
Martyn Amos
Anne Condon (Eds.)

 123

LN
CS

 9
72

6

15th International Conference, UCNC 2016
Manchester, UK, July 11–15, 2016
Proceedings

Unconventional Computation
and Natural Computation

Lecture Notes in Computer Science 9726

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Martyn Amos • Anne Condon (Eds.)

Unconventional Computation
and Natural Computation
15th International Conference, UCNC 2016
Manchester, UK, July 11–15, 2016
Proceedings

123

Editors
Martyn Amos
Manchester Metropolitan University
Manchester
UK

Anne Condon
University of British Columbia
Vancouver, BC
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-41311-2 ISBN 978-3-319-41312-9 (eBook)
DOI 10.1007/978-3-319-41312-9

Library of Congress Control Number: 2016942527

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains papers presented at the 15th Unconventional Computation and
Natural Computation Conference (UCNC 2016), which was held in Manchester, UK,
during July 11–15, 2016.

As a field of research, unconventional computation augments classical modes of
computation (i.e., the Turing and von Neumann models), by offering new conceptual
frameworks, abstractions, substrates, and applications. Intersecting with this field is the
study of natural computation, which draws inspiration from the physical world to
develop new forms of computing. Taken together, these two deeply related fields offer
the possibility of entirely new forms of computational devices and applications, as well
as providing a space in which to rethink the entire notion of “computation” and
“computability.”

Topics that are generally considered to be within scope of the conference include
(but are not limited to):

– Molecular, cellular, quantum, optical, and chaos computing
– Cellular automata
– Neural and evolutionary computation
– Artificial immune systems
– Ant algorithms and swarm intelligence
– Amorphous computing
– Membrane computing
– Computational systems biology and computational neuroscience
– Synthetic biology

The first UCNC was held in Auckland, New Zealand, in 1998, organized by the
Centre for Discrete Mathematics and Theoretical Computer Science, University of
Auckland, and the Santa Fe Institute. Since then, it has been held in Brussels, Belgium
(2000), Kobe, Japan (2002), Seville, Spain (2005), York, UK (2006), Kingston,
Canada (2007), Vienna, Austria (2008), Ponta Delgada, Portugal (2009), Tokyo, Japan
(2010), Turku, Finland (2011), Orléans, France (2012), Milan, Italy (2013), London,
Ontario, Canada (2014), and Auckland, New Zealand (2015, the first time the con-
ference has returned to a site).

The 15th iteration of UCNC was organized and hosted by the Informatics Research
Centre of Manchester Metropolitan University, UK. The conference received 30
full-paper submissions, of which we accepted 15 for oral presentation. We were also
pleased to host six distinguished speakers:

Invited Lectures:

– Bob Coecke (University of Oxford, UK): “In Pictures: From Quantum Foundations
to Natural Language Processing”

– Steve Furber (University of Manchester, UK): “The SpiNNaker Project”

– Friedrich Simmel (Technische Universität München, Germany): “Chemical Com-
munication Between Cell-Sized Reaction Compartments”

Tutorials

– Masami Hagiya (University of Tokyo, Japan): “Gellular Automata”
– Rebecca Schulman (Johns Hopkins University, USA): “Self-Assembling Adaptive

Structures with DNA”
– Jon Timmis (University of York, UK): “Many Hands Make Light Work: A Case

Study in Swarm Robotics”

Fundamental to the spirit of UCNC are the satellite workshops, which allow par-
ticipants to focus on specific areas of interest. We were delighted to host two such
sessions:

– Membrane Computing (organized by Marian Gheorghe and Savas Konur)
– Physics and Computation (organized by Alastair Abbott and Dominic Horsman)

We thank the authors and invited speakers for contributing to the meeting, and the
workshop organizers for enriching the event. We thank the Program Committee and the
additional reviewers for their exemplary work in assessing the submissions, and
the Organizing Committee for their efforts on behalf of the meeting. We also thank the
Dean of Science and Engineering and the Informatics Research Centre for sponsoring
the event, the LNCS team at Springer (Alfred Hofmann and Anna Kramer) for sup-
porting the continued publication of the UCNC proceedings, and the EasyChair project
for providing essential infrastructure.

July 2016 Martyn Amos
Anne Condon

VI Preface

Organization

Steering Committee

Thomas Bäck Leiden University, The Netherlands
Cristian S. Calude University of Auckland, New Zealand; Founding Chair
Lov K. Grover Bell Labs, USA
Natasha Jonoska University of South Florida, USA; Co-chair
Jarkko Kari University of Turku, Finland; Co-chair
Lila Kari University of Western Ontario, Canada
Seth Lloyd Massachusetts Institute of Technology, USA
Giancarlo Mauri Università degli Studi di Milano-Bicocca, Italy
Gheorghe Paun Institute of Mathematics of the Romanian Academy, Romania
Grzegorz Rozenberg Leiden University, The Netherlands; Emeritus Chair
Arto Salomaa University of Turku, Finland
Tommaso Toffoli Boston University, USA
Carme Torras Institute of Robotics and Industrial Informatics, Spain
Jan van Leeuwen Utrecht University, The Netherlands

Program Committee

Andy Adamatzky University of the West of England, UK
Martyn Amos Manchester Metropolitan University, UK; Co-chair
Peter Banda University of Luxembourg
Kobi Benenson ETH Zurich, Switzerland
Cristian Calude University of Auckland, New Zealand
Anne Condon University of British Columbia, Canada; Co-chair
Mark Daley University of Western Ontario, Canada
Giuditta Franco University of Verona, Italy
Àngel Goñi Moreno National Centre for Biotechnology, Spain
Natasha Jonoska University of South Florida, USA
Jarkko Kari University of Turku, Finland
Lila Kari University of Western Ontario, Canada
Viv Kendon Durham University, UK
Niall Murphy University of Cambridge, UK
Turlough Neary University of Zurich/ETH Zurich, Switzerland
Pekka Orponen Aalto University, Finland
Jennifer Padilla Boise State University, USA
Matthew Patitz University of Arkansas, USA
Susan Stepney University of York, UK
Scott Summers University of Wisconsin Oshkosh, USA

Organizing Committee
Martyn Amos Manchester Metropolitan University, UK; Co-chair
James Charnock Manchester Metropolitan University, UK
Matthew Crossley Manchester Metropolitan University, UK
Rene Doursat Manchester Metropolitan University, UK; Co-chair
Emma Norling Manchester Metropolitan University, UK

Additional Reviewers

Robert Brijder
Alexander Carruth
Cameron Chalk
Ho-Lin Chen
Matthew Cook
Matthew Crossley

Max Garzon
Daniela Genova
Mehrsa Golestaneh
Jacob Hendricks
Mika Hirvensalo
James Hughes

Ethan Jackson
Sandi Klavzar
Kalpana Mahalingam
Daniel Richards
Trent Rogers

VIII Organization

Abstracts of Invited Talks

In Pictures: from Quantum Foundations
to Natural Language Processing

Bob Coecke

Department of Computer Science, University of Oxford, UK
coecke@cs.ox.ac.uk

Abstract. This talk requires no background in physics, nor in linguistics, nor in
fancy math! Earlier work on an entirely diagrammatic formulation of quantum
theory, which is soon to appear in the form of a textbook [1], has somewhat
surprisingly guided us towards an answer for the following question [2]: how do
we produce the meaning of a sentence given that we understand the meaning of
its words? This work has practical applications in the area of natural language
processing, and the resulting tools have meanwhile outperformed existing
methods.

References

1. Coecke, B., Kissinger, A.: Picturing Quantum Processes. A First Course on Quantum Theory
and Diagrammatic Reasoning. Cambridge University Press (2016, to appear)

2. Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical foundations for a compositional distri-
butional model of meaning. arXiv:1003.4394 (2010)

The SpiNNaker Project

Steve Furber

School of Computer Science, The University of Manchester,
Manchester M13 9PL, UK

steve.furber@manchester.ac.uk

Abstract. Just two years after the world’s first stored program computer ran its
first program at Manchester in 1948, Alan Turing published his seminal paper
on “Computing Machinery and Intelligence”. The paper opens with the words:
‘I propose to consider the question, “Can machines think?”’. Turing then goes
on to explore this question through what he calls “The Imitation Game”, but
which subsequent generations simply call “The Turing Test”. Despite spectac-
ular progress in the performance and efficiency of machines since Turing’s time,
we have yet to see any convincing demonstration of a machine that can pass his
test. This would have surprised Turing - he believed that all that would be
required was more memory. Although cognitive systems are beginning to dis-
play impressive environmental awareness, they do not come close to the sort of
“thinking” that Turing had in mind. My take on the problems with true artificial
intelligence is that we still really haven’t worked out what natural intelligence is.
Until we do, all discussion of machine intelligence and the “singularity” are
specious. Based on this view, we need to return to the source of natural intel-
ligence, the human brain.

The SpiNNaker project has been 18 years in conception and 10 years in
construction, but is now ready to contribute to the growing global community
(exemplified by the EU Human Brain Project) that is aiming to deploy the vast
computing resources now available to us to accelerate our understanding of the
brain, with the ultimate goal of understanding the information processing
principles at work in natural intelligence. SpiNNaker is a massively-parallel
computer system, ultimately to incorporate a million ARM processor cores (the
largest machine to date has 500,000 cores) with an innovative lightweight
packet-switched communications fabric capable of supporting typical biological
connectivity patterns in biological real time.

Gellular Automata

Masami Hagiya

University of Tokyo, Japan
hagiya@is.s.u-tokyo.ac.jp

Abstract. Computational models derived from the research efforts to implement
cellular automata by gel materials are presented. The models are given the name
“gellular automata” using the adjective “gellular” which resembles “cellular”.
The efforts have been made in the research project “Molecular Robotics”. In
addition to computational models and their theoretical investigations, imple-
mentation techniques and possible applications of gellular automata are also
touched upon.

Two kinds of gellular automata models have been investigated. One is
diffusion-based and implemented by capsules made of gel shells containing
water solutions. The problems caused by relying only on free molecular diffu-
sion for cellular communication are discussed together with some approaches to
solve the problems. The efforts to actually implement this kind of model using
the alginic acid gel are also presented.

The other kind of model is based on gel walls (or valves) that can be opened
or closed by molecules in solutions separated by the gel walls. In relation to this
kind of model, DNA-based gels have been examined for implementing gel
walls. Theoretical contributions in this line of research include the proof of
computational universality and the implementation of block cellular automata
with the Margolus neighborhood.

Possible applications of gellular automata include soft materials that form
patterns possibly under stimuli from the environment, e.g., artificial organs.

Some efforts in the research project to go beyond models of cellular auto-
mata are also touched upon, i.e., efforts to realize swarm intelligence by
molecular robots.

Self-Assembling Adaptive Structures
with DNA

Rebecca Schulman

Chemical and Biomolecular Engineering and Computer Science,
Johns Hopkins University, USA

rschulm3@jhu.edu

Abstract. How could we program the self-assembly of a something as complex
as an animal or a human being? From a strictly organizational point of view,
self-assembly of such a structure would require organization across scales
ranging from the angstrom scale to the meter scale. At the smallest size scales, it
is possible to directly encode structure using a molecular sequence or set of
sequences such that each unit of the structure is encoded by a specific molecular
unit. But at larger size scales new mechanisms for organization are required.
One general emerging principle of organization at these scales is that molecules
encode a self-assembly process in which the final structure is functional but its
shape can vary from one incarnation to the next. I’ll describe how we might
phrase such a problem of “adaptive” or “self-adjusting” self-assembly as a
computational question and how we might implement such processes using
molecules such as DNA.

As a case study of adaptive materials, we will consider networks formed
from one-dimensional structures and junctions. Such networks exist across all
size scales: networks of wires and devices form circuits, beams and joints form
buildings. In biological systems, networks of axons, dendrites and neuronal cell
bodies make up the brain and filaments such as actin and organizing proteins
make up the cytoskeleton. I’ll describe how we can consider how local pro-
grammable rules could be used to form such complex structures and how we
could program many of these rules using interactions between DNA molecules.

Many Hands Make Light Work: A Case Study
in Swarm Robotics

Jon Timmis

Department of Electronics, University of York, UK
jon.timmis@york.ac.uk

Abstract. There is increasing research in the area of swarm robotics, that is
using many robots working together to solve problems, inspired (typically) by
social insects. In this tutorial we will explore the area of swarm robotics, but also
the wider area of collective robotics and how to develop collaborative dis-
tributed systems. We will also examine the use of evolutionary algorithms in
swarm robotics to evolve both the controller and morphology of the robot at the
same time, creating embodied artificial intelligence. We will end the tutorial on
challenges for the area. This tutorial assumes no knowledge of swarm robotics.

Chemical Communication Between Cell-Sized
Reaction Compartments

Friedrich Simmel

TU München – Physics Department E14, 85748 Garching, Germany

Abstract. The exchange of signals between information-processing agents is an
important requirement for the coordination of their actions and may be utilized
for the implementation of various “amorphous” computing schemes [1]. In
biology, chemical interactions between cells are utilized, e.g., in differentiation
and pattern formation, sensing and signaling. One of the most studied processes
in bacteria is the “quorum sensing” phenomenon, in which bacteria exchange
small diffusible genetic inducers and thus mutually influence their gene
expression [2]. In this talk, we will discuss various implementations of synthetic
chemical communication schemes between artificial cell-sized compartments,
between bacteria, and also between bacteria and cell-free compartments [3–5].
In particular, we will discuss the production and detection of quorum sensing
signals within emulsion droplets containing either genetically engineered bac-
teria or bacterial cell extract, and their utilization for simple computation and
pattern formation processes.

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T.F., Nagpal, R., Rauch,
E., Sussman, G.J., Weiss, R., Homsy, G.: Amorphous computing. Commun. ACM 43, 74–82
(2000)

2. Waters, C.M., Bassler, B.L.: Quorum sensing: cell-to-cell communication in bacteria. Annu.
Rev. Cell. Dev. Biol. 21, 319–346 (2005)

3. Weitz, M., Mückl, A., Kapsner, K., Berg, R., Meyer, A., Simmel, F.C.: Communication and
computation by bacteria compartmentalized within microemulsion droplets. J. Am. Chem.
Soc. 136, 72–75 (2014)

4. Ramalho, T., Meyer, A., Mückl, A., Kapsner, K., Gerland, U., Simmel, F.C.: Single cell
analysis of a bacterial sender-receiver system. PLoS One 11, e0145829 (2016)

5. Schwarz-Schilling, M., Aufinger, L., Mückl, A., Simmel, F.C.: Chemical communication
between bacteria and cell-free gene expression systems within linear chains of emulsion
droplets. Integr. Biol. 8, 564–570 (2016)

Contents

Reachability Problems for Continuous Chemical Reaction Networks 1
Adam Case, Jack H. Lutz, and D.M. Stull

An All-Optical Soliton FFT Computational Arrangement
in the 3NLSE-Domain . 11

Anastasios G. Bakaoukas

Babbage Meets Zuse: A Minimal Mechanical Computer 25
Raúl Rojas

Generative Power of Matrix Insertion-Deletion Systems with Context-Free
Insertion or Deletion . 35

Henning Fernau, Lakshmanan Kuppusamy, and Indhumathi Raman

Evolving Carbon Nanotube Reservoir Computers . 49
Matthew Dale, Julian F. Miller, Susan Stepney, and Martin A. Trefzer

Global Network Cooperation Catalysed by a Small Prosocial
Migrant Clique . 62

Steve Miller and Joshua Knowles

Model-Based Computation . 75
Cameron Beebe

In Vitro Implementation of a Stack Data Structure Based on DNA
Strand Displacement . 87

Harold Fellermann, Annunziata Lopiccolo, Jerzy Kozyra,
and Natalio Krasnogor

Analysis of Boolean Logic Gates Logical Complexity for Use
with Spiking Memristor Gates . 99

Ella Gale

Language Recognition Power and Succinctness of Affine Automata 116
Marcos Villagra and Abuzer Yakaryılmaz

Training a Carbon-Nanotube/Liquid Crystal Data Classifier Using
Evolutionary Algorithms . 130

Eléonore Vissol-Gaudin, Apostolos Kotsialos, M. Kieran Massey,
Dagou A. Zeze, Chris Pearson, Chris Groves, and Michael C. Petty

Towards Quantitative Verification of Reaction Systems 142
Artur Męski, Maciej Koutny, and Wojciech Penczek

http://dx.doi.org/10.1007/978-3-319-41312-9_1
http://dx.doi.org/10.1007/978-3-319-41312-9_2
http://dx.doi.org/10.1007/978-3-319-41312-9_2
http://dx.doi.org/10.1007/978-3-319-41312-9_3
http://dx.doi.org/10.1007/978-3-319-41312-9_4
http://dx.doi.org/10.1007/978-3-319-41312-9_4
http://dx.doi.org/10.1007/978-3-319-41312-9_5
http://dx.doi.org/10.1007/978-3-319-41312-9_6
http://dx.doi.org/10.1007/978-3-319-41312-9_6
http://dx.doi.org/10.1007/978-3-319-41312-9_7
http://dx.doi.org/10.1007/978-3-319-41312-9_8
http://dx.doi.org/10.1007/978-3-319-41312-9_8
http://dx.doi.org/10.1007/978-3-319-41312-9_9
http://dx.doi.org/10.1007/978-3-319-41312-9_9
http://dx.doi.org/10.1007/978-3-319-41312-9_10
http://dx.doi.org/10.1007/978-3-319-41312-9_11
http://dx.doi.org/10.1007/978-3-319-41312-9_11
http://dx.doi.org/10.1007/978-3-319-41312-9_12

Traversal Languages Capturing Isomorphism Classes of Sierpiński Gaskets . . . 155
Nataša Jonoska, Milé Krajčevski, and Gregory McColm

Discrete DNA Reaction-Diffusion Model for Implementing Simple
Cellular Automaton . 168

Ibuki Kawamata, Satoru Yoshizawa, Fumi Takabatake, Ken Sugawara,
and Satoshi Murata

Universal Totalistic Asynchonous Cellular Automaton and Its Possible
Implementation by DNA . 182

Teijiro Isokawa, Ferdinand Peper, Ibuki Kawamata, Nobuyuki Matsui,
Satoshi Murata, and Masami Hagiya

Author Index . 197

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-41312-9_13
http://dx.doi.org/10.1007/978-3-319-41312-9_14
http://dx.doi.org/10.1007/978-3-319-41312-9_14
http://dx.doi.org/10.1007/978-3-319-41312-9_15
http://dx.doi.org/10.1007/978-3-319-41312-9_15

Reachability Problems for Continuous Chemical
Reaction Networks

Adam Case, Jack H. Lutz(B), and D.M. Stull

Department of Computer Science, Iowa State University, Ames, IA 50011, USA
{adamcase,lutz,dstull}@iastate.edu

Abstract. Chemical reaction networks (CRNs) model the behavior of
molecules in a well-mixed solution. The emerging field of molecular
programming uses CRNs not only as a descriptive tool, but as a pro-
gramming language for chemical computation. Recently, Chen, Doty and
Soloveichik introduced rate-independent continuous CRNs (CCRNs) to
study the chemical computation of continuous functions. A fundamen-
tal question for any CRN model is reachability, the question whether a
given target state is reachable from a given start state via a sequence of
reactions (a path) in the network. In this paper, we investigate CCRN-
REACH, the reachability problem for rate-independent continuous chem-
ical reaction networks. Our main theorem is that, for CCRNs, decid-
ing reachability–and constructing a path if there is one–is computable
in polynomial time. This contrasts sharply with the known exponential
space hardness of the reachability problem for discrete CRNs. We also
prove that the related problem Sub-CCRN-REACH, which asks about
reachability in a CCRN using only a given number of its reactions, is
NP-complete.

1 Introduction

Abstract chemical reaction networks (CRNs) model chemical interactions in a
well-mixed solution. Informally, a CRN consists of a finite set of species of chem-
icals (usually written abstractly as capital letters A, B, etc.) and a finite set of
reactions among these species. A simple example is the CRN consisting of species
A, B and C, with one reaction 2A+B

k−→ 2C (taking A to be the hydrogen mole-
cule H2, B to be the oxygen molecule O2, and C to be the water molecule H2O,
this CRN models the formation of water molecules with kinetic rate constant
k). CRNs have historically been used as a descriptive tool, allowing researchers
to formally analyze the behavior of natural chemical systems. However, the field
of molecular programming has recently brought CRNs to prominence as a pro-
gramming language for chemical computation. Molecular programming, as the

This research was supported in part by National Science Foundation Grants
1247051 and 1545028. Part of the second author’s work was carried out while
participating in the 2015 Focus Semester on Computability and Randomness at
Heidelberg University.

c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 1–10, 2016.
DOI: 10.1007/978-3-319-41312-9 1

2 A. Case et al.

name suggests, is devoted to engineering complex computational systems from
molecules. Recent work in this area has come to view abstract CRNs as a pro-
gramming language to engineer “chemical software” [9,19]. Exciting new devel-
opments have shown methods of compiling arbitrary chemical reaction networks
into computation using DNA strands [2,4,20]. Thus the programmable power of
chemical reaction networks is no longer simply of theoretical interest. To achieve
the goal of engineering large scale, robust chemical computation, tools to analyze
CRNs will be vital.

There are many ways to define the behavior of abstract CRNs, the two most
prominent being mass action kinetics and stochastic chemical reaction networks.
Mass action kinetics was the first model to be studied extensively. It is a contin-
uous, deterministic model of chemical reaction networks. Mass action kinetics is
used to study systems with sufficiently large numbers of molecules so that the
amount of a given molecule can be represented as a real-valued concentration.
The dynamics of reactions under mass action kinetics are governed by ordinary
differential equations. However, the deterministic mass action model is not well
suited if the number of molecules of the system is low. Stochastic CRNs are
widely used to analyze those systems with a relatively low number of molecules
[7,17]. The stochastic CRN model is discrete and non-deterministic. Unlike mass
action, the amount of each species is represented as a non-negative integer, and
the reactions of a system are modeled as Markov jump processes [8]. The sto-
chastic model is closely related to many well-studied models of computation
such as Vector Addition Machines [10], Petri Nets [6] and Population Protocols
[1]. Recently, Chen, Doty and Soloveichik introduced rate-independent continu-
ous CRNs (CCRNs). The CCRN model is continuous, dealing with real-valued
concentrations of species, but, unlike the stochastic or mass action models, it is
rate-free (reactions do not have any associated kinetic rate constant). Chen, Doty
and Soloveichik used CCRNs to study which real valued functions f : Rk → R

are computable by a chemical reaction network. By being a rate-free model, it
allows for the study of the computational power of large chemical systems relying
on stoichiometry alone (i.e., without depending on specific rates of the reactions).
This is important, as rate constants are hard to experimentally determine and
vary under external factors such as temperature.

A fundamental question that one can ask of a stochastic chemical reaction
network is whether a particular state is reachable from a starting configuration;
this is called the reachability problem. The reachability problem for stochastic
CRNs is equivalent to an important problem in theoretical computer science,
the Vector Addition System Reachability problem (VAS reachability) [5]. The
VAS reachability problem was proven to be at least EXPSPACE-hard by Lipton
in 1976 [15]. In 1981, building on the work of Sacerdote and Tenney [18], Mayr
proved that the reachability problem is decidable [16]. Subsequently, Kosaraju
[12] and Lambert [13] gave two additional proofs of the decidability of VAS
Reachability. However, all proofs that the reachability problem is decidable were
very difficult, until Lérôux [14] gave a greatly simplified proof. Unfortunately,
we still do not even know whether this problem is primitive recursive.

Reachability Problems for Continuous Chemical Reaction Networks 3

In this paper, we investigate two variants of the reachability problem in the
context of CCRNs. In Sect. 3, we analyze the complexity of the direct analog of
the reachability problem for CCRNs, the continuous chemical reaction network
reachability problem, CCRN-REACH. Informally, the CCRN-REACH problem
is: given a CCRN C and states c and d, output a path taking c to d, if one exists,
else state that there is no such path. To effectively compute CCRN-REACH, we
will require the states to be over the rationals instead of over arbitrary reals. We
show that, contrary to the difficulty of the VAS reachability problem, CCRN-
REACH can be computed in polynomial time. In the process, we give new def-
initions and lemmas which we believe will be useful in further investigations of
the continuous chemical reaction network model.

Reachability analysis is often used to determine safety and liveness properties
of a distributed system. For example, one often wants to know whether an unsafe
state is reachable. If so, then one might want to know whether this lack of safety
is an inherently global part of the system or can be localized to a small part
of the system. In this spirit we define the problem Sub-CCRN-REACH, which
asks whether a path exists between two states using at most a given number of
the reactions in the network. This problem naturally arises in CRNs with a high
number of reactions. The Sub-CCRN-REACH problem is to determine whether
a small subset of the available reactions is sufficient to reach a given state from
some initial state. In contrast to the computational “ease” of CCRN-REACH,
we show that Sub-CCRN-REACH is NP-complete.

2 Rate Independent Continuous CRNs

Throughout the remainder of this paper ‖ · ‖ is the max norm. In this section,
we review the definitions and notations for continuous CRNs introduced in [3].

A continuous chemical reaction network (CCRN) is a pair C = (Λ,R), where
Λ is a finite set of species and R is a finite set of reactions over Λ. We typically
denote species by capital letters, so that Λ = {A,B, . . .}. A reaction over the
set of species Λ is an element ρ = (r,p) ∈ N

Λ × N
Λ, where r and p specify

the stoichiometry of the reactants and products, respectively. We require the net
change Δρ = p− r of a reaction ρ = (r,p) to be nonzero. We will usually write
a reaction using the “reactants, right arrow, products” notation; for example,
ρ = A + B → C. (In this example r = (1, 1, 0) and p = (0, 0, 1).) A reaction
ρ = (r,p) is catalytic if, for some species s, r(s) = p(s) �= 0. (For example,
A + B → A + C is catalytic.) In this case, we call the species s a catalyst.
Each CCRN C = (Λ,R) has an associated reaction stoichiometry matrix M
specifying the net change of each species for every reaction. Formally, M is a |Λ|
× |R| matrix over Z such that M(i, j) is the net change of the ith species for
the jth reaction. Note that M does not fully specify a CCRN C, since, e.g., it
does not identify catalytic reactions. A state of a CCRN C = (Λ,R) is a vector
c ∈ R

Λ
≥0 specifying the (non-negative) concentration of each species. The support

of a state c is the set supp(c) = {s ∈ Λ | c(s) > 0} of all species with non-zero
concentrations at c. The support of a reaction ρ = (r,p) is the set supp(ρ) =

4 A. Case et al.

{s ∈ Λ | r(s) > 0} of all reactants of ρ. A reaction ρ = (r,p) ∈ R is applicable at
a state c if supp(r) ⊆ supp(c) (i.e., if the concentration of each reactant is non-
zero at c). A flux vector of a CCRN C = (Λ,R) is a vector u ∈ R

R
≥0. Intuitively,

a flux vector is a vector of non-negative real numbers, each of which specifies the
“amount” of the corresponding reaction that is to be performed. The support
of a flux vector u is the set supp(u) = {ρ ∈ R |u(ρ) > 0}. A flux vector u is
applicable at a state c if the following conditions hold:

1. Every ρ ∈ supp(u) is applicable at c.
2. c(s) +

∑

ρ∈R

u(ρ)Δρ(s) ≥ 0 for every s ∈ Λ.

If a flux vector u is applicable at state c, we can apply u to c, resulting in the
state

c ∗ u = c +
∑

ρ∈R

u(ρ)Δρ.

Equivalently, c ∗ u = c + Mu. A flux vector sequence,
U = (u1, ...,uk) is a tuple of flux vectors. We apply a flux vector sequence
U = (u1, ...,uk) iteratively to a state c,

c ∗ U = (c ∗ (u1, . . . ,uk−1)) ∗ uk.

A flux vector sequence U = (u1, ...,uk) is applicable at state c if ui is applicable
at c ∗ (u1, . . . ,ui−1) for every 1 < i ≤ k. If c and d are any states, we say that
d is reachable from c, denoted c →∗ d, if there exists a flux vector sequence U
applicable at c such that c ∗ U = d. We say that d is reachable from c in k
steps, denoted c →k d, if there exists a flux vector sequence U = (u1, . . . , uk)
applicable at c such that c ∗ U = d. A reaction ρ ∈ R is eventually applicable
from c if there exists a state d reachable from c so that ρ is applicable at d.
A reaction is permanently inapplicable from c if it is not eventually applicable
from c.

The following theorem, proven in [3], will be used in the proof of our first
main theorem.

Theorem 0. If c →∗ d, then c →m+1 d where m = |R| is the number of
reactions.

3 The Reachability Problem for Continuous CRNs

Having defined the relevant concepts for continuous chemical reaction networks,
we are now able to formally define our problem CCRN-REACH.

The Continuous CRN Reachability Problem. Given a continuous CRN
C = (Λ,R) and two states c, d ∈ Q

Λ, output a flux vector sequence U such
that U is applicable at c and c ∗ U = d, if one exists; output “not reachable”
otherwise.

Reachability Problems for Continuous Chemical Reaction Networks 5

Note that this problem would be an easy matter of solving a system of linear
equations if it were not for the requirement that the flux vector sequence must
be applicable at c. We will prove that CCRN-REACH is computable in poly-
nomial time. Intuitively, the dramatic difference in the computational difficulty
between the VAS reachability problem (known to be at least EXPSPACE-hard)
and CCRN-REACH is the additional flexibility given by the rational valued
flux vectors. To compute CCRN-REACH, we show how to build a flux vector
sequence leading from the starting state to a state of maximal support. This is
only possible in the CCRN model of chemical reaction networks, which allows
arbitrarily small additions via flux vectors. Once we are in such a maximal state
we are able to get to the end state with the application of a single flux vector.
To formalize this intuition, we will introduce several definitions and lemmas.

Fix a continuous CRN C = (Λ, R).

Definition. Let c be a state, and ε > 0. We say that a vector u is an ε-max
support flux vector of c if u satisfies the following:

1. u is a flux vector that is applicable at c.
2. for every flux vector v applicable at c, supp(c ∗ v) ⊆ supp(c ∗ u).
3. ‖u‖ ≤ ε.

That is, a vector is an ε-max support flux vector of a state c if it is applicable
at c and maximally increases the support of c while giving at most ε flux to each
reaction. We will show that ε-max support flux vectors exist for every state
and ε > 0.

Let ε > 0. We now construct a specific ε-max support flux vector of c, which
we will henceforth call the principal ε-max support flux vector of c. Define Appc
to be the set of all applicable reactions at c. Let εc = min{c(s) | s ∈ supp(c)} (the
lowest nonzero concentration of any species at state c), Γc = max{1, |Δρ(s)| :
ρ ∈ Appc and s ∈ supp(c)}, and δc,ε = 1

Γc|R|min{ εc
2 , ε}.

Definition. The principal ε-max support flux vector of c is the vector
uc,ε defined by

uc,ε(ρ) =

{
δc,ε, if ρ ∈ Appc

0, otherwise

for every ρ ∈ R.

The following lemma says that uc,ε is a well defined ε-max support flux vector
of c.

Lemma 1. Let c be a state, and ε > 0. Then uc,ε is an ε-max support flux
vector of c.

When the context is clear, we will refer to uc,ε as the principal max support
flux vector. The following observation can be easily seen from the definition of
the principal ε-max support flux vector.

6 A. Case et al.

Observation 1. The principal ε-max support flux vector of c, uc,ε, is com-
putable in polynomial time in terms of (C, c, ε).

Since uc,ε is a flux vector applicable at c, we are able to discuss the principal
max support flux vector of the state (c ∗ uc,ε). For convenience, we will use the
following notation:

1. u1
c,ε := uc,ε.

2. uk
c,ε := the principal ε-max support flux vector of the state c∗(u1

c,ε, ...,u
k−1
c,ε).

It is important to note that the vectors ui
c,ε are distinct, as the successive princi-

pal max support flux vectors are distinct. Our goal is to reach a state of maximum
support. Therefore, the hope is that the set of applicable reactions grows with
successive applications of the principal max support flux vectors.

Definition. Let ε > 0, m = |R|+1 and γ = ε
m . The principal ε-max support

flux vector sequence of c, denoted Uc,ε, is defined to be the sequence

Uc,ε = (u1
c,γ , . . . ,um

c,γ).

From Observation 1 it is clear that Uc,ε is computable in polynomial time in
terms of (C, c, ε).

Observation 2. For any state c and any ε > 0, the principal ε-max support flux
vector sequence of c is a flux vector sequence that is applicable at c. Moreover,

‖
m∑

i=1

ui
c,γ‖ ≤ ε.

Proof. This follows immediately from Lemma 1 and the choice of γ.
�
The choice of restricting the length of the flux vector Uc,ε to |R| + 1 follows

from Theorem 0.

Definition. Let c be a state and ε > 0. We say that a state m is an ε-max
support state of c if, for every state d that is reachable from c, supp(d) ⊆
supp(m).

We now define the principal ε-max support state of c to be mc,ε :=
c ∗ Uc,ε.

Lemma 2. If c is a state and ε > 0, then mc,ε is an ε-max support state of c.

Proof. Let d be a state reachable from c. By Theorem 0, there exists a flux vector
sequence of length r = |R|+1 taking c to d, i.e., c →r d. By induction and use of
Lemma 1, we see that for every state d such that c →r d, supp(d) ⊆ supp(mc,ε).

�
By Lemma 2, we see that for every ε, ε′ > 0, supp(mc,ε) = supp(mc,ε′).

Recall that a reaction ρ is eventually applicable from a state c if ρ is applicable
at some state d that is reachable from c. By Lemma 2, a reaction ρ is eventually
applicable from a state c if and only if ρ is applicable at mc,ε for any ε > 0. This
allows us to compute all the permanently inapplicable reactions from c, which
will be vital in the algorithm computing CCRN-REACH.

Reachability Problems for Continuous Chemical Reaction Networks 7

Observation 3. The set of all permanently inapplicable reactions from c is
computable in polynomial time.

Proof. By Observation 1 we compute the principal 1-max support state of c,
mc,1, and eliminate all reactions not applicable at mc,1.
�

An interesting property of CCRN’s is that, if d is reachable from c, then
there is a “universal” flux vector sequence taking c to d.

Definition. Let c,d ∈ R
Λ
≥0 be two states of CCRN C = (Λ,R). A reaction

ρ ∈ R is helpful for (c,d) if there exists a flux vector sequence U = (u1, . . . ,uk)
where c ∗ U = d and ui(ρ) > 0 for some i ≤ k. We denote the set of all helpful
reactions by

Hc,d = {ρ ∈ R | ρ is helpful for (c,d)}.

Theorem 4. Let C = (Λ,R) be a CCRN and c,d ∈ R
Λ
≥0 be two states such that

c →∗ d. Then there exists a flux vector sequence U taking c to d giving positive
flux to every reaction ρ ∈ Hc,d.

Proof. Let R′ = Hc,d. Define a new CCRN C ′ = (Λ,R′). For every reaction
ρ ∈ Hc,d, let Uρ be a flux vector sequence taking c to d that gives positive flux
to ρ. Define the vector

t =
1

|Hc,d|
∑

ρ∈Hc,d

∑

u∈Uρ

u.

Let ε = 1
2min{t(ρ)}ρ∈Hc,d

. Define

v = t −
∑

u∈Uc,ε

u,

where Uc,ε is the principal ε-max support flux vector sequence of c in the new
CCRN C ′. By our definition of t,

c ∗ (Uc,ε,v) = c ∗ (Uc,ε, t − Uc,ε)

= c +
∑

ρ∈R′
t(ρ)Δρ

= c +
1

|Hc,d|
∑

ρ∈Hc,d

∑

u∈Uρ

u

= c +
1

|Hc,d|
∑

ρ∈Hc,d

d − c

= d.

It remains to prove that (Uc,ε,v) is a flux vector sequence applicable at c. By
Observation 2, Uc,ε is applicable at c. By our choice of ε and Observation 2,
v(ρ) > 0 for every reaction ρ ∈ R′, and therefore v is a flux vector. By Lemma
2, c ∗ Uc,ε = mc,ε is a max support state. Hence, v is applicable at c ∗ Uc,ε.
Therefore (Uc,ε,v) is a flux vector sequence applicable at c, and the proof is
complete.
�

8 A. Case et al.

We are now ready to prove our first main theorem. Intuitively, the algo-
rithm deciding CCRN-REACH constructs the “universal” flux vector sequence
consisting of all reactions from Hc,d.

Main Theorem 1. CCRN-REACH is computable in polynomial time.

Proof. Consider the algorithm below (Algorithm 1) deciding CCRN-REACH.
From our previous observations, and the fact that linear programming (line 5 of
the algorithm) can be done in polynomial time [11], it is clear that the algorithm
runs in polynomial time in terms of the input. We now prove that d is reachable
from c if and only if the algorithm outputs a flux vector sequence U applicable
at c such that c ∗ U = d.

Algorithm 1. CCRN-REACH on input C = (Λ,R), c, d
1: On input C = (Λ, R), c, d
2: If c = d, halt and output the zero vector.
3: Eliminate from R all permanently inapplicable reactions from c
4: for each reaction ρ ∈ R do
5: Compute a vector Fρ ∈ Q

R
≥0 such that c + MFρ = d and Fρ(ρ) > 0, if one

exists
6: if no such vector exists, eliminate ρ from R, GOTO 1.
7: end for
8: if R = ∅, output “not reachable”
9: otherwise define vector S ∈ Q

R
≥0 as follows

10: for each ρ ∈ R, set S(ρ) = 1
|R|

|R|∑

i=1

Fi(ρ)

11: Compute ε =
min{S(ρ)}ρ∈R

2

12: Compute the principal max support flux vector sequence Uc,ε of c
13: Compute v = S −∑u∈Uc,ε

u

14: Output (Uc,ε,v) (padded with 0s for eliminated reactions)

Assume that, on input C = (Λ,R), c and d, the algorithm outputs a sequence
of vectors U. Let R be the set of reactions left after exiting the loop (necessarily
non-empty), and m = |R|. By the choice of ε and Observation 2, for each ρ ∈ R,

m+1∑

i=1

ui
c,γ(ρ) < S(ρ),

where Uc,ε = (u1
c,γ , . . . ,um+1

c,γ) (recall that γ = ε
m+1). Therefore, the vector

v = S−∑
u∈Uc,ε

u is a flux vector (in fact v is strictly positive). Hence the output
U = (Uc,ε,v) is a flux vector sequence. By Observation 2, Uc,ε is applicable at
c. Upon exiting the loop we are guaranteed that any reactions remaining in R
must be eventually applicable from c using only the other remaining reactions.
Let ρ ∈ supp(v). Then ρ ∈ R, and so ρ must be eventually applicable from c
using only reactions remaining in R. By Lemma 2, c ∗ Uc,ε = mc,ε is a max

Reachability Problems for Continuous Chemical Reaction Networks 9

support state, therefore ρ is applicable at c ∗ Uc,ε. Since ρ was arbitrary, v is
applicable at c∗Uc,ε, and so (Uc,ε,v) is a flux vector sequence that is applicable
at c. Finally, we have

c ∗ (Uc,ε,v) = c + M(Uc,ε + v)
= c + MS

= c + M
1

|R|
|R|∑

i=1

Fi(ρ)

= c +
1

|R|
|R|∑

i=1

MFi(ρ)

= c +
1

|R|
|R|∑

i=1

d − c

= d,

where M is the stoichiometry matrix of C = (Λ,R). Hence, if the algorithm
outputs a vector sequence, then d is reachable from c.

For the other direction, assume that d is reachable from c. Then, by defini-
tion, there is a nonempty subset R′ ⊆ R such that, for all ρ ∈ R′,

1. ρ is eventually applicable from c using only reactions from R′, and
2. there exists a vector Fρ such that MFρ = d − c and Fρ(ρ) > 0.

Hence, the algorithm will exit the loop with R nonempty and output a flux
vector sequence (Uc,ε,v). As we have just shown, (Uc,ε,v) is applicable at c
and c ∗ (Uc,ε,v) = d.
�

4 The Subset Reachability Problem

Define the decision problem Sub-CCRN-REACH as follows.

The Continuous CRN Subset Reachability Problem. Given a continuous
CRN C = (Λ,R), states c, d and an integer k, accept if and only if there exists
a path from c to d using only k reactions from R.

In contrast to the computational ease of CCRN-REACH, we give evidence
that the related problem Sub-CCRN-REACH is quite difficult.

Main Theorem 2. Sub-CCRN-REACH is NP-complete.

Acknowledgments. We thank Tim McNicholl, Xiang Huang, Titus Klinge, and Jim
Lathrop for useful discussions. We also thank two anonymous reviewers for detailed
improvements to this paper.

10 A. Case et al.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: PODC 2004: Proceedings of
the Twenty Third Annual ACM Symposium on Principles of Distributed Comput-
ing, pp. 290–299. ACM Press (2004)

2. Cardelli, L.: Strand algebras for DNA computing. Nat. Comput. 10(1), 407–428
(2011)

3. Chen, H.-L., Doty, D., Soloveichik, D.: Rate-independent computation in continu-
ous chemical reaction networks. In: ITCS 2014: Proceedings of the 5th Innovations
in Theoretical Computer Science Conference, pp. 313–326 (2014)

4. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D.,
Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol.
8(10), 755–762 (2013)

5. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Algorithmic bioprocesses. In:
Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Programmability
of Chemical Reaction Networks, pp. 543–584. Springer, Heidelberg (2009)

6. Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. J. Inf. Process.
Cybern. 3, 143–160 (1994)

7. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression
in a single cell. Science 297, 1183–1185 (2002)

8. Daniel, T.: Gillespie: exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem. 81(25), 2340–2361 (1977)

9. Jiang, H., Riedel, M., Parhi, K.: Digital signal processing with molecular reactions.
IEEE Des. Test Comput. 29(3), 21–31 (2012)

10. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(4),
147–195 (1969)

11. Kleinberg, J.M., Tardos, É.: Algorithm Design. Addison-Wesley, Boston (2006)
12. Rao Kosaraju, S.: Decidability of reachability in vector addition systems (prelimi-

nary version), In: STOC 1982, pp. 267–281. ACM (1982)
13. Lambert, J.L.: A structure to decide reachability in petri nets. Theor. Comput.

Sci. 99(1), 79–104 (1992)
14. Leroux, J.: Vector addition reachability problem (a simpler solution). In: The Alan

Turing Centenary Conference, vol. 10 of EPiC Series, pp. 214–228. EasyChair
(2012)

15. Lipton, R.J.: The reachability problem requires exponential space, Technical report
(1976)

16. Mayr, E.W.: An algorithm for the general petri net reachability problem. In: STOC
1981, pp. 238–246. ACM (1981)

17. McAdams, H.H., Arkin, A.P.: Stochastic mechanisms in gene expression. Proc.
Natl. Acad. Sci. 94, 814–819 (1997)

18. Sacerdote, G.S., Tenney, R.L.: The decidability of the reachability problem for
vector addition systems (preliminary version), In: STOC 1977, pp. 61–76. ACM
(1977)

19. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)

20. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)

An All-Optical Soliton FFT Computational
Arrangement in the 3NLSE-Domain

Anastasios G. Bakaoukas(B)

Computing and Immersive Technologies Department, University of Northampton,
St. Georges Avenue, Northampton NN2 6JB, UK

Anastasios.Bakaoukas@northampton.ac.uk

Abstract. In this paper an all–optical soliton method for calculating
the FFT (Fast Fourier Transform) algorithm is presented. The method
comes as an extension of the calculation methods (soliton gates) as they
become possible in the Cubic Nonlinear Schrödinger Equation (3NLSE)
domain, and provides a further proof of the computational abilities of
the scheme. The method involves collisions entirely between first order
solitons in optical fibers whose propagation evolution is described by
the Cubic Nonlinear Schrödinger Equation. The main building block
of the arrangement is the half–adder processor. Expanding around the
half–adder processor, the “Butterfly” calculation process is demonstrated
using first order solitons, leading eventually to the realisation of an equiv-
alent to a full Radix–2 FFT calculation algorithm.

Keywords: Solitons · 3NLSE domain · All–optical FFT · Cubic
Nonlinear Schrödinger Equation · Soliton collisions · Soliton computa-
tional schemes

1 Introduction

There is a number of studies in which the use of soliton optical pulses for the pur-
poses of carrying out computations has been investigated [1,2]. In this present
paper only temporal solitons (involving a balance between Kerr type nonlinearities
and dispersive effects in glass fibres) are concerned. At this early point the fact that
the interactions between solitons of this type can be a relatively long–range phe-
nomenon need to be emphasised, because the Kerr nonlinearity is a relatively weak
effect. Temporal solitons in optical fibres where the nonlinearity is of the Kerr type,
are well described by the 3NLS Equation which, for very short (fs) pulses, requires
corrections to account for “Higher Order Dispersion”, “Raman scattering” etc. If
pulse widths are such that these higher order effects can be neglected, then solitons
in optical fibres, are solutions of the integrable nonlinear Schrödinger equation and
since collisions between fibre solitons are elastic they were not previously consid-
ered to be capable of useful computation [2].

In what follows in this introduction section, a brief description of the back-
ground theory is presented for the benefit of the reader. For a more extensive and
c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 11–24, 2016.
DOI: 10.1007/978-3-319-41312-9 2

12 A.G. Bakaoukas

thorough discussion the reader is referred to [3,4] where the application of first
order and second order solitons, following the Toffoli gates prototype as well as
others, has been presented and verified regarding their computational abilities
in terms of logic gates formations.

When higher order dispersive and nonlinear effects are neglected, short pulse
propagation in nonlinear optical guides is described by the integrable Cubic Non-
Linear Schrödinger (3NLSE) Equation. A positive value for “Dispersion” parame-
ter describes the formation of bright optical solitons whilst a negative value leads
to the formation of dark solitons. The 3NLS Equation in general, describes a modu-
lated wave packet propagating through a nonlinear dispersive medium with a con-
stant velocity. For certain initial pulse shapes (the “Reflectionless Potentials”), the
3NLSE is completely integrable and the evolution of the soliton can be found in
closed formbymeans of the Inverse ScatteringTransform (IST) [7]. Solitons arising
out of a balance between dispersive and Kerr nonlinearity effects possess dominant
characteristic features one of which is the elastic collisions between them. Solutions
described by non–integrable nonlinear wave equations on the other hand are usu-
ally referred to as solitary waves and collisions between solitary waves are inelastic
and more complex in character. A solution of the integrable 3NLSE applicable to
pulse propagation in optical fibres is the hyperbolic secant where an arbitrary pos-
itive number representing the soliton order, the distance along the fibre, and time,

Fig. 1. A collision between two solitons. The second soliton is a “Time–Gated” input
soliton.

An All-Optical Soliton FFT Computational Arrangement 13

all in normalised dimensionless units, are the main parameters forming the initial
soliton propagation envelope. By coupling pulses in and out of a fibre at appro-
priate points (distance and time), useful computation could be possible based on
collisions between solitons within the fibre.

The material presented in [3,4] shows that in situations where optical solitons
are formed within optical fibres (simulations have been carried out using the
Split–Step Fourier Technique (SSFT)), with appropriate practical arrangements,
computationally universal systems based on collisions between first order solitons
are possible using logical gates based on the “Controlled” type of gates originally
proposed by Toffoli and Fredkin [5,6]. As an extension to what presented in the
above mentioned papers, in this present paper, the numerical study of collisions
between first order solitons is expanded leading towards an all–optical FFT
(Fast Fourier Transform) calculation. The CN and CCN soliton gates continue
to be the essential ingredient of the computational model.

In what follows in this paper, the encoding rules for the bit/s representation
into our system (by admitting the existence of only two solitons, one with a
phase value of π and one with a phase value of 0) follow exactly those outlined
in [3,4] where the reader is referred for more details. This way there can only
two types of collisions exist between solitons in our system: (a) two solitons

Fig. 2. Collision between three solitons in the cubic 3NLSE domain. The third of the
solitons taking part in the collision is a “Time–Gated” soliton in phase with the initial
two.

14 A.G. Bakaoukas

collide and are in phase (Figs. 1 and 2) or, (b) two solitons collide and are out
of phase (Fig. 4). This way we can directly use the solitons themselves as input
values to a soliton logic gate. The most important fact of all is that these two
types of collisions possess the property of sequencing, so they can be cascaded.
Using this definition we can go a bit further and consider the collision between
solitons, as the inner process of the soliton logic gate and the two recovered with
their original state after the collision solitons, as the output values of the logic
gate. So, basically, we split the whole process of a collision into two important
parts. The first part consists of the logic gate length, bounded between initially
the point at which solitons begin to propagate through the medium, and the
point at which the two solitons collide, creating a characteristic for their phase
values “Collision Envelope”. The second part starts from the point of collision,
extending all the way up to the point where the two solitons recover their initial
time positions in reverse order after the collision.

2 The Half–Adder Processor Scheme

The half–adder processor scheme, first introduced in [3], forms the essential
central building block on which the overall FFT soliton computational scheme
is wrapped around. The system reads the collision envelopes at distance and
time specified points and uses this information to generate solitons with an
appropriate phase value to represent the output of each “gate”. The phase values
of two of the output solitons determine the “sum” and “carry” outputs at the
end of the computation process whilst all other solitons are superfluous to this
calculation. By definition the half–adder (the sum implementation) is given by:

(
X · Ȳ

) · (
X̄ · Y

)
(1)

In Fig. 3 the equivalent soliton scheme, originally presented in [3], is repro-
duced for convenience. The points highlighted in this schematic representation
by means of a bold circle indicate functional points at which a soliton collision,
part of a gate, takes place; while, X and Y denote the initial input data. Full
“gate” arrangements have been named and numbered (e.g. NAND (*), indicates
the first NAND in the computational arrangement, NAND (**) the second, etc.).

In Figs. 4 and 5, the “Input” and the “Output” of the schematic representa-
tion of Fig. 3 is reflected on actual soliton collision simulations. Each individual
gate–soliton collision is presented in a separate figure for clarity and comparison
purposes. The simulation figures are to be followed in a top–to–bottom approach
in the schematic representation of Fig. 3.

In all the figures the input–output “gate” sequence follows the soliton prop-
agation direction. The point at which the soliton propagation begins (point 0 in
the propagation scale across the depth of the figure) also reflects the input side
of the “gate” and respectively, the point at which the soliton propagation ends
(point 100 in the propagation scale across the depth of the figure) reflects the
output side of the “gate”.

An All-Optical Soliton FFT Computational Arrangement 15

Fig. 3. The half–adder processor.

The half–adder computational arrangement plays a vital role in what is to fol-
low as is this particular arrangement the one that is lying at the heart of the more
general “Multiplier” arrangement, about to be presented later on, and required
for the realisation in the end of the complete “Butterfly” calculation process
which directly leads to the all–optical soliton FFT computational arrangement.

At this point and for the approach used for the presentation of the material
to follow in this paper to become clear, we need to stretch–out the fact that the
computational complexities involved are extensively simplified if can become
apparent that the scheme is flexible enough to be gradually get “packed” in
fixed–purpose calculation lengths. This approach doesn’t suppress the system

16 A.G. Bakaoukas

Fig. 4. The soliton “gate” NOT(*). The number in the brackets next to each soliton
description is the bit value carried by the soliton.

from its generalisation properties, as the fixed reading points (as these have
been identified and introduced in [3,4]) still hold their properties and continue
to provide the system with all the capabilities initially identified as inherently
characteristic of the computational system at hand.

This systematic type of approach, will give us the ability to investigate the
properties (as well as the validity) of each individual computational block in turn
and, when the individual parts are finally interconnected to form one “Butterfly”
arrangement, to do the same regarding the properties and validity of the overall
computational scheme.

3 The Two 2-Bit Numbers Multiplier

In this section we present the “Two 2–bit Numbers Multiplier”, which involves a
half–adder as its lying–in–its–heart functional unit (“Three–bit Adder Arrange-
ment”). The particular arrangement forms the compact small–scale equivalent
of the “Two maximum–number–of–bits Numbers Multiplier”, which for gen-
eral purpose calculations must involve full–adders as well as half–adders in its
arrangement.

The reason behind choosing the Two 2–bit Numbers Multiplier is only the fact
that the particular arrangement possesses all the functionalities and properties

An All-Optical Soliton FFT Computational Arrangement 17

Fig. 5. The soliton “gate” NAND(****). The number in the brackets next to each
soliton description is the bit value carried by the soliton.

need to be demonstrated, while at the same time gives us the ability to keep the
material presented at a minimum of extension and complexity in this paper.

Starting from the half–adder arrangement, if we now take a closer look in
Fig. 3 we will notice that all the output solitons need to be ignored after reading
and only the output soliton representing the “carry” value is to be allowed to
propagate further on and enter the cascading second half–adder arrangement.
Is exactly this soliton–bit that is required for the arrangement to complete the
Three–bit Adder Arrangement output calculation as presented in a conventional
block diagram in Fig. 6. This “Soliton Suppression” requirement at the very end

Fig. 6. The three-bit adder.

18 A.G. Bakaoukas

Fig. 7. The alternative half-adder arrangement.

of a computational arrangement is not characteristic only of the computational
scheme here presented but rather a common characteristic requirement in soliton
computational arrangements as, for example, of the one introduced in [8], where
the additional property of not intersecting (solitons crossing paths but not col-
liding) is also a vital system characteristic requirement. The usual formal term
coined for such kind of solitons is “Garbage Solitons” and is chosen to emphasise
the fact that these solitons are to play no active role in the cascading calculations
following the output of an arrangement. The way this “Soliton Suppression” can

An All-Optical Soliton FFT Computational Arrangement 19

Fig. 8. The “Two 2-bit Numbers Multiplier”.

be physically achieved is, in general terms, a technicality, requiring some hands–
on experimental work, in order for different methods and their correspond-
ing effects on the overall computational arrangement to be properly studied.
For these reasons we postpone, at this point, the explanation of how this “Soli-
ton Suppression” can be accomplished.

In order to present a complete picture of the soliton arrangements as well as
the almost unlimited flexibility possessed by the computational system (another
reason is that in the view of the author the concept of “Garbage Solitons”
is neither entirely satisfactory nor properly defined in its physical terms), in
Fig. 7 an alternative soliton arrangement is presented which doesn’t need “Soli-
ton Suppression” any more in order for the cascading half–adder arrangement
to commence calculation.

In this new arrangement the general soliton pattern remains the same as in
the original version, with the only difference that now the third control soliton
is starting propagation at a time position shifted to the left (top) by four time
slots (in Fig. 7 the original third control soliton propagation route has been
maintained as well for comparison purposes). The order in which the individual
gates are presenting their results is slightly changed as well. Shifting the third
control soliton by four time slots to the left (top) of the arrangement has as a
result for the soliton carrying the “carry” value to appear at the end (bottom)
of the output soliton order. So, this soliton can now be taken as the first input
soliton of the new half–adder arrangement (literally, as it possesses the same
propagation angle as the original input solitons to the half–adder arrangement)
which, by use of a second appropriate input soliton and three control solitons,
as required by the scheme, can provide us with the final computational result,
without the need to include any kind of “Soliton Suppression” procedure.

Having established and demonstrated the Three–bit Adder Arrangement, we
can now build around it the full Two 2–bit Numbers Multiplier. The overall
arrangement requires the addition of another four AND gates, to accommodate

20 A.G. Bakaoukas

Fig. 9. Part of the “Two 2-bit Numbers Multiplier” (including two of the initial AND
gates and the half-adder arrangement without the corresponding generated solitons).

initial bit multiplications. The conventional diagram arrangement for the multi-
plier is as presented in Fig. 8.

In Fig. 9 part of the Two 2–bit Numbers Multiplier is presented. For illus-
tration purposes Generated Solitons in Fig. 9 are shown to be closer together
than they should be in an actual computational arrangement without loosing
in computational properties or upsetting the result. Circular soliton collision
points indicate collisions taking place during the initial AND gates calculations,

An All-Optical Soliton FFT Computational Arrangement 21

while square soliton collision points indicate collisions taking place as part of the
half–adder calculation process. The arrangement in Fig. 9 illustrates a certain
degree of parallelism in the calculation process, which contributes significantly
in increasing the overall computational speed of the arrangement. It comes with-
out saying that the Two 2–bit Numbers Multiplier arrangement illustrated can
be extended to cover any bit length required for the multiplication between
two individual numbers. Again, the purpose here was to keep the length of the
illustration to a minimum.

4 The “Butterfly” Soliton Arrangement

For the remaining part of the “Butterfly” calculation process, we need a soliton
arrangement to convert a positive bit–number to a negative one. In order to
achieve this we adopt the method of complementing each digit in a bit–number
in turn (change 1 for 0 and 0 for 1) and then add 1 to the result. That way, the
bit–number taken out of the procedure corresponds to a bit–number representing
the negative equivalent of the initial bit–number.

A series of collisions between the solitons carrying the bit–number values
and a single control soliton with a phase value opposite to the one possessed by
the control soliton that generated the initial bit–number, is enough to produce
the bit–number complement. Since all the control solitons used so far in the

Fig. 10. The full-adder (conventional logic arrangement).

Fig. 11. Basic “Butterfly” computation in the decimation–in–time FFT algorithm.

22 A.G. Bakaoukas

Fig. 12. The “Butterfly” soliton arrangement. [(1) Multiplier arrangement, (2) Nega-
tion arrangement, (3) Addition arrangement, (4) Addition arrangement].

computational arrangements presented had a phase value of π, corresponding
to a bit value of 1, the appropriate control soliton to achieve the complement
calculation must possess a phase value of 0, in turn corresponding to a bit value
of 0. The addition of 1 to the complement can be easily achieved by means of
full–adder arrangements internally consisting of two interconnecting half–adder

An All-Optical Soliton FFT Computational Arrangement 23

arrangements and an OR gate, according to the conventional logic scheme pre-
sented in Fig. 10.

After the complement of a bit–number has been calculated, subtracting it
from another bit–number requires the addition between the complement cal-
culated and the second bit–number. That way only half–adder and full–adder
arrangements are required for the realisation of all the calculations involved in
the “Butterfly” arrangement. Addition and subtraction calculations appear at
the final stages of the “Butterfly” (Fig. 11), those that actually are giving the
result and passing the values calculated to the next processing stage of the overall
FFT calculation arrangement.

Having completed the presentation of the individual parts out of which the
soliton “Butterfly” arrangement consists of, we can now present the schematic
of the overall arrangement required. Figure 12 presents the soliton “Butterfly”
arrangement to full extend omitting, by means of a “black box” representation,
those parts of the arrangement which have been previously analysed and illus-
trated. “Adder Output” (D) and “Adder Output” (E) appear at the end of the
arrangement as required for the cascading “Butterfly” arrangements to continue
further processing the data. All the output soliton propagation routes shown are
indicative, since in an actual calculation of bit–numbers more than one solitons
will represent the output bit–number of each block of calculation. As it is the
case with the conventional Radix–2 FFT algorithm the first and the second dec-
imation process results in a “shuffling” of the input data sequence, which has a
well–defined order.

5 Conclusions

In this paper we surveyed the possibilities of an all–optical soliton FFT calculation
and shown how this can become possible within the boundaries of the optical soli-
ton 3NLSE domain. The outcome of this investigation is leading the way towards
a fast all–optical soliton FFT calculation with the FFT phasors (roots of unity)
to be represented directly by solitons of corresponding phase values, currently
under extensive research by the author. In such a scheme the 8–point FFT pha-
sors, for example, can be directly represented as: W 0

8 → Soliton phase value =
2π, W 1

8 → Soliton phase value = π
4 , W 2

8 → Soliton phase value = π
2 ,

W 3
8 → Soliton phase value = 3π

4 , W 4
8 → Soliton phase value = −2π,

W 5
8 → Soliton phase value = 5π

4 , W 6
8 → Soliton phase value = 6π

4 , W 7
8 →

Soliton phase value = 7π
4 , W 8

8 → Soliton phase value = 2π, while the soliton
phase values of π and 0 remain reserved to represent digit 1 and digit 0 respectively
for the control and data solitons involved. This additional ability, when prop-
erly specified, will provide the overall computational scheme with a separate, well
defined, and of a smaller fixed length FFT calculation arrangement without the
need for it to consist of individual calculation arrangements based on the scheme’s
“gates”.

24 A.G. Bakaoukas

References

1. Jakubowski, M.H., Steiglitz, K., Squier, R.K.: Computing with solitons multi-
valued logic. Special Issue on Collision Based Computing 6, 5–6 (2001)

2. Jakubowski, M.H., Steiglitz, K., Squier, R.K.: When can solitons compute? Com-
plex Syst. 10(1), 1–21 (1996)

3. Bakaoukas, A.G., Edwards, J.: Computing in the 3NLS domain using first order
solitons. Int. J. Unconventional Comput. (IJUC) 5(6), 489–522 (2009). ISSN: 1548–
7199

4. Bakaoukas, A.G., Edwards, J.: Computing in the 3NLS domain using first and
second order solitons. Int. J. Unconventional Comput. 5(6), 523–545 (2009). ISSN:
1548–7199

5. Tooli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.)
Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer,
Heidelberg (1980)

6. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1981)
7. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM,

Philadephia (1981)
8. Rand, D., Steiglitz, K.: Computing with Solitons, July 1 2007
9. Pelinovsky, D.E., Afanasjev, V.V., Kivshar, Y.S.: Nonlinear theory of oscillating,

decaying, and collapsing solitons in the generalised nonlinear schrödinger equation.
Phys. Rev. E 53(2), 1940–1953 (1996)

10. Hasegawa, Akira: Optical Solitons in Fibers. Springer, New York (1990)
11. Fibich, G., Wang, X.-P.: Stability of solitary waves for nonlinear schrödinger

equations with inhomogeneous nonlinearitie. Physica D 96(108), 96–108 (2003).
Elsevier

12. Miller, P.D., Akhmediev, N.N.: Do solitons exchange conserved quantities during
collisions? Phys. Rev. Lett. 76(1), 38–41 (1996)

13. Micallef, R.W., Kivshar, Y., Love, J.D., Burak, D., Binder, R.: Generation of spa-
tial solitons using non-linear guided modes. Opt. Quantum Electron. 30, 751–770
(1998). Chapman & Hall

14. Ostrowsky, D.B., Reinisch, R. (eds.): Guided Wave Nonlinear Optics. Kluwer,
Dordrecht (1992)

15. Akhmediev, N.N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams, Chap. 12.
Chapman & Hall, London (1997)

Babbage Meets Zuse: A Minimal
Mechanical Computer

Raúl Rojas(&)

Department of Mathematics and CS,
Freie Universität Berlin, Arinimallee 7, 14195 Berlin, Germany

rojas@inf.fu-berlin.de

Abstract. This paper shows how to build a computer consisting of a few
mechanical elements. Two large gears are needed, one for the data, and another
for the program memory. Only one logical computing element is required. The
idea of a simple computer with minimal computing logic goes back to Konrad
Zuse, who called it the “logic machine”. Charles Babbage was the first one to
design a universal mechanical computer. Here, we combine Babbage’s gears
and wooden pegs with Zuse’s idea.

1 Introduction

A conventional computer requires a memory for the data and a processor for trans-
forming the data. The physical structure of the processor is fixed. If we think of a
microprocessor just as a logic circuit, then we have a repeating cycle: some bits enter
the circuit, are transformed, and are stored internally. Then the microprocessor starts
again with a new cycle of operations. Figure 1 shows the structure of a logical circuit
representing a microprocessor.

The complete logic circuit can require the coordination of several intermediate
binary results, so that the complete operation cycle needs to be broken in k subcircuits.
Inside each subcircuit the order and exact timing of the operations is irrelevant, and the
only rule is that a logical element needs to have its two inputs ready before it can
produce a result. In the complete circuit, the single logical element used is the NAND
operation, which is a complete basis for all binary logical operations. The k subcircuits
are separated by internal buffers, which store the partial results and allow each sub-
circuit to synchronize. As Fig. 1 shows, we can number the logic elements, assigning
each gate a sequential ID (only the NANDs in the first subcircuit have been numbered
for this example). The input to each element, and its output, can be also uniquely
numbered (in this example, only the inputs and outputs of the two logic elements to the
upper left have been labeled). The labels for input and output of a logical element are
“addresses” of one-bit cells where we can store those bits. The complete circuit
operates from left to right: the bits are processed always one step further, and when the
circuit is finished, it restarts a new cycle using the results from the previous cycle. An
external memory represents only bits of data that can be also used. Intermediate results
can be stored in that memory. Each memory address can store exactly one bit.

© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 25–34, 2016.
DOI: 10.1007/978-3-319-41312-9_3

We can simulate the microprocessor of Fig. 1 running, by loading the necessary
input bits from the addresses given by the labels in the connections. We can compute
first the result for NAND number one, then for NAND number two and so on, in each
subcircuit. When we are finished with one subcircuit we start the next one, and so on.
Inside subcircuits there are no feedback loops (hardware loops, for example for a
multiplication, can be unrolled). Computation proceeds in an orderly fashion, from left
to right. Inside subcircuits we only have to take care of computing partial results before
another gate needs this result as an input. Partial outputs can be stored in the addresses
given by the labels of the connections. When the last subcircuit is finished, the stored
partial results of subcircuit k can serve as the new input for the first subcircuit, and the
whole processor starts a new cycle again.

Where is the memory for data? We can think of the intermediate storage buffers just
as a single thing, the complete data-memory. Every label in the complete circuit refers
to that data-memory. If we prefer, we can use the lower addresses for the internal needs
of the microprocessor and the higher addresses for real data.

One important aspect to take into account is that the arithmetical operations
addition, subtraction and multiplication are deterministic. That is, there is no need to
have alternative computational paths for their computation. They start and finish, and
can be computed with a circuit which is always going forward. However, in a
microprocessor we could have the case that one of two computational paths is selected
by a bit x. It would be similar to an

Fig. 1. The circuit of a microprocessor divided in stages of computation. The memory buffers
between stages are used to handle synchronization between the computations of different
subcircuits, if needed. There is only one logic gate, the NAND. The NANDS are numbered. The
connections are also numbered and represent addresses where bits can be stored before being
used by a NAND computation, or as a result thereof.

26 R. Rojas

kind of question (where, for simplicity, the result of each alternative computation
would be the single bit c). Since we do not want to handle conditional jumps in the
circuit, the solution is to execute both branches of the computation and only select at
the end:

This is what microprocessors do when they still don’t have the value of the bit
x. They apply “speculative execution” computing both possible results, selecting the
appropriate one afterwards. In the case of nested “IFs” we need to apply such a scheme
recursively. The division algorithm, for example, can be implemented in this way, so
that we can simulate a processor able to compute all arithmetical operations and
execute them in a loop. I have proved elsewhere that it is possible to build a universal
computer exploiting this scheme [1]. From the example above, it should be clear that
we only have to simulate circuits doing a blind forward computation, even when the
high-level processing view contains alternative computational paths.

2 Zuse’s “Logistische Maschine”

It was during the design of his machines Z1, Z2, and Z3 (1936–1941) that the German
inventor Konrad Zuse gradually became aware that the instruction set of a digital
computer could be reduced to sequences of logical operations acting on single bits and
pairs of bits.1 Addition of two eight-bit numbers, for example, can be reduced to the
manipulation of each bit in the numbers’ binary representations, executing the neces-
sary sequence of negations, conjunctions and disjunctions in the appropriate order. In
other words: one can add two 32-bit numbers going bit column by bit column, from
right to left, using both numbers, adding each binary column, and propagating the carry
to the left. In Zuse’s “algebraic machines”, such as the Z3, the four elementary
arithmetical operations were implemented in hardware as bit-parallel operations. The
two elementary bit-parallel operations provided by the CPU were addition/subtraction
of two numbers and shifting. Complex operations were implemented from sequences of
this elementary “microinstructions”. A rotating dial just selected one microinstruction
after the other, one per cycle. The division operation in the Z3, for example, required
18 cycles.

Therefore, since an instruction can be reduced to simpler microinstructions, it
occurred to Zuse that a minimal computer, that is, one able to work only on at most two
bits at a time, could execute each of the four arithmetical operations, provided that we
can write the corresponding program. Zuse called it the “logistische Maschine” (he used
Logistik as synonym for Logik). This idea forms part of Zuse’s obsession with what
today would be called a high-level programming language, the “Plankalkül”.

1 This is the essential difference between “bit-parallel” and “bit-sequential” computers. John von
Neumann’s EDVAC [1] design was for a bit-sequential computer, which would read and act on
registers one bit at a time. Most of today’s computers are bit-parallel, and so were Zuse’s computers.

Babbage Meets Zuse: A Minimal Mechanical Computer 27

In this language, designed by Zuse from 1941 to 1945, all data structures are arrays or
tuples of single bits, each of which can be accessed individually by a program (being
indexed elementary components of a data structure). Therefore, it was natural to think of
a machine capable of handling single bits sequentially and capable of emulating the
parallel algebraic machines in software, at a minimal cost. The idea of designing a
“logical machine” was thus closely connected with the conception of the Plankalkül [2].

Konrad Zuse applied in 1944 (and again in 1947) for a patent for the logical
machine [3]. It was Zuse’s custom to apply early for patents of his ideas. However, the
war and the closure of the German Patent Office for several years made it impossible
for him to profit from such early applications. Most of the patents were denied when the
patent office opened again, and those which were granted had no commercial impact.
The patent for the “logistische Machine” was granted in Austria in 1952, but had no
commercial implications for Zuse’s company [4].

The logical machine was extremely simple: it consisted of an addressable memory
for storing single bits, a tape reader, and a small CPU. In today’s terminology, we
would say that the word-length was one bit. The processor could read and store single
bits in memory. The program was stored on the punched tape using a binary code, and
the tape could be as long as desired. There was also the theoretical possibility of gluing
together both ends of the punched tape in order to produce a single “loop” of
instructions.

The processor of the logical machine had only two registers A and B: each of them
could be loaded with a single bit from a memory address. The first time a bit was
loaded to the processor, it was stored in register A and a flag (named Pr by Zuse) was
set. The second bit loaded from the processor went automatically to register B as
commanded by the flag set before.

Fig. 2. Block diagram of the Logical Machine

28 R. Rojas

The processor could only execute two register operations: A AND B, or A OR B,
that is, the conjunction of the two one-bit registers or their disjunction. The contents of
each register could be negated before the conjunction/disjunction. The opcode of the
instruction being executed specified completely all such combinations.

The machine operated by retrieving first a command from the punched tape. There
were three types of commands: logical operation (AND, OR), load from memory, and
store to memory. The result of a load operation went to register A or B, as explained
before, the result of a store operation went to register A (which was flagged as
occupied). A store operation sent the contents of register A to the desired address and
declared the register empty (so that it could be loaded again).

A processor cycle consisted of five subcycles numbered I, II, III, IV and V.
A conducting line labelled III, for example, received a voltage only during subcycle III.
The operation of the relays was synchronized by activating them only at such specified
times. Bits could be stored over long periods using “self-halting” relays, that is, relays
with two solenoids. When the first solenoid was energized, the relay closed, which in
turn energized a second solenoid which kept the relay closed as long as there was
power available. A “clear” signal just disconnected both solenoids from the power
supply. In Zuse’s diagrams, the relays are always drawn in the “zero” position.
A switch to the position “one” moved the relay to the other contact (see the diagrams
below).

It was the insight of Konrad Zuse, that we can now build a simulator for the
complete computer by using a processor with a single logic element [3, 4]. This is what
he called the “logistische Maschine” (although in his design he used two logic gates,
and two negations, but we can use only one gate). The “logic machine” has a
microprocessor with just two registers for two bits. The memory contains one bit at
each memory address. The processor can execute just a NAND of two bits. The result
can be stored back to the data-memory.

The microprocessor of Fig. 2 could be simulated by a long program of the fol-
lowing form:

The program would handle each NAND, in each subcircuit, one by one. The two
input bits are loaded first from the appropriate addresses (here addr-1 and addr-2 for the
first NAND). The one and only NAND in the hardware of the logic machine is
triggered automatically by the presence of the two input bits (like in a dataflow
computer), so that afterwards, the output just needs to be stored at the appropriate
address. Once a NAND is finished, the next one is simulated. Once a subcircuit has
been simulated completely, we start with the next subcircuit, and so on.

It is then clear that the only hardware we need for the “logistische Maschine” is the
following:

Babbage Meets Zuse: A Minimal Mechanical Computer 29

• An addressable memory for holding individual bits,
• Two one-bit registers for holding the inputs to a NAND,
• One single NAND in the processor, operating with the two one-bit registers,
• An output buffer for the NAND which holds the result to be stored in the memory,
• A read-only memory for storing the program.

It should be clear that with such a machine, any finite microprocessor operating on
a finite external memory can be simulated. The size of the necessary program is finite,
because the number of NANDS in the microprocessor is finite.

Nevertheless, although the hardware is now extremely simple, it is still unsatis-
factory that we need to decode addresses during the simulation, in order to load or store
the appropriate bits. This would require additional logic. Also, decoding the instruction
set, although extremely small, requires some logic. Notice also that the program is a
giant loop. When an operation cycle is finished, the microprocessor starts again. The
program never stops, since a microprocessor never stops either (and goes into idle
cycles, if necessary). You have to pull the plug in order to stop your computer
(although modern computers pull the plug themselves, automatically).

3 Minimizing the Instruction Set

We can now try to make everything simpler by reducing the instruction set. Since each
NAND needs two inputs, and produces one result, the program above can be just
written as:

Every three addresses represent the execution of a NAND in an implicit manner.
The first two addresses are inputs, the third one is an output. Now we only need to
decode addresses. But we don’t want to spend logic for decoding addresses. So we just
decide that all addressing starts from address 0, when the simulation starts. If the
simulation of the first NAND looks like the following sequence of three addresses
(written in decimal for simplicity):

But if we have a pointer pointing to address 0 in memory, we can just advance the
pointer as needed:

30 R. Rojas

We thus introduce a “memory” operation which loads data to each one the two
one-bit registers, the first two times it is called, and which stores back to memory when
the result has been computed.

All addressing is done through the memory pointer we just created. It is like in a
Turing Machine, where we have a one-bit per cell long tape and a read/write head
moving to the left or to the right of the tape.

You would think that it would be necessary to have a “move back pointer”
instruction, in order to displace the pointer back whenever lower addresses are needed.
But we are going to do the following: the same way that the program code consists of a
long loop, the memory will be “circular”. That is, since the memory is finite, once the
pointer arrives to the last memory location, it starts back again at address 0, whenever it
is further advanced. In that way, we never need to move the pointer back. The price we
pay is that we are stuck with a finite memory, but that is not important since we are
simulating a conventional computer and before we start, we can “buy” as much
memory as needed for certain applications.

4 Enter Charles Babbage

The mathematician Charles Babbage (1791–1871) is one of the heroes in the history of
computing. He designed the “Analytical Engine”, a mechanical device he first
described in 1837, and which would have been the first computer in the world – if it
had been finished [5]. Babbage redesigned the components of the Analytical Engine
several times. The main problem was connecting all the numerous mechanical com-
ponents to each other and getting the synchronization right. Although the mechanical
manufacturing possibilities of his day were probably appropriate for the task, he was
the solitary designer of the machine. The task was much more than a single person
could handle, and the Analytical Engine remained an unfinished dream. The machine
could, theoretically, perform all arithmetical operations, also read and store numbers
from and to memory, and conditional branching was present in the instruction set.

In Babbage’s machines, numbers were stored using gears. If the gear can assume
ten different states, for example, the position of a gear can be used to represent decimal
digits. But Babbage also considered gears with 20 or 40 states. In that case, the states
could be numbered from 0 to 9, starting again at zero, if the gear provided more than

Babbage Meets Zuse: A Minimal Mechanical Computer 31

ten states. The largest gear in the Analytical Engine could assume 40 states (that is four
times the digits from 0 to 9).

We will also use two big gears to store the data and the program in a mechanical
version of Zuse’s logic machine. Figure 3 shows the resulting contraption.

The clock gear advances the program gear one step at a time (the teeth of the gears
are not shown in Fig. 3). The program gear advances the memory gear in lockstep with
itself. There are “pegs” attached to the program gear, which are detected at the red
lower window. If a peg is detected, the processor is activated to read/write from/to
memory. The position from which the memory is read is shown with a red window in
the lower part of the memory gear. We are assuming that a multiplexer allocates each
read bit to the first or second register, depending on the order they were read. When the
operation has been triggered, the result is stored at the memory location defined by the
next peg in the program gear.

Notice that with this arrangement, moving to the next address can require a full turn
of the memory gear, especially if we want to store the result in the same address of the
last bit we have read. In the worst case, every address used requires a full turn of the
memory gear with N teeth, and the number of teeth between successive pegs in the
program gear could be N. Typically, the program gear will have many times the
number of teeth that the memory gear has.

Fig. 3. The mechanical minimal logic machine. The clock gear advances one tooth in every
step. The program and memory gear are coupled and advance at the same speed. Pegs in the
program gear activate memory operations. The bits are stored in bistable mechanical elements on
top of the memory gear. The two one-bit registers and the NAND gate can be built from binary
mechanical components such as those used by Konrad Zuse for the Z1 computer [6, 7].

32 R. Rojas

The bits in the memory gear could be stored using a bistable mechanical element on
top of the memory gear. And the processor could be built with binary mechanical
elements similar, for example, to the ones Konrad Zuse used to build his first computer,
the Z1.

Such a mechanical arrangement is thus, from an abstract point of view, equivalent
to modern computers, with their finite memories. It cannot compete with the infinite
tape of a Turing machine, but that was not the purpose of this exercise.

5 Conclusions

No company is going to offer the mechanical minimal logic machine any time soon.
Our objective in this paper was to show that from an abstract point of view, a simple
device can do what traditional computers do. Of course, the amount of time needed for
every single logic computation is prohibitive and this machine would be much slower
than any real computer (also, because it is a mechanical design).

The program simulates a microprocessor which can execute any instructions stored
in the data memory. That is, although the program in the program gear is fixed, the
microprocessor circuit can decode instructions stored in data memory. We can thus
have a stored program in main memory making the machine more flexible. The same
way a user cannot modify the Intel processor of a PC, the user cannot modify the
program gear. But the user can still write self-modifying programs, and can design any
programming language he or she would like to have for high-level programming.

Of course there are ways of reducing the execution overhead of the machine, for
example, by allowing the memory gear to backtrack. This would require additional
mechanical elements and we thus prefer to keep the main idea simple.

There is an old result in programming that states that any program can be written
using a single loop in the code. This is an independent proof of that result, since the
program gear is just that, a single loop of code.

So, what do you need to simulate a conventional computer? Two big gears, plus
one gear for the clock, and one NAND, plus some additional mechanical elements used
to coordinate the operation of the one-gate processor and its registers. Many different
mechanical embodiments are possible and I look forward to the first mechanical
realization of the Babbage-Zuse computer. Such a machine is, in principle, as good as
any other real computer – only the size of the gears is going to be the paramount
problem for a realization!

References

1. Rojas, R.: How to make Zuse’s Z3 a universal computer. Ann. Hist. Comput. 20(3), 51–54
(1998)

2. Zuse, K., Plankalkül, D.: Berichte der GMD, Nr. 63, Sankt Augustin (1972)
3. Zuse, K.: Patent Application Z394, Zuse Papers 005/017 (1944)

Babbage Meets Zuse: A Minimal Mechanical Computer 33

4. Zuse, K.: Vorrichtung zum Ableiten von Resultatangaben mittels Grundoperatione des
Aussagenkalküls, Patent N. 172288 (Austrian Patent Office) (1952)

5. Babbage, Ch.: On the analytical engine. In: Passages from the Life of a Philosopher, London
(1864)

6. Rojas, R.: The Z1: architecture and algorithms of Konrad Zuse’s first computer, June 2014.
arXiv:1406.1886v1

7. Rojas, R.: The design principles of Konrad Zuse’s mechanical computers, March 2016. arXiv:
1603.02396

34 R. Rojas

http://arxiv.org/abs/1406.1886v1
http://arxiv.org/abs/1603.02396
http://arxiv.org/abs/1603.02396

Generative Power of Matrix Insertion-Deletion
Systems with Context-Free Insertion or Deletion

Henning Fernau1, Lakshmanan Kuppusamy2(B), and Indhumathi Raman3

1 Fachbereich 4 – Abteilung Informatikwissenschaften,
Universität Trier, 54286 Trier, Germany

fernau@uni-trier.de
2 School of Computing Science and Engineering,

VIT University, Vellore 632 014, India
klakshma@vit.ac.in

3 School of Information Technology and Engineering,
VIT University, Vellore 632 014, India

indhumathi.r@vit.ac.in

Abstract. Matrix insertion-deletion systems combine the idea of matrix
control (as established in regulated rewriting) with that of insertion and
deletion (as opposed to replacements). We improve on and complement
previous computational completeness results for such systems, showing
(for instance) that matrix insertion-deletion systems with matrices of
length two, insertion rules of type (1, 1, 1) and context-free deletions are
computationally complete. We also show how to simulate (Kleene stars
of) metalinear languages with several types of systems with very limited
resources. We also generate non-semilinear languages using matrices of
length three with context-free insertion and deletion rules.

Keywords: Matrix ins-del systems · Computational completeness ·
Metalinear languages

1 Introduction

It is assumed that inserting or deleting words in between parts of sentences
often take place when processing natural languages. This concept also frequently
occurs in DNA processing and RNA editing; see [2,3,26]. Based on the insertion
operation, Marcus introduced external contextual grammars [19] as an attempt
to mathematically model natural language phenomena. A different variety of
linguistically motivated contextual grammars are the semi-contextual grammars
studied by Galiukschov [10], which can be viewed as insertion grammars. The
deletion operation as a basis of a grammatical derivation process was introduced
in [14]. Insertion and deletion together were first studied in [15] and the corre-
sponding grammatical mechanism is called insertion-deletion system (abbrevi-
ated as ins-del system). Informally, if a string η is inserted between two parts w1

and w2 of a string w1w2 to get w1ηw2, we call the operation insertion, whereas

c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 35–48, 2016.
DOI: 10.1007/978-3-319-41312-9 4

36 H. Fernau et al.

if a substring δ is deleted from a string w1δw2 to get w1w2, we call the operation
deletion. Suffixes of w1 and prefixes of w2 are called contexts.

Several variants of ins-del systems have been considered in literature and
among them the important variants (from our perspective) are ins-del P
systems [1], context-free ins-del systems [20], graph-controlled ins-del systems
[7,8,13], matrix insertion systems [18], matrix ins-del systems [16,25], etc. We
refer to the survey article [28] for more details of variants of ins-del systems.

In a matrix ins-del system, the insertion-deletion rules are given in matrix
form. If a matrix l is chosen for derivation, then all the rules in the matrix
l are applied in order and no rule of the matrix is exempted. In a size
(k;n, i′, i′′;m, j′, j′′) of a matrix insertion-deletion system, the parameters (from
left to right) denote the maximum number of rules in any matrix, the max-
imal length of the inserted string, the maximal length of the left context for
insertion, and the maximal length of the right context for insertion; a similar
list of three parameters concerning deletion follows. We denote the languages
classes generated by matrix ins-del systems of size s by MAT(s). It is shown
in [25] that the following matrix ins-del systems are computationally complete:
MAT(3; 1, 1, 0; 1, 1, 0), MAT(3; 1, 1, 0; 1, 0, 1), MAT(2; 1, 1, 0; 2, 0, 0),
MAT(2; 2, 0, 0; 1, 1, 0), MAT(8; 1, 1, 1; 1, 0, 0), MAT(8; 1, 0, 0; 1, 1, 1).
Here, we prove that the following classes of languages are also computationally
complete: MAT(2; 1, 0, 1; 2, 0, 0), MAT(2; 2, 0, 0; 1, 0, 1), MAT(3; 1, 0, 1; 1, 0, 1),
MAT(3; 1, 0, 1; 1, 1, 0), MAT(2; 1, 1, 1; 1, 0, 0), as well as MAT(4; 1, 0, 0; 1, 1, 1).
The last two results improve the results available in [25]. Moreover, the following
language families all strictly contain the families of linear and metalinear lan-
guages: MAT(2; 2, 1, 0; 1, 0, 0), MAT(2; 2, 0, 1; 1, 0, 0), MAT(3; 1, 1, 0; 1, 0, 0), and
MAT(3; 1, 0, 1; 1, 0, 0). We also prove that matrix ins-del systems of the above
sizes simulate the Kleene stars of linear and metalinear languages, as well.

2 Preliminaries

We assume that the readers are familiar with the standard notations used in
formal language theory. However, we now recall a few important notations here.

Let N denote the set of positive integers, and [1 . . . k] = {i ∈ N : 1 ≤ i ≤ k}.
Given an alphabet (finite set) Σ, Σ∗ denotes the free monoid generated by Σ.
The elements of Σ∗ are called strings or words; λ denotes the empty string. For
a string w ∈ Σ∗, |w| denotes the length of a string w and wR denotes the rever-
sal (mirror image) of w. Likewise, LR and LR are understood for languages L
and language families L. RE denotes the family of the recursively enumerable
languages, LIN is the class of the linear languages and MLIN, the family of met-
alinear languages, is the smallest language class containing LIN and is closed
under concatenation. Notice that LIN is neither closed under concatenation nor
under Kleene closure; MLIN is not closed under Kleene closure. We will occa-
sionally make use of the fact that linear rules are, w.l.o.g., of the form A → aB
or A → Ba or A → λ for distinct nonterminals A,B and terminals a.

For the computational completeness results, we are using the fact that type-
0 grammars in the special Geffert normal form are known to characterize the

Generative Power of Matrix Insertion-Deletion Systems 37

recursively enumerable languages. According to [8], a type-0 grammar G =
(N,T, P, S) is said to be in special Geffert normal form, SGNF for short, if

– N decomposes as N = N ′ ∪ N ′′, where N ′′ = {A,B,C,D} and N ′ contains
at least the two nonterminals S and S′,

– the only non-context-free rules in P are the two erasing rules AB → λ and
CD → λ,

– the context-free rules are of the following forms:
X → Y b or X → bY where X,Y ∈ N ′, X �= Y , b ∈ T ∪ N ′′, or S′ → λ.

How to construct this normal form is described in [8] and is based on [11]. Also,
the derivation of a string is done in two phases. First, the context-free rules are
applied repeatedly and the phase I is completed by applying the rule S′ → λ in
the derivation. In phase II, only the non-context-free erasing rules are applied
repeatedly and the derivation ends. It is to be noted that as these context-free
rules are more of a linear type, it is easy to see that there can be at most
only one nonterminal from N ′ present in the derivation of G. Also, note that
X �= Y,X, Y ∈ N ′ in the context-free rules.

Sometimes, we also use the well-known Penttonen normal form [24] for a
type-0 grammar. For Parikh images, semilinear and non-semilinear languages,
we refer to [23].

2.1 Insertion-Deletion Systems

We now give the basic definition of insertion-deletion systems, following [15,26].

Definition 1. An insertion-deletion system is a construct γ = (V, T,A,R),
where V is an alphabet, T ⊆ V is the terminal alphabet, A is a finite lan-
guage over V , R is a finite set of triplets of the form (u, η, v)ins or (u, δ, v)del,
where (u, v) ∈ V ∗ × V ∗, η, δ ∈ V +.

The pair (u, v) is called the context, η is called the insertion string, δ is called
the deletion string and x ∈ A is called an axiom. If u = v = λ for a rule,
then the corresponding insertion/deletion can be done freely anywhere in the
string and is called context-free insertion/deletion. An insertion rule will be of
the form (u, η, v)ins, which means that the string η is inserted between u and v.
A deletion rule will be of the form (u, δ, v)del, which means that the string δ
is deleted between u and v. Applying (u, η, v)ins corresponds to the rewriting
rule uv → uηv, and (u, δ, v)del corresponds to the rewriting rule uδv → uv.
Consequently, for x, y ∈ V ∗ we write x ⇒ y if y can be obtained from x by using
either an insertion rule or a deletion rule.

2.2 Matrix Insertion-Deletion Systems

A matrix insertion-deletion system [16,25] is a construct Γ = (V, T,A,R) where
V is an alphabet, T ⊆ V , A is a finite language over V , R is a finite set of
matrices {r1, r2, . . . rl}, where each ri, 1 ≤ i ≤ l, is a matrix of the form

ri = [(u1, α1, v1)t1 , (u2, α2, v2)t2 , . . . , (uk, αk, vk)tk]

38 H. Fernau et al.

with tj ∈ {ins, del}, 1 ≤ j ≤ k. For 1 ≤ j ≤ k, the triple (uj , αj , vj)tj is an
ins-del rule. Consequently, for x, y ∈ V ∗ we write x =⇒ri y if y can be obtained
from x by applying all the rules of a matrix ri, 1 ≤ i ≤ l, in order.

By w =⇒∗ z, we denote the relation w =⇒ri1
w1 =⇒ri2

. . . =⇒rik
z, where

for all j, 1 ≤ j ≤ k, we have 1 ≤ ij ≤ l. The language generated by Γ is defined
as L(Γ) = {w ∈ T ∗ | x =⇒∗ w, for some x ∈ A}.

If a matrix ins-del system has at most k rules in a matrix and the size of the
underlying ins-del system is (n, i′, i′′;m, j′, j′′), then we denote the corresponding
class of language by MAT(k;n, i′, i′′;m, j′, j′′). We now discuss a few examples
of matrix ins-del system and they are used later in proving some theorems.

Example 1. The language Lcd = {anbmcndm | m,n ≥ 1} of cross-serial
dependencies can be generated by a binary matrix insertion-deletion system
as follows: Γcd = ({a, b, c, d}, {a, b, c, d}, {abcd}, R), where R = {r1, r2} with:
r1 = [(a, a, λ)ins, (c, c, λ)ins], r2 = [(b, b, λ)ins, (d, d, λ)ins]. We note that the
rules r′

1 = [(λ, a, a)ins, (λ, c, c)ins], r′
2 = [(λ, b, b)ins, (λ, d, d)ins] also generate

Lcd. This shows that Lcd ∈ MAT(2; 1, 1, 0; 0, 0, 0) ∩ MAT(2; 1, 0, 1; 0, 0, 0). We
refer to [27] for further variants and a discussion of the linguistic relevance of
this type of example. ��
Example 2. Lemma 3 in [18] shows (in our terminology) that Lts = {anbancan |
n ∈ N} ∈ MAT(3; 1, 1, 1; 0, 0, 0), using a single matrix of insertion rules only. ��

We note that the above discussed languages Lcd,Lts and LR
cd are non context-

free languages.

3 Auxiliary Results

In order to simplify the proofs of some of our main results, the following obser-
vations are helpful.

Theorem 1. For all non-negative integers k, n, i′, i′′,m, j, j′′, we have that

MAT(k;n, i′, i′′;m, j′, j′′) = [MAT(k;n, i′′, i′;m, j′′, j′)]R .

Proof. To an ins-del rule r = (x, y, z)µ with μ ∈ {ins, del}, we associate the
reversed rule ρ(r) = (zR, yR, xR)µ. Let Γ = (V, T,A,R) be a matrix insertion-
deletion system. Map a matrix l = [r1, . . . , rk] ∈ R to ρ(l) = [ρ(r1), . . . , ρ(rk)]
in ρ(R). Define ΓR = (V, T,AR, ρ(R)). Then, an easy inductive argument shows
that L(ΓR) = (L(Γ))R. Observing the sizes of the system shows the claim. ��
From Theorem 1, we can immediately deduce the following two corollaries:

Corollary 1. Let k, n, i′,m, j′ be non-negative integers. The family of languages
MAT(k;n, i′, i′;m, j′, j′) is closed under reversal.

Corollary 2. Let L be a language class that is closed under reversal. Then, for
all non-negative integers k, n, i′, i′′,m, j′, j′′, we conclude that

1. L = MAT(k;n, i′, i′′;m, j′, j′′) if and only if L = MAT(k;n, i′′, i′;m, j′′, j′).
2. L ⊆ MAT(k;n, i′, i′′;m, j′, j′′) if and only if L ⊆ MAT(k;n, i′′, i′;m, j′′, j′).

Generative Power of Matrix Insertion-Deletion Systems 39

4 Computational Completeness Results

An easy consequence from Corollary 2 are the following completeness results:

Theorem 2. (i) MAT(2; 1, 0, 1; 2, 0, 0) = RE, (ii) MAT(2; 2, 0, 0; 1, 0, 1) = RE,
(iii) MAT(3; 1, 0, 1; 1, 0, 1) = RE, (iv) MAT(3; 1, 0, 1; 1, 1, 0) = RE.

Proof. We recall that the families MAT(2; 1, 1, 0; 2, 0, 0), MAT(2; 2, 0, 0; 1, 1, 0),
MAT(3; 1, 1, 0; 1, 1, 0), and MAT(3; 1, 1, 0; 1, 0, 1) are known to equal RE
(cf. [25]). As RE is closed under reversal, the theorem follows from
Corollary 2. ��
In the following, we discuss further completeness results which are improvement
over some of the existing results in terms of the maximum number of rules (i.e.,
maximal length of the matrix). More specifically, in [25], matrices of length 8 are
used, which we reduce to 2 and 4 here. The other measure sizes in the results
stay the same. Our simulations also show different resource needs for restricting
insertions compared to restricting deletions.

Theorem 3. MAT(4; 1, 0, 0; 1, 1, 1) = RE.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF. The rules from
P are labelled injectively with labels from [1 . . . |P |]. The nonterminal alphabet
decomposes like N = N ′ ∪ N ′′, N ′′ = {A,B,C,D}, S, S′ ∈ N ′, according to
SGNF. We construct a matrix ins-del system Γ = (V, T, {S},M) with V =
N ∪ T ∪ {p, p′, q, q′, f, g}.

The set of matrices M of Γ is defined as follows.
We simulate the rule p: X → bY , X,Y ∈ N ′, b ∈ N ′′ ∪ T , by the following

rules:

p1 = [(λ, p, λ)ins, (λ, p′, λ)ins, (p′,X, p)del, (λ, b, λ)ins]
p2 = [(λ, Y, λ)ins, (b, p, Y)del, (λ, p′, λ)del]

We simulate the rule q: X → Y b, X,Y ∈ N ′, b ∈ N ′′ ∪T , by the following rules:

q1 = [(λ, q, λ)ins, (λ, q′, λ)ins, (q,X, q′)del, (λ, b, λ)ins]
q2 = [(λ, Y, λ)ins, (Y, q, b)del, (λ, q′, λ)del]

A rule f : AB → λ is simulated by the following rules
[(λ, f, λ)ins, (λ,A, f)del, (f,B, λ)del, (λ, f, λ)del].
A rule g : CD → λ is simulated by the following rules
[(λ, g, λ)ins, (λ,C, g)del, (g,D, λ)del, (λ, g, λ)del].
A rule h : S′ → λ is simulated by [(λ, S′, λ)del].

We now proceed to prove that L(Γ) = L(G). We initially prove that L(G) ⊆
L(Γ) by showing that Γ correctly simulates the application of the above rules
p, q, f, g, h.

40 H. Fernau et al.

Working of p : X → bY : Let S =⇒∗ αXβ =⇒∗ αbY β =⇒∗ w be a derivation
of some string w ∈ L(G). We now show that this derivation can be simulated
by p : X → bY as follows: Consider the string αXβ and we now apply the
rules of matrix p1. The markers p and p′ are randomly inserted in the first two
rules. However the third rule is applicable only when p′ and p are inserted before
and after the non-terminal X. After X has been deleted, b is then inserted in
a context-free manner. At this point, we note that matrix p1 cannot be applied
again since there is only one non-terminal of N ′ (in this case, X) and this is
deleted. On applying matrix p2, Y is inserted anywhere and then p is deleted in
the contexts of b and Y . The importance of p′ here is to make sure that the left
context of p is the introduced b only. Finally, p′ is deleted.

Working of q : X → Y b : Similar to the working of the above p rule.
The working of the rules f, g, h are simple and hence on starting at S and by

repeatedly applying the rules p, q, f, g, h, we eventually get S =⇒∗ w. This proves
that L(G) ⊆ L(Γ). To prove the reverse relation (L(Γ) ⊆ L(G)), we observe that
the rules of Γ are applied in groups and each group of rules corresponds to one
of p, q, f, g, h. This observation completes the proof. ��

We could use ideas similar to in the previous simulation to show that RE
equals MAT(3; 1, 1, 1; 1, 0, 0). However, with a different simulation strategy, we
can obtain a stronger result.

Theorem 4. MAT(2; 1, 1, 1; 1, 0, 0) = RE.

Proof. Let G = (N,T, P, S) be a type-0 grammar in Penttonen normal form [24]
where the context-free rules are of the form X → Y Z,X → a, X → λ and the
non-context-free rule is of the form XY → XZ where X,Y,Z ∈ N, a ∈ T . The
rules from P are labelled injectively with labels from [1 . . . |P |]. We now construct
a matrix ins-del system Γ = (V, T, {S}, R) with V = N ∪T ∪{p, p′, p′′, q, q′, f, f ′}
and the set of matrices R is defined as follows.

We simulate the rule p : X → Y Z, where X,Y,Z ∈ N , by the following rules:

p1 = [(λ, p,X)ins, (X, p′′, λ)ins]
p2 = [(λ,X, λ)del, (p, p′, p′′)ins]
p3 = [(p, Y, p′)ins, (λ, p, λ)del]
p4 = [(p′, Z, p′′)ins, (λ, p′, λ)del]
p5 = [(λ, p′′, λ)del]

We simulate the rule q : X → a,X ∈ N, a ∈ T by the following rules:

q1 = [(λ, q,X)ins, (X, q′, λ)ins]
q2 = [(λ,X, λ)del, (q, a, q′)ins]
q3 = [(λ, q, λ)del, (λ, q′, λ)del]

We simulate the rule f : XY → XZ, where X,Y,Z ∈ N by the following rules:

f1 = [(Y, f ′, λ)ins, (X, f, Y)ins]
f2 = [(λ, Y, λ)del, (f, Z, f ′)ins]
f3 = [(λ, f, λ)del, (λ, f ′, λ)del]

Generative Power of Matrix Insertion-Deletion Systems 41

A rule h : X → λ X ∈ N in P is simulated by the simple rule [(λ,X, λ)].
We now proceed to prove that L(Γ) = L(G). We initially prove that L(G) ⊆

L(Γ) by showing that Γ correctly simulates the application of the above rules
p, q, f, g, h.

Working of p : X → Y Z : Using the rule p1, p and p′′ are inserted to the sides of
X and using p2, the X for which the rule to be applied is removed. The contexts
p and p′′ in rule 2 of p2 make sure that the correct X is deleted. Then, using the
matrix p3 and p4 (they can be applied in any order), the corresponding Y and
Z are introduced at the appropriate position. The markers are deleted using the
rule p3, p4 and p5. Though the rule p1 can be applied several times, applying it
repeatedly will end up with strings having nonterminals, thus, such words will
not be counted in the language.

Working of q : X → a : Using the matrix q1, the nonterminals q and q′ will mark
which nonterminal to be deleted. Then, using q2 the nonterminal X for which
the rule X → a to be applied is deleted.and a is introduced in the place of the
deleted symbol X. With the remaining matrix q3, the used markers q, q′ are
deleted.

Working of f : XY → XZ : To simulate such a rule, it is to be noted that if we
replace Z in the place of Y , then it is sufficient. To do so, by using the matrix f1,
we introduce markers f and f ′ on the left of Y and on the right of Y respectively.
Using f2, Z is replaced by Y and f, f ′ are deleted by using the rule f3.

To prove the reverse relation (L(Γ) ⊆ L(G)), we observe that the rules of
Π are applied in groups and each group of rules corresponds to one of p, q, f, h.
This observation completes the proof. ��
It is known [21] that LIN is incomparable with MAT(1; 1, 1, 1; 0, 0, 0). First of
all, this shows that the previous result is optimal with respect to the allowed
resources. Second, this arouses some interest in simulating linear languages with
parsimonious resources. We follow this second line of research in the following.

5 Linear Languages

Theorem 5. LIN � MAT(2; 2, 1, 0; 1, 0, 0).

Proof. Consider a linear grammar G = (N,T, P, S) with rules of the form A →
aB, A → Ba and A → λ for A,B ∈ N , A �= B, and a ∈ T . We construct a
matrix insertion-deletion system Γ = (V, T, {S}, R) with V = N ∪ T . The set of
matrices of R of Γ is defined as follows; notice that |P | = |M |.
A → aB is simulated by the matrix [(A, aB, λ)ins, (λ,A, λ)del].
A → Ba is simulated by the matrix [(A,Ba, λ)ins, (λ,A, λ)del].
A → λ is simulated by the matrix [(λ,A, λ)del].
Since the working of the above rules is simple and straightforward, we conclude
L(Γ) = L(G). The strictness of the inclusion follows from Example 1. ��
As LIN is closed under reversal, Corollary 2 yields:

42 H. Fernau et al.

Theorem 6. LIN � MAT(2; 2, 0, 1; 1, 0, 0).

Theorem 7. LIN � MAT(3; 1, 1, 0; 1, 0, 0).

Proof. We only give the three rules that work similar to the rules of Theorem 5.
A → aB is simulated by the matrix [(A,B, λ)ins, (A, a, λ)ins, (λ,A, λ)del].
A → Ba is simulated by the matrix [(A, a, λ)ins, (A,B, λ)ins, (λ,A, λ)del].
A → λ is simulated by the matrix [(λ,A, λ)del]. ��
As LIN is closed under reversal, Corollary 2 yields:

Theorem 8. LIN � MAT(3; 1, 0, 1; 1, 0, 0).

As LIN is not closed under Kleene star, it is interesting to note that matrix
ins-del system of the above discussed sizes can also simulate the family of L∗

where L ∈ LIN. We present this in the following theorems.

Theorem 9. If L ∈ LIN, then L∗ ∈ MAT(2; 2, 1, 0; 1, 0, 0).

Proof. Theorem 5, L ∈ MAT(2; 2, 1, 0; 1, 0, 0). Let Γ = (V, T, {S}, R) be the
corresponding matrix ins-del system for L. We now construct a matrix ins-del
system Γ ′ for L∗ as follows: Let Γ ′ = (V ′, T, {#S}, R′) where V ′ = V ∪{#, g, g′}
and R′ is the set of following matrices:
The rule X → aY is simulated by the matrix [(X, aY, λ)ins, (λ,X, λ)del].
The rule X → Y a is simulated by the matrix [(X,Y a, λ)ins, (λ,X, λ)del].
The rule X → a is simulated by the following matrices:

g1 = [(X, gg′, λ)ins, (λ,X, λ)del]
g2 = [(g, a, λ)ins, (λ, g, λ)del]
g3 = [(λ, g′, λ)del, (#, S, λ)ins]
g4 = [(λ,#, λ)del, (λ, S, λ)del]

The sequence of matrices g1, g2, g3 simulates the rule g : X → a and then
continues to simulate the linear grammar again. This is achieved by appropriately
inserting S to the right of # This enables us to start the process of simulation
again for any desired number of times. The matrix g4 implements the stopping
condition. From these arguments, it is easy to see that L(Γ ′) = L∗. ��

As LIN is known to be closed under reversal and as (L∗)R = (LR)∗, the
family of languages that can be written as L∗, with L ∈ LIN, is closed under
reversal, as well. Hence, by Corollary 2, we conclude the following result.

Theorem 10. If L ∈ LIN, then L∗ ∈ MAT(2; 2, 0, 1; 1, 0, 0).

Small changes to the previous arguments (e.g., simulating X → aY by the
matrix [(X,Y, λ)ins, (X, a, λ)ins, (λ,X, λ)del] and X → a by the matrices g1′ =
[(X, g′, λ)ins, (X, g, λ)ins, (λ,X, λ)del], g2, g3 and g4) lead to the following results.

Theorem 11. If L ∈ LIN, then L∗ ∈ MAT(3; 1, 1, 0; 1, 0, 0).

Theorem 12. If L ∈ LIN, then L∗ ∈ MAT(3; 1, 0, 1; 1, 0, 0).

Generative Power of Matrix Insertion-Deletion Systems 43

6 Metalinear Languages

We now extend our simulations to the case of MLIN.

Theorem 13. MLIN � MAT(2; 2, 1, 0; 1, 0, 0).

Proof. If L ∈ MLIN happens to be a linear language, we can proceed as in Theo-
rem 5. So, we assume that L ∈ MLIN−LIN is given. We can think of the work of
a metalinear grammar G with L(G) = L ⊆ T ∗ (generating the concatenation of
k linear languages L(G1), . . . , L(Gk) with start symbols S1, . . . , Sk, respectively,
and k pairwise disjoint nonterminal alphabets N1, . . . , Nk) as follows: starting
with S1S

′
2 as the axiom, first, G1 generates a terminal word. Then, S′

2 → S2S
′
3

is executed, and starting from S2, G2 generates a terminal word. This strategy
continues, until S′

k−1 → Sk−1S
′
k is executed, followed by the generation of a

terminal word by Gk−1 and finally S′
k → Sk initiates the last grammar Gk to

append a terminal word.
We now formally construct a matrix ins-del system Γ = (V, T, {S1S

′
2}, R)

for G. For 1 ≤ i ≤ k, let Vi be the alphabet resulting from the construc-
tion of matrix ins-del system Γi for Gi according to Theorem 5. Let V =⋃k

i=1 (Vi ∪ {S′
i} ∪ {ti, t′i, t′′i }). Let Ri be the rule set of Gi. Starting with the

axiom SiS
′
i+1, all strings of L(Gi) are derived from Si similar to Theorem 5. For

a clearer understanding, we present the simulation of rules of Ri here:
The rule pi : X → aY in Ri, is simulated by pi.1 = [(X, aY, λ)ins, (λ,X, λ)del].
The rule qi : X → Y a in Ri is simulated by qi.1 = [(X,Y a, λ)ins, (λ,X, λ)del].
We simulate for 1 ≤ i ≤ k − 2, the rule ti : X → a in Ri of Gi as follows:

ti.1 = [(X, tia, λ)ins, (λ,X, λ)del]
ti.2 = [(λ, ti, λ)del, (S′

i+1, t
′
iS

′
i+2, λ)ins]

ti.3 = [(λ, t′i, λ)del, (S′
i+1, Si+1t

′′
i , λ)ins]

ti.4 = [(λ, t′′i , λ)del, (λ, S′
i+1, λ)del]

Namely, consider by induction a sentential form w1 · · · wi−1αXβS′
i+1, where

w1 ∈ L(G1), . . . , wi−1 ∈ L(Gi−1), and αβ ∈ T ∗ such that the sentential form
αXβ is derivable in Gi, starting from Si. Applying now ti in this situation results
in w1 · · · wi−1αaβS′

i+1. We want to continue by replacing S′
i+1 with Si+1S

′
i+2.

Conversely, in Γ we have:

w1 · · · wi−1
︸ ︷︷ ︸

w′

αXβS′
i+1 =⇒ti.1 w′αtiaβS′

i+1 =⇒ti.2 w′αaβS′
i+1t

′
iS

′
i+2 =⇒ti.3

w′αaβS′
i+1Si+1t

′′
i S′

i+2 =⇒ti.4 w′αaβSi+1S
′
i+2.

Notice that the special symbols ti, t
′
i, t

′′
i that are introduced and checked

in the matrices ti.j prevent any other sequence of matrix applications from
happening but the intended one, as explained above. For i = k − 1, we take the
same matrices, but interpreting S′

i+2 = S′
(k−1)+2 = S′

k+1 as the empty word.
The rule tk : X → λ is simulated by the matrix tk.1 = [(λ,X, λ)del]. This
completes the proof, as the claimed strictness of the inclusion immediately follows
from Example 1. ��

44 H. Fernau et al.

As MLIN is closed under reversal, Corollary 2 yields:

Theorem 14. MLIN � MAT(2; 2, 0, 1; 1, 0, 0).

Theorem 15. MLIN � MAT(3; 1, 1, 0; 1, 0, 0).

Proof. Due to Theorem 7, we can assume that L ∈ MLIN − LIN. Consider the
working of a metalinear grammar G as discussed in the initial lines of Theorem
13. We now formally construct a matrix ins-del system Γ = (V, T, {S1S

′
2}, R)

for G. For 1 ≤ i ≤ k, let Vi be the alphabet resulting from the construc-
tion of matrix ins-del system Γi for Gi according to Theorem 5. Let V =⋃k

i=1 (Vi ∪ {S′
i} ∪ {ti, t′i}). Let Ri be the rule set of Gi. Starting with the axiom

SiS
′
i+1, all strings of L(Gi) are derived from Si similar to Theorem 5. For a

clearer understanding, we present the simulation of rules of Ri here:
The rules X → aY and X → Y a of Ri in Gi are simulated by the
matrices [(X,Y, λ)ins, (X, a, λ)ins, (λ,X, λ)del] and [(X, a, λ)ins, (X,Y, λ)ins,
(λ,X, λ)del] respectively. The working of these matrices is straightforward.
We simulate for 1 ≤ i ≤ k − 2, the rule ti : X → a in Ri of Gi as follows:

ti.1 = [(X, a, λ)ins, (X, ti, λ)ins, (λ,X, λ)del]
ti.2 = [(λ, ti, λ)del, (S′

i+1, S
′
i+2, λ)ins, (S′

i+1, t
′
i, λ)ins]

ti.3 = [(λ, t′i, λ)del, (S′
i+1, Si+1, λ)ins, (λ, S′

i+1, λ)del]

Namely, consider by induction a sentential form w1 · · · wi−1αXβS′
i+1, where

w1 ∈ L(G1), . . . , wi−1 ∈ L(Gi−1), and α, β ∈ T ∗ such that the sentential form
αXβ is derivable in Gi, starting from Si. Applying now ti in this situation results
in w1 · · · wi−1αaβS′

i+1. We want to continue by replacing S′
i+1 with Si+1S

′
i+2.

Conversely, in Γ we have: w1 · · · wi−1αXβS′
i+1 =⇒ti.1 w1 · · · wi−1αtiaβS′

i+1.
Notice that the special symbols ti and t′i prevent any other sequence of matrix
applications from happening but the intended one, as explained above. For
i = k − 1, we take the same matrices, but interpreting S′

i+2 as the empty word.
The rule tk : X → a is simulated by tk.1 = [(X, a, λ)ins, (λ,X, λ)del]. The
strictness of the inclusion immediately follows from Examples 1 and 2. ��
As MLIN is closed under reversal, Corollary 2 yields:

Theorem 16. MLIN � MAT(3; 1, 0, 1; 1, 0, 0).

Theorem 17. If L ∈ MLIN, then L∗ ∈ MAT(2; 2, 1, 0; 1, 0, 0).

Proof. By Theorem 13, L ∈ MAT(2; 2, 1, 0; 1, 0, 0). Let Γ = (V, T, {S}, R) be
the corresponding matrix ins-del system for L. We now construct a matrix
ins-del system Γ ′′ for L∗ as follows: Let Γ ′′ = (V ′′, T, {#S1S

′
2, λ}, R′′) where

V ′′ = V ∪{#, gi, g
′
i, g

′′
i } and R′′ is the set of matrices { [(X, aY, λ)ins, (λ,X, λ)del],

[(X,Y a, λ)ins, (λ,X, λ)del], M} where M contains the matrices collected in
Table 1. The working of the matrices in this case is similar to the working of
the matrices in Theorem 13. When i = k, αXβ =⇒gi.1 αagiβ. At this point, we
have a choice of applying the matrix gi.2 or gi.4. In the former case, we have

Generative Power of Matrix Insertion-Deletion Systems 45

#S1S
′
2 in the string and this enables us to simulate L again and this can be done

as many number of times as desired. The latter case is the stopping condition.
Since the axiom set of the grammar contains λ, L∗ is generated. ��

As MLIN is known to be closed under reversal and as (L∗)R = (LR)∗, the
family of languages that can be written as L∗, with L ∈ MLIN, is closed under
reversal, as well. Hence, by Corollary 2, we conclude the following result.

Theorem 18. If L ∈ MLIN, then L∗ ∈ MAT(2; 2, 0, 1; 1, 0, 0).

Theorem 19. If L ∈ MLIN, then L∗ ∈ MAT(3; 1, 1, 0; 1, 0, 0).

Proof. By Theorem 15, L ∈ MAT(3; 1, 1, 0; 1, 0, 0). Let Γ = (V, T, {S}, R) be the
corresponding matrix ins-del system for L. We now construct a matrix ins-del
system Γ ′′ for L∗ as follows: Let Γ ′′ = (V ′′, T, {#S1S

′
2, λ}, R′′) where V ′′ = V ∪

{#, fi, f
′
i} and R′′ is the set of matrices: { [(X,Y, λ)ins, (X, a, λ)ins, (λ,X, λ)del],

[(X, a, λ)ins, (X,Y, λ)ins, (λ,X, λ)del], M’ } where M ′ is the following set of fi
matrices.

fi.1 = [(X, fi, λ)ins, (X, a, λ)ins, (λ,X, λ)del] for 1 ≤ i ≤ k

fi.2 =

⎧
⎪⎨

⎪⎩

[(λ, fi, λ)del, (S′
i+1, f

′
i , λ)ins, (S′

i+1, S
′
i+2, λ)ins] for 1 ≤ i ≤ k − 2

[(λ, fi, λ)del, (S′
i+1, f

′
i , λ)ins for i = k − 1

[(λ, fi, λ)del, (#, S′
2, λ)ins, (#, S1, λ)ins] for i = k

fi.3 =

{
[(λ, f ′

i , λ)del, (S′
i+1, Si+1, λ)ins, (λ, S′

i+1, λ)del] for 1 ≤ i ≤ k − 1
[(λ, fi, λ)del, (λ,#, λ)del] for i = k.

The working of the matrices in this case is similar to the working of the matrices
in Theorem 15. When i = k, αXβ =⇒fi.1 αfiaβ. At this point, we have a choice
of applying the matrix fi.2 or fi.3. In the former case, we have #S1S

′
2 in the

string and this enables us to simulate L again and this can be done as many
number of times as desired. The latter case is the stopping condition. We note
that this grammar generates L+. However, since the axiom set of the grammar
contains λ, L∗ is generated. ��

Table 1. The simulation of the Kleene star of a metalinear language

46 H. Fernau et al.

As argued above, the family of languages that can be written as L∗, with
L ∈ MLIN, is closed under reversal, so that Corollary 2 yields:

Theorem 20. If L ∈ MLIN, then L∗ ∈ MAT(3; 1, 0, 1; 1, 0, 0).

7 Conclusions and Further Research Directions

In this paper, using matrix ins-del systems having either context-free insertion or
deletion rules, we have obtained some (improved) computational completeness
results and simulated linear and metalinear languages with small resource needs.
We have also shown how to extend these simulations to cover Kleene stars of
linear and metalinear languages without any additional size requirements.

The examples we considered so far might suggest that matrix ins-del sys-
tems with context-free insertion-deletion rules of small size only describe mildly
context-sensitive languages. This is not the case in some sense [22], as we show
in the below proposition. However, this observation deserves further study. Also,
closure properties of these language classes are mostly unknown.

Proposition 1. MAT(3; 1, 0, 0; 1, 0, 0) contains non-semilinear languages.

Proof. We can translate the vector addition system with states as given by
Hopcroft and Pansiot [12] into some MAT(3; 1, 0, 0; 1, 0, 0) system Γ . The axiom
is Ac. We take the following rules:

m1 = [(λ,A, λ)del, (λ, c, λ)del, (λ,A′, λ)ins],
m2 = [(λ,A′, λ)del, (λ, b, λ)ins, (λ,A, λ)ins],
m3 = [(λ,A, λ)del, (λ,B, λ)ins],
m4 = [(λ,B, λ)del, (λ, b, λ)del, (λ,B′, λ)ins],
m5 = [(λ,B′, λ)del, (λ, c, λ)ins, (λ,B′′, λ)ins],
m6 = [(λ,B′′, λ)del, (λ, c, λ)ins, (λ,B, λ)ins),
m7 = [(λ,B, λ)del, (λ, a, λ)ins, (λ,A, λ)ins], and
m8 = [(λ,A, λ)del].

In the terminology of Hopcroft and Pansiot, the first two matrices simulate
transition t1; matrix m3 simulates transition t2; matrices m4,m5,m6 simulate
transition t3; matrix m7 simulates transition t4. The matrix m8 only serves to
terminate if the simulates system was in a certain state. Lemma 2.8 in [12] shows
that, with terminal alphabet T = {a, b, c}, L(Γ) = {w ∈ T ∗ | |w|b+|w|c ≤ 2|w|a},
which is not semilinear. ��
These observations motivated us to study Parikh images of languages described
by matrix ins-del systems, focusing on context-free insertion-deletion rules,
see [6].

We now present some further concrete research directions below.

– Proving a non-trivial simulation result for the family of context-free languages
by context-free matrix ins-del systems with small size is left open.

Generative Power of Matrix Insertion-Deletion Systems 47

– Most completeness results were obtained by simulating phrase structure
grammars in Penttonen or in Geffert normal form. The reader might won-
der if it would be more efficient to simulate other ins-del mechanisms, like
graph-controlled ins-del systems, where also good computational complete-
ness results are known, with only small descriptional complexities. One of the
drawbacks in this approach is that the computational resources are counted
quite differently, so that a small graph-controlled ins-del system would not lead
to a small matrix ins-del system. Supposedly, this situation would change if
other types of descriptional complexity measures would be used. For instance,
apart from [17] and the literature quoted therein, we are not aware of any
studies on the nonterminal complexity of controlled ins-del systems. In the
case of controlled context-free grammars, it was then quite easy to trans-
fer results between different forms of regulations, see [4,5,9] and the papers
quoted therein.

– A further direction of future study could be aspects of parsing controlled ins-
del systems. Also this area seems to be largely neglected, although it is clear
that this is of much importance if it comes to finally applying these generative
devices in language processing.

Acknowledgements. The second author acknowledges the project SR/S3/EECE/
054/2010, Department of Science and Technology, New Delhi, India, for setting the
platform to work in this domain.

References

1. Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: P systems with minimal
insertion and deletion. Theor. Comput. Sci. 412(1–2), 136–144 (2011)

2. Benne, R. (ed.): RNA Editing: The Alteration of Protein Coding Sequences of
RNA. Molecular Biology. Ellis Horwood, Chichester (1993)

3. Biegler, F., Burrell, M.J., Daley, M.: Regulated RNA rewriting: modelling RNA
editing with guided insertion. Theor. Comput. Sci. 387(2), 103–112 (2007)

4. Fernau, N.: Nonterminal complexity of programmed grammars. Theor. Comput.
Sci. 296, 225–251 (2003)

5. Fernau, H., Freund, R., Oswald, M., Reinhardt, K.: Refining the nonterminal
complexity of graph-controlled, programmed, and matrix grammars. J. Automata
Lang. Comb. 12(1/2), 117–138 (2007)

6. Fernau, H., Kuppusamy, L.: Parikh images of matrix ins-del systems. In: Cai, J.-Y.,
Cui, J., Sun, X. (eds.) TAMC 2016. LNCS. Springer, Heidelberg (2016)

7. Fernau, H., Kuppusamy, L., Raman, I.: Descriptional complexity of graph-
controlled insertion-deletion systems. In: Câmpeanu, C., Manea, F., Shallit, J.O.
(eds.) DCFS 2016. LNCS, vol. 9777, pp. 111–125. Springer, Heidelberg (2016)

8. Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-
deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth
Annual Workshop on Descriptional Complexity of Formal Systems, DCFS, vol.
31. EPTCS, pp. 88–98 (2010)

9. Freund, R., Păun, G.: On the number of non-terminal symbols in graph-controlled,
programmed and matrix grammars. In: Margenstern, M., Rogozhin, Y. (eds.) MCU
2001. LNCS, vol. 2055, pp. 214–225. Springer, Heidelberg (2001)

48 H. Fernau et al.

10. Galiukschov, B.S.: Semicontextual grammars (in Russian). Mat. logica i mat. ling.,
Kalinin Univ., pp. 38–50 (1981)

11. Geffert, V.: How to generate languages using only two pairs of parentheses. J. Inf.
Process. Cybern. EIK 27((5/6)), 303–315 (1991)

12. Hopcroft, J.E., Pansiot, J.-J.: On the reachability problem for 5-Dimensional vector
addition systems. Theor. Comput. Sci. 8, 135–159 (1979)

13. Ivanov, S., Verlan, S.: Universality of graph-controlled leftist insertion-deletion
systems with two states. In: Durand-Lose, J., Nagy, B. (eds.) MCU 2015. LNCS,
vol. 9288, pp. 79–93. Springer, Heidelberg (2015)

14. Kari, L.: On insertion and deletion in formal languages. PhD thesis, University of
Turku, Finland (1991)

15. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

16. Kuppusamy, L., Mahendran, A., Krishna, S.N.: Matrix insertion-deletion systems
for bio-molecular structures. In: Natarajan, R., Ojo, A. (eds.) ICDCIT 2011. LNCS,
vol. 6536, pp. 301–312. Springer, Heidelberg (2011)

17. Kuppusamy, L., Raman, I., Krithivasan, K.: On succinct description of certain
context-free languages by ins-del and matrix ins-del systems. Int. J. Found. Com-
put. Sci. (2016, to appear)

18. Marcus, M., Păun, G.: Regulated Galiukschov semicontextual grammars. Kyber-
netika 26(4), 316–326 (1990)

19. Marcus, S.: Contextual grammars. Revue Roumaine de Mathématiques Pures et
Appliquées 14, 1525–1534 (1969)

20. Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theor. Comput. Sci. 330(2), 339–348 (2005)

21. Mart́ın-Vide, C., Păun, G., Salomaa, A.: Characterizations of recursively enumer-
able languages by means of insertion grammars. Theor. Comput. Sci. 205(1–2),
195–205 (1998)

22. Michaelis, J., Kracht, M.: Semilinearity as a syntactic invariant. In: Retoré, C. (ed.)
LACL 1996. LNCS (LNAI), vol. 1328, pp. 329–345. Springer, Heidelberg (1997)

23. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
24. Penttonen, M.: One-sided and two-sided context in formal grammars. Inf. Control

(now Inf. Comput.) 25, 371–392 (1974)
25. Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theor. Comput. Sci. 456,

80–88 (2012)
26. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Par-

adigms. Texts in Theoretical Computer Science. An EATCS Series. Springer,
Heidelberg (1998)

27. Stabler, E.: Varieties of crossing dependencies: structure dependence and mild con-
text sensitivity. Cogn. Sci. 28, 699–720 (2004)

28. Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J.
Moldova 18(2), 210–245 (2010)

Evolving Carbon Nanotube Reservoir
Computers

Matthew Dale1,3(B), Julian F. Miller2,3,
Susan Stepney1,3, and Martin A. Trefzer2,3

1 Department of Computer Science, University of York, York, UK
2 Department of Electronics, University of York, York, UK
3 York Centre for Complex Systems Analysis, York, UK

md596@york.ac.uk

Abstract. Reservoir Computing is a useful general theoretical model for
many dynamical systems. Here we show the first steps to applying the
reservoir model as a simple computational layer to extract exploitable
information from physical substrates consisting of single-walled carbon
nanotubes and polymer mixtures. We argue that many physical sub-
strates can be represented and configured into working reservoirs given
some pre-training through evolutionary selected input-output mappings
and targeted input stimuli.

Keywords: Material computation · Evolution-in-Materio · Reservoir
Computing · Unconventional computing · Evolvable hardware

1 Introduction

Reservoir Computing (RC) [6,11] has been proposed as an expressive model
and as a computationally inexpensive method for training rich high-dimensional
dynamical systems, ranging from simulated and biological neural networks to
novel hardware-based implementations [9]. RC exploits the emergent complexity
of dynamic networks to perform information processing tasks.

An input-driven Reservoir Computer is typically divided into three parts: the
input, the “reservoir”, and the readout. This separation provides a representation
that exploits the complex projection of the input into a high-dimensional state
space. This rich state space is created from a black-box network and is harnessed
using only a simple output training mechanism.

Most reservoirs are hand-crafted to a task, so there is often a need for expert
domain knowledge to design an optimal system. However, due to the system par-
titioning, some element of semi-autonomous pre-training is possible, avoiding the
need for manual search for efficient reservoirs. This pre-training concept appears
in the RC literature [9], but is typically used only for simulated reservoirs. We
hypothesise that pre-training can be highly advantageous when moving into the
physical domain.

c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 49–61, 2016.
DOI: 10.1007/978-3-319-41312-9 5

50 M. Dale et al.

Evolution-in-Materio (EIM) [12,13] explores the concept of configuring mat-
ter for computation, originally outside the context of RC. The training procedure
uses an evolutionary algorithm to configure a rich continuous complex material
to perform desired tasks. This usually takes the form of evolving a set of signals
or static voltages and their connection locations on an electrode array interfac-
ing the computational material. The aim is to evolve an input-output mapping
that carries out a desired computational mapping. Its rationale is that physical
systems contain enormous amounts of complexity, and that evolution exhibits
the most efficient method to discover and exploit these physical properties.

Here we investigate the use of computer controlled evolution (CCE) to config-
ure a physical system for RC. We demonstrate that by using a form of evolution-
in-materio we can pre-train a physical dynamical system – which might not
necessarily be a natural reservoir candidate – into a functional and optimisable
reservoir computing system. We demonstrate this on two temporal reservoir com-
puting tasks: the Nonlinear Auto Regressive Moving Average task (NARMA)
and the wave generator task, each requiring different internal characteristics.
We compare four different carbon nanotube-based materials, a conductive sheet,
and an open-circuit system.

2 Reservoir Computing

Reservoir computing exploits the dynamic response of an excitable system given
a single- or multi-dimensional input signal. Typically, the reservoir has some
nonlinear properties, enabling both dynamic memory and dynamic processing.
RC has become a competitive technique for training Recurrent Neural Networks
(RNNs) on temporal processing tasks.

The conceptual view of what makes a “reservoir” and the methods used to
train them is not limited to simulated neural networks. For example, Optoelec-
tronic and Photonic [1,15,19] reservoir-based systems can be made. Such highly
specialised reservoirs require some amount of pre- and post-processing.

However, other material reservoirs require minimal additional processing. For
example, one of the first physical reservoirs was simply a bucket of water [5].
A fabricated neuromorphic device called an Atomic Switch Network (ASN) has
been modelled as a reservoir [17,18].

There, communication with the reservoir—a configurable memristive
network—takes place through a multiple input/output micro-electrode array.
The memristive substrate contains a random topology of highly-integrated func-
tionalised silver nanowires that together create emergent behaviours.

We use a basic model reservoir (based on the Echo State Network [6]) consist-
ing of a randomly initialised recurrent tanh-based neural network with n nodes.
The input(s) to the network u(n) are fed through connection weights W in with
a one-to-one mapping to internal nodes. The internal nodes are mapped to each
other via the random W matrix, creating the recurrent structure through inter-
nal loops. The output of the system y(n) is given by the matrix multiplication
of trainable output weights W out and the reservoir’s internal states x(n).

Evolving Carbon Nanotube Reservoir Computers 51

Fig. 1. Substrates under test. Top left, SWCNT/PBMA mixture with a concentration
of 1% SWCNT by weight. Top right, SWCNT/PBMA 0.53%. Bottom left, gold resistor
array. Bottom right, SWCNT/PMMA 0.1%

We consider supervised machine learning tasks where both the training input
u(n) and target output yTarget(n) are provided. Training is carried out by adjust-
ing W out to reduce the error between the system output y(n) and target output
yTarget(n). To evaluate the reservoir’s performance we partition the data sets
into three parts: the training set (50 %), the validation set (25 %), and the test
set (25 %). The output weights are trained on the training set, and reservoir
fitness is evaluated on the validation set. The final error is calculated using the
Normalised Root Mean Squared Error(NRMSE) on the test set data.

2.1 Optimising Reservoirs

Simulated Echo State Reservoirs have many parameters. One can change their
dynamics and memory capacity by adjusting the global scaling factors for the
weights. For example, the spectral radius ρ, a scaling parameter for the internal
weights W , can dramatically influence the echo state property [6] (fading memory
capacity) of the system. Other parameters such as topology, neuron sparsity
and type of activation function can also be varied. This suggests that a certain
amount of optimisation can be done over a “randomly” created reservoir.

A number of optimisation techniques have been explored in simulated net-
works, but few, if any, have been used in hardware-based reservoirs. This raises
the question: can we create and train systems that might not ‘naturally’ form
reservoirs, or are in their untrained state classed as poor reservoirs? We hypothe-
sise that a system with interesting and malleable properties can be configured, or
dynamically perturbed, into a state that produces effective reservoir properties.

3 Materials and Hardware

3.1 Materials Under Investigation

The materials used here were fabricated within the NASCENCE consortium [4].
The aim of that project was to investigate candidate materials and techniques

52 M. Dale et al.

for configuring materials for computation. Our work continues this agenda by
investigating a substrate’s response to reservoir-style training, to demonstrate
that the reservoir computing model can be applied to a range of substrates.

Our experimental method is evaluated on 4 different material test subjects
(Fig. 1) and two additional system “settings” (short-circuit and open-circuit) to
provide both a description of how much the system as a whole is being evolved
and to show what can be achieved with a purely conductive sheet.

The material for each test subject is deposited onto a glass slide with
12 chromium/gold-contact (40 to 50µm contact diameter and 100 to 150µm
contact spacing) micro-electrodes arranged in either a circle or square array.

Test subjects one and two are single-wall Carbon Nanotube (SWCNT)/ poly-
mer mixtures with SWCNT concentrations of 0.53 % and 1 % (by weight) mixed
with poly-butyl-methacrylate (PBMA) dissolved in Anisole. Test subject three
is a 0.1 % SWCNT mixture with poly-methyl methacrylate (PMMA). For each
substrate, approximately 20 ml of the mixture is dispensed on the electrode array,
then dried. The random formations and settling of SWCNTs within the samples
can fluctuate. The conductivity of each material is determined by SWCNT den-
sity and electrode contact. The heterogeneous behaviour of the material is the
result of the dielectric properties of the polymer and the shifting electronic prop-
erties of networks formed from both semi-conducting and metallic SWCNTs.

Test subject four is a reference material: a gold resistor array patterned onto
a glass slide with multiple connection points using etch-back photo-lithography.
The resistor array is arguably simpler and reasonably stable with known internal
resistance values. This test subject investigates if the technique can be applied
to more linear mediums and what, if any, are the advantages of SWCNT-based
materials over simple resistive networks.

The open and short circuit settings are added to verify the significance the
material has on the evolvability of the system, that is, to pinpoint what is doing
the computation. In the open-circuit no material is connected; the system is sim-
ply left to find a solution through system noise, or from unknown characteristics
within the system. The conductive sheet (copper tape) is used as a short-circuit
connection to assess if the material has any advantageous properties beyond
conductivity.

3.2 Hardware Platform

The hardware used in this experiment forms a hybrid digital/analogue hardware
loop. Computer controlled evolution (CCE) is performed in the digital space on
a connected desktop PC using a MATLAB interface. In the analogue/physical
space, the material is stimulated using a National Instruments Data Acquisition
Card (NI PCI-6723) supplying analogue output signals, which can be routed to
any of the electrodes interfacing the material via an Analog Devices (AD75019)
16 × 16 analogue cross-point switch. An NI DAQ card (NI PCI-6225) is used to
record analogue inputs from the electrode array via the cross-point switch in the
same manner.

Evolving Carbon Nanotube Reservoir Computers 53

The cross-point switch is used to autonomously assign which electrodes and
DAQ card channels are currently in use and what role each electrode performs.
Once the evolved configuration is registered on the cross-point switch, bidirec-
tional communication is established between both DAQ cards and the electrodes.

4 Material Configuration

As part of the NASCENCE project a number of stimulation signals have been
investigated, such as complex signals like evolved square waves [10,14]. For the
purpose of this investigation we are restricting ourselves to static voltages to
avoid any interference, or artefacts, that evolution may create in respect to
temporal-based tasks.

The electrical configuration of a material is therefore exclusively carried out
through the placement and adjustment of static voltages. The aim is to configure
the internal characteristics of the material by manipulating its natural dynamics,
conductivity and signal processing abilities.

To encode the electrical configuration of the substrate a 21-gene genotype
is created. All genes are open to mutation and are subdivided into: electrode
assignment (genes 1–12), redundant genes (genes 13–16), values of static input
voltages (genes 17–20) and input scaling on u(n) (gene 21). Genes 1–16 are
integer values; all other genes are floating point numbers with a precision of
4 decimal places; genes 17–20 range between [−5V, 5V]; gene 21’s range is
[0V, 2V] for the NARMA task (already pre-scaled by factor of 10) and [0V,
5V] for the wave generator task.

The phenotype of the system is implemented via the cross-point switch
assignment. The interfacing equipment is set up so that all accessible inputs
and outputs are connected to the switch. The switch then directs which DAQ
channels communicate to the electrode array via a 256-bit digital input (SIN)
derived from the values in genes 1–12.

This genome design allows evolution to decide both the number of readouts
in use and the number of static input voltages the material can receive. At
genotype instantiation, and under the mutation operator, a maximum of 10
possible readouts (referred to as measurable reservoir states) are possible.

This is due to the input signal u(n) and ground (GND) always being required.
A maximum of 4 static input voltages (referred to as “configuration voltages”)
can also be applied simultaneously. This feature (implemented by redundant
genes) allows evolution to converge towards any assignment, such as 6 readouts
and 4 configuration voltages, or, 8 readouts and 2 configuration voltages (Fig. 2),
as long as the required phenotype size of 12 is always adhered to.

The input scaling gene (scaling u(n)) is added as the material may require
varying input-data intensities under different electrical configurations. The gene
is initialised at the maximum value, then left to evolve.

54 M. Dale et al.

Fig. 2. Physical reservoir representation using electrodes. Each assigned readout elec-
trode (ROn) forms the reservoir state xn(n). The configuration voltages (Vn) location
and value are decided upon by evolution. The W out matrix is calculated and applied
in the digital domain.

Fig. 3. Reservoir work flow through time: the combined evolutionary-regression train-
ing procedure for the hardware-based reservoir. The generational loop is expanded to
show the switch assignment process and training/validation process. The final evalua-
tion procedure using the test set is also expanded.

We use an elitist 1+λ evolutionary strategy with a population of 5 (λ = 4)
for 150 generations across 10 runs. The λ children are mutations of the previous
generation’s fittest individual. In the case that a child is the same fitness as
the parent, the child is selected to pass on its genes. This allows evolution to
neutrally sweep the search space if no immediate fitness change is present.

The procedure is shown in Fig. 3. First, a material is selected, equating to a
random initialisation of a simulated network. Next, the evolutionary run com-

Evolving Carbon Nanotube Reservoir Computers 55

mences, cycling through the generational loop for every new population. This
loop comprises: a physical resetting (grounding) of the material; the application
of a new switch assignment (material “configuration”) from the genotype for
every individual; and a ridge regression (using Tikhonov regularisation) train-
ing step on the electrode output weights. The fitness of each individual in the
generational loop is calculated on the validation set using NRMSE. The result,
calculated on the best individual found in the evolutionary run, is the error
calculated on the “unseen” test set.

5 Benchmark Tasks

5.1 Nonlinear Auto-Regressive Moving Average (NARMA) Task

The NARMA task originates from work on training recurrent networks [2]. It
evaluates a reservoir’s ability to model an n-th order highly non-linear dynamical
system where the system state depends on the driving input as well as its own
history. The challenging aspect of the NARMA task is that it contains both
non-linearity and long-term dependencies created by the n-th order time-lag.

An n-th ordered NARMA experiment is carried out by predicting the output
y(n+1) given by Eq. (1) when supplied with u(n) from a uniform distribution of
interval [0, 0.5]. For the 5-th and 10-th order systems α = 0.3, β = 0.05, δ = 10
and γ = 0.1.

y(n + 1) = αy(n) + βy(n)

(
δ∑

i=0

y(n − i)

)

+ 1.5u(n − δ)u(n) + γ (1)

5.2 Wave Generator Task

The wave generator task requires a rich transformation of an input waveform (a
periodic signal) to create a new waveform using temporal features such as phase
shifts, delays, harmonic generation, recurrence etc. The task [17] is linked directly
to Fourier series analysis. The task is to train a reservoir to produce three differ-
ent output waveforms given an input sine wave. This is achieved by applying an
input sine-wave to one electrode, to produce a square-wave, sawtooth, and cosine
waveform of the same frequency, and a sine-wave with double frequency at y(n).

5.3 Memory Capacity

Measuring the short-term memory capacity of a reservoir was first outlined in
[7] as a quantitative measurement of the echo state property (fading memory).
To determine the memory capacity of a reservoir we measure how many delayed
versions of the input u(n − k) the outputs can recall or recover with precision.
Applying Eq. (2), we can measure memory capacity by how much variance of
the delayed input can be recovered, summed over all delays. This is carried out
by training individual output units to recall the input at time k.

MC =
∞∑

k=1

MCk =
∞∑

k=1

cov2(u(n − k), y(n))
σ2(u(n))σ2(y(n))

(2)

56 M. Dale et al.

0.1% 0.53% 1% Resistor Cond. sheet Open system

N
R

M
SE

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
NARMA 5 task

Train Error
Test Error

Fig. 4. NARMA-5 plot of train and test error of 10 runs across all materials (lower error
is better fitness). All test subjects outperform the open system; all with the exception
of some 0.1% concentration runs outperform the conductive sheet in all runs.

6 Experimental Results

Figure 4 shows the NARMA-5 task results. The materials under test, when
using the evolved configurations, outperform both the conductive sheet and the
open system. This suggests the material is a significant element to the overall
computational system, an assumption made within the literature but formally
verified here, and that the computational properties of the material are trainable
through evolution.

The resistor array produces better results with a smaller variance than the
SWCNT materials on this task. However, this almost reverses for the test error
when moving to the harder NARMA-10 task.

Figure 5 shows the NARMA-10 task results. The materials perform modestly
on this task given the availability of trainable states (readouts). Although an
exact comparison cannot be made, some indication of system performance on
this task can be seen by looking at an optoelectronic reservoir [15] consisting
of a 50-node psuedo-network reaching an NRMSE ≈ 0.41, and various sized
simulated-reservoirs ranging from an NRMSE of 0.4 to 0.9 in [20].

The required memory capacity (MC) for each task correlates to the input
lag and is therefore different for the two NARMA tasks. The measured MC does
not change, however (Fig. 6). It could be that the material cannot increase its
MC, given the small number of readouts available. Nevertheless it is puzzling:
the MC should not be limited by the number of readouts, because the inter-
nal structure and dynamics of the system do not possess the same limitations.

Evolving Carbon Nanotube Reservoir Computers 57

0.1% 0.53% 1% Resistor Cond. sheet Open system

N
R

M
SE

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
NARMA 10 Task

Train Error
Test Error

Fig. 5. NARMA-10 plot of train and test error of 10 runs across each material. Despite
an increase in complexity the material still shows some computational advantage. The
resistor array appears to struggle more on generalisation of the test data on this task.

0.1% 0.53% 1% Resistor Cond. sheet Open system

M
C

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Memory Capacity

NARMA 5

NAMRA 10

Fig. 6. Memory capacity of all test subjects post-evolutionary configuration, i.e. eval-
uated on the best configuration found from each run.

58 M. Dale et al.

Alternatively, the method used to evaluate the material’s memory capacity could
be too susceptible to noise.

The open system has a very small MC in comparison. The conductive sheet,
however, appears on average to possess a consistently larger MC. All of our
test subjects appear to fit within this range, making it somewhat difficult to
determine significant behavioural differences between the test subjects using
memory capacity alone.

Material Saw(best/avg) Cos(best/avg) Square(best/avg) 2Sin(best/avg)

PMMA (0.1%) 0.347/0.487 0.058/0.079 0.266/0.293 0.242/0.787
PBMA (0.53%) 0.325/4.358 0.015/2.915 0.289/2.074 0.255/8.986
PBMA (1%) 0.417/0.569 0.029/0.069 0.253/0.308 0.348/0.881
Resistor array 0.375/0.499 0.031/0.037 0.261/0.382 0.262/0.705
Cond. sheet 0.482/3.262 0.374/1.025 0.367/3.619 0.669/0.895
Open system 0.697/0.750 0.102/0.121 0.579/0.669 0.999/1.000

ASN (MSE) 0.1071 0.0028 0.0451 0.0910
PBMA (0.53%) 0.0352 0.0001 0.0830 0.0325

Fig. 7. Wave generator results for an input 1 kHz sine wave. Test Error is given for 10
runs. Additional MSE results are added for the PBMA (0.53%) against ASN measure-
ments given in [18].

For the wave generator task an input frequency of 1 kHz was used, rather
than the 10 Hz chosen in [18], as there is evidence that SWCNT/polymer mate-
rials produce more interesting behaviours at higher frequencies [16]. Results are
shown in Fig. 7. The PBMA (0.53 %) material shows the best configuration aver-
aged across all waveforms; however, across the 10 runs more poor solutions are
found compared to the other materials. Figure 8 shows the trained outputs of
the configured PBMA (0.53 %) material for each waveform; visually we can see a
variation in performance across the waveforms, and in particular, the increased
difficulty experienced on the sawtooth task.

From our results we see that the test materials possess a variety of exploitable
electrical properties that may not naturally occur without targeted stimulation.
Figure 9 highlights this by showing an increase in harmonic behaviour that occurs
only under configuration: the sub-plot shows only the first three harmonics occur
when unconfigured, versus eight or more harmonics when configured.

7 Discussion and Further Work

We have demonstrated that we can evolve configurations that make certain
substrates into trainable computational reservoirs. We have demonstrated that
small, configurable (analogue) devices can be trained to tackle difficult system
modelling and temporal tasks. The results provide an insight into the potential
of the methodology, which is not limited to carbon-nanotube based materials.

Evolving Carbon Nanotube Reservoir Computers 59

Time(t)
0 20 40 60 80 100

Am
pl

itu
de

(V
ol

ts
)

-1.5

-1

-0.5

0

0.5

1

1.5
Sawtooth

Trained output
Test set

Time(t)
0 20 40 60 80 100

Am
pl

itu
de

(V
ol

ts
)

-1.5

-1

-0.5

0

0.5

1

1.5
Cosine

Trained output
Test set

Time(t)
0 20 40 60 80 100

Am
pl

itu
de

(V
ol

ts
)

-1.5

-1

-0.5

0

0.5

1

1.5

Square
Trained output
Test set

Time(t)
0 20 40 60 80 100

Am
pl

itu
de

(V
ol

ts
)

-1.5

-1

-0.5

0

0.5

1

1.5
Sine(2f)

Trained output
Test set

Fig. 8. Trained reservoir output (PBMA 0.53%) plotted against the desired output for
each waveform. All waveforms are trained and outputted simultaneously.

Frequency (Hz)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Po
w

er
/F

re
qu

en
cy

 (d
B/

H
z)

-160

-140

-120

-100

-80

-60

-40

-20

0

20
Periodogram of Configured Material

Frequency (Hz)
0 2000 4000 6000 8000

Po
w

er
/F

re
qu

en
cy

 (d
B/

H
z)

-200

-150

-100

-50

0 Periodogram of Unconfigured Material

Fig. 9. Power spectral density of readout states on the wave generator task for the
PBMA 0.53% material. The main plot shows an increase in harmonic behaviour when
the material is “configured”. The subplot shows the unmodified material given an input
1 kHz sine-wave.

60 M. Dale et al.

However, these results do leave room for improvement. Our results for the
NARMA-10 task are modest in comparison to an optoelectronic reservoir (as
shown in Sect. 6). However, the latter uses a much larger reservoir (50 nodes)
and a different reservoir encoding: representation through a pseudo network
using pre/post-processing and a long delay line. For the wave generator task,
our configured materials are competitive with or outperform the Atomic Switch
Network in [17].

The biggest limitation is the size of our current electrode array. The 6–10
input electrodes (and hence reservoir nodes in the model) is small in compar-
ison to typical numbers of nodes in simulated and hardware-based reservoirs
(hundreds). For larger electrode arrays we predict an increase in performance,
as the training procedure should have an increased number of internal states
and spatial diversity to exploit. We are currently increasing the array size to 64
electrodes, which requires hardware upgrades. This will allow us to undertake
more complex temporal tasks.

Other fundamental investigations are still required, such as correlating elec-
trical characteristics to evolved solutions and estimating the information process-
ing capabilities of each material by examining its reservoir quality. To do the
latter, we will exploit a number of proposed metrics [3,8,9]. This involves the
quantitative measurement of dynamics and associated reservoir properties. This
should provide an improved understanding of how useful these materials are,
and how they might behave over a wider range of computational problems.

This work is a first step towards a method in which substrates can be manip-
ulated, or exploited, to extract machine-learning capabilities from an inherently
analogue (physical) medium. This can offset the computational load on, or
remove the requirement for, digital signal processing for certain tasks. Poten-
tial tasks include: collecting and processing sensor data, implementing feature
extraction, filtering, controlling a physical system such as a robot.

Acknowledgments. This work was funded by a Defence Science and Technology
Laboratory (DSTL) PhD studentship.

The authors thank the EU NASCENCE Project (http://www.nascence.eu) for pro-
viding the SWCNT materials used in this work.

References

1. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S.,
Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using
a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)

2. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the
algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–
709 (2000)

3. Bertschinger, N., Natschläger, T.: Real-time computation at the edge of chaos in
recurrent neural networks. Neural Comput. 16(7), 1413–1436 (2004)

4. Broersma, H., Gomez, F., Miller, J., Petty, M., Tufte, G.: Nascence project:
nanoscale engineering for novel computation using evolution. Int. J. Unconven-
tional Comput. 8(4), 313–317 (2012)

http://www.nascence.eu

Evolving Carbon Nanotube Reservoir Computers 61

5. Fernando, C.T., Sojakka, S.: Pattern recognition in a bucket. In: Banzhaf, W.,
Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI),
vol. 2801, pp. 588–597. Springer, Heidelberg (2003)

6. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note. Bonn, Germany: German National Research Cen-
ter for Information Technology GMD Technical Report 148, 34 (2001)

7. Jaeger, H.: Short term memory in echo state networks. Tech. rep. no. GMD report
152. German National Research Center for Information Technology (2001)

8. Legenstein, R., Maass, W.: What makes a dynamical system computationally pow-
erful. In: New Directions in Statistical Signal Processing: From Systems to Brain,
pp. 127–154 (2007)

9. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

10. Wang, X., Halang, W.: Evaluation. In: Wang, X., Halang, W. (eds.) Discovery
and Selection of Semantic Web Services. SCI, vol. 453, pp. 109–126. Springer,
Heidelberg (2013)

11. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Comput. 14(11), 2531–2560 (2002)

12. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In:
NASA/DoD Conference on Evolvable Hardware 2002, pp. 167–176. IEEE (2002)

13. Miller, J.F., Harding, S., Tufte, G.: Evolution-in-materio: evolving computation in
materials. Evol. Intell. 7(1), 49–67 (2014)

14. Nichele, S., Lykkebo, O.R., Tufte, G.: An investigation of underlying physical prop-
erties exploited by evolution in nanotubes materials. In: 2015 IEEE Symposium
Series on Computational Intelligence, pp. 1220–1228. IEEE (2015)

15. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M.,
Massar, S.: Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012). (Article
287)

16. Lykkeb, O.R., Nichele, S., Laketic, D., Tufte, G.: Is there chaos in blobs of carbon
nanotubes used to perform computation? In: The Seventh International Conference
on Future Computational Technologies and Applications Future Computing 2015,
pp. 12–17 (2015)

17. Sillin, H.O., Aguilera, R., Shieh, H., Avizienis, A.V., Aono, M., Stieg, A.Z.,
Gimzewski, J.K.: A theoretical and experimental study of neuromorphic atomic
switch networks for reservoir computing. Nanotechnology 24(38), 384004 (2013)

18. Stieg, A.Z., Avizienis, A.V., Sillin, H.O., Aguilera, R., Shieh, H., Martin-Olmos,
C., Sandouk, E.J., Aono, M., Gimzewski, J.K.: Self-organization and emergence
of dynamical structures in neuromorphic atomic switch networks. In: Adamatzky,
A., Chua, L. (eds.) Memristor Networks, pp. 173–209. Springer, Heidelberg (2014)

19. Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G.,
Verstraeten, D., Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demon-
stration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541
(2014)

20. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental
unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)

Global Network Cooperation Catalysed
by a Small Prosocial Migrant Clique

Steve Miller1(B) and Joshua Knowles2

1 School of Computer Science, University of Manchester, Manchester, UK
stevemiller.gm@gmail.com

2 School of Computer Science, University of Birmingham, Birmingham, UK

Abstract. Much research has been carried out to understand the emer-
gence of cooperation in simulated social networks of competing individ-
uals. Such research typically implements a population as a single con-
nected network. Here we adopt a more realistic premise; namely that
populations consist of multiple networks, whose members migrate from
one to another. Specifically, we isolate the key elements of the scenario
where a minority of members from a cooperative network migrate to a
network populated by defectors. Using the public goods game to model
group-wise cooperation, we find that under certain circumstances, the
concerted actions of a trivial number of such migrants will catalyse wide-
spread behavioural change throughout an entire population. Such results
support a wider argument: that the general presence of some form of dis-
ruption contributes to the emergence of cooperation in social networks,
and consequently that simpler models may encode a determinism that
precludes the emergence of cooperation.

Keywords: Evolution of cooperation · Evolutionary game theory · Pub-
lic goods game · Complex networks

1 Introduction

A considerable amount of scientific work has been undertaken to explain the
apparently paradoxical existence of cooperative behaviour in a world defined by
the competitive basis of natural selection [1]. The question of how cooperation
may emerge within a competitive environment is, by definition, predicated on
cooperation being originally absent from the population. On such a basis, the
original appearance of cooperation occurs as a random event, more specifically,
a mutant behaviour in (rare) individual(s). We then consider whether such a
mutation will be extinguished, or will achieve fixation throughout a population.
Within investigations of network-reciprocated cooperation [2,3], models which
abstract social networks to test mechanisms for the emergence of cooperation
broadly follow approaches (implicitly) of this nature (see [4] for a review of such
investigations).

The overwhelming majority of research studies in this field have considered
a population to be one single connected network. However in the real world,
c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 62–74, 2016.
DOI: 10.1007/978-3-319-41312-9 6

Global Network Cooperation Catalysed by a Small Prosocial Migrant Clique 63

multiple (relatively) discrete dynamic networks exist within populations, and
at times, members of one social network may migrate to another. This is an
aspect of cooperation in real-world scenarios which requires understanding, yet
has thus far received little attention. In the work that follows, we isolate the
key elements of such a scenario: namely, we have a primary network of interest,
predicated on defector behaviour, and we consider the arrival of a very small
group of connected individuals that have emigrated from a cooperative network.

Our investigations here also derive from a second motivating principle. In
earlier work [5], we have described how population size fluctuation has a positive
impact, in promoting the emergence of cooperation in networks. Commenting on
this (ibid.), we suggested the possibility that the observed effect may be viewed
as a generalised response to perturbation of networks, and that population size
fluctuation may be only one way, amongst several, of perturbing a network to
thus yield similar results. This notion hints at a potential issue: that models
of cooperation which are overly deterministic, or lacking in noise, may preclude
the cooperative phenomena we seek to investigate. In the work that follows we
consider whether our findings add further support to this thinking.

2 Background

Here we highlight a few key elements of game theory relevant to this work. We
then briefly consider existing research forming the basis for our investigations.

Within the context of evolutionary game theory, a variety of games are used
to model social behaviours. A model of particular interest for investigating coop-
eration is the public goods game (PGG), otherwise referred to as the tragedy
of the commons [6] or the n-person prisoner’s dilemma. This game, being based
on group-wise rather than pair-wise behaviour, is arguably more analogous to
the complexity of real-world social interactions, than the standard prisoner’s
dilemma (PD), which only models interactions between paired individuals [7].

In the PGG, each participant can choose to contribute, or not, a fixed amount
to a central ‘pot’. This pot is then increased by a multiplier and redistributed
amongst all participants, regardless of whether they contributed. The rational
analysis of this game demonstrates that the selfish choice (defection), is the
option which maximises an individual’s payoff, however if all individuals exercise
the same rationality, none will contribute and the public good will be minimised,
hence we have a ‘social dilemma’. Whilst the rational analysis predicts tragedy,
real-world examples of cooperation (contributing to the public good) are abun-
dant. It is this discrepancy between game theoretic predictions and empirical
findings which research attempts to redress.

The PGG can be implemented within evolving social networks [8], using an
approach where each member of the network in turn, initiates a PGG within a
group which consists of the individuals it is directly connected to—its ‘neigh-
bourhood’. Any given individual in the network will be a neighbour of several
other nodes, hence in addition to the PGG that a particular node initiates itself,
it will also be a participant in PGGs initiated by others. It is this participa-
tion of an individual in multiple games with multiple opponents, i.e. group-wise

64 S. Miller and J. Knowles

interaction, which differentiates the PGG from its cousin in game theory—the
prisoner’s dilemma (PD). In the PD, an individual is able to retaliate or recip-
rocate in response to their partner’s behaviour. In the PGG however, partici-
pants are not able to effectively target retaliation directly against defectors, since
such retaliation (i.e. not contributing to the public good) harms cooperator and
defector neighbours equally. The classical result for the PGG is that cooperation
becomes less likely as neighbourhood size increases. This result can be appreci-
ated intuitively, by considering that the more the neighbourhood size increases,
(i.e. the closer it gets to having all members of the network participating), the
more the game approximates the mean field scenario, where defection is the Nash
equilibrium [9].

The above approach has been extended to demonstrate the emergence
of cooperation, amongst evolving populations of individuals playing PGG, in
dynamic randomly growing networks [10]. This development differs from earlier
work in its use of two evolutionary elements, rather than one. The two elements
are:

1. Strategy updating : This is the primary evolutionary mechanism, present in [8]
and common to the majority of evolutionary game theoretic models used
to investigate cooperation in networks. It represents intrinsic effects within
the population, specifically, direct competition between two competing neigh-
bours. This mechanism’s effect is directly responsible for the spread of those
strategies which confer greater fitness upon individuals. It does not however,
in any way, affect the network topology.

2. Population size fluctuation: This secondary evolutionary mechanism [11] rep-
resents widespread ‘environmental’ effects that are explicitly extrinsic to the
population. In the real world, examples might be disease, predation, food
shortages, drought, many of which may be seasonal. Here a proportion of
the less fit members of a society are periodically ‘killed off’. Specifically, in
the case of our implementation, individuals are removed from the population,
along with the positions they occupied within the network due to their con-
nections. This (fitness-based) process causes changes in the network topology,
but it does not implement the spread of behaviours from one individual to
another.

In the following, we investigate how a variety of network simulations, all pred-
icated on originally non-cooperative behaviour, are affected by the arrival of a
very small (n ≤ 3) group of cooperative migrants. We initially describe, in detail,
the implementation of our models. We then provide ‘behaviour profiles’ for a
range of network scenarios and growth mechanisms, followed by deeper scrutiny
of phenomena within the actual simulations that are of particular interest.

3 Methods

Our work is based on methodology presented in [8,10,12]. We here give a full
description of our approach for completeness.

Global Network Cooperation Catalysed by a Small Prosocial Migrant Clique 65

Our model describes agents located at the nodes of networks. Each node
in the network has a ‘neighbourhood’, defined by the nodes its edges connect
to. A PGG occurs for each neighbourhood and hence a network of N nodes
will result in N PGGs. Each agent in the network has a behaviour encoded
by a ‘strategy’ variable: ‘cooperate’ or ‘defect’, which determines whether it
contributes to PGGs, or not, respectively.

The general outline of the evolutionary process, for one generation, is as
follows:

1. Play public goods games: In a round-robin fashion, each agent initiates a PGG
involving its neighbours. An agent’s fitness score is the sum of payoffs from
all the individual PGGs that it participates in.

2. Update strategies: Selection occurs. Agents with low scores will have their
strategies replaced, on a probabilistic basis, by comparison with the fitness
scores of randomly selected neighbours.

3. Remove nodes: If the network has reached the nominal maximum size, it is
pruned by a tournament selection process that removes less fit agents.

4. Grow network : A specified number of new nodes are added to the network,
each connecting to m randomly selected distinct existing nodes via m edges.

In the following, we provide more detail on each of the four steps:

Play public goods games. Each node of the network, in turn, initiates a PGG.
Within a single PGG, all cooperator members of a neighbourhood contribute a
cost c to ‘the pot’. The resulting collective investment I is multiplied by r, and
rI is then divided equally amongst all members of the neighbourhood, regardless
of strategy.

Since an agent contributes a cost c to each game they participate in, their
overall contribution, in one generation, is therefore c(k+1) where k is the number
of neighbours (degree). The single game individual payoffs of an agent x are
given by the following equations, for scenarios where x is a defector (PD) and a
cooperator (PC) respectively:

PD = crnc/(kx + 1) , (1)

PC = PD − c , (2)

where c is the cost contributed by each cooperator, r is the reward multiplier,
nc is the number of cooperators in the neighbourhood based around x, and kx
is the degree of x.

Update strategies. Each node i selects a neighbour j at random. If the fitness
of node i, fi is greater or equal to the neighbour’s fitness fj , then i’s strategy is
unchanged. If the fitness of node i, fi is less than the neighbour’s fitness, fj , then
i’s strategy is replaced by a copy of the neighbour j’s strategy, according to a
probability proportional to the difference between their fitness values. Thus poor
scoring nodes have strategies displaced by those of more successful neighbours.

66 S. Miller and J. Knowles

Hence, at generation t, if fi(t) < fj(t) then i’s strategy is replaced with that
of the neighbour j with the following probability:

ΠUi
(t) =

fj(t) − fi(t)
fd max(ki(t), kj(t))

, (3)

where ki and kj are degrees of node i and its neighbour j respectively. The pur-
pose of the denominator is to normalise the difference between the two nodes,
with fd max(ki(t), kj(t)) representing the largest achievable fitness difference
between the two nodes given their respective degrees. In the absence of a mathe-
matical approach to calculate this, we run simulations for all 4 combinations (of
the 2 strategy types at the 2 nodes), to establish maximum possible difference.

Grow network. We add 10 new nodes (7 on the first generation), with randomly
allocated strategies, per generation. Each new node uses m edges to connect to
existing nodes. Duplicate edges and self-edges are not allowed. The probabil-
ity Π(t) that an existing node i receives one of the m new edges is given by
the following equations, for random attachment (RA), degree-based preferen-
tial attachment (PA), and fitness-based evolutionary preferential attachment
(EPA) [12], respectively:

ΠRAi
(t) =

1
N(t)

, (4)

where N(t) is the number of nodes available to connect to at time t in the existing
network. (Given that in our model each new node extends m = 2 new edges, and
multiple edges are not allowed, N is therefore sampled without replacement.)

ΠPAi
(t) =

ki(t)
∑N(t)

j=1 (kj(t))
, (5)

where ki(t) is the degree of an existing node i and N(t) is the number of nodes
available to connect to at time t in the existing network.

ΠEPAi
(t) =

1 − ε + εfi(t)
∑N(t)

j=1 (1 − ε + εfj(t))
, (6)

where fi(t) is the fitness of an existing node i and N(t) is the number of nodes
available to connect to at time t in the existing network. The parameter ε ∈ [0, 1)
is used to adjust selection pressure. (We used ε = 0.99 for ‘strong’ EPA.)

Growth only occurs at times when the network is below a nominal maximum
size (we used Nmax = 1000 nodes). For all added nodes, other than migrants,
we set m = 2.

Remove nodes (for fluctuation simulations). Whenever the network
achieves or exceeds the nominal maximum size, it is pruned by a percentage
X. This is achieved by tournament selection using a tournament size equivalent
to 1% of the network. Tournament members are selected randomly from the
network. The tournament member having the least fitness is the ‘winner’ and

Global Network Cooperation Catalysed by a Small Prosocial Migrant Clique 67

is added to a short list of nodes to be deleted. Tournament selection continues
until the short list of X% nodes for deletion is fully populated.

The nodes on the short list (and all of their edges) are removed from the
network. Any nodes that become isolated from the network as a result of this
process are also deleted. (Failure to do this would result in small numbers of
single, disconnected, non-playing nodes, having static strategies and zero fitness
values.) When there are multiple nodes of equivalent low fitness value, oldest
nodes are deleted first. Where X = 0, no deletions occur; in this case, on reach-
ing maximum size, the network structure becomes static.

Migrant Clique Attachment. At generation 300, the migrant group connects
to the existing primary network. Our migrant groups are small complete net-
works i.e. cliques, consisting of between 1 to 3 nodes (specific details in results
section), all having cooperator strategies. Initial connection to the primary net-
work is via only one of the nodes in the clique. This node extends either 1 or 2
edges (specific details in results section) to existing network nodes chosen at ran-
dom. Once connected, the migrants are treated as a part of the primary network
and are exposed to all elements of the evolutionary process described above.

General Simulation Conditions. In networks grown from founder members,
initial nodes were populated with defector strategies. In ‘pre-existing’ networks,
all nodes were populated with defectors. Strategy types of subsequently added
nodes were allocated independently, uniformly at random (cooperators and
defectors with equal probability). All networks had an overall average degree
of approximately k = 4, hence an average neighbourhood size of g = 5 (since
neighbourhood includes self). Simulations were run until 20,000 generations.
Final ‘fraction of cooperators’ values we use are means, averaged over the last
20 generations of each simulation. Each simulation consisted of 25 replicates. We
used a shrinkage value of X = 2.5 % for all fluctuation simulations. Simulation
data is recorded after step 2 (Update strategies).

4 Results and Discussion

We initially present our results using an approach common for investigations in
this field. We aggregate data from multiple differing sets of simulations, plotting
final fraction of cooperators against the variable, η, which is the PGG reward
multiplier normalised with respect to the average neighbourhood size in the
network. In Fig. 1a we present such ‘behaviour profiles’ for results from the ‘sim-
plified scenario’ of pre-existing networks. These networks have initially random
graph topology [13] and are initialised entirely with defectors. Figure 1b, illus-
trates the ‘more realistic’ scenario where we consider networks grown from their
origins, in this case from 3 founder defector members. In both network scenarios
we provide profiles for the three attachment mechanisms of RA, PA and EPA.

For the simpler scenario of pre-existing networks, initialised with all defectors
(Fig. 1a) and having a fixed network size, we naturally observe zero cooperation

68 S. Miller and J. Knowles
Fr

ac
tio

n
of

 C
oo

pe
ra

to
rs

η

1.0
0.8
0.6
0.4
0.2

0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0Fr

ac
tio

n
of

 C
oo

pe
ra

to
rs

η

a) Pre-existing networks

b) Networks grown from founders

1.0
0.8
0.6
0.4
0.2

0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

RA PA EPA

RA PA EPA

Fig. 1. Behaviour profile plots illustrating the impact of a migrant cooperator clique
on the emergence of cooperation for three different attachment mechanisms: RA, PA
and EPA. (a) shows pre-existing networks having initially random graph topology and
initialised entirely with defectors. (b) shows networks grown from 3 defector founders.
Final fraction of cooperators present is plotted against η (the PGG reward multiplier r
normalised with respect to average neighbourhood size, g = 5). Migrant cliques consist
of 3 connected cooperators, one of which attaches to the existing network randomly by
2 nodes. Green lines with circle markers are simulations featuring migrants. Black lines
with square markers are controls (no migrants). Solid lines represent simulations that
are fixed in their network topology. (In the case of b, topology becomes fixed upon
population achieving maximum size.) Dashed lines represent fluctuating simulations
(colour figure online).

(solid black lines) for all attachment mechanisms. In comparison, the migrant
scenario (solid green line) precipitates cooperation once the temptation of the
reward achieves a particular threshold (η > 0.7). In the case of fluctuating
network size, we see that the migrants promote higher levels of cooperation than
those seen in their absence (compare green dashed with black dashed lines),
except in the case of EPA, where levels of cooperation have already been elevated
by the increased network heterogeneity associated with this mechanism (see [14]
for detailed information on the role of network heterogeneity in cooperation).

When we consider the more complex scenario of networks grown from
founders (Fig. 1b), we see that our earlier findings still hold. Again, above a
reward threshold (η > 0.6), the arrival of the migrants promotes widespread
cooperation. We see this effect for networks that become static on reaching
specified maximum size and also in those that fluctuate in size thereafter. We
note that in the case of fluctuating models, we see little difference in final out-
comes when comparing pre-existing networks with those grown from founders
(compare corresponding coloured dashed lines in Figs. 1a and b). As described

Global Network Cooperation Catalysed by a Small Prosocial Migrant Clique 69

in earlier research [11], the fluctuation mechanism, by deleting low fitness nodes
from within the network, can overcome the limitations of ‘fossilised’ (zero-fitness,
defector-dominated) regions of the network in a manner that is not achievable
by strategy updating between neighbours. Importantly, cooperation can be sup-
ported by a fluctuating population size, without the requirement for highly het-
erogeneous network topology: the fluctuation mechanism drives networks to a
topology that has only moderately heterogeneous connectivity (in the form of a
compressed exponential degree distribution) [10].

Whilst the behaviour profile plots above allow us to neatly characterise and
compare different experimental simulations, they describe derived data which
for the most part is of limited interest, whilst potentially masking more inter-
esting phenomena. More specifically, as the value of the reward variable (η)
is maximised/minimised, the dilemma becomes diminished and the dominant
behaviour of populations becomes consistent and highly predictable. We sug-
gest that in presenting abstracted representations of real-world scenarios, such
regions of the behaviour profiles are of limited relevance.

It is the mid-range values of the reward variable that represent the social
dilemma in its strongest form. We suggest that these regions are of particular
importance in investigating the emergence of cooperation, since they represent
the much more realistic challenge faced in nature by individuals attempting to
balance cost versus reward, and in addition, where noise may likely be a con-
founding or contributory factor. Where we see transitions in population behav-
iour, where a mixture of competing behaviours exists, where the choice of coop-
erate or defect is not clear cut, and where noise may be present—these are the
areas we are interested in.

We now explore the behaviour of our populations, in these regions of inter-
est, by focusing on the behaviour of replicate simulations as they transition from
defection to cooperation. From Figs. 1a and b, we see the widest variety of out-
comes in the region approximately around where η = 0.8. Figure 2 illustrates
individual time plots of simulations based on this value, for the simplified case
of pre-existing networks initialised with defectors. The plots show simulations
with the effects of fluctuation and immigration enabled, disabled, and acting in
concert. We summarise from inspection of these plots that:

i The fluctuation mechanism on its own enables a majority of replicates to
transition to cooperation. Similar levels of cooperation are achieved by all
of those replicates that transition. Transition times however remain variable
with some replicates failing to transition over the time period studied.

ii The isolated effect of migrant arrival drives higher levels of cooperation
amongst replicates. In the case of this effect though (in contrast to our previ-
ous observation), it is the levels of cooperation achieved which are variable.

iii The combined impact of migrants together with fluctuating population size,
results in all replicates transitioning to cooperation with consistency in both
final levels of cooperation achieved, and also in transition times (all replicates
transition within 200 generations of the arrival of the migrants).

70 S. Miller and J. Knowles

Fig. 2. Simulation time plots (25 replicates) illustrating the effects of migrant clique
arrival and fluctuation, in pre-existing random networks initialised with defectors, with
η = 0.8. Plots show number of cooperators over 20,000 generations. Migrant groups are
complete networks of 3 cooperator nodes, 1 of which connects to 2 randomly selected
existing network nodes. Network growth is by random attachment. All other details
are as described in Methods section. Number of replicates transitioned to cooperation
is shown in circle inset.

In Fig. 3 we illustrate similar time plots, in this case for the more complex
scenario featuring networks grown from founder populations of 3 defectors. We
observe that the findings seen earlier, for the simplified case of pre-existing net-
works, still hold: fluctuation alone promotes consistent levels of increased cooper-
ation albeit with variable transition times; migrants alone promote cooperation
albeit to varying levels; the combination of cooperator migrants and fluctuation
brings consistency to both transition times and levels of cooperation achieved.

These findings are also robust to attachment mechanisms. For both of the
network models illustrated above, in addition to random attachment (as repre-
sented in Figs. 2 and 3), the same observations also held when tested using both
degree-based attachment (PA), and fitness-based attachment (EPA).

Global Network Cooperation Catalysed by a Small Prosocial Migrant Clique 71

Fig. 3. Simulation time plots (25 replicates) illustrating the effects of migrant clique
arrival and fluctuation, for networks grown from 3 defector founders, with η = 0.8.
Plots show number of cooperators over 20,000 generations. Migrant groups are complete
networks of 3 cooperators nodes, 1 of which connects to 2 randomly selected existing
network nodes. Network growth is by random attachment. All other details are as
described in Methods section. Number of replicates transitioned to cooperation is shown
in circle inset.

The ability of the of the migrant clique to invade defector networks appears
to arise from benefits conferred on the connecting migrant by the ‘back-up’
provided from its fellow migrants. These back-up migrants are initially immune
to both strategy updating and the impact of defectors in reducing their payoff
values (being as they are initially not directly connected to the network). The
back-up migrants can boost the payoff (fitness) of a connecting migrant, so that
during strategy updating, it can thus readily convert the existing network node it
connects to, into a cooperator. Beyond initial possible payoff calculations, which
can be established analytically, it becomes harder to pin down the details of the
further spread of cooperation. However, it is clear from our investigations that
in the case of migrant-triggered cooperation, it is this back-up which is key.

72 S. Miller and J. Knowles

What is particularly interesting here, is just how small the migrant group can
be, whilst still being able to precipitate the emergence of cooperation through
the entire population. The previous simulations were based on migrant groups
of 3 connected individuals, one of which extends 2 connections to random exist-
ing members of the network. In additional work, we have reduced the size of
the migrant group to 2 individuals, of which one connects only 1 edge to an
existing network node. Tested at the same η (= 0.8), on pre-existing defector-
populated initially random networks, and on networks grown from defector
founders (growth by RA in both cases), our previous findings still hold. (Time
plots were highly similar to those shown in Figs. 2 and 3, with the only difference
that a delay in transition was observed infrequently, e.g. 1 or 2 replicates out
of 25, for those simulations combining both migration and fluctuation.) On fur-
ther reduction to 1 node (extending either 1 or 2 edges), our general findings no
longer hold. This outcome is entirely expected, as this situation is now no differ-
ent to the standard attachment process by which all new individuals routinely
connect—1 node, 2 edges, i.e. no back-up.

These findings based on adjustments to the migrant clique highlight a poten-
tial source of concern regarding models of cooperation in networks, namely that
widely differing outcomes may arise from seemingly small differences in simu-
lation parameters: We can reduce our migrant mechanism to a point where it
appears very similar (2 nodes, 1 edge) to the mechanism by which nodes rou-
tinely attach during network growth (1 node, 2 edges). Given such similarity,
and noting that the migrant effect happens only once in a simulation, whilst
new nodes are added repeatedly in the fluctuation model, we might be inclined
to therefore assume that results due to the migrant clique arrival would be triv-
ial relative to those arising from fluctuation. However, we see in our results that
the isolated, seemingly trivial, migrant event clearly brings about an additional
change to populations, which is not achieved in its absence. The small difference
between these two very similar mechanisms results in markedly different behav-
ioural dynamics. Importantly, despite their apparent similarities, the attachment
mechanism used for routine network growth clearly cannot create the additional
opportunities for cooperation that the migrant clique’s arrival can enable.

These results combined with findings of previous research, reinforce our belief
that fluctuations in the network, or migrant cliques, or alternative mechanisms
to perturb the system, bring an added dimension to models of cooperation in
networks that simpler mechanisms fail to provide: It is these noisy perturbations
of the network that disrupt the ‘status quo’ and catalyse the spread of coopera-
tion throughout the population. If this assumption is correct then there is a risk
that simpler, more deterministic models of cooperation in networks may lack the
disruptive elements that promote cooperation and may thus preclude or impede
its emergence.

5 Conclusion

Using various models of cooperation, based on the public goods game, we have
investigated a scenario where individuals migrate, from a cooperative network,

Global Network Cooperation Catalysed by a Small Prosocial Migrant Clique 73

to join one that does not demonstrate cooperation. Under certain conditions,
notably around the region where the social dilemma is at its strongest, we
find quite striking results: The effect of a few concerted migrants catalyses a
marked behavioural change, precipitating the widespread emergence of coopera-
tion throughout the entire population. Of particular interest is our finding that
the migrant group size can be extremely small and needs only to form one initial
connection in order to initiate a marked response. The actions of a seemingly
trivial group of concerted cooperators initiate changes throughout a population
that is orders of magnitude larger than the migrant group.

We have hypothesised that perturbation, in the form of population size fluc-
tuation, and also in the form of invading migrants, can promote cooperation.
We have demonstrated this to be the case for both of these effects in isolation,
and to a greater extent, in concert. Clearly other methods, or combinations of
methods, for perturbing or disrupting networks exist that may yield similarly
interesting results.

Our results reinforce previous work proposing that perturbations of networks,
or possible alternative forms of disruption, are an important contributory feature
in the emergence of cooperation. Taken generally, such observations suggest the
potential for oversimplified or strictly deterministic models of cooperation in
social networks, to limit or exclude the phenomena they seek to investigate. We
highlight, in particular, that from a combination of two mechanisms studied here,
there emerged a consistency in outcome that is unlikely to have been anticipated
from studying simpler models of each mechanism in isolation.

Acknowledgements. This work has been funded by the Engineering and Physical
Sciences Research Council (Grant reference number EP/I028099/1).

References

1. Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science 211, 1390–
1396 (1981)

2. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359,
826–829 (1992)

3. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563
(2006)

4. Perc, M., Szolnoki, A.: Coevolutionary games: a mini review. BioSystems 99, 109–
125 (2010)

5. Miller, S., Knowles, J.: Population fluctuation promotes cooperation in networks.
Sci. Rep. 5 (2015). (Article Number 11054)

6. Hardin, G.: The tragedy of the commons. Science 162, 1243–1248 (1968)
7. Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floŕıa, L.M., Moreno, Y.: Evolutionary

dynamics of group interactions on structured populations: a review. J. R. Soc.
Interface 10, 20120997 (2013)

8. Santos, F.C., Santos, M.D., Pacheco, J.M.: Social diversity promotes the emergence
of cooperation in public goods games. Nature 454, 213–216 (2008)

9. Nash, J.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)

74 S. Miller and J. Knowles

10. Miller, Steve, Knowles, Joshua: The emergence of cooperation in public goods
games on randomly growing dynamic networks. In: Squillero, Giovanni, Burelli,
Paolo (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 363–378. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-31204-0 24

11. Miller, S., Knowles, J.: A minimal model for the emergence of cooperation in ran-
domly growing networks. In: Proceedings of the European Conference on Artificial
Life 2015 (ECAL 2015), vol. 13, pp. 114–121 (2015)

12. Poncela, J., Gómez-Gardeñes, J., Floŕıa, L.M., Sánchez, A., Moreno, Y.: Complex
cooperative networks from evolutionary preferential attachment. PLoS one 3, e2449
(2008)

13. Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae Debrecen 6,
290–297 (1959)

14. Santos, F.C., Pacheco, J.M.: A new route to the evolution of cooperation. J. Evol.
Biol. 19, 726–733 (2006)

http://dx.doi.org/10.1007/978-3-319-31204-0_24

Model-Based Computation

Cameron Beebe1,2(B)

1 Graduate School of Systemic Neurosciences,
Research Center for Neurophilosophy and Ethics of Neurosciences,

LMU Munich, Munich, Germany
cameronbeebs@gmail.com

2 Munich Center for Mathematical Philosophy,

LMU Munich,

Munich, Germany

Abstract. A brief analysis of analog computation is presented, tak-
ing into account both historical and more modern statements. I will
show that two very different concepts are tangled together in some
of the literature—namely continuous valued computation and analogy
machines. I argue that a more general concept, that of model-based com-
putation, can help us untangle this misconception while also helping to
evaluate two particularly interesting kinds of computational claims. The
first kind concerns computational claims about the brain, in the spirit
of Searle’s Is the Brain a Digital Computer? The second kind concerns
what has recently been called analog simulation, most notably in sys-
tems reproducing effects analogous to Hawking Radiation. Some final
comments discuss how a model-based notion of computation helps us
understand in a more concrete way the differences found among alterna-
tive models of computation.

Keywords: Model-based · Computation · Analog · Simulation

1 Introduction

The scope of this present article is not formal, but conceptual. I wish to provide a
general discussion on the notion of computation, motivated by the fact that there
has been some conceptual confusion present in the literature concerning analog
computation. By an analysis of this confusion and the general ‘computational
landscape’, I hope to contribute to our understanding of some recent claims
by introducing what is called model-based computation. I argue that this is a
natural development for the notion of computation, and is well-motivated from
the analysis of analog computation provided.

A first step will be to provide evidence that there is a conceptual confusion
present in discussions of analog computation. This will help establish what ana-
log computation is not, and motivate the discussion in subsequent sections of
what it is—and how a more general notion of model-based computation accom-
modates it. We begin with two statements from Nielsen and Chuang’s bible of
quantum information theory, which I quote at length for the unfamiliar reader:
c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 75–86, 2016.
DOI: 10.1007/978-3-319-41312-9 7

76 C. Beebe

“In the years since Turing, many different teams of researchers have
noticed that certain types of analog computers can efficiently solve prob-
lems believed to have no efficient solution on a Turing machine. At first
glance these analog computers appear to violate the strong form of the
Church-Turing thesis. Unfortunately for analog computation, it turns out
that when realistic assumptions about the presence of noise in analog com-
puters are made, their power disappears in all known instances; they can-
not efficiently solve problems which are not efficiently solvable on a Turing
machine. This lesson — that the effects of realistic noise must be taken
into account in evaluating the efficiency of a computational model — was
one of the great early challenges of quantum computation and quantum
information, a challenge successfully met by the development of a theory of
quantum error-correcting codes and fault-tolerant quantum computation.
Thus, unlike analog computation, quantum computation can in principle
tolerate a finite amount of noise and still retain its computational advan-
tages” [8, p. 5].

“One might suspect that quantum computers are just analog computers,
because of the use of continuous parameters in describing qubit states;
however, it turns out that the effects of noise on a quantum computer can
effectively be digitized” [8, p. 164].

Two things should be noted immediately. First, there seems to be an assumed
notion of analog computation as a delicate and noise-intolerant business. I argue
that this stems from the core misconceptions that continuous valued ‘organs’
(that is, components performing specialized functions) are not only essential to
analog computation (they are not) but that a device which has such organs is
synonymous with analog computation.1 This is simply not the case, as we will
see shortly.

The reader may also wish to see argument 6 from Scott Aaronson’s page
on skeptics of quantum computation, where he claims “We know that analog
computers are not that reliable, and can go haywire because of small errors.”
[1] Aaronson proceeds to respond to the question of “why a quantum computer
should be any different, since you have these amplitudes which are continuously
varying quantities.” In his response, he makes the very conflation at question
here, namely that analog computation is synonymous with continuous value
computation.

These claims against analog computation do not hold up to closer scrutiny.
We will see in the next section that they are not supported by a basic analysis
of analog computation. In the literature, we actually find some clarification with
respect to what an analog computer was initially conceptualized as. See e.g.
Ulmann [11]. Rather than being defined by the continuity of parameters, it was
defined through analogy—and in fact von Neumann [7, p. 293] among others even
refers to two classes of computing machines, analogy and digital machines. The
term analogy machines sounds much different to our modern ears than analog
1 We will see shortly that von Neumann, among others, used the term organ.

Model-Based Computation 77

computer, but I argue it more accurately represents the landscape of computa-
tion. Particularly in modern computer science where alternative or specialized
computing devices have become more common, it is important to have a clear
conceptual overview of this landscape.

Thus, in the next section I introduce what I think is a much clearer concep-
tion of analog computation. I then proceed to outline some thoughts on what
I call ‘model-based computation’ respecting this conception. Afterwards, I eval-
uate two discussions in light of this notion of model-based computation. The
first includes computational claims about the brain and the current notion of
hierarchical generative models in cognitive science. We will see that hierarchical
generative models unsurprisingly describe model-based computation as outlined
in this present work (in particular analog computation). The second discussion
will focus on analog models in physics, in particular the notion of analog simu-
lation recently put forth in Dardashti et al. [3]. Relevant aspects of the notion
of model-based reasoning will also be briefly discussed. In the conclusion I will
draw attention to the importance of this discussion on the developing market
place of alternative computing.

2 What Is Analog Computation?

Enormous credit is due to Bernd Ulmann for providing us with a clear assessment
of what analog computation is. I quote at length since I believe his comments
are very informative and are incapable of compression without loss.

“First of all it should be noted that the common misconception that the
difference between digital computers on one side and analog computers on
the other is the fact that the former use discrete values for computations
while the latter work in the regime of continuous values is wrong! In fact
there were and still are analog computers that are based on purely digital
elements. In addition to that even analog electronic analog computers are
not working on continuous values — eventually everything like the integra-
tion of a current boils down to storing (i.e., counting) quantized electrons
in a capacitor.
If the type of values used in a computation — discrete versus continuous —
is not the distinguishing feature, what else could be used to differentiate
between digital and analog computers? It turns out that the difference is
to be found in the structure of these two classes of machines: A digital
computer in our modern sense of the word has a fixed structure concern-
ing its constituent elements and solves problems by executing a sequence
(or sequences) of instructions that implement an algorithm. These instruc-
tions are read from some kind of memory, thus a better term for this kind
of computing machine would be stored-program digital computer since this
describes both features of such a machine: Its ability to execute instruc-
tions fetched from a memory subsystem and working with numbers that
are represented as streams of digits.

78 C. Beebe

An analog computer on the other hand is based on a completely different
paradigm: Its internal structure is not fixed — in fact, a problem is solved
on such a machine by changing its structure in a suitable way to generate
a model, a so-called analog of the problem. This analog is then used to
analyze or simulate the problem to be solved. Thus the structure of an
analog computer that has been set up to tackle a specific problem repre-
sents the problem itself while a stored-program digital computer keeps its
structure and only its controlling program changes” [11, p. 2].

It seems elementary to quote an introductory textbook, yet in the previ-
ous section we have seen that the misconception Ulmann speaks of is prevalent
even at the highest levels of theoretical computer science. Going back to von
Neumann, we find the beginning of the next most essential aspect of analog
computation (and computation in general)—that computation depends on the
use of a system. We also see evidence that the misconception concerning analog
computers has been around for quite some time:

“The electromechanical relay, or the vacuum tube, when properly used, are
undoubtedly all-or-none organs. Indeed, they are the prototypes of such
organs. Yet both of them are in reality complicated analogy mechanisms,
which upon appropriately adjusted stimulation respond continuously, lin-
early or non-linearly, and exhibit the phenomena of “breakdown” or “all-
or-none” response only under very particular conditions of operation” [7,
pp. 297–298].

We should be careful in parsing this particular quote, since von Neumann
uses ‘analogy’ and ‘continuously’ in the same sentence. I think that even he
has made the mistake of conflating analogy with continuity. In other places he
seems to maintain the distinction, but since then the misconception in computer
science at large seems to have only gotten worse. However, what we see is that
‘proper use’ is essential to defining computation. We will return in more detail
to this in later sections, but for now we can state more accurately what we mean
by an analog computer.

Definition 1 (Analog Computer). An analog computer is a device whose
internal structure is malleable and contains similarities to the class of problems
it is used to solve. Additionally, these similarities by themselves should form a
sufficient model of the relevant class of problems such that (in our proper use
of the device) the organs involved function in a way that is consistent with our
understanding of the target problems.

While some analog computers under this definition can indeed be considered
as (ideally) implementing differential equations or having continuous organs,
this must be recognized as only a subset of potential uses of such a computer.
In other words, the definition does not explicitly endorse smoothness or rule out
digital systems. What is more important for the notion of analog computation,
and for developing a richer conception of computation, is that the user and the

Model-Based Computation 79

architecture both play important roles in their relationship to a model. The user
has to develop a model, or recognize similarities, or utilize analogical reasoning
to set up the system in such a way that it can solve the problems at hand. Thus,
in the remainder of this article, the reader should note that when I use the term
‘analog’, even as an adjective, it does not refer to continuity in any way.

Our view of the architecture will reflect this modeling procedure, meaning
that as von Neumann notes an ‘all-or-nothing’ organ might be liable to be char-
acterized under other usages as a more or less continuous valued organ. What
should be clear at this stage is that analog computation utilizes a model to frame
the use of the device. Historically, this seems to have been in particular mod-
els incorporating similarity and analogy. However, I argue this is just one type
of a more general category of what can be called model-based computation. At
this point I diverge slightly from Ulmann’s statements [11], although the central
premise is, I think, present in his work already quoted and thus I am offering
more of a naturally implied extension than a meaningful divergence.

3 Model-Based Computation

The notion of model-based computation is rather quite simple alongside those
definitions already provided for analog computation by Ulmann [11]. It is just
slightly more general, in that the model used may or may not incorporate simi-
larities or analogies to the extent that analog models do.2 That is, even if there
are similarities in the device, these similarities may not be sufficient by them-
selves to form a model of the target problem class. Analog computation is then
a special case more accurately thought of as shorthand for analog-model compu-
tation. It might be that good examples of model-based computation are in fact
using analog models, but it is arguably a small class within the computational
landscape compared to any potential model-based computation—if only for the
reason that analog models are a restricted class of models in general.

But what is a model? This question has been widely addressed in the phi-
losophy of science community, and a few brief notes might be helpful before
moving forward. There are a variety of different kinds of models which are used
in science. There are toy models, idealized models, scale models, mathematical
models, and many more kinds of models. Each of these kinds may have overlap
with other kinds, they are not exclusive of each other. All models, it seems, need
a target object or set of data which is to be represented or accounted for in some
way in the model. See Frigg and Hartmann [5] for more on models in science.
Model-based computation may involve many of the same aspects as other models
in science.

Definition 2 (Model-Based Computer). A model-based computer is a
device which may have a malleable internal structure, and which represents in
some relevant way a target problem class. The relevant representation in the

2 Although it may be an open question whether all models are in fact rooted in analogy
or similarity, I will not focus on such an argument here.

80 C. Beebe

device should form a model which, under proper use, functions in a manner that
is consistent with our understanding of the target problem class.

It is useful to go one step further in this section, to discuss model-based
simulation. This will be helpful before encountering analog simulation in later
sections. Model-based simulation is a refined form of model-based computation,
in which the dynamics of the device are relevant for the user or target problem
(as opposed to just a functional relation). Generally, the dynamics of a model-
based computer may or may not model what we know about the dynamics of
the target system. Yet, they may still be relevant for the User for simulational
purposes. Simulation operates on a richer model that deems relational aspects
(such as temporal relations) of the device relevant. One can have static relevant
features represented in a model which, after use, has an output which function-
ally represents a useful computation concerning a target problem. However, the
dynamics of using the model may be irrelevant to the kind of dynamics present
in the target system. In this case we would not say that there is model-based
simulation present.

Just reading the output of a slide rule, for example, does not seem to involve
simulation but just accomplishes a computation with the model. Take two equal
length sticks with logarithmic scales on them lined up side by side. Multiplication
can be calculated by sliding one of the sticks relative to the other by a factor.
That is, 2 times 4 could slide one stick by 2 on the logarithmic scale (representing
a multiplication of 2). Then, one looks up the other factor and reads off the
corresponding value on the other stick. In this case, 4 would be lined up with 8,
the result of the calculation.3

The dynamics of sliding the stick does not seem to model an algorithm for
multiplying some integers. The model in this case involves not only the physi-
cal ruler, but also the reasoning and mathematics involved to create the scales
represented on the ruler. The preparation of the computing device has utilized
pre-computed knowledge (i.e. log(xy) = log(x) + log(y)) to functionally output
values consistent with an algorithm for multiplication, but the sliding dynam-
ics are not relevant for the computation. I think it is quite reasonable to expect
that model-based computation generally will not include relevant dynamics with
the target system. When it does, a stronger notion of model-based simulation
is applicable. We will see later an example of analog simulation in which the
dynamics are relevant and similar.

3.1 Benefits?

In the present work I am remaining qualitative in my analysis of the ‘computa-
tional landscape’, however some general comments may be of interest concerning
3 It is also interesting to note that a slide rule is typically called an analog computer.

Under the misconception of analog computer as necessarily involving continuous
variables, what role does continuity play in the use of a slide rule? It is arguable
that the continuously adjustable aspect of the device is incidental to the actual use
and function of the computer since outputs are also not real numbers.

Model-Based Computation 81

any formal results associated with analogy machines or model-based computa-
tion. If there is any genuine ‘speed-up’ to be found compared to classical compu-
tation, I think it will be primarily the result of two sources. The first potential
source is simply due to the architecture and type of values processed in the given
system.

The second, and likely more important, source of potential speed-up in model-
based computing is that it fronts certain information in the ‘premises’ of the set-
up. In other words, some computational work has already been done in the set-up
of the system. The model is, as it were, pruning off certain forks in reasoning
or avoiding certain lengthy calculations that do not need to be investigated or
reported by the program. As a simple example, just consider Deutsch’s problem
and finding out whether a black box implements a balanced or constant function
of four possible functions f : {0, 1} → {0, 1}.

A classical computer requires two evaluations of the black box, sending both
a 0 and 1 through. We learn not only whether it is constant or balanced, but
also which of the functions is performed. A quantum computer can, by throwing
out the irrelevant information of the specific function and encoding the global
property of the function cleverly into the phase, tell us in one go whether the box
implements a constant or balanced function. Our model of the problem works
with the architecture to cleverly set up the computation such that it tells us
only what we need to know and nothing more.4

Any complexity claims should always be aware of these ‘fronted’ or indirectly
utilized resources. If we haven’t recognized these resources adequately, we might
be mislead by certain claims of speed-up or complexity. In statements such as the
following from Rubel, for example, we can see that these resources are alluded
to by mentioning that the scientist has a ‘feel’ for the computing device:

“It is fashionable nowadays to downgrade analog computers, largely
because of their unreliability and lack of high accuracy (roughly one-tenth
of one percent at best). But analog computers, besides their versatility, are
extremely fast at what they do, which is solving differential equations. In
principle, they act instantaneously and in real time. Further, in contrast to
the situation in digital computing, the operator of an analog computer has
an extremely good “feel” for what the computer is doing. Analog comput-
ers are still unrivaled when a large number of closely related differential
equations must be solved” [9, pp. 78–79].

While Rubel is specifically referring to analog computers, I think the state-
ment is generally applicable to model-based computation. It is this ‘feel’ that I
think imparts some of the benefits to model-based computation, since one has
already done some work in constructing the model and in understanding how to
work with the particular architecture. Many models provide the user with a ‘feel’
for the target problem or system, even with the acknowledgement that in reality
4 This is of course an idealization, which should not be a problem since Turing

machines are idealizations—actual physical architectures of course deviate from this
idealization.

82 C. Beebe

there are certain features of the model which are non-representative or known to
be false. See e.g. Frigg and Hartmann [5, §4.2]. By utilizing a model in compu-
tation, the features of the model (such as idealization, etc.) have restricted the
computational possibilities to things which fit the use—thus streamlining any
process to just those which are relevant for the User. For this reason, a model-
based computer (or analog computer) will not necessarily be a general purpose
computer.

4 Computational Claims About the Brain

We now move to an analysis of the first kind of computational claim to be dis-
cussed in this paper. In Searle’s [10], he equates the question Is the Brain a
Digital Computer? with Are Brain Processes Computational?. After the pre-
ceding discussion, this seems like a mistake.5 Digital computers are of course
computational, but something that is computational is not necessarily digital. A
digital computer may be repurposed in another context (with another user) to
implement another form of computation, as noted by von Neumann:

“By an all-or-none organ we should rather mean one which fulfills the fol-
lowing two conditions. First, it functions in the all-or-none manner under
certain suitable operating conditions. Second, these operating conditions
are the ones under which it is normally used; they represent the function-
ally normal state of affairs within the large organism, of which it forms a
part. Thus the important fact is not whether an organ has necessarily and
under all conditions the all-or-none character—this is probably never the
case—but rather whether in its proper context it functions primarily, and
appears to be intended to function primarily, as an all-or-none organ” [7,
p. 298].

To be fair, Searle’s discussion does touch upon some very legitimate issues
with these questions. However, it is not clear that his discussion translates eas-
ily for the notion of model-based computation advocated for here. I want to
agree with Searle’s (and von Neumann’s) comments on use being fundamental
to computation, but avoid the framing of computation as equivalent to digital
computation. Digital computation is but one subset of potential user-dependent
contexts which may constitute a computational device. Not only does a model-
based notion of computation help clear this issue up, but it importantly empha-
sizes at its core the user-dependent context which is so central to the notion of
computation generally. This helps us grasp better what alternative models of
computation are doing for us, namely that they are subjectively pruning away
irrelevance or emphasizing certain relevancies.

Then, what would it mean if we asked Is the Brain a Model-based Computer?,
and is this different still from Searle’s second question Are Brain Processes Com-
putational? In the scope of this present paper I cannot answer all of the inter-
esting questions brought up in this topic, but I can discuss one recent approach
in cognitive science that arguably fits the notion of model-based computer.
5 Even more so than Searle himself might have admitted.

Model-Based Computation 83

4.1 Bayesian Brain and Generative Modeling

There is a growing use of Bayesian probabilistic methods and hierarchical gen-
erative models (HGM) in cognitive science. See e.g. Friston [6] and Clark [2].
Some of this literature can be taken as arguing that the brain be considered
a model-based computer as we have defined it here: that it is a device whose
evolution in time effectively performs computations based on a pre-established
model. Take Friston’s description as an example:

“The Bayesian brain hypothesis uses Bayesian probability theory to for-
mulate perception as a constructive process based on internal or generative
models. The underlying idea is that the brain has a model of the world
that it tries to optimize using sensory inputs. [...] In this view, the brain
is an inference machine that actively predicts and explains its sensations”
[6, p. 129].

This approach is argued by the authors to have the capacity of unifying
several areas of cognitive science. Whether the specifically Bayesian approach is
the final unifier may still be at question. Nonetheless, the approach not only fits
the model-based account of computation I have advocated here, but even seems
to fit the more restricted sense of analog computation since the modeling that
the brain is doing is related via similarity to the external world. The brain, under
this view, is constantly simulating the world and adjusting its model according
to the errors experienced. The HGM is amplifying relevant or similar features of
a model via feedback with the environment, while dissimilar features fall out of
focus (and, under the Bayesian approach, obtain lower probabilities).

Under this framework, we would answer ‘yes’ to the question of whether the
brain is a model-based computer, and also ‘yes’ to the question of whether brain
processes are computational. However, this may be a bit premature since we have
noticed that computation is dependent on a user—and what would be using
this model-based computer? This is no trivial problem, and in fact relates to
longstanding mind/brain problems and what is called the “homunculus fallacy”
(HF). See e.g. Searle [10, §V]. Can the model-based conception of computation
add anything new to this problem?

Without being overly conclusive, I suggest that the hierarchical generative
model of cognition may be a good step towards addressing the user problem.
The reason, we will see, is that it simply accepts a finite regress and offers a
more general notion of model-based computation.6 While this isn’t solving the
problem (or avoiding the fallacy) in the traditional sense, it is simply not so
unreasonable to suppose that the brain—as a computational system—involves
complex hierarchical modeling of the external world. The representations in this
model will no doubt still succumb to HF objections, but not in a naive way.

6 Attempting to mitigate or explicitly accepting the HF is a required step, since as
Searle notes, “... The homunculus fallacy is endemic to computational models of cog-
nition and cannot be removed by the standard recursive decomposition arguments.”
[10, p. 36] What can be done, I argue, is to put a new spin on the issue.

84 C. Beebe

The slightly more sophisticated view does not succumb to an infinite regress
traditionally associated with the homunculus fallacy, since there are finite levels
in the hierarchy. The homunculus could just be the topmost level in the hierar-
chical generative model, and it ‘uses’ the computations from lower levels in the
hierarchy. Now, a reader familiar with the HF will likely object and say that
the topmost level of the hierarchy is still problematic, since it is not ‘used’ by a
higher level user. I do not know a way out of this objection, nor whether it will
be useful to reconcile. I can only say that the entire integrated ‘body + HGM’
system definitely seems to use the HGM, for all of the reasons why people think
HGM is a good model of cognition in the first place.

In any case, it seems that a sophisticated model-based notion of computation
does not do worse for computational claims about the brain than what has been
accomplished previously. The brain doesn’t need to be a digital computer, or a
general purpose analog computer. However, it is clear that a brain-like system
which utilizes a model (i.e. does model-based computation) of the external envi-
ronment to generate minimum error or minimum surprise is much different than
Searle’s formulation of these issues.

5 Analog Simulation in Physics

For our second kind of computational claim to be discussed, we move to physics.
A few recent publications in the physical sciences (along with some philosophy of
physics) have drawn attention to the use of analog models in scientific reasoning.
One notable example is that of fluid systems displaying analogous phenomena
to Hawking radiation (the phenomena of photons escaping the event horizon of
a black hole). See Unruh [12]. These models have been argued, under strict con-
ditions, to be performing analog simulation by Dardashti et al. [3]. Importantly,
these systems seem to allow us more access to black hole phenomena than would
otherwise be possible.

The reader should already be anticipating the main point of this section:
these sort of systems are analog computers in the clearest sense—they are based
on strict similarity conditions, and as alluded to earlier are prime examples
of model-based computation (specifically analogy-based). They are simulating
while also displaying formal and physical similarities with the target computa-
tional problem. The type of simulation these systems do is arguably providing
even stronger results than traditional simulation in which the architecture of
the computing device is irrelevant to the simulated problem. However, because
of the background knowledge involved in constructing a table-top system, we
might be less surprised at the outputs because we have a good ‘feel’ for what
the system can do.

The strict models used in analog simulation are based on formal similarities
(such as isomorphisms) between the systems of equations describing both the
computing device (i.e. a table top fluid system) and the target system (i.e. a black
hole). We mentioned earlier that for model-based simulation, the dynamics of the
computation are relevant (but may not be similar). For analog simulation, the

Model-Based Computation 85

dynamics of the device must preserve relevant similarities with the dynamics of
the target system. This brings us to the last important step in this short paper,
namely re-connecting our discussion with previous work concerning model-based
reasoning.

5.1 Model-Based Reasoning in Science

The literature concerning model-based reasoning is, to my knowledge, mainly
discussing model-based reasoning in science. See e.g. Frigg and Hartmann [5,
§3]. The systems discussed in the previous section are good examples. These
models are used by scientists to reason about target systems. The scientist may,
for example, use the model to justify a theory of Hawking radiation or to suggest
new experimental questions. There seems to be a second sense of model-based
reasoning present elsewhere, however.

This other sense of model-based reasoning is in diagnostics, or in artificial
intelligence systems which have a model of the environment. See Davis and
Hamscher [4]. Now, this might sound very close to the notion of HGM as
model-based computation I discussed previously. However I think it is impor-
tant to distinguish between model-based reasoning as somehow providing
rules or guidelines in an argument or in an artificial inference system, with
model-based computation as I have construed it. Model-based computation can
be a part of model-based reasoning, but it isn’t clear that model-based compu-
tation is model-based reasoning.

Reasoning is an active process (one might even say conscious), whereas
computation—aside from the User’s set up of a problem or the interpretation
of an output — seems to be passively implemented. Model-based reasoning may
likely be involved in constructing a particular computing device, but it isn’t clear
that what the device is doing should also be considered model-based reasoning.
Or, it isn’t clear that our use of the device as a model-based computer con-
stitutes model-based reasoning as understood by previous work on the subject.
Nonetheless, it seems to be that a more in-depth analysis of these two notions
may be fruitful.

6 Conclusion

A model-based notion of computation helps us understand why certain architec-
tures or models might perform better on, for example, optimization problems.
Take D-Wave’s supercooled annealing chip, for example. Its usefulness derives
from a combination of architectural features and model-based considerations in
the set-up of the device, and these determine the types of problems that it will
be useful for. It is worth investing in because it exploits a combination of pre-
computed modeling considerations with an architecture that also reflects these
considerations.

Model-based computation seems to be a worthwhile notion to entertain when
discussing alternative computing approaches. It does not represent any kind of

86 C. Beebe

dramatic proposal to re-draw complexity classes or endorse any view on hyper-
computation. In fact, it is clear from the discussion that complexity claims should
be wary of fronted resources by the modeling process. As a conceptual tool,
model-based computation helps us get a better grasp on the landscape of com-
putation. I have argued that this tool is useful for analyzing and understanding
various kinds of computational claims. Perhaps it can also help us keep track of
the emerging market for specialized computing devices.

Acknowledgments. I would like to thank Bernd Ulmann for introducing me to my
own errors on the foundations of analog computation, and for motivating this present
analysis.

References

1. Aaronson, S.: Lecture 14: skepticism of quantum computing. http://www.
scottaaronson.com/democritus/lec14.html

2. Clark, A.: Whatever next? predictive brains, situated agents, and the future of
cognitive science. Behav. Brain Sci. 36(3), 181–204 (2013)

3. Dardashti, R., Thébaut, K., Winsberg, E.: Confirmation via analogue simulation:
what dumb holes could tell us about gravity. Br. J. Philos. Sci. (2015). http://
bjps.oxfordjournals.org/content/early/2015/05/22/bjps.axv010.abstract (online)

4. Davis, R., Hamscher, W.: Model-based reasoning: troubleshooting. Memorandum
AI Memo 1059, Artificial Intelligence Laboratory, Advanced Research Projects
Agency, Office of Naval Research (1988)

5. Frigg, R., Hartmann, S.: Models in science. In: Stanford Encyclopedia of Philosophy
(2012). http://plato.stanford.edu/entries/models-science/ (Fall 2012)

6. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci.
11(2), 127–138 (2010)

7. Neumann, J.V.: The general and logical theory of automata. In: Taub, A.H. (ed.)
John von Neumann Collected Works, vol. V: Design of Computers, Theory of
Automata and Numerical Analysis, pp. 288–326. Pergamon Press, Oxford (1963)

8. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2010)

9. Rubel, L.A.: The brain as an analog computer. J. Theor. Neurobiol. 4, 73–81 (1985)
10. Searle, J.R.: Is the brain a digital computer? Proc. Addresses Am. Philos. Assoc.

64(3), 21–37 (1990)
11. Ulmann, B.: Analog Computing. De Gruyter, Berlin (2013)
12. Unruh, W.G.: Dumb holes: analogues for black holes. Philos. Trans. R. Soc. A 366,

2905–2913 (2008)

http://www.scottaaronson.com/democritus/lec14.html
http://www.scottaaronson.com/democritus/lec14.html
http://bjps.oxfordjournals.org/content/early/2015/05/22/bjps.axv010.abstract
http://bjps.oxfordjournals.org/content/early/2015/05/22/bjps.axv010.abstract
http://plato.stanford.edu/entries/models-science/

In Vitro Implementation of a Stack Data
Structure Based on DNA Strand Displacement

Harold Fellermann, Annunziata Lopiccolo,
Jerzy Kozyra, and Natalio Krasnogor(B)

Interdisciplinary Computing and Complex Biosystems Research Group,
School of Computing, Newcastle University, Newcastle-upon-Tyne, UK

natalio.krasnogor@newcastle.ac.uk

Abstract. We present an implementation of an in vitro signal recorder
based on DNA assembly and strand displacement. The signal recorder
implements a stack data structure in which both data as well as opera-
tors are represented by single stranded DNA “bricks”. The stack grows
by adding push and write bricks and shrinks in last-in-first-out man-
ner by adding pop and read bricks. We report the design of the signal
recorder and its mode of operations and give experimental results from
capillary electrophoresis as well as transmission electron microscopy that
demonstrate the capability of the device to store and later release several
successive signals. We conclude by discussing potential future improve-
ments of our current results.

1 Introduction

DNA nanotechnology is now a well established method for arranging and control-
ling matter on the nanoscale [1]. Because of the relative ease with which molec-
ular folding and molecular interactions can be designed by choosing appropriate
nucleic acid sequences, DNA is a prominent substrate for designing artificial
reaction networks with designed functionality. In particular, it has been shown
that arbitrary chemical reaction networks can be translated into equivalent toe-
hold mediated DNA strand displacement systems up to a constant scaling factor
that accounts for the relatively slow speed of DNA reorganization reactions [2].
Among the broadest application areas of such designed chemistries is the area of
molecular computing, where complex reaction networks consisting of dozens of
molecular players with well defined interactions can be readily synthesized and
tested in the laboratory.

Recent years have seen theoretical designs and molecular realizations of con-
ventional and unconventional molecular computational circuits. The majority
of this work has been concerned with implementing logic gates such as Boolean
gates [3,4], join-and-fork gates [5,6] and seesaw gates [7,8], and wiring these gates
together to create circuits of increasing complexity, such as molecular adders [9],
static lookup tables [10] and game-playing molecular automata [11].

H. Fellermann and A. Lopiccolo—Contributed equally to this work.

c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 87–98, 2016.
DOI: 10.1007/978-3-319-41312-9 8

88 H. Fellermann et al.

This approach toward molecular computing, which closely mimics electri-
cal engineering, is somewhat disconnected from algorithmic computer science,
where algorithms are built by composing data and operations. Indeed, DNA
computing has so far seen few designs for DNA data structures – with Qian
et al.’s theoretical design of a DNA based stack machine being one noteworthy
exception [12].

Here, we present the in vitro implementation and experimental characteriza-
tion of a DNA data structure, namely a stack, where data and operations form
the core of the molecular interaction network. Our design shares similarities with
the one presented by Qian et al. but has been optimized for maximal robustness
among all molecular interactions and minimal occurrence of undesirable reac-
tions. The stack data structure is here employed as a signal recorder and its
recording and readout fidelity is characterized experimentally. We understand
this contribution as a stepping stone toward in vitro implementations of more
general data structures, as well as computationally universal stack machines. To
the best of our knowledge, our work provides the first experimental results on a
DNA based stack in particular, and DNA based data structures in general.

2 A Stack Data Structure Built from DNA

A stack is an abstract data structure that serves as a linear collection of ele-
ments, with two principal operations: push adds an element to the stack, and
pop removes the most recently added element that was not yet removed. For-
mally, this is achieved through the interface

push : stack × element −→ stack
pop : stack −→ stack × element

with the invariant

pop(push(stack, element)) = stack, element

to guarantee last-in-first-out operation.
Fully implementing this data type in DNA requires molecular realizations

of the assembled stack, all potential elements, as well as the push and pop
operations. We achieve this by associating each data element and each operation
with a single stranded DNA (ssDNA) strand with partial secondary structures.
We call those strands “bricks”. The stack data structure is built from bricks via
hybridization of complementary DNA domains. More precisely, the stack forms
a double stranded DNA (dsDNA) assembly with essentially no single stranded
regions but one active toehold domain, that offers an entry for operation. Data
bricks form the top strand and push bricks form the bottom strand of this dsDNA
assembly.

To prevent run-away processes that might occur when adding bricks in
realistic concentrations, we design the device to toggle between two states in
all modes of operation. We refer to these as data state and operator state.

In Vitro Implementation of a Stack Data Structure 89

Fig. 1. Schematic of the DNA recorder. The top row shows schematics of the individual
ssDNA bricks. Arrows indicate 5’ → 3’ direction. Below are the modes of operation to
record (middle row) and read out (bottom row) signals from the stack.

When the stack is in data state, it will accept a single data brick. Upon binding
this data element, the device toggles into the operator state in which it cannot
further interact with data bricks, but instead awaits a new operator brick such
as push. Again, only a single operator brick is accepted, and by interacting with
it, the stack toggles back into the data state.

Our design differs from the one proposed by Qian et al. [12] in several impor-
tant aspects:

1. We implement all data and operations as single DNA strands, whereas Qian
et al. employ bricks of up to three DNA strands.

2. Our assembled DNA stack is entirely double stranded and does not feature
any dangling single stranded overhangs, which are used by Qian et al. to store
the actual data elements.

3. Instead, in our design data is encoded in internal secondary structure motifs
in the double strand, namely in hairpin loops that form holiday junctions.

4. Our modes of operation are based on DNA interactions that are effectively
irreversible at the operating temperature. Qian et al.’s design, in contrast,
employs only reversible interactions and relies on detailed balance to drive
the device from one configuration into another.

We have taken these design decisions, in order to minimize the amount of
required distinct DNA sequences and to obtain maximally robust modes of oper-
ation, especially when envisioning ultimate in vivo applications.

90 H. Fellermann et al.

2.1 Data and Operator Brick Design

Our signal recorder operates with six distinct DNA bricks and is able to store
combinations of two different signals, encoded by two types of data elements.
Two further bricks are added for experimental analysis. See Fig. 1 for a schematic
representation of the employed bricks and their interactions.

– Start (S): data brick designating the beginning of the recorder tape. It features
a toehold domain for interaction with push and a hairpin motif at the 5’ end.
This hairpin undergoes branch migration with a complementary hairpin in
push but is otherwise not functional in the current design.

– Push (P): operator brick to initiate subsequent signal recording. The brick
contains the complementary toehold for interaction with start, a hairpin motif
complementary to the one in start, a second hairpin for structural reasons that
does not participate in branch migration, and two toehold domains, one on
each side of the structural hairpin, to bind write bricks.

– Write (X/Y): data bricks that can be stored in the recorder. These bricks
contain two toehold domains complementary to the push toeholds, a struc-
tural hairpin that does not undergo branch migration, plus the same toehold
domain and 5’ hairpin that form the start brick. Toehold domains and branch
migration hairpins are identical for all types of write bricks. Thus, they can
only differ in their structural hairpin motif. Since these hairpins do not par-
ticipate in hybridization or branch migration, they can be functionalized to
host any desired functionality such as recognition sites for DNA binding pro-
teins.
We employ two different types of write bricks, denoted as write-X and write-
Y. Write-Y features a longer hairpin stem than write-X (twenty-five base
pairs against ten base pairs) and has a different sequence in its stem loop.
Although we currently employ binary data (X or Y), the approach is intrin-
sically n-ary.

– Pop (Q): data brick that undoes the rightmost push operation. This brick is
the exact complement of push

– Read (R): operator brick that removes the rightmost write operation. The
brick is the complement of all toehold domains used in write’s. Notably, it
does not contain any domains that interact with the structural hairpin of
write bricks.

– Report (T): non-essential bricks for experimental analysis. Report bricks do
not participate directly in the operations of the stack recorder. Instead, they
interact with the data domains of structural hairpins in the write bricks.
Report bricks can be added to the device in any configuration since their
binding sites in the data hairpins are always accessible and since they do not
interfere with the operating modes of the device.
In this study, we use linear report strands that are 5’ biotinylated via a 2.6 nm
tetra-ethyleneglycol (TEG) spacer. We functionalized these report bricks with
streptavidin coated gold nanoparticles of different diameters, which allows for
easy recognition using transmission electron microscopy (TEM).

In Vitro Implementation of a Stack Data Structure 91

Domain sizes have been chosen with the following objectives: toeholds are
long enough to span a single helical turn when hybridized with their comple-
ments (10 nt) which should promote irreversible hybridization. Hairpin loops
that participate in branch migration are long enough to promote stable stems
(6 base pair stems with 4–5 nt loops) but short enough to obtain quick branch
migration times. The structural hairpin loop of write bricks together with the
unpaired domain of report are long enough to accommodate 5 nm and 10 nm
diameter nanoparticles in close vicinity to the device.

2.2 Modes of Operation

DNA hybridization, branch migration and strand displacement are the three
processes governing all DNA interactions involved in the system. All reactions
are energetically downhill, driven by the binding energy of the closing toehold
domains.

Recording. A schematic of the recording process is shown in Fig. 1 middle
row. Starting from an empty stack, which is represented by the start brick (S),
the device is toggled into its data state by providing a push operator (P). The
start-push interaction begins by irreversibly binding toehold c and continues
via branch migration among the two complementary aba’ domains. The stack
is now in its data state (SP), where a single open toehold region (d’e’) can
recruit a write brick (X or Y). The write will partially hybridize with the d’e’
push toeholds, thus toggling the stack back into its operator state (SPX). In this
state, the stack exposes the same toehold-hairpin interface that characterizes the
start brick, which allows the device to undergo subsequent rounds of recording.

Note that the assembled stack is essentially double stranded with a single
exposed toehold domain. Because the structural hairpins of neither the push nor
the write participate in branch migration, the stack will form holiday junctions
for each recorded data element. As data specific domains are encoded in the loop
regions of this holiday junction, the recording cycle is independent on the actual
data written.

Read-Out. While recording proceeds from left to right in the schematic, read-
out will proceed from right to left, thereby undoing any recording in the last-
in first-out manner required by the stack specification. The read-out cycle is
schematically presented in the bottom row of Fig. 1.

In operator state (SPX), providing a read brick (R) will peel the last recorded
write brick off the stack, thereby toggling the device back into the data state
(SP). This reaction proceeds in two steps: first, the read brick hybridizes to the
stack at its unique exposed c domain. Secondly, the dangling d′e′ domains of the
read brick initiate a three-way branch migration with the d′e′ domains of the
adjacent push brick against the de domains of the write brick, until the push
strand is completely displaced.

92 H. Fellermann et al.

Note that the data hairpin of the write brick does not participate in the
branch migration. This ensures that a unique read brick can interact with any
write brick, ensuring that data elements can be read from the recorder without a
need to know which information has been stored. The resulting read-write com-
plex (RX) does not expose any single stranded domains and will not participate
in further DNA interactions.

In its data state (SP), the stack can either be extended again with another
data element by switching to the recording operation, or reading can be com-
pleted by toggling the stack back into its operator state. The latter is done by
providing a pop brick (Q) that will interact with and peel off the exposed push
brick. Analogue to the previous reaction, pop-push interactions are composed
of their initial irreversible toehold hybridization, subsequent branch migration
and eventual strand displacement. Again, the resulting push-pop complex (PQ)
is completely double stranded and will not participate in further DNA interac-
tions.

3 Methods

3.1 Primary Sequence Specification

In the past we have successfully utilized evolutionary algorithms for evolving
nano scale and self-assembling systems [13–15]. Thus we resorted to genetic
algorithms to obtain nucleic acid sequences for all specified domains in the DNA
stack specification. The fitness function of our algorithm (a) minimizes the total
Hamming distance between the bricks target secondary structures and their fold-
ing predictions from ViennaRNA [16], and (b) maximizes the binding energies
of all desired pair interactions while minimizing binding energies of all undesired
pair interactions. Table 1 lists the nucleotide sequences of all domains, found by
the highest-scoring genotype of our algorithm.

Table 1. Sequence specification of domains in the design. Sequences are indicated in
5’→3’ direction.

Domain Sequence Domain Sequence

a TCTCCC hy GCACGCTCGAGCTCGTATCGCAGTA

b GCCA kx CTCTAATCAC

c GCACACACTTC ky CATCCCTATA

d ACACCACTTC lx AGACAAAAAA

e GGGAGACCAA ly ATTTTTTTCC

f CGGCGG m TATGACTGCAA

g CTGCC x AGACCGCTAAA

hx ATTAGTAGGT y ATACTGCTTTA

In Vitro Implementation of a Stack Data Structure 93

3.2 Experimental Manipulation of DNA

DNA oligomers were provided by Eurogentec (Belgium) on a 100µM synthe-
sis scale, with a standard desalting procedure or a required denaturing poly-
acrylamide gel electrophoresis (PAGE) purification for oligomers longer than 50
nucleotides and/or any 3’/5’ modification. Streptavidin coated gold nanoparti-
cles of 5 and 10 nm diameter were supplied by Life Technologies (Alexa Fluor
488 streptavidin). Samples and stock solutions were stored at −20◦C.

The DNA recorder was prepared by sequentially adding 200 nM of each brick
with 240 min waiting time between additions. DNA samples were dissolved in
a total volume of 20µL of nuclease free water and 50 mM potassium acetate,
20 mM tris-acetate, 10 mM magnesium acetate, pH 7.9 buffer at room tempera-
ture (2̃5◦C) and incubated for ten minutes if not otherwise specified. The mix-
ture was shaken at 300 revolutions per minute in an Eppendorf Thermomixer
Comfort set at 25◦C.

Capillary electrophoresis has been performed using the Agilent Technology
2100 Bioanalyzer system with its DNA High Sensitivity Chip and adhered to
manufacturer protocols.

Transmission electron microscopy (TEM) was performed with a Philips CM
100 Compustage (FEI) microscope and digital images were collected using an
AMT CCD camera (Deben). A volume of 5µL sample was applied on glow
discharge grids preliminary washed with 0.5 mM magnesium chloride to change
the hydrophilic surface charge orientation.

4 Results

4.1 Single Brick Calibration

We performed capillary electrophoresis measurements of all individual bricks in
order to determine the response of the Agilent 2100 Bioanalyzer High Sensitivity
DNA Assay for our non-standard DNAs. All bricks where provided in 200 nM
concentration. Electropherograms always detected a single clear peak per brick.
Table 2 summarizes for each brick its known size, the measured migration time
and fluorescence area under the peak, as well as the calculated size and molar-
ity derived by the instrument software from comparison to the reference ladder.
Averages and standard deviations have been calculated from at least three inde-
pendent measurements.

The measurements successfully discriminate the migration times of almost
all strands (disregarding report strands) with significant differences. Only start
and read cannot be reliably differentiated.

Striking discrepancies between the known brick sizes and the sizes derived by
the software from comparison to the ladder might be attributed to two reasons:
firstly, short oligomers such as start, read and report are well below the detection
limit of the high sensitivity kit, which can resolve dsDNA fragments between
50–7000 base pairs in length. Secondly, the reported deviations might lie in the
fact that our bricks contain extensive secondary structures that might affect
their motility in the gel matrix.

94 H. Fellermann et al.

Table 2. Calibration results (given as averages and standard deviation) for all indi-
vidual strands provided in 200 nM concentrations.

Brick Size [nt] Measured Derived

Time [s] Area [FU] Size [bp] Molarity [nM]

start (S) 27 45.22±0.92 94.6±61.23 51±7.6 34.80±15.92

push (P) 64 46.81±0.76 74.4±39.2 64±6.9 8.08±0.174

write-X (X) 98 53.27±0.34 55.93±39.65 128±3.78 5.961±0.473

write-Y (Y) 128 55.35±0.06 5.27±1.15 147±0.8 0.845±0.221

report-X (Rx) 22 44.81±0.81 248.5±60.57 47±6.4 78.25±16.81

report-Y (Ry) 22 45.18±1.02 241.3±84.49 47±11.3 86.44±12.77

read (R) 31 44.61±0.35 73.85±15.76 46±2.82 31.67±1.21

pop (Q) 64 47.89±0.28 28.13±25.4 74±3.4 6.602±6.78

A similar discrepancy is observed in the derived molarity values. This is partly
due to the fact that molarity calculation is based on the base pair estimation
and will thus suffer from the issues described before, partly because our bricks
contain extensive ssDNA regions which interact differently with the fluorescent
dye than dsDNA.

4.2 Recording Experiments

To probe the performance of the data recording (push) cycle, we performed
experiments in which we sequentially recorded five signals (X,X,X, Y,X) onto
the growing stack. We ran five parallel experiments and stopped them at different
steps in the protocol. Gel-like images of the Bioanalyzer output are shown in
Fig. 2.

For the first three recorded signals, addition of each write-X brick is accom-
panied by the appearance of a new clear peak in the spectrum: after addition of
the first write-X brick this peak (start-push-write-X complex, or SPX) accounts
for more than 58 % of the total fluorescence. Lane 2 shows the appearance of a
second peak (SPXPX) that corresponds to the two signals. However, this second
peak accounts for only about 22 % of the total fluorescence, whereas almost 40 %
still correspond to the first signal (SPX). The situation repeats in the third lane,
where the correct complex (SPXPXPX) accounts for slightly more than 17 % of
the fluorescence, the second signal peak (SPXPX) for about 30 % and the first
peak still for about 23 %.

The addition of write-Y in lane 4 leads to the appearance of several new
peaks, which we identify as SPY, SPXPY, and SPXPXPY. A very faint peak at
about 98 s migration time might correspond to the desired SPXPXPPXPY, but
the signal is too weak to be properly identified by the analysis software. Lane 5
essentially shows the same peaks as lane 4, with peak sizes changing as expected:
peaks from complexes ending in a write-Y brick become smaller, whereas the
corresponding complexes with added write-X become proportionally larger.

In Vitro Implementation of a Stack Data Structure 95

Fig. 2. Capillary electrophoresis of the recording process. Lane 1 = SPX; Lane2 =
SPXPX; Lane 3= SPXPXPX; Lane 4= SPXPXPXPY; Lane 5 = SPXPXPXPYPX.
Data obtained from five parallel experiments.

In all lanes faint higher peaks indicate that there is a very small potential
for run-away processes to create complexes with more signals than the provided
ones. Yet, in all cases, the fluorescence of all these longer bands combined does
not exceed 10 % of the total.

4.3 Read Out Experiments

Next, we performed experiments to test the read-out (pop) cycle of the DNA
stack. In this experiment, three signals (X,Y,X) where pushed onto the stack
and subsequently removed by adding read (R) and pop (Q) bricks in molarities
equal to the start, push and write bricks. Figure 3 shows the gel-like images of
the experiment.

Lanes 1 through 3 reconfirm the working of the recording cycle with the same
observations than for the experiment of the last section: each added write brick
generates a new peak in the spectrum with very little evidence for run-away
processes and persistence of peaks that indicate intermediate complexes.

Lane 4 shows the response of the device after provision of 200 nM read and
pop, which is supposed to trigger one readout cycle: newly created push-pop as
well as read-write complexes result in the appearance of three new peaks at
around 47.42 (QP), 52.22 (RX), and 57.39 (RY) seconds. The push-pop com-
plexes account for 38 % of the fluorescence, whereas start-write-X and start-
write-Y account for 2.8 and 12 % respectively. Peaks associated with the differ-
ent stack states SPXPYPY, SPYPY, SPXPY, and SPY decrease accordingly.
The situation repeats in Lane 5 where the second readout cycle further increases
push-pop and read-write peaks and simultaneously reduces intensities of the cor-
responding stack complexes. Noteworthily, after reading out the two recorded
signals, 14.1 % of the fluorescence results from the start-push complex whereas

96 H. Fellermann et al.

Fig. 3. Capillary electrophoresis of the recording and reading of three signals.
Recording: Lane 1 = SPX; Lane2= SPXPY; Lane 3 = SPXPYPY. Reading: Lane
4 = SPXPYPY+RQ; Lane 5 = SPXPYPY+RQRQ.

peaks of stacks that still contain recorded information only register with 8, 4.2,
4.8 and 3.3 %.

4.4 Imaging

For additional confirmation of the recording, we imaged the assembled nanode-
vice using TEM. For this purpose, assembled stacks were mixed with report
strands that, in turn, are decorated with 5 and 10 nm gold nanoparticles. Report
bricks associate with their respective write bricks at any position in the assem-
bled stack. Nanoparticles appear in TEM images as black dots that can be easily
distinguished and classified.

Simple geometric considerations estimate an assembled structure where data
hairpins are separated by about 15 nm with 247◦ twist. OxDNA simulations [17]
(Fig. 4 left panel) indicate that the assembled stack does not necessarily extend
straight forward but might instead contain a kink at each signal-push holiday
junction. Figure 4 (right panel) shows TEM results from an experiment where
five signals (X,Y,X,X,X) have been recorded. The image show a stack with just
one extra write-X on the left side of the recorder, resulting in a stack with six
signals (X,X, Y,X,X,X). The image shows a separation of 15–20 nm between
the nanoparticles with a zig-zag configuration predicted by the simulations.

5 Discussion and Future Work

We have presented a design and experimental evidence for the working of an
in-vitro signal recorder based on DNA strand assembly and displacement. The
recorder implements a stack data structure with push and pop operations and
allows for storing two signal types.

In Vitro Implementation of a Stack Data Structure 97

Fig. 4. Left: oxDNA simulation of a SPXPX complex. Right: Representative TEM
image of a SPXPXPYPXPXPX complex.

Because we employ non-standard DNA strands, the electrophoresis analysis
software does not correctly detect molecular concentrations, which prevents us
to gain a precise quantitative picture of the involved processes. Nonetheless,
capillary electrophoresis and TEM imaging indicate that the nanodevice is able
to store at least three consecutive signals and does not suffer from problematic
runaway processes.

However, after recording several signals, electrophoresis analysis indicates
that the device is not only present in the desired final state, but also in several
intermediate recording states. Because of the limits of experimental quantifica-
tion, we can currently not offer a satisfying explanation for these intermediate
peaks. This currently impacts the readout cycle, as the pop operation inter-
acts with all present stacks and thus returns a superposition of recorded signals.
While this is contrary to the intended working, we point out that such a super-
position might also have advantages, as it might allow one to reverse engineer
the composition and order of recorded information from a single electrophoresis
read out.

We plan to improve experimental analysis methods using different capillary
electrophoresis analysis kits (such as RNA assay kits) or molecular beacon exper-
iments. Better experimental quantification will allow us to calibrate computa-
tional models that will in turn help us increase our understanding of the fidelity
of the device.

Tantalizingly, as our design is based on ssDNA bricks, our entire data struc-
ture could – in principle – be expressed in vivo by a living cell as an RNA data
structure and post-transcriptionally controlled. As we store data in a double-
stranded fashion rather than in dangling single strands, an in vivo realization is
likely to suffer less from enzymatic attack. Alternatively, the device could be used
to programmatically and reversibly arrange matter such as liposomes [18,19] on
the nanoscale. We are currently exploring routes to implement this.

Acknowledgments. This work has been supported by EPSRC grant agreements
no EP/J004111/1, EP/J004111/2, EP/L001489/1, EP/L001489/2. We thank
Chien-yi Chang, Christoph Flamm, Alessandro Ceccarelli, Omer Markovitch, and Ben
Shirt-Ediss for helpful discussions.

98 H. Fellermann et al.

References

1. Seeman, N.C.: DNA in a material world. Nature 421(6921), 427–431 (2003)
2. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical

kinetics. Proc. Nat. Acad. Sci. USA 107(12), 5393–5398 (2010)
3. Stojanović, M.N., Stefanović, D.: Deoxyribozyme-Based Half-Adder. J. Am. Chem.

Soc. 125(22), 6673–6676 (2003)
4. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic

circuits. Science 314(5805), 1585–1588 (2006)
5. Cardelli, L.: Strand algebras for DNA computing. Nat. Comput. 10, 407–428 (2011)
6. Chen, Y., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D.,

Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nano. 8(10),
755–762 (2013)

7. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits.
J. R. Soc. Interface 8(62), 1281–1297 (2011)

8. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332(6034), 1196–201 (2011)

9. Li, W., Zhang, F., Yan, H., Liu, Y.: DNA based arithmetic function: a half adder
based on DNA strand displacement. Nanoscale 8(6), 3775–3784 (2016)

10. Liu, H., Wang, J., Song, S., Fan, C., Gothelf, K.V.: A DNA-based system for
selecting and displaying the combined result of two input variables. Nature Comm.
6, 10089 (2015)

11. MacDonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews,
B.L., Stefanovic, D., Stojanovic, M.N.: Medium scale integration of molecular logic
gates in an automaton. Nano Lett. 6(11), 2598–2603 (2006)

12. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with
DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518,
pp. 123–140. Springer, Heidelberg (2011)

13. Terrazas, G., Gheorghe, M., Kendall, G., Krasnogor, N.: Evolving tiles for auto-
mated self-assembly design. In: IEEE Congress on Evolutionary Computation,
CEC 2007, pp. 2001–2008 (2007)

14. Siepmann, P., Martin, C.P., Vancea, I., Moriarty, P.J., Krasnogor, N.: A genetic
algorithm approach to probing the evolution of self-organized nanostructured sys-
tems. Nano Lett. 7(7), 1985–1990 (2007)

15. Woolley, R.A.J., Stirling, J., Radocea, A., Krasnogor, N., Moriarty, P.: Automated
probe microscopy via evolutionary optimization at the atomic scale. Appl. Phys.
Lett. 98(25), 253104 (2011)

16. Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C.,
Stadler, P.F., Hofacker, I.L.: ViennaRNA Package 2.0. Algorithms. Mol. Biol. 6(1),
26 (2011)

17. Doye, J.P.K., Ouldridge, T.E., Louis, A.A., Romano, F., Šulc, P., Matek, C.,
Snodin, B.E.K., Rovigatti, L., Schreck, J.S., Harrison, R.M., Smith, W.P.J.:
Coarse-graining DNA for simulations of DNA nanotechnology. Phys. Chem. Chem.
Phys. 15(47), 20395 (2013)

18. Hadorn, M., Bnzli, E., Fellermann, H., Eggenberger Hotz, P., Hanczyc, M.: Specific
and reversible DNA-directed self-assembly of emulsion droplets. Proc. Nat. Acad.
Sci. USA 109(47) (2012)

19. Fellermann, H., Cardelli, L.: Programmable chemistry in DNA addressable biore-
actors. R. Soc. Interface 11(99), 20130987 (2014)

Analysis of Boolean Logic Gates Logical
Complexity for Use

with Spiking Memristor Gates

Ella Gale1,2(B)

1 University of Bath, Claverton Down, Somerset, Bath BA2 7AY, UK
em734@bath.ac.uk

2 International Center for Unconventional Computing,

University of the West of England,

Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK

Abstract. 2-Bit Boolean logical operations have been considered before,
however, the focus has always been on the AND, OR, NOT, NAND
and NOR gates that are of use in traditional electronics. The memristor
tends to require implication and similar logics, which can be considered
as sequential logics, especially when used with spiking memristor gates.
Here we introduce the concept of logical efficiency based on how many
differentiable operations exist in a truth table, and sequence sensitive
gates (e.g. IMP) are found to have a higher logical efficiency. We propose
an ideal gate which is both functionally complete and maximally logically
efficient and demonstrate that it does not exist in 2-bit binary gates, but
can exist in trinary. We propose that this novel theoretical approach will
aid the building of neuromorphic computers that will be highly efficient,
powerful and resilient.

Keywords: Memristor · Boolean logic · Trinary · Logic gates

1 Introduction

Theory and experiment can often be artificially divorced and often are to aim
at a more specific audience. However, the motivation and engine of theoretical
development is novel experimental results, often arising from novel technologies,
that cause the theorist to ask new questions. The technology that inspires this
work is the memristor, a brand new fundamental circuit element, and specifically
using their spiking ability to perform logical operations. This invention [1] works
by using the short-term memory of the memristor to store bits and perform
computation. This invention raises significant theoretical questions: what is our
‘conversion rate’ between space (in terms of wires into a circuit element) and
time (in terms of time-steps of computation); how do we quantify the complexity
of a logical operation (in order to allow the comparison between memristor logic
gates and transistor logic gates); what is the limit of complexity of a logical
operation of a single memristor? To our knowledge (and best efforts of a literature
c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 99–115, 2016.
DOI: 10.1007/978-3-319-41312-9 9

100 E. Gale

review) these questions have not been considered before. In order to attempt
to answer such questions, we examine the information content and complexity
of Turing-complete (functionally complete) logic gate sets, adders and other
computer components: specifically we find that a Turing complete set of logic
gates requires a polarity change and the loss of information. We attempt to
quantify the logical computation of logic gates by considering the percentage of
© and |s in an operated on a stream of randomly-distributed 50 % © : | (we use
© and | for logical 0 and logical 1, and use 0 and 1 for the numbers).

1.1 Memristors

Chua introduced the memristor concept in 1971 [2] as a device which related its
internal state to the time-integral of current or voltage. The concept has been
expanded and refined [3–5] and there is still some debate about what definition
should be used to describe the memristor (see this recent review [6]). There are
many different types of memristor, from the original titanium dioxide version [7],
although there are many metal oxide memristors and recent work has expanded
the range of memristor materials [6]. This work is general in scope, inspired
by memristors that exhibit a spike when a voltage is applied or changed, and
motivated by explaining the action of our devices [1]. Our memristors are made of
a thin film titanium dioxide layer between aluminium electrodes [8,9], and their
material and action has been reported elsewhere [9–14]. However, the general
discussion of implication logic as utilised by memristors is relevant to non-spiking
devices that use this logic (of which there are many and it is thought that physical
action of memristors in general is IMP logic [15]).

The memristor memory is usually stored in ions, for example in the best-
known version of the device [7], it is stored in oxygen vacancies, this is also
the case in our devices [9,16]. Putting a voltage across the device causes the
movement of ions which changes the resistance, leading to an altered current,
specifically a current spike (there is far more detail available than this, see
[6,17,18]).

1.2 Memristor Spiking Logic Gates

I have developed several 1-port logic gates using a single memristor. A voltage
applied to a memristor will cause a current spike, if a second (or third) spike
is input to the memristor within the ‘short-term memory’ time of the memris-
tor [10,19] (defined as the time taken for a memristor to achieve its long-time
resistance value, i.e. ‘forget’ the spike happened), the resulting current value is
altered from what only one spike would give, and seems to follow implication
logic. This interaction allows us to compute, with the proviso that input values
are voltages and output values are currents, and thus would need to be converted
to voltage values to allow chaining of gates. Using the spikes to compute in this
way, we can make several two bit Boolean gates (AND, OR, XOR, NOT) [1]
with one memristor. The memristor has only one wire in and one wire out, so
the computation is a type of sequential logic and takes two time-steps. This type

Analysis of Boolean Logic Gates Logical Complexity 101

of invention motivates the question of how the ‘space’ of input and output wires
of a standard gate is exchanged for the ‘time’ in terms of number of time-steps
required to compute the same thing with a spiking memristor gate.

I also managed to make a type of full adder using a single memristor [11],
three input time steps and two output time-steps, one output read (current
measurement) at the time the third input spike is sent, and one input ‘read’
spike and current measurement; thus the full adder computes in 5 time-steps
with 3 input spikes and a read spike (the read spike is always the same value),
again with the proviso that circuitry to convert current to voltage is required
to chain the outputs into inputs. This gate was also slightly different from the
standard full adder. By measuring the negative voltage in within a range we get
our carry bit (| if a current is measured in that range, © if it is not). By looking
at the positive current values over a range we can get the arithmetical sum of the
inputs, i.e., separate out 0, 1, 2, and 3, which can be converted into a standard
summation bit, or could be used as is. Most interestingly, the current value of
the read output bit gives us the order of the input bits, allowing us to separate
out an {©,©, |} from {©, |,©} and {|,©,©}, and so on. This motivates the
question of how do we measure the efficiency and circuit complexity of such a
system and allow a fair comparison between it and a standard full adder, and it
is this question that motivates this work.

1.3 Logic

To design a circuit, we need to consider circuit complexity.
As this is a paper about designing and instantiating logic gates, we shall

briefly review computer logic (although the area is large) and how it has been
implemented in memristors. In this paper, we use the Arabic numerals {1,2,3}
as a set of counting numbers capable of standard arithmetical operations and
we use the following set of symbols {©, |} for logical values 0 and 1 in binary
and {©, |, ||} 0,1,2 in trinary.

Philosophical Roots of IMP Logic. Bertrand Russell and Whitesides
invented and developed implication logic in 1910 [20]. However, it was Shan-
non’s master’s thesis that associated Boolean algebra with a digital logic sys-
tem [21] that almost all computers since have been based on (he built Boolean
logic gates out of relays and switches). Material implication logic is the logical
form of the philosophical statement “if A then B” (which has uses as the if/then
conditional in many programming languages). In philosophy, if statement A is
false, and statement B is false, we can say ‘if A then B’ is true, this is equivalent
to saying that A and B are both false so the statement that A → B is true
(in a logical sense given what we know from just those statements, of course,
there may be no causation between the statements). Similarly, if A and B are
both true, we could infer that A → B. In both these cases we are inferring a
positive correlation between these two statements (again logically, scientifically
we would need to do more work to attempt to prove causation). If A is false

102 E. Gale

and B is true, we can infer that A implies B, but the relation in this sense is a
negative correlation. If A is true and B is false, we cannot infer that A implies
B because B is not true, its value could be anything and could be related to
anything, thus A → B would be false. This logical system is IMP in binary.

1.4 Analyses of Boolean Logic

Logic gates are usually worked with via their truth table – if you know the truth
table of a gate, you can design with it, similarly to how if you know the V -I
characteristics of a device you can use it in a circuit. Mathematically, the truth
tables have been investigated as Boolean functions

Boolean logic has been analysed from a mathematical point of view,
as Boolean functions [22]. Karnaugh maps [23], graphical version of Veitch
charts [24], can be used (and often are) to find the best representation of a
function with a Boolean truth table. The are 16 2-bit Boolean functions that
have been classified by Simpson [25].

Emil Post [26] classified Boolean functions into four sets: Monotonic
(∧,∨,�,⊥) where | −→ © and we never have © −→ |; self-dual, i.e. ¬ where the
gate is equal to its own de Morgan dual; truth-preserving, such as ∧,∨,⊥,→↔,
where | , | −→ |; falsity preserving, such as ∧,∨,⊥, 	→, 	↔, where © ,© −→ ©.

Functional Completeness. In mathematics, a Sheffer function is a minimal
Boolean operation that is functionally complete by itself, where functional com-
pleteness means that all other logic gates can be expressed with that operation
alone (of the same bit order, i.e. a two bit Sheffer function can express all 2-bit
Boolean functions). In dealing with the physical instantiation of these functions,
a functionally complete logic gate can be used in a circuit to make every other
type of Boolean function, although it need not be the most efficient or easy way
to do this. In electronic engineering the set {∧,∨,¬} is often taken as our working
set, and is functionally complete, also the sets {∧¬} and {∨¬} are functionally
complete by themselves. From this reasoning, it is obvious that NAND (a.k.a.
Sheffer Stroke), ∧̄ and NOR (a.k.a. Peirce stroke) (∨̄) gates are functionally
complete by themselves.

1.5 Circuit Complexity

To decide how to design a circuit board, we need to be able to compare logi-
cally equivalent methods of performing an arbitrary logical function. There have
been a few approaches to determining how ‘complex’ a circuit is. Circuit size
complexity of a Boolean function is the minimal size of a circuit that can com-
pute that function (in the abstract mathematical sense, how many logic gates
required, in the concrete electronic engineering sense we would take into account
the size of those components). Circuit depth complexity of a Boolean function
is the minimal depth of a circuit, i.e. the maximum length of a path from input
to output gate for the physical devices. Another approach is the graph of nodes
where each node is a logic gate. Karnaugh maps are often used as a method of
finding the best approach to build a logical system or express a logical function.

Analysis of Boolean Logic Gates Logical Complexity 103

1.6 Logical Systems

There are several logical systems that can be used, binary, trinary and other
higher order logics, multi-value logics (an interesting example of which has the
four values True, False, Neither true or false, Both true and false, which has
been used in Buddhist thought), non-monatonic logics. The only ones which
need concern us here is binary and trinary. Binary logic operates on two values,
true � and false ⊥ usually designated as | and © (these assignations are entirely
arbitrary and have more to do with mankind’s preference for positive associations
over negative) and is arithmetically equivalent to base 2. Trinary has three values,
©, |, ||, which can be viewed as logic done in base 3, but can be used as different
logical meanings, such as: { true, irrelevant, false} or { true, null, false }. One of
the early computers Setun used trinary logic, but most modern computers are
based on binary.

1.7 How Logic Gates Have Been Instantiated with Memristors

Strukov et al. [15] used implication logic to design logic gates which required
two memristors (IMP-FALSE ({→,⊥}) logic is Turing complete, but somewhat
unfamiliar to computer scientists). The most notable Boolean logic gates were
simulated by Pershin and di Ventra [27] and required a memcapacitor, three or
four memristive systems and a resistor. Before the gate was sent the two bits
of data, a set of initialization pulses were required to be sent to put the gate
into the correct state to give the correct answer. This system, however, is not
true Boolean logic because these initialization pulses were different dependent
on what the logic to follow would be. Thus the gate can not be considered to
be operating only on the two bits of input data and is not a simple Boolean
logic gate (it is a Turing machine doing a computation on several bits of data
(Boolean input pulses and initialization pulses) which is capable of modelling
a Boolean logic gate). Note also that this scheme was tested with memristor
emulators, not real devices. There have been other more complex designs for
memristor based Boolean logic gates, the simplest of which requires 11 circuit
elements. [28] In this paper, we will demonstrate how to perform Boolean logic
with a single memristor.

Interesting work involving designing memristor logic gates by Lehtonen and
Laiho. In [29] they work with implication logic using a memristor reset as the
false operation, they also suggest that 3 memrsitors are sufficient to compute any
2-bit in, 1-bit out Boolean function and state that: 22 → 2m need m+2 working
memristors, for example a full adder would require 10 memristors under this
scheme as it is 22

3
. In [30] they suggest using parallelism to avoid the sequential

nature of memristors, and choose NcIMP as the best version of Implication
logic for memristor cross-bars. Spiking logic gates [1] represent a novel way of
computing using memristor spike addition.

104 E. Gale

2 Results

In order to compare the memristor logic gates to standard logic gates, we need
a fair comparison of circuit complexity.

There are two approaches to do such a comparison based on current theory.
The first is to use the area of the circuit board. In this sense the memristor
logic gate scores very well as the memristor can be made very small and the
switches required to convert the output of a full adder to input are smaller than
a transistor. The area of a circuit board however is not the best comparison as
the numbers will change depending on technological development in shrinking
sizes of components, which does not seem the best way to compare the logical
complexity of the operation. Standard approaches of counting the number of
gates and length of the circuit bypasses this issue, however, in this scheme the
memristor full adder seems to be amazing as it involves 1 memristor and a
switching selector.

2.1 Energetics

When building a novel computer system, we concentrate on building either a uni-
versal gate (a single gate which can be used to create all Boolean functions) or
a functionally complete set (a set of gates that is sufficient to create all Boolean
functions). In unconventional computing, biological computing, chemical com-
puting, and molecular electronics the states | and © have different energies (this
is also the case in electronics where different voltages are used to represent dif-
ferent logical states). Much of the difficulty in creating a universal logic gate out
of a new system is in creating a {©,©} → | transition, as if the | state is higher
in energy than the © state, we must input energy from somewhere to represent
that state.

2.2 Reclassification of Binary Logic Gates

We shall assume that | state is higher in energy than © state (the entire argument
still holds if the association of the energy levels with logic is switched). In this
section, we shall use binary, as represented by the states © and |. The truth
tables for all possible 2 input bit, 1 output bit gates, 22

2
, is given in Table 1.

We can classify these gates based on the energy and efficiency of the gate, to
allow us to answer the questions, what functionality can implication gates offer
us and how can we compare our single memristor gates.

These gates have been classified before and have been separated out into 4
sets [26], monotonic, self-dual, truth-preserving and falsity preserving.

We compare 4 different sets based on the number of differentiable operations,
i.e. how many of the 4 inputs could you identify if given only the output and the
arithmetical sum.

Analysis of Boolean Logic Gates Logical Complexity 105

Table 1. All 2-bit binary Boolean functions and their corresponding gate names (as
used in this work). Note that cIMP and NcIMP are not standard names as there are
no agreed upon names for these gates (people work with just their function number or
truth table, if they work with them at all).

p q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

© © © | © © © | | | © © © | | | © |
© | © © | © © | © © | | © | | © | |
| © © © © | © © | © | © | | © | | |
| | © © © © | © © | © | | © | | | |
Name False NOR NcIMP NIMP AND Not p Not q NXOR XOR q p NAND IMP cIMP OR True

Symbol ⊥ ¯ ∧→�←�∨ ¬p ¬q ↔�↔ q p ∧̄ → ← ∨

No.* F0 F8 F4 F2 F1 F12 F10 F9 F6 F5 F3 F14 F13 F11 F7 F15

Existence Gates. There are two existence gates, {�,⊥}. In standard electron-
ics, true is equivalent to a short circuit and false to a open circuit. In our system,
they represent a gate which fires out a | or a © regardless of the input, and so
they react to the existence of an incoming logic signal, and not its value, in fact
they are information destroying1.

Half-Value Gates. There are four gates that, effectively, ignore half the input
bits and are exactly equivalent to 1-bit in, 1-bit out logic gates, these are des-
ignated: {p, q,¬p,¬q} after the 1-ports they represent. In physical devices, its
easy to see how these 2-bit input gates result from failure of a more functional
gate, for example by wire breaking.

Basic Gates (Arithmetical Gates). These are the standard gates that are
most used in digital computing: {∧,∨, ∧̄, ∨̄, 	↔,↔}. The basic gates can be called
arithmetical gates as they do not distinguish between {|,©} and {©, |} (which
arithmetically sum to the same value). These gates are ‘self-sequence dual’, see
later.

Sequence Sensitive Gates. These are the more exotic and rarely used gates,
based on Implication logic: {→, 	→,←, 	←}, which we have called → for Material
Implication (IMP), the de Morgan Dual (i.e. negative) of IMP, 	→, (NIMP), the
reverse-time complement of → (cIMP) and the de Morgan Dual of cIMP which
is 	← (NcIMP). Let’s explain what we mean by ‘reverse-time complement’.

In our system p and q the inputs have a related time-stamp to them. Input bit
p is input at t = 1τ , input bit q is input at t = 2τ , so we find that {p(t1), q(t2)} 	=
{p(t2), q(t1)}, i.e. the order that the bits are input has an effect. This is extra
information compared to just the sum of these bits.

1 An interesting fact about existence gates is that they are useless in standard elec-
tronics, in our scheme they allow a method of recording the presence or absence of a
logical signal without knowing anything about the content, which has applications
in cryptography, monitoring, meta-data tracking and hacking of such systems.

106 E. Gale

Table 2. Reverse time complementation of IMP give cIMP

p q IMP q p cIMP NIMP

© −→ © | © −→ © | ©
© −→ | | | ←− © © ©
| ←− © © © −→ | | |
| −→ | | | −→ | | ©

We take the following direction as being the ‘natural order of things’: increas-
ing in value or staying the same as time goes on, and if this is present, we output
a |, if not, (i.e. things are decreasing) we output a ©. For the 2-bit binary gate,
an example is: {©,©} −→ |, {|, |} −→ | and {©, |} −→ | whereas {|,©} −→ ©
(this rule is equivalent to monotonicity (I think)). This is the truth table for
IMP logic. If we draw the arrow of time going in the direction we expect from
this viewpoint, it looks as shown on the left hand side in Table 2. Reversing the
order, so replacing {p(t1), q(t2)} with {q(t1), p(t2)}, following the rule above to
generate a new truth table we get the truth table for cIMP (the truth table
for NIMP is shown as a comparison to demonstrate that this different from
negation under de Morgan’s law). And so, we refer to IMP and NIMP gates as
being Time-conserving, and their time complements cIMP and NcIMP as being
Time-reversing. N.B. I am not suggesting that these gates reverse time, merely
that if the physical processes that give rise to the effect of, say, IMP were to be
reversed, the truth-table would be cIMP.

Essentially, this is a measure of energy conservation. What is actually hap-
pening in our system can be represented as: {.pq.} where ‘.’ represents the system
with no applied voltage; the first ‘.’ the systems is usually zeroed, the second ‘.’
the response of the system (which is a convolution of p, q and .) is measured. As
our response is in the opposite direction to the applied voltage (due to ‘bounce-
back’), and the energy in the system decays with time (auto-destruction/short-
term memory), the state {|(t1),©(t2)} has less energy at time t = 3τ than
{©(t1), |(t2)}, so the responses at t = 3 (measured as a © for the first example,
| for the second) are a result of energy conservation.

It is interesting to ponder here if a cIMP gate could be created with a memris-
tor2. For our devices using sequential logic we would need a system where {|,©}
had more energy than {©|} but that {©©} and {||} still had more energy. It’s
hard to think what would make this work in this system, perhaps a dissipa-
tive media? However, [30] demonstrates a scheme based on a more conventional
voltage drop simultaneous logic using a ‘rectifying memristor model’ which uses
NcIMP (they call it ‘converse non-implication’) to implement Boolean functions
in cellular neural/nanoscale network (CNN).

2.3 Logical Efficiency

We now go on to discuss the efficiency of these 16 2-bit logic gates to attempt
to describe how functional each of them are, as shown in Table 3. We define
2 Other than the trivial way of using a high voltage for © and a low voltage for |.

Analysis of Boolean Logic Gates Logical Complexity 107

the number of inputs, N , to be the number of lines in the truth table, i.e. the
number of different combinations we can input. Our first set, existence gates,
can exist with an arbitrary number of inputs, for example, see the 1-bit � and
⊥ gates in Table 4, and as these only react to the presence of an input, not its
logical value, we say there are zero input values, only 1 distinguishable opera-
tion ({x} −→ {o} where x is any input and o is the output value). The gate
efficiency is defined as the number of distinguishable operations over the possi-
ble number of distinguishable operations (which is 4 for these gates as there 4
possible input combinations). Existence gates always have an efficiency of 1/N .
Half value gates ignore one of the inputs, so although there are 4 possible inputs,
they only distinguish 2 of them, giving an efficiency of 50 % (hence the name
half value gates). Logically these are equivalent to the 1-bit gates in Table 4,
but in terms of circuit space they would take up a greater area (and this exam-
ple demonstrates why we need a measure of logical complexity that is separate
from current measures of area of silicon or number of transistors). Basic gates
do not differentiate between the middle two inputs in the truth table and thus
only distinguish 3 out of four operations. We can call them arithmetic gates as
they successfully separate out the sums of the inputs into three groups i.e. if we
arithmetically add the logical values for the four inputs we get: {0 + 0} = 0,
{0 + 1} = 1, {1 + 0} = 1, {1 + 1} = 2 (where we have taken logical 1 (|) and
logical 0 (©) as one and zero). We can see that under the arithmetical addition
operation the 4 inputs have only 3 distinguishable values. Finally sequence sensi-
tive gates separate out the arithmetically equivalent {©, |} and {|,©}, allowing
them maximum efficiency.

We should point out here that the separation is on distinguishable operations,
not outputs. As we are using binary and these gates have only one output bit,
we always have 2 sets of outputs, those equal to © and those equal to |. By
distinguishable operations we mean, if we know the arithmetical sum of our
set and our logic gate outputs, can we identify which outputs matched which
inputs? This might seem a slightly arbitrary approach, but, due to ‘bounce-back’
and the summation properties of our devices, we retain the information on the
arithmetical sum as well as getting the logical output, so this is information
available to us in the laboratory.

From these arguments it is clear that the sequence sensitive gates have a
higher possible functionality than that basic gates and thus, I suggest, it is far
more efficient to build memristor computers using IMP (or another sequence
sensitive logic primitive) gates instead of using IMP gates to make basic gates.
By using a sequence sensitive gate to express a basic gate we are projecting a
100 % efficient gate onto a 75 % gate, which will obviously cost size and energy
for implementing it (of course, the argument can be made about the time and
energy in redesigning the processor design). This also means that by switching
from a basic design to sequence sensitive design we should be able to decrease
the number of gates up to a maximum of 25 % with clever (and possibly arduous)
design.

108 E. Gale

Table 3. The number of distinguishable operations

No. of inputs considered No. of input values
‘considered’

No. of distinguishable
operations

Efficency

Existence gates 0 (presence of input) 1 25 %

Half value gates 1 (p or q) 2 50 %

Basic gates 2 (p and q) 3 75 %

Sequence- 2 + time value 4 100 %

sensitive gates (order of p,q)

Table 4. 1-port logic gates (1 bit in, 1 bit out Boolean functions)

p H1 H2 H3 H4

© © © | |
| © | © |
symbol ⊥ p ¬p

2.4 An Aside on Ideal Gates and Functional Completeness

Are sequence-sensitive gates more useful than basic gates? Not necessarily.
NAND and NOR gates are functionally complete, which means that they can
be used to implement any Boolean function, so when making gates using a new
technology, making a functionally complete gate is a good approach. None of
the sequence sensitive gates are functionally complete. However, it is not nec-
essary to fixate on Sheffer functions because functionally complete sets might
be easier to fabricate involving sequence-sensitive gates, for example, Lehtonen
et al. demonstrated that false could be applied to imp logic performing memris-
tors (under standard voltage drop cross-bar array architecture) by reversing the
voltage and zeroing the device [29,30].

To be a functionally complete gate or set of gates, we require:

1. destruction: that the one of the gates is truth-destroying ({©,©} −→ |)
2. and creation: one of the gates is falsity-destroying ({|, |} −→ ©), the gates

do not need to separate out the arithmetically equal to 1 states (which raises
the interesting question of whether it might be possible to define a different
logic based on sequence as well as arithmetic).

Here I posit an ‘ideal gate’ would combine functional completeness with max-
imum logical efficiency. Thus, an ideal gate would be:

1. Functionally complete, i.e.:
– Truth-destroying {|, |} −→ ©
– Falsity-destroying {©,©} −→ |

2. Maximum efficiency, i.e. can separate arithmetically equal parts of the truth
table .

Analysis of Boolean Logic Gates Logical Complexity 109

Effectively, we need to be able to identify each input sequence for each arith-
metical output. with a memristor this would allow the differentiation of each
input and does not destroy information (or rather it does, but we can recover
the starting state in a way that you cannot recover from the NAND or NOR
operations).

An ideal gate would be a good thing to make as it would combine the max-
imum functionality in a single gate, and, as I am implicitly assuming that all
these gates are roughly the same size, it would allow the further shrinking and
speeding up of computation, this is not unreasonable as we have demonstrated
functionality up to a full adder (and not that that is the limit) with one mem-
ristor, so we don’t need to add extra transistors.

Such a gate is impossible to make as a 2-bit in, 1 bit out gate using binary
logic. The 2-bit gates that posses both properties in their truth table are ¬p
and ¬q (gates 6 and 7), but as these work by effectively logically ignoring one of
the inputs they are not ideal gates. The one-bit ¬p and ¬q are 100 % logically
efficient gates, the 2-bit versions are only 50 % efficient, and this example demon-
strates why we needed to develop the idea of logical efficiency rather than just
looking for creation, destruction and logical separation of arithmetically-equal in
a truth table (because throwing away one bit regardless of value is not efficient
computation!).

Table 5. Relation between the number of ports, n, and number of Sheffer gates for
binary and trinary logic. Of these Sheffer gates, some will be ideal gates, suggesting
that devices with more ports are more likely to be ideal (although calculating the
proportion has not been done in this work).

n −→ 0 1 2 3

No. of triary gates [31] 3 27 729 59,049

No of 3-ary Sheffer gates [31] 0 0 90 11,484

No. of binary gates 2 4 16 –

No. of 2-ary Sheffer gates 0 0 2 –

To create an ideal gate we either need to increase the number of output
bits (it is possible to differentiate between the arithmetically equal states with a
second output) or use trinary logic. One might think that we could make an ideal
gate from a 2-bit in, 2-bit out binary gate, but this does not work as the only
¬p and ¬q satisfy the conditions of separating out {|,©} and {©, |} and truth-
and falsity-destroying (using NAND and NOR as outputs does not separate the
arithmetically equal to one states). This gate fits our definition of an ideal gate,
but is effectively only a 2 bit NOT gate.

Perhaps because the ideal gate is more functional than the Sheffer gates, they
are not found in 2-bit binary gates. It is interesting to have a brief aside here
on the number of functionally complete gates found as we increase either the
number of ports (n) or the modulus (k) of the k-ary logic (eg. k = 3 for trinary),

110 E. Gale

see Table 5. For two inputs there are 90 Sheffer gates in trinary compared to
2 in binary, so there is a bigger combination space in which to find Sheffer
gates. Interestingly, as the modulus of the arithmetic increases, the proportion
of Sheffer gates of the total tends to 1/e which is approximately 36.79 % [31].
Thus, it is expected that 2-bit trinary gates will have more than a couple of ideal
gates.

As existence gates (also called constant gates in the literature) are often
‘free’ in circuit design, the number of 2 element sets, {x, y}, that are functionally
complete and include an existence gate is a useful number to know. In trinary,
there are 333 such sets compared to 4 in binary. As these binary gate sets3 are all
based on sequence sensitive gates, it shows that these gates are more functional
than the basic gates (because they form a functionally complete set combined
with a simpler gate).

For example the 3-bit trinary gate is ideal because it allows the separation
of arithmetically equal states. Essentially, we need a larger output space than
the largest number of arithmetically equivalent gates. We need to redefine the
Truth-, Falsity- destroying criteria for trinary, depending on the meaning of the
trinary values. If we choose || to mean irrelevant, then it makes sense to require:

{©,©} −→ |
{|, |} −→ ©

{||, ||} −→ || , (1)

then, we keep the form of truth- and falsity- destruction and a double ‘irrele-
vant’ value is still ‘irrelevant’ (as you’d expect from the logic reasoning, adding
irrelevant values should not effect the outcome).

If we choose to take || to be a number (so we are doing computation in base
3 rather than base 2), then the following ©-, |-, ||-destroying rules make sense:

{©,©} −→ |
{|, |} −→ ||

{||, ||} −→ © . (2)

There are 16 ideal 2-bit in, 1-bit out trinary gates for each of the definitions
above. These requirements were found from inspection of 2-bit binary gates
and binary gate sets followed by induction to trinary. In 2-bit binary gates and
gate sets, we require both truth-destroying (destruction) and falsity-destroying
(creation) to be present in a gate or set of gates. However, in [31], the requirement
that a function f(x, x, x, ..., x) 	= x,∀x ∈ {1, 2, 3, ..., k − 1} was found to give a
Sheffer function with a probability tending to 1/e (0.36) as k −→ ∞, i.e. so
long as the homogeneous input lines (e.g. [|, |]) of the truth table are destroying
(e.g. [||, ||, ||] −→ ©) the function is likely to be a Sheffer function.

Table 6 shows two examples of ideal trinary logic gates. Using the p and
q as the input bits, then the output A separates arithmetically equal values

3 {→,⊥},{←,⊥}, {�→,
}, {�←,
}.

Analysis of Boolean Logic Gates Logical Complexity 111

(this could be argued as a second bit of information, but, of course, it is one that
we have using memristor spiking logic gates). Using p and q as input bits, and
taking A and B as output bits we have a 2-bit input, 2-bit output gate, where
each input value can be separated from the others (i.e. it is reversible logic).

Table 6. An example of a trinary ideal gate. Inputs are p and q, column
∑

is the
arithmetical sum, A and B are outputs. The combination of p, q and A is the truth
table of a 2-bit in, 1-bit out ideal gate. The combination of p, q, A and B is the truth
table of a 2-bit in, 2-bit out ideal trinary logic gate that is reversable without the
requirement of needing the arithmetical sum.

p q Σ A B

© © 0 | |
© | 1 © |
© 1				
	2			
	© 2			
©		2 ©		
		3		©
		3	©	
			4 © ©	

2.5 Logical Complexity of a Full Adder

A half adder is a 2-bit output basic gate, it is equivalent to an XOR and an
AND gate.

Now we are in a position to analyse our full adder from the point of view of
logical efficiency. The 2-bit full adder separates 8 3-bit inputs into 4 arithmetical
groups. arbitrarily large numbers can be added by chaining full adders as the
carry bit out to the carry bit (C) in. Using the same description as before,
as standard full adder has N = 8 (23) possible inputs, and 4 distinguishable
operations, giving us a logical efficiency of 50 %. Our spiking logic full adder
allows the differentiation of all 8 operations, and gives us a logical efficiency of
100 %. Using standard circuit complexity measures of circuit depth complexity
and circuit size complexity we get 1 + selection circuitry for our full adder and
10 for a standard transistor based full adder [32]. This is not a fair comparison, of
course, because a standard full adder has multiple ports and all bits are received
at the same time, in our full adder we have to take 2 time-steps to get the answer.

As an aside, this measure of logical efficiency means that the full adder is
less logically efficient than a half adder. A half adder requires 2 input bits and
2 output bits (B2 −→ B2) and can separate out 4 inputs into 3 groups, giving
a logical efficiency of 75 %. The full adder has to add an entire extra bit to
count up to 3 and separate out 8 inputs into 4 groups. Of course, a single logic
gate doing a full adder’s truth table is better (as it involves 3 bits of input not
2 ∗ 2 = 4) and of course the full adder is more useful. However the half adder
is 75 % efficient on 4 inputs, allowing it to separate out 3 different inputs, the

112 E. Gale

Table 7. Full adder truth table

A B C Σ C ArithmeticalΣ

© © © © © 0

| © © | © 1
© | © | © 1
© © | | © 1

| | © © | 2
| © | © | 2

© | | © | 2

| | | | | 3

full adder is 50 % efficient on 8 inputs which allow it to separate out 4 groups of
inputs (Table 7).

Relatively simply, we can immediately write that for each input port removed
from the gate, an extra input time-step must be added. Thus, we can replace
circuit connections with extra time steps. Thus we arrive at an answer to the
‘conversion rate’ between space and time where we count space by the number
of input wires and time by the time-step (in a spiking clocked system). It seems
to be approximately 1:1 for the simple gates. In standard electronics a full adder
involves 3 input wires (one time-step), in the memristor system, we use 1 input
wire and 3 time-steps. Output in standard electronics is 2 output wires, in the
memristor system we can either use 1 time output plus 1 read pulse. As the
output pulse happens at the same time as the last input pulse, a 5 wire, 1
time-step standard electronics full adder is compared to a 2 wire, 4 time-step
memristor full adder.

3 Conclusions

In this paper, we explained logic gates by counting the number of differentiable
operations (as in, the number of operations we can usefully differentiate, not a
numerical differentiation approach). This has practical uses. In this paper, Ideal
logic gates have been invented and explained and it has been shown that they
are impossible in binary but achievable in trinary. There we suggestions that
memristors might be more naturally described in trinary than binary.

In this paper, I put forward a new way of classifying logic gates that takes into
account the energetics of the devices and, I hope, will make it easier to design
logic gates from nanoscale components by clarifying the properties required.

This paper also suggested a measure of efficiency to compare (computation)
time and (circuit) space complexity, and this measure was used to compare the
spiking memristor full adder with a standard full adder and put a number to
that improvement.

Spiking existence gates fire when a signal reaches them, but they do not
conserve the information of that signal, merely its existence. This could be useful
for systems where you might want to know if a signal is passed without knowing
what it is (for example for tech support tests on a confidential line).

Analysis of Boolean Logic Gates Logical Complexity 113

As cIMP has applications in Bayesian reasoning in evolutionary computing.
cIMP is equivalent to asking what is the likelihood of B given A, where the
reverse time complement is due to us asking the question about an event in the
past. I do not know if cIMPs can be built with spiking logic in memristors, but
cIMP gates could act as natural iotas of evolutionary computing.

The spiking memristor gates are logically reversible, in that, we have the
information required at the output to reconstruct the full set of inputs. As time
is not reversible, the gates are not physically reversible, to get that we would need
a gate where the time effectively ran backwards. And we have that! The time-
complement gates do this. Thus, if we used an IMP gate to do a computation
and then ran the output straight into a cIMP gate we would get input to the
IMP as the output. This would allow us to build a hardware encryption box.
If a signal were to be encrypted in a circuit built of IMP gates. However, if
the output was fed into the mirror image circuit made with cIMPs, the original
input sequence would be extracted (the NIMP and NcIMP pair would work the
same way). This has obvious applications in encryption. For a binary IMPs and
cIMPs the key might be hackable, but using a larger k-ary space arithmetic and
perhaps changing the number of input bits (how many are included in refresh
of the memristors short-term memory) occasionally would make the system less
hackable. If the line was good at keeping the separation of the spikes in time, the
refresh of the memristor’s short-term memory could be included and changed on
the fly.

References

1. Gale, E., de Lacy Costello, B., Adamatzky, A.: Boolean logic gates from a single
memristor via low-level sequential logic. In: Mauri, G., Dennunzio, A., Manzoni, L.,
Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 79–89. Springer, Heidelberg
(2013)

2. Chua, L.O.: Memristor - the missing circuit element. IEEE Trans. Circuit Theory
18, 507–519 (1971)

3. Di Ventra, M., Pershin, Y.V., Chua, L.O.: Putting memory into circuit elements:
memristors, memcapacitors, and meminductors [point of view]. Proc. IEEE 97(8),
1371–1372 (2009)

4. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223
(1976)

5. Chua, L.: Resistance switching memories are memristors. Applied Physics A: Mate-
rials Science & Processing, pp. 765–782, 2011

6. Gale, E.: Memristors and ReRAM: materials, mechanisms and models (a review).
Semicond. Sci. Technol. 29, 104004 (2014)

7. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor
found. Nature 453, 80–83 (2008)

8. Gergel-Hackett, N., Hamadani, B., Dunlap, B., Suehle, J., Richer, C., Hacker, C.,
Gundlach, D.: A flexible solution-processed memrister. IEEE Electr. Device Lett.
30, 706–708 (2009)

9. Gale, E., Pearson, D., Kitson, S., Adamatzky, A., Costello, B.L.: The effect of
changing electrode metal on solution-processed flexibletitanium dioxide memris-
tors. Mater. Chem. Phy. 162, 20–30 (2015)

114 E. Gale

10. Gale, E., de Lacy, B., Costello, A.A.: Observation, characterization and modeling
of memristor current spikes. Appl. Math. Inf. Sci. 7, 1395–1403 (2013)

11. Gale, E., de Lacy, B., Costello, A.A.: Is spiking logic the route to memristor-based
computers? In: 2013 International Conference on Electronics, Circuits and Systems
(ICECS), pp. 297–300, Abu Dhabi, UAE. IEEE, 8–11 December 2013

12. Gater, D., Iqbal, A., Davey, J., Gale, E.: Connecting spiking neurons to a spiking
memristor network changes the memristor dynamics. In: 2013 International Con-
ference on Electronics, Circuits and Systems (ICECS), pp. 534–537, Abu Dhabi,
UAE. IEEE, 8–11 December 2013

13. Gambuzza, L.V., et al.: Int. J. Bifurcation Chaos 25, 1550101 (2015) [9 pages].
http://dx.doi.org/10.1142/S0218127415501011

14. Gale, E., de Costello, B.L., Adamatzky, A.: Emergent spiking in non-ideal mem-
ristor networks. Microelectron. J. 45, 1401–1415 (2014)

15. Borghetti, J., Snider, G.D., Kuekes, P.J., Joshua Yang, J., Stewart, D.R., Stanley
Williams, R.: ‘Memristive’ switches enable ‘stateful’ logic operations via material
implication. Nature 464, 873–876 (2010)

16. Gale, E., Mayne, R., Adamatzky, A., de Costello, B.L.: Drop-coated titanium diox-
ide memristors. Mater. Chem. Phy. 143, 524–529 (2014)

17. Sawa, A.: Resistive switching in transition metal oxides. Mater. Today 11, 28–36
(2008)

18. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater.
6, 833–840 (2007)

19. Gale, E., de Lacy, B., Costello, V.E., Adamatzky, A.: The short-term memory (d.c.
response) of the memristor demonstrates the causes of the memristor frequency
effect. In: Proceedings of CASFEST 2014, June 2014

20. Whitehead, A.N., Russell, B.: Principia Mathematica. In: Marchant Books, vol. 1,
pp. 394–508 (1910)

21. Shannon, C.E.: Trans. AIEE. A symbolic analysis of relay and switching circuits
57, 713–723 (1938)

22. Comtet, L.: Boolean algebra generated by a system of subsets. In: Reidel, D. (ed.)
Advanced Combinatorics: The Art of Finite and Infinite Expansions, pp. 185–189,
Dordrecht (1974)

23. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans.
Am. Inst. Electr. Eng. part I 72, 593–599 (1953)

24. Veitch, E.W.: Chart method for simplifying truth functions. In: Transactions of
the 1952 ACM Annual Meeting, ACM Annual Conference/Annual Meeting, pp.
127–133 (1952)

25. Simpson, R.E.: Introductory Electronics for Scientists and Engineers. Allyn and
Bacon, Boston (1987)

26. Post, E.L.: Introduction to a general theory of elementary propositions. Am. J.
Math. 43, 167–168 (1921)

27. Pershin, Y.V., Ventra, M.D.: Neuromorphic, digital and quantum computation
with memory circuit elements. Proc. IEEE 100, 2071–2081 (2012)

28. Pino, R.E., Bohl, J.W.: Self-reconfigurable memristor-based analog resonant com-
puter. US Patent, pages US 8,274,312 B2 (2012)

29. Lehtonen, E., Laiho, M.: Stateful implication logic with memristors. In:
IEEE/ACM International Symposium on Nanoscale Architectures, NANOARCH
2009, pp. 33–36, July 2009

30. Lehtonen, E., Poikonen, J.H., Laiho, M.: Applications and limitations of memristive
implication logic. In: 13th International Workshop on Cellular Nanoscale Networks
and Their Applications (CNNA), pp. 1–6, August 2012

http://dx.doi.org/10.1142/S0218127415501011

Analysis of Boolean Logic Gates Logical Complexity 115

31. Stojmenovi, I.: On sheffer symmetric functions in three-valued logic. Discrete Appl.
Math. 22(3), 267–274 (1989)

32. Lin, J.-F., Hwang, Y.-T., Sheu, M.-H., Ho, C.-C.: A novel high-speed and energy
efficient 10-transistor full adder design. IEEE Trans. Circ. Syst. I Regular Papers
54(5), 1050–1059 (2007)

Language Recognition Power and Succinctness
of Affine Automata

Marcos Villagra1(B) and Abuzer Yakaryılmaz2(B)

1 Universidad Nacional de Asunción
NIDTEC, Campus Universitario, San Lorenzo C.P. 2619, Paraguay

mvillagra@pol.una.py
2 National Laboratory for Scientific Computing,

Petrópolis, RJ 25651-075, Brazil
abuzer@lncc.br

Abstract. In this work we study a non-linear generalization based on
affine transformations of probabilistic and quantum automata proposed
recently by Dı́az-Caro and Yakaryılmaz [6] referred as affine automata.
First, we present efficient simulations of probabilistic and quantum
automata by means of affine automata which allows us to character-
ize the class of exclusive stochastic languages. Then, we initiate a study
on the succintness of affine automata. In particular, we show that an infi-
nite family of unary regular languages can be recognized by 2-state affine
automata, whereas the number of states of any quantum and probabilis-
tic automata cannot be bounded. Finally, we present the characterization
of all (regular) unary languages recognized by two-state affine automata.

Keywords: Probabilistic automata · Quantum automata · Affine
automata · State complexity · Stochastic language · Bounded-error ·
One-sided error

1 Introduction

1.1 Background

Probabilistic and quantum computing are popular computation models with a
very rich literature. Quantum computation, in particular, apparently violates the
so-called strong Church-Turing thesis, which states that all reasonable models
of computation can be efficiently simulated by a probabilistic universal Tur-
ing machine. Evidence comes from the efficient solution to certain problems
believed to be computationally hard, like factoring large composite numbers.
Much research is devoted to pinpoint the exact source of this computational
power of quantum computers.

The omitted proofs can be found in [22].
A.Yakaryılmaz—Yakaryılmaz was partially supported by CAPES with grant
88881.030338/2013-01 and some parts of this work was done while he was visiting
Universidad Nacional de Asunción in September 2015.

c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 116–129, 2016.
DOI: 10.1007/978-3-319-41312-9 10

Language Recognition Power and Succinctness of Affine Automata 117

In this paper, we continue the work initiated in [6] on a quantum-like classi-
cal computational model based on affine transformations. In particular, we make
emphasis in finite-state automata, which is arguably the most simple computa-
tion model. Affine automata are finite-state machines whose transition operators
are affine operators, hence the name.

There are several sources that apparently gives power to quantum computers,
like quantum parallelism and entanglement. Several researchers may agree that
quantum interference (using negative amplitudes), however, seems to be the key
component. Therefore, the reason to study affine automata is to simplify the
study of quantum interference in the context of a simple classical computation
model.

Probabilistic automata are computation models whose transitions are gov-
erned by stochastic operators preserving the �1-norm of a normalized vector
with entries in the continuous set of real numbers [0, 1]. Similarly, the transi-
tions in a quantum automaton are governed by unitary operators preserving the
�2-norm of a normalized vector with entries over the complex numbers C. The
only restriction that affine transformations impose over finite-state machines is
the preservation of barycenters of vectors with entries over the real numbers R, or
equivalently, preservation of the sum of all entries in the state vector. It is clear
that any affine operator defined on non-negative real numbers is a stochastic
operator.

Since affine transformations are linear, the evolution of an affine automaton
is linear. Nonlinearity comes from a measurement-like operator (which we call
weighting operator) that is applied at the end of every computation to determine
the probability of observing an inner-state of the machine. We refer the reader
to [6] for the detailed explanations and discussions. A continuation of this paper
appeared in [5].

1.2 Contributions

In this work we present the following results on affine automata language classes.
First, in Sect. 4 we show how to simulate a probabilistic automaton using an
affine automaton (Theorem 1). Then we use that simulation to show that any
rational exclusive stochastic language can be recognized by positive one-sided
bounded-error affine automata (Theorem2). This fact immediately implies a
characterization of the language recognition power of nondeterministic quantum
automata by one-sided bounded-error affine automata. In Sect. 5 we show how
to simulate an n-state quantum automaton exactly by an (n2 + 1)-state affine
automaton (Theorem 4). In Sect. 6 we study the state complexity (succintness)
of affine automata. First, we show that the so-called unary counting problem can
be computed by some bounded-error affine automata with constant state com-
plexity (Theorem 5), whereas any bounded-error quantum automaton requires at
least a logarithmic number of states. Second, we show the existence of a promise
language that is solved exactly by an affine automaton with constant state com-
plexity (Theorem 7), whereas any probabilistic automaton requires exponential

118 M. Villagra and A. Yakaryılmaz

state complexity. Finally, in Sect. 7 we give a complete characterization of all
(regular) unary languages recognized by two-state affine automata (Theorem 8).

Affine transformations are arguably simpler to understand compared to uni-
tary operators. Therefore, the characterizations given in terms of affine automata
of quantum language classes present a simpler setting where to study and
research the power of interference.

2 Preliminaries

We assume the reader is familiar with the common notation used in automata
theory. For details on the models of probabilistic and quantum automata, we
recommend references [4,15,19].

Let Σ be a finite alphabet, not containing ¢ and $ called the left and right
end-markers, respectively. The set of all the strings of finite length over Σ is
denoted Σ∗. We define Σ̃ = Σ ∪ {¢, $} and w̃ = ¢w$ for any string w ∈ Σ∗. For
any given string w ∈ Σ∗, |w| denotes its length, |w|σ is the number of occurrences
of the symbol σ, and wj is the j-th symbol of w.

A probabilistic finite automaton (or PFA) [16] is a 5-tuple P = (E,Σ, {Aσ |
σ ∈ Σ̃}, es, Ea), where E = {e1, . . . , en} is a finite set of inner states for some
n ∈ Z

+, es ∈ E is the starting inner state, Ea ⊆ E is a set of accept inner states,
and Aσ is the stochastic transition matrix for the symbol σ ∈ Σ̃. Any input
w ∈ Σ∗ is always given in the form w̃ = ¢w$ and it is scanned by P from left
to right, symbol by symbol.1 After scanning the j-th symbol, the configuration
state of P is vj = Aw̃j

vj−1 = Aw̃j
Aw̃j−1 · · · Aw̃1v0, where 1 ≤ j ≤ |w̃| and v0 is

the initial state vector. The final configuration state is denoted vf = v|w̃|. The
acceptance probability of P on w is given by fP (w) =

∑
ek∈Ea

vf [k], where vf [k]
is the k-th entry of the vector vf .

A quantum finite automaton (or QFA) [4] is a 5-tuple M = (Q,Σ, {Eσ |
σ ∈ Σ̃}, qs, Qa), where Q = {q1, . . . , qn} is a finite set of inner states for some
n ∈ Z

+, Eσ is a transition superoperator2 for a symbol σ ∈ Σ, the inner state
qs is the initial state, and Qa ⊆ Q is a set of accept states. For any given
input w ∈ Σ∗, the computation of M on w is given by ρj = Ew̃j

(ρj−1), where
ρ0 = |qs〉〈qs| and 1 ≤ j ≤ |w̃|. The final state is denoted ρf = ρ|w̃|. The accept
probability of M on w is given by fM (w) =

∑
qj∈Qa

ρf [j, j], where ρf [j, j] is the
j-th diagonal entry of ρ. The most restricted model of QFA currently known is
the so-called Moore-Crutchfield QFA (or MCQFA) [14]. An MCQFA is a 5-tuple
M = (Q,Σ, {Uσ | σ ∈ Σ̃}, qs, Qa), where all components are defined exactly in
the same way as for QFAs except that Uσ is a unitary transition operator for
a symbol σ ∈ Σ acting on span{|q〉 | q ∈ Q}. Physically, M corresponds to a
closed-system based on pure states.3 For any given input w ∈ Σ∗, the machine
1 This way of scanning an input tape is sometimes referred to as “strict realtime.”.
2 A superoperator or quantum operator is a positive-semidefinite operation that maps

density matrices to density matrices [4,19].
3 Pures states are vectors in a complex Hilbert space normalized with respect to the

�2-norm.

Language Recognition Power and Succinctness of Affine Automata 119

M is initialized in the quantum state |v0〉 = |qs〉. Each step of a computation is
given by |vj〉 = Uw̃j

|vj−1〉, where 1 ≤ j ≤ |w̃|. The final quantum state is denoted
|vf 〉 = |v|w̃|〉. The accept probability of M on w is fM (w) =

∑
qj∈Qa

|〈qj |vf 〉|2.
Note that the inner product 〈qj |vf 〉 gives the amplitude of qj in |vf 〉.

If we restrict the entries in the transitions matrices of a PFA to zeros and
ones we obtain a deterministic finite automaton (or DFA). A DFA is always in
a single inner state during the computation and the input is accepted if only if
the computation ends in an accept state. A language is said to be recognized by
a DFA if and only if any member of the language is accepted by the DFA. Any
language recognized by a DFA is called a regular language [17] and the class of
regular languages is denoted REG.

Let λ ∈ [0, 1) be a real number. A language L is said to be recognized by a
PFA P with cutpoint λ if and only if L = {w ∈ Σ∗ | fP (w) > λ}. Any language
recognized by a PFA with a cutpoint is called a stochastic language [16] and the
class of stochastic languages is denoted SL, which is a superset of REG. As a
special case, if λ = 0, the PFA is also called a nondeterministic finite automaton
(or NFA). Any language recognized by an NFA is also a regular language.

A language L is said to be recognized by P with isolated cutpoint λ if and only
if there exists a positive real number δ such that fP (w) ≥ λ + δ for any w ∈ L
and fP (w) ≤ λ − δ for any w /∈ L. When the cutpoint is required to be isolated,
PFAs are not more powerful than DFAs; that is, any language recognized by a
PFA with isolated cutpoint is regular [16].

Language recognition with isolated cutpoint can also be formulated as recog-
nition with bounded error. Let ε ∈ [0, 1

2). A language L is said to be recognized
by a PFA P with error bound ε if and only if fP (w) ≥ 1 − ε for any w ∈ L and
fP (w) ≤ ε for any w /∈ L.

As a further restriction, if fP (w) = 1 for any w ∈ L, then we say that
P recognizes L with negative one-sided bounded error ; if fP (w) = 0 for any
w /∈ L, then we say that P recognizes L with positive one-sided bounded error.
If the error bound is not specified, then we say that L is recognized by P with
[negative/positive one-sided] bounded error.

A language L is an exclusive stochastic language [15] if and only if there exists
a PFA P and a cutpoint λ ∈ [0, 1] such that L = {w ∈ Σ∗ | fP (w) 	= λ}. The
class of exclusive stochastic languages is denoted by SL�=. Its complement class
is denoted by SL= (that is L ∈ SL�= iff L ∈ SL=). Note that for any language
in SL�= we can choose as cutpoint any value between 0 and 1, but not 0 or 1,
because in that case we can only recognize regular languages. Also notice that
both SL�= and SL= are supersets of REG (it is still open whether REG is a proper
subset of SL�= ∩ SL=).

In the case of QFAs, they recognize all and only regular languages with
bounded-error [12] and stochastic languages with cutpoint [24,26]. The class of
languages recognized by nondeterministic QFAs, however, is identical to SL�=.

For any language class C, we use CX to denote the subclass of C when all
transitions of the corresponding model are restricted to X.

120 M. Villagra and A. Yakaryılmaz

3 Affine Finite Automaton

In this section we define our model of finite-state machine based on affine trans-
formations. We refer to [6] for the basics of affine systems. An affine finite-state
automaton, or simply AfA, is a 5-tuple

M = (E,Σ, {Aσ | σ ∈ Σ̃}, es, Ea),

where all the components are the same as in the definition of a PFA except that
Aσ is an affine transformation matrix (each column sum is 1). Note that each
configuration state of M is a column vector on R satisfying that the summation
of entries is always 1. On input w ∈ Σ∗, let vf be the final configuration state
after scanning the right end-marker $. Define the accept probability of M as

fM (w) =
∑

ek∈Ea

|vf [k]|
|vf | ∈ [0, 1], (1)

where each value contributes with its absolute value. More specifically, when M
is in the final state vf , this vector is normalized with respect to the �1-norm
obtaining a new vector v′

f ; thus, in order to obtain the accept probability we
project the vector v′

f on the subspace spanned by the accept inner states Ea of
M and then taking the �1-norm again, that is, the summation of the absolute
value of each entry.

Language recognition for M is defined in the same way. Any language recog-
nized by an AfA with cutpoint is called an affine language. The class of affine
languages is denoted AfL. Any language recognized by an AfA with cutpoint
0 (called nondeterministic AfA or NAfA for short) is called a nondeterministic
affine language. The corresponding class is denoted NAfL. A language is called
an exclusive affine language if and only if there exists an AfA M and a cutpoint
λ ∈ [0, 1] such that L = {w ∈ Σ∗ | fM (w) 	= λ}. The class of exclusive affine
languages is denoted by AfL�= and its complement class is denoted by AfL=.
Any language recognized by an AfA with bounded error is called an bounded
affine language. The corresponding class is denoted BAfL. If the error is positive
one-sided (all non-members are accepted with value 0), then the correspond-
ing language class is denoted BAfL0, whereas for negative one-sided error (all
members are accepted with value 1) the corresponding language class is denoted
BAfL1. Note that if L ∈ BAfL0, then L ∈ BAfL1, and vice versa. Any language
recognized by an AfA with zero-error is called exact affine language and its
corresponding language class is EAfL.

4 Simulation of Rational PFAs

In this section we present a simulation of PFAs by AfAs. Since 1-state PFAs are
trivial, we focus on PFAs with two more states.

Theorem 1. Any language L recognized by an n-state rational PFA with cut-
point 1

2 can be recognized by an (n + 1)-state integer AfA with cutpoint 1
2 .

Language Recognition Power and Succinctness of Affine Automata 121

Proof. Let P = (E,Σ, {Aσ | σ ∈ Σ̃}, es, Es) be an n-state PFA defined with
only rational numbers with n > 1. With the help of end-markers, we can assume
with no loss of generality that the initial state es = e1 and Ea = {e1}. Moreover,
for any given w ∈ Σ∗, we can assume with no loss of generality that the final
state vector of M is always ⎛

⎜
⎜
⎜
⎜
⎜
⎝

fP (w)
1 − fP (w)

0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Using P as defined above, we construct an AfA MP = (E ∪{en+1}, Σ, {Bσ |
σ ∈ Σ̃}, e1, {e1}), where n = |E|. Let d be the smallest positive integer such
that for each σ ∈ Σ the entries of the matrix dAσ are integers. If v0 is the initial
state of P , for any string w, we have that

(
dAw̃|w̃|

) (
dAw̃|w̃|−1

) · · · (dAw̃1) v0 = d|w̃|

⎛

⎜
⎜
⎜
⎜
⎜
⎝

fP (w)
1 − fP (w)

0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
n.

Define a new matrix A′
σ for each σ ∈ Σ̃ as

A′
σ =

(
dAσ 0
1 1

)

,

where 1 is a row vector that makes the summation of each column under dAσ

equal to 1. Then, for a given string w, we have that

v′
f = A′

w̃|w̃|A
′
w̃|w̃|−1

· · · A′
w̃1

(
v0
0

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d|w̃|fP (w)
d|w̃| (1 − fP (w))

0
...
0

1 − d|w̃|

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
n+1.

Using the vector v′
f , we can subtract the second entry from the first one and

then sum everything else on the second entry by using an extra affine operator
A′′

w̃|w̃| obtaining

122 M. Villagra and A. Yakaryılmaz

v′′
f = A′′

w̃|w̃|v
′
f =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

d|w̃| (2fP (w) − 1)
1 − d|w̃| (2fP (w) − 1)

0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
n+1.

Here the entries of A′′
w̃|w̃| are as follows:

A′′
w̃|w̃| =

⎛

⎝
1 −1 0 · · · 0
0 2 1 · · · 1

0

⎞

⎠ ,

where 0 is a (n − 1, n + 1)-dimensional zero matrix. The vector v′′
f is our desired

final state for machine MP . Thus, for each σ ∈ Σ ∪ {¢}, we set Bσ = A′
σ, and,

for the last operator we set B$ = A′′
$A′

$. The initial vector of MP is u0 =
(

v0
0

)

.

Then, ∀w ∈ Σ∗, fP (w) > 1
2 ↔ fMP (w) > 1

2 .
�
The simulation in Theorem 1 is helpful for recognizing rational exclusive sto-
chastic languages with bounded-error.

Theorem 2. SL�=
Q

⊆ BAfL0
Z
.

The following corollary is obtained immediately from Theorem2.

Corollary 1. SL=
Q

⊆ BAfL1
Z
.

It was shown in [6] that SL�= = NAfL = NQAL, and therefore, our new
result is stronger (bounded-error) but for a restricted case (using only rational
numbers). One may immediately ask whether BAfL0

Q
⊆ SL�=

Q
. This follows from

the simulation of a NAfA by a NQFA given in [6], and a simulation of a NQFA by
a PFA with exclusive cutpoint (see [25]). Note that all the intermediate machines
can use only rational transitions. Moreover, we can give a direct simulation of a
NAfA by a PFA by using Turakainen’s techniques [21].

Corollary 2. BAfL0
Z

= BAfL0
Q

= SL�=
Q

and BAfL1
Z

= BAfL1
Q

= SL=
Q
.

The class SL�=
Q

is important because, as pointed in [23], it contains many well-
known nonregular languages like UPAL = {anbn | n > 0}, PAL = {w ∈ Σ∗ | w =
wr}, SQUARE = {anbn2 | n > 0}, POWER = {anb2

n | n > 0}, etc. Interestingly, any
language in SL�=

Q
(SL=

Q
) can also be recognized by two-way QFAs with positive

(one-sided) bounded-error. Therefore, it is reasonable to compare AfAs with
two-way QFAs.

We can provide logarithmic-space bounds for one-sided bounded-error affine
languages. We know that SL�=

Q
∪ SL=

Q
is in the deterministic logarithmic space

class L [13] and PAL cannot be recognized by a probabilistic Turing machine in
sublogarithmic space [7]. Hence, we can immediately obtain the following result.

Language Recognition Power and Succinctness of Affine Automata 123

Corollary 3. BAfL0
Q

∪ BAfL1
Q

⊆ L and BAfL0
Q

∪ BAfL1
Q

� BSpace(o(log n)).

The language EQNEQ = {aw1 ∪ bw2 ∈ {a, b}∗ | w1 ∈ EQ and w2 ∈ NEQ} is not
in SL�=∪SL=, where EQ = {w ∈ {a, b}∗ | |w|a = |w|b} and NEQ is the complement
of EQ [25]. We know that EQ can be recognized by an AfA with bounded-error,
and hence, it is not hard to design an AfA recognizing EQNEQ with bounded-error;
the error, however, must be two-sided since it is not in SL�= ∪ SL=.

Theorem 3. BAfL0
Q

∪ BAfL1
Q

� BAfLQ.

5 Exact Simulation of QFAs

In this section, we present an exact simulation of QFAs by AfAs. We start with
the exact simulation of MCQFAs due to its simplicity.

Lemma 1. For a given MCQFA M with n inner states defined over R
n, there

exists an AfA MM with (n2 + 1) inner states that exactly simulates M .

Proof. Let M = (Q,Σ, {Uσ | σ ∈ Σ̃}, qs, Qa) be an n-state MCQFA and |v0〉 =
|qs〉 be the initial quantum state. All transitions of M use only real numbers.
For any given input w ∈ Σ∗, the final quantum state is |vf 〉 is

|vf 〉 = Uw̃|w̃|Uw̃|w̃|−1 · · · Uw̃1 |v0〉.

In order to turn amplitudes into probabilities of observing the basis states from
the final vector, we can tensor |vf 〉 with itself [14]. Thus,

|vf 〉 ⊗ |vf 〉 = (Uw̃|w̃| ⊗ Uw̃|w̃|)(Uw̃|w̃|−1 ⊗ Uw̃|w̃|−1) · · · (Uw̃1 ⊗ Uw̃1)(|v0〉 ⊗ |v0〉).

We construct an AfA MM that simulates the computation of M . The set of
inner states is Q × Q ∪ {qn2+1} and the initial state is (qs, qs). We assume with
no loss of generality that there is only one accept state (q1, q1). For any symbol
σ ∈ Σ ∪ {¢}, the transition affine matrix Aσ is defined as

Aσ =
(

Uσ ⊗ Uσ 0
1 1

)

,

where 1 is a row vector that makes the summation of each column under Uσ ⊗Uσ

equal to 1. The affine transformation A$ is composed by two affine operators

A$ = A′
$

(
Uσ ⊗ Uσ 0

1 1

)

,

where A′
$ is an affine operator to be specified later. Then, on input w, the final

affine state is

uf = A′
$

(
vf ⊗ vf

1

)

,

124 M. Villagra and A. Yakaryılmaz

where 1 is equal to 1 minus the summation of the rest of the entries in uf . The
accept value of M on w can now be calculated from the values of vf ⊗vf , that is,
the summation of entries corresponding to (qj , qj) for all qj ∈ Qa. Similar to the
simulation in the previous section, we define A′

$ as an operation that computes
the summation over all entries corresponding to each accepting state of the form
(qj , qj) and copies the result to the first entry of uf ; all remaining values are
added and copied to the second entry of uf . (The first and second rows of A′

$

are 0–1 vectors and all the other rows are by zero vectors.) Thus, our final state
is uf = (fM (w), 1 − fM (w), 0, . . . , 0)T . Finally, we have that fMM (w) equals
fM (w) and the number of inner states of MM is n2 + 1.
�

It is known that the computation of any n-state QFA M (defined with com-
plex numbers) can be simulated by an n2-state general finite-state automaton
G such that fM (w) = fG(w) for any w ∈ Σ∗ [26]. Then, by adding one more
state, we can design an AfA MM such that fM (w) = fMM (w) for any w ∈ Σ∗.
Hence, the following result immediately follows.

Theorem 4. For a given QFA M with n inner states, there exists an AfA MM
with (n2 + 1) inner states that exactly simulates M .

By using this theorem, we inherit the superiority results of QFAs over PFAs
[4] as the superiority results of AfAs over PFAs. The only issue we should be
careful about is the quadratic increase in the number of states, which could be
significant depending on the context.

The simulation techniques given here can be applied to different cases. For
example, an affine circuit can be defined similarly to a quantum circuit, using
affine operators instead of unitary operators. Then, using the above simula-
tion(s), it follows that any quantum circuit of width d(n) and length s(n) can be
simulated exactly by an affine circuit of width d2(n) + 1 and length s(n), where
n is the parameter of the input length. Therefore, we can say that the class
BQP is a subset of bounded-error affine polynomial-time defined with circuits.
Moreover, PSPACE is a trivial upper bound for these polynomial-time circuits.

6 Succinctness of Affine Computation

6.1 Bounded-Error

For any prime number p, the language MODp = {ajp | j ≥ 0}, over the unary
alphabet {a}, can be recognized by a bounded-error MCQFA with O(log(p))
inner states; any bounded-error PFA, however, requires at least p states [2]. The
MCQFA algorithm for MODp is indeed composed by O(log(p)) copies of 2-state
MCQFAs. Since we can simulate these 2-state MCQFAs exactly by 5-state AfAs,
it follows that MODp can be recognized by bounded-error AfAs with O(log(p))
inner states.

The language COUNTn = {an} for any n > 0, also known as the (unary)
counting problem, can be solved by bounded-error AfAs with a constant number
of states; moreover, any DFA requires n states [11], which implies that any
bounded-error QFAs must have at least Ω(

√
log(n)) states [4].

Language Recognition Power and Succinctness of Affine Automata 125

Theorem 5. The language COUNTn can be recognized by a 2-state AfA with neg-
ative one-sided bounded-error.

Using a few copies of the AfA of Theorem5, the error can be made arbitrarily
close to 0 with a number of inner states that depends only on the error bound.

6.2 Zero-Error

For any k > 0, MOD2k = (0MOD2k, 1MOD2k) is a promise problem,4 where 0MOD2k =
{aj2k | j ≡ 0 mod 2} and 1MOD2k = {aj2k | j ≡ 1 mod 2}.

It is known that MOD2k can be solved exactly by a 2-state MCQFA [3]. Any
bounded-error PFA, however, requires at least 2k+1 states [18]. Due to Lemma 1,
we can obtain the following result.

Theorem 6. The promise problem MOD2k can be solved by a 5-state AfA exactly.

In consequence, zero-error AfAs are also interesting like MCQFAs. Now we con-
sider the promise problem MOD4k = (0MOD4k, 1MOD4k) where 0MOD4k = {aj.2k |
j ≡ 0 mod 4} and 1MOD4k = {aj.2k | j ≡ 1 mod 4}.

Theorem 7. The promise problem MOD4k can be solved exactly by a 3-state AfA.

Using the techniques given in [3,18], we can show that any bounded-error
PFA (and some other classical automata models [9]) requires at least 2k+1 states
to solve MOD4k.

In summary, we can say that MOD2k (and so MOD4k) is a classically expensive
promise problem, but inexpensive for quantum and affine automata. As further
examples, in the same line of research, a classically expensive generalized ver-
sion of MOD2k was defined in [10], in which was shown that the same expensive
language can be solved by 3-state MCQFAs exactly; furthermore, a classically
expensive function version of MOD2k was defined in [1], which was shown to be
solved by width-2 quantum OBDDs exactly. Trivially, all quantum results for
these families of promise problems are inherited for affine models.

7 Unary Languages Recognized by Affine Automata
with Two Inner States

All of our results of the previous sections, excepting the succintness results of
Sect. 6, were obtained for languages defined over generic alphabets. Hence, using
the superiority result of QFAs over PFAs given in [8], it immediately follows
that AfAs computing unary languages are more powerful than unary PFAs with
bounded-error on promise problems.

In this section, we give a complete characterization of the unary languages
recognized by 2-state AfAs with cutpoint. It is known that 2-state unary PFAs
4 A promise problem L = (Lyes, Lno) is solved by a machine M , or M solves L, if for all

w ∈ Lyes, M accepts w, and for all w ∈ Lno, M rejects w.

126 M. Villagra and A. Yakaryılmaz

can recognize only a few regular languages, whereas 2-state unary QFAs (with
transitions defined over R) can recognize uncountable many languages [15,20].
Here we obtain an analogous result to PFAs with the difference that AfAs can
recognize more regular languages.

Consider the following unary regular languages over Σ = {a}; the empty
language ∅, E = {a}∗, LESSn = {ai | i ≤ n} for n ≥ 0, and EVEN = (aa)∗.

The complete list of languages recognized by 2-state unary PFAs with cut-
point are E, LESSn, LESSn ∩ EVEN, LESSn ∩ EVEN, LESSn ∩ EVEN, LESSn ∩ EVEN,
and the complement of each of these languages, with n ≥ 0 [20].

The main result of this section is the following. Let INTERVALk,l = {ai | k ≤
i ≤ l} for 1 ≤ k < l.

Theorem 8. The only unary regular languages recognized by AfAs with 2 inner
states are the languages recognized by 2-state unary PFAs with cutpoint and
additionally INTERVALk,l ∩ EVEN, INTERVALk,l ∩ EVEN, INTERVALk,l ∩ EVEN, and
INTERVALk,l ∩ EVEN.

The remaining of this section is devoted to the proof of Theorem 8. To that
end, first we will consider the computation of a 2-state unary AfA M , which is
inspired by a 2-state unary PFA of [20]. Let {e1, e2} be the only inner states
of M . With no loss of generality, we assume that the initial and only accepting
state is e1. The affine transformations for symbols a and $ are

Aa =
(

1 − q p
q 1 − p

)

and (2)

A$ =
(

f1 f2
1 − f1 1 − f2

)

, (3)

respectively, for some real numbers p, q, f1 and f2.

Let vf =
(

x
1 − x

)

be the final configuration vector of string aj (j ≥ 0). The

accept probability of M on aj is fM (aj) =
−x

1 − 2x
=

1
2

+
1

4x − 2
when x < 0

and x > 1, and fM (aj) = x when 0 ≤ x ≤ 1.

Lemma 2. If p = q = 0 in Eq.(2), then E and ∅ can be recognized by AfAs with
2 states.

Proof. It is clear that if p = q = 0, then Aa is the identity, and hence fM is a
constant function on Σ∗. Thus, M can recognize E and ∅.
�

For the remaining of this section, we assume that at least one of p or q is
non-zero.

Lemma 3. There exists p ∈ R satisfying p + q = 0 in Eq.(2) such that M
recognizes LESSn.

Corollary 4. There exists p ∈ R satisfying p + q = 0 in Eq.(2) such that M
recognizes LESSn.

Language Recognition Power and Succinctness of Affine Automata 127

Lemma 4. There exists p ∈ R satisfying p + q = 0 such that M recognizes
INTERVALk,l with cutpoint 3/4.

Corollary 5. The language INTERVALk,l can be recognized by a 2-state AfA with
cutpoint 3

4 .

From Lemma 4 and Corollary 5 we conclude that AfAs with two inner states
can recognize more languages than PFAs with two inner states. Moreover, for
the case of p + q = 0, there are no more regular unary languages recognized by
AfAs with two states (see [22]).

Lemma 5. There exists p, q ∈ R satisfying p + q 	= 0 such that M recognizes
all languages recognized by 2-state unary PFAs with cutpoint and the languages
INTERVALk,l ∩ EVEN, INTERVALk,l ∩ EVEN, INTERVALk,l ∩ EVEN, and INTERVALk,l ∩
EVEN.

With Lemma 5 we conclude the proof of Theorem 8.

8 Concluding Remarks

Affine computation and affine finite automata were introduced in [6] with a
few initial results. For example, it was proved that AfAs can recognize more
languages than PFAs and QFAs in the bounded and unbounded error modes,
the exclusive affine languages form a superset of the exclusive quantum and
stochastic languages, and nondeterministic AfAs and QFAs are both equivalent
to the class of exclusive stochastic languages.

In this paper, we continued to investigate AfAs and obtained some new and
complementary results. We presented efficient simulations of PFAs and QFAs by
AfAs. In addition, we characterized the class of languages recognized by posi-
tive and negative one-sided bounded-error AfAs using rational transitions, which
turn out to be equal to the union of rational exclusive and co-exclusive stochastic
languages; this latter result improved the proof of equivalence between nondeter-
ministic AfAs and QFAs. We also initiated the study of the state complexity of
AfAs and showed that they can be more succint than PFAs and QFAs. Finally,
we presented a complete characterization of 2-state unary AfAs, showing at the
same time that AfAs can recognize more languages than 2-state unary PFAs but
still only regular languages.

In a recent and related work on AfAs [5], some further results on state com-
plexity are presented. It is proven in [5] that AfAs can separate any pair of
strings with zero-error using only two states, and can separate efficiently any
pair of disjoint finite sets of words with one-sided bounded-error.

We close this paper with a few open problems that we consider challenging.

1. It is conjectured in [6] that affine and quantum computation can be incom-
parable. The simulation results in this paper give the feeling that quantum
models can be simulated by their affine counterparts but it might require a
quadratic increase in memory. It is interesting to study the relations, par-
ticularly in the bounded-error setting, between quantum and affine language
classes.

128 M. Villagra and A. Yakaryılmaz

2. Currently we are not aware of any non-trivial upper bound for BAfLQ. Using
the techniques of [13] it might be possible to prove an upper bound of loga-
rithmic space.

3. Considering that AfAs completely capture the power of NQFAs, it is interest-
ing to investigate lower bound techniques that can exploit the simpler struc-
ture of affine transformations (compared to unitary and positive-semidefinite
operators).

Acknowledgements. We thank the anonymous referees for their helpful comments.

References

1. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quan-
tum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen, H.,
Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64.
Springer, Heidelberg (2014)

2. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weak-
nesses and generalizations. In: FOCS 1998, pp. 332–341 (1998). arXiv:9802062

3. Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for
promise problems. Inf. Process. Lett. 112(7), 289–291 (2012)

4. Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing. Technical
report 1507.01988, arXiv (2015)

5. Belovs, A., Montoya, J.A., Yakaryılmaz, A.: Can one quantum bit separate any
pair of words with zero-error? Technical report 1602.07967, arXiv (2016)

6. Dı́az-Caro, A., Yakaryılmaz, A.: Affine computation and affine automaton. In:
Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 146–160.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-34171-2 11

7. Freivalds, R., Karpinski, M.: Lower space bounds for randomized computation.
In: ICALP 1994, pp. 580–592 (1994)

8. Gainutdinova, A., Yakaryılmaz, A.: Unary probabilistic and quantum automata
on promise problems. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 252–
263. Springer, Heidelberg (2015)

9. Geffert, V., Yakaryılmaz, A.: Classical automata on promise problems. Discrete
Math. Theor. Comput. Sci. 17(2), 157–180 (2015)

10. Gruska, J., Qiu, D., Zheng, S.: Potential of quantum finite automata with exact
acceptance. Int. J. Found. Comput. Sci. 26(3), 381–398 (2015)

11. Kupferman, O., Ta-Shma, A., Vardi, M.Y.: Counting with automata. Short paper
presented at the 15th Annual IEEE Symposium on Logic in Computer Science
(LICS 2000) (1999)

12. Li, L., Qiu, D., Zou, X., Li, L., Wu, L., Mateus, P.: Characterizations of one-way
general quantum finite automata. Theor. Comput. Sci. 419, 73–91 (2012)

13. Macarie, I.I.: Space-efficient deterministic simulation of probabilistic automata.
SIAM J. Comput. 27(2), 448–465 (1998)

14. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor.
Comput. Sci. 237(1–2), 275–306 (2000)

15. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York
(1971)

16. Rabin, M.O.: Probabilistic automata. Inf. Control 6, 230–243 (1963)

http://arxiv.org/abs/9802062
http://dx.doi.org/10.1007/978-3-319-34171-2_11

Language Recognition Power and Succinctness of Affine Automata 129

17. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

18. Rashid, J., Yakaryılmaz, A.: Implications of quantum automata for contextuality.
In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 318–331.
Springer, Heidelberg (2014)

19. Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: a modern introduction.
In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol.
8808, pp. 208–222. Springer, Heidelberg (2014)

20. Shur, A.M., Yakaryılmaz, A.: More on quantum, stochastic, and pseudo stochastic
languages with few states. Nat. Comput. 15(1), 129–141 (2016)

21. Turakainenn, P.: Word-functions of stochastic and pseudo stochastic automata.
Ann. Acad. Scientiarum Fennicae, Ser. A. I Math. 1, 27–37 (1975)

22. Villagra, M., Yakaryılmaz, A.: Language recognition power and succintness of
affine automata. Technical report 1602.05432, arXiv (2016)

23. Yakaryılmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum
finite automata. Discrete Math. Theor. Comput. Sci. 12(2), 19–40 (2010)

24. Yakaryılmaz, A., Say, A.C.C.: Languages recognized with unbounded error by
quantum finite automata. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner,
K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 356–367. Springer, Heidelberg (2009)

25. Yakaryılmaz, A., Say, A.C.C.: Languages recognized by nondeterministic quantum
finite automata. Quantum Inf. Comput. 10(9&10), 747–770 (2010)

26. Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small
space bounds. Inf. Comput. 279(6), 873–892 (2011)

Training a Carbon-Nanotube/Liquid Crystal
Data Classifier Using Evolutionary Algorithms

Eléonore Vissol-Gaudin(B), Apostolos Kotsialos(B), M. Kieran Massey,
Dagou A. Zeze, Chris Pearson, Chris Groves, and Michael C. Petty

School of Engineering and Computing Sciences, Durham University, Durham, UK
{eleonore.vissol-gaudin,apostolos.kotsialos,m.k.massey,d.a.zeze,

christopher.pearson,chris.groves,m.c.petty}@durham.ac.uk

Abstract. Evolution-in-Materio uses evolutionary algorithms (EA) to
exploit the physical properties of unconfigured, physically rich materials,
in effect transforming them into information processors. The potential
of this technique for machine learning problems is explored here. Results
are obtained from a mixture of single walled carbon nanotubes and liq-
uid crystals (SWCNT/LC). The complex nature of the voltage/current
relationship of this material presents a potential for adaptation. Here,
it is used as a computational medium evolved by two derivative-free,
population-based stochastic search algorithms, particle swarm optimisa-
tion (PSO) and differential evolution (DE). The computational problem
considered is data classification. A custom made electronic motherboard
for interacting with the material has been developed, which allows the
application of control signals on the material body. Starting with a simple
binary classification problem of separable data, the material is trained
with an error minimisation objective for both algorithms. Subsequently,
the solution, defined as the combination of the material itself and opti-
mal inputs, is verified and results are reported. The evolution process
based on EAs has the capacity to evolve the material to a state where
data classification can be performed. PSO outperforms DE in terms of
results’ reproducibility due to the smoother, as opposed to more noisy,
inputs applied on the material.

1 Introduction

Unconventional computing aims at investigating methods for designing systems
able to perform a computation in different ways than the current paradigm. One
such direction of research is evolution in materio (EIM) [10], which is concerned
with computing performed directly by the materials. EIM focuses on the under-
lying properties of the materials aiming at exploring and exploiting them in such
a way so that they are brought to a computation inducing state. Contrary to
traditional computing with metal-oxide-silicon-field-effect-transistor (MOSFET)
technology, where everything is designed, produced and programmed very care-
fully, EIM uses a bottom up approach where computation is performed by the
material without having explicit knowledge of its internal properties.

c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 130–141, 2016.
DOI: 10.1007/978-3-319-41312-9 11

Training a Carbon-Nanotube/Liquid Crystal Data 131

The idea of EIM can be found in early work of Pask [17] concerned with
growing an electrochemical ear. In more recent work [22], observations were
made when evolutionary algorithms were used for designing electrical circuits
on field-programmable-gate-arrays (FPGAs). The resulting circuit topologies
were influenced by the material of the board used. Because of feedback pro-
vided by the iterative nature of stochastic optimisation interacting with the
material, identified solutions were based on the specific FPGA’s properties that
were unaccounted for during the board’s design. EIM replaced the FPGAs with
material systems favouring exploitation of all physical properties by a search
algorithm [11].

EIM has a broad scope, which can be delineated along four dimensions: (a)
the type of material used, (b) the physical property manipulated for obtaining a
computation, (c) the computation problem addressed and (d) the evolutionary
algorithm used for solving the corresponding training problem.

Different materials have been used, including biological ones like slime moulds
[6], bacterial consortia [1] and cells (neurons) [19]. In [20] it is argued that
inorganic materials make a better medium for unconventional computing explo-
ration. Nano-particles were used in [2] for developing a reconfigurable Boolean
logic network. In [4,5] liquid crystals (LC) panels were used for evolving logic
gates, a tone discriminator and a robot controller. Single walled carbon nan-
otubes (SWCNT) based materials have shown the potential to solve variety of
computational problems [7,9,12–15,23].

Candidate computational problems include Boolean function calculation,
finding a minimum, evolving a controller, obtaining a tone discriminator, devel-
oping a neuron and data clustering problems. A more comprehensive review of
potential problems can be found in [16]. Here, a simple binary data classification
problem is considered.

Because of the complexity of the material EIM generally employs population
based derivative free stochastic methods. Here a Particle Swarm Optimisation
(PSO) algorithm as described in [8] is used.

2 Hardware Architecture and the SWCNT/LC Material

Figure 1 illustrates the concept of EIM. An optimisation algorithm selects a set
of incident signals applied on to the material (configuration voltages in our case)
changing in effect its physical properties. During training, the state the material
is brought to by application of the configuration voltages is tested against a
number of known input/output pairs of a correct computation. The material’s
response is recorded for each of those test inputs and a global error function is
evaluated. Using the error function as part of a fitness function allows a swarm
intelligence algorithm to explore the search space.

In our implementation, the signals sent are constant voltage charges applied
by an mbed micro-controller and the outputs are direct current measurements.
The voltages are sent to the SWCNT/LC compound via the motherboard
through digital-to-analogue converters (DACs). These are connected to a glass

132 E. Vissol-Gaudin et al.

slide where the electrodes are etched as seen on the right hand side of Fig. 1.
There are sixteen connections on the micro-electrode, but only twelve of them are
used due to hardware constraints. Ten connections are used for sending inputs
and another two for collecting the output measurements used for transforming
the material’s response to a computation.

The nanotubes used were obtained from Carbon Nanotechnologies 101 Inc.
(Houston, TX, USA). They are single walled carbon (SWCNT) both semicon-
ducting and conducting; they also contain less than 15 % impurity according to
vendor specifications. LCs were obtained from Merck Japan. Their purpose is
to provide a fluid medium in which the SWCNT can move in response to the
applied electric field enabling the nanotubes to form reconfigurable and variable
complex electrical networks. As is shown in [23] SWCNTs tend to bundle under
an applied electric field, establishing a percolation path between electrodes. The
greater length of these bundles or “ropes” with respect to the dimensions of LC
molecules suggests that they are not highly influenced by movement of the latter.
This adds an extra dimension to the problem compared to previous experiments,
where SWCNT were mixed with a solid polymer [7,9] and the resulting material
system was in solid state, as opposed to the liquid state of the material used
here.

The SWCNT/LC blend used in these experiments are of 0.05 wt % which
has been chosen empirically. It was drop-deposited within a nylon washer (5 mm
internal diameter). The washer was glued to a glass microscope slide upon which
an array of gold electrodes had previously been deposited using etch-back pho-
tolithography. The electrode array contacts are 50µm with 100µm pitch.

Fig. 1. EiM concept and electrode array (50µm contacts, 100µm pitch)

3 The Classification Problem

The computing problem considered here is that of data classification. Two differ-
ent two-dimensional (2D) datasets are used for two problems of the same nature.
A typical training and verification approach is followed for assessing the mater-
ial’s capability to act as a classifier. Figure 2 depicts the training datasets for the

Training a Carbon-Nanotube/Liquid Crystal Data 133

two problems. In both cases, two classes are formed, each covering a square area.
In the first case the data are highly separable and don’t overlap, resulting to the
separable classes (SC) problem. In the second case, there is some small overlap
where a pair of data can belong to any of the two, resulting to the merged classes
(MC) problem. Training aims at evolving the material so that it is brought into
a state such that when randomly selected input pairs are given as input, it can
infer the class they belong to. The size of the training dataset for the SC and
MC problems Kt = 800 pairs and the verification datasets’ size is Kv = 4, 000
pairs.

 0

 1

 2

 3

 4

 0 1 2 3 4 5

V
in

2
(V

ol
ts

)

Vin
1 (Volts)

SC training dataset, Class 1 (C1)
SC training dataset, Class 2 (C2)

(a)

 0

 1

 2

 3

 4

 0 1 2 3 4 5

V
in

2
(V

ol
ts

)

Vin
1 (Volts)

MC training dataset, Class 1 (C1)
MC training dataset, Class 2 (C2)

(b)

Fig. 2. Training datasets. (a) SC problem. (b) MC problem.

SC and MC are simple binary classification problems and a comparison
scheme can result to the correct classification. However, the EIM approach taken
here is not equipped intrinsically with such a capability. The material is trained
by forcing it to change its shape and adapt its electrical properties so that an
incident signal, in the form (V1, V2), results to an output that can be interpreted
as a classification of that input. There is no explicit design of memory storage
or bit comparison or a mechanism for numerical operations. It is just the mate-
rial’s shape and form that is evolved towards a state that produces the desired
outcome.

4 Training Problem Formulation

The material training is formulated as an optimisation problem tailored for the
evolvable material board. The classification task is about determining the class
a pair of data Vin = (V in

1 , V in
2) belongs to. Hence, two of the ten available

electrodes are reserved as data input connections. The inputs come in the form
of voltage pulses of amplitude V in

1 and V in
2 (Volts). The remaining eight con-

nections are used for applying configuration voltages to the material. They are
realised as voltage pulses of amplitude Vj ∈ [Vmin, Vmax], j = 1, . . . , 8 (Volts). In
order to evaluate a potential set of configuration voltages Vj , first the electrodes
where each of the Vj is applied is decided. These voltages are then applied and

134 E. Vissol-Gaudin et al.

the corresponding electrodes are kept charged while Kt known pairs of training
inputs are send to the two electrodes selected for receiving the data inputs.

Two output connections are used for measuring the material response when
it is constantly charged with the configuration voltages Vj and a pair of data Vin

is send as input. Although the output locations are fixed because of hardware
constraints, the connections where the inputs are going to be applied are variable
and are part of the optimisation problem’s vector of decision variables x. The
optimisation problem’s vector of decision variables is defined as

x = [V1 . . . V8 R p]T . (1)

where R is a scaling factor and p ∈ N an index running on the set of possible
electrode assignments. An electrode assignment is a mapping from the set of data
and configuration voltage inputs to the set of the ten electrodes. It is for a specific
electrode assignment p and set of configuration voltages Vj , that the material’s
response to an input Vin is recorded. The response is a pair of measurements
I = (I1, I2) (A) of the direct current at the two output locations, which are the
basis of a comparison scheme using R for deciding the class Vin belongs to.

Let I(k) denote the pair of direct current measurements taken when input
data Vin(k) from class Ci, i = 1 or i = 2, are applied while the material is sub-
jected to configuration voltages V

(k)
j , applied according to electrode assignment

number p(k) using scaling factor R(k). Also, let C(Vin(k)) denote Vin(k)’s real
class and CM (Vin(k),x) the material’s assessment of it calculated according to
the following rule.

CM (Vin(k),x) =
{

C1 if I1(k) > RI2(k)
C2 if I1(k) ≤ RI2(k). (2)

For every training pair of data Vin(k), k = 1, . . . , Kt the error from trans-
lating the material response according to rule (2) is

εx(k) =
{

0 if CM (Vin(k),x) = C(Vin(k))
1 otherwise. (3)

The mean total error is given by

Φe(x) =
1

Kt

Kt∑

k=1

εx(k). (4)

Two penalty terms are added to (4), H and U . H(x) penalises solutions with
high configuration voltages and is given by

H(x) =

∑8
j=1 V 2

j

8V 2
max

. (5)

The rationale behind this penalisation is that incremental and generally low
levels of configuration voltages are preferable. Solutions where high voltages

Training a Carbon-Nanotube/Liquid Crystal Data 135

are applied can destroy possible material structures favourable to the problem
formed gradually during evolution. On the other hand, solutions that render the
material unresponsive need to be avoided. A measure of such unresponsiveness
is calculated at the end of each search iteration ι, where a sample equal to the
population size S of error function evaluations is available. Let σ2

o,ι denote the
variance of Φ(x) and σ2

V,ι the variance of
∑8

j=1 V 2
j at iteration ι. A value of σ2

o,ι

close to zero indicates a non-responsive material and the penalty term takes the
form

Uι =

(

1 − σ2
o,ι

σ2
V,ι

)2

. (6)

Hence, the total objective function Φs(x) for an arbitrary individual s at iteration
ι is given by

Φs(x) = Φe(x) + H(x) + Uι. (7)

Uι aims at leading the optimisation away from material states where the same
response is given for different inputs.

The optimisation to be solved is that of minimising (7) for a population of
size S, subject to voltage bound constraints Vj ∈ [Vmin, Vmax], R > 0, electrode
assignment p and classification rule (2). Vmin = 0 Volts and for the SC problem
Vmax = 4 Volts whereas for the MC Vmax = 7 Volts.

Two different evolutionary optimisation algorithms are used for solving this
problem, differential evolution (DE) [21] and particle swarm optimisation (PSO)
[3]. A constricted version of PSO with parameters taken from [8] is implemented.
The DE algorithm implementation uses the parameters suggested in [18]. A
population size of S = 8 is used for DE and S = 10 for PSO.

5 Results and Discussion

Training is performed by the DE and PSO algorithms solving the optimisation
problem described in Sect. 4 using the Kt pairs of data for problems SC and MC.
Termination criterion is either a maximum number of optimisation iterations
defined by previous experiments, a lack of significant reduction for a number of
iterations or a minimal value of the error function Φe. A baseline experiment is
first run for each problem. Before any test was performed, the two optimisation
algorithms were run without material between the electrodes to establish the
effect of hardware on the optimisation procedure. Tests with LCs only were also
performed as another baseline, showing that it is changes in the conduction path
established by the SWCNTs that allow a computation. For each test, comprising
training and verification, a new, thus un-configured, sample of SWCNT/LC was
used. As the vector of decision variable is initialised randomly, the first iteration
of each test is considered a baseline of the material’s computational capabilities
before training. Convergence profiles for the DE algorithm applied to the SC
and MC data are shown in Fig. 3(a) and (b), respectively.

For the three runs, the training error averaged over the values achieved by
the eight individuals of the population at iteration ι is shown along with the

136 E. Vissol-Gaudin et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

Φ
e(

x)

Iteration ι

DE baseline experiment average
DE baseline experiment minimum

DE 1SC average
DE 1SC minimum
DE 2SC average

DE 2SC minimum
DE 3SC average

DE 3SC minimum

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350

Φ
e(

x)

Iteration ι

DE baseline experiment average
DE baseline experiment minimum

DE 1MC average
DE 1MC minimum
DE 2MC average

DE 2MC minimum
DE 3MC average

DE 3MC minimum

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

Φ
e(

x)

Iteration ι

PSO baseline experiment average
PSO baseline experiment minimum

PSO 3SC average
PSO 3SC minimum

(c)

Fig. 3. Convergence profile for different runs. (a) All runs of DE for the SC problem.
(b) All runs of DE for the MC problem. (c) Third run of PSO for the SC problem.

Training a Carbon-Nanotube/Liquid Crystal Data 137

best value achieved in that iteration (not the best up to iteration ι). It can be
seen that the DE algorithm trains the material and the average error follows the
trend of the best result per iteration. This is not the case of the PSO algorithm,
shown in Fig. 3(c) (a single run is presented for the sake of clarity). The average
error per iteration is much higher than the best achieved, although a positive
correlation between the two is evident. The material is also evolved, but the PSO
tends to explore more the search space. In both cases, during training the mate-
rial morphology changes in order to provide a response that leads to a correct
classification. However, the emphasis on exploitation displayed by DE tends to
produce solutions that are either very good or very bad and thus inconstitant
from test to test.

Once training is terminated, verification is performed on the trained material
by applying back the optimal configuration voltages and sending as input Kv

verification data pairs different from the Kt pairs used in training. The same
verification experiment is repeated ten times and each time the mean error (4)
is calculated and recorded. Since the optimum may have been achieved sev-
eral iterations before the algorithm’s termination, the optimal solution will not
have the same effect because the material would have undergone a number of
non-reversible changes by that time. Hence, in order to achieve good verifica-
tion results, structures inside the material need to be built that favour an error
minimising response. It is the gradual evolution performed on the material that
builds these structures of SWCNT conductive networks.

Table 1 provides the training Φ∗
e error, the best verification error Φ∗

e,v from
the ten experiments conducted using the optimal solution, the worst verification
error Φw

e,v, and the mean verification error Φe,v for three runs of PSO and DE for
the SC problem. It can be seen that the PSO algorithm outperforms the DE with
respect to consistency between tests comprising both training and verification.
In terms of training error, the second experiment of DE resulted to a material
with over 25 % error, which is too large. On the contrary, all PSO experiments
resulted to a Φ∗

e less than 2 %. Figure 3 shows evolution of the objective function
for SC baseline tests, with LC only or no material at all. In both cases Φ∗

e remains
around 50 % which is also the case for Φ∗

e,v.

Table 1. Problem SC training and verification errors for experiments using PSO
and DE.

Experiment Φ∗
e(%) Φ∗

e,v(%) Φw
e,v(%) Φe,v (%)

PSO 1SC 1.3 1.675 2.5 2.0375

PSO 2SC 1.6 2.125 3.2 2.6175

PSO 3SC 1.3 1.975 2.5 2.25

DE 1SC 0.7 1.05 1.625 1.3975

DE 2SC 25.9 29.475 35.625 33.808

DE 3SC 1.6 1.625 2.55 2.185

138 E. Vissol-Gaudin et al.

The solution degradation on the verification data is on average lower for the
three PSO runs. The difference on the average error value does not grow above
1.2 % in the worst case. This indicates that the material has a consistent behav-
iour by the end of the search and internal structures built are not completely
destroyed by the evolution process.

Table 2 provides the training and verification errors for the MC problem.
Because this is a more difficult problem due to the small overlap of the data a bias
of about 3 % error is created. This is consistent with the training error, since the
best PSO and DE values of Φe are larger by 4.5 % and 2.7 %, respectively. Once
again, DE achieves better training error but tends to be inconsistent between
tests. The PSO solutions generalise slightly better and the verification errors are
very similar to the training. Hence, the PSO algorithm yields better solutions.
As in the case of SC, Fig. 3 shows that the objective function for all MC baseline
tests remains around 50 %. In addition, the best verification error Φ∗

e,v is also
around 50 % for both PSO and DE.

Table 2. Problem MC training and verification errors for experiments using PSO
and DE.

Experiment Φ∗
e(%) Φ∗

e,v(%) Φw
e,v(%) Φe,v (%)

PSO 1MC 7.1 8.625 9.975 8.924

PSO 2MC 5.8 6.6 7.025 7.815

PSO 3MC 7.5 7.4 8.075 7.6275

DE 1MC 6.8 7.575 8.6 8.285

DE 2MC 3.4 4.375 5.2 4.5

DE 3MC 24.2 15.925 26.725 26.485

In the absence of analytical models of the material’s dynamics, it is difficult
to provide a rigorous explanation as to why PSO is more consistent than DE.
A distinctive difference between the two is the form of the configuration volt-
ages’ trajectories over iterations as they are exploring the search space. Figure 4
depicts the trajectories of sample configuration voltages averaged per iteration
for the PSO and DE algorithms. It can be seen that the search performed by DE
is more noisy. On the other hand, PSO’s exploration of the search space is much
smoother. DE sends signals to the material that are noisy even when it aims to
exploit a minimum. Hence, a conjecture about PSO algorithm’s better perfor-
mance is that the smoother trajectories of configuration inputs build more stable
structures inside the material reinforcing at the same time responses minimising
the classification error. The noisy configuration voltages applied by DE make
the formation of such stable structures more difficult. This conjecture needs to
be supported by more experiments and evidence, such as image analysis of the
material before and after training.

Training a Carbon-Nanotube/Liquid Crystal Data 139

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350 400

V
j (

V
ol

ts
)

Iteration ι

PSO 2MC V1
PSO 2MC V3
PSO 2MC V5
PSO 2MC V7

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300 350

V
j (

V
ol

ts
)

Iteration ι

DE 3MC V1
DE 3MC V3
DE 3MC V5
DE 3MC V7

(b)

Fig. 4. Average configuration voltages per iteration for (a) PSO and (b) DE.

6 Conclusions

This paper has presented the results of an investigation on evolution in materio
for a new type of material, a mixture of single walled carbon nanotubes and
liquid crystals. It is in liquid form and the nanotubes inside it form conductive
networks. Under the influence of different levels of voltage applied at various
locations of its body, different networks are formed. The material is placed on a
glass slide with electrodes etched on it and a custom made board based on the
mbed micro-controller is used for evolving it as a data classifier.

140 E. Vissol-Gaudin et al.

Two simple classification problems are considered in an effort to evolve the
material towards a state where measurements of electrical current can be inter-
preted following a pre-specified rule.

The training problem is formulated as an optimisation problem and results of
both training and verification are reported. Two different algorithms have been
used, PSO and DE which have the ability to converge to good solutions. PSO
displays a more consistent behavior always converging to low error solutions
which generalise well. DE performs more detailed exploitation of a solution and
generally sends noisy signals to the material. PSO has a stronger exploration
element and sends much smoother input signals resulting to more consistent
performance in the verification phase. In both cases, the result is the evolution
of an analogue classifier out of an initially unformed liquid state material.

This is a new area of research and a lot of issues need to be addressed.
A more detailed investigation needs to be performed on the optimisation algo-
rithms used and the impact of their search pattern on the solutions’ quality.
More recent variants of PSO, DE or other evolution-inspired algorithms need to
be implemented. The impact of the concentration of SWCNT and LC in the mix
needs to be evaluated. Finally, more complicated problems need to be consid-
ered and it would be very interesting to observe the material structure patterns
formed for this purpose.

Acknowledgment. The research is supported by European’s Community Seventh
Framework programme (FP7/2007-2013) under the grant agreement No. 317662 (NAno
Scale Engineering for Novel Computation using Evolution - NASCENCE (http://www.
nascence.eu)).

References

1. Amos, M., Hodgson, D.A., Gibbons, A.: Bacterial self-organisation and computa-
tion. eprint arXiv:q-bio/0512017, December 2005

2. Bose, S., Lawrence, C., Liu, Z., Makarenko, K., van Damme, R., Broersma, H., van
der Wiel, W.: Evolution of a designless nanoparticle network into reconfigurable
boolean logic. Nat. Nanotechnol. 10, 1048–1052 (2015)

3. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the 6th International Symposium on Micro Machine and Human Sci-
ence, New York, NY, vol. 1, pp. 39–43 (1995)

4. Harding, S., Miller, J.: Evolution in materio: a tone discriminator in liquid crystal.
In: Congress on Evolutionary Computation, CEC 2004, vol. 2, pp. 1800–1807. IEEE
(2004)

5. Harding, S., Miller, J.: Evolution in materio: evolving logic gates in liquid crystal.
In: Proceedings of European Conference on Artificial Life (ECAL 2005), Workshop
on Unconventional Computing: From Cellular Automata to Wetware, pp. 133–149
(2005)

6. Jones, J., Whiting, J., Adamatzky, A.: Quantitative transformation for implemen-
tation of adder circuits in physical systems. Biosystems 134, 16–23 (2015)

7. Kotsialos, A., Massey, M.K., Qaiser, F., Zeze, D.A., Pearson, C., Petty, M.C.:
Logic gate and circuit training on randomly dispersed carbon nanotubes. Int. J.
Unconventional Comput. 10(5–6), 473–497 (2014)

http://www.nascence.eu
http://www.nascence.eu
http://arxiv.org/abs/q-bio/0512017

Training a Carbon-Nanotube/Liquid Crystal Data 141

8. Laskari, E., Parsopoulos, K., Vrahatis, M.: Particle swarm optimization for integer
programming. In: WCCI, pp. 1582–1587. IEEE (2002)

9. Massey, M.K., Kotsialos, A., Qaiser, F., Zeze, D.A., Pearson, C., Volpati, D.,
Bowen, L., Petty, M.C.: Computing with carbon nanotubes: optimization of thresh-
old logic gates using disordered nanotube/polymer composites. J. Appl. Phys.
117(13), 134903 (2015)

10. Meyers, R.: Encyclopedia of Complexity and Systems Science. Springer, New York
(2009)

11. Miller, J., Downing, K.: Evolution in materio: looking beyond the silicon box. In:
Proceedings of the NASA/DoD Conference on Evolvable Hardware, pp. 167–176.
IEEE (2002)

12. Miller, J., Mohid, M.: Function optimization using cartesian genetic programming.
In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolu-
tionary Computation, pp. 147–148. ACM (2013)

13. Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebø, O.R., Massey, M.K., Petty,
M.C.: Evolution-in-materio: a frequency classifier using materials. In: 2014 IEEE
International Conference on Evolvable Systems (ICES), pp. 46–53. IEEE (2014)

14. Mohid, M., Miller, J., Harding, S., Tufte, G., Lykkebø, O., Massey, M.K., Petty,
M.C.: Evolution-in-materio: solving bin packing problems using materials. In: 2014
IEEE International Conference on Evolvable Systems (ICES), pp. 38–45. IEEE
(2014)

15. Mohid, M., Miller, J.F., Harding, S.L., Tufte, G., Lykkebø, O.R., Massey, M.K.,
Petty, M.C.: Evolution-in-materio: solving machine learning classification problems
using materials. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.)
PPSN 2014. LNCS, vol. 8672, pp. 721–730. Springer, Heidelberg (2014)

16. NASCENCE project (ICT 317662): Report on suitable computational tasks of
various difficulties (2013) deliverable D4.2

17. Pask, G.: Physical analogues to the growth of a concept. In: Mechanization of
Thought Processes, Symposium, vol. 10, pp. 765–794 (1958)

18. Pedersen, M.: Good parameters for differential evolution. Technical report, Hvass
Computer Science Laboratories (2010)

19. Prasad, S., Yang, M., Zhang, X., Ozkan, C., Ozkan, M.: Electric field assisted pat-
terning of neuronal networks for the study of brain functions. Biomed. Microdevices
5(2), 125–137 (2003)

20. Stepney, S.: The neglected pillar of material computation. Phys. D 237(9), 1157–
1164 (2008)

21. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

22. Thompson, A.: An evolved circuit, intrinsic in silicon, entwined with physics. In:
Higuchi, T., Iwata, M., Weixin, L. (eds.) ICES 1996. LNCS, vol. 1259, pp. 390–405.
Springer, Heidelberg (1997)

23. Volpati, D., Massey, M.K., Johnson, D., Kotsialos, A., Qaiser, F., Pearson, C.,
Coleman, K., Tiburzi, G., Zeze, D.A., Petty, M.C.: Exploring the alignment of
carbon nanotubes dispersed in a liquid crystal matrix using coplanar electrodes.
J. Appl. Phys. 117(12), 125303 (2015)

Towards Quantitative Verification
of Reaction Systems

Artur M ↪eski1(B), Maciej Koutny2, and Wojciech Penczek1,3

1 Institute of Computer Science, PAS, Jana Kazimierza 5, 01-248 Warsaw, Poland
{meski,penczek}@ipipan.waw.pl

2 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
maciej.koutny@ncl.ac.uk

3 University of Natural Sciences and Humanities, ICS, Siedlce, Poland

Abstract. Reaction systems are a formal model for computational
processes inspired by the functioning of the living cell. The key feature
of this model is that its behaviour is determined by the interactions of
biochemical reactions of the living cell, and these interactions are based
on the mechanisms of facilitation and inhibition. The formal treatment
of reaction systems is qualitative as there is no direct representation of
the number of molecules involved in biochemical reactions.

This paper introduces reaction systems with discrete concentrations
which are an extension of reaction systems allowing for quantitative
modelling. We demonstrate that although reaction systems with dis-
crete concentrations are semantically equivalent to the original quali-
tative reaction systems, they provide much more succinct representa-
tions in terms of the number of molecules being used. We then define
the problem of reachability for reaction systems with discrete concen-
trations, and provide its suitable encoding in smt, together with a ver-
ification method (bounded model checking) for reachability properties.
Experimental results show that verifying reaction systems with discrete
concentrations instead of the corresponding reaction systems is more
efficient.

1 Introduction

Reaction systems (see, e.g., [5,7,8]) are a formal model for processes inspired
by the functioning of living cells. The key feature of this model is that the
functioning of the living cell is determined by the interactions of biochemical
reactions, and these interactions are based on the mechanisms of facilitation and
inhibition: the (products of the) reactions may facilitate or inhibit each other.
Reaction system related research topics have been motivated by biological issues
or by a need to understand computations/processes underlying the dynamic
behaviour of reaction systems.

Following their introduction, a number of extensions of reaction systems were
studied, e.g., reaction systems with time [9] and quantum and probabilistic reac-
tion systems [13]. Mathematical properties of reaction systems were investigated

c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 142–154, 2016.
DOI: 10.1007/978-3-319-41312-9 12

Towards Quantitative Verification of Reaction Systems 143

in, e.g., [10–12,17–20]. Examples of application of reaction systems to modelling
of systems include, e.g., [3,6]. Recently, there has been an increasing interest in
verification of reaction systems as described in, e.g., [1,2,15].

The formal treatment of basic reaction systems is qualitative as no direct
representation of the number of molecules involved in biochemical reactions.
This paper introduces reaction systems with discrete concentrations which are
an extension of reaction systems allowing for quantitative modelling. We demon-
strate that although reaction systems with discrete concentrations are semanti-
cally equivalent to the original qualitative reaction systems, they provide much
more succinct representations in terms of the number of molecules being used.

There exist also other approaches that allow for modelling of complex depen-
dencies of concentration levels and their changes, e.g. chemical reaction networks
theory based on [14]. The formalism of reaction systems is much simpler and the
processes of reaction systems depend on interactions with the environment.

We define the problem of state reachability for reaction systems with discrete
concentrations, and provide its suitable encoding in smt, together with a verifica-
tion method (bounded model checking) for reachability properties. Experimental
results show that verifying reaction systems with discrete concentrations instead
of the corresponding reaction systems is more efficient.

2 Preliminaries

A reaction system is a pair rs = (S,A), where S is a finite background set and
A is a set of reactions over the background set. Each reaction in A is a triple
b = (R, I, P) such that R, I, P are nonempty subsets of S with R ∩ I = ∅.
The sets R, I, and P are respectively denoted by Rb, Ib, and Pb and called the
reactant, inhibitor, and product set of reaction b.

A reaction b ∈ A is enabled by T ⊆ S, denoted enb(T), if Rb ⊆ T and
Ib ∩ T = ∅. The result of b on T is given by resb(T) = Pb if enb(T), and by
resb(T) = ∅ otherwise. Then the result of A on T is resA(T) =

⋃{resb(T) | b ∈
A} =

⋃{Pb | b ∈ A and enb(T)}.
Intuitively, T represents a state of a biochemical system being modelled by

listing all present biochemical entities. A reaction b is enabled by T and can take
place if all its reactants are present and none of its inhibitors is present in T .

Example 1. Let (S,A) = ({1, 2, 3, 4}, {a1, a2, a3, a4}) be a reaction system,
where:

a1 = ({1, 4}, {2}, {1, 2}) a2 = ({2}, {3}, {1, 3, 4})
a3 = ({1, 3}, {2}, {1, 2}) a4 = ({3}, {2}, {1})

In state T = {1, 3, 4} reactions a1, a3, and a4 are enabled, while a2 is not. Hence
resA(T) = resa1(T) ∪ resa3(T) ∪ resa4(T) = {1, 2} ∪ {1, 2} ∪ {1} = {1, 2}. ��

Entities in reaction systems are non-permanent, i.e., if entity x is present in
the successor state T ′ of a current state T then it must have been produced
(sustained) by a reaction enabled by T (thus x ∈ resA(T)). Also, there are

144 A. M ↪eski et al.

no conflicts between reactions enabled by T . Therefore there is no counting in
reaction systems, and so it is a qualitative model. This follows from the level of
abstraction adopted for the basic model. However, in the broad framework of
reaction systems (see, e.g., [7]) one considers models with aspects of counting.

A reaction system is a finite system in the sense that the size of each state is a
priori limited (by the size of the background set), and the state transformations it
describes are deterministic since there are no conflicts between enabled reactions.
This changes once we decided to take account of the external environment which
is necessary to reflect the fact that the living cell is an open system. Such an
environment can be represented by a context automaton.

A context automaton over a finite set Ct, is a triple ca = (Q, q0, R), where
Q is a finite set of states, q0 ∈ Q is the initial state, and R ⊆ Q × Ct × Q is a
transition relation labelled with elements of Ct.

A context restricted reaction system is a pair crrs = (rs, ca) such that rs =
(S,A) is a reaction system, and ca = (Q, q0, R) is a context automaton over 2S .
The dynamic behaviour of crrs is then captured by the state sequences of its
interactive processes. An interactive process in crrs is π = (ζ, γ, δ), where:

– ζ = (z0, z1, . . . , zn), γ = (C0, C1, . . . , Cn), and δ = (D0,D1, . . . , Dn)
– z0, z1, . . . , zn ∈ Q with z0 = q0
– C0, C1, . . . , Cn,D0,D1, . . . , Dn ⊆ S with D0 = ∅
– (zi, Ci, zi+1) ∈ R, for every i ∈ {0, . . . , n − 1}
– Di = resA(Di−1 ∪ Ci−1), for every i ∈ {1, . . . , n}.

Then the state sequence of π is τ = (W0, . . . ,Wn) = (C0 ∪ D0, . . . , Cn ∪ Dn).
Intuitively, the state sequence of π captures the observed behaviour of crrs

by recording the successive states of the evolution of the reaction system rs in
the environment represented by the context automaton ca.

3 Reaction Systems with Discrete Concentrations

The enabling of some of biochemical reactions encountered in practical appli-
cations depends not only on the availability of the necessary reactants and the
absence of inhibitors, but also on their concentration levels. To address this
aspect in biochemical modelling, we will now introduce an extension of the basic
reaction systems supporting an explicit representation of the discrete concentra-
tion levels of entities. The resulting model uses bags of entities, but otherwise it
retains key features of the original framework. The main new idea that the k-th
level of concentration of an entity x is represented by a bag containing k copies
of x.

In what follows, a bag over a set X is any mapping b : X → {0, 1, . . . }, and
the empty bag ∅X is one which always returns 0. We denote this by b ∈ B(X),
where B(X) is the set of all bags over X. For a set B of bags over X, �(B) is the
bag over X such that �(B)(x) = max({0} ∪ {b(x) | b ∈ B}), for every x ∈ X.
For two bags, b and b′, we denote b ≤ b′ if b(x) ≤ b′(x), for every x ∈ X. The
carrier of a bag b is the set carr(b) = {x ∈ X | b(x) > 0}.

Towards Quantitative Verification of Reaction Systems 145

A reaction system with discrete concentrations is a pair rsc = (S,A), where
S is a finite background set and A is a nonempty finite set of c-reactions over
the background set. Each c-reaction in A is a triple a = (r, i,p) such that r,
i, p are bags over S with r(e) < i(e), for every e ∈ carr(i). The sets r, i, and
p are respectively denoted by ra, ia, and pa and called the reactant, inhibitor,
and product concentration levels of c-reaction a. We would like to stress that an
entity e is an inhibitor of a whenever e ∈ carr(ia).

A c-reaction a ∈ A is enabled by t ∈ B(S), denoted ena(t), if ra ≤ t and
t(e) < ia(e), for every e ∈ carr(ia). The result of a on t is given by resa(t) = pa

if ena(t), and by resa(t) = ∅S otherwise. Then the result of A on t is resA(t) =
�{resa(t) | a ∈ A} = �{pa | a ∈ A and ena(t)}.

In the above, t is a state of a biochemical system being modelled such that,
for each entity e ∈ S, t(e) is the concentration level of e (e.g., t(e) = 0 indicates
that e is not present in the current state, and t(e) = 1 indicates that e is present
at its lowest concentration level). A c-reaction a is enabled by t and can take
place if the current concentration levels of all its reactants are at least as high
as those specified by ra, and the current concentration levels of all its inhibitors
(i.e., entities in the carrier of ia) are below the thresholds specified by ia.

A context restricted reaction system with discrete concentrations is a pair
crrsc = (rsc, ca) such that rsc = (S,A) is a reaction system with discrete con-
centrations, and ca = (Q, q0, R) is a context automaton over B(S). The dynamic
behaviour of crrsc is then captured by the state sequences of its interactive
processes. An interactive process in crrsc is π = (ζ, γ, δ), where:

– ζ = (z0, z1, . . . , zn), γ = (c0, c1, . . . , cn), and δ = (d0,d1, . . . ,dn)
– z0, z1, . . . , zn ∈ Q with z0 = q0
– c0, c1, . . . , cn,d0,d1, . . . ,dn ∈ B(S) with d0 = ∅B(S)

– (zi, ci, zi+1) ∈ R, for every i ∈ {0, . . . , n − 1}
– di = resA(�{di−1, ci−1}), for every i ∈ {1, . . . , n}.

Then the state sequence of π is τ = (w0, . . . ,wn) = (�{c0,d0}, . . . ,�{cn,dn}).
A context restricted reaction system with discrete concentrations crrsc =

(rsc, ca) is a finite state system since it comprises finitely many c-reactions and
finitely many bags labelling the arcs of its context automaton. More precisely,
let #crrsc(e) be the maximum integer assigned to e ∈ S in all the bags of
entities occurring in both rsc and ca. Then, w(e) ≤ #crrsc(e), for all e ∈ S and
all states occurring in the state sequences of the interactive processes in crrsc.
(Note that this bound can be improved by ignoring the reactant and inhibitor
bags in c-reactions.) Moreover, the behaviour of crrsc can be simulated by a
suitable context restricted reaction system.

To construct such a system, for every t ∈ B(S), we define two sets of entities,
Γ (t) = {e.i | e ∈ S ∧ t(e) = i > 0} and Γall(t) = {e.i | e ∈ S ∧ 1 ≤ i ≤ t(e)}.
The e.i’s will be entities of the system we are going to construct. Note that
Γall(t) is a downward-closed set in the sense that if e.i ∈ Γall(t) and i > 1,
then e.1, . . . , e.(i − 1) ∈ Γall(t). In fact, Γall is a bijection from B(S) to all the
downward-closed sets, and its inverse Γ−1

all is given by Γ−1
all (Z)(e) = max{{0} ∪

{i | e.i ∈ Z}, for every e ∈ S. In what follows, Γall and Γ−1
all will be applied

146 A. M ↪eski et al.

component-wise to sequences of respectively bags and downward-closed sets.
For such crrsc, we define the corresponding context restricted reaction system as
Θ(crrsc) = (rs, ca) = ((S′, A′), (Q, q0, R

′)), where: S′ = {e.i | e ∈ S and 1 ≤ i ≤
#crrsc(e)}, A′ = {(Γ (r), Γ (i), Γall(p)) | (r, i,p) ∈ A}, and R′ = {(z, Γall(c), z′) |
(z, c, z′) ∈ R}. It is straightforward to see that Θ(crrsc) is well-defined.

As to the complexity of the translation, the number of reactions, states
and arrows remains the same. Moreover, the representations of reaction and
inhibitors are of the same order. What changes is the size of the background set,
in the worst case by the factor max{#crrsc(e) | e ∈ S} as well as the represen-
tations of products and contexts (again by the same factor).

We will now investigate a very close correspondence between Θ(crrsc) and
crrsc. First, we observe that, by the definitions of A′ and R′, all sets of entities
occurring in the interactive processes of Θ(crrsc) are downward-closed. Then we
obtain that all interactive processes of crrsc can be simulated by Θ(crrsc).

Theorem 1. If π = (ζ, γ, δ) is an interactive process in crrsc, then π′ =
(ζ, Γall(γ), Γall(δ)) is an interactive process in Θ(crrsc).

Proof. It suffices to show for w in the state sequence of π, Γall(resA(w)) =
resA′(Γall(w)). Suppose a = (r, i,p) ∈ A and a′ = (Γ (r), Γ (i), Γall(p)) ∈ A′.
We first observe that a is enabled in w (i.e., r ≤ w and w(e) < i(e), for all e ∈
carr(i)) iff a′ is enabled in Γall(w) (i.e., Γ (r) ⊆ Γall(w) and Γ (i)∩Γall(w) = ∅).
Moreover, it is easy to check that Γall(resa(w)) = resa′(Γall(w)). ��

Moreover, all interactive processes of Θ(crrsc) simulate those of crrsc.

Theorem 2. If π = (ζ, γ, δ) is an interactive process in Θ(crrsc), then π′ =
(ζ, Γ−1

all (γ), Γ−1
all (δ)) is an interactive process in crrsc.

Proof. Similar to the proof of Theorem 1. ��
We have therefore obtained a one-to-one correspondence between the inter-

active processes of Θ(crrsc) and crrsc.

Remark 1. From the point of view of enabling c-reactions, not all concentration
levels are important and, consequently, they do not need to be represented in the
states of Θ(crrsc). To achieve the desired effect, all one needs to do is re-define
Γall, in the following way: Γ ′

all(t) = Γ (t) ∪ (Γall(t) ∩ ⋃
a∈A Γ (ra) ∪ Γ (ia)).

Note that syntactically crrs are a subclass of crrsc, such that all the concen-
tration levels in crrsc are limited to the value of at most one, that is, for any
t ∈ B(S) and for any e ∈ carr(t) we have t(e) = 1. Therefore, in the remainder of
this paper we use crrs and crrsc interchangeably, depending on the concentration
levels required.

Towards Quantitative Verification of Reaction Systems 147

4 Reachability Testing

In this section we define the reachability problem for crrsc and provide its trans-
lation into a satisfiability modulo theory (smt) with integer arithmetic.

Let n ≥ 0 be an integer. A result d ∈ B(S) is n-reachable in crrsc if there
exists an interactive process π = (ζ, γ, δ) in crrsc such that δ = (d0,d1, . . . ,dn)
and dn = d. We say that d is reachable in crrsc if there is n ≥ 0 such that d is
n-reachable in crrsc.

Theorem 3. The reachability problem for crrsc (crrs) is np-hard.

Proof. We show a reduction of 3-sat to reachability in crrs. The proof is similar
to that in [15] for rsctl model checking. Let PV = {x1, x2, . . . , xn} be a set
of propositional variables and β(x1, x2, . . . , xn) be a boolean formula in 3-cnf.
We define the set of the negated propositional variables PV = {x̄ | x ∈ PV } and
assume β = c1 ∧ c2 ∧ · · · ∧ cm, where ci = (li,1 ∨ li,2 ∨ li,3) with li,j ∈ (PV ∪PV),
for 1 ≤ i ≤ m and 1 ≤ j ≤ 3. Moreover, for a clause c we define the set
vars(c) = {1 ≤ k ≤ n | xk ∈ PV is in c} and the set vars(c) = {1 ≤ k ≤ n |
x̄k ∈ PV is in c}. Next, we define the crrs which we use for the translation.

Let V = {p1, p̄1, . . . , pn, p̄n} be the set of entities representing the proposi-
tional variables and their negations, and C = {ĉ1, ĉ2, . . . , ĉm} be the set of the
entities that correspond to the clauses. The entity t is used to indicate that
under the considered valuation the formula β is true. The entity h is used as the
inhibitor of the reactions where no inhibitors are needed for the translation to
work. This guarantees that the inhibitor set is non-empty. The background set
is S = V ∪ C ∪ {t, h}, and we define the following sets of reactions:

– Pi = {({pi}, {h}, {pi}), ({p̄i}, {h}, {p̄i})} for 1 ≤ i ≤ n
– Li = {({pk}, {p̄k}, {ĉi}) | k ∈ vars(i)} ∪ {({p̄k}, {pk}, {ĉi}) | k ∈ vars(i)} for

1 ≤ i ≤ m
– F = {({ĉi}, {h}, {ĉi} | 1 ≤ i ≤ m} ∪ {({ĉ1, ĉ2, . . . , ĉm}, {h}, {t})}.

The set Pi contains the reactions responsible for preserving the valuations of
the variables along the execution sequences. The reactions of Li produce entities
that indicate whether a single clause is satisfied, whereas the reactions of F that
the entity t indicating that all the clauses are satisfied is produced. The set of all
the reactions of the crrs is defined as A =

⋃n
i=1 Pi ∪

⋃n
i=1 Li ∪F . Next, we define

the context automaton ca = (Q, q0, R) where Q = {1, . . . , n + 2}, q0 = 1, and
R = {(i, {pi}, i+1) | 1 ≤ i ≤ n}∪{(i, {p̄i}, i+1) | 1 ≤ i ≤ n}∪{(i+1, ∅, i+2)}.
Then, rs = (S,A) and crrs = (rs, ca). Any path from 1 to n+1 in ca corresponds
to a valuation of the variables, where a choice of an edge from i to i+1 (for 1 ≤
i ≤ n) represents a choice of the valuation of xi (true for pi, false for p̄i). When
a chosen valuation satisfies a clause cj (for 1 ≤ j ≤ m), then ĉj is produced, and
when ĉj for all 1 ≤ j ≤ m are produced, then t is produced (in ca this is allowed
by the step from n + 1 to n + 2). Finally, β is satisfiable if D such that t ∈ D is
reachable in crrs. ��

148 A. M ↪eski et al.

In this paper we focus on the approach of bounded model checking [4],
i.e., we test the reachability for all the interactive processes of a given length,
and increase the length until the reachability is proved. In what follows we show
how n-reachability problem can be encoded by an smt formula. Due to lack of
space, our presentation is quite dense, but it contains the complete encoding.

Let crrsc = ((S,A), (Q, q0, R)) and π = (ζ, γ, δ) be an interactive process in
crrsc, where ζ = (z0, z1, . . . , zn), γ = (c0, c1, . . . , cn), and δ = (d0,d1, . . . ,dn).
Then, the i-th step of π is defined as πi = (zi, ci, di), where 0 ≤ i ≤ n. To encode
all the steps of π we introduce the following sets of positive integer variables
used in the encoding: P =

⋃n
i=0{pi,1, . . . , pi,n}, PE =

⋃n
i=0{pE

i,1, . . . , p
E
i,n}, and

Q = {q0, . . . , qn}. Then, πi is encoded as si = (qi,p
E
i ,pi), where qi encodes

the state zi of the context automaton, pE
i = (pE

i,1, . . . , p
E
i,n) encodes the context

set ci, and pi = (pi,1, . . . , pi,n) encodes the result di. With pE
i [j] and pi[j] we

denote, respectively, pi,j and pE
i,j .

The entities of S are denoted by e1, . . . , ek, where k = |S|. For πi we define
the following functions that map background set entities to the corresponding
variables of the encoding: for all 0 ≤ i ≤ n we define ti : S → Pi and tE

i : S →
PE

i such that ti(ej) = pi,j , tE
i (ej) = pE

i,j for all 1 ≤ j ≤ k. The function e :
Q → {0, . . . , |Q|−1} maps states of the context automaton to the corresponding
natural values used in the encoding. The set of the reactions that produce e ∈ S
is defined as Prod(e) = {a ∈ A | pa(e) > 0}.

To define the smt encoding of the reachability problem for crrsc we need
auxiliary functions that correspond to elements of the encoding.

Result: Resdi
(pi) =

∧
e∈S(ti(e) = di(e)) encodes a result di ∈ B(S) as the

conjunction of the variables with the corresponding concentration levels.

Context: Ctci
(pE

i) =
∧

e∈S(tE
i (e) = ci(e)) encodes a bag ci ∈ B(S) of context

entities.

Enabledness: Ena

(
pi,p

E
i

)
=

∧
e∈S(ti(e) ≥ ra(e) ∨ tE

i (e) ≥ ra(e)) ∧∧
e∈S(ti(e) < ia(e) ∧ tE

i (e) < i(e)) encodes the enabledness of a reaction a.

Entity Concentration: Let f1, f2, f3 be expressions over P ∪ PE , then we
introduce the if-then-else operator: f1 → f2 | f3 = (f1 ∧ f2) ∨ (¬f1 ∧ f3).
Let e ∈ S, then Prodsorted(e) = (a1, a2, . . . , am) is an ordered list of the reactions
producing e, where m = |Prod(e)| and paj

≤ paj+1 for all 1 ≤ j < m. The
produced concentration level for entity e and reaction aj , 1 ≤ j ≤ m, is encoded
as: Cj

e

(
pi,p

E
i ,pi+1

)
= Enaj

(
pi,p

E
i

) → ti+1(e) = paj
| Cj+1

e

(
pi,p

E
i ,pi+1

)
if

j < m, and Enaj

(
pi,p

E
i

) ∧ ti+1(e) = paj
if j = m. Finally, we define the

complete entity concentration encoding for all the reactions. If m = 0, then
Ce

(
pi,p

E
i ,pi+1

)
= (ti+1(e) = 0), otherwise Ce(pi,p

E
i ,pi+1) = C1

e(pi,p
E
i ,pi+1)∨

((
∧

a∈Prod(e) ¬Ena(pi,p
E
i)) ∧ ti+1(e) = 0).

Transitions of Context Automaton: The encoding of the transition relation
of the context automaton is a disjunction of the encodings for each transition:
Trca(qi,p

E
i , qi+1) =

∨
(q,c,q′)∈R(q = e(q) ∧ Ctc(pE

i) ∧ qi+1 = ei+1(q′)).

Towards Quantitative Verification of Reaction Systems 149

Step of Interactive Process: We build a conjunction of the produced concen-
tration levels for all entities and the transition relation for the context automa-
ton: St(pi,p

E
i ,pi+1, qi, qi+1) = (

∧
e∈S Ce(pi,p

E
i ,pi+1)) ∧ Trca(qi,p

E
i , qi+1).

Interactive Process: To encode n steps of π we define the following formula:
�π�n = Res∅S

(p0) ∧ e(z0) ∧ ∧n−1
i=0 St(pi,p

E
i ,pi+1, qi, qi+1).

To perform the n-reachability test of d ∈ B(S) in π we test the satisfiability
of the formula �π�n ∧ ∨n

i=0 Resd(pi). Note that the n-reachability can also be
defined for a pair ρ = (x,y) where x,y ∈ B(S). Then, ρ is n-reachable if there
exists an interactive process π = (ζ, γ, δ) in crrsc such that δ = (d0,d1, . . . ,dn),
and x ≤ dn, dn(e) < y(e), for every e ∈ carr(y). In this case, the reachability
test for ρ is encoded as �π�n ∧ ∨n

i=0

∧
e∈S(ti(e) ≥ x(e) ∧ ti(e) < y(e)).

5 Experimental Results

In this section we present the results of an experimental evaluation of the trans-
lation presented in Sect. 4. We compare the implementation for crrsc with an
implementation for crrs by verifying the properties of the crrs obtained by apply-
ing the translation defined in Sect. 3 to crrsc.

To provide a fair comparison, both the verification tools were implemented
in Python using similar techniques and use Z3 [16] for smt solving. The imple-
mentation for crrs is based on the encoding from Sect. 4 which is optimised for
crrs by using boolean variables instead of integer variables. The translation into
smt for crrs corresponds to the translation for crrsc – it is assumed that all
concentration levels are equal to 1 when an entity is present, and equal to 0
otherwise. We also implement an incremental approach to smt-solving, i.e., in a
single smt instance we increase the length of the encoded interactive processes
by unrolling their encoding until the reachability is proved, instead of creating
separate instances for each length tested.

When dealing with concentration levels we often need to perform incrementa-
tion and decrementation operations. For this we need additional notation (below
we use the notation e �→ i to indicate the multiplicity of an entity e in a bag of
entities, e.g., {e �→ 1, f �→ 2} is a bag with one copy of e, two copies of f , and
nothing else).

Incrementation and Decrementation Operations: With ↑g
e and ↓g

e we
denote the set of reactions encoding the operation of, respectively, incremen-
tation and decrementation of concentration levels of e ∈ S when g ∈ S is
present with a non-zero concentration. With Me we denote the maximal allowed
value of e. Then ↑g

e= {({e �→ i, g �→ 1}, ∅S , {e �→ i + 1}) | 1 ≤ i < Me} and
↓g

e= {({e �→ i, g �→ 1}, ∅S , {e �→ i − 1}) | 2 < i ≤ Me}.

Permanency: ♦i
e = {({e �→ i}, i, {e �→ i}) | 1 ≤ i ≤ Me} is a set of reactions

ensuring permanency of e ∈ S which can be inhibited by i ∈ B(S).
We exploit the notation to use ↑g

e , ↓g
e , and ♦i

e in place of regular reactions
ignoring that they are in fact sets of reactions. In the implementation for crrsc we

150 A. M ↪eski et al.

introduce an optimisation where these reactions are encoded as macro-reactions,
that is, as simple operations on integer variables that increment, decrement, or
retain the value of the variable encoding concentration of e. Moreover, those
macro-reactions are allowed only when no ordinary reaction is enabled.

5.1 Eukaryotic Heat Shock Response

Firstly, we test our implementation using the qualitative model of the eukaryotic
heat shock response (hsr) introduced in [3]. hsr is an internal repair mecha-
nism triggered when a cell is subjected to an environmental stressor – increased
temperature that is not ideal for its functioning. A temperature exceeding the
ideal temperature causes the proteins (prot) of a cell to misfold (mfp), which in
turn may cause its malfunctioning. To facilitate refolding of the proteins, heat
shock response proteins (hsp) are produced, which are molecular chaperones for
the misfolded proteins. The production of hsp is initiated by heat shock factors
(hsf) which are, dimerised (hsf2), and then trimerised (hsf3). Next, hsf3 acti-
vates hsp production by binding to the heat shock element (hse) which is the
promoter-site of the gene encoding the heat shock proteins.

Table 1. Entities used in the heat shock response model.

Entity Description Entity Description

hsp heat shock protein hsf3:hse hsf3 bound with hse

hsf heat shock factor hsp:mfp hsp bound with mfp

hsf2 dimerised heat shock factor hsp:hsf complex consisting of hsp and hsf

hsf3 trimerised heat shock factor temp temperature value

hse heat shock element cool decreases the temperature

mfp misfolded protein heat increases the temperature

prot protein

The original model of [3] used stress and nostress entities to distinguish
between the presence and absence of the heat shock. We assume here that the
heat shock appears at (and above) the temperature of 42 ◦C, and this is modelled
using the temp entity. All the entities except temp remain at the concentration
level of 1. We assume that the maximal value of the temperature modelled using
the entity temp is 50.

The background set S for the rsc modelling hsr consists of the entities in
Table 1. The set Aord comprises the reactions in Table 2. We also define the set
of reactions dealing with temperature Atemp =↑heat

temp ∪ ↓cool
temp ∪ �itemp, where i =

{heat �→ 1, cool �→ 1}. The rsc for hsr is defined as rschsr = (S,Aord ∪ Atemp).
To define a crrrs for rschsr we use the context automaton cahsr = (Q, q0, R)

where Q = {0, 1}, q0 = 0 and R = {(0, {hsf �→ 1, prot �→ 1, hse �→ 1, temp �→
35}, 1), (1, {cool �→ 1}, 1), (1, {heat �→ 1}, 1), (1, ∅S , 1)}. Then, the crrsc for rschsr

Towards Quantitative Verification of Reaction Systems 151

Table 2. Reactions of the heat shock response model (curly brackets are omitted).

Reactants Inhibitors Products

hsf �→ 1 hsp �→ 1 hsf3 �→ 1

hsf �→ 1, hsp �→ 1, mfp �→ 1 ∅S hsf3 �→ 1

hsf3 �→ 1 hsp �→ 1, hse �→ 1 hsf �→ 1

hsp �→ 1, hsf3 �→ 1, mfp �→ 1 hse �→ 1 hsf �→ 1

hsf3 �→ 1, hse �→ 1 hsp �→ 1 hsf3:hse �→ 1

hsp �→ 1, hsf3 �→ 1, mfp �→ 1, hse �→ 1 ∅S hsf3:hse �→ 1

hse �→ 1 hsf3 �→ 1 hse �→ 1

hsp �→ 1, hsf3 �→ 1, hse �→ 1 mfp �→ 1 hse �→ 1

hsf3:hse �→ 1 hsp �→ 1 hsp �→ 1, hsf3:hse �→ 1

hsp, mfp, hsf3:hse �→ 1 ∅S hsp �→ 1, hsf3:hse �→ 1

hsf �→ 1, hsp �→ 1 mfp �→ 1 hsp:hsf �→ 1

hsp:hsf �→ 1, temp �→ 42 ∅S hsf �→ 1, hsp �→ 1

hsp:hsf �→ 1 temp �→ 42 hsp:hsf �→ 1

hsp �→ 1, hsf3 �→ 1 mfp �→ 1 hsp:hsf �→ 1

hsp �→ 1, hsf3:hse �→ 1 mfp �→ 1 hse �→ 1, hsp:hsf �→ 1

temp �→ 42, prot �→ 1 ∅S mfp �→ 1, prot �→ 1

prot �→ 1 temp �→ 42 prot �→ 1

hsp �→ 1, mfp �→ 1 ∅S hsp:mfp �→ 1

mfp �→ 1 hsp �→ 1 mfp �→ 1

hsp:mfp �→ 1 ∅S hsp �→ 1, prot �→ 1

is defined as crrschsr = (rschsr, cahsr). The context set specified in cahsr for the
transition from 0 (the initial state) corresponds to the initial context set used
in [3] as the minimal set of entities needed in hsr, together with the temp entity
indicating a temperature that does not cause the heat shock.

We test the efficiency of our implementation by verifying the reachability of
the following results of crrschsr: ρ1 = (x1,y1) where x1 = {hsp:hsf �→ 1, hse �→
1, prot �→ 1}, y1 = {temp �→ 42}. and ρ2 = (x2,y2) where x2 = {mfp �→ 1},
y2 = ∅S . Reachability of ρ1 proves that it is possible to enter the state where
hsr may become stable, while reachability of ρ2 proves that it is possible for
the proteins to eventually misfold. The verification results1 are summarised in
Table 3. In terms of n-reachability, ρ1 is proved for n = 4, while ρ2 for n = 9.
There is no noticeable improvement in memory consumption for the verification
of crrsc over crrs. However, there is a significant difference in the execution times
in favour of crrsc, e.g., for ρ1 the verification for crrsc is 49.48 times faster.

1 The experimental results were obtained using a system equipped with 3.7 GHz Intel
Xeon E5 processor and 12 GB of memory, running Mac OS X 10.11.3.

152 A. M ↪eski et al.

Table 3. Results for the heat shock response model.

ρ1 ρ2

time [s] memory [MB] time [s] memory [MB]

crrs 17.32 25.08 38.78 28.38

crrsc 0.35 24.87 0.93 24.99

improvement 49.48× 1.01× 41.69× 1.13×

5.2 Scalable Chain

Here we introduce an abstract system that executes reactions incrementing con-
centration levels of m molecules up to a maximal concentration level k. The
background set is defined as the set of the molecules combined with entities used
in the context sets: S = {e1, e2, . . . , em, inc, dec}. The inc and dec entities cause,
respectively, incrementation or decrementation of concentration levels. We define
the following sets of reactions: P =

{
({ei �→ k}, ∅S , {ei+1 �→ 1)}) | 1 ≤ i < m

}
,

O =
{ ↑inc

ei
, ↓dec

ei
| 1 ≤ i ≤ m

}
, F =

{
({em �→ k}, {dec �→ 1}, {em �→ k})

}
. The

reactions of P take care of the production of the subsequent molecules, while
their concentration levels are changed by the reactions of O. The reaction of F
ensures persistency of the “final” molecule em when it reaches the concentration
of k, unless dec is present. The rsc for the scalable chain system is defined as
rscsc = (S,P ∪O ∪F). Next, we define the context automaton casc = (Q, q0, R)
where Q = {0, 1}, q0 = 0, and the set R consists of the following transitions:
(0, {e1 �→ 1, inc �→ 1}, 1), (1, {inc �→ 1}, 1), (1, {dec �→ 1}, 1). Finally, we define
crrscsc = (rscsc, casc). Time and memory consumption results are presented
in Figs. 1 and 2. The verified reachability property is proved for n = m · k − 1.
In most cases there is an observable advantage of the implementation for crrsc
when the value of k is relatively large compared to m, e.g., for m = 8 and k = 20
the results for crrsc are 5.6 times better. For m = 10 and k = 14 the verifica-
tion of crrs proved to be 1.6 times more efficient as it only consumed 1334 s,

Fig. 1. Time (in seconds) Fig. 2. Memory (in MB)

Towards Quantitative Verification of Reaction Systems 153

compared to 2155 s for crrsc. However, for m = 20 and k = 16 crrs was only
1.2 times better. We attribute this inconsequence to the heuristics of the smt-
solver used. The crrsc implementation appears to be more memory-efficient when
dealing with larger concentration level values. It appears that when the verified
system is highly-dependent on a large domain of concentration levels, then the
crrsc will most likely be more suitable.

6 Concluding Remarks

In this paper, we introduced reaction systems with discrete concentrations which
support quantitative modelling. Although the formalism is not more expres-
sive than the standard reaction systems, the experimental results we obtained
demonstrate that expressing concentration levels in an explicit way allows for
some improvements in the efficiency of verification, and opens up possibilities
for introducing different optimisations.

In our future work we plan to extend this approach to provide a comprehen-
sive framework for verifying quantitative properties of reaction systems.

Acknowledgements. The study is cofounded by the European Union from resources
of the European Social Fund. Project PO KL “Information technologies: Research and
their interdisciplinary applications”, Agreement UDA-POKL.04.01.01-00-051/10-00.

References

1. Azimi, S., Gratie, C., Ivanov, S., Manzoni, L., Petre, I., Porreca, A.E.: Complexity
of model checking for reaction systems. Technical report. 1122, TUCS (2014)

2. Azimi, S., Gratie, C., Ivanov, S., Petre, I.: Dependency graphs and mass conserva-
tion in reaction systems. Technical report. 1123, TUCS (2014)

3. Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock response.
Fundam. Inf. 131(3–4), 299–312 (2014)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

5. Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction sys-
tems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)

6. Corolli, L., Maj, C., Marini, F., Besozzi, D., Mauri, G.: An excursion in reaction
systems: from computer science to biology. Theoret. Comput. Sci. 454, 95–108
(2012)

7. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Reaction systems: a natural
computing approach to the functioning of living cells. A Computable Universe,
Understanding and Exploring Nature as Computation, pp. 189–208 (2012)

8. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae
75(1–4), 263–280 (2007)

9. Ehrenfeucht, A., Rozenberg, G.: Introducing time in reaction systems. Theoret.
Comput. Sci. 410(4–5), 310–322 (2009)

154 A. M ↪eski et al.

10. Formenti, E., Manzoni, L., Porreca, A.E.: Cycles and global attractors of reaction
systems. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS,
vol. 8614, pp. 114–125. Springer, Heidelberg (2014)

11. Formenti, E., Manzoni, L., Porreca, A.E.: Fixed points and attractors of reaction
systems. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS,
vol. 8493, pp. 194–203. Springer, Heidelberg (2014)

12. Formenti, E., Manzoni, L., Porreca, A.E.: On the complexity of occurrence and
convergence problems in reaction systems. Nat. Comput., 1–7 (2014)

13. Hirvensalo, M.: On probabilistic and quantum reaction systems. Theor. Comput.
Sci. 429(C), 134–143 (2012)

14. Horn, F., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal.
47(2), 81–116 (1972)

15. M ↪eski, A., Penczek, W., Rozenberg, G.: Model checking temporal properties of
reaction systems. Inf. Sci. 313, 22–42 (2015)

16. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Salomaa, A.: Functions and sequences generated by reaction systems. Theoret.
Comput. Sci. 466, 87–96 (2012)

18. Salomaa, A.: On state sequences defined by reaction systems. In: Constable, R.L.,
Silva, A. (eds.) Logic and Program Semantics, Kozen Festschrift. LNCS, vol. 7230,
pp. 271–282. Springer, Heidelberg (2012)

19. Salomaa, A.: Functional constructions between reaction systems and propositional
logic. Int. J. Found. Comput. Sci. 24(1), 147–160 (2013)

20. Salomaa, A.: Minimal and almost minimal reaction systems. Nat. Comput. 12(3),
369–376 (2013)

Traversal Languages Capturing Isomorphism
Classes of Sierpiński Gaskets

Nataša Jonoska, Milé Krajčevski, and Gregory McColm(B)

Department of Mathematics and Statistics,
University of South Florida, Tampa, FL 33620, USA
{jonoska,mile}@mail.usf.edu, mccolm@usf.edu

Abstract. We consider recursive structural assembly using regular d-
dimensional simplexes such that a structure at every level is obtained by
joining d + 1 structures from a previous level. The resulting structures
are similar to the Sierpiński gasket. We use intersection graphs and index
sequences to describe these structures. We observe that for each d >
1 there are uncountably many isomorphism classes of these structures.
Traversal languages that consist of labels of walks that start at a given
vertex can be associated with these structures, and we find that these
traversal languages capture the isomorphism classes of the structures.

1 Introduction

Diverse molecular self-assembly techniques have been used to construct vari-
ous nanostructures ranging from arrays of shapes [7,16,20] to complex crystallo-
graphic structures [21,22]. Recent experimental developments [15] allowing “sig-
nals” to pass along building blocks have introduced techniques in DNA self-
assembly that provide a better control during the assembly. Such signals allow
structural recursive assembly of complexes, level by level, building “supertiles”
geometrically similar to the “tiles” that comprise them [11]. At each level, the sig-
naling mechanism guides each of the components to assume its respective role in
the assembly of the next “supertile”. Theoretical methods characterizing struc-
tures built at the nano level are still being developed. A study to describe crystallo-
graphic structures through formal languages obtained by traversing the structures
was initiated in [12]. With this paper we consider formal language characteriza-
tions of aperiodic structures that are recursively built by d-dimensional simplexes
(equilateral triangles in dimension two, such as the tensegrity triangle [14,22],
tetrahedrons in dimension three [2], etc.). We assume that at each level a new
“supertile” is obtained from d + 1 components obtained at the previous level such
that each of the d + 1 components assumes its role in the assembly at one of the
d + 1 corners of the larger component (e.g., Fig. 1 for dimension 2).

Originally popularized as a fractal, discrete versions of the Sierpiński gasket
have been used to model games (particularly the Tower of Hanoi game with n
disks and 3 pegs [8,9]), VLSI architecture (as “recursively scalable”, [19]), and
have been used even in 3D printing. Finite graphs similar to the Sierpiński gasket,

c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 155–167, 2016.
DOI: 10.1007/978-3-319-41312-9 13

156 N. Jonoska et al.

also known as Schrier graphs, are associated with a class of automata groups
acting on words of length n [5,18]. In this article, we consider the Sierpiński
gasket as a model of hierarchical structures that may, or may not, cover the
entire space they inhabit.

Like many aperiodic tilings, the Sierpiński gasket may be generated by (self-
similar) substitution. In this context, one begins with a single “tile”, which
appears within a “supertile” of tiles, then that supertile appears within a higher
level supertile, and so on. In this paper we study the intersection graphs obtained
by such a step-by-step construction and use index sequences [6, Chap. 10], also
known as addressing systems [3,4], as an encoding system on the graph. For
example, the 2-dimensional Sierpiński gasket, and associated intersection graph,
is generated using an index sequence of 0 s, 1 s and 2 s (Fig. 1). Theorem 10.5.10
in [6] asserts that in substitution systems such as Penrose, tilings with two tiles
having the same index sequences are isomorphic (i.e., their intersection graphs
are isomorphic). This is confirmed for a large class of tilings ([1], [17, §2.5]),
but it is false in general, in particular when the substitutions do not uniquely
determine the entire tiling [17].

(a)
2 1

(b)
1

1 2

0

2
11 21 12 22

01 02

10 20

00

Fig. 1. (a) Given an index sequence 21..., if a tile assumes role 2, it appears in a
supertile in the 2nd (lower right) corner. This new (super)tile assumes role 1 so it
is part of an assembly in the 1st (lower left) corner of a new supertile etc. (b) The
adjacency graphs of these complexes and the corresponding vertex labels (Color figure
online).

Here we generalize finite Sierpiński gaskets to a class of unbounded structures,
generated by a substitution which does not uniquely determine the structures,
but are locally indistinguishable from the standard cone-shaped gasket. There are
uncountably many isomorphism classes of these structures in each dimension d >
1, and by developing an analogue to 10.5.10 in [6], we show that the isomorphism
classes correspond to their index sequences. We fix the isomorphism types in
terms of “traversal languages” encoding classes of walks on these structures.

In [12,13] it is described how a “traversal language” consisting of labels of
walks could capture the isomorphism class of a periodic structure. On the other
side, decidability of some topological properties of fractal objects have been
studied with multi-tape automata in [10]. In this note, we demonstrate how
traversal languages capture the isomorphism classes of the Sierpiński gaskets.
These languages consist of labels of walks that can be taken on the structures
and are intimately connected to the index sequences used to generate those
structures. Due to the uncountably many isomorphism classes of these structures,
we conclude that almost all of these languages are not RE.

Traversal Languages Capturing Isomorphism Classes of Sierpiński Gaskets 157

Notation and basic concepts

We use Σ to denote a finite alphabet and Σ∗ for the set of all words over the
alphabet Σ. For a word w = w1w2 · · · wn, the word wR = wn · · · w2w1 is the
reverse of w. The length of w is |w| = n. The empty word is denoted with ε
and has length |ε| = 0. Σn indicates the set of all words over Σ with length
n and Σω the set of all sequences f : N → Σ. A permutation γ : Σ → Σ
naturally extends to a morphism γ : Σ∗ → Σ∗ with γ(i1 · · · is) = γ(i1) · · · γ(is)
and similarly to γ : Σω → Σω. A graph is a pair G = (V,E) where E consists
of two element subsets of V . For an edge e = {u, v} we say that u is adjacent
to v and e is incident to u and v. The number of edges incident to a vertex v
is the degree of v. A graph homomorphism is a map π from vertices of a graph
G = (V,E) to vertices of a graph H = (V ′, E′) such that for any edge e = {u, v}
in G we have π(e) ∈ V ′ ∪ E′. This homomorphism is said to be strict if for all
e′ = {u′, v′} ∈ E′, there are u ∈ π−1(u′), v ∈ π−1(v′) such that {u, v} ∈ E. A
graph homomorphism is an embedding if it is injective and it is an isomorphism
if it is bijective. If G is isomorphic to H we write G ∼= H.

2 Sierpiński Structures

The Sierpiński gasket (like other self-similar fractal-like structures) is usually a
“downwards construction” defined by contracting and translating affine maps
applied to a two dimensional (triangular) region in the plane. In this paper we
consider recursively built structures by assembling their components into larger
self-similar components. We assume that the unit component is available in arbi-
trarily large number of copies and the process of building larger structures can
continue indefinitely. Our example is the recursively built-up Sierpiński gasket.

2.1 Sierpiński Structures as Graphs

We define the Sierpiński gasket for arbitrary dimension d > 1, but our examples
are for d = 2. Let d > 1 be an integer and Σ = Σd = {0, 1, 2, . . . , d}. We adjust
the definition from [8].

Definition 1. Let n ≥ 1. An nth upwards d-dimensional Sierpiński gasket is a
graph Gn = Gd

n = (Σn, En) where

En = {{x, y} | ∃i, j ∈ Σ, i �= j;∃k ≥ 0, w ∈ Σ≤n;x = ikjw, y = jkiw}
An upwards d-dimensional Sierpiński gasket is an infinite graph Gω = (Σω, Eω)
where

Eω = { {x,y} | ∃i, j ∈ Σ, i �= j;∃k ≥ 0,w ∈ Σω; x = ikjw,y = jkiw}
Figure 2 describes the labeling of the edges. The structure of Gω is discussed

in the rest of the section. We define G0 = (ε, ∅) to be a single vertex ε without
edges. For a vertex v = ikjw where i �= j we say that v is of rank k + 1.

158 N. Jonoska et al.

i

ki
kj

w

w

j

Fig. 2. A schematic description
of two adjacent vertices in Gn.

Notice that each string of length n in Σn

determines a particular vertex in Gn (Fig. 3). A
vertex v = ikw in Gn, where w ∈ Σ∗ does not
start with i, is said to be the i-corner at level k.
Similarly a vertex v = ikw of Gω is the i-corner
at level k in Gω. The i-corners at level n in Gn

are called the corners of Gn.
Let w ∈ Σm, m ≤ n. A w-induced subgraph of Gn is the subgraph Gn(w)

with vertex set Vn(w) = {xw |x ∈ Σn−m}. For Gω we extend the notion to
w-induced subgraph of size n ≥ 0 to be the graph with vertices {xw |x ∈ Σn}
denoted Gn

ω(w) where w ∈ Σω. Directly from the definition it follows that
Gn

ω(w) is isomorphic to Gn by setting x �→ xw.

i

j

k

k

k-1

j i

i j

k-1

Fig. 3. Left, for w ∈ Σn−(k−1), an i-corner of level k in Gn(w) is adjacent to a j-corner
of level k. Right, G3 with 0-induced subgraph G3(0) in color (purple, red, and orange),
with subgraph G3(10) in red and orange, and a vertex representing G3(210) in orange.
(Color figure online)

Gω is a graph with the uncountable vertex set Σω. As each vertex is of finite
degree, it has uncountably many components. This is discussed in Sect. 2.3.

We use the shift operator σ : Σ+ ∪Σω → Σ∗ ∪Σω to define homomorphisms
of these graphs. Recall that for a word w = iu where i ∈ Σ and u ∈ Σ∗ ∪ Σω,
we have σ(w) = u.

Definition 2. For a fixed n, the graph shift is the map σn : Gn+1 → Gn such
that for each vertex v ∈ Σn+1 in the graph Gn+1, v �→ σ(v).

Lemma 1. For each n, σn is a strict homomorphism.

Proof. The map σn is a homomorphism because σ maps an edge {ikjw, jkiw} ∈
En+1 for k > 0 to {ik−1jw, jk−1iw} ∈ En. If k = 0, σ maps the edge {jw, iw}
to the vertex w. Note that σ is surjective on the set of vertices, and σn is strict:
if {ikjw, jkiw} is En then ik+1jw ∈ σ−1(ikjw) and jk+1iw ∈ σ−1(jkiw). �

We drop the subscript n in σn and write σ assuming that the domain of σn

fixes the index. One can view σ as a map that collapses the (d + 1)-cliques into
vertices. The following lemma is also in [9, Theorem 4.3].

Traversal Languages Capturing Isomorphism Classes of Sierpiński Gaskets 159

Lemma 2. For n ∈ {1, 2, 3, . . .}, d+1 vertices {v0, . . . , vd} form a clique in Gn

if and only if there exists w ∈ Σn−1 such that {v0, . . . , vd} = {0w, 1w, . . . , dw}.
Proof. Given a (d + 1)-clique v0, . . . , vd, color each vertex by the first symbol in
its index sequence. No two adjacent vertices can share the same color, so each of
the d+1 colors occurs once among these vertices, and without loss of generality
we can assume that for each i, vi = iv′

i for some v′
i. We claim that all vertices

have the same second symbol. If not, there exist two vertices (say v0 and v1)
with different second symbols, v0 = 0iv′′

0 and v1 = 1jv′′
1 for i �= j. Then as v0

is adjacent to v1, we must have for some k > 1, v0 = 0k1w and v1 = 1k0w for
some w. But then v2 = 2w′ for some w′ would not be adjacent to neither v0 nor
v1, which gives a contradiction. Therefore i = j. �

It follows that each vertex ik�w, k > 0, is the corner of a clique. By
Definition 1, it is adjacent to d vertices jik−1�w, j �= i, forming a (d + 1)-
clique, and is also adjacent to the vertex �kuw of the same rank, outside that
clique.

2.2 Index Sequences and Isomorphism Types

In this section we show that the automorphisms of a Sierpiński gasket Gn, and
also Gω, correspond to the elements of the permutation group of Σ.

Proposition 1. Let 0 ≤ � < n ≤ m. Given an embedding π of Gn into Gm,
there exists a unique automorphism τ on Gm such that τ ◦ σ� = σ� ◦ π.

Gn
π−−−−→ Gm

⏐
⏐
�σ�

⏐
⏐
�σ�

Gn−�
∃!τ−−−−→ Gm−�

Proof. If � = 0 then σ0 is the identity and τ = π. For � = 1, define τ such
that for each i ∈ Σ, x ∈ Σn−1, if π(ix) = jy for j ∈ Σ and y ∈ Σm−1,
then τ(x) = y. By definition we have τ ◦ σ = σ ◦ π. Also, τ is unique because
τ ′(x) = τ ′ ◦ σ(ix) = σ ◦ π(ix) = σ(jy) = y = τ(x). We claim that τ is a
well-defined embedding of Gn−1 into Gm−1.

For any x ∈ Σn−1, by Lemma 2, 0x, . . . , dx forms a (maximal) (d + 1)-clique
in Gn, which π maps to a (d + 1)-clique in Gm, of vertices 0y, . . . , dy. There
is a permutation γ of Σ such that π(sx) = γ(s)y for each s ∈ Σ. So for any
s ∈ Σ, τ(x) = σ(π(sx)) = σ(γ(s)y) = y, hence τ is well defined. We see that
τ is one-to-one: if τ(x1) = τ(x2), then π maps both cliques 0x1, . . . , dx1 and
0x2, . . . , dx2 onto some clique 0y1, . . . , dy1 in Gm, therefore x1 = x2.

Now we claim that τ is a graph homomorphism, and hence an embedding.
Suppose that u = pkqw and v = qkpw are adjacent in Gn−1. Then pu ∈ σ−1(u)
and qv ∈ σ−1(v) are adjacent in Gn. They are mapped by π to some adjacent
isjz and jsiz in Gm. Then τ(u) = is−1jz is adjacent to τ(v) = js−1iz. Note
that s > 0 because τ is one-to-one.

160 N. Jonoska et al.

For � > 1 inductively we have σ� ◦ π = σ�−1 ◦ τ1 ◦ σ = . . . = τ� ◦ σ� for some
τ1, . . . , τ�. Then we set τ = τ�. �

Observe that π induces a canonical sequence of automorphisms τn−k from
Gn−k to Gn−k. Given Gn and r ≤ n, say that an r-subgraph of Gn is a pre-image
of a vertex of Gn−r under σr. Notice that by an induction on r, an r-subgraph
is isomorphic to Gr.

Corollary 1. Fix an embedding π of Gn into Gm. For each r ≤ n, π maps
vertices of rank r to vertices of rank r, and r-subgraphs to r-subgraphs.

Proof. Consider an edge e = {u, v} and let r be the smallest such that σr(u) =
σr(v). By Proposition 1, π(e) has the same property, that is, r is the smallest such
that σr(π(u)) = σr(π(v)). Consequently, π maps vertices of rank r to vertices of
rank r. Also by Proposition 1, π must map all the vertices of an r-subgraph to
vertices of an r-subgraph, and no other vertices to that r-subgraph. �

Lemma 3. For any 0 ≤ n ≤ m, any embedding of Gn into Gm maps Gn into a
w-induced subgraph of Gm for some w ∈ Σm−n.

Proof. Let π : Σn → Σm be an embedding of Gn into Gm. By Proposition 1,
there exists unique τ : Σ �→ Σm−n+1 mapping the (d+1)-clique σn−1(Gn) = G1

into a (d + 1)-clique of σm−1(Gm), and by Lemma 2, there exists a permutation
γ of Σ and a string w ∈ Σm−n+1 such that for each i ∈ Σ, τ(i) = γ(i)w.
Therefore, for all vertices x ∈ Σn we have σn ◦ π(x) = w and hence, π(Gn) is
isomorphic to a w-induced subgraph of Gm. �

For finite graphs, the following result is shown in [9].

Proposition 2. For any n, the automorphism group of Gn is isomorphic to the
permutation group of Σ.

Proof. By Proposition 1, for an embedding π mapping Gn into Gn there is a
unique τn−� : Gn−� → Gn−� that commutes with the shift, i.e., τn−�◦σ� = σ�◦π.
For � = n − 1 we have τ1 : G1 → G1 such that τ1 ◦ σn−1 = σn−1 ◦ π. Since G1 is
a (d + 1)-clique, τ1 is a permutation γ : Σ → Σ. We show that γ determines π.

Inductively, suppose τk : Gk → Gk is an automorphism that is determined by
γ such that τk(i1 · · · is) = γ(i1) · · · γ(is). We show that the same holds for τk+1.
Consider a clique {0w, . . . , dw} in Gk. Each vertex iw is an image of a clique
{0iw, . . . , diw} of Gk+1 under σ. Choose i, j distinct from the first symbol of w
and from each other. Because τkσ = στk+1, we have τk+1(jiw) = pγ(i)γ(w) and
τk+1(ijw) = qγ(j)γ(w) for some p, q ∈ Σ. By Corollary 1, τk+1 maps vertices
of rank 2 to vertices of rank 2, so p and γ(i) are distinct and similarly, q and
γ(j) are distinct. But there is an edge {jiw, ijw} in Gk+1, so it must be that
{pγ(i)γ(w), qγ(j)γ(w)} is an edge in Gk+1 as well, which implies that p = γ(j)
and q = γ(i). Thus τk+1(ijw) = γ(i)γ(j)γ(w) as required. �

Traversal Languages Capturing Isomorphism Classes of Sierpiński Gaskets 161

2.3 The Infinite Sierpiński Structures and Their Components

In this subsection, we show that the connected components of Gω may be par-
titioned into uncountably many isomorphism classes, each with (d + 1)! compo-
nents.

Definition 3. For sequences u,v ∈ Σω, we say that u is equivalent to v if they
differ at finitely many values.

Observe that u is equivalent to v if and only if u and v are vertices on the
same connected component of Gω. If u is equivalent to v, then u = xw and
v = yw for some x, y ∈ Σn and w ∈ Σω. Hence, u and v are vertices of Gn

ω(w).
On the other hand, if there is a path from u to v in Gω, then that path is a finite
sequence of edges, each joining vertices ikjw′ and jkiw′, and all these finitely
many vertices must share a common infinite suffix.

We define Gω[u] to be the connected component of Gω determined by the
equivalence class of u.

Definition 4. We write u ∼ v if there exists a permutation γ of Σ such that
v = γ(u).

Directly from the definitions u ∼ v implies that Gω[u] ∼= Gω[v]. We claim
that the converse is true.

Theorem 1. For any x,y ∈ Σω, Gω[x] ∼= Gω[y] if and only if x ∼ y.

Proof. If x ∼ y, then there exists π : Σ → Σ such that y = π(x) and π is an
isomorphism from Gω[x] onto Gω[y]. Conversely, let π be an isomorphism from
Gω[x] onto Gω[y]. Without loss of generality we can assume that π(x) = y.
For any n < ∞, let xn = σn(x) and yn = σn(y). Then π restricts to an
isomorphism of xn-induced subgraph of Gω[x] to the yn-induced subgraph of
Gω[y], π : Gn

ω(xn) → Gn
ω(yn) mapping x to y. By Proposition 2, for each n, there

is a permutation γ = τn of Σ such that for any z ∈ Σn, π(zσn(x)) = γ(z)σn(y).
Inductively, γ maps the nth symbol of x onto the nth symbol of y for all n, so
x ∼ y. �

3 The Languages

We are interested in languages describing walks on the graphs. Each word in the
language represents a label of a walk on the graph. The labeling is designed such
that the label of the edge {x, y} traversed from x to y uniquely determines the
vertex y.

Given a graph G = 〈V,E〉, to each edge e = {x, y} we associate a pair of arcs
{(x, y), (y, x)}. Each arc indicates the direction of a walk traversing the edge e.
We label the arcs with symbols from an alphabet Σ using a labeling function
λ : V ×V → Σ. Call the labeling λ proper if it is injective (deterministic) on the
outgoing arcs and if λ(x, y) �= λ(y, x).

162 N. Jonoska et al.

A walk in G from vertex x to vertex y is a sequence of successive arcs p =
(x, x1)(x1, x2) · · · (xn−1, y) and its length is n. A walk is a path if no vertex occurs
twice (except we permit x = y). If x = y, the walk is cyclic. The distance between
x and y is the length of the shortest path from x to y, denoted dist(x, y). The
diameter of a finite graph is the maximal distance between any two vertices of
the graph. The label of p is the sequence λ(p) = λ(x, x1)λ(x1, x2) · · · λ(xn−1, y).
The two-way label of p is

λ̂(p) = [λ(x, x1)λ(x1, x)][λ(x1, x2)λ(x2, x1)] · · · [λ(xn−1, y)λ(y, xn−1)].

The set of labels of walks and the set of two-way labels of walks starting at
a vertex x determine two languages, Wx and Ŵx, respectively. Proper labeling
implies that for each vertex x in the graph there is at most one vertex y reached
by a walk with label w ∈ Σ∗. So labels, and two-way labels of walks, define
partial actions of Σ∗ on the vertex set of G, and we write xw = y, and xŵ = y,
respectively.

We note that for proper labeling the two-way labels of walks are restricted
because they specify the return label of a traversed arc as well. For example, if
j �= k then [ik][ki][ij] cannot be a two-way label of a walk because λ is injective
on the outgoing edges.

Consider the Sierpiński gaskets Gn and Gω. We define λ for Gn, that can
naturally extend to Gω. The labeling alphabet is Σ = {0, . . . , d}. For an edge
{ikjw, jkiw}, k ≥ 0 we label the corresponding arcs with

λ(ikjw, jkiw) = i and λ(jkiw, ikjw) = j.

[]

[ji]

ik =j0iw

jik−1 =i0jw

kiw

Fig. 4. The arc labeled [ji]
is part of a clique while the
arc labeled [i�] connects two
vertices of rank k.

These labels indicate direction: notice in Fig. 1 that
“0” means move up, “1” means go left, and “2”
means go right. Observe that this is a proper label-
ing of the arcs. By definition, the two arcs asso-
ciated with an edge are labeled distinctly. Every
vertex ik�w (i �= �) can be written as j0iw′ where
w′ = ik−1�w and is in a (d + 1)-clique, hence inci-
dent to jik−1�w = i0jw′ with outgoing arc labeled
j for j �= i. It is also incident to a vertex of the same
rank �kiw with outgoing arc labeled i.

We claim that the isomorphism classes of Gω can
be captured by the two-way languages Ŵu for any
u in its equivalence class. The Sierpiński structures
have index sequences as vertices, so the address of
a vertex is the vertex itself. Notice that if a vertex
is a corner of Gn, then it is also a corner of each
copy of Gk, k < n, in which it occurs. We use the following result from [8] and
include a proof for the convenience of the reader.

Lemma 4. In Gn, if i �= j, then dist(in, jn) = 2n − 1, which is the diameter of
Gn.

Traversal Languages Capturing Isomorphism Classes of Sierpiński Gaskets 163

Proof. By construction, a side of Gn+1 has twice as many vertices as a side of
Gn. Hence, inductively dist(in, jn) = 2n − 1. This implies that the diameter of
Gn is at least 2n − 1. We prove that the diameter is 2n − 1 by induction on n.
The diameter of G1, which is a clique, is 1 = 21 − 1. For the inductive step,
note that the copies of Gn within Gn+1 are connected at their corners in Gn+1

(Fig. 1(a)). If two vertices x, y in Gn+1 are in the same subgraph isomorphic to
Gn, then they are at most 2n − 1 apart, by the inductive hypothesis. If they are
in distinct subgraphs isomorphic to Gn, say Gn+1(i) and Gn+1(j) resp., then
there is a path from x to y through the edge {jni, inj} which, by induction, is
of length at most 2 · (2n − 1) + 1. �

Consider Gn and the w-induced subgraph Gn(w) where |w| < n.

Lemma 5. Given two vertices x and y in Gn(w), the shortest path from x to y
containing a vertex outside Gn(w) is of length at least 2n+1 + 1.

Proof. Let p be a path connecting x and y,
both of whom are in Gn(w). Let w = �u for
� ∈ Σ. If p contains an edge outside Gn(�u)
(see Fig. 5), then two corners c1 = in�u and
c2 = jn�u, for some i �= j, occur in p. The
path p also contains an edge from c1 to a
vertex �niu ∈ Gn(iu), and similarly, c2 is
adjacent to �nju in Gn(ju). The subgraphs
Gn(iu) and Gn(ju) are distinct, and as the
corners �niu and �nju occur in p, p must have
a subpath in Gn(iu) from �niu to another
corner of Gn(iu), as well as a subpath from
a corner of Gn(ju), distinct from �nju, to
�nju. So p must have two subpaths each of
length at least 2n−1, and at least three addi-
tional edges (one from c1 to �niu, one or more
to connect the two far corners of Gn(iu) and
Gn(ju), and one from �nju to c2. Hence p
must be of length at least 2n+1 + 1. �

Lemma 6. For any vertex x ∈ Gn there is a path in Gn from x to in with label
ik for some k.

Proof. We note that for every vertex x = isju (for s ≥ 0) there is an arc
(isju, jsiu) leading to jsiu with label i. The path visits vertices x = isju, jsiu,
ijs−1iu, jijs−2iu, i2js−2iu, j2ijs−2iu, . . . , in, alternating between edges in a
(d + 1)-clique and edges between higher rank vertices, all with label i. The
symbol i shifts to the right, so we observe that from vi� we eventually reach
v′i�+1. �

y

x

niu

1 = in

c

c

2 = jn nju

Gn() Gn(ju)

Gn(iu)

Fig. 5. A walk from x to y outside
their shared subgraph.

We denote the path with label ik from x to a corner inu of a copy of Gn

by pn(x, i), and similarly for Gω the path from xw to inw with label ik with
pn(xw, i).

164 N. Jonoska et al.

Theorem 2. For u,v ∈ Σω in Gω, Ŵu = Ŵv if and only if u = v.

Proof. Let u = u1u2u3 · · · and v = v1v2v3 · · · ; if u = v then Ŵu = Ŵv.
Conversely, given Ŵu = Ŵv, we prove that for each positive integer n, un = vn,
by induction on n. The set of two-way labels of walks of length 1 starting at u is
{[iu1] | i �= u1, i ∈ Σ} ∪ {[u1�]} for some �. Since Ŵu = Ŵv, it must be u1 = v1.
The clique isomorphism from G1

ω(σ(u)) to G1
ω(σ(v)) that maps iσ(u) into iσ(v)

preserves the labels on the arcs.
We claim that if ui = vi for i ≤ n and Ŵu = Ŵv, then un+1 = vn+1. Let

x = u1 · · · un and u = xu′ and v = xv′. Let Gn
ω(u′) and Gn

ω(v′) be the u′- (resp.
v′-) induced subgraph of size n containing u (resp. v). Because u1u2 · · · un =
v1v2 · · · vn = x, choose the (restricted) isomorphism from Gn

ω(u′) onto Gn
ω(v′)

that maps yu′ to yv′ for each y ∈ Σn. This isomorphism preserves the labels
of the arcs. For an i ∈ Σ, choose k such that ik is the label of a path from
xu′ to in. Because the restricted isomorphism preserves labels, λ̂(pn(xu′, i)) =
λ̂(pn(xv′, i)) = ŵi. For each i ∈ Σ, there exists exactly one � such that ŵi[i�] ∈
Ŵu = Ŵv where [i�] (see Fig. 4) is the label of the edge connecting the corner
in�u′′ of Gn

ω(u′) (resp. Gn
ω(v′)) to �niu′′ (resp. �niv′′) of Gn+1

ω (u′′) for some u′′

(resp. Gn+1
ω (v′′)). Therefore un+1 = � = vn+1. �

We can obtain a similar result for labels, rather that two-way labels, of walks
that start at a given vertex. However, in order to identify the vertices, the infor-
mation lost by taking labels instead of two-way labels is captured by taking
walks that start and end at the same vertex. The labels of those paths form a
so-called “cyclespace” for the given vertex.

Definition 5. Given v in a Sierpiński gasket Gω, the cyclespace of v is Cv =
{w ∈ Σ∗ |vw = v}.
Theorem 3. Let u,v ∈ Σω. Then Cu = Cv if and only if u = v.

Proof. Clearly, u = v implies Cu = Cv, so we prove the converse by induc-
tion on n for u = u1u2 · · · un · · · . Since there are no loops in Gω the shortest
cycles of positive length are of length 2 traversing oppositely oriented arcs of
the same edge. Cycles of length 2 starting at u are {iu1 | i �= u1, i ∈ Σ}.
Since Cu = Cv it must be {iu1 | i �= u1, i ∈ Σ} = {iv1 | i �= v1, i ∈ Σ} and
therefore u1 = v1. Suppose x = u1 · · · un = v1 · · · vn, and vn+1 �= un+1. Let
u′ = σn+1(u). For each j �= un+1, let c(n, j) be the label of a cyclic walk that
starts at u, follows pn(u, j) to the corner jnun+1u′, then out to the adjacent
vertex un

n+1ju in the neighboring subgraph Gn
ω(ju′) and back, traversing the

edge {jnun+1u′, un
n+1ju

′} twice, and then down the side arcs of Gn
ω(un+1u′)

with label un+1 to the corner un
n+1u

′, and finally reversing the path pn(u, un+1)
(Fig. 6(a)). Let w be the label of pn(u, un+1)R. Then |w| ≤ 2n − 1. The label of
c(n, j) is jkjun+1u

2n−1
n+1 w = jk+1u2n

n+1w.
As ui = vi, i ≤ n, u and v are in corresponding positions in their n-

subgraphs. The walk with the label jk+1u2n

n+1w from v starts with a path with
label jk and reaches a vertex jnvn+1v′. From this vertex, an arc with label j

Traversal Languages Capturing Isomorphism Classes of Sierpiński Gaskets 165

(a)

u

un+1

u2n−1
n+1 jk

w

jnun+1u

j

Gn
ω(ju)

un
n+1ju

Gn
ω(un+1u)

(b)

v

jk

jnvn+1v

vn
n+1jv

jun+1
un+1

Gn
ω(jv)

Gn
ω(vn+1v)

un
n+1jv

Fig. 6. The label of the cycle c(n, j) at vertex u; (b) if vn+1 �= un+1, the label of c(n, j)
is not a label of a cycle at v.

leads to vn
n+1jv

′ in Gn
ω(jv′) where σn+1(v) = v′. But because vn+1 �= un+1, an

arc from vn
n+1jv

′ with label un+1 ends again in Gn
ω(jv′) and does not reach a

vertex in Gn
ω(vn+1v′) (Fig. 6(b)).

By Lemmas 4 and 6, as un+1 �= vn+1, from vn
n+1jv

′ following 2n arcs labeled
un+1 leads to un

n+1jv
′, and then outward from Gn

ω(jv′). As w, the rest of the
label of c(n, j), is of length less than 2n, one cannot return across Gn

ω(jv′) to v
with a walk of label w. Because ju2n

n+1w is of length at most 2n+1, by Lemma 5,
ju2n

n+1w cannot be a label of a walk from jnvn+1v′ out of Gn
ω(vn+1v′) and back

to v. Thus the label of c(n, j) is not a label of a cycle from v back to itself, and
that contradiction forces vn+1 = un+1. �

4 Concluding Remarks

The Sierpiński gaskets share many properties with other hierarchical structures,
and we believe that this example initiates the development of a more general the-
ory. In particular, a precise statement similar to Theorem 10.5.10 in [6], includ-
ing necessary and sufficient hypotheses, would be of interest. That theorem was
announced for tilings, but Sierpiński gaskets are not tilings, so a general state-
ment covering hierarchical structures is desirable. In [12,13], we studied lan-
guages encoding traversals of periodic structures and found that they fell into
an intersection hierarchy of context free languages. However, for Sierpiński gas-
kets, almost all traversal languages are not RE. We have found several “nice”
examples that are not context free and we have found no examples that are con-
text free, so we conjecture that no traversal languages are context free. If this
is true, it would be interesting to know whether this result could be extended
to recursive structures in general. In addition, we observe that the traversal lan-
guages capture the isomorphism types of the Sierpiński gaskets, and we ask what
other structures have the same property.

166 N. Jonoska et al.

Acknowledgement. We would like to thank Chaim Goodman-Strauss and Lorenzo
Sadun for their kind assistance. This work has been supported in part by the NSF
grants CCF-1526485 and the NIH grant GM109459.

References

1. Anderson, J.E., Putnam, I.F.: Topological invariants for substitution tilings and
their associated C∗-algebras Erg. Th. Dyn. Syst. 18(3), 509–537 (1998)

2. Goodman, R.P., et al.: Rapid chiral assembly of rigid DNA building blocks for
molecular nanofabrication. Science 310(5754), 166–1665 (2005)

3. Goodman-Strauss, C.: Matching rules and substitution tilings. Ann. Math. 147,
181–223 (1998)

4. Goodman-Strauss, C.: Aperiodic hierarchical tilings. In: Sadoc, J.F., Rivier, N.
(eds.) Foams and Emulsions. NATO ASI Series: Series E: Applied Sciences, vol.
354, pp. 481–496. Springer, Dordrecht (1999)

5. Grigorchuk, R., Šunić, Z.: Asymptotic aspects of Schreier graphs and Hanoi Towers
groups. Proc. Symposia in Pure Mathematics 77, 183–198 (2008)

6. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. Freeman, New York (1987)
7. Han, D., Pal, S., Nangreave, J., Deng, Z., Liu, Y., Yan, H.: DNA origami with

complex curvatures in 3-dimensional space. Science 332, 342–346 (2011)
8. Klavžar, S., Milutinović, U.: Graphs S(n, k) and a variant of the tower of Hanoi

problem. Czechoslovak Math. J. 47(1), 95–104 (1997)
9. Hinz, A.M., Klavžar, S., Milutinović, U., Petr, C.: The Tower of Hanoi — Myths

and Maths. Springer, Basel (2013)
10. Jolivet, T., Kari, J.: Undecidable properties of self-affine sets and multi-tape

automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014,
Part I. LNCS, vol. 8634, pp. 352–364. Springer, Heidelberg (2014)

11. Jonoska, N., Karpenko, D.: Active tile self-assembly, part 2: recursion and self-
similarity. Int. J. Found. Comp. Sci. 25(2), 165–194 (2014)

12. Jonoska, N., Krajcevski, M., McColm, G.: Languages associated with crystallo-
graphic symmetry. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS,
vol. 8553, pp. 216–228. Springer, Heidelberg (2014)

13. Jonoska, N., Krajcevski, M., McColm, G.: Counter machines and crystallographic
structures. Nat. Comput. 15(1), 97–113 (2016)

14. Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: construction of rigid
DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 126(8),
2324–2325 (2004)

15. Padilla, J.E., Sha, R., Chen, J., Jonoska, N., Seeman, N.C.: A signal-passing
DNA-strand-exchange mechanism for active self-assembly of DNA nanostructures.
Angew. Chem. Int. Ed. Engl. 54(20), 5939–5942 (2015)

16. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature
440(7082), 297–302 (2006)

17. Sadun, L.: Personal communication (2016)
18. Šunić, Z.: Twin towers of Hanoi. Eur. J. Comb. 33(7), 1691–1707 (2012)
19. Vecchia, G.D., Sanges, C.: A recursively scalable network VLSI implementation.

Future Gener. Comput. Syst. 4, 235–243 (1988)
20. Zhang, F., Jiang, S., Wu, S., Li, Y., Mao, C., Liu, Y., Yan, H.: Complex wireframe

DNA origami nanostructures with multi-arm junction vertices. Nature Nanotech-
nol. 10, 779–784 (2015)

Traversal Languages Capturing Isomorphism Classes of Sierpiński Gaskets 167

21. Zhang, W., Oganov, A.R., Goncharov, A.F., Zhu, Q., Boulfelfel, S.E., Lyakhov,
A.O., Stavrou, E., Somayazulu, M., Prakapenka, V.B., Konpkov, Z.: Unexpected
stable stoichiometries of sodium chlorides. Science 342(6165), 1502–1505 (2013)

22. Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell,
S.L., Mao, C., Seeman, N.C.: From molecular to macroscopic via the rational design
of a self-assembled 3D DNA crystal. Nature 461(7260), 74–77 (2009)

Discrete DNA Reaction-Diffusion Model
for Implementing Simple Cellular Automaton

Ibuki Kawamata1(B), Satoru Yoshizawa1, Fumi Takabatake1, Ken Sugawara2,
and Satoshi Murata1

1 Department of Robotics, School of Engineering, Tohoku University, Sendai, Japan
kawamata@molbot.mech.tohoku.ac.jp

2 Department of Information Science, Faculty of Liberal Arts,
Tohoku Gakuin University, Sendai, Japan

Abstract. We introduce a theoretical model of DNA chemical reaction-
diffusion network capable of performing a simple cellular automaton.
The model is based on well-characterized enzymatic bistable switch that
was reported to work in vitro. Our main purpose is to propose an
autonomous, feasible, and macro DNA system for experimental imple-
mentation.

As a demonstration, we choose a maze-solving cellular automaton.
The key idea to emulate the automaton by chemical reactions is assum-
ing a space discretized by hydrogel capsules which can be regarded as
cells. The capsule is used both to keep the state uniform and control the
communication between neighboring capsules.

Simulations under continuous and discrete space are successfully
performed. The simulation results indicate that our model evolves as
expected both in space and time from initial conditions. Further inves-
tigation also suggests that the ability of the model can be extended by
changing parameters. Possible applications of this research include pat-
tern formation and a simple computation. By overcoming some experi-
mental difficulties, we expect that our framework can be a good candidate
to program and implement a spatio-temporal chemical reaction system.

Keywords: DNA chemical reaction network · Cellular automaton ·
Spatio-temporal evolution · Pattern formation · Maze solving

1 Introduction

DNA is a suitable material to develop a system with desired structure and behav-
ior because of its programmability. Elaborate systems from static structures to
dynamic reactions have been reported [1–3]. For dynamic system that reacts in
a single test tube, a variety of functionalities are demonstrated such as logic cir-
cuits, amplification, and oscillation [4–7]. Some DNA nano-structures can change
their geometry in nano-scale precision [8].

Challenging topic of such dynamic systems is to increase the size to macro-
scale [9,10]. One of the possible applications by scaling-up reactions is pattern
c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 168–181, 2016.
DOI: 10.1007/978-3-319-41312-9 14

Discrete DNA Reaction-Diffusion Model 169

formation. Common technique to achieve a pattern formation by chemical reac-
tion is using a Turing pattern [11–13]. The technique is a good candidate to
explain the patterns seen in nature [14], and worthy of future research.

Achieving simple patterns by DNA chemical reactions networks are demon-
strated using UV stimulus or enzymatic reactions [15,16]. Since the reactions are
limited in function, how to program a system with desired dynamics is of interest.
For a well-mixed one-pot system, design principles have been addressed using
abstractions and simulations of chemical reactions [8,17–19]. Recently, theoreti-
cal frameworks using both reaction and diffusion of DNA molecules for pattern
formation and computation have also been reported [20–23].

To extend the programmability for one dimensional pattern formation, theo-
retical model that can emulate a cellular automaton by DNA was proposed [24].
Those theoretical models, however, consist of a huge chemical reaction network
and seem to require large efforts of optimization when it comes to implement
designed systems in real experiments. Furthermore, though the model of cellu-
lar automaton is well-designed and emulates an evolution of a specific cellular
automaton, an external clock to control the phase of diffusion was assumed.
A novel model that overcomes the problems and provides autonomous cellular
automaton using simple and realistic chemical reactions may broaden the field
of DNA computing.

In this paper, we propose a theoretical model of reaction diffusion system
that implements a simple cellular automaton. The network employs an already
well-characterized DNA bistable switch that is driven by enzyme reactions [25].
To discretize space, we assume a capsule of hydrogel that represents a single
state of a cell [26,27]. While communication between capsules is done by slow
diffusion, the concentration inside a capsule is ensured to be uniform by fast
diffusion.

For the proof of concept, we formalize a concrete reaction-diffusion model
and simulate the behavior of the model from some initial states. The introduced
cellular automaton is capable of solving a maze. Inspired by a research using
cellular automaton as a computation platform [28], we further discuss how to
compute a simple deterministic finite automaton by our system.

2 Discrete Model

2.1 Transition Rules

We decide to emulate a simple cellular automaton that can solve a maze from
specific initial state [29]. The automaton is related to a problem of routing and
an example representation of the system was proposed [30]. First, we illustrate
the discrete model of the cellular automaton.

170 I. Kawamata et al.

Cells of the cellular automaton are arranged in a square lattice. Each cell
has either state ‘a’ or state ‘b’, which represent wall and path, respectively.
The transition rules are quite simple that only the state ‘b’ can switch to ‘a’ as
shown in Fig. 1. A cell communicates only with four neighboring cells in north,
south, east, and west.

A cell counts the number of neighboring cells in state ‘a’ and decides its
transition. If the number is less than or equal to two, it keeps its state. Otherwise,
the state changes from ‘b’ to ‘a’.

Fig. 1. The transition rules. A cell in state ‘b’ does not change its state if the number
of neighboring cells in state ‘a’ is less than or equal to two. The cell switches to ‘a’,
however, if there are 3 or more neighboring cells in state ‘a’. Blue and red cells represents
states ‘a’ and ‘b’, respectively. (Color figure online)

2.2 Example Simulation

As an example of the cellular automaton, we simulated a system from specific
initial state using a software platform called “Ready” [31] (Fig. 2). Since the
transition rules eliminate a path at a dead end, the route from the starting to
the ending cells is preserved. Although the transition rules are very simple, the
simulation result indicates that the cellular automaton is capable of computing
a routing problem.

The model is still far from chemical reactions because all the state, space,
and time are discrete in the model. In contrast, chemical reaction works under
continuous concentration, space, and time. We have to link the gap between
discrete and continuous systems.

3 Continuous Model

3.1 Bistable System

To discretize state, we make use of a bistable switch which is chemically imple-
mented and verified by an in vitro experiment [25]. The switch is composed
of signal DNA, template DNA, and enzymes (Fig. 3(a)). We illustrate single
stranded DNA (ssDNA) as an arrow corresponding to the direction from 5’ to
3’ ends of phosphate backbone, which is a customary way of representing DNA.

Discrete DNA Reaction-Diffusion Model 171

Fig. 2. The simulation of maze solving cellular automaton. Three frames of the simu-
lation result are shown. Transition rules are adopted by a synchronized manner.

The signals are unmodified ssDNAs, which are named as ‘a’, ‘b’, ‘inha’, and
‘inhb’. The templates are chemically modified ssDNAs that program the inter-
actions between signals. The program is executed by collaborative reactions of
polymerase and nickase. Since exonuclease decomposes signal strands, the state
of the system is in a dynamic equilibration.

The switch has one of the two states, where either ssDNA ‘a’ or ‘b’ has higher
concentration. If the concentration of ‘a’ is high, that of ‘b’ is very low, and
vice versa. The dynamics are programmed by exclusive amplification reactions,
whose topological interactions are explained in Fig. 3(b). The switch is capable
of changing its state from one to the other by adding excess amount of the
competitive strand.

Fig. 3. Schematic of the bistable switch. (a) DNA strands and enzymes necessary for
the bistable switch are summarized. Signal and templates strands are represented by
right- and left- pointing arrows, respectively. We name each strand by the string below
the strand. The reactions of the system are driven by three enzymes that are poly-
merase, nickase, and exonuclease. Using signal strands a and b as primers, templates
A and B can produce DNA strands a and b in an autocatalytic manner, respectively.
Templates InhAB and InhBA can also produce signal strands inhb and inha using a
and b as primers, respectively. Produced inha and inhb hybridize to templates A and
B, which will prevent the autocatalytic production of a and b, respectively. (b) Topo-
logical representation of the system. Though the signal ‘a’ and ‘b’ produces themselves
by auto-catalytic reactions, they inhibit the production of one another (Color figure
online).

172 I. Kawamata et al.

We list some features of the switch as below.

– We can discretize a state of the solution even when the concentration of
molecules is continuous.

– It is possible to switch the state of the solution from ‘b’ to ‘a’.
– Detailed ordinary differential equations (ODEs) and a parameter set are

given.
– The system is experimentally simple and reliable.

3.2 Capsule of Hydrogel

To discretize space, we think of encapsulating the switch in a hydrogel capsule.
The capsule has a shell of hydrogel and core of solution (Fig. 4(a)). Since the
hydrogel is a buffer fixed by a polymer network, small molecules can diffuse
slowly. A molecule that is larger than the pore size of the network, however,
cannot pass through the hydrogel. Of course, all the molecules diffuse relatively
fast in a solution and the concentration of molecules inside a capsule becomes
uniform.

An idea to prevent the template strands, which encode the state of the switch,
from diffusing is necessary. We propose to attach molecules such as large DNA
structure or other polymer [32] to the 5’ ends of the templates strands. Those
assumptions guarantee that one cell has only one state, while signal strands can
diffuse to neighboring cells. The space is made by arranging such capsules in a
square lattice (Fig. 4(b)).

Fig. 4. Concept of hydrogel capsules. (a) Hydrogel capsules contain DNA strands for
the switch. Enzymes are assumed to be distributed in all the area, though they are not
shown. The left and right capsules are in state ‘a’ and ‘b’, respectively. The size of the
capsule is represented by two length parameters c and s. (b) The capsules are arranged
in square lattice, where capsules are contacting by the hydrogel shell. One capsule has
four neighboring capsules to match the model of the cellular automaton (Color figure
online).

Discrete DNA Reaction-Diffusion Model 173

4 Reaction Diffusion Model

We formalized reaction diffusion equations with 26 variables and 19 parame-
ters summarized in the AppendixA. The ODEs and kinetic parameters were
taken from the detailed model of the original bistable switch [25,33]. The only
difference is the terms of diffusion for diffusing molecular species.

Following the names of each structure of the original article, the variables
were assigned to all the signal strands, templates strands, and possible interme-
diate structures. The parameters include rate constant, Michaelis-Menten con-
stants, and diffusion coefficients. Note that state ‘a’ is more favorable than state
‘b’ due to the difference of the kinetic constants such as denaturation of DNA.

Since the speed of diffusion is different between gel and solution, the term
of diffusion is formalized by an inner product of the differential operator ∇.
We roughly estimated the diffusion coefficients of DNA in solution and hydrogel
from experimental data [34,35].

To be a concrete model, we assumed that the capsule is made of liquid-core
and a 1.5% alginate hydrogel shell [36]. We fixed the ratio between capsule size
c and the thickness of the shell s to be c = 8s. We used s = 200µm as a default
value unless otherwise specified.

5 Simulation Results

5.1 Continuous Space

First we simulated the system under continuous space to prove that the transition
rules are possible to achieve. All the results were obtained by coding the system
for the reaction-diffusion simulator “Ready” [31]. In practice, the space was
represented by a square lattice with total 1872 grids.

By numerically solving the equations from defined initial states with nine
cells, we observed expected transitions of the states of the cells (Fig. 5(a),(b)). We
further changed the parameter of shell thickness s and the initial concentrations
of template strands and checked if the desired state transitions happened. As
shown in the phase diagram (Fig. 5(d)), those conditions crucially affected the
result of transition.

5.2 Discrete Space

Since the continuous space simulation was computationally expensive, we dis-
cretize the space to simulate a larger space. In the modified model for the dis-
crete space, we ignored the diffusion coefficients in solution and only took into
account those in hydrogel shell. As a result, we have successfully simulated the
spatio-temporal evolution of the maze problem (Fig. 6) using “Ready” [31] again.
Although the space was discrete, the concentrations of each molecule were sim-
ulated by continuous ODEs. The result strongly indicates that the DNA system
with our assumptions can perform a simple computation written in a cellular
automaton.

174 I. Kawamata et al.

Fig. 5. Simulation results under continuous space. If the initial state of a cell was ‘a’
and ‘b’, concentration of the corresponding signal strands of the core was set to 40 nM,
respectively. One capsule was represented by a circle with 16 grids in diameter. Initial
concentrations of the template strands were 20 nM in every place. Other signal strands
and intermediate structures had 0 nM as an initial condition. As shown in (c), blue
and red channels correspond to the concentrations of strand ‘a’ and ‘b’, respectively.
(a) When a cell had two neighbors that were in state ‘a’, the state did not change. Time
evolutions of the concentrations of signal strands in the center cell are shown in the
right graph. X and y axes are time in minutes and concentration in nM. (b) The same
simulation result for the three neighbors. In this case, the state changed from ‘b’ to ‘a’.
(d) Phase diagram of transitions condition. The result is a summary of simulations (for
1000 min) by varying the shell size and initial concentrations of templates strands.
The desired transition occurred only when the conditions of cross mark were satisfied.
The legend of the diagram indicates the minimum number of neighbors for the state
transition. (Color figure online)

After some simulations, we found that the rule is not limited to solve mazes.
It was possible to carry other types of simulations (Fig. 7). Specifically, we per-
formed the simulations of forming unique pattern, starting from a random initial

Discrete DNA Reaction-Diffusion Model 175

Fig. 6. Simulation result of the maze problem under discrete space. Distance between
cells was changed to 650µm. We used 20 nM as initial concentrations of signal and
templates strands. Similar to the continuous simulation, time evolutions of the con-
centrations are shown. For the time evolution, we selected the cell that changed the
number of neighbors in state ‘a’ for three times.

Fig. 7. Other simulation results (a) As a first demonstrations, we simulated a smile
face from a specific initial pattern. (b) By changing the cell distance to 900µm in a
honeycomb lattice, the transition rules slightly changed. The state ‘b’ changed to ‘a’
when there are 5 or more neighboring cells in state ‘a’. (c) In the case of random initial
pattern.

pattern, and assuming a hexagonal lattice. The first simulation result suggests
the application of our framework for other pattern formation problem.

The second and third simulations were carried in consideration of experimen-
tal implementation. It may be difficult to arrange the capsules in a square lattice
nor write a complex initial pattern. Those results suggest that our framework
can be easily extended depending on the experimental demands.

176 I. Kawamata et al.

Fig. 8. State transition machine and its implementation as an initial state of the cellular
automaton. (a) A schematic representation of an automaton that reads sequence of
letters and accepts four sequential ‘a’. (b) The program of the maze solving cellular
automaton is shown as an initial state. Four empty cells are painted according to the
four letters x1 · · ·x4. If the sequence is acceptable, the marked cell changes its state as
a result of applying the rules.

6 Application and Discussion

We introduce an application of the maze solving cellular automaton from the
computational viewpoint. Since the transition only occurs from states ‘b’ to
‘a’, the ability of the cellular automaton seems extremely limited. However,
it is possible to program a very simple state transition machine as an initial
state. For example, an automaton that accepts four sequential ‘a’ can be pro-
grammed (Fig. 8).

Although it treats finite number of letters, the concept of using such cellular
automata for computational purpose is comprehensive. Challenging problems for
further research may include how to design a feasible chemical reaction network
that can emulate a Turing universal cellular automaton like the game of life [37].
Candidates to extend the ability of our framework is to adopt the techniques to
design DNA chemical reaction networks described in Sect. 1. From the results of
our and other theoretical models [24], it looks still difficult to overcome the trade-
off between the ability of computation and the network complexity in terms of
the number of molecular species.

Finally, we point out some technical difficulties we are aware of when imple-
menting our system in real experiments. The alginate hydrogel contains calcium
as a cross-linker, which may affect the kinetics of enzymes used in the system. If
we have to avoid the alginate hydrogel, other polymer that has the same ratio
between the scale of the capsule and diffusion coefficients must substitute the
shell. Formation of uniform hydrogel capsules and arranging them in a desired
lattice is also of problem. Writing the initial pattern may be achieved by modi-
fying DNA with a photo-responsive molecule [38].

Discrete DNA Reaction-Diffusion Model 177

The energy source to drive the reactions is important. We assumed that suf-
ficient substrates such as dNTPs are provided at the initial state. If the reaction
time becomes long, it may be necessary to supply them from external bath.

In this paper, we propose a theoretical reaction-diffusion model that is based
on well-characterized DNA and enzyme reactions. We numerically simulate the
model and show the capability to emulate a maze-solving cellular automaton.
The important idea is to encapsulate molecules in hydrogel capsules that is
arranged in a lattice. Unlike the conventional theoretical model capable of emu-
lating a cellular automaton by DNA chemical reaction network, our model does
not require external clock and evolves autonomously. Our framework contributes
to aid the experimental implementation of feasible DNA chemical reaction-
diffusion network for pattern formation and computation.

Acknowledgement. We appreciate Masami Hagiya to motivate this research. Help-
ful advice from the experimental viewpoints were given by Hiroyuki Asanuma, Takashi
Arimura, Yusuke Hara, and Nobuyoshi Miyamoto. We thank Teijiro Isokawa and
Ferdinand Peper for discussion including the suggestion to simulate a normal automa-
ton by a cellular automaton. This research was supported by Grant-in-Aid for Scientific
Research on Innovative Areas “Molecular Robotics” (No. 24104005) and Grant-in-Aid
for Young Scientists (Start-up, 26880002).

A Reaction diffusion model

The equations of our model are shown below. Terms for diffusion, which we
added to the original equations, are highlighted by red color.

∂

∂t
[a] =∇ · (Dfast∇[a]) + k

a
d × ([aA] + [Aa] + 2 × [aAa] + [aInhAB] + [aInhABinhb]) + kh × [inha] × ([aA] + [Aa])

− kh × [a] × (2 × [A] + [aA] + [Aa] + 2 × toe × [Ainh] + [InhAB] + [InhABinhb])

+ kpol,sd × [aAa]/Km,sd/Cpol − kexo × [a]/Km,input/Cexo

∂

∂t
[b] =∇ · (Dfast∇[b]) + k

b
d × ([bB] + [Bb] + 2 × [bBb] + [bInhBA] + [bInhBAinha]) + kh × [inhb] × ([bB] + [Bb])

− kh × [b] × (2 × [B] + [bB] + [Bb] + 2 × toe × [Binh] + [InhBA] + [InhBAinha])

+ kpol,sd × [bBb]/Km,sd/Cpol − kexo × [b]/Km,input/Cexo

∂

∂t
[A] =∇ · (Dslow∇[A]) + k

a
d × ([aA] + [Aa]) + k

inha
d × [Ainh] − kh × [A] × (2 × [a] + [inha])

∂

∂t
[B] =∇ · (Dslow∇[B]) + k

b
d × ([bB] + [Bb]) + k

inhb
d × [Binh] − kh × [B] × (2 × [b] + [inhb])

178 I. Kawamata et al.

∂

∂t
[aA] =∇ · (Dslow∇[aA]) + kh × [a] × ([A] − [aA]) + kh × toe × [a] × [Ainh] + k

a
d × [aAa]

− kh × [inha] × [aA] − k
a
d × [aA] − kpol × [aA]/Km/Cpol

∂

∂t
[bB] =∇ · (Dslow∇[bB]) + kh × [b] × ([B] − [bB]) + kh × toe × [b] × [Binh] + k

b
d × [bBb]

− kh × [inhb] × [bB] − k
b
d × [bB] − kpol × [bB]/Km/Cpol

∂

∂t
[Aa] =∇ · (Dslow∇[Aa]) + kh × [a] × ([A] − [Aa]) + kh × toe × [a] × [Ainh] + k

a
d × [aAa]

− kh × [inha] × [Aa] − k
a
d × [Aa]

∂

∂t
[Bb] =∇ · (Dslow∇[Bb]) + kh × [b] × ([B] − [Bb]) + kh × toe × [b] × [Binh] + k

b
d × [bBb]

− kh × [inhb] × [Bb] − k
b
d × [Bb]

∂

∂t
[aAa] =∇ · (Dslow∇[aAa]) + kh × [a] × ([aA] + [Aa]) − 2 × k

a
d × [aAa]

+ knick × [Aaa]/Knick − kpol,sd × [aAa]/Km,sd/Cpol

∂

∂t
[bBb] =∇ · (Dslow∇[bBb]) + kh × [b] × ([bB] + [Bb]) − 2 × k

b
d × [bBb]

+ knick × [Bbb]/Knick − kpol,sd × [bBb]/Km,sd/Cpol

∂

∂t
[Aaa] =∇ · (Dslow∇[Aaa]) + kpol × [aA]/Km/Cpol + kpol,sd

× [aAa]/Km,sd/Cpol − knick × [Aaa]/Knick

∂

∂t
[Bbb] =∇ · (Dslow∇[Bbb]) + kpol

× [bB]/Km/Cpol + kpol,sd × [bBb]/Km,sd/Cpol − knick × [Bbb]/Knick

∂

∂t
[inha] =∇ · (Dfast∇[inha]) + k

inha
d × ([Ainh] + [InhBAinha] + [bInhBAinha])

− kh × [inha] × ([InhBA] + [bInhBA] + [A] + [aA] + [Aa])

+ kpol,sd × [bInhBAinha]/Km,sd/Cpol − kexo × [inha]/Km,inh/Cexo

∂

∂t
[inhb] =∇ · (Dfast∇[inhb]) + k

inhb
d × ([Binh] + [InhABinhb] + [aInhABinhb])

− kh × [inhb] × ([InhAB] + [aInhAB] + [B] + [bB] + [Bb])

+ kpol,sd × [aInhABinhb]/Km,sd/Cpol − kexo × [inhb]/Km,inh/Cexo

∂

∂t
[Ainh] =∇ · (Dslow∇[Ainh]) + kh × [inha] × ([A] + [aA] + [Aa]) − 2

× kh × toe × [a] × [Ainh] − k
inha
d × [Ainh]

∂

∂t
[Binh] =∇ · (Dslow∇[Binh]) + kh × [inhb] × ([B] + [bB] + [Bb]) − 2

× kh × toe × [b] × [Binh] − k
inhb
d × [Binh]

∂

∂t
[InhAB] =∇ · (Dslow∇[InhAB]) + k

a
d × [aInhAB] + k

inhb
d × [InhABinhb] − kh × [InhAB] × ([a] + [inhb])

∂

∂t
[InhBA] =∇ · (Dslow∇[InhBA]) + k

b
d × [bInhBA] + k

inha
d × [InhBAinha] − kh × [InhBA] × ([b] + [inha])

∂

∂t
[aInhAB] =∇ · (Dslow∇[aInhAB]) + kh × [a] × [InhAB] − kh × [aInhAB] × [inhb] + k

inhb
d × [aInhABinhb]

− k
a
d × [aInhAB] − kpol × [aInhAB]/Km/Cpol

∂

∂t
[bInhBA] =∇ · (Dslow∇[bInhBA]) + kh × [b] × [InhBA] − kh × [bInhBA] × [inha] + k

inha
d × [bInhBAinha]

− k
b
d × [bInhBA] − kpol × [bInhBA]/Km/Cpol

∂

∂t
[InhABinhb] =∇ · (Dslow∇[InhABinhb]) + kh × [inhb] × [InhAB] − kh × [InhABinhb] × [a]

+ k
a
d × [aInhABinhb] − k

inhb
d × [InhABinhb]

∂

∂t
[InhBAinha] =∇ · (Dslow∇[InhBAinha]) + kh × [inha] × [InhBA] − kh × [InhBAinha] × [b]

+ k
b
d × [bInhBAinha] − k

inha
d × [InhBAinha]

Discrete DNA Reaction-Diffusion Model 179

∂

∂t
[aInhABinhb]=∇ ·(Dslow∇[aInhABinhb]) +kh ×[a]× [InhABinhb] +kh× [aInhAB]× [inhb]− k

a
d× [aInhABinhb]

− k
inhb
d × [aInhABinhb] + knick× [InhABainhb]/Knick − kpol,sd× [aInhABinhb]/Km,sd/Cpol

∂

∂t
[bInhBAinha]=∇ ·(Dslow∇[bInhBAinha])+ kh× [b]× [InhBAinha]+ kh× [bInhBA]× [inha]− k

b
d× [bInhBAinha]

− k
inha
d × [bInhBAinha] + knick× [InhBAbinha]/Knick − kpol,sd× [bInhBAinha]/Km,sd/Cpol

∂

∂t
[InhABainhb] =∇ · (Dslow∇[InhABainhb])+ kpol× [aInhAB]/Km/Cpol+ kpol,sd ×[aInhABinhb]/Km,sd/Cpol

− knick × [InhABainhb]/Knick
∂

∂t
[InhBAbinha]=∇ · (Dslow∇[InhBAbinha])+ kpol× [bInhBA]/Km/Cpol+ kpol,sd× [bInhBAinha]/Km,sd/Cpol

− knick × [InhBAbinha]/Knick,

where

Cpol =1 + [aA]/Km + [bB]/Km + [aAa]/Km,sd + [bBb]/Km,sd

+ [aInhAB]/Km + [bInhBA]/Km + [aInhABinhb]/Km,sd + [bInhBAinha]/Km,sd

Cexo =1 + [a]/Km,input + [b]/Km,input + [inhb]/Km,inh + [inha]/Km,inh

Knick =Kmn + [Aaa] + [Bbb] + [InhABainhb] + [InhBAbinha].

As kinetic parameters, we used the fitted values of the original article [25].
Diffusion coefficient of DNA in solution was roughly estimated from experimental
values [34,35].

kh = 0.06[nM−1 · min−1], k
a
d = kh/0.013[min−1], k

b
d = kh/0.0045[min−1],

k
inha
d = kh/5.3[min−1], k

inhb
d = kh/1.3[min−1], toe = 0.01,

kpol = 2100[nM · min−1], kpol,sd = 420[nM · min−1], knick = 80[nM · min−1], kexo = 300[nM · min−1],

Km = 80[nM], Km,sd = 5.5[nM], Kmn = 30[nM], Km,input = 440[nM], Km,inh = 150[nM].

Dfast =

{
1.2 × 10−8 [m2 · min−1] (in solution)
6.0 × 10−10 [m2 · min−1] (in hydrogel)

, Dslow =

{
1.2 × 10−8 [m2 · min−1] (in solution)
3.0 × 10−12 [m2 · min−1] (in hydrogel)

References

1. Rangnekar, A., LaBean, T.H.: Building DNA nanostructures for molecular com-
putation, templated assembly, and biological applications. Acc. Chem. Res. 47(6),
1778–1788 (2014)

2. Zhang, F., Nangreave, J., Liu, Y., Yan, H.: Structural DNA nanotechnology: state
of the art and future perspective. J. Am. Chem. Soc. 136(32), 11198–11211 (2014)

3. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement
reactions. Nat. Chem. 3(2), 103–113 (2011)

4. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314(5805), 1585–1588 (2006)

5. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332(6034), 1196–1201 (2011)

6. Turberfield, A.J., Yurke, B.: Engineering entropy-driven reactions and networks
catalyzed by DNA. Science 318(5853), 1121–1125 (2007)

7. Fujii, T., Rondelez, Y.: Predator-prey molecular ecosystems. ACS Nano 7(1), 27–34
(2013)

180 I. Kawamata et al.

8. Kuzuya, A., Ohya, Y.: Nanomechanical molecular devices made of DNA origami.
Acc. Chem. Res. 47(6), 1742–1749 (2014)

9. Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular robotics:
a new paradigm for artifacts. New Gener. Comput. 31, 27–45 (2013)

10. Hagiya, M., Konagaya, A., Kobayashi, S., Saito, H., Murata, S.: Molecular robots
with sensors and intelligence. Acc. Chem. Res. 47(6), 1681–1690 (2014)

11. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. B Biol.
Sci. 237(641), 37–72 (1952)

12. Lee, K.-J., McCormick, W.D., Pearson, J.E., Swinney, H.L.: Experimental obser-
vation of self-replicating spots in a reaction-diffusion system. Nature 369(6477),
215–218 (1994)

13. Vanag, V.K., Epstein, I.R.: Tomography of reaction-diffusion microemulsions
reveals three-dimensional turing patterns. Science 331(1309), 1309–1312 (2011)

14. Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding
biological pattern formation. Science 329(5999), 1616–1620 (2010)

15. Chirieleison, S.M., Allen, P.B., Simpson, Z.B., Ellington, A.D., Chen, X.: Pattern
transformation with DNA circuits. Nat. Chem. 5(12), 1000–1005 (2013)

16. Padirac, A., Fujii, T., Estévez-Torres, A., Rondelez, Y.: Spatial waves in synthetic
biochemical networks. J. Am. Chem. Soc. 135(39), 14586–14592 (2013)

17. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Nat. Acad. Sci. 107(12), 5393–5398 (2010)

18. Phillips, A., Cardelli, L.: A programming language for composable DNA circuits.
J. R. Soc. Interface 6(Suppl 4), S419–S436 (2009)

19. Aubert, N., Mosca, C., Fujii, T., Hagiya, M., Rondelez, Y.: Computer-assisted
design for scaling up systems based on DNA reaction networks. J. R. Soc. Interface
11(93), 20131167 (2014)

20. Allen, P.B., Chen, X., Simpson, Z.B., Ellington, A.D.: Modeling scalable pat-
tern generation in DNA reaction networks. Artif. Life 13, 441–448 (2012).
http://dx.doi.org/10.7551/978-0-262-31050-5-ch058

21. Scalise, D., Schulman, R.: Designing modular reaction-diffusion programs for com-
plex pattern formation. Technology 02(01), 55–66 (2014)

22. Dalchau, N., Seelig, G., Phillips, A.: Computational design of reaction-diffusion
patterns using DNA-based chemical reaction networks. In: Murata, S., Kobayashi,
S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 84–99. Springer, Heidelberg (2014)

23. Hagiya, M., Wang, S., Kawamata, I., Murata, S., Isokawa, T., Peper, F., Imai, K.:
On DNA-based gellular automata. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.)
UCNC 2014. LNCS, vol. 8553, pp. 177–189. Springer, Heidelberg (2014)

24. Scalise, D., Schulman, R.: Emulating cellular automata in chemical reaction-
diffusion networks. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol.
8727, pp. 67–83. Springer, Heidelberg (2014)

25. Padirac, A., Fujii, T., Rondelez, Y.: Bottom-up construction of in vitro switchable
memories. Proc. Nat. Acad. Sci. 109(47), E3212–E3220 (2012)

26. Fischlechner, M., Schaerli, Y., Mohamed, M.F., Patil, S., Abell, C., Hollfelder, F.:
Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nat. Chem.
6(9), 791–796 (2014)

27. Machado, A.H., Lundberg, D., Ribeiro, A.J., Veiga, F.J., Miguel, M.G., Lindman,
B., Olsson, U.: Encapsulation of DNA in macroscopic and nanosized calcium algi-
nate gel particles. Langmuir. 29(51), 15926–15935 (2013)

28. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40
(2004)

http://dx.doi.org/10.7551/978-0-262-31050-5-ch058

Discrete DNA Reaction-Diffusion Model 181

29. Nayfeh, B.A.: Cellular automata for solving mazes. Dr. Dobb’s J. 18(2), 32–38
(1993)

30. Saber, M.A., Mirenkov, N.: A visual representation of cellular automata-like sys-
tems. J. Visual Lang. Comput. 15(6), 409–438 (2004)

31. Hutton, T., Munafo, R., Trevorrow, A., Rokicki, T., Wills, D.: Ready, a cross-
platform implementation of various reaction-diffusion systems. https://github.
com/GollyGang/ready

32. Allen, P., Chen, X., Ellington, A.: Spatial control of DNA reaction networks by
DNA sequence. Molecules 17(12), 13390–13402 (2012)

33. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using
toehold exchange. J. Am. Chem. Soc. 131(47), 17303–17314 (2009)

34. Stellwagen, E., Yongjun, L., Stellwagen, N.C.: Unified description of electrophore-
sis and diffusion for DNA and other polyions. Biochemistry 42(40), 11745–11750
(2003)

35. Pluen, A., Netti, P.A., Jain, R.K., Berk, D.A.: Diffusion of macromolecules in
agarose gels: comparison of linear and globular configurations. Biophys. J. 77(1),
542–552 (1999)

36. Bremond, N., Santanach-Carreras, E., Chu, L.-Y., Bibette, J.: Formation of liquid-
core capsules having a thin hydrogel membrane: liquid pearls. Soft Matter 6(11),
2484–2488 (2010)

37. Rendell, P.: Turing universality of the game of life. In: Adamatzky, A. (ed.)
Collision-Based Computing, pp. 513–539. Springer, London (2002)

38. Feng, L., Romulus, J., Li, M., Sha, R., Royer, J., Kun-Ta, W., Qin, X., Seeman,
N.C., Weck, M., Chaikin, P.: Cinnamate-based DNA photolithography. Nat. Mater.
12, 747–753 (2013)

https://github.com/GollyGang/ready
https://github.com/GollyGang/ready

Universal Totalistic Asynchonous Cellular
Automaton and Its Possible Implementation

by DNA

Teijiro Isokawa1(B), Ferdinand Peper2, Ibuki Kawamata3, Nobuyuki Matsui1,
Satoshi Murata3, and Masami Hagiya4

1 University of Hyogo, Himeji, Japan
isokawa@eng.u-hyogo.ac.jp

2 Center for Information and Neural Networks,
National Institute of Information and Communications Technology,

Osaka University, Osaka, Japan
3 Tohoku University, Sendai, Japan

4 The University of Tokyo, Tokyo, Japan

Abstract. This paper presents a Cellular Automaton (CA) model
designed for possible implementation by the reaction and diffusion of
DNA strands. The proposed CA works asynchronously, whereby each
cell undergoes its transitions independently from other cells and at ran-
dom times. The state of a cell changes in a cyclic manner, rather than
according to an any-to-any mapping. The transition rules are designed as
totalistic, i.e., the next state of a cell is determined only by the number
of states in the neighborhood of the cell, not by their relative positions.
Universal circuit elements are designed for the CA as well as wires and
crossings to connect them, which implies that the CA is Turing-complete.

1 Introduction

Since their introduction by von Neumann in the 1950’s Cellular Automata (CAs)
have attracted extensive research interest, varying from computation to the sim-
ulation of phenomena in nature. Studies on computation usually evolve around
the question how closely a CA is able to emulate a Turing-universal model, or
around the implementation of a computing problem on a CA, like the firing squad
problem [7] or the majority problem [4]. Surprisingly, there have been relatively
few efforts to physically implement computation on CAs, and the attempts to do
so have mostly focused on the realm of silicon [14], but with little follow-up. The
success of VLSI in the last 50 years has been strongly credited to the ongoing use
of the von Neumann architecture, at the cost of neglecting CAs for this purpose.
CAs, however, have some strong arguments speaking for them. Their regularity
has the potential for bottom-up manufacturing [3], like molecular self-assembly.
Biological implementations of CAs have attracted even less efforts, even though
CAs have features, such as their modular structure, that make them suitable
for such a framework. The efforts in this direction have aimed to implement

c© Springer International Publishing Switzerland 2016
M. Amos and A. Condon (Eds.): UCNC 2016, LNCS 9726, pp. 182–195, 2016.
DOI: 10.1007/978-3-319-41312-9 15

Universal Totalistic Asynchonous Cellular Automaton 183

the enclosures surrounding each cell compartment by gels, that are dissolved or
reestablished depending on control asserted from a supervising mechanism [5].

Even less tried is the use of DNA to assert control over the behavior of cells in
CAs, even though DNA has a significant history in being used for computation,
like in the Hamiltonian Path Problem (HPP) [2]. This type of computation
relies on a loose control, in which DNA molecules encoding an instance of HPP
interact with each other in a solvent, organizing themselves into molecules that
represent a solution of the problem. More microscale control of computation
by DNA, however, has only been touched upon recently [8,10,12], but one of
the problems it faces is the lack of a well-defined chemical environment in which
operations are enclosed. Such control is important, because it is a precursor to the
successful realization of molecular robots [9], which to date remains a futuristic,
though exciting, goal. The few attempts to realize CAs by DNA [6,13] have
adopted outside control in which an external clock signal, which may be optical,
chemical, etc., regulates interactions between cells as well as the timing of the
interactions, but these models cannot operate autonomously.

This paper lines out the conditions a CA model should satisfy in order to be
suitable for implementing DNA-based computation. It does so by focusing on
the particulars of DNA, and investigating how they are best represented in a CA
framework. As an illustration, a CA satisfying the conditions is proposed. The
CA is asynchronously timed, i.e., there is no central clock according to which all
cells update their states in lock-step. The CA will also satisfy the requirement
that no states of cells next to each other are the same, except for two common
states that carry little information, i.e., the resting state and the state indicating
an empty wire. This makes it easier for the CA to distinguish between the DNA
in a cell and that in its neighbors. Rules in the CA are designed such that states
are updated in a cyclic way. This facilitates implementation by DNA because
it decreases the number of possible reactions. We also discuss totalistic CAs,
which express their transition rules in terms of the number of neighboring cells in
certain states rather than the specific locations of those cells. This makes them
very suitable for a DNA-based framework, apart from the fact that totalistic
CA are also inherently rotation- and reflection-symmetric. The initial design of
transition rules will be in a non-totalistic form, but we will convert them to two
types of totalistic rules. We introduce an additional condition on transition rules,
which, when satisfied, will be called Boolean totalistic. The state transition of a
cell satisfying this condition is determined by the mere presence of certain states
in the cell’s neighborhood, rather than by the number of those states. Boolean
totalistic CAs are more amenable to implementation by DNA, because they do
not require counting of the number of states in cell neighborhoods.

This paper is organized as follows. Section 2 describes preliminaries on the
CA and the circuit elements we will emulate on it. Section 3 shows the design of
the CA. We finish with the conclusions and a discussion in Sect. 4.

184 T. Isokawa et al.

2 Preliminaries

2.1 Possible DNA Implementation of Model

Our proposal for the implementation of a CA by DNA revolves around the
switching element presented and analyzed in [10,12], which is based on six kinds
of chemicals: two DNAs for representing the state of a switch, called α and β, and
four template DNAs pα, pβ, iα, and iβ promoting or inhibiting the production
of α and β. The catalytic reactions between these chemicals lead to a bistable
system that can be in state α or state β, depending on the proportion of their
corresponding promoters and inhibitors.

This bistable system can be extended to an n-state system (n > 2), but it
requires constraints on the transitions that are allowed to keep physical imple-
mentations practical. Any-to-any state transitions would require O(n2) promot-
ers and inhibitors, but this number can be reduced to O(n) by designing transi-
tions to occur in a cyclic fashion.

2.2 Cellular Automaton Model

The cellular automaton (CA) in this paper is a two-dimensional CA of identical
cells. A cell has a state that is an element of a finite set of states, and it is
connected to four cells that share its edges (von Neumann neighborhood). The
cellular space of this CA is shown in Fig. 1, where the state of a cell is shown by
a symbol in the cell. The state of a cell changes according to the states of the
cell itself and its neighboring cells. In our initial design we use transition rules
describing state changes that have the form illustrated in Fig. 2. The transition
rules of this type are defined as a function (sc, sn, se, ss, sw) → s′

c, where sc
denotes the state of the cell itself, and sn, se, ss, and sw denote the states of its
northern, eastern, southern, and western neighboring cell, respectively. The state
of the cell after update is denoted by s′

c. These transition rules will be trans-
formed into another type of transition rules, called totalistic, which are described
as s1(n1) s2 (n2) s3 (n3) · · · → s′

c where si and ni (i ≤ 5) denote the states of
cells and their numbers in this state in a cell’s neighborhood, respectively. This
rule means that the state of the cell is changed to s′

c if the number of the neigh-
boring cells in state s1 is n1, in state s2 is n2, and so on. This type of rule is
called inner totalistic, because in the count of the number of states in a cell’s
neighborhood, the state of the cell itself is included. The rules are outer totalistic
otherwise. In case of outer totalistic rules, if the cell’s state is additionally defined
in the left hand side of transition rules, the CA is called inner dependent and
a transition rule takes the form sc s1(n1) s2 (n2) s3 (n3) · · · → s′

c. If the cell’s
state is not defined in the left hand side, the rule is called inner independent. For
a CA based on DNA this is the ideal situation, because the influence of DNA
in the cell itself can be completely shut out. However, it is difficult to achieve
Turing universality in a CA model with outer totalistic inner independent rules,
and it tends to require a larger neighborhood of a cell [1].

Universal Totalistic Asynchonous Cellular Automaton 185

The state of a cell in the presented CA changes in a cyclic manner, according
to a cycle s1 → s2 → · · · → sn → s1 → · · · consisting of n states. Each of the
cells in this paper undergoes its transitions asynchronously, unlike the typical
synchronous CA models in which all cells are updated at once each time.

2 1 1 1

K

1

Fig. 1. Cellular
space. Each cell
is connected to
four neighboring
cells.

ss

sn

sw sesc sc

Fig. 2. Transition
of a cell. The cen-
ter cell in the left
hand side changes
its state to the one
in the right hand
side.

Fig. 3. A signal on
a wire

1

2

3

Fig. 4. K-element

2.3 Circuit Elements

One scheme for computation on CAs is based on the emulation of circuit elements
and their signals. A NAND gate can be used to compute any Boolean function,
but this is rather complex for asynchronous CA and requires timing conditions
for ensuring its correct operation. So, we choose another set of circuit elements
that are more suitable for asynchronous operation. These elements form the basis
of so-called delay-insensitive circuits, which allow any delay in signals without
this affecting the correctness of the outcome of a computation.

A few decades ago Priese [11] proposed circuit elements from which arbi-
trary delay-insensitive circuits can be constructed. His circuit elements consist
of two logic elements, signals, and wires, whereby a signal flows along a wire in
a certain direction (Fig. 3) and is operated upon by the logic elements. Priese’s
logic elements, called E-element and K-element [11], are schematically shown in
Figs. 4 and 5. The circuits constructed from E-elements and K-elements have in
common that they employ only one signal at a time. Though inefficient, this is
sufficient to guarantee universality.

The K-element has two input wires (1 and 2 in Fig. 4) and one output wire
(3 in Fig. 4), and it accepts a signal coming from either input wire and outputs
it to the output wire.

The E-element has two input wires (S and T) and three output wires (S′, Tu,
and Td), as well as two internal states (‘up’ or ‘down’). Input from wire T will be
redirected to either of the output wires Tu or Td, depending on the internal state
of the element: when this state is ‘up’ (resp. ‘down’), a signal on the input wire
T flows to the output wire Tu (resp. Td) as in Fig. 5(a) (resp. Fig. 5(b)). When

186 T. Isokawa et al.

accepting a signal from input wire S, an E-element flips its internal state, after
which it outputs an acknowledge signal to output wire S′, as shown in Fig. 5(c).

S

T

S'
Tu

Td

S

T

S'
Tu

Td

(a)

S

T

S'
Tu

Td

S

T

S'
Tu

Td

(b)

S

T

S'
Tu

Td

S

T

S'
Tu

Td

(c)

Fig. 5. E-element and its operations: (a) when in the ‘up’ state, (b) when in the ‘down’
state, and (c) changing state upon receiving an input signal on wire S.

3 Design of the Cellular Automaton

The CA described in this section achieves universal computation ability by emu-
lating K-elements and E-elements that are connected to each other by wires.
This makes it possible to represent a wide variety of circuits on the CA. The
transition rules for the CA are listed in the appendix.

(a)

1

(b)

2

(c)

3

(d)

4

(e)

5

(f)

Fig. 6. A signal propagating to the right on a wire. The cell state 1 is used for wires,
and the head and tail of a signal are represented by the states 2 and 3, respectively.

3.1 Signal and Wire

Figure 6(a) shows a configuration consisting of a linear array of state 1 cells,
which constitutes a wire, with a state 2 cell on it, which represents the head of
a signal, next to a state 3 cell, which is the tail. We refer to a cell on a wire as a
general wire cell (Gwc). There are five transition rules driving the signal to the
right, which are described as (see AppendixA):

Rule #1 : (1, 0, 1, 0, 2) → Z Rule #4 : (Y, 0, Z, 0, 1) → 3
Rule #2 : (2, 0, Z, 0, 3) → Y Rule #5 : (Z, 0, 1, 0, 3) → 2
Rule #3 : (3, 0, Y, 0, 1) → 1

The propagation of a signal on a wire is shown in Fig. 6(b)–(f), where the
numbers attached to the arrows between configurations denote the applied tran-
sition rules. A Gwc through which a signal passes goes through the cycle of states
1 → Z → 2 → Y → 3 → 1 → · · · , triggered by the state 2 in a neighboring cell.
The design of the CA is such that the cells carrying a signal all have different
states from their neighbors. This makes it easier to distinguish between DNA
representing the states in neighboring cells.

Universal Totalistic Asynchonous Cellular Automaton 187

3.2 Crossing of Wires

In order to pass a crossing of wires, a signal has to choose an appropriate output
terminal from three terminals. To this end, a crossing recognizes the direction
a signal comes from and outputs it to the terminal at the opposite side. In the
configuration of the wire crossing in Fig. 7(a) the cell states C0 and C1 are used
to mark whether the terminals should be used as output or not. These marker
cells are called corner cells (Cc), and the cell on a wire between two corner cells
is a crossing terminal (Ct). Figure 7(b)–(h) show a signal proceeding through
the crossing point (Cp) in the center. The signal, which is about to enter the
crossing in Fig. 7(b), has to wait for the neighboring corner cells to change their
states from C0 to C1 (Fig. 7(c)), before it can proceed to Cp (Fig. 7(d)). Two C1

corner cells at both sides of a wire thus indicate that a signal is about to pass
or is in the process of passing. The transition rules are designed such that the
corner cells at the input side of a signal on a crossing will never be in state C1 at
the same time as the corner cells at the opposite side of the crossing, unless the
signal is already halfway through (Fig. 7(f)). Accordingly, the signal cannot turn
left or right at the crossing, because when its head is at Cp, the corresponding
corner cells for output terminals to the crossing wire have the different states C0

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. (a) Configuration for the crossing of wires. (b) Signal entering from the left
waits at the terminal, which has the corner cells with state C0 at both sides. (c),(d)
Signal proceeds to the crossing point after the state of the corner cells have changed to
C1. (e) The signal recognizes the terminal to which it should be output (at the right),
because it is the only side at which the two corner cells are in state C0. (f) The corner
cells at the output side with state C0 change their states to C1 to process the incoming
signal for output. At this stage the signal is already halfway through, so it cannot exit
via a side wire, even if the corresponding terminals both have corner cells in state C1.
(g) The corner cells in state C1 at the input side revert to state C0 after the signal has
passed them. (h) The signal has almost passed the crossing, and after it has exited the
corner cells at the output side will revert to state C0, allowing the crossing to accept
the next signal.

188 T. Isokawa et al.

and C1 (Fig. 7(e)). The transition rules for driving a signal through a crossing
are listed in the appendix (rules #6 to #17).

3.3 K-element

For the construction of the K-element, it is again necessary to distinguish
between input and output terminals through the use of marker cells adjacent
to the wires. Unlike in the crossing, however, a marker cell (Km) in a K-element
can stay in a stationary state K, which marks the two input wires. Next to the
marker cells are the input terminals (Ki). The K-element’s center cell (Kc), i.e.,
the cell marked by ∗ in Fig. 8(a), has a cycle of states that is slightly different
from the cycle of a Gwc. This cycle 1 → Z → X → Y → 3 → 1 → · · · uses state
X instead of state 2 to prevent a signal from erroneously exiting via an input
wire. We employ a marker cell (Kl) with stationary state L left of the center cell
to avoid ambiguities when transforming the transition rules into inner-totalistic
form (see Sect. 3.5). A signal entering the K-element from the top and exiting
from the output terminal at its right is shown in Fig. 8. The transition rules are
designed such that the wire cell directly right of the center cell reacts to the
center cell being in state X, whereas a wire cell with a state K cell adjacent to
it will not react. Consequently, the signal will exit via the output in a correct
way. The transition rules for operating the K-element are listed in the appendix
(rules #18 to #27).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. (a) Configuration for the K-element, which accepts signals from the northern
and southern input wires and outputs them on the eastern wire. (b) Signal coming from
the north of the K-element, (c) after which it proceeds to the center of the K-element.
(d) Due to the special cycle (X instead of 2 in a wire cell) in the center cell, (e) only
the eastern wire cell next to it is activated for propagating the signal. (f),(g) The signal
proceeds to the east, (h) and the state of the center cell is restored to its initial state 1.

Universal Totalistic Asynchonous Cellular Automaton 189

3.4 E-element

Figure 9(a) shows the construction of the E-element, whereby the arrows with
the symbols correspond to the terminals of the E-element in Fig. 5. The state U
or D of the E-element is stored by the cell in the center, which we denote by
Es. For technical reasons, the center cell can also assume the temporary states
U ′ and D′, so its cycle is U ′ → U → D′ → D → U ′ → · · · . The cell left of
the center cell, the E-element’s state read out (Esro) cell, is used to read out
the state when a signal is input to terminal T . Depending on the state of the
E-element, this cell has two cycles it can go through, i.e., 1 → Z → u → Y → 3
for state U and 1 → Z → d → Y → 3 for state D. This is the only cell for
which the cycle is not unique. The cell in the static state E at the bottom of the
E-element is a marker (Em) used for discriminating between the terminals Tu or
Td, so that the corresponding output cells ETuo and ETdo react appropriately
to the state of Esro.

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 9. (a) Configuration of the E-element. The cell labeled U/D stores the state. (b)
E-element in state U accepting a signal from input terminal S. (c) Signal arriving at
the center cell that encodes the state of the E-element. (d) The state of the center cell
starts to change from state D to U through an intermediate state D′. (e) After the
signal passes through, (f) this state finally settles to D. (g) The signal exits from the
output terminal S′.

There are four different situations in which an E-element processes an input
signal. The first two situations concern a signal input to the S terminal, whereby
the E-element is in state U or D. The third and fourth situation concerns input
to the T terminal, again with the E-element in state U or D, respectively. Due
to space limitations, we only show the two most representative situations.

Figure 9(b)–(g) show a series of configurations occurring when an E-element
in state U receives an input at the S terminal. The cell in state U changes
its state to D via an intermediate state D′ through the interaction of the cell
with its right neighbor, which is called the E-element state switch trigger (Esst).
After this operation, terminal S′ outputs an acknowledge signal. The rules in
case of an input to terminal S of an E-element in state U and D are listed in
the appendix (rules #28 to #34 and rules #35 to #41 respectively).

190 T. Isokawa et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Operations of an E-element in the state U after accepting a signal from
terminal T . (a) A signal is input at terminal T , and (b), (c) proceeds to the cell left of
the state-encoding cell (the center cell). (d) The cell left of the center cell changes its
state to u, according to the state of the neighboring cell (which is in the state U here).
(e) The cell corresponding to the output terminal Tu is activated by the cell state u, (f)
and the output signal proceeds towards the west. (g), (h) After outputting the signal,
the cells in the E-element recover to their initial states.

Figure 10 shows configurations that arise when a signal is input to the T
terminal of an E-element in state U . In this case, the Esro cell reads this state
and changes its own state accordingly from state 1 to u. This gives rise to a signal
emerging at output terminal Tu. After the signal is output to the appropriate
terminal, the Esro cell’s state is restored to its initial state 1. The rules in case
of an input to terminal T of an E-element in state U and D are listed in the
appendix (rules #42 to #47 and rules #48 to #57 respectively).

3.5 Rule Representations by Totalistic Rules

This section describes how the non-totalistic transition rules in the previous sec-
tions are transformed into totalistic rules. The original rules and their totalistic
equivalents are listed in the Appendix. Though the transformation is straightfor-
ward, since it only involves counting of states in the neighborhood of a cell, we
will also consider equivalence of rules. Obviously, when two totalistic transition
rules have the same left hand sides and right hand sides they are equivalent, even
though the original non-totalistic rules may not, but we go further than that.
Rather than counting the number of cells in certain states in a neighborhood, we
will merely take into account the presence of certain states in a cell’s neighbor-
hood (Boolean totalistic). As argued in the introduction, the reason for this is
that it is difficult to distinguish between different amounts of DNA. We have con-
firmed that our outer-totalistic inner-dependent rules and inner-totalistic rules
are all Boolean totalistic. Unfortunately, the outer-totalistic inner-independent
equivalents of the rules, which are not listed in the Appendix, turn out to be
ambiguous, so the left-hand side of such a rule does not uniquely define the
right-hand side. When considered as Boolean totalistic rules, there are even

Universal Totalistic Asynchonous Cellular Automaton 191

Fig. 11. DNA circuit for rule #6
used by the crossing terminal cell
(Ct).

Table 1. Number of DNA tem-
plates required for all cell types

Cell type #. templates

Gwc 48

Cc 15

Ct 60

Cp 50

Ki 58

Kc 50

Kl 1

Km 1

Esst 58

Es 46

Em 1

ETuo 48

Esro 109

ETdo 53

more ambiguities. Outer-totalistic inner-independent rules would be ideal for
DNA implementations, since the state of a cell itself would be completely irrele-
vant for a transition. However, state-flipping rules, like rules #33, #34, #40, and
#41, cannot work without information on the state of the cell itself, so they can-
not be represented by outer-totalistic inner-independent rules. Outer-totalistic
inner-dependent rules are the least likely to suffer from ambiguity problems in
the current CA, but their implementation in terms of DNA is the most com-
plicated of all types of totalistic rules, since the state of a cell itself needs to
be considered separately in a transition. Inner-totalistic rules lie somewhere in
between in terms of the complexity for implementations by DNA.

4 Discussion and Conclusions

This paper presents a CA that is designed with implementations by DNA in
mind. Figure 11 gives an example of a DNA circuit generated from transition rule
#6: (1,C0,1,C0,2) → Z in the spirit of [12]. Arrowheads indicate promotors and
flat heads indicate inhibitors. DNA strings with self-arrows are autonomously
generated as long as they are not inhibited. Typically a state in the left hand
side of a transition rule is among the DNA strings that inhibit the DNA strings
labeled by symbols with a bar on top, and they in turn generate a DNA string
that inhibits the generation of output. Rule #6 is a bit special, because it requires
a DNA string C1 even though C1 is not in the left hand side of rule #6. Accord-
ingly, the inhibition by DNA string C1 ensures that the combination of states
C0 and C1 will not generate output to side wires of the crossing.

To calculate the number of DNA templates that produce DNA signals for
each type of cell, we first consider the number of states the cell can be in. If this

192 T. Isokawa et al.

number is N , then there are N templates required to represent the states. Addi-
tionally, C(N, 2) (number of combinations when selecting 2 out of N) templates
are required to represent the processes of duplication of templates and their
mutual inhibition. Each cell also requires templates to represent the transition
rules that can be applied to it. Typically, for an outer-totalistic inner-dependent
rule with M different symbols in the left hand side, we need 2M + 1 templates
per rule in addition to the templates by which states are already represented.
Adding up all the templates for each type of cell, we arrive at the totals for tem-
plates in Table 1. To realize the CA we would need at least the sum of all these
table entries, which totals 598. The following factors contribute to the feasibility
of implementations of the CA by DNA.

First, neighboring cells have different states except when they are in state 0
(background state) and state 1 (wire state). Since the impact of a certain DNA
string on a reaction is much higher in a cell undergoing a transition than when
the same DNA string is in a neighboring cell, the latter will be drowned out by
the former, so it will become difficult to detect the DNA string in the neighboring
cell. When neighboring cells have different states this situation will not occur.

Second, state changes of cells follow cyclic patterns. This will not only reduce
the number of interactions to be described—a number linear in the number of
states in a cycle, rather than quadratic if transitions between any pair of states
are possible—it is also conductive to an easier implementation by DNA strings,
allowing constructions described in [8,10].

Third, the transition rules are totalistic. This facilitates rotation-symmetry
and reflection-symmetry of the rules, thereby greatly reducing their required
number. It is also more in the spirit of DNA computing, since it allows to for-
mulate transitions in terms of quantities or the presence of DNA, rather than
the relative positions of the DNA.

Fourth, the outer-totalistic inner-dependent and the inner-totalistic versions
of the transition rules are unambiguous. Even better, these rules are also Boolean
totalistic, as discussed in Sect. 3.5. This allows us to focus on the presence or
absence of particular DNA strings, rather than on their amount, and it makes
the rules more robust.

Though the CA was designed for implementation by DNA, there are still
obstacles towards this end. Foremost among them is that the number of required
DNA strings (598) is far above what is currently technically feasible by experi-
ment, which is around 30. Second, while states of cells usually revert back to their
original states after a signal has passed, this tends to be difficult to implement
in terms of DNA. However, cyclic reactions are known to exist in biochemistry
[8], so this may not be an impossible obstacle to overcome.

Universal computation is a relatively simple functionality to implement on
CAs, but it is already a very powerful capability to have in a system. As such,
computability should be considered an important yardstick in a system as to its
ability to carry out a wide variety of other operations that may be useful for the
implementation of molecular robotics. This paper hopefully provides insight in
the conditions a system should satisfy to this end.

Universal Totalistic Asynchonous Cellular Automaton 193

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas “Molecular Robotics” (No. 15H00825) of The Ministry
of Education, Culture, Sports, Science, and Technology, Japan.

A Transition Rules Used in this Paper

Three forms for each of rules used in this paper are shown, non-totalistic (NT),
outer totalistic and inner-dependent (OT&ID), and inner totalistic (IT).

Rule No NT form OT&ID form IT form

1 (1,0,1,0,2) → Z 1 0(2) 1(1) 2(1) → Z 0(2) 1(2) 2(1) → Z

2 (2,0,Z,0,3) → Y 2 0(2) 3(1) Z(1) → Y 0(2) 2(1) 3(1) Z(1) → Y

3 (3,0,Y ,0,1) → 1 3 0(2) 1(1) Y (1) → 1 0(2) 1(1) 3(1) Y (1) → 1

4 (Y ,0,Z,0,1) → 3 Y 0(2) 1(1) Z(1) → 3 0(2) 1(1) Y (1) Z(1) → 3

5 (Z,0,1,0,3) → 2 Z 0(2) 1(1) 3(1) → 2 0(2) 1(1) 3(1) Z(1) → 2

6 (1,C0,1,C0,2) → Z 1 1(1) 2(1) C0(2) → Z 1(2) 2(1) C0(2) → Z

7 (2,C1,Z,C1,3) → Y 2 3(1) Z(1) C1(2) → Y 2(1) 3(1) Z(1) C1(2) → Y

8 (3,C1,Y ,C1,1) → 1 3 1(1) Y (1) C1(2) → 1 1(1) 3(1) Y (1) C1(2) → 1

9 (Y ,C1,Z,C1,1) → 3 Y 1(1) Z(1) C1(2) → 3 1(1) Y (1) Z(1) C1(2) → 3

10 (Z,C1,1,C1,3) → 2 Z 1(1) 3(1) C1(2) → 2 1(1) 3(1) Z(1) C1(2) → 2

11 (1,1,1,1,2) → Z 1 1(3) 2(1) → Z 1(4) 2(1) → Z

12 (2,1,Z,1,3) → Y 2 1(2) 3(1) Z(1) → Y 1(2) 2(1) 3(1) Z(1) → Y

13 (3,1,Y ,1,1) → 1 3 1(3) Y (1) → 1 1(3) 3(1) Y (1) → 1

14 (Y ,1,Z,1,1) → 3 Y 1(3) Z(1) → 3 1(3) Y (1) Z(1) → 3

15 (Z,1,1,1,3) → 2 Z 1(3) 3(1) → 2 1(3) 3(1) Z(1) → 2

16 (C0,0,1,Z,0) → C1 C0 0(2) 1(1) Z(1) → C1 0(2) 1(1) Z(1) C0(1) → C1

17 (C1,0,1,1,0) → C0 C1 0(2) 1(2) → C0 0(2) 1(2) C1(1) → C0

18 (1,2,0,1,K) → Z 1 0(1) 1(1) 2(1) K(1) → Z 0(1) 1(2) 2(1) K(1) → Z

19 (Z,3,0,1,K) → 2 Z 0(1) 1(1) 3(1) K(1) → 2 0(1) 1(1) 3(1) Z(1) K(1) → 2

20 (2,3,0,Z,K) → Y 2 0(1) 3(1) Z(1) K(1) → Y 0(1) 2(1) 3(1) Z(1) K(1) → Y

21 (Y ,1,0,Z,K) → 3 Y 0(1) 1(1) Z(1) K(1) → 3 0(1) 1(1) Y (1) Z(1) K(1) → 3

22 (3,1,0,Y ,K) → 1 3 0(1) 1(1) Y (1) K(1) → 1 0(1) 1(1) 3(1) Y (1) K(1) → 1

23 (1,2,1,1,L) → Z 1 L(1) 1(2) 2(1) → Z L(1) 1(3) 2(1) → Z

24 (Z,3,1,1,L) → X Z L(1) 1(2) 3(1) → X L(1) 1(2) 3(1) Z(1) → X

25 (X,3,Z,1,L) → Y X L(1) 1(1) 3(1) Z(1) → Y L(1) 1(1) 3(1) X(1) Z(1) → Y

26 (Y ,1,Z,1,L) → 3 Y L(1) 1(2) Z(1) → 3 L(1) 1(2) Y (1) Z(1) → 3

27 (3,1,Y ,1,L) → 1 3 L(1) 1(2) Y (1) → 1 L(1) 1(2) 3(1) Y (1) → 1

28 (1,2,1,0,U) → Z 1 0(1) 1(1) 2(1) U(1) → Z 0(1) 1(2) 2(1) U(1) → Z

29 (Z,3,1,0,U) → 2 Z 0(1) 1(1) 3(1) U(1) → 2 0(1) 1(1) 3(1) Z(1) U(1) → 2

30 (2,3,Z,0,D′) → Y 2 0(1) 3(1) Z(1) D′(1) → Y 0(1) 2(1) 3(1) Z(1) D′(1) → Y

31 (Y ,1,Z,0,D) → 3 Y 0(1) 1(1) Z(1) D(1) → 3 0(1) 1(1) Y (1) Z(1) D(1) → 3

32 (3,1,Y ,0,D) → 1 3 0(1) 1(1) Y (1) D(1) → 1 0(1) 1(1) 3(1) Y (1) D(1) → 1

33 (U ,0,2,E,1) → D′ U 0(1) 1(1) 2(1) E(1) → D′ 0(1) 1(1) 2(1) E(1) U(1) → D′

34 (D′,0,Y ,E,1) → D D′ 0(1) 1(1) Y (1) E(1) → D 0(1) 1(1) Y (1) E(1) D′(1) → D

(continued)

194 T. Isokawa et al.

(continued)

Rule No NT form OT&ID form IT form

35 (1,2,1,0,D) → Z 1 0(1) 1(1) 2(1) D(1) → Z 0(1) 1(2) 2(1) D(1) → Z

36 (Z,3,1,0,D) → 2 Z 0(1) 1(1) 3(1) D(1) → 2 0(1) 1(1) 3(1) Z(1) D(1) → 2

37 (2,3,Z,0,U ′) → Y 2 0(1) 3(1) Z(1) U ′(1) → Y 0(1) 2(1) 3(1) Z(1) U ′(1) → Y

38 (Y ,1,Z,0,U) → 3 Y 0(1) 1(1) Z(1) U(1) → 3 0(1) 1(1) Y (1) Z(1) U(1) → 3

39 (3,1,Y ,0,U) → 1 3 0(1) 1(1) Y (1) U(1) → 1 0(1) 1(1) 3(1) Y (1) U(1) → 1

40 (D,0,2,E,1) → U ′ D 0(1) 1(1) 2(1) E(1) → U ′ 0(1) 1(1) 2(1) E(1) D(1) → U ′

41 (U ′,0,Y ,E,1) → U U ′ 0(1) 1(1) Y (1) E(1) → U 0(1) 1(1) Y (1) E(1) U ′(1) → U

42 (1,2,U ,1,1) → Z 1 1(2) 2(1) U(1) → Z 1(3) 2(1) U(1) → Z

43 (Z,3,U ,1,1) → u Z 1(2) 3(1) U(1) → u 1(2) 3(1) Z(1) U(1) → u

44 (u,3,U ,1,Z) → Y u 1(1) 3(1) Z(1) U(1) → Y 1(1) 3(1) Z(1) U(1) u(1) → Y

45 (Y ,1,U ,1,Z) → 3 Y 1(2) Z(1) U(1) → 3 1(2) Y (1) Z(1) U(1) → 3

46 (3,1,U ,1,Y) → 1 3 1(2) Y (1) U(1) → 1 1(2) 3(1) Y (1) U(1) → 1

47 (1,0,u,0,1) → Z 1 0(2) 1(1) u(1) → Z 0(2) 1(2) u(1) → Z

48 (1,2,D,1,1) → Z 1 1(2) 2(1) D(1) → Z 1(3) 2(1) D(1) → Z

49 (Z,3,D,1,1) → d Z 1(2) 3(1) D(1) → d 1(2) 3(1) Z(1) D(1) → d

50 (d,3,D,Z,1) → Y d 1(1) 3(1) Z(1) D(1) → Y 1(1) 3(1) Z(1) D(1) d(1) → Y

51 (Y ,1,D,Z,1) → 3 Y 1(2) Z(1) D(1) → 3 1(2) Y (1) Z(1) D(1) → 3

52 (3,1,D,Y ,1) → 1 3 1(2) Y (1) D(1) → 1 1(2) 3(1) Y (1) D(1) → 1

53 (1,d,E,1,0) → Z 1 0(1) 1(1) E(1) d(1) → Z 0(1) 1(2) E(1) d(1) → Z

54 (Z,3,E,1,0) → 2 Z 0(1) 1(1) 3(1) E(1) → 2 0(1) 1(1) 3(1) Z(1) E(1) → 2

55 (2,3,E,Z,0) → Y 2 0(1) 3(1) Z(1) E(1) → Y 0(1) 2(1) 3(1) Z(1) E(1) → Y

56 (Y ,1,E,Z,0) → 3 Y 0(1) 1(1) Z(1) E(1) → 3 0(1) 1(1) Y (1) Z(1) E(1) → 3

57 (3,1,E,Y ,0) → 1 3 0(1) 1(1) Y (1) E(1) → 1 0(1) 1(1) 3(1) Y (1) E(1) → 1

References

1. Adachi, S., Lee, J., Peper, F., Umeo, H.: Kaleidoscope of life: a 24-neighbourhood
outer-totalistic cellular automaton. Phys. D 237(6), 800–817 (2008)

2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266, 1021–1024 (1994)

3. Biafore, M.: Cellular automata for nanometer-scale computation. Phys. D 70, 415–
433 (1994)

4. Capcarrere, M.S., Sipper, M., Tomassini, M.: Two-state, r = 1 cellular automaton
that classifies density. Phys. Rev. Lett. 77, 4969–4971 (1996)

5. Hagiya, M., Wang, S., Kawamata, I., Murata, S., Isokawa, T., Peper, F., Imai, K.:
On DNA-based gellular automata. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.)
UCNC 2014. LNCS, vol. 8553, pp. 177–189. Springer, Heidelberg (2014)

6. Jonoska, N., Seeman, N.C.: Molecular ping-pong game of life on a two-dimensional
dna origami array. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 373(2046)
(2015). (Article Number 20140215)

7. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

8. Montagne, K., Plasson, R., Sakai, Y., Fujii, T., Rondelez, Y.: Programming an in
vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7(1),
476–485 (2011)

9. Murata, S., Konagaya, A., Kobayashi, S., Hagiya, M.: Molecular robotics: a new
paradigm for artifacts. New Gener. Comput. 31(1), 27–45 (2013)

10. Padirac, A., Fujii, T., Rondelez, Y.: Bottom-up construction of in vitro switchable
memories. Proc. Natl Acad. Sci. U.S.A. 109(47), E3212–E3220 (2012)

Universal Totalistic Asynchonous Cellular Automaton 195

11. Priese, L.: Automata and concurrency. Theor. Comput. Sci. 25(3), 221–265 (1983)
12. Rondelez, Y.: Competition for catalytic resources alters biological network dynam-

ics. Phys. Rev. Lett. 108(1), 018102 (2012)
13. Scalise, D., Schulman, R.: Emulating cellular automata in chemical reaction-

diffusion networks. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol.
8727, pp. 67–83. Springer, Heidelberg (2014)

14. Toffoli, T.: CAM: a high-performance cellular-automaton machine. Phys. D 10,
195–204 (1984)

Author Index

Bakaoukas, Anastasios G. 11
Beebe, Cameron 75

Case, Adam 1

Dale, Matthew 49

Fellermann, Harold 87
Fernau, Henning 35

Gale, Ella 99
Groves, Chris 130

Hagiya, Masami 182

Isokawa, Teijiro 182

Jonoska, Nataša 155

Kawamata, Ibuki 168, 182
Knowles, Joshua 62
Kotsialos, Apostolos 130
Koutny, Maciej 142
Kozyra, Jerzy 87
Krajčevski, Milé 155
Krasnogor, Natalio 87
Kuppusamy, Lakshmanan 35

Lopiccolo, Annunziata 87
Lutz, Jack H. 1

Massey, M. Kieran 130
Matsui, Nobuyuki 182
McColm, Gregory 155
Męski, Artur 142
Miller, Julian F. 49
Miller, Steve 62
Murata, Satoshi 168, 182

Pearson, Chris 130
Penczek, Wojciech 142
Peper, Ferdinand 182
Petty, Michael C. 130

Raman, Indhumathi 35
Rojas, Raúl 25

Stepney, Susan 49
Stull, D.M. 1
Sugawara, Ken 168

Takabatake, Fumi 168
Trefzer, Martin A. 49

Villagra, Marcos 116
Vissol-Gaudin, Eléonore 130

Yakaryılmaz, Abuzer 116
Yoshizawa, Satoru 168

Zeze, Dagou A. 130

	Preface
	Organization
	Abstracts of Invited Talks
	In Pictures: from Quantum Foundations to Natural Language Processing
	The SpiNNaker Project
	Gellular Automata
	Self-Assembling Adaptive Structures with DNA
	Many Hands Make Light Work: A Case Study in Swarm Robotics
	Chemical Communication Between Cell-Sized Reaction Compartments
	Contents
	Reachability Problems for Continuous Chemical Reaction Networks
	1 Introduction
	2 Rate Independent Continuous CRNs
	3 The Reachability Problem for Continuous CRNs
	4 The Subset Reachability Problem
	References

	An All-Optical Soliton FFT Computational Arrangement in the 3NLSE-Domain
	1 Introduction
	2 The Half--Adder Processor Scheme
	3 The Two 2-Bit Numbers Multiplier
	4 The ``Butterfly'' Soliton Arrangement
	5 Conclusions
	References

	Babbage Meets Zuse: A Minimal Mechanical Computer
	Abstract
	1 Introduction
	2 Zuse’s “Logistische Maschine”
	3 Minimizing the Instruction Set
	4 Enter Charles Babbage
	5 Conclusions
	References

	Generative Power of Matrix Insertion-Deletion Systems with Context-Free Insertion or Deletion
	1 Introduction
	2 Preliminaries
	2.1 Insertion-Deletion Systems
	2.2 Matrix Insertion-Deletion Systems

	3 Auxiliary Results
	4 Computational Completeness Results
	5 Linear Languages
	6 Metalinear Languages
	7 Conclusions and Further Research Directions
	References

	Evolving Carbon Nanotube Reservoir Computers
	1 Introduction
	2 Reservoir Computing
	2.1 Optimising Reservoirs

	3 Materials and Hardware
	3.1 Materials Under Investigation
	3.2 Hardware Platform

	4 Material Configuration
	5 Benchmark Tasks
	5.1 Nonlinear Auto-Regressive Moving Average (NARMA) Task
	5.2 Wave Generator Task
	5.3 Memory Capacity

	6 Experimental Results
	7 Discussion and Further Work
	References

	Global Network Cooperation Catalysed by a Small Prosocial Migrant Clique
	1 Introduction
	2 Background
	3 Methods
	4 Results and Discussion
	5 Conclusion
	References

	Model-Based Computation
	1 Introduction
	2 What Is Analog Computation?
	3 Model-Based Computation
	3.1 Benefits?

	4 Computational Claims About the Brain
	4.1 Bayesian Brain and Generative Modeling

	5 Analog Simulation in Physics
	5.1 Model-Based Reasoning in Science

	6 Conclusion
	References

	In Vitro Implementation of a Stack Data Structure Based on DNA Strand Displacement
	1 Introduction
	2 A Stack Data Structure Built from DNA
	2.1 Data and Operator Brick Design
	2.2 Modes of Operation

	3 Methods
	3.1 Primary Sequence Specification
	3.2 Experimental Manipulation of DNA

	4 Results
	4.1 Single Brick Calibration
	4.2 Recording Experiments
	4.3 Read Out Experiments
	4.4 Imaging

	5 Discussion and Future Work
	References

	Analysis of Boolean Logic Gates Logical Complexity for Use with Spiking Memristor Gates
	1 Introduction
	1.1 Memristors
	1.2 Memristor Spiking Logic Gates
	1.3 Logic
	1.4 Analyses of Boolean Logic
	1.5 Circuit Complexity
	1.6 Logical Systems
	1.7 How Logic Gates Have Been Instantiated with Memristors

	2 Results
	2.1 Energetics
	2.2 Reclassification of Binary Logic Gates
	2.3 Logical Efficiency
	2.4 An Aside on Ideal Gates and Functional Completeness
	2.5 Logical Complexity of a Full Adder

	3 Conclusions
	References

	Language Recognition Power and Succinctness of Affine Automata
	1 Introduction
	1.1 Background
	1.2 Contributions

	2 Preliminaries
	3 Affine Finite Automaton
	4 Simulation of Rational PFAs
	5 Exact Simulation of QFAs
	6 Succinctness of Affine Computation
	6.1 Bounded-Error
	6.2 Zero-Error

	7 Unary Languages Recognized by Affine Automata with Two Inner States
	8 Concluding Remarks
	References

	Training a Carbon-Nanotube/Liquid Crystal Data Classifier Using Evolutionary Algorithms
	1 Introduction
	2 Hardware Architecture and the SWCNT/LC Material
	3 The Classification Problem
	4 Training Problem Formulation
	5 Results and Discussion
	6 Conclusions
	References

	Towards Quantitative Verification of Reaction Systems
	1 Introduction
	2 Preliminaries
	3 Reaction Systems with Discrete Concentrations
	4 Reachability Testing
	5 Experimental Results
	5.1 Eukaryotic Heat Shock Response
	5.2 Scalable Chain

	6 Concluding Remarks
	References

	Traversal Languages Capturing Isomorphism Classes of Sierpiński Gaskets
	1 Introduction
	2 Sierpiński Structures
	2.1 Sierpiński Structures as Graphs
	2.2 Index Sequences and Isomorphism Types
	2.3 The Infinite Sierpiński Structures and Their Components

	3 The Languages
	4 Concluding Remarks
	References

	Discrete DNA Reaction-Diffusion Model for Implementing Simple Cellular Automaton
	1 Introduction
	2 Discrete Model
	2.1 Transition Rules
	2.2 Example Simulation

	3 Continuous Model
	3.1 Bistable System
	3.2 Capsule of Hydrogel

	4 Reaction Diffusion Model
	5 Simulation Results
	5.1 Continuous Space
	5.2 Discrete Space

	6 Application and Discussion
	A Reaction diffusion model
	References

	Universal Totalistic Asynchonous Cellular Automaton and Its Possible Implementation by DNA
	1 Introduction
	2 Preliminaries
	2.1 Possible DNA Implementation of Model
	2.2 Cellular Automaton Model
	2.3 Circuit Elements

	3 Design of the Cellular Automaton
	3.1 Signal and Wire
	3.2 Crossing of Wires
	3.3 K-element
	3.4 E-element
	3.5 Rule Representations by Totalistic Rules

	4 Discussion and Conclusions
	A Transition Rules Used in this Paper
	References

	Author Index

