
call the ‘on-off’ option where, given a knowledge base, this knowledge is converted
(let’s say ‘compiled’) into a lower-level representation to increase the speed of

180 F. Idelberger et al.

Fig. 3. On-chain option. Here, agents A and B form a (smart) contract which is stored
and executed in a blockchain platform.

inferential computation, and this compiled code is part of the smart contract
(this smart contract is eventually recompiled to run on the virtual machines of
the blockchain network).

Formation and negotiation. The contract can be formed and negotiated off-
chain or on-chain. The compiled code can be generated off-chain or on-chain.
If compilation occurs off-chain then third party services may again appear,
along with the associated disadvantages. If compilation is done on-chain
then the compiler may be scrutinised and gain trust from the parties, at
the expense of extra costs for compilation.

Contract storage/notarizing. A contract and its compiled code can be stored
off-chain, but the compiled code has to be stored in the blockchain (so that
it can be executed on-chain).

Enforcement and monitoring. Enforcement and monitoring is achieved on-
chain, the conclusions can be stored in the blockchain.

Modification. If a contract is modified, then the logic statements have to be
recompiled. If the compiled knowledge base can be updated, then the contract
can be updated without interrupting associated processes.

Dispute resolution. One can check whether the compiled off-chain contract
matches a blockchain code. Thus in case of a dispute, the parties can check
whether the recorded conclusions are proper conclusions of the smart contract
(w.r.t. the given semantics).

Compared to the off-chain option, the need for intermediation services is miti-
gated since inferences are achieved on-chain. Compared to the on-chain option,
the costs of transactions may be decreased because the compiled knowledge base
is meant to lower the computational complexity. The costs will be presumably
higher than the off-chain option, therefore, such on-off approaches shall have a
cost intermediate between off-chain and on-chain solutions.

Example 5. EB and NS approaches can be considered for ‘on-off’ solutions. In
the EB approach, the considered knowledge base is ‘compiled’ into a set of
equations, and these equations are stored into the smart contract to compute
conclusions given a set of facts. In the NS approach, the knowledge base is
‘compiled’ into a neural network instead. While such approaches are interesting,

Logic-Based Smart Contracts in Blockchains 181

Fig. 4. On-off option. Agents A and B form a (smart) contract which is compiled. The
compiled contract is stored and executed in a blockchain platform.

they may be quite limited in terms of expressiveness; for example we know neither
EB nor NS approaches able to deal with temporal aspects for any defeasible rule-
based framework, whereas there are works introducing temporal extensions to
DL, see e.g. [9]. �

Whatever the option, and as previously mentioned, verification of the con-
clusions should be possible, and understandable by humans. In this regard, given
some semantics, the conclusions of efficient but unintelligible approaches can be
verified off-chain by more comprehensible proof systems.

Example 6. DPs clearly provide more intelligible proof systems for human oper-
ators w.r.t. other solutions. Hence, one may use efficient algorithms such as DL
algorithms for routine operations, and human operators can rely on DPs to verify
results if necessary. �

So, if comprehensible proof systems are available for the considered logic-
based system, then the choice of the option to execute a logic-based smart con-
tract in combination with a blokchain system largely depends on the costs of
such execution. As revealing experiment, we compared the cost of the proce-
dural code (PC) for a modus ponens inference (from the premises ‘a’ and ‘if a
then b’, then we derive b) with a rule reduction as used in a reasonably efficient
algorithm for DL, and with an EB approach. The estimated cost for PC was
1480, 11859 for DL and 1418 for an EB approach.3 For a simple modus ponens
inference, the reduction rule was thus approximately 8 times more costly than
the two other approaches. This result suggests that blockchain systems bring a
new important technical challenge which is hardly addressed by the community:
algorithms for a logic approach will not only be required to be efficient, but they
also are required to be cheap as measured within the environment where they
are deployed and according to its economic rules.

3 This comparison was conducted by writing the basic solidity code for the requisite
modus ponens inference and then comparing the ‘gas’ cost as estimated by the official
solidity compiler.

182 F. Idelberger et al.

6 Conclusion

While procedural languages are commonly used to program smart contracts in
blockchain systems, logic-baed languages have been hardly explored. For this
reason, we investigated the utility and possible ways to use logic-based smart
contracts with such systems. We structured this investigation in light of a com-
mon contract lifecycle. We have shown that a logic approach can advantageously
complement its procedural counterpart w.r.t. the negotiation, formation, stor-
age/notarizing, enforcement, monitoring and activities related to dispute reso-
lution.

To show how logic-based smart contracts could be used, we inspected differ-
ent combinations for leveraging logic programming languages to operate smart
contracts with such blockchain systems, and we illustrated our discourse with
different algorithms from defeasible logic frameworks. This led us to emphasize
a fundamental challenge to fully take advantage of a combination of logic-based
smart contracts and blockchain systems: algorithms for logic-based approaches
have to be efficient and cheap as measured within the environment where they
are deployed and according to its economic rules, to ensure feasability in an envi-
ronment where economic governance and consensus is used to ensure a working
system and abuse prevention.

Finally, we have to emphasize that the logic and procedural approaches are
not incompatible, on the contrary, they have the potential to advantageously
complement each other. By providing a declarative specification of the content
of the contract, to be complemented with a procedural definition of the steps
needed to perform the obligations in the contract — either automatically or
through specification introduced by the parties — more clarity is established,
and a criterion is provided for matching automatic execution and shared inten-
tion of the parties, as expressed in the declarative specification.

Acknowledgements. NICTA is funded by the Australian Government through the
Dept of Communications and the Australian Research Council through the ICT Centre
for Excellence Program.

References

1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results
for defeasible logic. ACM Trans. Comput. Log. 2(2), 255–287 (2001)

2. Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: LegalRuleML:
design principles and foundations. In: Faber, W., Paschke, A. (eds.) Reasoning
Web 2015. LNCS, vol. 9203, pp. 151–188. Springer, Heidelberg (2015)

3. d’Avila Garcez, A.S., Gabbay, D.M., Lamb, L.C.: A neural cognitive model of
argumentation with application to legal inference and decision making. J. Appl.
Log. 12(2), 109–127 (2014)

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

Logic-Based Smart Contracts in Blockchains 183

5. Ethereum Foundation. Ethereum’s white paper
6. Governatori, G.: Representing business contracts in RuleML. Int. J. Coop. Inf.

Syst. 14(2–3), 181–216 (2005)
7. Governatori, G.: Thou shalt is not you will. In: Atkinson, K., (ed.) Proceedings

of the Fifteenth International Conference on Artificial Intelligence and Law, pp.
63–68. ACM, New York (2015)

8. Governatori, G., Pham, D.H.: DR-CONTRACT: an architecture for e-contracts in
defeasible logic. Inter. J. Bus. Process Integr. Manag. 5(3), 187–199 (2009)

9. Governatori, G., Rotolo, A., Riveret, R., Palmirani, M., Sartor, G.: Variants of
temporal defeasible logics for modelling norm modifications. In: Proceedings of
the 11th International Conference on Artificial Intelligence and Law, Stanford,
California, USA, pp. 155–159. ACM (2007)

10. Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, G.,
Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer,
Heidelberg (2009)

11. Maher, M.J.: Propositional defeasible logic has linear complexity. Theor. Pract.
Log. Program. 1(6), 691–711 (2001)

12. Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumen-
tation frameworks. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial
Intelligence, pp. 105–129. Springer, Heidelberg (2009)

13. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). (The
Nakamoto paper)

14. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting arguments in
legal reasoning. Artif. Intell. Law 4(3–4), 331–368 (1996)

15. Riveret, R., Rotolo, A., Sartor, G.: Probabilistic rule-based argumentation for
norm-governed learning agents. Artif. Intell. Law 20(4), 383–420 (2012)

16. Sartor, G.: Legal Reasoning: A Cognitive Approach to the Law. Springer,
Heidelberg (2005)

17. Szabo, N.: The idea of smart contracts (1997)
18. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014)
19. Wright, A., De Filippi, P.: Decentralized Blockchain Technology and the Rise of

Lex Cryptographia. SSRN Scholarly Paper ID 2580664, Social Science Research
Network, Rochester, NY, March 2015

Blockchain Temporality: Smart Contract Time
Specifiability with Blocktime

Melanie Swan(&)

Philosophy and Economic Theory,
New School for Social Research, New York, NY, USA

m@melanieswan.com

http://www.BlockchainStudies.org

Abstract. The aims of this paper are to (1) provide a conceptual context for
smart contracts, (2) argue that blockchains are a next-generation technology
enabling much larger-scale and more complex computing projects, and (3) posit
blocktime as a new mode of conceiving time. Blockchains are the distributed
ledger technology underlying Bitcoin and other cryptocurrencies; the payments
layer the Internet never had; a mechanism for updating truth states in distributed
network computing through consensus trust; and overall, a new form of general
computational substrate. Blocktime is the time over which a certain number of
blocks will have confirmed; and this creates an alternative event trajectory in
time which can be offset against human-time or other computing clocktime
regimes for arbitrage or complementary purposes. The result of this effort is to
show that blocktime allows the contingency of future events to be more robustly
orchestrated through temporality as a selectable smart contract feature.

Keywords: Bitcoin � Cryptocurrency � Blockchain � Temporality �
Algorithmic trust � Information theory � Distributed computing �
Decentralization � Network computing � Byzantine agreement

1 Introduction

1.1 Background Context

I have divided the paper into three sections toward the aims of providing a conceptual
context for smart contracts, arguing that blockchains are a next-generation technology
enabling much larger-scale and more complex computing projects, and positing
blocktime as a new mode of conceiving time. First, I discuss computational substrates.
I argue that current computational models may be limited in scope and unable to scale
to address the next tiers of computing challenges. Some of these computing projects
could include genome and microbiome research banks with billions of files, national
property registries, searchable government records databases, astronomical data man-
agement, unified Electronic Medical Record systems, and Internet of Things
(IoT) connected sensor and device coordination. I suggest that blockchain technology
could be one solution for creating a next-generation computational architecture to
address these kinds of larger-scale computational projects that have been impossible
before. The payments layer installs a valuable functionality that allows remuneration,

© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 184–196, 2016.
DOI: 10.1007/978-3-319-42019-6_12

which could support an accelerated move to the automation economy in enabling a
more sophisticated level of secure automated payments. For example, eventually the
entire mortgage servicing industry could be outsourced to a package of smart contracts.
Second, I discuss the properties of blockchain computing such as Byzantine Agreement
and consensus algorithms, and new classes of blockchain applications. I suggest that
blockchains comprise a new and unique form of computing system wherein trust,
transparency, and entropy are reliably produced and persist over time. Third, I discuss
Turing completeness and blocktime. Blockchains, and particularly smart contract
platforms, are a general universal computing substrate in the Turing-complete sense, a
generic computational infrastructure. I posit the idea of blocktime that makes time more
malleable as a specifiable parameter of smart contracts, and offers a tool for managing
the contingency of future events. Previously, the available time selections were gen-
erally restricted to human time and computing event time. Now however, there is
blocktime (the time over which a certain number of blocks will have confirmed), which
is a separate time regime unto itself that can be played off and against other time
trajectories, and allow processes to be configured internally within the realm of
blocktime. I conjecture that there is a sense of the possibility of creating “more time” by
being able to access events in alternative time trajectories, like blocktime. A practical
example is that I can be earning cryptocurrency with my numerous and parallel
blockchain DACs (distributed autonomous corporations) that I can swap out to fiat
currency to pay my physical-world obligations. The key point is starting to conceive of
time in this unprecedented way as a malleable resource that can be specified in different
ways as a contract feature.

1.2 Computational Substrates

A general computational substrate may be conceived as a platform upon which cal-
culations related to information processing may be performed. Numerous computation
substrates have been proposed and developed to different degrees. The most obvious
and familiar in existence is the worldwide silicon chip-based computing infrastructure.
Other platforms are in development such as quantum computing. In biology, there are
suggestions for computational models using molecular nanotechnology, positional
assembly, social network graphs, and ant colonies and other swarm-coordinated
behaviors. DNA has been proposed as a miniaturized and durable means of storage and
computation [1]. Organic-inorganic hybrid computational substrates have been out-
lined, for example Brainets (linking organic computing units (brains) to silicon com-
puting networks) [2], and Neural Dust (thousands of 10–100 micron-sized in-brain
sensor nodes providing neural recording and interface support) [3].

While the existing silicon-chip based computational infrastructure is ubiquitous in
some sense, it has some challenges. First, it is not a general computational substrate
upon which any program can run fungibly. There are many different kinds of machines,
operating systems, languages, software versions, and installed configurations which
can prevent even seemingly interoperable software programs from running in a new
environment. One recent strategy designed to address this is executing software
applications inside Docker containers which do not require underlying machine

Blockchain Temporality: Smart Contract Time Specifiability 185

configurations to be a certain way. Second, there is an ongoing explosion in the number
and species of Internet-connected devices. 20–30 billion Internet-connected devices are
estimated to be online worldwide by 2020 [4]. At the same time, there are more
different kinds of computing devices. The computing world is no longer just servers
and PCs; it includes drones, robots, self-driving vehicles, IoT (Internet of Things)
sensors, smart phones, wearables, smart roads, and other devices. Each new species has
its own processing requirements and protocols, and a different kind of infrastructure
might be required to manage the traffic of all of the communication and coordination
for these platforms. A third factor is the need to accommodate a higher magnitude of
very large data files, for example nation-wide EMRs (electronic medical records) or
million-member genome banks. In order to progress to a new era of computing that
incorporates the IoT explosion, very-large data files, and interoperability, a more
universal computing schema is needed, a truly general computational substrate that can
handle the magnitude of IoT device messaging, that includes a remunerative payments
layer, that is a truly next-generation global infrastructure, and this could be blockchain
technology.

Blockchain technology is a new arrival in computational substrates. A blockchain is
a software protocol and decentralized ledger for recording transactions, but more
fundamentally blockchains are a global-scale computational substrate for the pro-
cessing of any kind of digitized activity. Blockchains are a general base for compu-
tation [5, 6]. The first application of blockchain technology is cryptocurrencies, where
the key property is being able to securely update truth states in a distributed computing
network. This has been a known challenge called the Byzantine Generals Problem; e.g.;
how to communicate effectively across a distributed war field of generals, not knowing
which generals might be compromised [7]. One way of reaching Byzantine Agreement
or Byzantine Consensus in computing systems has been needed. Several solutions have
been proposed in the previous decades, and finally blockchains have a number of
checks and balances such that reaching secure and accurate consensus across networks
despite any failing nodes (malicious or otherwise) might be more reliably achieved.
Blockchains are a software technology for updating every node in a distributed com-
puting system with the current state of the world; a means of conferring a shared truth
state in a distributed system. Blockchains are an important innovation for large-scale
activity in both computing and social cohesion, where some of the social layers created
are economic remuneration and distribution, and societal shared trust that is simulta-
neously global and local, and can facilitate human and machine interaction and
collaboration.

A blockchain is like a giant interactive Google doc spreadsheet that anyone can
view on-demand, where independent administrators (miners) continually verify and
update the ledger to confirm that each transaction is valid. It is called a blockchain
because blocks or batches of transactions are posted sequentially to a ledger, and each
new block starts by referencing the prior block, so a chain of blocks is created. The
result is that a secure network is created where any transaction can be independently
confirmed as unique and valid without a centralized intermediary like a bank, gov-
ernment, or other institution. Creating trust in a distributed computing system without
an intermediary (Byzantine Consensus) had been an unsolved computing problem with
many other attempts at producing a workable digital cash solution failing. Blockchain

186 M. Swan

technology is called trustless in the sense of not needing to trust the counterparty but
instead trusting the blockchain software system. Trust is created by using the software
system, as opposed to the old model of trust, which was the need to know and trust the
counterparty of the transaction. Some of the implications of trusting the software
system instead of having to find and trust counterparties is that not only is there more
freedom with whom one can transact (essentially any human or machine agent across
the global Internet), but also there is a much larger scale of transactions that can occur.
There is a worry that the extreme openness of transactability on blockchain networks
enables illegal criminal activity, most notably operations like Silk Road, but more
fundamentally blockchains are a technology like the Internet, which too was initially
used for illicit activity (some thought it would not progress beyond pornography), but
quickly became an indispensable infrastructural element for coordinating and
expanding all human and machine activity. The same could be true for blockchains.

Cryptocurrencies like Bitcoin are one of the first applications using blockchain
technology. Bitcoin is like ‘Skype for money;’ [8] performing the same transformation
that Skype did for phone calls in the context of digital cash, or what email did for post
office mail, which is move physical world processes with plant and materials into more
efficient digital network models. Bitcoin is the first robust demonstration of blockchain
technology and decentralized models more generally. Since the middle ages, hierar-
chical models have been the primary means of organizing large-scale activity and they
work up to a point, however now decentralized models are a striking new entrant in the
possibility space of the models for large-scale coordination. Further, decentralized
models suggest particular traction in coordinating truly global-scale activity at a larger
and more complicated level than has been previously possible. Decentralized tech-
nologies could mark the next node in the evolution of humans and computing, and are
required in the contemporary big data era to orchestrate projects such as
effectively-sized health data commons for research involving thousands or millions of
whole human genome files beyond the mere 3,751 that have been amassed so far [5]. It
is not that centralized hierarchical models would be replaced overnight; the longer-term
future could be one of a coexistence of many different kinds of organizational models:
centralized, decentralized, and hybrid structures, and other new forms of models (for
example based on complexity), where the important dynamic becomes tuning the
orchestration system to the requirements of the underlying situation.

2 Properties of Blockchain Computing

Blockchains are a universal, large-scale, global, detailed, distributed, permanent
transaction record available for on-demand look-up at any future moment. It is a system
wherein trust, transparency, and entropy are reliably produced and persist over time.
Computation takes place in the blockchain model in different ways. The first compu-
tational area is mining, the process by which independent third parties (miners) validate
and record transactions. The blockchain software system automatically pack-
ages submitted transactions (on the order of thousands) into blocks, creates a random
number specific to the block, and publishes metadata about the block para-
meters (cryptographic difficulty, service string, nonce (32-bit number), and counter

Blockchain Temporality: Smart Contract Time Specifiability 187

(https://en.bitcoin.it/wiki/Block_hashing_algorithm)). Then anyone running the mining
software performs computations and submits cryptographic guesses as to the specific
parameters and nonce of the block. The mining machine with the correct guess wins the
right to actually record the transactions, and receives the block rewards (transaction fee)
for doing so.

2.1 Byzantine Agreement

One of the reasons that blockchain technology is such an advance is that it provides
Byzantine agreement, a long-sought means of truth-state updating and trust generation
in distributed computing networks. In the general space variously labeled as Byzantine
fault tolerance, Byzantine consensus, and Byzantine agreement, a number of solutions
have been proposed [9]. These consensus protocols are all some form of Byzantine
agreement about how to arrive at secure trustable truth state updating in a consensus
model in a distributed computing network. Consensus protocols can be seen in different
modes of development. First there were Byzantine Agreement Protocols (BAPs) for the
synchronous updating of network nodes. Beginning in the 1980s, these protocols
include the Paxis algorithm for state machine replication from Lamport and Microsoft.
Then Google’s Chubby algorithm is a next-generation of Paxos, focused on the ability
to serve strongly consistent files. Since it is not feasible to update very-large network
systems of worldwide distributed nodes synchronously, more recently asynchronous
models have been proposed.

Thus in the second moment of evolution, there are the different asynchronous
updating algorithms proposed by blockchain technology. These include ‘Nakamoto
Consensus,’ the proof-of-work model used with the Bitcoin blockchain, which is
effective, but expensive and high latency. The proof-of-stake model is also here, which
requires resource ownership, but has the risk of ‘nothing-at-stake’ attacks per
escrow-revoking by malicious agents. There is now a third class of asynchronous
Byzantine agreement consensus protocols under development for the longer-term
future of cryptographic blockchain models. Some proposed models here include ARBC
(Asynchronous Randomized Byzantine Consensus) from Pebble which combines tra-
ditional Byzantine Agreement Protocols with Nakamoto chains as a randomness source
for faster and more-scalable decentralized networks. Other proposals are the BAR
(Byzantine, altruistic, rational) protocol from the University of Texas at Austin, and the
Stellar Consensus Protocol based on Quorum Slicing (trusting and updating via
next-neighbor nodes, not the network as a whole). Prediction markets have been
suggested as a longer-term alternative for reaching trustable truth-state consensus in
distributed computing networks.

2.2 Blockchain Supercomputing

In the last two years, Bitcoin has arrived rapidly out of nowhere and created what is
noted by some as being by far the world’s largest and fastest computing network.
While the Bitcoin blockchain is currently used to conduct necessarily wasteful

188 M. Swan

https://en.bitcoin.it/wiki/Block_hashing_algorithm

cryptographic trail-and-error guessing for transaction recording, it might be more
widely conceived as a computational resource and deployed in applications well
beyond proof-of-work mining. Some projects seeking to harness otherwise wasted
mining cycles into wider computational use include Primecoin (prime number factor-
ing) [10], GreenCoin (carbon credit offsets) [11], and Gridcoin [12] and FoldingCoin
(rewarding and facilitating community computing projects) [13].

All of the worldwide computers running the Bitcoin mining operation collectively
comprise the world’s biggest and fastest supercomputer. Bitcoin reached 1 PetaHash
per second (PH/s) of computing power/speed on September 15th, 2013. In 2015, the
Bitcoin network has been routinely operating at over 350 PH/s, or over 350,000,000
GH/s [14], specifically at 380 PH/s as of August 2015 (http://www.bitcoinwatch.com/).
Bitcoin’s hash-rate is the total computing power of the network, defined as the number
of SHA-256 cryptographic hashes (or guesses) it can compute per second. Compar-
isons could be made with Google, who is estimated to have 10 million servers com-
prising one PetaHash (Smart 2015), and the estimated 2 billion worldwide personal
computers thought to comprise 20 PetaHash [15]. Another comparison is vis-à-vis
supercomputers, where the world’s largest supercomputer, China’s Tianhe-2
(MilkyWay-2) at the National University of Defense Technology has a performance
of 33.86 PetaFLOPS (quadrillions of calculations per second) [16], compared to Bit-
coin’s network hash rate of 4,858,117.28 PetaFLOPS.

2.3 Blockchain Consensus Algorithms

A crucial part of blockchain computing is the consensus protocol by which transactions
are confirmed. The Bitcoin blockchain runs on proof of work, where there is a high cost
to demonstrate a proof of work; the mining operation has to spend the cost and energy
of doing ‘real work’ to make guesses at the cryptographic nonce. This is the model to
deter malicious players and produce a distributed system that is trustworthy. Since
cryptocurrencies involve money and financial assets, there is incentive to game the
system and crypto-security must be high. However, proof-of-work mining is expensive
and may not be a long-term sustainable model for consensus derivation. Therefore
other less-intense mining protocols might be employed as the transaction confirmation
mechanism. Another familiar proposed model is proof of stake, where mining partic-
ipation is determined by asset ownership in the mining system (thus possibly better
aligning incentives to maintain a correct and orderly system). The proof of stake miners
would own a stake in the mining operation, but not necessarily be the transaction
parties or otherwise connected to the transactions, so the mining operation would still
be a separate and independent function from the transactions. As an example of these
protocols in practice, the smart-contract platform Ethereum has launched with a proof
of work model, and then envisions shifting to a proof of stake model for the system to
mature into a steady-state model. Several other consensus protocols for Byzantine
Agreement are in development and discussion for other means of arriving at trustable
truth states in decentralized networks. For example, there is proof of existence
(time-date-stamped proof of a certain document or digital asset existing in a certain
state at a certain time), and proof of truth (proof of a truth state having occurred, such as

Blockchain Temporality: Smart Contract Time Specifiability 189

http://www.bitcoinwatch.com/

an automobile being damaged in a collision). Other more abstract models for proving
agent ability to participate in consensus validation and confirmation processes could
include proof of entropy, proof of intelligence, proof of reputation, and proof of
capability; all as a means of demonstrating some sort of trustable proof of ability to do
something as a means of access-granting to systems platforms, resources, or activities.
Proof of n as an access mechanism to digital smartnetwork assets is a futuretech
concept that could be quite extensible.

2.4 New Classes of Blockchain Applications

Blockchains are a computational model in how they themselves operate, and also in the
new classes of computing operations that they enable. By analogy, there are the layers
of computation that facilitate the Internet’s own operations as a network, and the
numerous additional layers of computational applications for which the Internet is an
input and infrastructure; and this could be similarly true with blockchains. The bigger
endgame with blockchains is their use as a basis for many new classes of applications
in areas ranging from economics and finance to legal services and governance to health
and science to literacy and art. Some practical applications could be decentralized
credit bureaus, open-source FICO scores, and literacy smart contracts. Another
example is health data analysis, where blockchains could be used as the infrastructure
and permissioning mechanism for coordinating secure access to various big health data
streams from millions of persons, using blockchain pointers to secure off-chain stored
files. A firm in this space is DNA.bits, offering a blockchain-based solution for the
de-identified continuous sharing of genetic and correlated clinical data. A vast
global-scale health commons database could be created that is decentralized and
unassembled, queryable on demand. Deep-learning algorithms could then be run over
this massive decentralized datastore, possibly creating the crucial large data corpora
which have been established as a necessary condition for advance in artificial intelli-
gence [17, 18], and could lead to significant medical discovery.

New theories, modes, and means of computation may be required to work with the
new kinds of vastly-larger datasets that could become available and workable for
worldwide processing with blockchains. Right now the epitome of computing is large
centralized datastores like Google’s estimated 10 million servers continually crawling
the web. Now, however, blockchains invite a completely new conceptual paradigm in
computing systems, one that is a completely distributed decentralized blanket of
available resources that can be called upon as needed. Computing as a ubiquitous
reliably-available flexible resource creates a new reality, one based on certainty, trust,
and assurity; one of abundance as opposed to scarcity and constraint. This resource can
be seen and experienced at different levels, from a universal computational substrate, to
its higher-level applications such as a distribution mechanism for GBI (guaranteed
basic income) initiatives and in the farther future, for the safely orchestrated partici-
pation in collaborative cloudminds. Philosophically, blockchains thus contribute to the
constitution of a conceptually different reality, one where computing as a paradigm is
pushed farther into the position of being a seamlessly available background resource
like air.

190 M. Swan

2.5 Blockchains and Complexity

An argument can be made that blockchains are systems of general complexity, as set
forth by Morin [19]. General complexity systems are those that are non-linear, emer-
gent, open, unknowable at the outset, interdependent, and self-organizing; an accurate
descriptor of blockchains in their current early evolutionary moments. What is
important in systems of general complexity is the relationality between the components
as opposed to the parts or the whole, or the beginnings, endpoints, and boundaries of
the system. Morin’s general complexity is distinct from restricted complexity, where
restricted complexity the position that despite the intricate and complicated nature of
complex systems, the underlying rules may become known and enumerated through
scientific study. The other position, general complexity, is that an approach that is itself
complexity-congruent is potentially a more accurate investigatory stance towards
complex systems, especially in the case of blockchains as complex systems, including
since they themselves are still evolving. Blockchains are complex systems and also
generators of complexity. They reliably create randomness, indeterminacy, and entropy
as it is not known or predictable ahead of time which node will ‘win’ the right to
confirm the next block by correctly guessing the cryptographic nonce. This feature of
blockchains as a robust, reliable, persistent, global source of entropy generation is
being proposed for use in a number of applications.

The reason that complexity is important is that complex systems are a new kind of
technology which might accommodate precisely the next phase of larger global scale
projects like million-member genome banks that traditional linear hierarchical models
are unable to address. One example is the idea of Blockchain Supercomputing. One of
the biggest evolutionary needs in supercomputing is to address new tiers of more
sophisticated computational problems, expanding beyond simple linearized parallel
processing methods into situations of greater computational complexity, including with
currently contemplated desktop and peer-to-peer grid computing, and beyond.
Blockchains, particularly with their complexity properties, could be a model to con-
figure new forms of non-linear supercomputing problems. The Bitcoin mining network
is the biggest supercomputer we have ever built, and what does this mean? It is used for
transaction confirmation and shifting balances between wallet addresses but could be
used more broadly for anything.

3 Turing Completeness and Blocktime

While initial blockchain projects like Bitcoin-based cryptocurrencies are specifically
not Turing-complete [20] and focus computationally on unspent transaction balances,
the second generation of projects, smart contract platforms like Ethereum (launched
July 2015) [21] and Eris Industries [22] are designed to be Turing-complete in the
sense of running any program. Smart contract platforms accommodate more compli-
cated validation and confirmation functionality including vast value-chain ecologies
with independent truth oracles, escrow services, and multi-signature contract
co-signing parties. Having Turing-complete platforms could allow a full and portable
class of computing problems to be addressed, including orchestrating uncertain future

Blockchain Temporality: Smart Contract Time Specifiability 191

events. Digital cryptocurrencies could be conceived as blockchain computing 1.0, and
smart contract platforms, essentially Turing-complete state-change machines as
blockchain computing 2.0, and connote a completely different tier of computational
complexity. Smart contracts have a number of important features related to computa-
tional complexity.

Definitionally, smart contracts are as any contract, agreements between parties, but
in this case, posted to the blockchain for some sort of automated execution. Smart
contracts may be (1) compliant, in accord with current legal regimes as legal contracts
with the four required features of mutual assent, consideration, capacity, and legality,
or (2) a-compliant, operating in a-legality outside of current regulatory mechanisms.
Smart contracts are state-change machines; they are launched and await events or
changes in conditions to update their states. These code-contracts (as opposed to
discretionarily-enforced human contracts) will execute inexorably. They can call each
other in a near-infinite complexity and be used as the architecture for autonomous
entities, DAOs, Dapps, DACs, DASs, and DCOs (distributed autonomous organiza-
tions, applications, corporations, societies; distributed collaborative organizations),
propelling the automation economy forward.

3.1 Temporality as a Feature

Blockchains are an important reality-making technology, a mode and means of
implementing many different flavors of “crypto-enlightenment.” This includes newer,
flatter, more autonomous economic, political, ethical, scientific, and community sys-
tems. But not just in the familiar human social constructs like economics and politics,
possibly in physical realities too like time. Blocktime’s temporal multiplicity and
malleability suggest a reality feature we have never had access to before – a way of
possibly making more time. Blocktime as blockchains’ own temporality allows the
tantalizing possibility of rejiggering time and making it a malleable property of
blockchains. The in-built time clock in blockchains is blocktime, the chain of time by
which a certain number of blocks will have been confirmed. Time is specified in units
of transaction block confirmation times, not minutes or hours like in a human time
system. Block confirmation times are convertible to minutes, but these conversion
metrics might change over time (for example with block confirms being of the scale
and frequency to convert to micro-minutes or nano-minutes).

3.2 Blocktime Arbitrage

One key point is that the notion of blocktime, as an extension of computing clocktime
more generally, creates a differential. Blocktime and human time already exist as
different time schemas. A differential suggests that the two different systems might be
used to reinforce each other, or that the differential could be exploited, arbitraging the
two time frameworks. Through the differential too is the way to ‘make more time,’ by
accessing events in another time trajectory. The conceptualization of time in computer
science is already different than in human time. Computing clocktime has more

192 M. Swan

dimensions (discrete time, no time, asynchronous time, etc.) than human physical and
biological time, which is continuous. Clocktime has always been different than human
time. What is different with blocktime is that it builds in even more variability, and the
future assignability of time through dapps and smart contracts. For example, MTL
(machine trust language) time primitives might be assigned to a micropayment channel
dapp as a time arbiter. Time has not been future-specifiable before, in the way that it
can be assigned in blocktime smart contracts.

Temporality could be a standard smart contract feature. Time speed-ups,
slow-downs, event-waiting, and event-positing (a true futures-class technology) could
become de rigueur blocktime specifications. Even the blocktime regime itself could be
a contract-specifiable parameter per drop-down menu, just like legal regime. Tempo-
rality becomes a feature as smart contracts are launched and await events or changes in
conditions to update contract states. Time malleability could itself be a feature, arbi-
traging blocktime with real time. An example of a time schema differential arising
could be for example, a decentralized peer-to-peer loan that is coming due in block-
time, but where there have not been enough physical-world time cycles available for
generating the ‘fiat resources’ to repay the loan.

In blocktime, the time interval at which things are done is by block. This is the time
that it takes blocks to confirm, so blockchain system processes like those involving
smart contracts are ordered around the conception of blocktime quanta or units. This is
a different temporal paradigm than human lived time. The human time paradigm is one
that is more variable and contingent. Human time is divided and unitized by the
vagaries of human experience, by parameters such as day and night; week, weekend,
and holiday; seasons; and more contingently, crises, eras, and historical events. Since
blocktime is an inherent blockchain feature, one of the easiest ways to programmati-
cally specify future time intervals for event conditions and state changes in
blockchain-based events is via blocktime. Arguably, it is easier, and more congruent
and efficient, to call a time measure from within a system rather than from outside. It
could be prohibitively costly for example, to specify an external programmatic call to
NIST or another time oracle. Possibly the emerging convention could be to call NIST,
including as a backup, confirmation, or comparison for blocktime. Currently, block-
chain systems do not necessarily synchronize their internal clocktime with NIST, but
the possibility of a vast web of worldwide smart contracts suggests the value and
necessity of external time oracles, and raises new issues about global time measurement
more generally. Especially since each different blockchain might have its own block-
time, there could be some standard means of coordinating blocktime synchronizations
for interoperability, maybe via a time sidechain for example. The key point is starting
to conceive of time in a mode which has been unprecedented; time is not a fixed given,
time is a malleable resource that can be specified in different ways as a contract feature.
In fact, I conjecture that the malleability of time engenders a sense of the possibility of
creating “more time” by being able to access events in alternative time trajectories such
as blocktime [23].

Blockchain Temporality: Smart Contract Time Specifiability 193

3.3 Computing Creates Novel Temporalities of Discontinuity
and Prediction

First computing clocktime made time malleable through its different discontinuous
forms. Then machine learning and big data facilitated a new temporality, one oriented
to the present and future, instead of responding to just the past. There was a shift from
only being able to react to events retrospectively after they had passed, to now being
able to model, simulate, plan, and act in real-time as events occur, and proactively
structure future events. The current change is that blockchains and particularly smart
contracts add exponential power to this; they are in some sense a future reality-making
technology on steroids. Whole classes of industries (like mortgage servicing) might be
outsourced to the seamless orchestration of blockchain dapps and DACs in the next
phases of the automation economy. While Bitcoin is the spot market for transactions in
the present moment, smart contracts are a robust futures market for locking in the
automated orchestration of vast areas of digital activity.

3.4 Blockchain Historicity: Computer Memory of Human Events

Blockchain logs are in a sense a human event memory server. Blockchains are already
event history keepers, and now with blocktime could have even more responsibility as
the memory computer of human events. It is now possible to think in terms of
blockchain time sequences, in the anticipation and scoping of future events and
activities, as blockchain reality unfolds, as opposed to human time scales and events.
For example, there are normal human time sequences, like a one-year lease agreement.
Other sequentiality is based on human-experienced conditions like ‘the park is open
until dark,’ which makes little sense in a blocktime schema. There are time guidelines
that vary per lived experience in human realities. Likewise, there could be analogs in
lived experience in blockchain realities. Different events could mark the historicity of
blockchains, for example, the time elapsed since the genesis block, and other metrics
regarding number, amount, and the speed of transactions. Gesturing towards a
crypto-philosophy, Hegel, Benjamin, Hölderlin, and Heidegger already have more
malleable conceptions of historicity and temporality that might be instantiated in the
blocktime paradigm. There is much more linkage and portability between past, present,
and future (all arguably human constructions), for example, in ecstatic temporality,
where the event from the future reaches back to inform the present now moment, as
extended from the past [24].

4 Conclusion

In this paper, my contribution is to (1) provide a conceptual context for smart contracts,
(2) argue that blockchains are a next-generation technology enabling much larger-scale
and more complex computing projects, and (3) posit blocktime as a new mode of
conceiving time. Blockchains are a universal general computing substrate in the
Turing-complete sense: any computing problem can be formulated and run on
blockchains as a universal computing platform. Not only can blockchains run any

194 M. Swan

program, they are an improved computational substrate because of their universality,
accessibility, availability, scalability (both vertical (Merkle rooting) and horizontal
(distributed network nodes)), always-on connection to the Internet, permanent
record-maintaining, and auditable record-keeping. More broadly, blockchains are a
new form of cryptographic software protocol and a programming paradigm for secure
distributed computing. They could have a wide variety of uses in the implementation of
digital currencies, financial and economic transfers; the administration, registration, and
exchange of all forms of tangible and intangible assets as smart property; and the
coordination of governance, legal, health, and scientific activity via smart contracts and
distributed autonomous entities, ushering in a productive and trust-building era of
human-machine collaboration. Computationally, blockchains provide an unprece-
dented fully-scalable universal worldwide computing infrastructure with built-in
security and a remunerative payments layer. Blockchains could be the next evolu-
tionary addition to the Internet by enabling a new degree of sophistication and reso-
lution in computing. Thus there could be the start of a universal computing substrate,
an always-on ubiquitous background resource, a blanket of secure processing that
supports greater possibilities for human endeavor. Blockchains as a new core infras-
tructural tier of computational resource could prompt a reconception of computing;
philosophically, mathematically, and practically. As a general computational substrate,
blockchains expand the reach of computing, and this in turn expands the reach of our
thinking and realizing in terms of what is possible in computing.

References

1. Connor, S.: Single DNA molecule could store information for a million years following
scientific breakthrough. Independent (2015)

2. Pais-Vieira, M., Chiuffa, G., Lebedev, M., Yadav, A., Nicolelis, M.A.L.: Building an
organic computing device with multiple interconnected brains. Nat. Sci. Rep. 5, 11869
(2015)

3. Seo, D., Carmena, J.M., Rabaey, J.M., Alon, E., Maharbiz, M.M.: Neural dust: an ultrasonic,
low power solution for chronic brain-machine interfaces (2013). arXiv:1307.2196 [q-bio.
NC]

4. Bauer, H., Patel, M., Veira, J.: The Internet of Things: Sizing up the Opportunity. McKinsey
and Co., New York (2014)

5. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media, Sebastopol (2015)
6. Merkle, R.: DAOs, Democracy and Governance. Version 1.2 (2015)
7. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.

Program. Lang. Syst. 4(3), 382–401 (1982)
8. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Cryptocurrencies. O’Reilly

Media, Sebastopol (2014)
9. Swan, M.: Blockchain Consensus Protocols. Bitcoin Meetup (2015). http://www.slideshare.

net/lablogga/blockchain-consensus-protocols
10. Buterin, V.: Primecoin: The cryptocurrency whose mining is actually useful. Bitcoin Mag.

(2013). http://primecoin.io
11. Dollentas, N.: Greencoin: carbon emissions coin. Bitcoinist (2014). http://www.grcoin.com

Blockchain Temporality: Smart Contract Time Specifiability 195

http://arxiv.org/abs/1307.2196
http://www.slideshare.net/lablogga/blockchain-consensus-protocols
http://www.slideshare.net/lablogga/blockchain-consensus-protocols
http://primecoin.io
http://www.grcoin.com

12. Cawrey, D.: 5 Global problems Bitcoin’s proof of work can help solve. CoinDesk (2014).
http://www.gridcoin.us

13. Menezes, N.: Interview with the Foldingcoin team. Bitcoinist (2014). http://foldingcoin.net
14. Smart, E.: Bitcoin is 100 times more powerful than Google. Cryptocoin News (2015)
15. Gill, T.: Bitcoin hash-rate exceeds total computing power of all the world’s computers!

Taran Gill Blog (2014)
16. Top 500: The List - June 2015. http://www.top500.org/lists/2015/06
17. Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE Intell. Syst.

24(2), 8–12 (2009)
18. Le, Q.V., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G.S., Dean, J., Ng, A.Y.:

Building high-level features using large scale unsupervised learning (2011). arXiv:1112.
6209 [cs.LG]

19. Morin, E.: Restricted complexity, general complexity. In: Gershenson, C., Aerts, D.,
Edmonds, B. (eds.) Worldviews, Science and Us: Philosophy and Complexity, pp. 5–29.
World Scientific, Singapore (2007). Trans. by, Gershenson, C.

20. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
21. Liang, C.C.: A next-generation smart contract and decentralized application platform.

Ethereum White paper (2016). https://github.com/ethereum/wiki/wiki/White-Paper
22. Lewis, A.: In a nutshell: Eris (Epicenter Bitcoin Interview – January 2016). Bits on Blocks

Blog (2016)
23. Swan. M.: Temporality of the Future: A New Theory of Time: X-tention is Simultaneously

Discrete and Continuous. Institute for Ethics and Emerging Technologies (2016). http://
www.slideshare.net/lablogga/temporality-of-the-future

24. Heidegger, M.: Being and Time, pp. 1–474. Harper Perennial Modern Classics, New York
(2008)

196 M. Swan

http://www.gridcoin.us
http://foldingcoin.net
http://www.top500.org/lists/2015/06
http://arxiv.org/abs/1112.6209
http://arxiv.org/abs/1112.6209
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.slideshare.net/lablogga/temporality-of-the-future
http://www.slideshare.net/lablogga/temporality-of-the-future

Constraint Handling Rules

A Numerical Optimisation Based
Characterisation of Spatial Reasoning

Carl Schultz1,3(B) and Mehul Bhatt2,3

1 University of Münster, Münster, Germany
schultzc@uni-muenster.de

2 University of Bremen, Bremen, Germany
3 The DesignSpace Group, Bremen, Germany

http://www.design-space.org,

http://www.spatial-reasoning.com

Abstract. We present a novel numerical optimisation based characteri-
sation of spatial reasoning in the context of constraint logic programming
(CLP). The approach —formalised and implemented within CLP— is
developed as an extension to CLP(QS), a declarative spatial reasoning
framework providing a range of mixed quantitative-qualitative spatial
representation and reasoning capabilities. We demonstrate the manner
in which the numerical optimisation based extensions further enhance
the declarative spatial reasoning capabilities of CLP(QS).

Keywords: Numerical optimisation · Declarative spatial reasoning ·
Constraint logic programming · Geometric and spatial reasoning

1 Introduction

Declarative spatial reasoning is a paradigm that aims to integrate spatial repre-
sentation and reasoning natively within general Knowledge Representation and
Reasoning (KR) frameworks to support seamless high-level reasoning about both
domain-specific knowledge and spatial constraints [4]. For instance, we would like
to employ logic programming for Question/Answering in application domains
where space plays a central role (product design, geographic information sys-
tems, histopathology, etc.) by posing queries over a knowledge base of facts and
rules that can also involve spatial constraints.

Consider an example: let p be a 2D point defined by real coordinates xp, yp,
and let c be a circle defined by a 2D centre point xc, yc and a real-valued radius
rc. We pose the following query in the Prolog logic programming language that
the point p is both in the interior of c (inside) and exterior to c (outside):

As it is impossible for a point to be both inside and outside of a circle simulta-
neously the correct answer is:

c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 199–207, 2016.
DOI: 10.1007/978-3-319-42019-6 13

200 C. Schultz and M. Bhatt

Notice that no numerical coordinates for p nor c were given. The interpretation
of the query result is that: there does not exist any 2D point p that is both inside
and outside of some circle c. Thus, to fully support spatial reasoning we require
that Prolog can handle variables that range over infinite domains of possible
spatial objects.

We have pursued various approaches for declarative spatial reasoning in KR
[4,16,18,19] in an attempt to balance expressiveness against the prohibitive com-
putational complexity of spatial reasoning in the absence of a complete numer-
ical description of the objects involved (we provide further details in Sect. 2).
In addition to CLP, most recently we have also explored the integration of spa-
tial reasoning with Answer Set Programming (Modulo Theories) [19] in order to
handle non-monotonic spatial reasoning in a dynamic spatial systems setting.
In this paper, we further extend the foundations of declarative spatial reasoning
in the context of CLP. We target a specific class of qualitative spatial constraints
that we formulate in the framework of numerical optimisation (Sect. 2), includ-
ing: contact, incidence, orientation, relative size. By the use of attributed vari-
ables, we show that our approach fully adheres to the semantics of CLP. Further-
more, we also deomontrate that spatial solving in our framework is incremental,
and thus avoids costly re-solving of subproblems.

2 Spatial Representation and Reasoning

Constraint Logic Programming [9] extends standard Logic Programming unifi-
cation by allowing certain goals to be sent to a constraint store handled by a
specialised constraint solver for determining satisfiability. This greatly expands
the domains that can be reasoned about, such as linear constraints over the reals
CLP(R) [9], qualitative spatial relations [4] etc.

Spatial Entities in QS. Domain entities in QS include points, line segments,
circles, simple polygons, and egg-yolk regions. Our method is applicable to a wide
range of 2D and 3D spatial objects, e.g. [4,13].

– a point is a pair of reals x, y,
– a line segment is a pair of end points p1, p2 (p1 �= p2),
– a circle is a centre point p and a real radius r (0 < r),
– an egg yolk region1 is defined by a circular upper and lower approximation

c+, c− such that c− is a proper part of c+,
– a simple polygon is defined by a list of n vertices (points) p1, . . . , pn (spatially

ordered counter-clockwise) such that the boundary is non-self-intersecting, i.e.,
there does not exist a polygon boundary edge between vertices pi, pi+1 that
intersects some other edge pj , pj+1 for all 1 ≤ i < j < n and i + 1 < j.

1 We employ the egg-yolk method of modelling regions with indeterminante boundaries
[6] to characterise a class of regions (including polygons) that satisfies topological
and relative orientation relations [17]. Each egg-yolk region is an equivalence class
for all regions that are contained within the upper approximation (the egg white),
and completely contain the lower approximations (the egg yolk).

A Numerical Optimisation Based Characterisation of Spatial Reasoning 201

A spatial object in a spatial reasoning problem is a variable associated with a
spatial domain (e.g. the domain of 2D points). An instance of an object is an
element from the domain, e.g. the point (0, 1) is an instance of a point object.
A configuration of objects is a set of instances such that each object corresponds
to exactly one instance.

Spatial Relations in QS. We define the following spatial relations in QS
(see Fig. 2) as they have been studied extensively within AI and demonstrate a
range of spatial aspects.

Mereotopology. Part-whole and contact relations between regions [15]: discon-
nected (dc), externally connected (ec), partially overlapping (po), tangential
proper-part (tpp), non-tangential proper part (ntpp), equal (eq), discrete from
(dr) defined as dc or ec, and proper part (pp) defined as tpp or ntpp.

Relative Orientation. Left, right, collinear, in front, behind orientation relations
of points and regions with respect to line segments, and parallel, perpendicular
relations between line segments [4].

Incidence. Interior, on boundary, exterior incidence relations between points and
regions.

Size. Smaller, equisized, larger size relations between regions.

Spatial Reasoning Tasks. In the following tasks the input is a set of objects
and a set of qualitative spatial relations between those objects.

Consistency. Determine whether the relations are satisfiable, i.e., whether there
exists at least one configuration of the objects that satisfies all spatial relations.

Generating Configurations. Find a configuration of objects that satisfies the
given relations.

Interactive Geometry. Intuitively, allow a user to “move”, “resize” or otherwise
manipulate object instances in a configuration. The spatial solver automatically
updates the other object instances so that the given spatial relations are main-
tained at all times. More formally, given a set of objects O, a set of relations, a
configuration C1, and an object o ∈ O (that the user manipulated) find a new
consistent configuration C2 such that the instance of o is the same in C1 and C2.

2.1 Formulating Spatial Semantics as Numerical Optimisation

One approach for formalising the semantics of spatial reasoning is by analytic
geometry, i.e. to encode qualitative spatial relations as systems of polynomial
equations and inequalities. The task of determining whether a set of spatial rela-
tions is consistent is then equivalent to determining whether the set of polynomial
constraints are satisfiable. Iterative methods for solving systems of polynomial
constraints generate sequences of approximate solutions that aim to converge
on a solution, and include Newton- and Quasi-Newton-based methods [11]. Let
X = (x1, . . . , xn) be a vector of n real variables (encoding the object parame-
ters) over m polynomial equation constraints (encoding the qualitative spatial

202 C. Schultz and M. Bhatt

relations): fi(x1, . . . , xn) = 0 for 1 ≤ i ≤ m. Numerical optimisation solves the
system of constraints by minimising the sum of squares [8]:

σ(X) =
m∑

i=1

fi(X)2

Many specialised global and local optimisation algorithms have been developed
e.g. low storage BFGS [5].

C2C1

pj

pi

r1

p2

r2

r1
smaller(c1, c2)

C
Ci

p

interior(p, c)

a

b
p pi

left(p, lab)

a
b

p

180o

front(p, lab)

C2

C1

ec(c1, c2)

C2

Ci C1

dc(c1, c2)

C2
C1

tpp(c1, c2)

C2
Ci

C1

ntpp(c1, c2)

C2

C1

pi p1

p2

po(c1, c2)

a
b

pc pi

Cj

C

left(c, lab)

R

R-

R+

R

R2

R1

pp(R1, R2)

R2

R1

po(R1, R2)

Fig. 1. Encoding qualitative spatial relations.

Table 1 presents our set of primitive geometric functions that we use to encode
qualitative spatial relations (Fig. 1). Each function fi is satisfied by the given
arguments X when fi(X) = 0, and thus can be robustly solved for by standard
numerical optimisation algorithms. For example, we make circle c1 smaller than
circle c2 by introducing points pi, pj such that the points pi, pj and p2 (the centre
of c2) make a right-angled triangle. The distance |p2pj | between p2, pj equals the
radius r1 of c1. The distance |p2pi| between points p2, pi equals the radius r2 of

A Numerical Optimisation Based Characterisation of Spatial Reasoning 203

Table 1. Primitive geometric functions.

Function Polynomial expression Description

coll(xp, yp, xa, ya, xb, yb) (xb − xa)(yp − ya) − (xb − ya)(xp − xa) point p collinear to

line lab

coin(xp, yp, xc, yc, rc) (xp − xc)
2 + (yp − yc)

2 − r2
c point p coincident to

boundary of

circle c

perp(xa, ya, xb, yb, xc, yc, xd, yd) (yb − ya)(yd − yc) + (xb − xa)(xd − xc) lines lab, lcd are

perpendicular

para(xa, ya, xb, yb, xc, yc, xd, yd) (yb − ya)(xd − xc) − (xb − xa)(yd − yc) lines lab, lcd are

parallel

angl(xa, ya, xb, yb, xc, yc, xd, yd, θ)
θ − atan2((ya − yb), (xa − xb))

+ atan2((yc − yd), (xc − xd))
angle θ between lines

lab, lcd

diff(va, vb, vc) vc − (va − vb) value vc equals values

va minus vb

tang int(xa, ya, ra, xb, yb, rb) (xa − xb)
2 + (ya − yb)

2 − (ra − rb)
2 circle ca is inside

circle cb, touching

the boundary

(tangent internal)

tang ext(xa, ya, ra, xb, yb, rb) (xa − xb)
2 + (ya − yb)

2 − (ra + rb)
2 circles ca, cb have

external contact

(tangent external)

c2. By Pythogoras’ Theorem, |p2pj | must be less than |p2pi|. Therefore r1 < r2.
This is expressed by the following constraint:

coin(xi, yi, x2, y2, r2) ∧ (xj = xi) ∧ (yj = y2) ∧ not equal(pi, pj)

3 Spatial Variables in Prolog

In this section we present our implementation of spatial variables in Prolog and
prove that our system fully adheres to Constraint Logic Programming semantics
with incremental spatial solving. A CLP(QS) program is a plain CLP program
with a spatial constraint store G consisting of spatial variables V and a set of
spatial constraints E. Let φ be a spatial oracle predicate that takes G. Invoking
the oracle succeeds, φ(G) ≡ �, if the corresponding numerical optimisation
problem has a global minimum σ(X) = 0. The oracle is invoked when a spatial
constraint is added to E, and when spatial variables are unified.

Implementation. Spatial constraints are maintained in plain CLP via
attributed variables along with real values representing the current consistent
configuration. Attribute variable hooks invoke the oracle predicate that calls the
external numerical optimisation solver as follows:

1. set up a fresh numerical optimisation problem over polynomial variables X
in the external solver corresponding to G; assign initial values for each x ∈
X according to the current real value assigned to the corresponding spatial
variables v ∈ V

204 C. Schultz and M. Bhatt

2. run the external solver’s numerical optimisation algorithm
3. IF the solver reports failure then clear the solver database and return fail
4. ELSE retrieve real values of the solution from the solver and assign to the

spatial variables’ value attributes; clear the solver database; return success

Importantly, the use of the external solver is stateless, i.e. all spatial constraints
are maintained on the Prolog side. This guarantees that the integration with the
external solver does not interfere with the SLD resolution procedure.

Proposition 1. The integration between the external numerical optimisation
solver and Prolog does not interfere with SLD resolution.

Proof. A CLP(QS) program is a plain CLP program with calls to an external
solver. Calls to the external solver are stateless, and thus equivalent to calling an
oracle. The oracle is invoked whenever the constraint store is altered or spatial
variables are unified, and thus at each step in the SLD resolution procedure
the constraint store is necessarily consistent, otherwise standard SLD resolution
failure occurs. �	
The cost of solving a numerical optimisation problem is measured as the num-
ber of iterations required to find the minimum. If the given problem already is
minimised then the algorithm requires 0 iterations.

Proposition 2. Spatial constraint solving is incremental, i.e. adding a new spa-
tial constraint and solving does not require re-solving the original set of con-
straints.

Proof. Let G be a spatial constraint store, and φ a spatial oracle that determines
consistency of G by a numerical optimisation algorithm. The oracle uses the cur-
rent configuration assigned to the spatial variables in G as the initial variable
values of the numerical optimisation problem. Let I(φ(G)) be the number of
numerical optimisation iterations required to solve G. Assume G is consistent,
then the current configuration in G is consistent, and therefore the initial vari-
able values of the optimisation problem evaluate to σ(X) = 0, and therefore,
I(φ(G)) = 0. It follows that, for any subset of constraints Gi ⊂ G, I(φ(Gi)) = 0.
Let a new constraint E be added to G to give constraint store G′. Let G′

i be a
subgraph of G′ where the spatial variables are not reachable from E. For all such
subgraphs, necessarily G′

i ⊂ G therefore I(φ(G′
i)) = 0 (i.e. no spatial constraints

require re-solving that are not constrained by E). Now assume that backtrack-
ing has returned the SLD resolution procedure to a prior decision point. The
constraint store is reverted to the last consistent state G′′ at that decision point.
G′′ is necessarily consistent otherwise φ(G′′) would have failed at that decision
point, therefore, I(φ(G′′)) = 0. �	
Proposition 3. Our qualitative spatial solver based on numerical optimisation
supports the required tasks of (1) consistency, (2) configuration generation, and
(3) interactive geometry.

A Numerical Optimisation Based Characterisation of Spatial Reasoning 205

Proof. (1) A system of polynomial constraints over variables X is satisfiable
when the sum of squares is minimised, σ(X) = 0. When such a minimum is
found then the corresponding spatial constraint problem is consistent. (2) The
real values assigned to variables X that minimise the sum of squares are retrieved
from the numerical optimisation algorithm. These values correspond to a con-
sistent configuration of spatial objects. (3) Polynomial variables can be marked
as immutable and will not be changed by the numerical optimisation solver.
Interactive geometry is implemented by assigning a new value to a spatial vari-
able (e.g. moving a point by clicking and dragging the point in a GUI), marking
the corresponding polynomial variable as immutable, and solving the spatial
constraints. �	

4 Empirical Examples

We have fully implemented our spatial reasoning framework within the CLP(QS)
system. In this section we demonstrate applicability on problems from spa-
tial Q/A and histopathology.2

Spatial Q/A. Spatial variable unification (e.g. A = B) is fully supported in our
system, both with respect to resolution refutation and correct spatial semantics.

Histopathology. Figure 2(a) presents a stained tissue section of red and white
blood cells from a patient with chronic myelogenous leukemia. We use CLP(QS)
to build a conceptual model and interactive diagram of the objects in the image,
including both semantic and qualitative spatial relations, by incorporating back-
ground knowledge about cells [7]. We employ the Gene Ontology (GO) and the
Cell Ontology (CL), parsed as Prolog facts and rules, e.g., eukaryotic cells con-
sist of cytoplasm and a nucleus (part-of mereology relations), where the nucleus
is spatially contained within the cytoplasm (a topological relation). First, we
segment the image, which assigns a class type to each segment, and apply stan-
dard contour detection algorithms to convert the raster image into polygons.

2 CLP(QS) is implemented in SWI-Prolog, and we have integrated the geometric
constraint solver FreeCAD www.freecadweb.org.

www.freecadweb.org

206 C. Schultz and M. Bhatt

Fig. 2. Spatial reasoning in histopathology. (Color figure online)

Figure 2(b) shows the contours of cytoplasm (green) and nuclei (blue) of mature
eosinophils cells, and enucleate erythrocytes cells (red). There is a semantic error
in the segmented image (Fig. 2(b)): a single cytoplasm region (green) contains
two nuclei (blue), as expressed in the query:

Our system responds by inferring the existence of two cytoplasms, each contain-
ing one nucleus (Fig. 2(c)). The resulting conceptual model is used to generate an
interactive diagram: Fig. 2(c) illustrates an updated diagram as a user drags the
cytoplasm regions apart - qualitative spatial relations are automatically main-
tained such as the nuclei remaining inside the respective cytoplasms, and the
two cytoplasms remaining discrete.

5 Related Work and Conclusions

We have presented a framework and full implementation in CLP(QS) that effi-
ciently exploits state-of-the-art dedicated numerical optimisation algorithms for
solving a specific class of qualitative spatial constraints natively within CLP.
Within the fields of AI and KR, a variety of frameworks have been developed
that formalise notions of space, and spatial relations between objects [2,3,10,12].
However, what is lacking is a systematic formal account and computational char-
acterisation of such spatial theories as a KR language. In this direction, Raffaeta
and Frühwirth [14] develop the Spatio-Temporal Annotated CLP system for rea-
soning about axis-aligned cuboids. Pesant and Boyer [13] extend QUAD-CLP(R)
for constructive solid geometry with quadratic polynomial constraints. The dis-
tinction with our work is that our spatial ontology is much broader due to the
numerical optimisation formulation. Operationally, another point of departure
is that our method exploits state-of-the-art dedicated solvers in a modular and
efficient way, while still adhering to CLP semantics.

A Numerical Optimisation Based Characterisation of Spatial Reasoning 207

References

1. Center for genomic pathology. http://ctrgenpath.net/2011/04/
slide-of-the-week-april-14/. Accessed 03 Apr 2016

2. Aiello, M., Pratt-Hartmann, I.E., van Benthem, J.F.A.K.: Handbook of Spatial
Logics. Springer New York Inc., Secaucus (2007)

3. Bhatt, M., Guesgen, H., Wölfl, S., Hazarika, S.: Qualitative spatial and tempo-
ral reasoning: emerging applications, trends, and directions. Spat. Cogn. Comput.
11(1), 1–14 (2011)

4. Bhatt, M., Lee, J.H., Schultz, C.: CLP(QS): a declarative spatial reasoning frame-
work. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011.
LNCS, vol. 6899, pp. 210–230. Springer, Heidelberg (2011)

5. Byrd, R.H., Lu, P., Nocedal, J., Ciyou, Z.: A limited memory algorithm for bound
constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

6. Cohn, A.G., Gotts, N.M.: The ‘egg-yolk’ representation of regions with indetermi-
nate boundaries. Geogr. Objects Indeterminate Bound. 2, 171–187 (1996)

7. Duesmann, G.: Applying principles of knowledge representation and reasoning by
integrating declarative spatial reasoning and computer vision: a prototype system
for histopathology. Bachelor thesis, The University of Münster (2016)

8. Ge, J.-X., Chou, S.-C., Gao, X.-S.: Geometric constraint satisfaction using opti-
mization methods. Comput. Aided Des. 31(14), 867–879 (1999)

9. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.: The CLP (R) language and
system. ACM Trans. Program. Lang. Syst. (TOPLAS) 14(3), 339–395 (1992)

10. Kapur, D., Mundy, J.L. (eds.): Geometric Reasoning. MIT Press, Cambridge (1988)
11. Light, R., Gossard, D.: Modification of geometric models through variational geom-

etry. Comput. Aided Des. 14(4), 209–214 (1982)
12. Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley-ISTE, London

(2011)
13. Pesant, G., Boyer, M.: Reasoning about solids using constraint logic programming.

J. Autom. Reason. 22(3), 241–262 (1999)
14. Raffaetà, A., Frühwirth, T.: Spatio-temporal annotated constraint logic program-

ming. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 259–273.
Springer, Heidelberg (2001)

15. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.
KR 92, 165–176 (1992)

16. Schultz, C., Bhatt, M.: Declarative spatial reasoning with boolean combinations of
axis-aligned rectangular polytopes. In: ECAI 2014–21st European Conference on
Artificial Intelligence, pp. 795–800 (2014)

17. Schultz, C., Bhatt, M.: Encoding relative orientation and mereotopology relations
with geometric constraints in CLP(QS). In: 1st Workshop on Logics for Qualitative
Modelling and Reasoning (LQMR 2015), Lodz, Poland, September 2015

18. Schultz, C., Bhatt, M.: Spatial symmetry driven pruning strategies for efficient
declarative spatial reasoning. In: Fabrikant, S.I., Raubal, M., Bertolotto, M.,
Davies, C., Freundschuh, S., Bell, S. (eds.) COSIT 2015. LNCS, vol. 9368, pp.
331–353. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23374-1 16

19. Wa�l ↪ega, P.A., Bhatt, M., Schultz, C.: ASPMT(QS): non-monotonic spatial rea-
soning with answer set programming modulo theories. In: Calimeri, F., Ianni, G.,
Truszczynski, M. (eds.) LPNMR 2015. LNCS, vol. 9345, pp. 488–501. Springer,
Heidelberg (2015)

http://ctrgenpath.net/2011/04/slide-of-the-week-april-14/
http://ctrgenpath.net/2011/04/slide-of-the-week-april-14/
http://dx.doi.org/10.1007/978-3-319-23374-1_16

Why Can’t You Behave? Non-termination
Analysis of Direct Recursive Rules

with Constraints

Thom Frühwirth(B)

Ulm University, Ulm, Germany
thom.fruehwirth@uni-ulm.de

Abstract. This paper is concerned with rule-based programs that go
wrong. The unwanted behavior of rule applications is non-termination
or failure of a computation. We propose a static program analysis of the
non-termination problem for recursion in the Constraint Handling Rules
(CHR) language.

CHR is an advanced concurrent declarative language involving con-
straint reasoning. It has been closely related to many other rule-based
approaches, so the results are of a more general interest. In such lan-
guages, non-termination is due to infinite applications of recursive rules.
Failure is due to accumulation of contradicting constraints during the
computation.

We give theorems with so-called misbehavior conditions for potential
non-termination and failure (as well as definite termination) of linear
direct recursive simplification rules. Logical relationships between the
constraints in a recursive rule play a crucial role in this kind of program
analysis. We think that our approach can be extended to other types of
recursion and to a more general class of rules. Therefore this paper can
serve as a basic reference and a starting point for further research.

1 Introduction

It is well known that termination is undecidable for Turing-complete program-
ming languages. Thus, there is a long tradition in research on program analysis
methods, static and dynamic, to tame the problem by semi-automatic or approx-
imative approaches.

In this work we are interested in characterizing non-terminating computa-
tions. We do so in the context of the programming language Constraint Handling
Rules (CHR) [4,5,7]. As in other rule-based languages, termination is only an
issue if recursion is involved. We are hopeful that our results could be trans-
ferred to other rule-based programming languages as well, since CHR can directly
embed many rule-based languages and formalisms (e.g. Chap. 6 in [4]).

We propose conditions for misbehavior, i.e. a static program analysis of a
recursive rule that tells us if a given goal (or a set of goals) may not terminate
or lead to failure (unsatisfiable constraints). The following program serves as
a first overview of the characteristic features of CHR for those not familiar
c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 208–222, 2016.
DOI: 10.1007/978-3-319-42019-6 14

Non-termination Analysis of Direct Recursive Rules 209

with the language. In CHR, we use a first-order logic syntax. Predicates will be
called constraints. Goals and states are synonyms here, they are conjunctions
of constraints. In this paper, numbers are expressed in successor term notation.
The following example will be further elaborated in this paper.

Example 1. Consider a recursive user-defined constraint double that doubles the
natural number in the first argument and produces the resulting number in the
second argument:

double(X,Y) ⇔ X = 0 Y = 0.
double(X,Y) ⇔ X = s(X1) Y = s(s(Y 1)) ∧ double(X1, Y 1).

The first rule (for the base case) says that if X is syntactically equivalent
to 0, then the result Y is also zero. The syntactic equality constraint X = 0 is
a guard, a precondition on the applicability of the rule. It serves as a test. The
rule is only applied if this condition holds in the current context, i.e. state. On
the other hand, Y = 0 is a constraint that is asserted once the rule is applied.
The recursive rule says that if X is the successor of some number X1, then Y is
the successor of the successor of some number Y 1, and X1 doubled gives Y 1.

To the goal double(X,Y) no rule is applicable. To the goal double(X,Y)∧X =
0 the first rule is applicable, resulting in the state X = 0 ∧ Y = 0. To the goal
double(X,Y)∧X = 0∧Y = s(B), the first rule is also applicable, but the resulting
contradiction Y = s(B)∧Y = 0 means failure due to these unsatisfiable equality
constraints.

In logical languages like CHR, variables cannot be overwritten, but they can
be without value (unbound). For example, if X is s(A), where A is unbound,
then X will satisfy the guard, and Y will be equated to s(s(B))), where B is
some newly introduced variable, and the CHR constraint double(A,B) will be
added to the state. Since A is unbound, the guard for the recursive goal double
does not (yet) hold. If the variable later becomes (partially) bound in a syntactic
equality, the computation of double may resume.

There is a simple example for a infinite computation with double. The goal
double(X,Y) ∧ X = s(X1) ∧ X = Y does not terminate. The application of
the recursive rule leads to the state X = s(X1) ∧ X = Y ∧ Y = s(s(Y 1)) ∧
double(X1, Y 1). Since X = Y , we have that X1 = s(Y 1). Thus the computation
can proceed with another recursive rule application and so on ad infinitum. The
successors that are produced for Y in the second argument will also become
successors for X in the first argument, because of X = Y . Thus the guard of the
recursive goal always holds.

The goal double(X,Y)∧X = s(X1)∧X ≥ Y does not terminate either. Our
main theorem will allow to detect this non-termination because a misbehavior
condition holds. Basically, the guard and the body of the recursive rule, X =
s(X1) ∧ Y = s(s(Y 1)), together with the added constraint X ≥ Y implies the
guard of the recursive goal X1 = s(X1′). Another theorem will tell us that the
more stricter constraint X = Y will therefore inherit the misbehavior.

210 T. Frühwirth

Related Work. Non-termination analysis has been considered for term rewrit-
ing systems [3,11], logic programming languages [6,10,12,14], and imperative
languages [2,8,9,13].

The works on (constraint) logic programming are based on finding loops in
abstracted partial derivation trees. In our restricted case of linear direct recursion
it is sufficient to consider the recursive rule and no abstraction is necessary.
However, there is also a difference to our approach: mode information about the
arguments is essential in analysing logic programs. A similar type of information
is also needed for non-termination of constraint logic programs [12]. It gives
raise to so-called filters for abstracting states of the computation. In CHR, this
information is already implicitly encoded in the distinction between guard and
body built-in constraints.

In [6] a simple program transformation for recursive rules in CHR was intro-
duced that produces one or more adversary rules. When the rules are executed
together, a non-terminating computation may arise. It was shown that any non-
terminating computation of the original rule contains this witness computation.
Based on the adversary rules, a preliminary condition for non-termination was
proposed. This condition only refers to the witness computation that starts from
a particular state, it can be considered as one particular special case of the mis-
behavior conditions we give here.

Overview of the Paper. In the next section we define syntax and operational
semantics for CHR simplification rules. Section 3 gives a first basic theorem for
non-termination or failure of a specific (the most general) goal for a given linear
direct recursive rule. Section 4 gives our main condition for misbehavior of a
recursive rule in a generalised theorem. Another theorem shows that any goal
that contains a misbehaved goal will also be misbehaved. We end the paper with
conclusions and directions for future work.

2 Preliminaries

In this section we give a restricted overview of syntax and semantics for Con-
straint Handling Rules (CHR) [4], cut down to what is essential for this paper
(namely simplification rules). We assume basic familiarity with first-order predi-
cate logic and state transition systems. Readers familiar with CHR can skip this
section. CHR is a committed-choice language, i.e. there is no backtracking in
the rule applications. CHR is a concurrent language, i.e. we may apply rules in
parallel.

2.1 Abstract Syntax of CHR

Constraints are distinguished predicates of first-order predicate logic. We dis-
tinguish between two different kinds of constraints: built-in (or: pre-defined)
constraints which are handled by a given constraint solver, and user-defined (or:
CHR) constraints which are defined by the rules in a CHR program. A CHR
program is a finite set of rules. There are two basic kinds of rules in CHR:

Non-termination Analysis of Direct Recursive Rules 211

Simplification rule: r : H ⇔ C B,
Propagation rule: r : H ⇒ C B,

where r: is an optional, unique identifier of a rule, the head H is a non-empty
conjunction of user-defined constraints, the guard C is a conjunction of built-in
constraints, and the body B is a goal. A goal is a conjunction of built-in and
CHR constraints. An empty guard expression true can be omitted from a rule.

In this paper, we are only concerned with a simple class of simplification
rules, so propagation rules will be ignored from now on.

2.2 Abstract Operational Semantics of CHR

Computations in CHR are sequences of rule applications. The operational seman-
tics of CHR is given by the state transition system. (Concurrency is not made
explicit in the semantics given, since it is independent of the results of this
paper.) States are goals. Let CT be a constraint theory for the built-in con-
straints, including the trivial true and false as well as syntactical equality =
over finite terms. For a goal G, the notation Gbi denotes the built-in constraints
of G and Gud denotes the user-defined constraints of G.

In the transition system, all single upper-case letters are meta-variables that
stand for goals. Let the variables in a disjoint variant of a rule be denoted by x̄.
A disjoint (or: fresh) variant of an expression is obtained by uniformly replacing
its variables by different, new (fresh) variables. A variable renaming is a bijective
function over variables.

Simplify State Transition of CHR
If (r: H ⇔ C B) is a disjoint variant of a rule in the program
and CT |= ∃(Gbi) ∧ ∀(Gbi → ∃x̄(H = HS ∧ C))
then (HS ∧ G) 	→r (B ∧ G ∧ H = HS ∧ C)

Starting with a given initial state, CHR rules are applied exhaustively, until
a fixed-point is reached. A simplification rule H ⇔ C B that is applied removes
the user-defined constraints matching H and replaces them by B provided the
guard C holds. Note that built-in constraints in a computation are accumu-
lated, i.e. they are added but never removed, while user-defined constraints can
be added as well as removed. The built-in constraints allow execution in the
abstract without the need to know values for variables, just their relationships
are expressed as constraints.

A rule is applicable, if its head constraints are matched by constraints in
the current goal one-by-one and if, under this matching, the guard of the rule
is logically implied by the built-in constraints in the goal, provided they are
satisfiable. Any one of the applicable rules can be applied in a transition, and
the application cannot be undone, it is committed-choice. An expression of the
form CT |= ∃(Gbi)∧∀(Gbi → ∃x̄(H = HS ∧C)) is called applicability condition.
We may drop CT |= for convenience later on. We use H = HS by abuse of
notation, since the arguments of this syntactic equality are conjunctions of user-
defined constraints. This expression means to pairwise equate the user-defined

212 T. Frühwirth

constraints on the left and right hand side and then to pairwise equate their
arguments, which are terms.

In a transition (or: computation step) S 	→r T , S is called source state and T
is called target state. When it is clear from the context, we will drop the reference
to the rule r. A computation of a goal G in a program P is a connected sequence
Si 	→ Si+1 beginning with the initial state S0 that is G and ending in a final state
or the sequence is non-terminating (or: diverging). The notation 	→∗ denotes the
reflexive and transitive closure of 	→.

A goal (state) is satisfiable (consistent) if its built-in constraints are satis-
fiable. A state with unsatisfiable (inconsistent) built-in constraints is called a
failed state. A computation of a goal is failed if it ends in a failed state. If a
computation of a goal is failed (non-terminaing), we may also say that the goal
is failed (non-terminating).

Two states S1 = (S1bi∧S1ud) and S2 = (S2bi∧S2ud) are equivalent as defined
in [1], written S1 ≡ S2, if and only if

CT |= ∀(S1bi → ∃ȳ((S1ud = S2ud) ∧ S2bi)) ∧ ∀(S2bi → ∃x̄((S1ud = S2ud) ∧ S1bi))

with x̄ those variables that only occur in S1 and ȳ those variables that only
occur in S2. A goal (or state) S is (strictly) contained (or: included) in a goal T
(or: less specific than T) if and only if there exists a (non-empty) goal G such
that (S ∧ G) ≡ T .

Note that this notion of state equivalence is stricter than logical equiva-
lence since it it considers multiple occurrences of user-defined constraints to be
different as in a multiset. For this reason, state equivalence is defined by two
symmetric implications and syntactically equates the two states.

3 A Basic Misbehavior Condition for Non-Termination

In this paper we are concerned with linear direct recursion, expressed by simpli-
fication rules of the form

r :H ⇔ C Bbi ∧ Bud,

where H and Bud are atomic user-defined constraints for the same predicate
symbol and where C and Bbi are built-in constraints.

To introduce our appropach, we will start with a theorem about a condition
for non-termination that only applies to a specific initial goal. It is not just any
goal, however. It is of the form H ∧ C, i.e. it consists of the head and guard of
the given recursive rule. Such a goal is the most general state to which the rule is
applicable. This is easy to see, since removing H or replacing C by more general,
weaker built-in constraints would invalidate the rule application condition of the
operational semantics of CHR.

The theorem below already reflects the structure of the upcoming main the-
orem. Certain goals for a given recursive rule are non-terminating or failing if a
certain implication between the built-in constraints of the guard and body of the

Non-termination Analysis of Direct Recursive Rules 213

rule holds. Our theorems provide an analysis that does not distinguish between
non-termination and (termination by) failure of goal. This is justifiable, since in
both cases the computation goes wrong. We therefore refer to the conditions in
the theorems as misbehavior conditions.

The misbehavior condition we give is typically decidable (depending on the
decidability of the underlying theory for the built-in constraints, of course). Since
termination (the halting problem) is undecidable for Turing-complete program-
ming languages, we cannot expect a sufficient and necessary condition in general.
A sufficient condition suffices. Interestingly, for the most general goal H ∧ C of
a rule, we can give a condition that clearly separates termination from non-
termination, but is agnostic to failure. This is what the first theorem is about
(and it sets the stage for a more general theorem).

Theorem 1. Given a recursive rule

r :H ⇔ C Bbi ∧ Bud,

and its disjoint variant with variables x̄

r :H ′ ⇔ C ′ B′
bi ∧ B′

ud,

then the basic misbehavior condition

CT |= ∃(C ∧ Bbi) ∧
∀((C ∧ Bbi) → ∃x̄(Bud = H ′ ∧ C ′)).

implies non-termination or failure of the goal

H ∧ C

through rule r.
If the basic misbehavior condition does not hold, then the computation of

the goal
H ∧ C

through rule r terminates.

Proof. The proof can be found in the appendix of the full version of this paper
that is available online via the authors homepage. It is based on the proof of a
more general theorem that will be stated in the next section. ��

Note that while non-termination requires the basic condition to hold, failure
of the goal may occur whether the condition holds or not. So the condition is
necessary for non-termination of the goal H ∧C, but does not make a statement
about failure. Thus the condition is not sufficient for non-termination, but it is
sufficient for misbehavior (non-termination or failure). Still it is remarkable that
we can give a converse of this misbehavior condition. This will not be the case
any more for the general theorem.

We now look at some examples to see applications of this first theorem.

214 T. Frühwirth

Example 2. Here is a simple recursive rule that goes through the successors that
define a natural number:

number(X) ⇔ X = s(Y) number(Y).

Note that there are no built-in constraints in the body of the rule.
The basic misbehavior condition amounts to

CT |= ∃XY (X = s(Y)) ∧
∀XY ((X = s(Y)) → ∃X ′Y ′(number(Y) = number(X ′) ∧ X ′ = s(Y ′))).

The first, existential part of the condition holds, while the implication in the
second part does not. It is not the case that for all Y , Y is equivalent to some
X ′ that in turn is equivalent to s(Y ′). For example, Y may be 0. Thus the
goal number(X) ∧ X = s(Y) will terminate. Actually it will lead to the state
X = s(Y) ∧ number(Y).

Now consider a variant of the above rule that enforces the constraint that a
variable must be a successor term:

number(X) ⇔ X = s(Y) ∧ number(Y).

Note that there are no built-in constraints in the guard of the rule, so the guard
has been dropped. The basic misbehavior condition amounts to

CT |= ∃XY (X = s(Y)) ∧
∀XY ((X = s(Y)) → ∃X ′Y ′(number(Y) = number(X ′))).

This condition holds, there fore the goal number(X)∧X = s(Y) will not termi-
nate or lead to failure. Actually, it will not terminate, producing a longer and
longer nested term of successsors.

Next consider a variant of the first rule where the position of the variables
X and Y is interchanged in the guard constraint:

number(X) ⇔ Y = s(X) number(Y).

The basic misbehavior condition amounts to

CT |= ∃XY (Y = s(X)) ∧
∀XY ((Y = s(X)) → ∃X ′Y ′(number(Y) = number(X ′) ∧ Y ′ = s(X ′))).

The condition holds, since for all Y that are equivalent to X ′, there exists a Y ′

such that Y ′ = s(X ′). And indeed, the goal number(X) ∧ Y = s(X) will not
terminate.

Example 3. Consider the recursive rule for the constraint double from Example 1
of the introduction section:

double(X ,Y) ⇔ X = s(X1) Y = s(s(Y 1)) ∧ double(X1 ,Y1).

Non-termination Analysis of Direct Recursive Rules 215

The implication of the basic misbehavior condition is

∀((X = s(X1)∧Y = s(s(Y 1))) → ∃(double(X1 ,Y1) = double(X ′,Y ′)∧X ′ = s(X1′))).

It does not hold. Actually, the goal double(X ,Y) ∧ X = s(X1) is terminating
and does not fail. The rule can be applied once.

Example 4. Consider the following rule with empty guard and X > Y in its
body

p(X,Y) ⇔ X > Y ∧ p(Y,X).

The implication of the misbehavior condition then is

∀XY ((X > Y) → ∃X ′Y ′(p(Y,X) = p(X ′, Y ′)).

Clearly, the basic misbehavior condition holds. Actually, the goal p(X,Y) will fail
at the second recursive step, since the recursive call exchanges the two arguments
of p but X > Y and Y > X contradict each other.

Example 5. Let odd and prime be built-in constraints. Consider the following
recursive rule

c(X) ⇔ odd(X) c(s(s(X))),

The misbehavior condition amounts to

∃Xodd(X) ∧ ∀X(odd(X) → ∃X ′(c(s(s(X))) = c(X ′) ∧ odd(X ′))).

Since the successor of the successor of an odd number is always odd, the condition
holds. Indeed, the goal c(X) ∧ odd(X) is non-terminating.

Now consider a variation of the above rule

c(X) ⇔ prime(X) c(s(s(X))).

The condition amounts to

∃Xprime(X) ∧ ∀X(prime(X) → ∃X ′(c(s(s(X))) = c(X ′) ∧ prime(X ′))).

Since the successor of the successor of a prime number may not be prime, the
condition does not hold. Thus the goal c(X) ∧ prime(X) terminates. It does so
after one recursive step. (It will terminate for any given number X in at most
two recursive steps: one of every three sequential even or odd natural numbers
is a multiple of three, and hence not prime.)

4 The Main Misbehavior Condition

We are going to state a generalization of Theorem 1. It is easy to see from
the CHR operational semantics and its applicability condition that any state to
which a given rule is applicable must contain its head and guard. All such states

216 T. Frühwirth

are therefore equivalent to a state of the form H∧G∧Q, where Q is an arbitrary
constraint.

To generalise our initial theorem, we could simply add Q to the premise of the
implication in the basic misbehavior condition. This is, however, not sufficient
to guarantee non-termination or failure. As it turns out, we also have to add an
appropriate variant of Q to the conclusion of the implication. This ensures that
the appropriate variant of Q holds at each recursive step. This will be our main
misbehavior theorem.

We will then show in another theorem that any state that contains H ∧G ∧
Q which misbehaves is also doomed to misbehave. So both theorems together
typically cover an infinite set of states that do not terminate or fail.

4.1 Lemmata

For the proof of the upcoming main theorem, we will need the following lemmata.

Lemma 1 (From [6]). Given goal C consisting of built-in constraints only and
a goal H consisting of user-defined constraints only. Let the pairs (H,C) with
variables x and (H ′, C ′) with variables y be disjoint variants. Then the following
applicability condition holds

CT |= ∀x̄(C → ∃ȳ(H ′ = H ∧ C ′)).

Lemma 2 (CHR monotonicity) (Sect. 4.2 in [4]). If a rule r is applicable to a
state, it is also applicable to the state when constraints have been added, as long
as this state is not failed.

If G 	→r G′ then (G ∧ H) 	→r (G′ ∧ H),

provided G ∧ H is satisfiable.

4.2 Main Misbehavior Theorem

We are now ready to state the main theorem of the paper.

Theorem 2. Let Q be a built-in constraint. Given Q and a recursive rule

Q, r :H ⇔ C Bbi ∧ Bud,

and their disjoint variant with variables x̄

Q′, r :H ′ ⇔ C ′ B′
bi ∧ B′

ud,

Then the general misbehavior condition

CT |= ∃(Q ∧ C ∧ Bbi) ∧

∀((Q ∧ C ∧ Bbi) → ∃x̄(Bud = H ′ ∧ Q′ ∧ C ′)).

Non-termination Analysis of Direct Recursive Rules 217

implies non-termination or failure of the computation of the goal

H ∧ C ∧ Q

through rule r.

Proof. We prove the claim by induction over the computation steps.

Base Case. The claim is that the goal H∧C∧Q either is failed or there exists a
computation step by applying the recursive rule r. We show that there is always
such a computation step possible (and that the resulting state is not failed).

According to the abstract operational semantics of CHR, this computation
step must be of the form:

(H ∧ C ∧ Q) 	→r (B′
bi ∧ B′

ud ∧ C ∧ Q ∧ H ′ = H ∧ C ′)

if CT |= ∃(C ∧ Q) ∧ ∀(C ∧ Q → ∃(H ′ = H ∧ C ′))

We have to show that the applicability condition holds, so that we can apply
the recursive rule. By the first, existential part of the general misbehavior con-
dition we know that ∃(Q∧C ∧Bbi) is satisfiable. Since this conjunction logically
implies ∃(C ∧ Q), we know that the source state ∃(H ∧ C ∧ Q) is satisfiable,
too. By Lemma 1 we know that ∀(C → ∃(H ′ = H ∧ C ′)) trivially holds. So
∀(C ∧ Q → ∃(H ′ = H ∧ C ′)) holds as well. Thus the applicability conditions
holds and the recursive rule r is applicable.

The resulting target state of the transition is (B′
bi∧B′

ud∧C∧Q∧H ′ = H∧C ′).
B′

ud is a user-defined constraint and thus can be ignored for determining the
satisfiability of the state. We already know from the applicability condition that
∃(C ∧ Q ∧ H ′ = H ∧ C ′). By Lemma 1 we know that ∀(C ∧ Bbi → ∃(H ′ =
H ∧C ′ ∧B′

bi)) trivially holds. By the first part of the misbehavior condition we
know that ∃(Q∧C ∧Bbi) is satisfiable. Thus (B′

bi ∧C ∧Q∧H ′ = H ∧C ′) must
also be satisfiable. Thus the target state is satisfiable.

Inductive Step. We have to show that given a state where the recursive rule
has been applied, either the recursive rule is applicable again or the state is
failed.

We assume such states are of the form (G ∧ Bbi ∧ Bud ∧ C ∧ Q), where G is
an arbitrary constraint. This form holds for the target state of the base case.

Now consider a source state of the desired form. If it is failed, we are done.
If it is not failed, we show that the following computation step is possible with
the recursive rule:

(G ∧ Bbi ∧ Bud ∧ C ∧ Q) 	→r (G ∧ Bbi ∧ B′
bi ∧ B′

ud ∧ C ∧ Q ∧ H ′ = Bud ∧ C ′)

if CT |= ∃(Gbi ∧ Bbi ∧ C ∧ Q) ∧ ∀(Gbi ∧ Bbi ∧ C ∧ Q → ∃(H ′ = Bud ∧ C ′))

For the proof of applicability of the recursive rule we reuse the one for the base
case. Instead of H ′, we have now Bud, and there are additional constraints G∧Bbi

in the source state. By monotonicity of CHR (Lemma 2), we know that if a rule
is applicable to a state, it is also applicable to the state when constraints have

218 T. Frühwirth

been added, as long as this state is not failed. Thus the additional constraints
G ∧ Bbi cannot inhibit the applicability of the rule, since the state is not failed.

We still have to show that the target state is of the required form. But Q′

seems to be missing from it. The implication of the misbehavior condition in the
theorem is

∀((Q ∧ C ∧ Bbi) → ∃(Bud = H ′ ∧ Q′ ∧ C ′)).

Therefore, since the target state contains (Q∧C ∧Bbi), it also contains (Bud =
H ′ ∧Q′ ∧C ′). Thus the target state is equivalent to (G′ ∧B′

bi ∧B′
ud ∧C ′ ∧Q′),

when we let G′ be (G ∧ Bbi ∧ C ∧ Q ∧ H ′ = Bud).
So the target state is also of the required form. ��

Theorem 2 states an implication between the general misbehavior condition and
failing or non-terminating goals. The condition is sufficient for misbehavior, but
not necessary. As we will see, due to the next theorem, the converse does not
hold (unlike Theorem 1).

We continue with some examples, old and new, for the application of the
main misbehavior theorem.

Example 6. Consider a variation of the recursive rule from Example 5 with the
opposite guard:

c(X) ⇔ notprime(X) c(s(s(X))).

The basic misbehavior condition amounts to

∃Xnotprime(X) ∧ ∀X(notprime(X) → ∃X ′(c(s(s(X))) = c(X ′) ∧ notprime(X ′))).

Since the successor of the successor of a non-prime may be prime, the condition
does not hold. By Theorem 1, the goal c(X) ∧ notprime(X) thus terminates.

Let Q be odd(X). The implication of the general misbehavior condition is

∀X(odd(X) ∧ notprime(X) → ∃X ′(c(s(s(X))) = c(X ′) ∧ odd(X ′) ∧ notprime(X ′))).

Again, it does not hold. The status of non-termination is undecided by The-
orem 2. (Actually, there is no infinite sequence of odd numbers that does not
contain a prime, therefore any computation containing c(X) ∧ odd(X) will ter-
minate.)

Now let Q be even(X)∧X = s(s(s(Y))). This time the condition holds, since
any sequence of even numbers greater or equal to three (since X = s(s(s(Y))))
does not contain a prime number. The corresponding goal c(X)∧even(X)∧X =
s(s(s(Y))) is non-terminating. (So c(X) terminates for odd numbers but does
not terminate for even numbers greater than two.)

The following example exhibits a non-terminating computation for a list
concatentation constraint.

Example 7. Let cons and nil denote function symbols to build lists. Then we
can define the concatentation of two lists L1 and L2 resulting in a third list L3:

Non-termination Analysis of Direct Recursive Rules 219

append(L1, L2, L3) ⇔ L1 = nil L2 = L3.

append(L1, L2, L3) ⇔ L1 = cons(X,L1′)

L2 = L2′ ∧L3 = cons(X,L3′)∧append(L1′, L2′, L3′).

The implication of the basic misbehavior condition is

∀(L1 = cons(X,L1′) ∧ L2 = L2′ ∧ L3 = cons(X,L3′) →
∃(append(L1′, L2′, L3′) = append(L1′′, L2′′, L3′′) ∧ L1′′ = cons(X ′, L1′′′)))

This formula does not hold, because the premise of the implication does not
constrain L1′′ (which is equivalent to L1′) to be a cons term as required by the
conclusion.

Regarding the general misbehavior condition, let Q be L1′ = L3. Then the
implication of the general condition amounts to

∀(L1′ = L3 ∧ L1 = cons(X,L1′) ∧ L2 = L2′ ∧ L3 = cons(X,L3′) →

∃(append(L1′, L2′, L3′) = append(L1′′, L2′′, L3′′) ∧ L1′′′ = L3′′ ∧ L1′′ = cons(X′, L1′′′)))

This formula does hold, because L1′ = L3 and L3 = cons(X,L3′) in the premise
implies L1′ = L1′′ ∧L1′′′ = L3′′ ∧L1′′ = cons(X ′, L1′′′) in the conclusion, as we
can choose X ′ = X and L3′′ = L3′. Indeed, the computation for the goal

append(L1, L2, L3) ∧ L1 = cons(X,L1′) ∧ L1′ = L3

is non-terminating, producing longer and longer lists.

4.3 Containment Theorem

Theorem 2 only gives us a particular goal that is non-terminating or fails. By
the following theorem we can apply the theorem to any goal that contains that
particular goal. Usually, there are infinitely many such goals. The proof directly
follows from the previous theorem and the monotonicity property of CHR.

Theorem 3. Any goal
H ∧ C ∧ Q ∧ G

with arbitrary constraint G , where the general misbehavior condition according
to Theorem 2, holds for H ∧ C ∧ Q, will either not terminate or fail.

Proof. We prove the claim by induction.

Base Case. The state H ∧C ∧Q∧G is either failed or not. In the first case we
are done. In the second case, the recursive rule is applicable to the state. Because
by monotonicity of CHR (Lemma 2), we know that if a rule is applicable to a
state, it is also applicable to the state when constraints have been added, as long
as this state is not failed.

Induction Step. The same reasoning holds for all subsequent states in the com-
putation: If we have a state, it is either failed or the recursive rule is applicable
to it by monotonicity.

Thus the computation of a goal H ∧ C ∧ Q ∧ G either fails or diverges. ��

220 T. Frühwirth

The following example introduces some specific goals for a non-terminating
computation.

Example 8. Consider a variant of the rule of Example 4 with empty guard and
X ≥ Y in its body

p(X,Y) ⇔ X ≥ Y ∧ p(Y,X).

Let Q be true. The implication of the misbehavior condition then is

∀XY ((X ≥ Y) → ∃X ′Y ′(p(Y,X) = p(X ′, Y ′)).

This condition holds. So any computation for a goal consisting of p(X,Y) and
arbitrary built-in constraints either fails or is non-terminating. The computation
for the goal p(X,Y) is non-terminating. So is the more specific goal p(X,Y)∧X =
Y . The more specific goal p(X,Y)∧X < Y fails. So do the goals with the built-in
constraints X > Y and X = Y . The goal p(X,Y) ∧ p(Y,X) is non-terminating
as well, producing the constraint X = Y .

Note that while Q satisfies the misbehavior condition, Q∧G need not do so.
Thus the converse of Theorem 2 does not hold. The following example illustrates
this point.

Example 9. Continuing with Example 3, let Q be X = Y in the general misbe-
havior condition. The implication of the condition is

∀((X = Y ∧ X = s(X1) ∧ Y = s(s(Y 1))) →
∃(double(X1 ,Y1) = double(X ′,Y ′) ∧ X ′ = Y ′ ∧ X ′ = s(X1′))).

It can be simplified into

∀((X = Y ∧ X = s(X1) ∧ X1 = s(Y 1)) →
∃(X1 = X ′ ∧ Y 1 = Y ′ ∧ X1 = Y 1 ∧ X1 = s(X1′))).

where X1 = s(Y 1) and X1 = Y 1 are in contradiction. Thus the implication
does not hold. However, the goal double(X,Y) ∧ X = s(X1) ∧ X = Y does not
terminate.

But there is a more general Q that shows by Theorem 3 that the computation
for this goal either fails or is non-terminating. Let Q be X ≥ Y . The implication
of the misbehavior condition is

∀((X ≥ Y ∧ X = s(X1) ∧ Y = s(s(Y 1))) →
∃(double(X1 ,Y1) = double(X ′,Y ′) ∧ X ′ ≥ Y ′ ∧ X ′ = s(X1′))).

It can be simplified into

∀((X1 ≥ s(Y 1) ∧ X = s(X1) ∧ Y = s(s(Y 1))) →
∃(X1 = X ′ ∧ Y 1 = Y ′ ∧ X1 ≥ Y 1 ∧ X1 = s(X1′))).

where X1 ≥ s(Y 1) implies X1 ≥ Y 1∧X1 = s(X1′). The misbehavior condition
holds. So the goal double(X,Y) ∧ X = s(X1) ∧ X ≥ Y does not terminate or it
fails. Actually it is non-terminating.

Non-termination Analysis of Direct Recursive Rules 221

5 Conclusions

The paper introduced theorems with so-called misbehavior conditions for non-
termination and failure as well as termination of linear direct recursive simplifi-
cation rules in CHR. Certain goals for a given recursive rule are non-terminating
or failing if a certain implication between the built-in constraints of the guard
and body of the rule holds.

We proved a basic theorem for non-termination or failure of the most general
goal for recursive rules that consists of their head and guard. A kind of converse
also holds: If the misbehavior condition for this goal is violated, it will terminate.
We then gave the main condition for misbeavior. It is parameterised with regard
to suitable additional built-in constraints in the goal. Finally, a third theorem
showed that any goal that contains a misbehaved goal will also be misbehaved.

Future Work. Having stated the theorems describing non-termination and fail-
ure, the immediate next question is how to find the built-in constraints that
satisfy the misbehavior condition. This is very likely to be an undecidable prob-
lem due to the undecidabilty of termination itself. We can imagine an iterative
approach of finding better and better approximations for suitable constraints.
Another possibility is the systematic enumeration of possible built-in constraints
over the involved variables, as one reviewer suggested.

One should extend our approach to a more general class of rules and to other
types of recursion. Our approach readily seems applicable to CHR propagation
rules. If other CHR constraints occur in the body of the rule, they would have
to be abstracted to/approximated by built-in constraints. Multiple and mutual
(indirect) recursion cover the standard formulations of e.g. the Fibonacci and
the Ackermann function. We think that existing rule unfolding techniques for
CHR will come handy to replace mutual by direct recursion.

Another open problem is if there is some kind of converse for the main The-
orem 2, similar to the one for Theorem 1. A related question is if there are most
general built-in constraints for Theorem 2. The answer seems to depend on the
expressibility of the built-in constraints in the constraint theory.

Last but not least, it should be investigated how our approach carries over
to related languages like constraint logic programming ones and the other rule-
based approaches that have been embedded in CHR. In conclusion, we think this
paper can serve as a basic reference and nucleus for a wealth of further research.

Acknowledgements. We thank the anonymous referees for their helpful suggestions
on how to improve the paper.

References

1. Betz, H., Raiser, F., Frühwirth, T.: A complete and terminating execution model
for constraint handling rules. Theor. Pract. Log. Program. 10, 597–610 (2010)

2. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of
non-termination and NullPointerExceptions for Java bytecode. In: Beckert, B.,
Damiani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 123–141.
Springer, Heidelberg (2012)

222 T. Frühwirth

3. Endrullis, J., Zantema, H.: Proving non-termination by finite automata. In: LIPIcs-
Leibniz International Proceedings in Informatics, vol. 36. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2015)

4. Frühwirth, T.: Constraint Handling Rules (Monography). Cambridge University
Press, Cambridge (2009)

5. Frühwirth, T.: Constraint handling rules - what else? In: Bassiliades, N., Gottlob,
G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp.
13–34. Springer, Heidelberg (2015)

6. Frühwirth, T.: A devil’s advocate against termination of direct recursion. In: Pro-
ceedings of the 17th International Symposium on Principles and Practice of Declar-
ative Programming, pp. 103–113. ACM (2015)

7. Frühwirth, T.: The CHR Web Site. Ulm University (2016). www.constraint-
Phandling-rules.org

8. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving
non-termination. ACM Sigplan Not. 43(1), 147–158 (2008)

9. Le, T.C., Qin, S., Chin, W.-N.: Termination and non-termination specification
inference. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 489–498. ACM (2015)

10. Liang, S., Kifer, M.: A practical analysis of non-termination in large logic programs.
Theor. Practi. Log. Program. 13(4–5), 705–719 (2013)

11. Payet, É.: Loop detection in term rewriting using the eliminating unfoldings. The-
oret. Comput. Sci. 403(2), 307–327 (2008)

12. Payet, É., Mesnard, F.: A non-termination criterion for binary constraint logic
programs. Theor. Pract. Log. Program. 9(02), 145–164 (2009)

13. Payet, É., Mesnard, F., Spoto, F.: Non-termination analysis of Java bytecode
(2014). CoRR abs/1401.5292

14. Voets, D., De Schreye, D.: A new approach to non-termination analysis of logic
programs. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp.
220–234. Springer, Heidelberg (2009)

http://www.constraint-Phandling-rules.org
http://www.constraint-Phandling-rules.org

Translation of Cognitive Models from ACT-R
to Constraint Handling Rules

Daniel Gall(B) and Thom Frühwirth

Institute of Software Engineering and Compiler Construction, Ulm University,
89069 Ulm, Germany

{daniel.gall,thom.fruehwirth}@uni-ulm.de
http://uni-ulm.de/in/pm

Abstract. Cognitive architectures are used to abstract and simplify
the process of computational cognitive modeling. The popular cognitive
architecture ACT-R has a well-defined psychological theory, but lacks a
formalization of its computational system. This inhibits computational
analysis of cognitive models, e.g. confluence or complexity analysis. In
this paper we present a source to source transformation of ACT-R mod-
els to Constraint Handling Rules (CHR) programs enabling the use of
analysis tools for CHR to analyze computational cognitive models. This
translation is the first that matches the current abstract operational
semantics of ACT-R.

Keywords: Computational cognitive modeling · ACT-R · Operational
semantics · Source to source transformation · Constraint Handling Rules

1 Introduction

Computational cognitive modeling is a research field at the interface of computer
science and psychology. It tries to explore human cognition by building detailed
computational models of cognitive processes [20]. Cognitive architectures sup-
port the modeling process by offering a formal, well-investigated base that unifies
various psychological theories to an abstract theory of cognition. Based upon the
architecture, domain specific models are built. In the best case, cognitive archi-
tectures constrain the model space to models that are plausible, i.e. a cognitive
architecture should only allow models that correspond to human behavior [21].

Adaptive Control of Thought – Rational (ACT-R) [5] is a popular cognitive
architecture. It is a modular production rule system with a special architecture
of the working memory that operates on data stored as so-called chunks, i.e. the
unit of knowledge in the human brain. Although it has a well-defined psycholog-
ical theory, its computational system is not described formally leading to imple-
mentations that are full of technical artifacts [4,14,19]. This inhibits analysis
of cognitive models for features like confluence, termination and computational
complexity. Thus, to the best of our knowledge, there are no theoretical results
on (semi-)automatic methods deciding one of those computational properties
c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 223–237, 2016.
DOI: 10.1007/978-3-319-42019-6 15

224 D. Gall and T. Frühwirth

for ACT-R. Nevertheless, since computational models are computer programs,
those properties are important since they reveal a lot of information about the
semantics of the program or model. For instance, cognitive models with expo-
nential complexity are often implausible, when humans usually find approximate
solutions with non-exponential time complexity [17].

Constraint Handling Rules (CHR)1 [10] is a rule-based language with a strong
foundation in logic. In contrast to ACT-R, it has a well-defined operational
semantics [6] and even a declarative semantics – the logical reading of a pro-
gram. There are many theoretical results and practical applications [11] like an
automatic confluence test [2,10], an algorithm to decide operational equivalence
[1,10] and semi-automatic methods for complexity analysis [9].

Due to the strong relation of logic to human deduction and the analysis
features of CHR, we want to use CHR for analysis of cognitive models. This
approach already has been used successfully for analysis of graph transformation
systems [16]. In this paper we therefore build on our work in [14], where we
have defined the abstract operational semantics of ACT-R. We use the abstract
semantics and not an implementation semantics because it is most suitable for
analysis of the aforementioned computational properties as it abstracts from
details like timings or conflict resolution. Thus it captures the essence of the core
transition system of ACT-R as we have shown by a soundness result between
the abstract and the implementation semantics in [14]. This makes analysis of
the abstract semantics meaningful for implementations.

The main contribution of this paper is the translation scheme from ACT-R
models to CHR programs to make CHR analysis tools accessible for cognitive
models. The translation is constructed such that every computation in the orig-
inal ACT-R model is also possible in the translated CHR program and, vice
versa, only the computations that are possible in ACT-R are possible in the
CHR translation. This is important to ensure that the analytical tools of CHR
can be used for cognitive models.

The work in this paper extends our prior work from [14] where we have
defined the abstract semantics of ACT-R that is suitable for analysis of cognitive
models due to its abstraction level. In [13] we have given a first, rough definition
of the abstract semantics of ACT-R and a corresponding simple translation
to CHR. However, due to differences between the semantics and errors in the
previous formulations, the translation from prior work cannot be used for the
current, improved semantics of ACT-R in [14]. We want to close this gap in this
paper by a formally defined translation of cognitive models to CHR suiting the
current operational semantics of ACT-R. This enables sound, elegant analysis of
cognitive models through CHR.

2 Preliminaries

In this section we give a short description of Constraint Handling Rules and the
cognitive architecture ACT-R. Therefore, we first describe ACT-R very briefly
1 http://www.constraint-handling-rules.org

http://www.constraint-handling-rules.org

Translation of ACT-R Cognitive Models to CHR 225

and then summarize our results on syntax and semantics from [14]. We concen-
trate on our so-called abstract semantics that we have first described in [13] and
improved under the consideration of recent work [4] in [14].

2.1 Constraint Handling Rules

We recapitulate syntax and semantics of CHR briefly. For an extensive intro-
duction to CHR, its semantics, analysis and applications, we refer to [10]. The
syntax of CHR is defined over constraints, i.e. (first-order) logical predicates.
There are two disjoint sets of constraints: user-defined (CHR) constraints and
built-in constraints (that come from the host-language CHR is embedded in).
A CHR program consists of rules of the form Hk \ Hr ⇔ G | B where the
heads Hk and Hr are conjunctions of user-defined constraints, the guard G is
a conjunction of built-in constraints and the body B is a conjunction of both
types of constraints. Note that at most one of Hk and Hr can be empty. If G is
empty, it is interpreted as the built-in constraint true.

The operational semantics is defined by the following transition scheme over
CHR states that are defined as conjunctions of constraints:

(Hk ∧ Hr ∧ C) �→ (Hk ∧ G ∧ B ∧ C)

if there is an instance with new local variables x̄ of above rule in head normal
form, i.e. all constants in the head of the rule are replaced by variables and
respective bindings in the guard, and CT |= ∀(C → ∃x̄G) for a constraint
theory CT [10].

Informally, a CHR program is run on a constraint store, that is a conjunction
of constraints. A rule is applicable, if the head matches constraints from the store
and the guard holds. In that case, the matching constraints from Hk are kept in
the store, the constraints matching Hr are removed and the constraints from B
and G are added.

Throughout this paper, we use multi-set notation to describe logical con-
junctions, e.g. to describe CHR states. Thereby, � denotes multi-set union. We
also implicitly convert (multi-)sets to corresponding lists (denoted by square
brackets) when using them within a constraint.

2.2 Informal Description of ACT-R

ACT-R is a modular production rule system. Its data elements are so-called
chunks. A chunk has a type and a set of slots (determined by the type) that are
connected to other chunks. Hence, human declarative knowledge is represented
in ACT-R as a network of chunks. Figure 1 shows an example chunk network
that models the family relations between some persons.

In Fig. 2, there is an overview of ACT-R’s architecture. The modules are
responsible for different cognitive features. For instance, the declarative knowl-
edge (represented as a chunk network) can be found in the declarative module.
The heart of ACT-R is the procedural system that consists of a set of production

226 D. Gall and T. Frühwirth

Fig. 1. A chunk network that stores some family relations. Thereby, the chunks named
Alice, Bob and Max are of a chunk type that does not have further slots. The central
chunk (not named in the figure) is of type parent with three slots: mother, father and
child. If Alice and Bob had more children, there would be more such chunks connecting
them to the chunks representing their other children.

rules. Those rules do not have access to all information from other modules, but
only to parts of it that are stored in buffers. A buffer is connected to a module
and can hold at most one chunk at a time. Rules match the contents of the buffer,
i.e. they check if the chunks of particular buffers have certain values. If a rule is
applicable, it can modify particular slots of the chunk in the buffer, request the
module to put a whole new chunk in its buffer or clear a buffer. Modifications
and clearings are available for the production rule system, whereas requests can
take some time while the procedural system is continuing work in parallel.

Fig. 2. Modular architecture of ACT-R. This illustration is inspired by [5,21].

2.3 Syntax

We use the term representation of the ACT-R syntax that we have introduced
in [14]. This syntax can be obtained directly from the original syntax of ACT-R.
However, it simplifies its handling using logical or set operators.

All terms in ACT-R are defined over two disjoint, possibly infinite sets of
constant symbols C and variable symbols V. An ACT-R architecture defines the
set of buffers B ⊆ C and the set of actions A. In this paper, we restrict the set
of actions to {=, +, -} for modifications, requests and clearings respectively.

An ACT-R model consists of a set of rules Σ, a set of type names T ⊆ C
and a (total) typing function τ : T → 2C that defines the slots for each type. A
production rule in Σ is defined as L ⇒ R, where L is a set of buffer tests of the

Translation of ACT-R Cognitive Models to CHR 227

form =(b, t ,P) and R is a set of actions of the form a(b, t, P) where a ∈ A is an
action symbol, b ∈ B is a buffer, t ∈ T is a type and P ⊆ C × (C ∪ V) is a set of
slot-value pairs.

The function vars maps an arbitrary set of terms to its set of variables in V.
We require vars(R) ⊆ vars(L) for a production rule L ⇒ R, i.e. no new variables
must be introduced on the right-hand side.

There are some further syntactic restrictions: Actions a(b, t, P) ∈ R are only
allowed for tested buffers, i.e. if =(b, t ′,P ′) ∈ L. A modification action may not
change the type of the chunk, i.e. if =(b, t ,P) ∈ R then =(b, t ,P ′) ∈ L. We also
require that each test refers to another buffer. Additionally, the actions are only
allowed to specify each slot at most once in their set of slot-value pairs.

In the following example, we show the syntax of an ACT-R production rule
and its informal semantics.

Example 1 (Production Rules). This example builds on chunks of type parent
as in Fig. 1. By the following rule we want to determine the parents of a given
person. Therefore, we have special goal chunks of type g that represent our
query. They have the slots query, mother, father and state. This means that
they hold the person whose parents are of interest (query), the current state
of the derivation (state) and the result (mother and father). In the beginning,
a goal chunk is only connected to a person chunk by the query slot and has
the value start in its state slot. The model will connect the other slots with
corresponding chunks.

Our example rule starts the retrieval of the queried chunk:

{=(goal , g , {(state, start), (query ,X)})}
⇒ {+(retrieval , parent , {(child ,X)}), =(goal , g , {(state, retrieval)})}

The variable X denotes the name of the child. In the actions, we state a request
to the retrieval buffer to look for a chunk of type parent that has X in its child
slot. The state is modified from start to retrieval.

To complete the computation, we would need a second rule that takes the
result in the retrieval buffer modifies the mother and father slots of the goal
chunk accordingly.

2.4 Operational Semantics

In this section we describe the semantics of an ACT-R model as a state transition
system based on our prior work [14]. Therefore, we first introduce the notion of
an ACT-R state and then give the transition relation �.

States. ACT-R operates on a network of typed chunks that we call a chunk
store. It is defined over a set of types T and a typing function τ . Chunks are
defined as unique, immutable entities with a type and connections to other
chunks:

228 D. Gall and T. Frühwirth

Definition 1 (Chunk Store). A chunk store Δ is a multi-set of tuples (t, val)
where t ∈ T is a chunk type and val : τ(t) → Δ is a function that maps each
slot of the chunk (determined by the type t) to another chunk. To identify an
individual chunk, we define the total function id : Δ → C that maps each chunk
to a unique identifier from the set of constants that is determined by its type
and slot-value pairs.

The typing function τ maps a type t from the set of type names T to a set of
allowed slots, hence the function val of chunk c has the slots of c as domain. Note
that a chunk store can contain multiple elements with the same values that still
are unique entities representing different concepts.

We assume that there is a special type chunk ∈ T with τ(chunk) = ∅.
Additionally, there is a chunk nil ∈ Δ that is defined as nil := (chunk, ∅).

We now define the notion of a cognitive state as the content of the buffers:

Definition 2 (Cognitive State). A cognitive state γ is a function B → Δ ×
R

+
0 that maps each buffer to a chunk and a delay. The set of cognitive states

is denoted as Γ , whereas Γpart denotes the set of partial cognitive states, i.e.
cognitive states that are partial functions and do not necessarily map each buffer
to a chunk. A buffer b is called empty, if γ(b) = nil.

The delay decides at which point in time the chunk in the buffer is available
to the production system. A delay d > 0 indicates that the chunk is not yet
available to the production system. This implements delays of the processing of
requests.

Definition 3 (ACT-R States). An abstract ACT-R state is a tuple 〈Δ; γ; υ〉V
where Δ is a chunk store, γ is a cognitive state using Δ, υ is a multi-set of
first-order predicates (called additional information) and V is a set of variable
bindings. The set of allowed parameter valuations Υ is defined by the concrete
architecture.

The additional information is used to model the modularity of ACT-R where the
procedural system does not have direct access to all information in the individual
modules. For instance, it contains so-called sub-symbolic information that is used
to define activation levels of chunks, e.g., to model learning and forgetting.

State Transitions. First of all, we define the notion of matchings:

Definition 4 (Matching). A buffer test θ := =(b, t ,P) for a buffer b ∈ B

testing for a type t and slot-value pairs P ⊆ C × (C ∪ V) matches a state σ :=
〈Δ; γ; υ〉V, written θ � σ, if and only if γ(b) = ((t , val) , 0) and for all (s, v) ∈
P : ∀ (V → ∃v′ ∈ V : id(val(s)) = v′ ∧ v = v′) for a fresh variable v′.

A rule r := L ⇒ R matches a state σ, written as r � σ, if and only if all
buffer tests t ∈ L match σ. We define the set Bindings(r, σ) as the bindings of
the variables that follow from the matching r � σ.

Translation of ACT-R Cognitive Models to CHR 229

A buffer test matches a state, if and only if all its slot tests hold in the state,
i.e. the variable bindings imply that the values in the rule are the same as in
the state (for the tested buffer). Note that a test can only match chunks in the
cognitive state that are visible to the system, i.e. whose delay is zero. A test
cannot match chunks with a delay greater than zero.

The modification of a state by a transition is defined by interpretation func-
tions I : A × Sva → 2Γpart×Υ of actions that determine the possible effects of
an action. An interpretation maps each state and action of the form a(b, t, P) –
where a ∈ A is an action symbol, b ∈ C a constant denoting a buffer, t ∈ C a
type, and P ⊆ C × (C ∪ V) is a set of slot-value pairs – to a tuple (γpart, υ).
Thereby, γpart is a partial cognitive state, i.e. a partial function that assigns
some buffers a chunk. The partial cognitive state γpart will be taken in the oper-
ational semantics to overwrite the changed buffer contents, i.e. it contains the
new contents of the changed buffers. Analogously, the additional information υ
defines changes of parameter valuations induced by the action.

Note that the interpretation of an action can return more than one possi-
ble effect. For example, the declarative module can find more than one chunk
matching the retrieval request. In implementations usually one chunk is returned
according to certain additional information (called chunk activation which is
an elementary concept of ACT-R to model learning). However, in the abstract
semantics all matching chunks are regarded to find potential conflicts in a model.

From the interpretation of one action, the interpretation of a rule can be
derived by combining the individual actions. Since the actions refer to different
buffers, the changes of the partial cognitive state are disjoint and can be com-
bined to a larger partial cognitive states. Additional parameters can simply be
merged by multi-set union. Due to space reasons, we refer to [14] for a formal
description.

We now define the transition relation � of ACT-R. The first class of tran-
sitions (rule transitions) is defined for a fresh variant r′ of a rule r ∈ Σ with
vars(r′) = ȳ:

r′ � σ ∧ V
∗ = Bindings(r′, σ) ∧ (γpart, υ∗) ∈ I(r′)

σ := 〈Δ; γ; υ〉V � 〈Δ � Δ′; γ′; υ′〉V∪V∗

where Δ′ are the chunks added in the interpretation function. The id function is
extended for the chunks in Δ′ by fresh names from C. γ′ has the values of γpart
where defined or the values of γ otherwise, and υ′ := υ � υ∗. The interpretation
function I is defined as follows:

– I(=(b, t ,P), σ) = {(γp, ∅)} for modifications where γp(b) := ((t, val ′b), 0). For
γ(b) = ((t, valb), d) (from the state σ), the new values are defined as val ′b(s) :=
v if (s, v) ∈ P and val ′b(s) := valb(s) otherwise.
Thus, a modification creates a copy of the chunk in the buffer with modified
values as specified in P . Modifications are deterministic, i.e. that there is only
one possible effect.

230 D. Gall and T. Frühwirth

– (γp, υb) ∈ I(+(b, t ,P), σ) for requests if (cb, υb) ∈ requestb(t, P, υ) and γp(b) :=
(cb, 1). Thereby, the function requestb : T×2C×(C∪V)×Υ → 2Δ×Υ is a function
defined by the architecture for each buffer. It calculates the set of possible
answers for a request that is specified by a type and a set of slot value pairs.
Possible answers are tuples of a chunk and additional information.

– (γp, υp) ∈ I(-(b, chunk, nil), σ) for clearings where γp(b) = (nil, 0) and

υp := {dmchunk(id(c), t) | γ(b) = (c, d) ∧ c = (t, val)} �
{dmchs(id(c), s, v) | γ(b) = (c, d) ∧ c = (t, val) ∧ s ∈ τ(t) ∧ val(s) = v}.

The buffer is emptied and its chunk is added to declarative memory repre-
sented as additional information.

There are also transitions without a rule (no rule transitions):

b∗ ∈ B ∧ γ(b∗) = (c∗, d∗) ∧ d∗ > 0
σ := 〈Δ; γ; υ〉V � 〈Δ; γ′; υ〉V

where γ′(b∗) := (c∗, 0). Thus, one pending request is chosen non-deterministically
to be applied for one buffer b∗.

3 Translation

In this section we show how to translate an ACT-R model to a CHR program.
This is the main contribution of this paper. The translation is the first that
matches the current operational semantics of ACT-R.

3.1 Set Normal Form

To simplify the translation scheme, we assume the ACT-R production rules to
be in set normal form, i.e. that each buffer test only contains each slot at most
once. Every production rule can be transformed to a production rule preserving
operational semantics: If a rule has (s, v) and (s, v′) in one buffer test, then one
of the two must be a variable or v = v′, otherwise the rule can never fire since
one slot cannot have two different values. Let v be a variable and v′ a variable
or constant. Then the operational semantics will add the following bindings to
the state: v = v′ = v∗ for some constant v∗ (that is the identifier of a chunk)
from the state. We can now simply replace each occurrence of v by v′ in the rule
directly and have the same semantics.

3.2 Translation of States

An ACT-R state σ := 〈Δ; γ; υ〉V can be translated to the following CHR state:⊎
b∈B

{buffer(b, id(c), t, d) | γ(b) = (c, d) ∧ c = (t, valc)}

�
⊎
b∈B

{chs(id(c), s, id(v)) | (c, d) ∈ Δ ∧ c = (t, valc) ∧ valc(s) = v}

� υ � V � {fire}.

Translation of ACT-R Cognitive Models to CHR 231

Hence, for every buffer a buffer constraint with the chunk id, the type and the
delay is constructed. For every slot-value pair in the valuation function of a
chunk, a corresponding chs constraint is added to the store that keeps track of
the connections of a chunk. Note that by this definition chunks that appear in
more than one buffer are copied in the CHR state and have the same identifier.
This is made explicit in the definition by the multi-set union over all buffers.

Additional information and variable bindings are translated to corresponding
built-in constraints. As we will see in the following sections, the fire constraint
is needed to enable translated ACT-R rules to fire. This is necessary, since our
translation needs additional transitions for one original rule application. Those
additional transitions must not be interfered by other rule applications.

3.3 Translation of Rules

In our translation scheme, ACT-R rules are translated to corresponding CHR
rules. However, as we will see, there are some additional rules needed to achieve
the same behavior in both languages.

First of all, to manage relations between newly introduced variables, we define
some auxiliary functions: Both the chunk variable function cvar : B → V1 and
the modified chunk function mvar : B → V2 are defined as b �→ Cb and return a
fresh, unique variable Cb for each buffer b. The codomains V1 and V2 are disjoint
subsets of V. The first function will identify the chunk of a particular buffer in
the translation. The second function is needed to introduce copies of chunks in
the translation. Finally, the value function chrval : B × C → V, (b, s) �→ Vb,s

returns a fresh, unique variable Vb,s for each buffer b and slot name s. Those
variables are needed to identify the values of slot-value pairs. Note that in the
following we implicitly translate ACT-R constants and variables from C and V
to corresponding CHR variables.

We define the translation of a production rule r of the form L ⇒ R to a
CHR rule Hk \ Hr ⇔ G= � G+ | B � B= � B+ � B- in the following sections that
describe the translation of the individual parts of the rule.

Tests. The tests of the ACT-R production rule roughly correspond to the head
of the CHR rule, i.e. the head of the CHR rule mainly depends on the tests in
L. If there is an action for a tested buffer, then the buffer constraint is removed,
otherwise it is kept. We add chs constraints for all slots of every tested chunk
to access all values. Hence, the heads of our CHR rule are defined as follows:

Hr :={fire} � {buffer(b, cvar(b), t, 0) | =(b, t ,P) ∈ L ∧ a ∈ A ∧ a(b, t′, P ′) ∈ R}
Hk :={buffer(b, cvar(b), t, 0) | =(b, t ,P) ∈ L ∧ a ∈ A ∧ a(b, t, P ′) /∈ R}

� {chs(cvar(b), s, v) | =(b, t ,P) ∈ L ∧ (s, v) ∈ P}
� {chs(cvar(b), s, chrval(b, s)) | =(b, t ,P) ∈ L ∧ s ∈ τ(t) ∧ s /∈ slots(P)}.

We require the fire constraint and remove it, hence no other translated pro-
duction rule can fire. As mentioned before, we want to ensure that certain main-
tenance rules that are described in the following are completed before another

232 D. Gall and T. Frühwirth

rule is fired. Additionally, the rule deletes the connection between the buffer and
its chunk, if there is an action for this buffer on the right hand side of the rule.
The removed buffer constraints are later on replaced by new constraints that are
connected to other chunks. This is because actions modify a copy of the original
chunk instead of modifying it in-place.

General Translation of Actions. As can be seen in the operational semantics
of ACT-R, actions specify a (partial) cognitive state that describes how the
contents of the buffers change. All types of actions can be described by this
abstraction. We will implement this concept in CHR to handle rule actions.
Therefore, we first need to solve the technical problem that we have to know how
many actions a rule has to perform to make sure that no other rules interfere
with the process of applying the modifications. We keep track of this information
in the actions constraint that holds the value of pending actions. Note that this
is a static information that is known at compile time. Hence, we can add this
constraint in the general part of the translated rule: B := {actions(|R|)}.

The following two general rules are added to the translated program. They
are needed to actually perform the actions:

actions(N) ∧ mod(C, []) ⇔ N > 0 | actions(N − 1).
actions(N) \ mod(C, [(S, V)|P]) ⇔ N > 0 | chs(C,S, V) ∧ mod(C,P).

The two rules add chs constraints for a chunk C as specified in the list of slot-
value pairs until it is empty. If all actions have been performed, i.e. the execution
of the rule is finished, we make system able to fire again by the following general
rule that is part of the translated program: actions(0) ⇔ fire. In the following
we describe how the particular actions are translated to such mod constraints.

Modifications. Modifications copy the chunk from the buffer and modify par-
ticular slots in it. The previous chunks are not removed from the chunk store, but
their link to the buffer is removed by removing the buffer constraint if a modifica-
tion of the corresponding buffer is present in the rule. Hence, a modification has
to add a new buffer constraint that links the buffer to the modified copy of the
chunk. Therefore, we call the function completionb : T × 2(C∪V) → 2(C∪V) for a
buffer b ∈ B a chunk completion function that is defined as completionb(t, P) :=
{(s, chrval(b, s)) | s ∈ τ(t) ∧ s /∈ slots(P)}. The function gets a type and a set of
slot-value pairs and returns the set of slot-value pairs for the slots that do not
appear in P , but are part of the type t. The values in the result are variables
that are generated by the chrval function depending on the buffer b to avoid
variable name clashes.

The modification part of the translated rule is then defined as:

G= :={newID(mvar(b)) | =(b, t ,P) ∈ R}
B= :={buffer(b,mvar(b), t, 0) | =(b, t ,P) ∈ R}

� {mod(mvar(b), P ∪ completionb(t, P)) | =(b, t ,P) ∈ R}

Translation of ACT-R Cognitive Models to CHR 233

The built-in constraint newID/1 binds a new constant name to the variable that
we obtain from the mvar function in the guard. This name corresponds to the
new id in the operational semantics. Then a copy of the old chunk with some
modified values is placed into the buffer.

Requests. Requests to a module are modeled as built-in constraints. This
means that the request function from the operational semantics of ACT-R is
modeled by a built-in constraint request(b, t , cr ,T ,V) whose answer depends
on the built-in store (that corresponds to the additional information υ). Hence,
the following parts are added to our translated CHR rule, where for every buffer
there are unique, fresh variables T a

b and V a
b :

G+ :={request(b, t, p, T a
b , V a

b) | +(b, t , p) ∈ R} � {newID(mvar(b))}
B+ :={buffer(b,mvar(b), T a

b , 1) | +(b, t , p) ∈ R}
� {mod(mvar(b), V a

b) | +(b, t , cr) ∈ R}

A request simply takes the answer of the built-in request and puts it into the
requested buffer. The newID built-in constraint again produces a new name for
the chunk.

Clearings. In ACT-R, chunks are copied to declarative memory when a buffer
is cleared. To do this, we need to know the contents of all the slots that define
the chunk. However, in the definition of our translation scheme of rules we do
not have access to all constraints defining the chunk that is removed from the
buffer. At compilation time it is not possible to know what type of chunk will
be in the buffer to be cleared. However, the kind and number of chs constraints
depends on that type. Thus, we have to delay the application of the clearing and
handle it by introducing an extra rule for each type t of the form Ht

r \ Ht
k ⇔ Bt

with fresh CHR variables N,B,C,D, and (for all s ∈ τ(t)) Vs:

Ht
r := {actions(N), clear(B), buffer(B,C, t,D)}

Ht
k := {chs(C, s, Vs) | s ∈ τ(t)}

Bt
c := {dmchs(C, s, Vs) | s ∈ τ(t)}
� {dmchunk(C, t), buffer(B, nil, chunk, 0), actions(N − 1)}

This rule is only applicable, if a buffer clearing was triggered by the last rule
applied (ensured by the clear/1 constraint that is introduced by the rule with
the clearing action as we will see). Note that due to the removal of the fire
constraint, only clearing rules can be applied.

Our translation of the ACT-R rule with a buffer clearing has the following
body:

B- := {clear(b) | -(b, chunk, nil) ∈ R}.

We now exemplify the translation of rules:

234 D. Gall and T. Frühwirth

Example 2 (Translation of Rules). The rule from Example 1 can be translated
to the following CHR rule:

chs(G, state, start) ∧ chs(G, query ,X) ∧ chs(G,mother ,M) ∧
chs(G, father , F)\buffer(goal , g,G, 0) ∧ fire

⇔ newID(G′) ∧ newID(R′) ∧ request(retrieval , parent , [(child,X)], T, V,) |
buffer(goal , g,G′, 0) ∧ buffer(retrieval , T,R′, 1) ∧ mod(G′, V) ∧
mod(G′, [(state, retrieval), (query ,X), (mother ,M), (father , F)]).

3.4 No Rule Transition

In addition to transitions by rule applications, ACT-R can also have state transi-
tions without rule applications. This is useful for instance, if no rule is applicable
(i.e. computation is stuck in a state) but there are pending requests, then simu-
lation time can be forwarded to the point where the next request is finished and
its results are visible to the procedural system. This may trigger new rules and
continue the computation.

The no rule transition can be modeled in CHR by one individual generic
rule:

fire \ buffer(B, T,C,D) ⇔ D > 0 | buffer(B, T,C, 0)

This rule application is only possible when generally a rule could fire (ensured by
the fire constraint). This transition is possible for all requests that are pending
(i.e. that have a delay D = 1). Hence, one request is chosen non-deterministically.

4 Discussion

We have constructed our translation such that the translated program behaves
equivalently to the original ACT-R model, i.e. every transition that is possi-
ble in the ACT-R model is also possible in the translated program leading to
equivalent subsequent states (soundness) and vice versa (completeness). How-
ever, our translation has the restriction that one ACT-R transition σ � σ′

can correspond to possibly more than one but finitely many transitions in CHR:
chr(σ) �→ . . . �→ chr(σ′), so-called macro-steps. In the intermediate states no reg-
ular transitions are possible. This is ensured by the removal of the fire constraint
in all of those translated rules. The only rules that are applicable in an interme-
diate state are the ones that replace mod constraints with their corresponding
chs constraints (or the respective constraints for clearings), i.e. that actually
apply the actions to the state described by those constraints. Each action of a
rule only introduces n such constraints, where n is the number of actions of the
rules. After n steps, all mod and clear constraints are removed and a new fire
constraint is introduced leading to a state that is equivalent to σ′.

This state allows the same macro-transitions as the original ACT-R state
and describes the equivalent cognitive state and additional information. The
latter is argued in the translation of the particular actions. The applicability of

Translation of ACT-R Cognitive Models to CHR 235

translated CHR rules can be seen directly from the definition of matchings (c.f.
Definition 4) and the applicability condition of CHR in Sect. 2.1. The set normal
form of rules and the copying of chunks in the CHR state ensure that there are
constraints available in the state to match the translated rule even if two buffers
hold the same chunk or two slots of the same chunk are tested twice.

For the completeness, obviously only CHR states that model valid ACT-
R states can be considered. In particular it is required that they contain a fire
constraint, the functional character of a cognitive state is maintained and chunks
are described completely according to their type by the respective constraints,
for instance. Then it can easily be seen, that both applicability and equivalence
of actions are maintained by the translation.

5 Related Work

We first want to relate the progress of this paper with our prior work. In [13]
we first have presented an abstract operational semantics and a corresponding
translation to CHR together with a soundness and completeness result. However,
this semantics has ignored some details that are crucial for ACT-R, like the
copying of chunks when they enter a buffer. The old semantics used in-place
modification which does not directly correspond to how most implementations
work. Furthermore, the formulation of the semantics led to complicated proofs.

In [14] we have improved our semantics and unified it with independent work
from [4]. There we concentrated on the semantics that we use for the CHR
translation in this paper.

Our approach abstracts from technical details that vary in different ACT-R
implementations or depend on parameter settings like timings and conflict res-
olution. We rather capture all possible transitions non-deterministically. Those
non-deterministic transitions are removed by a conflict resolution mechanism
in implementations. However, when writing a model, one is often interested in
the general sequence of transitions and only later in concrete timings. Our app-
roach gives us the power to reason about the core of the procedural system of
ACT-R. For instance, a model that is confluent under our abstract semantics is
independent of the order of rules, initial utility values of rules (used for conflict
resolution) and timings. This gives a more concise view on the model.

We model implementation details in a refined semantics that is an instance
of our abstract semantics [14]. This leads to concise, flexible implementations as
shown in [12] by exchanging conflict resolution in our implementation of ACT-R.

There are many implementations of ACT-R in different languages that reach
from the Lisp reference implementation [7] to certain Java (e.g. [18]) or even
Python implementations [19]. All of those approaches are efforts of getting rid
of many technicalities that have been incorporated over time in the reference
implementation, but none of them deal with formal analysis of ACT-R.

Closest to our work is F-ACT-R [3,4], a formal formulation of the ACT-R
semantics together with an implementation with the aim of simplifying model
analysis. However, there are no confluence or complexity analysis tools, yet.

236 D. Gall and T. Frühwirth

6 Conclusion and Future Work

In this paper we have presented a translation scheme of ACT-R models to CHR
programs. It is the first of its kind that suits the current definition of the abstract
operational semantics of ACT-R [14] that introduced significant changes com-
pared to the prior rough definition of the semantics from [13]. The translation
does not guarantee that each ACT-R transition corresponds to exactly one CHR
transition, but in finitely many steps a valid ACT-R state is reached in CHR
representing exactly the ACT-R state from the original transition.

This property enables us to use analysis methods and tools from the CHR
world to analyze cognitive models. For example, in CHR confluence is decidable
for terminating programs [10] and there is a tool that decides it automatically
[15]. Another example are methods for semi-automatic complexity analysis [9,10]
that exist for CHR. Complexity is an important property of cognitive models,
since it can decide if a model is plausible or not. For instance, there are cognitive
tasks that can be solved by humans in short time for growing problem size (but
with errors) where the best cognitive models have exponential complexity [17].
Hence, such models are not plausible, since they seem to pursue the wrong
approach.

Although CHR analysis tools can now be used on the translated programs,
there are some practical limitations: we want to investigate how our translation
can be used for analysis of cognitive models in practice. for instance, that conflu-
ence is often too strict. Hence, the confluence criterion of CHR classifies ACT-R
models as non-confluent that should be confluent since there are certain invari-
ants on valid ACT-R states that are not considered by the confluence criterion.
For example, one invariant is that there can only be one buffer constraint for each
buffer. Therefore, we want to use observable confluence to improve the behavior
of the confluence criterion for cognitive models [8] in future work. Additionally,
we want to investigate how reasoning on declarative knowledge can be improved
by a constraint system using CHR.

References

1. Abdennadher, S., Frühwirth, T.: Operational equivalence of CHR programs and
constraints. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 43–57. Springer,
Heidelberg (1999)

2. Abdennadher, S., Frühwirth, T., Meuss, H.: On confluence of constraint handling
rules. In: Freuder, E.C. (ed.) Principles and Practice of Constraint Programming
CP96. Lecture Notes in Computer Science, vol. 1118, pp. 1–15. Springer, Berlin
Heidelberg (1996)

3. Albrecht, R., Gießwein, M., Westphal, B.: Towards formally founded ACT-R sim-
ulation and analysis. In: Proceedings of the 12th Biannual Conference of the
German Cognitive Science Society (Gesellschaft für Kognitionswissenschaft),
vol. 15 (Suppl. 1), Cognitive Processing, pp. 27–28. Springer (2014)

Translation of ACT-R Cognitive Models to CHR 237

4. Albrecht, R., Westphal, B.: F-ACT-R: defining the ACT-R architectural space.
In: Proceedings of the 12th Biannual Conference of the German Cognitive Science
Society (Gesellschaft für Kognitionswissenschaft), vol. 15 (Suppl. 1), Cognitive
Processing, pp. 79–81. Springer (2014)

5. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An
integrated theory of the mind. Psychol. Rev. 111(4), 1036–1060 (2004)

6. Betz, H., Raiser, F., Frühwirth, T.: A complete and terminating execution model
for constraint handling rules. Theor. Pract. Logic Program. 10, 597–610 (2010)

7. Bothell, D.: ACT-R 6.0 Reference Manual - Working Draft. Department of Psy-
chology, Carnegie Mellon University, Pittsburgh, PA

8. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable confluence for constraint han-
dling rules. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 224–
239. Springer, Heidelberg (2007)

9. Frühwirth, T.: As time goes by: automatic complexity analysis of simplification
rules. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.A. (eds.) KR
2002: Proceedings of the 8th International Conference on Principles of Knowledge
Representation and Reasoning, pp. 547–557, April 2002

10. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press, Cambridge
(2009)

11. Frühwirth, T.: Constraint handling rules - what else? In: Bassiliades, N., Gottlob,
G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp.
13–34. Springer, Heidelberg (2015)

12. Gall, D., Frühwirth, T.: Exchanging conflict resolution in an adaptable implemen-
tation of ACT-R. Theor. Pract. Logic Program. 14, 525–538 (2014)

13. Gall, D., Frühwirth, T.: A formal semantics for the cognitive architecture ACT-
R. In: Proietti, M., Seki, H. (eds.) LOPSTR 2014. LNCS, vol. 8981, pp. 74–91.
Springer, Heidelberg (2015)

14. Gall, D., Frühwirth, T.: A refined operational semantics for ACT-R: investigating
the relations between different ACT-R formalizations. In: Proceedings of the 17th
International Symposium on Principles and Practice of Declarative Programming,
PPDP 2015, pp. 114–124. ACM, New York (2015)

15. Langbein, J., Raiser, F., Frühwirth, T.: A state equivalence and confluence checker
for CHR. In: Van Weert, P., De Koninck, L. (eds.) CHR 2010. K.U.Leuven, Depart-
ment of Computer Science, Technical report CW 588, July 2010

16. Raiser, F., Frühwirth, T.: Analysing graph transformation systems through con-
straint handling rules. Theor. Pract. Logic Program. 11(1), 65–109 (2011)

17. van Rooij, I., Wright, C.D., Wareham, T.: Intractability and the use of heuristics
in psychological explanations. Synthese 187(2), 471–487 (2012)

18. Salvucci, D.: ACT-R: The Java Simulation & Development Environment. http://
cog.cs.drexel.edu/act-r/

19. Stewart, T.C., West, R.L.: Deconstructing and reconstructing ACT-R: exploring
the architectural space. Cogn. Syst. Res. 8(3), 227–236 (2007)

20. Sun, R.: Introduction to computational cognitive modeling. In: Sun, R. (ed.) The
Cambridge Handbook of Computational Psychology, pp. 3–19. Cambridge Univer-
sity Press, New York (2008)

21. Taatgen, N.A., Lebiere, C., Anderson, J.: Modeling paradigms in ACT-R. In: Cog-
nition and Multi-Agent Interaction: From Cognitive Modeling to Social Simulation,
pp. 29–52. Cambridge University Press (2006)

http://cog.cs.drexel.edu/act-r/
http://cog.cs.drexel.edu/act-r/

Legal Rules and Reasoning

Enabling Reasoning with LegalRuleML

Ho-Pun Lam(B), Mustafa Hashmi(B), and Brendan Scofield

Data61, CSIRO | NICTA, Spring Hill, Australia
{brian.lam,mustafa.hashmi}@data61.csiro.au

Abstract. This paper presents an approach for the specification and
implementation of translating legal norms represented using Legal-
RuleML to a variant of Modal Defeasible Logic. From its logical form,
legal norms will be transformed into a machine readable format and even-
tually implemented as executable semantics that can be reasoned about
depending upon the client’s preference.

Keywords: Legal reasoning · LegalRuleML · Business contracts ·
Defeasible logic

1 Introduction

Generally regulatory rules are written in natural language— for their automated
verification, they need to be transformed into a format that machines can under-
stand. As a result, several languages such as RuleML1, LKIF [7], SBVR [24],
PENELOPE [8], ConDec language [26], ContractLog [25], OWL-S2, have been
proposed to facilitate this process. Each of these languages offer useful function-
alities but is not free from shortcomings (see [9] for some of the shortcomings
of these languages). For example, RuleML is an XML based prominent industry
standard language for translating rules documents into a machine readable for-
mat. It provides the features that enable users to use different types of rules (such
as derivation rules, fact, query, integrity constraint, etc.) to represent different
kinds of elements according to their needs. However, it lacks support for the use
of deontic concepts, such as obligations (such as achievement and maintenance),
permission, prohibition, and is unable to handle cases with contrary-to-duty
(CTD) obligations [6] that may arise from the violations of other obligations,
which frequently appear in legal contracts [10].

Grosof [18] proposed to adopt courteous logic programming as execution
model for RuleML rule-base for translating the clauses of a contract, which

NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

1 RuleML: The Rule Markup Initiative, http://www.ruleml.org.
2 The OWL services coalition. OWL-S 1.2 Release, http://www.daml.org/services/

owl-s/.

c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 241–257, 2016.
DOI: 10.1007/978-3-319-42019-6 16

http://www.ruleml.org
http://www.daml.org/services/owl-s/
http://www.daml.org/services/owl-s/

242 H.-P. Lam et al.

filled the gap among the various types of rules in RuleML; however, their app-
roach does not consider normative effects. Later, Governatori [10] addressed the
shortcomings of [18], and extended Defeasible Logic(DL) with standard deontic
operators for representing normative effects as well as an operator to deal with
CTD obligations. This extended language also provides RuleML compliant data
schemas for representing deontic elements and provides constructs to resolve
some of the shortcomings that have been discussed in [9].

This paper focuses on transforming the legal norms represented using Legal-
RuleML into a variant of Modal Defeasible Logic [16]. As a consequence, our work
reported here makes it possible to use an implementation of DL as the engine
to compute the extensions on the legal norms represented using LegalRuleML
and reason on it. Due to the space limit, details of other features supported
by LegalRuleML, such as Contexts and Alternatives, will not be covered in this
paper.

The remainder of the paper is structured as follows: in Sect. 2 we tersely
discuss a short contract from [10] following which we provide some background
information on DL in Sect. 3. Section 4 discusses the mapping and procedures
to transform a legal theory represented using LegalRuleML to DL. Section 5
discusses related work, followed by some concluding remarks and pointers for
future work.

2 A Sample Contract

In this section we discuss a sample “Contract of Services” based on the analysis
and adapted from [10].

Contract of Services

The Deed of Agreement is entered into effects between ABC company (to
be known as Purchaser) and ISP plus (to be known as Supplier) WHEREAS
Purchaser desires to enter into an agreement to purchase from Supplier the appli-
cation server (to be known as Goods) in this agreement. Both the parties shall
enter into an agreement subject to the following terms and conditions:

1. Definitions and Interpretations
1.1. All prices are in Australian current unless otherwise stated.
1.2. This agreement is governed by the Australian law and both the parties

hereby agree to submit to the jurisdiction of the Courts of the Queensland
with respect to this agreement.

2. Commencement and Completion
2.1. The contract enters into effects as Jan 30, 2002.
2.2. The completion date is scheduled as Jan 30, 2003.

3. Policy on Price
3.1. A “Premium Customer” is a customer who has spent more than $10000

in goods. Premium Customers are entitled a 5 % discount on new orders.

Enabling Reasoning with LegalRuleML 243

3.2. Goods marked as “Special Order” are subject to a 5 % surcharge. Pre-
mium customers are exempt from special order surcharge.

3.3. . . .
4. Purchase Order

4.1. The Purchaser shall follow the Supplier price lists on the supplier’s website.
4.2. The Purchaser shall present Supplier with a purchase order for the provi-

sion of Goods within 7 days of the commencement date.
5. Service Delivery

5.1. . . .
5.2. The Supplier shall on receipt of a purchase order for Goods make them

available within 1 days.
5.3. If for any reason the conditions stated in 4.1 or 4.2 are not met, the

Purchaser is entitled to charge the Supplier the rate of $100 for each hour
the Goods are not delivered.

6. Payments
6.1. The payment terms shall be in full upon receipt of invoice. Interest shall

be charged at 5 % on accounts not paid within 7 days of the invoice date.
Another 1.5 % interest shall be applicable if not paid within next 15 days.
The prices shall be as stated in the sales order unless otherwise agreed in
writing by the Supplier.

6.2. Payments are to be sent electronically, and are to be performed under
standards and guidelines outlined in PayPal.

7. Disputes: Omitted due to limited space.
8. Termination: Omitted due to limited space.

The agreement covers a range of rule objectives such as roles of the involved par-
ties (e.g., Supplier, Purchaser), authority and jurisdiction (Australia, Queensland
Courts), deontic conditions associated with roles (permissions, prohibition), and
temporal properties to perform required actions. A contract can be viewed as
a legal document containing a finite set of articles (where each article contains
a set of clauses and subclauses). The above-discussed agreement includes two
main types of clauses namely: (i) definitional clauses, which define the basic
concepts contained in this agreement; and (ii) normative clauses, which regu-
late the actions of Purchaser and Supplier for the performance of contract, and
include deontic notions e.g., obligations, permission etc.

3 Modal Defeasible Logic: An Informal Introduction

The following is a modal extension of DL, based on the work of [15,16]. The
basic language is defined as follows. Given a set PROP of propositional atoms,
the set Lit = PROP∪{¬p | p ∈ PROP} denotes the set of literals. If q is a literal,
then ∼q denotes its complement; if q is a positive literal p then ∼q is ¬p, and if
q is ¬p then ∼q is p. Let MOD denotes the set of modal operators. Then the set
of modal literals is ModLit = {Xl,¬Xl | l ∈ Lit,X ∈ MOD}.

244 H.-P. Lam et al.

We define a defeasible theory D as a structure (F,R,>), where (i) F is a set
of facts or indisputable statements, (ii) R is the set of rules, and (iii) > is an
acyclic superiority relation on R.

To enhance the expressiveness of a rule to encode chains of obligations and
violations, following the ideas of [14], a sub-structural operator ⊗ is introduced
to capture an obligation and the obligations arising in response to the violation
of the obligation. Thus, given an expression like a ⊗ b, the intuitive reading is
that if a is possible, then a is the first choice and b is the second one; if ¬a holds,
i.e., a is violated, then b is the actual choice. That is, the ⊗-operator is used to
build chains of preferences, called ⊗-expression, such that: (i) each literal is a
⊗-expression; (ii) if A is an ⊗-expression and b is a (modal) literal, then A ⊗ b
is an ⊗-expression.

Hence, given Lbl a set of arbitrary labels, every rule in R is of the form
r : A(r) ↪→ C(r), where:

– r ∈ Lbl is the unique identifier of the rule;
– A(r) = φ1, . . . , φn, the antecedent of the rule, is a finite set of (modal) literals

denoting the premises of the rule;
– ↪→∈ {→,⇒,�} denotes the type of the rule;
– C(r) is the consequent (or head) of the rule, which can be either a single

(modal) literal, or an ⊗-expression otherwise.

The intuition behind different arrows is the following. DL supports three
types of rules namely: strict rules (r : A(r) → C(r)), defeasible rules (r : A(r) ⇒
C(r)) and defeaters (r : A(r) � C(r)). Strict rules are rules in the classical
sense, the conclusion follows every time the antecedents holds; a defeasible rules
is allowed to assert its conclusion in case there is no contrary evidence to it.
Finally, defeaters suggests there is a connection between its premises and its
conclusion(s) but not strong enough to warrant the conclusion on its own; they
are used to defeat rules for the opposite conclusion(s).

DL is a skeptical nonmonotonic logic meaning that it does not support con-
tradictory conclusions. Instead, it seeks to resolve conflicts. In case there is some
support for concluding A but there is also support for concluding ¬A, DL does
not conclude either of them. However, if the support for A has priority over the
support of ¬A then A is concluded. Here, the superiority relation > is used to
describe the relative strength of rules on R. When r1 > r2, then r1 is called supe-
rior to r2, and r2 inferior to r1. Intuitively, r1 > r2 expresses that r1 overrides
r2 if both rules are applicable3.

Provability is based on the concept of derivation (or proof) in D satisfying
the proof conditions. A conclusion of D is a tagged literal and can have one of
the following forms: (i) +Δq meaning that q is definitely provable in D (i.e.,
using only facts or strict rules); (ii) −Δq meaning that q is definitely rejected in
D; (iii) +∂q meaning that q is defeasibly provable in D; and (iv) −∂q meaning
that q is defeasibly rejected in D.

3 A rule is applicable if all literals in its antecedent have already been proved.

Enabling Reasoning with LegalRuleML 245

Strict derivations are obtained by forward chaining of strict rules while a
defeasible conclusion p can be derived if there is a rule whose conclusion is
p, and its (prerequisite) antecedent has either already been proved or given in
the case at hand (i.e., facts), and any stronger rules whose conclusion is ¬p
has prerequisite that it failed to be derived. In other words, a conclusion p is
defeasibly derivable when: (i) p is a fact; or (ii) there is an applicable strict or
defeasible rule for p, and either all rules for ¬p are discarded (i.e., inapplicable)
or every rule for ¬p is weaker than an applicable rule for p.

A full description of the proof theory can be found in [2]. A useful metaphor is
to imagine, the rules with conclusion p form a team that competes with opposite
team consisting of the rules with conclusion ¬p. If the former team wins p is
defeasible provable, whereas if the opposing team wins, p is non-provable or
rejected from the theory.

Throughout the paper, we use the following abbreviations on set of rules:
Rs (Rd) denotes the set of strict (defeasible) rules, R[q] denotes the set of rules
with consequent q, and for a r ∈ R, C(r, i) denotes the ith (modal) literal that
appears in C(r).

4 LegalRuleML: The Legal Rule Markup Language

LegalRuleML [23] is a rule interchange language proposed by OASIS, which
extends RuleML with features specific to legal domain [4]. It aims to bridge the gap
between natural language descriptions and semantic norms [3], and can be used to
model various laws, rules and regulations by translating the compliance require-
ments into a machine readable format [19]. Accordingly, LegalRuleML implements
defeasibility as within the law where the precedent of a rule is satisfied by the facts
of a case, then assumably the conclusion of the rule holds, but not necessarily [4].
The defeasibility of these legal rules can further identify exceptions and conflicts
as well as mechanisms to resolve these conflicts within the norms. Additionally,
LegalRuleML provides features to model various effects that follow from apply-
ing rules, such as obligations, permissions and prohibitions.

A contract written in LegalRuleML is not intended to be executed directly,
but the business logic can be transformed into a target language of a rule-based
system to execute. In this section we are going to explore the building blocks
of LegalRuleML and propose a method to transform legal norms represented
in LegalRuleML into DL theory. Since LegalRuleML is essentially an extension
of RuleML, here we only highlight the differences and identify the additions to
faithfully represent legal norms.

4.1 Premises and Conclusions

The first thing we have to consider is the representation of predicates (atoms) to
be used in premises or conclusions in LegalRuleML. LegalRuleML extends the

246 H.-P. Lam et al.

construct from RuleML and represents a predicate as an n-ary relation, and is
defined using an element <ruleml:Atom>4.

Normative effects of an atom, on the other hand, are captured by embed-
ding the atom inside a deontic element. The legal concepts such as oblig-
ation (<lrml:Obligation>), permission (<lrml:Permission>), prohibition
(<lrml:Prohibition), and right (<lrml:Right>5) are the basic deontic ele-
ments in LegalRuleML. Further refinements are possible by: (i) providing an
iri6 attribute of a deontic specification, or (ii) using an <lrml:Association>

to link a deontic specification to its meaning with the <lrml:applyModality>

element.
1 <lrml:Associations>
2 <lrml:Association key="asc1">
3 <lrml:appliesModality iri="ex:achievementObligation"/>
4 <lrml:toTarget keyref="#oblig101"/>
5 </lrml:Association>
6 </lrml:Associations>
7

8 <lrml:Obligation key="oblig101">
9 <ruleml:Atom key=":atom109">

10 <ruleml:Rel iri="pay"/>
11 <ruleml:Ind>Purchaser</ruleml:Ind>
12 <ruleml:Ind>receivedReciept</ruleml:Ind>
13 <ruleml:Ind>Supplier</ruleml:Ind>
14 </ruleml:Atom>
15 </lrml:Obligation>

Accordingly, the above listing represents a modal literal OBL pay(purchaser,
receivedReceipt, supplier) for the clause 6.1 in the contract that is true when
purchaser has the (achievement) obligation7 to pay the supplier upon receiving
the payment8.

4.2 Rules and Rulebases

Norms in LegalRuleML are represented as collections of statements, and can be
classified into four different types according to their nature, namely: norm state-
ments, factual statements, override statements and violation-reparation state-
ments. These can be further classified into subtypes, as depicted in Fig. 1.
4 Elements from LegalRuleML and elements inherited from RuleML will be prefixed

with lrml and ruleml, respectively. Information about transforming norms repre-
sented using RuleML to DL can be found in [10]. The attributes key and keyref
in LegalRuleML correspond to an unique identifier of a Node element and reference
to a Node element, respectively.

5 Note that the right here is different from the “right” in RuleML. In LegalRuleML,
it is a deontic specification that gives a permission to a party and implies there is no
obligation or prohibition on the other parties [23]; while “right” in RuleML means
the right hand side of a rule.

6 An iri attribute on a Node element in LegalRuleML corresponds to an
<owl:sameAs> relationship in the abstract syntax.

7 There are several types of obligations based on temporal validity and effects they
produce e.g., achievement, maintenance etc., see [19] for details.

8 In this paper, we are going to use the modal operator OBL for obligation, PER for
permission, FOR for prohibition (forbidden).

Enabling Reasoning with LegalRuleML 247

Statements

Norm
Statements

Constitutive
Statements

Prescriptive
Statements

Violation-Reparation
Statements

Reparation
Statements

Penalty
Statements

Factual
Statement

Override
Statement

Fig. 1. Types of statements in LegalRuleML

In this section, we are going to explore different types of statements and describe
how they can be transformed into rules in DL.

Norm Statements. Legal norms, in general, can be classified into constitutive
norms (which is used to represent institutional facts [28] and provides definitions
of terms and concepts in a jurisdiction [23]), and prescriptive norms (which spec-
ify the deontic behavior and effect of a legal system). These can be represented
as constitutive statements (<lrml:ConstitutiveStatement>) and prescriptive
statements in LegalRuleML (<lrml:PrescriptiveStatement>), respectively,
to allow new information to be derived using existing rules.

The following is an example of a prescriptive statement representing the first
statement of the clause 3.2 of the service contract where goods marked with
special order are subject to a surcharge.
1 <lrml:PrescriptievStatement key="r1">
2 <ruleml:Rule key=":ruletemplate1">
3 <lrml:hasStrength>
4 <lrml:DefeasibleStrength key="str1"
5 iri="http://example.org/legalruleml/ontology#defeasible1"/>
6 </lrml:hasStrength>
7 <ruleml:if>
8 <ruleml:And>
9 <ruleml:Atom key=":atom2">

10 <ruleml:Rel iri=":specialOrder"/>
11 <ruleml:Ind>X</ruleml:Ind>
12 </ruleml:Atom>
13 </ruleml:And>
14 </ruleml:if>
15 <ruleml:then>
16 <lrml:Obligation>
17 <ruleml:Atom key=":atom3">
18 <ruleml:Rel iri=":surcharge"/>
19 <ruleml:Ind>X</ruleml:Ind>
20 </ruleml:Atom>
21 </lrml:Obligation>
22 </ruleml:then>
23 </ruleml:Rule>
24 </lrml:PrescriptievStatement>

Similar to the derivation rules in RuleML, every constitutive/prescriptive
statement has two parts: conditions (<ruleml:if>), which specify the condi-
tions (using a conjunction of formulas and may possibly empty), and conclu-
sion (<ruleml:then>), the effects of the rule. Additionally, a separate element
(<lrml:hasStrength>) can be used to specify the strength of the rule.

248 H.-P. Lam et al.

Both rules can have deontic formulas as their preconditions (body). However,
the difference between the two statements is in the contents of the head, where
the head of a prescriptive statement is a list of deontic formulas. In contrast, the
head of a constitutive statement cannot be a deontic formula [23].

In this perspective, a constitutive/prescriptive statement can be transformed
into a rule of the form:

label : body ↪→ head.

where label is the key of the statement, ↪→∈ {→,⇒,�} is the rule type, body and
head are the set of (modal) literals inside the <ruleml:if> and <rule:then>

elements of the statement, respectively. Unless otherwise specified, due to its
nature, the rule modelled using a constitutive statement will be transformed
into a strict rule; while the rule modelled using prescriptive statement will be
transformed into a defeasible rule. Thus, the statement above will be transformed
to the defeasible rule below9:

r1 : specialOrder ⇒ OBL surcharge

Factual Statements. Factual statements in essence are the expression of facts
and can be considered as a special case of norm statements without the specifica-
tion of premises. They denote a simple piece of information that is deemed to be
true. Below is an example of a factual statement in LegalRuleML representing
the fact premiumCustomer(JohnDoe), meaning that “JohnDoe” is a premium
customer.
1 <lrml:FactualStatement key="fact1">
2 <lrml:hasTemplate>
3 <ruleml:Atom key=":atom11">
4 <ruleml:Rel iri=":premiumCustomer"/>
5 <ruleml:Ind iri=":JohnDoe"/>
6 </ruleml:Atom>
7 </lrml:hasTemplate>
8 </lrml:FactualStatement>

Override Statements. To handle defeasibility, LegalRuleML uses override
statements (<lrml:OverrideStatement>) to capture the relative strength of
rules that appear in the legal norms. The element <lrml:Override> defines the
relationship of superiority such that the conclusion of r2 overrides the conclusion
of r1 (where r1 and r2 are the keys of statements in the legal theory, as shown
below) if both statements are applicable.

9 Note that in some variants of DL, new types of rules can be created for the deontic
operator to differentiate between normative and definitional rules [13], for instance,
the rule r1 above will becomes: specialOrder ⇒OBL surcharge. However, we do
not utilize this approach here as this will limit ourselves such that only one type
of modality can appear in the head of the rule. As it is possible that different
logics/semantics can be used to reason on the rules generated using the constitu-
tive and prescriptive statements, using such approach will limit the logic that we
can use when reasoning the rules. For example, in our case, we can use ambiguity
blocking (of DL) for the rules generated using constitutive statements and ambiguity
propagation [1] for the rules generated using prescriptive statements.

Enabling Reasoning with LegalRuleML 249

Consider again clause 3.2 of the contract where a premium customer is
exempted from the surcharge for goods marked as ‘Special Orders’, which can
be modelled as the rules below.

r1 :specialOrder ⇒ OBL surcharge

r2 :specialOrder, premiumCustomer ⇒ OBL ¬surcharge

In the above example, the conclusion of r2 takes the precedence over the conclu-
sion of r1 (as showed above) if the order was made from a premium customer. The
following listing illustrates this using an <lrml:OverrideStatement> element.
1 <lrml:OverrideStatement>
2 <lrml:Override over="#r2" under="#r1"/>
3 </lrml:OverrideStatement>

In DL terms, this construct defines a superiority relation between r2 > r1 where
r1 and r2 are the rules generated using the statements r1 and r2 in the legal
norms, respectively.

Violation-Reparation Statements. A Violation-Reparation Statement is
the type of statement concerning what actions are required when an obliga-
tion is violated. LegalRuleML provides two constructs to model this, namely:
penalty statements (<lrml:PenaltyStatement>) and reparation statements
(<lrml:ReparationStatement>), as shown below.
1 <lrml:ReparationStatement key="reps1">
2 <lrml:Reparation key="rep1">
3 <lrml:appliesPenalty keyref="#pen1"/>
4 <lrml:toPrescriptiveStatement
5 keyref="#ps1"/>
6 </lrml:Reparation>
7 </lrml:ReparationStatement>

1 <lrml:PenaltyStatement key="pen1">
2 <lrml:SuborderList>
3 list of deontic formulas
4 </lrml:SuborderList>
5 </lrml:PenaltyStatement>

Penalty statements model sanctions and/or correction for a violation of a spec-
ified rule as outlined in the reparation statement; reparation statements bind
a penalty statement to the appropriate prescriptive statement and apply the
penalty when a violation occurs.

To transform these statements into DL rules, we can utilize the ⊗-expression
that we described in Sect. 3 by appending the list of modal literals that appear
in the penalty statements at the end of original rule. As an example, consider the
penalty statement (in clause 6.1 of the contract) for not paying invoice within
the deadline, and assume that the two model literals OBL payWith5%Interest
and OBL payWith6.5%Interest are transformed from the suborder list inside
the penalty statement. Then the prescriptive statement ps1 will be updated from

ps1 : goods, invoice ⇒ OBL payIn7days

to

ps1 : goods, invoice ⇒ OBL payIn7days ⊗ OBL payWith5%Interest
⊗OBL payWith6.5%Interest

250 H.-P. Lam et al.

4.3 Other Constructs

Up to this point, the transformations described have been simple. However, there
are other elements in LegalRuleML that are not particularly intuitive. We will
highlight two of them in this section.

LegalRuleML provides two elements that can be used to determine
whether an obligation or a prohibition of an object has been fulfilled
(<lrml:Compliance>) or violated (<lrml:Violation>).

Definition 1 (Compliance and Violation [23]).

– A compliance is an indication that an obligation has been fulfilled or a prohi-
bition has not been violated.

– A violation is an indication that an obligation or prohibition has been violated.

Consider the listing below which represents the rule:

ps2 : PER rel1, OBL rel2 ⇒ FOR¬rel3.

1 <lrml:PrescriptiveStatement key="ps2">
2 <ruleml:Rule key=":ruletemplate2">
3 <ruleml:if>
4 <ruleml:And key=":and1">
5 <lrml:Violation keyref="#ps3"/>
6 <lrml:Permission>
7 <ruleml:Atom key=":atom4">
8 <ruleml:Rel iri=":rel1"/>
9 <ruleml:Ind>X</ruleml:Ind>

10 </ruleml:Atom>
11 </lrml:Permission>
12 <lrml:Obligation key="oblig1">
13 <ruleml:Atom key=":atom5">
14 <ruleml:Rel iri=":rel2"/>
15 <ruleml:Ind>X</ruleml:Ind>
16 </ruleml:Atom>
17 </lrml:Obligation>
18 </ruleml:And>
19 </ruleml:if>
20 <ruleml:then>
21 <lrml:Prohibition key="prohib1">
22 <ruleml:Neg key=":neg1">
23 <ruleml:Atom key=":atom6">
24 <ruleml:Rel iri=":rel3"/>
25 <ruleml:Ind>X</ruleml:Ind>
26 </ruleml:Atom>
27 </ruleml:Neg>
28 </lrml:Prohibition>
29 </ruleml:then>
30 </ruleml:Rule>
31 </lrml:PrescriptiveStatement>

Here, we have a violation element appearing in the body as a prerequisite to
activate the rule, meaning that the referenced element (ps3 in this case) has
to be violated or the rule ps2 cannot not be utilised. Accordingly, we have two
cases: either (i) the referenced element is a modal literal, or (ii) the referenced
element is a rule.

Enabling Reasoning with LegalRuleML 251

Table 1. Requirements to determine whether a literal is compliant or violated.

q OBL q FOR q

Compliance q OBL q, q FOR q, ¬q

Violation ¬q OBL q, ¬q FOR q, q

Case 1: Referenced Element Is a Literal. The former is a simple case. If the
referenced element is a literal, essentially it acts as a precondition to activate
the rule. It is practically the same as appending the violation (respectively,
compliance) condition to the body of the rule, as shown below.

ps2 : PER rel1, OBL rel2, violate(p) ⇒ FOR¬rel3.

where p is the referenced literal, violate(p) (respectively comply(p)) is a trans-
formation, as defined in Table 1, that transforms the (modal) literal p into a set
of literals that needs to be derived in order to satisfy the condition of violation
(compliance). For instance, if ps3 is the modal literal OBL q, then the rule ps2
above will be updated as follows

ps2 : PER rel1, OBL rel2, OBL q,¬q ⇒ FOR¬rel3.

However, the case is somewhat complex when the element appears in the
head of the statement, as shown in the listing below.
1 <lrml:PrescriptiveStatement key="ps4">
2 <ruleml:Rule key=":ruletemplate3" keyref=":ruletemplate2">
3 <ruleml:then>
4 <lrml:SuborderList>
5 <lrml:Obligation key="obl1">
6 <ruleml:Atom key=":atom26">
7 <ruleml:Rel iri=":rel3"/>
8 <ruleml:Ind>X</ruleml:Ind>
9 </ruleml:Atom>

10 </lrml:Obligation>
11 <ruleml:And>
12 <lrml:Violation keyref="#ps5"/>
13 <lrml:Obligation key="obl2">
14 <ruleml:Atom key=":atom27">
15 <ruleml:Rel iri=":rel4"/>
16 <ruleml:Ind>X</ruleml:Ind>
17 </ruleml:Atom>
18 </lrml:Obligation>
19 </ruleml:And>
20 </lrml:SuborderList>
21 </ruleml:then>
22 </ruleml:Rule>
23 </lrml:PrescriptiveStatement>

Here, OBL rel4 (Lines 13–18) is derivable only when the modal literal OBL rel3
(Lines 5–10) is defeated and the reference literal ps5 (Line 12) is violated. How-
ever, such nested rule structure is not supported semantically in DL. To resolve
this issue, we have to modify the statement based on its expanded form.

Definition 2 (⊗-expansion). Let D = (F,R,>) be a defeasible theory, and let
Σ be the language of D. We define reduct(D)=(F,R′, >′) where for every rule

252 H.-P. Lam et al.

r ∈ Rd with a ⊗-expression appears in its head:

R′ = R \ Rd ∪ { r : A(r), verify(c1) ⇒ c1
r′ : A(r), violate(c1), verify(c1), verify(c2) ⇒ c2 ⊗ · · · ⊗ cn}

∀r′, s′ ∈ R′, r′ > s′ ⇔ r, s ∈ R s.t. r′ ∈ reduct(r), s′ ∈ reduct(s), r > s.

where verify(p) is defined as:⎧⎪⎨
⎪⎩

violate(e) if a violation element is attached to the element p,

comply(e) if a compliance element is attached to the element p,

∅ otherwise.

where e is the literal referenced by the element attributed to p.

Here, we can first exclude the elements in the rule head and generate the rule
based on ⊗-expression. Then, we can apply Definition 2 recursively to transform
the generated rule into a set of rules with single literal in its head. Consequently,
similar to the case discussed before, we can append the element to the body
of the rule(s), where appropriate. Accordingly, the statement ps4 above can be
transformed into the DL rules as shown below.

ps41 : A(ps4) ⇒ OBL rel3
ps42 : A(ps4), OBL rel3, ¬rel3, violate(ps5) ⇒ OBL rel4

Case 2: Referenced Element Is a Rule. Instead, if the referenced element
is a rule, then for the case of violation, we have to verify that the rule referenced
is either (i) inapplicable, i.e., there is a literal in its antecedent that is not
provable; or (ii) the immediate consequent of the rule is defeated or overruled
by a conflicting conclusion. While for the case of compliance, we have to verify
that the referenced rule is applicable and the immediate consequent of the rule
is provable10.

Definition 3 Let D = (F,R,>) be a defeasible theory. Rb ⊆ R (respectively,
Rh ⊆ R) denotes the set of rules that contains at least one element in their body
(head).

Definition 4 (Rule Status). Let D = (F,R,>) be a defeasible theory, and let
Σ be the language of D. For every r ∈ Rb, rc denotes the rule referenced by the
element. We define verifyBody(D) = (F,R′, >′) where:

R′ = R \ Rd ∪ { r+c : A(rc) ⇒ inf(rc),
r−
c : ⇒ ¬inf(rc),

r−
cv : ¬inf(rc) ⇒ violation(rc),

r+cc : inf(rc), comply(C(rc, 1)) ⇒ compliance(rc),
r+cv : inf(rc), violate(C(rc, 1)) ⇒ violation(rc),

>′=> ∪{r+c > r−
c }

10 In this paper, we consider only the case of weak compliance and weak violation, and
verify only the first (modal) literal that appears in the head of the rule. However,
the method proposed here can be extended easily to support the verification of the
cases of strong compliance [19] and strong violation [12].

Enabling Reasoning with LegalRuleML 253

For each rc, inf(rc), ¬inf(rc), compliance(rc) and violation(rc) are new atoms
not in the language of the defeasible theory. inf(rc) and ¬inf(rc) are used to
determine whether a rule is in force (applicable). If rc is in force, we can then ver-
ify whether the first literal that appears at the head of rc is compliant or violated
(represented using the atoms compliance(rc) and violation(rc), respectively).

Similar to the case when the referenced object is a literal, depending on
where the element is in the rule, we can append the compliance and violation
atoms to the body and head of the rule directly. However, unlike the case where
the reference element is a literal, this time we can append the atoms required
directly without any transformation.

4.4 Implementation

The above transformation can be used to transform legal norms represented
using LegalRuleML into DL that we can reason on. We have implemented the
above transformation as an extension to the DL reasoner SPINdle [22] — an
open-source, Java-based DL reasoner that supports reasoning on both standard
and modal defeasible logic. Theory reasoning starts from a set of legal norms
represented using LegalRuleML, i.e., a rule base, and conclusions are generated
based on the semantics of DL. At the moment, various tests have been performed
on some small scale LegalRuleML theories (∼10 statements per theory), and it
takes, on average, 150 ms to transform a LegalRuleML theory into a SPINdle
defeasible theory. Future versions will include optimization of the implemen-
tation of the transformation process so that it can handle large LegalRuleML
theories in a more efficient manner.

We have also implemented the transformation in reverse direction, i.e., trans-
late a DL theory back to LegalRuleML representation. However, as can be
noticed from Sect. 3, LegalRuleML supports more features than DL, so only
information about the legal norms, i.e., the rules, can appear in the translated
theory.

As a remark, the transformation above is compliant with the current version
of the LegalRuleML specification [3]. However, it should be noted that strange
results may appear if a <lrml:violation> (or <lrml:compliance>) element
appears at the head of a statement (i.e., the <ruleml:then> part of a statement).
For instance, consider the case where a <lrml:violation> element appears as
the only element at the head of a statement. Then, it will be transformed into
a rule with no head literal, which is not correct. In the light of this, we believe
that additional restriction(s) should be added to the specification in order to
avoid this situation.

5 Related Works

The research in the areas of e-contracting, business process compliance and auto-
mated negotiation systems has evolved over the last few years. Several rules

254 H.-P. Lam et al.

modelling languages have been developed (or improved existing ones) for repre-
senting the semantics of business vocabularies, facts and business rules [9], and
rules transformation techniques have emerged.

The ContractLog [25] framework for describing the formal rules based on the
contract specifications for automated execution and monitoring of the service
level agreements (SLAs). It combines rule-based representation of SLAs using
Horn rules and Meta programming techniques alternative to contracts defined
in natural language or pure programming implementations in programming lan-
guages. A rule-based technique called SweetDeal for representing business con-
tracts that enables the software agent to automatically create, negotiate, evaluate
and execute the contract provisions with high degree of modularity is discussed
in [17]. Their technique builds upon situated courteous logic programs (SCLP)
knowledge representation in RuleML, and incorporates the process knowledge
descriptions whose ontologies are represented in DAML+OIL11. DAML+OIL
representations allow handling more complex contracts with behavioural pro-
visions that might arise during the execution of contracts. The former has to
rely upon multiple formalisms to represent various types of SLA rules e.g. Horn
Logic, Event-Calculus, Description Logic—whereas the latter does not consider
normative effects (i.e., the approach is unable to differentiate various types of
obligations such as achievement, maintenance and permissions).

Semantics of Business Vocabulary and Business Rules (SBVR) [24] is an
Object Management Group (OMG) standard to represent and fomalise business
ontologies, including business rules, facts and business vocabularies. It provides
the basis for detailed formal and declarative specifications of business policies
and includes deontic operators to represent deontic concepts e.g., obligations,
permissions etc. Also, it uses the controlled natural languages to represent legal
norms [9]; however, the standard has some shortcomings as the semantics for
the deontic notions is underspecified. This is because SBVR is based on classi-
cal first-order-logic, which is not suitable to represent deontic notions and con-
flicts. Also, it cannot handle contrary-to-duty obligations as these cannot be
represented by standard deontic logic (see [6] for details). The legal knowledge
interchange format (LKIF), on the other hand, is an XML based interchange
format language [7] that aims to provide an interchangeable format to represent
legal norms in a broad range of application scenarios, especially in the context
of semantic web. LKIF uses XML schemas to represent theories and arguments
derived from theories, where a theory in LKIF is a set of axioms and defeasible
inference rules. In addition to these, there are other XML based rule interchange
format languages e.g., SWRL [20], RIF [31], WSMO [27] and OWL-S [29] (see [9]
for more details on the strengths and weaknesses of these languages).

Baget et al. [5] discuss techniques for transforming existential rules into
Datalog+12, RuleML and OWL 2 formats. For the transformation from Datalog+

into RuleML, the authors used a fragment of Deliberation RuleML 1.01, which

11 DAM+OIL Reference: http://www.w3.org/TR/daml+oil-reference/.
12 Datalog+: a sub-language of RuleML http://wiki.ruleml.org/index.php/

Rule-Based Data Access#Datalog.2B.2F-.

http://www.w3.org/TR/daml+oil-reference/
http://wiki.ruleml.org/index.php/Rule-Based_Data_Access#Datalog.2B.2F-
http://wiki.ruleml.org/index.php/Rule-Based_Data_Access#Datalog.2B.2F-

Enabling Reasoning with LegalRuleML 255

includes positive facts, universally quantified implications, equality, falsity (and
conjunctions) in the heads of implications. Whereas [30] transforms the associa-
tion rules into Drool Rule Language (DRL) format using Lisp-Miner13, and [21]
proposes a model driven architecture based model to transform SBVR compli-
ant business rules extracted from business contracts of services to compliant
executable rules in formal contract language (FCL [11]). However, the former’s
transformation is limited only to existential rules; while the latter captures only
the business rule (SBVR bears only business rules), which may or may not
have legal standings. Whilst, LegalRuleML represents legal standings, the Legal-
RuleML’s temporal notions of enforceability, efficacy and applicability cannot be
represented with SBVR. In contrast, the approach proposed in this paper enables
the translation of defeasible expressions, and various deontic concepts including
the notion of penalty and chain of reparations.

6 Conclusions

In this paper, we have proposed a transformation such that (legal) norms rep-
resented using LegalRuleML can be transformed into DL which provides us a
method for modeling business contracts and reasoning about them in a declar-
ative way. Whilst LegalRuleML aims at providing specifications to legal norms
that can be represented in a machine readable format, the major impedance now
is the lack of dedicated and reliable infrastructure that can provide support to
such capability.

As a future work, we are planning to incorporate our technique into some
smart-contract enabled systems, such as Ethereum [32]. This will extend its
language such that, instead of using programming logics, users can define their
(smart-)contracts in a declarative manner.

References

1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: A flexible framework
for defeasible logics. In: Proceedings of the 17th National Conference on Artificial
Intelligence, pp. 405–410. AAAI Press/The MIT Press (2000)

2. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results
for defeasible logic. ACM Trans. Comput. Logic 2(2), 255–286 (2001)

3. Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.:
OASIS LegalRuleML. In: International Conference on Artificial Intelligence and
Law, ICAIL 2013, Rome, Italy, pp. 3–12, 10–14 June 2013

4. Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: LegalRuleML:
design principles and foundations. In: Faber, W., Paschke, A. (eds.) Reasoning
Web 2015. LNCS, vol. 9203, pp. 151–188. Springer, Heidelberg (2015)

5. Baget, J., Gutierrez, A., Leclère, M., Mugnier, M., Rocher, S., Sipieter, C.:
Datalog+, RuleML and OWL 2: formats and translations for existential rules.
In: RuleML 2015 Challenge, Berlin, Germany, 2–5 August 2015

13 Lisp-Miner: http://lispminer.vse.cz.

http://lispminer.vse.cz

256 H.-P. Lam et al.

6. Carmo, J., Jones, J.: Deontic Logic and Contrary to duties. In: Handbook of Philo-
sophical Logic, 2nd edn., pp. 265–343. Kulwer, Dordrech (2002)

7. ESTRELLA Project: The Legal Knowledge Interchange Format (LKIF), Deliver-
able 4.1, European Commission (2008). http://www.estrellaproject.org/

8. Goedertier, S., Vanthienen, J.: Designing compliant business processes with oblig-
ations and permissions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 5–14. Springer, Heidelberg (2006)

9. Gordon, T.F., Governatori, G., Rotolo, A.: Rules and norms: requirements for rule
interchange languages in the legal domain. In: Governatori, G., Hall, J., Paschke,
A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 282–296. Springer, Heidelberg (2009)

10. Governatori, G.: Representing business contracts in RuleML. Int. J. Coop. Inf.
Syst. 14(2–3), 181–216 (2005)

11. Governatori, G., Milosevic, Z.: Dealing with contract violations: formalism and
domain specific language. In: EDOC 2005, pp. 46–57. IEEE Computer Society
(2005)

12. Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Designing for compli-
ance: norms and goals. In: Palmirani, M. (ed.) RuleML - America 2011. LNCS,
vol. 7018, pp. 282–297. Springer, Heidelberg (2011)

13. Governatori, G., Rotolo, A.: Defeasible logic: agency, intention and obligation. In:
Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 114–128.
Springer, Heidelberg (2004)

14. Governatori, G., Rotolo, A.: Logic of violations: a gentzen system for reasoning
with contrary-to-duty obligations. Australas. J. Logic 4, 193–215 (2006)

15. Governatori, G., Rotolo, A.: A computational framework for institutional agency.
Artif. Intell. Law 16(1), 25–52 (2008)

16. Governatori, G., Rotolo, A.: BIO logical agents: norms, beliefs, intentions in defea-
sible logic. Auton. Agent. Multi-Agent Syst. 17(1), 36–69 (2008)

17. Grosof, B., Poon, T.C.: SweetDeal: representing agent contracts with exceptions
using XML rules, ontologies, and process descriptions. In: The 12th International
World Wide Web Conference, pp. 340–349 (2012)

18. Grosof, B.N.: Representing e-commerce rules via situated courteous logic programs
in RuleML. Electron. Commer. Res. Appl. 3(1), 2–20 (2004)

19. Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for regulatory
compliance: an abstract formal framework. Inf. Syst. Front. 18(3), 429–455 (2016).
doi:10.1007/s10796-015-9558-1

20. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language (2004). https://www.w3.org/Submission/
SWRL/

21. Kamada, A., Governatori, G., Sadiq, S.: Transformation of SBVR compliant busi-
ness rules to executable FCL rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S.
(eds.) RuleML 2010. LNCS, vol. 6403, pp. 153–161. Springer, Heidelberg (2010)

22. Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall,
J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer,
Heidelberg (2009)

23. OASIS LegalRuleML Technical Committee: LegalRuleML Technical Commit-
tee Specifications (2015). https://www.oasis-open.org/committees/legalruleml/
charter.php, retrieved 12

24. Object Management Group (OMG): Semantics of Business Vocabulary And Rules
(SBVR). OMG (2008). http://www.omg.org/spec/SBVR

http://www.estrellaproject.org/
http://dx.doi.org/10.1007/s10796-015-9558-1
https://www.w3.org/Submission/SWRL/
https://www.w3.org/Submission/SWRL/
https://www.oasis-open.org/committees/legalruleml/charter.php
https://www.oasis-open.org/committees/legalruleml/charter.php
http://www.omg.org/spec/SBVR

Enabling Reasoning with LegalRuleML 257

25. Paschke, A., Bichler, M., Dietrich, J.B.: ContractLog: an approach to rule based
monitoring and execution of service level agreements. In: Adi, A., Stoutenburg, S.,
Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791, pp. 209–217. Springer, Heidelberg
(2005)

26. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

27. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web service modeling ontology. Appl. Ontol.
1(1), 77–106 (2005)

28. Searle, J.R.: The Construction of Social Reality. Free Press, New York (1997)
29. The OWL Services Coalition: OWL-S 1.2 Release (2008). http://www.daml.org/

services/owl-s/
30. Voj́ır, S., Kliegr, T., Hazucha, A., Skrabal, R., Simunek, M.: Transforming associa-

tion rules to business rules: easyminer meets drools. In: Joint Proceedings of the 7th
International Rule Challenge, the Special Track on Human Language Technology
and the 3rd RuleML Doctoral Consortium. Seattle, USA, July 2013

31. W3C RIF Working Group: RIF: Rule Interchange Format (2005). https://www.
w3.org/standards/techs/rif

32. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger
(2014). http://gavwood.com/paper.pdf, Accessed December

http://www.daml.org/services/owl-s/
http://www.daml.org/services/owl-s/
https://www.w3.org/standards/techs/rif
https://www.w3.org/standards/techs/rif
http://gavwood.com/paper.pdf

SBVR to OWL 2 Mapping in the Domain
of Legal Rules

Firas Al Khalil(B), Marcello Ceci, Kosala Yapa, and Leona O’Brien

Governance, Risk, and Compliance Technology Center, University College Cork,
13 Sourh Mall, Cork, Ireland

{firas.alkhalil,marcello.ceci,kosala.m,leona.obrien}@ucc.ie

Abstract. The Semantics of Business Vocabulary and Business Rules
(SBVR) is a specification created by the Object Management Group
(OMG) to provide a way to semantically describe business concepts
and specify business rules. However, reasoning with SBVR is still an
open subject, and current efforts to provide reasoning are done through
the Web Ontology Language (OWL), by providing a mapping between
SBVR and OWL. In this paper we focus on the problem of mapping
SBVR vocabulary and rulebook to OWL 2, but unlike previous map-
pings described in the literature, we provide a novel and unorthodox
mapping that allows to describe legal rules which have their own intri-
cate anatomy.

Keywords: SBVR · OWL · Rule · Legal

1 Introduction

Following the global financial crisis of 2008, more interest has been geared
towards information systems of the financial industry as they were key con-
tributors to the failures that occurred across the industry.

The Governance, Risk, and Compliance Technology Center (GRCTC) was
established in 2012 to conduct R&D on the use of semantic technologies for GRC
in the financial industry. One of its objectives is to design and build semantic
technologies based on regulatory ontologies to enable sense-making by GRC
actors around complex regulations in order to facilitate regulatory change man-
agement in financial organizations and to help address the aforementioned prob-
lems. The main technologies used are Semantics of Business Vocabulary and
Business Rules [1] (SBVR) to capture rules from legislative text, and the Web
Ontology Language [16] (OWL 2) to perform advanced reasoning tasks which
are not supported in SBVR.

To this end, we have developed at GRCTC a Regulatory Compliance Inter-
pretation Methodology [3] (RIM), which indicates how to extract rules from
regulations and represent them in a machine-readable knowledge base. Simply
speaking, the RIM is a collaborative methodology requiring 2 agents: (1) the
Subject-Matter Expert (SME), a lawyer knowledgeable of the legislative text
c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 258–266, 2016.
DOI: 10.1007/978-3-319-42019-6 17

SBVR to OWL 2 Mapping in the Domain of Legal Rules 259

and responsible of capturing the rules and transmitting them to the STE, and
(2) the Semantic Technology Expert (STE), a knowledge engineer whose role is
to translate the rules captured by the SME into an OWL ontology.

The lingua franca of the SME and the STE is SBVR Structured English
(SBVR SE): the SME produces a regulatory vocabulary and rulebook in SBVR
and transmits them to the STE [2]. The STE can ask for clarification, so the
process is repeated until all ambiguities are eliminated and the STE is satisfied
with the vocabulary and the rulebook.

Once the SME - STE interaction is done, the STE becomes responsible of
the translation of the developed vocabulary and rulebook from SBVR to OWL
2, and this is the subject of this paper. Current mappings [5,6,10–12] are generic
and do not take into account the unique nature of a legal rule. In our approach,
a legal rule defines conditions that in turn qualify events as relevant or not, and
if an event is relevant to the rule, it is considered as compliant to the rule if,
and only if, it complies to a complicance condition (it is actually called a deontic
condition, but more on that in Sect. 5), otherwise the event breaches the rule.

In order to support this kind of reasoning, we developed the Financial Indus-
try Regulatory Ontology [7] (FIRO). The FIRO-H module of FIRO provides all
the necessary scaffolding needed to map SBVR to OWL, while its details and
its reasoning capabilities are out of the scope of this paper. We will introduce
FIRO-H concepts as we require them to understand the mapping. To the best
of our knowledge, this is the first mapping from SBVR to OWL that is tailored
for a practical application in a specific domain.

The rest of the paper is organized as follows: Sect. 2 introduces SBVR;
Sect. 3 discusses the different components of FIRO; Sects. 4 and 5 show how to
map SBVR vocabulary and rulebook, respectively, to OWL using FIRO; Sect. 6
reviews the state of the art on SBVR to OWL mapping; and finally we conclude
in Sect. 7.

2 SBVR

The Object Management Group (OMG) created the Semantics of Business
Vocabularies and Business Rules (SBVR) specification [1] to define business
concepts and rules using a controlled natural language, SBVR Structured Eng-
lish (SBVR SE). It is meant to be used by business people to describe their
business activities, hence its adoption in the RIM of GRCTC: it allows non-
technical experts (SMEs) to define rules using a controlled language (as opposed
to legalese).

The elements of SBVR vocabulary (that are of relevance to our discussion)
are:

1. General Noun Concepts. They are nouns that describe classes of objects; they
classify things based on their common properties (e.g. Bank, Share, . . .).

2. Individual Noun Concepts. They designate individual occurrences of things
(e.g. Cork is a city in Ireland, however Cork is an individual instance, a single
and unique concept).

260 F.A. Khalil et al.

3. Verb Concepts. Composed of a verb (technically verb symbol) and one or more
Verb Concept Roles. A Verb Concept Role is a noun concept, either general
or individual. Examples of a basic verb concepts:
(a) Bank transfers Asset. transfers is a verb that has 2 Verb Concept Roles,

namely Bank and Asset.
(b) Bank of Ireland issues Share. issues is a verb that has 2 verb concept roles,

namely the individual noun concept Bank of Ireland and the general noun
concept Share.

(c) Bank defaults. defaults is a verb with 1 verb concept role, namely the
general noun concept Bank.

The rulebook contains Definitional (or Structural) rules and Behavioural (or
Operative) rules. In the legal context, definitional rules correspond to Consti-
tutive Norms that are characterized by their alethic modality (i.e. necessity,
possibility, impossibility); behavioral rules correspond to Regulative Norms that
are characterized by their deontic modality (i.e. obligation, permission, and pro-
hibition). Every rule is a combination of: (1) a modality, and (2) one or multiple
verb concepts connected with keywords. In this paper we will restrict ourselves
to behavioural rules only, therefore, we will be considering deontic modalities
only. Example of a rule:

It is obligatory that each Price reflects the Prevailing Market Condition for each
Share.

The modality of the rule is expressed in “It is obligatory that” which
indicates an obligation. We have 3 noun concepts: (1) Price, (2)
Prevailing Market Condition, and (3) Share, and 2 Verb Concepts: (1) Price reflects
Prevailing Market Condition, and (2) Share has Prevailing Market Condition.

The vocabulary only contains Noun Concepts and Verb Concepts. The uni-
versal quantifier each is not present in the Verb Concept, but it is present in
the rule. The modality is also in the rule only. This distinction is crucial for the
modeling of rules in FIRO, which we will introduce in Sect. 3.

3 FIRO

GRCTC is currently developing a set of ontologies called FIRO (Financial Indus-
try Regulatory Ontology) to enable semantic applications such as classification,
querying, and reasoning. FIRO is composed of different modules, from which we
are only interested in:

FIRO-H. This ontology is a high-level ontology focused on the concept of
regulatory compliance. It defines all the concepts and relationships necessary to
represent legal and business rules, and their compliance.

FIRO-D. This ontology specializes FIRO-H by describing the concepts and
the relationships expressed by a specific regulation (e.g. UK AML Regula-
tion, MiFID, US Bank Secrecy Act). In other words, in FIRO-D we find
domain-specific rules.

SBVR to OWL 2 Mapping in the Domain of Legal Rules 261

FIRO-Op. This ontology uses FIRO-H as a framework and one or multiple
FIRO-Ds to support a specific GRC-related process or task. In FIRO-Op we
taylor an ontology for a specific GRC operation.

Please note that a full discussion of FIRO, classes and relations in every
module, and its reasoning capabilities are out of the scope of this paper. We will
only introduce concepts of FIRO (FIRO-H more specifically) as we need them.

4 The Vocabulary

4.1 Definitions

Definition 1 (Factor). A generic or specific entity that plays a role in an
action. It is the result of the interpretation of the entities involved in the rule.

Definition 2 (Action). An abstract category of events that is defined arbitrar-
ily. It is the result of the interpretation on the behaviour required by the rule.

Definition 3 (Event). A concrete manifestation of an abstract action.

Action and Factor roughly correspond to Verb Concept and Verb Con-
cept Role, respectively, in SBVR. They are defined during rule interpretation
(intended as statutory interpretation, see [4]) which means that the same rule
found in the legislative text can have multiple interpretations (that is, can be
“defined arbitrarily”). An example of an action would be:

Bank transfers Asset

This action describes in an abstract manner all the events that consist in a
bank transferring an asset. It does not designate a specific Bank or a particular
Asset. It describes the category of actions that are qualified as Bank transfers
Asset.

Events are actions described in data, not the rule. Examples of events relating
to the Action Bank transfers Asset:

Bank of Ireland transfers Share N. 0001234
Central Bank of Ireland transfers Parcel N. 0004321

4.2 Mappings

We find in the literature different papers (e.g. [5,6,10–12]) talking about the
transformation of SBVR vocabulary to OWL 2, and they are all based on the
same basic notion also described in the official documentation of SBVR [1,
Section 10.3]. Table 1 summarizes this translation.

In FIRO, we take a different approach. Indeed, FIRO-H describes 3 main
classes:

Factor. The equivalent of a Verb Concept Role in SBVR.

262 F.A. Khalil et al.

Table 1. SBVR to OWL: the classical approach vs FIRO

SBVR OWL only OWL + FIRO

General Noun Concept Class Class subclass of Factor

Individual Noun Concept Individual Individual of a (Class subclass of
Factor)

verb Object or Data Property Individual of Verb

Verb. Corresponds to the class of Verbs in SBVR. A verb (symbol) found in a
verb concept is an individual of the class Verb and not an Object or Data
Property as described in the literature.

Action. Corresponds to a verb concept in SBVR. It is composed of one or
multiple Factors. The class Action is used in conjunction with two object
properties:
hasFactor. Has a domain Action and ranges over Factor. (FIRO further

specifies hasFactor into hasSubject, hasObject, etc. for more meaningful
querying and reasonning).

hasVerb. Has a domain Action and ranges over Verb.

Let us take the example Bank transfers Asset. This verb concept would be
created in FIRO-D using FIRO-H as follows: (1) Bank and Asset become OWL
classes, each of them subclassOf Factor, (2) transfers becomes an individual of the
class Verb, and (3) the whole verb concept will be defined (using the Manchester
syntax [9]) as a class Bank Transfers Asset:

Class Bank Transfers Asset: Action and (hasSubject some Bank)

and (hasObject some Asset) and (hasVerb value transfers)

5 The Rulebook

5.1 Definitions

Definition 4 (Condition). An Action used in a rule. A condition has the
same properties as actions and may restrict factors by specifying (1) their scope
or value, or (2) the role they play in another condition.

Definition 5 (Rule). A rule is made of 1 deontic modal operator, 1 deontic
condition, and any number of applicability conditions.

Definition 6 (Applicability Condition). It is a condition that determines if
a given event is relevant to a given rule or not. It corresponds to the “condition
of application” of prescriptions in [8].

Definition 7 (Deontic Condition). It is a condition that determines if a
relevant event complies/breaches a rule. It corresponds to the “legal effect” of
prescriptions in [8]. A deontic condition has 1 deontic factor.

SBVR to OWL 2 Mapping in the Domain of Legal Rules 263

Definition 8 (Deontic Factor). A deontic factor of a deontic condition is a
Factor that is the direct object/main target of the deontic modal operator. If a
relevant event meets the deontic factor, it is compliant with the rule, if it does
not meet it, it breaches the rule.

Let us take the example Action Bank transfers Asset to demonstrate the types
of specifications mentioned in Definition 4:

1. Bank transfers at least 2 Assets is a specification of scope.
2. Central Bank of Ireland transfers Asset is a specification of value.
3. Bank transfers Asset of Enterprise. Here Asset plays a role also in a second

action Enterprise has Asset.

Let us take an example rule to explain Definitions 4 to 8:

It is obligatory that each Bank transfers less than $10’000

The deontic modal operator of this rule is expressed in “It is obligatory that”.
This rule has 1 deontic condition: Bank transfers less than $10’000. The deontic
condition is based on the action Bank transfers Asset. An event is relevant to
the rule if it is describing a bank transferring an amount of money. An event
describing a company (other than a bank) transferring an amount of money is
not relevant to this rule. If the event is relevant, and if the amount of money is
less than $10’000, then the event is compliant with the rule, otherwise it breaches
it. Therefore, the factor of $10’000 is the critical point that determines if an event
is compliant or not; it is the deontic factor, the direct object of the obligation.

5.2 Mappings

FIRO-H provides the following:

Condition. Is a subclassOf Action used to define both deontic and applicability
conditions.

hasDeonticFactor. An object property to specify the deontic factor.
RegulatoryStatement. The class of regulatory statements. Every rule is rep-

resented as an individual of this class.
DeonticModality. A class containing 3 individuals: obligation, prohibition, and

permission.
hasDeonticModality. An object property with a domain RegulatoryStatement

and a range DeonticModality.

To illustrate the mapping of a rule described in SBVR to OWL using
FIRO-H, let us take the following example: we have a vocabulary made of the
noun concepts Quote, Bid Price, Share, and Trading Venue and verb concepts
Quote include Bid Price, Share traded on Trading Venue, and Share has Quote.
The rule we are considering is:

It is obligatory that each quote (for each share traded on a trading venue) include
at least two bid price

264 F.A. Khalil et al.

First of all, noun concepts and individual noun concepts should be created,
then, 3 verb concepts should be translated into 3 Actions as described at the
end of Sect. 4.2 (namely Share Has Quote, Share Traded TradingVenue, and
Quote Include BidPrice). Finally, we should create rule2 as an individual of
the class RegulatoryStatement as follows: rule2 hasModality obligation.

This rule has 2 conditions expressed in 2 separate actions: (1) a share should
have a quote and be traded on a trading venue, and (2) the quote of the afore-
mentioned share should include at least two bid prices.

If there is an event that does not satisfy the first condition, it is not relevant
to the rule; the event does not constitute a breach of rule2. Therefore, the first
condition is an applicability condition. However, the second condition is necessary
for the rule: if an event satisfies the first condition, but does not satisfy the
second one, it may constitute a breach; otherwise, the event complies to the
rule. Therefore, the second condition is a deontic condition.

Class Rule2 Condition1: Condition

equivalentClass (Share Has Quote and hasSubject some

(Share and (subjectOf some Share Traded TradingVenue)))

Class Rule2 Deontic: Condition

equivalentClass (compliesTo rule2)

equivalentClass (Quote Include BidPrice

and hasSubject some (Quote and (objectOf Rule2 Condition1)

and hasObject min 2 BidPrice)

6 State of the Art

The work described in the literature dealing with the transformation of SBVR
to OWL follow the same pattern. All of them take their inspiration from the
SBVR specification [1] which gives a rather basic mapping. One of the earliest
mappings was described by Demuth and Libeau [6] who decided to translate
SBVR vocabulary to OWL and SBVR rules to R2ML [17] of the REWERSE
project. They created their own SBVR MOF representation to express SBVR
hierarchy; they also restricted the expressiveness to unary and binary facts (verb
concepts).

Cearvolo et al. [5] proposed a mapping between SBVR vocabulary and
rules to OWL. However, SBVR facts that could not be translated into OWL
were expressed in SWRL; e.g. round-trip car movements cannot be expressed
with OWL DL: defining CarMovements whose fillers of properties hasReceiving-
Branch and hasSendingBranch are the same individual would involve dynami-
cally defined enumerated classes (with the property filler as the only member)
and this is not even possible with OWL Full.

Karpovic and Nemuraite [11] talked about the transformation from SBVR
to OWL exclusively. They presented a mapping of different concepts and fact
types (partitive, associative, property of, etc.). In a subsequent work, Kaprovic
et al. [10] presented a (detailed) reverse mapping: from OWL 2 to SBVR; the aim
of this goal was to show that SBVR can be used to describe OWL 2 concepts.

Reynares et al. [13–15] presented also a detailed mapping of SBVR to OWL 2,
however they attack the vocabulary, facts and logical operators. Rules are not

SBVR to OWL 2 Mapping in the Domain of Legal Rules 265

described. Moreover, they conclude by sharing the same concern of Cearvolo
et al. [5], that OWL is not expressive enough to describe all kinds of SBVR
semantics.

The most comprehensive mapping between SBVR and OWL 2 was described
by Kendall and Linehan [12]. The goal of their work was to provide a reversible
mapping between both specification without any loss of semantics. However,
they restrict themselves to SBVR vocabularies only; i.e. behavioral rules are
excluded.

7 Conclusion

In this paper we presented a mapping of SBVR vocabulary and rulebook to OWL
2 using the Financial Industry Regulatory Ontology (FIRO) as a framework
that governs our mapping. We showed the parallels between FIRO-H and SBVR
vocabulary, more precisely, we showed that in SBVR a Verb Concept and a Verb
Concept Role correspond to Action and Factor, respectively, in FIRO-H. An
Action used in a rule is a Condition.

We then showed how to model a rule using Actions as building blocks: a rule
is defined by a Deontic Modal Operator, a Deontic Condition (the direct object of
the modal operator), and any number of Applicability Conditions. Applicability
conditions will qualify an event as relevant to a rule or not. The deontic condition
will decide, via its Deontic Factor, if a relevant event is compliant to or breaching
a rule.

The mapping we presented is significantly different from what has been
described in the literature. The value of this approach as compared to the state of
the art lies in the reasoning capabilities it enhances in terms of rules comparison
and data classification. An interesting research direction would be attempting
to automatically transform an SBVR logical formulation to OWL using FIRO-H
as a host framework.

Acknowledgments. This work is mainly supported by Enterprise Ireland (EI) and
the Irish Development Authority (IDA) under the Government of Ireland Technology
Centre Programme.

References

1. Semantics of Business Vocabulary and Business Rules (SBVR) Version 1.2, April
2013. http://www.omg.org/spec/SBVR/1.2/PDF

2. Abi-Lahoud, E., Butler, T., Chapin, D., Hall, J.: Interpreting regulations with
SBVR. In: Joint Proceedings of the 7th International Rule Challenge, the Special
Track on Human Language Technology and the 3rd RuleML Doctoral Consortium,
Seattle, USA, July 11–13, 2013 (2013)

3. Abi-Lahoud, E., O’Brien, L., Butler, T.: On the road to regulatory ontologies. In:
Casanovas, P., Pagallo, U., Palmirani, M., Sartor, G. (eds.) AICOL 2013. LNCS,
vol. 8929, pp. 188–201. Springer, Heidelberg (2014)

http://www.omg.org/spec/SBVR/1.2/PDF

266 F.A. Khalil et al.

4. Araszkiewicz, M.: Towards systematic research on statutory interpretation in AI
and law. In: Legal Knowledge and Information Systems - JURIX 2013: The Twenty-
Sixth Annual Conference, December 11–13, 2013, pp. 15–24. University of Bologna,
Italy (2013)

5. Ceravolo, P., Fugazza, C., Leida, M.: Modeling semantics of business rules. In:
Digital EcoSystems and Technologies Conference, 2007, DEST 2007, pp. 171–176.
Inaugural IEEE-IES (2007)

6. Demuth, B., Liebau, H.-B.: An approach for bridging the gap between business
rules and the semantic web. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007.
LNCS, vol. 4824, pp. 119–133. Springer, Heidelberg (2007)

7. Espinoza, A., Abi-Lahoud, E., Butler, T.: Ontology-driven financial regulatory
change management: an iterative development process. In: 2nd Semantic Web
and Linked Open Data workshop (SW-LOD), Enc 2014. 5th, November, Oaxaca,
México (2014)

8. Gordon, T.F., Governatori, G., Rotolo, A.: Rules and norms: requirements for rule
interchange languages in the legal domain. In: Governatori, G., Hall, J., Paschke,
A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 282–296. Springer, Heidelberg (2009)

9. Horridge, M., Drummond, N., Goodwin, J., Rector, A.L., Stevens, R., Wang, H.:
The manchester OWL syntax. In: Proceedings of the OWLED 2006 Workshop on
OWL: Experiences and Directions, Athens, Georgia, USA, November 10–11, 2006
(2006)

10. Karpovic, J., Krisciuniene, G., Ablonskis, L., Nemuraite, L.: The comprehensive
mapping of semantics of business vocabulary and business rules (SBVR) to OWL
2 ontologies. ITC 43(3), 289–302 (2014)

11. Karpovic, J., Nemuraite, L.: Transforming SBVR business semantics into Web
ontology language OWL2: main concepts. In: Information Technologies’ 2011: Pro-
ceedings of the 17th International Conference on Information and Software Tech-
nologies, IT 2011, Kaunas, Lithuania, pp. 231–238 (2011)

12. Kendall, E., Linehan, M.H.: Mapping SBVR to OWL2. Technical report, IBM
Research Report, RC25363 (WAT1303-040) (2013)

13. Reynares, E., Caliusco, M.L., Galli, M.R.: An automatable approach for SBVR to
OWL 2 mappings. In: XVI Ibero-American Conference on Software Engineering,
pp. 201–214 (2013)

14. Reynares, E., Caliusco, M.L., Galli, M.R.: SBVR to OWL 2 mappings: an automat-
able and structural-rooted approach. CLEI Electron. J. 17(3) (2014). ISSN 0717-
5000

15. Reynares, E., Caliusco, M.L., Galli, M.R.: A set of ontology design patterns for
reengineering SBVR statements into OWL/SWRL ontologies. Expert Syst. Appl.
42(5), 2680–2690 (2015)

16. W3C OWL Working Group: OWL 2 Web Ontology Language Document Overview,
2nd edn. (2012). https://www.w3.org/TR/owl2-overview/

17. Wagner, G., Giurca, A., Lukichev, S.: A general markup framework for integrity
and derivation rules. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2006)

https://www.w3.org/TR/owl2-overview/

Rule- and Ontology-Based Data Access
and Transformation

OBDA Constraints for Effective Query
Answering

Dag Hovland1(B), Davide Lanti2(B), Martin Rezk2(B), and Guohui Xiao2(B)

1 University of Oslo, Oslo, Norway
hovland@ifi.uio.no

2 Free University of Bozen-Bolzano, Bolzano, Italy
{dlanti,mrezk,xiao}@inf.unibz.it

Abstract. In Ontology Based Data Access (OBDA) users pose
SPARQL queries over an ontology that lies on top of relational data-
sources. These queries are translated on-the-fly into SQL queries by
OBDA systems. Standard SPARQL-to-SQL translation techniques in
OBDA often produce SQL queries containing redundant joins and
unions, even after a number of semantic and structural optimizations.
These redundancies are detrimental to the performance of query answer-
ing, especially in complex industrial OBDA scenarios with large enter-
prise databases. To address this issue, we introduce two novel notions
of OBDA constraints and show how to exploit them for efficient query
answering. We conduct an extensive set of experiments on large datasets
using real world data and queries, showing that these techniques strongly
improve the performance of query answering up to orders of magnitude.

1 Introduction

In Ontology Based Data Access (OBDA) [18], the complexity of data storage is
hidden by a conceptual layer on top of an existing relational database (DB). Such
a conceptual layer, realized by an ontology, provides a convenient vocabulary
for user queries, and captures domain knowledge (e.g., hierarchies of concepts)
that can be used to enrich query answers over incomplete data. The ontology
is connected to the relational database through a declarative specification given
in terms of mappings that relate each term in the ontology (each class and
property) to a (SQL) view over the database. The mappings and the database
define a (virtual) RDF graph that, together with the ontology, can be queried
using the SPARQL query language.

To answer a SPARQL query over the conceptual layer, a typical OBDA sys-
tem translates it into an equivalent SQL query over the original database. The
translation procedure has two major stages: (1) rewriting the input SPARQL
query with respect to the ontology and (2) unfolding the rewritten query with
respect to the mappings. A well-known theoretical result is that the size of
the translation is worst-case exponential in the size of the input query [13].
These worst-case scenarios are not only theoretical, but they also occur in real-
world applications, as shown in [16], where some user SPARQL queries are
c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 269–286, 2016.
DOI: 10.1007/978-3-319-42019-6 18

270 D. Hovland et al.

translated into SQL queries containing thousands of join and union operators.
This is mainly due to (i) SPARQL queries containing joins of ontological terms
with rich hierarchies, which lead to redundant unions [19]; and (ii) reifications
of n-ary relations in the database into triples over the RDF data model, which
lead to SQL translations containing several (mostly redundant) self-joins. How
to reduce the impact of exponential blow-ups through optimization techniques
so as to make OBDA applicable to real-world scenarios is one of the main open
problems in current OBDA research.

The standard solutions to tackle this problem are based on semantic and
structural optimizations [19,20] originally from the database area [5]. Semantic
optimizations use explicit integrity constraints (such as primary and foreign keys)
to remove redundant joins and unions from the translated queries. Structural
optimizations are in charge of reshaping the translations so as to take advantage
of database indexes.

The main problem addressed in this paper is that these optimizations cannot
exploit constraints that go beyond database dependencies, such as domain con-
straints (e.g., people have only one age, except for Chinese people who have two
ages), or storage policies in the organization (e.g., table married must contain all
the married employees). We address this problem by proposing two novel classes
of constraints that go beyond database dependencies. The first type of constraint,
exact predicate, intuitively describes classes and properties whose elements can
be retrieved without the help of the ontology. The second type of constraint,
virtual functional dependency (VFD), intuitively describes a functional depen-
dency over the virtual RDF graph exposed by the ontology, the mappings, and
the database. These notions are used to enrich the OBDA specification so as to
allow the OBDA system to identify and prune redundancies from the translated
queries. To help the design of enriched specifications, we provide tools that detect
the satisfied constraints within a given OBDA instance. We extend the OBDA
system Ontop so as to exploit the enriched specification, and evaluate it in both
a large-scale industrial setting provided by the petroleum company Statoil, and
in an ad-hoc artificial and scalable benchmark with different commercial and
free relational database engines as back-ends. Both sets of experiments reveal a
drastic reduction on the size of translated queries, which in some cases is reduced
by orders of magnitudes. This allows for a major performance improvement of
query answering.

The rest of the paper is structured as follows: Preliminaries are provided
in Sect. 2. In Sect. 3 we describe how state-of-the-art OBDA systems work, and
highlight the problems with the current optimization techniques. In Sect. 4 we
formally introduce our novel OBDA constraints, and show how they can be used
to optimize translated queries. In Sect. 5 we provide an evaluation of the impact
of the proposed optimization techniques on the performance of query answering.
In Sect. 6 we briefly survey other related works. Section 7 concludes the paper.
Omitted proofs and extended experiments with Wisconsin benchmark can be
found in the extended version of this paper [12].

OBDA Constraints for Effective Query Answering 271

2 Preliminaries

We assume the reader to be familiar with relational algebra and SQL queries, as
well as with ontology languages and in particular with the OWL 2 QL1 profile.
To simplify the notation we express OWL 2 QL axioms by their description
logic counterpart DL-LiteR [4]. Notation-wise, we will denote tuples with the
bold faces; e.g., x is a tuple.

Ontology and RDF Graphs. The building block of an ontology is a vocabulary
(NC , NR), where NC , NR are respectively countably infinite disjoint sets of class
names and (object or datatype) property names. A predicate is either a class
name or a property name. An ontology is a finite set of axioms constructed out
a vocabulary, and it describes a domain of interest. These axioms of an ontology
can be serialized into a concrete syntax. In the following we use the Turtle syntax
for readability.

Example 1. The ontology from Statoil captures the domain knowledge
related to oil extraction activities. Relevant axioms for our examples are:

:isInWell rdfs:domain :Wellbore :isInWell rdfs:range :Well

:hasInterval rdfs:domain :Wellbore :hasInterval rdfs:range :WellboreInterval

:completionDate rdfs:domain :Wellbore

:ProdWellbore rdfs:subClassOf :DevelopWellbore :DevelopWellbore rdfs:subClassOf :Wellbore

The first five axioms specify domains and ranges of the properties :isInWell,
:hasInterval, and :completionDate. The last two state the hierarchy between different
wellbore2 classes.

Given a countably infinite set NI of individual names disjoint from NC and
NR, an assertion is an expression of the form A(i) or P (i1, i2), where i, i1, i2 ∈
NI , A ∈ NC , P ∈ NR. An OWL 2 QL knowledge base (KB) is a pair (T ,A)
where T is an OWL 2 QL ontology and A is a set of assertions (also called
ABox). Semantics for entailment of assertions (|=) in OWL 2 QL KBs is given
through Tarski-style interpretations in the usual way [1]. Given a KB (T ,A),
the saturation of A with respect to T is the set of assertions AT = {A(s) |
(T ,A) |= A(s)} ∪ {P (s, o) | (T ,A) |= P (s, o)}. In the following, it is convenient
to view assertions A(s) and P (s, o) as the RDF triples (s, rdf:type, A) and (s, P, o),
respectively. Hence, we view a set of assertions also as an RDF graph GA defined
as GA = {(s, rdf:type, A) | A(s) ∈ A} ∪ {(s, P, o) | P (s, o) ∈ A}. Moreover, the
saturated RDF graph G(T ,A) associated to a knowledge base (T ,A) consists of
the set of triples entailed by (T ,A), i.e. G(T ,A) = GAT .

OBDA and Mappings. Given a vocabulary (NC , NR) and a database
schema Σ, a mapping is an expression of the form A(f1(x1)) ← sql(y) or
P (f1(x1), f2(x2)) ← sql(y), where A ∈ NC , P ∈ NR, f1, f2 are function symbols,

1 http://www.w3.org/TR/owl2-overview/.
2 A wellbore is a three-dimensional representation of a hole in the ground.

http://www.w3.org/TR/owl2-overview/

272 D. Hovland et al.

xi ⊆ y, for i = 1, 2, and sql(y) is an SQL query in Σ having output attributes y.
Given Q in NC ∪ NR, a mapping m is defining Q if Q is on the left hand side
of m.

Given an SQL query q and a DB instance D, qD denotes the set of answers
to q over D. Given a database instance D, and a set of mappings M, we define
the virtual assertions set AM,D as follows:

AM,D = {A(f(o)) | o ∈ πx(sql(y))D and A(f(x)) ← sql(y) in M} ∪
{P (f(o), g(o’)) | (o,o’) ∈ πx1,x2 (sql(y))D and P (f(x1), g(x2)) ← sql(y) in M}

In the Turtle syntax for mappings, we use templates–strings with placeholders–
for specifying the functions (like f and g above) that map database values into
URIs and literals. For instance, the string <http://statoil.com/{id}> is a URI
template where “id” is an attribute; when id is instantiated as “1”, it generates
the URI <http://statoil.com/1>.

An OBDA specification is a triple S = (T ,M, Σ) where T is an ontology, Σ
is a database schema with key dependencies, and M is a set of mappings between
T and Σ. Given an OBDA specification S and a database instance D, we call the
pair (S,D) an OBDA instance. Given an OBDA instance O = ((T ,M, Σ),D),
the virtual RDF graph exposed by O is the RDF graph GAM,D ; the saturated
virtual RDF graph GO exposed by O is the RDF graph G(T ,AM,D).

Example 2. The mappings for the classes and properties introduced in Example 1
are:

:Wellbore-{wellbore s} rdf:type :Wellbore
← SELECT wellbore s FROM wellbore WHERE wellbore.r existence kd nm =’actual’

:Wellbore-{wellbore s} :isInWell :Well-{well s}
← SELECT well s, wellbore s FROM wellbore WHERE wellbore.r existence kd nm =’actual’

:Wellbore-{wellbore s} :hasInterval :WellboreInterval-{wellbore intv s}
← SELECT wellbore s, wellbore intv s FROM wellbore interval

:Wellbore-{wellbore s} :completionDate ‘{year}-{month}-{day}’ˆˆxsd:date
← SELECT wellbore s, year, month, day FROM wellbore WHERE wellbore.r existence kd nm =’actual’

:Wellbore-{wellbore s} rdf:type :ProdWellbore
← SELECT w.wellbore s AS wellbore s FROM wellbore w, facility clsn WHERE complex-expression

Query Answering in OWL 2 QL KBs. A conjunctive query q(x) is a first
order formula of the form ∃y. ϕ(x,y), where ϕ(x,y) is a conjunction of equalities
and atoms of the form A(t), P (t1, t2) (where A ∈ NC , P ∈ NR), and each t, t1, t2
is either a term or an individual variable in x,y. Given a conjunctive query q(x)
and a knowledge base K := (T ,A), a tuple i ∈ N

|x|
I is a certain answer to q(x)

iff K |= q(i). The task of query answering in OWL 2 QL (DL-LiteR) can be
addressed by query rewriting techniques [4]. For an OWL 2 QL ontology T , a
conjunctive query q can be rewritten to a union qr of conjunctive queries such
that for each assertion set A and each tuple of individuals i ∈ N

|x|
I , it holds

(T ,A) |= q(i) ⇔ A |= qr(i). Many rewriting techniques have been proposed in
the literature [3,14,22].

http://statoil.com/1

OBDA Constraints for Effective Query Answering 273

SPARQL [9] is a W3C standard language designed to query RDF graphs. Its
vocabulary contains four pairwise disjoint and countably infinite sets of symbols:
I for IRIs, B for blank nodes, L for RDF literals, and V for variables. The elements
of C = I ∪ B ∪ L are called RDF terms. A triple pattern is an element of (C ∪
V) × I × (C ∪ V). A basic graph pattern (BGP) is a finite set of joins of triple
patterns. BGPs can be combined using the SPARQL operators join, optional,
filter, projection, etc.

Example 3. The following SPARQL query, containing a BGP with three triple
patterns, returns all the wellbores, their completion dates, and the well where
they are contained.

SELECT * WHERE {?wlb rdf:type :Wellbore. ?wlb:completionDate ?cmpl. ?wlb:isInWell ?w.}

To ease the presentation of the technical development, in the rest of this paper
we adopt the OWL 2 QL entailment regime for SPARQL query answering [15],
but disallow complex class/property expressions in the query. Intuitively this
restriction states that each BGP can be seen as a conjunctive query without
existentially quantified variables. Under this restricted OWL 2 QL entailment
regime, the task of answering a SPARQL query q over a knowledge base (T ,A)
can be reduced to answering q over the saturated graph G(T ,A) under the simple
entailment regime. This restriction can be lifted with the help of a standard
query rewriting step [15].

3 SPARQL Query Answering in OBDA

In this section we describe the typical steps that an OBDA system performs
to answer SPARQL queries and discuss the performance challenges. To do so,
we pick the representative state-of-the-art OBDA system Ontop and discuss its
functioning in detail.

During its start-up, Ontop classifies the ontology, “compiles” the ontology
into the mappings generating the so-called T -mappings [19], and removes redun-
dant mappings by using inclusion dependencies (e.g., foreign keys) contained in
the database schema. Intuitively, T -mappings expose a saturated RDF graph.
Formally, given a basic OBDA specification S = (T ,M, Σ), the mappings MT
are T -mappings for S if, for every OBDA instance O = (S,D), GO = G(AMT ,D).

Example 4. The T -mappings for our running example are those in Example 2
plus

:Wellbore-{wellbore s} rdf:type :Wellbore
← SELECT wellbore s FROM wellbore WHERE wellbore.r existence kd nm =’actual’

:Wellbore-{wellbore s} rdf:type :Wellbore
← SELECT wellbore s, wellbore intv s FROM wellbore interval

:Wellbore-{wellbore s} rdf:type :Wellbore
← SELECT w.wellbore s FROM wellbore w, facility clsn WHERE ... complex-expression

274 D. Hovland et al.

The new mappings are derived from the domain of the properties :isInWell,

:completionDate, and because :ProdWellbore is a sub-class of :Wellbore.

After the start-up, in the query answering stage, Ontop translates the input
SPARQL query into an SQL query, evaluates it, and returns the answers to the
end-user. We divide this stage in five phases: (a) the SPARQL query is rewritten
using the tree-witness rewriting algorithm; (b) the rewritten SPARQL query is
unfolded into an SQL query using T -mappings; (c) the resulting SQL query is
optimized; (d) the optimized SQL query is executed by the database engine;
(e) the SQL result is translated into the answer to the original SPARQL query.
For the sake of simplicity, we disregard phase (a) since it goes out of the scope
of this paper (cf. [10]), and phases (d) and (e) because they are straightforward.
In the following we elaborate on phases (b) and (c).

From SPARQL to SQL. In phase (b) the rewritten SPARQL query is unfolded
into an SQL query using T -mappings. The rewritten query is first transformed
into a tree representation of its SPARQL algebra expression. The algorithm
starts by replacing each leaf of the tree, that is, a triple pattern of the form
(s, p, o), with the union of the SQL queries defining p in the T -mapping. Such
SQL queries are obtained as follows: given a triple pattern p = ?x rdf:type :A,
and a mapping m = :A(f(y′)) ← sql(y), the SQL unfolding unf(p,m) of p by
m is the SQL query SELECT τ(f(y′)) AS x FROM sql(y), where τ is an SQL function
filling the placeholders in f with values in y′. We denote the sub-expression
“SELECT τ(f(y′)) AS x” by πx/f(y′). The notions of “unf” and “π” are defined sim-
ilarly for properties.

Example 5. Consider the triple pattern p = ?wlb :completionDate ?d, and the fourth
mapping m from Example 2. Then the SQL unfolding unf(p,m) is the SQL query

SELECT CONCAT(":Wellbore-",well s) AS wlb,CONCAT("‘",year,"-",month,"-", day,"’ˆˆxsd:date") AS d
FROM wellbore WHERE wellbore.r existence kd nm = ’actual’

Given a triple pattern p and a set of mappings M, the SQL unfolding
unf(p,M) of p by M is the SQL union ∪m∈M{unf(p,m) | unf(p,m) is defined}.

Once the leaves are processed, the algorithm processes the upper levels in the
tree, where the SPARQL operators are translated into the corresponding SQL
operators (Project, InnerJoin, LeftJoin, Union, and Filter). Once the root is
translated the process terminates and the resulting SQL expression is returned.

Example 6. The unfolded SQL query for the SPARQL query in Example 3 and
T -mappings in Example 4 has the following shape:

(πwlb/�sql:Wellbore ∪ πwlb/�sql:ProdWellbore ∪ πwlb/�sql:hasInterval)
�� (πwlb/�,cmp/♦sql:completionDate) �� (πwlb/�,w/◦sql:isInWell)

where � = :Wellbore-{wellbore s}, ♦ = ‘{year}-{month}-{day}’ˆˆxsd:date, ◦ =:Well-{well s},
and sqlP is the SQL query in the mapping defining the class/property P .

OBDA Constraints for Effective Query Answering 275

Optimizing the Generated SQL Queries. At this point, the unfolded SQL
queries are merely of theoretical value as they would not be efficiently executable
by any database system. A problem comes from the fact that they contain joins
over the results of built-in database functions, which are expensive to evaluate.
Another problem is that the unfoldings are usually verbose, often containing
thousands of unions and join operators. Structural and semantic optimizations
are in charge of dealing with these two problems.

Structural Optimizations. To ease the presentation, we assume the queries to
contain only one BGP. Extending to the general case is straightforward. An SQL
unfolding of a BGP has the shape of a join of unions Q = Q1 �� Q2 . . . �� Qn,
where each Qi is a union of sub-queries. The first step is to remove duplicate
sub-queries in each Qi. In the second step, Q is transformed into a union of joins.
In the third step, all joins of the kind πx/fsql1(z) �� πx/gsql2(w) where f 	= g
are removed because they do not produce any answer. In the fourth step, the
occurrences of the SQL function π for creating URIs are pushed to the root of
the query tree so as to obtain efficient queries where the joins are over database
values rather than over URIs. Finally, duplicates in the union are removed.

Semantic Optimizations. SQL queries are semantically analyzed with the goal of
transforming them into a more efficient form. The analyses are based on database
integrity constraints (precisely, primary and foreign keys) explicitly defined in the
database schema. These constraints are used to identify and remove redundant
self-joins and unions from the unfolded SQL query.

How Optimized are Optimized Queries? There are real-world cases where
the optimizations discussed above are not enough to mitigate the exponential
explosion caused by the unfolding. As a result, the unfolded SQL queries cannot
be efficiently handled by DB engines [16]. However, the same queries can usually
be manually formulated in a succint way by database managers. A reason for
this is that database dependencies cannot model certain domain constraints or
storage policies that are available to the database manager but not to the OBDA
system. The next example, inspired by the Statoil use case explained in Sect. 5,
illustrates this issue.

Example 7. The data stored at Statoil has certain properties that derive from
domain constraints or storage policies. Consider a modified version of the query
defining the class :Wellbore where all the attributes are projected out. Accord-
ing to storage policies for the database table wellbore, the result of the eval-
uation of this query against any database instance must satisfy the following
constraints: (i) it must contain all the wellbores3 in the ontology (modulo tem-
plates); (ii) every tuple in the result must contain the information about name,
date, and well (no nulls); (iii) for each wellbore in the result, there is exactly one
date/well that is tagged as ‘actual’.

3 i.e., individuals in the class :Wellbore.

276 D. Hovland et al.

Query with Redundant Unions. Consider the SPARQL query retrieving all the
wellbores, namely SELECT * WHERE {?wlb rdf:type :Wellbore.}. By ontological reasoning,
the query will retrieve also the wellbores that can be inferred from the subclasses
of :Wellbore and from the properties where :Wellbore is the domain or range.
Thus, after unfolding and optimizations, the resulting SQL query has the struc-
ture πwlb/�(sql1), with sql1 = (sql:Wellbore ∪ sql:ProdWellbore ∪ π#sql:hasInterval),
where � = :Wellbore-{wellbore s}, and # = wellbore s. However, all the
answers returned by sql1 are also returned by the query sql:Wellbore alone, when
these two queries are evaluated on a data instance satisfying item (i).

Query with Redundant Joins. For the SPARQL query in Example 3, the unfolded
and optimized SQL translation is of the form πwlb/�,cmp/♦,w/◦(sql2) with
sql2 = sql1 �� sql:completionDate �� sql:isInWell. Observe that the answers from sql2
could also be retrieved from a projection and a selection over wellbore. This is
because sql1 could be simplified to sql:Wellbore and items (ii) and (iii). The prob-
lem we highlight here is that this “optimized” SQL query contains two redundant
joins if storage policies and domain constraints are taken into account.

It is important to remark that the constraints in the previous example cannot
be expressed through schema dependencies like foreign or primary keys (because
these constraints are defined over the output relations of SQL queries in the
mappings, rather than over database relations4). Therefore, current state-of-
the-art optimizations applied in OBDA cannot exploit this information.

4 OBDA Constraints

We now formalize two properties over an OBDA instance: exact predicates and
virtual functional dependencies. We will then enrich the OBDA specification
with a constraints component, stating that all the instances for the specification
display such properties. We show how this additional constraint component can
be used to identify and remove redundant unions and joins from the unfolded
queries.

From now on, let O = (S,D) be an OBDA instance of a specification S =
(T ,M, Σ).

4.1 Exact Predicates in an OBDA Instance

In real world scenarios it often happens that axioms in the ontology do not enrich
the answers to queries. Often this is due to storage policies not available to the
OBDA system. This fact leads to redundant unions in the generated SQL, as
shown in Example 7. In this section we show how certain properties defined on
the mappings and the predicates, ideally deriving from such constraints, can be
used to reduce the number of redundant unions in the generated SQL queries
for a given OBDA instance.
4 Materializing the SQL in the mappings is not an option, since the schema is fixed.

OBDA Constraints for Effective Query Answering 277

Definition 1 (Exact Mapping). Let M′ be a set of mappings defining a
predicate A. We say that M′ is exact for A in O if O |= A(a) if and
only if ((∅,M′, Σ),D) |= A(a).

In practice it is often the case that the mappings for a particular predicate
declared in the OBDA specification are already exact. This leads us to the next
definition.

Definition 2 (Exact Predicate). A predicate A is exact in O if the set of all
the mappings in M defining A are exact for A in O.

Recall that Ontop adds new mappings to the initial set of mappings through
the T -mapping technique. For exact predicates, this can be avoided while pro-
ducing the same saturated virtual RDF graph. Fewer mappings lead to unfold-
ings with less unions.

Proposition 1. Let M′ be exact for the predicate A in T . Let M′
T be the

result of replacing all the mappings defining A in MT by M′. Then GO =
G((∅,M′

T ,Σ),D).

Example 8. The T -mappings for :Wellbore consist of four mappings (see Exam-
ple 4). However, :Wellbore is an exact class (Example 7). Therefore we can drop
the three T -mappings for :Wellbore inferred from the ontology, and leave only
its original mapping.

4.2 Functional Dependencies in an OBDA Instance

Recall that in database theory a functional dependency (abbr. FD) is an expres-
sion of the form x → y, read x functionally determines y , where x and y are
tuples of attributes. We say that x → y is over an attributes set R if x ⊆ R and
y ⊆ R. Finally, x → y is satisfied by a relation I on R if x → y is over R and
for all tuples u,v ∈ I, if the value u[x] of x in u is equal to the value v[x] of
x in v, then u[y] = v[y]. Whenever R is clear from the context, we simply say
that x → y is satisfied in I.

A virtual functional dependency intuitively describes a functional dependency
on a saturated virtual RDF graph. We identify two types of virtual functional
dependencies:

– Branching VFD : This dependency describes the relation between an object
and a set of functional properties providing information about this object.
Intuitively, it corresponds to a “star” of “functional-like”5 properties in the
virtual RDF graph. For instance, given a person, the properties describing its
(unique) gender, national id, biological mother, etc. are a branching VFD.

5 A property which is functional when restricting its domain/range to individuals
generated from a single template.

278 D. Hovland et al.

– Path VFD : This dependency describes the case when, from a given individual
and a list of properties, there is at most one path that can be followed using
the properties in the list. For instance, x works in a single department y, and
y has a single manager w, and w works for a single company z.

We use these notions to identify those cases where a SPARQL join of properties
translates into a redundant SQL join.

Definition 3 (Virtual Functional Dependency). Let t be a template, and
St be the set of individuals in GO generated from t. Let P, P1, . . . , Pn be properties
in T . Then

– A branching VFD is an expression of the form t �→b P1 · · · Pn. A VFD t �→b P
is satisfied in O if for each element s ∈ St, there are no o 	= o′ in GO such that
{(s, P, o), (s, P, o′)} ⊆ GO. A VFD t �→b P1 · · · Pn is satisfied in O if t �→b Pi

is satisfied in O for each i ∈ {1, . . . , n}.
– A path VFD is an expression of the form t �→p P1 · · · Pn. A VFD t �→p

P1 · · · Pn is satisfied in O if for each s ∈ St there is at most one list of nodes
(o1, . . . , on) in GO such that {(s, P1, o1), . . . , (on−1, Pn, on)} ⊆ GO.

The next example shows, similarly as in [23], that general path VFDs cannot
be expressed as a combination of path VFDs of length 1.

Example 9. Let GO = {(s, P1, o1), (o1, P2, o2), (s, P1, o
′
1)}, and t a template such

that St = {s}. Then, t �→p P1P2 is clearly satisfied in O. However, t �→p P1 is
not.

A property P might not be functional, but still t �→b P might be satisfied in O
for some t.

Example 10. Let GO = {(s, P, o1), (s, P, o2), (s′, P, o3)}, and t a template such
that St = {s′}. Then, the VFD t �→p P is satisfied in O, but P is not functional.

A functional dependency satisfied in the virtual RDF graph might not correspond
to a functional dependency over the database relations. We show this with an
example:

Example 11. Consider the following instance of the view wellbore.

wellbore s year month day r existence kd nm well s

002 2010 04 01 historic 1

002 2009 04 01 actual 1

The mapping defining :completionDate (c.f. Example 2) uses the view
wellbore and has a filter r existence kd nm=’actual’. Observe that there is
no FD (wellbore s → year month day). However, the VFD :Wellbore-{} �→b

:completionDate is satisfied with this data instance, since in GO the wellbore
:Wellbore-002 is connected to a single date "2010-04-01"ˆˆxsd:date through
:completionDate.

OBDA Constraints for Effective Query Answering 279

Functional dependencies satisfied in a database instance often do not correspond
to any VFD at the virtual level. We show this with an example:

Example 12. Consider the table T1(x, y, z) with a single tuple: (1, 2, 3). Clearly
x → y and x → z are FDs satisfied in T1. Now consider the following mappings:

:{x} P1 :{y} ← SELECT * FROM T1 :{x} P1 :{z} ← SELECT * FROM T1

Clearly, there is no VFD involving P1.

Hence, the shape of the mappings affects the satisfiability of VFDs. Moreover,
the ontology can also affect satisfiability. We show this with an example:

Example 13. Consider again the data instance DE from Example 12, and the
mappings ME

:{x} P1 :{y} ← SELECT * FROM T1 :{x} P2 :{z} ← SELECT * FROM T1

Consider an OBDA instance OE = ((∅,ME , ΣE)DE). Then the vir-
tual functional dependencies :{} �→b P1 and :{} �→b P2 are satisfied in
O. Consider another OBDA instance O′

E = ((TE ,ME , ΣE),DE), where
TE = {P1 rdfs:subClassOf P2}. Then the two VFDs above are not satisfied in O′

E .

VFD Based Optimization. In this section we show how to optimize queries
using VFDs. Due to space limitations, we focus on branching VFDs. The results
for path VFDs are analogous and can be found in the technical report [12], as
well as proofs.

Definition 4. The set of mappings M is basic for T if, for each property P in
T , P is defined by at most one mapping in MT . We say that O is basic if M
is basic for T .

To ease the presentation, from now on we assume O to be basic. We denote
the (unique) mapping for Pi in T , i ∈ {1, . . . ,m}, as

tid(xi) Pi tir(yi) ← sqli(zi).

where tid, and tir are templates for the domain and range of Pi, and xi, yi are
lists of attributes in zi. The list zi is the list of projected attributes, which we
assume to be the maximal list of attributes that can be projected from sqli.

Although we only consider basic instances, we show in the technical
report [12] how the results from this section can also be applied to the gen-
eral case.

We also assume that queries sqli(zi) always contain a filter expression of the
form σnotNull(xi,yi)

, even if we do not specify it explicitly in the examples, since
URIs cannot be generated from nulls [6]. Without loss of generality, we assume
that z1 contains all the attributes in x1,y1, . . . ,yn.

In order to check satisfiability for a VFD in an OBDA instance one can ana-
lyze the DB based on the mappings and the ontology. The next lemma formalizes
this intuition.

280 D. Hovland et al.

Lemma 1. Let P1, . . . , Pn be properties in T such that, for each 1 ≤ i < n,
tid = t1d. Then, the VFD t1d �→b P1 . . . Pn is satisfied in O if and only if, for each
1 ≤ i ≤ n, the FD xi → yi is satisfied on sqli(zi)D.

Example 14. Consider the properties :inWell and :completionDate from our run-
ning example. The lemma above suggests that the VFD :Wellbore-{} �→b

:isInWell

:completionDate is satisfied in our OBDA instance with a database instance
D if and only if (i) wellbore s→well s is satisfied in sqlD:isInWell, and (ii)
wellbore s→year month day is satisfied in sqlD:completionDate.

From Example 7, there is an organization constraint for the view wellbore

forcing only one completion date for each “actual” wellbore. As a consequence,
the two FDs (i) and (ii) hold in any database D following this organization
constraint. Therefore, the VFD in such instance is also satisfied.

We now show how VFDs can be used to find redundant joins that can be
eliminated in the SQL translations.

Definition 5 (Optimizing Branching VFD). Let t be a template. An opti-
mizing branching VFD is an expression of the form t �b P1 · · · Pn. An opti-
mizing VFD t �b P1 · · · Pn is satisfied in O if t �→b P1 · · · Pn is satisfied in O,
and for each i ∈ {1, . . . , n} it holds

πx1,yisql1(z1)
D ⊆ ρx1/xi(πxi,yisqli(zi))D (1)

Example 15. Recall that the VFD :Wellbore-{} �→b
:isInWell, :completionDate in Exam-

ple 14 is satisfied in our OBDA instance. The precondition (1) holds because (a)
the properties are defined by the same SQL query (modulo projection) and
(b) the organization constraint “each wellbore entry must contain the infor-
mation about name, date, and well (no nulls)”. Thus, the optimizing VFD
:Wellbore-{} �b

:isInWell, :completionDate is satisfied in this instance.

Lemma 2. Consider n properties P1, . . . , Pn with tid = t1d, for each 1 ≤ i ≤ n,
and for which t1d �b P1 · · · Pn is satisfied in O. Then

πγ(sql1(z1))
D = πγ(sql1(z1) ��x1=x2 sql2(z2) �� · · · ��x1=xn sqln(zn))D,

where γ = x1,y1, . . . ,yn.

We now show how virtual functional dependencies can be used in presence of
triple patterns of the form ?z rdf:type C. As for properties, We assume that for
each concept Cj we have a single T -mapping of the form Cj(tj(x)) ← sqlj(zj).

Definition 6 (Domain Optimizing Class Expression). A domain optimiz-
ing class expression (domain OCE) is an expression of the form tj �d

Pi
Cj.

We say that tj �d
Pi

Cj is satisfied in O if tj = tid and πxsqlj(zj)D ⊇
ρx/xi(πxisqli(zi))D.

OBDA Constraints for Effective Query Answering 281

Definition 7 (Range Optimizing Class Expression). A range optimizing
class expression (range OCE) is an expression of the form tj �r

P Cj. We say
that tj �r

Pi
Cj is satisfied in O if tj = tir and πxsqlj(zj)D ⊇ ρx/yi

(πyisqli(zi))D.

Optimizing VFDs and classes give us a tool to identify those BGPs whose
SQL translation can be optimized by removing redundant joins.

Definition 8 (Optimizable branching BGP). A BGP β is optimizable
w.r.t. v = td �b P1 . . . Pn if (i) v is satisfied in O; (ii) the BGP of triple
patterns in β involving properties is of the form ?v P1 ?v1. ...?v Pn ?vn.; and
(iii) for each triple pattern of the form ?u rdf:type C in β, ?u is either the sub-
ject of some Pi and tid �d

Pi
C is satisfied in O, or ?u is in the object of some Pi

and tir �r
Pi

C is satisfied in O.

Finally, we prove that the standard SQL translation of optimizable BGPs
contains redundant SQL joins that can be safely removed.

Theorem 1. Let β be an optimizable BGP w.r.t. td �x P1 . . . Pn (x = b, p) in
O. Let πv/t1d,v1/t1r,...,vn/tnr

sqlβ be the SQL translation of β as explained in Sect. 3.
Let sql′β = sql1(x1,y1 . . . ,yn). Then sqlDβ and sql′Dβ return the same answers.

Corollary 1. Let Q be a SPARQL query. Let sqlQ be the SQL translation of Q
as explained in Sect. 3. Let sql′Q be the SQL translation of Q where all the SQL
expressions corresponding to an optimizable BGPs w.r.t. a set of VFDs have
been optimized as stated in Theorem1. Then sqlDQ and sql

′D
Q return the same

answers.

Example 16. It is clear that the class :Wellbore is optimizing w.r.t. the domain
of :completionDate and :isInWell. Since :Wellbore-{} �b

:completionDate, :isInWell is
satisfied (c.f. Example 15), one can allow the semantic optimizations to safely
remove redundant joins in query sql1, sketched in Example 7. From Theorem 1,
it follows that, sql:Wellbore �� sql:completionDate �� sql:isInWell can be by simplified
to sql:Wellbore.

4.3 Enriching the OBDA Specification with Constraints

We propose to enrich the traditional OBDA specification with a constraint com-
ponent, so as to allow the OBDA system to perform enhanced optimization as
described in the previous section. More formally, an OBDA specification with
constraints is a tuple Sconstr = (S, C) where S is an OBDA specification and C
is a set of exact mappings, exact predicates, optimizing virtual functional depen-
dencies, and optimizing class expressions. An instance of Sconstr is an OBDA
instance of S satisfying the constraints in C. Our intention is to be able to use
more of the constraints that exist in real databases for query optimization, since
we often see that these cannot be expressed by existing database constraints
(i.e. keys). Since S does not necessarily imply C, checking the validity of C may
have to take into account more information than just S. The constraints C may

282 D. Hovland et al.

be known to hold e.g. by policy, or be enforced by external tools, e.g., as in the
case mentioned in the experiments below, by the tool used to enter data into the
database.

In order to aid the user in the specification of C, we implemented tools to
identify what exact mappings and optimizing virtual functional dependencies are
satisfied in a given OBDA instance (see [12]). The user can then verify whether
these suggested constraints hold in general, for example because they derive from
storage policies or domain knowledge, and provide them as parameters to the
OBDA system. The user intervention is necessary, because constraints derived
from actual data can be an artifact of the current situation of the database.

Optimizing VFD Constraints. We have implemented a tool that automat-
ically finds a restricted type of optimizing VFDs satisfied in a given OBDA
instance and we have extended Ontop to complement semantic optimization
using these VFDs. This implementation aims to mitigate the problem of redun-
dant self-joins resulting from reifying relational tables. Although this is a simple
case, it is extremely common in practice and, as we show in our experiments in
Sect. 5, this class of VFDs is powerful enough to sensibly improve the execution
times in real world scenarios.

Exact Predicates Constraints. We implemented a tool to find exact pred-
icates, and we extended Ontop to optimize T -mappings with them. For each
predicate P in the ontology T of an OBDA instance O, the tool constructs the
query q that returns all the individual/pairs in P . Then it evaluates q in the
two OBDA instances O and ((∅,M, Σ),D). If the answers for q coincide in both
instances, then P is exact.

5 Experiments

In this section we present a set of experiments evaluating the techniques
described above. In [12] we ran additional controlled experiments using an OBDA
benchmark built on top of the Wisconsin benchmark [7], and obtain similar
results to the ones here.

Statoil Scenario. In this section we briefly describe the Statoil use-case, and
the challenges it presents for OBDA. At Statoil, users access several databases
on a daily basis, and one of the most important ones is the Exploration and
Production Data Store (EPDS) database. EPDS is a large legacy SQL (Oracle
10g) database comprising over 1500 tables (some of them with up to 10 million
tuples) and 1600 views. The complexity of the SQL schema of EPDS is such
that it is counter-productive and error-prone to manually write queries over the
relational database. Thus, end-users either use only a set of tools with predefined
SQL queries to access the database, or interact with IT experts so as to formulate
the right query. The latter process can take weeks. This situation triggered the
introduction of OBDA in Statoil in the context of the Optique project [13].
In order to test OBDA at Statoil, the users provided 60 queries (in natural
language) that are relevant to their job, and that cannot be easily performed

OBDA Constraints for Effective Query Answering 283

or formulated at the moment. The Optique partners formulated these queries
in SPARQL, and handcrafted an ontology, and a set of mappings connecting
EPDS to the ontology. The ontology contains 90 classes, 37 object properties,
and 31 data properties; and there are more than 140 mappings. The queries
have between 0 to 2 complex filter expressions (with several arithmetic and
string operations), 0 to 5 nested optionals, modifiers such as ORDER BY and
DISTINCT, and up to 32 joins.

Experiment Results. The queries were executed sequentially on a HP Pro-
Liant server with 24 Intel Xeon CPUs (X5650 @ 2.67 GHz), 283 GB of RAM.
Each query was evaluated three times and we took the average. We ran the exper-
iments with 4 exact concepts and 15 virtual functional dependencies, found with
our tools and validated by database experts. The 60 SPARQL queries have been
executed over Ontop with and without the optimizations for exact predicates
and virtual functional dependencies. We consider that a query times out if the
average execution time is greater than 20 min.

Table 1. Results from the tests over EPDS.

std. opt w/VFD w/exact
predicates

w/both

Number of queries timing-out 17 10 11 4

Number of fully answered queries 43 50 49 56

Avg. SQL query length (in characters) 51521 28112 32364 8954

Average unfolding time 3.929 s 3.917 s 1.142 s 0.026 s

Average total query exec. time with
timeouts

376.540 s 243.935 s 267.863 s 147.248 s

Median total query exec. time with
timeouts

35.241 s 11.135 s 21.602 s 14.936 s

Average successful query exec. time
(without timeouts)

36.540 s 43.935 s 51.217 s 67.248 s

Median successful query exec. time
(without timeouts)

12.551 s 8.277 s 12.437 s 12.955 s

Average number of unions in
generated SQL

6.3 3.4 5.1 2.2

Average number of tables joined per
union in generated SQL

21.0 18.2 20.0 14.2

Average total number of tables in
generated SQL

132.7 62.0 102.2 31.4

The results are summarized in Table 1 and Fig. 1. We can see that the pro-
posed optimizations allow Ontop to critically reduce the query size and improve
the performance of the query execution by orders of magnitude. Specifically, in
Fig. 1 we compare standard optimizations with and without the techniques pre-
sented here. Observe that the average successful query execution time is higher

284 D. Hovland et al.

Fig. 1. Comparison of query execution time with standard optimizations. Log. scale

with new optimizations than without because the number of successfully exe-
cuted queries increases. With standard optimizations, 17 SPARQL queries time
out. With both novel optimizations enabled, only four queries still time out.

A total of 27 SPARQL queries get a more compact SQL translation with new
optimizations enabled. The largest proportional decrease in size of the SQL query
is 94 %, from 171 k chars, to 10 k. The largest absolute decrease in size of the SQL
is 408 k chars. Note that the number of unions in the SQL may decrease also only
with VFD-based optimization. Since the VFD-based optimization removes joins,
more unions may become equivalent and are therefore removed. The maximum
measured decrease in execution time is on a query that times out with standard
optimizations, but uses 3.7 s with new optimizations.

6 Related Work

Dependencies have been intensively studied in the context of traditional rela-
tional databases [2]. Our work is related to the one in [23]; in particular their
notion of path functional dependency is close to the notion of path VFD pre-
sented here. However, they do not consider neither ontologies, nor databases,
and their dependencies are not meant to be used to optimize queries. There are
a number of studies on functional dependencies in RDF [11,24], but as shown in
Example 12, functional dependencies in RDF do not necessarily correspond to
a VFD (when considering the ontology). Besides, these works do not tackle the
issue of SQL query optimization.

The notion of perfect mapping [8] is strongly related to the notion of exact
mapping. However there is a substantial difference: a perfect mapping must
be entailed by the OBDA specification, whereas exact mappings are additional
constraints that enrich the OBDA specification. For instance, perfect mappings
would not be effective in the Statoil use case, where organizational constraints
and storage policies are not entailed by the OBDA specification. The notion of
EBox [17,21] was proposed as an attempt to include constraints in OBDA. How-
ever, EBox axioms are defined through a T -box like syntax. These axioms cannot
express constraints based on templates like virtual functional dependencies.

OBDA Constraints for Effective Query Answering 285

7 Conclusions

In this work we presented two novel optimization techniques for OBDA that com-
plement standard optimizations in the area, and enable efficient SPARQL query
answering over enterprise relational data. We provided theoretical foundations
for these techniques based on two novel OBDA constraints: virtual functional
dependencies, and exact predicates. We implemented these techniques in our
OBDA system Ontop and empirically showed their effectiveness through exten-
sive experiments that display improvements on the query execution time up to
orders of magnitude.

Acknowledgement. This work is partially supported by the EU under IP project
Optique (Scalable End-user Access to Big Data), grant agreement n. FP7-318338.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications, 2nd
edn. Cambridge University Press, Cambridge (2007)

2. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even,
S., Kariv, O. (eds.) ICALP. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)

3. Bienvenu, M., Ortiz, M., Simkus, M., Xiao, G.: Tractable queries for lightweight
description logics. In: Proceedings of IJCAI. IJCAI/AAAI (2013)

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
JAR 39(3), 385–429 (2007)

5. Chakravarthy, U.S., Fishman, D.H., Minker, J.: Semantic query optimization in
expert systems and database systems. In: Proceedings of DEXA, pp. 659–674
(1986)

6. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language.
W3C Recommendation, W3C, September 2012. http://www.w3.org/TR/r2rml/

7. DeWitt, D.J.: The wisconsin benchmark: past, present, and future. In: Gray, J.
(ed.) The Benchmark Handbook. Morgan Kaufmann (1993)

8. Di Pinto, F., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A., Rosati, R., Ruzzi,
M., Savo, D.F.: Optimizing query rewriting in ontology-based data access. In: Pro-
ceedings of EDBT, pp. 561–572. ACM Press (2013)

9. Glimm, B., Ogbuji, C.: SPARQL 1.1 entailment regimes. W3C Recommendation,
W3C, March 2013. http://www.w3.org/TR/sparql11-entailment/

10. Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T.,
Zakharyaschev, M.: The price of query rewriting in ontology-based data access.
AIJ 213, 42–59 (2014)

11. He, B., Zou, L., Zhao, D.: Using conditional functional dependency to discover
abnormal data in RDF graphs. In: Proceedings of SWIM, pp. 43: 1–43: 7. ACM
(2014)

12. Hovland, D., Lanti, D., Rezk, M., Xiao, G.: OBDA constraints for effective query
answering (extended version). CoRR Technical report abs/1605.04263, arXiv.org
e-Print archive (2016). http://arxiv.org/abs/1605.04263

http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/sparql11-entailment/
http://arxiv.org/abs/1605.04263

286 D. Hovland et al.

13. Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Exponential lower
bounds and separation for query rewriting. In: Czumaj, A., Mehlhorn, K., Pitts,
A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 263–274.
Springer, Heidelberg (2012)

14. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with
OWL 2 QL. In: Proceedings of KR, pp. 275–285 (2012)

15. Kontchakov, R., Rezk, M., Rodŕıguez-Muro, M., Xiao, G., Zakharyaschev, M.:
Answering SPARQL queries over databases under OWL 2 QL entailment regime.
In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D.,
Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol.
8796, pp. 552–567. Springer, Heidelberg (2014)

16. Lanti, D., Rezk, M., Xiao, G., Calvanese, D.: The NPD benchmark: reality check
for OBDA systems. In: Proceedings of EDBT (2015)

17. Mora, J., Rosati, R., Corcho, O.: kyrie2: query rewriting under extensional con-
straints in ELHIO. In: Proceedings of ISWC, pp. 568–583 (2014)

18. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics
X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008)

19. Rodŕıguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data
access: Ontop of databases. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Bie-
mann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC
2013, Part I. LNCS, vol. 8218, pp. 558–573. Springer, Heidelberg (2013)

20. Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings.
J. Web Semant. 33, 141–169 (2015)

21. Rosati, R.: Prexto: query rewriting under extensional constraints in DL-Lite. In:
Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012.
LNCS, vol. 7295, pp. 360–374. Springer, Heidelberg (2012)

22. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
Proceedings of KR, pp. 290–300 (2010)

23. Weddell, G.E.: Reasoning about functional dependencies generalized for semantic
data models. ACM Trans. Database Syst. 17(1), 32–64 (1992)

24. Yu, Y., Heflin, J.: Extending functional dependency to detect abnormal data in
RDF graphs. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal,
L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 794–809.
Springer, Heidelberg (2011)

A Framework Enhancing the User Search
Activity Through Data Posting

Nunziato Cassavia2, Elio Masciari2, Chiara Pulice1(B), and Domenico Saccà1

1 DIMES, University of Calabria, Rende, Italy
{cpulice,sacca}@dimes.unical.it

2 ICAR-CNR, Rende, Italy
{cassavia,masciari}@icar.cnr.it

Abstract. Due to the increasing availability of huge amounts of data,
traditional data management techniques result inadequate in many real
life scenarios. Furthermore, heterogeneity and high speed of this data
require suitable data storage and management tools to be designed from
scratch. In this paper, we describe a framework tailored for analyzing
user interactions with intelligent systems while seeking for some domain
specific information (e.g., choosing a good restaurant in a visited area).
The framework enhances user quest for information by performing a data
exchange activity (called data posting) which enriches the information
sources with additional background information and knowledge derived
from experiences and behavioral properties of domain experts and users.

Keywords: Big data · Rule based data transformation · Rule driven
data presentation

1 Introduction

The impressive progress and development of Internet and on-line technologies
has led to an increasing availability of a huge volume of data generated by het-
erogeneous sources at high production rates [7]. These massive data, referred as
Big Data [14], exhibit a great variety and may be exploited to gather information
about people, things, services and their interactions. In this respect, a great deal
of attention has been devoted to the design of novel algorithms for analyzing
information available from Twitter, Google, Facebook, and Wikipedia, to cite
a few of the main big data producers. The availability of such unprecedented
large amount of heterogeneous information sources is quite challenging and lead
to the need for complex search solutions.

Despite search engines have been already proposed in the early age of Inter-
net, the returned results are often quite far from the expected query answers
from a user viewpoint. Indeed, when seeking for useful information, users may
be driven by some predefined faceted features (browsing) or may simply formu-
late a query using “free” keywords (searching). However, most of the present
systems mainly follow one of the two mentioned paradigms and only few sys-
tems offer a mix of the two of them. Thus, there is an increasing deal of interest,
c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 287–304, 2016.
DOI: 10.1007/978-3-319-42019-6 19

288 N. Cassavia et al.

shared by both researchers [1] and industries [12], for the construction of Intel-
ligent Information Systems (IIS) which goal is to assist end users in the search
of relevant information and in the interaction with services in the net.

In this scenario, the type of query being performed plays a crucial role. Obvi-
ously enough, for well defined queries, a search engine like Google, is able to pro-
vide correct results in a few milliseconds1. However, in some cases users do not
know exactly how to find the desired information about an object or a service
(e.g. a book or a restaurant). In this case, the model leveraged by Amazon is
better suited. More in detail, Amazon-like search tools, feature product catego-
rization and recommender systems, thus making the user search experience quite
interactive and iterative. Indeed, directory contents are hierarchically organized
in order to guide users through a subset of documents potentially related to infor-
mation being queried, thus limiting the possibility to input free text queries. In
this respect, users re-think and refine their needs by learning the adjustments to
the search being performed by exploiting the available choices. To better under-
stand how directory navigation works, we resurge to accommodation booking
portals analogy. Indeed, those portals offer a hierarchical navigation systems,
i.e. from the home page, user can choose the desired country, then s/he can
specify the city and finally the type of structure s/he is interested in. This nav-
igation model suffers a great limitation due to ontology specification. Indeed,
ontologies specified by the service designer may not meet user needs.

A solution to overcome the above mentioned limitations is the implementa-
tion of faceted navigation that helps users in the information “surfing” process
[19,20]. More in detail, a new frontier for IIS is to combine searching and brows-
ing by using features that are not a-priori predefined but selected for and adapted
to the search context. Indeed, search results can be improved by building a
custom map that, based on the initial query results, tries to learn additional
knowledge about data being queried by iterative refinement of search dimen-
sions and parameters. Upon this, in this paper we define an extension to the
classical faceted navigation and consider the following challenge: detecting on-
the-fly features that are relevant in the search context and tailored to the user
behavior. The latter implies several research issues have to be addressed. First of
all, data gathered by social network and search engines available on the web are
inherently non structured; therefore, a data exchange task has to be performed
for moving source data into a target “structured” database enabling an effective
analysis of user behavior. To this end, in this paper we devise a data exchange
setting for enhancing the information content of source data. More specifically,
we exploit a version of data exchange called data posting that was first sketched
in [16] and presented as an open research stream in a conference panel [6].

The following example will better clarify the problem under investigation
and will illustrate each step of our approach.

Example 1. When interacting with the social network, users usually issue several
queries, post comments and upload (tagged) files. For example a user may pose
1 As a matter of fact, due to its quick result presentation, many users go through

Google even if they exactly know the URLs of the resources they are interested in.

A Framework Enhancing the User Search Activity Through Data Posting 289

the following query: Find a restaurant in Milan. Traditional search engines will
provide user results ranked on the basis of their default criteria. However, this
ranking could be ineffective as users may not be satisfied by query answers
as they are mainly based on proximity search and some fixed categorization
(e.g. stars, price). In order to overcome this limitation, we perform a data pre-
processing by clustering user comments stored in our system. As a result, we
obtain a set of comment groups that may contain some new possible search
categories (referred in the following as search dimensions) previously hidden in
the data. It could therefore happen that the clustering algorithm suggests to add
a new dimension to the source information that classifies the quality of dishes
served at each restaurant, while matching the user query for a restaurant located
in Milan area. The new dimension could be Food Quality. As users interact with
the system and new enquiries and comments are made, some other additional
dimensions could arise. For instance, the Food Quality could be refined by an
additional dimension fresh fish with suitable values: bad/good/excellent. Data
posting is used both to enrich the source raw data with the discovered dimensions
and to personalize them for the current user so that the enriched information
may be added to the search toolbar as soon as search keywords (e.g., “starters” or
“main courses”) are typed for which the dimensions are pertinent, thus enabling
a faceted browsing. ��

In our architecture, data posting considers the information extracted by the
clustering algorithm and tries to derive new dimensions that could be added to the
initial domain scheme while preserving the information richness. Roughly speak-
ing, the data posting setting (S,D, T,Σst,Σt) consists of a source schema S (i.e.
the search dimensions provided by specialized search engines), a domain schema
D (i.e. the search domain), a target flat fact table T (i.e. the search keywords), a
set Σst of source-to-target count constraints (i.e. frequency of keywords) and a set
Σt of target constraints (i.e. conditions on keywords). The data posting problem
associated with this setting is: given finite source instances IS for S and ID for D,
find a finite instance IT for T such that 〈IS , ID, IT 〉 satisfies both Σst and Σt. Main
difference w.r.t. classical data exchange is the presence of the domain schema that
stores “new” values (dimensions) to be added while exchanging data. The actual
values to be assigned to dimensions are defined by taking into account the target
constraints (e.g. the relative frequency of basic dimensions).

In sum, in this paper we focus on (i) the analysis of user’s searching and com-
ment posting activities in order to identify potentially interesting suggestions
about user searches, (ii) the proposal of a novel data exchange setting that exploits
them for enhancing the information contents of the source databases and (iii) the
definition of a search strategy based on tailored faceted features. Our approach is
motivated by the observation that both performed searches and posted comments
define a quite accurate profiling of user wishes and feedbacks that can be exploited
to construct background information and knowledge in an application domain for
supporting advanced further searches. It is worth noticing, that commonly used
search engines do not exploit such a refined information. Thus, the final result
of our work is a user behavior oriented search framework for implementing new
generation IIS.

290 N. Cassavia et al.

Plan of the Paper. The paper is organized as follows. Section 2 introduces some
background on the faceted navigation and our solution to the complex search prob-
lem. A detailed description of the data posting technique that provides the for-
mal basis for enhancing the content of information sources is discussed in Sect. 3.
Finally, Sect. 4 draws the conclusion.

2 Real-Time Faceted Navigation

Several techniques for browsing and navigating data in the net have been pro-
posed over the years. In this section, we focus on faceted browsing [20] which is an
exploration technique for structured datasets that allows users to find information
without a-priori knowledge of their schemas.

In faceted browsing the information space is partitioned using relevant fea-
tures (i.e., facets) of the data. Consider, as an example, the faceted view of
a search engine depicted in Fig. 1. Starting from the home page, the user has
the chance to search information about the location and several attributes per-
taining to the search (i.e. the type of structure, the rating and so on). For
example, s/he can browse the cities (Cosenza, Scilla, . . .), the structure types
(Hotel, B&B, apartment, . . .) and their star rating (2, 3, 4, . . .). As a feature is
selected, the user can choose other attributes among those available for the current
search status. Moreover, during the browsing process, it is also possible to discard
features no longer relevant to the search (i.e. user can perform dimensional filter-
ing). This iterative process guides the user through the accommodation search by
selecting a custom path instead of a hierarchy provided by the service designer.

Fig. 1. Faceted navigation example

It is worth noticing that efficient faceted navigation (i.e. easy to use and pro-
viding access to richer information) relies on the availability of a meaningful fea-
ture set that characterize the domain being searched. However, as these features

A Framework Enhancing the User Search Activity Through Data Posting 291

must be known and created in advance, important trends in the data may not
be detected. In the following, we describe our ad-hoc intelligent algorithms that
exploit clustering to improve on the above mentioned process.

Improving Faceted Navigation by Clustering. The faceted search pattern
described above can be enhanced by exploiting a data mining approach for infor-
mation enrichment. Among the plethora of data mining algorithms proposed in
literature, we focused on Clustering. The rationale for this choice is described in
the following. When users interact with web based systems, either for informa-
tion browsing and searching or for posting comments and suggestions, they pro-
vide useful information about their behaviors. This information can be exploited
for an accurate user profiling that is the basis for designing better user-oriented
services. Unfortunately, no information about a possible classification of user fea-
tures is easily available as no labeled examples can be collected. To overcome this
limitation, we exploit clustering due to its unsupervised features. The clustering
problem we address can be formalized as follows: Given a set O = {o1, . . . , on}
containing n objects2, cluster analysis aims at producing a partitioning3 C =
{C1, · · · , Ck} of the objects in O, such that objects in the same set Ci are maxi-
mally similar and objects in different sets are minimally similar, according to some
similarity function. Consequently, each object o ∈ O is contained in exactly one
set Ci. These sets Ci ∈ C are called clusters.

More in detail, given an input dataset we perform the following steps:

– Given the initial set O of objects, a partition C of O is provided. The fea-
ture set to be used for representing objects is derived by the data source (e.g.
timestamps, location, etc.);

– We run our technique for discovering cluster labels which is based on the notion
of discriminative cluster patterns. Discriminative cluster patterns highlight all
the characteristics of a given cluster, since they are expected to lie in a specific
cluster and at the same time not to lie in any other cluster;

– The initial partition is incrementally updated according to a (possibly infi-
nite) stream {on+1, . . . , on+k, . . .} of new incoming objects. In this respect,
each object oi (may) induce a new partition Pi that could contain a different
number of discriminative features.

A detailed description of the clustering strategy is beyond the scope of this
work, however, we briefly recall some basic concepts that we exploited for our
purposes.

When dealing with data containing textual information, a major issue is the
selection of the set of relevant terms, or index terms, i.e., the terms capable of
best representing the topics associated with a given textual content. In order to

2 For the sake of generalization we do not distinguish between query text and post as
both of them can be considered as plain text objects.

3 In this paper we refer to the hard clustering problem, where every data point belongs
to exactly one cluster.

292 N. Cassavia et al.

achieve this, some standard text processing operations are used [3,13], such as
lexical analysis, removal of stopwords, stemming, lemmatisation.

Terms have different discriminating power, i.e., their relevance in the context
where they are used. To weight term relevance, a common approach is to assign
high significance to terms occurring frequently within a document, but rarely with
respect to the remaining documents of the collection. The weight of a term is hence
computed as a combination of its frequency within a document (term frequency -
TF) and its rarity across the whole collection (inverse document frequency - IDF).
We denote by tf(wj ,mi) the number of occurrences of term wj within message mi,
and by df(wj ,M) the number of messages (within a given message collection M)
containing wj . A term wj is denoted as an index term for M if l ≤ df(wj ,M) ≤
u, where l and u represent default threshold values. The ratio here is that terms
appearing in a few documents, as well as terms appearing in most documents, are
less significant, and hence they should be discarded.

A widely used representation model is the vector-space model [3]. Each mes-
sage mi is represented as an m-dimensional vector wi, where m is the number of
index terms and each component wi[j] is the (normalized) TF.IDF weight asso-
ciated with a term wj :

wi[j] =
tf(wj ,mi) · log(N/df(wj ,M))√∑m
p=1[tf(wp,mi) · log(N/df(wp,M))]2

After the pre-elaboration steps have been performed, many algorithms can be
exploited for text clustering. An interesting solution for dealing with the big data
scenario is represented by Lingo algorithm [15].

3 Enriching the Data: The Data Posting Challenge

As the cluster partition is obtained, we check if the discriminative terms that char-
acterize the clusters may cause new dimensions to arise. To this end, we propose a
novel approach, referred as Data Posting, that, starting from raw data and exist-
ing ontologies, can add new dimensions induced by clustering. More in detail, we
store query result as a materialized data cube to be exploited for further search.
These data will be used as training set for further clustering refinement that will
group query results in a unsupervised way. The obtained clustering will be used
for extracting features relevant to the query, that have not been neither speci-
fied by the user nor considered for building the query result. As an example con-
sider a user searching for a restaurant in Milan. S/he will type the query “restau-
rant in Milan”(also many search engines will suggest this statement). Traditional
search results will include restaurants located in the city along with their rank. By
exploiting our approach, instead, we are able to suggest users a further interesting
parameter (i.e., analysis dimension) as the rank of appetizers, main courses and
sweets, allowing a more focused search.

A Framework Enhancing the User Search Activity Through Data Posting 293

3.1 Data Exchange

Data exchange [2,9] is the problem of migrating a data instance from a source
schema to a target schema such that the materialized data on the target schema
satisfies a number of given integrity constraints (mainly inclusion and functional
dependencies). The integrity constraints are specified by: TGDs (Tuple Generat-
ing Dependencies), which are universal quantified formulas with additional exis-
tential quantifiers, and EGDs (Equality Generating Dependencies), which are uni-
versal quantified formulas enforcing the equality of two variables.

The classical data exchange setting is: (S, T,Σst, Σt), where S is the source
relational database schema, T is the target schema, Σt are dependencies on the
target scheme T and Σst are source-to-target dependencies. The dependencies in
Σst map data from the source to the target schema and are TGDs, which have the
following format: ∀X(φS(X) → ∃Y ψT (X,Y)), where φS(X) and ψT (X,Y) are
conjunctions of literals on S and T , respectively, and X,Y are lists of variables.
Dependencies in Σt specify constraints on the target schema and can be either
TGDs or EGDs – the latter ones have the form ∀X(ψT (X) → x1 = x2), where
x1 and x2 are variables in X.

Example 2. Consider a source schema S with three relations:

1. R(N, P) (Restaurant) with attributes N (Restaurant Name) and P (Average
Price),

2. P(I, U, N, E) (User Review Post) with attributes I (Post Identifier), U (User), N
(Restaurant Name) and E (Evaluation) and

3. DPEC(P, E, C) (Restaurant Category) with attributes P (Average Price), E (Eval-
uation) and C (Category Value) – the “special” notation for the this relation
name will be clarified later.

The target schema T has two relations:

1. CR(N, C) (Classified Restaurant) with two attributes N (Restaurant Name) and
C (Category Value), and

2. CP(I, U, N, C) (Classified Post) with attributes I (Post identifier), U (User), N
(Restaurant Name) and C (Classified Review Evaluation).

We want that each restaurant be classified by choosing one of the evaluation
reviews given for it:

Σst = { R(n, p) → ∃ C CR(n, C);
P(i, u, n, e) ∧ R(n, p) ∧ DPEC(p, e, c) → CP(i, u, n, c) }

Σt ={ CR(n, c) → ∃ I, U CP(I, U, n, c);
CR(n, c1) ∧ CR(n, c2) → c1 = c2 }

where all low-case letter variables are universally quantified. The constraints in
Σst move restaurant names and user reviews into the target database; in addition,
every review evaluation is replaced by the category value associated to the pair
(average price, evaluation) by the relation DPEC and every restaurant is classified

294 N. Cassavia et al.

with a value that is non specified but only declared by the existentially qualified C.
The first constraint in Σt is a TGD and enforces that every restaurant be classified
using any of the classified review evaluations issued for it. The second constraint
is an EGD that admits at most one classification for a restaurant. ��

The target schema typically contains some new attributes that are defined
using existentially quantified variables and the main issue of Data Exchange is to
reduce arbitrariness in selecting such variable values. Therefore a data exchange
solution is required to be “universal” in the sense that homomorphisms exists into
every possible solution, i.e., a universal solution holds a sort of “minimal arbitrari-
ness” property. Indeed, a main goal of data exchange is to single out situations
for which a universal solution exists and can be computed in polynomial time. A
universal solution has the benefit that the query semantics is independent from
any specific solution that may be selected as target database, so that it can sup-
port certain answers, that is, the answers that occur in the intersection of a query
over all “possible”target databases. In the above example, a universal solution
does not bound a restaurant classification to one of its review but it generates a
new review tuple for each restaurant in order to respect the principle of “minimal
arbitrariness”.

In our framework, the issue of “minimal arbitrariness” is not crucial for our
goal, which consists in finding a “specific” solution that enriches the knowledge
content of the target database instead. In the example, a specific solution can
be obtained by choosing one of the issued reviews to classify a restaurant. But
an arbitrary choice is not really a great achievement: the data exchange setting
must provide mechanisms for making “intelligent”choices. A major step forward
in this direction is to extend the data exchange setting with a new type of data
dependency, called count constraint (an extension of cardinality constraint), first
proposed in [17], which prescribes the result of a given count operation on a rela-
tion to be within a certain range. Count constraints use a set term that is either a
constant set term or a formula term, defined as {X : ∃Yψ}, where X and Y are
disjoint list of variables, and ψ is conjunction of literals in which variables in X
occur free (similar notation for set terms and aggregate predicates has been used
in the dlv system [8]). There is an interpreted function symbol count (denoted by
#) that can be applied to a set term T to return the number of tuples in T (i.e.,
the cardinality of the table represented by T).

The following example is devoted to clarify how count constraints can be used
to enlarge the perspective of Data Exchange.

Example 3. Consider the data exchange problem that has been modeled in Exam-
ple 2. We now enrich the criteria for restaurant classification by requiring that a
category can be assigned to a restaurant only if there are at least 10 reviews sup-
porting it. If more than one category is applicable, the one which occurs more
frequently in the reviews posted by distinct users is chosen. In absence
of an applicable category, a restaurant gets the classification value “NA”
(not applicable).

The new mapping is defined by keeping the rules in Σst and modifying the ones
in Σt as shown next. As usual, lower-case and upper-case letters denote variables

A Framework Enhancing the User Search Activity Through Data Posting 295

that are respectively universally and existentially quantified – in addition, dotted
letters denote free variables used for defining sets.
(1): c �= “NA” ∧ CR(n, c) → #({ Ï : CP(Ï, U, n, c)}) ≥ 10.

(2): CR(n, “NA”) ∧ CP(, , n, c) → #({ Ï : CP(Ï, U, n, c)}) < 10.

(3): c �= “NA” ∧ CR(n, c) ∧ CP(, , n, ĉ) → #({ Ü : CP(I, Ü, n, c)}) ≥ #({ Ü : CP(I, Ü, n, ĉ)}).

(4): CR(n,) → #({ C̈ : CR(n, C̈)}) = 1.

All the four rules in Σt are count constraints. Constraint (1) states that any
restaurant classification value c different from “NA” must be substantiated by at
least 10 distinct users posting a review that classifies the restaurant with the value
c – such reviews are collected by means of the set term with free variable Ï. Con-
straint (2) states that if a restaurant is classified with “NA”, then any classification
posted for must violate the previous constraint. Among the applicable categories
for a restaurant, the constraint (3) choices the one with highest frequency in the
restaurant reviews posted by distinct users – note that in this case, as the set term
is defined by the variable Ü rather than by Ï, reviews posted by a same user are
counted only once. Constraint (4) implements the functional dependency N → C
in the relation CR so that, in case of a tie in a restaurant classification, any of the
values satisfying the constraint (3) is to be chosen.

As mentioned above, # is an interpreted function symbol for computing the
cardinality of a set. We point out that existentially quantified variables are local
in a set term, e.g., {Ï : CP(Ï, U, n, c)} stands for {Ï : ∃ U CP(Ï, U, n, c)}; in addi-
tion, anonymous variables, denoted by underscore, are used to define a relation
projection, e.g., CP(, , n, c) stands for the projection of CP on N and C. ��

3.2 Data Posting

The approach of using count constraints for Data Exchange has an evident draw-
back: the lack of a universal solution in most cases. Indeed, a universal solution is
achievable only when the upper bound of a count constraint is 1, as it happens for
functional dependencies. Nevertheless, as we pointed out before, our goal is find-
ing a solution that enriches data while exchanging them, rather than preserving
the correspondence with the source database in order to support certain answers.
More specifically, our approach is aimed at enabling the selection of suitable values
for existentially quantified variables, whereas the classical data exchange setting
leave them undistinguished, except for the cases functional dependencies have to
be satisfied.

Count constraints are powerful formal tools to define “intelligent” value selec-
tion. Their introduction allows us to enrich source data with new features (i.e.,
additional attributes4 reflecting properties discovered during the process of data
exchange), in order to construct big data tables that can be effectively queried by

4 Also in OLAP analysis, attributes used to highlight properties of raw data (mainly, by
categorization and grouping) are called dimensions – we recall that an OLAP system
is characterized by multidimensional data cubes that enable manipulation and analy-
sis of data stored in a source database from multiple perspectives (see for instance [5]).

296 N. Cassavia et al.

end users. Thus, the new setting can be used for a new declination of data exchange
for posting existing data with additional patterns so that the end user is enabled to
extract additional information and knowledge from existing data while receiving
suggestions and guidelines for making more comprehensive queries.

More in detail, through this approach, named data posting, the source data-
base is enriched with additional tables, called domain relations (denoted by the
symbol “D” with subscript adornments), that store “new” values (dimensions) to
be added into the target database, and count constraints are used to select such
values as illustrated in Example 3. The issue of inventing new values to be included
into the target relation is also one of the goals of classical data exchange set-
ting. The main difference with data posting is the focus: to preserve the relation-
ships with the source database, classical data exchange only considers dependen-
cies delivering universal solutions that support certain queries, whose answers are
independent from the values assigned to existentially quantified variables. Instead,
data posting looks for more expressive constraints to enrich the contents of the
exchanged data. This approach can be thought of as a theoretical contribution to
support the so-called “faceted”navigation, described in Sect. 2.

We next introduce the formal setting for data posting. We start from the def-
inition of the involved database schemata. Let

• S = 〈S1, . . . , Sn〉 be a source database schema with relation schemes
S1, . . . , Sn,

• D = 〈D1, . . . ,Dm〉 be a domain database schema with domain relation schemes
D1, . . . ,Dm and

• T = 〈T1, . . . , Tq〉 be a target database schema with relation schemes T1, . . . , Tq.

We assume that all databases on both S and D are finite. As it will be shown later
in this section, any target database on T is finite as well, given the structure of
our exchange constraints.

A source-to-target TGD constraint is a dependency over 〈S,D,T〉 of the form

∀x (φS(x ∪ ỹ) → φT (z)),

where x, ỹ and z are lists of universally quantified variables such that x ∩ ỹ = ∅
and z ⊆ x ∪ ỹ, the formula φS and ψT are conjunctions of atoms with predicate
symbols in S ∪ D and in T, respectively.

The variables in ỹ are called non deterministic and occur in non-deterministic
domain predicates, defined next. Given a domain relation scheme Di, a non-
deterministic domain predicate is an atom occurring in φS with format [Di(u, ṽ)],
where the terms in u are either constants or variables in x (i.e., universally quan-
tified in the standard way), and the terms in ṽ are variables in ỹ, which are uni-
versally quantified within the scope of the variables in x. The semantics of the
predicate is: for every value assignment for the variables in x, any (non-necessarily
proper) subset D′ of σu(Di) is non-deterministically selected, where Di is the the
domain relation with scheme Di, σu(Di) is the selection of the tuples in Di that
unify with the values of u, and the variables in ṽ are universally quantified on the
projection of D′ over the attributes corresponding to such variables.

A Framework Enhancing the User Search Activity Through Data Posting 297

We now define the semantics of any source-to-target TGD constraint t =
∀x (φS(x ∪ ỹ) → φT (z)) – say that the number of variables in x is n and the
number of variables in ỹ is m. Let I = (IS , ID) be given, where IS and ID are
finite source instances for S and for D, respectively. The active domain DI is the
set of all values occurring in IS and ID. Let an admissible instance IT for T be also
given, that is an instance whose values all occur in DI . The semantic of t states
whether t is satisfied or not by 〈IS , ID, IT 〉. Before defining such a semantic, we
need the additional notion of non-deterministic domain mapping, which is a func-
tion (DI)n → (2DI)m mapping every n-tuple of values assigned to the universally
quantified variables in x into an m-tuple of ranges for the non-deterministic vari-
ables in ỹ. The notion of satisfiability is introduced after preliminary fixing one of
the possible non-deterministic domain mappings, say ft.

We say that 〈IS , ID, IT 〉 satisfies t w.r.t. ft if for each v ∈ (DI)n and for each
ṽ ∈ ft(v): either φS(x∪ỹ)[x/v, ỹ/ṽ] is made false by 〈IS , ID〉 or φT (z)[z/(v ∪ ṽ)z]
is made true by IT , where the substitution [x/v, ỹ/ṽ] assigns the values v and ṽ
to the corresponding variables in x and ỹ, respectively, in the formula φS and it
induces a substitution, denoted by [z/(v ∪ ṽ)z] for the variables of z in the formula
φT as well, since z ⊆ x ∪ ỹ by definition.

Given a set Σ of source-to-target TGD constraints and finite source instances
IS for S, ID for D and IT forT, 〈IS , ID, IT 〉 satisfies Σ if for each t ∈ Σ, there exists
a non-deterministic domain mapping ft such that 〈IS , ID, IT 〉 satisfies t w.r.t. ft.

As an example, consider the first TGD defined in Example 2: R(n, p) →
∃ C CR(n, C). In the data posting setting, the existentially quantified variable C
must be replaced by a non-deterministic variable c̃ ranging on the attribute C (Cat-
egory Value) of domain relation DPEC(P, E, C) (Restaurant Category), whose first
two attributes are P (Average Price) and E (Evaluation). The TGD is rewritten as:

R(n, p) ∧ [DPEC(p, , ~c)] → CR(n, ~c).

The meaning of the rule is the following. Let us first fix the values for the variables
n and p. Then we choose a non-deterministic domain mapping for defining a range
for the variable ~c. To this end, we may proceed as follows. Let H be domain relation
corresponding to DPEC. We compute: H ′ = σ$1=p(H) (selection of all tuples whose
first field is equal to p) and H ′′ = π$3(H ′) (projection of H ′ on the third field).
Then, we non-deterministically select a subset H ′′′ of H ′′ as the range for the non-
deterministic universally quantified variable ~c.

The example clarifies that our TGD constraints differ from classical ones as
they replace existentially quantified variables with variables ranging on suitable
finite domains.

A count constraint is a dependency over T of the form

∀x (φT (x) → #({y : ∃ zα(x,y, z)}) < op >β(x))

where φT is a conjunction of atoms with predicate symbol in T, < op > is any
of the comparison operators (=, >,≥, < and ≤), H = {y : ∃ zα(x,y, z)} is a
set term, # is an interpreted function symbol that computes the cardinality of
the (possibly empty) set corresponding to H, #(H) is count term, and β(x) is an

298 N. Cassavia et al.

integer or a variable in x or another count term with universally quantified vari-
ables in x. The two lists y and z consist of distinct variables that are also different
from the universally quantified variables in x, α(x,y, z) is a conjunction of atoms
Ti(x,y, z) with Ti ∈ T.

To define the semantic of a count constraint, we assume that an instance IT
for T is given. Then, we consider the active domain DI as the set of all values
occurring in IT . Given a substitution x/v assigning values in DI to universally
quantified variables, K(v) = {y : ∃ zα(x,y, z)} defines the set of values in DI

assigned to the free variables in y for which ∃ zα(x,y, z) is satisfied by IT and
#(K) is the cardinality of this set. We say that IT satisfies

∀x (φT (x) → #({y : ∃ zα(x,y, z)}) < op >β(x)

if for each substitution x/v that makes true φ(x)[x/v], k1< op >k2 is true as well,
where k1 is the cardinality of the set {y : ∃ zα(x,y, z)}[x/v] and k2 is the value
of β(x)[x/v].

As an example, consider the first count constraint defined in Example 3:

∀ n, c (c �= “NA” ∧ CR(n, c) → #({ Ï : ∃ U CP(Ï, U, n, c)}) ≥ 10).

The constraint states that if the pair (n, c) occurs in CR (i.e., the restaurant n has
been classified with the value c), then there exist at least 10 posts in CP assigning
the value c to the restaurant.

Observe that target count constraints extends EGD (Equality Generating
Dependencies) of the classical data exchange setting. Any EGD ∀x(ψ(x) → x1 =
x2), where x1 and x2 are variables in x, can be formulated by the following count
constraint:

∀x (φ(x) → #({y : y = x1 ∨ y = x2}) = 1)

where y is a new variable not included in x. The extension of our formalism to
include the disjunction of “safe” comparison predicates such as y = x1 ∨ y = x2

is straightforward. Indeed, in practice, the usage of a disjunction can be avoided
by exploiting the specific structure of the formula φ. For instance, the rule:

CR(n,) → #({ C̈ : CR(n, C̈)}) = 1.

introduced in Example 3, implements the functional dependency that any restau-
rant gets exactly one classification value.

We are now ready to formulate the data posting problem:

Definition 1. The data posting setting (S,D, T,Σst,Σt) consists of a source
database schemaS, a domain database schemeD, a target flat fact table T , a setΣst

of source-to-target count constraints and a set Σt of target count constraints. The
data posting problem associated with this setting is: given finite source instances
IS for S and ID for D, find a finite instance IT for T such that 〈IS , ID, IT 〉 satisfies
both Σst and Σt.

A Framework Enhancing the User Search Activity Through Data Posting 299

The main differences of the data posting setting with respect to the classical
data exchange problem are four: (1) coupling the source database schema with a
domain database scheme with finite instances, playing the role of a sort of ontol-
ogy to enrich the exchange of data, (2) replacing existentially quantified variables
with variables ranging on suitable finite domains and enabling non-deterministic
choices of the values to be assigned to them, (3) restricting the usage of TGDs
(tuple generating dependencies) only in Σst so that infinite relations cannot be
created and (4) using only count constraints in Σt with the effect of losing inde-
pendence from any specific possible solution to the benefit of enabling “intelli-
gent”choices in the selection of a solution.

A meaningful example of data posting problem is illustrated next.

Example 4. We significantly extend the setting of Examples 2 and 3 as follows.
Consider a source schema S with three relations:

1. RS(N, P, L) (Restaurant) with attributes N (Restaurant Name), P (Average
Price) and L (Location) – the relation contains the additional attribute L w.r.t.
the one defined in Example 2,

2. P(I, U, N, E) (User Review Post) with attributes I (Post Identifier), U (User), N
(Restaurant Name) and E (Evaluation) – the relation is not changed w.r.t. the
one defined in Example 2,

3. UB(U, B) (User Behavior) with attributes U (User Identifier) and B (User Behav-
ior) – the relation stores a synthetic descriptor of the typical behavior of a user.

The domain relations in D are:

1. DPEC(P, E, C) (Restaurant Category) with attributes P (Price Range), E (Evalua-
tion) and C (Category Value) – the same as the one defined in Example 2 except
that the average price is now replaced by a price range: the relation stores the
evaluation category for any pair (price range, evaluation),

2. DPR(P1, P2, PR) (Price Range) with attributes P1 (Range Lower Bound), P2
(Range Upper Bound) and PR (Price Range) – the relation fixes the interval
for a price range,

3. DBR(UB, LB) (Behavior Relationship) with attributes UB (User Behavior) and LB
(Leader Behavior) – the relation stores pairs of behaviors (b1, b2) stating that
a user with behavior b1 is typically influenced by a user with behavior b2,

4. DLR(L, R) (Location Region) with attributes L (Location) and R (Region) – for
each possible location, the relation stores the region it belongs to.

The target schema T has five relations:

1. RT(N, P, PR, L, R) (Restaurant) with attributes N (Restaurant Name), P (Average
Price), PR (Price Range), L (Location) and R (Region) – the relation adds two
dimensions (Price Range and Region) to the corresponding source relation,

2. CR(N, C) (Classified Restaurant) with two attributes N (Restaurant Name) and
C (Category Value) – the same as the one defined in Example 2,

3. CP(I, U, N, C) (Classified Post) with attributes I (Post identifier), U (User), N
(Restaurant Name) and C (Classified Review Evaluation) – the same as the
one defined in Example 2,

300 N. Cassavia et al.

4. UL(U, L) (Follow Relationship) with attributes U (User) and L (Leader) – the
relation stores pairs of users (u1, u2) stating that u1 is influenced by user u2,

5. CRC(N, U, C) (Customized Restaurant Classification) with attributes N (Restau-
rant Name), U (User) and C (Classified Review Evaluation) – the relation stores
restaurant classifications that are customized for a user on the basis of the
reviews issued by her/his leaders.

The constraints in Σst are:

(st1): RS(n, p,) ∧ range(p, pr) ∧ [DPEC(pr, , ~c)] → CR(n, ~c)
(st2): RS(n, p,) ∧ UB(u,) ∧ range(p, pr) ∧ [DPEC(pr, , ~c)] → CRC(n, u, ~c)
(st3): RS(n, p, l) ∧ DLR(l, r) ∧ range(p, pr) → RT(n, p, pr, l, r)
(st4): P(i, u, n, e) ∧ RS(n, p,) ∧ range(p, pr) ∧ DPEC(pr, e, c) → CP(i, u, n, c)
(st5): UB(u1, b1) ∧ UB(u2, b2) ∧ DBR(b1, b2) → UL(u1, u2)

To simplify the notation, the predicate range(p, pr) is used to represent the con-
junction: DPR(p1, p2, pr) ∧ (p1 ≤ p) ∧ (p < p2). Recall that an “underscore”
(anonymous) term for an attribute a in a predicate p represents the projection
of the relation corresponding to p that excludes the column corresponding to a.
As pointed out in Example 3, lower-case and upper-case letters denote variables
that are respectively universally and existentially quantified while dotted letters
denote free variables used for defining sets. The scope of existentially quantified
variable is inside a set definition.

Observe that non-deterministic domain predicates only occur in the first two
rules and are used to choose category values for restaurant classification and for
customized restaurant classification, respectively – in both cases, the post eval-
uations are converted into classification values on the basis of the average price
charged by a restaurant. The two rules may assign more than a classification value
to a restaurant but subsequent constraints will enforce that the classification of
a restaurant in CR be unique, whereas the specific classification for an user may
hold multiple values.

Rule (st3) enriches the source relation for a restaurant by adding two catego-
rization attributes: price range and region – the new attributes are “dimensions”
and the target restaurant relation represents a star-schema data cube in the OLAP
terminology [5].

Rule (st4) copies the user review posts into the target database after having
converted the post evaluations into classification values on the basis of the average
price. Finally, the rule (st5) constructs the target follow relationship using user
behaviors and the pairs (b1, b2) in DBR, representing the pattern that a user with
behavior b2 is a potential influencer for a user with behavior b1.

The constraints in Σt are:

(t1): CR(n, c) → #({ Ï : CP(Ï, U, n, c)}) ≥ 10.

(t2): CP(, , n, c)) ∧ ¬CR(n,) → #({ Ï : CP(Ï, U, n, c)}) < 10.

(t3): CR(n, c) ∧ CP(, , n, ĉ) → #({ Ü : CP(I, Ü, n, c)}) ≥ #({ Ü : CP(I, Ü, n, ĉ)}).

(t4): CR(n,) → #({ C̈ : CR(n, C̈)}) ≤ 1.

(t5): CRC(n, u, c) → #({ L̈ : CP(I, L̈, n, c) ∧ UL(u, L̈)}) ≥ 10.

(t6): UL(u, l) ∧ CP(, l, n, c) ∧ ¬CRC(n, u, c) → #({ L̈ : CP(I, L̈, n, c) ∧ UL(u, L̈)}) < 10.

A Framework Enhancing the User Search Activity Through Data Posting 301

First of all, we point out that the classification value “NA” introduced in Example
3 to represent a missing classification is not anymore necessary. In fact, a missing
classification is simply notified by the absence of a classification tuple for a restau-
rant – this happens when the empty range is chosen for the non-deterministic
domain predicate [DPEC(pr, , ~c)] in the rules (st1) and/or (st2).

Constraint (t1) imposes that any restaurant classification value c must be sub-
stantiated by at least 10 distinct users posting a review that classifies the restau-
rant with the value c. Constraint (t2) states that if a restaurant is not classified,
then any classification posted for it violates the previous constraint. Among the
applicable categories for a restaurant, the constraint (t3) choices the one with
highest frequency in the restaurant reviews posted by distinct users.

Two remarks on the negated predicate ¬CR(n,) used in (t2) to check whether
a restaurant is not classified are in order. First, as the anonymous term stands
for the projection of CR on the first column, the negation is “safe” in the sense
all variables are bound by positive predicates. Second, extending our setting to
handle safe and acyclic negation is a straightforward.

In the same way as in Example 3, Constraint (t4) implements the functional
dependency N → C in the relation CR so that, in case of a tie in a restaurant clas-
sification, any of the values satisfying the constraint (t3) is to be chosen. Observe
that, here the comparison operator in the right hand side is “≤” as a restaurant is
not anymore required to have a classification, whereas it is “=” in the correspond-
ing constraint in Example 3, where a missing classification is expressed by means
of the value “NA”.

Constraint (t5) enforces that any customized restaurant classification value c
for a user u must be substantiated by at least 10 distinct influencers for u posting
a review that classifies the restaurant with the value c. The reverse condition that
is imposed by Constraint (t5). Observe that there is no constraint that forbids to
have several customized classification values of a restaurant for the same user. ��

Complexity Analysis. Next we measure the complexity of data posting
according to the data complexity approach of [4,18] for which the program (i.e.,
S,D, T,Σst, and Σt) is constant while the database (the instances IS for S and ID
for D) is variable. We stress that our complexity results derives from the assump-
tion that the domains of the attributes in T are finite and are part of the input.

Theorem 1. Given (S,D,T,Σst,Σt) and finite source instances IS for S and ID
for D, the problem of deciding whether there exists an instance IT of T such that
〈IS , ID, IT 〉 satisfies Σst ∪ Σt is NP-complete under the data complexity.

Proof. Membership to NP is obvious: it is sufficient to guess an instance IT of T
and to check whether or not 〈IS , ID, IT 〉 satisfies Σst∪Σt. Observe that the size of
IT is polynomially bounded by the input size as no duplicated tuples are allowed
in a relation. Furthermore, it is easy to see that checking all constraints on IT can
be easily done in deterministic polynomial time.

To prove NP-hardness we next produce a reduction from the graph 3-coloring,
which is well known to be NP-complete. Take any (undirected) graph G = (N,A),

302 N. Cassavia et al.

where N is the set of nodes and A ⊆ N × N is the set of arcs. We are also given
three colors, say g, r and b. We define a source scheme consisting of two relations:
nodeS(N), storing the nodes of the graph, and arcS(Ns, Ne), storing the arcs rep-
resented as pairs of nodes. The domain scheme has a unique relation DC with
value {g, r, b}. The target database scheme contains three relations: nodeT(N) and
arcT(Ns, Ne), which are copies of respectively nodeS and arcS, and cn(N, C), which
assigns a color to a node.

The constraints are:

(1): nodeS(n) → nodeT(n).
(2): arcS(n, m) → arcT(n, m).
(3): nodeS(n) ∧ [DC(c)] → cn(n, c).
(4): nodeT(n) → #({ C̈ : cn(n, C̈)}) = 1.
(5): arcT(p, q) → #({ C̈ : cn(p, C̈) ∨ cn(q, C̈)}) = 2.

The first three constraints are the TGDs in Σst: the first two simply copy the
source node and arc relation and the third one selects a color to every node. The
fourth rule is a count constraints enforcing the condition that every node must
have assigned exactly one color. The last rule requires the two nodes of an arc to
have different colors. It turns out that the data posting problem admits a solution
if and only if the graph is 3-colorable. Note the disjunction is used in the last rule,
which could be however avoided by means a slightly more complicated formula-
tion. We prefer to use this simpler format of disjunction as the extension of our
formalism to include disjunction is straightforward. ��

The above proof evidences that the high complexity is determined by the pres-
ence of non-deterministic domain predicates in source-to-target TGD dependen-
cies. This fact suggest us to single out a subclass of the data posting problem for
which the feasibility check can be done in polynomial time.

Definition 2. We say that a data posting problem is deterministic if every source-
to-target TDG dependency does not contain non-deterministic domain predicates.

Proposition 1. Given a deterministic data posting problem (S,D, T,Σst,Σt)
and finite source instances IS for S and ID for D, the problem of deciding whether
there exists an instance IT of T such that 〈IS , ID, IT 〉 satisfiesΣst∪Σt is polynomial
under the data complexity.

Proof. As every source-to-target TGD dependency does no contain non-
deterministic domain predicates, the number of tuples that can be added to the
relation T is polynomial in the size of the relations and the domains that occur
in the left hand side of the dependency. Once generated all possible tuples of T ,
the next step consists in verifying whether the tuples in T satisfy all target count
constraints. This check is obviously performed in polynomial time. ��

Remarks. One of the most important features of data posting setting is coupling
the source database schema with a domain database scheme with finite instances,

A Framework Enhancing the User Search Activity Through Data Posting 303

playing the role of a kind of ontology to enrich the exchange of data. We stress that
an important preliminary task for data posting is to provide domain relations con-
taining meaningful patterns for adding properties to source tuples and enhancing
the knowledge content of the target ones. The OLAP analysis [5] pursues a similar
goal while adding dimensions to a data cube – we followed this approach in defining
the domain relations DPR and DLR to add two dimensions that group prices into
ranges and locations into regions, respectively. Moreover, the discovery of more
hidden (some time, even surprising) properties is the goal of two important data
mining techniques: clustering and classification [11]. Indeed, the two domain rela-
tions DBR (characterizing relationships among user behaviors) and DPEC (defining
categories for restaurants) can be thought of as results of a data mining task. We
recall that, in our framework, clustering is used to discovery properties that may
enhance the user search on the target database.

A promising future line of research is to include some data mining techniques
directly inside the data posting setting. This is coherent with our ambitious goal
of posting data with high knowledge content. A main contribution to move along
this line is given by the power of count constraints. Indeed, in [17] it has been first
shown that a version of count constraint implementing the “group-by” SQL opera-
tor can be used to mimic another classical data mining technique: frequent itemset
mining, that is the problem of discovering frequent itemsets in a transaction data-
base. Later on, in [10] it has been illustrated how count constraints may play an
important role in the resolution of Inverse Frequent set Mining (IFM), that is the
problem of computing a transaction database satisfying given support constraints
for some itemsets, which are typically the frequent ones.

4 Conclusion

The impressive progress and development of Internet and on-line technologies has
led to an increasing availability of a huge volume of data generated by heteroge-
neous sources at high production rates. Therefore, the issue of devising novel solu-
tions for analyzing big data, coming both from various information sources and
from logs of user interactions and behaviors, is becoming more and more com-
pelling in the construction of Intelligent Information Systems (IIS) to assist end
users in the search of relevant information and in the interaction with services in
the net. In this paper, we have presented a user behavior oriented search frame-
work for implementing new generation IIS that offers advanced search functionali-
ties. Our framework exploits a suite of clustering algorithms devoted to the extrac-
tion of unsupervised information hidden in the collected data and, through Data
Posting, allows to enrich the contents by supplying additional pieces of informa-
tion while moving data. A portion of enriched information (dimensions) pertinent
with the keywords of the query is presented to the user into the search toolbar,
enabling a faceted browsing.

304 N. Cassavia et al.

References

1. Agrawal, D., et al.: Challenges and Opportunities with Big Data: A community
white paper developed by leading researchers across the United States (2012)

2. Arenas, M., Barceló, P., Fagin, R., Libkin, L.: Locally consistent transformations
and query answering in data exchange. In: PODS, pp. 229–240 (2004)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press
Books, Addison Wesley, New York (1999)

4. Chandra, A., Harel, D.: Structure and complexity of relational queries. J. Comput.
Syst. Sci. 25, 99–128 (1982)

5. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Rec. 26(1), 65–74 (1997)

6. Cuzzocrea, A., Saccà, D., Ullman, J.D.: Panel on big data: a research agenda. In:
IDEAS, pp. 198–203 (2013)

7. The Economist: Data, data everywhere. The Economist, February 2010
8. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implemen-

tation of aggregate functions in the DLV system. TPLP 8(5–6), 545–580 (2008)
9. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans.

Database Syst. 30(1), 174–210 (2005)
10. Guzzo, A., Moccia, L., Saccà, D., Serra, E.: Solving inverse frequent itemset mining

with infrequency constraints via large-scale linear programs. TKDD 7(4) 18 (2013)
11. Han, J., Micheline Kamber, J.P.: Data Mining: Concepts and Techniques. Morgan

Kaufmann Publishers, Burlington (2011)
12. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.:

Big data: the next frontier for innovation, competition, and productivity. McKinsey
Global Institute, May 2011

13. Moens, M.: Automatic Indexing and Abstracting of Document Texts. Kluwer Aca-
demic Publishers, Berlin (2000)

14. Nature: Big data. Nature, September 2008
15. Osinski, S., Stefanowski, J., Weiss, D.: Lingo search results clustering algorithm

based on singular value decomposition. In: K�lopotek, M.A., Wierzchoń, S.T., Tro-
janowski, K. (eds.) Intelligent Information Processing and Web Mining, vol. 25, pp.
359–368. Springer, Heidelberg (2004)

16. Saccà, D., Serra, E.: Data posting: a new frontier for data exchange in the big data
era. In: AMW (2013)

17. Saccà, D., Serra, E., Guzzo, A.: Count constraints and the inverse OLAP problem:
definition, complexity and a step toward aggregate data exchange. In: Lukasiewicz,
T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 352–369. Springer, Heidelberg
(2012)

18. Vardi, M.Y.: The complexity of relational query languages. In: STOC, pp. 137–146
(1982)

19. White, R.W., Roth, R.A.: Exploratory Search: Beyond the Query-Response Para-
digm: Synthesis Lectures on Information Concepts Retrieval, and Services. Morgan
& Claypool Publishers, San Rafael (2009)

20. Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search
and browsing. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI 2003, pp. 401–408 (2003)

Rule Induction and Learning

PRIMER – A Regression-Rule Learning System
for Intervention Optimization

Greg Harris1(B), Anand Panangadan2, and Viktor K. Prasanna3

1 Department of Computer Science, University of Southern California,
Los Angeles, CA, USA
gfharris@usc.edu

2 Department of Computer Science, California State University, Fullerton, CA, USA
apanangadan@fullerton.edu

3 Ming-Hsieh Department of Electrical Engineering,
University of Southern California, Los Angeles, CA, USA

prasanna@usc.edu

Abstract. We introduce intervention optimization as a new area of
exploration for data mining research. Interventions are events designed to
impact a corresponding time series. The task is to maximize the impact of
such events by training a model on historical data. We propose PRIMER
as a new regression-rule learning system for identifying sets of event fea-
tures that maximize impact. PRIMER is for use when domain experts
with knowledge of the intervention can specify a transfer function, or the
form of the expected response in the time series. PRIMER’s objective
function includes the goodness-of-fit of the average response of covered
events to the transfer function. Incorporating domain knowledge in this
way makes PRIMER robust to over-fitting on noise or spurious responses.
PRIMER is designed to produce interpretable results, improving on the
interpretability of even competing regression-rule systems for this task. It
also has fewer and more intuitive parameters than competing rule-based
systems. Empirically, we show that PRIMER is competitive with state-
of-the-art regression techniques in a large-scale event study modeling the
impact of insider trading on intra-day stock returns.

Keywords: Regression rules · Intervention analysis · Rule induction ·
Event response · Time series · Intervention optimization · Rule learning

1 Introduction

Intervention analysis was introduced in 1975 by Box and Tiao [1] as a means
of assessing the impact of a special event on a time series. In one example,
they evaluate whether gasoline regulation in 1960 impacted smog levels in Los
Angeles. The effect is not obvious in the noisy graph of monthly smog levels.
However, their method is able to quantify even weak effects in such noisy time
series. Their method has three steps:

c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 307–321, 2016.
DOI: 10.1007/978-3-319-42019-6 20

308 G. Harris et al.

1. Identification – frame a model for change which describes what is expected
to occur given knowledge of the known intervention;

2. Fitting – work out the appropriate data analysis based on that model;
3. Diagnostic Checking – if the model proves inadequate for inference, make

necessary adjustments and repeat the analysis.

1.1 Intervention Optimization

Our research extends intervention analysis from the case of one event to the case
of many events. The goal is to reliably predict which events will have the highest
impact (defined later in this section) on their corresponding time series. We call
this intervention optimization and have not found it previously discussed in data-
mining literature. An example use-case is optimizing the impact of advertising
campaigns on same-store sales for a retail business. In this case, the events
include various kinds of advertising campaigns, such as locally airing a television
ad or mailing fliers. Each event is expected to affect a corresponding time series,
in this case, sales at the targeted store location. Another example use-case is
optimizing cyclic steam injection for enhanced oil recovery in highly viscous oil
fields. Pausing production periodically to send steam down an oil well warms the
surrounding oil, making it easier to extract once pumping resumes. The increase
in production depends on the well, the reservoir, and the characteristics of the
steam job. Intervention optimization is useful in these use-cases, because it helps
maximize the impact of limited resources (ad budget or steam supply).

Intervention optimization requires training a model that predicts the impact
of an event based on a set of descriptive features. Modeling the highest-impact
events is challenging due to the propensity to over-fit. Models that make infer-
ences based on too-few historical high-impact examples can have low out-of-
sample accuracy. Additionally, over-fitting can be caused by noise in the time
series, which affects the estimation of impact. PRIMER, the intervention opti-
mization system we propose, adapts to noisy time series by requiring more sam-
ples for inference. We evaluate PRIMER and other modeling techniques by the
average impact of their top-predicted x% of intervention events, using held-out
data and given only the features describing each event. The same techniques
can be applied to general event studies where one has no direct control over the
events, but would still benefit from a predictive or explanatory impact model.

We define the impact of an event as the cumulative subsequent “boost” in
time series values caused by the event. Concretely, we assume a given event E
occurs at time t0 and is expected to affect time series R of realized values. In our
notation, Rt refers to the value of R at time index t. The first value of R subject
to the influence of E is Rt0 , and the value one time step after the event is Rt0+1.
We first calculate a baseline time series B of expected values had the event not
occurred. In the simplest case, Bt = Rt0−1,∀t : t ≥ t0, which assumes the time
series would have simply remained at the last known pre-event level. In more
complex cases, B must be determined from a domain-specific model, including
considerations such as autocorrelation and seasonality. We define S such that:

St = Rt − Bt (1)

PRIMER – A Regression-Rule Learning System 309

making it the unexplained residual after all known effects unrelated to E have been
removed from R. If E were to have no impact, then the expectation IE[S] = 0.
Finally, we define the impact of E on S over a finite period (n time steps) as:

impactE(S) =
t0+n−1∑
t=t0

St (2)

We assume the effect of E begins at t0, meaning the event is unanticipated in
the time series: Bt = Rt,∀t : t < t0.

1.2 Interpretability

Modeling impact as a function of input variables is a regression problem, and
we include state-of-the-art regression algorithms in the experiments in Sect. 4.
However, our interest is in interpretable models which more easily provide insight
to the user. For this reason, we also evaluate regression-rule learning algorithms,
which are designed to emphasize interpretability over accuracy. Regression-rules
are simple piece-wise constant models, taking the form:

(F1 ∧ F2 ∧ F3) −→ C

This is understood to mean that an event containing features F1, F2, and F3

would have a predicted impact of C. Some systems generate ordered rule lists
where the predicted value of a sample comes from the first rule that covers it,
meaning the first rule where the sample contains all the rule features [2,14,15].
Other systems generate unordered ensembles of rules, where all rules that cover
a sample provide an additive contribution to the overall prediction [5].

Currently-proposed regression-rule learning systems are not specifically
designed to produce rules easily interpretable for the task of intervention opti-
mization. The ideal set of rules for this task should be:

– short, covering only the highest-impact events
– sorted in descending order of predicted impact
– free of exceptions or caveats to the predictions

Current systems do not produce rule sets with these attributes. Ensemble-based
systems produce rule sets which cannot be shortened without affecting the pre-
dictions. Ensemble rule sets can be sorted in descending order of impact contri-
bution to improve interpretability, but caveats remain in the form of rules with
negative impact contribution. For example, a rule with features F1 and F2 may
have a high impact contribution, but another rule with only feature F1 may have
a negative impact contribution. Therefore, a user cannot reliably identify high-
impact events by simply remembering the high-impact rules. Likewise, ordered
rule lists generated by current systems are complicated by exceptions. The rules
are not ordered according to impact, but are ordered according to how well
they reduce a loss function such as mean squared error. The rule lists cannot
be re-sorted by impact, because the order of precedence must be maintained for

310 G. Harris et al.

accurate predictions. For example, a high-impact rule in the middle of the list
with feature F1 may be preempted by an earlier low-impact rule with feature F2.
So, a user cannot simply say that events with feature F1 will have high impact,
without also mentioning the exception for events that also contain feature F2.

PRIMER is a rule-based system designed specifically to generate inter-
pretable rules for intervention optimization. The rule lists generated by PRIMER
are ordered according to expected impact. The user can review and retain only
as many rules as needed to cover a sufficient number of events. Because of the
rule ordering, predictions can be interpreted as minimum predictions. There is
no concern about exceptions, because earlier rules in the list have predictions at
least as high.

The requirement of using interpretable models sometimes means accepting
lower accuracy. PRIMER, however, is able to maintain high accuracy by taking
advantage of domain knowledge specific to the task of intervention optimiza-
tion. The domain knowledge provided by the user is the functional form of the
expected response pattern. By knowing the expected pattern to find in the time
series, PRIMER is better able to disregard spurious fluctuations and noise. In
this paper, we limit our scope to response patterns that exhibit a strong initial
response that decays following the event, until eventually the effect has dissi-
pated. The two example use-cases mentioned both have this form of response
pattern. In the retail business use-case, the effect of an ad is likely to be strongest
initially, before it slowly gets forgotten. In the oil recovery use-case, production is
highest immediately after steam injection. As the oil cools, production gradually
decays back to its original level.

PRIMER has a unique objective function designed specifically for interven-
tion optimization. It combines three heuristics to improve out-of-sample perfor-
mance: impact, coverage, and goodness-of-fit to the expected response pattern.
We show its effectiveness in a large-scale event study modeling the impact of
insider trading filings on intra-day stock returns. The study of market reactions
to news, and filings in particular, is an active area of research in Behavioral
Finance [16,20]. PRIMER has the capability of providing insight into which filing
characteristics most influence the market. In our tests, we show that PRIMER
is competitive with state-of-the-art regression algorithms at identifying high-
impact filings, while the model output has improved interpretability.

2 Related Work

Intervention optimization is a regression problem, and we include common
regression models in our experiments. Due to our emphasis on model inter-
pretability, however, we describe only other regression-rule learning systems in
this related work section:

RegENDER [5] is a system for learning an ensemble of regression rules
using forward stage-wise additive modeling. Each rule is added greedily, one
by one. The rules are chosen to minimize a loss function, which is either the
sum of squared error or the sum of absolute error, calculated over all samples.

PRIMER – A Regression-Rule Learning System 311

The number of rules to learn is an input to the algorithm which acts as the stop-
ping criterion. The minimization technique can be specified as either gradient
boosting or a least angle approach. To reduce correlation between rules as well
as computational complexity, the training of each rule is done using a random
subset of the training data. The fraction of samples to use for training is an
input to the algorithm. The final parameter is a shrinkage factor which reduces
the degree to which previously generated rules affect the generation of the suc-
cessive one in the sequence. The algorithm outputs an unordered list of rules.
The prediction for a given sample is calculated by summing the contributions of
all rules that cover the sample.

SeCoReg [14] is a regression rule system based on the separate-and-conquer
strategy [8]. The algorithm uses hill-climbing to find each rule. The objective
function maximized by hill-climbing is a weighted combination of the relative
root mean squared error and the relative coverage:

hcm = α · (1 − LRRMSE) + (1 − α) · relCov (3)

Here, the parameter α controls the trade-off between error and coverage. The
stopping criterion for the algorithm is set as the fraction of samples that can be
left uncovered by the rules learned. A third user-specified parameter controls the
number of splitpoints found by a supervised clustering algorithm for discretizing
numeric features.

Ant-Miner-Reg [2] is a version of SeCoReg with hill-climbing replaced by Ant
Colony Optimization. It requires three additional user-specified parameters to
control the optimization.

Dynamic Reduction to Classification [15] is a method of converting a regres-
sion problem into a multi-class classification problem. This enables the use of
well-studied classification rule induction techniques. For each rule, the predicted
value is the median of the values covered. The rule quality is measured by how
well it identifies samples valued within one standard deviation of the predicted
value. Samples valued within one standard deviation of the predicted value are
set as the positive class, and all other values outside this range are considered
negative. In this way, traditional classification rule heuristics can be used as
an objective function. The heuristics tested by its authors include: correlation,
relative cost measure, Laplace measure, and weighted relative accuracy. The
algorithm uses separate-and-conquer combined with hill-climbing. The stopping
criterion for the algorithm is the fraction of samples that can be left uncovered
by the rules learned.

M5’Rules [12] learns rules that have a linear model in the head instead of a
constant prediction. The algorithm uses separate-and-conquer to learn the set
of rules, stopping when all samples are covered. Each rule is learned by first
generating a decision tree and then extracting the rule corresponding to the
best leaf. The best leaf is determined according to a heuristic. Its authors tested
three heuristics: percent root mean squared error, mean absolute error divided
by coverage, and the correlation between predicted and actual values for samples
covered by a leaf multiplied by the number of samples in the leaf.

312 G. Harris et al.

3 PRIMER

We propose a new method for intervention optimization: Pattern-specific Rule-
based Intervention analysis Maximizing Event Response (PRIMER). In this
section, we refer to Algorithm 1 as we describe each part of the method.

The inputs to PRIMER, as shown in Algorithm 1, include a set of events.
Each event contains a descriptive set of binary features. Each also contains the
corresponding response, which is a short time series segment beginning with
the event at time t0 and lasting until the impact of the event has substantially
decayed. The event response is a sub-sequence of S, defined in Eq. 1.

3.1 Separate-and-Conquer with Beam Search

PRIMER uses the separate-and-conquer strategy [8] common to most rule learn-
ing systems. This strategy iteratively identifies the events not yet covered by
any rule (separate), and then learns a new rule using only the uncovered events
(conquer). The new rule covers additional events, which are then removed from
consideration in the next iteration. This guarantees subsequent rules have diver-
sity in coverage. Lines 1–7 in Algorithm 1 describe our implementation of this
strategy. This loop is repeated until rules are discovered that cover all events, or
until the empty rule is returned because no better rule could be found.

To find each new rule, PRIMER uses top-down beam search. Beam search
is a greedy heuristic search method which is used by the vast majority of rule
learning algorithms [9]. It finds good rules quickly, while covering only a small
fraction of the search space. Beam search starts with an empty rule that covers
all samples and greedily refines it by adding features as conditions. It maintains
a beam of the best b rules of each rule length. To find rules of length l, each
feature is successively added as a refinement to each rule in the beam for length
l − 1. The refined candidate rules are then evaluated, and the top b rules are
stored in the beam for length l. After reaching some stopping criterion, the best
rule from all lengths is selected.

Limiting the beam size limits the extent of the search. Setting b = 1 makes
beam search equivalent to hill-climbing. Setting b = ∞ makes it equivalent to
exhaustive search. PRIMER implements top-down beam search in the FindBe-
stRule function (lines 8–21). The function returns the single highest-scoring
rule discovered during the search.

3.2 Objective Function

During beam search, each candidate rule is evaluated and scored by an objec-
tive function. PRIMER’s unique objective function combines three heuristics to
improve out-of-sample performance: impact, goodness-of-fit, and coverage.

Impact. The goal of intervention optimization is to maximize the impact of
future interventions. We evaluate rules according to the average impact of the

PRIMER – A Regression-Rule Learning System 313

out-of-sample events they cover, so historical impact is naturally an important
heuristic. For rule evaluation, the impact for an event is defined in Eq. 2. Dur-
ing model training, however, PRIMER optimizes only on impact that fits the
expected response pattern given by a user with domain expertise. This helps
avoid over-fitting to noise or spurious fluctuations in the time series.

The key to the intervention analysis method proposed by Box and Tiao [1]
is specifying the expected response pattern. Their method is able to quantify
weak effects in noisy time series by relying on the use of a transfer function,
a tentative specification of the stochastic model form. The transfer function is
based on prior knowledge of the intervention, and how the time series is expected
to react. Some example transfer functions they listed include linear, pulse, and
step functions. PRIMER inherits the use of a transfer function from their work
on intervention analysis.

With PRIMER, we have tested response patterns that exhibit an abrupt
initial response at time t0 which decays back down to the pre-intervention level
within n time steps. Specifically, we have tested the exponential decay function:

f(t) = Ae−k(t−1), t ≥ 1 (4)

and the power law function:

f(t) = At−k, t ≥ 1 (5)

In both cases, A is the scaling parameter, and k determines the rate of decay.
Restricting the impact to only include the fitted area under the transfer function
curve makes the algorithm more robust by down-weighting, for example, spurious
spikes that occur well after t0.

The first step in calculating the fitted impact of a rule is to average the responses
of all events covered by the rule (avgResponse in line 23 of Algorithm 1). The next
step is to fit the transfer function to the average response by minimizing the sum
of squared differences:

minimize
A,k

n∑
t=1

(f(t) − avgResponset)2

subject to A, k ≥ 0

(6)

We use the trust-region-reflective optimization algorithm [4], which allows us to
specify lower bound constraints of zero on the fit parameters.

Goodness-of-Fit. In PRIMER, we score each rule conservatively, based on the
goodness-of-fit of the average response to the transfer function. In line 24 of
Algorithm 1, we calculate confidence intervals for the fit parameters optimized
in Eq. 6. We calculate the confidence intervals based on the asymptotic normal
distribution for the parameter estimates [19]. The level of confidence used in the
interval calculation is a user-specified parameter, α, which produces 100 · (1−α)
percent confidence intervals.

314 G. Harris et al.

In line 28 of Algorithm 1, we choose the more conservative values from the
confidence intervals for each fit parameter. For the scale parameter A in the
exponential decay transfer function (Eq. 4) and the power law transfer function
(Eq. 5), we use the lower bound confidence interval. For the rate of decay para-
meter k, we use the upper bound confidence interval. We calculate the rule score
as the area under the transfer function using the conservative confidence interval
values for parameters (line 29). This score is lower than the fitted impact due to
the reduced scale and increased rate of decay. This penalizes rules with poorly-
fitting average response curves which would otherwise have had high impact
according to the fitted parameters.

We also use the confidence intervals as a stopping criterion. If both parame-
ters are not significantly greater than zero according to the confidence intervals,
the rule is given a score of zero. If no rule can be found with a score greater
than zero, the default empty rule is chosen by the beam search, since it has
been assigned a small positive score (line 10). The empty rule has no condi-
tions and covers all remaining samples, causing the separate-and-conquer loop
to terminate.

Coverage. PRIMER includes a bias toward rules with high coverage. This
trade-off of impact for coverage in the objective function has the potential to
improve out-of-sample performance, because high-coverage rules are less prone
to over-fitting.

Due to random noise in the time series, an individual event response is
unlikely to closely resemble the transfer function. A rule that covers only a
small number of events will have a noisy average response. As discussed pre-
viously, a poor fit of the average response to the transfer function reduces the
rule score, possibly to zero. A rule that covers many events will have a well-
behaved average response where the random noise averages out. With less noise,
the fit becomes better, and the rule score increases. In this way, high-coverage
rules are favored. The trade-off between coverage and impact is controlled by
the parameter α, which was introduced in the previous section. High α equates
to low-confidence bounds, which are close to the least squares fit parameters.
Inversely, low α increases confidence that the true parameters are within the
intervals by widening the intervals. Effectively, lowering α reduces tolerance for
noisy average responses, which then increases the bias toward rules with less
noise; and rules with less noise tend to be rules with higher coverage.

Figure 1 illustrates how increasing coverage increases the score for a rule
on synthetic data. This plot involves samples with the same power law decay
response added to noisy time series. Adding samples smooths the average
response, which raises the lower bound on the fitted curve.

PRIMER – A Regression-Rule Learning System 315

Algorithm 1. PRIMER

Input:
events � set of events or interventions

event.features � each event has a set of descriptive features
event.response � time series segment starting at the time of the event

b � beam size
l � max rule length
T � transfer function
α � alpha for calculating fit parameter confidence intervals

Output:
ruleList � ordered list of discovered rules

1: ruleList ← [] � initialize empty rule list
2: repeat
3: rule ← FindBestRule(events, b, l, T , α)
4: ruleList.append(rule)
5: coveredEvents ← events in events covered by rule
6: events ← events \ coveredEvents
7: until events = ∅

8: function FindBestRule(events, b, l, T , α)
9: emptyRule.conditions ← {} � empty rule has no conditions, covers all events

10: emptyRule.score ← ε � a tiny score makes it rank higher than 0-score rules
11: beam ← [] � beam is an array of rule lists

� beam[2] holds a list of length-2 rules, etc.
12: beam[0] ← [emptyRule] � initialize length-0 rule list to hold the empty rule
13: for i = 1 to l do
14: rules ← all refinements to rules in beam[i − 1]
15: for each rule ∈ rules do
16: rule.score ← EvaluateRule(rule, events, T , α)
17: end for
18: beam[i] ← Best(rules, b) � keep b best rules of length i
19: end for
20: return best rule in all of beam
21: end function

22: function EvaluateRule(rule, events, T , α)
23: avgResponse ← average response of events covered by rule
24: ci ← calculate parameter confidence intervals of T fitted to avgResponse
25: if min(ci) ≤ 0 then
26: score = 0 � because a parameter is not significantly different from zero
27: else
28: pmin ← MinAUC(ci) � for each parameter, choose the value from

� ci that minimizes the area under the curve
29: score ← AUC(T , pmin) � smallest confident area under the curve
30: end if
31: return score
32: end function

316 G. Harris et al.

Average of 2 Samples Average of 20 Samples Average of 200 Samples

avg response
fitted power law
lower conf. bound

Fig. 1. Illustration using synthetic data, where each response sample is generated using
the power law function with white noise added. Averaging many samples improves the
goodness-of-fit, raising the lower confidence bound and increasing the score of a rule.

4 Experiments

We evaluate PRIMER on readily available data from the U.S. financial markets.
Our objective is to predict which insider trading reports have the largest positive
effect on intra-day stock prices. We cannot influence such financial news, so this
use-case is not true intervention optimization. However, as an event study, we
can evaluate PRIMER’s ability to identify high-impact events.

4.1 Data

Events. For events, we use Form-4 regulatory filings disseminated by the U.S.
Securities and Exchange Commission1. Form-4 filings are submitted by insid-
ers (officers, directors, etc.) in publicly traded companies to disclose changes
in personal ownership of company shares. We filter these down to include only
purchases of common stock, which are considered more informative by analysts
and market participants than sales. Insiders may sell for a variety of uninfor-
mative reasons, including diversification and raising cash for personal reasons,
whereas they buy primarily because they believe company shares will rise in
value. We further filter the filings down to just those that become public dur-
ing business hours when the markets are open. This allows us to measure the
intra-day response to each filing. Each filing has such features as:

– the insider type: director, officer, 10 % owner, or other
– the total dollar value of direct purchases, discretized
– the total dollar value of indirect purchases, discretized
– various transaction codes

We also include the market capitalization of the company prior to the filing,
discretized. Our final set of events has 136 binary features covering 158,983
events from years 2004–2014.
1 ftp://ftp.sec.gov/edgar/Feed/.

ftp://ftp.sec.gov/edgar/Feed/

PRIMER – A Regression-Rule Learning System 317

Time Series. For time series, we use stock returns of the company associated
with each filing. We use tick data provided by Wharton Research Data Services2.
We pre-process the data by converting it to 5-min bars, creating a time series P
of the last traded price within each 5-min time period. The return time series is
calculated as:

St =
Pt − Pt−1

Pt−1
(7)

The event response listed as an input in Algorithm 1 is the length-10 sub-
sequence of S beginning with the first return affected by the event:

event.response = [St0 , St0+1, . . . , St0+8, St0+9] (8)

In cases with insufficient trades to calculate each bar of the response, the event
is removed from the dataset. The total response is the target variable to be
maximized by PRIMER.

4.2 PRIMER Settings

We choose a transfer function based on prior knowledge that the financial mar-
kets respond positively to insider purchases, and that the effect of the news
decays once the information is fully disseminated and acted upon by market
participants. We choose the power law decay transfer function over the expo-
nential decay function, because it more closely fits the average response of all
events in the dataset.

The parameter b for beam size varies the extent of search. For the entire
experiment, we use b = 5. This value has been commonly used in rule learning
[3,17]. Similarly low values of b have been shown to often out-perform large
values when tested out-of-sample [13,18].

The parameter l constrains the maximum rule length. We set l = 10 for
the entire experiment, a value we believe is high enough to impose minimal
constraint.

The parameter α determines the confidence intervals. A low value means
more emphasis on the goodness-of-fit heuristic. If the value is too low, few rules
will be discovered. We experiment with three values: α = {0.1, 0.2, 0.3}.

4.3 Evaluation Method

Evaluation is based on the average impact (average sum of return bars) as a
function of the percent of test data covered. First, test events are sorted in
descending order according to predicted impact. Then the average actual impact
is calculated using the top x% of events, for x = 1 . . . 100. Models are preferred
which best predict the highest impact events for each given coverage percentile.

2 https://wrds-web.wharton.upenn.edu/wrds/.

https://wrds-web.wharton.upenn.edu/wrds/

318 G. Harris et al.

All experiments are evaluated using 10-fold cross-validation, where each
model is trained on 90 % of the data and tested on the remaining 10 %.
This is performed ten times, once for each test partition, and the results are
averaged. All models are evaluated using the same ten randomly partitioned
folds. For some models, we optimize a hyper-parameter by further use of 10-fold
cross validation in an inner-loop. For each fold of the outer-loop, once the hyper-
parameter value is chosen, it is used to train a model on the full set of training
data in the fold. In total, for a model with one hyper-parameter, we run the
training 110 times on subsets of data.

4.4 Baselines for Comparison

We compare PRIMER with common regression models as well as state-of-the-art
regression rule learning algorithms:

– Ridge Regression. For linear regression with L2-norm regularization, we
use the MATLAB function ridge, in conjunction with cross-validation to
find the optimal value for the regularization parameter, out of values: λ =
{10−4, 10−3, . . . , 105, 106}.

– LASSO. For linear regression with L1-norm regularization, we use the MAT-
LAB function lasso, which has built-in cross-validation [7]. For λ, we set the
function to use a geometric sequence of ten values, the largest just sufficient
to produce a model with all zeros.

– Support Vector Regression. For linear L2-regularized Support Vector
Regression [11], we use liblinear [6]. We use cross-validation to find the opti-
mal value for the cost parameter, out of values: c = {10−4, 10−3, . . . , 103, 104}.

– RegENDER. Regression Ensemble of Decision Rules (RegENDER) is avail-
able as a Java library which integrates with the Weka data-mining environ-
ment [10]. We run it with the parameters recommended by the authors (gradi-
ent boosting, squared-error loss function, 200 rules, ν = 0.5, with resampling
set to 50 % drawn without replacement) [5]. We also run it with the default
parameters in Weka, which have three differences (simultaneous minimization,
100 rules, and ν = 1.0).

– M5’Rules. We use the implementation of M5’Rules [12] included with Weka.
We use the default parameters (minimum number of instances = 4, build
regression tree = false, unpruned = false, use unsmoothed = false).

– Dynamic Reduction to Classification. Dynamic Reduction to Classifica-
tion [15] also integrates with Weka. We tried numerous heuristics and found
Laplace to be the best. We tried using a minimum coverage of 90 % as rec-
ommended by the authors, but found that using 100 % worked better for our
dataset. In this case, we report results only for the best settings.

– SeCoReg. Separate-and-Conquer Regression (SeCoReg) [14] testing was
inconclusive. We confirmed that the recommended parameters (α = 0.591,
minimum coverage of 90 %) worked well on small datasets. However, our
dataset is too large, and we did not wait for completion.

PRIMER – A Regression-Rule Learning System 319

5 Results

Table 1 and Fig. 2 both show the test results. No model performed significantly
better than all others over the entire set of coverage levels. RegENDER,
using its authors’ recommended parameters, has the best overall performance.
However, several models have similar performance, including PRIMER.

Table 1. Average total response of the events covered by the top x% of predictions of
each model (top 1 %, top 5 %, etc.)

Algorithm Average response of x% of top predictions

1 % 5% 10% 25 % 50 %

PRIMER, α = 0.1 0.0207 0.0142 0.0099 0.0045 0.0023

PRIMER, α = 0.2 0.0203 0.0142 0.0100 0.0046 0.0023

PRIMER, α = 0.3 0.0204 0.0141 0.0101 0.0046 0.0024

Ridge regression 0.0202 0.0136 0.0097 0.0047 0.0024

LASSO 0.0202 0.0129 0.0098 0.0047 0.0024

Support vector regression 0.0161 0.0126 0.0087 0.0042 0.0023

RegENDER (authors) 0.0214 0.0145 0.0100 0.0049 0.0025

RegENDER (Weka) 0.0208 0.0143 0.0100 0.0049 0.0025

M5’Rules 0.0203 0.0141 0.0098 0.0049 0.0025

Dynamic reduction 0.0198 0.0128 0.0084 0.0040 0.0022

Percent of test samples
2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 r
es

po
ns

e

0.005

0.01

0.015

0.02 PRIMER, alpha = 0.3
PRIMER, alpha = 0.2
PRIMER, alpha = 0.1
Ridge Regression
LASSO
Support Vector Regression
RegENDER (authors)
RegENDER (Weka)
M5'Rules
Dynamic Reduction

Fig. 2. Average total response of the events covered by the top x% of predictions.
PRIMER is highlighted to show it is competitive with state-of-the-art models. (Color
figure online)

320 G. Harris et al.

6 Discussion

PRIMER may not work with every dataset. Ideally, the average response of
the full set of events closely fits the given transfer function, despite the diluted
average impact. Because PRIMER uses greedy search, an average response suf-
ficiently fitting the transfer function must be located at least within the first
search iteration (length-1 rule). Otherwise, the program will exit with only the
default rule. For best results, there must be a greedy path through the search
tree to find high-impact branches. The decay patterns we have studied work
well in this regard. The average of two exponential decay functions is another
exponential decay function if the decay parameters are the same and only the
scale parameters differ. The same is true for power law functions. Even when
the decay parameters are not the same, the average of two decay functions often
resembles another decay function closely enough for greedy search to work.

7 Conclusion

The results of our experiments show that, with respect to impact prediction
ranking, PRIMER is competitive with state-of-the-art regression techniques in
a large financial event study. One advantage of using PRIMER is in the inter-
pretability of the model. PRIMER outputs a list of rules ordered by predicted
impact. This allows the top rules to stand alone without exceptions or caveats.
It also allows the algorithm to be terminated early, once a sufficient number
of the highest-impact rules are found. This is useful in domains where resource
constraints limit the potential number of interventions.

Rule learning systems require the user to specify multiple critical operational
parameters. The optimal values are domain-dependent, yet domain experts have
no intuitive way of selecting values, except through trial-and-error or by using
default values. PRIMER has an advantage in this regard. The most critical user
input to PRIMER is the transfer function, which is likely well-known to a domain
expert. The confidence interval parameter, α, has some effect on the number of
rules learned. Experimental results, however, show relative insensitivity to α.

Acknowledgments. This work is supported by Chevron USA, Inc. under the joint
project Center for Interactive Smart Oilfield Technologies (CiSoft), at the University
of Southern California.

We would also like to thank Dr. Frederik Janssen for providing support with the
SeCoReg and Dynamic Reduction to Regression algorithms.

References

1. Box, G.E.P., Tiao, G.C.: Intervention analysis with applications to economic and
environmental problems. J. Am. Stat. Assoc. 70(349), 70–79 (1975)

2. Brookhouse, J., Otero, F.E.B.: Discovering regression rules with ant colony opti-
mization. In: Proceedings of the Companion Publication of the 2015 Annual Con-
ference on Genetic and Evolutionary Computation, GECCO Companion 2015,
pp. 1005–1012. ACM, New York (2015)

PRIMER – A Regression-Rule Learning System 321

3. Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3(4), 261–283
(1989)

4. Coleman, T.F., Li, Y.: A reflective Newton method for minimizing a quadratic
function subject to bounds on some of the variables. SIAM J. Optim. 6(4),
1040–1058 (1996)

5. Dembczyński, K., Kot�lowski, W., S�lowiński, R.: Solving regression by learning
an ensemble of decision rules. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 533–544. Springer,
Heidelberg (2008)

6. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a
library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

7. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear
models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010)

8. Fürnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54
(1999)

9. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer
Science & Business Media, Heidelberg (2012)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)

11. Ho, C.-H., Lin, C.-J.: Large-scale linear support vector regression. J. Mach. Learn.
Res. 13(1), 3323–3348 (2012)

12. Holmes, G., Hall, M., Prank, E.: Generating rule sets from model trees. In: Foo,
N.Y. (ed.) AI 1999. LNCS, vol. 1747, pp. 1–12. Springer, Heidelberg (1999)

13. Janssen, F., Fürnkranz, J.: A re-evaluation of the over-searching phenomenon in
inductive rule learning. In: SDM, pp. 329–340. SIAM (2009)

14. Janssen, F., Fürnkranz, J.: Separate-and-conquer regression. In: Proceedings of
LWA 2010: Lernen, Wissen, Adaptivität, Kassel, Germany, pp. 81–89 (2010)

15. Janssen, F., Fürnkranz, J.: Heuristic rule-based regression via dynamic reduction
to classification. In: IJCAI Proceedings-International Joint Conference on Artificial
Intelligence, vol. 22, p. 1330 (2011)

16. Li, E.X., Ramesh, K.: Market reaction surrounding the filing of periodic SEC
reports. Acc. Rev. 84(4), 1171–1208 (2009)

17. Možina, M., Demšar, J., Žabkar, J., Bratko, I.: Why is rule learning optimistic and
how to correct it. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML
2006. LNCS (LNAI), vol. 4212, pp. 330–340. Springer, Heidelberg (2006)

18. Quinlan, J., Cameron-Jones, R.: Oversearching and layered search in empirical
learning. Breast Cancer 286, 2–7 (1995)

19. Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley, New York (1989)
20. You, H., Zhang, X.J.: Financial reporting complexity and investor underreaction

to 10-K information. Rev. Acc. Stud. 14(4), 559–586 (2009)

Event Driven Architectures and Active
Database Systems

Rule-Based Real-Time ADL Recognition
in a Smart Home Environment

George Baryannis1(B), Przemyslaw Woznowski2, and Grigoris Antoniou1

1 Department of Informatics, University of Huddersfield, Huddersfield, UK
{g.bargiannis,g.antoniou}@hud.ac.uk

2 Faculty of Engineering, University of Bristol, Bristol, UK
p.r.woznowski@bristol.ac.uk

Abstract. This paper presents a rule-based approach for both offline
and real-time recognition of Activities of Daily Living (ADL), leveraging
events produced by a non-intrusive multi-modal sensor infrastructure
deployed in a residential environment. Novel aspects of the approach
include: the ability to recognise arbitrary scenarios of complex activities
using bottom-up multi-level reasoning, starting from sensor events at
the lowest level; an effective heuristics-based method for distinguishing
between actual and ghost images in video data; and a highly accurate
indoor localisation approach that fuses different sources of location infor-
mation. The proposed approach is implemented as a rule-based system
using Jess and is evaluated using data collected in a smart home envi-
ronment. Experimental results show high levels of accuracy and perfor-
mance, proving the effectiveness of the approach in real world setups.

Keywords: Event driven architectures · Activity recognition · ADL ·
Indoor localisation · Smart home · Multi-modal sensing

1 Introduction

In the last two decades sensors have become cheaper, smaller and widely avail-
able, residing at the edge of the Internet. A single sensor provides only partial
information on the actual physical condition measured, e.g. an acoustic sensor
only records audio signals. A single measurement may be useful for simple appli-
cations, such as temperature monitoring in a smart home and may be sufficient
to discover very simple events, such as fire detection. However, it is often insuf-
ficient for an automated Activity Recognition (AR) system to infer all simple
and complex events taking place in the area of interest. Therefore, a fusion of
multiple sensor-related, low-level events is necessary.

The Internet of Things (IoT) paradigm offers an effective way of acquiring
and delivering low-level sensor events. The strength of IoT lies in the founda-
tions of the Internet i.e. distribution of resources, support for common naming
schemas and ontologies, common access strategies and availability of compu-
tational resources, to mention a few. The challenge is to locate and fuse the

c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 325–340, 2016.
DOI: 10.1007/978-3-319-42019-6 21

326 G. Baryannis et al.

right pieces of (sensor) information in order to realise AR at the best quality of
information possible. There are multiple ways of approaching sensor-based AR.
Chen and Khalil [3] propose a broad categorisation into data-driven approaches,
exploiting machine learning techniques, and knowledge-driven approaches, lever-
aging logical modelling and reasoning. Both directions have their strengths and
weaknesses. Machine learning techniques are criticised for not handling data con-
flicts well and for requiring large, annotated training datasets, while logic-based
approaches are not as robust against noise and uncertainty and require carefully
crafted rules.

In a multi-modal smart home environment AR usually focuses on the so-
called Activities of Daily Living (ADL), with the purpose of supporting Ambient
Assisted Living (AAL) efforts, either for long-term monitoring of health-related
features or for direct assistance. Such a setting brings about several require-
ments, such as the increased need for robustness against noise due to multiple
sensors and the support for complex, uncertain and non-sequential scenarios [6].
Additionally, the user’s location within the home must be recognisable with min-
imal user involvement (e.g. without requiring them to carry or wear a device).
Inference of real-time, continuous streams of meaningful and actionable events
is also a prerequisite for ADL assistance [4]. Finally, smart homes increase the
difficulty in acquiring training data, since data are environment-dependent [10].

In this paper we propose a novel rule-based ADL recognition system, which
is capable of reasoning over historical and real-time, multi-modal sensor data
acquired in a smart home environment used as an experimental testbed. Rea-
soning is applied in a bottom-up, multi-level manner to support complex ADL
scenarios, while rules employ non-deterministic patterns to account for missing
activities. The system is capable of correcting erroneous sensor data through
encoding of simple heuristics (based on expert knowledge) and cross-validating
sensor readings against other sensing modalities. Such ‘cleaned up’ and fused
sensor data are then used to achieve indoor localisation and ADL recognition.
Experimental evaluation shows that high levels of accuracy and performance are
achieved, in both offline and real-time modes.

The rest of this paper is organised as follows. Section 2 gives an overview of
the smart home testbed that motivates our research. Section 3 provides an analy-
sis of the offline ADL recognition system, while Sect. 4 details the modifications
applied for the system to also work in real-time. Section 5 offers details about
the system implementation as well as the results of the conducted experimental
evaluation, Sect. 6 compares our approach to the most relevant ones in literature
and Sect. 7 concludes and points out topics for future work.

2 Background

2.1 Experimental Testbed

Existing AAL systems make use of (environmental) sensor networks, wearable
devices and computer vision technologies. Some research projects focus on a

Rule-Based Real-Time ADL Recognition in a Smart Home Environment 327

Fig. 1. An overview of the SPHERE system architecture [14]

single sensing modality, while others, such as ENSAFE1 and eWALL [8], imple-
ment multi-modal AAL environments. The SPHERE (Sensor Platform for
HEalthcare in Residential Environment) architecture attempts to combine dif-
ferent sensing technologies to provide a generic platform for ADL recognition.
This generic, multi-modal sensor-based platform, which has been built on cutting
edge infrastructure made up of commercial and prototype components, will be
used to test clinical and health related hypotheses in a real life environment. The
sensor-based platform has been deployed in a two-storey, two-bedroom house,
converted into a fully-instrumented living lab referred to as the SPHERE house.

The SPHERE platform is based on three sensing technologies: an Envi-
ronment Sensor Network made up of hardware sensing the home ambience; a
Video Sensor Network, relying on RGB-D cameras deployed in specific rooms in
the SPHERE house; and a Body Sensor Network made up of ultra low-power,
wrist-wearable sensors. Environmental sensors specifically include: temperature,
humidity, passive infrared (PIR) and door contact sensors; light, noise and air
quality sensors; and water and electricity meters. Figure 1 provides a high-level
view of the SPHERE hub and data sharing system. A detailed description of
the system architecture and deployed sensors can be found in [14], along with a
comparative analysis of similar multi-modal sensing platforms.

1 http://www.ensafe-aal.eu.

http://www.ensafe-aal.eu

328 G. Baryannis et al.

2.2 ADL Ontology

In order to have a common, controlled vocabulary for any ADL-related effort in
SPHERE, (e.g. data generation, ADL recognition, annotation of ground truth
videos), an ontology has been defined, listing and categorising activities occurring
in the home environment. It was developed with the explicit aim of compliance
with existing models, to achieve interoperability and applicability of collected
datasets beyond the project. It is based on BoxLab’s Activity Labels2 and thus
extends their model. A detailed presentation of the SPHERE ADL ontology can
be found in [15]; the latest version is available in the OBO3 format from http://
data.bris.ac.uk (DOI: 10.5523/bris.1234ym4ulx3r11i2z5b13g93n7).

3 Offline ADL Recognition

The initial version of the proposed ADL recognition approach allows for offline
analysis of activity patterns in a residential environment. Sensor data are pre-
collected, processed and stored as facts in the recognition system. Rules identify
patterns among these facts, which correspond to significant sensor events that
may be linked to a specific activity. Instead of searching for patterns arbitrarily,
rules exploit the fact that sensors report data periodically; patterns are identified
in windows of time that correspond roughly to each sensor’s reporting period.

The rule hierarchy of the ADL recognition approach is shown in Fig. 2. At
the lowest level, rules rely on sensor events to derive atomic activities included
in the ADL ontology, as well as location information. An intermediate level
involves rules that refine initial derivations and fuse different sources of loca-
tion information. Then, second and higher level rules progressively combine
already recognised activities to infer complex events of increasing complexity.
The defined rules rely on information reported from most environmental sensors
in the SPHERE house, apart from the temperature, humidity, ambient noise
and dust sensors: collected data from these sensors did not yield any AR-related
patterns. Furthermore, ambient light sensors proved useful only when the effect
of sunlight is minimal, i.e. when the sun is below the horizon.

The rest of this section analyses the rule base of the proposed approach,
presenting rules within each distinct category in Fig. 2. Rules are expressed in
a simplified syntax, where comma denotes conjunction, => denotes inference,
NOT denotes negation-as-failure, while assert, retract and modify correspond to
the typical fact base manipulation actions; in the case of modify, value change
is denoted as valuebefore->valueafter. Facts are represented as predicates,
starting with a capital letter; sensor data are modeled as functions, in capitals,
and constant names are in lower-case letters.

2 http://boxlab.wikispaces.com/Activity+Labels.
3 http://oboedit.org.

http://data.bris.ac.uk
http://data.bris.ac.uk
http://dx.doi.org/10.5523/bris.1234ym4ulx3r11i2z5b13g93n7
http://boxlab.wikispaces.com/Activity+Labels
http://oboedit.org

Rule-Based Real-Time ADL Recognition in a Smart Home Environment 329

Fig. 2. Hierarchy of ADL recognition rules

3.1 Door Interaction

Door contact (DC) sensors report a zero value while the door is open and a
positive value while it is shut. Reports happen either instantaneously or at a
period of 10 s. Hence, activities that involve a user interacting with a door are
recognised based on a change in the reported value. The first two rules below
detect one or more change events within the sensor reporting window; the third
ensures that all activity times refer to the earliest time when the DC sensor
reported a zero value. Rules recognising door closing are defined equivalently.

DC(t1)=0, DC(t2)>0, (t2-t1)<window => assert(OpenDoor(t2))

DC(t1)=0, DC(t2)>0, (t2-t1)<window, OpenDoor(t3), (t3-t2)<window,

CloseDoor(t4), t2<t4<t3 => assert(OpenDoor(t2))

DC(t1)=0, DC(t2)>0, (t2-t1)<window, OpenDoor(t3), (t3-t2)<window,

NOT(CloseDoor(t4), t2<t4<t3) => modify(OpenDoor(t3->t2)

3.2 Electrical Devices

Smart meters fitted to electrical devices report consumption every 6 s. We can
assume, with acceptable accuracy, that a device is switched on when the asso-
ciated sensor starts reporting positive values. A pair of the rules that follow
is defined for every meter-fitted device in the SPHERE house, which includes
a TV, microwave, kettle, toaster and fridge. Variants of the first rule are also
defined for devices that can be put on standby, such as the TV; turning on from
standby is recognised when power consumption increases from a range of posi-
tive, non-zero values that correspond to standby consumption. In the case of the
fridge, the recognised activities involve opening or closing the fridge door.

330 G. Baryannis et al.

POWER(device,t1)=0, POWER(device,t2)>0,

(t2-t1)<window => assert(SwitchOn(device,t2))

POWER(device,t1)>0, POWER(device,t2)=0,

(t2-t1)<window => assert(SwitchOff(device,t2))

3.3 Water Flow

Water meters report the volume of cold or hot water flow instantaneously and
while the flow continues but, in contrast to other sensors, they do not report
periodically after water flow has stopped. To address this, we follow a two-
step approach to recognising water-related atomic activities. The rules below
recognise all reports of water flow activity:

FLOW(tap,room,t1)>0 => assert(OpenTap(tap,room,t1))

FLOW(tap,room,t1)=0 => assert(CloseTap(tap,room,t1))

A pair of these rules is defined for all taps, hot and cold. Then, a second set
of rules ‘cleans up’ the initially recognised events, keeping only the earliest event
for each distinct occurrence. The rule for cleaning up open tap events follows;
the rule for close tap events is defined accordingly.

OpenTap(tap,room,t1), OpenTap(tap,room,t2), t1<t2,

NOT(CloseTap(tap,room,t3), t1<t3<t2)

=> retract(OpenTap(tap,room,t2))

3.4 Complex Activities

Combining the activities recognised by the rules presented so far, we can recog-
nise activities of progressively higher complexity, constructing them recursively.
To express the rules, we use a subset of the event algebra defined in [5], with ∧,
∨ and NOT denoting conjunction, disjunction and negation-as-failure, respec-
tively and SET denoting unordered sequences of activities, following each other
within a maximum time interval. All RHS in the rules imply an assert action.

Atomic activities referring to electrical appliances can be combined to create
a complex activity that denotes use of the appliance. The rules below recognise
such activities for all devices, with the second inferring a specially named fact
for watching TV.

SwitchOn(device, t1) ∧ SwitchOff(device, t2) ⇒ Use(device, t1, t2)

SwitchOn(tv, t1) ∧ SwitchOff(tv, t2) ⇒ WatchingTV (t1, t2)

In the case of activities that involve the use of water taps, the following rules
infer possible complex activities. Note that the room associated with each tap
influences which activities are recognised.

Rule-Based Real-Time ADL Recognition in a Smart Home Environment 331

OpenTap(tap, room, t1) ∧ CloseTap(tap, room, t2) ∧ (t1 < t2)∧
NOT (CloseTap(tap, room, t3) ∧ (t1 < t3 < t2))

⇒ WashHands(t1, t2) ∨ WashFace(t1, t2)

OpenTap(tap, bathroom, t1) ∧ CloseTap(tap, bathroom, t2) ∧ (t1 < t2)∧
NOT (CloseTap(tap, bathroom, t3) ∧ (t1 < t3 < t2))

⇒ BrushTeeth(t1, t2) ∨ BathingShowering(t1, t2)

In absence of further information, we cannot discard any of the inferred activities.
The second-level complex activities can, in turn, be combined to infer third-level
complex activities, such as a user preparing a drink or a snack:

SET (Use(kettle, t1, t2), CloseTap(tap, kitchen, t3))

⇒ PreparingDrink(min(t1, t3),max(t2, t3))

Use(fridge, t1, t2) ∨ Use(toaster, t3, t4)

⇒ PreparingSnack(min(t1, t3),max(t2, t4))

Complex activities can also be inferred using location information, as evidenced
from the following rule, which recognises the user walking from one room to
another through open doors.

IsIn(room, t1, t2) ∧ IsIn(room2, t3, t4) ∧ t2 < t3 ∧ NOT (IsIn(room3, t5, t6)∧
t2 < t5 ∧ t6 < t3 ∧ OpenDoor(t7) ∧ t2 < t7 < t3) ⇒ WalkThroughDoors(t2, t3)

Note that the IsIn fact refers to the fused location information, as inferred by
the rules in Sect. 3.7. Recursive construction of complex events can continue as
long as there is a meaningful connection between already recognised events. The
next rule recognises the fourth-level complex activity of washing the dishes:

(PreparingDrink(t1, t2) ∨ PreparingSnack(t3, t4)) ∧ OpenTap(tap, kitchen, t5)

∧ CloseTap(tap, kitchen, t6) ∧ min(t1, t3) < t5 < t6 < max(t2, t4)

⇒ WashDishes(t5, t6)

3.5 PIR-based Location

ADL recognition is inextricably linked with the challenge of indoor localisation.
In our approach, location information is derived from three sources: PIR sensors,
video cameras and recognised atomic activities. This combination is sufficient
only for single residential scenarios. The integration of wearable data, which
would allow distinguishing between inhabitants is still in progress so, for the
remainder of this section, we assume that all inferences refer to the same user.

The PIR sensor reports instantaneously a value of 1, when motion is detected,
or 0 otherwise. Based on this, room-level location for single residential settings
is inferred as follows:

332 G. Baryannis et al.

PIR(room,t1)=1, PIR(room,t2)=0, t1<t2,

NOT(PIR(room,t3)=0, t1<t3<t2) => assert(IsInP(room,t1,t2))

IsInP(room,t1,t2), IsInP(room,t3,t4), t3-t2<=threshold

=> modify(IsInP(t2->t4)), retract(IsInP(room,t3,t4))

IsInP(room,t1,t2), IsInP(room,t3,t4), t3-t2>threshold,

NOT(IsInP(room2,t5,t6), t2<t5<t3), NOT(IsInP(room2,t7,t8), t2<t8<t3),

=> modify(IsInP(t2->t4)), retract(IsInP(room,t3,t4))

The first rule places a user in a specific room, if the corresponding PIR sensor
is activated and subsequently deactivated. The next rules merge PIR activation
periods in the same room by examining the temporal distance between them. If
the distance does not exceed a specified threshold (e.g. roughly 60 s), then the
periods are immediately considered temporally adjacent and are merged. In the
opposite case, we need to ensure that no PIR sensor has been activated in a
different room during that gap, before proceeding with the merge.

3.6 Video-Based Location

The second source of location information comes in the form of 2D and
3D bounding boxes detected and reported by video cameras installed in the
SPHERE house. Each bounding box (BB) is linked to a specific frame id and
a user id, to differentiate between boxes in a single frame. It should be stressed
that cameras are only installed in the living room, kitchen and main hallway and
that rules only rely on 2D and 3D coordinates, which do not carry any sensitive
data whatsoever. For single residential settings, the following rules apply:

BB(room,frameid,userid,t1), NOT(BB(room,frameid2,userid,t2),

frameid2= frameid-1) => assert (BBStart(room,userid,t1))

BB(room,frameid,userid,t1), NOT(BB(room,frameid2,userid,t2),

frameid2= frameid+1) => assert (BBEnd(room,userid,t1))

BBStart(room,userid,t1), BBEnd(room,userid,t2),

NOT(BBStart(room,userid,t3), t1<t3<t2)

=> assert(IsInV(room,t1,t2), retract(BBStart(), BBEnd())

The first two rules detect starting and ending points for bounding box
sequences, while the third rule places the user in the room associated with such a
sequence. Note that sequences can be merged using the rules defined in Sect. 3.5.

Ghost Sequences. It is unavoidable for a video camera tracking body motion
to report bounding boxes that do not correspond to an actual user or object,
despite efforts in human detection research [9]. Common causes include lingering
images that persist after the user has moved or vibrations applied directly or
indirectly to the camera. These so-called ghost sequences can severely compro-
mise the validity of video-based indoor localisation, even to the point that fusing
other sources is not enough to filter the generated noise. Given that, it makes
sense to invest effort in detecting and removing ghost sequences.

Rule-Based Real-Time ADL Recognition in a Smart Home Environment 333

After analysing a wealth of available video camera data, we defined a set of
ghost detecting heuristics that are applicable to any dataset, especially ones pro-
duced using the OpenNI Framework4. The simplest heuristic involves discarding
any sequence of length below a minimum threshold (e.g. 30 frames, equivalent to
1 second). Integrating this heuristic into the third video-related rule above sim-
ply requires adding the conjunct t2-t1 < threshold. To deal with the case of
ghosts caused by lingering images, the 2D bounding box coordinates are exam-
ined. If they remain fixed for longer than a maximum threshold (e.g. again 30
frames), then this stuck subset of the bounding box sequence is discarded. In
cases where the user is actually not moving at all, we merge back the two sub-
sequences that were separated by removing the stuck subset.

Other ghost detecting heuristics involve examining the 2D bounding box
coordinates, along with 3D depth information. If either the width or height of
the box is consistently and unjustifiably small, in correlation with depth, then
it does not correspond to actual human motion. Finally, application-specific
heuristics can be considered during ghost detection; for instance, heuristics for
the SPHERE house include discarding specific ranges of coordinates that are
known to be generated due to surrounding vibrations.

3.7 Fused Location

Having inferred location from PIR and video sensors, the final task is to fuse them
into a coherent narrative for room-level indoor localisation. To be able to distin-
guish between actual and possibly noisy location reports, we associate a confi-
dence value to each PIR sequence (IsInP facts) and each bounding box sequence
(IsInV facts). For PIR, confidence is inversely proportional to the number of PIR
sensors reporting motion. For video sequences, it depends on the probability of
being a ghost, based on the heuristics defined in Sect. 3.6; A sub-sequence is
flagged as a ghost while its confidence remains below a specific threshold.

The fusion process essentially infers a single location at any point in time,
by combining all available sources using the rules that follow:

– If only a single source reports a location, it is assumed to hold (with a confi-
dence level relative to the associated value)

– If both PIR and video data report the same location, it is assumed to hold
(with a confidence value equal to the sum of the individual values)

– If PIR and video disagree, the correct location is the one associated with a
recognised atomic activity

– If both disagreeing reports (or neither) are supported by an activity, we assume
the report with the higher confidence holds (if equal, we trust PIR).

The result is an ordered temporal sequence of room-level locations, anno-
tated with confidence values that reflect the level of agreement between the var-
ious sources. In all cases, rules take into account all possible temporal relations
between two sequences, as defined by Allen’s interval algebra [1].
4 http://structure.io/openni.

http://structure.io/openni

334 G. Baryannis et al.

4 Real-Time ADL Recognition

The approach presented in the previous section relies on the existence of pre-
collected sensor data for the complete period of interest for ADL recognition.
While the offline version can assist in diagnosing and managing healthcare and
wellbeing conditions, it is unable to provide support for scenarios where emer-
gency assistance is required. In such use cases, activities should be immediately
recognised as soon as the associated sensor events take place.

To convert the offline system to a real-time one, a significant change in the
nature of both rule and fact bases is required. Instead of representing the history
of sensor events, facts now represent the state of each distinct sensor. For each
new sensor event, the corresponding fact is modified to reflect the current state.
To detect state change, each fact stores the previous state as well. In the rest of
this section, we present the required adaptations to the rule base. Note that these
are necessary only at the lowest level; all second and higher-level rules remain
the same, since they are transparent to the way sensor events are generated.

4.1 Environmental Sensors

The state-based approach for the real-time system simplifies the definition of
rules: any state change event is linked to a related atomic activity. This holds
for DC sensors, electricity and water flow meters:

DCSensor(room,value,prev,t), value=0, prev>0

=> assert(OpenDoor(room,t))

ElecMeter(device,value,prev,t), value>0, prev=0

=> assert(SwitchOn(device,t))

FlowMeter(tap,value,prev,t), value>0, prev=0

=> assert(OpenTap(tap,t))

Note that there is no need, as was in the offline case, to clean up duplicate
door or tap-related events; these rules fire only once when sensor values change.

4.2 PIR-Based Location

In the real-time approach, each consecutive activation/deactivation of a PIR
sensor corresponds to the user being in the associated room:

PIRSensor(room,value,prev,t), value=1, prev=0

=> assert(PIROn(room,t))

PIRSensor(room,value,prev,t), value=0, prev=1

=> assert(PIROff(room,t))

PIROn(room,t1), PIROff(room,t2) => assert(IsInP(room,t1,t2)),

retract(PIROn(room,t1)), retract (PIROff(room,t2))

Note that since PIROn/Off facts are generated and consumed in real-time,
there is no need to check whether they are consecutive: if there was any other
such event in between, the IsInP rule would have fired upon assertion. To decide
whether subsequent activations extend the user’s stay in the room, the following
process is carried out (the corresponding rules are not shown for brevity):

Rule-Based Real-Time ADL Recognition in a Smart Home Environment 335

– If activation directly follows the last deactivation, we extend immediately.
– If the elapsed time from deactivation to subsequent activation does not exceed

a specified threshold, we proceed with the extension (similarly to the second
rule in Sect. 3.5).

– If, in the meanwhile, no activation has taken place in a different room, we
extend the already recognised period.

– If the elapsed time is greater than the threshold and there has been an activa-
tion in a different room in between, then the new activation is the beginning
of a new period of stay in the room.

4.3 Video-Based Location

While the other sensors broadcast a single value, video cameras post a wealth
of information, which means the state-based approach is not easily applicable;
instead, each reported bounding box is stored briefly, only to be combined in
facts that represent a period of time during which the user was in the room:

BB(room,frameid,userid,t1), NOT(IsInV(room,t2,t3,frame2,frame3),

frame3=frameid-1) => IsInV(room,t1,t1,frameid,frameid)

BB(room,frameid,userid,t1), IsInV(room,t2,t3,frame2,frame3),

frame3=frameid-1 => modify(IsInV(room,t3->t1,frame3->frameid))

The same ghost detection heuristics, as in the offline mode, are applied;
a running confidence value is associated with each sequence, representing the
likelihood that it is not a ghost sequence at each point in time.

4.4 Fused Location

In contrast to the offline mode, PIR sequences are not assigned confidence values
relative to the number of simultaneous sequences; instead, each time a PIR sensor
is activated, the system fuses available video or activity information to decide
on its validity:

– If there is no active video sequence and no activity detected, there is no other
choice but to assume the user caused the PIR activation.

– If the active video sequence with the highest confidence agrees with PIR, we
conclude the user is in the room.

– If video reports a different room, we assume the user is in the room where the
most recently recognised atomic activity was performed.

Based on these rules, we can infer room-level location for the user at any
given time. Additionally, location history can also be deduced (similarly to the
way the offline system reports location), provided that the previous location is
stored whenever the user moves to a different room.

336 G. Baryannis et al.

5 Experimental Evaluation

5.1 Implementation

Both offline and real-time modes of the ADL recognition system, analysed in
Sects. 3 and 4, have been implemented in Java, using Jess [7] as a rule engine.
Sensor data, which are broadcast and stored in a JSON format, are converted
to Java objects, which are then connected to Jess shadow facts. The rule base
was divided into several Jess modules, one for each rectangle in Fig. 2. The
implemented versions of rules are designed to accommodate variable reporting
periods for the sensors in the SPHERE house, since collected data indicated
multiple occurrences of early or late reports.

The real-time version is built as an MQTT5 client, since the SPHERE sensor
gateways broadcast data using the MQTT protocol. In order to make sure that
no sensor messages are lost, they are processed in separate threads. Whenever a
new message is broadcast, it triggers an update in both the Java object associated
with the sensor and the corresponding Jess shadow fact.

5.2 Data Collection

To evaluate the ADL recognition system, we used single-occupant, script-based
datasets collected in the SPHERE house. Data collection involved 10 participants
executing an ADL script of half-hour duration, twice. Participants were asked
to visit all house locations which allowed us to observe sensor activations, tem-
poral relationships, and so on. Recognition experiments focused on the following
activity categories (a subset of the ADL ontology), included in the script: door
interaction, electrical appliance interaction, water tap interaction, preparing a
snack or a drink, washing hands/dishes, brushing teeth and bathing/showering.
During the experiments, ground-truth data was acquired through annotation of
video images collected using a head-mounted, wide-angle, 4K resolution camera.
More information on data collection and video annotation can be found in [15].

5.3 Experiments Setup

The evaluation was performed on a Windows R© 7 64-bit system powered by an
Intel R© CoreTM i5-2320 processor at 3.00 GHz, with 8 GB RAM. For the real-
time version, we created an MQTT server and clients, to simulate the SPHERE
Home Gateway and sensor gateways, respectively (see Fig. 1). Client simulators
parse precollected data and broadcast one sensor message every 5msec, one-third
of the camera reporting period, the shortest out of all sensors.

The experiments focus on three aspects: performance, in terms of execu-
tion time and memory consumption for the offline mode, activity recognition
accuracy, in terms of precision and recall, and localisation accuracy, i.e. the per-
centage of the experiment duration during which the correct room the user is in

5 http://mqtt.org.

http://mqtt.org

Rule-Based Real-Time ADL Recognition in a Smart Home Environment 337

Table 1. Results of the experimental evaluation

Experiment Exec. time Memory Activity recognition Localisation

(offline) (s) (offline) (MB) FP FN TP Precision (%) Recall (%) accuracy (%)

1 32.045 232.4 9.5 4.5 54 85.04 92.31 97.68

2 55.907 200.8 9.5 2 55 85.27 96.49 88.44

3 45.922 129.2 7 1.5 50 87.72 97.09 88.37

4 30.808 157.8 7.5 1 44.5 85.57 97.80 97.69

5 24.548 152.6 7 4 47.5 87.15 92.23 96.14

6 32.642 234.6 9 1 48 84.21 97.96 84.35

7 67.838 179.8 4 4 54 93.10 93.10 90.91

8 26.626 186.4 4 2 51 92.72 96.23 90.90

9 29.615 79.2 3 4 41 93.18 91.11 97.14

10 36.593 149.4 8 3 52 85.95 94.55 95.53

Average 38.254 170.22 6.9 2.7 49.7 87.991 94.887 92.715

is inferred. Precision and recall are commonly defined as precision = TP
TP+FP %

and recall = TP
TP+FN %, where TP, FP, and FN represent activities performed

and recognised, recognised but not performed and performed but not recog-
nised, respectively. Precision and recall values are the same for both offline and
real-time modes, since only the way of receiving raw sensor data changes.

5.4 Evaluation Results

The results shown in Table 1 are an average of the two times each participant
performed the ADL scenario. Also, execution time and memory values are an
average of 10 runs for each experiment. Performance results show that the offline
version is capable of quickly processing 30 min worth of sensor information in 38 s,
while requiring 170 MB, on average. Note that, in real-time mode, recognition
delay is negligible due to always maintaining a small fact base.

As far as activity recognition accuracy is concerned, the proposed system
shows excellent recall levels of 94.887 % on average, while precision is at the
somewhat lower level of 87.991 %. This is due to the fact that, in cases where
available information is not enough to distinguish between a number of possi-
ble activities, the defined rules infer them all; this ensures that all performed
activities are recognised (higher recall), at the expense of recognising activities
that were not performed (lower precision). Finally, the recognition system infers
the correct room the user is in 92.715 % of the time on average, proving the
effectiveness of both ghost detection heuristics and location fusion rules.

6 Related Work

There has been a substantial amount of research effort on activity recognition,
ranging from video-based to sensor-based, and data-driven to knowledge-driven
approaches. In the rest of this section, we focus on a selective subset that is

338 G. Baryannis et al.

more relevant to our approach, presenting the most recent and noteworthy ADL
recognition approaches that incorporate logical modelling and reasoning.

Chen et al. [4] model both sensors and activities using ontologies and perform
ADL recognition via equivalence and subsumption reasoning on these models.
Both offline and real-time modes are supported, while recognition becomes incre-
mentally specific, as more and more sensors are activated. Compared to our app-
roach, this work fails to recognise atomic or lower-level activities unless higher-
level ones are recognised. Also, the evaluation scenario is unrealistic, requiring
users to perform activities in a predefined, strictly sequential order and fixed
time intervals. Finally, the real-time system has a recognition delay of 2–3 s,
which is significantly slower compared to our approach.

The COSAR system [12] proposes the integration of statistical and onto-
logical reasoning to overcome the limitations of each approach. The statistical
component incorporates historical predictions, while the ontological component
filters recognitions based on the user’s location. Helaoui et al. [6] propose a more
tightly-coupled variant, employing a probabilistic DL reasoner. As in our app-
roach, ADL recognition is carried out in multiple levels, building from atomic
gestures towards increasingly complex activities; however, apart from the fact
that the reasoner requires training data, it is also unable to reason about tempo-
ral features and works only in offline mode; also, our activity recognition system
consistently outperforms these approaches, in terms of both precision and recall.

Similarly to COSAR, Skarlatidis et al. [13] extend previous work [2] on event
calculus-based ADL recognition with probabilistic reasoning based on Markov
Logic Networks. Experimental evaluation shows the superiority of the hybrid
approach compared to purely probabilistic or event calculus ones, both in terms
of recognition rates and robustness against missing data. However, their exper-
iments focus only on posture and movement-related activities as opposed to
complex ADL scenarios; also, the intervals of recognised activities are not stored,
precluding the ability of inferring activities of higher complexity.

MetaQ [11] is a SPARQL-based reasoning framework for ADL recognition
that relies on pattern-based descriptions of both atomic and complex activities.
Sensor data are transformed into RDF graphs and native OWL reasoning is
performed as an initial classification step. Then, SPARQL queries are produced
based on the patterns and are applied on the graphs to realise ADL recognition.
In contrast to MetaQ, our approach achieves higher recall while maintaining
comparable precision levels; it also includes rules that take into account missing
activities and can provide real-time inference of recognised activities.

The work presented in this paper is influenced by previous work [5] that
proposed a rule-based ADL recognition system for hierarchically organised and
logically consistent complex activities. However, while [5] assumes that atomic
activities are already recognised and are given as input to the recognition system,
our approach assumes only raw sensor data as input and rules are defined for
recognition of both atomic and complex activities. Also, we focus on inferring
all possible activities, in both offline and real-time settings.

Rule-Based Real-Time ADL Recognition in a Smart Home Environment 339

7 Conclusions and Future Work

In this paper we proposed a rule-based ADL recognition system for multi-modal
smart home environments that exploits a bottom-up multi-level reasoning app-
roach to infer events of increasing complexity. The system can operate both on
historical and real-time data and exploits the existence of multiple sources to
achieve robustness against noise and non-deterministic activity patterns. Exper-
iments conducted in an actual smart home setting used as a testbed prove the
effectiveness of the approach and its ability to support AAL scenarios either for
long-term monitoring to diagnose and manage health and wellbeing conditions
or for directly assisting smart home inhabitants.

Future work involves integrating wearable sensor data to achieve three major
objectives: to infer activities unidentifiable with only the other sensors; to
improve localisation accuracy or provide an alternate source of location data,
in scenarios where privacy is deemed more important than convenience (opt-
ing to carry or wear a device, rather than allowing cameras); to explore more
complex ADL scenarios with multiple inhabitants and achieve inference of the
person performing a recognised activity. Finally, we plan to address scalability
issues when faced with increased amounts of sensor input, by exploring methods
such as conflict detection and resolution, compression and distributed inference
units.

Acknowledgments. This work was performed under the SPHERE IRC, funded
by the UK Engineering and Physical Sciences Research Council (EPSRC), Grant
EP/K031910/1.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

2. Artikis, A., Sergot, M.J., Paliouras, G.: A logic programming approach to activ-
ity recognition. In: Scherp, A., Jain, R., Kankanhalli, M.S., Mezaris, V. (eds.)
Proceedings of the 2nd ACM International Workshop on Events in Multimedia,
EiMM 2010, pp. 3–8. ACM, New York (2010)

3. Chen, L., Khalil, I.: Activity recognition: approaches, practices and trends. In:
Chen, L., Nugent, C.D., Biswas, J., Hoey, J. (eds.) Activity Recognition in Perva-
sive Intelligent Environments. Atlantis Ambient and Pervasive Intelligence, vol. 4,
pp. 1–31. Atlantis Press, Paris (2011)

4. Chen, L., Nugent, C.D., Wang, H.: A knowledge-driven approach to activity recog-
nition in smart homes. IEEE Trans. Knowl. Data Eng. 24(6), 961–974 (2012)

5. Filippaki, C., Antoniou, G., Tsamardinos, I.: Using constraint optimization for
conflict resolution and detail control in activity recognition. In: Keyson, D.V.,
Maher, M.L., Streitz, N., Cheok, A., Augusto, J.C., Wichert, R., Englebienne, G.,
Aghajan, H., Kröse, B.J.A. (eds.) AmI 2011. LNCS, vol. 7040, pp. 51–60. Springer,
Heidelberg (2011)

340 G. Baryannis et al.

6. Helaoui, R., Riboni, D., Stuckenschmidt, H.: A probabilistic ontological framework
for the recognition of multilevel human activities. In: Mattern, F., Santini, S.,
Canny, J.F., Langheinrich, M., Rekimoto, J. (eds.) UbiComp 2013, pp. 345–354.
ACM (2013)

7. Hill, E.F.: Jess in Action: Java Rule-Based Systems. Manning Publications Co.,
Greenwich (2003)

8. Kyriazakos, S., Mihaylov, M., Anggorojati, B., Mihovska, A., Craciunescu, R.,
Fratu, O., Prasad, R.: eWALL: an intelligent caring home environment offering
personalized context-aware applications based on advanced sensing. Wirel. Pers.
Commun. 87(3), 1093–1111 (2016)

9. Liu, J., Zhang, G., Liu, Y., Tian, L., Chen, Y.Q.: An ultra-fast human detection
method for color-depth camera. J. Vis. Commun. Image Represent. 31, 177–185
(2015)

10. Maekawa, T., Yanagisawa, Y., Kishino, Y., Ishiguro, K., Kamei, K., Sakurai, Y.,
Okadome, T.: Object-based activity recognition with heterogeneous sensors on
wrist. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol.
6030, pp. 246–264. Springer, Heidelberg (2010)

11. Meditskos, G., Dasiopoulou, S., Kompatsiaris, I.: MetaQ: a knowledge-driven
framework for context-aware activity recognition combining SPARQL and OWL 2
activity patterns. Pervasive Mob. Comput. 25, 104–124 (2016)

12. Riboni, D., Bettini, C.: COSAR: hybrid reasoning for context-aware activity recog-
nition. Pers. Ubiquit. Comput. 15(3), 271–289 (2011)

13. Skarlatidis, A., Paliouras, G., Artikis, A., Vouros, G.A.: Probabilistic event calculus
for event recognition. ACM Trans. Comput. Log. 16(2), 11:1–11:37 (2015)

14. Woznowski, P., Fafoutis, X., Song, T., Hannuna, S., Camplani, M., Tao, L.,
Paiement, A., Mellios, E., Haghighi, M., Zhu, N., et al.: A multi-modal sensor
infrastructure for healthcare in a residential environment. In: 2015 IEEE Interna-
tional Conference on Communication Workshop, pp. 271–277. IEEE (2015)

15. Woznowski, P., King, R., Harwin, W., Craddock, I.: A human activity recogni-
tion framework for healthcare applications: ontology, labelling strategies, and best
practice. In: Proceedings of the International Conference on Internet of Things and
Big Data (IoTBD), pp. 369–377. INSTICC (2016)

SmartRL: A Context-Sensitive,
Ontology-Based Rule Language for Assisted

Living in Smart Environments

William Van Woensel(&), Patrice C. Roy, and Syed Sibte Raza Abidi

NICHE Research Group, Faculty of Computer Science,
Dalhousie University, Halifax, Canada

{william.van.woensel,patrice.c.roy,raza.abidi}@dal.ca

Abstract. To automate assisted living tasks in smart environments, the con-
textual and temporal aspects associated with activities of daily life (ADL) can be
exploited to (1) detect and act upon inconsistent context, i.e., when an activity
occurs outside of its usual context; and (2) guidance through ADL routines, by
automatically executing or suggesting a next subtask at the correct context. This
paper presents SmartRL, a context-sensitive rule language supporting task
automation in smart environments, and applies it to an Assisted Ambient Living
(AAL) use case. SmartRL realizes a number of key opportunities in this setting,
such as linking the language to a domain ontology, and facilitating the detection
and influencing of context; as well as considering the temporal nature of smart
environment rules, the need to revert rule effects, and writing activity routines.

Keywords: Smart environments � Ontology-based � Context-aware � Assisted
Ambient Living (AAL)

1 Introduction

Assisted living deals with the effects of cognitive decline, by assisting cognitively
impaired people to perform activities of daily life (ADL). In particular, ambient assisted
living (AAL) [1] relies on smart environments to automate assistive tasks; such as
executing activities automatically (e.g., setting temperature), guiding people through
ADL (e.g., via step-by-step instructions), or issuing alerts in case of unusual activities
(e.g., falling, forgetting about cooking). To support task automation, one can exploit
temporal and contextual aspects associated with activities; e.g., sleeping normally
occurs at night in the patient’s bedroom; whereas cooking typically happens in the
kitchen around mealtimes. Similarly, many ADL consist of atomic activities with clear
temporal interrelations: e.g., after waking up, the patient needs to wash up in the
bathroom for 15–20 min; then, the patient should have breakfast in the kitchen.

To represent automated tasks in smart environments, we present a high-level,
context-sensitive rule language called SmartRL, and apply it to an AAL use case. By
linking SmartRL to a domain-specific ontology, we allow for high-level rule specifi-
cation, reduce verboseness, and enable easy variation of rule specificity. In SmartRL
rules, conditions refer to high-level context (location, activity and time), which is

© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 341–349, 2016.
DOI: 10.1007/978-3-319-42019-6_22

continuously inferred by a smart-environment middleware; whereas actions invoke
smart services to perform tasks, raise alerts or instruct the user. Currently, the SmartRL
parser translates (or “expands”) rules into RDF triple pattern-like expressions, which
are fed into our rule engine. We note that this paper focuses on presenting the SmartRL
rule language, and does not detail other aspects of our system; such as the
smart-environment middleware, or its rule engine implementation.

Section 2 presents our running AAL scenario. Section 3 first summarizes our
domain-specific ontology, whereas Sect. 4 elaborates key SmartRL features aimed at
working in smart environments. Section 5 discusses the relevant state of the art, and
Sect. 6 ends with conclusions and future work.

2 AAL Scenario: Sleeping and Morning Routines

This section presents an ADL scenario that illustrates the potential of a
context-sensitive AAL system (which will also be used as a running example).
Sleeping and morning ADL are a recurrent set of complex activities, which patients
carry out daily. Regarding sleeping, abnormal situations include cases where, at
nighttime, the patient is either not in the bedroom or physically active; or where the
patient is inactive and not in the bedroom at daytime. When inconsistent activities
occur, the system alerts the patient or a caregiver. At the same time, allowances must be
made to cases where patients e.g., shortly go to the bathroom during the night, without
sending alerts.

In their morning routine, the patient goes to the bathroom to wash up, and then
heads to the kitchen to prepare breakfast. In support of this, the AAL system changes
ambient conditions (e.g. turn on light, heating) based on the current location, and
reverts them to their initial state afterwards (e.g., a period after leaving the location).
When the patient prepares their breakfast, the system guides them through the meal
preparation, and possibly reminds them about the activity. For instance, the patient can
choose to prepare oatmeal (using stovetop) and bacon (using oven). Instructions are
shown on a screen and updated as time passes: the patient starts with cooking bacon,
and after 5 min, the user should start cooking oatmeal. After 15 min, the oatmeal and
bacon are ready, and the prepare breakfast activity is done. By displaying these
instructions on a screen in the current room (which may differ from the kitchen), the
patient is also reminded of the ongoing activity. Once the meal is done, the patient eats
in the living room while e.g., watching TV or listening to the radio. In this setting, the
AAL system again adapts ambient conditions according to suit the context; if the
patient receives a phone call, the system turns off the volume of all devices in the room,
and reverts them to their original setting after the call.

3 Smart Environment Ontology

This section summarizes the domain ontology leveraged by SmartRL, focusing on
concepts from our AAL use case (Fig. 1). In addition to providing concepts referenced
by rules, the SmartRL parser also uses the ontology to implement certain constructs

342 W. Van Woensel et al.

(e.g., see Sects. 4.2 and 4.3). Technically however, SmartRL can also be made to work
with other suitable ontologies, such as e.g., DomoML-env [2] or OntoDomo [3].

In a smart environment, an Entity (either a Device or a User) is associated with
multiple Contexts; which have a particular ContextValue, as well as other properties
(not shown) such as its certainty, related sensor, type of proximity (in case of loca-
tions), etc. ContextValue subclasses indicate the type of context, and include concrete
Ambient, Time, Area, Property and Activity subtypes. A Device offers a set of Services,
such as issuing alerts (Alert), displaying content (Display), and Sensors and/or Actu-
ators, which sense/influence a particular ContextValue. Finally, a user entity can carry a
smartphone with them as well (carriesDevice).

4 SmartRL Rule Language

This section discusses key SmartRL features, which gear the language towards smart
environments, and exemplifies them in the context of our AAL use case. We show
original SmartRL rules as well as their expanded RDF triple-pattern form, both to
clarify their semantics and illustrate the high-level nature & conciseness of SmartRL.

4.1 Calling Smart Services

Clearly, an important requirement in smart environments is the ability to call smart
services. For this purpose, SmartRL supplies the service-call syntax1:

termh i : serviceh i argumentsh ið Þ
Code 1: Service-call syntax

Fig. 1. Smart environment ontology

1 Syntax is represented using a simplified Backus-Naur Form.

SmartRL: A Context-Sensitive, Ontology-Based Rule Language 343

The following example action calls the “display” service on a bound screen:

Code 2. Service-call example.

This action is expanded to the following triple-based rule, which adds the selection
of a suitable device service to the rule condition:

? screen : offers ? serviceð Þ; ? service a : Displayð Þ ! serviceCallð? service; argsh iÞ
Code 3: Service-call as a triple-pattern rule:

The serviceCall primitive is implemented by our smart-environment middleware.
Currently, we rely on a semantic service stack to annotate smart services, including
SAWSDL [4], and WSMO-Lite [5] combined with domain ontologies; which offers
both high-level service semantics as well as the technical means to contact services.

4.2 Restricting User Context

Rules operating in smart environments will often invoke services depending on the
user’s current context. To that end, SmartRL provides the user-context syntax:

@ user contexth i
Code 4: User-context syntax:

The following expressions restrict firing of the rule depending on the user’s current
activity (inactive), location (in the bedroom), and time (nighttime):

@bedroom & @inactive & @nighttime
Code 5: User-context examples:

To illustrate this, Code 6 shows the triple patterns resulting from @bedroom:

: user : context?cð Þ; ?c : value?bedroomð Þ; ?bedroom a : Bedroomð Þ;
ð? c : proxType : InsideÞ

Code 6: User-context as a triple-pattern condition:

The ontology-based nature of SmartRL enables such symbolic context references,
and also allows restrictions at different levels of granularity; e.g., @bathroom restricts
the user’s current location to the bathroom, whereas @room simply binds the ?room
variable to any kind of room the user is in. Further, to perform its parsing task, our
system analyzes the domain ontology and determines that Bedroom is an Area (see
Fig. 1), resulting in extra context properties (i.e., type of proximity; proxyType). This
kind of ontology analysis is further illustrated in the next section.

344 W. Van Woensel et al.

4.3 Restricting Arbitrary Contexts

In addition to user contexts, the need often arises to restrict the symbolic contexts of
any entity (such as devices). The term-context syntax serves this purpose:

termh i injisð Þ termh i
Code 7: Term-context syntax:

The expression shown in Code 8 restricts ?device to any entity inside the room the
user is currently in (see Sect. 4.2) and that are currently enabled2.

?device in @roomð Þ & ?device is : onð Þ
Code 8: Term-context examples:

Aside from inferred, symbolic context, rules may also put restrictions on low-level
context. For instance, they may refer to ambient conditions inside a room (e.g., tem-
perature) or device context (e.g., volume), which instead have continuous values. We
express such conditions by extending the syntax with property paths:

termh i : nameh ið Þ�
Code 9: Term-context syntax with property paths:

Below, we show an example where the room’s current temperature should be
higher than 20 degrees, and a device’s volume should be below 50 %:

@room:temp[20 & ?device:volume\50
Code 10: Term-context property paths example:

In this case, expressions are expanded to directly refer to low-level values of
suitable sensor services. The SmartRL parser leverages the domain ontology to support
this expansion. In particular, if the supplied name refers to an Ambient subtype (e.g.,
Temp; see Fig. 1), the expanded expression finds values supplied by suitable services,
which are offered by devices inside the term location (only expanding relevant clauses):

?sensor in @roomð Þ; ?sensor : offers?serviceð Þ; ?sensor : senses : Tempð Þ;
?sensor rdf : value?tempð Þ; ?temp[20

Code 11: Term-context as a triple pattern condition:

Alternatively, if nameh i indicates a subtype of Property (e.g., Volume), the resulting
expression similarly finds services, but directly offered by the term device. If the name
does not occur in one of these hierarchies, the parser follows “regular” relations3. The
following condition follows the carriesDevice relation from the user to their smartphone
(regular relation), and only fires the rule if the smartphone’s volume > 0:

2 Such expressions are similarly expanded as shown in Code 6.
3 This may introduce name clashes between concepts and properties (see future work).

SmartRL: A Context-Sensitive, Ontology-Based Rule Language 345

: user:carriesDevice:volume[0
Code 12: Example regular and context-referencing property path:

4.4 Influencing Arbitrary Contexts

In the last two sections, we discussed how SmartRL rules may restrict user or arbitrary
entity contexts. Many smart environment tasks also involve influencing current context;
e.g., setting the temperature, turning on lights, or reducing volume. To that end, we
re-use the previously introduced service-call syntax (see Sect. 4.1). The following
expressions set the temperature in the current room and turn off a device’s volume:

@room : temp 25ð Þ; ?device:volumeð0Þ
Code 13: Service-call examples that directly set context:

Comparable to when referencing arbitrary context (see Sect. 4.3), the parsing
process results in expanded expressions that reference services capable of setting the
indicated context. However, instead of referencing their latest values (e.g., see Code
11), these expressions call the services with the supplied arguments. Codes 18 and 19
(Sect. 4.6) show examples of rules including these kinds of conditions.

4.5 Indicating Temporal Aspects

In smart environments, and especially in AAL scenarios, temporal aspects deserve
special consideration. Complex activities, such as ADL, typically involve temporal
relations between lower-level activities, whereby a certain task should occur a certain
timespan after the other: e.g., when cooking breakfast, one cooks oatmeal for ca.
10 min, and bacon for 15 min. In other cases, important temporal aspects relate to
activities themselves, in particular, allowing reasonable timespans before rule trigger-
ing: e.g., a rule stating that sleeping occurs at night in the bedroom should allow for
short visits to the bathroom. To that end, SmartRL includes a delayed-condition syntax:

conditionh i[timespanh i½
Code 14: Delayed-condition syntax:

The expressions below illustrate two examples from the AAL scenario (Sect. 2).
Code 15 shows rules displaying appropriate instructions on a screen inside the current
room, depending on the passed time (see Sect. 4.7 for a simplified syntax).

346 W. Van Woensel et al.

Code 15. Example ADL using delayed-condition syntax.

The rules in Code 16 support the sleeping activity; stating that, if unusual sleeping
activities are detected, reasonable time allowances are made before e.g., issuing alerts:

½ð@nighttime & ððnot@bedroomÞ j@activeÞÞ[30m ! . . .
@inactive & not@ bedroomð Þ[15m½ ! . . .

Code 16: Example alert rules using delayed-condition syntax:

4.6 Reverting Task Effects

As illustrated before, smart tasks are typically performed in certain contexts to assist
user activities. After leaving those contexts, these tasks’ effects often need to be
reverted, however. For this purpose, SmartRL includes a cleanup-rule syntax (together
with a reserved : init keyword):

ruleh i � cleanup ruleh i
Code 17:Cleanup-rule syntax:

The rule below initially sets a room’s temperature to 25º C if the user is inside for
longer than 30 s; afterwards, its associated cleanup-rule resets the temperature to its
original level, in case the user is not inside the room for longer than 1 min.

@roomð Þ[30s½ ! ?room : temp 25ð Þ
� not ?roomð Þ[1m½ ! ?room : tempð: initÞ

Code 18: Example cleanup-rule for setting room temperature:

Code 19 shows a rule that, when calling, reduces the volume of nearby devices;
afterwards, and once the call is over, the volumes are reverted to their original setting.

: user:carriesDevice:incomingCall & ?device in@room ! ?device : volumeð0Þ
�: user:carriesDevice:callDone ! ? device : volumeð: initÞ

Code 19: Example cleanup-rule when dealing with incoming calls:

To implement this feature, the cleanup-rule is activated after its associated rule is
fired, and instantiated for each value unifying the original rule. In case the : init
keyword is used, the system first retrieves the original context value.

SmartRL: A Context-Sensitive, Ontology-Based Rule Language 347

4.7 Grouping Related Rules

Especially when implementing sub-activities of complex activities (such as ADL),
rules will often share preconditions. To facilitate specifying such routine activities,
SmartRL supports the ruleset syntax:

condition ruleh i;ð Þ þf g
Code 20: Ruleset syntax:

This ruleset represents the cooking activity from our waking-up ADL (see Sect. 2):

Code 21. Example cooking rule using ruleset syntax.

Similarly, the ruleset below illustrates the washing-up activity:

@wokenUp f
! : bathroom : temp 25ð Þ; : bathroom : light 100ð Þ;

� ½ðnot@bathroomÞ[5min
! ?bathroom : temp : initð Þ; ?bathroom : light : initð Þ;

[20min½ ! : kitchen : temp 25ð Þ; : kitchen : light 100ð Þgg:
Code 22:Example wokenUp rule using ruleset syntax:

5 State of the Art

The literature contains a number of context-sensitive, rule-based approaches to regulate
behaviors in smart environments. Here, we limit our search to works that focus on
simplifying rule specification or introduce special domain-specific constructs.

In general, other authors seem to have realized the utility of relying on ontologies
for high-level rule specification [3, 6, 7]. To facilitate specifying rules, some works
supply a rule creation UI [3, 8]. In particular, the authors in [8] present a straightfor-
ward mobile UI, and do not elaborate on the rule format. In [3], the authors present a
Protégé-plugin that allows users to select rule concepts from taxonomies. However, the
resulting rules seem just as elaborate and cumbersome to write as the extended
triple-pattern rules presented in this paper. In the general domain of pervasive com-
puting, the Awareness and Notification Service (ANS) [7] rule language focuses on
informing users about their environment in particular. For this purpose, the authors
introduce 3 keywords: upon (receiving an event), when (a precondition is met), do
(notify users) as well as a scope construct to parameterize rules. However, we were
unable to find works that present an elaborate, domain-specific rule language for smart
environments.

348 W. Van Woensel et al.

6 Conclusions and Future Work

This paper presented SmartRL, a tailored, ontology-based language for specifying
context-sensitive rules in smart environments; and applied the language to an AAL use
case. SmartRL includes constructs geared towards smart environments, which may call
smart services, restrict the context of the user or any arbitrary entity, and directly
influence device or location context. Further, we pay special consideration to temporal
aspects, reverting rule effects, and specifying routines. By contrasting SmartRL rules to
their expanded, triple-based format, we illustrated its high-level and concise nature.

Future work involves dealing with uncertainty; currently, our system relies on
global limits for context certainty. To deal with naming clashes in property paths (see
Sect. 4.3), we plan to extend our parser to detect ambiguities. Finally, we aim to
evaluate additional AAL scenarios, which may result in adding new language
constructs.

References

1. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults.
IEEE J. Biomed. Health Inform. 17, 579–590 (2013)

2. Sommaruga, L., Perri, A., Furfari, F.: DomoML-env: an ontology for human home interac-
tion. In: SWAP, pp. 1–7. CEUR-WS.org (2005)

3. Valiente-Rocha, P.A., Lozano-Tello, A.: Ontology-based expert system for home automation
controlling. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.)
IEA/AIE 2010, Part I. LNCS, vol. 6096, pp. 661–670. Springer, Heidelberg (2010)

4. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema (W3C Recom-
mendation 2007). https://www.w3.org/TR/sawsdl/

5. Fensel, D., Fischer, F., Kopecký, J., Krummenacher, R., Lambert, D., Vitvar, T.: WSMO-Lite:
Lightweight Semantic Descriptions for Services on the Web (W3C Member Submission
2010). https://www.w3.org/Submission/WSMO-Lite/

6. Bonino, D., Corno, F.: Rule-based intelligence for domotic environments. Autom. Constr. 19,
183–196 (2010)

7. Etter, R., Costa, P.D., Broens, T.: A rule-based approach towards context-aware user notifi-
cation services. In: ACS/IEEE International Conference on Pervasive Services, pp. 281–284.
IEEE (2006)

8. Herbert, J., O’Donoghue, J., Chen, X.: A context-sensitive rule-based architecture for a smart
building environment. In: 2nd International Conference on Future Generation Communication
and Networking, FGCN 2008, pp. 437–440 (2008)

SmartRL: A Context-Sensitive, Ontology-Based Rule Language 349

https://www.w3.org/TR/sawsdl/
https://www.w3.org/Submission/WSMO-Lite/

Author Index

Abidi, Syed Sibte Raza 341
Agli, Hamza 53
Al Khalil, Firas 258
Antoniou, Grigoris 325

Baryannis, George 325
Bhatt, Mehul 199
Boley, Harold 19, 130
Bonnard, Philippe 53

Cassavia, Nunziato 287
Ceci, Marcello 258
Cervesato, Iliano 113
Costantini, Stefania 97

D’Ambrosio, Claudia 83
De Gasperis, Giovanni 97
de Sainte Marie, Christian 83

Elgazar, Ali 113

Ferilli, Stefano 37
Frühwirth, Thom 208, 223

Gall, Daniel 223
Gonzales, Christophe 53
Governatori, Guido 167

Harris, Greg 307
Hashmi, Mustafa 241
Hovland, Dag 269

Idelberger, Florian 167

Juels, Ari 151
Julián-Iranzo, Pascual 68

Ke, Changhai 83

Lam, Edmund Soon Lee 113
Lam, Ho-Pun 241
Lanti, Davide 269
Liberti, Leo 83

Marino, Bill 151
Masciari, Elio 287
Moreno, Ginés 68

O’Brien, Leona 258

Panangadan, Anand 307
Penabad, Jaime 68
Prasanna, Viktor K. 307
Pulice, Chiara 287

Rezk, Martin 269
Riveret, Régis 167
Roy, Patrice C. 341

Saccà, Domenico 287
Sartor, Giovanni 167
Schultz, Carl 199
Scofield, Brendan 241
Swan, Melanie 184

Van Woensel, William 341
Vázquez, Carlos 68

Wang, Olivier 83
Woznowski, Przemyslaw 325
Wuillemin, Pierre-Henri 53

Xiao, Guohui 269

Yapa, Kosala 258

Zhou, Neng-Fa 3
Zou, Gen 130

	Preface
	Organization
	Invited Papers Abstracts
	Natural Language Access to Data: It Needs Reasoning
	DMN as a Decision Modeling Language
	Programming in Picat
	Practical Knowledge Representation and Reasoning in Ergo
	The RuleML Knowledge-Interoperation Hub

	Contents
	Invited Papers
	Programming in Picat
	1 Introduction
	2 Store Credit
	3 Minimum Scalar Product
	4 Alien Numbers
	5 Alien Language
	6 Egg Drop
	7 Summary
	References

	The RuleML Knowledge-Interoperation Hub
	1 Introduction
	2 Knowledge Representation System
	2.1 Configuration of Textbook and Enriched Relax NG Syntax
	2.2 Logics Associating Syntactic Languages with Semantic Profiles

	3 Knowledge Transformation Tool Suite
	3.1 Serialized Formatters
	3.2 Polarized Parsers and Generators
	3.3 Importers and Exporters

	4 N3-PSOA-Flora Knowledge-Interoperation Use Case
	5 Conclusions
	References

	General RuleML Track
	Handling Complex Process Models Conditions Using First-Order Horn Clauses
	1 Introduction
	2 Background and Related Work
	3 The WoMan Formalism
	4 Sample Application
	5 Conclusions
	References

	Business Rules Uncertainty Management with Probabilistic Relational Models
	1 Introduction and Related Work
	2 Preliminaries
	2.1 Object-Oriented BRs
	2.2 PRMs

	3 Coupling BRs and PRMs
	3.1 Probabilistic Rules
	3.2 BRs Object Model Extension

	4 Implementation
	4.1 Compilation Process
	4.2 Advanced Probabilistic Rules
	4.3 A Loosely Coupling-Based Execution

	5 Conclusion
	References

	A Declarative Semantics for a Fuzzy Logic Language Managing Similarities and Truth Degrees
	1 Introduction
	2 The FASILL Language
	3 Declarative Semantics of FASILL
	4 Conclusions and Future Work
	References

	Controlling the Average Behavior of Business Rules Programs
	1 Introduction
	1.1 Related Works

	2 MIP Constraints for the BR Program Dynamics
	2.1 Modeling a BR Program
	2.2 A MIP Formulation

	3 A MILP Reformulation
	4 Implementation and Experiments
	4.1 Scalability
	4.2 Accuracy

	5 Conclusion, Discussion and Future Work
	References

	Bridge Rules for Reasoning in Component-Based Heterogeneous Environments
	1 Introduction
	2 Bridge Rules and Multi-Context Systems: Background
	3 Motivating Scenario and Discussion
	4 Proposed Extensions
	4.1 Grounded Knowledge Assumption
	4.2 Update Problem
	4.3 Static System and Full System Knowledge Assumption
	4.4 Unique Source Assumption

	5 Concluding Remarks
	References

	Choreographic Compilation of Decentralized Comprehension Patterns
	1 Introduction
	2 A Motivating Example
	3 Core Comingle
	4 Neighbor Restriction
	5 Choreographic Transformation
	5.1 An Example
	5.2 Choreographic Compilation

	6 Formal Results
	7 Related Works
	8 Conclusions
	References

	Minimal Objectification and Maximal Unnesting in PSOA RuleML
	1 Introduction
	2 PSOA RuleML
	3 Minimal Objectification
	3.1 New Semantics for Oidless Psoa Terms
	3.2 Static Objectification Transformations
	3.3 Static/Dynamic Objectification Transformation

	4 Maximal Unnesting
	4.1 Syntax and Semantics of Embedded Psoa Terms
	4.2 Unnesting Transformation for Embedded Psoa Atoms

	5 Conclusions
	References

	Smart Contracts, Blockchain and Rules
	Setting Standards for Altering and Undoing Smart Contracts
	Abstract
	1 Introduction
	2 Termination and Rescission of Smart Contracts
	2.1 Termination and Rescission Generally
	2.2 Termination by Right
	2.3 Rescission by Agreement
	2.4 Rescission by Court

	3 Modification and Reformation of Smart Contracts
	3.1 Modification and Reformation of Smart Contracts
	3.2 Modification by Right
	3.3 Modification by Agreement
	3.4 Reformation

	4 Testing Our New Standards on Ethereum
	4.1 Ethereum Generally
	4.2 Undoing Contracts on Ethereum
	4.3 Modifying Contracts on Ethereum

	5 Conclusion and Future Work
	References

	Evaluation of Logic-Based Smart Contracts for Blockchain Systems
	1 Introduction
	2 Blockchain Systems
	3 Logic-Based Smart Contracts
	4 Utility of Logic-Based Smart Contracts
	5 Use of Logic-Based Smart Contracts with Blockchain Systems
	5.1 Off-Chain Options
	5.2 On-Chain Options

	6 Conclusion
	References

	Blockchain Temporality: Smart Contract Time Specifiability with Blocktime
	Abstract
	1 Introduction
	1.1 Background Context
	1.2 Computational Substrates

	2 Properties of Blockchain Computing
	2.1 Byzantine Agreement
	2.2 Blockchain Supercomputing
	2.3 Blockchain Consensus Algorithms
	2.4 New Classes of Blockchain Applications
	2.5 Blockchains and Complexity

	3 Turing Completeness and Blocktime
	3.1 Temporality as a Feature
	3.2 Blocktime Arbitrage
	3.3 Computing Creates Novel Temporalities of Discontinuity and Prediction
	3.4 Blockchain Historicity: Computer Memory of Human Events

	4 Conclusion
	References

	Constraint Handling Rules
	A Numerical Optimisation Based Characterisation of Spatial Reasoning
	1 Introduction
	2 Spatial Representation and Reasoning
	2.1 Formulating Spatial Semantics as Numerical Optimisation

	3 Spatial Variables in Prolog
	4 Empirical Examples
	5 Related Work and Conclusions
	References

	Why Can't You Behave? Non-termination Analysis of Direct Recursive Rules with Constraints
	1 Introduction
	2 Preliminaries
	2.1 Abstract Syntax of CHR
	2.2 Abstract Operational Semantics of CHR

	3 A Basic Misbehavior Condition for Non-Termination
	4 The Main Misbehavior Condition
	4.1 Lemmata
	4.2 Main Misbehavior Theorem
	4.3 Containment Theorem

	5 Conclusions
	References

	Translation of Cognitive Models from ACT-R to Constraint Handling Rules
	1 Introduction
	2 Preliminaries
	2.1 Constraint Handling Rules
	2.2 Informal Description of ACT-R
	2.3 Syntax
	2.4 Operational Semantics

	3 Translation
	3.1 Set Normal Form
	3.2 Translation of States
	3.3 Translation of Rules
	3.4 No Rule Transition

	4 Discussion
	5 Related Work
	6 Conclusion and Future Work
	References

	Legal Rules and Reasoning
	Enabling Reasoning with LegalRuleML
	1 Introduction
	2 A Sample Contract
	3 Modal Defeasible Logic: An Informal Introduction
	4 LegalRuleML: The Legal Rule Markup Language
	4.1 Premises and Conclusions
	4.2 Rules and Rulebases
	4.3 Other Constructs
	4.4 Implementation

	5 Related Works
	6 Conclusions
	References

	SBVR to OWL 2 Mapping in the Domain of Legal Rules
	1 Introduction
	2 SBVR
	3 FIRO
	4 The Vocabulary
	4.1 Definitions
	4.2 Mappings

	5 The Rulebook
	5.1 Definitions
	5.2 Mappings

	6 State of the Art
	7 Conclusion
	References

	Rule- and Ontology-Based Data Access and Transformation
	OBDA Constraints for Effective Query Answering
	1 Introduction
	2 Preliminaries
	3 SPARQL Query Answering in OBDA
	4 OBDA Constraints
	4.1 Exact Predicates in an OBDA Instance
	4.2 Functional Dependencies in an OBDA Instance
	4.3 Enriching the OBDA Specification with Constraints

	5 Experiments
	6 Related Work
	7 Conclusions
	References

	A Framework Enhancing the User Search Activity Through Data Posting
	1 Introduction
	2 Real-Time Faceted Navigation
	3 Enriching the Data: The Data Posting Challenge
	3.1 Data Exchange
	3.2 Data Posting

	4 Conclusion
	References

	Rule Induction and Learning
	PRIMER -- A Regression-Rule Learning System for Intervention Optimization
	1 Introduction
	1.1 Intervention Optimization
	1.2 Interpretability

	2 Related Work
	3 PRIMER
	3.1 Separate-and-Conquer with Beam Search
	3.2 Objective Function

	4 Experiments
	4.1 Data
	4.2 PRIMER Settings
	4.3 Evaluation Method
	4.4 Baselines for Comparison

	5 Results
	6 Discussion
	7 Conclusion
	References

	Event Driven Architectures and Active Database Systems
	Rule-Based Real-Time ADL Recognition in a Smart Home Environment
	1 Introduction
	2 Background
	2.1 Experimental Testbed
	2.2 ADL Ontology

	3 Offline ADL Recognition
	3.1 Door Interaction
	3.2 Electrical Devices
	3.3 Water Flow
	3.4 Complex Activities
	3.5 PIR-based Location
	3.6 Video-Based Location
	3.7 Fused Location

	4 Real-Time ADL Recognition
	4.1 Environmental Sensors
	4.2 PIR-Based Location
	4.3 Video-Based Location
	4.4 Fused Location

	5 Experimental Evaluation
	5.1 Implementation
	5.2 Data Collection
	5.3 Experiments Setup
	5.4 Evaluation Results

	6 Related Work
	7 Conclusions and Future Work
	References

	SmartRL: A Context-Sensitive, Ontology-Based Rule Language for Assisted Living in Smart Environments
	Abstract
	1 Introduction
	2 AAL Scenario: Sleeping and Morning Routines
	3 Smart Environment Ontology
	4 SmartRL Rule Language
	4.1 Calling Smart Services
	4.2 Restricting User Context
	4.3 Restricting Arbitrary Contexts
	4.4 Influencing Arbitrary Contexts
	4.5 Indicating Temporal Aspects
	4.6 Reverting Task Effects
	4.7 Grouping Related Rules

	5 State of the Art
	6 Conclusions and Future Work
	References

	Author Index

