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LEY"This is the �rst book on radar hydrology written by hydrologists. Whereas the 

excellent knowledge of radar technology by the authors permits an adequate 
coverage of the principles of rainfall rate estimation by radar, their hydrological 
background allows them to provide a unique message on the bene�ts (and on the 
remaining challenges) in exploiting radar techniques in hydrology. … In a clear 
and concise manner, the book combines topics from different scienti�c disciplines 
into a uni�ed approach aiming to guide the reader through the requirements, 
strengths, and pitfalls of the application of radar technology in hydrology—mostly 
for �ood prediction. Chapters include excellent discussion of theory, data analysis, 
and applications, along with several cross references for further review and 
useful conclusions."

—Marco Borga, University of Padova, Italy

Radar Hydrology: Principles, Models, and Applications provides graduate 
students, operational forecasters, and researchers with a theoretical frame-
work and practical knowledge of radar precipitation estimation. The only 
text on the market solely devoted to radar hydrology, this comprehensive 
reference:

• Begins with a brief introduction to radar
• Focuses on the processing of radar data to arrive at accurate 

estimates of rainfall
• Addresses advanced radar sensing principles and applications
• Covers radar technologies for observing each component of 

the hydrologic cycle
• Examines state-of-the-art hydrologic models and their inputs, 

parameters, state variables, calibration procedures, and outputs
• Discusses contemporary approaches in data assimilation
• Concludes with methods, case studies, and prediction system design

Flooding is the #1 weather-related natural disaster worldwide. Radar 
Hydrology: Principles, Models, and Applications aids in understanding 
the physical systems and detection tools, as well as designing prediction 
systems.
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Preface

The origins of radar date back to World War II, when they provided a new 
and unique capability to detect enemy aircraft, submarines on the ocean 
surface, and ships. Radar not only changed the face of the war, but once it 
became adapted to observe the weather, it led to a revolution in meteorology. 
It has been instrumental in the study of severe thunderstorms, identification 
of rotation associated with mesocyclones and tornadoes, detection of severe 
hail and damaging winds, and estimation of heavy rainfall associated with 
flash floods. For these reasons, many countries throughout the world have 
invested in large radar networks for routine observations used to warn the 
public of these imminent weather hazards.

This book focuses on the use of radars in hydrology. Weather radars have 
proven their value for remote sensing of precipitation, even at high enough 
resolution to monitor and predict the onset of flash floods. But the process 
to arrive at an accurate estimate of precipitation from the raw radar signal 
is not a straightforward one. For this reason, five chapters of this book are 
dedicated to radar-based precipitation estimation alone. Graduate students, 
operational forecasters, and researchers will acquire the theoretical frame-
work and practical experience behind radar  precipitation estimation.

We present new radar technologies that will improve the accuracy and 
 resolution of precipitation estimates. The description of these platforms, some 
of which are mobile or transportable, does not attempt to  comprehensively 
cover all new radar technologies. Rather, we focus on platforms that are more 
familiar to the authors. Likewise, several of the studies we  highlight reflect 
our own experiences with those observing platforms, basins, and method-
ologies. We supply complete bibliographies and encourage the interested 
reader to explore those other studies to gain a more holistic understanding 
of the topics presented herein.

We believe the next revolution in hydrology will be initiated by radar 
remote sensing of additional variables going beyond precipitation. Space-based, 
airborne, and ground-based radars operating at multiple frequencies can be 
used to detect and measure surface water spatial extent and depth, stream dis-
charge, near-surface soil moisture, subsurface water, and depth to the water 
table. Radars are now providing insights into water storage and fluxes in 
regions that have only scarcely been observed. These new  observations will 
influence new hydrologic theories, formulations, and basic  understanding. 
Moreover, accurate estimation of the freshwater  storage on Earth will provide 
the pulse of the planet’s climate state.
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1
Introduction to Basic Radar Principles

Radar is an acronym for Radio Detection and Ranging. A British  invention, 
it was initially designed to detect aircraft, warships, and surfacing subma-
rines, and its successful implementation ultimately shaped the outcome of 
the Second World War. Since then, the use of radar technologies has signifi-
cantly expanded beyond military to civilian and commercial applications. 
Air traffic controllers use them to direct aircraft and avoid collisions. Police 
officers routinely use Doppler radars to detect speeding cars down the road. 
Even the microwave oven used to heat up a cup of coffee is a result of radar! 
Radar observations of variables in the hydrologic cycle have led to a panacea 
of new discoveries as well as monitoring and forecasting capabilities that 
have greatly impacted the field of hydrology. This chapter provides an intro-
duction to basic radar principles. While the theories and equations are uni-
versal, the myriad types of radars nowadays have very diverse  applications 
and operating characteristics. Weather radar applications are diverse and 
far-reaching, but the focus in this chapter is on the hydrologic use of weather 
radar. In many cases, examples and typical values for the variables will be 
provided for the Weather Surveillance Radar–1988 Doppler (WSR-88D)—the 
radar that constitutes the Next Generation Radar (NEXRAD)  network in 
operation across the United States.

1.1 Radar Components

Radar is an instrument that consists of the basic components shown in 
Figure  1.1.  The transmitter generates electromagnetic (EM)  radiation as a 
pulse  or continuous wave. The WRD-88D radar employs a klystron trans-
mitter to generate a pulse of energy; the klystron transmitter is  typically 
more  expensive than a magnetron due to its ability to control the frequency 
of the transmitted signal. Chapter 3 discusses the advantages of a radar 
that  transmits and receives signals that are polarized in both the  horizontal 
and vertical planes. The polarized, transmitted pulse travels through the 
waveguide, which is typically a hollow conduit made of  conductive metal with 
a  rectangular cross-section. Some dual-polarized radars are designed with two 
separate waveguides corresponding to the horizontal and  vertical channels. 
The waveguide connects the transmitter to the radar antenna, most commonly 
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consisting of a parabolic dish, or reflector, that is  mechanically rotated by a 
pedestal in the azimuthal direction and  vertically in elevation. The pedes-
tal is the primary moving component of a radar system and requires regu-
lar maintenance. Chapter 5 introduces a phased-array radar, which does not 
necessarily require a  pedestal. The EM pulse is directed to a device called a 
feedhorn, which conveys the alternating current as a radio wave a short dis-
tance to the center of the dish. Here, the radio wave is reflected off the dish 
to form the radar beam and transmitted through the free atmosphere to the 
intended target. Some of this energy encounters objects in the atmosphere and 
is  subsequently scattered back to the dish; this energy is called the backscat-
ter. The  reflector  concentrates the backscattered energy to the feedhorn. The 
feedhorn acts to convert the  backscattered radio wave back into a voltage. The 
received signal travels down the feedhorn to the receiver, where it is amplified 
and  subsequently processed.

The radar antenna, including the parabolic dish, feedhorn, and pedestal, is 
often protected by a spherical radome. The primary purpose of the radome 
is to minimize wind loading on the dish, causing excessive strain on the 
pedestal. The radome also serves to conceal the antenna, protect personnel 

Antenna

Feedhorn

PedestalPedes
Transmitter

Receiver

Waveguide

Radome

Dish

Azimuth, θ 
(deg)

nrn Elevation, φ 
(deg)

Range, r
(km)

Antenna

FIGURE 1.1
Basic components of a conventional weather radar system. Spherical coordinates of range 
(km), azimuth angle (deg), and elevation angle (deg) are most convenient when describing 
radar data.
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from moving parts, and to protect the antenna from accumulating snow 
and ice. The radome is typically constructed from multiple panels that can 
be either symmetric or asymmetric. The material of the radome needs to be 
nonconductive and free from metal screws and wires, so as to avoid artifacts 
in the data and signal loss; fiberglass is most often used. It is also impor-
tant that the area immediately surrounding the radome remains free from 
any objects, especially metallic ones. Gourley et al. (2006) examined the data 
quality of radar variables measured by MeteoFrance’s Trappes polarimetric 
radar. They found artifacts in the radar data that resulted from a security 
fence mounted along the perimeter of the tower within the field of view of 
the antenna. Furthermore, they found significant biases in radar variables 
at specific azimuths and elevation angles that coincided with the location of 
a small box (20 × 27 × 60 cm3) containing electronics to operate an elevator.

1.2 The Radar Beam

Weather radars transmit EM energy in the microwave spectrum that travel 
at the speed of light in a vacuum at 3 × 108 ms−1. The relationship between 
radio frequency ( f), wavelength (λ), and velocity at the speed of light (c) is the 
following:

 c = fλ (1.1)

where c is 3 × 108 ms−1, f is in cycles per second, or Hertz (Hz), and λ is 
in m. Table 1.1 shows the most common bands, frequencies, and associated 
 wavelengths that correspond to radars that have hydrologic applications.

Note that the typical values for radar microwave frequencies are in the order 
of 107  – 1011 Hz; thus it is convenient to use Mega (106) and Giga (109) prefixes, 
or MHz and GHz. The corresponding radar wavelengths span a few milli-
meters (mm) up to m. The radar wavelength and diameter (d) of the parabolic 
dish dictate the angular width of the radar beam, or beamwidth(θ), as follows:

 
d

θ =
λ73  (1.2)

where λ and d are both in the same distance units and θ is in deg. In the case 
of the WSR-88D radar, it operates at an approximate 10.7 cm  wavelength and 
has an 8.5 m diameter dish. This corresponds to a beamwidth of  approxi-
mately 0.92  deg (in both azimuth and elevation directions). Targets with 
 horizontal  cross- sections (for a horizontally polarized wave) less than λ/16, 
or   approximately 7 mm for the WSR-88D, are Rayleigh scatters and thus 
have  predictable radar signatures for different-sized raindrops. The  targets 
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are assumed to produce scattering equal in all directions, called isotropic 
 scattering. The radar detects the component of scattering that comes back to 
the radar (backscatter). Shorter wavelength radars at X band and shorter have a 
lower upper limit on the diameter of targets that cause Rayleigh scattering. But, 
these smaller wavelength radars do not require such large dishes to maintain 
a small beamwidth desirable for high-resolution precipitation measurements, 
and thus are more amenable to spaceborne, transportable, and mobile radar 
platforms. These shorter radar wavelengths are more prone to absorption of 
the radar signal by atmospheric gases and precipitation leading to signal loss 
with increasing range from the radar; this phenomenon is called attenuation.

The beamwidth is defined by the angular width at which the power in the 
center of the beam drops in half; this is the half-power point of the beam. 
Figure 1.2 illustrates how the beam volume (or distance between the upper 
and lower part of the beam) increases with range; this is referred to as beam 
broadening or beam spreading. This characteristic is one of the major limit-
ing factors of radar measurements taken at far range. In  addition to beam 
broadening, the height of the beam’s center relative to Earth’s  surface increases 
with range. Beam broadening and beam heights increasing with  range 
 drastically alter the location, shape, and volume of an individual radar bin.

The beam propagation path depends on atmospheric conditions  (primarily 
the vertical distribution of water vapor pressure and temperature) that 
control the change in the atmospheric refractive index (N) with height. 

TABLE 1.1

Summary of Radar Characteristics Used for Hydrologic Applications

Band Frequency Wavelength Hydrologic Applications

W 75–110 GHz 2.7–4.0 mm Detection of cloud droplets
mm 40–300 GHz 7.5–1 mm Cloud microphysical processes
Ka 24–40 GHz 0.8–1.1 cm Precipitation estimation from spaceborne 

radar, streamflow, surface water heights
Ku 12–18 GHz 1.7–2.5 cm Precipitation estimation from spaceborne 

radar, surface water velocity
X 8–12 GHz 2.5–3.8 cm High-resolution precipitation and 

microphysical studies, surface water extent 
and depth

C 4–8 GHz 3.8–7.5 cm Estimation of light-moderate precipitation, 
surface water extent and depth, top-layer 
soil moisture

S 2–4 GHz 7.5–15 cm Estimation of moderate-heavy precipitation
L 1–2 GHz 15–30 cm Top-layer soil moisture
UHF 300–1000 

MHz
0.3–1 m Ground-penetrating radar for soil moisture 

and water table, channel bathymetry
P ~300 MHz 1 m Root-zone soil moisture
VHF 30–300 MHz 1–10 m Ground-penetrating radar for soil moisture 

and water table
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Anticipating the precise beam propagation path is difficult and uncertain, as 
difficult-to-detect changes in the refractive index can occur with commonly 
occurring atmospheric phenomena such as temperature inversions asso-
ciated with cold fronts, cool/moist thunderstorm outflows, and nocturnal 
radiation. These conditions cause the beam to bend or duct downward; this 
is called superrefraction as shown in Figure 1.3. In some cases, the super-
refraction is severe enough that the beam ducts down, strikes Earth’s surface, 
and sends a strong signal back to the radar. Echoes from this anomalous 
propagation situation, or anaprop, show up on the radar display and can 
mislead the radar user into believing there are storms nearby when actu-
ally there are none. The opposite case of the radar beam ducting away from 
Earth’s surface at a rate that deviates from conditions that occur in a standard 
atmosphere is called  subrefraction. This  phenomenon is less noticeable to 
radar users, but can occur in drier regions where the temperature decreases 
rapidly with height and the  relative humidity increases. Atmospheric con-
ditions leading to beam   subrefraction are  common in the western United 
States during the warm season. Under standard atmospheric conditions, the 
relationship between the height (h) of the center of the radar beam above 
Earth’s  surface is given as

 h h r a r a ar e= + + + φ −
4
3

2
4
3

sin
4
3

2
2

 (1.3)

where hr is the height of the radar antenna, which can be approximated 
by the height of the radar tower (km), r is range from the radar (km), a is 

Range gate (m)g g

Height (km)

Sidelobes

Beamwidth (deg)

Elevation angle (deg) 

Ground range (km)

Antenna
height (m) 

FIGURE 1.2
Variables used to describe the radar beam as it propagates away from the radar through the 
atmosphere.
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Earth’s radius or approximately 6371 km, and ϕe is the radar elevation angle 
(deg) (refer to Figure 1.2). Figure 1.2 illustrates how the height of the beam’s 
centerline increases with range from the radar. As shown in more detail in 
Chapter 2, the increase of the radar beam height (and volume) with range 
causes it to sample higher in the clouds, causing biases in rainfall estimates.

Approximately 80% of the transmitted power resides within the main lobe 
of the radar beam, while some of the transmitted power “leaks” outside the 
main beam into what are referred to as sidelobes (see Figure 1.2). The amount 
of power leaking into the sidelobes depends on the design of the antenna. 
Some of the EM energy can reflect off the ground, nearby buildings, and 
trees resulting in ground clutter contamination. These artifacts can be asso-
ciated with significant backscattered energy, leading to  misinterpretations of 
the radar signal and biases in derived precipitation fields. They appear pre-
dominantly at ranges near the radar where the main lobe and sidelobes are 
close to the surface. Numerous algorithms have been developed to  identify 
and screen out radar echoes that are associated with ground clutter. The 
most effective techniques for discriminating nonweather echoes rely on data 
from dual-polarization radar, discussed in more detail in Chapter 3.

For a radar to estimate spatially and temporally variable precipita-
tion fields, it must transmit and receive EM energy at several azimuths 
and  elevation angles. Radars that are used for precipitation estimation by 
operational meteorological services maneuver the antenna with a pedestal 
(see Figure 1.1). There are two basic modes of operating a rotating pedes-
tal: plan position indicator (PPI) mode and range height indicator (RHI) 
mode. PPIs are obtained by spinning the antenna in the azimuthal direction 
while  keeping it fixed at a constant elevation angle. A full 360 deg rotation in 
PPI mode constitutes a surveillance scan and yields a tilt of data. An RHI, 

FIGURE 1.3
The radar beam under different atmospheric conditions that result in superrefraction and 
subrefraction.
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on the other hand, keeps the azimuth fixed and varies the elevation angle. 
RHI mode is useful for interrogating specific storms, whereas a surveillance 
scan in PPI mode is more practical for operational precipitation estimation. 
It is advantageous to collect radar data in PPI mode at multiple elevation 
angles. First, the lowest elevation angle (e.g., 0.5 deg) may be blocked by ter-
rain, buildings, or trees in some sectors. Second, it is advantageous to collect 
data at greater heights so as to determine additional cloud characteristics 
related to storm depth, severity, vertical water content, vertical ice content, 
hydrometeor types, microphysical processes, etc.

The movement of the pedestal on operational radars is scheduled  according 
to antenna rotation rates and the volume coverage pattern (VCP). A VCP 
used for precipitation measurement by the WSR-88D radar (VCP 11) is shown 
in Figure 1.4. In VCP 11, the antenna is rotated from 16–26 deg/sec, while it is 
sequentially raised in elevation up to the  elevation angles shown in the figure. 
This VCP results in a full volume scan of radar data  comprising 14 elevation 
angles completed within approximately 5 min. Despite the WSR-88D ped-
estal having a mechanical limitation of its  minimum/maximum  elevation 
angles of –1/60 deg, the maximum  steerability of the pedestal limits the high-
est elevation angle used in VCP 11 to 19.5 deg (Figure 1.4). If a storm develops 
or moves in very close vicinity to the radar (i.e., within 10–15 km), significant 
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FIGURE 1.4
Radar beam heights as a function of range for 14 elevation angles comprising a volume 
coverage pattern (VCP). VCP 11 can be completed in 5 min and is commonly employed for 
 quantitative precipitation estimation.
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parts in the middle and upper part of the storm can go  unobserved. This data 
void region in close  vicinity to the radar is called the cone of silence and 
can result in underestimated storm top height  estimates and unrealistic 
trends in radar severity indexes (see Howard et al. 1997). Negative elevation 
angles can be useful for low-altitude surveillance in  valleys using radars that 
have been sited on mountaintops (Brown et al., 2002). Scanning at vertical 
 incidence (90 deg), if permitted by the pedestal, can be quite useful for cali-
brating the radar variables.

1.3 The Radar Pulse

Operational radars transmit discrete pulses of EM energy using a  modulator 
and then “listen” by discretizing the received data into range bins; this 
 procedure is called range gating. The range from the radar to the target is 
determined as follows, considering the two-way travel of the pulse to the 
 target and back to the receiver:

 r
cT

=
2

 (1.4)

where c is the speed of light (3 × 108 m sec−1) and T in sec is the elapsed time 
between a transmitted pulse and the reception of the backscattered energy 
from the same pulse. In addition to providing the range to a target, a Doppler 
radar has the advantage of detecting the radial component of the target’s 
velocity, commonly referred to as radial velocity (vr) in m sec−1. In  other 
words, the Doppler velocities indicate how quickly targets are moving either 
toward or away from the radar. This is the same phenomenon that people 
observe with approaching trains. As the train approaches, the radial com-
ponent of velocity toward the observer increases (unless the observer is 
standing directly in front of the train, which is not recommended!). So, the 
constant speed of sound associated with the train’s whistle or engine is added 
to the velocity of the moving train. The radial component of the incoming 
train’s velocity increases as the train approaches the observer who is stand-
ing safely off the tracks. This causes the effective frequency of the sound 
wave to increase, resulting in a higher pitched sound to the ear. As the train 
passes, the radial component of the train’s velocity reverses in sign and is 
thus subtracted from the speed of sound. This causes a lower frequency and 
thus a lower pitched sound of the train whistle. If the train were capable 
of moving at the speed of sound, the observer would no longer hear the 
train as it passed since the effective speed of the sound wave would be zero. 
Just like a human ear, a Doppler radar uses a phase detector to measure the 
shift of the transmitted wave; this is the Doppler shift or Doppler effect. 
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Doppler velocities are more commonly used for severe weather detection, 
such as rotation with supercell thunderstorms, and less so for quantitative 
precipitation estimation.

Characteristics of the radar pulse dictate the radar data quality,  resolution, 
sensitivity, and ambiguity of the received signals. The pulse repetition 
 frequency (PRF) in sec−1 is the number of pulses the radar transmits per 
second. In the case of the WSR-88D, the PRF is approximately 1000 sec−1. 
The reciprocal of the PRF is the pulse repetition time (PRT), which is 
the elapsed time from the beginning of one pulse to the next one. This is 
approximately 1 × 10−3 sec for the WSR-88D radar. The pulse duration (τ) 
in sec is how long it takes to transmit a single pulse of energy. The pulse 
length (H) in m is the corresponding length after multiplying the pulse 
duration by the speed of light. PRF and the pulse length are important 
because they determine the maximum unambiguous range and veloci-
ties of the received signals, as well as the sensitivity and resolution of the 
received data.

Since the radar transmits multiple pulses at a fixed location, it can become 
difficult to distinguish the received signals backscattered to the radar com-
ing from different pulses; this creates a range ambiguity in the received 
signals and can result in range folding, where the same echo appears at 
multiple ranges. The maximum unambiguous range (Rmax) in m for a radar 
is computed as follows:

 =
2maxR

c
PRF

 (1.5)

where c is the speed of light (3 × 108 m sec−1) and PRF is in sec−1. According 
to Equation (1.5), a greater maximum unambiguous range can be attained 
by reducing the number of pulses transmitted per unit time (the PRF). 
The major tradeoff in using a low PRF is lower quality Doppler velocity 
 measurements. The maximum unambiguous velocity (Vmax) in m sec−1 is 
computed as

 =
λ

4maxV
PRF

 (1.6)

where λ is the radar wavelength in m and PRF is in sec−1. From Equation 
(1.6), the selection of a lower PRF results in a lower maximum unambigu-
ous velocity. Similar to the range folding problem resulting from range 
ambiguities, Doppler velocities for a given target reset to 0 when the Vmax 
is exceeded. In some cases, the velocities increase again until the Vmax is 
reached again. This is called velocity folding and can be corrected to a cer-
tain degree in postprocessing of the radar images. The balance in selecting 
a PRF that yields a reasonable maximum range while maintaining quality 
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velocity measurements is known as the Doppler dilemma. There are novel 
solutions to the Doppler dilemma such as using multiple PRFs. Additional 
details of these techniques can be found in Doviak and Zrnić (1985) and 
Tabary et al. (2006).

In addition to the PRF, which controls the Rmax and Vmax, a characteristic of 
the radar’s pulse is its pulse length. The selection of the pulse length presents 
a tradeoff between range resolution and sensitivity. The range resolution (Δr) 
in m is determined as follows:

 =
τ
2

r
c

 (1.7)

where c is 3 × 108 m sec−1 and τ is in sec. For the WSR-88D, the range 
 resolution (i.e., the length of the range gate in Figure 1.2) in short pulse mode 
(τ = 1.57 × 10−6 sec) is 250 m. This corresponds to a pulse length of 500 m. Two 
 targets must be separated by one-half the pulse length in order to distinguish 
them; thus the range resolution is one-half the pulse length. A longer pulse 
(τ = 4.7 × 10−6 sec) corresponding to a range gate of 750 m is also used by the 
WSR-88D. The advantage of the long pulse is greater sensitivity by a factor 
of 3. This enables the radar to sense much weaker echoes such as those from 
drizzle or snow. Radars often operate in a clear air mode using long pulses 
at lower elevation angles when there are no strong echoes within the radar 
scanning region, also referred to as the radar umbrella. Thresholds based 
on the received backscattered energy are used to switch the radar from clear 
air mode into precipitation mode employing short pulses. In summary, the 
advantage of high-resolution range gates outweighs the cost of sensitivity 
loss when significant precipitation is observed by the radar.

Figure 1.2 illustrates a range gate close to the radar and then another at 
far range. The range resolution, dictated by the selection of the pulse length, 
and the beamwidth are the same for both range gates. However, the beam-
spreading effect results in much different bin volumes as a  function of range. 
The following equation can be used to approximate the bin  volume (V) in m3:

 V
r c

= π
θ τ
2 2

2

 (1.8)

where r is the range in m, θ is the beamwidth in radians, c is the speed of 
light (3 × 108 m sec−1), and τ is the pulse length in sec. At close range, the bin 
volume is small and more pencil shaped, while the far-range bin resembles 
more of a pancake having a thickness equal to the length of the pencil. The 
azimuthal resolution of the radar beam depends on the rotation rate and the 
processing capabilities of the radar system. In the case of the WSR-88D radar, 
oversampling is employed in the azimuthal direction resulting in a maxi-
mum bin resolution of 250 m in range by 0.5 deg in azimuth.
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In summary, the configuration of the transmitted radar pulse represents a 
balance between resolution and sensitivity as well as maximum unambigu-
ous range and velocity. Shorter pulse lengths, or the duration over which the 
signal is transmitted, yield higher resolution data in the range coordinate. 
The tradeoff for range resolution is less power returned to the radar from 
the backscattered targets. The power loss in sensitivity is directly propor-
tional to the increase in the range resolution. The radar PRF controls the 
maximum range at which echoes can be distinguished from one another 
at a fixed azimuth and elevation angle. Lower PRF modes of operation are 
generally preferable for hydrologic use of weather radar due to the extended 
maximum unambiguous range. However, a low PRF reduces the quality of 
the Doppler winds.

1.4 Signal Processing

Now that the radar has successfully transmitted a signal that encountered 
a target yielding backscattered energy to the receiver, the computer must 
process the signal to generate radar products. A radar collects a number of 
samples at a given range gate. The degree to which these samples are inde-
pendent depend on the factors dictating the bin volume in Equation (1.7), PRF, 
radar wavelength, angular beamwidth, antennae rotation rate, and homoge-
neity of the hydrometeors being sampled. Figure 1.5 shows an illustration 
of individual samples at a specific range that are used to create the Doppler 
spectrum. The peak of the primary mode of the spectrum corresponds to the 
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FIGURE 1.5
Illustration of a Doppler spectrum for a given range gate. The height of the peak of the primary 
mode of the spectrum is used to compute reflectivity. The shift of the peak to the right or left 
corresponds to the Doppler shift and is used to derive radial velocity. The breadth of the distri-
bution is used to compute spectrum width.
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average power received. This is a derivative of the Doppler spectrum and is 
referred to as a radar moment. The displacement of the peak power to the 
right or to the left represents the Doppler shift and corresponds to the radial 
component of the velocity. The width of the spectrum, or spectrum width, 
provides a quantification on the variability of the individual samples’ veloci-
ties and is related to uniformity of the hydrometeors’ movement within the 
beam. If there is a great deal of turbulence or wind shear, then individual 
samples will have significant variability from pulse-to-pulse and a large 
spectrum width will result.

The range to the signal and the amount of power received approximately 
dictates the radar reflectivity factor Z, expressed in linear units mm6 m−3 as

 =
2

2Z
P r

C K
e

r  (1.9)

where Pr is the received power in watts with the overbar representing the 
average of the individual samples, r is the range to the target in m, K is the 
dimensionless complex index of refraction of the scattering particles (equal 
to 0.2 for ice and 0.93 for water), and C in watts m−1 is the radar constant 
that describes the operating characteristics of the radar as follows. It can be 
expanded as follows:

 C
c P G Lt

( )
=

π τ θ
λ1024 ln 2

3 2 2

2  (1.10)

where π is 3.14159, c is the speed of light (3 × 108 m sec−1), Pt is the peak 
 transmitted power in watts, τ is the pulse duration in sec, G is the 
 dimensionless antenna gain, L is the loss factor due to attenuation of the sig-
nal, θ is the beamwidth in radians, and λ is the radar wavelength in m. The 
gain is a measure of the antenna’s ability to focus the transmitted energy rel-
ative to isotropic  transmission of the signal. The radar-measured  reflectivity 
is often referred to as the equivalent reflectivity and thus the subscripted e, 
while the  theoretical reflectivity factor is related to the raindrop particle 
sizes as follows:

 ∫= ( ) 6Z N D D dD  (1.11)

where D is the drop diameter in mm and N(D), the number concentration, 
represents the number of raindrops within an interval of dD when using 
the discretized form of the equation. From Equation (1.11), we can see why 
Z when expressed in linear units is given in mm6 m−3, representing the drop 
diameter (typically on the order of mm) per unit volume (m3). Reflectivity 
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in linear units spans several orders of magnitude, so it is convenient to 
 compress the values in units of decibels of reflectivity or dBZ:

 dBZ = 10 log10 Z (1.12)

From Equations (1.9) and (1.11), we can see the radar-measured Ze is related 
to the concentration of raindrops and their diameters, which is the primary 
information needed to compute the volume or mass of water within a radar-
illuminated volume. This is the general basis for rainfall estimation by radar. 
But first, a number of assumptions must be made to get there.

Let’s begin with the equivalent reflectivity measured by radar. The radar 
is measuring the backscattered cross-sections from precipitation within the 
illuminated volume. First, these particles must be Rayleigh scatterers uni-
formly spread throughout the volume. The amount of backscattered energy 
depends on the size, shape, state, and concentration of the particles. The 
size of the particles is relative to the polarization of the radar wave. For hori-
zontally polarized radars, this means that the radar is  sensing the horizontal 
component of the particles, or the drop diameters. The shape of the particles 
also impacts the backscattered energy. When  droplets are small with diam-
eters less than 0.5 mm, they are approximately spherical. However, as they 
grow, they begin to fall due to gravitational acceleration. But, frictional forces 
oppose gravity until equilibrium conditions are met, which corresponds to 
the terminal fall velocity of the drop. Like parachutists jumping out of a 
plane, they will first feel gravity as they begin their descent. But, they will 
quickly encounter these frictional forces underneath causing their clothes to 
flap and making a windy noise. In the case of the raindrop, this drag causes 
their shapes to distort and become oblate such that their horizontal dimen-
sion (or semimajor length a) is greater than their vertical one (semiminor 
length b). In this sense, as drops become larger, they begin to resemble more 
of a frisbee rather than a teardrop. A schematic of drop shapes for different 
sized diameters is shown in Figure 1.6.

The physical state, or phase, of the backscattered particles also impacts 
Ze. At  subfreezing temperatures (heights greater than the freezing level), 
ice  particles are relatively small and pristine, meaning that they have not 
 aggregated or grown at the expense of other particles (Figure 1.6). As ice 
particles fall and begin to melt, they become water-coated and take on 
the dielectric properties of water more than ice. Water has a higher  dielectric 
constant than ice. The particles also aggregate as they melt because they 
 essentially become sticky. This causes a sharp increase in reflectivity just 
below the onset of melting that is so reflective to radar it is called the 
radar bright band. As  melting  continues, the water-coated snowflakes 
become  raindrops. These have smaller horizontal  cross-sections D com-
pared with the snowflakes, and they fall more quickly. Because of the higher 
fall speeds, they have smaller number concentrations. From Equation (1.11), 
both N(D) and D decreases just below the melting layer and Ze decreases.
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Equation (1.11) indicates that Z depends on N(D) and D. Conventional 
weather radar, however, does not measure both these variables indepen-
dently, but rather detects their combined effect. To deal with this, we must 
assume a raindrop size distribution (often referred to as the drop size dis-
tribution, DSD). Rain DSDs can be described with a normalized gamma 
distribution as

 N D N f u
D
D

D
Dw= − +( ) ( ) exp (3.67 )

0 0
 (1.13)

where D0 is the equivolumetric median drop diameter in mm. Nw in mm m−3 
is the normalized concentration defined as

 N
W

D
w

w
=

πρ
(3.67) 104 3

0
4  (1.14)

where the density of water ρw is 1 g cm−3 and W is the rainwater content 
in g m−3. Nw can be interpreted as the intercept on the N(D) axis of an 
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FIGURE 1.6
Illustration of a radar scanning a stratiform cloud producing rainfall at the surface. Aloft, the 
radar samples pristine ice crystals with relatively low reflectivity values. As these hydrome-
teors fall, they encounter the melting layer. As they melt, they aggregate and become much 
more reflective to radar due to their water-coated surfaces. As they continue their descent, they 
completely melt into raindrops, which are shaped like oblate spheroids. Reflectivity decreases 
below the melting layer and remains approximately constant with height until the raindrops 
reach the surface. Note that in the presence of beam blockage, the radar is only capable of 
obtaining representative samples of surface rainfall in close proximity.
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exponential distribution having the same rainwater content as the gamma 
 function. Next, f(μ), the shape parameter function, is defined as

 f
( )

( )( )
=

+

Γ +

+

( )
6

3.67
3.67

44

4

 (1.15)

From Equations (1.13) to (1.15), we can see that the DSD simplifies to an 
 exponential distribution if the shape parameter μ is assumed to be 0.

To compute rainwater contents, we must model the oblateness of the rain-
drop shapes that are shown schematically in Figure 1.6. Several  models relat-
ing the ratio of a drop’s semiminor axis length b to the  semimajor axis length 
a (i.e., the drop aspect ratio) to the equivolume spherical  diameter D (in mm) 
have been proposed. Gourley et al. (2009) tested several  proposed drop shape 
models and determined that the one described in Brandes et al. (2002) was 
the most correct. This models is represented as follows:

 
= + × − × + ×
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 (1.16)

and is illustrated in Figure 1.7.
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FIGURE 1.7
The dropshape model of Brandes et al. (2002) that relates raindrops’ ratio of their semiminor 
axis length b (vertical dimension) to the semimajor axis length a (horizontal dimension) as a 
function of the equal-volume spherical diameter.
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Note that the ratio b/a is set to unity for D < 0.5 mm, representing spherical 
shapes for very small droplets. Now, with a description of the distribution of 
the drop sizes and how these sizes relate to shape, we have the basic ingredi-
ents to compute a rainfall rate from reflectivity measurements.

Problem Sets

 Q1: What is the Doppler dilemma? Please describe a novel solution to 
this issue.

 Q2: What elevation angle should you use if you would like to observe 
a target at an altitude of 1000 m at a range of 100 km? How would 
your results change if the desired altitude was 100 m? Discuss your 
options and hardware limitations.

 Q3: If in a rainfall event, droplets are of a single size and fall speed 
(D = 1 mm, v = 5 m sec−1), and the droplet density is 15 drops m−3. 
What is the rainfall rate in mm/hr?
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2
Radar Quantitative Precipitation Estimation

The implementation of weather radar networks in many meteorological 
agencies throughout the world has changed their paradigm for severe 
weather monitoring and warning. It has transformed from a system of man-
ual reporting and reacting to weather to one of automated observations and 
anticipating weather impacts. This latter system has resulted in a significant 
reduction in loss of life and property, well worth the investment of install-
ing and maintaining the observing networks. This monitoring capability 
also exists for quantitative precipitation estimation (QPE). However, the 
quantitative use of weather radar variables is the most demanding and thus 
requires careful processing and error considerations to convert the radar 
signal to a useful measurement of precipitation rates.

Prior to the advent of radar technologies, the measurement of rainfall 
was accomplished with in situ rain gauges. A diverse array of rain gauges 
exists, ranging from simple collection receptacles that observers read to 
weighing buckets, tipping buckets, acoustic devices, heated plates and 
spheres, and laser and video disdrometers that measure individual drops. 
Each device has its own set of advantages, costs, maintenance protocols, 
electricity and communication requirements, and error sources, but all in 
situ gauges share a common problem in representing spatial precipitation 
patterns. This limitation is particularly problematic with extreme rainfall 
and  orographic precipitation, both of which are commonly characterized by 
strong spatial gradients. The greatest benefit of weather radar to hydrology 
is its  potential to estimate rainfall rates at high spatiotemporal resolution 
(i.e., 1 km/5 min), in real time, within a radius of approximately 250 km of 
the radar. The   following sections explain the basic procedures needed to 
get from reflectivity measured by conventional radar to precipitation rates 
with uncertainty estimates.

2.1 Radar Calibration

The calibration of radar has a major influence on the accuracy of  rainfall rates. 
A miscalibration of only 1 dB results in bias in rainfall rates of 15%. Several 
options for calibrating radar are summarized in Atlas (2002). The  receiver 
can be calibrated by injecting it with a known, transmitted signal. However, 
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this “engineering approach” doesn’t account for the combined error  resulting 
from transmission and reception. Transmit and receive components can be 
jointly calibrated by using a reflective target with known scattering proper-
ties within the field of view of the radar. Such a target must be suspended or 
lofted, which poses challenges for large radar networks that might consist of 
dozens or even more than a hundred radars. Moreover, the calibration of a 
radar may drift in time, requiring the sphere to be positioned in front of the 
radar on a regular basis.

A disdrometer is an instrument that primarily measures the precipitation 
drop size distribution (DSD). Since it can measure the diameter of individual 
droplets, disdrometers also measure radar reflectivity Z (see Equation (1.10)). 
These in situ measurements can be compared to the radar-measured equiva-
lent Z values in rain to identify biases due to miscalibration of the radar as 
in Joss et al. (1968). However, the sample volumes between a typical radar 
pixel aloft and a disdrometer orifice at ground differ by about eight orders of 
magnitude (Droegemeier et al. 2000). Furthermore, the radar samples precip-
itation at some height above the disdrometer (which depends on the range of 
the instrument from the radar, elevation differences, and beam propagation 
paths), so there will be a space-time lag between the measured raindrops to 
enter the disdrometer. This lag depends on wind velocity, the fall speed of 
the raindrops, and the height difference between the measurements. If this 
lag becomes too large, then there is a chance that microphysical processes 
such as melting, collision-coalescence, and drop breakup can change the 
character of the radar-measured Z that reaches the surface. Nonetheless, 
Gourley et  al. (2009) used a disdrometer at 11.5 km range to evaluate the 
calibration of a mobile radar during the Hydrometeorological Testbed 
Experiment in California. Despite some scatter between the disdrometer- 
and radar-measured Z values, an average bias of 6.8 dB with a standard 
deviation of 1.3 dB was identified and later corrected to compute rainfall rate 
estimates. Note that the radar receiver was calibrated prior to the experiment 
by injecting it with a known signal. Apparently, this engineering approach 
was inadequate to handle the combined calibration from transmission and 
reception. The disdrometer approach to radar calibration is useful for indi-
vidual radars, especially in a field experiment setting, but they are often not 
feasible for calibrating large radar networks.

Spatial maps of radar-estimated precipitation are often computed using 
data from several radars. Even if the radars are calibrated within 0.5 dB 
of each other, lines of data discontinuities or radar artifacts often arise 
where a precipitation estimation algorithm switches using data from one 
radar to the neighboring one. These artifacts are most noticeable for long-
term accumulations of rainfall such as daily accumulations. This problem 
can be dealt with in the precipitation algorithm by spatially interpolating 
or smoothing data between neighboring radars. Another approach is to 
compare the Z values in rain from neighboring radars at these equidistant 
lines to identify relative calibration differences. This approach of comparing 
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remote-sensing observations to one another, as opposed to in situ data, has 
been shown to be quite useful for calibrating radar networks (Gourley et al. 
2003). Bolen and Chandrasekar (2000) used radar Z measured from space and 
compared those to NEXRAD radars to identify miscalibrated radars. The 
advantages of this approach are the comparisons between  measurements 
from similar radar bin volumes, and there are generally very large  numbers 
of matched data pairs. These comparisons, however, reveal relative cali-
bration  differences rather than unambiguously identifying which radar is 
 miscalibrated. It is possible to complement the relative Z differences from 
a ground network of radars to Z measured by spaceborne radar aboard the 
Tropical Rainfall Measurement Mission (TRMM) and Global Precipitation 
Measurement (GPM) mission. The spaceborne radar may not be perfectly 
calibrated itself, but it is stable and traverses regions covered by many differ-
ent radars. By comparing Z values in rain among all ground radars to their 
neighbors and also to a stable calibrator from space, it is possible to “level the 
field” so that all radars are well calibrated.

2.2 Quality Control

Now that the Z data have been bias-corrected for radar miscalibration, 
which may require large samples of comparisons over hours or even days 
of precipitation, every single bin of radar data must be carefully scrutinized 
to remove deleterious effects from nonmeteorological scatterers on the 
ground, biota in the atmosphere, planes, chaff, etc. Remember that radar was 
 originally developed to detect planes, ships, and submarines on the ocean 
surface, so it comes as no surprise that weather radar sees many nonweather 
targets. Some researchers have devoted a great deal of their careers to the 
single subject of ground clutter removal from radar, which is a testament to 
the difficulty in accomplishing this task. It would be impractical to provide a 
comprehensive review of every algorithm to remove nonweather echoes, but 
this section covers the basic approaches.

2.2.1 Signal Processing

The first level of screening takes place at the spectral level, which is prior to 
the stage at which reflectivity is estimated. Radar actually measures several 
independent samples within a given range bin. If the samples are associated 
with no Doppler shift, i.e., a radial velocity of 0 m sec−1, then this indicates 
a stationary target, probably from the ground or a building. Hydrometeors 
have nonzero Doppler velocities because they fall and are displaced hori-
zontally with the wind. At this point, it might seem rather trivial to just 
remove all echoes associated with no Doppler shift. However, even when the 
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wind is prevailing from a uniform direction, there will be a line where the 
radial velocity shifts from negative to positive; this is called the zero isodop. 
Consider a southerly wind. There will be negative radial velocities to the 
south of the radar (moving toward the radar), positive to the north (moving 
away from the radar), and zero velocities due east and west. If a filter were to 
remove all echoes with no Doppler shift, then echoes to the east and west of 
the radar along the zero isodop would be mistakenly removed.

Conversely, there are numerous nonmeteorological targets that are 
 nonstationary. All biota in the atmosphere such as birds, bats, and insects 
are generally in flight and are affected by the prevailing wind. Even some 
ground targets like trees and windmills have nonzero velocities. The leaves 
of trees flutter in the wind, and the tree trunk itself gently sways. Even 
this small motion is detectable by radar. The recent development of wind 
farms has resulted in a great deal of ground targets that have moving parts. 
These are often placed on exposed ridges and are thus within the view of 
nearby radars. These kinds of targets pose significant challenges to quality 
control procedures. Since each and every bin around a radar must be scruti-
nized, automated algorithms must be developed, tuned, and implemented to 
screen out nonmeteorological echoes. The first indication of ground clutter 
is echoes with zero Doppler velocity in regions away from the zero isodop. 
These echoes are first evident at the spectral level of processing, and are 
subsequently removed.

2.2.2 Fuzzy Logic

Algorithms must be employed to discriminate nonmeteorological from mete-
orological echoes. These algorithms range in complexity from simple thresh-
olds placed on variables, thresholds applied to multiple variables as in decision 
tree logic, fuzzy logic, neural networks, and combinations therein. Fuzzy 
logic algorithms are well suited for radar observations because they incorpo-
rate information from multiple variables with different weights and are less 
 susceptible to misclassifications due to noise in the measured variables. This 
section covers the general design of a fuzzy logic algorithm. Additional vari-
ables from radars with polarimetric capability are presented in Chapter 3.

A fuzzy logic algorithm accommodates imperfect measurements for 
decisions that must be made about a process that is not perfectly understood 
or explained by measurable data. Nonmeteorological scatterers have several 
identifiable radar characteristics, such as zero velocity, but no single vari-
able unequivocally discriminates meteorological from nonmeteorological 
scattering. Fuzzy logic algorithms consider multiple radar observations; thus 
the impact of a single, perhaps noisy variable is minimized. The key to the 
success of a fuzzy logic algorithm lies in the designation of its membership 
functions. Membership functions utilize qualitative and/or quantitative 
information from observations, theory, or simulations. They describe the 
range of values a variable possesses to aid in the decision.
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The membership functions of Zrnić et al. (2001) have trapezoidal shapes, 
while those described in Liu and Chandrasekar (2000) have continuously 
differentiable beta functions. Gourley et al. (2007) derived membership func-
tions using Gaussian kernel density estimation (Silverman 1986) that are 
based entirely on radar observations. First, cases comprised of several hours 
of observations are identified in which there was no precipitation but evident 
ground clutter from nearby buildings, trees, etc. Then, a function describing 
the typical ranges of values for each radar variable in ground clutter is com-
puted as follows:
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where f x� ( ) is the density function, σ is the smoothing parameter or band-
width, n is the total number of data points, Xi is the ith observation of 
the variable, and x is the independent variable. The bandwidth controls 
the smoothness of the function, and it can be estimated using Silverman’s 
rule (σ = 1.06SDn−1/5) where SD refers to the standard deviation of the raw 
data distribution. Applying a Gaussian kernel is equivalent to drawing a 
Gaussian curve on top of each data point, and then adding up all the indi-
vidual functions using the principle of superposition.

Figure  2.1 illustrates how individual Gaussian curves (in gray) are 
produced for each individual data point (denoted with + signs). The pro-
cess is repeated for all of the data points, and after the curves are added 
and normalized, the density function f x� ( ) (curve in black) is produced. 
The density function can be nonlinear, it can have multiple modes, and it is 
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FIGURE 2.1
Illustration of kernel density estimation using Gaussian curves. A Gaussian curve is drawn for 
each observational data point along the x-axis. Each of the curves are added using liner super-
position to arrive at the final curve that gives an estimate of the data density.
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continuously differentiable. It can be thought of simply as a smoothed fit to a 
histogram of the data. For fuzzy logic to function properly, density  functions 
need to be produced for the radar variables for all classes. A  class is the 
 predictand, or what the algorithm is designed to identify. For  discriminating 
 hydrometeors from nonhydrometeors, cases are selected for situations with 
pure  precipitation (no nonmeteorological  scatterers) and with nonmeteoro-
logical scatterers alone.

In addition to incorporating the standard variables measured by radar 
in a fuzzy logic algorithm, it is also useful to consider their temporal and 
spatial derivatives; this is because radar observations of nonmeteorological 
 scatterers can be discontinuous and noisy in space but consistent in time. 
Consider the theoretical Z that would come from a building  versus  that 
of an individual convective storm. The building will be very reflective, 
 perhaps similar to a strong thunderstorm cell, but these high values will 
be quite  consistent in time (the building is not moving). Furthermore, 
bins just  adjacent to the building will likely have very low values of  Z. 
The   thunderstorm, on the other hand, will exhibit higher temporal 
 variability in Z because hydrometeors are rapidly ascending, descending, 
or being advecting  laterally. Furthermore, a strong thunderstorm typically 
extends horizontally at least a few kilometers and often can extend tens of 
kilometers. A sigma variable measures the temporal consistency of reflec-
tivity by computing the mean absolute difference in Z between adjacent 
pulses at a given range gate (Nicol et al. 2003). Low variability (<5 dB) is more 
 typically associated with stationary targets such as ground clutter. Opposite 
of temporal  stability, very high spatial variability of radar  variables can be 
indicative of nonmeteorological scattering. A useful derivative to compute 
to assess spatial variability of a radar variable is the root-mean-squared 
 difference, or more commonly, the texture. Texture fields assess the spatial 
variability of a given variable (y) within a user-selectable (m × n) window 
and are computed as follows:
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where a and b represent the azimuth and range of the range gate; and m 
and n represent the number of pixels in the azimuth and range  directions, 
respectively, centered on the range gate. When working with raw radar 
data, it is important to recognize that the bin volumes increase with 
range. Thus, the texture variables will naturally increase in precipitation 
with range merely due to the much larger region over which the spatial 
 variability is assessed.
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The next step in fuzzy logic is to compute the aggregation value (Q) at each 
range bin. The aggregation value for a given class represents the strength 
in identifying it given the combined use of the radar variables and their 
 derivatives. It is defined as follows:
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where the summation is performed for each ith class using each of the jth 
variables and derivative fields. Some fuzzy logic algorithms use multiplica-
tion rather than aggregation shown in Equation (2.3). The danger in using 
a multiplicative approach is that a membership value of zero from a single 
membership function for a given class will prohibit that class from being 
assigned, even if the measured variable was in error or was noisy. Thus, the 
aggregation approach is more useful to remote sensing observations. The 
weighting applied to each radar variable, W, can be determined in an 
objective way as originally proposed by Cho et al. (2006).

Figure  2.2 illustrates two hypothetical density functions: one quantifies 
the data distribution for a given radar variable for nonhydrometeors, and 
the other is for hydrometeors. The weighting applied to this particular vari-
able is computed from the degree of overlap between the two functions and 
is inversely proportional to the area shaded in gray. So, if two functions 
overlap perfectly, meaning the radar variables have the same values in both 
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FIGURE 2.2
Two density functions with overlapping regions highlighted in gray. These illustrate how 
radar observations for two different classes have different distributions, but there is overlap 
between them. The inverse of the area of overlap is used in a fuzzy logic scheme to quantify 
the weight this particular radar variable will have. If there is a small area of overlap, then this 
indicates the variable is a good discriminator for that class, and a great deal of weight is sup-
plied to the radar variable as a result.
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precipitation and ground clutter, then the weight applied to this variable 
will be zero. On the other hand, very little overlap between the functions 
indicates that the radar variable is a good discriminator by itself and receives 
a great deal of weight. If there is no overlap between functions, then the 
weight becomes infinite. This may appear as problematic for the fuzzy logic 
formulation, but if there is no overlap between functions, then the variable is 
a perfect discriminator alone and a threshold placed on the variable, as in a 
decision tree logic, will suffice in the discrimination.

The next step in fuzzy logic is to determine the maximum Qi value 
(for each class). It is possible at this point to compute a strength of classifica-
tion or an uncertainty estimate by comparing the values for Qi. Q values that 
are close to one another indicate that the strength of classification is weak 
and the final class is associated with high uncertainty. The final step in fuzzy 
logic often applies a despeckling algorithm to create spatially consistent 
fields. For example, neighboring classifications are examined around a given 
pixel. In precipitation, it is very unusual to have a single pixel identified as 
precipitation surrounded by nonmeteorological scatterers. So, the despeck-
ling filter examines this pixel and then reassigns it to the nonmeteorological 
class due to its isolated, nonphysically realistic behavior.

2.3 Precipitation Rate Estimation

Calibrated reflectivity values describing the size, shape, state, and concen-
tration of the hydrometeors within the radar sampling volume are used 
next to compute precipitation rate. If there are no beam blockages in the 
vicinity of the radar, then reflectivity measured at the lowest elevation 
angle, 0.5 deg for NEXRAD, should be used for QPE. In regions with com-
plex terrain, bins are selected at multiple elevation angles to construct the 
hybrid scan for QPE.

Figure 2.3 shows how the hybrid scan is built based on two rules: (1) the 
center of the beam must clear the underlying terrain by more than 50 m, and 
(2) the beam blockage between the bin and the radar at the same elevation 
angle must be less than 60%. So, we can see that having a tall mountain 
close to a radar can result in unusable data at low elevation angles for all 
range bins beyond the obstruction. Data from range bins that have partial 
blockages less than 60% from terrain at closer ranges are still used, but 
1 dB is added to each measured Z value per 10% blockage (2 dB added for 
20% blockage and so on). Note that the blockages are computed using a 
digital elevation model (DEM). These DEMs do not incorporate anthropo-
genic factors such as towers and structures, nor do they include vegetation 
canopy. The heights of trees in the vicinity of a radar can be a very sig-
nificant blockage requiring manual correction of the hybrid scan. Once the 
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hybrid scan lookup table is established, it is generally fixed for a given site 
unless there are  significant changes with buildings, towers, or trees near 
the radar. After the DEM-based hybrid scan is constructed, it is good prac-
tice to  examine long-term  accumulations during widespread, stratiform 
rain  situations. The resulting accumulation maps will reveal artifacts, such 
as discontinuities evident in the azimuthal direction, that are due to block-
ages. Manual editing of the hybrid scan lookup table can alleviate many of 
these low-level blockages.

Reflectivity from the hybrid scan is used to compute two-dimensional 
fields of precipitation rate in spherical coordinates (range, azimuth). The 
general form of reflectivity-to-rainfall relationships, or Z–R  equations, is a 
power-law as

 Z = aRb (2.4)

where a is the prefactor and b is the exponent. The two most common Z–R 
relations are the NEXRAD default for convection (a = 300, b = 1.4) and the 
Marshall–Palmer relation (a = 200, b = 1.6) generally applied to  stratiform 
rain. The Marshall–Palmer relation (Marshall and Palmer 1948) comes 
from an exponential DSD with fixed slope and intercept  parameters. 
In Equation (2.4), Z is in linear units (mm6 m−3) and R is in mm hr−1. The same 
power-law  relation is used to compute snowfall rates. With radar, the snow 
water  equivalent (SWE) is the variable that is estimated rather than the snow 
depth. The latter variable depends on the snow density, which  varies with 
temperature and moisture. In fact, temperature may also affect the Z–S 
parameters for SWE estimates. Myriad values of a and b parameters have 
been reported for rainfall and SWE estimation specific to geographic regions, 
seasons, storm lifecycles, hydrometeor types, DSDs, etc. Errors in the Z–R 
relation are discussed in Section 2.7.

Bins used to
build hybrid scan Criteria:

1. Beam center > 50 m
above underlying terrain

2. Beam blockage < 60%

FIGURE 2.3
Construction of the hybrid scan using multiple elevation angles over complex terrain.
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2.4 Vertical Profile of Reflectivity

Assuming all nonmeteorological echoes have been successfully removed, 
Z  is well calibrated within 1.0 dB, and the parameters of the Z–R relation 
yield accurate precipitation rates, there is the unavoidable circumstance 
that the radar bin volume and beam heights increase with range from the 
radar. This results in errors that depend on range. Range-dependent errors, 
biases in particular, can be mitigated to a certain degree through the use 
of a correction based on an observed or modeled vertical structure of pre-
cipitation. Simpler methods adjust precipitation rates as a function of range. 
However, this simplification becomes problematic in regions where there is 
beam blockage and the hybrid scan is composed of different elevation angles 
that vary with azimuth. The range to a target may be the same between 
different azimuths, but the beam heights are drastically different.

It is better practice to implement a model describing storms’ vertical 
profile of reflectivity (VPR) to quantify the variability of reflectivity with 
height. This VPR model can be used to correct for sampling height- and 
range-dependent errors, namely biases. This permits Z measured by radar 
at a given height and range to be adjusted so that it better represents what 
is occurring at the surface. A number of methods have been proposed to 
identify the VPR including reconstruction from volumetric radar data 
(Andrieu and Creutin 1995; Andrieu et al. 1995; Vignal et al. 1999; Borga et al. 
2000; Seo et al. 2000; Germann and Joss 2002; Kirstetter et al. 2010) and by 
describing or modeling the VPR with parameters (Kitchen et al. 1994; Tabary 
2007; Matrosov et al. 2007; Kirstetter et al. 2013a).

This section presents a general approach that illustrates the correction 
procedure. Figure  2.4 shows general VPR models for (a) convection and 
(b) stratiform precipitation, the most elementary level of storm segregation. 
Convective storms have greater updraft velocities (on the order of 10 m sec−1 
that can be quite vigorous in supercells, reaching 50 m sec−1) and tend to occur 
over land more frequently during the warm season. These storms reach 
greater heights in the troposphere, often reaching the tropopause, are often 
associated with electrical activity, and produce more intense  rainfall rates.

Stratiform rainfall systems, on the other hand, are more common over 
land during the cool season and also trail convection in mesoscale convec-
tive systems. Stratiform rain has lower updraft velocities (up to 1 m sec−1), 
tends to be more widespread, and results in weaker rainfall (and snow-
fall) intensities. The convective VPR in Figure 2.4 illustrates that the pro-
file is more upright, meaning that the reflectivity does not vary greatly 
with height. This means that a reflectivity sample taken aloft (e.g., 5 km) 
is approximately representative of rainfall rates experienced at the sur-
face. In many cases, VPR correction for convective storms leads to slight 
 corrections that can be overshadowed by other uncertainties such as the 
conversion of Z to R.
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VPR corrections for stratiform rainfall, on the other hand, are much 
more germane. Figure 2.4 shows how reflectivity has little variability with 
height in the rain region. Then, it increases significantly in the bright band. 
Rainfall estimates have been shown to be overestimated up to a factor of 
10 when using uncorrected measurements taken within the bright band 
(Smith 1986). Above this layer, reflectivity decreases again in the pristine 
ice region. The VPR model in Figure  2.4 describes the vertical variabil-
ity of reflectivity in stratiform using the following parameters: (1) depth 
of the melting layer, (2) height of the bright band peak, (3) bright band 
peak value, (4) decrease in reflectivity from the height of the bright band 
peak to the top of the melting layer, (5) decrease in reflectivity from the 
top of the melting layer to the storm top height, and (6) storm top height. 
These parameters can be estimated using volumetric radar data, climato-
logical radar data, and even from upper air data from numerical weather 
prediction (NWP) analyses and from radiosonde observations. Once the 
vertical structure is modeled, the next step is to account for beam spread-
ing. The impact of the bin volumes increasing with range causes the radar 
to observe a smoothed version of the actual VPR. Two of these apparent 
VPRs are shown as gray curves in Figure 2.4. The smoothing, or averaging 
of data in the vertical, increases as the bin volumes increase with range. 
The apparent profiles can be estimated using Equation (1.7) superimposed 
on the VPR model.
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FIGURE 2.4
Model vertical profiles of reflectivity for convective and stratiform echoes. These models can 
be designated by the parameters listed in text. The gray curves correspond to radar-sampled 
VPRs at longer ranges from radar, illustrating the smoothing effect caused by beam broadening.
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The next step is to correct the radar-observed reflectivity measured at 
some height so that it represents the reference reflectivity value at or very 
near the surface. The method uses the apparent VPR, which depends on the 
bin volume at that range and then estimates the beam center height from 
Equation (1.3). These factors and the VPR model determine the amount 
of reduction needed for measurements taken near the melting layer and 
increases needed for measurements taken above it. There is generally a ver-
tical limit to which corrections can be applied. Stratiform systems tend to be 
much shallower than convective storms, thus there is a finite range to which 
corrections can be applied. Complete overshooting occurs when the radar 
beam exceeds the height of the storm top and defines the maximum range of 
useful radar measurements for QPE.

VPR corrections are designed to reduce range-dependent biases, which 
are considered to be systematic. Random errors result from unrepresentative 
VPRs. There are numerous meteorological scenarios than can result in VPRs 
that vary with space and time and are thus unrepresentative. Gourley and 
Calvert (2003) and Giangrande et al. (2008) developed bright band retrieval 
algorithms and then demonstrated that the height of the bright band could 
change by as much as 2 km in altitude within 6 hrs. Spatial variability of 
the melting layer can be significant in the presence of strong temperature 
gradients, such as near a cold front. The melting layer also descends due to 
adiabatic cooling from orographically induced updrafts and diabatic cooling 
from melting; thus we expect lower melting layer heights on windward 
slopes of mountain chains (Minder et al. 2011). This VPR representation error 
can be magnified by increased precipitation rates from low-level orographic 
enhancement that may not be observed by radar. Thus, orographic effects 
impact the spatial variability of the VPR as well as the magnitude of reflec-
tivity increase at low levels. Nonetheless, VPR correction methods are useful 
to reduce range-dependent biases and are thus a recommended practice for 
estimating rainfall in stratiform precipitation systems.

2.5 Rain Gauge Adjustment

Rain gauges provide useful measurements of rainfall at a point. For this 
reason, they are essential for evaluating and improving radar-based QPE 
algorithms, despite their significantly large sampling volume differences 
from radar bins. There are many different types of rain gauges ranging 
from weighing buckets to tipping buckets, heated plates, and laser and 
video disdrometers. It has been noted that they have their own set of errors 
(Zawadzki 1975; Wilson and Brandes 1979; Marsalek 1981; Legates and 
DeLiberty 1993; Nystuen 1999; Ciach 2003). If they are not shielded from wind, 
then the instrument can perturb the wind field, resulting in undercatch. 
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Other errors relate to the specifics of the instrument itself such as splash-out 
with heavy rainfall and lack of sensitivity to very light rainfall rates (i.e., not 
enough rainfall to tip the bucket and register rainfall). These instruments 
must also be regularly calibrated and maintained, which is particularly nec-
essary for sites where lots of plants, birds, and insects congregate around the 
instruments. But the largest limitation by far is their inability to adequately 
represent the spatial and temporal variability of rainfall fields except over 
very dense networks covering small domains. This is the greatest advantage 
of radar measurements.

At a given point, rain gauges are generally considered to be of higher 
quality than radar-based estimates of precipitation. They are thus useful for 
evaluating radar QPEs and for correcting them in near real time. The two 
general approaches for correcting QPEs using rain gauges are (1) mean field 
bias correction and (2) spatially variable bias correction. Mean field bias cor-
rection simply matches each hourly rain gauge estimate to collocated radar 
bins (or neighborhood of bins). The radar QPEs are summed for the hour 
and compared to the sum of the rain gauge accumulations. A Σ(G)/Σ(R) ratio 
is computed, which assumes the radar errors are multiplicative, and mul-
tiplied back to the original radar QPEs. This method maintains the spatial 
variability resolved by the radar QPEs and then adjusts them on an hourly 
or even daily basis by removing their mean field bias. These mean field bias 
corrections are effective for radar-based QPE errors that are spatially homo-
geneous. The only error that properly falls into this category is miscalibra-
tion of the radar signal, which affects all bins around the radar equally. Most 
other errors have nonnegligible spatial variability.

Forecasters at the Arkansas–Red Basin River Forecast Center  originally 
developed a technique of spatially variable bias correction called P1. This 
effort was largely in response to the installation of the Oklahoma Mesonet, 
which provides standard surface weather observations  including rain 
gauges in every county in the state. The method works by comparing radar 
QPEs at gauge locations and computing the bias. In this case, the bias is 
specific to each gauge location and not lumped together as in the mean 
field bias correction. Then, the bias field is spatially interpolated using 
a method such as regression, inverse distance weighting (IDW), or krig-
ing. Then, the smoothed, spatially variable bias field is applied back to the 
original radar QPE field. The advantage of this approach is that it consid-
ers spatially heterogeneous errors that are common with radar QPE such 
as Z–R variability, nonweather scatterers, and range-dependent biases. 
For the adjustment to be effective, there must be a reasonably dense gauge 
network surrounding the radar to resolve the nonhomogeneous errors. 
Furthermore, the method is sensitive to errors in individual gauge mea-
surements and can end up corrupting the radar-based QPEs. The mean 
field bias correction method is less susceptible to individual errors due to 
the aggregation of all the gauge accumulations. The gauge data must be 
very carefully quality controlled for the spatially variable bias correction 
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method to be effective. This is a challenging prospect since rain gauge 
 networks tend to be operated by myriad different  organizations  ranging 
from national meteorological  services, local municipalities, hydroelectric 
power companies, state climate surveys, etc.; thus, they are subjected to 
inconsistent levels of maintenance and quality control. Radar networks, 
on the other hand, are frequently  operated and maintained nationally 
by the government and have much more standard operating and error 
characteristics.

2.6 Space-Time Aggregation

Radars can measure rainfall rates on their native spherical grid with bin 
resolution depending on the operating characteristics of the radar. This 
resolution is nominally 1 deg in azimuth by 1 km in range and estimates are 
computed on a 5 min basis. These rainfall rates must be summed typically 
to hourly accumulations in order to be adjusted by rain gauges. Additional 
aggregation takes place to compute 3-, 6-, 12-, and 24-hour, 72-hour, 10-day, 
monthly, etc., accumulations. Some gauge networks provide daily accumula-
tions such as manual observer networks. These data can be introduced to 
modify the 24-hourly accumulations.

Rainfall estimates from neighboring radars comprising a network can be 
combined or mosaicked to create rainfall maps covering a larger, national 
spatial domain. The mosaicking methods differ in their  complexity. Because 
the native radar coordinates are centered around each radar, it is more 
practical to resample the rainfall estimates onto a common Cartesian grid; 
this accommodates the mosaicking of data from adjacent radars onto a single 
grid. The simplest mosaicking approach merely chooses the rainfall estimate 
from the radar closest to each grid point. This method is notorious for creat-
ing linear discontinuities in the rainfall fields at points equidistant (at the 
same range) from neighboring radars. These  mosaicking artifacts indicate 
that one or both of the radars have bias in their rainfall estimates.

Examples of this phenomenon are illustrated in Figure 2.5. This is a 10-day 
accumulation of estimated rainfall from the Mobile, Alabama (KMOB); Elgin 
Air Force Base, Florida (KEVX); and Tallahassee, Florida (KTLH), NEXRAD 
radars. The linear discontinuities are circled in black. They indicate that 
rainfall estimates from the KEVX radar are higher than from the neighbor-
ing radars. Rainfall estimates from the algorithm running on the KEVX data 
are approximately 5 in (127 mm) or 50% greater than from KMOB. To the 
east of KEVX, the differences are on the order of 2.5 in (63.5 mm) or about 
double the rainfall estimates from the KTLH radar. Clearly, we can see the 
large uncertainties that can result in radar-based rainfall estimation and the 
artifacts that are caused by data mosaicking.
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These discontinuities can result from calibration differences between the 
radars, different equations used to convert Z to R, different  parameters in 
the VPR models used to reduce range-dependent biases, partial beam block-
age, power losses due to attenuation, and different beam center heights. 
Some of the errors caused by radar miscalibration, Z–R, VPR parameters, 
partial blockages, and attenuation are largely algorithmic and can be cor-
rected or minimized using software solutions. Discrepancies in beam center 
heights can result from differences in beam propagation paths. Small-scale 
 atmospheric conditions dictate the beam  propagation paths. Although 
propagation paths can be modeled using profiles of  atmospheric pressure, 
humidity, and temperature, some vertical gradients can be unresolvable by 
upper air observing systems. Large uncertainties in the beam center heights 
result and can cause radars to sample at different heights even though the 
 precipitation being sampled is at the same  equidistant range from both 
radars. This effect will cause the discontinuities. Radars most susceptible 
to this mosaicking artifact are those near oceans that experience a marine 
boundary layer and adjacent radars with different elevations.

Alternative mosaicking strategies have been developed to mitigate the 
visual artifacts caused by blending data from neighboring radars. Tabary 
(2007) proposed a mosaicking scheme that weights precipitation estimates 

FIGURE 2.5
Linear discontinuities in a 10-day accumulation of rainfall from mosaicked radar data. The 
accumulation period ends at 1200 UTC on August 27, 2013.
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from adjacent radars based on their quality as judged by their influence by 
ground clutter, degree of beam blockage, and altitude of the beam. Once the 
weights are empirically estimated for a given grid point, the mosaicking 
scheme selects the rainfall estimate from the radar that has the highest 
weight, which is equivalent to using the estimate with the best quality. 
Zhang et al. (2005) developed a scheme that first interpolates reflectivity data 
from spherical coordinates to a common 3-D Cartesian grid using objective 
analysis. Data from adjacent radars are then mosaicked based on a weighted 
mean, where the weight is based on the distance between an individual grid 
cell and the radar location. This method is more computationally expensive, 
but it is effective in interpolating radar data and minimizing artifacts.

2.7 Remaining Challenges

Despite all the processing steps and correction procedures applied to radar 
precipitation estimates, challenges still exist. In terms of data quality, not all 
nonweather scatterers are completely removed from radar QPE accumula-
tions. Scattering from biological targets like birds and insects is difficult to 
discern from hydrometeors because these have similar sizes and velocity sig-
natures as raindrops. Fixed structures like wind farms with moving blades 
can also be problematic for radar rainfall estimation. If the parameters of the 
data quality algorithms are tuned to remove all these nonweather scatterers, 
then actual precipitation can get accidentally removed.

Radar coverage at low levels (e.g., below 3 km above ground level) can 
be a real limiting factor in the quality of radar QPE (Figure  2.6). Maddox 
et  al. (2002) modeled the effective radar coverage by NEXRAD over the 
 conterminous United States. They showed very few gaps in radar coverage 
east of the Rocky Mountains with a few exceptions in the Rio Grande Valley 
of Texas and some mountainous locations in the Appalachians and Quachitas 
of southeast Oklahoma. Low altitudes (3 km AGL) of the Intermountain 
West, which is roughly defined as the region east of the Sierras and west of 
the Rocky Mountains, is approximately 50% covered by the NEXRAD net-
work. This means that even following VPR correction, there will be large 
random errors. And, in many regions the radars  completely overshoot the 
 precipitating  systems and thus there is no signal to correct. This situation 
is especially problematic during the cool season when the storms do not 
have great vertical extents as they do during the warm season. The radar cov-
erage problem can be improved only by introducing observations from 
additional platforms. These can be gap-filling radars, instruments aboard 
satellites, gauges, and even precipitation analyses from numerical weather 
prediction models.
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The use of a single, deterministic relationship to convert Z to R assumes 
a unique DSD that describes what the radar is sampling. Variability in the 
DSD as a function of storm type, geographic location, season, storm lifecy-
cle, updraft region of storms, etc. has been documented in  numerous stud-
ies. Some approaches address DSD variability with  conventional radars 
such as identifying different precipitation types and  applying  different Z–R 
equations. A contemporary algorithm that  conducts  automated precipita-
tion typing, adaptive Z–R selection, and rainfall  estimation is detailed in 
Chapter 4. Compared with the breadth of  studies that have been conducted 
on estimating rainfall from radar, very little has been done with SWE. 
In situ observations of SWE have their challenges due to  disruption of the 
wind field by the collecting gauges and spatial  representation  limitations. 
Snow accumulations are strongly  influenced by the  underlying terrain and 
local wind patterns that are organized on very small scales. The lack of 
large samples of accurate SWE  accumulations by in situ  instruments has 
been a limitation in the development and  evaluation of radar-based snow 
algorithms. The advent of dual-polarization radar technology offers great 
potential to improve the quality of radar variables and to retrieve precipita-
tion rates conditioned on different DSDs.
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FIGURE 2.6
Radar coverage by the NEXRAD network for altitudes below 3 km above ground level. 
The  colors correspond to multiple radars overlapping a given region.
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2.8 Uncertainty Estimation

Using deterministic radar QPEs without considering their underlying 
 distribution assumes that they are error free or that their uncertainties are 
negligible in the application for which they are being used. For the latter, con-
sider a coupled modeling system that uses radar QPEs as forcing to forecast 
the advection, dispersion, and reaction of a contaminant in a river. In this 
case, the uncertainties in the radar-estimated rainfall might be overshad-
owed by the initialization of the location and extent of the chemical spill, 
uncertainties about the specific chemical that was released, modeling of its 
transport underground, potential reaction with other, unknown chemical 
species in the groundwater and river water, etc. But, in general, it is wise 
practice to estimate and utilize uncertainties associated with radar QPE.

A number of radar rainfall error models have been proposed. An error 
model is the first step toward computing the rainfall uncertainty associated 
with a deterministic QPE, probabilistic QPE (PQPE), and generating ensembles 
of  QPE. A brief review of proposed error modeling approaches is  provided 
here;   readers are referred to Mandapaka and Germann (2010) for a complete 
review. The first error modeling approach attempts to describe all the individ-
ual errors specific to a given radar’s hardware, operating characteristics control-
ling the resolution and sensitivity of the estimated rainfall fields, and software 
used to estimate rainfall. This approach of quantifying individual errors and 
then superimposing them to yield a total error for the rainfall field requires 
detailed knowledge of the individual errors that may be specific to the radar 
system, how each radar is operated, rainfall regime, data quality  control, 
assumed DSD, VPR correction methodology, and Z–R  equations. While these 
methods have a strong theoretical basis, it can be a challenging prospect to 
quantify all the individual errors, their interactions, and their propagation for 
a large radar network such as NEXRAD. Moreover, the resulting error model 
may not apply to other radar systems outside the network.

A more general approach in error modeling involves correcting the 
radar QPEs to the best extent possible using the methods outlined in this 
chapter and then modeling the remaining error, or the residual, using an 
independent reference from rain gauges. Recall that rain gauges are often 
used in real-time algorithms to adjust radar rainfall estimates as discussed 
in Section 2.5. These methods must ensure that the reference used to define 
the residuals is  independent. This can be accomplished by withholding some 
gauges from the real-time estimates or by employing values from an inde-
pendent rain gauge network that might not have been available for real-time 
use. QPE error models decompose the residuals into biases describing the 
systematic (unchanging) errors of the radar QPEs, conditional biases such as 
dependence on radar sampling height, season, rainfall regime, rainfall rate, 
space-time resolution of rainfall rate estimates, etc., and then the random 
errors (Ciach et  al. 2007). After the biases are eliminated, the statistical 
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properties of the residual errors are evaluated through examination of their 
space-time structure, typically  evaluated with second-order moments such 
as correlation. Villarini and Krajewski (2010), Germann et  al. (2009), and 
Habib et al. (2008) all showed that log-transformed random errors followed 
a Gaussian distribution and were correlated in space and time. Kirstetter 
et  al. (2010) quantified the space-time correlation of residual errors using 
a semi-variogram. This geostatistical visual aid is created by computing 
the residual errors, purposefully perturbing them them in space and time 
(called lagging), and then computing their covariance. The resulting plots 
summarize the spatiotemporal dependence of the residual errors.

A recent method for PQPE was proposed by Kirstetter et  al. (2014) 
to quantify the radar rainfall uncertainty at the measurement scale of 
1 km/5 min. These are the scales that must be considered when monitoring intense 
rainfall associated to flash flooding. Moreover, PQPE at such fine scales can 
be used to comprehensively evaluate rainfall estimates from instruments 
aboard low Earth orbiting platforms. Satellite-based passive and active 
microwave  sensors essentially observe a snapshot of precipitating systems 
as they orbit the Earth. The aforementioned gauge-based approaches do 
not readily  accommodate these high-resolution applications because the 
gauges  generally do not provide accurate instantaneous rainfall rates, 
but rather accumulations at 15 min, hourly, or daily time scales. The new 
method  creates a reference rainfall dataset following the method discussed 
in Kirstetter et al. (2012, 2013b). Hourly, spatially variable biases computed 
from rain gauges are applied downscale to radar-estimated rainfall rate 
fields at 1 km/5 min resolution. This method assumes that hourly biases 
do not have significant temporal variability at subhourly scales. Next, 
the datasets are partitioned according to their precipitation type: convec-
tive, stratiform, tropical, bright band, hail, and snow. Details on the logic 
involved in the precipitation type segregation are provided in Chapter 4. 
For now, we can assume that the  different precipitation types are associated 
with different microphysical processes and drop size distributions, impact-
ing the parameters in the Z–R relation. The datasets are filtered to remove 
reference rainfall rates that were too heavily bias-corrected by hourly rain 
gauges (i.e., 0.01 < correction factors < 100) and the precipitation type must 
have been consistent at the candidate pixel throughout the hour.

Data points (indicated by x in Figure 2.7) of the filtered reference rainfall 
rate, R (mm hr−1) are plotted as a function of Z (dBZ) for each precipitation 
type. The data points suggest a power-law relationship between Z and R, 
which is typically assumed. The next step involves fitting an error model to 
the observed values of Z and R. The generalized additive model for location, 
scale, and shape (GAMLSS; Rigby and Stasinopoulos 2005) technique is used 
to create the smooth curves shown in Figure 2.7. These can be considered as 
empirical fits to the data points that now describe the distribution of R for 
a given radar observation of Z and precipitation type. Figure 2.7 shows the 
median of the distribution, or the 50% quantile denoted as Q50, as well as the 
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25% and 75% quantiles (Q25, Q75). The distance between these latter two quan-
tiles can be used to estimate the uncertainty for a rainfall rate  associated with 
a given measurement of Z and precipitation type. The error model describes 
the entire data distribution and can be used to accommodate the intended 
application of radar rainfall estimates. For instance, in the event that the user 
only requires deterministic values of radar-estimated rainfall rates (such as 
when they are assumed to be overshadowed by other uncertainties in the 
modeling system), then the GAMLSS model would provide the rainfall rates 
associated to the Q50 curve. If an application was particularly sensitive to 
outliers, such as threshold rainfall rates to trigger flood alerts, then the user 
might require the upper tails of the distribution from 95% or 99% quantiles.

Now that the radar-estimated rainfall rates have been modeled using the 
GAMLSS technique as a function of Z and precipitation typology, a number of 
useful products can be derived. The relative uncertainty of rainfall  estimates 
is readily computed using the difference between two quantiles normalized 
by the median precipitation rate (e.g., (Q75–Q25)*100/Q50). Moreover, the distri-
bution of rainfall rates can be considered when computing the probability of 
rainfall exceeding some predefined threshold, such as the rain rate associated 
with a 50-yr annual recurrence interval (or return period). Similarly, the prob-
ability of exceeding flash flood guidance values can be readily  computed. Last, 
the GAMLSS-produced error model provides the basis to generate ensemble 
QPEs by sampling the rainfall rate probability distribution functions at each 
grid point. Techniques make use of LU decomposition to generate equally 
probable rainfall fields that have spatially and temporally correlated residual 
errors (Germann et al. 2009; Villarini et al. 2009). The production of ensemble 
QPEs can lend themselves quite useful to forecast systems such as distributed 
hydrologic models that  forecast the probability of flash flooding.
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FIGURE 2.7
Illustration of method for computing probabilistic QPE at 1 km/5 min scale based on 
 gauge-corrected radar observations and radar reflectivity factor.
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Problem Sets

 Q1: What is probabilistic QPE (PQPE)? Why do we need uncertainty 
 estimation for radar QPEs?

 Q2: The radar measures an effective reflectivity factor of 30 dBZ at 
50  km. (a) Calculate the rain rate by using the Marshall–Palmer 
Z–R relation. (b) The radar “sees” 30 dBZ at a range of 100 km. 
But, because of beam blockage only half of the resolution volume 
is illuminated. What would have been the correct reflectivity factor 
 without beam blockage? How would your result change depending 
on which portion of the beam was blocked? Compute the impact of 
this beam blockage on estimated rainfall rates.
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3
Polarimetric Radar Quantitative 
Precipitation Estimation

Thus far we have introduced basic radar principles and processing steps for 
computing quantitative precipitation estimates (QPE) using  conventional, 
single-polarization radar. The pulse is typically polarized about the hori-
zontal plane, and the primary measurement used for QPE is radar reflec-
tivity, Z. In addition to challenges with data quality (i.e., contamination by 
nonweather scatterers), many studies have shown that Z alone is insufficient 
to reveal the natural variability of precipitation (Battan 1973; Rosenfeld and 
Ulbrich 2003). The drop size distribution (DSD) exhibits variability and 
thus cannot be adequately described using a single reflectivity-to-rainfall 
rate (Z–R) relation. With the development of dual-polarization radar (also 
called polarimetric radar), the accuracy of QPE has been improved through 
the use of polarimetric varaibles (Bringi and Chandrasekar 2001). The U.S. 
Next-Generation Radar (NEXRAD) network has been upgraded with dual-
polarization technology, and similar upgrades have been conducted or are 
planned in many other countries. This chapter presents the QPE approaches 
using polarimetric radar measurements. Issues of radar data quality control 
and hydrometeor classification, which are critical to obtain accurate radar 
QPE, are also addressed.

3.1 Polarimetric Radar Variables

This section introduces the essential polarimetric radar variables that 
are used in QPE. Radar echoes are combined signals backscattered by all 
the hydrometeors within a radar resolution volume at a given range gate. 
The intensity and phase of received radar echoes are determined by both 
scattering and propagation effects. These effects depend on the radar fre-
quency and the size, intensity, phase, shape, structure, and orientation of the 
hydrometeors. The theoretical equations for the polarimetric radar variables 
are given below. The use of subscripts for polarimetric variables is quite 
common. In general, letters in lowercase correspond to linear units, while 
those in uppercase correspond to units in dB.
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 1. Radar reflectivity factors at horizontal and vertical polarizations 
(Zh,v or ZH,V)
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 2. Differential reflectivity (Zdr or ZDR)

 Zdr = Zh/Zv, (3.3)

 ZDR = 10 log10 (Zh /Zv) = ZH − ZV  (dB) (3.4)

 3. Co-polar correlation coefficient (ρhv)
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 4. Specific differential phase (Kdp)
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 5. Differential phase (Φdp)
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 6. Specific attenuation at horizontal or vertical polarization (AH or AV)
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 7. Specific differential attenuation (ADP)

 ADP = AH − AV (dB km−1) (3.9)
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In Equations (3.1)–(3.9), λ is the radar wavelength; K = (εr – 1)/(εr + 2), 
where εr is the complex dielectric constant of water; D denotes the effective 
 diameter of particle (i.e., hydrometeor); Dmax (or Dmin) indicates the maximum 
(or  minimum) D within a radar resolution volume; and N(D) is the  particle 
size distribution (PSD) of all these particles; fh,v represents the complex scat-
tering amplitude at horizontal or vertical polarization and the parameters 0 
and π for fh,v denote the forward-scattering and backward-scattering compo-
nents, respectively; the notation |.| signifies the complex norm and Re (or Im) 
 indicates the real (or imaginary) part of a complex number; and r denotes 
the range from radar and rg is the range for a given range gate.

Zh represents the energy backscattered by precipitating hydrometeors 
and depends on their concentration, size, and phase, which have a close 
connection to precipitation rate and water content. Zdr is directly related to 
the median size of observed hydrometeors, a parameter used to describe 
the DSD, and thus provides valuable supplementary information for QPE. 
Kdp is dependent on the raindrop number concentration but is less  sensitive 
to the size distribution than Zh. It is independent of radar  calibration and 
partial beam blockage and relatively immune to hail contamination in rain 
estimation. Positive Kdp values result from a phase lag in the  horizontally 
 polarized wave compared with the vertical one. Oblate raindrops (those 
that have larger horizontal dimensions than vertical) basically cause a 
slight phase delay, which is more pronounced at horizontal polariza-
tion. These three  polarimetric measurements can be directly applied for 
estimating rainfall. The correlation coefficient (ρhv) indicates how well 
the  backscatter amplitudes at vertical and horizontal polarization are 
 correlated. It is a good indicator of hydrometeor phase (homogenous vs. 
mixed phase) and data quality. This variable is used for classifying the 
hydrometeor species of the radar echo, which benefits QPE. Precipitation 
can cause strong attenuation (power loss) in radar measurements, depend-
ing on the frequency of the radar wave. Specific attenuation (AV,AH) and 
specific differential  attenuation (ADP) are two important variables to 
address how much power has been lost in Zh, Zv, or Zdr, though they are not 
directly measured. If the attenuation effect is not negligible such as with 
C-, X-, and Ka/Ku-band radars, attenuated Zh and Zdr need to be corrected 
to avoid  underestimation in QPE. Values of AH and ADP also have a strong 
 correlation with  precipitation rate.

3.2 Polarimetric Radar Data Quality Control

The quality of radar data is essential to the performance of various radar 
applications. For example, a 3 dB error in reflectivity may cause 100% over-
estimation of precipitation. Data quality can be degraded by many factors 
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such  as system noise, clutter, attenuation, and miscalibration. Therefore, 
careful data quality control is required with radar measurements, especially 
for QPE. This section addresses the recent progress in polarimetric radar 
data quality control.

3.2.1 Noise Effect and Reduction

System noise has a ubiquitous effect on radar data and is one of most 
 common error sources. The noise can change the quantity of measure-
ments, resulting in different physical interpretation of polarimetric data. For 
example, the ρhv of rainfall or dry snow or ice should be close to 1. System 
noise can reduce the value of ρhv to below 0.9, which might lead to an incor-
rect interpretation that raindrops are either mixed-phase precipitation or 
even ground clutter. Conventional methods for reducing noise are mainly 
based on the processing of level II radar data, i.e., the moment data. A com-
mon approach to  mitigate the noise is the smoothing of moment data. For 
 example, the estimation of Kdp is usually done by a gradient calculation of 
averaging ΦDP over multiple range gates, as described in Ryzhkov et al. 
(2005a). Hubbert and Bringi (1995) applied a low-pass filter to smooth the Φdp 
measured along a radar beam path. Other measurements such as Zh and Zdr 
are usually smoothed (e.g., over 1 km range) as well before they are used for 
the QPE. Lee et al. (1997)  introduced a speckle filter technique. This method 
can spatially smooth the radar measurements and improve their utility in 
applications (Cao et al. 2010). Generally, smoothing data can have the effect of 
worsening their resolution. However, it helps to obtain a better precipitation 
estimation with smaller variance.

The noise effect can also be mitigated by advanced radar signal processing, 
which occurs with the “raw” level I data, i.e., time-series data. The conven-
tional autocorrelation/cross-correlation function (ACF/CCF) method gives 
the moment estimation mainly based on lag-0 of ACF/CCF. Considering the 
lag-0 is primarily affected by noise while other lags are not, Melnikov (2006) 
and Melnikov and Zrnić (2007) have proposed the lag-1 estimator for polari-
metric radar variables. To sufficiently apply the information of ACF and 
CCF, Lei et al. (2012) proposed the multilag correlation estimator for radar 
moment data estimation. Cao et al. (2012) integrated the multilag process-
ing into the spectrum-time estimation and processing (STEP) algorithm and 
effectively improved the quality of polarimetric radar data by reducing the 
noise effect.

3.2.2 Clutter Detection and Removal

Ground clutter generally comes from stationary targets and has a small 
radial velocity in its radar measurements. To remove it, conventional 
radar systems usually apply various “notch” filters such as finite/ infinite 
impulse response (FIR/IIR) filters to detect echoes with 0 Doppler velocity 
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(e.g., Torres and Zrnić 1999). A clutter filter is designed to process the time-
series data and is generally easy to implement in a radar system. However, 
the filter can erroneously remove weather signals as well if the weather 
component also has a small radial velocity. Advanced clutter  filtering 
techniques are mostly based on spectrum analysis. The most popular one 
is the Gaussian model adaptive processing (GMAP) algorithm introduced 
by Siggia and Passarelli (2004). It can reconstruct the weather component, 
which might be removed by a notch filter. Cao et al. (2012) have proposed 
another spectrum-based algorithm, STEP, which models weather and 
clutter components in the spectrum and estimates them with a regression 
approach. Nguyen et al. (2008) have introduced a parametric time domain 
method (PTDM), which models the weather and clutter component in the 
ACF. These advanced algorithms are superior to clutter filters because 
they can preserve the weather components while removing ground clut-
ter, especially when clutter and weather components have similar radial 
velocities.

These advanced clutter-filtering methods normally require iterative com-
putations and may not be applied everywhere. Therefore, clutter identifica-
tion is highly desirable for efficient filtering. A typical algorithm is the clutter 
mitigation decision (CMD) algorithm developed by the National Center for 
Atmospheric Research (NCAR), which is mainly based on the phase of clut-
ter signal (Hubbert et al. 2009). The spatial continuity of weather signals in 
the range-spectrum space has also been applied to identify clutter (Morse 
et al. 2002). Recently Moisseev and Chandrasekar (2009) proposed a novel 
spectral algorithm, which applied the dual-polarization spectral decomposi-
tion to identify clutter. Li et al. (2012) have also introduced a different spec-
trum clutter identification (SCI) algorithm, which examines both the power 
and phase information in the spectral domain. The detection and removal 
of ground clutter are of great significance to the application of polarimetric 
radar data.

3.2.3 Attenuation Correction

Precipitation attenuation is an unavoidable problem in radar QPE. Fortunately, 
power losses due to precipitation attenuation at S band, which is the fre-
quency used for the U.S. NEXRAD network, is not significant for most situ-
ations. However, it is a major problem for shorter wavelength radars (e.g, C, 
X, Ku, and Ka band), and thus requires correction. Figure 3.1 shows X-band 
dual-polarimetric variables of ZH, ZDR, Φdp, and ρhv in a heavy convective 
cell in the south of France. At this frequency, we can see that values of Φdp 
exceeded 160 deg. In the same region, we see ZH and ZDR became biased 
very low. The negative values of ZDR are strong indicators that the data are 
biased because ZDR should be nonnegative in liquid rain due to the spherical 
shapes of small droplets and oblate shapes with larger drops. The strong gra-
dients shown in Figure 3.1 are due to attenuation loss rather than real spatial 
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gradients in the storm structure. The signal was lost in this storm due to too 
much  attenuation of the signal by the raindrops. Up to the range before the 
signal was completely lost and unrecoverable, the loss in power in ZH and ZDR 
is related to the increase in Φdp.

Previous algorithms to correct for attenuation losses with single- 
polarization radars are mainly based on the Hitschfeld–Bordan  algorithm 
and its revised version (e.g., Delrieu et al. 2000). These algorithms rely on 
the empirical power-law relation between attenuation and radar  reflectivity. 
The nonattenuated reflectivity at each range gate is iteratively computed 
through keeping the consistency with the attenuated observations along the 
radar beam path. Because Kdp has a strong correlation with AH (or ADP), their 
 relations (generally the power-law relation) are usually applied to estimate 
the nonattenuated Zh or Zdr. Simple methods generally assume known 
 exponents and coefficients in these relations (Bringi et al. 1990; Matrosov 
et al. 2002). Complex methods consider the dependence of these exponents 
and coefficients on various factors, such as drop temperature, drop shape 
model, and DSD variation (Bringi et al. 2001; Park et al. 2005; Gorgucci and 
Baldini 2007). Attenuation can also be corrected with optimal retrieval 
approaches such as the variational approach (Hogan 2007; Xue et al. 2009; 
Cao et al. 2013a).

ZH
ZDR

ρhνΦdp

FIGURE 3.1
Polarimetric variables at X-band for a heavy convective cell observed in the south of France on 
October 21, 2012, at 1834 UTC. Attenuation is noticeable with losses in ZH, ZDR, and ρhv, and an 
associated increase in Φdp.
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The general form of the equations for the first-order corrections to ZH 
and ZDR due to precipitation attenuation is related to the path-integrated 
 differential phase measurements (Φdp) as

 ΔZH = aΦdp  (dB) (3.10)

 ΔZDR = bΦdp  (dB) (3.11)

where the coefficients a and b (in dB deg−1) depend on a number of the afore-
mentioned factors. The most important one is the radar frequency. At S band, 
Ryzhkov and Zrnić (1995) estimated a and b values to be 0.040 dB deg−1 and 
0.0083 dB deg−1, respectively. Carey et al. (2000) conducted a literature review 
for a and b values at C band and synthesized mean values of 0.0688 dB deg−1 
and 0.01785 dB deg−1. The constants increase with shorter radar wavelength. 
At X band, Matrosov et al. (2002) found values of 0.22 dB deg−1 and 0.032 dB 
deg−1 for a and b, respectively. Clearly, caution must be exercised when using 
values of ZH and ZDR for rainfall estimation if they have been heavily cor-
rected due to attenuation loss. This problem increases with decreasing radar 
wavelength and with heavy rain.

3.2.4 Calibration

Compared with single-polarization radar QPE, polarimetric radar QPE is 
more sensitive to data quality. Zdr has a small dynamic range for hydro-
meteor measurements. A change of only several tenths of a dB in ZDR may 
cause significant changes in QPE. Therefore, calibrating the systematic 
bias is extremely important for Zdr. The basic method is the engineer-
ing calibration, which will accurately measure and compare the gain/
damping within the receiving paths for two polarimetric channels. This 
approach is most reliable but not appropriate for a frequent routine. The 
antenna can be pointed vertically in light precipitation. Since small rain-
drops have a spherical shape when they are viewed by radar vertically, 
both H and V polarimetric channels will receive very similar backscat-
tered signals. That is to say, the ZDR should approach zero at vertical inci-
dence. Another method is to track the sun because ZDR should be zero 
as well for sun signals. The National Severe Storm Laboratory (NSSL) 
has applied this method for the calibration of the polarimetric NEXRAD 
 network (Zrnić et al. 2006).

3.2.5 Self-Consistency Check

Ryzhkov et al. (2005b) showed that ZH in rain could be approximated from 
ZDR and Kdp measurements using the following relation:

 ZH = a + b log (Kdp) + cZDR (3.12)
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where the coefficients a, b, and c depend on radar wavelength and preva-
lent raindrop shape. These coefficients are also supposed to be relatively 
insensitive to the raindrop size distribution. Similarly, other research-
ers (e.g., Vivekanandan et al. 2003) showed that Kdp could be expressed as 
a function of ZH and ZDR. The self-consistency check uses the dependence 
between ZH, ZDR, and Kdp to assess the calibration of the radar, although it has 
many limitations compared with other calibration methods previously men-
tioned. For example, Kdp can be quite noisy in light rain and the calibration 
may be suitable for moderate or heavy rain only. Despite its limitations, the 
 self-consistency check can be applied to any polarimetric radar by observing 
rain. No additional costs are associated with other instruments.

Gourley et al. (2009) employed the drop shape model of Brandes et al. (2002), 
assumed a drop temperature of 0°C, used a normalized gamma model for 
the DSD, and computed third-order polynomial regressions for the consis-
tency relations at X-, C-, and S-band frequencies. Their regression takes the 
following form:

 10 ( )5
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Z

a a Z a Z a Zdp

h
DR DR DR= + + +−  (3.13)

where Kdp is one way in units of deg km−1, Zh is in linear units (mm6 m−3), 
and ZDR is in dB. Table 3.1 provides the values for the coefficients as a func-
tion of the radar frequency. Application of self-consistency theory to radar 
 observations in rain can be quite useful to diagnose miscalibrated radar 
observations, in particular Zh.

3.3 Hydrometeor Classification

The scattering characteristics for hydrometeors can differ significantly 
(Straka  et al. 2000; Park et al. 2009). Zh for solid particles (graupel, snow 
 aggregate, or hail) is much lower than raindrops with the same water content 

TABLE 3.1

Coefficients for a Third-Degree Polynomial 
Fit to the Polarimetric Consistency Relations 
at Three Weather Radar Frequencies

Frequency a0 a1 a2 a3

X-band 11.74 –4.020 –0.140 0.130
C-band 6.746 –2.970 0.711 –0.079
S-band 3.696 –1.963 0.504 –0.051
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while melting snow/hail has larger Zh than its liquid phase counterpart that 
has melted completely. Storms rarely have a single hydrometeor  species 
within them. Typically, raindrops that reach the surface have their origins in 
melting snowflakes aloft, followed by pristine ice above that. These  raindrops 
can be mixed with graupel, hail, and many other nonweather scatterers 
(e.g., birds, insects) that contribute to the radar signal. Theoretically, appro-
priate scattering models should be applied to the different hydrometeor 
species to yield accurate QPE. Thus, it is important to identify the different 
hydrometeor  species within the radar volume to guide the QPE algorithms.

3.3.1 Polarimetric Characteristics of Radar Echoes

The basis for hydrometeor classification is the different scattering character-
istics of various targets measured by polarimetric radar. For those scatterers 
that are approximately spherical in shape (e.g., small raindrops) or behave 
like isotropic scatterers (e.g., dry, tumbling hail), ZDR and Kdp values are close 
to zero. ZDR and Kdp values increase as the particle sizes increase. Taking 
S-band polarimetric radar for example, ZDR (Kdp) values normally increase 
from 0 to 5 dB (3 deg km−1) for drizzle, tropical rain, weak convective rain, 
stratiform rain, and intensive convective rain. The increase of ZDR and Kdp 
values follow increases in the median size and concentration of the rain-
drops. Table 3.2 gives some typical ranges of polarimetric variables (S-band) 
for different radar echoes. It suggests that different radar echoes have very 
distinguishable polarimetric signatures that contribute to their identification.

3.3.2 Classification Algorithms

The fuzzy logic scheme introduced in Section 2.2.2 has great flexibility and 
accommodates multiple polarimetric radar measurements to identify dif-
ferent hydrometeors and nonhydrometeors. Popular algorithms include the 

TABLE 3.2

Typical Ranges of Polarimetric Variables (S-Band) for Different Radar Echoes

Category ZH (dBZ) ZDR (dB) Kdp (degree/km) ρhv

Rain
(light, moderate, heavy)

5–55 0–5 0–3 0.98–1.0

Graupel 25–50 0–0.5 0–0.2 0.97–0.995
Dry hail 45–75 –1–1 –0.5–0.5 0.85–0.97
Melting hail 45–75 1–7 –0.5–1 0.75–0.95
Ice crystal <30 <4 –0.5–0.5 0.98–1.0
Dry snow aggregate <35 0–0.3 0–0.05 0.97–1.0
Wet snow aggregate <55 0.5–2.5 0–0.5 0.9–0.97
Ground clutter 20–70 –4–2 very noisy 0.5–0.95
Biological scatterer 5–20 0–12 low & very noisy 0.5–0.8
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radar echo classifier (REC) developed by NCAR (Vivekanandan et al. 1999), 
the  polarimetric hydrometeor classification algorithm (HCA) developed by 
NSSL (Straka et al. 2000; Park et al. 2009), and the hydrometeor classification 
system (HCS) developed by Colorado State University (Lim et al. 2005). These 
algorithms generally classify more than 10 distinct species of radar echoes, 
such as rain, snow, hail, clutter, and so on. Their inputs include not only 
polarimetric measurements but also the texture and/or error information of 
these measurements. Other information, such as a temperature profile and 
radial velocity, is used as well in some algorithms. The latest version of HCA 
is described in detail by Park et al. (2009). The HCA uses six radar variables for 
classification: (1) ZH, (2) ZDR, (3) ρhv, (4) Kdp, (5) texture of ZH, and (6) texture of Φdp. 
The HCA discriminates between 10 classes of radar echo: (1) ground  clutter 
including anomalous propagation (GC/AP), (2) biological scatterers  (BS), (3) 
dry aggregated snow (DS), (4) wet snow (WS), (5) crystals of various orienta-
tions (CR), (6) graupel (GR), (7) big drops (BD), (8) light and moderate rain (RA), 
(9) heavy rain (HR), and (10) a mixture of rain and hail (RH).

Gourley et al. (2007) developed membership functions in a fuzzy logic 
algorithm that were empirically based on radar observations. Generally, this 
approach does not apply to a diverse array of hydrometeor species because 
it is much more difficult to isolate a radar data sample to each individual 
hydrometeor species. The membership functions tend to be less precise as 
a result and are commonly designed as beta functions or simpler trapezoi-
dal functions, based on the values shown in Table 3.2. The weights for each 
 variable are also manually designated. For example, in the HCA of Park 
et al. (2009), Kdp is only considered for the classification of CR, HR, and RH. 
For other classes, the polarimetric signature of Kdp is not essential and can be 
ignored. ρhv is a primary discriminator for GC/AP, BS, and WS. The texture 
parameters of ZH and Φdp fields are also major contributors to the identifi-
cation of GC/AP and BS. Examination of data plotted in the ZH−ZDR plane 
serves as the basis for discriminating most hydrometeors.

Data quality is an essential issue for the radar echo classification, which 
may be degraded by biased or erroneous measurements. The HCA algo-
rithm of Park et al. (2009), which is the algorithm running on the NEXRAD 
polarimetric radars, has introduced an additional weighting parameter 
called a confidence vector in the aggregation function to address the impact 
of measurement errors. HCA considers several error factors, including 
radar miscalibration, attenuation, nonuniform beam filling (NBF), partial 
beam blockage (PBB), ρhv, and signal-to-noise ratio (SNR), which are either 
sources or indicators of measurement errors (Bringi and Chandrasekar 2001; 
Ryzhkov 2007; Giangrande and Ryzhkov 2005). If the quality of a given radar 
measurement is deemed more erroneous, then this measurement receives 
lower weight in the classification scheme.

The classification of hydrometeors is greatly enhanced by considering 
the temperature profile. This information helps guide the algorithm in 
terms of precipitation phases. Solid and liquid hydrometeors occasionally 
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have similar polarimetric signatures but they exist at much different 
 temperatures. A good example can be seen with the radar measurements 
of dry snow  aggregates and light rain in Table 3.2. In this case, when the 
 temperature  profile is  considered, the ambiguity of their classification 
can be well resolved. There are distinct physical processes below, above, 
and within the melting layer (Fabry and Zawadzki 1995; Cao et al. 2013b). 
Therefore, the types of  hydrometeors in these regions should be physically 
constrained. It is not reasonable to identify rain above the melting layer or 
snow well below it. Similarly, biological scatterers are less likely to exist 
above the melting layer.

Beam broadening and beam center height increasing in altitude with 
range complicates the HCA functioning. Within a specific range rb, the 
radar only measures the rain region (below the melting layer) while beyond 
a specific range rt (rt > rb), the radar only measures solid hydrometeors 
above the melting layer. Within the range between rb and rt, the hydrome-
teors that the radar measures may come from the rain region, melting layer, 
and/or ice region. This may increase the ambiguity of the hydrometeor 
classification within this range. To reduce the classification error, HCA has 
implemented several rules to confine the radar echo classes as a function 
of range. Within the range rb, there are only GC/AP, BS, BD, RA, HR, and 
RH classes. Beyond the range rt, HCA only identifies DS, CR, GR, and RH 
classes. Within the range between rb and rt, GC/AP, BS, WS, GR, BD, RA, 
HR, RH, DS, and CR may be identified. With the physical constraint guided 
by the height of the melting layer, the ambiguity of classification can be 
largely reduced.

3.4 Polarimetric Radar-Based QPE

The precipitation rate (R) can be theoretically computed using the  following 
equations:
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where the units for D, ρ, v(D), and N(D) are mm, g cm−3, m sec−1, and m−3 mm−1, 
respectively. ρ is the density of the hydrometeor (e.g., raindrop). v(D) is its 
 terminal fall velocity, which is mainly dependent on the particle size and den-
sity. It also depends on the particle shape and ambient air density. In general, 
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the particle’s fall velocity can be approximately represented with a power-law 
relation as

 v(D) = aDb, (m sec−1) (3.16)

Typical values of a vary from 3.6 to 4.2 and b from 0.6 to 0.67. A com-
monly used power-law relation is v(D) = 3.78D0.67 introduced by Atlas and 
Ulbrich (1977). Atlas et al. (1973) introduced an exponential relation as 
v(D)  =  9.65  –  10.3exp(–0.6D). Combining different relations and observa-
tions in the literature, Brandes et al. (2002) fitted a polynomial relation of a 
 raindrop’s falling velocity as v(D) = –0.1021 + 4.932D – 0.9551D2 + 0.07934D3 – 
0.002362D4. The fall velocities of hailstones and snow aggregates have a large 
dependence on the particle density and drag force. However, the density of 
hailstones and snow aggregates may vary for different storms, and their 
irregular shapes may cause different drag forces as well. Therefore, their fall 
velocities generally have greater variability than with raindrops. The com-
mon relations are v(D) = 3.62D0.5 for hailstones (Matson and Huggins 1980) 
and v(D) = 0.98D0.31 for snow aggregates (Gunn and Marshall 1958).

According to Equations (3.14) and (3.15), liquid water content W and 
 precipitation rate R are different moments of the DSD. For example, R is 
approximately the 3.67th moment of the DSD. Furthermore, ZH, Kdp, and AH 
can be expressed by PSD moments as well. ZH can be approximated by the 
6th moment of the DSD under the condition of Rayleigh scattering. Kdp in rain-
fall is approximately proportional to the 4.24th moment for a radar wavelength 
of 10 cm (Sachidananda and Zrnić 1986). Therefore, power-law relations can 
usually be found between radar variables (ZH, Kdp, or AH) and bulk variables 
(W or R), providing an empirical approach to precipitation estimation.

Many Zh−R relations have been reported for different rain types, seasons, 
and locations. Rosenfeld and Ulbrich (2003) gave a complete review of Zh−R 
relations and summarized the microphysical processes, which might lead to 
the Zh−R variability. Even though radar algorithms have been developed to 
identify certain characteristic signatures of different rain types, such as con-
vective vs. stratiform echoes, conventional radars cannot directly represent 
the natural variability of DSDs. Polarimetric variables can be used to observe 
DSD variability and subsequently improve the accuracy of QPE.

In general, rainfall estimators based on polarimetric radar variables have 
the following forms:

 ( , )R Z Z aZ Zh dr h
b

dr
c=  (3.17)

 ( )R K aKdp dp
b=  (3.18)

 ( , )R K Z aK Zdp dr dp
b

dr
c=  (3.19)

where R is in mm h−1. Zh and Kdp have linear units in mm6 m−3 and deg km−1, 
respectively. Zdr is a dimensionless linear ratio.
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Table 3.3 gives the parameters a, b, and c for several common  polarimetric 
radar rainfall estimators at S-, C-, and X-bands. These parameters may 
change due to different raindrop model assumptions and/or different local 
DSD climatologies (Bringi et al. 2011; Matrosov 2010). For example, Ryzhkov 
et al. (2005a) showed the difference of several S-band polarimetric rainfall 
estimators based on different drop shape models (Pruppacher and Beard 
1970; Chuang and Beard 1990; Brandes et al. 2002; Bringi et al. 2003). Despite 
the differences in the raindrop shape model that was assumed, their study 
showed that the polarimetric rainfall estimators are less susceptible to DSD 
variability and generally improved rainfall estimates over the traditional 
single-polarization relations.

Each polarimetric estimator has its own advantages and disadvantages. The 
use of Zdr gives a better estimation of raindrops representing the median of 
the DSD; i.e., those that contribute the majority to the total rainfall amount. 
However, the dynamic range of Zdr, which is attributed to microphysical 
variability, is relatively small. It is more susceptible to measurement error 
and miscalibration than other polarimetric radar variables. Zdr is a relative 
 measurement and must be combined with either Zh and/or Kdp for rainfall esti-
mation. In general, the measurement error of ZDR is on the order of a few tenths 
of a dB. Kdp is a phase measurement and is immune to any error in the absolute 
calibration of the radar. It is unaffected by precipitation attenuation along the 
propagation path and less affected by mixed phase  precipitation such as rain 
mixed with hail. However, since Kdp is derived from Φdp  measurements over 
a given path length, Kdp estimation error increases rapidly as the path length 
decreases below 2 km (Bringi and Chandrasekar 2001). This results in a trad-
eoff between the accuracy and range resolution of Kdp. In general, Kdp can be 
estimated to an accuracy of around 0.3–0.4 deg km−1 and has a smaller estima-
tion error for heavy rain than for light rain. Therefore, when rainfall is intense 
and/or mixed with hail, R(Kdp) is more suitable than other estimators, while in 
light rain it is not appropriate to apply R(KDP) relations.

TABLE 3.3

Parameters for Several Common Polarimetric Radar Rainfall 
Estimators

a b c Notes

R(Zh,Zdr) 6.7 × 10−3 0.927 –3.43 S-band (10 cm)
5.8 × 10−3 0.91 –2.09 C-band (5.5 cm)
3.9 × 10−3 1.07 –5.97 X-band (3 cm)

R(Kdp) 50.7 0.85 S-band (10 cm)
24.68 0.81 C-band (5.5 cm)
17.0 0.73 X-band (3 cm)

R(Kdp,Zdr) 90.8 0.93 –1.69 S-band (10 cm)
37.9 0.89 –0.72 C-band (5.5 cm)
28.6 0.95 –1.37 X-band (3 cm)
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The measurement error of Zh, Zdr, and Kdp may propagate into the final 
 rainfall estimate. The physical variation in the linkage between the polari-
metric variables and rainfall rates estimates, which cannot be represented by 
the estimator error alone, may also result in uncertainty in rainfall  estimation. 
Consequently, the total estimation error is attributed to two terms: εm is the 
error propagating from the measurement and εp is the parametric error of the 
estimator (Bringi and Chandrasekar 2001).

 R̂ R m p= + ε + ε  (3.20)

 2 2 2
R m pσ = σ +σ  (3.21)

where R denotes the true rainfall rate; notation ∧ indicates the estimation; 
σ2  is the error variance; and subscripts R, m, and p indicate the variances 
associated with the estimation error, measurement error, and parametric 
error, respectively.

Bringi and Chandrasekar (2001) showed some results of error  quantification 
for different estimators. As for the single polarization estimator R(Zh), a 0.8 dB 
measurement error in ZH results in about 15% uncertainty in R estimation. 
However, its parametric error introduces a 40% uncertainty given a rainfall 
rate of 50 mm h−1 and a mean uncertainty of 45% for rainfall varying from 
1 mm h−1 to 250 mm h−1. As for R(Kdp), the parametric uncertainty is reduced 
to 25% for rainfall rates of 50 mm h−1 and the mean uncertainty is reduced to 
27%. For R(Kdp,Zdr), the mean parametric uncertainty is further reduced to 
about 15%. The same parametric uncertainty exists for R(Zh,Zdr). A 0.8 dB 
measurement error in ZH and a 0.2 dB measurement error in ZDR may lead 
to 24% uncertainty in rainfall estimation. This implies that the use of Zdr 
adds more measurement error, introducing 9% more uncertainty than R(Zh). 
However, R(Zh,Zdr) greatly reduces the estimation uncertainty  attributed 
with the parametric error, which decreases from 45% to 15%.

From the error analysis of different estimators, it can be concluded that the 
use of polarimetric measurements may enlarge the measurement error effect 
in the rainfall rate estimators but can effectively reduce the parametric error 
effect. The overall improvement depends on both factors. Since each estima-
tor has its own limitations, it is desirable to find an optimal way to combine 
them for better estimation. Ryzhkov et al. (2005a) proposed a “synthetic” 
estimator for S-band polarimetric radar, which combines various estimators 
as follows:
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where, || means the absolute value and “sign” means the signum function. 

The mean values ( )R Zh , R Kdp( ), and Zdr , are computed by averaging over 
areas of 1 km × 1 deg.

Ryzhkov et al. (2005a) evaluated different estimators using real radar data 
and surface rain gauge measurements from April 2002 through July 2003 in 
Oklahoma. Their study indicates that the polarimetric radar rain estimators 
have superiority to the single-polarization estimator R(Zh). There is a large 
improvement when Kdp is used in lieu of Zh for the rainfall estimation. Additional 
improvement is seen when Zdr is included. The synthetic estimator R(Zh,Zdr,Kdp) 
shows the best performance because of the optimal use of Zh, Zdr, and Kdp.

3.5 Microphysical Retrievals

Polarimetric radar variables provide more than just rainfall rates. Many 
other quantities related to hydrometeors such as the characteristic size, parti-
cle concentration, and water content are useful for conducting microphysical 
research, as well as for assimilation in numerical weather prediction models. 
The particle size distribution (PSD) provides fundamental information on 
precipitation microphysics, which can be used to calculate the related radar 
and precipitation variables of interest. This section focuses on rain micro-
physics. The raindrop size distribution model and retrieval methods are 
 outlined in the following subsections.

3.5.1 Raindrop Size Distribution Model

The DSD retrieval relies on the use of the DSD model, which assumes that 
natural rain microphysics can be approximately represented by a mathemat-
ical function. Researchers in the meteorology community commonly use the 
following DSD models:

M-P model: N(D) = 8000 exp(−ΛD) (3.24)

Exponential model: N(D) = N0 exp(−ΛD) (3.25)
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Gamma model: N(D) = N0 Dμ exp(−ΛD) (3.26)

Lognormal model: ( )
2
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The well-known M-P model (Marshall and Palmer 1948) has been widely 
used in the past 50 years. It is a single-parameter model with a slope 
parameter Λ and is helpful in bulk schemes for rain  parameterization 
and  rainfall estimation based on single-polarization weather radar. 
The   exponential model is a two-parameter model with slope Λ and 
a concentration  parameter N0. It is more flexible than the M-P model 
since the  latter is equivalent to the exponential model with a fixed value 
for N0. The exponential model is frequently used to model ice/snow PSD. 
Currently, the gamma model (Ulbrich 1983), a three-parameter model, is 
widely recognized as the most accurate model to represent the variability 
of natural DSDs. In addition to N0 and Λ, the gamma model introduces 
a shape parameter μ, which varies for different rain types. Some recent 
studies have applied the normalized gamma DSD model (e.g., Bringi et al. 
2002), which introduces DSD parameters related to the bulk variables. 
The lognormal model also uses three parameters: total number concen-
tration NT, mean η, and standard deviation σr of a Gaussian distribution. 
This model follows the assumption that the randomness of raindrops can 
be described as a multivariate Gaussian distribution. It provides a good 
explanation of DSD based on probability theory. Also, the mathematical 
calculation is not very complicated. However, it might not be the most suit-
able model to match observed DSDs.

DSD models mentioned above have their own advantages and limita-
tions. In comparison, the gamma distribution generally has the best perfor-
mance in modeling observed DSDs. Figure 3.2 shows an example of DSD 
models. The asterisks denote a DSD observed by a disdrometer. Four lines 
represent the distributions fitted with four models. It is evident that the M-P 
model, with only a single parameter, has the least capability of matching 
the observed DSD. The DSD model with more freedom (i.e., more param-
eters) represents the observation better. The observed DSD in the figure is 
well modeled by the gamma function. The cost of this better matching is the 
requirement to estimate more parameters when retrieving the DSD, as will 
be shown in the next section.

3.5.2 DSD Retrieval

The rainfall DSD provides fundamental information on rain  microphysics. 
Given a DSD, all the integral parameters describing the properties of rain 
can be calculated (e.g., R, Zh, and liquid water content). To retrieve the 
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DSD, one must make an assumption about the DSD model. Although the 
 three-parameter gamma model is more accurate in matching and  describing 
the natural DSD than the other, simpler models, challenges remain in retriev-
ing the parameters. Three-parameter DSD models require independent 
information from at least three radar measurements. However, the radar 
measurement error effect with the polarimetric variables might outweigh 
their contribution. If too much error is introduced in the measurements, then 
it is better to use fewer variables and a simpler DSD model. In general, Zh and 
Zdr are considered as the two most reliable polarimetric measurements for 
DSD retrievals. Therefore, methods that retrieve two parameters to describe 
the DSD are typically preferred.

The exponential model is an obvious choice for a two-parameter DSD 
model. The shape parameter of the DSD, however, has been forced as a con-
stant so that it always assumes that smaller raindrops have greater number 
concentrations than larger raindrops. This assumption does not apply to all 
types of rain during certain stages of storm evolution. Some surface observa-
tions from disdrometers have shown that very small raindrops (<0.6 mm) 
have smaller concentrations than raindrops 0.8–1.0 mm in diameter (Cao 
and Zhang 2009). A gamma model with a fixed and nonzero value for μ 
can allow the DSD shape to be convex. However, the choice of the μ value is 
subjective and might not represent the truth. Some studies have shown that 
the gamma model not only best represents natural DSDs, but that the three 
gamma parameters (N0, μ, and Λ) are not mutually independent (Ulbrich 
1983; Chandrasekar and Bringi 1987; Haddad et al. 1997; Zhang et al. 2001; 
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Brandes  et al. 2004; Cao et al. 2008). Zhang et al. (2001) found that μ is 
highly related to Λ and further proposed a constrained-gamma (C-G) DSD 
model. The C-G model applies an empirical μ-Λ relation, which reduces the 
gamma model to a two-parameter model while maintaining the flexibil-
ity to  represent the natural DSDs with the convex shape. Cao et al. (2008) 
refined the C-G model using disdrometer observations in central Oklahoma. 
The refined μ-Λ relation is given as

 μ = −0.0201Λ2 + 0.902Λ − 1.718 (3.28)

Given two radar measurements (e.g., Zh and Zdr) and a two-parameter 
DSD model, it is straightforward to retrieve DSD parameters according to 
Equations (3.1)–(3.4), given there are two unknowns and two measurements. 
After the DSD is retrieved, R can be computed following Equation (3.14).

3.5.3 Snowfall and Hail Estimation

The estimation of snowfall and hail is more difficult than rainfall estimation. 
This is because snow aggregates and ice crystals have quite different particle 
shapes from the oblate spheroids associated with raindrops. The snowfall 
rate estimator can be expressed as a power-law relation as

 Z Re s= α β  (3.29)

where Ze is the equivalent radar reflectivity factor (in mm6 m−3) of water 
drops and Rs is the snowfall rate expressed as the liquid equivalent per unit 
time (in mm h−1). A widely used snowfall estimator is the 1780 2.21Z Re s=  
suggested by Sekhon and Srivastava (1970). Fujiyoshi et al. (1990) compared 
α and β parameters proposed in different studies and showed that α (or β) 
varies within the range of 100–3000 (or 1–2.3). Polarimetric radar measure-
ments are generally useful in the identification of snowfall but seldom used 
for the quantitative estimation of snowfall rate. The major reason is that the 
complexity of natural snowflakes makes it difficult to accurately model the 
scattering properties of snowflakes so that Zdr and other polarimetric vari-
ables cannot be easily applied.

Polarimetric radar measurements can be used to distinguish hail from 
rain (Aydin et al. 1986; Depue et al. 2007). The hail differential reflectivity 
(HDR) is defined as

 HDR = ZH − f(ZDR),

where
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The above-referenced studies showed that the HDR thresholds of 21 dB 
and 30 dB were reasonably successful in respectively identifying the 
regions where large and structurally damaging hailstones were reported. 
The  vertically integrated liquid water content (VIL) is also a good 
 indicator of hail existence and hail size (Amburn and Wolf 1997). A sub-
stantial increase of severe hail (size >19 mm) is usually associated with 
VIL  densities greater than 3.5 g m−3. It is noted that VIL can be derived 
from the  empirical power-law relation between radar Zh and liquid 
water content.

There is not a widely applicable Zh−R relation for hail estimation. Torlaschi 
et al. (1984) derived a relation between equivalent rainfall rate of hail 
RH (mm h−1) and the PSD parameter Λ (mm−1), which is given by

 Λ = In (88/RH)/3.45 (3.31)

Cheng and English (1983) proposed a relation N0 = 115Λ3.63 to model an 
exponential PSD of hailstones. According to the Rayleigh approximation and 
Equation (3.31), the empirical relation between radar reflectivity Z (mm6 m−3) 
and RH (mm h−1) is given by

 Z = 5.38 × 106 [In (88/RH)]−3.37 (3.32)

3.5.4 Validation

Radar QPE algorithms are typically validated by in situ observations. 
Disdrometers are much more useful for the development and  evaluation 
of polarimetric QPE and DSD retrieval algorithms. Disdrometers can be 
used to validate the DSD assumptions applied in the retrievals. Moreover, 
they can be used to quantify the DSD variation for various precipitation 
types (Chang et al. 2009). The conventional disdrometer is the impact 
type, which is designed based on the measurement of  raindrop momen-
tum (Tokay et al. 2001). The most common impact  disdrometer is the Joss–
Waldvogel (JW) disdrometer. Noted weaknesses of the JW  disdrometer 
include insensitivity to small drops, relatively coarse resolution, and lim-
ited measureable size range. More recent disdrometers show enhanced 
 performance by applying optical techniques. Those disdrometers include 
the one-dimensional laser optical disdrometer (OTT Parsivel disdrometer, 
Thiess disdrometer), and the two-dimensional video  disdrometer (2DVD) 
(Kruger and Krajewski 2002). Superior to impact-type disdrometers, 
 optical disdrometers can measure the shape and falling velocity of par-
ticles. Furthermore, they generally provide more accurate measurements 
of PSD/DSD.
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Problem Sets

QUALITATIVE QUESTIONS

 1. What is the difference in Rayleigh scattering and Mie scattering? 
What is the effect of Mie scattering on the radar measurement of 
precipitation?

 2. Describe the advantages and disadvantages of weather radars in 
 measuring precipitation with different frequencies: X-band (3 cm), 
C-band (5 cm), and S-band (10 cm). (Hint: Consider the difference in 
radar/antenna size, transmitter power, radar range, Earth  curvature 
effect, radar resolution, Rayleigh/Mie scattering, precipitation atten-
uation, etc.)

 3. What are the additional measurements provided by  polarimetric 
weather radar, compared with the single-polarization weather radar? 
What measurements can be applied for QPE, quality control, and 
radar echo classification?

 4. Why is the understanding of hydrometeor shape important for 
interpreting the polarimetric radar measurement?

 5. Why is the particle/raindrop size distribution (PSD/DSD) funda-
mental for understanding the property of precipitation?

 6. Describe the necessity of removing the clutter contamination and 
correcting the attenuation for radar data. What are their effects on 
the radar QPE?

 7. Why is the particle/raindrop size distribution (PSD/DSD) funda-
mental for understanding the property of precipitation? What rela-
tions are among radar reflectivity, rainfall rate, water content, specific 
attenuation, and specific differential phase?

 8. Compared with single-polarization radar, explain why  polarimetric 
radar measurements help improve the QPE? What are the strengths 
for different estimators in Section 3.4? (Hint: Discuss the measure-
ment error and model uncertainty.)

QUANTITATIVE QUESTIONS

 1. Given the Rayleigh scattering assumption, the radar reflectivity can 
be approximated by the 6th moment of DSD. There are three mea-
surements of rainfall by S-band radar, with radar reflectivity 25 dBZ, 
35 dBZ, and 45 dBZ, and differential reflectivity 0.2 dB, 0.8 dB, and 
1.8 dB, respectively.

 a. Calculate the rainfall rate based on the polarimetric estimator 
R(Zh, Zdr).

 b. Suppose the differential reflectivity values are 0.4 dB, 1.2 dB, and 
2.4 dB, respectively. Calculate the rainfall rate again. Explain the 
difference from the first result.
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 c. Now assume the M-P model is applied. Do the DSD retrieval, 
and calculate the rainfall rate based on the retrieved DSD. 
Compare the results with the previous two results and explain 
the difference.

 2. Suppose the measurement error of Kdp is 10%. What is the  uncertainty 
of R estimation in percentage for estimator R(Kdp)? Suppose the mea-
surement errors for Zh and Zdr are 1 dB and 0.3 dB, respectively. What 
is the uncertainty of R estimation for estimator R(Zh,Zdr)? (Hint: Use 

approximation ˆ ( ) 10log 1 ( ˆ )10X dB X Xσ ≈ + σ .)
 3. Zhang et al. (2001) derived empirical relations to quantify the 

backscattering amplitude of raindrops: π = × −( , ) 4.26 10 4 3.02f D Dh  
and π = × −( , ) 4.76 10 4 2.69f D Dv . There are several DSDs given as 
follows:

 a. Several exponential DSDs with Λ varying with 1, 2, 4, 6, and 8.
 b. Several gamma DSDs with Λ of 4 and μ varying with 0.5, 1, 1.5, 2, 

and 3.
 Calculate ZDR values for these DSDs and describe the change of 

median size D0 and/or μ with the ZDR. (Hint: Raindrops are gen-
erally less than 8 mm.)

 4. Given radar reflectivity and differential reflectivity are 30.1 dBZ and 
1.7 dB, respectively, estimate the specific differential phase (degree 
km−1) for X-band, C-band, and S-band radar measurements. Explain 
the difference for these radars.
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4
Multi-Radar Multi-Sensor 
(MRMS) Algorithm

The advent of faster data transmission with Internet-2 and effective data 
compression techniques has enabled base-level (i.e., level II) radar data from 
the NEXRAD network to be transmitted and processed in real time. The first 
demonstration of this processing took place with the Collaborative Radar 
Acquisition Field Test (CRAFT) Project (Droegemeier et  al. 2002; Kelleher 
et al. 2007). Radar data were first transmitted to regional hubs and then to 
a national processing and archiving center within the National Weather 
Service (Crum et al. 2003). One of the first hubs was in Phoenix, Arizona, 
comprising five surrounding WSR-88D sites. Gourley et al. (2001, 2002) dem-
onstrated the first real-time precipitation estimation algorithm called QPE 
SUMS (Quantitative Precipitation Estimation and Segregation Using Multiple 
Sensors) that operated from the base-level radar data. Precipitation type and 
accumulation products were generated and made available to forecasters 
and water managers at the Salt River Project in Phoenix for operational use. 
As  additional WSR-88D radars joined the network, improvements to the 
radar algorithms proceeded. Eventually, all radars were connected to the 
network and the first national QPE and radar-based products were generated 
in real time at the National Severe Storms Laboratory beginning in 2006. The 
state-of-the-science of this National Mosaic and QPE system (NMQ) using 
single-polarization radar data is described in Zhang et al. (2011). The entire 
NEXRAD network underwent an upgrade to dual-polarization technology 
in 2013. Moreover, the National Weather Service decided to operationalize 
the NMQ system beginning in 2014. A name change to Multi-Radar 
Multi-Sensor algorithm (MRMS) followed, corresponding to the National 
Weather Service operationalization and to algorithmic changes following 
the dual-polarization upgrade. This chapter provides a general overview of 
the entire MRMS algorithm.

The MRMS algorithm begins by ingesting the level II moment data (i.e., raw 
radar variables) from approximately 146 WSR-88D, 30 Canadian, 2 Terminal 
Doppler Weather Radar (TDWR), and 1 television  station weather radar 
(KPIX). Figure 4.1 shows the locations overlaid with the three- or four-letter 
identifiers for each of the radars across North America. The data ingest pro-
cess also incorporates approximately 9000 hourly rain gauges comprising the 
Hydrometeorological Automated Data System explained in detail here: http://
www.nws.noaa.gov/oh/hads/WhatIsHADS.html. These data are used in QPE 
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processing for bias adjustment. Three-dimensional temperature  analyses from 
the Rapid Refresh model (RAP) are also brought in to help guide the multisen-
sor algorithms at several stages in the product generation. After the data are 
ingested into the system, the data processing begins for each  individual radar. 
Next, mosaics are created in 2-D and 3-D space. Finally QPE products are gen-
erated and evaluated online. The most  distinguishing  characteristics of the 
MRMS products are their accuracy, national  consistency, and most  importantly, 
their resolution. The QPE and mosaic products are generated every 2 min on 
a 0.01 deg resolution grid, or about 1 km. The  distinguishing characteristic of 
high resolution has gained the attraction of the satellite remote-sensing com-
munity. The MRMS rain rate products are below the pixel resolution of most 
satellite QPE products, even from instruments aboard low Earth-orbiting plat-
forms. Instead of relying on statistical downscaling of rainfall products, the 
MRMS QPE products can be sampled up to the resolution of the satellite pixels, 
and accordingly, have provided invaluable information to the remote-sensing 
community (Kirstetter et al. 2012, 2013).

FIGURE 4.1
Hybrid scan reflectivity height product (in km above ground level); 3- and 4-letter radar 
 identifiers are overlaid at each of the 146 WSR-88D sites, all of which contribute to the MRMS 
product suite.
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4.1 Single-Radar Processing

The single-radar process begins by performing quality control (QC) on the 
polarimetric radar variables in their native, spherical coordinate systems, 
centered on each radar. The intent of the dual-polarization QC routine is 
to remove all nonweather scatterers while retaining very light precipitation. 
If the radar is operating in clear air mode (e.g., volume coverage pattern 32) 
during the warm season, then all echoes are removed. Clear-air VCPs are 
employed with a long pulse maximize sensitivity. Thresholds are automati-
cally monitored at the radar site so that the radar will immediately switch 
to precipitation mode when weather echoes have developed within the 
surveillance region of the radar. The removal of echoes when the radar is in 
clear air mode during the warm season minimizes false accumulations that 
would aggregate over time due to very light, but frequently occurring clear 
air echoes backscattered from insects and birds. Next, data are removed at 
bins that are deemed to have significant blockage (>50%) or the bottom of the 
beam does not clear the underlying terrain by at least 50 m. This step assumes 
the radar beam propagates as it would in a standard atmosphere relative 
to an accurate, underlying digital elevation model (DEM). Nonstandard 
beam propagation and ground-based features not represented in the DEM 
(e.g., trees and buildings) are dealt with in later processing steps.

4.1.1 Dual-Polarization Quality Control

The details of the dual-polarization quality control (dpQC) scheme used in 
MRMS are provided in Tang et al. (2014). The dpQC algorithm is based on 
decision-tree logic largely involving the co-polar correlation coefficient (ρhv). 
Before applying a ρhv threshold, the algorithm checks for hydrometeors 
that may be associated with intrinsically low ρhv values such as in hail, 
nonuniform beam filling (NUBF) situations, and the melting layer. Echoes 
that are not subject to the dpQC are those that have ρhv values < 0.95, the 
18 dBZ echo top is higher than 8 km, and there is ZH > 45 dBZ in the column. 
In general, bins meeting these criteria are tall, intense cells that may contain 
hail. Situations with NUBF are detected by bins with ρhv values < 0.95, the 
0 dBZ echo top is higher than 9 km, and there is a cell between the bin in 
question and the radar with ZH > 45 dBZ. This can cause an NUBF situation 
and result in depressed ρhv values at further ranges. Next, the dpQC algo-
rithm searches for the melting layer in a manner similar to that described in 
Giangrande et al. (2008). There is generally a reduction in ρhv there, often in a 
ring around the radar, and the environmental temperature must be near 0°C. 
The dpQC disregards data in the suspected melting layer regime.

After those weather echoes with intrinsically low ρhv values are identi-
fied and left alone, remaining echoes are screened if they have ρhv < 0.95. 
But, before they are utlimately removed, the dpQC algorithm recognizes 
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that noisy but occasionally high values of ρhv can be associated with 
 nonweather echoes. Therefore, the algorithm examines the spatial gradient 
or texture of ρhv. If the standard deviation within a 1 km radial segment is 
less than 0.1, then the echoes are retained and subjected to the subsequent 
processing steps. Next, a spike filter is applied to identify reflectivity val-
ues that extend along small wedge-shaped radials. These spikes result 
from electronic interference and with a rising and setting sun. The algo-
rithm searches for a bundle of adjacent radials with ZH > 0 dBZ extending 
more than 30 km in range. If the number of potentially contaminated bins 
decreases by more than 90% when examining ZH along the radials at the 
next highest tilt, then they are presumed to be from electronic interference 
or radiation from the sun and are subsequently removed. A spatial conti-
nuity test is applied for those bins that may have randomly high ρhv values, 
but are isolated. The vertical gradient test removes echoes that decrease by 
more than 50 dB km−1. Noisy data are identified by examining the distri-
bution of ZH data within a 1.25 km × 1.5 deg region. If more than half the 
bins have missing ZH values or the average of the nonmissing values in the 
neighborhood is less than 25% of the ZH value in the center bin, then data 
in the center bin are deemed noisy and subsequently removed. The final 
cleanup step removes the entire tilt of data if the surviving bins with ZH > 
10 dBZ add up to less than 10 km2 in area.

4.1.2 Vertical Profile of Reflectivity Correction

The aims of the following processing steps are to adjust ZH data so that they 
represent, as closely as possible, values that would be measured at the surface. 
Following the dpQC filtering steps, ZH values are compensated in regions 
with partial beam blockages < 50%. Bin volumes and beam center heights 
increasing with range are computed assuming the 4/3 Earth’s radius model 
and the Bessel function of second order for the power density distribution of 
the radar beam (Doviak and Zrnić 1993). This step results in approximately 
1 dB being added for each 10% of partial beam blockage up to 50%.

Vertical profiles of reflectivity (VPRs) are constructed in spherical 
coordinates. This step selects data from 20 to 80 km in range from the 
radar and linearly interpolates data to fixed height levels spaced 200 m 
apart from 500 m above radar level (ARL) to 20 km. A first-pass segrega-
tion of precipitation types is conducted in spherical coordinates for con-
vective, stratiform, and tropical echoes. This step is needed here so that 
averaging of stratiform profiles can take place. The convective-stratiform 
segregation algorithm follows the decision tree logic of Qi et  al. (2013). 
To  summarize, the partitioning assigns convective precipitation if ZH 
exceeds 55 dBZ anywhere in the profile, if the vertically integrated liquid 
(VIL) exceeds 6.5 kgkm−2, or if ZH exceeds 35 dBZ at temperatures < –10°C. 
At this stage of processing, an algorithm based on the study of Xu et al. 
(2008) examines the VPR to determine if there is a “tropical” VPR that may 
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have efficient collision-coalescence microphysics associated with warm 
rain processes. The tropical ID algorithm first requires that the bottom of 
the melting layer is at least 2 km AGL. Then, the key feature for a tropical 
identification is the slope of the VPR below the melting layer. If Zh increases 
as the precipitation falls (negative slope of VPR), then the profile is deter-
mined to be tropical. The precipitation type flags (convective, tropical, 
stratiform) are stored for later use after the data have been mosaicked onto 
a common Cartesian grid.

A “tilt apparent VPR” is created for stratiform precipitation by taking 
azimuthal averages of Zh at the four lowest tilts. Most of the precipitation 
typing is done in later steps after the data have been mosaicked, but some 
of the processing must be done in spherical coordinates and is dependent 
upon the approximate precipitation types. VPR corrections are made to the 
candidate tilts that will eventually be used to generate QPE, thus each tilt 
is corrected to represent surface-level equivalent ZH. A simple, three-piece 
linear VPR model is fit to the azimuthally averaged VPR describing strati-
form precipitation at the four lowest tilts. The three pieces correspond to 
(1) the pristine ice region above the top of the melting layer, (2) the top half 
of the melting layer (from the bright band top to the bright band peak), and 
(3) from the bright band peak to the surface. Given the slopes of the fit VPR 
models, ZH is corrected if it is measured within the melting layer and above 
according to the following linear equation:

 ( ) ( ) ( ) ( ) ( )= − − dBZ0 0Z h Z h Z h Z hH
corr

H
obs

H
VPR

H
VPR  (4.1)

where the VPR superscript corresponds to the modeled reflectivity of the 
three-piece linear VPR, h is the height of the radar measurement, and h0 
corresponds to the bottom of the bright band, which is also approximated 
as the surface (assuming the ZH values do not change appreciably below 
the bright band bottom). Equation (4.1) serves the purpose of reducing ZH 
values measured within the bright band and increasing values that are 
measured aloft in the pristine ice regions. At this stage, ZH data measured 
on the lowest four tilts have been corrected to represent equivalent values 
at the surface.

Beam blockages can become apparent in ZH images when the beam is ducted 
under superrefraction conditions and/or when terrestrial features such as 
trees, buildings, communication towers, and wind farms are not represented 
in DEMs. These can cause radial streaks that have relatively low values of ZH 
and are generally easily detectable by the eye. Statistically speaking, these 
radial streaks in ZH generally do not impact a great volume of data, but they 
are generally static and can result in underestimations in resultant QPE accu-
mulations, especially for long accumulation periods. These QPE accumulation 
maps are visually inspected to find these wedge-shaped regions of underesti-
mation that emanate from the radar site. Figure 4.2 shows four of these regions 
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marked by yellow arrows around the KOUN radar in Norman, Oklahoma. 
MRMS employs a nonstandard blockage mitigation procedure so that Zh 
data at adjacent azimuths at the same range are linearly interpolated across the 
artifact region to yield more seamless Zh images and resulting QPE accumula-
tions. Figure 4.2 shows how the interpolation procedure has predominantly 
mitigated the wedge shapes of underestimation. If the wedge is too large (e.g., 
>10 deg), then data from higher tilts are extrapolated downward to replace 
the region with underestimated Zh and resultant QPEs. All of these problem 
regions are stored in the algorithm so that the interpolation and extrapolation 
procedures are applied to all future Zh maps.

4.1.3 Product Generation

At this point, Zh data from the lowest four elevation angles have been quality 
controlled, VPR-corrected, and adjusted for nonstandard beam blockage 
artifacts. Data from the lowest available elevation angle that clears the 
underlying terrain by at least 50 m and is at least 50% unblocked are used 
to build a 2-D seamless hybrid scan reflectivity (SHSR) product. There is 
an associated height of SHSR (SHSRH) product that reports the estimated 
height of the beam center at each range gate.The third 2-D polar product 
that is used in later processing is called the Radar QPE Quality Index 
(RQI) (Zhang et al. 2012). The RQI product scales from 0 to 1 and gives an 
indication on the expected quality of the measurement based on the degree 
of beam blockage and the height of the beam relative to the melting layer. It is 
computed as follows:

 RQI = RQIblk × RQIhgt (4.2)

where
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where blk is the beam blockage scaling from 0 to 1, h is the height of the 
beam bottom, h0C is the height of the 0°C isotherm, and depthbb is the 
 estimated depth of the melting layer (default is 700 m). The RQIhgt compo-
nent essentially gives perfect values to measurements below the melting 
layer in the rain and then exponentially decreases the RQI values with 
increasing height for those measurements taken within and above the 
melting layer.

The next procedure mosaics the 2-D polar SHSR, SHSRH, and RQI 
products onto a common 2-D Cartesian grid. Recall from Section 2.6 that 
many procedures have been developed with varying complexity to take 
advantage of the fact that there can be multiple radars providing inde-
pendent measurements over a given point in space. The simplest methods 
of merely selecting the data from the nearest radar are prone to creating 
linear  discontinuities in resulting QPE accumulation products. To miti-
gate these artifacts, the MRMS algorithm employs a mosaicking scheme 
that is based on the height of the measurement and range from the radar. 
The following mosaicking logic is applied to all three SHSR, SHSRH, and 
RQI products.
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and
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H
h  (4.7)

f(x) is the final mosaicked product on the 2-D Cartesian grid having 
a 1 × 1 km2 resolution, x represents the 2-D polar product, i is the radar index 
up to the total N radars contributing data at a given point, wr corresponds to 
the weighting function based on the distance (r) between the radar and the 
analysis point, wh is the weighting function based on the height of the beam 
center (h), and H and L are both shape parameters of the weighting functions. 
Their default values are 50 km and 1.5 km, respectively. These mosaicked 
data are used in subsequent steps to ultimately produce QPE products on a 
1 km Cartesian grid at a 2 min frequency.
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4.2 Precipitation Typology

Now that the Zh data have been filtered and processed to create 2-D mosaics 
on a common Cartesian grid, the next step in MRMS involves classifying the 
echoes into different precipitation types. This process has been developed 
to deal with the different microphysical processes in precipitating clouds 
that result in variable DSDs. If there is DSD variability, then a single Zh−R 
relation doesn’t adequately apply. Forecasters in operational centers often 
have the capability to switch the Zh−R parameters to accommodate different 
storm systems and seasons. However, the switch typically applies to all grid 
points underneath the radar umbrella, and thus doesn’t properly apply to 
mixed precipitation cases such as a convective line with trailing stratiform 
region. Automated precipitation typing offers the advantage of incorporating 
detailed radar observations in three dimensions as well as multisensor data 
sources such as environmental temperatures and even lightning observa-
tions to aid in the decision process.

Figure  4.3 outlines the basic decision-tree logic that’s used in the 
precipitation-typing module. The first decision implements an additional 
screen to remove echoes that are too weak to be associated with precipita-
tion. Echoes with ZH < 5 dBZ are no longer considered for QPE calculations. 
Echoes associated with snow are weaker due to a lower dielectric constant 
with frozen precipitation, therefore if the surface temperature is less than 
5°C, then snow could be possible and the precipitation threshold is dropped 
down to 0 dBZ. Next, surface precipitation is segregated into frozen and 
liquid types. Note that several radar algorithms have been developed to 
identify different hydrometeor types and phases based on polarimetric radar 
observations, as was detailed in Section 3.3. It should be noted that these 
observations are taken at the height of the measurement and do not neces-
sarily represent surface precipitation types. Therefore, it is very important to 
incorporate environmental observations to more accurately estimate surface 
precipitation types. The separation of frozen and liquid surface precipitation 
is based on two temperature thresholds. If the surface wet bulb temperature 
(as determined from the RAP) is less than 0°C and the surface dry bulb 
temperature is less than 2°C, then the surface precipitation type is set to 
frozen. The use of two thresholds accounts for situations in which surface 
temperatures are just above freezing, but wet snow is reaching the surface. 
The next decision identifies bin volumes dominated by hailstones using the 
Maximum Expected Hail Size (MESH; Witt et  al. 1998) algorithm. MESH 
was calibrated on observed hail sizes using the Severe Hail Index, which 
is a vertical integral from the melting layer to storm top (in the ice region) 
of ZH > 40 dBZ. The MRMS algorithm identifies hail if the MESH is nonzero.

Convective echoes are identified on a bin-by-bin basis using the same criteria 
that were implemented during the processing in spherical coordinates. The 
conditions are the 0°C height > 1.5 km, and VIL > 6.5 kg km−2, or ZH > 35 dBZ 
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at temperatures < –10°C, or the composite (column maximum) ZH > 55 dBZ. 
If bins adjacent to a convective bin do not meet the aforementioned criteria 
but have composite ZH > 35 dBZ, then they are assumed to be in growing 
convective regions with presumably strong updrafts and are also assigned 
as convective precipitation type. Nonconvective cells are further subdivided 
into cool and warm stratiform categories if they do not meet the convective 
criteria and their surface temperatures are less than or greater than 5°C, 
respectively. The final step in the precipitation typology is the application of 
the tropical identification algorithm using similar logic applied on the data in 
spherical coordinates. That is, the VPR slope must be negative below the melt-
ing layer and the SHSR must be greater than 15 dBZ. Additional decisions are 
made based on the concept of the probability of warm rain (POWR).

The POWR algorithm described in Grams et  al. (2014) assigns probabil-
ities from 0 to 1 to each bin based primarily on environmental variables. 
The key predictors for warm rain are temperature lapse rate from 850 to 
500 hPa being close to moist adiabatic, a relatively high melting layer height, 
and high relative humidity in low levels from 1000 to 700 hPa. These factors 

SHSR < 5dBZ (0dBZ if Tsfc < 5°C)?

Surface wet bulb temperature < 0°C
and surface temperature <2°C?

0°C hgt > 1.5 km AGL and [VIL > 6.5 kg/km2 or
CREF > 55dBZ or Z at or above –10°C hgt > 35dBZ

MEHS > 0mm?

no

no

no

no

no

no

Tsfc > 5°C?

Cool strat.
rain

VPR slope < 0 below BB bottom & Z ≥ 15dBZ
& POWR ≥ 0.5?

Strat. or convective
rain

Conv. rain
Warm strat.

rain

yes

yes

yes

yes

No precip

Snow

yes
Hail

yes

Convective core

Region-growing from the cores
to areas with Z ≥ 37.5dBZ

Trop/conv. or
trop/strat. rain

FIGURE 4.3
Overview of the decision-tree logic used in MRMS to define precipitation types. This precipita-
tion typology is subsequently used to guide the application of Z−R equations.
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result in weak-moderate updrafts within a very deep, moist environment. 
These   conditions enhance collision-coalescence processes and result in 
DSDs that are anomalous in that there are relatively high populations of 
small droplets. If the prior tropical conditions are met but the POWR is less 
than 0.5, then the original convective, warm stratiform, and cool stratiform 
assignments remain. If POWR is greater than 0.5, then the DSD is assumed 
to be mixed between convective or stratiform and tropical characteristics. 
These grid cells are assigned a mixed convective/tropical or a mixed strati-
form/tropical type, which adjusts the QPE scheme described below.

4.3 Precipitation Estimation

Now that each grid cell has been assigned a precipitation type, the MRMS 
algorithm assigns an appropriate Zh−R relation on a cell-by-cell basis. If the 
POWR is < 0.5, then the following relations are used for warm and cool strat-
iform, convection, hail, and snow:

 Zh = 200 R1.6 for warm stratiform (4.8)

 Zh = 130 R2.0 for cool stratiform (4.9)

 Zh = 300 R1.4 for convection (4.10)

 Zh = 300 R1.4 for hail  (4.11)

 Zh = 75 S 2.0 for snow  (4.12)

where Zh is in mm6 m−3 and R is in mm hr−1. Because Zh is very sensitive to 
large-diameter hydrometeors, it is common practice to place an upper limit 
on R values so as to avoid unrealistically large accumulations. These upper 
limits, or caps, are set to 48.6, 36.5, 103.8, and 53.8 mm hr−1 for each respective 
precipitation type from Equations (4.8)–(4.11). No cap is enforced for snow 
water equivalent estimation in Equation 4.12. Figure  4.4 shows the Zh−R 
curves for each of the relations. We can see that the selection of the different 
curves corresponding to different precipitation types has a major impact on 
the estimated precipitation rates, especially for the larger reflectivity values. 
For instance, precipitation rates are approximately doubled when going from 
cool stratiform to convective precipitation type for Zh = 50 dBZ.

If the POWR is ≥0.5 for grid cells west of 100°W, then the following 
equation is used:

 Zh = 250 R1.2 for tropical (4.13)
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with a cap set to 147.4 mm hr−1. Tighter constraints on the tropical precipitation 
type are applied for echoes east of 100°W. A study conducted by Chen et al. 
(2013) revealed overestimation by the MRMS daily precipitation accumula-
tions, primarily in the southeastern United States. Analysis of the precipitation 
type assignments revealed that the overestimation was due to the tropical pre-
cipitation type being assigned too frequently, especially during the cool season 
when it is not expected. So, the MRMS now computes weighted rainfall rates 
for POWR ≥ 0.5 that are a blend between Equations (4.8)–(4.10) and (4.13) as

 =
+ α

+
for mixed typeR

w R w R
w w

mix
conv conv trop trop

conv trop
 (4.14)

where the weights (wconv, wtrop) vary from 0 to 1 depending on POWR. Note that 
Equation (4.14) applies to the case of mixed convection and tropical precipita-
tion type. The same logic also applies to mixes between cool stratiform and 
tropical, and warm stratiform and tropical. There is an additional dynamic 
weighting factor (α) that enables more weighting to be applied to Rtrop from 
June to November, with maximum weight occurring in September. This is 
a physical constraint that ensures that most tropical precipitation types will 
be assigned during the warm season when they are expected. This is useful 
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FIGURE 4.4
Reflectivity-to-precipitation rate relations used in the MRMS algorithm. Each of the precipita-
tion types shown in the legend is automatically identified using volumetric radar data and 
environmental data from the RAP model analysis.
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because the tropical Zh–R relation yields the highest R per unit Zh. Incorrect 
assignment of this precipitation type will lead to large overestimations, so it 
must be used with careful constraints.

The precipitation rates that are produced using the aforementioned 
procedures  are generated every 2 min on a 1 km grid and are referred to 
as the radar-only product. These rainfall rates are summed to create hourly 
accumulations, which are also output every 2 min. Longer accumulations 
of 3, 6, 12, and 24 hr are  created at the top of each hour from the hourly 
accumulation products. Once daily, 48 and 72 hr accumulations are produced 
at 1200 UTC. The radar-only products are most useful for those applications 
that require rainfall rates rather than longer term accumulations, such as for 
forcing a flash flood  prediction model or an urban flood model. If longer accu-
mulations are needed, then there is an opportunity to perform bias adjustment 
to the radar-only products using collocated rain gauges, as is described next.

MRMS ingests approximately 9000 gauges across the United States each 
hour and then compares them to the radar-only hourly product at the top 
of the latest hour. The local gauge bias-corrected (LGC) radar product 
computes the bias as (bk = rk – gk) at each kth gauge site where r signifies the 
radar-only hourly accumulation and g is the gauge value. Next, an inverse 
distance-weighting scheme is used to spatially interpolate bk values onto the 
2-D Cartesian grid as
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where the d is the Euclidean distance from the ith analysis grid point and kth 
rain gauge. The parameters b and D in Equation (4.16) represent the shape of 
the weighting function and the cutoff distance, respectively. Both parameters 
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are optimized each hour using a leave-one-out cross-validation scheme. 
A  randomly selected gauge is purposely left out of the analysis, and values of 
b and D are cycled until optimum values are found for the bias that is already 
known. These parameter values are stored and then another gauge site (and its 
bias) is purposely withdrawn from the analysis to find values for b and D. 
This procedure is repeated until all gauges have been included in the cross- 
validation scheme to find optimum values for b and D, which depend on gauge 
density and rainfall variability. The gauge density parameter α  in Equation 
(4.17) reduces the impact of the bias correction when the gauge density is sparse. 
The final step in the local gauge correction removes the spatially interpolated 
bias computed in Equation (4.15) from the radar-only hourly accumulations.

Two more gauge-based products complete the suite of QPE products 
in MRMS. The gauge-only product ingests hourly accumulations from 
the same gauges used to build the LGC product described above. The 
same leave-one-out cross-validation scheme used to spatially interpo-
late the bias is used here to interpolate the gauge values themselves in the 
gauge-only product. The parameters b and D are optimized specifically for 
the gauge-only product and a gauge-based accumulation is produced at 
every grid point. The second gauge-based product is similar to the gauge-
only product, but utilizes monthly precipitation climatologies from the 
PRISM (Parameter-elevation Relationships on Independent Slopes Model) 
dataset described in Daly et al. (1994). For the mountain mapper QPE, the 
bias is computed as (bk = gk / pk) where gk is the hourly gauge accumulation and 
pk is the monthly climatological value. The bias is then interpolated onto the 
2-D Cartesian grid using the inverse distance weighting scheme in Equations 
(4.15) and (4.16) with α = 1. The mountain mapper QPE essentially adjusts 
the known precipitation climatology in mountainous terrain to the observed 
gauge amounts. This technique has proven to be useful in regions where the 
spatial patterns of precipitation are heavily dictated by the underlying terrain 
due to orographic effects. Caution must be exercised, however, for extreme 
events when the precipitation patterns may shift from their climatological 
locations due to anomalous wind directions, speeds, and/or water vapor 
contents. The gauge-based hourly products are generated at the top of each 
hour. Accumulations of 3, 6, 12, and 24 hr are computed at the top of each 
hour from the hourly products. Longer term accumulations of 48 and 72 hr, 
derived from the 24 hr accumulations, are computed at 1200 UTC each day.

4.4 Verification

Rain gauges serve as inputs to several of the QPE products, and they are also 
instrumental in evaluating and further improving the radar-only product. 
Recall that the 2 min/1 km resolution with this product is needed for several 
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satellite QPE and flash flood applications. Further, improvements to the 
radar-only algorithm cascade to the local gauge bias-corrected radar prod-
uct and are very important in regions that do not have dense gauge coverage. 
Evaluation with rain gauges is useful in the event that they are independent 
from the QPE algorithm. Moreover, they must have high quality to serve as 
the reference or “ground truth” dataset. As we will see in this section, gauge 
accumulations can have errors of their own and must be quality controlled 
as well.

MRMS employs a robust QPE verification system that automatically ingests 
automated rain gauge reports and compares them to user-selectable MRMS 
QPE products. Products are evaluated using (1) statistics, (2) gauge circle 
plots, and (3) scatterplots. Figure 4.5 shows a 24 hr accumulation ending 0000 
UTC on October 15, 2013, from the radar-only algorithm in the background 
with the gauge circles overlain. The diameter of each circle corresponds 
to the gauge accumulation and the color represents the bias shown in the 
color table. This plot is useful for showing the geographic dependence of the 
biases. For example, we see the greatest underestimation with the largest 
accumulations in the southern part of the image. Moreover, the plot reveals 
overestimation for very light rainfall accumulations on the periphery of the 
rain system to the northeast. The scatterplot in Figure 4.6 plots the radar-only 

FIGURE 4.5
Gauge circle plot used in the MRMS verification system. The gridded product is the radar-only, 
24 hr accumulation ending on October 15, 2013. The circles are centered on the gauge locations 
with their radii proportional to the gauge accumulations. The colors of the circles correspond 
to biases as shown in the legend.
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accumulations against the collocated gauge accumulations and color codes 
each point based on the individual bias using the same color scale used in 
the gauge circle plots. We can see that for gauge accumulations greater than 
0.5” (12.7 mm), most of the points are falling to the right of the 1:1 diagonal 
line, which indicates underestimation by the radar-only algorithm. There is 
also a collection of purple-colored points on the ordinate indicating no accu-
mulation by rain gauges, but nonzero amounts by the radar-only algorithm.

Statistics are shown on the right side of Figure 4.6. Values are provided 
describing the distribution of the radar-only and gauge-based accumulations 
including the minimum, maximum, mean, and standard deviation. Below 
those values, a suite of continuous variable statistics are computed to 
describe the discrepancies between the radar-only and gauge accumula-
tions ranging from bias (multiplicative and additive), mean absolute error, 
and root-mean-squared error, to correlation coefficient. Several contingency 
table statistics are also provided in the analysis. These dichotomous statistics 
differ from the continuous variable ones in that they indicate whether an 
event did or did not occur. The “events” are based on four thresholds applied 
to the accumulated rain gauge totals. The values shown correspond to the 
probability of detection (POD; event was forecast and it occurred), false 

FIGURE 4.6
Scatterplot used in the MRMS verification system. The data correspond to the radar-only and 
gauge accumulations shown in Figure 4.5. The colors for each point correspond to the bias as 
in Figure 4.5. Notice the large number of points on the y-axis corresponding to nonzero radar-
only accumulations with zero gauge accumulations. Commonly used statistics are shown in 
the right side of the figure panel.
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alarm rate (FAR; event was forecast but did not occur), and different skill 
metrics that combine several variables in the contingency table along with 
climatological information.

The multiplicative bias of 1.122 implies that gauges were accumulating 
approximately 12% more rain than the radar-only algorithm, which is gener-
ally considered a good result. Figure 4.7 uses a capability in the QPE verifica-
tion system to choose the specific network of rain gauges. In this case, only 
rain gauges comprising the Oklahoma Mesonet are used for the evaluation. 
Note that the Mesonet gauges undergo rigorous maintenance in the field and 
their data are quality controlled using established automated procedures 
as well as manual checks. When only the high-quality Mesonet gauges are 
used in the scatterplot we see that the initial conclusion of underestimation 
by the radar-only product is further supported, and the points correspond-
ing to nonzero radar-only amounts but zero gauge accumulation have been 
removed. Most importantly, the original multiplicative bias of 1.122 has now 
grown to 1.438. The selection of high-quality gauges removed all the points 
residing on the ordinate, which were counterbalancing the true underestima-
tion that was present in the radar-only algorithm. This example highlights 
the need for careful consideration of the gauge quality when conducting 
evaluations of QPE algorithms.

FIGURE 4.7
Same as in Figure 4.6, but the data in this figure come from high-quality rain gauge data in the 
Oklahoma Mesonet. While the nonzero/zero radar/gauge pairs have disappeared, the analysis 
indicates a high bias by the radar-only algorithm. The statistics on the right also show this.
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4.5 Discussion

Despite the advances in the state-of-the-science of QPE represented in 
MRMS,  the present algorithm makes little direct use of polarimetric vari-
ables in precipitation estimation. Future research will focus on systematic 
QPE using the polarimetric variables given that they offer the potential to 
respond to different DSDs. This is the main objective in MRMS’s current 
approach of identifying different precipitation types and applying differ-
ent Zh–R relations, as detailed in Section 4.2. It is presumed that the differ-
ent vertical structures of Zh as a function of temperature highlight different 
 microphysical processes that result in DSD variability. Polarimetric rainfall 
relations are currently running on the operational system in the National 
Weather Service as single radar products. Additional work is needed to deter-
mine optimum strategies to mosaic the polarimetric variables and/or rainfall 
estimators. Furthermore, prior studies performed on the polarimetric rain-
fall estimators have been done on individual radars over limited geographic 
domains. Application of a given algorithm to the entire network of NEXRAD 
radars needs to be explored to properly assess and improve the parameters.

The lack of NEXRAD radar coverage at low altitudes in the Intermountain 
West is a problem that has not been fully mitigated by MRMS. The moun-
tain mapper technique partially addresses this through the use of rain 
gauge accumulations that are spatially interpolated based on monthly 
climatologies. This method depends on the presence of well-maintained 
rain gauge networks as well as the true precipitation patterns remaining 
similar to their climatological spatial characteristics. This latter assumption 
can fail during extreme events, which are anomalous and deviate from 
climatological conditions. Another approach that is being explored by the 
MRMS development team is the integration of passive and active sensors 
from spaceborne platforms. These sensors have the unparalleled advan-
tage of being able to look down on the precipitating systems and thus are 
less impacted by intervening terrain. The disadvantages of satellite-based 
approaches are the indirectness of the signals as they relate to surface pre-
cipitation rates and the frequency at which they provide information. Active 
radar sensors, which provide reflectivity data just like ground radars, must 
be aboard low Earth-orbiting satellites in order to have a reasonable small 
pixel resolution. This means that an overpass at a given location is only 
available once or twice a day. Passive sensors aboard geostationary satellites 
can provide data at high spatiotemporal resolutions similar to the ground 
radars, but their radiance signals (i.e., brightness temperatures at cloud top) 
are indirectly related to surface precipitation rates. Nonetheless, detailed 
vertical profiles of reflectivity from low Earth-orbiting active sensors can 
be combined with the passive signals to fill in the gaps present with the 
NEXRAD radar network.
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Problem Sets

 Q1:  List the products from the MRMS system along with their spatial 
and temporal resolutions.

 Q2:  Compute and plot rain rates using the three typical relationships 
given below.

 a. Z = 200 R1.6 (Marshall–Palmer Z–R)
 b. Z = 300 R1.4 (WSR-88D conventional Z–R)
 c. Z = 250 R1.2 (WSR-88D tropical Z–R)

  What is the percent different in computed rainfall rates from the 
different relations for a Z value of 20 dBZ and 50 dBZ? List some 
reasons why the different Z–R relations exist.
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5
Advanced Radar Technologies for 
Quantitative Precipitation Estimation

Quantitative precipitation estimates (QPEs) are conventionally provided 
by ground radar networks. Ground-based systems are able to acquire data 
routinely at relatively low altitudes up to ranges on the order of 300 km, 
provided there are no appreciable blockages by intervening terrain. As will 
be detailed in this chapter, it is also feasible to obtain radar measurements 
from space. Spaceborne measurements offer the advantages of collecting 
data over oceanic and data-sparse regions without the constraints of interna-
tional borders or beam blockages by mountains. Spaceborne systems cannot 
measure precipitation as frequently as ground radar systems due to orbital 
restrictions with low Earth-orbiting satellites. They also have limitations 
with ground clutter contamination, nonuniform beam filling, and attenu-
ation. Nonetheless, great potential exists to synergize radar measurements 
from ground and space so as to fill in voids in the operational ground radar 
networks.

In recent decades, we have witnessed great technological advances in 
radar design. Costs have also decreased, making it feasible to build small, 
portable radars for use in research and operations. Because the radar beam 
volume increases with range, it is often advantageous to collect data at close 
range  for detailed studies of tornadogenesis and microphysical processes. 
Some X-, C-, Ku-, Ka-, and W-band radars can be mounted on a flatbed truck 
and transported directly to the location where a certain event takes place. 
These radars are called mobile radars. Mobile radar systems offer flexibil-
ity in deployment that extends or supplements the operational coverage by 
filling in gaps and increases the likelihood of sampling a particular type of 
event. In some instances an operational radar failed and was temporarily 
replaced by a mobile radar that was driven to a site near the operational WSR-
88D radar. These radars can also operate continuously with rapid sampling 
with a focus on the lowest altitudes of storm systems (Biggerstaff et al. 2005). 
The following sections introduce some examples of advanced radar systems, 
ranging from small mobile radars, single and dual-frequency spaceborne 
radar systems, and phased-array polarimetric radars for rapid scanning of 
storms. This is not meant to be a comprehensive discussion of all mobile 
radars, as there are many throughout the world, but rather a description of a 
diverse selection of contemporary radar system.
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5.1 Mobile and Gap-Filling Radars

Radars can operate at different wavelengths or radio frequencies. The details 
of the most typical radar wavelengths employed for hydrological uses are 
provided in Table 1.1. Longer wavelength radars like S-band are less prone to 
attenuation by precipitation, but they require a larger, heavier antenna, which 
requires a powerful pedestal, and have higher associated costs. Therefore, 
the most typical radar frequencies used for mobile radars range from C- to 
W-band. C-band radars are used commonly for operational surveillance in 
Europe and Canada. The signal is not as prone to attenuation loss as at X-band, 
but a larger antenna is needed. X-band has become more popular for mobile 
radars because of the smaller antenna and smaller beamwidth that can be used. 
Moreover, it turns out that the polarimetric variables are more predictable in 
the Rayleigh scattering regime at X-band than at C-band. This means that the 
variables increase more monotonically with larger drops, which is not the case 
at C-band. X-band radars have more limited ranges, which can be compensated 
by moving the radar close to the meteorological phenomena of interest. Below, 
we introduce several C- and X-band radars that operate on mobile platforms 
for hydrological purposes, including the SMART-R, AIR, NOXP, and PX-1000. 
All these radars were designed and maintained in the National Weather Center 
in Norman, Oklahoma, by the Advanced Radar Research Center (ARRC) of 
the University of Oklahoma or the National Severe Storms Laboratory (NSSL).

5.1.1  ARRC’s Shared Mobile Atmospheric Research and 
Teaching Radar (SMART-R)

The SMART-R is one of the earliest mobile radars having a legacy from the 
Dopper-on-Wheels (DOW). The first SMART-R (SR-1) was developed and 
used by a consortium of scientists and engineers from the University of 
Oklahoma, NSSL, Texas A&M University, and Texas Tech University. They 
have been deployed during a number of field experiments for storm-scale 
research and to enhance graduate and undergraduate education in radar 
meteorology (Biggerstaff et al. 2005). The lower C-band frequency reduces sig-
nal loss from attenuation and improves the Nyquist (unambiguous) velocity 
that can be measured with the radar. The tradeoff is the resolution for observ-
ing small-scale circulations, because C-band radars have a larger beamwidth 
than X-band radars in terms of specified antenna size. The characteristics 
of the SMART-Rs are described in Table 5.1. Note that the second SMART-R 
(SR-2) operates at a slightly different frequency than the first SMART-R (SR-1), 
and SR-2 has been upgraded with dual-polarization capability.

The SMART-Rs have contributed to a great deal of research and education. 
It has been deployed in a series of field projects to study atmospheric phenom-
ena ranging from tornadogenesis, hurricanes, rain in the tropics, to cool sea-
son orographic rain and snow. These radars are especially unique in that they 
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TABLE 5.1

Characteristics of SMART Radars

Subsystems Description

Platform
Physical dimensions 4700 International dual-cab diesel truck

Length ~10 m (32 ft. 10 in.); height ~4.1 m (13 ft. 6 in.); 
weight ~11,800 kg total system

Power plant 10 kW diesel generator
Leveling system Computer assisted; variable rate manual hydraulic 

controls

Transmitter
Frequency 5635 MHz (SR-1), 5612.82 MHz (SR-2)
Type Magnetron; solid-state modulator and high-voltage 

power supply
Peak power 250 kW
Duty cycle 0.001
Pulse duration Four predefined values selectable from 0.2 to 2.0 μs
Polarization Linear horizontal (SR-1); Dual linear, SHV (SR-2)

Antenna
Size 2.54 m diameter solid parabolic reflector
Gain 40 dB (estimated)
Half-power beam Circular, 1.5 deg wide
Rotation rate Selectable from 0 to 33 deg s–1

Elevation range Selectable from 0 to 90 deg
Operational modes Pointing, full PPI, range–height indicator (RHI), sector 

scans

Signal processor SIGMET
Maximum number of bins per 
ray

2048

Bin spacing Selectable from 66.7 to 2000 m
Moments Radar reflectivity (filtered and unfiltered), velocity, 

spectrum width
Ground clutter filter Seven user-selectable levels
Range averaging Selectable
Dual-pulse repetition 
frequency de-aliasing

Selectable

Processing modes Pulse pair, fast Fourier transform, random phase
Data archive CD-ROM; SIGMET IRIS format
Display Real-time PPI ; loop, pan, and zoom PPI or RHI 

products

Source: Adapted from Biggerstaff et al. (2005).
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have been used in undergraduate and graduate radar meteorology classes to 
give students opportunities to obtain practical experience operating weather 
radars. The SMART-Rs has proven to be effective in obtaining high temporal 
and spatial resolution data over mesoscale domains, which is useful for basin-
scale hydrological studies. Gourley et al. (2009) deployed SR-1 to the American 
River Basin near Sacramento, California, during the cool season of 2005–2006 
during the Hydrometeorological Testbed (HMT) experiment. They examined 
the impact of incremental improvements to QPE processing, including calibrat-
ing Z with a nearby disdrometer, optimizing parameters in the Z–R relation, 
VPR correction, and maximizing low-level coverage by merging radar data 
with another mobile radar nearby. Their study quantified the improvements 
following each step. They also highlighted challenges in siting a mobile radar 
in complex terrain. Blockages from nearby trees, which don’t appear in a digital 
elevation model, prevented low-altitude coverage over upper parts of the basin.

5.1.2 NSSL’s X-Band Polarimetric Mobile Radar (NOXP)

NSSL’s X-band Polarized Mobile Radar (NOXP) was built on a flatbed inter-
national truck frame by a group of NSSL engineers and technicians in 2008 
(Palmer et al. 2009). NOXP is a dual-polarization research radar that is basi-
cally a clone of SR-2 but operates at X-band. Detailed characteristics of the 
radar are provided in Table 5.2. It has been used to study tornadogenesis dur-
ing the Verification of the Origins of Rotation in Tornadoes Experiment–II 
(VORTEX-II) in 2009. It was also deployed to desert regions in Arizona during 
the summers of 2012 and 2013 to study thunderstorms, microbursts, and dust 
storms (haboobs). NOXP was shipped to France for the hydrological cycle in 
the Mediterranean Experiment during the autumn of 2012 (HyMeX; Ducrocq 
et al. 2014). NOXP observed intense precipitation rates that often produce flash 
flooding in the Cevennes–Vivarais region in the south of France. Several other 
ground instruments nearby have been used synergistically to study cloud 
microphysical processes, cloud electrification, and quantifying the impact of 
Mediterranean moisture transport on precipitating systems (Bousquet et al. 
2014). NOXP observed a ZDR dipole that was also associated with decreasing 
Φdp values in upper levels of a thunderstorm. It turns out these artifacts were 
actually signatures of depolarization caused by ice particles that had become 
oriented in the same direction due to a strong electrical field. This hypothesis 
was later tested and supported using lightning mapping array (LMA) obser-
vations that were deployed for the experiment.

In 2014, NOXP was deployed to the Smoky Mountains in North Carolina dur-
ing the Integrated Precipitation and Hydrology Experiment (IPHEx) (Figure 5.1). 
Radar data collection was coordinated with NASA’s S-band, polarimetric 
(NPOL) radar, as well as aircraft flying in and above the clouds. The radar was 
positioned on a mountaintop with an unimpeded view in the southern quad-
rant over the Pigeon River basin. Note how the hydraulic supports were used 
on the steep slope to properly level the antenna. The NOXP radar provided 
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low-level coverage, much better than what is available using NEXRAD, over 
three gauged basins with catchments less than 150 km2. This provided a unique 
opportunity to study streamflow response to rainfall (estimated by different 
platforms) in small basins in complex terrain prone to flash flooding.

5.1.3 ARRC’s Atmospheric Imaging Radar (AIR)

The AIR is another small radar system developed by the ARRC that employs 
imaging technology to simultaneously gather volumetric data on a mobile 
platform (Isom et al. 2013). The radar is mounted on the back of a radar truck 
and is thus fully mobile (Figure 5.2). The AIR doesn’t use a conventional para-
bolic antenna that transmits and receives the electromagnetic signal. The AIR 
consists of 36 separate subarrays on a flat panel and is able to create an array 
of beams along a single dimension. It uses digital beam-forming  (DBF) 

TABLE 5.2

Characteristics of the NSSL’s X-Band Polarimetric Mobile Radar

Parameter Value

General
Wavelength 3.22 cm
Mobile/transportable/fixed Mobile (0.88 deg half-power beamwidth)
Scanning/profiler Scanning (1.0 deg resolution)
Conventional/Doppler/polarimetric Dual-polarimetric (STaR) and H-only mode
Scan capabilities 5 rpm (30 deg/s) in azimuth; 0–91 deg elevation; 

RHI capable
Range Max range defined by selectable PRF; previous deploy-

ment used 1350 pulses/s, which equates to 111 km

Transmitter/receiver
Frequency (MHz) 9410
Peak power at antenna port (dBW) 47
Equivalent isotropically radiated 
power (EIRP) (dBW)

47

Modulation type Pulse
Characteristics of the modulation 
(e.g., sweep period, sweep rate)

None

Spectrum width pattern (MHz) at –3 dB : 4

Antenna
Antenna type Dish
Antenna gain (dBi) 45.5
–3 dB antenna aperture (°) 0.9
Relative gain at horizon (dBi) 45.5
Polarization Dual Linear
Rotation speed (rpm) (min and max) 0–5
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FIGURE 5.1
The National Severe Storms Laboratory’s NOXP mobile, polarimetric, X-band radar. Here, it is 
operating in the Pigeon River basin in the Smoky Mountains of western North Carolina during 
the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014.

FIGURE 5.2
The University of Oklahoma Advanced Radar Research Center’s Atmospheric Imaging Radar 
(AIR). This mobile radar does not use a conventional parabolic dish antenna, but transmits a 
wide (1 × 20 deg) fan beam and receives the backscattered signal using 36 independent subarrays.
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technology to steer the beam electronically, which results in very high 
 temporal resolution of the collected data. The concept is to essentially 
transmit a single, fan beam (1 × 20 deg) and then receive individual com-
ponents using the 36 independent subarrays. The beam forming is done in 
postprocessing using the DBF concept. The AIR operates at X-band, provid-
ing a balance between sensitivity, attenuation, and physical size, and is used 
as precipitation radar with a primary focus on rapidly evolving weather 
phenomena, namely severe storms. With range-height indicator (RHI) mode 
as the primary operation mode, DBF will occur in the vertical dimension, 
which provides near-continuous coverage of the atmosphere over a 20 deg 
field of view. A summary of the characteristics of the AIR is given in Table 5.3.

5.1.4 ARRC’s Polarimetric X-Band 1000 (PX-1000)

The PX-1000 is a traveling wave tube (TWT)-based, transportable, dual- 
polarization X-band radar developed at the ARRC (Cheong et al. 2011). The 
system features a pair of 1.5 kW TWT transmitters, a 1.2 m parabolic reflector 
dish with dual-polarization feed and an azimuth-over-elevation pedestal. 
The general system characteristics of the PX-1000 are described in Table 5.4. 
PX-1000 uses a unique signal processor for complex operations such as pulse 
compression, multilag moment estimation, and a nonlinear frequency mod-
ulator. The  PX-1000 is mounted on a trailer, which makes it transportable 

TABLE 5.3

Characteristics of the ARRC’s Atmospheric 
Imaging Radar (AIR)

Parameter Value

General
Frequency 9.55 GHz
Power 3.5 kW TWT
Duty cycle 2%
Sensitivity 10 dBZ at 10 km
Range resolution 30 m (pulse compression)

Subarrays
3 dB beamwidth 1 × 20 deg
Gain 28.5 dBi
VSWR 2:1
Polarization Horizontal (RHI mode)

Array
Beamwidth 1 × 1 deg
Number of subarrays 36

Pedestal
Rotation rate 20 deg s−1
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rather than fully mobile (Figure 5.3). The design of the radar is well suited 
for long deployments in fixed locations, such as throughout  seasonal field 
campaigns.

5.1.5 Collaborative Adaptive Sensing of the Atmosphere (CASA)

As we saw in Chapter 2, the NEXRAD radar network has limited low-altitude 
coverage for regions within the Rocky and Sierra Mountains. One possible 
solution to mitigate these radar data voids is to increase the number of 
radars within the data-sparse regions. The Collaborative Adaptive Sensing 
of the Atmosphere (CASA) is a National Science Foundation Engineering 
Research Center that is conducting research on weather hazard forecasting 
and warning technology using low-cost radars that work at short range and 
adapt to evolving weather and to changing user needs (McLaughlin et al. 
2009). CASA developed the Integrated Project One (IP1), which deployed 
a four-radar testbed in southwest Oklahoma. The four radars are spaced 
approximately 30 km apart and arranged in a manner to approximate equi-
lateral triangles when connecting the radars with lines. This arrangement 
maximizes the regions suited for dual-Doppler velocity vector retrievals. 
These regions correspond to crossing azimuths from different radars that 
create 90 deg angles. If two radars are situated in a perfect horizontal line, 
then the best regions for dual-Doppler retrievals are due north and south of 
the midpoint between the radars.

TABLE 5.4

Characteristics of the ARRC’s PX-1000 
Transportable, X-Band, Polarimetric Radar

Parameter Value

General

Operating frequency 9550 MHz

Sensitivity 7 dBZ @ 50 km

Estimated system loss 2 dB

Observation range >60 km

Transmitter

Peak power 1.5 kW

Maximum pulse width 15 us

Maximum duty cycle 2%

Antenna

Antenna gain 38.5 dBi

Diameter 1.2 m

3 dB beamwidth 1.8 deg

Polarization Dual linear
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A comparison between CASA and WSR-88D radars is given in Table 5.5. 
CASA radars operate at X-band and use very low power magnetron trans-
mitters with average power of 13 watts. The most unique aspect of the CASA 
network design is the intelligent scanning based on the weather and user 
needs. Measurements from a single CASA radar are heavily attenuated to the 
point where signals are completely lost within a single, strong thunderstorm. 
Attenuated polarimetric measurements can be corrected using Φdp-based 
methods, but a signal is required to correct. The situation of total signal loss is 
handled in a radar network design by having a radar on the back side of the 
strong convection focus sector scans in order to adaptively fill in the weather-
caused gap in radar coverage. The CASA network design offers a solution for 
gap-filling radars. The finer spatiotemporal resolution may also be required in 
urban areas that respond to rainfall on the order of minutes instead of hours.

5.2 Spaceborne Radars

5.2.1 Precipitation Radar aboard TRMM

Although weather radars have been developed ever since World War II to 
observe precipitation and have proven their value to the weather community 

FIGURE 5.3
The University of Oklahoma Advanced Radar Research Center’s PX-1000 transportable radar. 
The PX-1000 is trailer mounted, and the antenna is protected with a radome. It is quite suitable 
for a long (e.g., seasonal) field campaign in remote areas.
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and beyond, reliable ground-based precipitation measurements are difficult 
to obtain over all regions of the world, including vast oceanic and mountain-
ous regions. The limitations of ground weather radar  systems highlight the 
attraction of meteorological satellites to obtain seamless regional and global 
precipitation information for tropical rainfall studies, weather forecasting, 
modeling the hydrological cycle, and climate studies. The first meteorological 
satellite was launched in 1960, initiating a new era in space-based remote 
sensing of the atmosphere. A joint mission between the National Aeronautics 
and Space Administration (NASA) and the Japan Aerospace Exploration 
Agency (JAXA) launched the Tropical Rainfall Measuring Mission (TRMM) 
on November 27, 1997. TRMM was originally motivated by the need to under-
stand regional and climatological rainfall patterns over previously unob-
served regions in the tropics. The precipitation radar (PR) is one of the primary 
instruments onboard the TRMM low Earth-orbiting satellite. The PR is the 
first spaceborne weather radar dedicated to measuring three-dimensional 
structures and surface precipitation rates in tropical precipitation systems.

TRMM started as an experimental mission with an originally anticipated 
life-span of three to five years. The scientific community quickly realized the 
potential of the quasiglobal rainfall measurements, especially accumulated 
over longer time periods. By 2001, TRMM scientists faced an end of the mis-
sion in 2002 or 2003 due to lack of fuel. To continue the collection of high-
resolution information provided by TRMM from its combination of active 

TABLE 5.5

Characteristics of CASA Radars (Middle Column) and WSR-88Ds (Right Column)

Transmitter Magnetron Klystron

Frequency 9.41 GHz (X-band) 2.7–3.0 GHz (S-band)
Wavelength 3.2 cm 10 cm
Peak radiated power 10 kW 500 kW
Duty cycle (max) 0.0013 0.002
Average radiated power 13 W 1000 W
Antenna size 1.2 m 8.5 m
Antenna gain 36.5 dB 45.5 dB
Radome size 2.6 m 11.9 m
Polarization Dual linear, SHV Dual linear, SHV
Beamwidth 1.8 deg 0.925 deg
PRF Dual, 1.6–2.4 kHz Single, 322–1282 Hz
Pulse width 660 ns 1600–4500 ns
Doppler range 40 km 230 km
Range increment 100 m 250 m*/1000 m
Azimuth increment 1 deg 0.5 deg*/1 deg
Scan strategy 60–360 deg adaptive PPI sector 

scans, 1–30 deg RHI scans
360 PPI scans, 0.5–19.5 deg 
elevation

* These finer resolutions are available with the NEXRAD “superresolution” upgrade.
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and passive instruments, the TRMM science teams proposed increasing 
the orbital altitude from 350 to 402.5 km to decrease atmospheric drag and 
 therefore extend the lifetime of the mission. In addition to a wealth of discov-
eries on tropical rainfall characteristics, the TRMM products have been used 
to calibrate and integrate precipitation information from instruments aboard 
multiple polar-orbiting satellites. The real-time availability of TRMM prod-
ucts is used by operational weather agencies in the United States and around 
the world. The rainfall estimates serve a number of applications including 
real-time flood and landslide prediction systems (Hong et al. 2007a, 2007b; 
Hong and Adler 2008; Wu et al. 2012).

The PR is the first weather radar in space and was a predecessor to the second 
dual-frequency precipitation radar contributing to the Global Precipitation 
Measurement (GPM) mission. The PR is a 128-element, phased-array radar 
that operates at Ku-band. The PR is able to slightly adjust the Ku-band fre-
quency to obtain 64 independent samples with a fixed PRF of 2776 Hz. The PR 
antenna electronically scans in the cross-track direction over ±17 deg about 
nadir (vertically pointing down) resulting in a swath width of 215 km. The PR 
has a beamwidth of 0.71 deg with a horizontal near-surface pixel resolution 
of 4.4 km at nadir and approximately 5 km at the edge of the scan. The range 
resolution of PR is 250 m in the vertical throughout the depth of storms from 
20 km AGL down to the surface. TRMM travels in a  non-sun-synchronous 
orbit from 35 deg S latitude to 35 deg N latitude, providing a revisit frequency 
of 11–12 hr. The primary observational goals of PR are (1) to provide detailed 
3-D storm structures and (2) to obtain high-quality QPE over land as well 
as over ocean. The TRMM core satellite also carries a multichannel passive 
microwave radiometer called the TRMM Microwave Imager (TMI) and a vis-
ible and infrared scanner (VIRS), which are useful for measuring precipita-
tion. The swath geometry of the TRMM instruments is shown in Figure 5.4.

The Precipitation Processing System (PPS) is a software infrastructure 
developed at NASA to process the PR, TMI, VIRS, combined instrument, and 
multisatellite standard products. The final build of TRMM’s precipitation 
algorithms is referred to as the Version 7 algorithms. PPS obtains the raw 
data to generate the Level 1 radiance products. These are used to produce the 
instantaneous rainfall-related Level 2 products. Level 3 products combine 
data from the PR overpasses with the constellation of passive microwave 
instruments, geostationary satellites, and rain gauge networks on the sur-
face. These latter products are gridded at 0.25 × 0.25 deg and are available 
at all grid points between 50 deg N-S latitude every 3 hr. The Level 3 prod-
ucts are used for climatological tropical rainfall studies and for hydrologic 
applications.

The quasiglobal availability of data from TRMM has led to a myriad of 
studies that use ground validation instruments (rain gauges, disdrometers, 
ground radars) to evaluate the level 2 and 3 rainfall measurements and 
derived products. A variety of methods have been developed to align space-
borne and ground radar data so as to compare their observations (Bolen and 
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Chandrasekar 2003). Schumacher and Houze (2000) compared the areas of 
echo coverage by PR and a ground radar (GR) and found that PR can cap-
ture the main rain regions but failed to detect some of the weaker echo 
regions. Amitai et al. (2009) conducted a comparison between the PR and GR 
probability distribution functions (pdfs) of the instantaneous rain rate and 
showed the pdfs of PR are generally shifted toward lower rain rates, indi-
cating underestimation at the highest rain rates. In discussing differences 
found between TRMM PR and GR rainfall estimates in these studies, several 
reasons are suggested such as calibration differences, scattering differences, 
volume matching mismatches, errors in the attenuation correction methods, 
inaccurate reflectivity-to-rainfall relationships, physical properties of hydro-
meteors like their phase state, nonuniform beam-filling impacts, and others. 
Wen et al. (2011) incorporated hydrometeor classification information from 
a ground-based polarimetric radar to classify the PR-GR comparisons as a 
function of hydrometeor type. They found that PR underestimated with large 
diameter, wetted hydrometeors such as rain/hail mixture, wet snow, and 
graupel. Kirstetter et al. (2012) developed a framework for comprehensive 

PR

Range resolution:
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TMI swath
760 km VIRS swath

760 km
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TRMM �ight direction
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FIGURE 5.4
The TRMM satellite with its three primary instruments onboard, including the first space-
borne precipitation radar, PR. TRMM was launched in 1997 with an expected mission life-
time of 3–5 years. Steps have been made to conserve batteries and extend its lifetime so that it 
 continues to operate through 2014. (Figure courtesy of NASA.)
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evaluation of TRMM PR products using the MRMS products discussed in 
Chapter 4. The basic approach of the framework is to not only aggregate 
MRMS rain rates up to the PR pixel resolution, but to conduct heavy filter-
ing and censoring of the MRMS data to maximize their quality. The first 
step of processing computes the spatially distributed, gridded bias that was 
computed in the gauge correction scheme of the MRMS algorithm. This 
bias was computed from hourly radar-gauge comparisons. The underlying 
assumption is that the radar bias does not exhibit substantial variability at 
the subhourly time scale. This hourly bias is then applied downscale to the 
instantaneous (2 min) rainfall rate fields. If the computed bias is too large 
(<0.1 or >10), then the correction is deemed to be too large and the pixel is 
discarded. The next filter screens out all pixels that have associated radar 
quality index (RQI) values <1. Recall from Chapter 4 that the RQI is reduced 
in areas where there is partial beam blockage and where the beam is sam-
pling within and above the melting layer. The MRMS rain rates are sampled 
to the resolution of the PR pixel by selecting all pixels within a 2.5 km radius 
of the center of the PR pixel. On average, the search locates 25 MRMS pixels. 
If more than 5 of the pixels have missing rain rate values, then the compari-
son is discarded. The MRMS rain rates are then averaged using a weighting 
scheme that mimics the PR antenna pattern. Once the weighted mean value 
is computed from the MRMS reference, it is compared with the standard 
deviation computed from the rain rate distribution within the approximate 
25 pixel neighborhood. If the weighted mean rain rate is less than its stan-
dard deviation, then the MRMS reference is considered to be nonrobust and 
subsequently discarded. This high rainfall variability within the PR pixel 
resolution will affect the retrieval, resulting in large uncertainties. Although 
a great number of MRMS pixels were removed in the censoring steps, the 
remaining dataset is accurate, has a large sample size, and is independent 
from PR. No processing such as statistical downscaling was performed on 
the PR data.

These censored MRMS datasets have been used to reveal and quantify 
error  characteristics with TRMM PR. Kirstetter et al. (2013) compared two 
different versions of PR rainfall products (Versions 6 and 7). They found that 
the latest version improved over its predecessor by retuning the Z–R relation, 
which corrected PR overestimation at light rain rates (<10 mm hr−1). Version 7 
simultaneously corrected PR underestimation at high rain rates (>30 mm hr−1) 
by improving the algorithm that deals with nonuniform beam-filling effects. 
Kirstetter et al. (2014) examined the impacts of subpixel rainfall variability 
on PR rainfall estimates in terms of detectability, precipitation classification 
(stratiform vs. convective), and quantification. These characteristics were 
evaluated based on the rain fraction (in %) and inhomogeneity (proxy for 
nonuniform beam filling) of the MRMS-observed rainfall within the PR field 
of view (FOV). Detection of rainfall by PR is successful if more than 70% of 
the FOV is filled with nonzero rain rates. They used the MRMS precipitation 
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types to find that PR falsely detected convection in instances of low filling 
of the FOV and low values of NUBF. In terms of rainfall quantification, their 
main finding was the stratiform and convective profiling algorithms with PR 
seem to be lacking sufficient dynamics to deal with extreme rainfall amounts. 
These situations are particularly challenging due to  anomalous drop size dis-
tributions (DSDs), unusually strong attenuation of the signal, and strong hori-
zontal gradients causing large NUBF effects.

The TRMM PR products are considered the “calibrators” for the passive 
microwave rainfall estimation algorithms and the combined Level 3 prod-
ucts. Thus, errors with PR will cascade to the other rainfall products. The 
remote-sensing estimates are bias corrected with rain gauges, but this 
adjustment is performed with monthly totals and is thus not available in 
real time. Similar to the attention given to the radar-only product in MRMS, 
it is quite important to continue to improve the remote-sensing products 
to maximize their use in real-time applications such as hydrologic models. 
TRMM-based multisatellite data are being used as input into hydrological 
and land surface models to better understand the impacts of mass and 
energy fluxes between the land surface and atmosphere on time scales from 
days to years (Rodell et al. 2004). The TRMM Level 3 productshave been 
used in global flood and landslide monitoring systems (Hong et al. 2007a, 
2007b; Hong and Adler 2008; Wu et al. 2012). The quasiglobal hydrologic 
forecasting model described in Wu et al. (2012) has been used for opera-
tional flood monitoring and prediction in a number of countries. Many of 
these developing countries do not have operational ground radar networks 
or rain gauge networks with sufficient spatiotemporal resolution to ade-
quately resolve flood-producing rainfall. Thus, the TRMM Level 3 products, 
despite their uncertainties, offer the first rainfall climatologies for many 
countries and provide real-time rainfall estimates across national scales. 
Furthermore, as will be described in more detail in Chapter 8, the avail-
ability of 3 hr rainfall estimates since 1997 can be used to establish flood 
frequency estimates using hydrologic simulations at ungauged locations.

5.2.2 Dual-Frequency Precipitation Radar aboard NASA GPM

Success of the TRMM program has warranted an ambitious Global 
Precipitation Measurement (GPM) constellation mission (http://gpm.gsfc. 
nasa.gov) successfully launched in 2014. GPM is an extension to the TRMM 
mission by providing more accurate precipitation estimates using advanced 
instruments with an additional goal of quantitatively estimating falling 
snow. The GPM core observatory will be deployed in a non-sun- synchronous 
orbit at a 65 deg inclination and a mean altitude of 407 km. The core space-
craft will carry a dual-frequency, phased-array precipitation radar (DPR) to 
provide measurements of 3-D precipitation structures and microphysical 
properties in precipitating clouds. The DPR operates at Ka-band (35.5 GHz) 
and Ku-band (13.6 GHz) frequencies. They provide 3-D measurements of 
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precipitation structures at 5 km footprints (at nadir) over a cross-track swath 
width of 120 km for the Ka-band radar and 245 km for Ku-band. The beam-
width for both frequencies is the same as TRMM PR at 0.71 deg. The pulse 
 repetition frequency (PRF) for both radars is 4100–4400  Hz.  The variable 
PRF method is expected to improve the lower sensitivity of the retrievals, 
which is particularly important for snowfall retrievals. The pulse width is 
1.667 μs for Ku-band and 1.667/3.234 μs at Ka-band. These pulse widths result 
in range (vertical) resolutions of 250 m and 250/500 m at Ku- and Ka-bands, 
respectively.

The GPM core spacecraft, which will carry the DPR, and an advanced 
13  channel microwave radiometer will provide precipitation estimates 
between 65 deg N-S latitude. A goal of the GPM mission is to improve 
passive microwave-based retrievals over land, especially for mid- and 
high-latitude regions. The GPM microwave imager (GMI) aboard the 
core spacecraft is similar to TMI but has higher frequency channels up to 
183 GHz. It also has a larger antenna, which improves spatial resolution. The 
primary advancement with the DPR will be the use of a dual frequency ratio 
(DFR), which is merely the difference in Z at Ku- and Ka-bands. The signals 
 attenuate in a precipitation medium at different rates. It turns out this dif-
ference in attenuation is related to characteristics of the DSD, in particular 
the median drop diameter. This variable will be useful for DSD retrievals, 
precipitation rate  estimation, and rain-snow segregation. Moreover, it may 
be possible to compare these spaceborne measurements to NEXRAD polari-
metric measurements (i.e.,  Zh and ZDR). The independent measurements 
from space may be used to calibrate NEXRAD polarimetric variables just 
as they were used to identify miscalibrated NEXRAD radars with compari-
sons of space-based and ground-based Z (Anagnostou et al. 2001; Bolen and 
Chandrasekar 2003).

5.3 Phased-Array Radar

5.3.1 Design Aspects and Product Resolution

The NEXRAD network presently comprises dual-polarization radars 
with conventional pedestals and antenna designs. The network has 
already exceeded its 20-year engineering design life-span. Components 
of the WSR-88D that require regular maintenance are the moving parts, 
primarily the pedestal and rotary joints. Similar to the background of con-
ventional weather radar being rooted in the military, phased-array radar 
(PAR) technologies have been around for several decades. They were 
developed primarily for the purpose of detecting very fast moving tar-
gets coming from multiple directions simultaneously, such as aircraft and 
missiles. PAR is a potential successor technology for NEXRAD. It offers 
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the following advantages over conventional weather radars: (1) updates of 
volume scans at intervals on the order of seconds instead of minutes, and 
(2) ability to focus on different sectors as well as multimission use to track 
airplanes simultaneously (Zrnić et al. 2007). These advances will lead 
to improvements in weather monitoring for rapidly changing phenom-
ena such as supercell storms, downbursts, and wind events. Moreover, 
depending on the design of the array, it may be possible to electronically 
steer the beams in all directions, thus negating the need to rotate the array 
with a pedestal.

The main difference between PAR and conventional radars that use a 
mechanically rotating parabolic antenna lies in the way the beams are 
directed or steered. The PAR beam is formed and transmitted electronically 
by controlling the phase and pulsing of the individual transmit-receive ele-
ments. Consider an example where a flat panel containing the array of ele-
ments is facing due north. A beam can be steered to the northeast direction 
if the elements on the west side of the array transmit first, followed by ele-
ments in the middle and then to the east. This built-in west-to-east delay 
causes superposition of the electromagnetic waves so that the net effect 
causes the beam to be effectively steered to the northeast. The same concept 
can be applied to any direction 45 deg offset from the panel’s pointing axis 
(due north from the example just provided). Moreover, some elements can 
be dedicated to a given regime, or storm, while another group focuses on 
a different sector. This beam agility is what enables very quick updates and 
multimission functionality.

To develop, test, and demonstrate the advantages of phased-array tech-
nology for operational surveillance, a National Weather Radar Testbed 
(NWRT) was established in Norman, Oklahoma (Figure 5.5). The NWRT 
consists of a converted U.S. Navy SPY-1A phased-array antenna, a modi-
fied WSR-88D transmitter, and a custom radar processor (Zrnić et al. 2007). 
The antenna consists of 4352 elements that steer the beam. It is a single 
panel providing 90 deg of coverage in the azimuthal direction, so it must be 
rotated with a pedestal to complete a full volume scan. Elevation scans are 
accomplished using electronic scanning by lagging the transmitted pulses 
from bottom to top of the panel. Characteristics of the NWRT are summa-
rized in Table 5.6. This phased-array radar, which supports oversampling 
in range by a factor of 10, can record time-series data and is controlled 
remotely.

5.3.2 Dual Polarization

The ability to obtain dual-polarization measurements generally requires 
simultaneous transmission and reception of the signal or at least a very 
fast switch to produce matched beam patterns at horizontal and vertical 
polarizations. This is a requirement that poses significant challenges to 
phased-array radars. The measurement errors in polarimetric variables are 
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already significant with conventional parabolic antennas, especially for ZDR. 
If a planar phased-array radar is used, such as the NWRT, beams that are dis-
placed off the pointing angle (called broadside) have larger beamwidths, less 
sensitivity, and a limited basis for obtaining polarized measurements from 
nonorthogonal waves. Zhang et al. (2011) proposed a cylindrical polarimetric 

TABLE 5.6

Characteristics of the National Weather Radar Testbed Phased-Array Radar

Transmitting antenna diameter Approximately 3.66 m (≈ circular aperture)

Wavelength 9.38 cm (S-band)
Transmitting beamwidth Approximately 1.5 deg (up to 2.1 deg at 45 deg from 

beam center)
Receiving beamwidth Approximately 1.66 deg (larger than transmitting 

beamwidth to reduce sidelobes)
Transmitter power and pulse width About 750 kW peak and 1.57 μs or 4.71 μs
Sensitivity Reflectivity of 5.9 dBZ at 50 km produces a SNR = 0 dB

Source: From Zrnić et al. (2007).

FIGURE 5.5
Phased-array radar antenna of the National Weather Radar Testbed (NWRT) comprising 
4352 components used to electronically steer the beam. (Figure courtesy of Zrnić et al. 2007).
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phased-array radar (CPPAR) design that avoids many of the issues encoun-
tered with the planar design. The cylindrical design maintains its basis for 
orthogonal polarization and has the same beamwidth and sensitivity at 
all azimuths. This radar design was recently built and demonstrated on a 
mobile platform (Figure 5.6).

5.3.3 Impact on Hydrology

The greatest advantage in phased-array radar measurements for hydrologic 
applications is the ability to provide rainfall estimates at a frequency less 
than 1 min. Note it takes a WSR-88D radar approximately 5 min to complete 
an entire volume scan. The MRMS algorithm described in Chapter 4 yields 
rainfall rate products at a 2 min resolution. But the highest frequency can 
be achievable only for regions that are covered by two or more radars, and 
the two radars must be operating out of sync. This means they’ll be pro-
viding independent radar measurements over the overlapping region, thus 

FIGURE 5.6
Prototype of the cylindrical polarimetric phased-array radar. The cylindrical design  for 
phased-array radar provides a solution for maintaining resolution while collecting dual- 
polarization radar moments.



105Advanced Radar Technologies for Quantitative Precipitation Estimation

yielding rainfall rate estimates at frequencies higher than 5 min. A network 
of phased-array radars would be able to produce rainfall rates at frequencies 
higher than 1 min. This may have the greatest application in small, urban 
basins that respond very quickly to rainfall.

Figure  5.7 shows a time series of rainfall estimates computed over a 
medium-sized 813 km2 catchment using phased-array radar measurements, 
but resampled at different time intervals. We can see the impact of temporal 
sampling of the radar-estimated rainfall rates on basinwide rainfall. At this 
basin scale, the 15 min rainfall rates appear very similar to the 5 min ones. 
The peak amounts are approximately double the rates with the hourly sam-
pling. This result indicates that sampling subhourly is important for this 
basin scale. The next step in such an exercise would be to input the rainfall 
rates sampled at different frequencies into a hydrologic model and compare 
results to observed streamflow. In any case, the convergence of the time series 
at temporal resolutions finer than 15 min suggests that 1 min sampling over 
a medium-sized basin would not necessarily have an impact on hydrologic 
simulations. The impact of space-time resolution of precipitation forcing on 
hydrologic response depends on basin scale, among other factors such as 
relief, soil types and depth, and land cover.
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Problem Sets

QUALITATIVE QUESTIONS

 1. Describe the advantages and disadvantages of weather radars in 
measuring precipitation with different frequencies: X-band  (3 cm), 
C-band (5  cm), and S-band (10 cm). (Hint: Consider the difference 
in radar/antenna size, transmitter power, radar range, Earth curva-
ture effect, radar resolution, Rayleigh/Mie scattering, precipitation 
attenuation, etc.)

 2. Briefly describe the advantages and disadvantages of small mobile 
radars compared with fixed-site S-band weather radars.

 3. Briefly describe the advantages of GPM compared with TRMM.
 4. What are the main characteristics of phased-array radar?
 5. What are the challenges and opportunities of phased-array polari-

metric radars compared with conventional radars?
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6
Radar Technologies for Observing 
the Water Cycle

6.1 The Hydrologic Cycle

The hydrologic cycle describes the location, movement, and flux of water 
through and across the Earth’s surface, oceans, and overlying atmosphere. 
The major fluxes include precipitation, evapotranspiration, river discharge, 
infiltration, and groundwater flows. It is important to track and quantify the 
partitioning of water throughout its course in the hydrologic cycle for  several 
reasons. Freshwater is the component of the water on Earth that sustains life 
for terrestrial plants and animals. This precious resource comprises only 3% of 
the total water available on Earth, and most of that small percentage of water 
is locked in ice caps and glaciers (~69%) or stored as groundwater (~30%). That 
leaves ~0.3% of the Earth’s total freshwater stored on the surface in lakes, rivers, 
and swamps. Monitoring this resource is vital to sustaining life, especially in 
regions that are prone to extended drought and subsequent water shortages. 
Second, knowledge of the water partitioning within the hydrologic cycle gives 
a pulse or fingerprint of the climate state of the planet. A cold  climate state 
is associated with phase changes from liquid to ice and yields large polar ice 
caps, glaciers, and the ice ages that have been documented in the past. Warmer 
climate states have less ice and more oceanic water. By detecting these small 
changes within the hydrologic cycle, we can determine the trajectory of the 
Earth’s changing climate system. This chapter introduces remote-sensing solu-
tions to monitoring various components of the hydrologic cycle.

The concept of a watershed is introduced for computing a closed water bal-
ance. A watershed is defined as a bounded geographic domain, determined 
by topography. The generalized water balance equation for a watershed is 
given as

 ΔS = P − Q − ET (6.1)

where P is precipitation input, Q is river discharge, and ET is evapotrans-
piration. ΔS is the storage term and can represent multiple water storages 
in various compartments including the soils, underlying aquifer, snowpack, 
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lakes, and swamps. The storage term is more  difficult to  measure and 
 quantify, so it is often treated as the residual term in Equation (6.1). This 
simple water balance becomes much more  complicated for watersheds that 
have significant anthropogenic impacts. For instance, groundwater pump-
ing can remove a great deal of water stored in the underlying aquifer and can 
transport it out of the basin or can store it on the surface to become a large 
source of ET or Q. River water can also be stored or redirected for municipal 
or agricultural uses such as irrigating crops.

Precipitation is measured using in situ instruments such as rain gauges 
or with radar as has been discussed in prior chapters. River discharge is 
conventionally measured using an in situ floating device that provides the 
depth (or stage) of the river. This stage is converted to a discharge value 
(volume per unit time) using a rating curve. The rating curve is established 
for each gauge by visiting the site and taking manual measurements during 
different times of the year of the stream velocity, stage height, and stream 
cross-section (or bathymetry). A rating curve for the Blue River Basin in 
south-central Oklahoma is shown in Figure  6.1. The circles correspond to 
the individual measurements. We can see at lower flows that four different 
modes indicate variable relationships between stage height and discharge. 
This variability exists due to changes in the riverbed from sediment move-
ment, aquatic vegetation, and braiding of the stream. These factors that 
lead to variability in the relationship become negligible for high, flooding 
flows. After a regression curve is established and regularly updated, it is 
used to convert the automatic observations of stage to a more useful value 
of  discharge. Later in this chapter, the concept of river discharge estimation 
using radar will be introduced.
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Manually measured rating curve that relates automatic measurements of stage height (in m) 
to volumetric flow rate, or streamflow (m3 s−1, abbreviated as cms) for the Blue River basin in 
south central Oklahoma (USGS #07332500).
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ET is the flux of water vapor from the top-layer soils and from photosyn-
thetically active vegetation. It is more difficult to directly measure and is 
commonly estimated using a number of methods that typically depend 
on meteorological observations such as temperature, wind speed, relative 
humidity, and solar radiation. It also varies with the type of crop, stomata 
resistance, and the degree of water that is available to plants, which can be 
very high for irrigated crops. The concept of potential ET (PET) is commonly 
used in hydrologic modeling and water balance studies. PET is the amount 
of ET that would occur if the water supply were unrestricted. It tends to be 
greatest during hot, sunny, and windy times of the year. PET is easier to 
estimate than ET, so it is common practice to estimate PET and then reduce 
it based on the water availability, which can be either modeled or estimated 
from soil moisture measurements.

A simple monthly water balance using Equation (6.1) was computed for 
the Blue River basin in Figure 6.2. The monthly basin-averaged precipitation 
time series shows the peak in the late spring followed by a secondary, smaller 
peak in the autumn months. The estimated loss due to ET  approximately 
mirrors the P trend throughout the year but is of lower magnitude. The mean 
discharge, which has been normalized by the watershed area, is substantially 
smaller than the inputs from P and outputs from ET. The Q values lag the 
input P during the autumn months. The ΔS residual correspondingly reaches 
maximum values during the early autumn months. This indicates that water 
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Monthly water balance on the Blue River basin in south central Oklahoma using in situ measure-
ments of variables in Equation (6.1), except that the ΔS storage term was computed as a residual.
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is being stored following the hot, dry summer months. It turns out the Blue 
River has a karstic geologic formation with a high degree of connectivity 
between surface water and groundwater. The basin goes into a storage mode 
following the summer so that incoming water recharges the aquifer. As we 
can see, the simple water balance equation has yielded insights into the 
hydrologic behavior of the basin. All of the observations used up to conduct 
this analysis were from in situ measurements (i.e., meteorological observa-
tions, rain gauges, stream gauge). Note that the observations were clima-
tological values based on decades of data. For such a large time scale, it is 
feasible to use in situ data because a point measurement is more representa-
tive of a large spatial scale. However, as we come down in scale to study or 
forecast the hydrologic response to a given storm’s precipitation inputs, it 
becomes necessary to resolve the spatiotemporal patterns of the hydrologic 
variables. This is called distributed hydrology and readily accommodates 
hydrologic observations from radars.

Radar precipitation and microphysical studies have been accomplished 
using ground, airborne, and space-based radars with wavelengths ranging 
from W- to S-band. Radar-based quantitative precipitation estimates (QPEs) 
are used ubiquitously for hydrologic studies and as inputs for operational 
systems to monitor and predict flash flooding. In this chapter, we discuss 
radar technologies that can be used to monitor additional stores and fluxes of 
water in the hydrologic cycle. This includes streamflow, surface water depth 
and spatial extent, top-layer soil moisture, root-zone soil moisture, and depth 
to the groundwater table. One component of the hydrologic cycle whose 
measurement remains elusive to radars is ET. In general, increasingly longer 
radar wavelengths are used to detect water from the top of the cloud all the 
way down to the water table (see Table 1.1). In several cases, the radars must 
be pointed downward toward the Earth. These measurements are made 
more readily from airborne and spaceborne platforms.

6.2 Surface Water

6.2.1 Streamflow Radar

In recent years, new approaches have evolved within the hydrologic com-
munity for streamflow estimation. More economical methods of measuring 
stream discharge through remote sensing include acoustic Doppler profilers 
(Simpson and Oltmann 1993; Yorke and Oberg 2002). These instruments are 
typically deployed in the bottom of a stream and provide more accurate depic-
tions of stream velocity with depth. There have also been recent advances 
in noncontact methods of stream gauging using radars and particle image 
velocimetry (Costa et al. 2006; Creutin et al. 2003). Large-scale particle image 
velocimetry (LS-PIV) relies on the use of optical instruments (e.g., cameras) 
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that are mounted on bridges looking down at the water surface. Software is 
used to essentially track the motion of bubbles on the surface and compute 
their velocity. The LS-PIV method is inexpensive but requires a known 
river cross-section including measured stage height to accurately estimate 
streamflow.

Costa et  al. (2006) presented a noncontact radar solution for measuring 
stream surface velocities by comparing results from a cable-mounted 
9.36 GHz pulsed Doppler radar, 350 MHz monostatic UHF, and a continuous 
wave 24  GHz microwave system to in situ streamflow data. The surface 
velocities were converted to mean velocity (with depth) using profiles 
measured by  current meters and an acoustic Doppler profiler. The stream 
cross-section is also needed to compute discharge. For this, they used a 
collocated, nadir-pointing 100 MHz ground-penetrating radar (GPR). In 
low-conductivity water, they were able to measure the river cross-section 
within 1%–5% by moving the GPR on a cable across the river. This infor-
mation (which can be obtained infrequently) was combined with the 
near-continuous stream velocity measurements (and stage heights) to yield 
discharge measurements within 5% of the in situ gauges. The advantages 
they pointed out in their exploratory study were lower costs, safer measure-
ments (noncontact), higher frequency, and potentially more accurate mea-
surements using remote-sensing methods. The constraints discussed were 
issues in penetrating the water column to the bottom of the channel with the 
GPR in high-conductivity river water (more likely common in sediment-rich 
floods) and the requirement of a cableway for the GPR to traverse the river.

A conceptual stream radar shown in Figure 6.3 builds upon the principles 
of noncontact radar measurements discussed above, but taking all required 
measurements (i.e., river cross-section, stage height, and mean velocity) using 

Measured Variables
1. Stream cross-section, z = f (x, t) ± σz
2. Stage height, h = f (t) ± σh
3. Velocity, v = f (t) ± σv

FIGURE 6.3
Prototype depiction of a dual-frequency, scanning stream radar capable of simultaneously 
measuring near-surface stream velocity, stage height, and the riverbed cross-section.
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a single radar system. A dual-frequency (UHF, Ku-band) scanning Doppler 
radar will be mounted on a tower near a stream. The radar will use the UHF 
channel when pointing near nadir and scanning perpendicular to the stream 
to obtain the channel cross-section (or bathymetry). These  measurements will 
need to penetrate the water column to the channel bed and thus may have 
limitations for use in deep, sediment-rich rivers. The cross-section data would 
be needed only on an occasional basis (e.g., weekly). Then, the radar will use 
the Ku-band channel and the same cross-sectional scanning to retrieve the 
stage height. This higher frequency will be unable to penetrate the water col-
umn, so the stage height is computed as the difference between  the range 
to the top of the water column (via Ku band) and the bottom of the channel 
(via UHF). Next, the radar will scan up the stream rather than across it using 
the Ku-band channel. In this quasicontinuous Doppler data collection mode, 
the radar can collect stream velocity measurements. At this point, all variables 
have been measured to estimate streamflow without the need for a manually 
measured rating curve.

Data can be logged on-site or transmitted via radio, cell, or satellite com-
munications. The power requirements are not significant; thus the supply can 
be accomplished with a solar panel with battery storage nearby. Goals and 
challenges of the stream radar concept involve low cost, lightweight design, 
and accuracy to within 10% of in situ measurements on small streams. 
It  is possible that this remote-sensing solution to streamflow estimation 
could even become an instrument aboard an airborne platform, such as 
an unmanned aerial vehicle. This system would enable the measurement 
of streamflow at several points along the stream, providing unprecedented 
measurements in the along-stream direction.

6.2.2 Surface Water Altimetry

Radars provide a precise range to a target in the field of view. When they are 
pointing in the nadir direction (straight down) over oceans and terrestrial 
water bodies, they can provide detailed information of oceanic topography 
and the variations of the water surface heights in lakes, reservoirs, swamps, 
and rivers. This is the basis of surface water altimetry. The oceanic obser-
vations will be able to resolve circulations that are important in weather 
forecasting, navigation, and management of fisheries. For example, the Gulf 
Stream is a very well known oceanic circulation, which was incidentally 
discovered by Benjamin Franklin during a transatlantic ship voyage, that 
impacts rainfall patterns on the eastern U.S. seaboard. These oceanic circu-
lations play significant roles in global carbon and heat exchanges with the 
atmosphere; thus, monitoring them will lead to insights on global climate 
change. Observations over land and coastal areas will impact the hydrologic 
community by quantifying the spatial and temporal variability of surface 
freshwater storages. By obtaining the slope of the water surface in a large 
river, it is also possible to estimate the river’s volumetric discharge.
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NASA and the French Centre National d’Etudes Spatiales (CNES) will 
jointly launch the Surface Water Ocean Topography (SWOT) mission in 2020. 
SWOT will carry a Ka-band radar interferometer (KaRIN). The principle of 
interferometry is employed by splitting and transmitting a radar pulse to 
two antennas that are separated by a known distance (e.g., 10 m in the case 
of SWOT). The signals are directed to the Earth’s surface, where they are 
reflected back up and received by the antenna on the opposite side of 
the boom. This concept is illustrated in Figure 6.4. Very small phase differ-
ences are extracted from the received signals that are due to differences in 
the index of refraction or the path length itself. The radar pulses traverse 
very similar atmospheric conditions, so the differences are attributed to the 
path length, which gives the surface water height gradient. KaRIN will pro-
vide a surface water height precision of approximately 1 cm for pixels with 
resolutions of 2 × 10 m (far swath) to 60 m (near swath). The total swath width 
will be 120 km, and the revisit frequency will be 22 days.

SWOT is currently planned to be a three-year mission. Its orbital 
characteristics combined with the KaRIN technical specifications will be 
able to characterize oceanic circulations down to a spatial resolution of 
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FIGURE 6.4
Retrieval of surface water elevation using the principle of interferometry. The illustration 
shown is the Ka-band Radar Interferometer (KaRIN) that will be the core for the Surface Water 
Ocean Topography (SWOT) mission. (Figure courtesy NASA Jet Propulsion Laboratory.)
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15 km and larger. Current altimeter missions have a capability of resolving 
these circulations greater than 200 km, so SWOT will fill in a significant 
observational gap. Concerning terrestrial water bodies, SWOT will provide 
global water storage changes for lakes, reservoirs, and swamps greater than 
250 m2 in surface area. Streamflow can be estimated with the water surface 
 gradient measurements for rivers that are at least 100 m wide and possibly 
50 m. Although the revisit frequency of SWOT is only 22 days, it is pos-
sible that it will observe water elevations with floods from coastal storm 
surge events and inundation from flooded rivers. The primary objective 
of the SWOT mission is to create the first survey of Earth’s surface water.

6.2.3 Synthetic Aperture Radar

Recall from Equation (1.6) that the range resolution of a pulsed radar system 
is determined by the pulse width. The azimuthal resolution is determined 
by the beamwidth, which depends on the physical size of the antenna. 
The pulse width can be compressed by increasing the bandwidth of the 
transmitting signal, which is called pulse compression, but size and weight 
limitations are on antennas for many platforms. For a conventional, real 
aperture radar (RAR), larger antennas are needed to accomplish high reso-
lution in the azimuthal direction, but it may be impractical to mount it on 
an aircraft or spacecraft. A synthetic aperture radar (SAR) overcomes the 
antenna size limitation to obtaining high azimuthal resolution by moving it 
quickly and sighting perpendicular to the flight track. The concept of SAR 
is quite similar to a phased-array radar (PAR) that has many elements posi-
tioned on a cylindrical or planar panel. The SAR simulates a phased array 
by essentially moving a small antenna quickly while transmitting several 
pulses and assuming that the targets are standing still or have a negligible 
velocity compared with the antennas’. This technique has the same end 
result as having a large array of elements that transmit with a temporal 
offset; this is how the beam is electronically steered. In the case of SAR, 
the phase offset is achieved by physically moving the radar spatially rather 
than directly rearranging the phase of multiple dipole elements in the case 
of PAR. The end result is a synthetically built large antenna that yields high 
azimuthal resolution.

SAR is used for mapping features on the Earth’s surface similar to 
 objectives that can be accomplished with optical instruments. The largest 
advantage of SAR is the ability to collect data at night and during cloudy 
conditions. Benefiting from interferometry and polarization applied to SAR, 
(InSAR and PolSAR, respectively), it is most useful during crises such as 
oil spills, earthquakes, landslides, volcanoes and floods (Tralli et al. 2005). 
TerraSAR-X is a SAR satellite mission carried out between the German 
Aerospace Center (DLR) and a private space agency called EADS Astrium. 
The TerraSAR-X is an X-band polarimetric SAR that was launched in 2007. 
It flies in a sun-synchronous orbit at an altitude of 514 km. Different from 
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optical sensors, the resolution of SAR is rarely correlated to the height of 
the platform because of the synthetic technique and pulse compression. 
Generally, the higher the carrier, the longer the synthetic path (equivalent 
antenna size). So even for an airborne SAR, the resolution can be as low as 
6 m if the antenna size is 12 m.

The scene sizes vary from 5 × 10 km at the highest resolution up to 
150 × 100 km. It has a revisit frequency of 11 days. SAR data from TerraSAR-X 
and platforms that operate at other wavelengths (e.g., C- and L-bands) have 
been used for a number of hydrologic studies including monitoring flood 
dynamics in urban areas, calibrating hydraulic and flood inundation models, 
and real-time flood management (Schumann et al. 2011; Mason et al. 2009; 
Stephens et al. 2011; Matgen et al. 2007; Di Baldassarre et al. 2009).

6.3 Subsurface Water

As we saw with the water budget study on the Blue River basin, water storage 
and later release by the karstic aquifer played a significant role in the monthly 
climatology of streamflow at the surface. Note that these conclusions are 
based on inferences from the residual ΔS term in the water balance equa-
tion (6.1) combined with knowledge of the underling geology of the basin. 
The capability to detect the depth to the water table and monitor its evolution 
over time will greatly advance hydrologic understanding of surface water 
and groundwater interactions. These remote-sensing measurements will 
lead to better management of groundwater resources and will also improve 
surface water monitoring and forecasts.

Top-layer soil moisture and root-zone soil moisture play significant roles 
in ecology, agriculture, weather forecasting, and flood-forecasting applica-
tions. As with retrievals from other types of radars, the observations must 
be calibrated or at least verified using in situ measurements. However, 
unlike other hydrological components such as precipitation, gauge-based 
observations for groundwater and soil moisture are sparser. The depth to 
the water table can be determined using a monitoring well. These are expen-
sive to drill, and like any in situ instruments they have limitations with their 
spatial representations. In situ soil moisture sensors are more common than 
groundwater monitoring wells. They can provide data at multiple depths 
from 5 cm down to 75 cm below the surface. Nadir-pointing radars from 
airborne and spaceborne platforms offer the potential to map the spatial 
distribution of top-layer and root-zone soil moisture. Ground-penetrating 
radars are able to take deeper soil moisture measurements, as well as locate 
groundwater tables. These new radar technologies will provide unique 
observations on the spatiotemporal behavior of subsurface water, leading to 
new theories and better model forecasts.
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6.3.1 L-Band Radar

L-band microwave remote sensing uses low frequencies to measure soil 
moisture in the top 0–5 cm of the surface (Colliander, et al., 2012). Testing 
has been done using airborne passive, active, L-, and S-band (PALS) sensors. 
NASA is launching the Soil Moisture Active and Passive (SMAP) mission 
in 2014, which will carry an L-band SAR as well as a passive microwave 
radiometer. Compared with L-band radiometer measurements, soil moisture 
measurements derived from L-band radar have high spatial resolution but 
moderate soil moisture accuracy. L-band radar is more sensitive to surface 
characteristics such as surface roughness, topographic features, and vegeta-
tion canopy than passive systems (Hong et al. 2012).

SMAP is one of the four first-tier missions recommended by the National 
Research Council’s Earth Science Decadal Survey Report (Hong et al. 2012). 
SMAP will provide surface layer (~5 cm) soil moisture measurements, freeze/
thaw states, and soil moisture at the root zone (which is simulated with 
a land surface model by assimilating surface soil moisture). The primary 
science objectives of the SMAP mission are estimating water, carbon, and 
energy fluxes at the land surface, improving weather and climate forecasts, 
and improving drought and flood monitoring capabilities (Yuen 2012).

The SMAP L-band (1.26 GHz) SAR will have transmit and receive at 
horizontal polarization (HH), vertical (VV), and transmit at horizontal 
and receive at vertical polarization (HV). The passive radiometer, also at 
L-band (1.4 GHz), will have H, V, U polarization. They share a 6 m diam-
eter deployable mesh antenna with conical scanning at 13 rpm at constant 
incidence angle of 40 deg. The orbit will be sun-synchronous at 685 km 
altitude, yielding a 1000 km-wide swath. The scientific goal for integrating 
the data from the two instruments will result in an accuracy of 0.04 m3 m−3 
for volumetric water content at a spatial resolution of 10 km and temporal 
 frequency of 2–3 days for global mapping of soil moisture (Entekhabi et al. 
2010). The principles governing PALS and SMAP are similar: increased back-
scatter indicates  higher soil moisture. This is caused by the relationship 
between water and soil that is discussed in more depth in Section 6.3.3 on 
ground-penetrating radars (Bolten et al. 2003).

6.3.2 C-Band Radar

In addition to L-band radars, C-band is another radar frequency used to 
estimate soil moisture in the top few centimeters of the soil. The Advanced 
SCATterometer (ASCAT) is a real-aperature C-band radar (5.255 GHz) with 
two vertically polarized antennas onboard the Meteorological Operation 
(MetOp) satellite operated by the European Organization for the Exploitation 
of Meteorological Satellites (EUMETSAT). The satellite’s orbit at a mean alti-
tude of 817 km yields a swath width of 550 km and achieves global coverage 
every 1.5 days. The primary products are wind speed and direction over the 
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oceans, polar ice, and active storm data at 25 and 50 km spatial resolutions. 
Relative soil moisture (or degree of saturation) is a derived product using 
the Vienna University of Technology (TUWEIN) time series–based change 
detection algorithm, developed by Wagner et al. (1999). The algorithm applies 
an exponential filter to estimate the average value of the soil moisture profile 
using the surface soil moisture product time series. This approach assumes 
a linear relationship between soil moisture and the backscatter in decibel 
space. Wagner’s exponential filter is relatively simplistic, but it is an effective 
method that relies on the analytical solution of a differential equation. 
It  reliably retrieves profile soil moisture values from surface values, based 
on using in situ observations and modeled data. The exponential filter can 
solve for both the surface soil moisture (SSM) product and the root-zone soil 
moisture (RZSM) product. A simple version of Wagner’s method to determine 
the root-zone soil moisture product is provided below (Brocca et al. 2011):

 [ ]= + −− −( )1 1RZSM RZSM K SSM t RZSMn n n n n  (6.2)
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where T is a characteristic time scale of soil moisture variations. To initialize 
the exponential filter, K0 is set to 1 and RZSM0 is set to SSM(t0). From there, 
the SSM and RZSM can be determined.

6.3.3 Ground-Penetrating Radar

Ground-penetrating radars (GPRs) are the most common noninvasive 
methods to penetrate the subsurface for determining soil moisture and 
locating groundwater tables (Doolittle et al. 2006). Modern GPRs are small, 
relatively lightweight, and portable; and in most cases, only one or two peo-
ple are needed to operate a GPR. Much of the research pertaining to GPR has 
occurred within the past two decades and is evolving rapidly as research 
continues. GPRs operate by sending a pulsed electromagnetic wave into the 
subsurface that reflects off layers or objects with a high dielectric permittivity. 
With this technology, GPRs can penetrate down to 30 m in certain soils 
under conducive conditions. Typical frequencies range from 50 to 1200 MHz, 
though the range can be as low as 10 MHz and as high as 2000 MHz. Higher 
 frequencies are used for achieving greater depths when locating groundwater 
tables, while lower frequencies reduce the impacts of surface roughness when 
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determining soil moisture content. Two antennas measure the two-way travel 
time, which usually occurs in nanoseconds, because the wave velocity is high 
due to the low dielectric permittivity of most soils.

Soil types with higher water contents make locating the water table very 
difficult because the increased water content attenuates the signal much 
more quickly than for dry soil conditions. Attenuation values by material 
are provided in Table 6.1. In regions with a high clay content, the increase in 
water content throughout the capillary fringe affects the water table reflec-
tions because the signal attenuates much faster. The radar receives weaker 
signals with more dispersed characteristics so that the water table becomes 
less distinguishable (Doolittle et al. 2006). This can be circumvented if the 
radar is calibrated at measured depths. When the soil is primarily sand or 
gravel, the transition from vadose zone to water table happens more abruptly 
and provides a clearer image for the GPR. Table 6.1 shows the dielectric con-
stants, conductivities, typical velocities, and attenuation rates from testing 
different materials using a specific GPR.

GPRs work best in coarse-grained soils, where the boundary between the 
unsaturated and saturated zones is very abrupt. Sands and gravels have 
extremely low magnetic properties and electrical conductivities. The soil 
 particles do not typically retain much water, unlike clay particles, which have 
the cation-exchange capacity. The quick transition from the vadose zone to 
the water table means that the signal reflection back to the GPR is clearer, 
and the GPR can even estimate the depth with an accuracy of 20 cm (0.79 in.). 

TABLE 6.1

Radar Characteristics for Various Materials Found in the Soils 
(Adapted from Fisher et al. 1992)

Material
Dielectric 
Constant

Conductivity 
mSm−1

Velocity 
mns−1

Attenuation 
dB m−1

Air 1 0 0.3 0
Distilled 
Water

80 0.01 0.033 0.002

Freshwater 80 0.5 0.033 0.1
Seawater 80 30000 0.01 1000
Dry Sand 3–5 0.01 0.15 0.01

Saturated 
Sand

20–30 0.1–1.0 0.1–1.0 0.03–0.3

Limestone 4–8 0.5–2 0.12 0.4–1.0
Shale 5–15 1–1000 0.09 1–100
Silts 5–30 1–1000 0.07 1–100
Clays 5–40 2–1000 0.06 1–300
Granite 4–6 0.01–1 0.13 0.01–1
Dry Salt 5–6 0.01–1 0.13 0.01–1
Ice 3–4 0.01 0.16 0.01
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In clayey soils, the GPR signal attenuates much more rapidly due to the high 
water content and high electrical conductivity. The unique cation-exchange 
capacity and large surface area of clayey soils means that clay particles attract 
and hold more water than other soil types. The signal reflects off the water 
attached to the clay particle and has difficulty reaching lower layers where 
the groundwater table is located. Even though the signal may penetrate as 
deep as 30 m in coarse-grained soils such as sands and gravels, the signal 
typically goes down only a few meters in clayey soils. For soils containing 
more than 30% clay, the GPR is relatively ineffective. The GPR works best in 
soils with less than 10% clay content (Elkhetali 2006).

The four primary types of GPRs are single-offset, multi-offset, cross-
borehole, and off-ground. Single- and multi-offset and borehole GPRs work 
in similar ways with transmitting and receiving antennas separated by a 
known distance (Figure  6.5). Off-ground GPRs are newer and combine 
the antennas into one unit that can be mounted on an all-terrain vehicle 
(ATV) or a vehicle and driven over the test area. Multi-offset GPRs have one 
transmitting antenna and multiple receiving antennas, which allow for data 
to be collected over a larger area. Two common acquisition geometries for 
multi-offset GPRs are common-midpoint (CMP) and wide angle reflection 
and refraction (WARR) (Figure 6.6). CMP acquisition keeps the transmitter 
at one common location while gradually increasing the distance between 
antennas. WARR acquisition gradually increases the distances between the 
antennas, including moving the transmitter. For many applications, results 
from multi-offset GPRs are required to use single-offset GPRs, but the pro-
cess is time-consuming and expensive. Single- and multi-offset GPRs are 
very good for locating water table depth and soil moisture content.

When using cross-borehole GPRs, the antennas are lowered into two 
vertical boreholes. Under the zero-offset profile (ZOP) method, the two anten-
nas are lowered in such a way that their midpoints are at the same depth. 
With multi-offset profile (MOP), the antennas are lowered in such a way that 
their midpoint depth varies in relation to the other so that the transmitter 
and receiver are not always even with each other. A schematic is provided 
in Figure 6.7. In the borehole, GPRs measure data vertically. This means that 

Transmitting
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Airwave

Groundwave
Ground
surface

Re�ected
wave

Re�ection
depth (d)

Receiving
antenna

Re�ecting
layer

FIGURE 6.5
Schematic of single offset GPR to detect the depth to the water table (from Lunt et al. 2005).
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borehole GPRs can collect data from separate layers,  allowing for  independent 
 permittivities by layer instead of a relative permittivity that accounts for all 
the layers collected by offset GPRs. A disadvantage of borehole GPRs is that 
the GPRs can be inserted only at specific locations, whereas offset GPRs can 
more easily cover a large area.

The simplest equation to determine the depth to the water table, which 
uses the wave velocity and the two-way travel time is

 =
2

d
vt

w
w  (6.4)

where dw is the depth to the water table in m, v is the velocity of the radar sig-
nal in m sec−1, and tw is the two-way travel time in s. The two-way travel time 
is the elapsed time that it takes the wave to go from the transmitting antenna 

ZOP

Tx Rx

MOP

Tx Rx

FIGURE 6.7
Schematic of zero-offset profile (ZOP) and multi-offset profile (MOP) borehole GPR showing 
direction from transmitter (Tx) to receiver (Rx) (adapted from Huisman et al. 2003).

S5 S4 S3 S2 S1 R1 R2 R3 R4 R5

R2R1S1–S5 R3 R4 R5

FIGURE 6.6
Schematic of common midpoint (top) and wide angle reflection and refraction (bottom) GPRs. 
S denotes the location of the transmitter, and R denotes the receiver (adapted from Huisman 
et al. 2003).



123Radar Technologies for Observing the Water Cycle

to the receiving antenna. Even though this equation is fairly simple, the wave 
velocity must often be calculated. The general velocity equation that applies 
to all soil types is controlled by the relative dielectric permittivity and the 
magnetic properties of the soil as follows:

 =
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+ +
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where:
c = electromagnetic wave velocity in a vacuum = 3 × 10−8 m sec−1

εr = relative dielectric permittivity of material
ε = dielectric permittivity in free space = 8.854 × 10−12 Fm−1

μr = relative magnetic permeability
σ = electrical conductivity
ω = angular frequency of radar

There are no units for εr because it is a ratio of energy stored in a  material to 
energy stored in a vacuum. The expression 

σ
ωε

 is a loss factor, which for soils 

such as clean sand and gravel is approximately 0. In nonmagnetic  materials 
(such as clean sand and gravel), μr equals 1. Therefore, the velocity equation 
in clean sands and gravel can be reduced to

 =
ε

v
c

r
 (6.6)

With a single-offset GPR, the velocity can be approximated if the depth to 
the water table or reflecting layer is known:
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+2 2 2

v
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where:
x = position relative to the reflecting layer
d = depth to reflecting layer
tw = two-way travel time

If the two antennas are separated by a significant distance, this should be 
incorporated into the velocity equation:
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where a is the distance between antennas. If the velocity is known, Equation 
(6.6) can be inverted to solve for the effective dialectric permittivity:

 ε = ⎛
⎝⎜

⎞
⎠⎟

2c
v

 (6.9)

To determine the volumetric water content, the following equation can be 
inverted:

 ( ) ( )ε = − η ε + η− ε + ε⎡⎣ ⎤⎦1
2

VWC VWCs a w  (6.10)

where:
ε = effective dielectric permittivity
η = soil porosity
VWC = free soil water content
εs = dielectric permittivity of soil
εa = dielectric permittivity of air ≈ 1
εw = dielectric permittivity of water ≈ 80

When inverted, the volumetric water content is equal to
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If the gravimetric water content (GWC) is desired, a simple conversion 
using the bulk density can be used as

 =
ρ

GWC
VWC

d
 (6.12)

where ρd is the bulk density of the soil.

6.4 Subsurface Water

The hydrologic cycle describes the location and volume of water in a water-
shed or distributed across the globe. Measuring the various components of 
the hydrologic cycle are critical for managing Earth’s freshwater resources 
and for monitoring climate change. In situ measurements are often diffi-
cult to obtain in remote regions and always suffer from their point-to-area 
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representativeness. Radar remote sensing provides for the measurement of 
hydrologic cycle states and fluxes at unprecedented spatiotemporal reso-
lutions across the globe. A pulsed Doppler radar can measure the surface 
velocity, while the same radar operating at UHF can measure the river 
stage and the channel’s cross-section. This information can be combined 
to estimate river discharge using noncontact methods. Satellites carrying 
radars, such as the KaRIN proposed for the SWOT mission, can be used to 
measure surface water heights for inland water bodies and oceanic regions 
to a precision of 1 cm. SARs onboard satellites provide surface water extent 
and inundation stemming from river floods and storm surges. Soil moisture 
in the top 0–5 cm and even root-zone soil moisture can be measured by C-, 
L-, and P-band radars from space. Finally, subsurface water can be detected 
with ground-penetrating radars. They can retrieve soil moisture at deeper 
layers, although they perform best in low-clay-content soils. GPRs can also 
be used to determine the depth to the groundwater table.

These new remote-sensing technologies will offer unique observations in 
the coming decades that will reshape theories and mathematical formulas 
describing the complex movement and storage of water within Earth’s 
system. Ultimately, these concepts and observations will be encompassed in 
models that will predict the hydrologic cycle components, leading to better 
practices for sustainability.

Problem Sets

QUALITATIVE QUESTIONS

 1. How can radars help estimate the variables in the water balance 
equation? How do they affect the measurements in the balance 
equation?

 2. How can radars help estimate the variables in the water budget 
equation? How do they affect the measure budget?

 3. What information will the future SMAP mission provide that is not 
currently obtained with the previous and current missions?

 4. Why would it be useful to know the soil moisture for only the top 
few centimeters of soil, using ASCAT and SMAP?

 5. When would offset GPRs be preferable to use in place of borehole 
GPRs? When would the opposite be true?

 6. Since most soils throughout the United States are clayey soils, what 
use are GPRs in the United States?

 7. How do different materials affect the results from GPRs? Also com-
pare similar materials. Discuss the reasoning for deciding which 
materials are similar, i.e., which properties determine similarity? 
Use Table 6.1 as a reference.
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QUANTITATIVE QUESTIONS

 1. (a) If the relative dielectric constant, ε, of a soil is 6, what is the elec-
tromagnetic wave velocity? (b) If the travel time is 39.8 ns, how deep 
is the water table?

 2. (a) If the dielectric constant of a soil, εs, is 8, the effective porosity 
is 0.15, and the volumetric water content is 0.5, what is the effective 
dielectric permittivity? (b) If the specific gravity of the soil is 2.7, 
what is the gravimetric water content?

References

Bolten, J. D., V. Lakshmi, and E. Njoku. 2003. Soil moisture retrieval using the passive/
active. IEEE Transactions on Geoscience and Remote Sensing 41 (12): 2792–2812.

Brocca, L., S. Hasenauer, T. Lacava, F. Melone, T. Moramarco, W. Wagner, et  al. 
2011 August. Soil moisture estimation through ASCAT and AMSR-E sensors: 
An intercomparison and validation study across Europe. Remote Sensing of 
Environment 115: 3390–3408.

Colliander, A., S. Chan, S.-B. Kim, N. Das, S. Yueh, M. Cosh, et al. 2012. Long term 
analysis of PALS soil moisture campaign measurements for global soil. Remote 
Sensing of Environment 121: 309–322.

Costa, J. E., R. T. Cheng, F. P. Haeni, N. Melcher, K. R. Spicer, E. Hayes, W. Plant, 
K. Hayes, C. Teague, and D. Barrick. 2006. Use of radars to monitor stream dis-
charge by noncontact methods. Water Resources Research 42, W07422.

Creutin, J. D., M. Muste, A. A. Bradley, S. C. Kim, and A. Kruger. 2003. River gauging 
using PIV techniques: A proof of concept experiment on the Iowa River. Journal 
of Hydrology 277 (3–4): 182–194.

Di Baldassarre, G., G. Schumann, and P. D. Bates. A technique for the calibration of 
hydraulic models using uncertain satellite observations of flood extent, Journal 
of Hydrology 367, 276.

Doolittle, J. A., B. Jenksinson, D. Hopkins, M. Ulmer, and W. Tuttle. 2006. Hydrope-
dological investigations with ground-penetrating radar (GPR):  Estimating 
water-table depths and local ground-water flow pattern in areas of coarse- 
textured soils. Geoderma 317–329.

Elkhetali, S. 2006. Detection of groundwater by ground penetrating radar. Progress in 
Electromagentics Research Symposium (PIERS), pp. 251–255. Cambridge.

Entekhabi, D., et al. 2010. The soil moisture active passive (SMAP) mission. Proceedings 
of the IEEE 98 (5): 704–716.

Fisher, E., G. A. McMechan, and A. P. Annan. 1992. Acquisition and processing of 
wide-aperature ground-penetrating radar data. Geophysics 57 (3), 495–504.

Hong, Y., S. I. Khan, C. Liu, and Y. Zhang. 2012. Global soil moisture  estimation using 
microwave remote sensing. In Multiscale Hydrologic Remote Sensing: Perspectives 
and Application, Ni-Bin Chang and Yang Hong, Eds. CRC Press, 399–410.

Huisman, J. A., S. S. Hubbard, J. D. Redman, and A. P. Annan. 2003. Measuring soil 
water content with ground penetrating radar: A review. Vadose Zone 2: 476–491.



127Radar Technologies for Observing the Water Cycle

Lunt, J. A., S. S. Hubbard, and Y. Rubin. 2005. Soil moisture content estimation using 
ground-penetrating radar reflection data. Journal of Hydrology 307: 254–369.

Mason, D. C., P. D. Bates, and J. T. Dall’Amico. 2009. Calibration of uncertain flood 
inundation models using remotely sensed water levels. Journal of Hydrology 368, 
224–236.

Matgen, P., G. Schumann, J.-B. Henry, L. Hoffmann, and L. Pfister. 2007. Integration of 
SAR-derived inundation areas, high precision topographic data and a river flow 
model toward real-time flood management. International Journal of Applied Earth 
Observation and Geoinformation 9, 247–263.

Schumann, G. J.-P., J. C. Neal, D. C. Mason, and P. D. Bates. 2011. The accuracy of 
sequential aerial photography and SAR data for observing urban flood dynam-
ics, a case study of the UK summer 2007 floods. Remote Sensing of Environment 
115 (10), 2536–2546.

Simpson, M. R. and R. N. Oltmann. 1993. Discharge measurement using an acous-
tic Doppler current profiler: U.S. Geological Survey Water-Supply Paper 2395, 
34 pp.

Stephens, E. M., P. D. Bates, J. E. Freer, and D. C. Mason. 2011. The impact of uncertainty 
in satellite data on the assessment of flood inundation models. Journal of Hydrology, 
414–415, 162–173.

Tralli, D. M., R. G. Blom, V. Zlotnicki, A. Donnellan, and D. L. Evans. 2005. Satellite 
remote sensing of earthquake, volcano, flood, landslide and coastal inundation 
hazards. ISPRS Journal of Photogrammetry and Remote Sensing 59: 185–198.

Yorke, T. H., and K. A. Oberg. 2002. Measuring river velocity and discharge with 
acoustic Doppler profilers. Flow Measurement and Instrumentation 13: 191–195.

Yuen, K. 2012. SMAP: Soil Moisture Active Passive. Retrieved October 2012 from NASA 
Jet Propulsion Laboratory: http://smap.jpl.nasa.gov/.





129

7
Radar QPE for Hydrologic Modeling

One of the most ubiquitous uses for radar data has been in hydrologic 
 modeling. Radars provide precipitation estimates at a space-time resolution 
that is sufficient to forecast flash floods when input to a hydrologic model. 
Moreover, radars estimate properties of the land surface that can be used in 
model parameterization and state variable estimation. Radars can even mea-
sure streamflow, which is the primary output from a hydrologic model and 
thus can be used to evaluate forecasts from a hydrologic model. This chapter 
details the basics of hydrologic modeling with a focus on those applications 
and models that best utilize radar observations. Techniques that use  models 
to perform hydrologic evaluations of precipitation inputs are also intro-
duced. This provides for an evaluation framework that identifies the best 
approaches to precipitation estimation based on the hydrologic perspective 
of the model outputs, rather than the conventional radar rainfall-to-gauge 
comparisons. In practice, both methods are employed in tandem.

7.1 Overview of Hydrological Models

7.1.1 Model Classes

Hydrologic models come in many different configurations for simulating 
the water balance. This section provides a conceptual overview of general 
hydrologic model characteristics and provides some specific examples. 
Figure 7.1 shows the basic structure of a hydrologic model. The first defin-
ing characteristic of a hydrologic model is the degree of physical realism 
contained in the equations in the model structure, f. Simplified models con-
sist of parameterized processes and require observations of system behavior 
(O(x,t)) to estimate the model parameters (W(x)), which may have no physical 
meaning. In the case of soil storages and fluxes, the concepts contained in a 
simple model often resemble that of a bucket. The bucket has a given storage 
capacity. When this capacity is exceeded from input rainfall from above, the 
bucket “spills” and streamflow is generated on the surface. Obviously, mod-
eling the hydrologic cycle demands much more sophisticated approaches 
than this, but simpler conceptual models are useful for applications where 
great computational expense cannot be afforded. Examples include testing 
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the performance of complex data assimilation and parameter estimation 
 methods that might require thousands or even millions of iterative simula-
tions. It may be infeasible to run a very complex hydrologic model at high 
resolution when minimizing an objective function, as is typically done in 
state and parameter estimation. Simpler conceptual models are more  suitable 
for running over large spatial domains and for long time periods spanning 
years or even decades. Moreover, they require less knowledge of the com-
position of the soils, vegetation, and other characteristics of the basin. Some 
of these data sources may not exist, which requires parameterization rather 
than an explicit representation of physical processes.

More complex hydrologic models, often referred to as physically based 
models, use more variables and thus require more functional relation-
ships (equations) to interrelate the variables. It should be noted that no real 
 defining distinction exists between a conceptual and a physically based 
model. All models have some degree of conceptualization built into them. 
Even if one were to employ a model with explicit 3-D equations based on 
 physical principles with no parameterization at all, then there must be 
a   numerical approximation when solving the model equations. Thus, the 
transition from conceptual models to so-called physically based models is 
really a continuum of physical realism contained within the model equations 
and parameters. Models on both ends of the spectrum have advantages and 
disadvantages in terms of performance, data requirements, spatiotemporal 
resolution, and resulting outputs. Despite a greater computational expense, 
complex,  physically based models offer the capability of providing outputs 
in locations with no historical measurements of observed system behavior 
(i.e., streamflow). This is an issue addressed more fully in Chapter 8.
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FIGURE 7.1
Basic components of a hydrologic modeling system. The gray boxes denote the static and 
dynamic variables, while the black boxes contain functional relationships (equations).
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The next defining characteristic of a hydrologic model is its discretization 
of inputs, equations, parameters, and outputs. Simplified, conceptual models 
require observations of input and outputs (e.g., rainfall, temperature, and 
streamflow) to estimate model parameters, which limits their applicability to 
the point (or basin outlet) where the streamflow observations are available. 
One end of the spectrum of spatial discretization is basin-wide treatment of 
all processes; this is a lumped model. A lumped model uses a single value 
for rainfall input that is the basin-averaged rainfall. These models were some 
of the first ones to be designed and implemented in operational forecast sys-
tems. If the historical datasets describing the system behavior are accurate 
and complete, then these lumped models can forecast streamflow with great 
accuracy. The estimated parameter values do not readily transfer to smaller, 
subbasins nested in the parent basin, nor do they directly transfer to  adjacent 
basins. Moreover, these models find difficulties in forecasting streamflow 
for events that fall out of their training dataset, such as with extreme flood-
ing events. They assume forecast outputs will resemble those that occurred 
in the past given the same rainfall inputs and soil moisture conditions. 
Generally, this is a good assumption, but it can fail for basins whose behav-
ior has been altered due to advertent and inadvertent  anthropogenic impacts 
such as urbanization and climate change, respectively.

A fully distributed, or raster-based, model solves for water balance at each 
grid point. These models often have their conceptual basis of runoff pro-
duction from a conceptual, lumped model. Others employ the Saint Venant 
 equations for modeling overland and channel flow while using Richards’ 
equation and Darcy’s law for unsaturated and saturated flow, respectively. 
These equations are solved in a finite-difference or  finite- element manner 
across a grid of elements describing the basin. The grid cells are hydrologi-
cally connected using information from a digital elevation model (DEM). 
Because observations of streamflow are rarely available at each of the grid 
points in a distributed model’s domain, they must rely on relationships 
between model parameters and observable features of the land surface 
such as soil types, soil depths, and land cover. Koren et al. (2000) provide an 
example of estimating parameters for a distributed conceptual model using 
physical soil properties. A basin may also be subdivided into several smaller 
catchments, which are independently modeled and used as input to a down-
stream catchment. This approach is referred to as  semidistributed modeling.

The structure of the Coupled Routing and Excess STorage model (CREST) 
described in detail in Wang et al. (2011) is illustrated in Figure  7.2. Each 
 compartment represents a storage component, whether it be above the  surface 
on the vegetation canopy or one of the three soil layers, and the arrows 
connecting each storage tank represent fluxes. The diamonds correspond 
to partitions that are generally dictated by thresholds. If we are to follow 
a raindrop, P, we see that it becomes intercepted by the vegetation canopy 
first, and some of the water is evapotranspired via Ec back to the atmosphere. 
Precipitation that makes it to the soil layer Psoil may become  surface runoff 
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R immediately, depending on the characteristics of the variable infiltration 
curve (VIC; also called tension water capacity curve) originally founded 
in the Xinanjiang model (Zhao et al. 1980, 1992) and later employed in the 
University of Washington VIC model (Liang et al. 1996). The curve describ-
ing variable infiltration follows as

 1 1
1

1

i i
W
Wm

m

b

= − −
+

 (7.1)

where i is the point infiltration capacity; im is the maximum infiltration capac-
ity of a cell; and b is the exponent of the curve. im is a function of the cell’s 
maximum water capacity (Wm) of the three soil layers as

 im = Wm (1 + b) (7.2)

 Wm = Wm1 + Wm2 + Wm3 (7.3)

and

 W = W1 + W2 + W3 (7.4)
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FIGURE 7.2
The conceptual structure of the distributed Coupled Routing and Excess STorage model 
(CREST) described in detail in Wang et al. (2011).
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where W1, W2, and W3 are the cell’s mean soil water depth of each layer. 
The amount of water available for infiltration (I) is then computed as follows:
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The soil storage reservoirs are filled in sequence from top to bottom. 
Surface runoff occurs when no more water is available for infiltration I. This 
can be caused by a combination of heavy precipitation rates Psoil that over-
whelm the infiltration capabilities of the soils im and soils that are saturated 
from prior rainfall and are unable to store any more water; the generation 
of these surface overland flows are often referred to as infiltration excess 
(Hortonian) and saturation excess (Dunne), respectively. It should be noted 
that the CREST model enables water that has already been designated as 
overland flow RO from upstream grid cells to reenter the soils and potentially 
become infiltrated soil water. This is an approximation for the natural pro-
cess that occurs in losing rather than gaining streams.

As soon as surface runoff R is generated, it is further partitioned into 
 overland RO or interflow RI depending on the soil’s saturated hydraulic con-
ductivity values (Ks). The difference between these channel flows can be 
thought of as quick-flow responses to rainfall events and then slow-flow, or 
baseflow. Note that RI enters the soil tanks in grid cells downstream and can 
thus act to fill the soil layers leading to additional soil saturation and sub-
sequent surface runoff. The connectivity, speed, and direction of flows are 
dictated by a digital elevation model (DEM) that has been processed using 
geographic information systems. These steps ensure the DEM is suitable 
for use in a hydrologic modeling application. This means the DEM and its 
derivatives must be postprocessed to ensure that no relative minima are in 
the elevation values along the downstream direction. These dips are called 
sinks and will cause water to pond instead of continue its flow downstream. 
Therefore, the postprocessing step of “filling the sinks” adds values to the 
sinks so that water will continue to flow downstream. Furthermore,  channels 
can be forced into the DEM by artificially removing elevation values at the 
known channel locations. This process is called burning in the streams.

The storage capacities of each of the tanks in the CREST model shown 
in Figure  7.2 as well as the fluxes connecting them must be parameter-
ized. CREST is a distributed parameter model, so the parameter values 
vary from cell to cell. Thus, instead of relying on observations of rainfall 
and runoff to estimate model parameters, as is detailed below, more reli-
ance is placed on relating the parameters to measurable, physical properties 
of the land surface. The advent of remote-sensing technologies from space 
has provided a wealth of information about Earth’s hydrologic properties. 
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Typically,  datasets such as soil types and land cover are gridded and  globally 
available, and thus  readily accommodate distributed hydrologic models. 
However, the  relationship between hydrologic model parameters and the 
variables  measured from space can be indirect or approximate. Moreover, 
 parameters  may be in the model that have little resemblance to physical 
processes or may be very difficult to measure. Nonetheless, the CREST dis-
tributed model, and many others like it, come with an a priori database of 
gridded  parameters. This enables the model to be run uncalibrated, i.e., with-
out a lengthy  parameter estimation period, and produce reasonable results. 
But, as we’ll see in the next section, observations describing the system 
behavior can be used to improve the model simulations through parameter 
estimation.

7.1.2 Model Parameters

Regardless of whether a model is conceptual or physical, it will have a variety 
of model parameter values (W(x)) for controlling and adjusting how water 
propagates inside the model. Examples of parameters can include values that 
control the amount of water that will infiltrate under saturated conditions, 
surface roughness that controls the speed at which water moves through 
the channel network, and the relationship between channel area and chan-
nel streamflow. To provide the best possible model output, the parameters 
are often calibrated in an optimization procedure, which seeks to minimize 
the error between the model simulations and observed values by exploring 
the available parameter space. This process c is illustrated in Figure 7.1 by 
comparing the output variables (Y(x,t)) with the observed system behavior 
(O(x,t)). If they disagree, then the parameter values W(x) are adjusted and 
the model is rerun with the same input variables V(x,t). The process contin-
ues until the simulations match the observations according to some objec-
tive  criteria. This iterative procedure is complicated by model parameters 
that interact, by local (not global) optima in the multidimensional parameter 
space, and by parameters that have sensitivity only under specific conditions.

Model parameter estimation is generally designed to be performed offline 
for a given model, observational datasets, and basin. Following this cali-
bration procedure, the model parameters are fixed and the model can be 
used in forecast mode. It is recommended to evaluate the model simula-
tions using an independent dataset during a validation phase. Parameter 
estimation can be done manually or automatically. Manual calibration is 
a useful learning exercise in order to experience the various controls the 
model parameters have on hydrologic simulation and to illuminate how the 
parameters  interact. Automatic methods are often more efficient and useful 
for operational applications. Shuffled complex evolution (Duan et al. 1993) 
and Differential Evolution Adaptive Metropolis (DREAM; Vrugt et al. 2009) 
are two common automatic optimization methods used for parameter esti-
mation. These methods have been designed to explore the multidimensional 
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parameter space through multichain Monte Carlo sampling. There is often 
 considerable uncertainty in the exact values of these parameters as the opti-
mization process can compensate for errors in the observational datasets or 
even in the model equations. For this reason, optimized parameters are often 
conditioned on the quality of the observational datasets that were incorpo-
rated during the calibration procedure. If the observations or model formu-
lations change, then the parameter values need to be updated. Clearly, this 
procedure doesn’t accommodate new remote-sensing technologies and algo-
rithms that are continually evolving.

7.1.3 Model State Variables and Data Assimilation

Model state variables (X(x,t)) typically consist of soil moisture and amount 
of water retained in storages near the surface and underground as well as 
water in the channels. State variables are important for their use in evalu-
ating the performance of a hydrologic model. Streamflow is often directly 
described or derived from a set of state variables. Estimating the state vari-
ables in a hydrologic model poses some challenges. One approach is to “warm 
up” the soil and stream state variables by forcing the hydrologic model with 
observed precipitation and temperature for a reasonably long time period 
(typically, months) leading up to the time at which a forecast is desired. This 
method works on the principle that a long enough time period will allow 
the  model states to come into equilibrium that represents the true nature 
of the states. This is important to keep in mind when working with radar 
precipitation estimates because as new algorithms are developed, there must 
also be reanalyses of precipitation in order to provide a continuous, long, and 
consistent precipitation record necessary to warm up a hydrologic model.

As we saw in Chapter 6, radar remote-sensing methods have provided new 
observations of soil states and fluxes near the surface and below. Another 
 tactic for estimating state variables, represented by the process s in Figure 7.1, 
is to incorporate these observations that are related to soil and river states 
into a hydrologic model data assimilation framework. The basic idea is to 
adjust model state variables based on the observations in order to improve 
the physical realism of the model and to improve the accuracy of forecast 
variables, namely streamflow. Below, we highlight techniques to update 
model states and so the term data assimilation hereafter refers  specifically 
to  this topic. The same term can also apply to smoothing and filtering 
 methods. Common algorithms for state updating, namely Kalman filters, 
 variational methods (i.e.,  3DVAR and 4DVAR), and ensemble-based  techniques, 
are covered herein.

The Kalman filter (KF; Kalman 1960) is a sequential filtering method 
based  on the minimum variance or least squares framework. The basic 
assumptions in KF are the normality of error distributions and linearity 
of error growth (Hamill 2006), and that the expected values of the errors 
from both the model and the observations are unbiased and not correlated. 



136 Radar Hydrology: Principles, Models, and Applications

It  contains  two steps:  the  forecast step and the assimilation step. In the 
forecast step, the model is run using previous information to generate the 
 forecast and its error covariance:

 1 1x M xi
b

i i
a= − −  (7.6)

 1 1 1 1P M P M Qi
b

i i
a

i
T

i( )= +− − − −  (7.7)

where xi
b  is the state background forecast or first guess, Mi−1 represents the 

linear model that advances from time step i–1 to i given the analysis data 1xi
a
− , 

Pi
b is the background error covariance, 1Pi

a
−  is the analysis error covariance 

from the previous time, and Qi−1 is the model error. In the assimilation step, 
the optimal estimate (or analysis) and its error covariance are obtained by 
updating the state background forecast using the observation and its error 
information:
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where xi
a  is the analysis with error covariance Pi

a at time i, Ki is the weight 
applied to the innovation term y H xi i i

b( )−  called the Kalman gain, Hi is the 
linear operator that converts states into observation space, yi is the observa-
tion with error covariance Ri, and I is the identity matrix.

The extended Kalman filter (EKF; Jazwinski 1970) is implemented for 
 nonlinear models. The same equations described above for the KF applies, 
with the following modifications: (1) The term Mi−1 in Equation  (7.6) is 
the  nonlinear model, while the same term in Equation (7.7) refers to the 
 linearized version of the model, and (2) the observation operator Hi is  linear 
for Equation  (7.8) and nonlinear for Equations (7.9) and (7.10). A further 
 development on the Kalman filter that addresses the nonlinearity challenges 
is the ensemble Kalman filter (EnKF; Evensen 1994), which is described in 
subsequent sections in this chapter.

Variational methods are techniques based on the maximum likelihood or 
Bayesian framework where estimates of the states are used to minimize a 
cost function of the form:
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where x xi i
a=  is the value that minimizes Ji. xi

a is found through numerical 
minimization in an iterative procedure:

Step 1: Start with the first guess x xi i
b=  and compute the cost function Ji.

Step 2: Compute the gradient of Ji with respect to ( ),x Ji x ii .
Step 3:  Using an optimization algorithm such as the conjugate gradient 

method, and the values of Ji and ,Jx ii  computed in Steps 1 and 2 
respectively, determine the correction for xi.

Step 4:  Check for convergence by computing the norm of the gradi-
ent ,Jx ii

new : if convergence has been reached, the value of the 
norm of the gradient of Ji with respect to the corrected value of 
xi (i.e., xi

new) must be approximately zero. If convergence has not 
been reached, repeat the procedure starting with xi

new.

The above procedure is what has come to be known as  three-dimensional 
variational method (3DVAR). Figure 7.3 presents an example of the applica-
tion of the iterative procedure in 3DVAR for a two-variable problem.
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FIGURE 7.3
Illustration of the iterative procedure used in 3DVAR for minimizing the cost function in 
Equation (7.11).
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The four-dimensional variational method (4DVAR) is applied when 
 multiple observations distributed in time are available and the assimilation 
of data is performed for the interval defined by these observations. In this 
case, the objective is to find the value of the states at the beginning of the 
interval (i.e., i = 0) that minimizes the cost function defined for the entire 
assimilation window:
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=
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where t is the number of time steps at which observations are available. 
The procedure to minimize the cost function is similar to that of 3DVAR. 
However, 4DVAR requires the computation of the linear tangent or adjoint 
model (i.e., a first-order approximation of the model trajectory). Figure  7.4 
depicts the implementation of 4DVAR as compared with 3DVAR.

The EnKF is a Monte Carlo simplification of the EKF. The most impor-
tant advantage of EnKF is that error statistical information is retrieved from 
the ensembles, and thus the linearized model and observation operator in 
Equations (7.7) and (7.8) are not necessary. Figure 7.5 presents a schematic 
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of the ensemble data assimilation procedure. There are two approaches in 
EnKF: stochastic and deterministic (Hamill 2006). The difference between 
the two is that observations are perturbed in the stochastic approach by 
adding noise from a normal distribution with zero mean and standard devia-
tion R, while in the deterministic method the observations are not perturbed. 
Perturbations of the observations are necessary because otherwise the error 
covariance of the analysis is systematically underestimated (Hamill 2006). 
However, the noise added to the observations can have a detrimental effect 
(Clark et al. 2008). Whitaker and Hamill (2002) developed a deterministic 
EnKF version entitled the ensemble square root filter (EnSRF). The EnSRF 
uses a reduced Kalman gain to update the perturbations. The equations for 
this implementation are very similar to those described for the general KF 
application. The forecast step is given by

 ( )= =− − 1, 2, 3,...,, 1, 1,x M x for k Li k
b

i k i k
a   (7.13)
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where L is the ensemble size, ,xi k
b  is the kth member of the background ensem-

ble, xi
b  is the mean of the background ensemble, and ,xi k

b  is the perturba-
tion at time i. As for the background error covariance, its value is calculated 
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FIGURE 7.5
Illustration of data assimilation using the ensemble Kalman filter.
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from  the ensemble. However, instead of computing and storing Pi
b, P Hi

b
i
T, 

and H P Hi i
b

i
T, the following is calculated (Whitaker and Hamill 2002):
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The data assimilation step is divided into mean update and the perturba-
tion update. The mean update:
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where Ki is the traditional Kalman gain. Now, the perturbation update:
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where Ki
�  is the reduced Kalman gain. It can be seen that the perturbations 

are reduced less with Ki
�  than with Ki, yielding the same effect as with the 

EnKF with perturbed observations. The final analyses are then computed by

 , ,x x xi k
a

i
a

i k
a= +  (7.22)

It should be noted that the fundamentals of the process of assimilating 
observations are independent from their source. Streamflow measurements 
represent the flow of water in a channel, whether they come from stream 
gauges, radar, or satellite signals. Furthermore, any given data assimilation 
algorithm can operate independently from the source of the observations. 
However, in practice it is important to have information about the errors 
associated to the derivation of the observations, which directly relates to their 
source. For example, from Chapter 6, we saw measurements from a ground 
penetrating radar are highly sensitive to the conductivity of water. In this 
case, the error covariance term will be a function of the water conductivity.
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Streamflow is arguably the most important variable in the hydrologic 
modeling field, perhaps because it accounts for the integrated processes of 
water fluxes through a watershed. It is in most cases the primary output of 
hydrologic models, which makes the application of assimilation techniques 
relatively straightforward. Streamflow is usually measured at specific 
 locations in a watershed such as its outlet. In some regions,  observations 
are available at multiple points in a single basin from gauge measurement 
networks. The manner in which streamflow observations are distributed in 
space has implications on the implementation of the  assimilation  technique. 
Since streamflow results from the space-time integration of hydrologic 
 processes occurring at multiple points within a basin (e.g., rainfall or 
evapotranspiration), assimilation of streamflow  measurements needs to 
account for the spatiotemporal structure of the covariance between model 
states and outputs at any given location. This particular consideration can 
be neglected for the case of lumped hydrologic models, where all variables 
in the modeling system are regarded as spatially invariant and treated as 
a single point.

The EnKF was employed to assimilate hourly streamflow observations 
into a simple but widely used conceptual rainfall-runoff model for flood 
prediction purposes. The hydrologic model is a lumped, conceptual model 
represented by a nonlinear tank, based on the probability distributed model 
developed by Moore (1985), whose output is routed through two series of 
linear tanks denoting quick and slow flow components of the streamflow. 
Errors in streamflow observations were characterized through a simple 
empirical model. The model assumes that error in streamflow observa-
tions grows log-linearly as a function of streamflow magnitude as shown 
in Figure 7.6. The model was implemented on the Tar-Pamlico River basin 
in coastal North Carolina for this work (Figure  7.7). The catchment has a 
drainage area of 5709 km2 and is located on the coastal plain. The EnSRF was 
used to perform data assimilation of streamflow observations for an event in 
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FIGURE 7.6
Error model for the rating curve used to estimate streamflow from stage height measurements.
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March of 2003 (Figure 7.8). The hydrographs and error metrics clearly show 
that the simulation of streamflow dramatically improves when data assimi-
lation is utilized. Furthermore, the simulation falls within the observation 
uncertainty bounds.

7.1.4 Hydrological Model Evaluation

The accuracy of streamflow forecasts can be improved through better 
 observations of precipitation and temperature, improved model  parameters, 
better estimates of state variables, and more accurate and descriptive model 
physics. To make improvements to a model, we must be able to quantify 
its accuracy conditioned on the improvements being tested; this is the 
basis of hypothesis testing. Hydrologic model evaluation is also what is 
 inherently taking place in model parameter estimation methods previously 
discussed. Evaluation of a hydrologic model comes in the form of compar-
ing simulated variables such as streamflow and soil moisture to observed 
values. Evaluations with soil moisture can be performed at a single location 
(i.e., where there is an in situ sensor) by comparing the time series of obser-
vations to simulations. Similarly, it is now becoming possible to compare 
spatially distributed variables to observations. Flood inundation extent is 
another observation that can be used to evaluate and improve a hydrologic 
model as has been demonstrated for urban hydraulic modeling applications 
(Schumann et al. 2011). A distributed hydrologic model is more applicable in 
these contexts because satellite-based soil moisture and inundation products 
are spatially distributed (gridded), thus making it feasible to compare state 
variables to observations at individual points.
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FIGURE 7.7
The Tar-Pamlico River basin in coastal North Carolina. The drainage area for the entire basin 
is 5709 km2.
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Streamflow is the most common variable that is evaluated with statistics 
such as the Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe 1970):
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where  Qi
obs is the ith observed value, Qi

sim is the ith simulated value, and 
Qmean

obs  is the arithmetic mean of the observed values. This score compares 
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which peakflow occurred (ET). All errors are substantially reduced following implementation 
of the EnSRF data assimilation procedure.
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the skill of the model to the skill of using the average observed streamflow. 
Subsequently good skill is defined as performing better than the average 
of the observed streamflow, resulting in an NSE > 0. NSE values < 0 implicate 
the model performs worse than the Qi

obs, and a value of 1 is for a simulation 
that matches the observed perfectly at each time step.

The linear sample Pearson correlation coefficient:
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where  Qi
obs is the ith observed value, Qi

sim  is the ith simulated value, Qmean
obs  is 

the arithmetic mean of the observed values, and Qmean
sim  is the arithmetic mean 

of the observed values can be computed to evaluate the skill of the model at 
producing correct relative peaks of simulated streamflow. Correlation coef-
ficient varies from –1 to 1, providing information about variables that are 
negatively correlated (r = –1), uncorrelated (r = 0), and positively correlated 
(r = 1). It is a useful diagnostic for evaluating a hydrologic model that is being 
used for flood forecasting. The normalized bias is computed as
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where  Qi
obs is the ith observed value and Qi

sim is the ith simulated value. 
The  NB is useful for quantifying how the hydrologic model performs in 
terms of the overall volume of water. Bias is useful in water management 
scenarios where the goal is to match the volume of water present over long 
time periods such as seasons or water years.

The statistics shown above are suitable for evaluating continuous  variables 
such as Qi

sim. Another set of statistics that relies on evaluating dichotomous 
events (i.e., yes/no) is also useful in a hydrologic evaluation context. The 
contingency table reduces observations and forecasts down to a binary set 
before computing statistics. Table  7.1 shows a contingency table setup for 

TABLE 7.1

Contingency Table Used for Evaluating 
Dichotomous (Yes/No) Events

Observed Yes Observed No

Forecast Yes Hits False alarms
Forecast No Misses Correct nulls
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all possible combinations of observed and forecast values. Note that these 
 statistics can be computed for events that are conditioned on several thresh-
olds. The event can thus be defined based on Qi

obs exceeding one or more 
thresholds.

From this contingency table the probability of detection (POD) is

 POD
hits

hits misses
=

+
 (7.26)

where the POD can range from 0 to 1 with a perfect score of 1 being where 
every observation is detected. The false alarm rate (FAR) is

 FAR
 

 
false alarms

hits false alarms
=

+
 (7.27)

where FAR can range from 0 to 1 with a perfect score of 0 representing no 
forecasts that had no associated observations. A simple summary statistic 
that combines information from hits, misses, and false alarms is the critical 
success index (CSI) defined as

 CSI
 

1
1

1 FAR
1

POD
1

hits
hits misses false alarms

=
+ +

=

−
+ −

 (7.28)

where CSI ranges from 0 to 1 with a perfect score value of 1 representing no 
misses or false alarms.

No single statistic adequately summarizes the global performance of a 
hydrologic simulation. It is better practice to use several statistics to evalu-
ate as many variables as possible under varying environmental conditions 
(dry and wet) to thoroughly evaluate a hydrologic model’s performance. 
Furthermore, the statistic used for evaluation should reflect the anticipated 
modeling objectives of the modeler. For instance, if the model is being 
designed and subsequently evaluated to simulate low flow conditions for 
water quality modeling, then many of the described statistics including NSE 
would not be an appropriate measure of the model’s accuracy.

7.2 Hydrological Evaluation of Radar QPE

A great deal can be learned about radar quantitative precipitation  estimation 
(QPE) through detailed evaluations and subsequent algorithmic  improvements 
using independent rain gauge datasets. In some remote areas, these precip-
itation datasets may be sparse or unavailable altogether. Or the algorithms 
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may have incorporated the gauges as a bias adjustment into the radar-based 
algorithms; thus they aren’t independent. Furthermore, as discussed in detail 
in Chapter 2, gauges have their own set of errors and collect observations at 
scales several orders of magnitude below that of a radar pixel. Some studies 
have found benefit in evaluating the performance of radar QPE algorithms 
from the hydrologic modeling perspective (Gourley and Vieux 2005). This is 
an application-oriented approach, which judges the improvements in the radar 
QPE algorithms based on their end use as an input to a hydrologic model. 
Basins (and distributed hydrologic models) incorporate the spatial variability 
of rainfall and subsequent streamflow integrated over space and time, and 
thus include the combined effect of multiple radar pixels. The benefit of a 
hydrologic evaluation must be balanced by the uncertainty in estimating how 
much of the rainfall-driven water does not translate into streamflow measured 
by the stream gauge at the basin outlet. This includes evapotranspiration, infil-
tration, storage by the soils, aquifer storage, reservoir storage, water diversions 
for irrigation, snowmelt, etc.

7.2.1 Case Study in Ft. Cobb Basin, Oklahoma

Gourley et al. (2010) conducted a radar QPE versus rain gauge evaluation 
using the U.S. Department of Agriculture (USDA) Agricultural Research 
Service’s Micronet located in the Ft. Cobb watershed in west central 
Oklahoma (Figure 7.9).

The primary emphasis of the study was to conduct a hydrological evalua-
tion of dual-polarization rainfall algorithms to supplement radar QPE-gauge 
comparisons. This evaluation sheds light on the propagation of errors from 
QPE to streamflow simulations. For instance, it would be informative to 
hydrologic modelers and QPE developers alike if QPE random errors cancel 
each other out during the space-time integration of rainfall transformed into 
streamflow and thus have no impact on hydrologic simulation. Heavy rain-
fall events were collected over several years, totaling 1299 radar-gauge pairs, 
and several algorithms for generating quantitative precipitation estimates 
from the dual-polarized radar KOUN located in Norman, Oklahoma, were 
evaluated. The algorithms had varying levels of complexity and contain 
information from radar reflectivity Zh, differential reflectivity ZDR, as well 
as specific differential phase KDP. Figure 7.10 shows scatterplots (in log scale) 
for all hours with measurable precipitation during the heavy rainfall events 
over the basin. The primary finding was the RMSE decreases and the corre-
lation coefficient increases with increasing algorithm complexity illustrating 
the advantage of more advanced QPE algorithms available when utilizing 
dual-polarization radars.

Figure  7.11 shows the behavior of the normalized bias (NB) for each 
event comprising the dataset. The R(Z) algorithm reveals the greatest 
storm- to-storm variability in terms of NB. The R(Z) algorithm underes-
timates rain gauge amounts by ~40% during the tropical storm Erin case 
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on 8/18/07 and then switches to overestimation by ~80% during a spring 
 thunderstorm event on 3/31/08. The difference between these two events lies 
in the  variability of the drop size distribution (DSD). Tropical storm Erin had 
anomalous DSDs that deviated from the assumed DSD in the R(Z) relation. 
Tropical DSDs are characteristic of a shift to a larger proportion of small-
diameter drops; this causes underestimation in a convective or stratiform 
R(Z)  algorithm (Petersen et al. 1999). On the other hand, the 3/31/08 case 
was associated with hail reports. This meant the observed DSD was again 
anomalous, but shifted toward much larger diameter particle sizes. The NB 
with a single-parameter radar QPE algorithm thus strongly depends on the 
behavior of the DSDs and how these differ from the underlying assumed 
DSD used in the R(Z) equation.

All the polarimetric QPE algorithms reveal less event-to-event variability 
than R(Z) in terms of the NB. This indicates that the polarimetric variables 
ZDR and KDP are capable of responding to the DSDs and adjusting the 

0 5

Low : 379

High : 564

USGS Stations
ARS Micronet stations

DEM (m)

10 20 Kilometers

FIGURE 7.9
The Ft. Cobb basin in west central Oklahoma. The drainage area associated to the catchment 
measured by the stream gauge that is circled is 342 km2.
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rainfall estimates accordingly. The most complex “synthetic” algorithm R(syn) 
relies on thresholds to adjust the estimators so as to minimize the measure-
ment errors from the polarimetric variables (Ryzhkov et al. 2005). For instance, 
at S band, KDP is known to have little sensitivity in light rain. However, it is 
insensitive to hailstones that are mixed in with heavy rain; this mixed hydro-
meteor situation creates inflated Z values. Therefore, R(syn) relies on R(KDP) for 
heavy rainfall rates, but not at light rainfall rates. The overall NB with R(syn) 
was –31%, but this bias was virtually  independent of storm types and rainfall 
intensities, indicating its ability to adapt to different DSDs.

7.2.2 Evaluation with a Hydrologic Model Calibrated to a Reference QPE

In the Ft. Cobb basin, a very dense network of high-quality rain gauges (see 
Figure  7.9) undergoes regular maintenance and manual quality  control. 
These features of the rain gauge network permit their use as a reference 
QPE product to not only directly evaluate the QPE algorithms as shown in 
Figures  7.10 and 7.11, but also to calibrate a distributed hydrologic model 
to be used for the hydrologic evaluation component. Point values from the 
dense gauge network are spatially interpolated to yield a gridded QPE that 
is assumed to be very close to the true rainfall for the basin in terms of mag-
nitude and spatiotemporal distribution. Furthermore, this gridded QPE field 
is independent from the other rainfall estimators that use the polarimetric 
radar variables.
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FIGURE 7.11
Normalized bias (NB) of the evaluated rainfall estimates for each event. Notice how the R(syn) 
algorithm has an overall NBof –0.31 (–31%), but it has the least variability from storm to storm. 
(Figure adapted from Gourley et al. 2010.)
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The reference QPE field R(gag) is input to a distributed hydrologic model 
set up over the Ft. Cobb basin. Then, a method called Assessment of Rainfall 
Inputs using DREAM (ARID) is developed to first calibrate model param-
eters using the DREAM automatic parameter estimation method. At this 
point, the outcome is a distributed hydrologic model that has been calibrated 
to the reference rainfall, which is closest to the true rainfall. The next step is 
to evaluate the different QPE algorithms by inputting them to the calibrated 
hydrologic model and evaluating the resulting streamflow simulations. The 
evaluation is not absolute in that the hydrologic simulations using the radar 
QPEs are not expected to yield improved skill over the R(gag) input that was 
used for model calibration. It is thus useful to employ the following rela-
tive statistical measures that evaluate the simulations in relation to observed 
streamflow as well as the R(gag)-forced simulation:
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where GRB is the gauge-relative bias, QR is streamflow for the rainfall 
 algorithm being evaluated, Qobs is the observed streamflow, and QR(gag) is 
streamflow from the R(gag)-forced simulation. The GRB thus computes 
the bias (in %) in relation to the bias that was present with the calibrated 
 simulation from R(gag). A GRB of 0% indicates the simulation bias was the 
same as that achieved with R(gag) inputs. Similarly, the gauge-relative effi-
ciency (GRE) is defined as follows:

 1

2

0

( ) 2

0

GRE

Q Q

Q Q

i
R

i
obs

i

N

i
R gag

i
obs

i

N

∑

∑( )

( )
= −

−

−

=

=

 (7.30)

This formulation is quite similar to the NSE in Equation (7.23), but it quan-
tifies the skill in relation to the reference simulation from R(gag) forcing 
instead of the average of the observed streamflow. A GRE score of 0 indi-
cates the R rainfall input resulted in the same skill that was obtained using 
R(gag) forcing, while a score of 1 indicates the simulation skill exceeded that 
produced during model calibration and agreed perfectly with observations. 
GRE scores worsen as they become more negative up to –∞.

The study goes on to use the ARID framework to evaluate the hydrologic per-
formance of the various polarimetric radar algorithms. Figure 7.12 illustrates 
the algorithm hydrologic skill in terms of GRE and GRB. The color-filled circles 
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indicate statistical performance of the algorithms as is, whereas the circles 
without color filling show the skill after the event-combined bias was removed. 
This bias removal had almost no impact on the R(Z) algorithm’s hydrologic skill 
in terms of GRE. This means that R(Z) is unbiased when considering all events 
combined, but has a great deal of  variability from event-to-event. The R(syn) 
algorithm had a lower GRE score than R(Z) inputs. In this case, the simple bias 
removal improved the GRE so that it was only slightly less skillful than the 
R(gag) inputs used during calibration. Moreover, following bias adjustment, the 
GRE skill of the inputs generally followed the complexity of the polarimetric 
algorithms themselves in terms of conditional use of the variables. This means 
that polarimetric radar is capable of providing inputs for hydrologic modeling 
that are more precise, but can be prone to systematic errors, or bias. This study 
points to the great potential of using polarimetric radar, but also cautions on 
the need to correct variables that may be more sensitive to bias.

7.2.3 Evaluation with Monte Carlo Simulations from a Hydrologic Model

It is not always feasible to study the hydrology of a basin that has  reference 
rainfall and streamflow measurements that can be considered the  ground 
truth. Another approach to hydrologic evaluation of  precipitation inputs is to 
consider the largest contributions to uncertainty within the  hydrologic model. 
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Hydrologic skill of polarimetric rainfall algorithms on the Ft. Cobb basin based on the GRE 
and GRB metrics in Equations (7.29) and (7.30). (Figure adapted from Gourley et al. 2010.)
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Typically,  this is the parametric uncertainty. One method for  accounting for 
uncertainty in hydrologic model parameters is to perform many simulations in 
a Monte Carlo fashion and explore a portion or all of the available parameter 
space. From this number of simulations the resulting skill of all of the members 
can be evaluated and put into an appropriate statistical context. This method 
eliminates the need for conventional hydrologic model calibration but provides 
only ranges for the potential hydrologic skill of a given precipitation input. 
If the precipitation inputs are but slight modifications of one another, it is pos-
sible that the uncertainty in the hydrologic skill will be driven by the paramet-
ric uncertainty, making it difficult to distinguish the skill of one precipitation 
input from the skill of another.

Gourley and Vieux (2005) demonstrated an example of Monte Carlo simu-
lations for evaluating the skill of several radar-based inputs. The parameter 
space of the hydrologic model used is uniformly sampled and probability 
density functions (pdfs) of peak streamflow, time at which the peak occurred, 
and total water volume were computed. The pdfs are nonparametric and are 
derived using the Gaussian kernel density estimation technique introduced 
in Equation (2.1). The ensemble skill is assessed by using the ranked probabil-
ity score (RPS; Wilks 1995):
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where yi is the cumulative probability assigned to the ith category, oi is the 
cumulative probability of the observation in the ith category, and J is the 
 number of categories. This score essentially compares the entire pdf of the sim-
ulated variables to a single observation of time, peak, or volume. Simulations 
that are far removed from the observation are penalized more heavily than 
those falling into nearby categories. When comparing statistical scores, it is 
often necessary to establish the statistical significance of their differences. 
In the above study, a resampling technique was employed to establish the 
 confidence intervals. This was accomplished by pooling together the different 
samples of hydrograph derivatives (e.g., peak streamflow). Then, the values 
are randomly chosen to create two different samples. RPS scores are  computed 
from each sample 1000 times and subsequently used to create cumulative dis-
tributions of the RPS differences. The cumulative distribution is then used to 
determine the probability of obtaining the original RPS difference and thus 
serves as the basis for computing the statistical significance of RPS differences 
obtained from simulations forced by different rainfall algorithms.

For this method to be successful, the sensitive parameters of the  hydrologic 
models must be identified and their distributions need to be  approximated. 
The sampling of the parameter space is performed uniformly. If only a  portion 
of the parameter space is sampled, and this leads to biased  simulations, then 
the technique will incorrectly identify a given  precipitation input as the best 
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in terms of hydrologic skill. Nonetheless, this method is useful for quantifying 
and comparing the hydrologic skill of different rainfall inputs when a true rain-
fall reference is not known. Furthermore, the method samples the parameter 
space rather than finding an optimum location that results in the best hydro-
logic skill. This means the method  essentially avoids parameter estimation and 
can thus be employed on a basin that does not have long records of continuous 
precipitation. Generally, a hydrologic model requires years of continuous pre-
cipitation records in order to calibrate parameters; this is a condition that gen-
erally limits the application of hydrologic  evaluation methodologies that rely 
on model calibration. They key results from the study conducted on the Blue 
River basin in Oklahoma are that sparse rain gauge-based inputs do not per-
form as well as radar-based inputs in a distributed hydrologic model. And, 
similar to the study conducted on Ft. Cobb, they generally found better hydro-
logic skill with increasing complexity in the precipitation algorithms.

7.2.4 Evaluation with a Hydrologic Model Calibrated to Individual QPEs

Another technique for evaluating the skill of individual precipitation esti-
mates is to calibrate the hydrologic model separately for each precipitation 
estimate. This assumes that long time periods of the different precipitation 
estimates, on the order of years, are available for calibrating the hydrologic 
model and that the parameter estimation technique performs similarly and 
objectively for each input. Obtaining long, continuous precipitation estimate 
records can pose serious limitations to this approach. This is especially the 
case for remote-sensing algorithms that are  continually undergoing updates 
due to improved estimation approaches and new technological advances in 
the observing platforms. The complex nature of hydrologic models means 
that parameter estimation methods must attempt to sample the entire param-
eter space or a good approximation of it. Given that the parameter space is 
often 10 or more dimensions, it is not possible to completely sample the entire 
parameter space with modern computational power. Many automatic param-
eter estimation methods thus identify local minima in the  multidimensional 
parameter space. The representativeness of this local minimum can vary 
depending on the input. Therefore, the objectivity of the evaluation can 
become compromised by the capability of the  optimization procedure, rather 
than delivering a hydrologic skill of the precipitation forcings.

Because of the difficulty in securing long records of the precipitation 
 estimates, especially from nonoperational systems, and because of the 
 possibility that the optimization method is not identifying the true global 
minimum, this technique is not often employed in research. However,  if 
long records show that precipitation inputs have not undergone significant 
changes, then this technique can be quite useful for operational hydrologic 
forecast systems. It is possible that a given precipitation input results in bet-
ter hydrologic skill because it is compensating for a deficiency in the hydro-
logic model structure that would ordinarily result in biased simulations. 
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Thus,  if  an operational user desires a better hydrologic forecast, then this 
technique will inform them of the product that accomplishes the goal of 
improved hydrologic forecast capability. The same conclusion may not 
directly apply to the absolute skill of the rainfall algorithm itself and the 
results will be limited to the specific basin, model, and time period employed.

Problem Sets

CONCEPTUAL/UNDERSTANDING PROBLEMS

 1. Describe the key difference, in terms of parameters, from a  conceptual 
hydrologic model and physically based hydrologic model.

 2. Describe the differences and similarities between lumped, semidis-
tributed, and distributed hydrologic models.

 3. Why is it difficult to accurately evaluate the performance of precipi-
tation inputs using hydrologic models?

 4. How does evaluating a QPE using a hydrologic metric better account 
for the spatiotemporal scales of the QPE?

 5. What are three hydrologic variables that can be evaluated?
 6. What is meant by error propagation in terms of radar QPE and 

hydrologic models?

QUANTITATIVE EXERCISES

 1. Given a contingency table with 120 hits, 38 misses, 45 false alarms, 
and 80 nulls, calculate the POD, FAR, and CSI.

 2. Run the lumped CREST model and plot a hydrograph using the time 
series data provided from the Ft. Cobb watershed along with the 
NSCE, bias, and root-mean-square error statistics.

 3. Run the lumped CREST model with precipitation input biased 10%, 
25%, 50%, 75%, 100% and plot a figure showing the error propaga-
tion. Discuss how hydrographs and skill scores differ for the various 
QPEs. Which one has the the smallest error propagation ratio?
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8
Flash Flood Forecasting

Among all storm-related hazards in the United States and beyond, flash 
 flooding has been the deadliest in recent years (Ashley and Ashley 2008). 
Unlike tornadoes, large hail, and heavy snow, flash flooding is not a purely 
atmospheric phenomenon. Meteorologists and weather forecasters tasked 
with predicting these events must possess not only meteorological knowledge 
but also, in many cases, hydrologic knowledge as well as an understanding 
of the land-atmosphere interactions involved. Moreover, the magnitude and 
types of impacts caused by flash flooding are often dictated by behaviors, and 
thus social science also plays a role. Because flash floods occur, by definition, 
over small spatial and temporal scales, high-resolution observations are 
needed to produce useful forecasts.

When considering the meteorological component, high rainfall rates are 
the central components in producing flash flooding. Doswell et  al. (1996) 
 discuss the other atmospheric ingredients of flash flood forecasting in depth, 
but factors including high precipitation efficiencies, deep convective storm 
complexes, slow or training storm motions, and continued entrainment of 
moist air into storms are all significant. Over the mesoscale time and space 
scales, forecasters often consider the magnitude and persistence of vertical 
motion, precipitable water values, and high lapse rates. However, the main 
thrust of flash flood forecasting has and continues to be on the storm scale, 
typically after rainfall has already begun.

Weather radar is the most important tool for monitoring heavy rainfall 
that precedes flash floods. Using raw rainfall rate estimates from weather 
radar presents challenges to the flash flood forecaster, however. Errors 
in radar rainfall rates, discussed in detail in Chapter 2, can mislead a 
 forecaster. Many flash flooding events have been associated with warm 
rain events (Petersen et al. 1999). If the rainfall estimation algorithm does 
not incorporate information about drop size distributions from polarimet-
ric radar or recognize the signatures of a tropical environment, then severe 
underestimation results. The Multi-Radar/Multi-Sensor System (MRMS), 
discussed in Chapter 4, is well suited to accurately estimate rainfall rates 
in flash-flooding situations. Individual radar sites produce new volume 
scans roughly every 5 min, but these update times are not in sync across 
the network. In other words, one radar site may update at 12:05 UTC, but 
its neighbor may have new data available at 12:06 UTC. MRMS leverages 
these time differences to produce updated precipitation estimation prod-
ucts at a resolution of 1 km every 2 min. With this, the high resolution is 
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maintained even after the data have been mosaicked, thus enabling rainfall 
rates  estimated at the flash flood scale.

Flash flood forecasting requires more than just atmospheric information. 
For example, 25 mm of rainfall falling over a field of corn in 30 min will 
have a much different impact than the same amount of rainfall falling over 
downtown New York City in 30 min. This simple example illustrates the 
need for the forecaster to possess information about land surface conditions. 
In the New York City example, the key difference between the cornfield and 
the city is the amount of impervious area. When rainfall lands on plants and 
soils, a percentage of it infiltrates into the Earth’s surface. Any water that 
infiltrates will not immediately run off across the land surface; this reduces 
the impact of immediate flash flooding. When rainfall lands on the roofs 
of buildings, or on any concrete or asphalt surface, none of the water can 
infiltrate and it immediately becomes runoff, increasing the likelihood of a 
flash flood. The amount of infiltration depends upon antecedent soil mois-
ture conditions, the type of land cover, and other factors. These factors are 
traditionally used in hydrologic models as discussed in Chapter 7, which 
are designed to provide information about where water goes after it reaches 
the surface of the Earth.

Precipitation estimates can be used directly in hydrologic models to pro-
vide guidance about flash flooding potential. In the future, forecasters may 
directly use quantitative precipitation forecasts (QPFs) from numerical 
weather prediction models in hydrologic models to estimate flash flooding 
impacts hours or days before an event. Currently, QPE is used in hydro-
logic models so that the only true “forecast” component comes from the 
land  surface component, not from the atmospheric component. For the past 
 several decades, the U.S. National Weather Service (NWS) has produced a 
suite of products called flash flood guidance (FFG) that serves to combine 
hydrological and atmospheric information into one metric.

8.1 Flash Flood Guidance

In the United States, river (fluvial) flood forecasting is the responsibility of 
river forecast centers (RFCs) and flash flood monitoring and prediction is the 
responsibility of local weather forecast offices (WFOs) (Figure 8.1).

This division of responsibility is based on the amount of time it takes for 
rainfall over a basin to cause flooding impacts in that same basin. Floods that 
take more than six hours to develop are considered the responsibility of RFCs, 
and those that take less than six hours are defined as flash floods. Typically 
local WFOs have at most only one hydrologist on staff. Because forecast-
ing flash flooding requires hydrological knowledge, this staff hydrologist 
(or service hydrologist) has an important responsibility to provide resources 



159Flash Flood Forecasting

to the on-duty WFO meteorologists. The regional RFCs employ multiple 
hydrologists who can also serve as knowledge conduits to the WFOs. As part 
of their normal duties, the RFCs run different hydrologic models at regular 
intervals for the purposes of monitoring stream stage and flow on large river 
networks. These same hydrologic models, with some modifications, are used 
to produce flash flood guidance. FFG values are produced at the RFC level 
and then provided to local WFOs; the values are the primary source of model 
information employed in the flash flood forecasting process.

Flash flood guidance is defined as the amount of rainfall required in a 
given period of time (1, 3, 6, 12, or 24 hrs) to induce bankfull conditions 
on small natural stream networks. The FFG product is plotted on a polar 
 stereographic grid with a nominal resolution of 4 km on a side. Although it 
is possible for each grid cell to have an independent and separate FFG value, 
the spatial variability of the product depends heavily on the topography 
and soil type of the area in question, as well as the method used to  produce 
FFG values. In operations, rainfall estimates from WSR-88D radars are com-
pared in near real time to a grid of FFG values. A program called FFMP 
(Flash Flood Monitoring and Prediction) serves as the framework in which 
these comparisons are made. Forecasters can see the ratio of QPE to FFG, the 
difference between QPE and FFG, or the precipitation amounts expressed 
as a percentage of FFG. When QPE begins to approach the FFG value for 
a certain grid cell, forecasters may choose to issue a flash flood  warning. 

RFC Boundaries (Bold)
WFO Boundaries (regular)

FIGURE 8.1
Map of River Forecast Center borders (bold) and Weather Forecast Office borders (regular).
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In some parts of the country, QPE exceeding FFG is used as a strict  threshold 
for issuing a warning. In other areas, forecasters may wait for QPE to reach 
125% or 150% of FFG before doing so. Although FFG is not intended for use 
in urbanized areas, some regions will fill in FFG values over urbanized grid 
cells. Typically this process is accomplished using some common rule of 
thumb, like one inch (25 mm) of rain per hour. This adjusted urban FFG is a 
simple way of adding urbanization information to the hydrologic model out-
put. Clark et al. (2014) assessed the skill of various FFG products across the 
United States and determined that the product has its highest utility when 
warnings are issued at 125%, 150%, or 200% of guidance. Overall, raw FFG 
has much lower skill than flash flood warnings, which suggests that local 
knowledge or other information added to the warning process by forecasters 
is significantly improving forecast outcomes.

Flash flood guidance is typically produced between one and four times 
per day and is valid at either the synoptic (00 or 12 UTC) or subsynoptic 
(06 or 18 UTC) times. Each RFC transmits its FFG grid to the WFOs wholly 
or partially located in its area. In situations where heavy rainfall and/or 
flash flooding are ongoing, WFOs can request updates of FFG from their 
RFC in between typical issuance times. The process of updating FFG val-
ues can cause undesirable side effects like the “jump.” Consider a FFG grid 
valid at 12 UTC; over our basin of interest, the 3 hr FFG value is 2.5 inches 
(63.5 mm). Between 17 and 18 UTC, the grid cells in this basin receive 
2.0 inches (50.8 mm) of rainfall. At 17:59 UTC, therefore, the FFMP display 
would show that QPE has reached 80% of 3 hr flash flood guidance. The 
RFC will release an updated FFG grid at 18 UTC; the new FFG value will be 
around 0.5 inch (12.7 mm) (because 2.5 inches or 63.5 mm were originally 
needed and 2.0 inches or 50.8 mm has fallen recently). However, when the 
new FFG grid is loaded into FFMP, the program now indicates that rainfall 
is 400% of flash flood guidance! This is because the 2.0 inches (50.8 mm) 
of rain that have already fallen are now being compared with an updated 
FFG value of 0.5 inch (12.7 mm). This is one of the many caveats involved 
in interpreting flash flood guidance products. We refer to the phenomenon 
as the “jump” because a plot of QPE-to-FFG ratio between 17 and 19 UTC 
would go from 0% to 80% from 17 to 18 UTC and then immediately jump 
to 400% at 18:01 UTC.

Some RFCs issue FFG only one time a day (typically at 12 UTC), particu-
larly during dry times of year when the FFG values tend to remain fairly 
constant. WFOs may also be responsible for counties across areas of two or 
even three RFCs. Because different generation methods are used to produce 
FFG at different RFCs, this can result in drastic changes in FFG values from 
county to county and especially from region to region. There are also grid 
cells along the boundaries between RFCs for which FFG values are never 
produced. In Figure 8.2, dark areas indicate pixels where FFG values were 
only sporadically available between 2006 and 2010; RFC boundaries, missing 
basins and pixels, and other issues are readily apparent.
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Flash flood guidance traditionally consists of two main components: a 
rainfall-runoff model operating in scenario mode and a fixed value called 
the threshold runoff (or ThreshR). ThreshR is determined by surveys of 
small, natural stream channels in a particular area. The ThreshR is defined 
as the ratio of a basin’s flood flow to its unit hydrograph peak. In other words, 
the ThreshR is the amount of runoff required to cause bankfull conditions 
at a particular location. Calculating ThreshR is easiest in locations with a 
stream gauge, but the small scale of flash flood basins and the large area of 
the United States make gauging even a small percentage of flash flood basins 
impractical. Therefore, over several decades, RFCs have sent out  survey 
teams to determine ThreshR values for various streams. The ThreshR is a 
function of the geomorphological characteristics of a particular basin and 
does not change with the weather conditions. Because ThreshR is a point 
value used in a gridded product (FFG), various methods to grid ThreshR 
have been developed over the years. In some RFCs, the average of values 
from a few surveys is used to assign one ThreshR value to moderately sized 
(300–3000 km2) river basin. In other areas of the country, ThreshR values are 
assigned by state or by county. Still other locations use geographic contour-
ing to produce grids of ThreshR values spreading out from known survey 
locations (Carpenter et al. 1999).

Number of hours in which FFG data is missing

1500 hrs

63 hrs

FIGURE 8.2
Number of hours FFG values were available per pixel between October 2006 and August 2010. 
(After Clark et al. 2014.)
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The second component of FFG is the rainfall-runoff model. Figure  8.3 
schematically shows the type of curves used to produce flash flood guid-
ance values. Typically, rainfall-runoff models are forced with known rainfall 
amounts (QPE). The model then determines where the rainfall goes once it 
reaches the surface of the Earth; in other words, the model output is runoff, 
discharge, or streamflow. Flash flood guidance reverses this process. In FFG 
production, the required output is already known: the threshold runoff. The 
model is run through scenarios with increasing amounts of rainfall, and the 
amount of rainfall that led the model to produce the threshold runoff as 
 output becomes the FFG value for that grid cell.

8.2 Flash Flood Guidance: History

Flash flooding has long been recognized as a problematic weather phenom-
enon. In the post–World War II years, as Americans settled new parts of 
the country and population densities increased in already settled areas, the 
 number of people susceptible to flash flooding increased. By the middle 1970s, 
monetary damage from flash floods was six times higher than it had been 
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FIGURE 8.3
Curves used to produce flash flood guidance values depend heavily on soil moisture (SM). 
In this example, a basin with a known threshold runoff value of 1.0 in (25 mm) would have 
FFG values ranging between 1.0 and 4.0 in (25–102 mm), depending on the SM. As the SM value 
drops, the FFG value increases, because progressively more rain is needed over drier soils to 
produce bankfull (flooding) conditions. (After Reed and Ahnert 2012.)
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immediately after the war, and three times as many people were dying from 
flash flooding than had been in the mid-1940s (Mogil et al. 1978). As late as 
1970, the NWS did not have a national flash flood warning program, despite 
the existence of similar programs for severe thunderstorms and tornadoes. 
Several devastating flash floods at the end of the 1960s and the beginning of 
the 1970s spurred the formation of the flash flood warning program and with 
it, the first attempts at generated flash flood forecasts: “original flash flood 
guidance,” or OFFG (Clark 2012). This OFFG product was based on anteced-
ent rainfall and geomorphological characteristics of basins, just like modern 
flash flood guidance. In those days, national QPF forecasts regularly came 
from the National Meteorological Center but were of low resolution, included 
only synoptic-scale rainfall, and had limited utility for forecasting small-scale 
convective flash flood events. Warning procedures were implemented locally 
based on RFC expertise but could vary widely from region to region. Regular 
precipitation estimates were available from those areas that had weather 
radars, but even the use of the earliest Z–R relationships required manually 
digitizing radar data or using the radar digitizer and processor (RADAP) 
technique, which was available at only a handful of radar sites in the 1970s. 
Towns, cities, and counties sometimes ran their own flash flood warning and 
alarm systems, using tornado and civil defense sirens with a special flood 
alert tone. Despite all these other avenues, Mogil et al. (1978) (p. 693) note that 
flash flood guidance was already the “critical element in local programs.”

Throughout the 1970s, ‘80s, and early ‘90s, problems with OFFG appeared. 
Procedures to determine threshold runoff values varied from region to 
region, and some regions never documented how the values were produced. 
Sweeney (1992) explains that one RFC that covered multiple states calculated 
ThreshR at only four locations in their entire domain. Forecasts for large 
river systems were moved onto the new NWS River Forecast System in the 
1980s, and in the years after that deployment, various attempts were made to 
move FFG generation into that framework, as well. The primary goal of these 
efforts was to smooth out regional differences in FFG production and to pro-
vide a more consistent product to local forecasters.

The version of FFG that resulted from these efforts is today known as 
lumped flash flood guidance (LFFG). LFFG was the first FFG product 
to be produced on a grid, which allows for values to be compared with 
precipitation estimates on a cell-by-cell basis. Despite the gridded nature 
of the product, LFFG values were the same within specific river basins, 
usually between 300 and 5000 km2 in size. Within these river basins, QPE-
to-FFG comparisons showed significant cell-to-cell variation because high-
resolution WSR-88D precipitation estimates were available in most of the 
country. In some regions, LFFG was an improvement over OFFG in terms 
of spatial resolution (Sweeney and Baumgardner 1999), but even a 300 km2 
basin is many times larger than a single pixel of QPE from weather radar. 
Attempts, therefore, were soon made to improve the spatial resolution of 
the product.
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Geographic information system (GIS) software is of great utility in flash 
flood forecasting. As GIS technology matured, forecasters at the NWS office 
in Pittsburgh, Pennsylvania, recognized that GIS could be used to outline 
truly flash flood scale basins. They called the project AMBER, for Areal 
Mean Basin Estimated Rainfall. High-resolution precipitation estimates 
were averaged over small basins to produce better estimates of basin rainfall 
than those available using county-based or lumped-basin FFG. Eventually 
the National Basin Delineation Project (NBDP) extended this methodology 
across the United States (Arthur et al. 2005). These basin sizes are as small as 
5 km2 (Davis 2007) and rarely exceed more than 20 km2 (RFC Development 
Management Team 2003). After the implementation of these basins was com-
pleted, rainfall estimates and basin sizes were in line with one another, but 
lumped flash flood guidance values were still constant over large areas.

In the years after the RFC Development Management Team issued its 2003 
report, various RFCs experimented with their own versions of flash flood 
guidance. In the western United States, the Colorado Basin River Forecast 
Center developed a product called FFPI. Similar products eventually spread 
to the Northwest RFC and the California Nevada RFC. In 2005 and 2006, 
the Arkansas Red-Basin RFC developed what has become known as gridded 
flash flood guidance, or GFFG. As of 2010, this methodology is known to be in 
use in much of the south-central and southeastern United States. Finally, the 
Middle Atlantic RFC uses a different hydrologic model and high-resolution 
antecedent precipitation to produce a form of FFG called distributed flash 
flood guidance, or DFFG (Clark et al. 2014).

8.3 Lumped Flash Flood Guidance

Lumped flash flood guidance was developed in the early 1990s when the 
NWS first decided to move FFG production into the same system used for 
large-scale river stage forecasts. Soil moisture (and in some RFCs, snowpack) 
allows a hydrologic model (usually the Sacramento Soil Moisture Accounting 
[SAC-SMA] model, though others are available) to determine how much of a 
given amount of precipitation will saturate the soils and how much will run 
off and be available for streamflow. SAC-SMA is a lumped parameter model, 
so the soil moisture conditions and any model parameters are identical across 
a particular model basin. These model basins are more than 300 km2 in size, 
which corresponds to time scales in excess of the six hours typically used 
to characterize flash floods (Clark 2012). As described earlier in the chapter, 
SAC-SMA is run in reverse since the threshold runoff (a hydrological model’s 
typical output) is already known. In this case the rainfall is the unknown, 
and the amount of rainfall that causes the model to exceed the threshold 
runoff becomes the LFFG value for that entire lumped basin.
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The same soil moisture used to produce river stage forecasts is used in 
 generating LFFG (Sweeny and Baumgardner 1999). The ThreshR values used 
in LFFG are the ratio of flood flow over a basin to the peak of the unit hydro-
graph over the basin. Usually LFFG relies on the assumption that bankfull 
conditions are equal to a flood with a return period of two years. Survey 
teams calculate ThreshR at various points, especially those outfitted with 
stream gauges. Then those point values are contoured to create a field of 
ThreshR values. There are many other ways to calculate ThreshR, as described 
in Carpenter et  al. (1999). Today, the most common method of producing 
ThreshR is to complete several surveys using basins outlined by  digital eleva-
tion models (DEMs), contour the field of values between the survey points, 
and then plot the new values on the ThreshR grid (Reed et al. 2002).

The LFFG method allows for the use of models other than SAC-SMA. 
Differences in LFFG values across RFC domain boundaries can be partially 
explained if different hydrologic models are being used. Soil moisture data 
are updated at the RFCs every six hours (assuming that precipitation estimates 
are being produced in a timely manner) and this allows for LFFG to also be 
updated every six hours. Rapid changes in soil moisture that occur over a cou-
ple of hours or in less than an hour’s time are not easily reflected in LFFG, 
but changes that occur over six hours or longer do appear in the product. The 
lumped character of the method eliminates the ability of the forecaster to easily 
see subbasin  differences in soil moisture and antecedent precipitation. Over a 
1000 km2 basin, it is possible—if not likely—that drier parts of the basin will 
respond differently to new precipitation than those already near saturation. 
Unfortunately, LFFG largely prevents the easy examination of these differences.

Over northern and western RFCs, frozen soils, snowpack, and snowmelt is 
a critical part of flash flood forecasting. The Snow-17 model is used to assist 
in accounting for this additional water content above the soil when LFFG val-
ues are produced. It should be noted that in these snow-prone areas, LFFG 
 values tend to exist across a much wider range than in areas that do not require 
monitoring of snowpack water amounts (Sweeney and Baumgardner 1999).

8.4 Flash Flood Potential Index

Flash Flood Potential Index (FFPI) is designed for areas where it is believed 
that soil moisture is an unimportant component of flash flood forecasting 
relative to geomorphological basin characteristics. The Western Region Flash 
Flood Analysis project was launched to create a new type of FFG for these 
areas (RFC Development Management Team 2003). Several layers of  gridded 
basin parameters are resampled to identical resolutions and compared 
with one another in an effort to assign relative susceptibilities of basins to 
flash flooding impacts.
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Smith (2003) obtained several static layers (land use, forest cover,  vegetation 
type, slope, and soil type) and assigned each grid cell in each layer a value 
from 1 to 10, based on the anticipated magnitude of a flash flood response. 
Then he obtained dynamic layers (vegetation state, snow cover, fire, and 
modeled precipitation) and conducted the same process. All the values for all 
the layers are averaged together to yield the final relative flash flood poten-
tial for each grid cell. All layers are weighted equally except for slope, which 
receives a slightly higher weight. Because the values represent relative flood 
potentials, they are unitless. The final gridded numbers are then averaged 
over FFMP basins so that each basin has a susceptibility value. In some RFCs, 
this susceptibility value eventually replaced lumped flash flood guidance. 
In the Colorado Basin RFC, a 1 in/hr (25 mm/hr) rainfall rate is adjusted up 
or down based on the basin susceptibility value to produce a final FFG value 
(Clark 2012). Clark et al. (2014) determined that FFPI had little utility in flash 
flood forecasting, though this may be due to difficulties in obtaining accu-
rate flash flood observations and QPE in the western United States rather 
than to inherent flaws in the FFPI method.

8.5 Gridded Flash Flood Guidance

Schmidt et al. (2007) describes a method of producing high-resolution flash 
flood guidance in an attempt to bridge the gap between extremely large lum-
ped hydrologic model basins and small FFMP basins. This high-resolution 
flash flood guidance is known as gridded flash flood  guidance, or GFFG. 
Originally developed in 2005 and 2006 over the Arkansas Red-Basin RFC 
(ABRFC), the method has since spread to much of the rest of the United States. 
The advantages of GFFG are its high resolution and its use of readily available 
GIS datasets. However, GFFG has some disadvantages. Until 2014, the litera-
ture did not contain any national objective evaluations of the skill of lumped 
flash flood guidance (Clark et al. 2014). To make GFFG easier to transition into 
operations, its creators purposely designed the system to contain values that 
mimicked those of the earlier LFFG system (Schmidt et al. 2007; Gourley et al. 
2012). Therefore, any flaws in LFFG were by necessity carried forward into the 
new GFFG system.

A distributed hydrologic model underlies GFFG; that is, a model that has 
parameters that can vary from grid cell to grid cell, rather than from lumped 
basin to lumped basin. GFFG runs on the same 4 km polar stereographic 
grid used in the original LFFG product. The components of GFFG include 
slope (derived from a digital elevation model), soil type, land cover, soil mois-
ture, ThreshR values, and a rainfall-runoff model. The Natural Resources 
Conservation Service curve number (CN) method is used to determine how 
susceptible each grid cell is to flooding impacts. Curve numbers are found 
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using a lookup table that requires the user to know the land use and soil 
type characteristics of each grid cell. The higher the CN, the more potential 
for generating runoff and thus a flash flood. In GFFG, the curve numbers 
include information about soil moisture conditions and thus  antecedent 
 precipitation. A soil moisture model that provides a saturation ratio is used 
to adjust these curve numbers. This model is the HL-RDHM model (NWS 
Hydrology Laboratory Research Distributed Hydrologic Model), and it has 
two parameters of interest in this case: the upper zone free water  contents and 
upper zone tension water contents. Koren et al. (2000) estimated the maxi-
mum possible value of each of these parameters, and so the sum of the values 
from the model can be divided by the sum of the maximum possible values 
to yield a saturation ratio.

Two equations determine the upper and lower bound of the soil moisture 
adjusted curve number. In the wet equation,

 23 *
10 0.13 *

CN
CN

CN
ARCIII =

+
 (8.1)

ARCIII is what the soil moisture adjusted curve number would be if the 
soil was completely saturated. CN is the curve number under conditions of 
50% saturation. The dry equation

 4.2 *
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CN
ARCI =

−
 (8.2)

has the term ARCI, which is the soil moisture adjusted curve number at 
0% saturation. Therefore, the normal curve number CN is determined 
from the lookup table and is based solely on land use and soil type in 
the grid cell. That  CN is substituted into Equations (8.1) and (8.2) to find 
the  possible upper and lower bounds of the soil moisture adjusted curve 
number. Then  the   saturation ratio from the HL-RDHM model determines 
CNARCII, which is the final soil moisture adjusted curve number. For exam-
ple, if the original curve number is 70, the saturated curve number ARCIII 
becomes 84. The unsaturated curve number ARCI is 49. If the HL-RDHM 
model  determines that the grid cell is 80% saturated, the final adjusted value 
of the curve number ARCII is 77. This CN is higher than the original value 
of 70 and thus represents a higher potential of flash flooding, which is to 
be expected, since the soils were quite saturated (80%) in our example. Once 
the final curve number is calculated, it is used in

 1000
10S

CN
= −  (8.3)

where CN now represents the final soil moisture adjusted curve number. 
In Equation (8.3), S is the initial abstraction (Schmidt et al. 2007).
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In GFFG, threshold runoff is determined by creating a three-hour design 
rainfall event that has a five-year return period. The runoff from this design 
storm becomes the flow at flood stage on small natural stream networks. 
The  unit hydrograph peak is determined using the NRCS curve number 
method and then the ratio of the flow at flood stage to the unit hydrograph 
peak is the threshold runoff value. Schmidt et al. (2007) discuss the changes 
observed in ThreshR values with GFFG and note that the primary differ-
ence is a greater range of values than would have been observed with legacy 
LFFG threshold runoff values. Finally, abstraction S from Equation (8.3) is 
used to calculate the final GFFG values
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where Q is the threshold runoff and P is precipitation. The equation must 
be solved for P because it is the final gridded flash flood guidance value 
(Schmidt et al. 2007).

Although assessments by Gourley et al. (2012) over the ABRFC and Clark 
et al. (2014) over the United States found little skill improvement in GFFG com-
pared with older legacy methods of producing flash flood guidance, GFFG is 
able to resolve small-scale details that LFFG cannot. Most importantly, GFFG 
is produced at spatial scales appropriate for most flash flooding events.

8.6 Comments on the Use of Flash Flood Guidance

Documentation of updates and changes to flash flood guidance is scarce. 
Because of this, local forecasters have at times undertaken their own 
modifications of and alterations to the product. One of the most common 
involves manually lowering the guidance values over known urbanized 
areas, as needed. Other modifications involve creating smaller subdivided 
basins from the original National Basin Delineation Project basins. Davis 
(2004) explains that some flash flood guidance methods make questionable 
assumptions. In particular, the rainfall-runoff models run in scenario mode 
assume that rainfall is equally distributed in space and time. Additionally, 
the small natural streams modeled FFG are assumed, in some methods, to be 
at a low-flow condition at the start of a particular FFG issuance. Of course, if 
the streams already have some amount of water contained within them, FFG 
will overestimate the amount of rainfall required to induce flash flooding.

The division of flash flood forecasting responsibilities between the regional 
and local forecasters has resulted in a situation in which regular rigorous 
evaluation of flash flood guidance is extremely difficult. Gourley et al. (2012) 
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and Clark et  al. (2014) have completed objective evaluation of flash flood 
guidance skill regionally and nationally, respectively. Schmidt et al. (2007) 
and Smith (2003) conducted case-by-case evaluations of their FFG modifica-
tions prior to the deployment of GFFG and FFPI, respectively. Other case 
evaluations of the product exist in the literature and most of these recognize 
the need for significant modifications to the FFG methodology. Figure  8.4 
shows how the current patchwork of methods results in different FFG values 
from RFC to RFC. For all these reasons, caution is warranted when heavily 
using flash flood guidance information to issue flash flood warnings and 
other products.

8.7 Threshold Frequency Approach

Because flash flooding occurs at small spatial and temporal scales, attempts to 
directly model flows on high-resolution grids have been recently been made. 
One of proposed methods is known as DHM-TF (Distributed Hydrologic 
Modeling—Threshold Frequency) (Reed et al. 2007). The general concept of 
DHM-TF is similar to FFG; flood forecasts at all grid cells (including ungauged 
locations) are desired (Cosgrove et al. 2010). However, rather than using a 

189 mm

5 mm

1-hr FFG, valid 19 Aug 2007 06 UTC

FIGURE 8.4
National mosaic of flash flood guidance valid at 06 UTC on August 19, 2007.
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rainfall-runoff model in scenario mode, DHM-TF requires a hydrologic 
model to be run in direct forward simulation mode. In other words, rather 
than iterating through rainfall scenarios and  determining which depth/
duration induces bankfull conditions on small streams, observed precipita-
tion estimates (QPE) are used as input to a hydrologic model. The model then 
outputs discharge (or streamflow) at each grid cell. Because most of the grid 
cells will be ungauged, the raw streamflow outputs from the model have to 
be characterized in terms of their potential to cause flooding. Typically this 
is done by running the same hydrologic model over a lengthy period and 
then obtaining a distribution of past simulated flows at each grid cell. Then 
as the model runs forward in time, in forecast mode, the streamflow output 
can be compared to the historical distribution at that grid cell to determine 
how potentially severe the flooding impacts might be.

DHM-TF has several advantages over flash flood guidance, including 
increased resolution. A distributed hydrologic model can be run on almost 
any grid mesh, assuming precipitation, DEM, and other input data are avail-
able at reasonably similar resolutions. With the right amount of computing 
power, DHM-TF can provide much more frequent updates than flash flood 
guidance, as well. Every time new precipitation data are available (in the 
United States, at least every five minutes, and potentially more frequently 
with the new MRMS system), the model can be rerun. Of course, computa-
tional speed dictates how quickly new streamflow estimates will be  available 
after a particular model run. This represents a significant advantage over the 
four times daily or once daily updates that are the current standard in the 
FFG system (Cosgrove et  al. 2010). Unlike with GFFG, the use of a direct 
simulation in DHM-TF allows for water to be transferred from grid cell to 
grid cell using the model’s built-in routing (if such capability is available) 
(Reed 2008). Any  distributed hydrologic model can be used to complete the 
DHM-TF method; the prototype described by Reed et al. (2007), Cosgrove 
et al. (2010), and others uses the HL-RDHM model. Recall that parameters 
from HL-RDHM are used to derive GFFG as well. The most significant 
improvement over flash flood guidance, however, is that DHM-TF requires 
only the simulation of the relative importance of events. In other words, as 
long as the model correctly (or  nearly correctly) places a particular event 
within historical context, the exact streamflow amount from the model is 
unimportant.

Gourley et al. (2014) showed that, for certain cases in the south central 
United States, the skill of the DHM-TF method exceeded that of legacy 
lumped flash flood guidance as well as the newer GFFG methodology. Their 
method used a different hydrologic model to generate streamflow out-
puts: CREST (Coupled Routing and Excess STorage). The CREST model is a 
joint venture of the University of Oklahoma and the National Aeronautics 
and Space Administration (NASA) (Wang et al. 2011). CREST also under-
pins a preoperational suite of DHM-TF products called FLASH (Flooded 
Locations and Simulated Hydrographs). The FLASH project is housed by 
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the University of Oklahoma and the National Severe Storms Laboratory 
and is anticipated to be available to National Weather Service forecasters in 
2016. FLASH consists of a distributed hydrologic model (CREST) running 
at 10 min and 1 km resolution over the conterminous United States. The 
model is forced with precipitation estimates from NSSL’s MRMS project, 
discussed in detail in Chapter 4. Currently, this QPE is fed to the model, at 
which point the model assumes no further precipitation occurs. The model 
runs forward in time 6 hrs; the maximum streamflow in each grid cell 
over that 6 hr period is converted to a return period. The return period is 
determined from a Log-Pearson Type  III distribution (Pearson 1895) that 
consists of the maximum annual flows or partial duration series at each 
grid cell from 2002 to 2012. Those maximum annual flows were in turn 
found after running the model in hindcast mode forced by Stage IV (Lin 
2007) precipitation estimates. An example of a regional FLASH grid is pre-
sented in Figure 8.5.

Given flash flood guidance limitations and advanced age, distributed 
hydrologic models that are forced with observed or forecast rainfall (rather 
than rainfall scenarios) are expected to gradually become the central way 
of forecasting and monitoring flash flood events in the United States and 
beyond. The same methodology is also evolving in other countries with 

0 – 1
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2.1 – 3

Maximum Stream�ow Return Period (FLASH)
31 May 2013 22z – 01 June 2013 12z

3.1 – 5
5.1 – 10
10.1 – 50
50.1 – 200 years

FIGURE 8.5
Example of a FLASH maximum return period forecast from May 31, 2013–June 1, 2013.
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well-established weather radar networks. As the skill of numerical weather 
prediction improves, hydrologic models may eventually be forced with quan-
titative precipitation forecasts, which would allow for flash flood  forecasts 
far in excess of the six hours currently available in FLASH. This would also 
improve the coupling of atmospheric and land-surface knowledge required 
to produce high-quality forecasts of flash flooding.

Problem Sets

QUALITATIVE PROBLEMS

 1. Compare and contrast gridded flash flood guidance and lumped 
flash flood guidance.

 2. What are some of the advantages and disadvantages of all types of 
flash flood guidance?

 3. How can DHM-TF and FLASH improve upon flash flood guidance?
 4. What types of meteorological factors contribute to flash flooding?

QUANTITATIVE PROBLEMS

 1. You are forecasting flash floods for an area consisting mostly of dirt 
roads where the soil belongs to hydrologic soil group C, according 
to the NRCS. This yields a curve number of 87. The soil in this area is 
40% saturated. Determine the soil moisture adjusted curve number.

 2. Using the information from the previous problem, and for a stream 
with a threshold runoff of 3.0 inches (76 mm), determine the gridded 
flash flood guidance for this grid cell.

 3. Using Figure  8.3, for a basin with a threshold runoff of 2.5 in. 
(63.5 mm) and with 60% saturated soils, determine the flash flood 
guidance value.

 4. Using the National Weather Service’s default Z–R relationship, deter-
mine the rainfall rate corresponding to a radar reflectivity factor of 
50 dBZ (100,000 Z). How much rainfall occurs over a 3 hr period? 
If the 3 hr flash flood guidance is 2.5 inches (63.5 mm), what is the 
precipitation to FFG ratio?
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excellent knowledge of radar technology by the authors permits an adequate 
coverage of the principles of rainfall rate estimation by radar, their hydrological 
background allows them to provide a unique message on the bene�ts (and on the 
remaining challenges) in exploiting radar techniques in hydrology. … In a clear 
and concise manner, the book combines topics from different scienti�c disciplines 
into a uni�ed approach aiming to guide the reader through the requirements, 
strengths, and pitfalls of the application of radar technology in hydrology—mostly 
for �ood prediction. Chapters include excellent discussion of theory, data analysis, 
and applications, along with several cross references for further review and 
useful conclusions."

—Marco Borga, University of Padova, Italy

Radar Hydrology: Principles, Models, and Applications provides graduate 
students, operational forecasters, and researchers with a theoretical frame-
work and practical knowledge of radar precipitation estimation. The only 
text on the market solely devoted to radar hydrology, this comprehensive 
reference:

• Begins with a brief introduction to radar
• Focuses on the processing of radar data to arrive at accurate 

estimates of rainfall
• Addresses advanced radar sensing principles and applications
• Covers radar technologies for observing each component of 

the hydrologic cycle
• Examines state-of-the-art hydrologic models and their inputs, 

parameters, state variables, calibration procedures, and outputs
• Discusses contemporary approaches in data assimilation
• Concludes with methods, case studies, and prediction system design

Flooding is the #1 weather-related natural disaster worldwide. Radar 
Hydrology: Principles, Models, and Applications aids in understanding 
the physical systems and detection tools, as well as designing prediction 
systems.
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