Springer Texts in Statistics |

Mervyn G. Marasinghe
Kenneth J. Koehler

Intermediate Statistical Methods

Second Edition

EXTRAS ONLINE @)\ Springer

Springer Texts in Statistics

Series Editors

R. DeVeaux
S.E. Fienberg
I. Olkin

More information about this series at http://www.springer.com/series/417

http://www.springer.com/series/417

Mervyn G. Marasinghe * Kenneth J. Koehler

Statistical Data Analysis
Using SAS

Intermediate Statistical Methods

Second Edition

@ Springer

Mervyn G. Marasinghe Kenneth J. Koehler

Department of Statistics Department of Statistics
Iowa State University Towa State University
Ames, IA, USA Ames, IA, USA

Additional material to this book can be downloaded from http://extras.springer.com.

ISSN 1431-875X ISSN 2197-4136 (electronic)
Springer Texts in Statistics
ISBN 978-3-319-69238-8 ISBN 978-3-319-69239-5 (eBook)

https://doi.org/10.1007/978-3-319-69239-5
Library of Congress Control Number: 2017959325

The program code and output for this book was generated using SAS software, Version 9.4 of the SAS
System for Windows. Copyright © 2002-2017 SAS Institute Inc. SAS and all other SAS Institute Inc.
product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA.

Ist edition: (C) Springer Science+Business Media, LLC 2008

2nd edition: (C) Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG part

of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-69239-5

To the memory of my father
and gratefully to my mother

and to my loving family Sumi, Kevin,
and Neal
— M.G.M.

To my incredible wife, Michelle,
and our children and their famailies

— K.J.K.

Preface

One of the hazards of writing a book based on a software system is that the release
of a newer version of the software on which the book is based may supersede the
appearance of the book in print. This happened to the authors with the publication of
the earlier edition of this book. However, with a large and well-developed software
system like SAS, this is not really an issue, particularly for the beginning user. Be-
cause of its complexity and the availability of a variety of analytical tools, the task
of learning SAS and then mastering it for everyday use for data analysis has become
a long-term project. That is what we found with the earlier edition. Although it was
based on SAS Version 9.1, we find that the earlier version is still in use today partic-
ularly as a reference and also by international SAS users to whom a later version of
SAS may not be available. The new edition is based on the current version of SAS,
Version 9.4, although it was released almost 4 years ago.

As discussed in the preface of the first edition, the aim of this book is to teach
how to use the SAS software system for statistical analysis of data. While the book
is intended to be used as a textbook in a second course in statistical methods taught
primarily to advanced undergraduates in statistics and graduate students in many
other disciplines that involve the use of statistics for data analysis, it would be a
valuable source of information for researchers in the academic setting as well as
professionals in the industry and business that use the SAS system in their work.
In particular, data analysis has become an important tool in the general area of data
science now being offered as a separate area of study.

The style of presentation of material in the revised book is the same as before:
introduction of a brief theoretical and/or methodological description of each topic
under discussion including the statistical model used if applicable and presentation
of a problem as an application, followed by a SAS analysis of the data provided and
a discussion of the results.

The primary reason for planning this revision is the fact that SAS has made a
large number of changes beginning with SAS Version 9.2, as well as the introduction
of a new system of statistical graphics that essentially replaced the SAS/GRAPH
system that existed prior to that version. This necessitated modifications to most of

VII

VIII Preface

the SAS programs used in the book as well as the rewriting of an entire chapter. The
second reason was the incorporation of the ODS system for managing the tabular and
graphical output produced from SAS procedures. Not only did this require the repro-
duction of all output presented in the older version of the textbook, it also required
adding additional textual material explaining these changes and the new commands
that were required to use the new facility.

This book is intended for use as the textbook in a second course in applied statis-
tics that covers topics in multiple regression and analysis of variance at an intermedi-
ate level. Generally, students enrolled in such courses are primarily graduate majors
or advanced undergraduate students from a variety of disciplines. These students typ-
ically have taken an introductory-level statistical methods course that requires the use
of a software system such as SAS for performing statistical analysis. Thus, students
are expected to have an understanding of basic concepts of statistical inference such
as estimation and hypothesis testing when they begin on a course based on this book.

While the same approach that was used in the first edition is continued, we have
rewritten material in almost every chapter; added new examples; completely replaced
a chapter; added a new chapter based on SAS procedures for the analysis of nonlinear
and generalized linear models; updated all SAS output, including graphics, that ap-
pears in the previous version; added more exercise problems to several chapters; and
included completely new material on SAS templates in the appendix. These changes
necessitated the book to be lengthened by about 200 pages.

We started with a more gentle introductory example but proceed quickly to
present more advance material and techniques, especially concerning the SAS data
step. Important features such as data step programming, pointers, and line-hold spec-
ifiers are described in detail. Chapter 3 which originally contained descriptions of
how to use the SAS/GRAPH package was completely rewritten to describe new Sta-
tistical Graphics (SG) procedures that are based on ODS Graphics.

The basic theory of statistical methods covered in the text is discussed briefly and
then is extended beyond the elementary level. Particular attention has been given to
topics that are usually not included in introductory courses. These include discussion
of models involving random effects, covariance analysis, variable subset selection
methods in regression methods, categorical data analysis, graphical tools for residual
diagnostics, and the analysis of nonlinear and generalized linear models. We provide
just sufficient information to facilitate the use of these techniques without burgeoning
theoretical details. A thorough knowledge of advanced theoretical material such as
the theory of the linear model or the theory of maximum likelihood estimation is
neither assumed nor required to assimilate the material presented.

SAS programs and SAS program outputs are used extensively to supplement
the description of the analysis methods. Example data sets are taken from the areas
of biological and physical sciences and engineering. Exercises are included in each
chapter. Most exercises involve constructing SAS programs for the analysis of given
observational or experimental data. Complete text files of all SAS examples used in
the book can be downloaded from the Springer website for this book. Text versions
of all data sets used in examples and exercises are also available from the website.
Statistical tables are not reprinted in the book.

Preface X

The first author has taught a one-semester course based on material from this
book for many years. The coverage depends on the preparation and maturity level
of students enrolled in a particular semester. In a class mainly composed of graduate
students from disciplines other than statistics, with adequate knowledge of statisti-
cal methods and the use of SAS, the instructor may select more advanced topics for
coverage and skip most of the introductory material. Otherwise, in a mixed class of
undergraduate and graduate students with little experience using SAS, the coverage
is usually 5 weeks of introduction to SAS, 5 weeks on regression and graphics, and
5 weeks of ANOVA applications. This amounts to approximately 60% of the mate-
rial in the textbook. The structure of sections in the chapters facilitates this kind of
selective coverage.

The first author wishes to thank Professor Kenneth J. Koehler, the former chair
of the Department of Statistics at lowa State University, for agreeing to be a coauthor
of this book and also to write Chap. 7. He has taught several courses based on the
material for that chapter, and some of the examples are taken from his consulting
projects.

Mervyn G. Marasinghe

Associate Professor Emeritus

Department of Statistics

Towa State University, Ames, IA 50011, USA

Kenneth J. Koehler

Professor

Department of Statistics

Towa State University, Ames, IA 50011, USA

©2014 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
part of this work may be reproduced in any form without the written permission of
SPRINGER SCIENCE+BUSINESS MEDIA, LLC.

Contents

1 Introduction to the SAS Language 1
1.1 IntroduCtioniiniii ittt

1.2 Basic Language: A Summary of Rules and Syntax 8

1.3 Creating SASDataSets 13

1.4 The INPUT Statementiuiiiininrnenananann. 16

1.5 SAS Data Step Programming Statements and Their Uses 21

1.6 Data Step Processing.ouuviiniiine i, 31

1.7 More on INPUT Statement.uuriinninnienennnnn.. 39

1.7.1 Useof Pointer Controls, 39

1.7.2 The trailing @ Line-Hold Specifier................... 41

1.7.3 The trailing @@ Line-Hold Specifier.................. 43

1.7.4 Use of RETAIN Statement 44

1.7.5 The Use of Line Pointer Controls 46

1.8 Using SAS Proceduresc.ooiuuiiiiniiinniinenn... 48

1.9 EXeICISES .o ititi ittt e e 59

2 More on SAS Programming and Some Applications................ 69

2.1 More on the DATA and PROC Steps. ..., 69

2.1.1 Reading Datafrom Files 70

2.1.2 Combining SASData Sets. ..., 72

2.1.3 Saving and Retrieving Permanent SAS Data Sets.......... 78

2.1.4 User-Defined Informats and Formats 82

2.1.5 Creating SAS Data Sets in Procedure Steps 89

2.2 SAS Procedures for Descriptive Statistics 94

2.2.1 The UNIVARIATE Procedure.......................... 98

222 TheFREQProcedure...........covuiiiiiniinennn... 105

2.3 Some Useful Base SAS Procedures............................ 122

2.3.1 The TABULATE Procedurecc... ... 122

2.3.2 The REPORT Procedure 129

2.4 EXEICISES ..ottt 139

XII

Contents
Introduction to SAS Graphics 147
3.1 Introduction 147
3.2 Template-Based Graphics (SAS/ODS Graphics) 151
3.3 SAS Statistical Graphics Procedures........................... 155
3.3.1 The SGPLOT Procedureccoooiiiii... 156
3.3.2 The SGPANEL Procedure, 173
3.3.3 The SGSCATTER Procedure 182
3.4 ODS Graphics from Other SAS Procedures 186
3.5 EXEICISES ..ttt ettt 193
Statistical Analysis of Regression Models 199
4.1 An Introduction to Simple Linear Regression 199
4.1.1 Simple Linear Regression Using PROCREG............. 201
412 Lackof FitTest....... 207
4.1.3 Diagnostic Use of Case StatisticS 208
4.1.4 Prediction of New y Values Using Regression 217
4.2 An Introduction to Multiple Regression Analysis 221
4.2.1 Multiple Regression Analysis Using PROCREG. 225
4.2.2 Case Statistics and Residual Analysis 231
423 Residual Plots 236
4.2.4 Examining Relationships Among Regression Variables 243
4.3 Types of Sums of Squares Computed in PROCREG 248
4.3.1 Model Comparison Technique and Extra Sum of Squares ... 248
4.3.2 Types of Sums of Squaresin SAS 250
4.4 Subset Selection Methods in Multiple Regression................ 254
4.4.1 Subset Selection Using PROCREG..................... 261
4.4.2 Other Options Available in PROC REG for Model
Selectiont 272
4.5 Model Selection Using PROC GLMSELECT: Validation and
Cross-Validation i 273
4.6 EXEICISES ..ttt 282
Analysis of Variance Models. 301
5.1 Introductioniiiiii 301
5.1.1 Treatment StruCtureoouuieennneenneenn.n. 304
5.1.2 Experimental Designscooiiiiiiiiiiiian. 305
5.1.3 LinearModels.ttt 306
5.2 One-Way Classificationciiiiiiiiiineneenn.. 308
5.2.1 Using PROC ANOVA to Analyze One-Way
Classificationso vttt e 317
5.2.2 Making Preplanned (or A Priori) Comparisons Using
PROCGLM i e 325
5.2.3 Testing Orthogonal Polynomials Using Contrasts 331
5.3 One-Way Analysis of Covarianceouuveeuneenn.. 337

5.3.1 Using PROC GLM to Perform One-Way Covariance
ANalysiS. ..ottt 339

Contents

5.3.2 One-Way Covariance Analysis: Testing for Equal
SIOPeS .ttt
5.4 A Two-Way Factorial in a Completely Randomized Design
5.4.1 Analysis of a Two-Way Factorial Using PROC GLM
5.4.2 Residual Analysis and Transformations..................
5.5 Two-Way Factorial: Analysis of Interaction.....................
5.6 Two-Way Factorial: Unequal Sample Sizes
5.7 Two-Way Classification: Randomized Complete Block Design.
5.7.1 Using PROC GLM to AnalyzeaRCBD
5.7.2 Using PROC GLM to Test for Nonadditivity
5.8 EXEICISES vttt e

Analysis of Variance: Random and Mixed Effects Models.
6.1 Introduction i il
6.2 One-Way Random Effects Model
6.2.1 Using PROC GLM to Analyze One-Way Random Effects
ModelS. . ..o
6.2.2 Using PROC MIXED to Analyze One-Way Random
Effects Models i,
6.3 Two-Way Crossed Random Effects Model
6.3.1 Using PROC GLM and PROC MIXED to Analyze
Two-Way Crossed Random Effects Models
6.3.2 Randomized Complete Block Design: Blocking When
Treatment Factors Are Random
6.4 Two-Way Nested Random Effects Model.......................
6.4.1 Using PROC GLM to Analyze Two-Way Nested Random
Effects Modelsoo oo,
6.4.2 Using PROC MIXED to Analyze Two-Way Nested
Random Effects Models.ooouin.
6.5 Two-Way Mixed Effects Model,
6.5.1 Two-Way Mixed Effects Model: Randomized Complete
Block Designiiiiiiii
6.5.2 Two-Way Mixed Effects Model: Crossed Classification
6.5.3 Two-Way Mixed Effects Model: Nested Classification
6.6 Models with Random and Nested Effects for More Complex
EXperiments
6.6.1 Models for Nested Factorials
6.6.2 Models for Split-Plot Experiments
6.6.3 Analysis of Split-Plot Experiments Using
PROCGLM
6.6.4 Analysis of Split-Plot Experiments Using PROC MIXED ..
6.7 EXEICISES .ttt ettt e

XIII

X1V Contents

7 Beyond Regression and Analysis of Variance 529
7.1 IntroduCtionuuiiii 529
7.2 Nonlinear Models oo 529
7.2.1 Introduction...............iiiiiiii i 529
7.22 GrowthCurve Models oan. 531
7.2.3 Pharmacokinetic Application of a Nonlinear Model 537
7.2.4 A Model for Biochemical Reactions 543
7.3 Generalized Linear Models, 549
7.3.1 Introduction...............o i 549
7.3.2 Logistic Regressioncoiiiiiiiiiinn... 552
7.3.3 Poisson Regression................... i 569
7.4 Generalized Linear Models with Overdispersion. 074
7.4.1 Introduction..............oiiiiiiiiiiiiii i, 574
7.4.2 Binomial and Poisson Models with Overdispersion 576
7.4.3 Negative Binomial Models 582
7.5 Further Extensions of Generalized Linear Models 587
7.5.1 Introduction.ooeuniiinnin i 587
7.5.2 Poisson Regression with Rates 588
7.5.3 Logistic Regression with Multiple Response

CatEZOTICS .+ . v vt vttt et et e et e e e e 598
7.6 EXEICISES ..ottt e 612
Appendix A SAS Templates i 621
Al IntroduCtionoouui it e 621
A.1.1 What Are Templates?.......... 621
A.1.2 Where Are the SAS Default Templates Located? 624
A.1.3 More on Template Stores.c.c.uuuuuuununnnnnn. 627
A.2 Templates and Their Composition.c..ooovveiennneo... 628
A2.1 Style Templatesoouniiiniiine i 630
A.2.2 Style Elements and Attributes, 631
A.23 Tabular Templates 633
A.2.4 Simple Table Template Modification 635
A.2.5 Other Types of Templatesccouiiuinnnnnn. 637
A.3 Customizing Graphs by Editing Graphical Templates............. 638

A.4 Creating Customized Graphs by Extracting Code from Standard
Graphical Templates i 641
Appendix B Tables 645
References 671

®

Check for
updates

1

Introduction to the SAS Language

1.1 Introduction

The SAS system is a computer package program for performing statistical
analysis of data. The system incorporates data manipulation and in-
put/output capabilities as well as an extensive collection of procedures
for statistical analysis of data. The SAS system achieves its versatility by
providing users with the ability to write their own program statements to ma-
nipulate data as well as call up SAS routines called procedures for performing
major statistical analysis on specified data sets. The user-written program
statements usually perform data modifications such as transforming values
of existing variables, creating new variables using values of existing variables,
or selecting subsets of observations. The statements and the syntax available
to perform these manipulations are quite extensive so that these comprise an
entire programming language. Once data sets have thus been prepared, they
are used as input to statistical procedures that performs the desired analysis
of the data. SAS will perform any statistical analysis that the user correctly
specifies using appropriate SAS procedure statements.

When SAS programs are run under the SAS windowing environment, the
source code is entered in the SAS Program FEditor window and submitted
for execution. A Log window which shows the details of execution of the
SAS code and an Qutput window which shows the results are also parts of
this system. Traditionally, results of a SAS procedure were displayed in the
output window in the 1isting format using monospace fonts with which users
of SAS in its previous versions are more familiar. SAS provides the user the
ability to manage where (the destination) and in what format the output is
produced and displayed, via the SAS Output Delivery System (ODS). For
example, output from executing a SAS procedure may be directed to a pdf or
an html formatted file, the content to be included in the output selected and

(© Springer International Publishing AG, part of Springer Nature 2018 1
M. G. Marasinghe, K. J. Koehler, Statistical Data Analysis Using SAS,
Springer Texts in Statistics, https://doi.org/10.1007/978-3-319-69239-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69239-5_1&domain=pdf
https://doi.org/10.1007/978-3-319-69239-5_1

2 1 Introduction to the SAS Language

formatted by the user to produce a desired appearance (called an ODS style).
Thus ODS allows the user the flexibility in presenting the output from SAS
procedures in a style of user’s own choice. Beginning with SAS Version 9.3,
instead of routing the output to a 1isting destination in the output window,
SAS windowing system is set up by default to use an html destination and for
the resulting html file to be automatically displayed using an internal browser.
The user may modify these default settings by selecting Tools = Options
= Preferences from the main menu system on the SAS window. Figure 1.1
shows the default settings under the Results tab of the Preferences window.

=

Preferences ®
| General | View | Edt | Results |\web | Advanced|
Listing
| Create listing
HTML
/| Create HTML
Broy
[¥] Use WORK folder
Style: Himiblue -

Results options

| Wiew results as they are generated V' Use ODS Graphics

Wiew results using: Intemal Browser -]

[ok][cancel |[Hep |

Fig. 1.1. Screenshot of the results tab on the preferences dialog box

Note the check boxes that are selected on this dialog. Thus the creation of
html output is enabled by default, while the creation of the 1isting output
is not. Also note that the style selected (from a drop-down list) is Htmlblue,
the default style associated with the html destination. An ODS style is a
description of the appearance and structure of tables and graphs in the ODS
output and how these are integrated in the output and is specified using a
style template. The Htmlblue style is an all-color style that is designed to
integrate tables and statistical graphics and present these as a single entity.
Note that the Use 0DS Graphics box is checked meaning that the creation of
ODS Graphics, the functionality of automatically creating statistical graphics,
is also enabled. This is equivalent to including a ODS Graphics On statement
within the SAS program, whenever ODS Graphics are to be produced by
default or as a result of a user request initiated from a procedure that supports
ODS Graphics. The following example illustrates the default ODS output
produced by SAS.

1.1 Introduction 3

data biology;
input Id Sex $ Age Year Height Weight;
BMI=703*Weight/Height**2;

datalines;
7389 M 24 4 69.2 132.5
3945 F 19 2 58.5 112.0
4721 F 20 2 65.3 98.6
1835 F 24 4 62.8 102.5
9541 M 21 3 72.5 152.3
2957 M 22 3 67.3 145.8
21568 F 21 2 59.8 104.5
4296 F 25 3 62.5 132.5
4824 M 23 4 T74.5 184.4
5736 M 22 3 69.1 149.5
8766 F 19 1 67.3 130.5
5734 F 18 1 64.3 110.2
4529 F 19 2 68.3 127.4
8341 F 20 3 66.5 132.6
4672 M 21 3 72.2 150.7
4823 M 22 4 68.8 128.5
5639 M 21 3 67.6 133.6
6547 M 24 2 69.5 155.4
8472 M 21 2 76.5 205.1
6327 M 20 1 70.2 135.4
8472 F 20 4 66.8 142.6
M 20 1 74.2 160.4

4875
proc means data=biology mean std min max maxdec=3;
class Sex;
var BMI;

title "Biology class: BMI Statistics by Gender";
run;

Fig. 1.2. Illustrating ODS output

An Introductory SAS Program

The SAS code displayed in Fig.1.2 is used here to give the reader a quick
introduction to a complete SAS program. The raw data consists of values for
several variables measured on students enrolled in an elementary biology class
at a college during a particular semester. In this program an input statement
reads raw data from data lines embedded in the program (called instream
data) and creates a SAS data set named biology.

The list input style used in this program scans the data lines to ac-
cess values for each of the variables named in the input statement. No-
tice that the data values are aligned in columns but also are separated by
(at least) one blank. The “$” symbol used in the input statement indicates
that the variable named Sex contains character values. The SAS expression
703xWeight/Height*#*2 calculates a new value using the values of the two
variables Weight and Height obtained from the current data line being pro-
cessed and assigns it to a (newly created) variable named BMI representing
the body mass index of the individual (the conversion factor 703 is required
as the two variables Weight and Height were not recorded in metric units
as needed by the definition of body mass index). Once the SAS data set is
created and saved in a temporary folder, the SAS procedure named MEANS

4 1 Introduction to the SAS Language

is used to produce an analysis containing some statistics for the new variable
BMI separately for the females and males in the class. Figure 1.3 displays a
reproduction of the default html output displayed by the Results Viewer in
SAS and illustrates the Htmlblue style.

Biology class: BMI Statistics by Gender

The MEANS Procedure

Analysis Variable : BMI

N
Sex | Obs | Mean | Std Dev | Minimum | Maximum
F 10 | 20.366 2.341 16.256 23.846
M 12 | 21.236 1.775 19.085 24.638

Fig. 1.3. ODS output

In most of the SAS examples used in this book, the pdf-formatted ODS
version of the resulting output will be used to display the output. An ODS
statement (not shown in all SAS programs) will be used to direct the output
produced to a pdf destination. Note carefully that since the destination is
different from html, the output produced is in a different style than Htmlblue;
that is, the output is formatted for printing rather than for being displayed
in a browser window.

An alternative way of running SAS programs for producing ODS-formatted
output is to use the SAS Enterprise Guide (SAS/EG). SAS/EG is a point-
and-click interface for managing data, performing a statistical analysis, and
generating reports. Behind the scenes, SAS/EG generates SAS programs that
are submitted to SAS, and the results returned back to SAS/EG. Since the
focus of this book is SAS programming, general instructions on how to use
SAS/EG is not discussed here. However, SAS/EG includes a full programming
interface that uses a color-coded, syntax-checking SAS language editor that
can be used to write, edit, and submit SAS programs and is available to SAS
programmers as an alternative to using the SAS windowing environment.
Further, the output in SAS/EG is automatically produced in ODS format,
and the user can select options for the output to be directed to a destination
such as a pdf or an html file.

Most statistical analysis does not require knowledge of the considerable
number of features available in the SAS system. However, even a simple anal-
ysis will involve the use of some of the extensive capabilities of the language.
Thus, to be able to write SAS programs effectively, it is necessary to learn at
least a few SAS statement structures and how they work. The following SAS
program contains features that are common to many SAS programs.

1.1 Introduction 5
SAS Example Al

The data to be analyzed in this program consist of gross income, tax, age,
and state of individuals in a group of people. The only analysis required is
to obtain a SAS listing of all observations in the data set. The statements
necessary to accomplish this task are given in the program for SAS Example
A1 shown in Fig.1.4.

data first ;
input (Income Tax Age State) (@4 2%5.2 2. $2.);
datalines ;[H
123546750346535IA
234765480895645IA
348578650595431TA
345786780576541NB
543567511268532IA
231785870678528NB
356985650756543NB
765745630789525TA
865345670256823NB
786567340897534NB
895651120504545IA
785650750654529NB
458595650456834IA
345678560912728NB
346685960675138IA
546825750562527IA

proc print ;
title ‘SAS Listing of Tax data’;
run;

Fig. 1.4. SAS Example Al: program

In this program those lines that end with a semicolon can be identified
as SAS statements. The statements that follow the data first; statement
up to and including the semicolon appearing by itself in a line signaling the
end of the lines of data, cause a SAS data set to be created. Names for
the SAS variables to be created in the data set and the location of their
values on each line of data are specified in the input statement. The raw
data are embedded in the input stream (i.e., physically inserted within the
SAS program) preceded by a datalines; statement. The proc print;
performs the requested analysis of the SAS data set created, namely, to print
a listing of the entire SAS data set.

As observed in the SAS Example A1, SAS programs are usually made up
of two kinds of statements:

e Statements that lead to the creation of SAS data sets
e Statements that lead to the analysis of SAS data sets

The occurrence of a group of statements used for creating a SAS data set
(called a SAS data step) can be recognized because it begins with a data

6 1 Introduction to the SAS Language

statement BJ, and a group of statements used for analyzing a SAS data set
(called a SAS proc step) can be recognized because it begins with a proc
statement B}. There may be several of each kind of these steps in a SAS pro-
gram that logically defines a data analysis task.

SAS interprets and executes these steps in their order of appearance in a
program. Therefore, the user must make sure that there is a logical progression
in the operations carried out. Thus, a proc step must follow the data step
that creates the SAS data set to be analyzed by that proc step. Although
statements in a data step are executed sequentially, in order that computations
are carried out on the data values as expected, statements within the step
must also satisfy this requirement, in general, except for certain declarative
or nonezecutable statements. For example, an input statement that defines
variables must precede executable SAS statements, such as SAS programming
statements, that references those variable names.

One very important characteristic of the execution of a SAS data step is
that the statements in a data step are executed and an observation written
to the output SAS data set, repeatedly for every line of data input in cyclic
fashion, until every data line is processed. A detailed discussion of data step
processing is given in Sect. 1.6.

The first statement following the data statement P in the data step usually
(but not always) is an input statement, especially when raw data are being
accessed. The input statement used here is a moderately complex example
of a formatted input statement, described in detail in Sect.1.4. The symbols
and informats used to read the data values for the variables Income, Tax,
Age, and State from the data lines in SAS Example A1l and their effects are
itemized as follows:

@4 causes SAS to begin reading each data line at column 4.
2x5.2 reads data values for Income and Tax from columns 4-8 and 9-13,
respectively, using the informat 5.2 twice, that is, two decimal places are
assumed for each value.

e 2. reads the data value for Age from columns 14 and 15 as a whole number
(i.e., a number without a fraction portion) using the informat 2.

e 3$2. reads the data value for State from columns 16 and 17 as a character
string of length 2, using the informat $2.

A semicolon symbol “;” appearing by itself in the first column in a data line
signals the end of the lines of raw data supplied instream in the current data
step. On its encounter, SAS proceeds to complete the creation of the SAS data
set named first by closing the file. The proc print; B that follows the data
step signals the beginning of a proc step. The SAS data set processed in this
proc step is, by default, the data set created immediately preceding it (in this
program the SAS data set first was the only one created). Again, by default,
all variables and observations in the SAS data set will be processed in this
proc step.

The output from execution of the SAS program consists of two parts: the
SAS Log (see Fig.1.5), which is a running commentary on the results of ex-

1.1 Introduction 7

2 data first ;
3 input (Income Tax Age State) (@4 2%5.2 2. $2.);
4 datalines;

NOTE: The data set WORK.FIRST has 16 observations and 4 variables.
NOTE: DATA statement used (Total process time): [

real time 0.01 seconds
cpu time 0.01 seconds
21 g
22 proc print ;
23 title ’SAS Listing of Tax data’;
24 run;

NOTE: There were 16 observations read from the data set WORK.FIRST.
NOTE: The PROCEDURE PRINT printed page 1.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.03 seconds

cpu time 0.03 seconds

Fig. 1.5. SAS Example Al: log

ecuting each step of the entire program, and the SAS Output (see Fig.1.6),
which is the output produced as a result of the statistical analysis. In inter-
active mode under the SAS windowing environment, SAS will display these
in separate windows called the log and output windows. When the results of
a program executed in the batch mode are printed, the SAS log and the SAS
output will begin on new pages.

SAS Listing of Tax data

Obs | Income Tax | Age | State
1 546.75 | 34.65 35 | IA
2| 76548 | 89.56 45 | 1A
3| 578.65 | 59.54 31 |I1A
4| 786.78 | 57.65 41 | NB
5| 567.51 | 126.85 32 | 1A
6| 78587 | 67.85 28 | NB
7| 98565 | 75.65 43 | NB
8| 74563 | 78.95 25 | 1A
9| 34567 | 25.68 23 |NB

10| 567.34 | 89.75 34 |NB
1" 651.12 | 50.45 45 | 1A
12| 650.75 | 65.45 29 | NB
13| 595.65 | 45.68 34 | 1A
14| 67856 | 91.27 28 | NB
15| 68596 | 67.51 38 | 1A
16 | 825.75 | 56.25 27 | 1A

Fig. 1.6. SAS Example Al: pdf-formatted output

8 1 Introduction to the SAS Language

The SAS log contains error messages and warnings and provides other
useful information via NOTES). For example, the first NOTE in Fig. 1.5 indi-
cates that a work file containing the SAS data set created is saved in a system
folder and is named WORK.FIRST. This file is a temporary file because it will
be discarded at the end of the current SAS session.

The printed output produced by the proc print; statement appears in
Fig. 1.6. It contains a listing of data for all 16 observations and 4 variables in
the data set. By default, variable names are used in the SAS output to identify
the data values for each variable, and an observation number is automatically
generated that identifies each observation. Note also that the data values are
also automatically formatted for printing using default format specifications.
For example, values of both the income and Tax variables are printed correct
to two decimal places, those of the variable Age as whole numbers and those
of the variable State as a string of two characters. These are default formats
because it was not specified in the program how these values must appear in
the output.

1.2 Basic Language: A Summary of Rules and Syntax

Data Values

Data values are classified as either character values or numeric values. A
character value may consist of as many as 32,767 characters. It may include
letters, numbers, blanks, and special characters. Some examples of character
values are

MIG7, D’Arcy, 5678, South Dakota

A standard numeric value is a number with or without a decimal point that
may be preceded by a plus or minus sign but may not contain commas. Some
examples are

71, 0.0038, —4., 8214.7221, 8.546FE-2

Data values that are not one of these standard types (such as dates with
slashes or numbers with embedded commas) may be accessed using special
informats, which converts them to an internal value. These are stored then in
SAS data sets as character or numeric values as appropriate.

SAS Data Sets

SAS data sets consist of data values arranged in a rectangular array as dis-
played in Fig.1.7. Data values in a column represents a wvariable and those
in a row comprise an observation. In addition to the data values, attributes
associated with each variable, such as the name and type of a variable, are
also kept in the data descriptor part of the SAS data set. Internally, SAS data
sets have a special organization that is different from that of data sets created

1.2 Basic Language: A Summary of Rules and Syntax 9

Variables
!

Observations— data

values

Fig. 1.7. Structure of a SAS data set

using simple editing (e.g., ASCII or flat files). SAS data sets are ordinarily
created in a SAS data step and may be stored as temporary or permanent files.
SAS procedures can access data only from SAS data sets. Some procedures
are also capable of creating SAS data sets to save information computed as
results of an analysis.

Variables

Each column of data values in a SAS data set represents a SAS variable.
Variables are of two types: numeric or character. Values of a numeric variable
must be numeric data values, and those of a character variable must be char-
acter data values. A character variable can include values that are numbers,
but they are treated like any other sequence of characters. SAS cannot per-
form arithmetic operations on values of a character variable. Certain character
strings such as dates are usually converted and stored in a data set numeric
values using informats when those values are read from external data.

SAS variables have several attributes associated with them. The name of
the variable and its type are two examples of variable attributes. The other
attributes of a SAS variable include length (in bytes), relative position in the
data set, informat, format, and label. In addition to data values, attribute
information of SAS variables is also saved in a SAS data set (as part of the
descriptor information).

Observations

An observation is a group of data values that represent different measurements
on the same individual. “Individual” here can mean a person, an experimental
animal, a geographic region, a particular year, and so forth. Each row of data
values in a SAS data set may represent an observation. However, it is possible
for each observation in a SAS data set to be formed using data values obtained
from several input data lines.

10 1 Introduction to the SAS Language
SAS Names

SAS users select names for many elements in a SAS program, including vari-
ables, SAS data sets, statement labels, etc. Many SAS names can be up to 32
characters long; others are limited to a length of 8 characters. The first char-
acter in a SAS name must be an alphabetic character. Embedded blanks are
not allowed. Characters after the first can be alphabetic (upper or lowercase),
numeric, or the underscore character. SAS is not case sensitive, except inside
of quoted strings. However, SAS will remember the case of variable names
used when it displays them later, so it might be useful to capitalize the first
letter in variable names. Names beginning with the underscore character are
reserved for special system variables. Some examples of variable names are
H22A, RepNo, and Yield.

SAS Variable Lists

A list of SAS variables consists of the names of the variables separated by one
or more blanks. For example,

H22A RepNo Yield

A user may define or reference a sequence of variable names in SAS state-
ments by using an abbreviated list of the form

charsxx—-charsyy

where “chars” is a set of characters and the “xx” and “yy” indicate a sequence
of numbers. Thus, the list of indexed variables Q2 through Q9 may appear in
a SAS statement as

Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

or equivalently as Q2-Q9.

Using this form in an input statement implies that a variable correspond-
ing to each intermediate number in the sequence will be created in the SAS
data set and values for them therefore must be available in the lines of data.
For example, Var1-Var4 implies that Var2 and Var3 are also to be defined as
SAS variables.

Any subset of variables already in a SAS data set may be referenced,
whether the variable names are numbered sequentially or not, by giving the
first and last names in the subset separated by two dashes (e.g., Id--Grade).
To be able to do this, the user must make sure that the list of variables refer-
enced appears consecutively in the SAS data set. The lists Id-numeric-Grade
and Id-character-Grade, respectively, refer to the subsets of numeric and
character variables in the specified range.

1.2 Basic Language: A Summary of Rules and Syntax 11

SAS Statements

In every SAS documentation describing syntax of particular SAS statements,
the general form of the statement is given. In these descriptions, words in
boldface letters are SAS keywords. Keywords must be used exactly as they
appear in the description. SAS keywords may not be used as SAS names.
Words in lowercase letters specified in the general form of a SAS statement
describe the information a user must provide in those positions.

For example, the general form of the drop statement is specified as

DROP wariable-list;

To use this statement, the keyword drop must be followed by the names of the
variables that are to be omitted from a SAS data set. The variable-list may
be one or more variable names (or it may be in any form of a SAS variable
list); for example,

drop X Y2 Age; or drop Q1-Q9;

The individual statement descriptions indicate what information is optional,
usually by enclosing them in angled brackets < >; several choices are
indicated by the term <options>. Some examples are

OUTPUT <data-set-name(s)>;

FILENAME fileref <device-type><options>
<operating-environment-options>;

PROC MEANS <option(s)> <statistic-keyword(s)>;
VAR variable(s) </WEIGHT=weight-variable>) ;
CLASS variable(s) </option(s >) ;

Syntax of SAS Statements

Some general rules for writing SAS statements are as follows:

SAS statements can begin and end in any column.

SAS statements end with a semicolon.

More than one SAS statement can appear on a line.

SAS statements can begin anywhere on one line and continue onto any
number of lines.

e TItems in SAS statements should be separated from neighboring items by
one or more blanks. If items in a statement are connected by special sym-
bols such as +, —, /, *, or =, blanks are unnecessary. For example, in the
statement X=Y; no blanks are needed. However, the statement could also
be written in one of the forms X = Y; or X= Y; or X =Y;, all of which are
acceptable.

Statements beginning with an asterisk (*) are treated as comments. Multiple
comments may be enclosed within of a /* and a */ used at the beginning of a

12 1 Introduction to the SAS Language

new line. In general, SAS statements are used for data step programming or in
the proc step for specifying information to a SAS procedure. Other statements
are global in scope and can be used anywhere in a SAS program.

Missing Values

A missing value indicates that no data value is stored for the variable in the
current observation. Once SAS determines a value to be missing in the current
observation, the value of the variable for that observation will be set to the
SAS missing value indicator.

When inputting data, a missing numeric value in the data line can be
represented by blanks or a single period, depending on how the values on a
data line are input (i.e., what type of input statement is used; see below). A
missing character value in SAS data is represented by a blank character. SAS
also uses this representation when printing missing values of SAS variables.

SAS variables can be assigned a missing value by using statements such as
Score=. for numeric variables or Name=‘ ’ for a character variable. Similarly,
missing value can be used in comparison operations. For example, to check
whether a value of a numeric variable, say Age, is missing for a particular
observation and then to remove the entire observation from the data set, the
following SAS programming statement may be used:

if Age=. then delete;

When a missing value is used in an arithmetic calculation, SAS sets the result
of that calculation to a missing value. This is called missing value propaga-
tion. Several operations, such as dividing by a zero or numerical calculations
that result in overflow, automatically generate a missing value. In comparison
operations a numeric missing value is considered smaller than all numbers,
and a character missing value is smaller than any printable character value.

A special missing value can be used to differentiate among different cate-
gories of missing value by using the letters A—Z or an underscore. For example,
if a user wants to represent a special type of missing value by the letter A,
then the special missing value symbol . A is used to represent the missing value
both in the data line and in conditional and/or assignment statements. For
example, to process such a missing value a statement such as

if Score=.A then Score=0;

may be used.
SAS Programming Statements

SAS programming statements are erecutable statements used in data step
programming and are discussed in Sect.1.5. Other SAS statements such as
the drop statement discussed earlier are declarative (i.e., they are used to
assign various attributes to variables) and thus are nonexecutable statements.

1.3 Creating SAS Data Sets 13

These include data, datalines, array, label, length, format, informat, by, and
where statements.

1.3 Creating SAS Data Sets

Creating a SAS data set suitable for subsequent analysis in a proc step in-
volves the following three actions by the user:

a. Use the data statement to indicate the beginning of the data step and,
optionally, name the data set.

b. Use one of the statements input or set, to specify the location of the
information to be included in the data set.

c. Optionally, modify the data before inclusion in the data set by means of
user-written data step programming statements. Some of the statements
that could be used to do this are described in Sect. 1.5.

data first ;[H
input (Income Tax Age State) (@4 2%5.2 2. $2.);
datalines;
123546750346535I1A
234765480895645IA
348578650595431IA
345786780576541NB
543567511268532IA
231785870678528NB
356985650756543NB
765745630789525IA
865345670256823NB
786567340897534NB
895651120504545TA
785650750654529NB
458595650456834IA
345678560912728NB
346685960675138IA
546825750562527IA

H
data second;

set first;

if Age<35 & State=‘IA’;

run;

proc print;

title ‘Selected observations from the Tax data set’;
run;

Fig. 1.8. SAS Example A2: program

Note also that the statements set, merge, update, or modify statements may
also follow a data statement for creating a new SAS data set using vari-
ous methods of combining SAS data sets such as concatenating, interleaving,
merging, updating, and modifying. Some examples of these methods will be
provided in Chap.2. The basic use of the input and the set statements for

14 1 Introduction to the SAS Language

creating and modifying SAS data sets are discussed in this chapter. In this
section, the SAS data step is used for the creation of SAS data sets and
is illustrated by means of some examples. These examples are also used to
introduce some variations in the use of several related SAS statements.

SAS Example A2

In the program for SAS Example A2, shown in Fig. 1.8, two SAS data sets are
created in separate data steps. The first data set (named firstHl) uses data
included instream preceded by a datalines; statement, as in SAS Example
A1. The second data set (named second BJ) is created by extracting a subset of
observations from the existing SAS data setfirst. This is done in the second
step of the SAS program.

1 data first ;
input (Income Tax Age State) (04 2%5.2 2. $2.);
3] datalines;

N

NOTE: The data set WORK.FIRSTI has 16 observations and 4 variables.
NOTE: DATA statement used (Total process time):

real time 0.29 seconds

cpu time 0.01 seconds

20 8

21 data second;

22 set first;

23 if Age<35 & State=’IA’;
24 run;

NOTE: There were 16 observations read from the data set WORK.FIRST.
NOTE: The data set WORK.SECOND[J has 5 observations and 4 variables.
NOTE: DATA statement used (Total process time):

real time 0.01 seconds

cpu time 0.01 seconds

25 proc print;

NOTE: Writing HTML Body file: sashtml.htm

26 title ’Selected observations from the Tax data set’;
27 run;

NOTE: There were 5 observations read from the data set WORK.SECOND.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.98 seconds

cpu time 0.20 seconds

Fig. 1.9. SAS Example A2: log

In the second data step, a subset of observations from the SAS data set
first are used to create the new SAS data set named second. The observa-
tions that form this subset are those that satisfy the condition(s) in the if
data modification statement that follows the set statement. The input data
for this data step are already available in the SAS data set first which is
named in the set statement. Note that the if statement used here is of the

1.3 Creating SAS Data Sets 15

form if (expression);, where the expression is a SAS logical expression. As
will be discussed in detail in a later section, such expressions may have one
of two possible values: TRUE or FALSE. In this form of the if statement, the
resulting action is to write the current observation to the output SAS data set
if the expression evaluates to a TRUE value. The if statement, when present,
must follow the set statement. (As a rule, SAS programming statements fol-
low the input or the set statement in data steps.) Clearly, two data steps
and one proc step B can be identified in this SAS program.

The SAS log obtained from executing the SAS Example A2 program is
reproduced in Fig.1.9. Note carefully that this indicates the creation of two
temporary data sets: WORK.FIRSTEY and WORK.SECONDH. The output from
executing the SAS Example A2 program, shown in Fig.1.10, displays the
listing of the observations in the SAS data set named second because the
proc print; step, by default, processes the most recently created SAS data
set. It can be verified that these constitute the subset of the observations
in the SAS data set named first for which the values for the variable Age
are less than 35 and those for State are equal to the character string TA.
By executing this program, an ODS-formatted output is also obtained and is
displayed in Fig. 1.10. In many of the examples in the rest of this chapter, the
output displayed has been produced in the ODS format.

Selected observations from the Tax data set

Obs | Income Tax | Age | State
1 578.65 | 59.54 31 IA

567.51 | 126.85 32| IA

74563 | 78.95 25| 1A

595.65 | 45.68 34 | 1A

a|lbs w0 N

825.75 56.25 27 | IA
Fig. 1.10. SAS Example A2: pdf-formatted output

SAS Example A3

The SAS Example A3 program, shown in Fig.1.11, illustrates how the proc
step in SAS Example A2 can be modified to obtain the listing of the same
subset of observations without the creation of a new SAS data set. This is
achieved by the use of the where statement in the proc step. The where
statement [l is an example of a procedure information statement described in
Sect. 1.8.

16 1 Introduction to the SAS Language

data first ;
input (Income Tax Age State) (@4 2*%5.2 2. $2.);
datalines;
123546750346535IA
234765480895645IA
348578650595431IA
345786780576541NB
543567511268532IA
231785870678528NB
356985650756543NB
765745630789525IA
865345670256823NB
786567340897534NB
895651120504545IA
785650750654529NB
458595650456834TA
345678560912728NB
346685960675138IA
546825750562527IA

proc print;

where Age<35 & State=’IA’;

title ‘Selected observations from the Tax data set’;
run;

Fig. 1.11. SAS Example A3: program

1.4 The INPUT Statement

The input statement describes the arrangement of data values in each data
line. SAS uses the information supplied in the input statement to produce
observations in a SAS data set being created by reading in data values for
each of the variables listed in the input statement. There are several methods
to input values for variables to form a data set; three of these are summarized
below.

List Input

When the data values are separated from one another by one or more blanks,
a user may describe the data line to SAS with

INPUT wariable_name_list;

In this style of data input, the data value for the next variable is read beginning
from the first non-blank column that occurs in the data line following the
previous value. The variable names are those chosen to be assigned to the
variables that are to be created in the new SAS data set. These names follow
the rules for valid SAS names. Examples of the use of 1ist input are

input Age Weight Height;

input Scorel-Scorel0;

1.4 The INPUT Statement 17

SAS assigns the first value in each data line to the first variable, the second
value to the second variable, and so on. Note that the second statement is a
convenient shortened form to read data values into a sequence of ten variables
named Scorel, Score2,...,Scorel0, respectively.

List input can be used for reading data values for either numeric or char-
acter variables. To describe character variables with list input, the $ symbol
is entered following each character variable name in the list of variables in the
input statement. For example, when

input State $ Pop Income;

is used, SAS infers that the variable State will contain character values and
Pop and Income will contain numeric values. SAS allocates character variables
described in this way a maximum length of eight characters (bytes) by default.
If a value read from a data line has fewer than eight characters, then it is filled
on the right with blanks up to eight characters total. If a value is longer than
eight characters, it is truncated on the right to eight characters. Character
variables expected to contain values of length more than eight characters can
be read using an informat in the formatted input method discussed below.

If SAS does not find a value for the next variable on the current data line
when using list input, it will move to the next data line and continue to scan
for a value. For this reason, when using the list input method, if there are
any missing data values, they must be indicated on the data line by entering
a period (the SAS missing value indicator as described previously) separated
from other data values by at least one blank on either side of the period,
instead of leaving it blank.

Formatted Input

For many instream data sets, or those accessed from recording media such as
disks or CDs, 1list input may be inappropriate. This is because, in order to
save space, the data values contiguous to one another may have been prepared
with no spaces or, other characters such as commas, separating them. In such
cases, SAS informats must be used to input the data.

In general, informats can be used to read data lines present in almost
any form. They provide information to SAS such as how many columns are
occupied by a data value, how to read the data value, and how to store the
data value in the SAS data set. The two most commonly used informats
are those available for the purpose of inputting numeric and character data
values.

To read a data value from a data line, the user must specify in which
column the data value begins, how many columns to scan, whether the data
value is numeric or character, and where, if needed, a decimal point should
be placed in the case of a numeric value.

If the data values are in specific columns in the data line (but do not nec-
essarily begin in column 1), to indicate the column to begin reading a data

18 1 Introduction to the SAS Language

value, the character “@Q” followed by the column number, placed before the
name of a variable, may be used. For example,

input 026 Store @45 Sales;

tells SAS that a value for the variable Store is to be read beginning in col-
umn 26 and a value for Sales beginning in column 45. Here it is assumed
that the values in each data line are separated by blanks (as when using the
list input style); otherwise, informats are required to read these values, as
described below. When the data values appear in consecutive columns, the
use of “@” symbol is not necessary to indicate the position to begin access-
ing the next value, because the next value is read beginning at the column
number immediately following the columns from which the previous value was
accessed.

For a numeric variable, the informat “w.” specifies that the next w
columns beginning at the current column be read as the variable’s value.
The w must be a positive integer. For example,

input @25 Weight 3.;

tells SAS to move to column 25 and read the next three columns (i.e., columns
25, 26, and 27) and store the numeric value (in floating point form) as the
value for the variable Weight in the current observation.

The informat “w.d” tells SAS to read the variable’s value as above and
then insert a decimal point before the last d digits. For example,

input @10 Price 6.2;

tells SAS to begin at column 10 and to read the next six columns as a value
of Price, inserting a decimal point before the last two digits. If a data value
already has a decimal point entered, SAS leaves it in place, overriding the
specification given in the informat. In the latter case, the w in “w.d” must
also count a column for the decimal point.

For a character variable, the informat “$w.” tells SAS to begin in the
current column and to read the next w columns as a character value. Leading
and trailing blanks are removed. For example,

input @30 Name $45.;

tells SAS to read columns 30-74 as a value of the character variable Name. To
retain leading and trailing blanks if they appear in the data line, a user may
use the $CHARw. informat instead of $w. Some examples below illustrate the
use of informats in practice. Suppose a data line contains

0001TA005040891349

where 0001 is the I.D. number of a survey response, TA is the state in which the
respondent resides, 5.04 is the number of tons of fertilizer sold in February
1985, 0.89 is the percentage of sales to members, and 1349 is the number
of members for this responding farmers’ cooperative. Let Id, State, Fert,

1.4 The INPUT Statement 19

Percent, and Members be the names assigned by the user to the corresponding
variables. An appropriate input statement would be

input Id 4. State $2. Fert 5.2 Percent 3.2 Members 4.;

It is important to note that an “@” symbol is not necessary here to read
any of these data values because data values are read beginning in column
1, data values appear consecutively in the data line, and the fields do not
contain any blank columns. Thus an “@Q” symbol is not needed for skipping to
any position at the beginning or in the interior of the line of data. Thus SAS
automatically accesses the data value for the next variable beginning from the
column following the last value.
Suppose, instead, that the data line has the following appearance:

0001xxxxIA00504x089xxxxxx1349

where the x’s represent columns of data that are not of interest for the current
analysis; these columns may or may not be blanks. Instead of reading these
columns, it is possible to skip over to the appropriate column using the “@”
symbol or the “4” symbol. For example, after reading a value for Id, the value
for State is read beginning in column 9, using “@9,” and after reading values
for State and Fert using appropriate informats, one column is skipped using
“+1.” The input statement thus could be of the form

input Id 4. @9 State $2. Fert 5.2 +1 Percent 3.2 @26 Members 4.;

Symbols, such as “@”and “+” that could be used on input statements are
called pointer control symbols. The use of the pointer and pointer controls in
reading data from an input data line is described in detail in Sect. 1.7.
Finally, the variable names and informats (including pointer controls) that
occur on an input statement can be grouped into two separate lists enclosed
in parentheses. For example, the above statement could also be written as

input (Id State Fert Percent Members)(4. @9 $2 5.2 +1 3.2 026 4.);

Here, each informat or pointer control-informat combination is associated with
a variable name in the list sequentially. If the informat list is shorter than the
number of variables present, then the entire informat list is reapplied to the
remaining variables as required.

Column INPUT

Column input is another alternative to list input when the data values are
not separated by blanks or other separators, but the user prefers not to use
informats. In this case, the values must occupy the same columns on all data
lines, a requirement that is also necessary for using formatted input. However,
in the input statement, the variable name is followed by the range of columns
that the data value occupies in the data line, instead of an informat. The col-
umn numbers are specified in the form begin-end and are optionally followed

20 1 Introduction to the SAS Language

by an integer preceded by a decimal point to indicate the number of decimal
places to be assumed for the data value. For inputting character strings, the
“$” symbol must follow the variable name but before the column specifica-
tion. Blanks occurring both before and after the data value are ignored. For
example, if the data line has the appearance

0001IA 5.04 891349
then it could be read, using column input as
input Id 1-4 State $ 5-6 Fert 7-12 Percent 13-15 .2 Members 16-19;

This reads the value for Id from columns 1 through 4 as an integer and the
value for State as a character string from the next two columns. The value for
Fert is read as the value exactly as it appears in columns 7 through 12, i.e.,
as a number with a fractional part. The .2 following 13-15 indicates where
the decimal point must be assumed when reading the value for Percent. The
value for Percent will thus be read as 0.89 and the value for Members as 1349
from the above data line.

Combining INPUT Styles

An input statement may contain a combination of the above styles of input.
For example, as in the previous example, if the data line has the appearance

0001TA 5.04 891349

then it could be read, using a combination of column, formatted, and list
input styles as

input Id 1-4 State $2. Fert Percent 2.2 Members 16-19;

Here, column input is used to read the value for Id, formatted input to read
the value for State, and switches to list input style to read the value for
Fert. As mentioned above (and discussed later in Sect.1.7), this causes the
pointer to move to column 14 after reading the value for Fert (as it is the
next non-blank column). Thus, when using an informat to read the value
for Percent, the width of field w must be 2 instead of 3 (i.e., no leading
blank). Consequently, the informat 2.2 is used instead of 3.2, as was used
in the previous example. Then the value for Members is read using column
input again. Thus, a knowledge of how the pointer is handled by the three
styles of input is necessary to combine them correctly in a single statement.
Additionally, the : modifier may be used with informats for reading data values
of varying widths, as will be illustrated in SAS Example A8 (see Fig.1.23).

1.5 SAS Data Step Programming Statements and Their Uses 21

1.5 SAS Data Step Programming Statements
and Their Uses

SAS allows the user to perform various kinds of modification to the variables
and observations in the data set as it is being created in the data step. The
use of the if Age<35 & State=‘IA’; statement to obtain a subset of ob-
servations in SAS Example A2 is an example of a typical SAS programming
statement. SAS programming statements are generally used to modify the
data during the process of creating a new SAS data set, either from raw data
or from data already available in a SAS data set; hence, they must follow
an input or a set, statement. The syntax and usage of several statements
available for SAS data step programming are discussed below.

Assignment Statements

Assignment statements are used to create new variables and change the values
of existing ones. The general form of the assignment statement is

variable_name= expression;

New variables can be created by combining one or more existing variables in
an arithmetic expression. This may involve combining arithmetic operators,
SAS functions, and other arithmetic expressions enclosed in parentheses and
assigning the value of that expression to a new variable name. For example,
in the SAS data step in Example 1.5.1,

Ezample 1.5.1

data sample;

input (X1-X7) (@5 3%5.1 4%6.2);
Y1 = X1+X2%%*2;

Y2 = abs(X3)

Y3 = sqrt(X4+4.0*X5**2)-X6;

X7 3.14156%1log(X7) ;
datalines;

three new variables Y1, Y2, and Y3 are created. The value of Y1 for each
observation in the data set, for example, will be the sum of the value of X1
and the square of the value of X2 in that observation. The variable name
in an assignment statement may be a new variable to be added to the data
set and assigned the value of the expression; or it may be a variable already
present in the data set, in which case the original value of the variable is
replaced by the value resulting from evaluating the expression. Thus, in the

22 1 Introduction to the SAS Language

above data step, each value of the variable X7 that is input will be replaced
by the natural logarithm of the original value of X7 multiplied by 3.14156.

Arithmetic expressions are normally evaluated beginning from the left and
proceeding to the right, but applying the Rules 1, 2, and 3, given in Fig. 1.12,
may change the order of evaluation. The result of an arithmetic expression
containing a missing value is a missing value. The SAS system incorporates a
large number of mathematical functions that can be used in the expressions,
as shown in the above example. Some examples of the commonly used math-
ematical functions are abs, log, and sqrt.

SAS Functions

A SAS function is internal code that returns a value that is determined using
the current values of user-specified arguments. The general form of a function
call is

function-name(argumentl,argument2, . . .);

Some examples of function calls are

mean (Flavor, Texture, Looks)
mdy (Month, Day, Year)
substr (Item, 3, 5)

Respectively, in each of the above calls, the mean function calculates the aver-
age of values of the variables Flavor, Texture, and Looks, the mdy function
forms a SAS date value using numerical values of Month, Day, and Year, and
the substr function extracts a substring of length 5 from the character string
in the variable Item, beginning at character position 3. In general, functions
are available for performing mathematical, numerical, probability, and com-
binatorial operations, computing descriptive statistics including percentiles,
manipulating SAS dates and time values, converting state and zip codes, ex-
tracting and matching character strings, and performing many other tasks
including complex financial calculations.

Arithmetic expressions are evaluated according to a set of rules called
precedence rules. These rules, summarized in Fig.1.12, specify the order of
evaluation of entities within an expression. It is good programming practice
to follow these rules when writing expressions. Some details on the use of the
operators in Fig. 1.12 are listed below:

e An infix operator applies to the operands on each side of it. Infix oper-
ators +, —, *, / perform the standard arithmetic operations of addition,
subtraction, multiplication, and division, respectively. For example, X +Y
forms the sum of the values of variables X and Y.

e Infix operators include all comparison, logical, and concatenation operators
(i.e., those listed in Groups IV to VII).

1.5 SAS Data Step Programming Statements and Their Uses 23

Rule 1. Expressions within parenthesis are evaluated first.

Rule 2. An operator in a higher ranking group below has higher priority
and therefore is evaluated before an operator in lower ranking
group.

Group I s, +(prefix), —(prefix), (NOT), >< (MIN), <> (MAX)
Group II *, /
Group III +(infix), —(infix)
Group IV [l
Group V < <= = o=, >= >, >
Group VI &(AND)
Group VII |(OR)
Rule 3. Operators with the same priority (same group) are evaluated

from left to right of the expression (except for Group I opera-
tors, which are evaluated right to left).

Fig. 1.12. Order of evaluating expressions

As a prefix operator, the plus (+) sign or the minus sign (—) can be used
to change the sign of a variable, constant, function, or a parenthetical ex-
pression. Thus —(X *Y") negates the value of the result of the computation
XxY.

The infix operator *x performs exponentiation, i.e., X**2 raises the value
of X to the power of 2. Because Group I operators are evaluated from
right to left, the expression X = —A x %2 is evaluated as X = —(A4 * %2).

The concatenation operator (||) concatenates character values. For exam-
ple, Auto =‘Chevy’||‘Camaro’ produces the string ‘Chevy Camaro’ as the
value of the variable Auto.

The operators in Group V are comparison operators used in logical ex-
pressions as described in the next paragraph.

Depending on the characters available on your keyboard, the symbol for
NOT may be one of the not sign (—), tilde (7), or caret ("), and the symbol
() may be represented by (}}) or (I).

The logical AND operator (&) or the OR operator (]) is used to form complex
expressions by combining several logical expressions. The broken vertical
bar (}) or exclamation mark (!) may be used for the NOT operator.

24 1 Introduction to the SAS Language

The assignment statements used in Example 1.5.1 contain only arithmetic
expressions. However, variable names may be combined using comparison op-
erators to form logical expressions as described in the paragraph below. Both
arithmetic and logical expressions may be combined using logical operators
such as the and operator (&) or the or operator (|) to form more complex
expressions.

Conditional Ezecution

As in any programming language, several constructs for altering the normal
top-down flow of a program are available in SAS. The if-then and else
statements allow the execution of SAS programming statements that depend
on the value of an expression. The syntax of the statements are

IF expression THEN statement;
< ELSE statement; >

The expression, in many cases, is a logical expression that evaluates to a one if
the expression is TRUE or a zero if the expression is FALSE. A logical expres-
sion consists of numerical or character comparisons made using comparison
operators. These may be combined using logical operators such as the and
operator (&) or the or operator (]) to form more complex logical expressions.
The statement in the above syntax is any executable SAS statement; however,
several SAS statements enclosed in a do-end group may be used in place of a
single SAS statement.

The following examples illustrate typical uses of if-then/else state-
ments.

Ezample 1.5.2

if Score < 80 then Weight=.67;
else Weight=.75;

In this example, the expression Score < 80 evaluates to a one if the current
value of the variable Score is less than 80, and in this case, the assignment
statement Weight=.67 will be executed; otherwise, the expression evaluates
to a zero and the statement Weight=.75 will be executed. The following state-
ment illustrates a more advanced method for obtaining the same result using
the numerical values of the comparisons Score < 80 and Score >= 80:

Weight=(Score < 80) *.67 + (Score >= 80) *.75;

It becomes clear that this statement will evaluate to the required value de-
pending on the value of the variable Score by assigning numerical values 0 or
1 as the resulting values of the parenthesized expressions.

1.5 SAS Data Step Programming Statements and Their Uses 25

Ezxample 1.5.3
if State= ‘CA’ | State= ‘OR’ then Region=‘Pacific Coast’;

This is an example of the use of an if-then statement without the use of an
else statement. The expression here is a logical expression that will evaluate
to a one if at least one of the comparisons State= ‘CA’ or State= ‘OR’ is
true or to a zero otherwise. Thus, the current value of the SAS variable Region
will be set to the character string ‘Pacific Coast’ if the current value of the
SAS variable State is either ‘CA’ or ‘OR’. If this is not so, then the current
value of Region will be determined by if-then statements appearing later in
the SAS data step, or otherwise will be left blank.

Ezample 1.5./
if Income= . then delete;

The special SAS program statement, delete, stops the current data line from
being processed further. This observation is not written to the SAS data
set being created, and control returns to the beginning of the data step to
process the next line of data. In this example, if the current value of the
variable Income is found to be a SAS missing value, then the observation
is not written into the data set as a new observation. The result is that no
observation is created from the data line being processed.

In SAS Example A2 (see program in Fig. 1.8), the subsetting if statement
used was of the form

IF expression;

This statement is equivalent to the statement
IF not expression THEN delete;

The result is that if the computed value of the expression is FALSE, then the
current observation is not written to the output SAS data set. On the other
hand, it will be written to the output SAS data set if the expression evaluates
to TRUE.

Ezxample 1.5.5

if 6.5<=Rate<=7.5 then go to useit;

-+ SAS program statements - - -
-+ to calculate new rate - - -

useit: Cost= Hoursx*Rate;

26 1 Introduction to the SAS Language

Sometimes it may be required to avoid executing (or jump over) a few SAS
program statements depending on the value of an expression. For this purpose,
SAS program statements could be labeled using the label: notation. In the
above example, useit: is the label that identifies the SAS statement Cost=
Hours*Rate; if the expression if 6.5<=Rate<=7.5 evaluates to TRUE,
then control transfers to this statement. Note that the if 6.5<=Rate<=7.5
statement is a condensed version of the equivalent statement Rate>=6.5 &
Rate<=7.5, which will evaluate to a one only if both of the comparisons
Rate>=6.5 AND Rate<=7.5 are true or to a zero otherwise.

Ezxample 1.5.6
if Score < 80 then do;

Weight=.67;
Rate=5.70;
end;

else do;
Weight=.75;
Rate=6.50;
end;

A do-end group can be used to extend the conditional evaluation of single
SAS statements to conditionally executing groups of SAS statements. The
above example is a straightforward extension of Example 1.5.2.

SAS Example A

The extended example shown in Fig.1.13 illustrates how consecutive
if-then/else statements can be used to create values for a new variable, as
well as how they may be avoided using a convenient transformation.

In the SAS Example A4 program, there are three different data steps, and
they create SAS data sets named groupl, group2, and group3, respectively.
In the first data step[l, data are read using list input with the statement
input Age @@;. The @@ pointer control symbol causes the input statement
to be repeatedly executed for the data line. Thus, the data set named group1
will have 14 observations, each with a single value for the variable Age.

In the second data step B, the SAS data set group2 will be formed using
the observations from group1 as input, with a new variable named AgeGroup
being created. The variable AgeGroup will be assigned a value for each observa-
tion as determined by the value of Age in the current observation, by executing
the series of if-then/else statements. Thus, for example, AgeGroup will be
assigned a value of zero, since the value of Age is 1 in the first observation
read.

In the third data stepBY, the SAS data set group3 will be formed using
the observations in groupl as in the previous step. However, the values for
the new variable AgeGroup this time are determined simply by executing the

1.5 SAS Data Step Programming Statements and Their Uses 27

data groupi;
input Age @Q;
datalines;
137912 17 21 26 30 32 36 42 45 51

H

data group2;

set groupl;
if 0<=Age<10 then AgeGroup=0;
else if 10<=Age<20 then AgeGroup=10;
else if 20<=Age<30 then AgeGroup=20;
else if 30<=Age<40 then AgeGroup=30;
else if 40<=Age<50 then AgeGroup=40;
else if Age >=50 then AgeGroup=50;

run;

proc print;run;

data group3;

set groupl;

AgeGroup=int (Age/10)*10;

run;

proc print; run;

Fig. 1.13. SAS Example A4: program

arithmetic expression int(Age/10) * 10 that converts the value of Age to the
required values of AgeGroup, by a simple mathematical calculation. Note that
the int function is a SAS function that truncates the result of execution of a
numerical expression to the lower integer value.

The SAS System 1

Obs Age AgeGroup

1 1 0
2 3 0
3 7 0
4 O 0
5 12 10
6 17 10
7 21 20
8 26 20
9 30 30
10 32 30
11 36 30
12 42 40
13 45 40
14 51 50

Fig. 1.14. SAS Example A4: listing output

28 1 Introduction to the SAS Language

The two proc print; statements constitute two proc steps that list two
of these data sets group2 and group3, which are identical in content. One of
the two data sets is displayed in Fig. 1.14.

Repetitive Computation

Repetitive computation is achieved through the use of do loops or for loops,
respectively, in commonly known low-level programming languages such as
Fortran or C. In the SAS data step language, several forms of do statements, in
addition to the do-end groups discussed earlier are available. The statements
iterative do, do while, and do until are very flexible, allow a variety of
uses, and can be combined. The use of iterative do loops in the data step is
illustrated in Examples 1.5.7-1.5.10.

Ezample 1.5.7

data scores;
input Quizl-Quizb5 Test1l-Test3;
array scores {8} Quiz1-Quiz5 Testl-Test3;
do I= 1 to 8;

if scores{I}= . then scores{I}= 0;
end;
datalines;

An iterative do loop, in general, is used to perform the same operation on a
sequence of variables. This requires the sequence of variables to be defined
as elements of an array, using the array statement. This statement, being
nonexecutable, may appear anywhere in the data step, but in practice, it
is inserted immediately after the variables are defined (usually in the input
statement). The array definition allows the user to reference a set of vari-
ables using the corresponding array elements. This is achieved by the use of
subscripts.

In Example 1.5.7, the variables Quiz1,...,Quiz5, Testl,...,Test3 are
defined as elements of the array named scores, and they are referenced in the
do loop as scores{1},...,scores{8}, respectively, where the values 1,...,8
are called the subscripts. Within the do loop, the subscripts are assigned by
using an index variable, here named I, that is used as a counting variable in
the do statement. During the execution of the loop (i.e., statements enclosed
within the do through the end statements), the variable I takes the values
1,...,8, sequentially. The task performed by the do loop in Example 1.5.7 is
to convert a missing value, read from any data line for any of the above eight
variables, to a zero in the corresponding observation written to the data set
created.

1.5 SAS Data Step Programming Statements and Their Uses 29

Ezxample 1.5.8

data load;

input D1-D7;

array day {7} D1-D7;

array hour {7} H1-HT7;
do I= 1 to 7;
if day{I}= 999 then day{I}=.;
hour{I}= day{I}*12;

end;

datalines;

Variables defined in two different arrays may be processed in a single do loop
if the two arrays are of the same length. In this example, two arrays, day and
hour, are defined—the first consisting of the variables D1-D7 and the second
consisting of a new set of variables H1-H7. In the do loop, first the value of
each of the variables D1-D7 is converted to a missing value if the current value
of that variable is 999. Then the current value of each of the variables H1—
H7 is set to 12 times the value of each of the corresponding variables D1-D7,
respectively. Note carefully that the second array statement assigns an array
name to a set variables H1-H7 yet to be used in the data step.

Ezxample 1.5.9

data index;
do A= 1 to 4;
do B= 3,6,9;
C=(A-1)*10+B;
output;
end;
end;
proc print data=index;
title ‘Creating indices’;
run;

In this SAS program, a nested do loop is illustrated using an example where
the counting variables A and B of the do statements are manipulated to create
the values of a new variable C. This technique is often used for generating fac-
tor levels of combinations of factors or interactions in factorial experiments.
The output statement inside the loop forces a new observation containing cur-
rent values of the variables A, B, and C to be written to the data set, each pass
through the loop. Thus at the end of the processing of the loop, the SAS data
set index will contain 12 observations corresponding to all 12 combinations
of the 4 values of A and the 3 values of B. The printed listing of this data set is

30 1 Introduction to the SAS Language

Creating indices

Obs A B C
1 1 3 3
2 1 6 6
3 1 9 9
4 2 3 13
5 2 6 16
6 2 9 19
7 3 3 23
8 3 6 26
9 3 9 29

10 4 3 33

11 4 6 36

12 4 9 39

The do while statement repeatedly executes statements in a do loop
repetitively as long as a condition, checked before each iteration, evaluates
to TRUE. The do until statement executes statements similarly but checks
the condition at the end of the loop. The SAS program below calculates the
time in months needed to pay off a loan of $5000 that accrues interest at
annual rate of 12% if paid off at $500 dollar monthly installments:

Ezample 1.5.10

data loan;
Balance=5000;
do while (Balance>500);
Balance+Balance*0.01;
Balance+ -500;
Month+1;
output;
end;
proc print data=loan;
title ’Loan Amortization’;
run;

Note that the statements within the loop that involve the + sign are a special
type of assignment statements called sum statements and have the general
form

variable + expression;

This statement adds the value of expression on the right side of the plus
sign to the current value of the variable which must be of numeric type. This
variable automatically retains its current value until it is updated during the
execution of the loop. If the expression evaluates to a missing value, it is
treated as zero. If the variable is not assigned an initial value, it is automat-
ically initialized to zero before the DO loop begins (note the variable Month
in this example). The printed listing of data set loan is

1.6 Data Step Processing 31

Loan Amortization
Obs Balance Month

1 4550.00
2 4095.50
3 3636.46
4 3172.82
5 2704.55
6 2231.59
7 1753.91
8 1271.45
9 784.16
0 292.00

O WO ~NOOUPd WN -

-
-

The do until statement can be used in a similar manner; which version
is preferred depends on the application.

1.6 Data Step Processing

A basic understanding of the operations in the SAS data step is necessary to
effectively use the capabilities, such as data step programming, available in
the data step. The discussion here is kept to a minimum technical level by
making use of illustrations and examples. When SAS begins execution of a
data step, the statements are first syntax checked and compiled into machine
code. At this stage, SAS has sufficient information to create the following:

e an input buffer, an area in the memory where the current line of data can
be temporarily stored

e a program data vector (PDV), an area in the memory where SAS builds
an observation to be written to a SAS data set

The PDV is a temporary placeholder for a single value of each of the variables
in the list of variables recognized by SAS to exist at this stage. These locations
are all initialized to SAS missing values when the data step processing begins.
If some of these variables are not assigned a value either by accessing a value
from the input buffer or as a result of a calculation by executing a SAS
programming statement, they will remain as missing values until the end of
the data step processing. At the discretion of the user, some or all of the
variables in the PDV may form the observation written to the SAS data
set at the end of the data step. The SAS data set is a file in which each
observation is written as a separate record and thus will contain the entire set
of observations the user opts to include in the data set. On the other hand,
the PDV contains only those values of the variables obtained from the current
data line (or new values calculated using them) at any point in the execution
of the data step.

The basic SAS data step begins at the data statement. Values for the
variables in the PDV are initialized to SAS missing values, a line of data is
read into the input buffer, and data values transferred into the PDV from the
input buffer, replacing the missing values in the PDV. The pointer control

32 1 Introduction to the SAS Language

Begins the data step.
Sets variables in the PDV
to missing values.

If end of data lines, close
the data set and go to the
next step.

Input data.

Is this the last
data line?

Yes

Executes SAS program-
ming statements using
data values in PDV.

Writes contents of PDV
into SAS data set as a
new observation.

Fig. 1.15. Flow of operations in a data step

symbols and informats in the input statement facilitate the conversion of the
columns in the input buffer into data values for the variables in the PDV. SAS
programming statements are then executed using the current values of the
variables in the PDV, values in the PDV are then output as a new observation
in the SAS data set, and control returns back to the beginning of the data
step. Recall that, as explained above, the values of variables in the PDV are
reset to missing values at this stage. This is an iteration of a SAS data step
and the automatically generated SAS variable N_ keeps track of the current
iteration number. The user may make use of this variable in any programming
statement in the data step.

In this description it has been assumed that the data step is operating
under its default behavior. It is possible for the user to alter the flow of
operations described above by various actions, implemented via the inclusion
of one or more executable SAS programming statements at different points
in the data step. For example, if an output statement is inserted among the
SAS programming statements in the data step, instead of waiting to write an
observation to the SAS data set at the end of an iteration of the SAS data step,

1.6 Data Step Processing 33

SAS will write the current values of the variables as a new observation at the
point the output statement is encountered. The user may also use a retain
statement (see Sect.1.7.4) to keep selected variables from being initialized to
a missing value. The flow of operations in a data step is summarized in the
chart shown in Fig. 1.15.

SAS Example A5

data four;

input X1-X3;

X3= 3%x3-X1x+2; [
X4=sqrt (X2);

drop X1 X2; @
datalines;

345

=2 @ 3

. 16 8

-314

proc print data=four;
title ‘Flow of operations in a data step’;
run;

Fig. 1.16. SAS Example A5: program

A simple example is used to illustrate the flow of operations in a data
step described above. Consider the data step in the SAS program shown in
Fig.1.16. This data step creates the SAS data set named four. Four data lines
with data values for three variables X1, X2, and X3 are read instream. The
values of variable X3 are transformed [, and a new variable X4 B is created.
Further, only variables X3 and X4 are written to the data set.

At the beginning of each iteration of the data step, variables X1, X2,
X3, and X4 are initialized to missing values in the PDV because SAS has
detected their presence in the data step during the compile stage. The data
step execution proceeds as follows:

The first line of data is transferred to the input buffer.

The values 3, 4, and 5 are accessed using list input from the input buffer
and transferred to the PDV as the new values of variables X1, X2, and
X3; the value for X4 still remains a missing value.

e A value of 6 is computed by substituting the values of X1=3 and X3=5 in
the expression 3 x X3 — X1 % %2. This replaces the current value 5 of the
variable X3 in the PDV.

e The square root of 4, the value of X2 in the PDV, replaces the missing
value of the variable X4.

e SAS ascertains that the end of the data step has been reached and writes
the observation into the data set (named four) using the current values
of the variables in the PDV. Variables X1 and X2 are excluded from the
data set because they appear in the drop statement B

34 1 Introduction to the SAS Language

e Next, SAS goes back to the beginning of the data step (the input state-
ment) and reinitializes the PDV to missing values, and the next line of
data is transferred to the input buffer.

The appearance of the PDV (just before writing the first observation to the
SAS data set) is

X1 X2 X3 X4 N _ERROR_

3 4 6 2 1 0

The sequence of operations described above continues until end-of-file is de-
tected (i.e., end of the data is encountered) by the input statement. SAS then
closes the data