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Preface

One of the hazards of writing a book based on a software system is that the release
of a newer version of the software on which the book is based may supersede the
appearance of the book in print. This happened to the authors with the publication of
the earlier edition of this book. However, with a large and well-developed software
system like SAS, this is not really an issue, particularly for the beginning user. Be-
cause of its complexity and the availability of a variety of analytical tools, the task
of learning SAS and then mastering it for everyday use for data analysis has become
a long-term project. That is what we found with the earlier edition. Although it was
based on SAS Version 9.1, we find that the earlier version is still in use today partic-
ularly as a reference and also by international SAS users to whom a later version of
SAS may not be available. The new edition is based on the current version of SAS,
Version 9.4, although it was released almost 4 years ago.

As discussed in the preface of the first edition, the aim of this book is to teach
how to use the SAS software system for statistical analysis of data. While the book
is intended to be used as a textbook in a second course in statistical methods taught
primarily to advanced undergraduates in statistics and graduate students in many
other disciplines that involve the use of statistics for data analysis, it would be a
valuable source of information for researchers in the academic setting as well as
professionals in the industry and business that use the SAS system in their work.
In particular, data analysis has become an important tool in the general area of data
science now being offered as a separate area of study.

The style of presentation of material in the revised book is the same as before:
introduction of a brief theoretical and/or methodological description of each topic
under discussion including the statistical model used if applicable and presentation
of a problem as an application, followed by a SAS analysis of the data provided and
a discussion of the results.

The primary reason for planning this revision is the fact that SAS has made a
large number of changes beginning with SAS Version 9.2, as well as the introduction
of a new system of statistical graphics that essentially replaced the SAS/GRAPH
system that existed prior to that version. This necessitated modifications to most of
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VIII Preface

the SAS programs used in the book as well as the rewriting of an entire chapter. The
second reason was the incorporation of the ODS system for managing the tabular and
graphical output produced from SAS procedures. Not only did this require the repro-
duction of all output presented in the older version of the textbook, it also required
adding additional textual material explaining these changes and the new commands
that were required to use the new facility.

This book is intended for use as the textbook in a second course in applied statis-
tics that covers topics in multiple regression and analysis of variance at an intermedi-
ate level. Generally, students enrolled in such courses are primarily graduate majors
or advanced undergraduate students from a variety of disciplines. These students typ-
ically have taken an introductory-level statistical methods course that requires the use
of a software system such as SAS for performing statistical analysis. Thus, students
are expected to have an understanding of basic concepts of statistical inference such
as estimation and hypothesis testing when they begin on a course based on this book.

While the same approach that was used in the first edition is continued, we have
rewritten material in almost every chapter; added new examples; completely replaced
a chapter; added a new chapter based on SAS procedures for the analysis of nonlinear
and generalized linear models; updated all SAS output, including graphics, that ap-
pears in the previous version; added more exercise problems to several chapters; and
included completely new material on SAS templates in the appendix. These changes
necessitated the book to be lengthened by about 200 pages.

We started with a more gentle introductory example but proceed quickly to
present more advance material and techniques, especially concerning the SAS data
step. Important features such as data step programming, pointers, and line-hold spec-
ifiers are described in detail. Chapter 3 which originally contained descriptions of
how to use the SAS/GRAPH package was completely rewritten to describe new Sta-
tistical Graphics (SG) procedures that are based on ODS Graphics.

The basic theory of statistical methods covered in the text is discussed briefly and
then is extended beyond the elementary level. Particular attention has been given to
topics that are usually not included in introductory courses. These include discussion
of models involving random effects, covariance analysis, variable subset selection
methods in regression methods, categorical data analysis, graphical tools for residual
diagnostics, and the analysis of nonlinear and generalized linear models. We provide
just sufficient information to facilitate the use of these techniques without burgeoning
theoretical details. A thorough knowledge of advanced theoretical material such as
the theory of the linear model or the theory of maximum likelihood estimation is
neither assumed nor required to assimilate the material presented.

SAS programs and SAS program outputs are used extensively to supplement
the description of the analysis methods. Example data sets are taken from the areas
of biological and physical sciences and engineering. Exercises are included in each
chapter. Most exercises involve constructing SAS programs for the analysis of given
observational or experimental data. Complete text files of all SAS examples used in
the book can be downloaded from the Springer website for this book. Text versions
of all data sets used in examples and exercises are also available from the website.
Statistical tables are not reprinted in the book.



Preface IX

The first author has taught a one-semester course based on material from this
book for many years. The coverage depends on the preparation and maturity level
of students enrolled in a particular semester. In a class mainly composed of graduate
students from disciplines other than statistics, with adequate knowledge of statisti-
cal methods and the use of SAS, the instructor may select more advanced topics for
coverage and skip most of the introductory material. Otherwise, in a mixed class of
undergraduate and graduate students with little experience using SAS, the coverage
is usually 5 weeks of introduction to SAS, 5 weeks on regression and graphics, and
5 weeks of ANOVA applications. This amounts to approximately 60% of the mate-
rial in the textbook. The structure of sections in the chapters facilitates this kind of
selective coverage.

The first author wishes to thank Professor Kenneth J. Koehler, the former chair
of the Department of Statistics at Iowa State University, for agreeing to be a coauthor
of this book and also to write Chap. 7. He has taught several courses based on the
material for that chapter, and some of the examples are taken from his consulting
projects.

Mervyn G. Marasinghe
Associate Professor Emeritus
Department of Statistics
Iowa State University, Ames, IA 50011, USA

Kenneth J. Koehler
Professor
Department of Statistics
Iowa State University, Ames, IA 50011, USA



©2014 SPRINGER SCIENCE+BUSINESS MEDIA, LLC. All rights reserved. No
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SPRINGER SCIENCE+BUSINESS MEDIA, LLC.
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1

Introduction to the SAS Language

1.1 Introduction

The SAS system is a computer package program for performing statistical
analysis of data. The system incorporates data manipulation and in-
put/output capabilities as well as an extensive collection of procedures
for statistical analysis of data. The SAS system achieves its versatility by
providing users with the ability to write their own program statements to ma-
nipulate data as well as call up SAS routines called procedures for performing
major statistical analysis on specified data sets. The user-written program
statements usually perform data modifications such as transforming values
of existing variables, creating new variables using values of existing variables,
or selecting subsets of observations. The statements and the syntax available
to perform these manipulations are quite extensive so that these comprise an
entire programming language. Once data sets have thus been prepared, they
are used as input to statistical procedures that performs the desired analysis
of the data. SAS will perform any statistical analysis that the user correctly
specifies using appropriate SAS procedure statements.

When SAS programs are run under the SAS windowing environment, the
source code is entered in the SAS Program Editor window and submitted
for execution. A Log window which shows the details of execution of the
SAS code and an Output window which shows the results are also parts of
this system. Traditionally, results of a SAS procedure were displayed in the
output window in the listing format using monospace fonts with which users
of SAS in its previous versions are more familiar. SAS provides the user the
ability to manage where (the destination) and in what format the output is
produced and displayed, via the SAS Output Delivery System (ODS). For
example, output from executing a SAS procedure may be directed to a pdf or
an html formatted file, the content to be included in the output selected and
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formatted by the user to produce a desired appearance (called an ODS style).
Thus ODS allows the user the flexibility in presenting the output from SAS
procedures in a style of user’s own choice. Beginning with SAS Version 9.3,
instead of routing the output to a listing destination in the output window,
SAS windowing system is set up by default to use an html destination and for
the resulting html file to be automatically displayed using an internal browser.
The user may modify these default settings by selecting Tools ➡ Options

➡ Preferences from the main menu system on the SAS window. Figure 1.1
shows the default settings under the Results tab of the Preferences window.

Fig. 1.1. Screenshot of the results tab on the preferences dialog box

Note the check boxes that are selected on this dialog. Thus the creation of
html output is enabled by default, while the creation of the listing output
is not. Also note that the style selected (from a drop-down list) is Htmlblue,
the default style associated with the html destination. An ODS style is a
description of the appearance and structure of tables and graphs in the ODS
output and how these are integrated in the output and is specified using a
style template. The Htmlblue style is an all-color style that is designed to
integrate tables and statistical graphics and present these as a single entity.
Note that the Use ODS Graphics box is checked meaning that the creation of
ODS Graphics, the functionality of automatically creating statistical graphics,
is also enabled. This is equivalent to including a ODS Graphics On statement
within the SAS program, whenever ODS Graphics are to be produced by
default or as a result of a user request initiated from a procedure that supports
ODS Graphics. The following example illustrates the default ODS output
produced by SAS.
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data biology;
input Id Sex Age Year Height Weight;
BMI=703*Weight/Height**2;
datalines;
7389 M 24 4 69.2 132.5
3945 F 19 2 58.5 112.0
4721 F 20 2 65.3 98.6
1835 F 24 4 62.8 102.5
9541 M 21 3 72.5 152.3
2957 M 22 3 67.3 145.8
2158 F 21 2 59.8 104.5
4296 F 25 3 62.5 132.5
4824 M 23 4 74.5 184.4
5736 M 22 3 69.1 149.5
8765 F 19 1 67.3 130.5
5734 F 18 1 64.3 110.2
4529 F 19 2 68.3 127.4
8341 F 20 3 66.5 132.6
4672 M 21 3 72.2 150.7
4823 M 22 4 68.8 128.5
5639 M 21 3 67.6 133.6
6547 M 24 2 69.5 155.4
8472 M 21 2 76.5 205.1
6327 M 20 1 70.2 135.4
8472 F 20 4 66.8 142.6
4875 M 20 1 74.2 160.4
;

proc means data=biology mean std min max maxdec=3;
class Sex;
var BMI;
title "Biology class: BMI Statistics by Gender";

run;

$

Fig. 1.2. Illustrating ODS output

An Introductory SAS Program

The SAS code displayed in Fig. 1.2 is used here to give the reader a quick
introduction to a complete SAS program. The raw data consists of values for
several variables measured on students enrolled in an elementary biology class
at a college during a particular semester. In this program an input statement
reads raw data from data lines embedded in the program (called instream
data) and creates a SAS data set named biology.

The list input style used in this program scans the data lines to ac-
cess values for each of the variables named in the input statement. No-
tice that the data values are aligned in columns but also are separated by
(at least) one blank. The “$” symbol used in the input statement indicates
that the variable named Sex contains character values. The SAS expression
703*Weight/Height**2 calculates a new value using the values of the two
variables Weight and Height obtained from the current data line being pro-
cessed and assigns it to a (newly created) variable named BMI representing
the body mass index of the individual (the conversion factor 703 is required
as the two variables Weight and Height were not recorded in metric units
as needed by the definition of body mass index). Once the SAS data set is
created and saved in a temporary folder, the SAS procedure named MEANS
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is used to produce an analysis containing some statistics for the new variable
BMI separately for the females and males in the class. Figure 1.3 displays a
reproduction of the default html output displayed by the Results Viewer in
SAS and illustrates the Htmlblue style.

The MEANS Procedure

Biology class: BMI Statistics by Gender

Analysis Variable : BMI

Sex
N

Obs Mean Std Dev Minimum Maximum

F 10 20.366 2.341 16.256 23.846

M 12 21.236 1.775 19.085 24.638

Fig. 1.3. ODS output

In most of the SAS examples used in this book, the pdf-formatted ODS
version of the resulting output will be used to display the output. An ODS
statement (not shown in all SAS programs) will be used to direct the output
produced to a pdf destination. Note carefully that since the destination is
different from html, the output produced is in a different style than Htmlblue;
that is, the output is formatted for printing rather than for being displayed
in a browser window.

An alternative way of running SAS programs for producing ODS-formatted
output is to use the SAS Enterprise Guide (SAS/EG). SAS/EG is a point-
and-click interface for managing data, performing a statistical analysis, and
generating reports. Behind the scenes, SAS/EG generates SAS programs that
are submitted to SAS, and the results returned back to SAS/EG. Since the
focus of this book is SAS programming, general instructions on how to use
SAS/EG is not discussed here. However, SAS/EG includes a full programming
interface that uses a color-coded, syntax-checking SAS language editor that
can be used to write, edit, and submit SAS programs and is available to SAS
programmers as an alternative to using the SAS windowing environment.
Further, the output in SAS/EG is automatically produced in ODS format,
and the user can select options for the output to be directed to a destination
such as a pdf or an html file.

Most statistical analysis does not require knowledge of the considerable
number of features available in the SAS system. However, even a simple anal-
ysis will involve the use of some of the extensive capabilities of the language.
Thus, to be able to write SAS programs effectively, it is necessary to learn at
least a few SAS statement structures and how they work. The following SAS
program contains features that are common to many SAS programs.
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SAS Example A1

The data to be analyzed in this program consist of gross income, tax, age,
and state of individuals in a group of people. The only analysis required is
to obtain a SAS listing of all observations in the data set. The statements
necessary to accomplish this task are given in the program for SAS Example
A1 shown in Fig. 1.4.

data first ; 2
input (Income Tax Age State)(@4 2*5.2 2. $2.);
datalines ; 1
123546750346535IA
234765480895645IA
348578650595431IA
345786780576541NB
543567511268532IA
231785870678528NB
356985650756543NB
765745630789525IA
865345670256823NB
786567340897534NB
895651120504545IA
785650750654529NB
458595650456834IA
345678560912728NB
346685960675138IA
546825750562527IA
;
proc print ; 3
title ‘SAS Listing of Tax data’;
run;

Fig. 1.4. SAS Example A1: program

In this program those lines that end with a semicolon can be identified
as SAS statements. The statements that follow the data first; statement
up to and including the semicolon appearing by itself in a line signaling the
end of the lines of data, cause a SAS data set to be created. Names for
the SAS variables to be created in the data set and the location of their
values on each line of data are specified in the input statement. The raw
data are embedded in the input stream (i.e., physically inserted within the
SAS program) preceded by a datalines; statement 1 . The proc print;

performs the requested analysis of the SAS data set created, namely, to print
a listing of the entire SAS data set.

As observed in the SAS Example A1, SAS programs are usually made up
of two kinds of statements :

• Statements that lead to the creation of SAS data sets
• Statements that lead to the analysis of SAS data sets

The occurrence of a group of statements used for creating a SAS data set
(called a SAS data step) can be recognized because it begins with a data
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statement 2 , and a group of statements used for analyzing a SAS data set
(called a SAS proc step) can be recognized because it begins with a proc

statement 3 . There may be several of each kind of these steps in a SAS pro-
gram that logically defines a data analysis task.

SAS interprets and executes these steps in their order of appearance in a
program. Therefore, the user must make sure that there is a logical progression
in the operations carried out. Thus, a proc step must follow the data step
that creates the SAS data set to be analyzed by that proc step. Although
statements in a data step are executed sequentially, in order that computations
are carried out on the data values as expected, statements within the step
must also satisfy this requirement, in general, except for certain declarative
or nonexecutable statements. For example, an input statement that defines
variables must precede executable SAS statements, such as SAS programming
statements, that references those variable names.

One very important characteristic of the execution of a SAS data step is
that the statements in a data step are executed and an observation written
to the output SAS data set, repeatedly for every line of data input in cyclic
fashion, until every data line is processed. A detailed discussion of data step
processing is given in Sect. 1.6.

The first statement following the data statement 2 in the data step usually
(but not always) is an input statement, especially when raw data are being
accessed. The input statement used here is a moderately complex example
of a formatted input statement, described in detail in Sect. 1.4. The symbols
and informats used to read the data values for the variables Income, Tax,

Age, and State from the data lines in SAS Example A1 and their effects are
itemized as follows:

• @4 causes SAS to begin reading each data line at column 4.
• 2*5.2 reads data values for Income and Tax from columns 4–8 and 9–13,

respectively, using the informat 5.2 twice, that is, two decimal places are
assumed for each value.

• 2. reads the data value for Age from columns 14 and 15 as a whole number
(i.e., a number without a fraction portion) using the informat 2.

• $2. reads the data value for State from columns 16 and 17 as a character
string of length 2, using the informat $2.

A semicolon symbol “;” appearing by itself in the first column in a data line
signals the end of the lines of raw data supplied instream in the current data
step. On its encounter, SAS proceeds to complete the creation of the SAS data
set named first by closing the file. The proc print; 3 that follows the data
step signals the beginning of a proc step. The SAS data set processed in this
proc step is, by default, the data set created immediately preceding it (in this
program the SAS data set first was the only one created). Again, by default,
all variables and observations in the SAS data set will be processed in this
proc step.

The output from execution of the SAS program consists of two parts: the
SAS Log (see Fig. 1.5), which is a running commentary on the results of ex-
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2 data first ;
3 input (Income Tax Age State)(@4 2*5.2 2. $2.);
4 datalines;

NOTE: The data set WORK.FIRST has 16 observations and 4 variables.
NOTE: DATA statement used (Total process time): 4

real time 0.01 seconds
cpu time 0.01 seconds

21 ;
22 proc print ;
23 title ’SAS Listing of Tax data’;
24 run;

NOTE: There were 16 observations read from the data set WORK.FIRST.
NOTE: The PROCEDURE PRINT printed page 1.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.03 seconds
cpu time 0.03 seconds

Fig. 1.5. SAS Example A1: log

ecuting each step of the entire program, and the SAS Output (see Fig. 1.6),
which is the output produced as a result of the statistical analysis. In inter-
active mode under the SAS windowing environment, SAS will display these
in separate windows called the log and output windows. When the results of
a program executed in the batch mode are printed, the SAS log and the SAS
output will begin on new pages.

SAS Listing of Tax data

Obs Income Tax Age State

1 546.75 34.65 35 IA

2 765.48 89.56 45 IA

3 578.65 59.54 31 IA

4 786.78 57.65 41 NB

5 567.51 126.85 32 IA

6 785.87 67.85 28 NB

7 985.65 75.65 43 NB

8 745.63 78.95 25 IA

9 345.67 25.68 23 NB

10 567.34 89.75 34 NB

11 651.12 50.45 45 IA

12 650.75 65.45 29 NB

13 595.65 45.68 34 IA

14 678.56 91.27 28 NB

15 685.96 67.51 38 IA

16 825.75 56.25 27 IA

Fig. 1.6. SAS Example A1: pdf-formatted output
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The SAS log contains error messages and warnings and provides other
useful information via NOTES 4 . For example, the first NOTE in Fig. 1.5 indi-
cates that a work file containing the SAS data set created is saved in a system
folder and is named WORK.FIRST. This file is a temporary file because it will
be discarded at the end of the current SAS session.

The printed output produced by the proc print; statement appears in
Fig. 1.6. It contains a listing of data for all 16 observations and 4 variables in
the data set. By default, variable names are used in the SAS output to identify
the data values for each variable, and an observation number is automatically
generated that identifies each observation. Note also that the data values are
also automatically formatted for printing using default format specifications.
For example, values of both the income and Tax variables are printed correct
to two decimal places, those of the variable Age as whole numbers and those
of the variable State as a string of two characters. These are default formats
because it was not specified in the program how these values must appear in
the output.

1.2 Basic Language: A Summary of Rules and Syntax

Data Values

Data values are classified as either character values or numeric values. A
character value may consist of as many as 32,767 characters. It may include
letters, numbers, blanks, and special characters. Some examples of character
values are

MIG7, D’Arcy, 5678, South Dakota

A standard numeric value is a number with or without a decimal point that
may be preceded by a plus or minus sign but may not contain commas. Some
examples are

71, 0.0038, –4., 8214.7221, 8.546E–2

Data values that are not one of these standard types (such as dates with
slashes or numbers with embedded commas) may be accessed using special
informats, which converts them to an internal value. These are stored then in
SAS data sets as character or numeric values as appropriate.

SAS Data Sets

SAS data sets consist of data values arranged in a rectangular array as dis-
played in Fig. 1.7. Data values in a column represents a variable and those
in a row comprise an observation. In addition to the data values, attributes
associated with each variable, such as the name and type of a variable, are
also kept in the data descriptor part of the SAS data set. Internally, SAS data
sets have a special organization that is different from that of data sets created
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Variables
↓

Observations→ data
values

Fig. 1.7. Structure of a SAS data set

using simple editing (e.g., ASCII or flat files). SAS data sets are ordinarily
created in a SAS data step and may be stored as temporary or permanent files.
SAS procedures can access data only from SAS data sets. Some procedures
are also capable of creating SAS data sets to save information computed as
results of an analysis.

Variables

Each column of data values in a SAS data set represents a SAS variable.
Variables are of two types: numeric or character. Values of a numeric variable
must be numeric data values, and those of a character variable must be char-
acter data values. A character variable can include values that are numbers,
but they are treated like any other sequence of characters. SAS cannot per-
form arithmetic operations on values of a character variable. Certain character
strings such as dates are usually converted and stored in a data set numeric
values using informats when those values are read from external data.

SAS variables have several attributes associated with them. The name of
the variable and its type are two examples of variable attributes. The other
attributes of a SAS variable include length (in bytes), relative position in the
data set, informat, format, and label. In addition to data values, attribute
information of SAS variables is also saved in a SAS data set (as part of the
descriptor information).

Observations

An observation is a group of data values that represent different measurements
on the same individual. “Individual” here can mean a person, an experimental
animal, a geographic region, a particular year, and so forth. Each row of data
values in a SAS data set may represent an observation. However, it is possible
for each observation in a SAS data set to be formed using data values obtained
from several input data lines.
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SAS Names

SAS users select names for many elements in a SAS program, including vari-
ables, SAS data sets, statement labels, etc. Many SAS names can be up to 32
characters long; others are limited to a length of 8 characters. The first char-
acter in a SAS name must be an alphabetic character. Embedded blanks are
not allowed. Characters after the first can be alphabetic (upper or lowercase),
numeric, or the underscore character. SAS is not case sensitive, except inside
of quoted strings. However, SAS will remember the case of variable names
used when it displays them later, so it might be useful to capitalize the first
letter in variable names. Names beginning with the underscore character are
reserved for special system variables. Some examples of variable names are
H22A, RepNo, and Yield.

SAS Variable Lists

A list of SAS variables consists of the names of the variables separated by one
or more blanks. For example,

H22A RepNo Yield

A user may define or reference a sequence of variable names in SAS state-
ments by using an abbreviated list of the form

charsxx-charsyy

where “chars” is a set of characters and the “xx” and “yy” indicate a sequence
of numbers. Thus, the list of indexed variables Q2 through Q9 may appear in
a SAS statement as

Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

or equivalently as Q2-Q9.
Using this form in an input statement implies that a variable correspond-

ing to each intermediate number in the sequence will be created in the SAS
data set and values for them therefore must be available in the lines of data.
For example, Var1-Var4 implies that Var2 and Var3 are also to be defined as
SAS variables.

Any subset of variables already in a SAS data set may be referenced,
whether the variable names are numbered sequentially or not, by giving the
first and last names in the subset separated by two dashes (e.g., Id--Grade).
To be able to do this, the user must make sure that the list of variables refer-
enced appears consecutively in the SAS data set. The lists Id-numeric-Grade
and Id-character-Grade, respectively, refer to the subsets of numeric and
character variables in the specified range.
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SAS Statements

In every SAS documentation describing syntax of particular SAS statements,
the general form of the statement is given. In these descriptions, words in
boldface letters are SAS keywords. Keywords must be used exactly as they
appear in the description. SAS keywords may not be used as SAS names.
Words in lowercase letters specified in the general form of a SAS statement
describe the information a user must provide in those positions.

For example, the general form of the drop statement is specified as

DROP variable-list;

To use this statement, the keyword drop must be followed by the names of the
variables that are to be omitted from a SAS data set. The variable-list may
be one or more variable names (or it may be in any form of a SAS variable
list); for example,

drop X Y2 Age; or drop Q1-Q9;

The individual statement descriptions indicate what information is optional,
usually by enclosing them in angled brackets < >; several choices are
indicated by the term <options>. Some examples are

OUTPUT <data-set-name(s)>;

FILENAME fileref <device-type><options>
<operating-environment-options>;

PROC MEANS <option(s)> <statistic-keyword(s)>;
VAR variable(s) </WEIGHT=weight-variable>) ;
CLASS variable(s) </option(s >) ;

Syntax of SAS Statements

Some general rules for writing SAS statements are as follows:

• SAS statements can begin and end in any column.
• SAS statements end with a semicolon.
• More than one SAS statement can appear on a line.
• SAS statements can begin anywhere on one line and continue onto any

number of lines.
• Items in SAS statements should be separated from neighboring items by

one or more blanks. If items in a statement are connected by special sym-
bols such as +, –, /, *, or =, blanks are unnecessary. For example, in the
statement X=Y; no blanks are needed. However, the statement could also
be written in one of the forms X = Y; or X= Y; or X =Y;, all of which are
acceptable.

Statements beginning with an asterisk (*) are treated as comments. Multiple
comments may be enclosed within of a /* and a */ used at the beginning of a
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new line. In general, SAS statements are used for data step programming or in
the proc step for specifying information to a SAS procedure. Other statements
are global in scope and can be used anywhere in a SAS program.

Missing Values

A missing value indicates that no data value is stored for the variable in the
current observation. Once SAS determines a value to be missing in the current
observation, the value of the variable for that observation will be set to the
SAS missing value indicator.

When inputting data, a missing numeric value in the data line can be
represented by blanks or a single period, depending on how the values on a
data line are input (i.e., what type of input statement is used; see below). A
missing character value in SAS data is represented by a blank character. SAS
also uses this representation when printing missing values of SAS variables.

SAS variables can be assigned a missing value by using statements such as
Score=. for numeric variables or Name=‘ ’ for a character variable. Similarly,
missing value can be used in comparison operations. For example, to check
whether a value of a numeric variable, say Age, is missing for a particular
observation and then to remove the entire observation from the data set, the
following SAS programming statement may be used:

if Age=. then delete;

When a missing value is used in an arithmetic calculation, SAS sets the result
of that calculation to a missing value. This is called missing value propaga-
tion. Several operations, such as dividing by a zero or numerical calculations
that result in overflow, automatically generate a missing value. In comparison
operations a numeric missing value is considered smaller than all numbers,
and a character missing value is smaller than any printable character value.

A special missing value can be used to differentiate among different cate-
gories of missing value by using the letters A–Z or an underscore. For example,
if a user wants to represent a special type of missing value by the letter A,
then the special missing value symbol .A is used to represent the missing value
both in the data line and in conditional and/or assignment statements. For
example, to process such a missing value a statement such as

if Score=.A then Score=0;

may be used.

SAS Programming Statements

SAS programming statements are executable statements used in data step
programming and are discussed in Sect. 1.5. Other SAS statements such as
the drop statement discussed earlier are declarative (i.e., they are used to
assign various attributes to variables) and thus are nonexecutable statements.
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These include data, datalines, array, label, length, format, informat, by, and
where statements.

1.3 Creating SAS Data Sets

Creating a SAS data set suitable for subsequent analysis in a proc step in-
volves the following three actions by the user:

a. Use the data statement to indicate the beginning of the data step and,
optionally, name the data set.

b. Use one of the statements input or set, to specify the location of the
information to be included in the data set.

c. Optionally, modify the data before inclusion in the data set by means of
user-written data step programming statements. Some of the statements
that could be used to do this are described in Sect. 1.5.

data first ; 1
input (Income Tax Age State)(@4 2*5.2 2. $2.);
datalines;
123546750346535IA
234765480895645IA
348578650595431IA
345786780576541NB
543567511268532IA
231785870678528NB
356985650756543NB
765745630789525IA
865345670256823NB
786567340897534NB
895651120504545IA
785650750654529NB
458595650456834IA
345678560912728NB
346685960675138IA
546825750562527IA
;
data second; 2
set first;
if Age<35 & State=‘IA’;
run;
proc print; 3
title ‘Selected observations from the Tax data set’;
run;

Fig. 1.8. SAS Example A2: program

Note also that the statements set, merge, update, or modify statements may
also follow a data statement for creating a new SAS data set using vari-
ous methods of combining SAS data sets such as concatenating, interleaving,
merging, updating, and modifying. Some examples of these methods will be
provided in Chap. 2. The basic use of the input and the set statements for
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creating and modifying SAS data sets are discussed in this chapter. In this
section, the SAS data step is used for the creation of SAS data sets and
is illustrated by means of some examples. These examples are also used to
introduce some variations in the use of several related SAS statements.

SAS Example A2

In the program for SAS Example A2, shown in Fig. 1.8, two SAS data sets are
created in separate data steps. The first data set (named first 1 ) uses data
included instream preceded by a datalines; statement, as in SAS Example
A1. The second data set (named second 2 ) is created by extracting a subset of
observations from the existing SAS data setfirst. This is done in the second
step of the SAS program.

1 data first ;
2 input (Income Tax Age State)(@4 2*5.2 2. $2.);
3 datalines;

NOTE: The data set WORK.FIRST 4 has 16 observations and 4 variables.
NOTE: DATA statement used (Total process time):

real time 0.29 seconds
cpu time 0.01 seconds

20 ;
21 data second;
22 set first;
23 if Age<35 & State=’IA’;
24 run;

NOTE: There were 16 observations read from the data set WORK.FIRST.
NOTE: The data set WORK.SECOND 5 has 5 observations and 4 variables.
NOTE: DATA statement used (Total process time):

real time 0.01 seconds
cpu time 0.01 seconds

25 proc print;
NOTE: Writing HTML Body file: sashtml.htm
26 title ’Selected observations from the Tax data set’;
27 run;

NOTE: There were 5 observations read from the data set WORK.SECOND.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.98 seconds
cpu time 0.20 seconds

Fig. 1.9. SAS Example A2: log

In the second data step, a subset of observations from the SAS data set
first are used to create the new SAS data set named second. The observa-
tions that form this subset are those that satisfy the condition(s) in the if

data modification statement that follows the set statement. The input data
for this data step are already available in the SAS data set first which is
named in the set statement. Note that the if statement used here is of the
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form if (expression);, where the expression is a SAS logical expression. As
will be discussed in detail in a later section, such expressions may have one
of two possible values: TRUE or FALSE. In this form of the if statement, the
resulting action is to write the current observation to the output SAS data set
if the expression evaluates to a TRUE value. The if statement, when present,
must follow the set statement. (As a rule, SAS programming statements fol-
low the input or the set statement in data steps.) Clearly, two data steps
and one proc step 3 can be identified in this SAS program.

The SAS log obtained from executing the SAS Example A2 program is
reproduced in Fig. 1.9. Note carefully that this indicates the creation of two
temporary data sets: WORK.FIRST 4 and WORK.SECOND 5 . The output from
executing the SAS Example A2 program, shown in Fig. 1.10, displays the
listing of the observations in the SAS data set named second because the
proc print; step, by default, processes the most recently created SAS data
set. It can be verified that these constitute the subset of the observations
in the SAS data set named first for which the values for the variable Age

are less than 35 and those for State are equal to the character string IA.
By executing this program, an ODS-formatted output is also obtained and is
displayed in Fig. 1.10. In many of the examples in the rest of this chapter, the
output displayed has been produced in the ODS format.

Selected observations from the Tax data set

Obs Income Tax Age State

1 578.65 59.54 31 IA

2 567.51 126.85 32 IA

3 745.63 78.95 25 IA

4 595.65 45.68 34 IA

5 825.75 56.25 27 IA

Fig. 1.10. SAS Example A2: pdf-formatted output

SAS Example A3

The SAS Example A3 program, shown in Fig. 1.11, illustrates how the proc

step in SAS Example A2 can be modified to obtain the listing of the same
subset of observations without the creation of a new SAS data set. This is
achieved by the use of the where statement in the proc step. The where

statement 1 is an example of a procedure information statement described in
Sect. 1.8.
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data first ;
input (Income Tax Age State)(@4 2*5.2 2. $2.);
datalines;
123546750346535IA
234765480895645IA
348578650595431IA
345786780576541NB
543567511268532IA
231785870678528NB
356985650756543NB
765745630789525IA
865345670256823NB
786567340897534NB
895651120504545IA
785650750654529NB
458595650456834IA
345678560912728NB
346685960675138IA
546825750562527IA
;
proc print;
where Age<35 & State=’IA’; 1
title ‘Selected observations from the Tax data set’;
run;

Fig. 1.11. SAS Example A3: program

1.4 The INPUT Statement

The input statement describes the arrangement of data values in each data
line. SAS uses the information supplied in the input statement to produce
observations in a SAS data set being created by reading in data values for
each of the variables listed in the input statement. There are several methods
to input values for variables to form a data set; three of these are summarized
below.

List Input

When the data values are separated from one another by one or more blanks,
a user may describe the data line to SAS with

INPUT variable name list ;

In this style of data input, the data value for the next variable is read beginning
from the first non-blank column that occurs in the data line following the
previous value. The variable names are those chosen to be assigned to the
variables that are to be created in the new SAS data set. These names follow
the rules for valid SAS names. Examples of the use of list input are

input Age Weight Height;

input Score1-Score10;
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SAS assigns the first value in each data line to the first variable, the second
value to the second variable, and so on. Note that the second statement is a
convenient shortened form to read data values into a sequence of ten variables
named Score1, Score2,...,Score10, respectively.

List input can be used for reading data values for either numeric or char-
acter variables. To describe character variables with list input, the $ symbol
is entered following each character variable name in the list of variables in the
input statement. For example, when

input State $ Pop Income;

is used, SAS infers that the variable State will contain character values and
Pop and Income will contain numeric values. SAS allocates character variables
described in this way a maximum length of eight characters (bytes) by default.
If a value read from a data line has fewer than eight characters, then it is filled
on the right with blanks up to eight characters total. If a value is longer than
eight characters, it is truncated on the right to eight characters. Character
variables expected to contain values of length more than eight characters can
be read using an informat in the formatted input method discussed below.

If SAS does not find a value for the next variable on the current data line
when using list input, it will move to the next data line and continue to scan
for a value. For this reason, when using the list input method, if there are
any missing data values, they must be indicated on the data line by entering
a period (the SAS missing value indicator as described previously) separated
from other data values by at least one blank on either side of the period,
instead of leaving it blank.

Formatted Input

For many instream data sets, or those accessed from recording media such as
disks or CDs, list input may be inappropriate. This is because, in order to
save space, the data values contiguous to one another may have been prepared
with no spaces or, other characters such as commas, separating them. In such
cases, SAS informats must be used to input the data.

In general, informats can be used to read data lines present in almost
any form. They provide information to SAS such as how many columns are
occupied by a data value, how to read the data value, and how to store the
data value in the SAS data set. The two most commonly used informats

are those available for the purpose of inputting numeric and character data
values.

To read a data value from a data line, the user must specify in which
column the data value begins, how many columns to scan, whether the data
value is numeric or character, and where, if needed, a decimal point should
be placed in the case of a numeric value.

If the data values are in specific columns in the data line (but do not nec-
essarily begin in column 1), to indicate the column to begin reading a data
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value, the character “@” followed by the column number, placed before the
name of a variable, may be used. For example,

input @26 Store @45 Sales;

tells SAS that a value for the variable Store is to be read beginning in col-
umn 26 and a value for Sales beginning in column 45. Here it is assumed
that the values in each data line are separated by blanks (as when using the
list input style); otherwise, informats are required to read these values, as
described below. When the data values appear in consecutive columns, the
use of “@” symbol is not necessary to indicate the position to begin access-
ing the next value, because the next value is read beginning at the column
number immediately following the columns from which the previous value was
accessed.

For a numeric variable, the informat “w.” specifies that the next w

columns beginning at the current column be read as the variable’s value.
The w must be a positive integer. For example,

input @25 Weight 3.;

tells SAS to move to column 25 and read the next three columns (i.e., columns
25, 26, and 27) and store the numeric value (in floating point form) as the
value for the variable Weight in the current observation.

The informat “w.d” tells SAS to read the variable’s value as above and
then insert a decimal point before the last d digits. For example,

input @10 Price 6.2;

tells SAS to begin at column 10 and to read the next six columns as a value
of Price, inserting a decimal point before the last two digits. If a data value
already has a decimal point entered, SAS leaves it in place, overriding the
specification given in the informat. In the latter case, the w in “w.d” must
also count a column for the decimal point.

For a character variable, the informat “$w.” tells SAS to begin in the
current column and to read the next w columns as a character value. Leading
and trailing blanks are removed. For example,

input @30 Name $45.;

tells SAS to read columns 30–74 as a value of the character variable Name. To
retain leading and trailing blanks if they appear in the data line, a user may
use the $CHARw. informat instead of $w. Some examples below illustrate the
use of informats in practice. Suppose a data line contains

0001IA005040891349

where 0001 is the I.D. number of a survey response, IA is the state in which the
respondent resides, 5.04 is the number of tons of fertilizer sold in February
1985, 0.89 is the percentage of sales to members, and 1349 is the number
of members for this responding farmers’ cooperative. Let Id, State, Fert,
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Percent, and Members be the names assigned by the user to the corresponding
variables. An appropriate input statement would be

input Id 4. State $2. Fert 5.2 Percent 3.2 Members 4.;

It is important to note that an “@” symbol is not necessary here to read
any of these data values because data values are read beginning in column
1, data values appear consecutively in the data line, and the fields do not
contain any blank columns. Thus an “@” symbol is not needed for skipping to
any position at the beginning or in the interior of the line of data. Thus SAS
automatically accesses the data value for the next variable beginning from the
column following the last value.

Suppose, instead, that the data line has the following appearance:

0001xxxxIA00504x089xxxxxx1349

where the x’s represent columns of data that are not of interest for the current
analysis; these columns may or may not be blanks. Instead of reading these
columns, it is possible to skip over to the appropriate column using the “@”
symbol or the “+” symbol. For example, after reading a value for Id, the value
for State is read beginning in column 9, using “@9,” and after reading values
for State and Fert using appropriate informats, one column is skipped using
“+1.” The input statement thus could be of the form

input Id 4. @9 State $2. Fert 5.2 +1 Percent 3.2 @26 Members 4.;

Symbols, such as “@”and “+” that could be used on input statements are
called pointer control symbols. The use of the pointer and pointer controls in
reading data from an input data line is described in detail in Sect. 1.7.

Finally, the variable names and informats (including pointer controls) that
occur on an input statement can be grouped into two separate lists enclosed
in parentheses. For example, the above statement could also be written as

input (Id State Fert Percent Members)(4. @9 $2 5.2 +1 3.2 @26 4.);

Here, each informat or pointer control-informat combination is associated with
a variable name in the list sequentially. If the informat list is shorter than the
number of variables present, then the entire informat list is reapplied to the
remaining variables as required.

Column INPUT

Column input is another alternative to list input when the data values are
not separated by blanks or other separators, but the user prefers not to use
informats. In this case, the values must occupy the same columns on all data
lines, a requirement that is also necessary for using formatted input. However,
in the input statement, the variable name is followed by the range of columns
that the data value occupies in the data line, instead of an informat. The col-
umn numbers are specified in the form begin-end and are optionally followed
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by an integer preceded by a decimal point to indicate the number of decimal
places to be assumed for the data value. For inputting character strings, the
“$” symbol must follow the variable name but before the column specifica-
tion. Blanks occurring both before and after the data value are ignored. For
example, if the data line has the appearance

0001IA 5.04 891349

then it could be read, using column input as

input Id 1-4 State $ 5-6 Fert 7-12 Percent 13-15 .2 Members 16-19;

This reads the value for Id from columns 1 through 4 as an integer and the
value for State as a character string from the next two columns. The value for
Fert is read as the value exactly as it appears in columns 7 through 12, i.e.,
as a number with a fractional part. The .2 following 13–15 indicates where
the decimal point must be assumed when reading the value for Percent. The
value for Percent will thus be read as 0.89 and the value for Members as 1349
from the above data line.

Combining INPUT Styles

An input statement may contain a combination of the above styles of input.
For example, as in the previous example, if the data line has the appearance

0001IA 5.04 891349

then it could be read, using a combination of column, formatted, and list
input styles as

input Id 1-4 State $2. Fert Percent 2.2 Members 16-19;

Here, column input is used to read the value for Id, formatted input to read
the value for State, and switches to list input style to read the value for
Fert. As mentioned above (and discussed later in Sect. 1.7), this causes the
pointer to move to column 14 after reading the value for Fert (as it is the
next non-blank column). Thus, when using an informat to read the value
for Percent, the width of field w must be 2 instead of 3 (i.e., no leading
blank). Consequently, the informat 2.2 is used instead of 3.2, as was used
in the previous example. Then the value for Members is read using column
input again. Thus, a knowledge of how the pointer is handled by the three
styles of input is necessary to combine them correctly in a single statement.
Additionally, the : modifier may be used with informats for reading data values
of varying widths, as will be illustrated in SAS Example A8 (see Fig. 1.23).
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1.5 SAS Data Step Programming Statements
and Their Uses

SAS allows the user to perform various kinds of modification to the variables
and observations in the data set as it is being created in the data step. The
use of the if Age<35 & State=‘IA’; statement to obtain a subset of ob-
servations in SAS Example A2 is an example of a typical SAS programming
statement. SAS programming statements are generally used to modify the
data during the process of creating a new SAS data set, either from raw data
or from data already available in a SAS data set; hence, they must follow
an input or a set, statement. The syntax and usage of several statements
available for SAS data step programming are discussed below.

Assignment Statements

Assignment statements are used to create new variables and change the values
of existing ones. The general form of the assignment statement is

variable name= expression;

New variables can be created by combining one or more existing variables in
an arithmetic expression. This may involve combining arithmetic operators,
SAS functions, and other arithmetic expressions enclosed in parentheses and
assigning the value of that expression to a new variable name. For example,
in the SAS data step in Example 1.5.1,

Example 1.5.1

data sample;

input(X1-X7) (@5 3*5.1 4*6.2);

Y1 = X1+X2**2;

Y2 = abs(X3)

Y3 = sqrt(X4+4.0*X5**2)-X6;

X7 = 3.14156*log(X7);

datalines;
...

;

three new variables Y1, Y2, and Y3 are created. The value of Y1 for each
observation in the data set, for example, will be the sum of the value of X1
and the square of the value of X2 in that observation. The variable name

in an assignment statement may be a new variable to be added to the data
set and assigned the value of the expression; or it may be a variable already
present in the data set, in which case the original value of the variable is
replaced by the value resulting from evaluating the expression. Thus, in the
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above data step, each value of the variable X7 that is input will be replaced
by the natural logarithm of the original value of X7 multiplied by 3.14156.

Arithmetic expressions are normally evaluated beginning from the left and
proceeding to the right, but applying the Rules 1, 2, and 3, given in Fig. 1.12,
may change the order of evaluation. The result of an arithmetic expression
containing a missing value is a missing value. The SAS system incorporates a
large number of mathematical functions that can be used in the expressions,
as shown in the above example. Some examples of the commonly used math-
ematical functions are abs, log, and sqrt.

SAS Functions

A SAS function is internal code that returns a value that is determined using
the current values of user-specified arguments. The general form of a function
call is

function-name(argument1,argument2, . . .);

Some examples of function calls are

mean (Flavor, Texture, Looks)
mdy (Month, Day, Year)
substr (Item, 3, 5)

Respectively, in each of the above calls, the mean function calculates the aver-
age of values of the variables Flavor, Texture, and Looks, the mdy function
forms a SAS date value using numerical values of Month, Day, and Year, and
the substr function extracts a substring of length 5 from the character string
in the variable Item, beginning at character position 3. In general, functions
are available for performing mathematical, numerical, probability, and com-
binatorial operations, computing descriptive statistics including percentiles,
manipulating SAS dates and time values, converting state and zip codes, ex-
tracting and matching character strings, and performing many other tasks
including complex financial calculations.

Arithmetic expressions are evaluated according to a set of rules called
precedence rules. These rules, summarized in Fig. 1.12, specify the order of
evaluation of entities within an expression. It is good programming practice
to follow these rules when writing expressions. Some details on the use of the
operators in Fig. 1.12 are listed below:

• An infix operator applies to the operands on each side of it. Infix oper-
ators +, −, ∗, / perform the standard arithmetic operations of addition,
subtraction, multiplication, and division, respectively. For example, X+Y
forms the sum of the values of variables X and Y .

• Infix operators include all comparison, logical, and concatenation operators
(i.e., those listed in Groups IV to VII).
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Rule 1. Expressions within parenthesis are evaluated first.

Rule 2. An operator in a higher ranking group below has higher priority
and therefore is evaluated before an operator in lower ranking
group.

Group I ∗∗, +(prefix), −(prefix), (NOT), >< (MIN), <> (MAX)

Group II ∗, /

Group III +(infix), −(infix)

Group IV ||

Group V <, <=, =, =, >=, >, >

Group VI &(AND)

Group VII |(OR)

Rule 3. Operators with the same priority (same group) are evaluated
from left to right of the expression (except for Group I opera-
tors, which are evaluated right to left).

Fig. 1.12. Order of evaluating expressions

• As a prefix operator, the plus (+) sign or the minus sign (−) can be used
to change the sign of a variable, constant, function, or a parenthetical ex-
pression. Thus −(X ∗Y ) negates the value of the result of the computation
X ∗ Y .

• The infix operator ∗∗ performs exponentiation, i.e., X**2 raises the value
of X to the power of 2. Because Group I operators are evaluated from
right to left, the expression X = −A ∗ ∗2 is evaluated as X = −(A ∗ ∗2).

• The concatenation operator (‖) concatenates character values. For exam-
ple, Auto =‘Chevy’‖‘Camaro’ produces the string ‘Chevy Camaro’ as the
value of the variable Auto.

• The operators in Group V are comparison operators used in logical ex-
pressions as described in the next paragraph.

• Depending on the characters available on your keyboard, the symbol for
NOT may be one of the not sign (¬), tilde (̃ ), or caret (̂ ), and the symbol
(‖) may be represented by (¦¦) or (!!).

• The logical AND operator (&) or the OR operator (|) is used to form complex
expressions by combining several logical expressions. The broken vertical
bar (¦) or exclamation mark (!) may be used for the NOT operator.
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The assignment statements used in Example 1.5.1 contain only arithmetic
expressions. However, variable names may be combined using comparison op-
erators to form logical expressions as described in the paragraph below. Both
arithmetic and logical expressions may be combined using logical operators
such as the and operator (&) or the or operator (|) to form more complex
expressions.

Conditional Execution

As in any programming language, several constructs for altering the normal
top-down flow of a program are available in SAS. The if-then and else

statements allow the execution of SAS programming statements that depend
on the value of an expression. The syntax of the statements are

IF expression THEN statement;
< ELSE statement; >

The expression, in many cases, is a logical expression that evaluates to a one if
the expression is TRUE or a zero if the expression is FALSE. A logical expres-
sion consists of numerical or character comparisons made using comparison
operators. These may be combined using logical operators such as the and

operator (&) or the or operator (|) to form more complex logical expressions.
The statement in the above syntax is any executable SAS statement; however,
several SAS statements enclosed in a do-end group may be used in place of a
single SAS statement.

The following examples illustrate typical uses of if-then/else state-
ments.

Example 1.5.2

if Score < 80 then Weight=.67;

else Weight=.75;

In this example, the expression Score < 80 evaluates to a one if the current
value of the variable Score is less than 80, and in this case, the assignment
statement Weight=.67 will be executed; otherwise, the expression evaluates
to a zero and the statement Weight=.75 will be executed. The following state-
ment illustrates a more advanced method for obtaining the same result using
the numerical values of the comparisons Score < 80 and Score >= 80:

Weight=(Score < 80) *.67 + (Score >= 80) *.75;

It becomes clear that this statement will evaluate to the required value de-
pending on the value of the variable Score by assigning numerical values 0 or
1 as the resulting values of the parenthesized expressions.
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Example 1.5.3

if State= ‘CA’ | State= ‘OR’ then Region=‘Pacific Coast’;

This is an example of the use of an if-then statement without the use of an
else statement. The expression here is a logical expression that will evaluate
to a one if at least one of the comparisons State= ‘CA’ or State= ‘OR’ is
true or to a zero otherwise. Thus, the current value of the SAS variable Region
will be set to the character string ‘Pacific Coast’ if the current value of the
SAS variable State is either ‘CA’ or ‘OR’. If this is not so, then the current
value of Region will be determined by if-then statements appearing later in
the SAS data step, or otherwise will be left blank.

Example 1.5.4

if Income= . then delete;

The special SAS program statement, delete, stops the current data line from
being processed further. This observation is not written to the SAS data
set being created, and control returns to the beginning of the data step to
process the next line of data. In this example, if the current value of the
variable Income is found to be a SAS missing value, then the observation
is not written into the data set as a new observation. The result is that no
observation is created from the data line being processed.

In SAS Example A2 (see program in Fig. 1.8), the subsetting if statement
used was of the form

IF expression;

This statement is equivalent to the statement

IF not expression THEN delete;

The result is that if the computed value of the expression is FALSE, then the
current observation is not written to the output SAS data set. On the other
hand, it will be written to the output SAS data set if the expression evaluates
to TRUE.

Example 1.5.5

if 6.5<=Rate<=7.5 then go to useit;
...

· · · SAS program statements · · ·
· · · to calculate new rate · · ·

...
useit: Cost= Hours*Rate;

...
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Sometimes it may be required to avoid executing (or jump over) a few SAS
program statements depending on the value of an expression. For this purpose,
SAS program statements could be labeled using the label: notation. In the
above example, useit: is the label that identifies the SAS statement Cost=
Hours*Rate; if the expression if 6.5<=Rate<=7.5 evaluates to TRUE,
then control transfers to this statement. Note that the if 6.5<=Rate<=7.5
statement is a condensed version of the equivalent statement Rate>=6.5 &

Rate<=7.5, which will evaluate to a one only if both of the comparisons
Rate>=6.5 AND Rate<=7.5 are true or to a zero otherwise.

Example 1.5.6

if Score < 80 then do;

Weight=.67;

Rate=5.70;

end;

else do;

Weight=.75;

Rate=6.50;

end;

A do-end group can be used to extend the conditional evaluation of single
SAS statements to conditionally executing groups of SAS statements. The
above example is a straightforward extension of Example 1.5.2.

SAS Example A4

The extended example shown in Fig. 1.13 illustrates how consecutive
if-then/else statements can be used to create values for a new variable, as
well as how they may be avoided using a convenient transformation.

In the SAS Example A4 program, there are three different data steps, and
they create SAS data sets named group1, group2, and group3, respectively.
In the first data step 1 , data are read using list input with the statement
input Age @@;. The @@ pointer control symbol causes the input statement
to be repeatedly executed for the data line. Thus, the data set named group1

will have 14 observations, each with a single value for the variable Age.
In the second data step 2 , the SAS data set group2 will be formed using

the observations from group1 as input, with a new variable named AgeGroup

being created. The variable AgeGroup will be assigned a value for each observa-
tion as determined by the value of Age in the current observation, by executing
the series of if-then/else statements. Thus, for example, AgeGroup will be
assigned a value of zero, since the value of Age is 1 in the first observation
read.

In the third data step 3 , the SAS data set group3 will be formed using
the observations in group1 as in the previous step. However, the values for
the new variable AgeGroup this time are determined simply by executing the
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data group1; 1
input Age @@;

datalines;
1 3 7 9 12 17 21 26 30 32 36 42 45 51
;

data group2; 2
set group1;

if 0<=Age<10 then AgeGroup=0;
else if 10<=Age<20 then AgeGroup=10;
else if 20<=Age<30 then AgeGroup=20;
else if 30<=Age<40 then AgeGroup=30;
else if 40<=Age<50 then AgeGroup=40;
else if Age >=50 then AgeGroup=50;

run;

proc print;run;

data group3; 3
set group1;
AgeGroup=int(Age/10)*10;
run;

proc print; run;

Fig. 1.13. SAS Example A4: program

arithmetic expression int(Age/10) ∗ 10 that converts the value of Age to the
required values of AgeGroup, by a simple mathematical calculation. Note that
the int function is a SAS function that truncates the result of execution of a
numerical expression to the lower integer value.

1metsySSASehT

Obs Age AgeGroup

1 1 0
2 3 0
3 7 0
4 9 0
5 12 10
6 17 10
7 21 20
8 26 20
9 30 30

10 32 30
11 36 30
12 42 40
13 45 40
14 51 50

Fig. 1.14. SAS Example A4: listing output
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The two proc print; statements constitute two proc steps that list two
of these data sets group2 and group3, which are identical in content. One of
the two data sets is displayed in Fig. 1.14.

Repetitive Computation

Repetitive computation is achieved through the use of do loops or for loops,
respectively, in commonly known low-level programming languages such as
Fortran or C. In the SAS data step language, several forms of do statements, in
addition to the do-end groups discussed earlier are available. The statements
iterative do, do while, and do until are very flexible, allow a variety of
uses, and can be combined. The use of iterative do loops in the data step is
illustrated in Examples 1.5.7–1.5.10.

Example 1.5.7

data scores;

input Quiz1-Quiz5 Test1-Test3;

array scores {8} Quiz1-Quiz5 Test1-Test3;

do I= 1 to 8;

if scores{I}= . then scores{I}= 0;

end;

datalines;
...

An iterative do loop, in general, is used to perform the same operation on a
sequence of variables. This requires the sequence of variables to be defined
as elements of an array , using the array statement. This statement, being
nonexecutable, may appear anywhere in the data step, but in practice, it
is inserted immediately after the variables are defined (usually in the input

statement). The array definition allows the user to reference a set of vari-
ables using the corresponding array elements. This is achieved by the use of
subscripts.

In Example 1.5.7, the variables Quiz1,...,Quiz5, Test1,...,Test3 are
defined as elements of the array named scores, and they are referenced in the
do loop as scores{1},...,scores{8}, respectively, where the values 1, . . . , 8
are called the subscripts. Within the do loop, the subscripts are assigned by
using an index variable, here named I, that is used as a counting variable in
the do statement. During the execution of the loop (i.e., statements enclosed
within the do through the end statements), the variable I takes the values
1, . . . , 8, sequentially. The task performed by the do loop in Example 1.5.7 is
to convert a missing value, read from any data line for any of the above eight
variables, to a zero in the corresponding observation written to the data set
created.
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Example 1.5.8

data load;

input D1-D7;

array day {7} D1-D7;

array hour {7} H1-H7;

do I= 1 to 7;

if day{I}= 999 then day{I}=.;
hour{I}= day{I}*12;

end;

datalines;
...

Variables defined in two different arrays may be processed in a single do loop
if the two arrays are of the same length. In this example, two arrays, day and
hour, are defined—the first consisting of the variables D1–D7 and the second
consisting of a new set of variables H1–H7. In the do loop, first the value of
each of the variables D1–D7 is converted to a missing value if the current value
of that variable is 999. Then the current value of each of the variables H1–
H7 is set to 12 times the value of each of the corresponding variables D1–D7,
respectively. Note carefully that the second array statement assigns an array
name to a set variables H1–H7 yet to be used in the data step.

Example 1.5.9

data index;

do A= 1 to 4;

do B= 3,6,9;

C=(A-1)*10+B;

output;

end;

end;

proc print data=index;

title ‘Creating indices’;

run;

In this SAS program, a nested do loop is illustrated using an example where
the counting variables A and B of the do statements are manipulated to create
the values of a new variable C. This technique is often used for generating fac-
tor levels of combinations of factors or interactions in factorial experiments.
The output statement inside the loop forces a new observation containing cur-
rent values of the variables A, B, and C to be written to the data set, each pass
through the loop. Thus at the end of the processing of the loop, the SAS data
set index will contain 12 observations corresponding to all 12 combinations
of the 4 values of A and the 3 values of B. The printed listing of this data set is
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Creating indices

Obs A B C

1 1 3 3
2 1 6 6
3 1 9 9
4 2 3 13
5 2 6 16
6 2 9 19
7 3 3 23
8 3 6 26
9 3 9 29
10 4 3 33
11 4 6 36
12 4 9 39

The do while statement repeatedly executes statements in a do loop
repetitively as long as a condition, checked before each iteration, evaluates
to TRUE. The do until statement executes statements similarly but checks
the condition at the end of the loop. The SAS program below calculates the
time in months needed to pay off a loan of $5000 that accrues interest at
annual rate of 12% if paid off at $500 dollar monthly installments:

Example 1.5.10

data loan;

Balance=5000;

do while (Balance>500);

Balance+Balance*0.01;

Balance+ -500;

Month+1;

output;

end;

proc print data=loan;

title ’Loan Amortization’;

run;

Note that the statements within the loop that involve the + sign are a special
type of assignment statements called sum statements and have the general
form

variable + expression;

This statement adds the value of expression on the right side of the plus
sign to the current value of the variable which must be of numeric type. This
variable automatically retains its current value until it is updated during the
execution of the loop. If the expression evaluates to a missing value, it is
treated as zero. If the variable is not assigned an initial value, it is automat-
ically initialized to zero before the DO loop begins (note the variable Month

in this example). The printed listing of data set loan is
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Loan Amortization

Obs Balance Month

1 4550.00 1
2 4095.50 2
3 3636.46 3
4 3172.82 4
5 2704.55 5
6 2231.59 6
7 1753.91 7
8 1271.45 8
9 784.16 9
10 292.00 10

The do until statement can be used in a similar manner; which version
is preferred depends on the application.

1.6 Data Step Processing

A basic understanding of the operations in the SAS data step is necessary to
effectively use the capabilities, such as data step programming, available in
the data step. The discussion here is kept to a minimum technical level by
making use of illustrations and examples. When SAS begins execution of a
data step, the statements are first syntax checked and compiled into machine
code. At this stage, SAS has sufficient information to create the following:

• an input buffer, an area in the memory where the current line of data can
be temporarily stored

• a program data vector (PDV), an area in the memory where SAS builds
an observation to be written to a SAS data set

The PDV is a temporary placeholder for a single value of each of the variables
in the list of variables recognized by SAS to exist at this stage. These locations
are all initialized to SAS missing values when the data step processing begins.
If some of these variables are not assigned a value either by accessing a value
from the input buffer or as a result of a calculation by executing a SAS
programming statement, they will remain as missing values until the end of
the data step processing. At the discretion of the user, some or all of the
variables in the PDV may form the observation written to the SAS data
set at the end of the data step. The SAS data set is a file in which each
observation is written as a separate record and thus will contain the entire set
of observations the user opts to include in the data set. On the other hand,
the PDV contains only those values of the variables obtained from the current
data line (or new values calculated using them) at any point in the execution
of the data step.

The basic SAS data step begins at the data statement. Values for the
variables in the PDV are initialized to SAS missing values, a line of data is
read into the input buffer, and data values transferred into the PDV from the
input buffer, replacing the missing values in the PDV. The pointer control
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Writes contents of PDV
into SAS data set as a
new observation.

Executes SAS program-
ming statements using
data values in PDV.

Begins the data step.
Sets variables in the PDV
to missing values.

Input data.
Is this the last

data line?

If end of data lines, close
the data set and go to the
next step.

Yes

No

Fig. 1.15. Flow of operations in a data step

symbols and informats in the input statement facilitate the conversion of the
columns in the input buffer into data values for the variables in the PDV. SAS
programming statements are then executed using the current values of the
variables in the PDV, values in the PDV are then output as a new observation
in the SAS data set, and control returns back to the beginning of the data
step. Recall that, as explained above, the values of variables in the PDV are
reset to missing values at this stage. This is an iteration of a SAS data step
and the automatically generated SAS variable N keeps track of the current
iteration number. The user may make use of this variable in any programming
statement in the data step.

In this description it has been assumed that the data step is operating
under its default behavior. It is possible for the user to alter the flow of
operations described above by various actions, implemented via the inclusion
of one or more executable SAS programming statements at different points
in the data step. For example, if an output statement is inserted among the
SAS programming statements in the data step, instead of waiting to write an
observation to the SAS data set at the end of an iteration of the SAS data step,
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SAS will write the current values of the variables as a new observation at the
point the output statement is encountered. The user may also use a retain

statement (see Sect. 1.7.4) to keep selected variables from being initialized to
a missing value. The flow of operations in a data step is summarized in the
chart shown in Fig. 1.15.

SAS Example A5

data four;
input X1-X3;
X3= 3*X3-X1**2; 1
X4=sqrt(X2); 2
drop X1 X2; 3
datalines;
3 4 5
-2 9 3
. 16 8
-3 1 4
;
proc print data=four;
title ‘Flow of operations in a data step’;
run;

Fig. 1.16. SAS Example A5: program

A simple example is used to illustrate the flow of operations in a data
step described above. Consider the data step in the SAS program shown in
Fig. 1.16. This data step creates the SAS data set named four. Four data lines
with data values for three variables X1, X2, and X3 are read instream. The
values of variable X3 are transformed 1 , and a new variable X4 2 is created.
Further, only variables X3 and X4 are written to the data set.

At the beginning of each iteration of the data step, variables X1, X2,

X3, and X4 are initialized to missing values in the PDV because SAS has
detected their presence in the data step during the compile stage. The data
step execution proceeds as follows:

• The first line of data is transferred to the input buffer.
• The values 3, 4, and 5 are accessed using list input from the input buffer

and transferred to the PDV as the new values of variables X1, X2, and
X3; the value for X4 still remains a missing value.

• A value of 6 is computed by substituting the values of X1=3 and X3=5 in
the expression 3 ∗X3 −X1 ∗ ∗2. This replaces the current value 5 of the
variable X3 in the PDV.

• The square root of 4, the value of X2 in the PDV, replaces the missing
value of the variable X4.

• SAS ascertains that the end of the data step has been reached and writes
the observation into the data set (named four) using the current values
of the variables in the PDV. Variables X1 and X2 are excluded from the
data set because they appear in the drop statement 3 .
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• Next, SAS goes back to the beginning of the data step (the input state-
ment) and reinitializes the PDV to missing values, and the next line of
data is transferred to the input buffer.

The appearance of the PDV (just before writing the first observation to the
SAS data set) is

X1 X2 X3 X4 _N_ _ERROR_

3 4 6 2 1 0

The sequence of operations described above continues until end-of-file is de-
tected (i.e., end of the data is encountered) by the input statement. SAS then
closes the data set and proceeds to the next step. The drop statement is a
nonexecutable SAS statement and thus may appear anywhere in the data step.
It results in the variables listed in the statement being marked so that those
variables will be omitted from the observations written to the SAS data set.

1stepdataainoperationsofFlow

Obs X3 X4

1 6 2
2 5 3
3 . 4
4 3 1

Fig. 1.17. SAS Example A5: output

2 data four;
3 input X1-X3;
4 X3= 3*X3-X1**2;
5 X4=sqrt(X2);
6 drop X1 X2;
7 datalines;

NOTE: Missing values were generated as a result of performing an
operation on missing values.
Each place is given by: (Number of times) at (Line):(Column).
1 at 4:9 1 at 4:12

NOTE: The data set WORK.FOUR has 4 observations and 2 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.01 seconds

11 ;
12 proc print data=four;
13 title ‘Flow of operations in a data step’;
14 run;

NOTE: There were 4 observations read from the data set WORK.FOUR.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.00 seconds
cpu time 0.01 seconds

Fig. 1.18. SAS Example A5: log



1.6 Data Step Processing 35

A listing of the data set created in the data step described above is produced
as the output from the next step in the program and is shown in Fig. 1.17.
The SAS Log is shown in Fig. 1.18.

SAS Example A6

The SAS program shown in Fig. 1.19 uses the array, do, and output state-
ments to create a SAS data set that is markedly different in appearance from
the instream data set used to create it. This technique, called transposing, is
useful for preparing SAS data sets for analysis of data obtained from statisti-
cally designed experiments (e.g., factorial experiments).

The data for this example, displayed in Fig. 1.19, are scores received by
students for five quizzes. The name of the student and the five scores are
entered with at least one blank as a separator so that the data can be read
using list input. It is important to note that when using list input, missing
values must be indicated by a period. If a blank is entered as the missing
value, the input statement will mistakenly read the next data value available
as the value for the variable for which a value is actually missing in the current
line of data.

data quizzes;
input Name Quiz1-Quiz5;
array qz {5

$
} Quiz1-Quiz5; 1

drop Quiz1-Quiz5;
do Test= 1 to 5;

if qz{Test}=. then qz{Test}= 0 ;
Score = qz{Test};
output; 2

end;
datalines;
Smith 8 7 9 . 3
Jones 4 5 10 8 4
;
proc print data=quizzes;
run;

Fig. 1.19. SAS Example A6: program

The five variable names for the quiz scores Quiz1,...,Quiz5 are de-
clared in an array named qz 1 and then used in the do loop with a counter
variable named Test. At the beginning of the data step, variables Name,

Quiz1,...,Quiz5, Test, and Score are all initialized to missing values in
the PDV (program data vector). Thus, the appearance of the PDV at the
beginning of the data step is

Name Test Quiz1 Quiz2 Quiz3 Quiz4 Quiz5 Score _N_ _ERROR_

. . . . . . . 1 0
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The first line of data Smith 8 7 9 . 3 is transferred to the input
buffer. The input statement reads these values from the input buffer using the
list input style and assigns them as new values of variables Quiz1,...,Quiz5
in the PDV. Thus, the appearance of the PDV at this stage is

Name Test Quiz1 Quiz2 Quiz3 Quiz4 Quiz5 Score _N_ _ERROR_

Smith . 8 7 9 . 3 . 1 0

The statements in the do loop are executed with the counter variable Test

taking values 1 through 5, incremented by +1. With the value of Test set
to 1, if qz{Test}=. then qz{Test}= 0; determines whether the value for
Quiz1 in the PDV is a missing value and, if so, replaces it with a zero. Here
qz{Test}=. is false so SAS proceeds to execute the next statement.

1
Obs Name Test Score

1 Smith 1 8
2 Smith 2 7
3 Smith 3 9
4 Smith 4 0
5 Smith 5 3
6 Jones 1 4
7 Jones 2 5
8 Jones 3 10
9 Jones 4 8

10 Jones 5 4

Fig. 1.20. SAS Example A6: listing output

The next statement Score= qz{Test}; causes the value of Score to be
set to the value of Quiz1 since qz{1} refers to the variable Quiz1. Thus, the
appearance of the PDV at this point is

Name Test Quiz1 Quiz2 Quiz3 Quiz4 Quiz5 Score _N_ _ERROR_

Smith 1 8 7 9 . 3 8 1 0

A new observation containing current values of the variables Name, Test, and
Score is written to the SAS data set quizzes at this time because the output
statement 2 is encountered. The observation written to the SAS data set is

Obs Name Test Score

1 Smith 1 8

because the variables Quiz1,...,Quiz5 are not included in the SAS data set
as they are named in a drop statement.
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The above steps are repeated for each pass through the do loop for the set
of data values already in the PDV (i.e., without reading in a new data line).
Thus, for each line of data input, five observations are written to the SAS
data set, each observation in the data set corresponding to a quiz score for
a student. The printed listing of this data set will thus have the appearance
shown in Fig. 1.20.

SAS Example A7

Figure 1.21 displays an example of construction of a SAS data set intended to
be used as input to a SAS analysis of variance procedure. This program uses
nested do loops. The data comes from an experiment that involves two factors:
Amount with levels 0.9, 0.8, 0.7, 0.6 and Concentration with levels 1%,
1.5%, 2%, 2.5%, 3%. The data values, consisting of reaction times measured
for each combination of Amount and Concentration, are available as a table,
with the columns corresponding to the levels of Concentration and the rows
to the levels of Amount. Since data from factorial experiments are typically
tabulated in this fashion, entering the data with each row in the table as a
line of data is convenient.

data reaction;
length Conc $4;
do Amount =.9 to .6 by -.1; 2

do Conc = ‘1%’ , ‘1.5%’ , ‘2%’ , ‘2.5%’ , ‘3%’ ;
input Time @@; 1
output; 3
end;

end;
datalines;
10.9 11.5 9.8 12.7 10.6
9.2 10.3 9.0 10.6 9.4
8.7 9.7 8.2 9.4 8.5
7.2 8.6 7.5 9.7 7.7

;
proc print;
title ‘Reaction times for biological substrate’;
run;

Fig. 1.21. SAS Example A7: program

The data are entered instream, as shown in Fig. 1.21. The input time

@@; 1 statement inside two nested do loops with index variables Conc and
Amount is used to read the data values one at a time. Note carefully that Conc
runs through the set of character values 1%, 1.5%, 2%, 2.5%, and 3% for
each value of Amount, and that Amount runs through the values 0.9, 0.8,

0.7, and 0.6, in that order 2 . The @@ pointer control symbol 1 causes the
input statement to read values from the same line of data, until the end of
that data line is reached (i.e., until 5 values are input). This enables values
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for the variable Time to be read, one at a time, from each line of data. (See
Sect. 1.7 for more about the use the @@ pointer control.)

Reaction times for biological substrate

Obs Conc Amount Time

1 1% 0.9 10.9

2 1.5% 0.9 11.5

3 2% 0.9 9.8

4 2.5% 0.9 12.7

5 3% 0.9 10.6

6 1% 0.8 9.2

7 1.5% 0.8 10.3

8 2% 0.8 9.0

9 2.5% 0.8 10.6

10 3% 0.8 9.4

11 1% 0.7 8.7

12 1.5% 0.7 9.7

13 2% 0.7 8.2

14 2.5% 0.7 9.4

15 3% 0.7 8.5

16 1% 0.6 7.2

17 1.5% 0.6 8.6

18 2% 0.6 7.5

19 2.5% 0.6 9.7

20 3% 0.6 7.7

Fig. 1.22. SAS Example A7: pdf-formatted output

The output statement 3 will cause an observation containing the current
values in the PDV for the variables Conc, Amount, and time to be written to
the SAS data set named reaction. This will be repeated for all combinations
of the index variables Conc and Amount; that is, 20 observations will be written,
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one for each combination of values for these variables. The ODS-formatted
listing of this data set, shown in Fig. 1.22, displays the values of these variables
for each observation.

1.7 More on INPUT Statement

In this section, the column pointer controls @ and +, line-hold specifiers
trailing @ and trailing @@, and the line pointer control #n are discussed.

1.7.1 Use of Pointer Controls

The SAS input statement uses a pointer to track the position in the input
buffer where it begins reading a data value for each of the variables in the
PDV. At the start of the execution of the input statement, the pointer is
positioned at the beginning of the input buffer (position one) and then moves
along the buffer as each successive informat or pointer control in the input
statement is encountered. As the pointer moves along the input buffer, the
input statement reads data values from the input buffer beginning at the
current pointer position and converts them to values for successive variables
in the PDV. This conversion is done using the informats supplied by the user
in the input statement (or using a default informat if one is not supplied, as
in the case of list input). For example, the following input statement

input Id 4. @9 State $2. Fert 5.2 +1 Percent 3.2 @26 Members 4.;

was used in Sect. 1.4 to read the data line

0001xxxxIA00504x089xxxxxx1349

Suppose that the data line has been moved to the input buffer and that the
pointer is positioned at the beginning of the buffer as follows:

0001xxxxIA00504x089xxxxxx1349
↑

The SAS numeric informat 4. reads the value 0001 for the variable Id (and
inserts it in the PDV), and the pointer is repositioned at column 5 of the
input buffer:

0001xxxxIA00504x089xxxxxx1349
↑

The pointer control @9 then causes the pointer to move to column 9:

0001xxxxIA00504x089xxxxxx1349
↑

The SAS character informat $2 reads the value IA as the value for State

and inserts it in the PDV, and the pointer moves over those two columns to
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column 11 of the input buffer:

0001xxxxIA00504x089xxxxxx1349
↑

Next, the SAS numeric informat 5.2 is used to read the value 00504 as the
current value 5.04 of the variable Fert in the PDV and the pointer moves
over five columns:

0001xxxxIA00504x089xxxxxx1349
↑

The pointer control +1 moves the pointer one more column:

0001xxxxIA00504x089xxxxxx1349
↑

Three columns are read using the informat 3.2 to obtain the current value
of the variable Percent in the PDV, and the pointer moves a further three
columns:

0001xxxxIA00504x089xxxxxx1349
↑

The pointer control @26 moves the pointer to column 26:

0001xxxxIA00504x089xxxxxx1349
↑

Notice that it would have been more convenient to use +6 to move the pointer
to column 26 than determining the required number, 26, of columns to move
the pointer to the current position from position one. At this stage the value
1349 for the variable Members is read from the input buffer, using the informat
4., and inserted in the PDV. The pointer moves to column 31:

0001xxxxIA00504x089xxxxxx1349
↑

At this point, SAS recognizes that the end of the input statement has been
reached and the execution of the SAS programming statements using the
values in the PDV begins.

Note that the pointer will move backward along the input buffer if the
@ pointer control is used with a value that points to a position to the left
of the current pointer position. There are other variations of the use of the
pointer controls @ and + available. For example, the form @numeric-variable

or @numeric-expression can be used to read subsequent data by position-
ing the pointer at the value of a numeric-variable or a numeric-expression,
respectively. Thus, moving of the pointer can be made dependent on a value
of a variable or an expression. The pointer control + can also be used to move



1.7 More on INPUT Statement 41

the pointer backward. For example, +(-3) or +num, where the value of num is
set to −3, moves the pointer back three columns from the current position.

1.7.2 The trailing @ Line-Hold Specifier

So far, it is understood that when the end of the input statement is reached
(the SAS pointer is positioned at the end of the input buffer), SAS proceeds
to execute the programming statements that follow using the values in the
PDV. In addition, the input buffer will be replaced with the next line of data
when this occurs.

Sometimes it may become necessary to execute SAS programming state-
ments after reading only some of the data values from the input buffer. One
situation of this kind occurs when reading the rest of the data values depends
on the value(s) of variable(s) read so far. Obviously, it is necessary to use a
second input statement to read the rest of the data values from the input
buffer. However, this is not possible because, ordinarily, completing the exe-
cution of an input statement will cause the input buffer to be replaced with
the next line of data. Thus, the values yet to be read from the previous line
of data will become unavailable.

data garden;
input Store : $13. Count @; 1

do i=1 to Count;
input Item : $10. Price : 5.2 @; 2
output;

end;
drop i;
datalines;
JMart 4 rake 1250 sprinkler 875 bench 12000 chair 3525
Woodsons 3 edging 750 planter 1365 basket 870
Home’nGarden 5 sweeper 1185 gloves 350 shears 2100

spade 3450 trimmer 7640
;
proc print data=garden;
title ‘Gardening materials purchased Spring 2004 ’;
run;

Fig. 1.23. SAS Example A8: program

The use of an @ symbol appearing by itself as the last item on an input
statement (i.e., just before the semicolon), called a trailing @, is one solu-
tion to this problem. The trailing @ forces SAS to hold the pointer at the
current position on the input buffer and allows SAS to execute another input
statement before the contents of the current input buffer are replaced.

SAS Example A8

Figure 1.23 shows an example where the trailing @ is used twice to hold the
same data line (in the input buffer). First, it is used on the statement input
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Store : $13. Count @; 1 to hold the data line after reading values for the
variables Store and Count. The variable Count contains the number of pairs
of values for the variables Item and Price to be read from the same data
line. These pairs of values are read using the statement input Item : $10.
Price : 5.2 @;. This statement appears within a do loop that executes a
number of times equal to the value of the Count variable, read previously from
the same data line.

The second use of trailing @ in this example occurs in the input Item :

$10. Price : 5.2 @; 2 . It holds the line after each pair of values for Item
and Price is read, leaving the pointer at the correct position for the next
execution of the same input statement. After a pair of values for Item and
Price is read, the output statement causes the values in the PDV for the
variables Store, Count, Item, and Price to be written as an observation
in the SAS data set named garden created in this data step.

Gardening materials purchased Spring 2004

Obs Store Count Item Price

1 JMart 4 rake 12.50

2 JMart 4 sprinkler 8.75

3 JMart 4 bench 120.00

4 JMart 4 chair 35.25

5 Woodsons 3 edging 7.50

6 Woodsons 3 planter 13.65

7 Woodsons 3 basket 8.70

8 Home'nGarden 5 sweeper 11.85

9 Home'nGarden 5 gloves 3.50

10 Home'nGarden 5 shears 21.00

11 Home'nGarden 5 spade 34.50

12 Home'nGarden 5 trimmer 76.40

Fig. 1.24. SAS Example A8: pdf-formatted output

Note that the data values for the last observation in the input stream
continues on to a second data line. These data values are processed correctly
because a value of 5 read for the variable Count results in the statement
input Item : $10. Price : 5.2 @; being repeatedly executed five times.
This causes SAS to encounter the end of a data line after reading the third
pair of values Item and Price from the input buffer and thus move the second
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data line into the input buffer. The next two pairs of values for Item and Price

are then read using the same input statement.
Additionally, this program illustrates the use of the : modifier with both

character and numeric informats in the list input style, for reading data values
of varying widths. First, Store : $13. allows the reading of character strings
shorter than the specified width of 13 columns of the data value to be read 1 .
The :modifier causes $13. to recognize the first blank encountered in the data
field as a delimiter, as is the case when using list input with simply a single
$ symbol without specifying a length. Thus, data values of shorter lengths
than 13 characters are read correctly as the values of Store. Second, Price :

5.2 2 allows the reading of numeric data values of varying widths delimited
by blanks using the numeric informat 5.2. The ODS-formatted listing of the
data set produced by the SAS Example A8 is displayed in Fig. 1.24.

1.7.3 The trailing @@ Line-Hold Specifier

It was stated in Sect. 1.7.2 that SAS assumes implicitly that the processing
of a data line is over when the end of the input statement is reached and
automatically goes to read a new line of data. There, trailing @ pointer
control was used to hold the current data line for further processing.

Another situation in which it is necessary that SAS does not assume that
processing of a data line is complete when the end of an input statement
is reached occurs when information for multiple observations are to be read
from the same line of data. The trailing @@ causes the input statement to be
repeatedly executed for the same data line, and each time the input statement
is executed, a new iteration of the data step is also executed (as if another
data line has been moved into the buffer).

Example 1.7.1

data sat;

input Name $ Verbal Math @@;

Total= Verbal + Math;

datalines;

Sue 610 560 John 720 640 Mary 580 590

Jim 650 760 Bernard 690 670 Gary 570 680 Kathy 720 780

Sherry 640 720

;

proc print;

run;

In Example 1.7.1, several sets of data values, consisting of the values for
the variables Name, Verbal, and Math, are entered into several data lines in
the input stream. Three values at a time are read from each line using list
input from the input buffer and transferred to the PDV, with the pointer
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maintaining its current position, while the three values are being processed.
The program statement total= Verbal + Math; is then executed, and an
observation is written to the data set, as SAS has reached the end of the data
step. The above actions describe a single iteration of the data step.

Instead of returning to read a new data line, the next set of values will
now be read from the input buffer beginning from the current position of the
pointer. The presence of the trailing @@ caused the data line to be held
in the input buffer. Note, however, that using a trailing @ instead of the
trailing @@ will not work in this case. This is because the input buffer would
have been reinitialized to missing values at the end of each iteration of the
data step, thus wiping out the data values that are yet to be transferred to
the PDV. The printed output from proc print; in Example 1.7.1 is shown
as follows:

Obs Name Verbal Math Total

1 Sue 610 560 1170

2 John 720 640 1360

3 Mary 580 590 1170

4 Jim 650 760 1410

5 Bernard 690 670 1360

6 Gary 570 680 1250

7 Kathy 720 780 1500

8 Sherry 640 720 1360

1.7.4 Use of RETAIN Statement

Recall that each time SAS returns to the top of the data step, every variable
value in the PDV is initialized to missing values. The retain statement is
a declarative statement that causes the value of each variable listed in the
statement to be retained in the PDV from one iteration of the data step to
the next. The general form of the retain statement is

RETAIN variable-list < (initial-values) >;

By default, the initial-values assigned to the variables in the list are missing
values; however, the retain statement allows the user to specify the values to
be used for initializing as well. Note that it is redundant to use this statement
in a data step where data are accessed from an existing SAS data set to
create a new SAS data set (as when using statements such as set or merge
to be discussed in Chap. 2) because the values of variables are automatically
retained from one iteration to the next in such a data step. The SAS Example
A9 program displayed in Fig. 1.25 illustrates the use of the retain statement.
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SAS Example A9

The retain statement is most useful when multiple types of data lines are to
be processed in a data step. It is necessary to retain data values read in one
type of a data line in the PDV, so that they can be combined with information
read from other types of data lines to form a single observation to be output
to the SAS data set. Usually, values retained in the PDV remain there until
they are overwritten by new values read from a data line of the same type.

data ledger;
retain Store Region Month;
input Type $1. @;
if Type=’S’ then input @3 Store 4. Region ˆ10. Month : $8. ; 2
else do;

input @4 Date ddmmyy8. Sales 7.2; 3
output;
end;

drop Type;
datalines;
S 0021 Southeast March 1

10/05/04 134510
12/05/04 23675
21/05/04 96860
28/05/04 265036

S 0173 Northwest January
15/05/04 67200
18/05/04 158325
29/05/04 127950
30/05/04 45845
02/06/04 304730

;
proc print data=ledger;
Id Store;
format Store z4. Date ddmmyy8. Sales dollar10.2 ;
title ‘Sales Analysis for Martin & Co.’;

run;

Fig. 1.25. SAS Example A9: program

In the SAS Example A9 program, there are two kinds of data lines: one
kind, identified by an “S” entered in the first column 1 , specifies values for
the variables Store, Region, and Month, and the other containing a blank in
the first column specifies values for the variables Date and Sales. Notice that
in the second input statement 2 , the : modifier is used with the $8. informat
to read a value for the variable Month, and the informat ddmmyy8. is used in
the third input statement 3 to read a date value.

As seen from the ODS-formatted listing of the output data set displayed
in Fig. 1.26, the values for Date and Sales have been combined with those
of Store, Region, and Month to form each individual observation in the
data set. It is important to recognize that the values for Date and Sales

are read from a new data line using the statement input @4 Date ddmmyy8.

Sales 7.2;, following which an observation is written to the SAS data set
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Sales analysis for Martin & Co.

Store Region Month Date Sales

0021 Southeast March 10/05/04 $1,345.10

0021 Southeast March 12/05/04 $236.75

0021 Southeast March 21/05/04 $968.60

0021 Southeast March 28/05/04 $2,650.36

0173 Northwest January 15/05/04 $672.00

0173 Northwest January 18/05/04 $1,583.25

0173 Northwest January 29/05/04 $1,279.50

0173 Northwest January 30/05/04 $458.45

0173 Northwest January 02/06/04 $3,047.30

Fig. 1.26. SAS Example A9: pdf-formatted output

(named ledger). Then SAS returns to the top of the data step and variables
in the PDV are all initialized to missing values except for Store, Region,

and Month. The values for these variables in the PDV remain the same as
those that were previously read from the last type “S” data line. A new set of
values for Date and Sales are read from the next data line, unless the next
data line is of type “S.” Note that the data lines are required to be arranged
precisely in the sequence they appear in the SAS program for the example to
work as described.

1.7.5 The Use of Line Pointer Controls

The pointer controls discussed in Sect. 1.7.1 are called column pointer controls
because they facilitate the movement of the pointer along the columns of a
data line (in the input buffer). The pointer control #n moves the pointer to
the first column of the nth data line in the input buffer. This implies that
it is possible for the input buffer to contain multiple data lines. The largest
value of n that is used in an input statement is used by SAS to determine
how many data lines will be read into the input buffer at a time. The user
may specifically state the number of lines to be read using the n= option in
the infile statement. Once several lines are in the input buffer, #n or one of
its other forms #numeric-variable or #numeric-expression may be used
in the input statement, to move the pointer among these lines of data to read
data values into the PDV. The pointer may move either forward or backward
among these lines depending on the value of n, the numeric-variable, or the
numeric-expression.
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Example 1.7.2

data survey;

input #1 Id 1-4 Gender $ Bdate ddmmyy6. (Race Marital Educ)

(1.) #2 @5 (Q1-Q20) (1.) ;

format Bdate ddmmyy8. ;

datalines;

3241 F 100287012

13431043321110310022

5673 M 211178124

11031002231134310433

4702 M 170780025

31134310433211103100

2496 F 030979013

22311542102231152111

6543 M 090885124

03100343104332111031

;

proc print;

run;

Data lines continued onto several lines may also occur due to reasons differ-
ent from the situation described in Sect. 1.7.4. An observation may constitute
information entered on several data lines simply because the data values are
too numerous to be entered on a single line. Such data may arise as a result
of surveys, longitudinal studies in which many variables are measured over
time on each experimental subject, or experiments involving repeated mea-
sures. In Example 1.7.2, the data set is the result of a questionnaire in which
demographic data are entered in the first data line, and the responses to 20
questions are recorded in the second data line as a series of single-digit num-
bers corresponding to responses made by the subject (identified by the I.D.
number on the first line). The printed output from proc print; in Exam-
ple 1.7.2 is as follows:

The SAS System 1

M
G a
e B r
n d R i E

O d a a t d Q Q Q Q Q Q Q Q Q Q Q
b I e t c a u Q Q Q Q Q Q Q Q Q 1 1 1 1 1 1 1 1 1 1 2
s d r e e l c 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

1 3241 F 10/02/87 0 1 2 1 3 4 3 1 0 4 3 3 2 1 1 1 0 3 1 0 0 2 2
2 5673 M 21/11/78 1 2 4 1 1 0 3 1 0 0 2 2 3 1 1 3 4 3 1 0 4 3 3
3 4702 M 17/07/80 0 2 5 3 1 1 3 4 3 1 0 4 3 3 2 1 1 1 0 3 1 0 0
4 2496 F 03/09/79 0 1 3 2 2 3 1 1 5 4 2 1 0 2 2 3 1 1 5 2 1 1 1
5 6543 M 09/08/85 1 2 4 0 3 1 0 0 3 4 3 1 0 4 3 3 2 1 1 1 0 3 1
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Note that the informat 1. is applied repeatedly to each of the variables in
the list (Race Marital Educ) to read the responses to these variables, which
are single-digit numbers entered in adjoining columns in the first line of data.
Similarly, the informat 1. is applied to each variable in the list (Q1-Q20).

1.8 Using SAS Procedures

The Proc Step

It has previously been noted that the group of SAS statements used to invoke
a procedure for performing a desired statistical analysis of a SAS data set is
designated as a proc step and that the group begins with a statement of the
form

PROC procedure name;

One may use options and parameters in the proc statement to provide ad-
ditional information to the procedure. Some procedures also allow optional
procedure information statements, which usually follow the proc statement,
to be included in the proc step. Thus the most general form of a proc step is

PROC proc name options list;
<procedure information statements;>
< variable attribute statements;>

If the user only requires that

• the most recently created data set will be analyzed,
• all variables in the data set are to be processed, and
• the entire data set is to be processed instead of subsets of observations,

then most SAS procedures can be invoked by using a simple proc statement
as in the SAS Example A1 program. For example, in the code

data new;

input X Y Z;

datalines;
...

;

proc print;

run;

proc print will produce a listing of the data values in the entire SAS data set
created in the data step immediately preceding the proc print statement.
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Specifying Options in the PROC Statement

On the other hand, if a user intends to analyze a data set that is not the most
recently created one or if a user wishes to specify additional information to
the procedure, these may be specified as options in the proc statement. For
example,

proc print data=one;

specifies that the print procedure uses the data from the data set named
one, irrespective of whether it is the most recently created SAS data set in
the current job. Thus, the data set named one may have been created in any

one of the several data steps preceding the current proc step.

proc corr kendall;

provides an example of using a keyword option to specify a type of compu-
tation to be performed. Here the keyword kendall specifies that Kendall’s
tau-b correlation coefficients be computed when procedure corr is exe-
cuted, instead of the Pearson correlations that would have been computed
by default.

Procedure Information Statements

Certain statements may be optionally included in a proc step to provide
additional information to be used by the procedure in its execution. Some
statements of this type are var, by, output, and title. For example, the
requirement that the analysis is to be performed only on some of the variables
in the data set can be specified by using the procedure information statement
var. In the example

proc means data=Store mean std;

var Bolts Nuts Screws;

the var statement requires that procedure means computes the mean and
standard deviation only of the variables named Bolts, Nuts, and Screws in
the data set named Store. These variables are thus identified as the analysis
variables.

A special procedure information statement, the by statement, allows many
SAS procedures to process subsets of a specified data set based on the values
of the variable (or variables) listed in the by statement. This in effect means
that SAS executes the procedure repeatedly on each subset of data separately.
The form of the by statement is

BY variables list ;

When a by statement appears, the SAS procedure expects the data set to be
arranged in the order of values of the variable(s) listed in the by statement.
The essential requirement is that those observations with identical values for
each of these variables occur together in the input data set. This is required
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so that these observations can be analyzed by the procedure as subsets called
by groups. See Example 1.8.1 for an illustration.

The formation of by groups is most conveniently achieved by using the SAS
procedure named SORT to rearrange the data set prior to analyzing it. When
used in the proc sort step, a by statement specifies the key variables to be
used for performing the sort. In the SORT procedure, observations are first
arranged in the increasing order of the values of the first variable specified in
the by statement. Within each of the resulting groups, observations are then
arranged in the increasing order of the values of the second variable specified
and so on.

For numeric sort keys, the signed value of a variable is used to determine
the ordering with SAS missing value assigned the lowest rank. For charac-
ter variables, ordering is determined using the ASCII sequence in UNIX and
Windows operating environments. The main features of the ASCII sequence
are that digits are sorted before uppercase letters, and uppercase letters are
sorted before lowercase letters. The blank is the smallest displayable charac-
ter. Thus, the string ‘South’ is larger than the string ‘North’ but is smaller
than the string ‘Southern’.

By default, proc sort will replace the input SAS data set with the data
set rearranged as requested in the by statement. However, if needed, the sorted
output can be written to a new SAS data set using an out= option on the
proc sort statement to name the new data set.

Example 1.8.1 As an example, suppose that it is required to analyze the
variables in a data set by Gender and Income category where the respondents
were assigned to one of, say, 3 Income categories 1, 2, or 3. Once the SAS
data set is created, a sequence of SAS statements comparable to those shown
below may be used to obtain a required analysis. First, proc sort uses the
SAS data set as input, rearranges it as specified in the by statement, and
replaces the input data set with the modified data set. The proc print uses
this data set to produce a listing of the rearranged data.

...
proc sort;

by Gender Income;

proc print;

by Gender;
...

The output from proc print will result in a listing of observations that are
grouped by Gender first, and within each group arranged in the increasing
values of Income, as shown in Output 1.
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Output 1

Gender = F

listing of observations in ascending order of

INCOME values and a value of F for Gender

Gender = M

listing of observations in ascending order of

Income values and a value of M for Gender

If, in addition, it is required to find the mean and variance of the variables
in the data set by both Gender and Income class, the following statements
may be added:

proc means mean var;

by Gender Income;

var Age Food Rent;
...

producing the table of means and variances for the variables Age, Rent, and
Food for each subgroup defined by values of Gender and Income, as shown
in Output 2. The vertical dots represent the statistics (means and variances)
calculated using data values for variables Age, Rent, and Food, etc. in each
of these subgroups.

Output 2

Gender = F Income= 1
...

Gender = F Income= 2
...

Gender = F Income= 3
...

Gender = M Income= 1
...

Gender = M Income= 2
...

Gender = M Income= 3
...
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The where statement used in SAS Example A3 (see Fig. 1.11) is another
example of a procedure information statement.

Variable Attribute Statements

These statements allow SAS users to specify the format, informat, label,

and length of the variables in a proc step. Such specifications are associated
with the variables only during the execution of a proc step if specified in
that proc step. On the other hand, these statements may also be used in a
data step to specify attributes of SAS variables, in which case they would
be permanently associated with the variables in the data set created by the
data step. Thus, these attributes will be available subsequently to any SAS
procedure for use within a proc step. The format and label statements are
two variable attribute statements frequently used in proc steps.

The FORMAT Statement

The format statement may be used both in the data step and the proc step
to specify formats. SAS formats are used for converting data values stored
in a SAS data set to the form desired in displayed output. They provide
information to SAS such as how many character positions are to be used by a
data value, in what form the data value must appear in the displayed output,
and what additional symbols, such as decimal points, commas, dollar signs,
etc., must appear in the printed form of the data value. For example, a date
value stored internally as a binary value may be displayed in one of several
date formats provided by SAS for displaying dates. The two most commonly
used formats are those available for the purpose of displaying numeric and
character data values. The general form of the statement is

FORMAT var-1=format...<var-n=format>;

The LABEL Statement

The label statement is also used in both the data and the proc steps to give
more descriptive labels than the variable names to identify the data values
(or statistics computed on the data values) in the output. The general form
of the statement is

LABEL var-1=label-1...<var-n=label-n>;

where label-1, · · · label-n are character strings enclosed in single quotation
marks (or double quotation marks if the label includes single quotation
marks). Any number of variables may be associated with labels in a single
LABEL statement.
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The LENGTH Statement

The length statement is used to assign a length (in bytes) to one or more vari-
ables. It is most useful when character variables containing strings of length
more than eight characters, the default length allocated to character variables
stored in a data set, need to be defined. The general form of the statement
when used for this purpose is

LENGTH variable(s) <$ > length;

where the $ specifies that the preceding variables are character variables and
length is a number in the range 1 to 32,767, specifying how many bytes are
required to be allocated.

SAS Example A10

The SAS Example A10 program, displayed in Fig. 1.27, illustrates several fea-
tures of the data and proc steps discussed so far. The two different proc

print steps provide listings of the same SAS data set; the first step is a
simple invocation of the procedure, whereas in the second step, several proce-
dure information and variable attribute statements are used to produce more
complete annotation.

In the input statement 1 , the : modifier is used to read the value for the
variable Region and the date informat monyy5. to read the date value. The
format statement 2 used in this data step specifies formats for the variables
Month and Revenue. Thus, these formats were used in the first proc print

for printing the values of these variables, as illustrated in Output 1 shown in
Fig. 1.28.

The statement by Region State Month; 3 was used with proc sort;
thus, as expected, in the listing produced by the first proc print step (Output
1), observations appear arranged in the increasing order of Month values within
groups with the same Region and State values. These appear in the increasing
order of State values within groups with the same Region values and, finally,
in the increasing order of values of the Region variable. However, these by

groups are not clearly separated in the output from the first proc print

step. This is because a by statement is not used in the first proc step for
identifying these as separate groups.

In the second proc print step, the statement by Region State 4 is
used, causing separate listing for each by group as defined by identical values
for State within groups with the same Region values, as seen in Fig. 1.29.
The format 5 statement in this proc step provides a format for printing
values of the variable Expenses. In addition, the statements sum Revenue

Expenses; 6 and sumby Region; in the second proc print step illustrate
how totals are calculated for each of the numeric variables Revenue and
Expenses and are displayed for each group defined by the same value for
the by variable Region, respectively.
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data sales;
input Region : $8. State $2. +1 Month monyy5. HeadCnt Revenue

Expenses; 1
format Month monyy5. Revenue dollar12.2; 2
label Region="Sales Region" HeadCnt="Sales Personnel";
datalines;
SOUTHERN FL JAN78 10 10000 8000
SOUTHERN FL FEB78 10 11000 8500
SOUTHERN FL MAR78 9 13500 9800
SOUTHERN GA JAN78 5 8000 2000
SOUTHERN GA FEB78 7 6000 1200
PLAINS NM MAR78 2 500 1350
NORTHERN MA MAR78 3 1000 1500
NORTHERN NY FEB78 4 2000 4000
NORTHERN NY MAR78 5 5000 6000
EASTERN NC JAN78 12 20000 9000
EASTERN NC FEB78 12 21000 8990
EASTERN NC MAR78 12 20500 9750
EASTERN VA JAN78 10 15000 7500
EASTERN VA FEB78 10 15500 7800
EASTERN VA MAR78 11 16600 8200
CENTRAL OH JAN78 13 21000 12000
CENTRAL OH FEB78 14 22000 13000
CENTRAL OH MAR78 14 22500 13200
CENTRAL MI JAN78 10 10000 8000
CENTRAL MI FEB78 9 11000 8200
CENTRAL MI MAR78 10 12000 8900
CENTRAL IL JAN78 4 6000 2000
CENTRAL IL FEB78 4 6100 2000
CENTRAL IL MAR78 4 6050 2100
;
proc sort;
by Region State Month; 3
run;
proc print;
run;
proc print label;
by Region State ; 4
format Expenses dollar10.2 ; 5

label State= State Month= Month Revenue="Sales Revenue"
Expenses="Overhead Expenses";

id Region State;
sum Revenue Expenses; 6
sumby Region;
title " Sales Report by State and Region";

run;

Fig. 1.27. SAS Example A10: program
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Although labels for the variables Region and HeadCnt were also specified
in a label statement in the data step, they do not appear in the printed
output from the first proc print. This is because attributes available in a
data set will not be used by some proc steps, unless they are specifically
requested by the use of an option. The label option in proc print label;

in the second proc print step is an example. The output from this step,
displayed in Output 2, shows the labels for Region and HeadCnt being used
(see Fig. 1.29). Note also that a format for printing values of Expenses was
not available in the data set, so the default format is used in the first proc
print. In the second proc print, a format specifically for printing values of
Expenses was included.

Sales Report by State and Region

Obs Region State Month Headcnt Revenue Expenses

1 CENTRAL IL JAN78 4 $6,000.00 2000

2 CENTRAL IL FEB78 4 $6,100.00 2000

3 CENTRAL IL MAR78 4 $6,050.00 2100

4 CENTRAL MI JAN78 10 $10,000.00 8000

5 CENTRAL MI FEB78 9 $11,000.00 8200

6 CENTRAL MI MAR78 10 $12,000.00 8900

7 CENTRAL OH JAN78 13 $21,000.00 12000

8 CENTRAL OH FEB78 14 $22,000.00 13000

9 CENTRAL OH MAR78 14 $22,500.00 13200

10 EASTERN NC JAN78 12 $20,000.00 9000

11 EASTERN NC FEB78 12 $21,000.00 8990

12 EASTERN NC MAR78 12 $20,500.00 9750

13 EASTERN VA JAN78 10 $15,000.00 7500

14 EASTERN VA FEB78 10 $15,500.00 7800

15 EASTERN VA MAR78 11 $16,600.00 8200

16 NORTHERN MA MAR78 3 $1,000.00 1500

17 NORTHERN NY FEB78 4 $2,000.00 4000

18 NORTHERN NY MAR78 5 $5,000.00 6000

19 PLAINS NM MAR78 2 $500.00 1350

20 SOUTHERN FL JAN78 10 $10,000.00 8000

21 SOUTHERN FL FEB78 10 $11,000.00 8500

22 SOUTHERN FL MAR78 9 $13,500.00 9800

23 SOUTHERN GA JAN78 5 $8,000.00 2000

24 SOUTHERN GA FEB78 7 $6,000.00 1200

Fig. 1.28. SAS Example A10: output from the first proc print step

SAS Example A11

As alluded to in the introduction, predefined style definitions determine the
appearance of tables and graphs from SAS procedures. A style definition is
a complete description of all the attributes to use when creating a specific
output. For tables, attributes specify features such as background color, font
size and color of table contents, table border, etc. Attributes are collected
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into groups called style elements, which describe the attributes of distinct
part of the table, e.g., the table header. Thus the entire appearance of a table
is controlled by the selected style definition, and that may be changed by
choosing a different style definition. For example, the appearance of output
tables and graphics are quite different in HTMLBlue, Statistical, and Journal
styles. An existing style definition may be modified by overriding parts of
the style template of a specific style. A more elaborate description of style
attributes and style elements and how they may be modified is presented in
Appendix A.

Sales Report by State and Region

Sales 
Region State Month

Sales 
Personnel

Sales 
Revenue

Overhead 
Expenses

CENTRAL IL JAN78 4 $6,000.00 $2,000.00

FEB78 4 $6,100.00 $2,000.00

MAR78 4 $6,050.00 $2,100.00

Sales 
Region State Month

Sales 
Personnel

Sales 
Revenue

Overhead 
Expenses

CENTRAL MI JAN78 10 $10,000.00 $8,000.00

FEB78 9 $11,000.00 $8,200.00

MAR78 10 $12,000.00 $8,900.00

Sales 
Region State Month

Sales 
Personnel

Sales 
Revenue

Overhead 
Expenses

EASTERN NC JAN78 12 $20,000.00 $9,000.00

FEB78 12 $21,000.00 $8,990.00

MAR78 12 $20,500.00 $9,750.00

Sales 
Region State Month

Sales 
Personnel

Sales 
Revenue

Overhead 
Expenses

NORTHERN NY FEB78 4 $2,000.00 $4,000.00

MAR78 5 $5,000.00 $6,000.00

NORTHERN $8,000.00 $11,500.00

Sales 
Region State Month

Sales 
Personnel

Sales 
Revenue

Overhead 
Expenses

SOUTHERN FL JAN78 10 $10,000.00 $8,000.00

FEB78 10 $11,000.00 $8,500.00

MAR78 9 $13,500.00 $9,800.00

Sales 
Region State Month

Sales 
Personnel

Sales 
Revenue

Overhead 
Expenses

SOUTHERN GA JAN78 5 $8,000.00 $2,000.00

FEB78 7 $6,000.00 $1,200.00

SOUTHERN $48,500.00 $29,500.00

$282,250.00 $162990.00

Fig. 1.29. SAS Example A10: output from the second proc print step
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Style elements can be modified by specifying the style= options in the
procedure statement or as options for the statement that produce various
parts of the output table, e.g., the id or sum statements. In the next exam-
ple, the style= option is used in the proc print statement to override style
attributes that were defined for the style definition in use (e.g., HTMLBlue
style used in SAS Example A10). The simplified syntax of a style specification
used here is

STYLE <(location(s))> = [style-attribute-name-1=style-attribute-value-1

<style-attribute-name-2=style-attribute-value-2 ...>]

For the PRINT procedure, there are nine defined locations: table, obs, data,
obsheader, header, bylabel, total, grandtotal, and N. These refer to var-
ious parts of the table that the style specification applies to, e.g., header
refers to header of columns (other than OBS and ID), data refers to values
in columns (other than OBS and ID), etc. More details can be found under
the syntax description of the proc print statement.

proc print label sumlabel=’Regional Total’ grandtotal_label="All Sales Total"
style(bysumline)=[background=skyblue foreground=linen]
style(grandtotal)=[foreground=darklblue background=cornflowerblue]
style(header)=[font_style=italic background=lightcyan];;

by Region State ;
format Expenses dollar10.2 ;
label State= State Month= Month Revenue="Sales Revenue"

Expenses="Overhead Expenses";
id Region State;
sum Revenue Expenses;
sumby Region;
title " Sales Report by State and Region";

run;

Fig. 1.30. SAS Example A11: using style= options

SAS Example A11 (see Fig. 1.30) illustrates the use of some style= op-
tions to modify the appearance of the output table from SAS Example A10,
resulting in the new output table shown in Fig. 1.31.

By examining the proc step in Fig. 1.30, it can be easily observed that the
locations of the table modified were bysumline, grandtotal, and header,
and style attributes changed were background color, foreground color, and
font style. The keyword background is synonymous with backgroundcolor,
and the keyword foreground is synonymous with color, which specifies the
color of the text, in case of a table element. (Note that style attributes tables
are available as part of the description of the TEMPLATE procedure which
will be briefly discussed in Appendix A. Definitions for a specific table can
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be found by examining the corresponding template supplied by SAS using
the TEMPLATE procedure or by browsing the templates through the SAS
Results window as explained in the appendix.)

Sales Report by State and Region

Region State Month Headcnt
Sales 

Revenue
Overhead 
Expenses

CENTRAL IL JAN78 4 $6,000.00 $2,000.00

FEB78 4 $6,100.00 $2,000.00

MAR78 4 $6,050.00 $2,100.00

Region State Month Headcnt
Sales 

Revenue
Overhead 
Expenses

CENTRAL MI JAN78 10 $10,000.00 $8,000.00

FEB78 9 $11,000.00 $8,200.00

MAR78 10 $12,000.00 $8,900.00

Region State Month Headcnt
Sales 

Revenue
Overhead 
Expenses

CENTRAL OH JAN78 13 $21,000.00 $12,000.00

FEB78 14 $22,000.00 $13,000.00

MAR78 14 $22,500.00 $13,200.00

Regional Total $116,650.00 $69,400.00

Region State Month Headcnt
Sales 

Revenue
Overhead 
Expenses

SOUTHERN FL JAN78 10 $10,000.00 $8,000.00

FEB78 10 $11,000.00 $8,500.00

MAR78 9 $13,500.00 $9,800.00

Region State Month Headcnt
Sales 

Revenue
Overhead 
Expenses

SOUTHERN GA JAN78 5 $8,000.00 $2,000.00

FEB78 7 $6,000.00 $1,200.00

Regional Total $48,500.00 $29,500.00

All Sales Total $282,250.00 $162990.00

Fig. 1.31. SAS Example A11: edited output from the modified proc step
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1.9 Exercises

1.1 Each of the following cases shows the observations written to the SAS
data set (variable names and corresponding data values) when the given
lines of data are read by the given INPUT statement:
a. input Id Gender $ Age GPA SAT;

1906�F�19�3.25�725

2045�M�.�2.95��690

3117��M��24���3.72���793

b. input (Q1-Q4) (3.);

432�16798��2

57���36���84

c. input Id $1-4 @8 Pulse 3. +2 Weight 4.1 Runtime;

C37A236�87�92517�9.5

D45B�54�����1423�8.6��

����158�69�8�965�7.8

d. input Name :$11. Id 4. Visit : mmddyy8.;

Wilson�3974�11/25/47

Worthington�1598�7/16/86

NOTE: The symbol � denotes one space.

1.2 Sketch the output resulting from executing the following SAS program.
Describe in your own words the flow of operations in the data step in
creating this data set.

data two;

input Score @@;

if Score > 70 then do;

Adjust = "y";

Index = Score -70;

end;

else if Score < 70 then do;

Adjust = "n";

end;

datalines;

67 69 70 72 75 .

;

proc print data=two; run;

1.3 The following data lines are input in a data step:

21 50.2 17 47.5 54 32.1
12. 54.3
23.
45.6
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What would be the contents of the SAS data set if the input statement
used was each of the following? Write a brief explanation of what takes
place in each data step.
a. input Id Score1;

b. input Id Score1 @@;

c. input Id;

d. input Id Score1 Score2;

1.4 The program data vector in a SAS data step has variables with values
as follows:

Code = ‘VLC’

Size = ‘M’

V1 = 2

V2 = 3

V3 = 7

V4 = .

Determine the results of the following SAS expressions:
a. (V1 + V2 - V3)/3

b. V3 - V2/V1

c. V1*V2 - V3

d. V2*V3/V1

e. V1**2 + V2**2

f. Code = ‘VLC’

g. Code = ‘VLC’ & size = ‘M’

h. Code = ‘VLC’|size = ‘M’

i. Code = ‘VLC’ & V4^=.

j. (V3=.) + (V2=3)

k. V1 + V2 + V3 ˆ = 12

l. Code = ‘VLC’ | (Size = ‘M’ & V1 = 3)

m. 3 < V2 < 5

Hint: Recall that logical expressions evaluate to numeric values 1 (for
‘TRUE’) or 0 (for ‘FALSE’).

1.5 Show the values for the variable Miles that will be stored in the SAS
data set distance:

data distance;

input Miles 5.2;

datalines;

1

12

123

1234

12345

1.

12.
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12.3

1234.5

;

1.6 Display the printed output produced by executing the following SAS
program. Show what is in the program data vector at the point the first
observation is to be written to the SAS data set.

data b21;

input Y1 Y2 @@;

Y3=Y2**2-5.0;

Y4=sqrt(Y1)/2+1;

drop Y1 Y2;

datalines;

4 -3 0 2 9 . 16 5 1 12

;

proc print data=b21;

run;

1.7 Display the printed output produced from executing the following SAS
program. Show what is in the program data vector immediately after
processing the first line of data.

data carmart;

input Dept $ Id $ P82 P83 P84;

Drop P82 P83 P84;

Year=1982; Sales=P82; output;

Year=1983; Sales=P83; output;

Year=1984; Sales=P84; output;

datalines;

parts 176 3500 2500 800

parts 217 2644 3500 3000

tools 124 5672 6100 7400

tools 45 1253 4698 9345

repairs 26 9050 5450 8425

repairs 142

;

proc print; run;

1.8 Sketch the printed output produced by executing the following SAS pro-
gram. Display the contents of the program data vector immediately after
processing the first line of data (just before it is written to the SAS data
set).

data compete;

input Red Blue Grey Green White;

array grade8(5) Red Blue Grey Green White;
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drop Team;

do Team=1 to 5;

if grade8(Team)=. then grade8(Team)=0;

grade8(Team)= grade8(Team)*10;

Total + grade8(Team);

end;

datalines;

4 6 0 1 .

3 2 8 9 12

5 . 4 7 6

7 5 10 4 5

;

proc print; run;

1.9 Write a SAS data step to create a data set named corn with variables
Variety and Yield using input data lines entered with varying numbers
of pairs of values for the two variables as shown in the following:

A 24.2 B 31.5 B 32.0 C 43.9

C 45.2 A 21.8

B 36.1 A 27.2 C 34.6

1.10 Consider the following SAS data step:
data result;

input Type C1 C2 ;

datalines;

5 0 2
7 3 1
. 0 0
;
proc print;

Display appearance of the output from the print if each of the fol-
lowing sets of statements, respectively, appeared between input and
datalines; when the program is executed:
a. Index = (2*C1) + C2;

b. if Type <= 6 then do;

Index = (2*C1) + C2;

output;

end;

c. if Type <= 6 then do;

Index = (2*C1) + C2;

end;

else delete;

d. if Type > 6 then delete;



1.9 Exercises 63

e. if Type > 6 then delete;

Index = (2*C1) + C2;

1.11 Study the following program:

data tests;

input Name $ Score1 Score2 Score3 Team $ ;

datalines;

Peter 12 42 86 red

Michael 14 29 72 blue

Susan 15 27 94 green

;

run;

proc print; run;

a. Sketch the printed output produced from executing this program.
b. What would be the printed output if the input statement is changed

to the following:

input Name $ Score1 Score2 Score3;

c. What would you do to modify the above program if the data value
for the variable Score2 was missing for Michael?

d. Would the above input statement still work if the data lines were of
the form given below. Explain why or why not.

Peter

12 42 86

red

Michael

...

e. Use the SAS function sum() in a single SAS assignment statement
to create a new variable called total. Where would you insert this
statement in the above program?

1.12 You have five plots randomly assigned to fertilizer A and five to fertilizer
B a yield variable is measured on each plot. One would, for example,
like to structure the SAS data set to look as the following:

Fert Yield

A 67

A 66

A 64

A 62

A 68

B 70

B 74

B 78

B 77

B 80
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a. Write an input statement to read the data values entered exactly
as shown above, i.e., with one or more spaces between the Fert type
and the Yield, with data values on separate lines for each pair.

b. Suppose you arrange your data values on two data lines like this:

A 67 A 66 A 64 A 62 A 68

B 70 B 74 B 78 B 77 B 80

Write an input statement for this arrangement.
c. Instead, if the five yield values for the plots assigned Fert A are

placed on the first line and the five yield values for those assigned
Fert B on the next data line like this:

A 67 66 64 62 68

B 70 74 78 77 80

Write a data step to read these data. Make sure the data set contains
a Fert variable as well as a Yield variable.

d. Modify part (c) program so that the five plots in each group has a
plot number from 1 to 5.

1.13 A research project at a college department has collected data on athletes.
A subset of the data is given below. We will construct a single SAS
program to do the tasks described in the itemized parts below.

Systolic Diastolic
blood blood Heart

IdNo Age Race pressure pressure rate

4101 18 W 130 80 60
4102 18 W 140 90 70
4103 19 B 120 70 64
4104 17 B 150 90 76
4105 18 B 124 86 72
4106 19 W 145 94 70
4107 23 B 125 78 68
4108 21 W 140 85 74
4109 18 W 150 82 65
4110 20 W 145 95 75

Write SAS code to accomplish all of the tasks described below in a
single SAS program. Put appropriate titles on each listing produced (i.e.,
use appropriate title statements in the proc steps) for the purpose of
identifying parts of the output clearly. Execute the complete program.
a. Write SAS statements necessary to create a SAS data set named

athlete. Name your variables as IdNo, Age, Race, SPB, DBP, and
HR, respectively. Include a label statement for the purpose of describ-
ing the variables SPB, DBP, and HR. Enter the data instream, leaving
a blank between fields and use the list input style to read the data
in. [This is the first data step in your program]

b. Average blood pressure is defined as a weighted average of systolic
blood pressure and diastolic blood pressure. Since heart spends more
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time in its relaxed state (diastole), the diastolic pressure is weighted
two-thirds, and the systolic blood pressure is weighted one-third.
Add a SAS programming statement to the data step to create a new
variable named ABP which contains values of average blood pressure
computed for each athlete. Label this variable also. [This modifies

the first data step.]
c. Add a PROC step to obtain a SAS listing of the data set athlete.

[This would be the first proc step in your program]
d. Add SAS statements to create a new data set named project con-

taining a subset of observations from the above data set. This subset
will consist of only those athletes with a value greater than or equal
to 100 for average blood pressure and a heart rate greater than 70
and provide a SAS listing of this data set. Omit the observation
number from this listing; instead identify the athletes in the output
by their ID numbers. [You will add a second data step and a

second proc step to do this part.]
e. Obtain the same listing as in part (d), but without creating a new

SAS data set to do it. Instead use the SAS statement where within
the proc print step to select the subset of observations to be pro-
cessed. [ This would require a third proc step.]

1.14 The admissions office of a college has collected data on prospective
undergraduate students. A subset of the data is given blow. We will
construct a single SAS program to do the tasks outlined in the steps
below:

High school College entrance
Id Age Gender GPA Exam score

2101 18 M 3.7 650
2102 18 F 2.4 490
2103 19 M 3.3 580
2104 17 F 3.5 630
2105 18 F 3.1 610
2106 19 M 2.8 530
2107 23 M 3.2 590
2108 21 M 3.4 620
2109 18 F 3.1 630
2110 19 F 2.7 540
2111 22 M 3.1 580
2112 20 M 3.2 610
2113 18 F 3.6 640

SAS code to accomplish all of the parts below must be in a single SAS
program. Put different titles on each report produced.
a. Write SAS statements necessary to create a SAS data set named

admit. Name your variables as Id, Age, Gender, GPA, and SAT,
respectively. Enter the data instream, leaving a blank between fields
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and entering a period to denote the decimal point. Use the list input
style to read the data into SAS. [This is the first data step

in your program]
b. A rating index for each applicant is to be computed (to be used for

scholarship awards) using the following formula:
rating = gpa + 3 × (entrance exam score ÷ 500)

Include a SAS programming statement in the above data step to
add a new variable named Rating which contains values of the above
index computed for each student. [This would modify your first

data step]
c. Add a PROC step to your program to obtain a SAS Report (i.e.,

listing) of the data set admit. [This would be your first proc

step]
d. Students who have a rating index of over 7 will be considered for

academic scholarships. Create a new data set named schols using
a subset of observations from the the SAS data set admit. The data
set schols must contain only those applicants with a rating index
greater than or equal to 7.0. Obtain a SAS report of the new data
set. Suppress the observation number from this listing, instead iden-
tifying the students in the output by their ID number. [This would

add a second data step and a second proc step.]
e. Obtain exactly the same listing as in part (d), without creating a

new SAS data set to do it. Instead, use the SAS data set admit in
a new proc print step and use the SAS statement where in this
procedure step to select the subset of observations to be processed.
[This would be the third proc step in the SAS program.]

1.15 Ms. Anderson wants to use a SAS program to compute the total score,
assign letter grades, and compute summary statistics for her college Stat
101 class. A maximum of 50 points each could be earned for the quizzes,
100 points each for the midterm exams and the labs, and 200 points for
the final exam. Data for the entire semester are available in the text file
stat101.txt and a subset of the data is shown below:

Id Major Year Quiz Exam1 Exam2 Lab Final

5109 Psych 4 50 93 93 98 162
7391 Econ 4 49 95 98 97 175
4720 Math 4 39 63 84 95 95
4587 Stat 3 46 92 96 88 150
...

...
...

...
...

...
...

...
3907 C E 4 44 80 99 99 134
4013 Econ 2 48 86 87 96 165
4456 Acct 4 36 83 88 91 154
7324 Psych 3 42 78 98 95 102
0746 Chem 4 48 84 84 97 154

Note: Year = the year in school, Quiz = the total

for 5 quizzes, Lab = the total for ten labs
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Do not run the SAS program until all of the steps described below in
parts (a) to (e) have been completed.

a. Write SAS statements necessary to create a SAS data set named
stat101. Name your variables as Id, Major, Year, Quiz, Exam1,

Exam2, Lab, and Final, respectively. Enter the data instream, with
at least one blank between data values and use the list input style
to read the data in (You may cut and paste the data from the data
file into your program). [This is the first data step in your

program]
b. Write SAS statement(s) to be added to the above data step to create

i. a new numeric variable Score containing the value of the course
percentage, based on weighting the points obtained for the
quizzes by 10%, each of the two midterms by 20%, the lab total
by 10%, and the final by 40% computed for each student.

ii. a new character variable Grade containing letter grades A, B, C,
D, and F, using 90, 80, 70, 60 percent cutoffs, respectively. You
may use the variable Score you created in part (i), in the SAS
statements needed for this part.

[These would modify the first data step.]
c. Add a proc step and provide a SAS listing of the data set stat101.

[This would be the first proc step in your program.]
d. Students who are juniors and seniors and obtained A’s from this

class will qualify for applying to a research internship next sum-
mer. Create a SAS data set named intern containing only those
juniors and seniors earning a letter grade A, using the observations
from the data set stat101. Provide a SAS listing of the new data
set that show only the variables Id, Major, Year, and Score. In-
clude a statement to suppress the observation number from this
listing, instead identifying the students in the output by their ID
number. [It would require adding a second data step and a

second proc step to your program.]
e. Obtain exactly the same listing as in part (d), without creating a new

SAS data set to do it. Instead use the SAS statement where within a
proc print procedure step to select the subset of observations to be
processed. [This would require adding a third proc step.]

1.16 A local high school collects data on student performance in grades 9
through 12. In grades 9 and 10, data were collected for Science and En-
glish only, while for grades 11 and 12, Math scores were also recorded.
Unfortunately, the data so collected were recorded as described below
resulting in two completely different data layouts. Write a SAS program
to create a temporary SAS data set called perform which contains
observations for all four years of high school by accessing raw data (may
be, containing 100s of data lines) as described below. Turn in your SAS
program.
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Sample Data Lines:

1 2 3

Columns:123456789012345678901234567890

______________________________

0962432736578

118091315736792

0945712817859

125916294847689

1076543057182

112479329697883

Data Description: (note the two types of data lines depending on
grade)

Field Variable description Columns Type

1 Grade 1–2 Char (09 or 10)
2 Student Id 2–6 Char
3 GPA 7–9 Numeric (with 2 decimals)
4 Science 10–11 Numeric (whole number)
5 English 12–13 Numeric (whole number)

1 Grade 1–2 Char (11 or 12)
2 Student Id 2–6 Char
3 GPA 7–9 Numeric (with 2 decimals)
4 Science 10–11 Numeric (whole number)
5 Math 12–13 Numeric (whole number)
6 English 14–15 Numeric (whole number)



2

More on SAS Programming and Some
Applications

Although several approaches are possible for introducing the SAS language,
in presenting the material in Chap. 1 in this book, the authors have con-
sciously avoided a cookbook approach. The earlier students encountered the
concepts of pointers and program data vectors, for example, the better their
understanding of the fundamentals of the SAS data step. Without a basic un-
derstanding of the flow of operations in the data step, they will be ill equipped
to use the data step effectively. From experience, it has been observed that
this technique is more effective in getting the students to a higher point in
the learning curve much earlier than using a cookbook approach. Having mas-
tered the material in Chap. 1, readers will be ready to examine the use of SAS
for data analysis in greater detail. In this chapter, several SAS procedures
are used to illustrate the use of statements common to many SAS procedures
as well as some that are specific to each procedure. To begin Chap. 2, some
useful SAS statements available in both data and proc steps not encountered
previously are introduced and discussed in detail.

2.1 More on the DATA and PROC Steps

In the previous chapter, the presentation of many important aspects of both
the data and proc steps was deferred in order to keep the material presented
in those sections, to some degree, more accessible. Some of these topics are
covered in detail in this section. Many readers who are already familiar with
SAS may have observed that in previous examples, the raw data were input
as instream data when the content of the data sets called for the data to
be read from external text files. This choice was made because it has been the
experience of the authors that the introduction of the infile statement, the
primary tool for accessing data from external files, at an early stage impedes
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the beginning SAS user from understanding the basic data step operations.
This is due to the fact it makes it more difficult to follow the data step
processing clearly when the raw data lines are not directly visible to the user.
Also, it is common for some beginners to confuse the external data file with
the SAS data set being created. Thus, the decision to primarily use instream
data for creating SAS data sets in Chap. 1 was made.

2.1.1 Reading Data from Files

The infile statement is primarily used to specify the external file containing
the raw data, but it includes options to allow the user more control during the
process of transferring data values from the raw data file into a SAS data set.
For example, the user may use an option available in the infile statement to
change the “delimiter,” used by the list input style for reading data with the
input statement, from a blank space to another character such as a comma.
Another option allows the user to be given control when end-of-file is reached
when reading external data so that other actions may be initiated before
closing the new SAS data set.

The INFILE Statement

In SAS examples presented in Chap. 1, the data lines were inserted instream
preceded by a datalines statement to identify the beginning of the data lines
(see SAS Example A1 program in Fig. 1.4 in Chap. 1). The infile statement
is an executable statement required to access data from an external file. In
a SAS data step, it must obviously be present before the input statement
because the execution of input statement requires the knowledge of the source
of the raw data. The general form of the infile statement is

INFILE file-spec <options> ;

where file-spec represents a file specification. In the Windows environment,
the file specification is easiest to be given directly as a path name to a file
inserted within quotes; for example,

infile "C:\users\user name \Documents\...\demogr.txt";

However, this may become cumbersome if some options are also to be included
in the infile statement. Thus, it may be convenient to use a fileref.

The FILENAME Statement

The nonexecutable filename statement associates the physical name and
location of an external file with a fileref, which is an alias for the file. The fil-
eref is then available for use within the current SAS program. Under the
Windows environment, a fileref is synonymous with the path name of the
file. Text files previously saved in a folder can be given a fileref by including
a filename statement in the SAS program. The following statements assign
the fileref mydata to the raw data file named demogr.txt and uses it in an
infile statement:
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filename mydata "C:\users\user name \Documents\...\demogr.txt";

infile mydata;

When a datalines statement is used to process instream data, SAS auto-
matically assumes an infile statement with the file specification datalines;
thus the infile statement is not required, unless the user wants to use one or
more of the options available on the infile statement. In that case, the user
must include an infile statement even if the data are included instream. An
example of the use of an option while reading instream data is

filename datalines eof=last;

The above option specifies that once the last data line has been processed,
the data step is to be continued by transferring control to the SAS statement
labeled last instead of the default action of closing the SAS data set and
terminating the data step. For instance, if the last observation has not yet
been written to the SAS data set when end-of-file is encountered (for some
reason, such as the last data line being incomplete), this allows the user to
define how that situation should be handled.

Example 2.1.1 This is a simple modification of SAS Example A1 displayed
in Fig. 1.4 in Chap. 1 to read the raw data set from a file instead from data
entered instream. First, suppose that the data set is available as a text file
prepared by entering the data lines into a simple text editor such as Notepad
(if a word processor is used to enter the data, the user must make sure that
the file is saved as a simple text file). Assume the file is named, say, wages.txt
and is saved in a folder under the Windows environment. The SAS Example
A1 program must be modified to access the data from this file as follows:

data first ;

infile "C:\users\user name \Documents\...\wages.txt";

input (Income Tax Age State)(@4 2*5.2 2. $2.);

run;

proc print ;

title ‘SAS Listing of Tax data’;

run;

Here the file specification is a quoted string giving the path to the file con-
taining the raw data.

Some Infile Statement Options

There are several infile statement options that may be useful for managing
the conversion of information in data lines to an observation, such as the
eof= option discussed earlier or the n= option discussed in Sect. 1.7.5. They
are too numerous to be discussed in detail in this book; however, a few are
sufficiently important to be briefly mentioned here. The delimiter= or the
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dlm= option allows the user to change the default value of the separator of
data values when using the list input style to read data, from a space to the
character specified. To read data separated by commas, use

infile datalines delimiter=‘,’;

For example, this option can be used when reading data from a file of type
csv:

infile "C:\users\user name \Documents\...\sales.csv" dlm=‘,’;

If any of the data values in the input data contain an embedded comma, this
option will not work; instead, the option dsd must be used:

infile datalines dsd;

With this option in force, a missing value is assumed if two consecutive
commas are detected. When using a list input style, if a line contains fewer
data values than the number of variables listed in the input statement, use
the missover option to prevent SAS from moving the input pointer to the
next line in order to read the values not available in the current line:

infile datalines missover;

The missover option sets the remaining input statement variables to missing
values. The option flowover is the default. The default causes the pointer
to move to the next input data line if the current input line is not complete.
Options such as firstobs= and obs= allow the user to access a specified
number of data lines beginning from a specified line of data in the external
data set. For example, the following processes data lines 20 through 50:

infile datalines firstobs=20 obs=50;

If firstobs= is omitted, SAS will access the first 50 data lines. The n= option
specifies the number of lines that the pointer can move to in the input buffer
using the # pointer control in a single execution of the input statement. The
default value is 1. See Sect. 1.7.5 for more details.

2.1.2 Combining SAS Data Sets

When several data sets are created using multiple sources, they must be com-
bined before a meaningful statistical analysis can be performed. Depending
on the structure and the format of the input data sets and those required
of the output data set, a variety of methods are available in SAS to form a
combined data set. The SAS data step statements set, merge, and update

are the primary tools available for combining data sets in a SAS data step. In
SAS Example A2 (see Fig. 1.8 in Chap. 1 for the program), the set statement
was used to illustrate how a SAS data set containing a subset of another SAS
data set may be created as follows:
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data second;

set first;

if Age<35 & State=‘IA’;

run;

Here an if statement was used to select those observations that satisfy the log-
ical condition specified, thus creating a subset of the original data set named
first. An if statement used in this context is called a subsetting if.

SAS Example B1

In this section, an example is used to illustrate the use of the set statement
to combine two SAS data sets by appending observations from one data set
to those of the other. This process is called concatenation and allows the
combination of several data sets. It is usually practicable when the data sets
contain data from similar studies. This implies that the input data sets are
expected to contain exactly the same variables (i.e., variables with identical
names). It is possible that a few variables are different among some data sets
due to decisions taken during the data collection process. If one or more of
the data sets contain variables that are not common to all, the combined data
set will contain those variables, but with missing values in the observations
formed from the data sets that do not contain those variables.

data third ;
input W 1-2 X 3-5 Y 6;
datalines;
211023
312034
413045
;
data fourth;
input X Y Z;
datalines;
14 5 7862
15 6 6517
16 7 8173
;
data fifth;
set third fourth;
run;
proc print;
title ’Combining SAS data sets end-to-end ’;
run;

Fig. 2.1. SAS Example B1: program

Three SAS data sets named third, fourth, and fifth are created in the
SAS Example B1 program (see Fig. 2.1), the first two using external data and
the other by combining the two SAS data sets previously created. The first
data step uses the column input style to create the data set third, and the
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second uses the list input style to create the data set fourth, both containing
three observations and three variables, respectively (see the abbreviated
SAS log in Fig. 2.2). By observing the program, it can be determined that
the variable Z is not present in the data set third and the variable W is not
present in the data set fourth, whereas the variables X and Y are common to
both data sets. The data set fifth is created using the data step:

data fifth;

set third fourth;

The data set fifth is formed by concatenating the observations in the two
data sets third and fourth and so will contain six observations and the four
variables W, X, Y, and Z. In the simplest use of the set statement illustrated
here, SAS reads observations from the first data set in the list, third, transfers
data values to the PDV, and then writes them sequentially to the new data
set fifth. For example, the PDV following reading the first observation from
third is

W X Y Z _N_ _ERROR_

21 102 3 . 1 0

Although only the variables W, X, and Y are in data set third, SAS has
detected the presence of the variable Z in the data step during the parsing
stage. Thus, a slot for Z is created in the PDV and is initialized to a missing

1 data third ;
2 input W 1-2 X 3-5 Y 6;
3 datalines;

NOTE: The data set WORK.THIRD has 3 observations and 3 variables.

7 ;
8 data fourth;
9 input X Y Z;
10 datalines;

NOTE: The data set WORK.FOURTH has 3 observations and 3 variables.

14 ;
15 data fifth;
16 set third fourth;
17 run;

NOTE: There were 3 observations read from the data set WORK.THIRD.
NOTE: There were 3 observations read from the data set WORK.FOURTH.
NOTE: The data set WORK.FIFTH has 6 observations and 4 variables.

18 proc print;
19 title ’Combining SAS data sets end-to-end ’;
20 run;

NOTE: There were 6 observations read from the data set WORK.FIFTH.

Fig. 2.2. SAS Example B1: log
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value. When the observation is written to the output data set fifth, it will
contain the values for the four variables W, X, Y, and Z as given above. Once
the data in the first data set listed is exhausted, SAS begins reading data from
the next data set listed in the set statement, fourth, and transfers the data
values to the PDV. The PDV following reading the first observation from the
data set fourth is

W X Y Z _N_ _ERROR_

. 14 5 7862 1 0

with W initialized to a missing value. Again, an observation containing values
for the variables W, X, Y, and Z is written to the output data set fifth. This
process continues until data set fourth reaches end-of-file. Then the data step
comes to an end and SAS closes the output data set fifth and exits. The
number of observations in the new data set is the total number of observations
in the two input data sets, and the order of appearance is all observations from
the first data set listed in the set statement, followed by all observations from
the second data set listed, with missing values inserted appropriately for Z

and W, respectively. The output from proc print (shown in Fig. 2.3) displays
a listing of the data set fifth.

Combining SAS data sets end-to-end

Obs W X Y Z

1 21 102 3 .

2 31 203 4 .

3 41 304 5 .

4 . 14 5 7862

5 . 15 6 6517

6 . 16 7 8173

Fig. 2.3. SAS Example B1: output

The SET Statement

The general form of the set statement is

SET <SAS-data-set(s) <(data-set-option(s))>> <options> ;

where data-set-options are those options that may be specified in parentheses
after a SAS data set name, whether it is an input data set (as in a set

statement) or an output data set (as in an input statement). More commonly
used options such as firstobs=, obs=, or where= specify observations to be
selected; those such as drop=, keep=, and rename= have variable names as
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arguments. When a set statement is used, it is more efficient to use an option
to access only those variables required:

data fifth;

set third(keep=X Y) fourth(drop=Z);

run;

This will result in a SAS data set named fifth without any missing values:

Obs X Y

1 102 3

2 203 4

3 304 5

4 14 5

5 15 6

6 16 7

If the variable Z in the SAS data set fourth is renamed to be W, it will also
result in a SAS data set with no missing values (albeit one different from the
above):

data fourth;

set third fourth(rename=(Z=W));

run;

This would be an option if variables measuring the same characteristic or trait
have been assigned different names in the two data sets. By renaming Z to
be W, a variable that already exists in the data set third, the user is in fact
recognizing this fact. The resulting data set is

Obs W X Y

1 21 102 3

2 31 203 4

3 41 304 5

4 7862 14 5

5 6517 15 6

6 8173 16 7

In the SAS Example A2 program (see Fig. 1.8), the data set option where=

could have been used to select the required subset of observations; thus,

data second;

set first(where=(Age<35 & State=‘IA’));

run;

There are several options that are unique to the set statement; among them
are those that enable accessing observations nonsequentially according to a
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value given in the key= option or according to the observation number in the
point= option.

Programming statements other than the subsetting if, such as assignment
statements, may be used following the set statement, just as one would use fol-
lowing an input statement. In particular, one could use the output statement
to create multiple observations in the output data set from a single observation
in the input data set, similar to its use in SAS Example A7 (see Fig. 1.21). The
use of a by statement following the set statement allows the creation of new
observations by interleaving observations from several data sets. The observa-
tions in the output data set are arranged by the values of the by variable(s),
in the order of the data sets in which they occur. Consider the two data sets
AAA and BBB containing information for identical subjects:

Data set AAA Data set BBB

Id Height Id Weight

111 65 111 145

222 70 222 156

333 58 333 148

444 71 444 166

555 69 555 175

777 70 666 136

The following SAS data step results in the formation of an interleaved SAS
data set:

data CCC;

set AAA BBB;

by id;

run;

The resulting data set CCC (a listing is shown below) has 12 observations,
which is the total number of observations from both data sets. The new data
set contains all variables from both data sets. The values of variables found in
one data set but not in the other are set to a missing value, and the observa-
tions are arranged in the order of the values of the variable id. In particular,
note that the observation with id equal to 666 occurs before that with the
id equal to 777 in the output data set, although the second observation came
from the data set AAA listed first in the set statement. Note that observa-
tions in each of the original data sets were already arranged in the increasing
order of the values of id. Thus, it is required for interleaving to ensure that
the observations are sorted or grouped in each input data set by the variable
or variables that are in the by statement.

id Height Weight

111 65 .

111 . 145

222 70 .

222 . 156
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333 58 .

333 . 148

444 71 .

444 . 166

555 69 .

555 . 175

666 . 136

777 70 .

Instead of the set statement, a merge statement may be more appropriate
for combining these two data sets:

data CCC;

merge AAA BBB;

by id;

run;

A listing of the resulting data set is

Obs id Height Weight

1 111 65 145

2 222 70 156

3 333 58 148

4 444 71 166

5 555 69 175

6 666 . 136

7 777 70 .

Note that missing values are generated for the variables Height and Weight

for those observations with no common id values in the two data sets.

2.1.3 Saving and Retrieving Permanent SAS Data Sets

In SAS examples discussed so far in this chapter, raw data, input either in-
stream or from text files, were used to create temporary SAS data sets. As
discussed in Sect. 1.2, SAS data sets contain not only the rectangular array of
data but also other information such as variable attributes. In practice, the
creation of a SAS data set requires substantial effort so that a user may want
to save it permanently for future analysis using SAS procedures for perform-
ing different statistical applications. The availability of a carefully constructed
permanent SAS data set allows the user to bypass the data set creation step
at least for the duration of a research project. In addition, SAS data sets have
become a convenient vehicle for transfer of large data sets to other users.

Two SAS examples are used in this subsection to illustrate how to use
raw data to create a permanent data set and how to retrieve data for analysis
from a previously saved SAS data set. The concept of a SAS library is eas-
ily understood in the context of running SAS programs under the Windows
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environment. Recall that the complete path name of a file was used with the
filename statement to associate a fileref with the physical name and location
of a file. Similarly, the libname statement associates the physical name and
location of an external folder (directory) with a libref, which is an alias for the
complete path name of the folder (directory). The following statement assigns
the libref mylib to the folder named projectA:

libname mylib "C:\users\user name \Documents\...\projectA\";

To save a SAS data set in a folder given in a libref as above, the user must
specify a two-level SAS data set name, where the first level is the libref and
the second level is the actual data set name. A two-level SAS data set name,
in general, is a name that contains two parts separated by a period of the form
libref.membername and is used to refer to members of a library libref. The
membername is the name of a SAS data set when the members stored in the
library are SAS data sets. Under the Windows operating system, a library is
synonymous with a folder (or a directory). Thus, SAS data sets can be saved
in a folder directly by executing statements in SAS programs giving two-level
names to the data sets to be saved.

For example, mylib.survey refers to a SAS data set named survey to be
saved in the above folder projectA. The libref defined in a SAS program is
available for use only within the current SAS program. Many SAS data sets
may be saved in the same folder (as members of the library) by using the libref
mylib as the first-level name as many times as needed in the same program. A
different name may be used as a libref to associate the same library in another
SAS program, thus allowing the user to access previously stored members or
add new members to the library.

SAS Example B2

libname mylib1 "C:\users\user_name\Documents\...\Class\";
data mylib1.first;
input X1-X5;
datalines;
1 2 3 4 5
2 3 4 5 6
6 5 4 3 2
1 2 1 2 1
7 2 55 5 5
;
run;

Fig. 2.4. SAS Example B2: program

The SAS Example B2 program (see Fig. 2.4) is a simple example illustrating
the use of the libname statement and two-level names to create and access
permanent SAS data sets. Instream raw data lines are used to create a SAS
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1 libname mylib1 "C:\users\user_name\Documents\...\Class\" ;
NOTE: Libref MYLIB1 was successfully assigned as follows:

Engine: V9
Physical Name: C:\users\user_name\Documents\...\Class

2 data mylib1.first;
3 input X1-X5;
4 datalines;

NOTE: The data set MYLIB1.FIRST has 5 observations and 5 variables.

10 ;

Fig. 2.5. SAS Example B2: log page

data set using the two-level name mylib1.first. The first part of the two-
level name mylib1 refers to a folder in a disk mounted on a zip drive. Thus, the
SAS data set named first created in the data step is saved as a permanent
file in the specified folder. Thus, the data set first will be a member of
this library. The SAS log reproduced in Fig. 2.5 indicates this fact by listing
the two-level name MYLIB1.FIRST and identifying the name of the folder
as C:\users\user_name\Documents\...\Class. The actual physical name
of the file saved is first.sas7bdat, as can be verified by manually obtaining
a listing of the Class folder (see Fig. 2.6). Obviously, if a single-level name,
say first, was used instead in the data statement, the SAS data set would
have been temporarily saved in the WORK folder (and the SAS data set thus
created referred to as WORK.FIRST in the log page).

Fig. 2.6. Screenshot of Class folder listing

SAS Example B3

By including a libname statement of the form shown in the SAS program
shown in Fig. 2.4 (possibly with a different libref, but the same physical path
name of the folder), one or more SAS data sets stored permanently in a library
can be accessed for further processing in another SAS program to be executed
subsequently.
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libname mydef1 "C:\users\user_name\Documents\...\Class\";

proc print data=mydef1.first; run;

proc means data=mydef1.first; run;

data mydef1.second;
input Y1-Y3;
datalines;
31 34 38
43 45 47
10 11 12
908 97 96
;

proc means data=mydef1.second mean std var range maxdec=3;
run;

Fig. 2.7. SAS Example B3: program

In the SAS Example B3 program (see Fig. 2.7), the SAS data set first
is accessed from the library for processing using this method. The following
libname statement in this program associates the libref mydef1 with the same
library where the data set first was saved when the SAS program in Fig. 2.4
was executed:

libname mydef1 "C:\users\user name \Documents\...\Class\";

This allows the two-level name mydef1.first to be used as shorthand for
accessing the SAS data set first from the library to be analyzed using the
SAS procedure proc print by naming it in the data= option. The listing
resulting from this statement is shown on page 1 of the output produced by
the SAS Example B3 program, displayed in Fig. 2.8.

The SAS System

Obs X1 X2 X3 X4 X5

1 1 2 3 4 5

2 2 3 4 5 6

3 6 5 4 3 2

4 1 2 1 2 1

5 7 2 55 5 5

The SAS System

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum
X1
X2
X3
X4
X5

5
5
5
5
5

3.4000000
2.8000000

13.4000000
3.8000000
3.8000000

2.8809721
1.3038405

23.2873356
1.3038405
2.1679483

1.0000000
2.0000000
1.0000000
2.0000000
1.0000000

7.0000000
5.0000000

55.0000000
5.0000000
6.0000000

Fig. 2.8. SAS Example B3: output pages 1 and 2

The statement proc means data=mydef1.first; produces the statistical
analysis shown on page 2 of the output from the SAS Example B3 program
displayed in Fig. 2.8. Again, proc means accesses the SAS data set first

from the same library and computes the default statistics for all variables in
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the data set as shown on page 2. There is nothing to preclude the user from
adding new SAS data sets to the same library, in the same program or in
separate SAS programs. The data step shown in Fig. 2.7 reads instream data
using list input as usual and creates the SAS data set named second and then
saves it permanently in the library identified by the libref mydef1.

The SAS System

The MEANS Procedure

Variable Mean Std Dev Variance Range
Y1
Y2
Y3

248.000
46.750
48.250

440.211
36.372
35.122

193786.000
1322.917
1233.583

898.000
86.000
84.000

Fig. 2.9. SAS Example B3: output page 3

The data set second just created may be accessed from the library in the
same SAS program if required for more processing. For example, in the last
proc step shown in Fig. 2.7, proc means is used to produce selected descriptive
statistics using options on the proc statement. The additional option maxdec=3

limits the values of the statistics output to three decimals. The output from
this proc step appears in Fig. 2.9.

2.1.4 User-Defined Informats and Formats

Before discussing the use of the format procedure for creating user-defined
informats and formats, a review of these two variable attributes is informa-
tive. Several simple informats such as $10. or 5.2 and more complex in-
formats such as dollar10.2 or monyy5. were used in several examples in
Chap. 1. Informats determine how raw data values are read and converted to
a number or a character string to be stored in memory locations. An informat
contains information of the type of data (character or numeric) to be read;
the length it occupies in the data field; how to handle leading, trailing, or
embedded blanks and zeros; where to place the decimal point; and so forth.
For example, the informat ddmmyy8. converts the date value 19/10/07 en-
tered in a data line into the binary number 17458 to be stored as a value of a
SAS variable. Similarly, formats convert data values from internal form into
a form the user wants them to appear in printed output. For example, the
format dollar15.2 prints the value of Cost=2317438.3921, which is (say) the
result of the product of the values of Quantity=2346.678 and Price=987.54,
as $2,317,438.39.
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SAS system contains a large number of predefined informats and formats to
handle many types of data conversion. However, it is not possible to provide
informats or formats for every conceivable need; for example, an informat
might be needed to convert the character strings “YES” and “NO” to be
stored as the numeric values one or zero, respectively, or a numeric value
stored internally as a one or a two to indicate gender will be best converted
to be output as character strings “Female” or “Male,” respectively. FORMAT
is a SAS procedure that allows the user to define informats or formats to do
these kinds of specialized conversion. In this section, the emphasis will be on
the use of proc format for creating output formats, although the importance
of user-defined informats cannot be overstated. In practical terms, the primary
use of user-constructed informats is for data validation, and some examples of
this type of application appear below. The general structure of a proc format

step (with three procedure information statements to be illustrated below) is

PROC FORMAT <option(s)>;

INVALUE <$>name <(informat-option(s))> value-range-set(s);

PICTURE name <(format-option(s))> value-range-set-1

<(picture-1-option(s))>

<...value-range-set-n <(picture-n-option(s))> >;

VALUE <$>name <(format-option(s))> value-range-set(s);

In the above description, the phrase value-range-set refers to an assignment
type specification that defines a one-to-one or a many-to-one relationship be-
tween value or values to be converted to another value. The specification and
action of a value-range-set depend on the context of its usage.

In the case of an invalue statement, value-range-set is of the form

value or range = informatted-value|[existing-informat]

where value is a value such as 1 or “NB,” range is a list of values usually
specified in the form 100–999 or “A”–“Z.” The words low and high may be
used to define the end points of any range (numeric or character), implying
that the specified range covers the entire range of values below the upper
end point or above the lower end point, respectively. For example, the range
100-high covers every value greater than 100. The less than (<) symbol may
be to exclude values from ranges. For example, the range 10-<20 is equivalent
to 10 ≤ value < 20, and the range 10<-20 is equivalent to 10 < value ≤ 20.
The informatted value (on the right-hand side of the equal sign) specifies
the internal value that the raw data value that is equal to the value (or in the
range of values) on the left is to be converted.

In the case of a value statement, the value-range-set is of the form

value or range = ‘formatted-value’|[existing-format].

The definition of value and range is the same as for the invalue statement.
The ‘formatted-value’ specifies a character string to which the value (or
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the range of values) that appears on the left side of the equal sign is to be
converted for printing. The ‘formatted-value’ is a character string, regardless
of whether the format created is a character or numeric format.

User-defined formats may be used to avoid creating category variables in
the data step when it is not really necessary to do so. The idea is to use the
formatted value of the actual variable value to represent a category. This may
be a little more efficient when the category variable created may be used only
once. The following example illustrates the use of this technique:

Example 2.1.2

proc format;

value af low-<10=’0’

10-<20=’10’

20-<30=’20’

30-<40=’30’

40-<50=’40’

50-high=’50’;

run;

data group1;

input Age @@;

datalines;

1 3 7 9 12 17 21 26 30 32 36 42 45 51

;

proc print data=group1;

format Age af.;

run;

Here the user-defined format af. converts all values for the Age variable to be
character strings when they are output (as displayed below). It is important
to note that a new variable is not created for this purpose. Also the format-
ted variable may be used as a category variable in other procedures where
such variables are used in the analyses, such as proc freq and proc anova,
without actually creating a new variable from another numerical variable.

Obs Age

1 0

2 0

3 0

4 0

5 10

6 10

7 20

8 20
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9 30

10 30

11 30

12 40

13 40

14 50

A discussion of several possible options on the value and invalue state-
ments are omitted here but can be found under the description of proc

format. For example, the option fuzz= allows the user to specify a fuzz fac-
tor for matching values to a range. If a value does not exactly match or falls
in a range but comes within the fuzz factor, then the format or the informat
will consider it to be a match or in the range. This facility is useful especially
when the raw data contains fractions that need to be rounded up or down to
be exactly in a prespecified range. For example, the value 99.9 may be consid-
ered in the range 100–200 if a fuzz factor of 0.1 has been specified (fuzz=.1)
and values below 100 are not considered to be in the conversion range.

SAS Example B4

proc format;
invalue $st ’IA’=’Iowa’

’NB’=’Nebraska’;
run;
data first;
length State $ 12;
infile "C:\users\user_name\Documents\...\Class\wages.txt";
input (Income Tax Age State)(@4 2*5.2 2. $st2.);
run;

proc print noobs;
format Income Tax dollar8.2 State $12. ;
var Income Tax Age State;
title ’SAS Listing of Tax data’;
run;

Fig. 2.10. SAS Example B4: program

In the SAS Example B4 program displayed in Fig. 2.10, the two-character
state codes used in the raw data set of SAS Example A1 (see Fig. 1.4) are
converted to values that are longer character strings identifying the name of
the respective state. Since there are several SAS functions (e.g., stnamel())
available for state name conversions, this informat (named $st) is created only
as an illustration.

In the proc format step, an invalue statement is used to define the re-
quired conversion. Note that only values expected to be in the data for the
character variable State are used in this definition. If other state values are
to be converted, then they must be included in the format definition. Since
character-type variables are assigned lengths of 2 bytes by default, a length
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statement (that must appear before the input statement) specifies the length
of the State variable to be 12 bytes. Thus, a format with a width of at least
12 positions is needed to print values of the State variable. As seen in the
SAS program, the format $12. is associated with the State variable, and the
resulting output is shown in Fig. 2.11.

If the only state codes allowed in the data set are “NB” and “IA,” the
invalue statement may be modified to flag any other state code used as an
error as follows:

invalue $st ‘IA’=‘Iowa’ ‘NB’=‘Nebraska’ other=‘Invalid St.’;

In the above, the word other is a SAS keyword that will match any value that
is not the strings “NB” or “IA.” Thus, if this informat is used to input values
for a character variable with values other than “NB” or “IA,” the respective
observations will contain the string “Invalid St.” as the value of that variable.
This is an example of the use of an informat for data validation, an important
step in data analysis.

SAS Listing of Tax data

Income Tax Age State

$546.75 $34.65 35 Iowa

$765.48 $89.56 45 Iowa

$578.65 $59.54 31 Iowa

$786.78 $57.65 41 Nebraska

$567.51 $126.85 32 Iowa

$785.87 $67.85 28 Nebraska

$985.65 $75.65 43 Nebraska

$745.63 $78.95 25 Iowa

$345.67 $25.68 23 Nebraska

$567.34 $89.75 34 Nebraska

$651.12 $50.45 45 Iowa

$650.75 $65.45 29 Nebraska

$595.65 $45.68 34 Iowa

$678.56 $91.27 28 Nebraska

$685.96 $67.51 38 Iowa

$825.75 $56.25 27 Iowa

Fig. 2.11. SAS Example B4: output
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It is important to note that user-defined informats read only character

values, although these can be converted to either character or numeric values.
In the above example, if the state FIPS codes were input as numbers (19
for IA and 31 for NB), they must still be accessed as character data by the
informat. So the appropriate invalue statement is

invalue $st ‘19’=‘Iowa’ ‘31’=‘Nebraska’;

If the expansion of the state code was required only for the printed output,
then it would have been sufficient to create a format (as opposed to an infor-
mat) for this purpose. The above program is modified as shown in Fig. 2.12
(the output from this SAS program is not shown).

proc format;
value $st ‘IA’=‘Iowa’

‘NB’=‘Nebraska’;
run;
data first;
infile "C:\users\user_name\Documents\...\Class\wages.txt";
input (Income Tax Age State)(@4 2*5.2 2. $2.);
run;
proc print noobs;
format Income Tax dollar8.2 State $st10. ;
var Income Tax Age State;
title ‘SAS Listing of Tax data’;
run;

Fig. 2.12. SAS Example B4: modified program

A value statement is used to define a format for printing values of the
variable State. Note that the new format $st is used in a format statement
to specify the values of the variable State. Note carefully that the values to
be stored in State were read using the informat $2. and hence will be one of
the strings “IA” or “NB.” The conversion takes place when they are output
using the format $st10., where these values will be printed as “Iowa” and
“Nebraska,” respectively, using ten print positions aligned to the left.

Note the difference between the FORMAT procedure and the format

statement carefully. As in the above example, proc format is used to cre-
ate user-defined formats or informats. The format (or the informat) state-
ment associates a currently existing format (or informat) with one or more
variables. Either standard SAS or user-defined formats or informats can be
associated with variables this way. For example, the statement

format Income Tax dollar8.2 State $st10.;

associates the SAS format dollar8.2 with the variables Income and Tax,
whereas the user-defined format $st10. is associated with the variable State.
Proc format stores user-defined informats and formats as entries in SAS cat-
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alogs (specially structured files), either temporarily in the WORK library or
permanently in a user-specified library.

Finally, the following example illustrates how an existing SAS infor-
mat or a format can be used as an informatted or a formatted value in
value-range-set definitions in invalue or value statements, respectively.
Recall that the definitions of value-range-sets in these two statements
were

value or range = informatted-value|[existing-informat]

value or range = ‘formatted-value’|[existing-format].

Instead of an informatted or a formatted value, the user can specify an ex-
isting SAS informat or a format placed inside box brackets that will be used
for the conversion of the value or the range on the left hand side of the
value-range-set definition.

Example 2.1.3

proc format;

invalue ff 0-high=[4.2]

-1 = .;

run;

data ex212;

input A 2.0 B ff4.2 ;

datalines;

10 205

20 216

30 237

40 257

50 -1

60 469

;

The user-defined numeric informat (named ff) converts all positive data
values using the SAS informat 4.2. When the data value is −1, it is converted
to the SAS missing value for a numeric variable, i.e., a period. A scenario for
the need to use such an informat may arise if the raw data set has been
prepared where a −1 has been entered instead of using SAS missing values
or spaces to indicate missing data values where the actual data values are all
positive numbers. The output data set is

Obs A B

1 10 2.05

2 20 2.16

3 30 2.37



2.1 More on the DATA and PROC Steps 89

4 40 2.57

5 50 .

6 60 4.69

2.1.5 Creating SAS Data Sets in Procedure Steps

Several SAS procedures used for statistical analysis have the capability to
let the user specify which statistics, calculated by the procedure, are to be
saved in newly created SAS data sets. In some procedures, these data sets are
organized in special structures that allow them to be read by another SAS
procedures for further analysis by specifying the type= attribute of the data
set. For example, proc corr creates a data set with the attribute type=corr
containing a correlation matrix, which can be directly input to a procedure
such as proc reg as an input data set. If the required analysis performed by
proc reg is solely based on the correlation matrix, then much of the overhead
spent on recomputing the correlation matrix can be avoided.

In this subsection, the discussion is limited to a description of the use
of the output statement in several SAS procedures that compute an exten-
sive number of statistics for variable values. In most of these procedure steps,
a class statement specifies classification variables in the data set that are
discrete-valued variables that identify groups, classes, or categories of obser-
vations in the data set. They may be numeric or character-valued and may be
observed ordinal- or nominal-valued variables or user-constructed variables.
In practice, continuous-valued variables may be used to define new grouping
variables that can then be used in class statements. An example would be
the creation of a variable defining income groups with values, say, 1, 2, and 3,
or “Low,” “Medium,” and “High,” using the values of the continuous-valued
variable Income to form the groups. A var statement (i.e., the variables state-
ment) identifies the analysis variables (that must all be of numeric type). The
statistics are computed on the values of analysis variables for subsets of ob-
servations defined by the classification variables.

In the SAS Example B5 program, proc means is used to introduce the
basic use of the output statement. A simplified general form of the output

statement used in this example is

OUTPUT <OUT=SAS-data-set> <output-statistic-specification(s)>;

where an output-statistic-specification is of the general form

statistic-keyword<(variable-list)>=<name(s)>

where statistic-keyword specifies the statistic to be calculated and is stored
as a value of a variable in the output data set. Some of available statis-
tic keywords are n, mean, median, var, cv, std, stderr, max, min,

range, cv, skewness, kurtosis, q1, q3, qrange, p1, p5, p10, p90,
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p95, p99, t, and probt. The optional variable-list specifies the names of
one or more analysis variables on whose values the specified statistic is to
be computed. If this list is omitted, the specified statistic is computed for
all the analysis variables. The optional name(s) specifies one or more names
for the variables in the output data set that will contain the analysis variable
statistics in the same sequence that the analysis variables are listed in the var
statement. The first name contains the statistic for the first analysis variable,
the second name contains the statistic for the second analysis variable, and
so on. If the names are omitted, the analysis variable names are used to name
the variables in the output data set.

data biology;
input Id Sex $ Age Year Height Weight;
datalines;
7389 M 24 4 69.2 132.5
3945 F 19 2 58.5 112.0
4721 F 20 2 65.3 98.6
1835 F 24 4 62.8 102.5
9541 M 21 3 72.5 152.3
2957 M 22 3 67.3 145.8
2158 F 21 2 59.8 104.5
4296 F 25 3 62.5 132.5
4824 M 23 4 74.5 184.4
5736 M 22 3 69.1 149.5
8765 F 19 1 67.3 130.5
5734 F 18 1 64.3 110.2
4529 F 19 2 68.3 127.4
8341 F 20 3 66.5 132.6
4672 M 21 3 72.2 150.7
4823 M 22 4 68.8 128.5
5639 M 21 3 67.6 133.6
6547 M 24 2 69.5 155.4
8472 M 21 2 76.5 205.1
6327 M 20 1 70.2 135.4
8472 F 20 4 66.8 142.6
4875 M 20 1 74.2 160.4
;

proc means data=biology order=data;
class Year Sex;
var Height Weight;
output out=stats mean=Av_Ht Av_Wt stderr=SE_Ht SE_Wt;

run;

proc print data=stats;
title "Biology Class Data Set: Output Statement";

run;

Fig. 2.13. SAS Example B5: program

SAS Example B5

The SAS Example B5 program (see Fig. 2.13) illustrates the use of proc

means to calculate and print statistics for an input data set named biology
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(used previously in Fig. 1.2) and, in addition, save the statistics in a new SAS
data set created in the proc step. The simple data set to be analyzed includes
a numeric variable Year (indicating class in college) and a character variable
Sex that will be used as classification variables and two numeric analysis vari-
ables Height and Weight. Ordinarily, proc means produces printed output of
five default statistics (n (sample size), mean, standard deviation, minimum,
and maximum) calculated for every variable in the var statement list, for
subsets of observations formed by all combinations of the levels of the class
variables. The option maxdec=3 used on the proc statement limits the number
of decimal places output when printing all calculated statistics. Page 1 of the
SAS output (see Fig. 2.14) displays the printed output in its standard format.
As described above, the five default statistics are computed for the variables
Height and Weight for groups observations defined by the levels “F” and
“M,” respectively, of the Sex variable within each value 1, 2, 3, or 4, of the
Year variable, respectively.

The MEANS Procedure

Year Sex
N

Obs Variable N Mean Std Dev Minimum Maximum

1 F 2 Height
Weight

2
2

65.800
120.350

2.121
14.354

64.300
110.200

67.300
130.500

M 2 Height
Weight

2
2

72.200
147.900

2.828
17.678

70.200
135.400

74.200
160.400

2 F 4 Height
Weight

4
4

62.975
110.625

4.614
12.455

58.500
98.600

68.300
127.400

M 2 Height
Weight

2
2

73.000
180.250

4.950
35.143

69.500
155.400

76.500
205.100

3 F 2 Height
Weight

2
2

64.500
132.550

2.828
0.071

62.500
132.500

66.500
132.600

M 5 Height
Weight

5
5

69.740
146.380

2.481
7.535

67.300
133.600

72.500
152.300

4 F 2 Height
Weight

2
2

64.800
122.550

2.828
28.355

62.800
102.500

66.800
142.600

M 3 Height
Weight

3
3

70.833
148.467

3.182
31.183

68.800
128.500

74.500
184.400

Fig. 2.14. SAS Example B5: output page 1

The output-statistic-specifications used in the output statement has the
basic form of statistic=names. They are mean=Av Ht Av Wt and stderr=

SE Ht SE Wt. Since the var statement used in the proc step is var Height

Weight;, the above specifications request that the means and standard er-
rors of the variables Height and Weight are to be computed and stored in
the new variables Av Ht, Av Wt, SE Ht, and SE Wt, respectively. Page 2 of the
SAS output (see Fig. 2.15) displays a listing of the SAS data set named stats
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produced in the proc means step. It can be observed that there are 15 obser-
vations displaying values for the variables Year, Sex, TYPE , FREQ , Av Ht,
Av Wt, SE Ht, and SE Wt. The value of the TYPE variable (0, 1, 2, or 3)
indicates which combinations of the class variables are used to define the sub-
groups of observations used for computing the statistics. For example, there
is exactly one observation (Observation 1) with the value TYPE =0. In this
observation, the variables Year and Sex are set to respective missing values,
indicating that both of these variables are ignored in determining the sample
used to compute the statistics shown for this observation; that is, the sub-
group for their computation is the entire data set as evidenced by the value
of FREQ =22.

Biology Class Data Set: Output Statement

Obs Year Sex _TYPE_ _FREQ_ Av_Ht Av_Wt SE_Ht SE_Wt

1 . 0 22 67.8955 137.591 0.97773 5.4643

2 . F 1 10 64.2100 119.340 1.03489 4.8887

3 . M 1 12 70.9667 152.800 0.85390 6.4766

4 1 2 4 69.0000 134.125 2.11069 10.3181

5 2 2 6 66.3167 133.833 2.72255 16.4964

6 3 2 7 68.2429 142.429 1.30783 3.4515

7 4 2 5 68.4200 138.100 1.89642 13.3320

8 1 F 3 2 65.8000 120.350 1.50000 10.1500

9 1 M 3 2 72.2000 147.900 2.00000 12.5000

10 2 F 3 4 62.9750 110.625 2.30701 6.2277

11 2 M 3 2 73.0000 180.250 3.50000 24.8500

12 3 F 3 2 64.5000 132.550 2.00000 0.0500

13 3 M 3 5 69.7400 146.380 1.10932 3.3698

14 4 F 3 2 64.8000 122.550 2.00000 20.0500

15 4 M 3 3 70.8333 148.467 1.83697 18.0037

Fig. 2.15. SAS Example B5: output page 2

Similarly, for TYPE =1, there are two subgroups formed for each of the
values of the Sex variable ignoring the Year variable. Note carefully that
Sex variable appears rightmost in the variable list in the class statement;
hence, its levels form TYPE =1 groups. Observations 2 and 3 list statistics
computed based on these groups of observations and note sample sizes given
by FREQ =10 and FREQ =12, respectively.

There are four observations with TYPE =2, and these statistics are based
on the groups of observations that correspond to each level of Year ignoring
the levels of Sex. Observations with TYPE =3 correspond to subgroups defined
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by all combinations of levels of Year and the levels of Sex. Thus, the complete
set is formed by 1+2+4+8 = 15; thus, 15 observations are included in stats.

Other forms of the output-statistic-specifications used in the output state-
ment can be used to alter the appearance of the SAS data set created. Several
procedure information statements and proc statement options are available
for controlling the contents of this data set. The following examples of the
ways and types statements illustrate some of these choices. These two state-
ments allow the user to select the subset of observations to be included in
the output data set as defined by the TYPE variable discussed earlier. The
ways statement uses integers to indicate number of class variables chosen to
form the combinations; for example, one may specify two to request that sub-
groups are to be formed by combining all possible pairs of class variables in
the class variable list. The types statement, on the other hand, allows the
user to specify class variables and how they are to be combined directly.

Including the statement ways 1; in the proc step in the above example
produces the output data set shown in Fig. 2.16. This requests that subgroups
are to be defined by the levels of the class variables taken one at a time. Here,

Biology Class Data Set: Output Statement

Obs Year Sex _TYPE_ _FREQ_ Av_Ht Av_Wt SE_Ht SE_Wt

1 . F 1 10 64.2100 119.340 1.03489 4.8887

2 . M 1 12 70.9667 152.800 0.85390 6.4766

3 1 2 4 69.0000 134.125 2.11069 10.3181

4 2 2 6 66.3167 133.833 2.72255 16.4964

5 3 2 7 68.2429 142.429 1.30783 3.4515

6 4 2 5 68.4200 138.100 1.89642 13.3320

Fig. 2.16. SAS Example B5: result using the WAYS statement

Biology Class Data Set: Output Statement

Obs Year Sex _TYPE_ _FREQ_ Av_Ht Av_Wt SE_Ht SE_Wt

1 1 F 3 2 65.8000 120.350 1.50000 10.1500

2 1 M 3 2 72.2000 147.900 2.00000 12.5000

3 2 F 3 4 62.9750 110.625 2.30701 6.2277

4 2 M 3 2 73.0000 180.250 3.50000 24.8500

5 3 F 3 2 64.5000 132.550 2.00000 0.0500

6 3 M 3 5 69.7400 146.380 1.10932 3.3698

7 4 F 3 2 64.8000 122.550 2.00000 20.0500

8 4 M 3 3 70.8333 148.467 1.83697 18.0037

Fig. 2.17. SAS Example B5: result from using TYPES statement
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two sets of statistics are produced for the two levels of Sex and four sets for
the four levels of Year. The printed output (not shown) is similarly struc-
tured; two tables of statistics are produced for each class variable separately.
Other possibilities in this example are ways 0; when no subgroups are formed,
meaning statistics are computed for the entire data set, and ways 2; when
subgroups are formed for all eight combinations of the two class variables.

Including the statement types Year Sex; in the proc step produces the
same data set shown in Fig. 2.16 and the corresponding printed output (not
shown). If, instead, types Year; is used, then only those statistics for the
subgroups defined by the four levels of Year will be calculated. The state-
ment types Year*Sex; produces statistics for subgroups formed for the eight
combinations of the two class variables Year and Sex as shown in Fig. 2.17.

2.2 SAS Procedures for Descriptive Statistics

While proc means used in previous examples is classified as a Base SAS pro-
cedure, UNIVARIATE procedure is a SAS procedure classified as a Base sta-
tistical procedure. As an introduction to how the ODS system may be used
to extract tables and graphs from these procedures, this section begins with
a simple example.

SAS Example B6

The SAS Example B6 program (see Fig. 2.18) illustrates the use of proc

univariate to calculate and print statistics and graphics for the input data set
named biology used previously in several SAS examples. An infile state-
ment is used to access the data from a text file from a folder. In the proc
univariate step, several tables of staistics and a normal probability plot are
produced for the Height variable. The ods select statement may be used
to identify tables and statistics to be output. Procedures assign a name to
each table and graph that it creates. These names can be found, respectively,
in tables labeled ODS Table Names and ODS Graph Names under the details
section of the procedure description. Note carefully that except for default
tables or graphs produced by a procedure, some tables are only produced
by including the required options on the proc statement, and many graphs
are produced only by including specific statements in the proc step. Many of
these options and statements available with proc univariate will be illus-
trated in other examples that follow. In SAS Example B6, the normaltest

option produces a table of results of tests for normality, and the probplot

statement produces a normal probability plot of the variable Height in the
biology data set. Thus the normal probability plot is output to the specified
destination in addition to tables of basic statistical measures, quantiles, and
tests for normality. These are displayed in Figs. 2.19 and 2.20, respectively.
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data biology;
infile "C:\users\user_name\Documents\...\Class\biology.txt";
input Id Sex $ Age Year Height Weight;
run;

ods select BasicMeasures Quantiles TestsForNormality ProbPlot;

proc univariate data=biology normaltest;
var Height;
probplot Height;
title ’Biology class: Analysis of Height Distribution’;

run;

Fig. 2.18. SAS Example B6: program

The top table in Fig. 2.20 shows descriptive statistics computed by default
for the variable Height. The proc statement option normaltest in this pro-
gram produces results of several statistical tests for normality. For example,
the p-value for the Shapiro–Wilk test, 0.9231, in Fig. 2.20 indicates that the
null hypothesis that the data is a random sample from a normal distribution
will not be rejected. Marked departures from a straight line indicates that the
sample distribution deviates from a normal distribution. In such a case, points
in a normal probability plot show some identifiable curvature pattern. Most

The UNIVARIATE Procedure
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Fig. 2.19. SAS Example B6: normal probability plot of Height
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Biology class: Analysis of Height Distribution

The UNIVARIATE Procedure
Variable:  Height

Basic Statistical Measures

Location Variability

Mean 67.89545 Std Deviation 4.58595

Median 67.95000 Variance 21.03093

Mode 67.30000 Range 18.00000

Interquartile Range 4.90000

Tests for Normality

Test Statistic p Value

Shapiro-Wilk W 0.980466 Pr < W 0.9231

Kolmogorov-Smirnov D 0.107727 Pr > D >0.1500

Cramer-von Mises W-Sq 0.034689 Pr > W-Sq >0.2500

Anderson-Darling A-Sq 0.206227 Pr > A-Sq >0.2500

Quantiles (Definition 5)

Level Quantile

100% Max 76.50

99% 76.50

95% 74.50

90% 74.20

75% Q3 70.20

50% Median 67.95

25% Q1 65.30

10% 62.50

5% 59.80

1% 58.50

0% Min 58.50

Fig. 2.20. SAS Example B6: selected statistical tables

commonly, a bowl-shaped pattern of the points indicates a right-skewed dis-
tribution, a mound-shaped pattern indicates a left-skewed distribution, and
an S-shaped pattern indicates a short-tailed (i.e., heavy-tailed) distribution,
relative to the shape of a normal distribution. Note that one must make sure
that normal percentiles appear on the x -axis when identifying these patterns,
as done in SAS procedures that produce these plots. If one cannot identify a
specific pattern clearly, then it can be concluded that no evidence is provided
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by the plot to suspect the plausibility of the normality of the data. The nor-
mal probability plot produced by inclusion of the probplot statement (see
Fig. 2.19) affirms that the population distribution is normal agreeing with the
result of the Shapiro–Wilk test as it does not imply a departure from a straight
line.

Note that the bottom table in Fig. 2.20 shows percentiles calculated using
definition 5 by default.

SAS Example B7

The data set shown in Table B.1 of Appendix B appeared in Weisberg (1985)
and was extracted from the American Almanac and the World Almanac for
1974. It lists the values of fuel consumption for each of the 48 contiguous
states, in addition to several other measured variables. As a prelude to the
use of several SAS procedures for analysis, a SAS data set that contains user-
generated labels, formats, grouping variables (ordinal or nominal variables
with values that identify groups of observations belonging to different classes
or strata), etc. is created and stored in a library. This data set is then accessed
repeatedly in several SAS proc steps.

The SAS data set fueldat is created in the SAS Example B7 program
shown in Fig. 2.21. The following actions are taken in the data step of this
program. The data are input from a text file using an infile statement. The
SAS data set is saved in a folder using the two-level name mylib.fueldat

to be accessed in other SAS programs later. Mnemonic variable names are
used, but label statements are included to provide more descriptive labeling
as necessary. In the same data step, five new variables are created as follows:

a. A numeric variable Percent that will contain the percent of population
with driving licenses in each state

b. A numeric variable Fuel that measures the per capita motor fuel con-
sumption in gallons in each state

c. An ordinal variable called IncomGrp assigned the value 1, 2, or 3 according
to whether the per capita Income (in thousands of dollars) is less than or
equal to 3.8, greater than 3.8 and less than or equal to 4.4, or over 4.4,
respectively

d. A nominal variable called TaxGrp with a value of “Low ” when the fuel
tax is less than 8 cents and a value of “High” otherwise

e. A character variable named State containing the state name in uppercase
and lowercase, for example, Kansas

A format statement ensures that values of the variable created in (a) are
printed rounded to one decimal place and those of the variable created in
(b) are printed as whole numbers (i.e., appropriate print formats are associ-
ated with Percent and Fuel variables). A drop statement is used to exclude
variables Fuelc and St from the data set created. Printed output from the
program, a partial listing of the data set, is not reproduced here.
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libname mylib "C:\users\user_name\Documents\...\Class\stat479\";
data mylib.fueldat;
filename fueldd ‘C:\Documents and Settings\...\fuel.txt’;
input (St Pop Tax Numlic Income Roads Fuelc)

( $2. 5. 2.1 5. 4.3 5.3 5.);
label Pop=’Population(in thousands)’

Tax=’Motor Fuel Tax Rate(in cents/gallon)’
Numlic=’No. of Licensed Drivers’
Income=’Per capita Income(in thsnds.)’
Roads=’Miles of Primary Highways(in thsnds.)’ ;

Percent=100*Numlic/Pop;
Fuel=1000*Fuelc/Pop;

if Income=<3.8 then IncomGrp=1;
else if 3.8<Income=<4.4 then IncomGrp=2;
else IncomGrp=3;
if Tax<8.0 then TaxGrp=’Low ’;
else TaxGrp=’High’;

label Percent=’% of Population with Driving Licenses’
Fuel=’Fuel Consumption (in gallons/person)’
IncomGrp=’Income Level’
TaxGrp=’Fuel Tax Level’
State=’State’ ;

format Percent 4.1 Fuel 7. ;
State=stnamel(St);
drop Fuelc St;
run;

options orientation=landscape;
proc print data=mylib.fueldat(obs=20) label;
title ’Subset of the Fuel Data Set’ ;
run;

Fig. 2.21. SAS Example B7: program

2.2.1 The UNIVARIATE Procedure

Although there are several SAS procedures that produce descriptive statis-
tics, proc univariate is best suited for studying the empirical distributions
of variables in a data set. It produces a variety of descriptive statistics such
as moments and percentiles and optionally creates output SAS data sets con-
taining selected sample statistics. In addition, proc univariate can be used
to produce high-resolution graphics such as histograms with overlayed kernel
density estimates, quantile-quantile plots, and probability plots supplemented
with goodness-of-fit statistics for a variety of distributions. A discussion of the
statements that produce high-resolution graphics is deferred until Chap. 3.
In this subsection, a brief discussion of several statements available for cal-
culating sample statistics and saving those in a SAS data set is presented.
This is followed by an illustrative example. The general structure of a proc

univariate step (that includes five of the procedure information statements
to be illustrated) is



2.2 SAS Procedures for Descriptive Statistics 99

PROC UNIVARIATE < options > ;

BY variables ;

CLASS variable-1 <(v-options)> < variable-2 <(v-options)> >

...< / KEYLEVEL= value1 | ( value1 value2 ) >;

VAR variables ;

ID variables ;

OUTPUT < OUT=SAS-data-set >

< keyword1=names...keywordk=names > < percentile-options >;

HISTOGRAM <variables> < / options>;

PROBPLOT <variables> < / options>;

QQPLOT <variables> < / options>;

INSET keyword-list </ options>;

A large number of proc statement options are available for proc univariate.
Although some of these are standard options such as the data= option for
naming the data set to be analyzed or the noprint for suppressing printed
output, others are more specialized. Some of these special proc statement
options are summarized below:

Some PROC Statement Options

alpha= option specifies an α for calculating (1 − α)100% confidence inter-
vals, the default being 0.05

cibasic < (< type= ><alpha= >) > option calculates (1 − α)100% confi-
dence intervals for the mean, standard deviation, and variance assuming
that the data are normally distributed. Optionally, type may be set equal
to one of the keywords lower, upper, or two sided. The defaults are
type=twosided and alpha value set in the above alpha= proc option or
the default value of 0.05.

mu0= option is used to list value(s) (μ0) stipulated in the hypotheses for
tests concerning population means corresponding to the variables listed
in the var statement. The tests performed are the Student’s t-test, the
sign test, and the Wilcoxon signed rank test.

normaltest option requests tests for normality. Computed test statistics and
p-values for the Shapiro–Wilk test (for sample sizes less than or equal to
2000), the Kolmogorov–Smirnov test, the Anderson–Darling test, and the
Cramér–von Mises test are output.

pctldef= gives the user the option of selecting one of five methods (labeled
1, 2, 3, 4, or 5) that proc univariate uses for calculating sample per-
centiles. These methods depend on the sample size n and the percentile
p and are described in the documentation. The default method is 5.

plots option requests a panel of plots that contains a horizontal histogram,
a box plot, and a normal probability plot.
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trim=values < (<type= ><alpha= >) > option requests the computation
of trimmed means for each variable in the var list, where the values list is
the numbers k or the fractions p of observations to be trimmed from both
ends of the n observations ordered smallest to largest. If p are specified,
then the numbers trimmed equal np rounded up to the nearest integer,
respectively. Confidence intervals for the population means are also cal-
culated based on the trimmed means and estimates of their standard
errors; the options type= and alpha= may be used to change their default
settings, as described for the cibasic proc option earlier.

vardef= specifies the divisor to be used in the calculation of variance and
standard deviation. The default value for the divisor is df when the degrees
of freedom n− 1 will be used. Other possible values that may be specified
are n, wdf, and Weight or wgt, respectively, when the sample size n, the
weighted degrees of freedom

∑
wi−1, or the sum of weights

∑
wi (where

wi are the weights specified in Weight statement) will be used.

Some CLASS Statement Options

The variables list in the class statement specifies groups into which the obser-
vations in a data set are classified into for the purpose of calculating statistics.
The values of these variables can be numeric or character and are called lev-
els. For the purpose of displaying output from such an analysis (e.g., tables),
procedures such as univariate must be provided with a way to determine
in what order the statistics calculated for each level of a class variable are to
be displayed. In many procedures, the order= option is available as a proc

statement option to be used for this purpose. In proc univariate, this op-
tion is available as one of the v-options in the class statement, the levels of
each class variable may be separately ordered.

The class statement allows the v-options missing and order= to be
specified, enclosed in parentheses, for each of the variables in the class variable
list. For example, using the order= option for each variable allows the user to
specify the display order of the levels of each of the class variables separately.
The default setting for the order= option is internal, which specifies that
the internal unformatted (character or numeric) value of a variable be used
for this purpose. The other available choices are data, in which case the levels
will be displayed in the order they appeared in the input data, formatted,
which requests that the levels be ordered by their formatted values, and freq,
which requests that levels be listed in the decreasing order of frequency of
observations for each level.

SAS Example B8

Several variables in the SAS data set created in SAS Example B7 on fuel
consumption data are analyzed using proc univariate in the SAS Example
B8 program (see Fig. 2.22) to illustrate the use of the procedure options and
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libname mylib "C:\users\user_name\Documents\...\stat479\";
proc univariate data=mylib.fueldat plots normaltest cibasic mu0=4 500 trim=2;

var Income Fuel;
id State;
title ’Use of Proc Univariate to Compute Statistics:2’;

run;

proc univariate data=mylib.fueldat noprint;
var Fuel Percent;
output out=stats pctlpts=33.3 66.7 pctlpre=Fuel Lic;
title ’Calculation of User Specified Percentile Points’;

run;

proc print data=stats;
run;

Fig. 2.22. SAS Example B8: program

statements discussed in this section. The previously saved SAS data set named
fueldat is accessed using the two-level name mylib.fueldat.

Use of Proc Univariate to Compute Statistics:2

The UNIVARIATE Procedure
Variable:  Income  (Per capita Income(in thsnds.))

Basic Confidence Limits Assuming Normality

Parameter Estimate 95% Confidence Limits

Mean 4.24183 4.07527 4.40840

Std Deviation 0.57362 0.47752 0.71851

Variance 0.32904 0.22803 0.51626

Tests for Location: Mu0=4

Test Statistic p Value

Student's t t 2.920853 Pr > |t| 0.0053

Sign M 7 Pr >= |M| 0.0595

Signed Rank S 248.5 Pr >= |S| 0.0093

Tests for Normality

Test Statistic p Value

Shapiro-Wilk W 0.975229 Pr < W 0.3988

Kolmogorov-Smirnov D 0.080296 Pr > D >0.1500

Cramer-von Mises W-Sq 0.058391 Pr > W-Sq >0.2500

Anderson-Darling A-Sq 0.375093 Pr > A-Sq >0.2500

Trimmed Means

Percent
Trimmed

in Tail

Number
Trimmed

in Tail
Trimmed

Mean

Std Error
Trimmed

Mean 95% Confidence Limits DF
t for H0:

Mu0=4.00 Pr > |t|

4.17 2 4.239795 0.087055 4.064233 4.415358 43 2.754533 0.0086

Fig. 2.23. SAS Example B8: confidence intervals and tests for the Income variable
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The first proc step analyzes the distribution of the variables Income and
Fuel and includes the procedure options cibasic, mu0=4 500, and trim=2.
By default, the cibasic option produces 95% confidence intervals for the
population mean μ, the population standard deviation σ, and the population
variance σ2 for each of the variables, calculated under the normality assump-
tion for the data. These are shown in Fig. 2.23 for the Income variable and
in Fig. 2.24 for the Fuel variable. Recall that the data values for Income are
per capita income figures in thousands of dollars and those for Fuel are per
capita fuel consumption in gallons.

Note that the percentiles and extreme values are also part of the output
but shown here except the extreme values for the Fuel variable (see Fig. 2.27).
The id State; statement results in these values being identified by the cor-
responding state name.

Use of Proc Univariate to Compute Statistics:2

The UNIVARIATE Procedure
Variable:  Fuel  (Fuel Consumption (in gallons/person))

Basic Confidence Limits Assuming Normality

Parameter Estimate 95% Confidence Limits

Mean 576.74280 544.25372 609.23188

Std Deviation 111.88866 93.14382 140.14953

Variance 12519 8676 19642

Tests for Location: Mu0=500

Test Statistic p Value

Student's t t 4.751954 Pr > |t| <.0001

Sign M 13 Pr >= |M| 0.0002

Signed Rank S 415 Pr >= |S| <.0001

Tests for Normality

Test Statistic p Value

Shapiro-Wilk W 0.933466 Pr < W 0.0092

Kolmogorov-Smirnov D 0.133491 Pr > D 0.0313

Cramer-von Mises W-Sq 0.116579 Pr > W-Sq 0.0687

Anderson-Darling A-Sq 0.802331 Pr > A-Sq 0.0368

Trimmed Means

Percent
Trimmed

in Tail

Number
Trimmed

in Tail
Trimmed

Mean

Std Error
Trimmed

Mean 95% Confidence Limits DF
t for H0:

Mu0=500.00 Pr > |t|

4.17 2 570.3739 14.65103 540.8273 599.9205 43 4.803342 <.0001

Fig. 2.24. SAS Example B8: confidence intervals and tests for the Fuel variable



2.2 SAS Procedures for Descriptive Statistics 103

Distribution and Probability Plot for Income
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Fig. 2.25. SAS Example B8: panel of basic summary plots for Income

From Fig. 2.23, for the Income variable, the confidence interval reported for
μ is (4.07527, 4.40840) and the p-value for the two-sided t-test of H0 : μ = 4
versus Ha : μ �= 4 is reported as 0.0053. The p-value for the corresponding
one-sided test is, of course, 0.0053/2 = 0.0026. The tests and confidence in-
tervals are not reproduced here for the Fuel variable, but they are found in
Fig. 2.24 and can be similarly interpreted. The estimate, confidence interval,
and associated t-test for the mean μ under trimming for the Income variable
appear in the bottom table titled Trimmed Means in Fig. 2.23. The option
trim=2 requested that the trimmed mean be computed after the two smallest
and the two largest observations are deleted from the sample, which is equiv-
alent to approximately 4% trimming from the tails of the distribution of the
Income variable. Associated confidence intervals and a t-test for the popula-
tion mean μ are computed based on the standard error of the trimmed mean.
For a symmetric distribution, the trimmed mean is an unbiased estimate of
the population mean. The results under trimming here indicate that the es-
timates and test statistics are not significantly different from those statistics
calculated from the complete sample (see Figs. 2.23 and 2.24). This is also an
indicator of the symmetry of the population distribution of the Income vari-
able. Similar interpretations of Trimmed Means follow for the Fuel variable
as well.
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Distribution and Probability Plot for Fuel
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Fig. 2.26. SAS Example B8: panel of basic summary plots for Fuel

The normal probability plots produced for the two variables, Income and
Fuel, respectively, are shown in Figs. 2.25 and 2.26, and they support the
findings of the respective tests of normality of the two variables. For example,
the histogram and the box plot (see Fig. 2.26) show a highly positively skewed
population distribution with two extreme values for the Fuel variable, which
were identified as those that correspond to the states of South Dakota and
Wyoming in Fig. 2.27.

The final proc step requests the calculation of the 33.3 and 66.7 percentiles
of the Fuel (Fuel Consumption (in gallons/person)) and Percent (% of Pop-

Fig. 2.27. SAS Example B8: extreme values for Fuel
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ulation with Driving Licenses) variables. In this example, the printed output
is suppressed (as a result of the noprint proc option); however, the output is
written to a new SAS data set named stats. The percentiles that cannot be
directly requested via the usage of a keyword such as p1, p10, or p90 are cal-
culated by the use of the pair of keywords pctlpts= and pctlpre= used con-
currently. For example, the use of pctlpts=33.3 66.7 pctlpre=fuel lic

generates the 33.3 and 66.7 percentiles for the two analysis variables (i.e.,
variables in the var statement), respectively, and adds them to the new
data set as values of new variables named fuel33 3, fuel66 7, lic33 3, and
lic66 7. The proc print data=stats; statement produces the output of
these values shown in Fig. 2.28.

Calculation of User Specified Percentile Points

Obs Fuel33_3 Lic33_3 Fuel66_7 Lic66_7

1 524.994 54.4421 609.991 58.0087

Fig. 2.28. SAS Example B8: calculating user-specified percentiles

2.2.2 The FREQ Procedure

The FREQ procedure in SAS computes many statistics and measures related
to the analysis of categorical data. The discussion in this subsection is primar-
ily intended to illustrate the use of statements and options to generate these
statistics rather than a presentation of statistical methodology involved in the
analysis of categorical data. It is recommended that the prospective user of
proc freq consult references cited to learn more about techniques available
for hypothesis testing and measuring association among categorical variables.
Moreover, the type of inference depends on many factors such as sampling
strategy; thus, a knowledge of how the data are collected is also necessary for
making relevant conclusions.

A chi-square goodness-of-fit test can be used to test several types of hy-
pothesis using frequency counts. For example, using a one-way frequency table
with k classes, one could compute a chi-square statistic to test whether the
counts conform to sampling from a multinomial population with specified
probabilities. In this case, the null hypothesis of interest is

H0 : pi = pi0, i = 1, 2, . . . , k

where the pi0’s are postulated values of the multinomial probabilities. The
Pearson chi-square statistic is given by

χ2 =

k∑

i=1

(fi − ei)
2

ei
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where fi is the observed frequency count in class i and ei is the expected
frequency calculated under the null hypothesis (i.e., ei = pi0N where N is the
total number of responses). Another application of a chi-square test is for
testing homogeneity of several multinomial populations. In this case, random
samples are taken from each population and then classified by a categorical
variable. The populations are usually defined by levels of variables such as
gender, age group, state, etc., and the levels of the categorical variable form
the k categories of the multinomial populations.

For example, suppose samples are drawn from two populations (say, males
and females or persons below and above the age of 40) and they are grouped
into three categories (say, according to three levels of support for a certain local
bond issue). Suppose that the multinomial probabilities for each population
are as given in the following table:

Groups
p11 p12 p13

Populations
p21 p22 p23

Then the null hypothesis of homogeneity of populations (i.e., whether random
samples were drawn from the same multinomial population) is given by

H0 : p11 = p21, p12 = p22, p13 = p23

Note carefully that the sampling procedure here is different from the process
used in the construction of a contingency table. In the above situation, random
samples are drawn from two different populations, and then each sample is
classified into three different groups. Contingency tables are constructed by
multiple classification of a single random sample. Observations in a sample
may be cross-classified by variables with ordinal or nominal data values defin-
ing categorical variables. These variables may be covariates already present
in the data set (e.g., gender, marital status, or region), thus forming natural
subsets or strata of the data, or may be generated from other quantitative
variables such as Population or Income. For example, observations in a sam-
ple may be categorized into three income groups (say “low,” “middle,” or
“high”) by creating a new variable, say IncomGrp, and assigning the above
character strings as its values according to whether the value of the income
variable is below $30,000, between $30,000 and $70,000, or above $70,000,
respectively.

A chi-square statistic can be computed for a two-way r × c contingency
table to test whether the two categorical variables are independent; that is,
the null hypothesis tested is of the form

H0 : pij = pi.p.j , i = 1, 2, . . . , r, j = 1, 2, . . . , c

where the pij are the probabilities considering that the entire sample is from a
multinomial population and pi. and p.j , called the marginal probabilities, are
probabilities for multinomial populations defined by each categorical variable.
The chi-square statistic for the test of this hypothesis is given by
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χ2 =
∑

i

∑

j

(fij − eij)
2

eij

where fij is the observed frequency in the ijth cell and eij = fi.f.j/N , where
fi. and f.j are the observed row and column marginal frequencies, respectively.

When the row and column variables are independent, the above statistic
has an asymptotic chi-square distribution with (r−1)(c−1) degrees of freedom.
Instead of χ2, the likelihood ratio chi-square statistic, usually denoted by G2,
that has the same asymptotic null distribution may be computed. If the row
and columns are ordinal variables, the Mantel-Haenszel chi-square statistic
tests the alternative hypothesis that there is a linear association between
them. Fisher’s exact test is another test of association between the row and
column variables that does not depend on asymptotic theory. It is thus suitable
for small sample sizes and for sparse tables. One may compute measures of
association between variables that may or may not depend on the chi-square
test of independence. Some of these are illustrated in SAS Example B8.

One would use proc freq to analyze count data using one-way frequency
tables or two-way or higher-order contingency tables. In addition to chi-square
statistics for testing whether two categorical variables are independent, for a
two-way contingency table, proc freq also computes measures of association
that estimate the strength of association between the pair of variables. In this
subsection, a brief discussion of several statements available in proc freq

followed by an illustrative example is presented. The general structure of a
proc freq step is

PROC FREQ < options > ;

BY variables ;

TABLES requests < / options > ;

EXACT statistic-options < / computation-options > ;

TEST options ;

OUTPUT < OUT=SAS-data-set > options ;

The primary statement in proc freq is the tables statement for requesting
tables having different structures with options for selecting statistics to be
included in those tables. Since the computation of frequencies requires that
the variables used in the tables statement are necessarily discrete valued
(containing either nominal or ordinal data) such as category-, classification-,
or grouping-type variables, statements such as var or class are not available
in proc freq.

The syntax of the tables statement allows the user to request one-way
tables just by listing the variables in the tables statement and two-way
tables by two variable names combined with an asterisk between them.
Thus, the statement tables Region; produces one-way tables with frequency
counts of observations for each level of Region, and the statement tables

TaxGrp*Region; produces a two-way cross-tabulation with the levels of the
variable TaxGrp as the rows of the table and the levels of Region as the
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columns. A combination of a level of TaxGrp and a level of Region forms a
cell in the table. In this case, frequencies of observations are tallied for every
possible combination of the two variables and entered in the respective cells;
they are called cell frequencies. Multiway combinations of variables such as
P*Q*R*S are possible in which case two-way tables are produced for every
combination of levels of each of the variables P and Q. The cells in each two-
way table are formed by combinations of a level of variables R and S. The
proc statement option page may be used to force these tables to be output on
different pages. The tables statement syntax also allows variations such as
tables Q*(R S ), which is equivalent to the specification tables Q*R Q*S,
or tables (P Q)*(R S ), which is equivalent to tables P*R Q*R P*S Q*S.

By default, one-way frequency tables contain the statistics frequency, cu-
mulative frequency, percentage frequency, and cumulative percentage com-
puted for each level of the variable and two-way or multi-way tables may
include cell frequency, cell percentage of the total frequency, cell percentage
of row frequency, and cell percentage of column frequency computed for each
cell. Many options are available with the tables statement to control the
statistics that are calculated and output by proc freq. While some of these
are simple options for suppressing the statistics computed by default, others
request additional statistics such as goodness-of-fit statistics and measures of
association to be computed. An abbreviated description of these options is
provided below:

Some TABLES Statement Options

nocol suppresses printing the column percentage for each cell.

nocum suppresses printing the cumulative frequencies and cumulative per-
centages in one-way frequency tables and in list format.

norow suppresses printing the row percentage for each cell.

nopercent suppresses printing the percentage, row percentage, and column
percentage in two-way tables or percentages and cumulative percentages
in one-way tables and in list format.

noprint suppresses printing the frequency table but displays other statistics.

list prints multiway tables in list format.

binomial requests binomial proportion, confidence limits, and test for one-
way tables.

testf= specifies expected frequencies for a one-way table chi-square test.
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testp= specifies expected proportions for a one-way table chi-square test.

chisq requests chi-square tests and measures of association based on chi-
square.

cellchi2 prints each cell’s contribution to the total Pearson chi-square statis-
tic.

deviation prints the deviation of the cell frequency from the expected value
for each cell.

expected prints the expected cell frequency for each cell under the null.

fisher requests Fisher’s exact test for tables larger than 2× 2.

cmh requests all Cochran-Mantel-Haenszel statistics.

measures requests measures of association and their asymptotic standard
errors.

cl requests confidence limits for the measures statistics.

alpha= sets the confidence level for confidence limits.

agree requests tests and measures of classification agreement.

all requests tests and measures of association produced by the chisq, mea-
sures, and cmh options.

Options such as binomial, testf=, and testp= are used for specifying either
the postulated probabilities (pi0’s) where H0 : pi = pi0, i = 1, 2, . . . , k or the
expected frequencies in a sample of size n classified in a one-way frequency ta-
ble for performing a chi-square goodness-of-fit test. An application is provided
as an exercise at the end of this chapter.

SAS Example B9

In the following contrived example of a two-way table, suppose that subjects
are classified according to levels of two variables A and B. The column variable
A has three categories, say a1, a2, and a3, and the row variable B has three cat-
egories, say b1, b2, and b3. Most often, the row variable is called the dependent
variable if the categories of the variable are recognized as possible outcomes
or responses. An example would be where factor B is Marital Status and
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factor A is a response to a question with three possibilities. Consider the table
of frequencies:

b1 b2 b3 Total
a1 8 16 31 55
a2 9 18 74 101
a3 34 23 17 74
Total 51 57 122 230

In this case, the column variable is called the independent variable with cat-
egories being classes, groups, or strata. The designation of whether the two
types of variable are assigned to rows or columns is usually a matter of choice.

In the above setup, subjects from each of the column categories (indepen-
dent variable) can be viewed as being classified into one of the row categories
(dependent variable). The choice of the independent and dependent variables
does not affect the statistical analysis of the data except when part of the
inference is measuring the predictability of a response category given that an
object belongs to a certain group or class. Otherwise, when variables cannot
be clearly identified as independent and dependent variables, statistics and
measures unaffected by an arbitrary designation are preferred.

In the SAS Example B9 program (see Fig. 2.29), the cell frequencies are
directly input to proc freq instead of raw data (which are not available in this
example). The use of the weight statement allows SAS to construct the two-
way cross-tabulation using the cell counts. In the first part of the output (see
Fig. 2.30), only the statistics observed count fi, the expected frequency ei, and
its contribution to the total chi-square statistic are displayed in each cell (i.e.,
percentage of the total frequency, percentage of row frequency, and percentage
of column frequency are suppressed using tables statement options given
earlier). It is clear that the cells (2,1), (2,3), (3,1), and (3,3) provide the
largest contributions to the total chi-square statistic of 52.4. It is observed
that at the lowest level of B, the response is smaller than expected for group
2 of A and larger than expected for group 3 of A. This pattern is reversed at
the highest level of B.

data exb9;
input A $ B $ Count @@;
datalines;
a1 b1 8 a1 b2 16 a1 b3 31
a2 b1 9 a2 b2 18 a2 b3 74
a3 b1 34 a3 b2 23 a3 b3 17
;
proc freq data=exb9;
weight Count;
tables A*B/chisq expected cellchi2 nocol nopercent norow measures;
title "Example B9: Illustration of Tables Options";
run;

Fig. 2.29. SAS Example B9: program
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For two-way frequency tables, the chi-square test of independence is a test
of general association, where the null hypothesis is that the row and column
variables are independent (no association) and the alternative hypothesis is
that an association exists between the two variables with the type of associa-
tion unspecified. The chi-square statistic and the likelihood ratio statistic are
both suitable for testing this hypothesis. proc freq computes these statis-
tics in response to chisq option in the tables statement. For large sample
sizes and if the null hypothesis is true, these test statistics have approxi-
mately a chi-square distribution. (For small samples, the user may request
that Fisher’s exact test be computed by specifying the exact option in the
tables statement.) In Fig. 2.30, the p-values of both the chi-square statistic
and the likelihood ratio statistic are smaller than, say, 0.01. Thus, the null
hypothesis that the two variables are independent is rejected, leading to the
conclusion that there is some type of association between these two variables.

Example B9: Illustration of Tables Options

The FREQ Procedure

Frequency
Expected
Cell Chi-Square

Table of A by B

A

B

b1 b2 b3 Total

a1 8
12.196
1.4434

16
13.63

0.4119

31
29.174
0.1143

55

a2 9
22.396
8.0124

18
25.03

1.9747

74
53.574
7.7878

101

a3 34
16.409
18.859

23
18.339
1.1846

17
39.252
12.615

74

Total 51 57 122 230

Statistics for Table of A by B

Statistic DF Value Prob

Chi-Square 4 52.4031 <.0001

Likelihood Ratio Chi-Square 4 53.1793 <.0001

Mantel-Haenszel Chi-Square 1 25.0216 <.0001

Phi Coefficient 0.4773

Contingency Coefficient 0.4308

Cramer's V 0.3375

Fig. 2.30. SAS Example B9: A × B chi-square test
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Beyond the use of the chi-square statistic for testing the hypothesis of no
association between two variables, researchers also use the magnitude of the
statistic (and thus the p-value itself) as a measure of the strength of any asso-
ciation that may exist especially when the null hypothesis is rejected. This is
because the tables with the larger chi-square value generally provide stronger
evidence for association between the two variables. However, the problem with
this interpretation is that the value of the chi-square statistic is sensitive to
the sample size. That is, tables with larger sample sizes but similar frequency
distribution may actually result in significantly larger chi-square values. One
approach to solve this problem is to adjust the chi-square statistic for ei-
ther the sample size or the dimension of the table or for both. Proc freq

provides three measures phi coefficient φ, contingency coefficient C ,
and Cramer’s V that are suitable for measuring the strength of the depen-
dency between nominal variables but are also applicable for ordinal variables..
For this data, these are displayed in the second table of Fig. 2.30.

Phi Coefficient, φ The φ statistic is a measure that adjusts only for the sample
size n and is defined as

φ =

√
χ2

n

This adjustment makes sure that tables that have widely differing values of the
chi-square statistic because they are based on different sample sizes result in
similar values for the phi coefficient, which reflect the true association between
the variables. The range for φ is 0 < φ < min {

√
r − 1,

√
c− 1}. For the above

data set, Fig. 2.30 displays a value of 0.48 for φ. Since, for a 3 × 3 table,
the upper limit of the statistic is 1.4, the strength of association between the
variables A and B is shown to be rather moderate to weak.

Contingency Coefficient, C The C coefficient is a direct transformation of the
φ statistic and is defined as

C =

√
χ2

n+ χ2

The advantage of C is that it is constrained to be in the range of 0–1. Thus
the value of C is zero if there is no association between the two variables
but has a value that is less than 1 even with perfect dependence. Its value
is dependent on the size of the table with a maximum value of

√
(r − 1)/r

for an r × r table. For a 3 × 3 table, this value is 0.816. Thus, the value of
0.43 of C appears to indicate a strength midway between no association and
a perfect association.

Cramer’s V This measure adjusts for both the sample size and the dimension
of the table and is defined as

V =

√
χ2

nt
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where t = min {
√
r − 1,

√
c− 1}. Cramer’s V is a normed measure, so its

value is between 0 and 1; thus, a value of 0.34 is approximately in the bottom
third of the scale. This indicates a slightly weaker association than that the
contingency coefficient shows but similar to that indicated by φ.

The above three measures of association are all derived from the Pearson
chi-square statistic. There are many other measures of association between
two categorical variables that proc freq calculates. Some of these statistics
are briefly discussed here. Many of these statistical measures also require the
assignment of a dependent variable and an independent variable, as the goal
is to predict a rank (category) of an individual on the dependent variable
given that the individual belongs to a certain category in the independent
variable.

Statistics for Table of A by B

Statistic Value ASE

Gamma -0.4375 0.0828

Kendall's Tau-b -0.2981 0.0586

Stuart's Tau-c -0.2804 0.0555

Somers' D C|R -0.2891 0.0575

Somers' D R|C -0.3074 0.0601

Pearson Correlation -0.3306 0.0626

Spearman Correlation -0.3354 0.0650

Lambda Asymmetric C|R 0.1574 0.0607

Lambda Asymmetric R|C 0.2326 0.0622

Lambda Symmetric 0.1983 0.0540

Uncertainty Coefficient C|R 0.1138 0.0293

Uncertainty Coefficient R|C 0.1082 0.0281

Uncertainty Coefficient Symmetric 0.1109 0.0286

Sample Size = 230

Fig. 2.31. SAS Example B9: A × B measures of association

For calculating the following measures for the two variables under consid-
eration, pairs of observations are first classified as concordant or discordant. A
pair is concordant if the observation with the larger value for variable one also
has the larger value for variable two, and it is discordant if the observation
with the larger value for variable one has the smaller value for variable two.
Thus, the pair of observations (12, 2.7) and (15, 3.1) are concordant and the
pair (12, 2.7) and (10, 3.1) are discordant.
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Gamma γ, Kendall’s tau-b, Somers’ D
These measures are considered when both variables are ordinal and the

first two are called symmetrical because their values are not affected by the
selection of the variable for predicting the other variable. Gamma is a normed
measure of association based on the numbers of concordant and discordant
pairs. If there are no discordant pairs, gamma is +1 and perfect positive as-
sociation exists between the two variables, and if there are no concordant
pairs, gamma is −1 and perfect negative association exists between the two
variables. Values in between −1 and +1 measure the strength of negative or
positive association. If the numbers of discordant and concordant pairs are
equal, gamma is zero, and the rank of the independent variable cannot be used
to predict the rank of the dependent variable. In the SAS Example B9 output
(see Fig. 2.31), gamma= −0.4375 with an estimated asymptotic standard error
(ASE) of 0.0828, indicating a moderate to weak negative association between
the two variables.

Kendall’s tau-b is the ratio of the difference between the number of
concordant and discordant pairs to the total number of pairs. It is scaled to be
between −1 and +1 when there are no ties, but not otherwise. An asymmetric
version of tau-b, the ordinal measure Somers’ D, on the other hand adjusts
for ties by counting pairs where ties occur only on the independent variable so
that the value of the statistic lies between −1 and +1 when such ties occur.
Usually, two values of this statistic are computed: one when the row variable
is considered the independent variable (Somers’ D C|R) and one when the
column is considered the independent variable (Somers’ D R|C). The values
differ because of the way ties are counted. In SAS Example B9, Somers’ D
R|C = −0.3074, showing a moderate negative association.

Proportional Reduction in Error (PRE) Measures

When one of the variables is to be considered an independent variable for
predicting the other (dependent) variable and if the measure of association
depends on this choice, it is called an asymmetrical measure. The extent to
which the error in prediction is reduced by using the value of the indepen-
dent variable for prediction compared to ignoring this knowledge underlies
the definition and interpretation of several measures of association, called pre
measures. If the independent variable is ignored, an individual can be allo-
cated into a category or class according to the observed proportions of the
dependent variable. If the independent variable is used, the allocation of the
individual is done on the basis of the observed proportions of the dependent
variable for each category of the independent variable. Then the proportional
reduction in error pre is defined as

PRE =
e1− e2

e1

where e1 = errors of prediction made when the independent variable is ignored
and e2 = errors of prediction made when the prediction is based using the
independent variable.
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For example, in the cross-tabulation used in SAS Example B9, considering
the row variable A as the dependent variable, an individual may be assigned
to category a2 based just on the row frequencies (which are 55, 101, and
74, respectively). The number of errors in assigning individuals to category
a2 ignoring the column variable B is then 230 − 101 = 129. However, if the
assigning of an individual to a category of variable A is made based on the
cell frequencies (i.e., using the classification based on levels of variable B), the
number of errors made will be (51−34)+(57−23)+122−74) = 17+34+48 =
99. Thus PRE is (129− 99)/129 = 0.2326 or 23.26%.

The nominal asymmetric measure lambda, λ(R|C), is interpreted as the
proportional improvement in predicting the dependent (row) variable given
the independent (column) variable. Asymmetric lambda has the range 0 ≤
λ(R|C) ≤ 1, although values around 0.3 are considered high. The measure
λ(C|R) may be interpreted similarly. In SAS Example B9, if information
about variable B is used to predict A, the proportional reduction in error
in the prediction according to λ(R|C) is 23.26% compared to not using that
information, exactly the value calculated above. Stuart’s tau c makes an
adjustment for table size in addition to a correction for ties. Tau-c is appro-
priate only when both variables lie on an ordinal scale. Tau-c also is in the
range −1 ≤ τc ≤ 1.

Pearson’s Correlation Coefficient, r2, and Spearman’s Rank-Order Correla-
tion Coefficient, ρ

Pearson’s correlation coefficient and Spearman’s rank-order cor-

relation coefficient are also appropriate for ordinal variables. Pearson’s
correlation coefficient describes the strength of the linear association between
the row and column variables. This statistic may also be interpreted as a pro-
portional reduction in error pre. It is computed using the row and column
scores specified by the scores= option in the tables statement. By default,
the row or column scores are the integers 1, 2,. . . for character variables and
the actual variable values for numeric variables. Consult SAS documentation
for other options. Spearman’s correlation coefficient is computed with rank
scores.

Similar to Pearson’s correlation coefficient, the value of Spearman’s ρ lies
in the range −1 and +1, with these values indicating perfect negative or
positive association, respectively. For example, if the ranks of one variable
agrees perfectly with the ranks of the other variable, ρ = +1. Just as with
Pearson’s correlation coefficient, it is possible to conduct tests based on the
t-statistic:

t = ρ̂

√
n− 2

1− ρ̂2

where ρ̂ is the sample rank-correlation coefficient, for testing hypotheses about
the population rank-correlation coefficient ρ for sample sizes larger than 10.
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SAS Example B10

libname mylib "C:\users\user_name\Documents\...\stat479\"

data fueldat2;
set mylib.fueldat;

if Fuel=<525 then FuelGrp=1;
else if 525<Fuel=<610 then FuelGrp=2;
else FuelGrp=3;

if Percent=<54 then LicGrp=1;
else if 54<Percent=<58 then LicGrp=2;
else LicGrp=3;

label LicGrp=’% Driving Licenses’
FuelGrp=’Fuel Consumption’;

run;

proc format;
value lg 1=’below 54%’

2=’54 to 58%’
3=’above 58%’ ;

value fg 1 = ’Low Fuel Use’
2 = ’Medium Fuel Use’
3 = ’High Fuel Use’;

value ing 1 = ’Low Income’
2 = ’Middle Income’
3 = ’High Income’;

run;

proc freq data=fueldat2;
tables FuelGrp*(TaxGrp IncomGrp)/chisq expected

cellchi2 nocol nopercent norow;
tables FuelGrp*LicGrp/chisq expected nocol nopercent norow measures;
tables TaxGrp*FuelGrp/list ;
format FuelGrp fg. LicGrp lg. IncomGrp ing. ;
title ’Output from Proc Freq’;

run;

Fig. 2.32. SAS Example B10: program

The analysis of the SAS data set on fuel consumption created in SAS
Example B7 is continued in SAS Example B10 (see Fig. 2.32 for the pro-
gram) using proc freq to illustrate the statistics resulting from some of the
tables statement options discussed in this section. A new SAS data set is
created by supplementing the original data set with two category variables,
FuelGrp and LicGrp, each with three levels, in the data step. The 33.3 and
66.7 percentiles of the Fuel and Percent variables calculated in SAS Exam-
ple B8 (see Fig. 2.28) aid in the determination of cutoff values for creating
the corresponding category variables. Thus, the category variables FuelGrp

and LicGrp will have three levels each. In addition, proc format described
in Sect. 2.1.4 facilitates the creation of output formats to convert the ordinal
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levels of the three categorical variables FuelGrp, IncomGrp, and LicGrp to
more descriptive strings when they are printed.

Output from Proc Freq

The FREQ Procedure

Frequency
Expected
Cell Chi-Square

Table of FuelGrp by TaxGrp

FuelGrp(Fuel
Consumption)

TaxGrp(Fuel Tax Level)

High Low Total

Low Fuel Use 10
7.3333
0.9697

6
8.6667
0.8205

16

Medium Fuel Use 10
7.7917
0.6259

7
9.2083
0.5296

17

High Fuel Use 2
6.875

3.4568

13
8.125
2.925

15

Total 22 26 48

Statistics for Table of FuelGrp by TaxGrp

Statistic DF Value Prob

Chi-Square 2 9.3275 0.0094

Likelihood Ratio Chi-Square 2 10.2233 0.0060

Mantel-Haenszel Chi-Square 1 7.2412 0.0071

Phi Coefficient 0.4408

Contingency Coefficient 0.4034

Cramer's V 0.4408

Sample Size = 48

Fig. 2.33. SAS Example B10: fuel group × tax group cross-tabulation

The proc step generates three contingency tables for combinations of the
variable FuelGrp with each of TaxGrp,IncomGrp, and LicGrp. The output is
shown in Figs. 2.33, 2.34, and 2.35. The FuelGrp by TaxGrp table is a 3 × 2
cross-tabulation where the levels of FuelGrp are ordered by their internal
(unformatted) values of 1, 2, and 3. However, internal values of the two levels
of TaxGrp are the strings “Low ” and “High”; thus, they are ordered by their
alphanumeric values. The p-values of both the chi-square statistic and the
likelihood ratio statistic are smaller than, say, 0.01. Thus, the null hypothesis
that the two variables are independent is rejected.

To study the strength of association between the two variables FuelGrp

and TaxGrp, the statistics in Fig. 2.33 are used here. The three measures phi
coefficient φ, contingency coefficient C , and Cramer’s V displayed
next in the output are suitable statistics for measuring the strength of the
dependency between nominal variables and are also applicable for ordinal
variables, as in this example. The value of C is zero if there is no association
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between the two variables but has a value that is less than 1 even with perfect
dependence. Its value is dependent on the size of the table with a maximum
value of

√
(r − 1)/r for an r × r table. For a 3 × 3 table, this value is 0.816.

Thus, the value of 0.40 for C appears to indicate a strength of about 50% of
a perfect association.

Output from Proc Freq

The FREQ Procedure

Frequency
Expected
Cell Chi-Square

Table of FuelGrp by IncomGrp

FuelGrp(Fuel
Consumption)

IncomGrp(Income Level)

Low
Income

Middle
Income

High
Income Total

Low Fuel Use 1
4.3333
2.5641

3
6

1.5

12
5.6667
7.0784

16

Medium Fuel Use 8
4.6042
2.5046

7
6.375

0.0613

2
6.0208
2.6852

17

High Fuel Use 4
4.0625

0.001

8
5.625

1.0028

3
5.3125
1.0066

15

Total 13 18 17 48

Statistics for Table of FuelGrp by IncomGrp

Statistic DF Value Prob

Chi-Square 4 18.4040 0.0010

Likelihood Ratio Chi-Square 4 18.7393 0.0009

Mantel-Haenszel Chi-Square 1 7.2622 0.0070

Phi Coefficient 0.6192

Contingency Coefficient 0.5265

Cramer's V 0.4378

WARNING: 33% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

Sample Size = 48

Fig. 2.34. SAS Example B10: fuel group × income group cross-tabulation

The other statistics in Fig. 2.33 also lead to similar conclusions. Cramer’s
V is a normed measure, so its value is between 0 and 1; thus, a value of
0.44 is about in the middle of the scale. The range for φ is 0 < φ <
min{

√
r − 1,

√
c− 1}. Thus, for this table, the maximum is 1, so again a

strength of association similar to the above measures is indicated. The cross-
tabulation FuelGrp by IncomGrp shown in Fig. 2.34 is a 3 × 3 table. Again,
the chi-square and the likelihood ratio statistic are both significant at the 0.01
level, indicating dependency. A study of the values for the three measures
discussed above, shown in Fig. 2.34, indicates a slightly stronger association
between the variables FuelGrp and IncomGrp.



2.2 SAS Procedures for Descriptive Statistics 119

Output from Proc Freq

The FREQ Procedure

Frequency
Expected

Table of FuelGrp by LicGrp

FuelGrp(Fuel
Consumption)

LicGrp(%%
Driving Licenses)

below
54%

54 to
58%

above
58% Total

Low Fuel Use 6
4.6667

9
6

1
5.3333

16

Medium Fuel Use 7
4.9583

5
6.375

5
5.6667

17

High Fuel Use 1
4.375

4
5.625

10
5

15

Total 14 18 16 48

Statistics for Table of FuelGrp by LicGrp

Statistic DF Value Prob

Chi-Square 4 14.6905 0.0054

Likelihood Ratio Chi-Square 4 16.2966 0.0026

Mantel-Haenszel Chi-Square 1 9.9989 0.0016

Phi Coefficient 0.5532

Contingency Coefficient 0.4841

Cramer's V 0.3912

WARNING: 33% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

Fig. 2.35. SAS Example B10: fuel group × licenses group cross-tabulation

The hypothesis of independence between the two variables FuelGrp and
LicGrp is rejected at 0.05 (the likelihood ratio statistic has a p-value of 0.0026;
see Fig. 2.35). This is one situation where Fisher’s exact test may be performed
instead of the chi-square test because conditions for that test are clearly not
met due to several small cell frequencies. In this example, the inclusion of
the exact option produces the output in Fig. 2.36. The p-value is smaller
than 0.05 so the conclusion is that the independence hypothesis is rejected at
α = 0.05.

Fisher's Exact Test

Table Probability (P) <.0001

Pr <= P 0.0046

Fig. 2.36. SAS Example B10: Fisher’s exact test for fuel × licenses

If it is concluded that there is association between the two variables, sev-
eral statistics are available for evaluating the strength of such association. The
output resulting from including the measures option in a tables statement
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is shown in Fig. 2.37. For interpretating gamma and tau-b, consider LicGrp

as the independent variable that is used to predict the dependent variable
FuelGrp and that both variables are ordinal. The value of 0.5641 for gamma
indicates a positive association between the two variables. This implies that
the ordering of the ranks of states for these two variables is positively cor-
related. Further, if the category of percentage of licenses is used to predict
the category of fuel use, the proportional reduction in error PRE compared to
randomly assigning a state to a fuel use category is 56%. The ordinal measures
of association Kendall’s τb and Somers’ D R|C both have a value of 0.40
again confirming the positive association between these two variables. Rather
than being concerned with the ranking of pairs of observations on the two
variables (concordancy or discordancy) as discussed previously, Spearman’s
ρ measures the strength of the relationship between the overall ranks of each
observation (or subject) on the two variables.

Statistics for Table of FuelGrp by LicGrp

Statistic Value ASE

Gamma 0.5641 0.1272

Kendall's Tau-b 0.4024 0.0983

Stuart's Tau-c 0.4010 0.0988

Somers' D C|R 0.4016 0.0979

Somers' D R|C 0.4031 0.0989

Pearson Correlation 0.4612 0.1049

Spearman Correlation 0.4640 0.1090

Lambda Asymmetric C|R 0.2667 0.1456

Lambda Asymmetric R|C 0.2903 0.1463

Lambda Symmetric 0.2787 0.1335

Uncertainty Coefficient C|R 0.1553 0.0656

Uncertainty Coefficient R|C 0.1547 0.0654

Uncertainty Coefficient Symmetric 0.1550 0.0655

Sample Size = 48

Fig. 2.37. SAS Example B10: measures of association—fuel and population

Pearson’s correlation coefficient and Spearman’s ρ are both close to 0.5
indicating moderate positive association, supporting conclusions made with
previous statistics. If the percentage of licenses category is used to predict
the fuel use category of a state, the nominal measure asymmetric lambda,
λ(R|C), can be used to obtain the proportional reduction in error PRE. Here
the value is 0.2903, so that that proportional reduction in error is 29% com-
pared to prediction not based on the number of licenses issued.

Including cl along with measures as tables statement options will lead to
the computation of asymptotic confidence intervals for the measures of asso-
ciation discussed earlier. The default confidence coefficient is 0.05, which may
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Gamma

Gamma 0.5641

ASE 0.1272

95% Lower Conf Limit 0.3148

95% Upper Conf Limit 0.8134

Test of H0: Gamma = 0

ASE under H0 0.1390

Z 4.0587

One-sided Pr >  Z <.0001

Two-sided Pr > |Z| <.0001

Spearman Correlation
Coefficient

Correlation 0.4640

ASE 0.1090

95% Lower Conf Limit 0.2503

95% Upper Conf Limit 0.6776

Test of H0: Correlation = 0

ASE under H0 0.1098

Z 4.2268

One-sided Pr >  Z <.0001

Two-sided Pr > |Z| <.0001

Fig. 2.38. Result of TEST statement in PROC FREQ

be changed by including an optional alpha= option with the required value.
For some of the measures, adding a test statement will produce an asymp-
totic test of whether the measure is equal to zero as well as an asymptotic
confidence interval. These association measures are gamma, Kendall’s τb, Stu-
art’s τc, Somers’ D, and Pearson’s and Spearman’s ρ. Figure 2.38 shows the
output resulting from including the statement test gamma scorr;. In both
cases, the null hypotheses are rejected at reasonable α values. Finally, Fig. 2.39
illustrates how the list option may be used to format a cross-tabulation as
a one-way table.

TaxGrp FuelGrp Frequency Percent
Cumulative
Frequency

Cumulative
Percent

High Low Fuel Use 10 20.83 10 20.83

High Medium Fuel Use 10 20.83 20 41.67

High High Fuel Use 2 4.17 22 45.83

Low Low Fuel Use 6 12.50 28 58.33

Low Medium Fuel Use 7 14.58 35 72.92

Low High Fuel Use 13 27.08 48 100.00

Fig. 2.39. SAS Example B10: tax group × fuel group cross-tabulation as a list
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2.3 Some Useful Base SAS Procedures

There are many Base SAS procedures that calculate a variety of statistics
as well as others that perform utility functions. Some of these, such as proc
print, proc means, proc sort, and proc format, were previously discussed
or used in SAS Example programs. Some others such as proc rank and proc

corr will be used in examples to follow in later chapters.
In Sect. 2.2, the plots option used in proc univariate produced a his-

togram (or a stem-and-leaf plot), a box plot, and a normal probability plot
in high-resolution as an ODS Graphics panel. In addition, easy-to-use statis-
tical graphics procedures such as SGPLOT and SGCHART are available for
producing high-resolution graphics. Although graphs created by SAS statisti-
cal graphics procedures are preferable for use in presentations or publications,
low-resolution graphics produced by some SAS procedures also play a role, for
example, in routine exploratory data analysis or as diagnostic tools. Base SAS
procedures PLOT and CHART are two procedures available for specifically
producing this type of graphics. However, a discussion of these two proce-
dures is omitted from this section. Instead, two useful Base SAS procedures
for presentation of data summaries will be introduced and their use illustrated
through SAS Example programs.

2.3.1 The TABULATE Procedure

The TABULATE procedure is an extremely versatile procedure for produc-
ing display-quality tables containing descriptive statistics. Using an extremely
simple and flexible system of syntax, the user is able to customize the appear-
ance of the tables incorporating labeling and formatting as well as generate
tabular reports that contain many of the same descriptive statistics that are
computed by several other statistical procedures. More recently incorporated
innovations allow style elements (e.g., colors) to be specified to enhance the
appearance of tables output in HTML and RTF formats using ODS graphics.
The statements available in proc tabulate and options that can be specified
are too numerous to be described in detail in this text. A brief description use-
ful for understanding the example presented below follows. A general structure
of an abbreviated proc tabulate step (that omits several important state-
ments) is

PROC TABULATE <options>;

CLASS variable(s) ;

VAR variable(s) ;

BY variable(s) ;

TABLE expression, expression, ... < / options >;

KEYLABEL keyword=‘text’ ... ;

Options available for the proc statement are data=, out=, missing, order=,
formchar< (position(s)) >=‘formatting-character(s)’, noseps,
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alpha=, vardef=, pctldef=, format= , and style=. Since the reader has
encountered many of these options before, only those that are relevant to
proc tabulate are described here. The formchar= option is not used for
ODS output so is not discussed. A value specified for the format= option is
any valid SAS or user-defined format for printing each cell value in the table,
the default being best12.2. The style= specifies the style element (or style
elements) (for the Output Delivery System) to use for each cell of the table.
For example, style=[background=gray] specifies that the background color
for data cells be of the color gray. At a secondary level, style elements can
also be specified in dimension expressions (as described below) to control
the appearance of table elements such as analysis variable name headings,
class variable name headings, class variable level value headings, data cells,
keyword headings, and page dimension text.

The table statement is the primary statement in proc tabulate. The
main components of table statements are dimension expressions. A dimen-
sion expression specifies combinations of classification variables to define cat-
egories for which the statistics displayed in the cells of the table are calculated.
The expression may also combine an analysis variable on which the specified
statistic is to be computed. By default, the statistic calculated is the sum of
the values of the analysis variable for each category; alternatively, the user
may combine the name of a statistic to be computed into the expression. A
simplified form of the table statement is

table expression-1, expression-2, expression-3 </ options> ;

where expression-1, expression-2, and expression-3, respectively, define the ap-
pearance of the page, row, and column components of these combinations. If
only two-dimensional expressions are present, the left expression specifies the
rows, and the right expression defines the columns. If only a single expression
is present, it defines the columns of the table. A dimension expression consists
of combinations of the following elements separated by asterisks, blanks, or
parentheses:

• Classification variable(s) (variables in the class statement)
• Analysis variables (variables in the var statement)
• Statistics (n, mean, std, min, max, etc.)
• Format specifications (e.g., f=7.2)
• Nested dimension expressions in parentheses

As an example, suppose that the statements

class Region PopGrp TaxGrp;

var Fuel Income;

are present in a proc tabulate step and that the expressions below are used
to define the rows. Some examples of possible dimension expressions are
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Region defines rows for the different values of the nominal variable Region.
Region PopGrp defines rows by stacking the values of Region and PopGrp (an

operation called concatenation, represented in the expression as a blank
or a space).

Region*PopGrp defines rows as all combinations of the values of Region and
PopGrp (an operation called crossing, represented in the expression as an
“*”).

Region*Fuel defines rows for the different values of Region and statistics
(the sum, by default) are calculated for the analysis variable Fuel

Region*PopGrp*TaxGrp defines rows of all combinations of values of Region,
PopGrp, and TaxGrp (i.e., all three variables are crossed with each other).

Region PopGrp*TaxGrp defines rows by concatenating different values of
Region with all combinations of PopGrp crossed with TaxGrp.

(Region PopGrp)*TaxGrp defines rows by concatenating values of Region

crossed with TaxGrp and PopGrp crossed with TaxGrp.
Region*mean*Fuel defines rows by values of Region and the means are cal-

culated for the analysis variable Fuel.
Region*(mean stderr)*Fuel*f=6.2 defines rows by values of Region and

the means and standard deviations are calculated for each region for the
variable Fuel and appear side by side (i.e., the two statistics are concate-
nated). They are output using the specified format.

The column specification of mean*Fuel causes the mean of the fuel con-
sumption variable to be computed and appear as a single column. Thus the
table statement table Region, mean*Fuel; will result in a table with a sin-
gle column of fuel consumption means computed for all regions shown as rows.
The statement table Region*PopGrp, mean*Fuel; will similarly result in a
single column of fuel consumption means but for all combinations of the classi-
fication variables Region and PopGrp tabulated as rows. The statement table
Region, PopGrp*mean*Fuel; will, on the other hand, produce a two-way ta-
ble of means for the variable Fuel (i.e., the same values as in the previous
table) now tabulated with regions shown as rows and values of PopGrp in
columns. If no statistic keyword appears in the dimension expressions in the
above table statements, the sum (or the frequencies, if no analysis variable is
present) will be calculated by default. SAS documentation on proc tabulate

provides many examples of various combinations used to define dimension ex-
pressions; thus, an extensive discussion is not provided here.

SAS Example B11

The SAS data set created in SAS Example B6 on fuel consumption data is
used again in the SAS Example B11 program (see Fig. 2.40) to illustrate the
use of proc tabulate for producing tables of statistics. Recall that IncomGrp
and TaxGrp are two category variables created previously and included in the
data set. In addition, another grouping variable LicGrp is also created using
the values of the variable Percent, which contains the percentage with driving
licenses in the population. From among several analysis variables present in
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libname mylib "C:\users\user_name\Documents\...\stat479\";

data fueldat3;
set mylib.fueldat;

if Percent=<54 then LicGrp=1;
else if 54<Percent=<58 then LicGrp=2;
else LicGrp=3;
run;

proc format;
value ing 1 = ’Low Income’

2 = ’Middle Income’
3 = ’High Income’;

value lg 1=’below 54%’
2=’54 to 58%’
3=’above 58%’ ;

run;
proc tabulate data=fueldat3;

var Fuel;
class IncomGrp TaxGrp LicGrp;
format IncomGrp ing. LicGrp lg.;
table IncomGrp*TaxGrp,Fuel*(n mean stderr);
table TaxGrp*LicGrp=’Percent Driver Licenses’,Fuel*(n=’Sample Size’*f=4.0

(mean=’Sample Mean’ stderr=’Standard Error of the Mean’)*f=8.1);
title ’Illustrating PROC TABULATE’: Simple Example;

run;

Fig. 2.40. SAS Example B11: program

the data set, Fuel (per capita fuel consumption) is selected for the computa-
tion of statistics to be tabulated.

In the SAS program, the class statement lists the three category variables,
and the var statement lists the analysis variable. A simple table statement is
first used to produce a two-way table that tabulates the statistics sample size
(n), the mean, and the standard error of the mean (stderr) for the variable
Fuel. The first dimension expression IncomGrp*TaxGrp defines the rows of the
table, with the rows representing combinations of the levels of IncomGrp and
TaxGrp. The second dimension Fuel*(n mean stderr) defines the columns to
be the sample size, the mean, and the standard error of the mean computed for
the variable Fuel. As can be observed, previously defined labels and formats
are used for the variables and their levels. The default format of best12.2 is
used for printing all cell values. This table is shown in Fig. 2.41.

The second table statement also produces a two-way table with TaxGrp*

LicGrp defining the row and the same statistics computed for the Fuel vari-
able defining the columns. However, format specifications are added to control
the formatting of the cell values in the table (e.g., n*f=4.0). Also, label pa-
rameters are added to assign more elaborate labels for class variable names
(e.g., LicGrp=‘Percent Driver Licenses’) and statistic keyword headings
(e.g., mean=‘Sample Mean’). These produce the table shown in Fig. 2.42.
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Illustrating PROC TABULATE

Fuel Consumption
(in gallons/person)

N Mean StdErr

Income Level Fuel
Tax
Level

Low Income High 7 561.51 18.72

Low 6 626.14 27.27

Middle Income High 7 547.93 26.69

Low 11 649.03 35.21

High Income High 8 463.14 20.02

Low 9 590.71 49.73

Fig. 2.41. Output from PROC TABULATE: simple example (Table 1)

SAS Example B12

This example is a simple modification of SAS Example B11 in order to il-
lustrate how style= options may be used to modify the appearance of se-
lected parts of the output table. TABULATE and other Base SAS report
writing procedures that are compatible with the ODS system use table tem-
plates to produce output tables. These templates specify the appearance
of various predefined parts of the output using one or more style elements
that, by default, are determined by the style template currently in use. For

Illustrating PROC TABULATEIllustrating PROC TABULATE

Fuel Consumption
(in gallons/person)

Sample
Size

Sample
Mean

Standard
Error of

the
Mean

Fuel
Tax
Level

Percent
Driver
Licenses

High below 54% 8 495.0 26.2

54 to 58% 10 512.2 19.3

above 58% 4 597.1 27.5

Low below 54% 6 552.6 42.3

54 to 58% 8 591.4 25.7

above 58% 12 680.5 37.5

Fig. 2.42. Output from PROC TABULATE: simple example (Table 2)
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proc tabulate data=fueldat3;
var Fuel / style=[background=bisque];
class IncomGrp TaxGrp LicGrp/style=[background=lightgreen color=red];
classlev IncomGrp TaxGrp LicGrp/style=[background=yellow];
format IncomGrp ing. LicGrp lg.;
keyword all/ style=[background=linen color=blue];
keylabel all=’Total’;
table IncomGrp*TaxGrp,Fuel*(n mean stderr)*([style=[background=lightcyan]]);
table TaxGrp*LicGrp=’Percent Driver Licenses’ all,Fuel*(n=’Sample Size’*f=4.0

(mean=’Sample Mean’
stderr=’Standard Error of the Mean’)*f=8.1)*([style=[background=lavender]])/
box=[label=’Fuel Use by Tax and %Licenses’ style=[backgroundcolor=coral]];

title ’Illustrating PROC TABULATE: Adding Labels, Formats and Styles’;
run;

Fig. 2.43. SAS Example B12: proc tabulate Step: adding labels, formats and styles

example, most tables in this chapter are produced using the HTMLBlue
style template which is the default style for HTML destination as mentioned
previously.

A style template is an ODS template that defines the visual aspects (colors,
fonts, lines, markers, and so on) of SAS output. Style templates consist of style
elements, each of which is a named collection of style attributes that describe
the appearance of distinct regions of the output table. Examples of regions
of an output table are header, footer, row header, cells, etc. Style elements
that correspond to each of these are identified by a reserved name, and their
style attributes can be found by examining the style templates (e.g., that for
HTMLBlue) supplied by SAS using the TEMPLATE procedure.

For example, the name of the style element that describes the char-
acteristics of the row headings region is Rowheader, and fontstyle= and
backgroundcolor= are two of its attributes. The style element name for the
cells region is Data, and fontstyle= and backgroundcolor= also are two of
its attributes.

Values for style attributes are preassigned for each style element within a
style template. For example, the default value under the HTMLBlue style for
fontstyle= is roman, and that backgroundcolor= is cxedf2f9. These may
have different values assigned to them in other style templates.

When a certain style is in effect (say, e.g., HTMLBlue), the default ap-
pearance of the table is thus determined by the content of the corresponding
style template. While the default style templates may be modified to create
one’s own customized template, the discussion here is limited to an explana-
tion of how the style= options can be used within a procedure step to alter
the appearance of a table.

The style= option used with specific procedure statements modifies the
appearance of the area of the table affected by that particular statement. This
allows the user to make changes to a particular region of the output table
without affecting other parts of the table. In SAS Example B12 program (see
Fig. 2.43), visual properties of several parts of the HTML output table are
modified using style= options used with several different statements in the
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proc step. This way the user can override the default settings in the default
style being used at the time the procedure is executed.

A style= option used with a statement modifies a specific area of a ta-
ble. Information on the areas of a table that can be modified with different
statements can be found in the description for TABULATE procedure. For
example, a style= option in the proc tabulate statement changes the spe-
cific default style attributes of all cells in the table. However, style= option
may be used in a dimension expression to modify style attributes of an indi-
vidual table. In Fig. 2.43, different background colors are specified by using
style= options in the column expression. Specifying style= options in the
class, classlev, var, and keyword statements override the attributes of
the class variable name headings, class-level value headings, analysis variable
name headings, and keyword headings, respectively. Note that style= op-
tions specified in table statements override the same specification in any of
the above statements. For example, this allows the user to specify different
cell attributes for tables as seen in Fig. 2.43.

Note that the keyword statement refers to statistic keywords or the uni-
versal keyword all used to refer to averaging over all of the categories for
class variables in the same parenthetical group or dimension. See the use of
all in the row expression for the second table in Fig. 2.43.

The box= option in the table statement modifies the appearance of the
empty box above the row titles. It is important to carefully note that if no
style= options are used (as in SAS Example B11), all style attributes used
are those specified in the style template in effect. Recall that the default

Illustrating PROC TABULATE: Adding Labels, Formats and Styles

Fuel Consumption
(in gallons/person)

N Mean StdErr

Income Level Fuel
Tax
Level

Low Income High 7 561.51 18.72

Low 6 626.14 27.27

Middle Income High 7 547.93 26.69

Low 11 649.03 35.21

High Income High 8 463.14 20.02

Low 9 590.71 49.73

Fig. 2.44. Output from PROC TABULATE: adding labels, formats and styles
(Table 1)
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Illustrating PROC TABULATE: Adding Labels, Formats and Styles

Fuel Use by Tax
and %Licenses

Fuel Consumption
(in gallons/person)

Sample
Size

Sample
Mean

Standard
Error of

the
Mean

Fuel
Tax
Level

Percent
Driver
Licenses

High below 54% 8 495.0 26.2

54 to 58% 10 512.2 19.3

above 58% 4 597.1 27.5

Low below 54% 6 552.6 42.3

54 to 58% 8 591.4 25.7

above 58% 12 680.5 37.5

Total 48 576.7 16.1

Fig. 2.45. Output from PROC TABULATE: adding labels, formats and styles
(Table 2)

style being used in these examples is HTMLblue. The output resulting from
executing the SAS Example B12 is shown in Figs. 2.44 and 2.45.

2.3.2 The REPORT Procedure

REPORT is a powerful, highly versatile, and flexible SAS procedure for report
writing. It makes available capabilities of the PRINT, MEANS, and TABU-
LATE procedures in a single procedure that enables the user to create a
variety of reports and tables. However, its flexibility implies that it might re-
quire some effort to master. The basic introduction provided here is designed
to encourage progressing to more advanced applications and uses statements
that can be used only with Windows applications with ODS destinations.

The REPORT procedure can be used to present data in tables (a detail re-
port) with calculated summary lines printed for subsets of data as requested
by the user much like the PRINT procedure, to produce summary reports
much like the MEANS procedure, or to arrange these summaries in display
tables (a summary report) designed by the user as in the TABULATE pro-
cedure. While REPORT can be used to produce acceptable reports using its
default behavior, just as with TABULATE, its power lies in that the reports
it produces are highly customizable. It is this aspect of proc report that
makes it more difficult to master as well. The statements available in proc

report and options that can be specified are too numerous and complex to
be described in its entirety in this section. Instead, several selected statements
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and some key options that illustrate their primary uses will be introduced in
the examples that follow. The general structure of a proc report step (that
excludes several important statements) is

PROC REPORT <options>;

COLUMN column-specification(s);

DEFINE column/ column usege and attributes ;

BREAK location break-variable </ option(s)>;

RBREAK location </ option(s)>;

COMPUTE column;

compute column statements;

ENDCOMP;

Options available with the proc statement are too numerous for each of them
to be covered in detail. A few of the important options are briefly discussed
below. The options data=, out-, pctldef=, vardef=, split=, ps=, ls=

and missing have been introduced in discussions on several other SAS Base
procedures and so are not duplicated here. Discussions on several other key-
word options that affect only LISTING output are also be omitted. Options
such as bypageno=, center|nocenter, completecols|nocompletecols,

completerows|nocompleterows, showall are mostly self-explanatory and
could be looked up when needed. A more important option that is useful
when reports are intended for an ODS destination is

style <(location(s))>=<style-override(s)>

which specifies one (or more) style overrides to be used for different parts of
the report. Most Base SAS procedures that support ODS use one or more
templates to produce output tables. These table templates include separate
templates for table elements such as columns, headers, and footers. A style
template for the entire table has been created using the TEMPLATE proce-
dure, but one can use the style= option in the proc statement or in specific
statements within the procedure to override various style elements to modify
the appearance of the table. Style elements that are usually overridden this
way are background color, foreground color, font faces, font sizes, font styles,
etc. This approach was illustrated previously in Chap. 1 in SAS Example A11
(see Fig. 1.30) in a proc print step and in SAS Example B12 (see Fig. 2.43)
in a proc tabulate step in this chapter.

The syntax for a proc report step is significantly different from that for
most SAS Base procedures. Most notably, the VAR and CLASS statements
are not used in proc report; however, the WEIGHT and FREQ statements
as well as BY and WHERE statements are still available. The COLUMN
statement lists the variables that are used to generate the report and usually
precedes other statements that reference them. A DEFINE statement is used
for each variable listed in the COLUMN statement to specify attributes such
as usage type of the column, the summary statistic to be computed, and the
format to be used for printing its value. Although there are default values
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for all of these attributes for each column, it is a good idea to include a
DEFINE statement for each column even if some of the default attributes are
acceptable.

Usage type for a column variable is specified as one of display, group, order,
analysis, computed, order, or across, where

display displays the values of the variable with each row representing
an observation in the input data set.

group consolidates multiple observations in the input data set into
one row.

analysis specifies a numeric variable whose values are used to calculate
a statistic for all the observations in the input data set.

computed a new variable created by the user whose value is a computed
value.

order specifies a variable that is to be used to order the detail rows
according to the ascending, formatted values.

across a variable that creates a column for each value of the vari-
able; usually this column variable is a category or a nominal
variable.

By default, proc report will produce a detail report containing detail
rows each displaying a line corresponding to an observation in the input data
set unless define statement(s) are used to consolidate rows in the data set into
groups identified by values of variables (columns) in the data set. Obviously,
grouping is done using category, class, or user-created variables, and consol-
idation is achieved by summarizing across the set of observations belonging
to groups defined by those variables. The report will thus consist of summary
rows with each row being represented by statistics computed on multiple ob-
servations in a group as described. By default, the summary statistic used for
consolidation is the sum; however, keywords as those used in SAS procedures
such as MEANS or UNIVARIATE (e.g., mean, var, or stderr) may be used
to specify the statistics to be computed in a summary report thus produced.
One important thing to note is that a summary report may contain detail
rows of observations that are not consolidated by all category variables in
the data set. This implies that to form consolidated rows containing statistics
for grouped observations, a define statement must exist for every category
variable declared in the column statement.

Variables in the SAS data set named fueldat concerning fuel use by 48
contiguous states in the United States, used in the SAS Example B11 pro-
gram (see Fig. 2.40), are used here to illustrate the use of some proc report

statements. Each observation in the data set consists of values measured on
several variables such as Income and NumLic, for a state. Recall that IncomGrp
and TaxGrp are two category variables created previously and included in the
data set, with three income groups (1, 2, and 3) and two tax groups (low and
high), respectively. From among several analysis variables present in the data
set, Income, NumLic, and Fuel are selected for the computation of statistics.
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Consider the following two statements in a proc report step:

column IncomGrp TaxGrp Income NumLic Fuel;

define IncomGrp/group order=internal;

Here the variables that will appear in the resulting report are listed in the
column statement. However, only one of the category variables is defined as a
group type; thus, consolidation will not take place. Instead a detail report is
produced with rows for each state, the observations being grouped by values
IncomGrp. If, in addition, the following statement

define TaxGrp/group;

is also included, a summary table is produced for the six combinations of
IncomGrp and TaxGrp with each cell of the table representing the sum (by
default) of the values of the numeric variables Income, NumLic, and Fuel.
Thus consolidation will take place. The user can specify that the statis-
tics sample size, mean, and variance are calculated for each combination of
IncomGrp and TaxGrp by modifying the column statement, thus

column IncomGrp TaxGrp (Income NumLic Fuel),(n mean var);

Note that in the above statement, the comma operator is used to nest or
stack columns by associating keywords for statistics with variable names.
Parenthesis can be used to associate a set of these statistics to a combined
set of variables as shown above. Thus the three statistics sample size, mean,
and variance are nested within each variable (i.e., computed values of the
statistics will be stacked below each of the variables) in the report. Con-
solidation may be specifically requested in the detail report by replacing
define TaxGrp/group; with the following statement:

break after TaxGrp/summarize;

The break statement produces a default summary row after the last row for
each TaxGrp. Thus consolidation is forced to occur but the detail rows are
still retained in the report. The following statement produces a summary
across the entire report:

rbreak after TaxGrp/summarize;

Earlier, statistics were computed using keywords. Instead, a define statement
can be used specify a statistic to be computed for each variable. The following
three statements (along with the define statements for IncomGrp and TaxGrp

used above) will calculate different statistics for each of the variables Income,
NumLic and Fuel. Among other options, a format= and a text string to be
used as the column heading are used here to describe the calculated columns:

define Income/analysis mean format=7.2 "Average Fuel Use";
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define NumLic/analysis max format=4. "Maximum Drivers";

define Fuel/analysis stderr format=7.2 "Std. Err. of Fuel Mean";

In SAS Examples below, three programs with increasing complexity are pre-
sented to illustrate the techniques discussed above.

SAS Example B13

libname mylib "C:\users\user_name\Documents\...\stat479\";

data fueldat3;
set mylib.fueldat;

proc format;
value ing 1 = ’Low Income’

2 = ’Middle Income’
3 = ’High Income’;

run;

proc report data=fueldat3;
column IncomGrp TaxGrp (Income NumLic Fuel),(N Mean StdErr);
define IncomGrp/ group order=internal format=ing.;
define TaxGrp/group;
title ‘Illustrating PROC REPORT’: Simple Example;

run;

Fig. 2.46. SAS Example B13: program

The SAS data set created in SAS Example B6 on fuel consumption data
is used again in the SAS Example B13 program (see Fig. 2.46). Recall that
IncomGrp and TaxGrp are two category variables created previously and in-
cluded in the data set. In addition, another grouping variable LicGrp was also
created using the values of the variable Percent, which contains the percent-
age of persons with driving licenses in the population.

The column statement names the category variables IncomGrp, TaxGrp

for identifying groups of observations and the analysis variables Income,

NumLic, Fuel on which the specified statistics (sample size, mean, and the
standard error of the mean) are to be computed. The define statements iden-
tify the two category variables as group types, which request that observations
are to be consolidated for combinations of values of these two variables. This
will cause the production of a summary table where the above statistics will
be calculated for each IncomGrp×TaxGrp combination.

This description may be more easily understood by studying the output
report shown in Fig. 2.47 and figuring out how the layout of the report (e.g.,
rows and columns) is produced and how the statistics shown are computed as
a result of the statements in this proc step.

Note that mixed case letters were used in the proc step (e.g., Mean) for
naming the list of statistics to be computed because of the fact that SAS
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Illustrating PROC REPORT: Simple Example

Per capita Income(in
thsnds.) No. of Licensed Drivers

Fuel Consumption
(in gallons

person)

Income
Level

Fuel
Tax

Level N Mean StdErr N Mean StdErr N Mean StdErr

Low Income High 7 3.5095714 0.0810825 7 1440.5714 301.93936 7 561.50722 18.720052

Low 6 3.5748333 0.0744363 6 1080.5 292.71656 6 626.13707 27.269403

Middle Income High 7 4.2191429 0.0725053 7 1660 554.84369 7 547.92835 26.689706

Low 11 4.1449091 0.0630903 11 2128.1818 515.78029 11 649.0267 35.208534

High Income High 8 4.8955 0.1281738 8 3223.125 983.75951 8 463.13744 20.018598

Low 9 4.8111111 0.0897089 9 3999.7778 1261.7806 9 590.70997 49.734505

Fig. 2.47. Output from PROC REPORT: introductory example

ignores case when parsing these keywords; thus, the output column headers
would appear more legible. In Fig. 2.47, the labels N, Mean, and StdErr are
used as column titles, for the three different variables.

A better alternative to control the appearance of the report is to create an
alias for each statistic computed for an analysis variable. Aliases are different
names assigned to the same variable, and the user can create as many aliases
as are needed. Aliases are specified in the COLUMN statement when a single
analysis variable is to appear in more than one way in the report. This gener-
ally occurs when several statistics are to be computed on the same variable, as
in SAS Example B13. Once aliases are created, a DEFINE statement is used
to specify how the values of each of the alias variables is to be computed and
also provide details (such as a format and a label) of the appearance of the
alias variable in the report. The use of aliases is illustrated in SAS Example
B14.

SAS Example B14

SAS Example B14 program (see Fig. 2.48) uses the same data set as in the
previous example but replaces TaxGrp with another grouping variable LicGrp,
created using the values of the variable Percent, that contains the percent-
age with driving licenses in the population. The last four variables in the
COLUMN statement are aliases : NumLicMin and NumLicMax are aliased with
Numlic, and FuelMin and FuelMax are aliased with Fuel using the “=” sym-
bol in each case. Using aliases not only enables calculating different statistics
for the same variable but also allows defining formatting, column titles, etc.
for each alias individually. In this program, four DEFINE statements are used
for each of the four aliases used.

The last four define statements are used to calculate the minima
and maxima of the Numlic and Fuel variables using the analysis option
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libname mylib "C:\users\user_name\Documents\...\stat479\";

data fueldat3;
set mylib.fueldat;

if Percent=<54 then LicGrp=1;
else if 54<Percent=<58 then LicGrp=2;
else LicGrp=3;
run;

proc format;
value ing 1 = ‘Low Income’

2 = ‘Middle Income’
3 = ‘High Income’;

value lg 1=‘below 54%’
2=‘54 to 58%’
3=‘above 58%’ ;

run;

proc report data=fueldat3;
column IncomGrp LicGrp,(Numlic=NumLicMin Numlic=NumLicMax Fuel=FuelMin Fuel=FuelMax);
define IncomGrp/ group order=internal format=ing.;
define LicGrp/across order=internal format=lg.;
define NumLicMin/analysis min format=5. ‘Minimum No.of Licenses’;
define NumLicMax/analysis max format=5. ‘Maximum No.of Licenses’;
define FuelMin/analysis min format=4.‘Minimum Fuel Use’;
define FuelMax/analysis max format=4. ‘Maximum Fuel Use’;
title ‘Illustrating PROC REPORT: Aliases and Define Statement’;

run;

Fig. 2.48. SAS Example B14: illustrating the use of aliasing

alongwith the appropriate statistic keyword (here min and max), along
with appropriate formats and column headers. Although a statement such
as column IncomGrp LicGrp,(Numlic Fuel),(min max)allows the user to

Illustrating PROC REPORT: Aliases and Define Statement

Percent of Licensed Drivers

below 54%

Income
Level

Minimum
No.of

Licenses

Maximum
No.of

Licenses
Minimum
Fuel Use

Maximum
Fuel Use

Low Income 341 2088 487 714

Middle Income 2463 2804 547 580

High Income 2073 8278 344 471

Percent of Licensed Drivers

54 to 58% above 58%

Minimum
No.of

Licenses

Maximum
No.of

Licenses
Minimum
Fuel Use

Maximum
Fuel Use

Minimum
No.of

Licenses

Maximum
No.of

Licenses
Minimum
Fuel Use

Maximum
Fuel Use

600 2835 566 699 501 501 648 648

441 6595 410 640 232 2368 561 968

982 5948 457 525 340 12130 524 865

Fig. 2.49. Output from PROC REPORT: aliasing

compute these statistics without using aliases, the use of aliases provides a
way of formatting each variable separately.
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Another feature illustrated in SAS Example B14 is the use of the across
option available with the DEFINE statement in proc report to define a
column item as an across variable. In this example LicGrp is defined as an
across variable so that, while the values of IncGrp appear in rows, the values of
LicGrp appear across the page as columns ordered from left to right, according
to the internal values of LicGrp, as seen in Fig. 2.49. Since the statistics
calculated for Numlic and Fuel, defined as analysis variables, are nested within
the across variable LicGrp (observe the COLUMN statement carefully), these
appear stacked below each value of LicGrp.

SAS Example B15

This example (see SAS program in Fig. 2.50) uses the raw data set used in SAS
Examples A10 and A11 (see Figs. 1.27 and 1.30) accessed from an external
text file and uses proc report to produce a report similar to the ones created
in those examples. In addition, this example is also used to illustrate the
use of break and rbreak statements and compute groups to enhance the
report produced. Other than Region, State, Month, Headcnt, Revenue,
and Expenses, all variables available from the SAS data set sales, a new
variable named Profit appears in the report and is a calculated variable
using the compute block:

compute Profit;

Profit = Revenue.sum-Expenses.sum;

endcomp;

Clearly this compute block is associated with the computed variable
Profit as opposed to the compute block that appears later in this proc
step which is associated with a location. Note also that while Headcnt,

Revenue, and Expenses are all defined as analysis variables, the new vari-
able Profit is defined as a computed variable using appropriate define

statement in the proc report step. In the compute block, the value of
Profit variable is calculated as the difference between Revenue and Expenses;
however, these variables are referenced in the block using their compound
names. The convention is that when constructing a report that involves
sharing a column with a statistic, a compound name must be used in a
compute block.

A compound name has the form variable-name.statistic and identifies both
the variable and the name of the statistic that was used when the analysis
variables were defined. For example, the variable (or column) Revenue was
defined as an analysis variable with sum as the statistic to be computed;
thus the compound name assigned to the variable is Revenue.sum. Within
the compute block, the value of Revenue.sum depends on which part of the
report is involved in the computation: in detail rows, the value is the revenue
for each observation in the input data; in the region summary lines, the value
is the total sales for all the states in a region; and in the report summary line,
it is the total revenue for all regions.
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data sales;
infile "C:\users\user_name\Documents\...\stat479\data\sales.txt";
length Region $ 12;
input Region : $8. State $2. +1 Month monyy5. Headcnt Revenue

Expenses;
run;
proc report data=sales split="*";

column Region State Month Headcnt Revenue Expenses Profit;
define Region/group order=internal "Sales*Region";
define State/group order=internal;
define Month/group order=internal format=monyy5. left;
define Headcnt/analysis sum center "Sales*Personnel";
define Revenue/analysis sum format=dollar12.2 "Sales*Revenue";
define Expenses/analysis sum format=dollar12.2 "Overhead*Expenses";
define Profit /computed format=dollar12.2 "Monthly*Profit"

style(column)=[backgroundcolor=linen];
compute Profit;

Profit = Revenue.sum-Expenses.sum;
endcomp;
break after Region/summarize style=[font_style=italic color=cornflowerblue];
rbreak after/summarize style=[font_weight=bold color=darkcyan];
compute after;

Region = "All Regions";
endcomp;
title "Sales Analysis using Proc Report";

run;

Fig. 2.50. SAS Example B15: illustrating the use of define statement

While used here for a simple computation using an assignment statement,
compute blocks can be used to perform complex calculations that may involve
many SAS data step programming devices such as arrays, IF-THEN-ELSE
structures, and various DO-END loops.

The break statement in the SAS Example B14 produces a default sum-
mary row after the last row for each Region. So consolidation takes place
after displaying rows for each region value (of course, the regions are ordered
by their internal value. The rbreak statement produces a summary at the
end because the keyword after is used as the location. With both the break
and rbreak statements, style options are used to enhance the output as shown
in Fig. 2.51. Lastly, a compute block is included with the location designated
as after to be executed at the end of the report (as a specific target such
as a break variable is omitted). Here the compute block just assigns a value
to the Region column in the summary line produced as result of the rbreak

statement
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Sales Analysis using Proc Report

Sales
Region State Month

Sales
Personnel

Sales
Revenue

Overhead
Expenses

Monthly
Profit

CENTRAL IL JAN78 4 $6,000.00 $2,000.00 $4,000.00

FEB78 4 $6,100.00 $2,000.00 $4,100.00

MAR78 4 $6,050.00 $2,100.00 $3,950.00

MI JAN78 10 $10,000.00 $8,000.00 $2,000.00

FEB78 9 $11,000.00 $8,200.00 $2,800.00

MAR78 10 $12,000.00 $8,900.00 $3,100.00

OH JAN78 13 $21,000.00 $12,000.00 $9,000.00

FEB78 14 $22,000.00 $13,000.00 $9,000.00

MAR78 14 $22,500.00 $13,200.00 $9,300.00

CENTRAL 82 $116,650.00 $69,400.00 $47,250.00

EASTERN NC JAN78 12 $20,000.00 $9,000.00 $11,000.00

FEB78 12 $21,000.00 $8,990.00 $12,010.00

MAR78 12 $20,500.00 $9,750.00 $10,750.00

VA JAN78 10 $15,000.00 $7,500.00 $7,500.00

FEB78 10 $15,500.00 $7,800.00 $7,700.00

MAR78 11 $16,600.00 $8,200.00 $8,400.00

EASTERN 67 $108,600.00 $51,240.00 $57,360.00

NORTHERN MA MAR78 3 $1,000.00 $1,500.00 $-500.00

NY FEB78 4 $2,000.00 $4,000.00 $-2,000.00

MAR78 5 $5,000.00 $6,000.00 $-1,000.00

NORTHERN 12 $8,000.00 $11,500.00 $-3,500.00

PLAINS NM MAR78 2 $500.00 $1,350.00 $-850.00

PLAINS 2 $500.00 $1,350.00 $-850.00

SOUTHERN FL JAN78 10 $10,000.00 $8,000.00 $2,000.00

FEB78 10 $11,000.00 $8,500.00 $2,500.00

MAR78 9 $13,500.00 $9,800.00 $3,700.00

GA JAN78 5 $8,000.00 $2,000.00 $6,000.00

FEB78 7 $6,000.00 $1,200.00 $4,800.00

SOUTHERN 41 $48,500.00 $29,500.00 $19,000.00

All Regions 204 $282,250.00 $162,990.00 $119,260.00

Fig. 2.51. Output from PROC REPORT: break, rbreak, and compute statements



2.4 Exercises 139

2.4 Exercises

2.1 The following SAS program inputs information about hospitals in cities
in different states, such as the size of the state and the cities (i.e., popu-
lation), median income and median housing costs, the number of admis-
sions, and the number of beds, using three different data types 1, 2, and
3. Answer the questions below:

data hospital;

retain Form_Id State Stpop CitySize Income Housing Admit Beds;

input Form_Id $3. @5 Type $1. @ ;

if Type =‘1’ then input @8 State $2. Stpop 10.;

if Type =‘2’ then do;

input @8 CityPop 8. Income 5. Housing 6.;

if CityPop<60000 then CitySize=’Small’;

else CitySize=’Large’;

end;

if Type =‘3’ then do;

input @8 Admit 6. Beds 4.;

output;

end;

drop Type CityPop;

datalines;

v12 1 IA 1708232

v12 2 53620 5240 14236

v12 3 5126 178

v12 3 3364 134

v12 3 4857 184

v12 1 KS 1575899

v12 2 86610 4879 18154

v12 3 3916 156

v12 3 5527 182

v12 3 12139 351

v12 3 8257 238

v12 2 36574 3754 12739

v12 3 3465 112

v12 3 4576 142

;

proc print;

run;

proc means data=hospital noprint;

class State CitySize;

var Admit Beds;

output out=stats mean= Av_Adms Av_Beds std=S_Adms S_Beds ;

run;

proc print data=stats;

run;
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a. Show the contents of the PDV immediately after processing the first
line of data.

b. Show the contents of the PDV immediately after processing the sec-
ond line of data.

c. Show the contents of the PDV immediately after processing the third
line of data.

d. Show the contents of the PDV immediately after processing the fifth
line of data (before the observation is output to the SAS data set).

e. Display the first observation written to the SAS data set.
f. Run this program and turn-in the output only.
g. Examine the output produced by the second proc print step. Describe

the statistics printed in each line of this output, i.e., explain what the
computed numbers are in each line. Make sure that, for each value
of the TYPE variable, you identify the group of observations used
to compute the statistics that appear in that line.

2.2 Organizations interested in making sure that accused persons have a
trial of their peers often compare the distributions of jurors by age,
education, and other socioeconomic variables. One such study provided
the following information on the education of 1000 jurors:

Education Elementary Secondary College credits College degree
No. of jurors 278 523 98 101

The national percentages of the population in these educational levels
are 39.2%, 40.5%, 9.1%, and 11.2%, respectively. Is there significant ev-
idence of a difference between education distribution of jurors and the
national education distribution? Use a SAS program to perform a chi-
square goodness-of-fit at α = 0.05 to answer this question.

2.3 Ott and Longnecker (2001) present an example in which the number
of cell clumps per algae species was fitted to a Poisson distribution. A
lake sample was analyzed to determine the number of clumps of cells per
microscope field. The data are summarized below for 150 fields examined.
Here, xi denotes the number of cell clumps per field, and ni denotes the
frequency of occurrence of fields of each cell clump count.

xi 0 1 2 3 4 5 6 ≤ 7
ni 6 23 29 31 27 13 8 13

Write a SAS program to perform a chi-square goodness-of-fit at α =
0.05 to test the hypothesis that the observed counts were drawn from a
Poisson probability distribution.

2.4 A political organization in a certain state, interested in making sure that
they reach persons of every racial category in their advertising, obtains a
random sample of 200 from their lists. The following counts are obtained
from the sample using the available demographic information:

Race White African American Hispanic Asian Other
No. in sample 142 28 16 10 4
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Experts believe that the statewide percentages of the population in these
racial categories are 70.1%, 12.4%,10.7%, 5.3%, and 1.5%, respectively.
Is there significant evidence that the observed proportions in the sam-
ple differ significantly from these hypothesized proportions? Use a SAS
program to perform a chi-square goodness-of-fit at α = 0.05 to answer
this question.

2.5 Devore (1982) discussed an example in which it is examined whether
the phenotypes produced from a dihybrid cross of tall cut-leaf tomatoes
with dwarf potato-leaf tomatoes obey the Mendelian laws of inheritance.
There are four categories corresponding to the four possible phenotypes,
tall cut-leaf, tall potato-leaf, dwarf cut-leaf, and dwarf potato-leaf, with
respective expected probabilities p1, p2, p3, and p4. The null hypothesis
of interest is

H0 : p1 =
9

16
, p2 =

3

16
, p3 =

3

16
, p4 =

1

16

Write a SAS program to perform a chi-square goodness-of-fit at α = 0.05
of this hypothesis given that the observed counts in each category in a
sample of size 1611 are 926, 288, 293, and 104, respectively.

2.6 The number of noxious weeds found in 1/4 ounce samples of Phleum
pratense (meadow grass) is recorded below, where xi denotes the number
of noxious weeds and ni denotes the number of samples with xi noxious
weeds out of a total of 98 samples:

xi 0 1 2 3 4 5 6 7 ≥ 8
ni 3 17 26 16 18 9 3 5 1

Write a SAS program to perform a chi-square goodness-of-fit at α =
0.05 to test the hypothesis that the observed counts were drawn from a
Poisson probability distribution. Hint: For this data the Poisson mean λ
is estimated as

λ̂ =

∑
nixi

n
= 295/98 ≈ 3.02.

To fit the data to a Poisson distribution, the probabilities for a Poisson
distribution with mean = 3.02 are needed. These are calculated as follows
(using one of many Poisson probabilities available via the Internet):

xi 0 1 2 3 4 5 6 7 ≥ 8

P (X = xi) 0.049 0.147 0.223 0.224 0.169 0.102 0.051 0.022 0.013

2.7 The following data, taken from Rice (1987), represent the incidence of
tuberculosis in relation to blood groups in a sample of Eskimos. Is there
any association of the disease and blood group?

Severity O A AB B
Moderate-advanced 7 5 3 13
Minimal 27 32 8 18
Not present 55 50 7 24

Write a SAS program with a proc freq step for performing a chi-square
test using α = 0.05 to answer the above question.



142 2 More on SAS Programming and Some Applications

2.8 In a study of the relationship between hair color and eye color among
592 students in a statistics course, the following data were obtained. Use
the data to compute a chi-square test of independence using proc freq.
Use nominal measures of association, the contingency coefficient C and
Cramer’s V, to comment on the strength of association if present.

Hair colorEye
Black Brown Red Blondcolor

Green 5 29 14 16
Hazel 15 54 14 10
Blue 20 84 17 94
Brown 68 119 26 7

2.9 An example in Schlotzhauer and Littell (1997) presented data from an
experiment conducted by an epidemiologist who classified the disease
severity of dairy cows (none, low, high) by analyzing blood samples for
the presence of a bacterial disease. The size of the herd that each cow
belonged to was classified as large, medium, or small. One of the aims of
this study was to determine if disease severity was affected by herd size.

Herd size
Severity

Large Medium Small
None 11 88 136
Low 18 4 19
High 9 5 9

Use a SAS program to analyze these data using proc freq. Is there any
association between two variables? Use the various measures to interpret
any association present considering that the two variables are ordinal and
that the experimenter is planning to use herd size for predicting disease
severity. Obtain confidence intervals for the measures that you discuss.

2.10 Write a SAS program containing an infile statement to access the data
set used in SAS Example B5 (see Fig. 2.13) from a text file. Use proc

tabulate to obtain a table laid out as follows. The rows of the table
consist of the combinations of year in school and gender, with the levels
of gender appearing within each level of year. The column must present
mean and standard deviation of the two variables height and weight.
Use formats and labels to enhance your table. How can you add a single
column containing the sample size formatted to print as a four-digit
integer?

2.11 The data for this problem consist of measurements made on a group of
people participating in a physical fitness program. The name of the file
is fitness.txt and is described in Table B.4 of Appendix B. Use the
following input statement to read these data:

input Id 2. WtLoss 2.1 Height 2. Weight 3. Intake 4. Aero 2.

BodyFat 3.1 RunTime 3.1 RstPulse 2. Oxygen 3.1 Age 2.

Gender $1.;
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To access this data set, include an appropriate infile statement in your
SAS program. Input the data and create a SAS data set named fitness.
Use SAS statements in the data step to do the following:

a. Exclude observations with missing values for Aero or BodyFat from
this data set.

b. Provide more descriptive labeling as necessary using a label state-
ment.

c. Exclude variables Height and WtLoss from the data set fitness.
d. Create four new variables as follows:

i. A numeric variable BurnRate that measures the rate at which
calories are burned, computed as Monthly Weight Loss times
Food Intake (Cal/day) per each pound of Body Weight.

ii. A numeric variable BMI containing values of Body Mass Index,
the ratio of weight to height squared (in kg per meter2), a stan-
dard measure of obesity.

iii. A numeric category variable WtGrp (Weight Group) that takes
values 1, 2, or 3 accordingly as the subject’s weight is ≤ 140 lbs,
over 140 but ≤ 165 lbs, or above 165 lbs, respectively.

iv. A numeric category variable AgeGrp (age group) that takes val-
ues “A,” “B,” or “C” accordingly as the subject’s age is ≤ 25,
between 25 and ≤ 45, or above 45, respectively.

e. Include format statements to ensure that values for the variable cre-
ated in A. above appear rounded to one decimal place and those of
the variable created in B. appear rounded to a whole number in the
printed output (i.e., associate appropriate formats with BurnRate

and BMI variables using a format statement).

2.12 Those participants of the physical fitness program discussed in Exer-
cise 2.11 with BMI exceeding 25 or BurnRate less than 15 were selected
for an advanced aerobics program. Add a proc print step to the SAS
program in Exercise 2.11 to obtain a SAS listing (i.e., a SAS report)
that contains only the variables BodyFat, RstPulse, BurnRate, and BMI

of those participants. The data must appear grouped into observations
for each weight group and age group combination. You must not create
additional SAS data sets to do this and make sure that all variables are
labeled and data values are appropriately formatted.

2.13 Add a proc means step containing appropriate class and output state-
ments, to the same SAS program created in Exercise 2.12, to create a
SAS data set named stats1. The data set mystats must contain sample
means and standard errors of the means of the variables BMI, RunTime,
and Oxygen for each of the nine subgroups defined by combinations of
values of the category variables WtGrp and AgeGrp. Use the types state-
ment to ensure that the statistics are calculated only for combinations
of levels of WtGrp and AgeGrp. Suppress the printed output produced in
the proc means step. Print the data set mystats. Label all new variables
on this output.



144 2 More on SAS Programming and Some Applications

Exercises 2.14–2.20 concern the demographic data set on countries obtained
from Ott et al. (1987) (see Table B.5 of Appendix B). To access this data
set from a text file, include an appropriate infile statement in your SAS
program. A filename statement may also be included if you prefer. Use the
following input statement to read these data:

input Country $20. Birthrat Deathrat Infmort Lifeexp

Popurban Percgnp Levtech Civillib;

2.14 Write a SAS program to create a SAS data set named world using the
data in Table B.5. Label variables as appropriate. Create category vari-
ables as described below:

Variable Groupings Category
variable

Infmort
< 24 = 1 (low)
24–73 = 2 (moderate)
≥ 74 = 3 (high)

Infgrp

Levtech
< 24 = 1 (low)
≥ 24 = 2 (high)

Techgrp

Degree of civil
liberties

1, 2 = 1 (low degree of denial)
3, 4, 5 = 2 (moderate degree of denial)
6, 7 = 3 (high degree of denial)

Civilgrp

Use a libname statement and a two-level name to save the SAS data set
permanently in a folder in your computer, so that you will be able to
access it for analyses later.

2.15 In a SAS program, use proc univariate to compute 33.3 and 66.7 per-
centiles of the variables Birthrat, Deathrat, and Popurban available
in the SAS data set world. Access the SAS data set saved previously in
Exercise 2.14. Use the output statement to save these statistics in a tem-
porary SAS data set named, say, stats. Obtain a listing of this data set.

2.16 Use the printed output from the analysis performed in Exercise 2.15
to determine good cutoff values for creating additional category vari-
ables Birthgrp, Deathgrp, and Popgrp (each with three categories)
corresponding to these variables. In a data step of a new SAS program,
access the SAS data set world saved previously. Add statements to the
data step to create the category variables described in Exercice 2.7,
name the resulting SAS data set world2, and save the new data set in
the same folder.

2.17 In a new SAS program, use the SAS data set world2 saved in Exer-
cise 2.16 in a proc univariate step to compute descriptive statistics,
extreme values, percentiles, and low-resolution plots for the variables
Lifeexp, Percgnp, and Popurban. Use an appropriate option to calculate
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t-tests for the hypotheses that population means for each of these vari-
ables exceed 70 years, below $3000, and above 60%, respectively. Also,
include an option for calculating 95% confidence intervals for these pa-
rameters. Interpret the results of the t-tests using the p-values printed.
Comment on the shape of the distribution of each of these variables using
the printed output produced. Do the Shapiro–Wilk tests for normality
conducted for each variable above support your conclusions?

2.18 Add a proc means step containing appropriate class and output state-
ments, to the same SAS program used in Exercise 2.17, to create a
SAS data set named stats1. The data set stats1 must contain sample
means, standard errors of the means, and maximum and minimum values
of the variables Birthrat, Deathrat, and Infmort calculated separately
for each of the nine groups defined by combinations of levels of the
category variables Birthgrp and Popgrp. Use the types statement to
ensure that statistics are calculated only for combinations of levels of
Birthgrp and Popgrp. Suppress printed output in proc means. Also,
add a proc format step to your SAS program to define user formats
for use when printing all category variables. Obtain a listing of the data
set stats1. Label all new variables on output.

2.19 In a new SAS program, use the SAS data set world2 saved in Exer-
cise 2.16 in a proc freq step to do the following:
a. Obtain two-way frequency tables (in the cross-tabulation format)

for the variable Techgrp with Infgrp, Techgrp with Civilgrp, and
Popgrp with Infgrp. Compute chi-square statistics, cell χ2, and cell
expected values but no column, row, or cell percentages.

b. Obtain a two-way frequency table (in the list format) for Infgrp

and Civilgrp.
c. Use the chi-square statistic to test hypotheses of independence be-

tween pairs of variables considered in part (a) and state your results.
d. Use the contingency coefficient C to comment on the strength of

association for the pair of variables techgrp and civilgrp.
e. Use the values of gamma, Kendall’s tau-b, and Spearman’s correla-

tion coefficient to comment on the association between Techgrp and
Infgrp.

f. Use appropriate measures to evaluate the strength of association
between popgrp and infgrp. Considering that popgrp is an in-
dependent variable useful for predicting infgrp for each country,
interpret the appropriate measures of association. Explain.

2.20 Write a SAS program to use the data set (named world2) saved in
Exercise 2.16, in a proc tabulate step to print a tabulation giving the
sample size, sample mean, sample standard deviation, and the standard
error of the mean of the variables popurban for subgroups of observa-
tions defined by the combination of values of Techgrp and Deathgrp.
The row analysis consists of combinations of Techgrp and Deathgrp,
and the statistics for Popurban must appear on the columns. Print
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the sample size without decimals, the sample mean with four decimal
places, and the other two statistics with two decimal places each. Also,
use appropriate text strings to label all statistic keyword headings (e.g.,
print Standard Deviation for std).
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Introduction to SAS Graphics

3.1 Introduction

As discussed in Chap. 1, SAS ODS (Output Delivery System) manages pro-
cedure output for display in a variety of formats, such as html, pdf, rtf, etc.
(called destinations). This allows the flexibility in organizing the output from
SAS procedures and thus enables the user to present the output in a more de-
sirable manner. Traditionally, under the SAS windowing environment, results
of a SAS procedure were displayed in the output window in the SAS listing
format. As output from SAS procedures, ODS creates objects that have basi-
cally three components: data component, table definition (order of columns,
rows, etc.), and an output destination (.html, .rtf, etc.). Examples of currently
available ODS destinations are

LISTING: produces traditional SAS monospace typeset output
PS or PDF: output that is formatted for a high-resolution printer
HTML: output that is formatted in various markup languages such as HTML
RTF: output that is formatted for use with Microsoft Word

The default destination in the SAS windowing environment beginning with
SAS 9.3 is HTML (a change from traditional LISTING destination used in
previous versions). Under the windowing environment, the Results tab in the
Preferences window (use the sequence Tools→ Options→ Preferences to
get to the Preferences window) may be used to change back to the LIST-
ING destination as the default if so desired. In the past, SAS users used
SAS/GRAPH (and other procedures that produced high-resolution graphics
as output) to produce high-quality graphics, henceforth, referred to as tradi-
tional SAS Graphics in this book. Beginning with SAS 9.3, SAS procedures
will produce graphs under ODS Graphics automatically using default settings,
in the same way tables containing statistics output from those procedures are
produced.
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Template-Based Graphics (ODS Graphics)

Template-based graphics produced by ODS Graphics (different from tradi-
tional SAS Graphics) is currently the default for producing graphs in most
SAS procedures. In addition, ODS Graphics is enabled by default at the SAS
start-up; thus no action is necessary by the user to enable graphical output
produced by various procedures to appear in ODS Graphics format in the out-
put. In previous versions of SAS, notably SAS 9.2 under the SAS windowing
environment, ODS GRAPHICS ON statement was required to enable ODS
Graphics (and ODS GRAPHICS OFF statement to disable or turn off ODS
Graphics). In SAS 9.4, ODS GRAPHICS ON is the default. Thus all graphics
produced by SAS procedures are ODS Graphics by default.

With ODS Graphics, styles and templates control the appearance of tables
and graphics output from procedures in Base SAS as well as many other
statistical procedures. Since under ODS Graphics, default templates and styles
for graphs produced by various procedures are provided by SAS software, the
user can create statistical graphics that are consistent in appearance across
procedures. SAS 9.4 uses the default style called HTMLBlue available for the
HTML destination. This new style is an all-color style that is designed to
integrate tables and modern statistical graphics, viewable as a single entity.

In the previous edition of this book, the main emphasis was on producing
traditional SAS Graphics using SAS/GRAPH procedures and SAS-/GRAPH-
related statements in other SAS statistical procedures. The availability of ODS
Graphics as a part of SAS/Base in SAS 9.4 makes it possible to create statis-
tical graphics without having access to SAS/GRAPH. Since ODS Graphics in
SAS 9.4 produces high-quality statistical graphics with minimal syntax in ad-
dition to the fact that it allows graphs and tables to be integrated in the same
ODS output destinations, many of the SAS programs and output presented in
this edition will use ODS Graphics. If so desired, using the Graph Template
Language, one can modify a default template so that the changes are in effect
each time the user runs a procedure to create the graph. The user may also
make changes to graphs using the ODS Graphics Editor, a point-and-click
interface.

In SAS Version 9.4, ODS Statistical Graphics output is also produced
by SAS procedures such as UNIVARIATE when statements that produce
these graphics are included in the proc step. For example, the HISTOGRAM
statement used in a proc univariate step will produce ODS Graphics output
in HTML by default in SAS 9.4; this output is automatically displayed in an
internal viewer. Several examples of these procedures will be illustrated in
later sections. The user may request that this graphical and other output be
sent to a destination such as a pdf or an rtf file by enclosing the procedure
step within appropriate ODS statements.

Prior to SAS 9.2, the plots produced by proc univariate were extremely
basic by default. Producing more elaborate graphical output required the
specification of colors, fonts, and other graphical elements via SAS/GRAPH
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statements and plot statement options. Beginning with SAS 9.2, the default
appearance of the graphs is governed by the ODS style in operation, which
produces attractive graphical output with consistent appearance across pro-
cedures using standard templates. See the SAS program in Fig. 3.4 and the
resulting graphical output for an example.

It is to be noted that the default style for the pdf destination is quite
different from HTMLBlue, the default style for HTML destination. In this
chapter and elsewhere, the pdf output for publication was created using a
style that mimics the appearance of the output produced by the HTMLBlue
style.

ODS Statistical Graphics Procedures

As discussed in the above paragraph, beginning with SAS Version 9.4, ODS
Graphics output is produced by SAS procedures such as UNIVARIATE when
statements that produce these graphics are included in the proc step. This
output is called ODS Statistical Graphics (to distinguish them from statistical
graphics produced using traditional SAS/GRAPH procs or statements). For
example, the HISTOGRAM statement used in a proc univariate step will
produce ODS Graphics output in HTML, and in SAS 9.4, this output can
be automatically displayed in an internal viewer. The user may request that
this graphical and other output (such as tables produced by the procedure)
be sent to a destination such as a pdf or an rtf file by enclosing the procedure
step within appropriate ODS statements.

SAS Example C1

In addition, SAS 9.4 also makes available several procedures under Base SAS
for producing ODS Statistical Graphics using raw data or output from other
procedures. These procedures are called statistical graphics procedures. For
example, the SAS program shown in Fig. 3.1 illustrates the use of the SGPLOT
procedure for obtaining a simple regression plot enhanced with confidence
and prediction bands, using the biology data set used in the SAS examples
in Sect. 1.1: Here the data is accessed from the text file biology.txt available
in a folder using an infile statement 1 . The SAS data set created is then

libname lib9 "C:\users\user_name\Documents\...\Class\"; 2
data lib9.biology; 3
infile "C:\users\user_name\Documents\...\Class\biology.txt"; 1
input Id Sex $ Age Year Height Weight;
run;

title "Regression of Weight on Height: Biology class data";
proc sgplot data=lib9.biology;

reg x=Height y=Weight/CLM CLI;
run;

Fig. 3.1. Illustrating ODS output



150 3 Introduction to SAS Graphics

saved in the library (folder) specified in the libname statement 2 using the
two-level name lib9.biology 3 in the data statement.

The SAS data set biology is then accessed in the proc sgplot step to
create the graphical output reproduced in Fig. 3.2. Note that here the graph
shown is exactly as produced using the HTMLBlue style:
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Fig. 3.2. Results of SAS Example C1

Traditional SAS Graphics via SAS/GRAPH

Traditional graphics can be produced using SAS/GRAPH procedures and
statements (if SAS/GRAPH is licensed in your installation). Traditional
graphics are saved in graphics catalogs. Their appearance is controlled by the
SAS/GRAPH GOPTIONS, AXIS, and SYMBOL statements (as described
in SAS/GRAPH: Reference) and numerous other specialized plot statement
options.

The SAS/GRAPH statements and procedure options for controlling graph
appearance continue to be available for producing traditional graphics. How-
ever, the NOGSTYLE system option must be specified to prevent the pre-
vailing ODS style from affecting the appearance of traditional graphs. For
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example, this enables existing proc univariate or proc reg programs to pro-
duce customized graphs that appear as they did under previous SAS releases.

On the other hand, the appearance of ODS Graphics output controlled
by the prevailing ODS style is not affected by SAS/GRAPH statements nor
plot statement options that govern the appearance of traditional graphics.
For example, the CAXIS= option used to specify the color of graph axes in
traditional graphics is ignored when producing ODS Graphics output.

3.2 Template-Based Graphics (SAS/ODS Graphics)

As outlined above, SAS 9.4, many procedures will create template-based
graphics and, by default, direct them to an HTML destination. The user may
change the destination, say, to an RTF destination using an ODS statement.
As noted previously, the default style in effect depends on the destination;
however, the user may select a different style appropriate for the specific des-
tination or modify an existing style template to create a customized style.

SAS Example C2

This example illustrates template-based statistical graphics produced by a
Base SAS procedure. The SAS program shown in Fig. 3.3 accesses the SAS
data set biology from a library (where it was previously saved in SAS Exam-
ple C1), conducts a distribution analysis using the UNIVARIATE procedure,
and delivers the output to an rtf destination 1 . The output from this SAS pro-
gram is not displayed here but consists of the usual output that includes tables
of computed statistics such as basic statistical measures and supplemented by
a table containing results of several tests for normality, as requested:

libname libc "C:\users\user_name\Documents\...\Class\";

ods rtf file="C:\users\user_name\Documents\...\Class\c2out.rtf"; 1

proc univariate data=libc.biology Normal;
var Height;
title "Biology class: Analysis of Height Distribution";

run;
ods rtf close;

Fig. 3.3. SAS Example C2: illustrating ODS output

The user may use the ODS SELECT statement to include only a specified
subset of the tables or graphs in the ODS destination. For example in a proc

reg step, using the statement ods select ParameterEstimates; selects the table
of parameter estimates to be in the output destination. Every output table and
graph from a SAS procedure has an associated name and label. These table
names are listed in the individual procedure documentation chapter or in the
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individual procedure section of the SAS online Help system. One can also use
the SAS Results window (accessed from the SAS Explorer) to view the names
of the tables that are created during a SAS session.

The UNIVARIATE procedure was introduced in Sect. 2.2.1. A discussion
of procedure statements available in proc univariate for producing statistical
graphics was not included in that introduction. Currently there are several
statements that produce useful statistical graphics in the UNIVARIATE pro-
cedure. These are

CDFPLOT <variables> < / options> ;

HISTOGRAM <variables> < / options> ;

PPPLOT <variables> < / options> ;

PROBPLOT <variables> < / options> ;

QQPLOT <variables> < / options> ;

Some of these statements will be illustrated in various SAS Examples in this
book, and some relevant statement options will be discussed whenever the
statement is introduced. The HISTOGRAM statement is used to generate
histograms and optionally superimpose them with estimated parametric or
nonparametric density estimates. When the user requests that a parametric
density function is to be fitted to the data, the user must specify the name of
the distribution selected from a list of available distributions. The user may
also specify a value for each of the parameters of the distribution. For example,
if a normal density with parameters μ = 5, σ = 1 is to be fitted, the required
option is of the form normal(mu=5 sigma=1). The user may set these param-
eters equal to the value est to specify that those parameters are to be set
equal to their maximum likelihood estimates calculated from the data. Other-
wise, if the parameter values are to be estimated from data, the specifications
of parameter values may be omitted altogether, i.e., the normal option may
be used by itself without any sub-options, which is equivalent to specifying
normal(mu=est sigma=est).

Lists of values for parameters may be specified to superimpose multiple
fitted curves from the same distribution family on a histogram, the values
being used sequentially according the position in the list. In this case, the two
curves are identified on the plot using different colors; the color= sub-option
allows the user to select the different color values.

SAS Example C3

In the following modified version of SAS Example C2, displayed in Fig. 3.4,
portions of the output produced are selected to be included in the rtf destina-
tion using ODS SELECT. Note that a histogram statement (with the option
normal) is present thus resulting in a histogram created using ODS Graphics.
Note that the user selected the tables of basic statistical measures and the
table containing the results of the tests for normality along with the histogram
produced by incorporating the names BasicMeasures, TestsForNormality, and
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libname libc "C:\users\user_name\Documents\...\Class\";

ods select BasicMeasures TestsForNormality Histogram; 1

proc univariate data=libc.biology Normal;
var Height;
histogram Height/midpoints=60 to 78 by 3 normal;
title "Biology class: Analysis of Height Distribution";

run;

Fig. 3.4. SAS Example C3: illustrating ODS SELECT

Histogram in the ods select statement 1 . The name Histogram is an exam-
ple of an ODS Graph Name. These are listed in a table in the Details section
of procedure descriptions under the heading titled ODS Graphics and is com-
monly associated with the name of the statement that produces the plot.

Fig. 3.5. Results of using ODS SELECT
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The output produced from SAS Example C3, sent to the default html

destination and displayed by the SAS Results Viewer, is displayed in Fig. 3.5.
It is important to note that this output is displayed using the default HTML-
Blue style. The style may be changed to a different one by using the menu
sequence Tools→ Options→ Preferences. . . and then using the Results

tab to select the preferred style or by naming it in the style= option on the
ODS statement. As usual, this output may be directed to other destinations
such as a pdf file by including appropriate ODS statements.

SAS Example C4

This example shown in Fig. 3.6 uses the SAS data set named biology again as
input. However, a data step is used to create the new variable BMI (as dis-
cussed in Chap. 1) and include it in a temporary data set (called new here,
for simplicity) 1 . This data set is used in the SAS/STAT procedure TTEST
to perform a two-sample t-test for testing whether the population means of
the BMI variable are the same for the two male and female groups. The op-

libname libc "C:\users\user_name\Documents\...\Class\";

data new; 1
set libc.biology;
BMI=703*Weight/Height**2;
run;

proc ttest data=new cochran ci=equal; 2
class Sex;
var BMI;
title "Biology class: Two Sample T-test";

run;

Fig. 3.6. SAS Example C4: statistical graphics from PROC TTEST

tion cochran is included for testing the homogeneity of variances for the two
groups as well as the keyword option ci=equal for computing 95% confidence
interval calculated based on the assumption that the population variances are
indeed the same 2 . The output displayed in Figs. 3.7, 3.8, and 3.9 includes
ODS Statistical Graphics produced by default. These are histograms superim-
posed by two smoothers, side-by-side box plots, and normal probability plots,
respectively, for the two groups respectively.

There are many procedures in SAS/STAT package and others that sup-
port ODS Statistical Graphics. Commonly used procedures such as ANOVA,
GLM, REG, and MIXED are a few examples. These procedures automatically
produce some relevant graphics that are usually associated with the statisti-
cal techniques considered in the same manner they produce tables of relevant
statistics. The TTEST procedure is an example of such a procedure. Some of
these graphical tools will be discussed throughout the rest of this book when
the relevant procedures are introduced.
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Fig. 3.7. SAS Example C4: output from PROC TTEST (Part 1)

Fig. 3.8. SAS Example C4: output from PROC TTEST (Part 2)

3.3 SAS Statistical Graphics Procedures

As illustrated in SAS Example C1 in Sect. 3.1, Base SAS now includes several
procedures for creating single-cell or multicell plots or panels of plots using
simple syntax that are useful for creating many of the plots required for sta-
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Fig. 3.9. SAS Example C4: output from PROC TTEST (Part 3)

tistical analysis. Several of these procedures will be illustrated in this section
via examples. A subset of the statements and options required precedes a brief
description of each procedure.

3.3.1 The SGPLOT Procedure

SGPLOT is an ODS Statistical Graphics procedure available for creating basic
plots such as scatter plots, line plots, histograms, and bubble plots. However,
its strength lies in the ability to enhance some of these with overlays of re-
gression lines, confidence ellipses, loess smoothers, normal and kernel density
estimates, penalized B-spline curves, etc., using easy-to-use options. Addition-
ally, the appearance of the graph may be enhanced by adding features such as
legends and reference lines using an extensive set of statements and options.
The following is an abbreviated set of statements available for use in aproc
sgplot step:

PROC SGPLOT < option(s)> ;

DENSITY response-variable </option(s)>;

DOT category-variable </option(s)>;

ELLIPSE X= numeric-variable Y= numeric-variable </option(s)>;

HBAR category-variable < /option(s) >

HBOX response-variable </option(s)>;

HISTOGRAM response-variable < /option(s)>

HLINE category-variable < /option(s)>

INSET "text-string-1" <... "text-string-n"> | (label-list);

KEYLEGEND <"name-1" ... "name-n"> </option(s)>;

LOESS X= numeric-variable Y= numeric-variable </option(s)>;

REFLINE value(s) </option(s)>;

REG X= numeric-variable Y= numeric-variable </option(s)>;
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SCATTER X= variable Y= variable </option(s)>;

SERIES X= variable Y= variable </option(s)>;

STEP X= variable Y= variable </option(s)>;

VBAR category-variable < /option(s)>

VBOX response-variable </option(s)>;

VLINE category-variable < /option(s)>

XAXIS <option(s)>;

YAXIS <option(s)>;

A few of the statements available in proc sgplot will be illustrated via
examples below. The first statement discussed is the scatter statement. The
syntax allows the user to specify an X variable and a Y variable to be plotted
on the horizontal and the vertical axes, respectively. Basically, this statement
produces scatter plots, ordered pairs (x, y) plotted as points that visually
display the relationship between the two variables such as trends in the data
or the occurrence of interesting clusters.

Some SCATTER Statement Options

datalabel uses the Y values to label the points.

datalabel= uses the values of a variable to label the points.

group= specifies a variable that is used to group the data.

markerattrs= specifies appearance of markers in the plot (as a style element
or using sub-options color=, size=, symbol=).

markerchar= specifies a variable whose values replace the marker symbols
in the plot.

markercharattrs= specifies the appearance of markers in the plot when the
markerchar= option is used.

name= specifies a name for the plot.

Marker attributes referenced above may be specified using a style element
or by using sub-options. By default, the values of the sub-options are preset
by the specific style element of the current style in operation. To change these
settings, use the sub-options color=, size=, and symbol=. To set the color

sub-option, use the same names from the SAS/GRAPH color naming schemes,
set size= using units of measurement from Table 3.3 (default unit is pixels),
and to specify a symbol, use one given in Table 3.1.



158 3 Introduction to SAS Graphics

Table 3.1. List of marker symbols

For non-grouped data (i.e., when group= option is not specified), the
attributes of symbols used may be modified using the markerattrs= op-
tion in the scatter statement; markerattrs= (color=blue size=2 mm
symbol=CircleFilled) is an example. For grouped data, attributes used for
representing different groups cycle through a sequence of default colors and
marker symbols depending on the style in effect. These default values may be
changed using proc template to modify the style to alter the settings for each
of the attributes the user wants to be different for representing each of the
groups in the graph. This procedure will be discussed in detail in Appendix A.

Table 3.2. Line patterns

For more details, see the description of the scatter statement under
SGPLOT procedure. The ellipse statement may be used along with the
scatter statement to create bivariate confidence or prediction regions for
a specified level 100(1 − α)%. These intervals are calculated under the as-
sumption that pairs of data values (x, y) have a bivariate normal distribution.
A 95% prediction ellipse is generated by default. By definition, the probability
of a point falling within this region is 0.95. On the other hand, one would have
95% confidence that the bivariate mean of the distribution lies within a 95%
confidence ellipse. It is possible to draw multiple ellipses by including more
than one ellipse statement specifying different types or alpha levels.
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Some ELLIPSE Statement Options

alpha= specifies the confidence level for the ellipse.

clip the ellipse will be clipped because the axes are determined without the
ellipse.

legendlabel=“text-string” specifies a label that identifies the ellipse in the
legend.

lineattrs= specifies appearance of plotted lines (as a style element or using
sub-options color=, pattern=, thickness=).

name= specifies a name for the plot.

outline|nooutline specifies whether the outlines for the ellipse are visible.

type= mean | predicted specifies the type of ellipse. mean specifies a confi-
dence ellipse for the population mean. predicted specifies a prediction
ellipse for a new observation. Default is predicted.

Default legends for each ellipse, such as “95% Prediction Ellipse,” are
automatically generated; however, the user may specify one using the
legendlabel= option. The line attributes for the outline of the region may
be specified using a style element or by using sub-options. By default, the val-
ues of the sub-options are set by the specific style element of the current style
in operation. To change these settings, use sub-options color=, pattern=,
and thickness=. Set the color sub-option as described under the options
for the scatter statement, set pattern= using line types from Table 3.2
(default is set by the current style), and specify the thickness using units of
measurement in Table 3.3.

Table 3.3. Units of measurement

Unit Description

cm Centimeters
in Inches
mm Millimeters
pct or % Percentage
pt Point size, calculated at 72 dpi
px Pixels
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SAS Example C5

This example (see SAS program in Fig. 3.10) illustrates the scatter state-
ment used in the SAS statistical graphic procedure SGPLOT. In the first
proc sgplot step, the scatter statement produces a simple scatter plot 1 ;
the marker attributes are style elements of the current style in operation
(e.g., plot symbols are empty blue circles) by default. The ellipse statement
is used to overlay a 95% prediction curve 2 , which is drawn in red as spec-
ified in the lineattrs= option. In the next proc sgplot step, the option
group=Sex identifies the points in the scatter plot by the two gender groups.
Thus the group variable is necessarily a classification or a category variable.
The keylegend= statement is used to position the default legend inside the
plot region 3 . Figures 3.11, 3.12, and 3.13 show the results of these three
scatter statements.

libname libc "C:\users\user_name\Documents\...\Class\";

title "Plot of Height vs. Weight with Prediction Ellipse ";
proc sgplot data=libc.biology;

scatter x=Height y=Weight; 1
ellipse x=Height y=Weight/lineattrs=(color=red); 2

run;

title "Plot of Height vs. Weight with Age as Data Labels";
proc sgplot data=libc.biology;
scatter x=Height y=Weight/datalabel=Age

markerattrs= (color=magenta size=2 mm symbol=Asterisk);
run;

title "Height vs. Weight grouped by Gender";
proc sgplot data=libc.biology;

scatter x=Height y=Weight/group=Sex;
keylegend / location=inside position=bottomright; 3

run;

Fig. 3.10. Introducing ODS Statistical Graphics procedures: SGPLOT

The histogram statement in proc sgplot produces a histogram of a con-
tinuous variable determining number of bins (classes) and binwidths (class
interval widths) automatically. Options available for use with the statement
allow the user to specify values for the start of the first bin, number of bins,
and the binwidth. The vertical axis represents the frequency of observations
that fall into each of the bins that could be displayed as a count or as a
percentage or proportion of the total number of observations. Percentage fre-
quency is plotted on the vertical axis by default; the scale= option can be
used to change the default setting of percent.

Some HISTOGRAM Statement Options

binstart= specifies the X coordinate of the first bin.
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binwidth= specifies the bin width.

boundary=lower|upper specifies how boundary values are assigned to bins
(default=upper).

fill|nofill specifies whether the area fill is visible.

fillattrs= specifies appearance of the area fill (as a style element or using
sub-option color=).

legendlabel=“text-string” specifies a label that identifies the histogram in
the legend.

name=“text-string” specifies a name for the plot.

nbins= specifies the number of bins.

outline|nooutline specifies whether the outlines of the bars are displayed.

scale=count|percent|proportion specifies the scale of the vertical axis. De-
fault is percent

The density statement in proc sgplot allows the user to overlay a den-
sity plot fitted to the data. One type of a density plot is obtained by fitting
a normal distribution to the data. The user has the option of specifying val-

Fig. 3.11. Output from SGPLOT: SCATTER statement
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ues for the two parameters μ and/or σ using sub-options mu= and sigma=

(see normal-opts in the statement description). The mu= and sigma= specify
values for the parameters μ and σ of the normal distribution. If values for
either parameter are not specified, they will be estimated using the data.

The other type of density plot available is a nonparametric kernel density
estimate. The user may specify a standardized bandwidth c= and a kernel
function weight= (see kernel-opts in the statement description). The stan-
dardized bandwidth is a value between 0 and 100 and controls the level of
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smoothing: too small a value will show little smoothing showing spikes by at-
tempting to fit every detail or a too large a value will perform oversmoothing
hiding most of the structure in the data. An optimal bandwidth is one that
results in a density estimate that is close to the true density. The weight= sub-
option accepts three possible kernel functions normal, quadratic, or triangular
as its value, with normal being the default.

Some DENSITY Statement Options

legendlabel=“text-string” specifies a label that identifies the ellipse in the
legend.

lineattrs= specifies appearance of plotted lines (as a style element or using
sub-options color=,pattern=,thickness=.

name=“text-string” specifies a name for the plot.

scale=count|density|percent|proportion specifies the scale of the vertical
axis. Default is density

type= normal < (normal-opts)> | kernel < (kernel-opts)> specifies the
type of distribution curve that is used for the density plot. Default is
normal.

SAS Example C6

In an experiment to investigate whether the addition of an antibiotic to the
diet of chicks promotes growth over a standard diet described in Ott and
Longnecker (2001), an animal scientist rears and feeds 100 chicks in the same
environment, with individual feeders for each chick. The weight gain for the
100 chicks are recorded after an 8-week period. The construction of a frequency
table suggests class intervals of width 0.1 units beginning with a midpoint at
the smallest data value of 3.6.

The SAS Example C6 program, shown in Fig. 3.14, uses the histogram

statement (with no options specified) in the ODS Statistical Graphics pro-
cedure proc sgplot to construct a histogram. The first density statement
specifies that a normal density curve be superimposed on the histogram 1 . By
default, the procedure fits a normal density to the data using the sample mean
and sample standard deviation estimated from the data. The second density
statement will superimpose a kernel density plot using default values for the
bandwitdth and kernel (weight) function 2 . The output is shown in Fig. 3.15.

It is possible to experiment with several options available with the
histogram statement to control the appearance of the histogram; specif-
ically, the options binstart=, nbins=, and binwidth= are useful for this
purpose. In SAS Example C6 program the statements
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data chicks;
input Wtgain @@;
label Wtgain =’Weight gain (in gms) after 8-weeks’;
datalines;
3.7 4.2 4.4 4.4 4.3 4.2 4.4 4.8 4.9 4.4
4.2 3.8 4.2 4.4 4.6 3.9 4.1 4.5 4.8 3.9
4.7 4.2 4.2 4.8 4.5 3.6 4.1 4.3 3.9 4.2
4.0 4.2 4.0 4.5 4.4 4.1 4.0 4.0 3.8 4.6
4.9 3.8 4.3 4.3 3.9 3.8 4.7 3.9 4.0 4.2
4.3 4.7 4.1 4.0 4.6 4.4 4.6 4.4 4.9 4.4
4.0 3.9 4.5 4.3 3.8 4.1 4.3 4.2 4.5 4.4
4.2 4.7 3.8 4.5 4.0 4.2 4.1 4.0 4.7 4.1
4.7 4.1 4.8 4.1 4.3 4.7 4.2 4.1 4.4 4.8
4.1 4.9 4.3 4.4 4.4 4.3 4.6 4.5 4.6 4.0
;

proc sgplot data=chicks;
title "Weight Gain Distribution";
histogram Wtgain;
density Wtgain; 1
density Wtgain / type=kernel; 2
keylegend / location=inside position=topright;

run;

Fig. 3.14. Histogram with SGPLOT procedure

Fig. 3.15. Output from SAS Example C6

histogram Wtgain/binstart=3.5 nbins=7;

histogram Wtgain/binstart=3.75 binwidth=.25;

produce histograms (not shown) that are slightly different from the default
one shown in Fig. 3.15.
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Some VBOX Statement Options

boxwidth= specifies the width of the box, as a value between 0.0 (0% of the
available width) and 1.0 (100% of the available width). Default is 0.4.

category= specifies the category variable for the plot. A box plot is created
for each distinct value of the category variable.

connect=mean|median|q1|q3|min|max specifies that a connect line joins a
statistic from box to box.

connectattrs= specifies appearance of the connecting lines (as a style ele-
ment or using sub-options color=, pattern=, and thickness=).

datalabel <= variable> adds data labels for the outlier markers. If you
specified a variable, then the values for that variable are used for the data
labels. If you did not specify a variable, then the values of the analysis
variable are used.

datalabelattrs= specifies appearance of labels (as a style element or using
sub-options color=, family= “font-family”, size=, style=italic|normal,
weight=bold|normal) .

fill|nofill specifies whether the boxes are filled with color.

fillattrs= specifies appearance of the fill of the boxes (as a style element or
using sub-option color=.

group= specifies a variable that is used to group the data.

legendlabel=“text-string” specifies a label that identifies the ellipse in the
legend.

lineattrs= specifies appearance of the box outlines (as a style element or
using sub-options color=, pattern=, and thickness=).

meanattrs= specifies appearance of the box outlines (as a style element or
using sub-options color=, pattern=, and thickness=).

medianattrs= specifies appearance of the box outlines (as a style element or
using sub-options color=, pattern=, and thickness=).

name= specifies a name for the plot.

outlierattrs= specifies appearance of the box outlines (as a style element or
using sub-options color=, pattern=, and thickness=).

outline|nooutline specifies whether the outlines for the bars are displayed.
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percentile=1|2|3|4|5 specifies a method for computing the percentiles for the
plot. Default is 5.

type= mean | predicted specifies the type of ellipse. mean specifies a confi-
dence ellipse for the population mean. predicted specifies a prediction
ellipse for a new observation. Default is predicted.

whiskerattrs= specifies appearance of the box outlines (as a style element or
using sub-options color=, pattern=, and thickness=).

SAS Example C7

The data in Table B.6 taken from Koopmans (1987) give hydrocarbon (HC)
emissions at idling speed, in parts per million (ppm), for automobiles of various
years of manufacture. The data were extracted via random sampling from that
of an extensive study of the pollution control existing in automobiles in current
service in Albuquerque, New Mexico.

data emissions;
input period @;
hc=1;
do until (hc<0); 1

input hc @;
if (hc<0) then return;
output;

end;
label period = ’Year of Manufacture’

hc = ’Hydrocarbon Emissions (ppm)’;
datalines;
1 2351 1293 541 1058 411 570 800 630 905 347 -1 2
2 620 940 350 700 1150 2000 823 1058 423 270 900 405 780 -1
3 1088 388 111 558 294 211 460 470 353 71 241 2999 199 188 353 117 -1
4 141 359 247 940 882 494 306 200 100 300 190 140 880 200 223 188 435 940 241 223 -1
5 140 160 20 20 223 60 20 95 360 70 220 400 217 58 235 1880 200 175 85 -1
;

proc format; 3
value pp 1=’Pre-1963’

2=’1963-1967’
3=’1968-1969’
4=’1970-1971’
5=’1972-1974’;

run;

proc sgplot data=emissions;
title "Hydrocarbon Emissions Distribution by Period";
vbox hc / category=period datalabel; 4
format period pp.;

run;

Fig. 3.16. Histogram with SGPLOT procedure

The SAS Example C7 program, shown in Fig. 3.16, uses the statistical
graphics procedure SGPLOT to construct side-by-side vertical box plots for
the five periods. Note that since the number of data values for each period
is different, a new technique is employed to input the data. An artificially
created data value for the variable hc of −1 is first inserted at the end of the
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set of data values for each period (note that this is not required at the end
of every data line) 2 . A do until loop is used to read the data values for
hc until a −1 is encountered, holding the data line after reading each value
and using an output; statement to write an observation with a pair of values
for period and hc. The loop is restarted after the processing of all hc values
for a period is completed. A new value for the variable period is read after
completion of each do until loop 1 .

A schematic box plot is the default style of the box plots produced by
the vbox statement, where the whiskers are drawn to the lower and upper
adjacent values from the edges of the box. Lower and upper adjacent values
are, respectively, the smallest observed value inside the lower fence and the
largest observed value inside the upper fence. Options to specify other styles of
box plots and various other modifications are available. A box plot is created
for each value of the category variable specified in the category= option in
the vbox statement. A datalabel option is used to label the symbols plotted.
This causes the observations plotted outside the upper and lower fences to be
identified using the values of the variable hc 3 . A format statement specifies a
user-defined format (used in the proc format step 4 ) for labeling the values
of the variable period.

The output shown in Fig. 3.17 is used in the following to compare and
comment on features such as shape, location, dispersion (spread), and outliers,
if any, of the distributions of HC emission in the five periods.

Fig. 3.17. Output from SAS Example C7

Side-by-side box plots are one of the most useful methods available for
visually comparing features of sample distributions. They enable the compar-
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ison of the location, spread, and shape of the distributions by examining the
relative positions of the median and the mean, the heights of the boxes which
measure the interquartile ranges (IQRs), and the relative placing of the me-
dians (and the means) between the ends of the boxes (i.e., the quartiles), the
relative lengths of the whiskers, and the presence of outside values at either end
of the whiskers. By observing the presence of trends in these characteristics,
experimenters will be able to compare distributions across populations defined
over time, location, treatments, or predefined experimental or observational
groups. As an example, some observations regarding the empirical distribu-
tions of hydrocarbons over the five periods of study that may be made using
Fig. 3.17 and useful conclusions that may be drawn from these observations
are itemized as follows:

a. There is a decreasing trend in the magnitudes of location and spread of
HC levels over years of manufacture except in the first two periods. The
location, as measured by the median, and spread, as measured by the
IQR and the lengths of the whiskers, appear to follow the same pattern.
During the first two periods, there appears to be no significant shift of
both location and spread.

b. The observed shapes of the distribution of HC levels have some similarity
over the five periods. For example, the sample mean is larger than the
median in all five samples and the upper (or right) whisker is longer in all
but one. There is also at least one outside value on the upper side. Thus,
all of the evidence indicates right-skewed distributions for all five periods.

c. There is an apparent change in HC emission coincident with the establish-
ment of federal emission control standards in 1967–1968 (period 3). This
is clearly observed as both the location and spread of the data decrease
significantly following period 2.

d. Statistical analysis of data (say, using the one-way ANOVA model) may
not be straightforward because assumptions such as normality and homo-
geneity of variances across periods may not hold. The graphical analysis
shows that these two assumptions may not be plausible for this data; par-
ticularly, there is an obvious heterogeneity of variances as observed by the
differences in the spread of the data as measured by the heights of the
boxes.

Some VLINE Statement Options

alpha= specifies the confidence level for the confidence limits. Default is 0.05.

categoryorder=respasc|respdesc specifies the order in which the response
values are arranged. By default, the plot is sorted in ascending order of
the category values.

clusterwidth= specifies the cluster width as a fraction of the midpoint spac-
ing. Default is 0.8



3.3 SAS Statistical Graphics Procedures 169

curvelabel <=“text-string”> adds a label to the line plot.

curvelabelattrs= specifies the appearance of the labels in the plot when
you use the CURVELABEL= option (as a style element or using sub-
options color=, family= “font-family”, size=, style=italic|normal,
and weight=bold|normal).

curvelabelloc=outside|inside specifies whether the curve label is placed in-
side the plot axes (INSIDE) or outside of the plot axes (OUTSIDE),
which is the default.

curvelabelpos=auto|end|max|min|start specifies the location of the curve
label. Default is end.

datalabel= uses the values of a variable to label the points.

datalabelattrs= specifies appearance of labels (as a style element or using
sub-options).

datalabelpos=data|bottom|top specifies the location of the data label. De-
fault is data.

group= specifies a category variable to divide the values into groups.

groupdisplay=cluster|overlay specifies how to display grouped bars. Default
is overlay.

grouporder=data|reversedata|ascending|descending specifies the ordering of
lines within a group. Default is ascending.

legendlabel=“text-string” specifies a label that identifies the line plot in the
legend.

lineattrs= specifies the appearance of the lines in the line plot (as a style
element or using sub-options).

markers adds markers to the plot.

markerattrs= specifies the appearance of the markers in the plot (as a style
element or using sub-options).

missing a missing value is taken as a valid category and creates a bar for it.

name=“text-string” specifies a name for the plot.
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nostatlabel removes the statistic name from the axis and legend labels.

response= specifies a numeric response variable for the plot.

stat=freq|mean|median|percent|sum specifies the statistic for the vertical
axis. Default is sum when response= is used; else default is freq.

x2axis assigns the category variable to the secondary (top) horizontal axis.

y2axis assigns the response variable to the secondary (right) vertical axis.

SAS Example C8

In profile plots of means or interaction plots, the levels of one experimental
factor (say, A) are plotted on the horizontal axis. The vertical axis represents
the sample means of responses resulting from the application of combinations
of the levels of A and the levels of a second factor (say, B) to experimental
units, independently. This plot is sometimes called the profile plot of means,
because the sample means corresponding to the same levels of factor B are
joined by line segments, thus showing the pattern of variation of the average
response across the levels of factor A at each level of B.

Table 3.4. Mice survival time data (Box et al. 1978)

Drug
Poison

A B C D

I 0.31 0.82 0.43 0.45
0.45 1.10 0.45 0.71
0.46 0.88 0.63 0.66
0.43 0.72 0.76 0.62

II 0.36 0.92 0.44 0.56
0.29 0.61 0.35 1.02
0.40 0.49 0.31 0.71
0.23 1.24 0.40 0.38

III 0.22 0.30 0.23 0.30
0.21 0.37 0.25 0.36
0.18 0.38 0.24 0.31
0.23 0.29 0.22 0.33

This plot is also known as the interaction plot because it is useful for in-
terpreting significant interaction that may be present between the two factors
A and B and may help in explaining the basis for such interaction. This type
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of a plot is also useful in profile analysis of independent samples in multi-
variate data analysis, where means of several variables, such as responses to
test scores measured on different subjects, are compared across independent
groups of subjects such as classrooms.

Consider the survival times of groups of four mice randomly allocated to
each combination of three poisons and four drugs shown in Table 3.4. The
experiment described in Box et al. (1978) was an investigation to compare
several antitoxins to combat the effects of certain toxic agents. The SAS Ex-
ample C8 program shown in Fig. 3.18 draws an interaction plot of this data.
The data are entered so that each line of data includes responses to the four

Table 3.5. Data arranged for input to proc means

Poison Drug Time

1 1 0.31
1 2 0.82
1 3 0.43
1 4 0.45
1 1 0.45
1 2 1.10
...

...
...

3 3 0.24
3 4 0.31
3 1 0.23
3 2 0.29
3 3 0.22
3 4 0.33

levels of Drug for each level of Poison. Four data lines represent the repli-
cates for each level of poison so that there are 12 data lines in the input
stream. The trailing @ symbol in the input statements and an output in
a do loop 1 enable a SAS data set to be prepared in the form required to
be analyzed by procedures such as means or glm. As shown in Table 3.5, the
data set named survival will have 48 observations, each corresponding to a
response to a combination of a level of Drug and a level of Poison.

As demonstrated in SAS Example C8, the vline statement in SGPLOT
is ideal for constructing an interaction plot. The cell means need not be calcu-
lated in advance as they are automatically computed using the stat= option.
The vline statement is used when the vertical axis is used to represent the
response variable (or a statistic computed from the response). In this exam-
ple, using the stat=mean 2 option, means of the response variable Time are
calculated for each value of the category variable Poison which is plotted on
the horizontal axis. However, since the category variable Drug is used as a
grouping variable (see the group= option 2 ), the means are computed and
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data survival;
input Poison 1. @; 1

do Drug=1 to 4;
input Time 3.2 @;
output;

end;
datalines;
1 31 82 43 45
1 45110 45 71
1 46 88 63 66
1 43 72 76 62
2 36 92 44 56
2 29 61 35102
2 40 49 31 71
2 23124 40 38
3 22 30 23 30
3 21 37 25 36
3 18 38 24 31
3 23 29 22 33
;
title1 "Analysis of Survival Time data";
title2 "Interaction Plot of Cell Means";

proc sgplot data=survival;
vline Poison/response=Time stat=mean group=Drug markers; 2
run;

Fig. 3.18. SAS Example C8: interaction plot with SGPLOT procedure

plotted separately for each value of Drug. These line plots representing each
unique value of Drug variable are automatically identified visually using dif-
ferent colors for both the plot symbols and line segments selected by default
(see Fig. 3.19). The statistical interpretation of this interaction plot will be
presented in Chap. 5.

Fig. 3.19. Output from SAS Example C8
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3.3.2 The SGPANEL Procedure

Essentially, the SGPANEL procedure creates the same plots as the SGPLOT
procedure but they appear in separate panels. The panelby statement names
the category variable that classifies the data used for plots that appear in
different panels. Other than the panelby statement (that is required), most
of the statements are common to both procedures. In SGPANEL, the colaxis
and the rowaxis statements replace the xaxis and the yaxis statements used
in SGPLOT, respectively.

PROC SGPANEL < option(s)>;

PANELBY variable(s) </option(s)>;

COLAXIS <option(s)>;

DENSITY response-variable </option(s)>;

DOT category-variable </option(s)>;

HBAR category-variable </option(s)>

HBOX response-variable </option(s)>;

HISTOGRAM response-variable </option(s)>

HLINE category-variable </option(s)>

KEYLEGEND <"name(s)"> </option(s)>;

HLINE variable </option(s)>;

LOESS X= numeric-variable Y= numeric-variable </option(s)>;

NEEDLE X= variable Y= numeric-variable </option(s)>;

PBSPLINE X= numeric-variable Y= numeric-variable </option(s)>;

REFLINE value(s) </option(s)>;

REG X= numeric-variable Y= numeric-variable </option(s)>;

ROWAXIS <option(s)>;

SCATTER X= variable Y= variable </option(s)>;

SERIES X= variable Y= variable </option(s)>;

STEP X= variable Y= variable </option(s)>;

VBAR category-variable </option(s)>

VBOX response-variable </option(s)>;

VLINE category-variable </option(s);

Some PANELBY Statement Options

border|noborder specifies whether borders are to be drawn around each cell
in the panel display. Default depends on style in effect.

colheaderpos=top|bottom|both specifies the location of the column headings
in the panel. Default is top.

columns=n specifies the number of columns in the panel.

layout=lattice|panel|columnlattice|rowlattice specifies the type of layout
that is used for the panel. Default is panel which arranges cells in rows
and columns.
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missing a missing value is taken as a valid category and creates a cell for it.

novarname removes the variable names from the cell headings of a panel
layout, or from the row and column headings of a lattice layout.

onepanel places the entire panel in a single output image.

rowheaderpos=left|right|both specifies the location of the row headings in
the panel. Default is right.

rows=n specifies the number of rows in the panel.

spacing=n specifies the number of pixels between the rows and columns in
the panel.

sparse creates empty cells in the panel for combinations of classifications
with no observations.

start=topleft|bottomleft specifies whether the first cell in the panel is placed
at the upper left or the lower left corner.

uniscale=column|row|all scales the shared axes in the panel to be identical.

SAS Example C9

As in several previous SAS programs, the SAS Example C9 shown in Fig. 3.20
accesses the SAS data set named fueldat from a library (a folder, in this
case) using the two-level name mylib.fueldat. The program consists of two
proc steps, illustrating the use of the hbar and vbar statements, respectively,
to obtain bar charts that present the same information in two different ways:
first, the menu sequence Tools→ Options→ Preferences. . . and then using
the Results tab to change the ODS style from the default of HTMLBlue
to Science, before execution of the program in the SAS windowing environ-
ment. Switching to a new ODS style changes the overall appearance of the
graphs and will emphasize the difference in the two plots. This could also be
accomplished using the style= option in the ODS destination statement (e.g.,
style=science).

The proc sgplot step contains a hbar statement 1 that produces a hor-
izontal bar chart of the means of the Roads variable (1971 miles of highway,
in thousands) for each income group as defined earlier. The group= option is
used with the hbar statement so that each bar is subdivided into two fuel tax
groups Low and High. The keylegend statement controls the positioning of
the legend within the graph. The resulting graph is shown in Fig. 3.21. The
second step uses proc sgpanel to present the same graphical analysis as a
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vertical barchart, the difference being instead of grouping by the fuel tax cat-
egory variable, a panelby statement displays the average fuel usage for each
income group in separate panels 2 . The resulting graph is shown in Fig. 3.22.

libname mylib "C:\users\user_name\Documents\...\Class\";

proc format;
value ing 1 = ’Low Income’

2 = ’Middle Income’
3 = ’High Income’;

run;

title ’Horizontal Bar Chart of Miles of Primary Highways’;
proc sgplot data=mylib.fueldat;

hbar Incomgrp/response=Roads stat=mean group=Taxgrp; 1
keylegend / title="Fuel Tax" location=outside position=bottom;
format Incomgrp ing.;

run;

title ’Vertical Bar Chart Fuel Use by Income Group for each Fuel Tax Group’;
proc sgpanel data=mylib.fueldat;

panelby Taxgrp; 2
vbar Incomgrp/response=Fuel stat=mean;
format Incomgrp ing.;

run;

Fig. 3.20. SAS Example C9: bar charts with SGPLOT and SGPANEL procedures

Fig. 3.21. Output from SAS Example C9: horizontal bar chart
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Fuel Tax = High

Vertical Bar Chart Fuel Use by Income Group for each Fuel Tax Group

600

400

200

0
Low Incom

e

M
iddle Incom

e

M
iddle Incom

e

High Incom
e

Per capita Income

F
u

el
 C

o
n

su
m

p
ti

o
n

 (
in

 g
al

lo
n

s 
/ p

er
so

n
)

High Incom
e

Low Incom
e

Fuel Tax = Low

Fig. 3.22. Output from SAS Example C9: vertical bar charts in row lattices

Some VBAR Statement Options

alpha= specifies the confidence level for the confidence limits.

barwidth= specifies the width of the bars as a fraction of the maximum
available width.

categoryorder=respasc|respdesc specifies the order in which the response
values are arranged. By default, plot ordered by ascending order of cate-
gory values.

clusterwidth= specifies the cluster width as a fraction of the maximum
width.

datalabel= uses the values of a variable to label the points.

datalabelattrs= specifies appearance of labels (as a style element or using
sub-options color=, family= “font-family”, size=, style=italic|normal,
and weight=bold|normal).

dataskin=none|crisp|gloss|matte|pressed|sheen specifies a special effect to
be used on all filled bars. Default is none.

fill|nofill specifies whether the boxes are filled with color.
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fillattrs= specifies appearance of the fill of the boxes (as a style element or
using sub-option color=.

group= specifies a category variable to divide the values into groups.

groupdisplay=stack|cluster specifies how to display grouped bars. Default is
stack.

grouporder=data|reversedata|ascending|descending specifies the ordering of
bars within a group. Default is ascending.

legendlabel=“text-string” specifies a label that identifies the bar chart in
the legend.

missing a missing value is taken as a valid category and creates a bar for it.

name=“text-string” specifies a name for the plot.

nostatlabel removes the statistic name from the axis and legend labels.

outline|nooutline specifies whether the outlines for the bars are displayed.

response= specifies a numeric response variable for the plot.

stat=freq|mean|median|percent|sum specifies the statistic for the vertical
axis. Default is sum when response= is used; else default is freq

SAS Example C10

In this example the demographic data set on 60 countries (the data are dis-
played in Table B.5) is used to obtain histograms classified by a category
variable created by grouping data in the data step. First, the SAS data set
named world is created using raw data read from a text file instead of data
entered instream (see Fig. 3.23). The same data set was used in an exercise in
Chap. 2. Although there are many useful options available with the infile

statement, for the purpose of reading a text file, all that is needed is to supply
the path name of the data file as a quoted string:

infile "C:\users\user name \Documents\...\Class\demogr.txt" ;

An ordinal variable called TechGrp assigned the value 1, 2, 3, or 4 according
to whether the Level of Technology variable had values that were less than
13, greater than or equal to 13 and less than 25, greater than or equal to 25
and less than 60, or over 60, respectively. These cutoff values were somewhat
arbitrarily chosen to divide the 60 countries into four groups according to
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their level of technological advancement. A proc format step is used to define
a numeric format tg. for printing values of this category variable.

data world;
infile "C:\users\user_name\Documents\...\Class\demogr.txt";
input Country $20. Birthrate Deathrate InfMort LifeExp PopUrban

PercGnp LevTech CivilLib;

if LevTech<13 then TechGrp=1;
else if 13<= LevTech<25 then TechGrp=2;
else if 25<= LevTech<60 then TechGrp=3;
else if LevTech>= 60 then TechGrp=4;

label LifeExp="Life Expectancy in yrs."
TechGrp="Level of Technology";

run;
proc format;

value tg 1=’Low’
2=’Moderate’
3=’High’
4=’Advanced’ ;

run;

proc sgpanel data=world;
panelby TechGrp;
histogram LifeExp/binstart=45 binwidth=5 nbins=8;
format TechGrp tg.;

run;

Fig. 3.23. SAS Example C10: multiple histograms with SGPANEL procedure

A few of the statements available in the SGPANEL procedure will be
illustrated via examples below. This procedure requires a panelby statement
to specify one or more category variables that defines how the the panel is
divided into cells of individual graphs. This statement must appear before
any other statements that are required later to initiate plots. Options such as
rows=, columns= , or layout= available with the panelby statement enable
the user to control how the cells are organized within the panel. In SAS
Example C10, the statement panelby TechGrp; produces a panel layout with
four cells (corresponding to the four values of TechGrp) that are arranged
automatically as a 2 × 2 matrix in the increasing order of the values of the
category variable TechGrp.

The next statement in the step is the histogram statement to specify the
graph that will appear in each cell. The options available with the histogram
statement are the same as those described previously for proc sgplot (see
page 160 for some histogram statement options). In this example, the options
binstart=, binwidth=, and nbins= are used to specify exactly how each of
the histograms is to be constructed for the LifeExp variable in the data set
containing the life expectancies for each country. The graphical output from
this SGPANEL step is shown in Fig. 3.24.
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Fig. 3.24. Output from SAS Example C10: histograms in panel cells

Some DOT Statement Options

alpha= specifies the confidence level for the confidence limits.

categoryorder=respasc|respdesc specifies the order in which the response
values are arranged. By default, plot ordered by ascending order of cate-
gory values.

clusterwidth= specifies the width of the group clusters as a fraction of the
midpoint spacing.

datalabel= uses the values of a variable to label the points.

datalabelattrs= specifies appearance of labels (as a style element or using
sub-options color=, family= “font-family”, size=, style=italic|normal,
and weight=bold|normal) .

discreteoffset= numeric value that specifies an amount of offset of all dots.

group= specifies a category variable to divide the values into groups.

groupdisplay=cluster|overlay specifies how to display grouped dots. Default
is overlay.
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legendlabel=“text-string” specifies a label that identifies the dot plot in the
legend.

limitattrs= specifies appearance of the limit lines (as a style element or
using sub-options color=, pattern=, and thickness=).

limits=upper|lower|both specifies which limit lines to display.

limitstat=clm|stddev|stderr specifies the statistic for the limit lines. Default
is clm.

markerattrs= specifies appearance of markers in the plot (as a style element
or using sub-options color=, size=, and symbol=).

missing a missing value is taken as a valid category and creates a cell for it.

name=“text-string” specifies a name for the plot.

nostatlabel removes the statistic name from the axis and legend labels.

numstd=n specifies the number of standard units for the limit lines, when
you specify limitstat= stddev or limitstat=stderr.

response= specifies a numeric response variable for the plot.

stat=freq|mean|median|percent|sum specifies the statistic for the vertical
axis. Default is sum when response= is used; else default is freq.

SAS Example C11

When the values of a quantitative variable are identified by values of a nom-
inal variable with a large range of values or a category variable with a large
number of levels are required to be summarized graphically, the dot chart is an
extremely useful tool. In these situations, not only are dot plots more compact
than, say horizontal bar charts, they are easily modified if the category vari-
able is divided into groups or when the quantitative variable is itself classified
into several groups. A detailed early discussion of dot charts is found in Cleve-
land (1985). In this example (see SAS program in Fig. 3.25), the quantitative

libname mylib "C:\users\user_name\Documents\...\Class\";

proc sgpanel data=mylib.fueldat;
title "Dot Plot of Fuel Use by Fuel Tax";
panelby Taxgrp/layout=rowlattice;
dot State/response=Fuel categoryorder=respasc;
rowaxis valueattrs=(color=maroon size=5 px);

run;

Fig. 3.25. SAS Example C11: dot plots with SGPANEL procedure
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variable Fuel from the fuel data set used earlier in Chap. 2 is used to display
per capita fuel use by states. The use of the SGPANEL procedure here in-
stead of SGPLOT allows the user to split the states according to the levels
of the fuel tax category variable created earlier. Thus the dot plots (shown in
Fig. 3.26) appear in two separate panels laid out in a single column (the row
lattice structure is illustrated here in contrast to the panel arrangement).

Fig. 3.26. Output from SAS Example C11: dot plots in panels
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The categoryorder=respasc option is used to order the state values al-
phabetically in ascending order. However, the values of the category variable
(State in this example) may not be printed at all the tick marks on the row
axis (here the vertical axis) because the default size of the characters is too
large for the space available for placing the tick marks. Since, for a dot plot to
be useful, one needs to be able to identify all markers, the size of characters
used in printing the value labels may be modified using the valueattrs= pa-
rameter available in a rowaxis statement. In Example C11, the size of value
labels is changed to 5 pixels.

3.3.3 The SGSCATTER Procedure

When more than two variables are measured on observational or experimental
subjects (or units), the relationships among several variables may need to be
analyzed simultaneously. One possible approach is to obtain bivariate scatter
plots of all pairs of variables and display them arranged in a two-dimensional
array of plots.

For example, if three variables are present, six pairwise scatter plots are
possible, since a pair of variables can be graphed in two possible ways (choos-
ing one as the x variable and the other as the y variable and vice versa).
These six plots can be displayed as a 3× 3 matrix of plots, each row-column
combination of the matrix representing the position for placement of a plot.

Although displaying only the lower (or upper) triangle of the matrix ap-
pears sufficient, most software programs display the entire matrix since it
enables the user to observe patterns or associations that may exist among
the variables that may not have dependency relationships that may exist, say,
in regression applications. An additional numeric variable (usually an ordi-
nal variable, category variable, or a grouping variable created from the values
of another variable) may be represented in these scatter plots either by us-
ing different symbols or colors (or both) to examine whether clusters of the
observations exist as may be defined by such categories.

The SGSCATTER procedure creates scatter plots for multiple combina-
tions of variables that may be arranged as side-by-side panels or a matrix of
panels depending on the plot statement used. Three plot statements available
with SGSCATTER are plot, compare, and matrix. Options are available for
overlaying fit plots and ellipses on the scatter plots, changing plot appearance
including marker attributes, and controlling legends and labels:

PROC SGSCATTER <options>;

COMPARE X=variable |(variable-1...variable-n)

Y=variable |(variable-1 ...variable-n) </options>;

MATRIX variable-1 variable-2 < ...variable-n > </options>;

PLOT plot-request(s) </options>;
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Some MATRIX Statement Options

datalabel= specifies a variable that is used to create data labels for each
point in the plot.

datalabelpos= specifies the location of the data label with respect to the
plot. Position can be one of the following values: bottom, bottomleft,
bottomright, left, center, right, top, topleft, and topright.

ellipse <=(options)> adds a confidence or prediction ellipse to each cell that
contains a scatter plot.

group= specifies a variable that is used to group the data.

legend=(options) specifies the appearance of the legend for the scatter plot.

markerattrs= specifies appearance of markers in the plot (as a style element
or using sub-options color=, size=, and symbol=).

nolegend= removes the legend from the graph.

data world;
infile "C:\users\user_name\Documents\...\Class\demogr.txt";
input Country $20. Birthrate Deathrate InfMort LifeExp PopUrban

PercGnp LevTech CivilLib;
label Birthrate=’Crude Birth Rate’

Deathrate=’Crude Death Rate’
InfMort=’Infant Mortality Rate’
LifeExp=’Life Expectancy in yrs.’
PopUrban=’Percent of Urban Population’
PercGnp=’Per capita GNP in U.S. dollars’
LevTech=’Level of Technology’
CivilLib=’Degree of Denial of Civil Liberties’;

if LevTech<13 then TechGrp=1;
else if 13<= LevTech<25 then TechGrp=2;
else if 25<= LevTech<60 then TechGrp=3;
else if LevTech>= 60 then TechGrp=4;

label TechGrp=’Level of Technology’;
run;
proc format;

value tg 1=’Low’
2=’Moderate’
3=’High’
4=’Very High’ ;

run;

proc sgscatter data=world;
title "Scatterplot Matrix of Demographic Variables";
matrix PopUrban PercGnp InfMort LifeExp

/group=TechGrp;
format TechGrp tg.;

run;

Fig. 3.27. SAS Example C12: scatter plot matrix of world demographic data
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SAS Example C12

In a multiple regression situation, scatter plot matrices are especially useful
for establishing types of relationship that individual independent variables
(regressors, explanatory variables) may have with the dependent variable (re-
sponse). This may help in the model building stage, by suggesting the form
the variables may enter the model (e.g., by suggesting possible transforma-
tions, etc. that linearize relationships). The scatter plot matrix may also help
in studying pairwise collinearities that may exist among the independent vari-
ables, information useful in model selection procedures.

The data set with demographic variables measured for 60 countries used
in SAS Example C10 is used again in SAS Example C12 program shown
in Fig. 3.27. Note that labels have been added to the program so that the
graphical output is enhanced. Suppose that a scatter plot matrix of the four
variables named PopUrban, PercGnp, InfMort, and LifeExp is required. With
proc sgscatter, all that is required to accomplish this is to use a matrix state-
ment, list the four variables as the required arguments, and include any other
desired options following a backslash. In this example, the group=TechGrp

option causes the data values to be grouped by the values of the category
variable TechGrp. The scatter plot matrix is reproduced in Fig. 3.28. From
this plot, it can be observed, as one might expect, that there is a strongly
negative linear relationship between infant mortality rate and life expectancy.
There also appears to be linear relationships between each of these variables
with percent of urban population that, in each case, is not particularly strong.
These two variables also appear to have different nonlinear relationships with
Per Capita GNP.

Attribute Map Data Sets

It may be desirable to use different visual attributes of elements of a graph
rather than the default settings when the group= option is used in a plot
statement such as in the matrix statement in proc sgscatter, for example.
The easiest way to accomplish this is by creating an attribute map data set.
This data set will contain variables that correspond to each of the attributes
for which one desires to assign new values and variables named Id and Value

that contains the group variable name and its possible values, respectively.

Table 3.6. Attribute map for TechGrp

Id Value MarkerColor MarkerSymbol MarkerSize

TechGrp Low darkcyan “CircleFilled” 8
TechGrp Moderate blueviolet “CircleFilled” 8
TechGrp High crimson “CircleFilled” 8
TechGrp Very High green “CircleFilled” 8
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Fig. 3.28. Output from SAS Example C12: scatter plot matrix of world demo-
graphic data

The number of observations of this data set will be exactly the same as the
number of possible values of the group variable. Suppose that in SAS Example
C12, it is desired to change the plot symbols to filled circles, and the size of
the symbols to 8 pixels, but use four different colors that correspond to the
four different values of the TechGrp variable, as the color attribute of the
plot symbols. The attribute map data set required to achieve this objective is
shown in Table 3.6.

The names of the variables other than Id and Value are established Style
Attribute names associated with ODS graphics, available from Style Attribute
tables in the ODS User’s Guide. Some common attributes include Color,
Font, FillColor, FillPattern, LineColor, LineStyle, LineThickness, Marker-
Size, MarkerSymbol, and TextColor. The attribute map data set shown in
Table 3.6 specifies values for MarkerColor, MarkerSymbol, and MarkerSize
attributes. In the SAS program shown in Fig. 3.29, the dattrmap= option in
the proc sgscatter statement references the data set, named mymap and created
in the data step shown that is designed to create the attribute map data set as
shown in Table 3.6. The attrid= references the value of the Id variable, here
TechGrp. Note carefully that as the value of the variable TechGrp changes,
style attributes such as the marker color assumes different values, while style
attributes such as the marker symbol stays unchanged.
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The scatter plot matrix output from this program is not reproduced here.
In addition to SGSCATTER, attribute maps may be used with procedures
SGPLOT and SGPANEL. A discrete attribute map data set can contain more
than one attribute map. This capability enables the user to apply different
attribute maps to several group variables in a graph.

**** insert SAS code that creates the data set world as in SAS Example C12 *****

data mymap;
length MarkerColor MarkerSymbol $ 12;
input Id $ Value $9. MarkerColor $ ;
MarkerSymbol="CircleFilled";
MarkerSize=8;
datalines;
TechGrp Low darkcyan
TechGrp Moderate blueviolet
TechGrp High crimson
TechGrp Very High green
;

proc sgscatter data=world dattrmap=mymap;
title "Scatterplot Matrix of Demographic Variables";
matrix PopUrban PercGnp InfMort LifeExp

/group=TechGrp attrid=TechGrp;
format TechGrp tg.;

run;

Fig. 3.29. SAS Example C12: scatter plot matrix of world demographic data

3.4 ODS Graphics from Other SAS Procedures

In Sect. 3.1, it was stated that ODS Graphics output is produced automati-
cally by many SAS procedures when statements that create these graphics are
included in the proc step. This output is called ODS Graphics (to distinguish
them from statistical graphics produced using traditional SAS/GRAPH procs
or statements). For example, the HISTOGRAM statement used in a proc

univariate step will produce ODS Graphics output in HTMLBlue style, and
in SAS 9.4, this output can be automatically displayed in an internal viewer or
directed to an ODS destination that accommodates graphics. ODS Graphics
produces graphs in standard image file formats, and the consistent appearance
and individual layout of these graphs are controlled by ODS styles and tem-
plates, respectively, as stated previously. Since the default templates for ODS
Graphics are provided by SAS software, detailed setting of parameter values
is not necessary to produce these graphs. These are produced as automatically
as tables of statistical analysis output by these procedures. Among the com-
monly used SAS procedures that produce ODS Graphics are the Base SAS
procedures CORR, FREQ, and UNIVARIATE and the SAS/STAT procedures
such as REG, GLM, CLUSTER, CALIS, MIXED, LOGISTIC, PRINCOMP,
TTEST, PHREG, MDS, and KDE among many others. The following two
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examples are used to illustrate ODS Graphics in this section. Several other
examples of ODS Graphics will be found in other chapters where these pro-
cedures are used.

SAS Example C13

The Base SAS procedure UNIVARIATE is used to construct a histogram and
a normal probability plot. The histogram and the probplot statements are
used here in their simplest forms. All quantities required to make each of the
plots are computed internally.

libname mylib "C:\users\user_name\Documents\...\Class\";

proc univariate data=mylib.fueldat noprint;
var Income Fuel;
histogram Income;
probplot Fuel/normal(mu=est sigma=est) odstitle=title;
title ’Use of Proc Univariate for Creating ODS Graphics:1’;

run;

Fig. 3.30. SAS Example C13: program

Fig. 3.31. SAS Example C13: histogram

SAS Example C13 shown in Fig. 3.30 accesses the SAS data set named
fueldat from a library using the two-level name mylib.fueldat. As usual,
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the appearance of the graphical output from this program is controlled by
default style elements for each graph under ODS Graphics (see Figs. 3.31 and
3.32). Note that the histogram has a title generated automatically under the
default style; however, the text in the title statement supplied in the program
is used as the title for the normal probability plot as a result of including the
odstitle= option in the probplot statement.

Fig. 3.32. SAS Example C13: normal probability plot

If ODS Graphics is turned off (either by using a ODS GRAPHICS OFF
statement or interactively, using the Preferences dialog), a graph based on
traditional graphics may be obtained. Traditional graphics are controlled by
SAS/GRAPH statements and procedure options and are not discussed in the
current edition of this book. However, for illustrating the differences between
the appearance of these graphs, the code for SAS Example C13 is modified
as follows. The probplot statement is modified using traditional graphics op-
tions to specify the color and line type of the reference line, color of axis lines,
and color and height of the text appearing on axis lines and to add minor tick
marks, as follows:

probplot Fuel/normal(mu=est sigma=est color=red l=2)

caxis=blue ctext= red height= 2 vm=9 pctlminor;

In addition the symbol statement (as one may use with SAS/GRAPH)

symbol1 c=steelblue v=dot i=none;

may also be added to enhance the appearance of the plot symbols. The mod-
ified graph obtained via traditional SAS Graphics is shown in Fig. 3.33. It is
immediately noticeable that this graph is different from Fig. 3.32 which was
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Fig. 3.33. SAS Example C13: normal probability plot (modified using traditional
SAS Graphics options)

produced via ODS Graphics. The graph in Fig. 3.33 has the appearance of a
graph produced by traditional SAS Graphics. The use of these options enables
SAS to use traditional graphics options if ODS Graphics is turned off, and
these options will be ignored if the program is executed with ODS Graphics
in effect.

libname mylib "C:\users\user_name\Documents\...\Class\";

proc univariate data=mylib.fueldat noprint;
var Fuel;
class Incomgrp;
histogram Fuel/nrows=3;
title ’Use of Proc Univariate for Creating Graphics:2’;

run;

Fig. 3.34. SAS Example C14: program

SAS Example C14

It would be useful if histograms for different levels of a category variable
can be constructed and displayed in panels. The options in the class and
histogram statements under the UNIVARIATE procedure enable the creation
of histograms for different groups. Using the same SAS data set fueldat as in
SAS Examples C9 and C13, SAS Example C14 displayed in Fig. 3.34 produces
histograms of fuel consumption for three different income groups. The category
variable Incomgrp is specified in the class statement. The three histograms
are displayed in three single-cell plot panels when nrows=3 is specified in the
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histogram statement. The graph in Fig. 3.35 shows the histograms produced
by this proc univariate step.

Fig. 3.35. SAS Example C14: histograms by income groups

SAS Example C15

A fitted normal density curve and computed statistics can be overlaid into the
ODS Graphics produced by the UNIVARIATE procedure using the options
under the histogram and inset statements. By using ODS SELECT state-
ment, SAS Example C15 shown in Fig. 3.36 outputs specific objects into the
ODS destination, including parameter estimates, goodness of fit test, quantiles
of the fitted normal distribution, and histograms.

libname mylib "C:\users\user_name\Documents\...\Class\";

ods select ParameterEstimates GoodnessOfFit FitQuantiles Histogram;
proc univariate data=mylib.fueldat noprint;

var Income;
histogram Income/normal(percents=20 30 40 50 60 70 80);
inset n mean std normal(ad adpval) / pos = ne format = 6.3;
title ’Use of Proc Univariate for Creating Graphics:3’;

run;

Fig. 3.36. SAS Example C15: program
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Fig. 3.37. SAS Example C15: histograms with normal fit overlay

Figure 3.37 shows the histogram produced by the histogram statement
in SAS Program C15, which is essentially the same as that produced in SAS
Example C13.

Use of Proc Univariate for Creating Graphics:3

The UNIVARIATE Procedure
Fitted Normal Distribution for Income (Per capita Income(in thsnds.))

Parameters for Normal
Distribution

Parameter Symbol Estimate

Mean Mu 4.241833

Std Dev Sigma 0.573624

Goodness-of-Fit Tests for Normal Distribution

Test Statistic p Value

Kolmogorov-Smirnov D 0.08029628 Pr > D >0.150

Cramer-von Mises W-Sq 0.05839137 Pr > W-Sq >0.250

Anderson-Darling A-Sq 0.37509336 Pr > A-Sq >0.250

Quantiles for Normal
Distribution

Quantile

Percent Observed Estimated

20.0 3.65600 3.75906

30.0 3.84600 3.94102

40.0 4.18800 4.09651

50.0 4.29800 4.24183

60.0 4.34500 4.38716

70.0 4.47600 4.54264

80.0 4.81700 4.72461

Fig. 3.38. SAS Example C15: selected tables and graphics from proc univariate
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However, by adding the normal option after the backslash in the histogram
statement, a normal density curve with the fitted mean and standard deviation
is overlaid on the histogram. The inset statement augments the plot with
selected statistics, in this case, the number of observations, the fitted mean,
and standard deviation of the normal density, as well as the Anderson–Darling
statistic and the associated p-value for the fitted normal distribution. The
position and format of these statistics are decided by the options pos= and
format=. Except for the histogram, the estimated parameters, the goodness
of fit test, and the quantiles of the fitted normal distribution are produced as
the result of the ODS SELECT statement, as shown in Fig. 3.38.

SAS Example C16

As will be illustrated in many examples throughout this book, SAS statistical
procedures generate ODS Statistical Graphics automatically as part of the
output (just as tables of statistics are produced as part of the results). The
GLM procedure is used on the hydrocarbon emissions data set used previously

.... insert data step and the oroc format step from SAS Example C7 here.....

proc glm data=emissions;
title "Hydrocarbon Emissions Distribution by Period";
class period;
model hc=period;
format period pp.;

run;

Fig. 3.39. SAS Example C16: program

Fig. 3.40. SAS Example C16: graphics from proc glm



3.5 Exercises 193

in SAS Example C7 (see Figs. 3.16 and 3.17). Since the statistical tables’ out-
put are not relevant to this example, they are not reproduced here (Fig. 3.39).
The set of side-by-side box plots displayed in Fig. 3.40 is a commonly used
graphical tool for examining homogeneity of variances in analysis of variance
setting.

3.5 Exercises

3.1 Carry out an analysis similar to SAS Example C3 for the Weight variable
in the biology data set using proc univariate in a SAS program. Ob-
tain a histogram using midpoints that you select and an overlaid normal
curve fitted to the data. Also use an ODS SELECT statement to create
tables and graphics to be included in the output as shown in that ex-
ample. You may read the data from the text file biology.txt or create
and save a SAS data set beforehand to use in this SAS program.

3.2 Groundwater quality is affected by the geological formations in which it
is found. A study of chlorine concentration was carried out to determine
whether differences in quality existed for water tables on the east and
west sides of the Rio Grande River in New Mexico. The data from wells
on each side in (milliequivalents), reported in Koopmans (1987)), are

West Side: 0.58, 0.38, 0.32, 0.55, 0.56, 0.62, 0.61, 0.63, 0.52, 0.53, 0.49,
0.37, 0.40, 0.62, 0.44, 0.18, 0.24, 0.21

East Side: 0.34, 0.24, 1.03, 0.68, 0.29, 1.14, 0.34, 0.46, 0.53, 0.40, 0.33,
0.37, 0.40, 0.55, 0.76, 0.37, 0.40, 0.45, 0.30, 0.46, 0.12, 0.39,
0.65

3.8 Use proc ttest (as in SAS Example C4) to obtain histograms with
overlaid normal fits and side-by-side box plots of chlorine concentrations
for the two sides of the river. Use information provided by the box plots
and Q–Q plots to describe and compare (location, dispersion, and shape
of) chlorine concentration distributions on the two sides of the river. Use
the output tables to comment on the equality of variances of the two
populations. Perform a t-test of μwest = μeast based on an appropriate
p-value (based on pooled t-test or the t-test based on Satterthwaite
approximation) and state your conclusion.

3.9 Rice (1987) cites an experiment that was performed to determine
whether two forms of iron (Fe2+ and Fe3+) are retained differently. The
investigators divided 108 mice randomly into 6 groups of 18 each; 3
groups were given Fe2+ in 3 different concentrations, 10.2, 1.2, and 0.3
millimolar, and 3 groups were given Fe3+ at the same three concentra-
tions. The mice were given the iron orally, and the percentage of iron
retained was calculated by radioactively labeling the iron. The data for
the six “treatments” of iron by each mouse are listed in the following
table:
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a. Construct side-by-side box plots using proc sgplot as in SAS Ex-
ample C7 for the six treatments. Place the plots on the x -axis in the
order high, medium, and low doses for each of the two forms of iron,
respectively. Compare and comment on features such as shape, loca-
tion, dispersion, and outliers of the six iron retention distributions.

b. Comment on any observed trend in the median % iron retention over
the levels and the forms of iron. What is the observed trend in disper-
sion (as measured by, say, IQR)? That is, compare the distributions
of % iron retention across the six treatments.

c. Statistical analysis of this data (e.g., using a one-way ANOVAmodel)
may be complicated by failure of assumptions such as homogeneity
of variance and/or non-normal distributions. Do the box plots show
evidence of these problems? Explain. If there is reason to believe that
the assumptions fail based on the plots, a possible explanation is that
each distribution is related to the median level of % iron retention in
some way. Discuss whether there appears to be such a relationship
and describe the relationship algebraically.

Fe3+ Fe2+

10.2 1.2 0.3 10.2 1.2 0.3

0.71 2.20 2.25 2.20 4.04 2.71
1.66 2.93 3.93 2.69 4.16 5.43
2.01 3.08 5.08 3.54 4.42 6.38
2.16 3.49 5.82 3.75 4.93 6.38
2.42 4.11 5.84 3.83 5.49 8.32
2.42 4.95 6.89 4.08 5.77 9.04
2.56 5.16 8.50 4.27 5.86 9.56
2.60 5.54 8.56 4.53 6.28 10.01
3.31 5.68 9.44 5.32 6.97 10.08
3.64 6.25 10.52 6.18 7.06 10.62
3.74 7.25 13.46 6.22 7.78 13.80
3.74 7.90 13.57 6.33 9.23 15.99
4.39 8.85 14.76 6.97 9.34 17.90
4.50 11.96 16.41 6.97 9.91 18.25
5.07 15.54 16.96 7.52 13.46 19.32
5.26 15.89 17.56 8.36 18.4 19.87
8.15 18.3 22.82 11.65 23.89 21.60
8.24 18.59 29.13 12.45 26.39 22.25

3.10 Insulin production from beta islets (insulin-producing cells) in the pan-
creas of obese rats, reported in Koopmans (1987), are reproduced be-
low. In addition to measurements made at end of each of the first 3
weeks, data are also available for the first day of the experiment (labeled
Week 0):
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Week 0 Week 1 Week 2 Week 3
31.2 18.4 55.2 69.2
72.0 37.2 70.4 52.0
31.2 24.0 40.0 42.8
28.2 20.0 42.8 40.6
26.4 20.6 26.8 31.6
40.2 32.2 80.4 66.8
27.2 23.0 60.4 62.0
33.4 22.2 65.6 59.2
17.6 7.8 15.8 22.4

a. Construct side-by-side box plots using proc sgplot, as in SAS Ex-
ample C13, for the four periods of study. Compare and comment
on features such as shape, location, dispersion, and outliers of the
distributions of insulin production for each week.

b. Comment on the observed trend in the median insulin production as
time increases. What is the observed trend in dispersion (as measured
by IQR)? That is, compare the distributions of insulin production
across the period of study.

c. Statistical analysis of this data (e.g., using a one-way ANOVAmodel)
may be complicated by failure of assumptions such as homogeneity
of variance, non-normal distributions, or presence of outliers. Do the
box plots show evidence of any of these problems? Explain. If any of
the above-mentioned problems exist, can you relate these problems
to the median level of insulin production? Explain.

3.11 Use the fitness data set (see Table B.4) and proc sgpanel to obtain
vertical bar charts showing the means of the BMI variable for each of
the three age groups defined by the AgeGrp variable. Obtain this plot
in three panels, each panel corresponding to a level of the WtGrp vari-
able. Make sure that the three panels all appear side by side in one row.
Use appropriate user-defined formats for the grouping variables. (Note:
In Exercise 2.11, the numeric category variable WtGrp that takes val-
ues 1, 2, or 3 accordingly as the subject’s weight is ≤140 lbs, over 140
but ≤165 lbs, or above 165 lbs, respectively, and another numeric cate-
gory variable AgeGrp that takes values ‘A’, ‘B’, or ‘C’ accordingly as the
subject’s age is ≤25, values between 25 and ≤45, or above 45, respec-
tively, were created. You may use user-defined formats to enhance the
appearance of these levels in the output graphics.)

3.12 Use the fitness data set (see Table B.4) and proc sgplot to ob-
tain horizontal bar charts showing the means of the Aero variable
for each of the three groups of people with oxygen uptake rates
(<9.3, 9.3 to ≤10.5, and >10.5), defined as a user-defined format for
Oxygen variable. Subdivide each bar into the three 1.5-mile runtime
groups (45, 45 to ≤49, and >49) defined by a user-defined format for
RunTime variable. Then use format statements in the proc sgplot step
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to associate these user-defined formats to the variables Oxygen and
Runtime. Use the keylegend statement to position the legend in the
top-right corner inside the outline. To make room for the legend includes
the statement yaxis offsetmin=.2; in your proc step. (Note: As noted
in Sect. 2.1.4, using user-defined formats directly in a proc step to assign
continuous variable values into classes is much simpler method than
creating a separate category variables for this purpose.)

3.13 Obtain a normal probability plot of the Popurban variable and a his-
togram of the the Deathrat variable in the demographic data set
on countries (see Table B.5) used in SAS Example C12. Use proc

univariate, as was done in the SAS Example C13 program. Use the
normal option to add a reference line to the probabilty plot. Suppress
all other output being produced from this step. (Note: You may use the
SAS data set world created in Exercise 2.14 for this problem.)

3.14 Use the world SAS data set and proc sgplot to obtain horizontal bar
charts showing the means of the per capita GNP variable for each of the
two groups of countries with level of technology defined by the Techgrp
variable. Subdivide each bar into the three groups, defined by the Infgrp
variable. Use the keylegend statement to position the legend in the top-
right corner inside the outline. To make room for the legend includes
the statement yaxis offsetmin=.2; in your proc step. Use appropriate
user-defined formats for all grouping variables. For this problem, assume
that the world SAS data set created in Exercise 2.14 is available (other-
wise, you may create this data set by executing SAS code as described
in that exercise).

3.15 For this problem assume that the world SAS data set created in Exer-
cise 2.14 is available (otherwise, you may create this data set by execut-
ing SAS code as described in that exercise). Write five proc steps using
statistical graphics (sg) procedures in the same SAS program (or
separate SAS programs) to access the world SAS data set and produce
the following plots:

a. Scatterplot of crude birth rate against per capita GNP identifying
each point by the country name. (Use markerattrs= option on the
scatter statement to select the color, symbol, and size of the marker
symbol and data labels)

b. Histogram of life expectancy with bins staring at 30 with binwidth of
4. The variable on the vertical axis must be the frequencies (counts).

c. Simple linear regression of life expectancy against crude birth rate
showing confidence and prediction bands.

d. Scatterplot matrix of the four variables crude birth rate, crude death
rate, infant mortality, and life expectancy identifying each point by
technology group.
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e. Obtain a dot plot of the Lifeexp variable to display life expectancy
per country with countries for each technology group in separate
panels (one panel per row). (Use rowaxis statement to control the
color and size of the labels on the category variable axis.)

3.16 Use the the world SAS data set created in Exercise 2.14 for this problem
as in the above problem. In order to study the effects of urbanization
on crude death and birth rates, obtain side-by-side scatter plots of these
variables against urban population variable. Identify the points by group-
ing them by the technology category variable. Change the attributes of
the plot symbol so that they are filled circles of size 5 pixels. Also overlay
each scatter plot with a loess smoother curve that will show the trend
more clearly, making sure that the grouping variable is ignored for this
fit and that a quadratic is used for each local regression. Also choose a
dashed line type and magenta color for the smoother lines.

3.17 The data set available in the Excel file heart.xlsx is a selected subset
of the SASHELP SAS data file heart containing data from the Framing-
ham Heart Study. The variables of interest are AgeAtDeath (a numeric
variable), DeathCause, and Sex which are character variables. Import
the data using proc import and create a SAS data set named heart.
Include statements to create a user-defined numeric format to convert
values of age ≤ 29 30 to ≤50, 51 to ≤70, and >71 to character strings
“Under 30,” “30 to 50 years,” “51 to 70 Years,” and “Over 70,” respec-
tively. Use proc sgpanel to obtain a 2×2 panel of bar charts of numbers
of deaths due each of four causes of death grouped by sex ( i.e., bars for
each value of sex to appear side by side (i.e., clustered)). Note carefully
that the formatted variable AgeAtDeath serves as the category variable
to be used in proc sgpanel statements.

3.18 Obtain a histogram of the Nox variable from the pollution data set (see
Tables B.7). Examining the output from proc univariate for this vari-
able, it is observed that Nox values are highly dispersed. So it is necessary
to use unevenly spaced intervals to obtain a useful bar chart for this vari-
able. To do this, center the bars at the values, first from 2.5 through 27.5,
incremented by 5, and then at 35, 50, 80, and 200, respectively (i.e., 10
intervals in all). In this problem, use a user-defined numeric format and
the vbar statement in proc univariate. Subdivide the bars by the cat-
egory variable Density created in the data step so it has values “Low,”
“Medium,” or “High,” depending on whether the value for the variable
Popn is less than 3000. A suggested range of values of the Nox variable to
be converted to midpoints is as follows: low, <5=“2.5”; 5, <10=“7.5”;
10, <15=“12.5”; 15, <20=“17.5”; 20, <25=“22.5”; 25, <30=“27.5”; 30,
<40=“35”; 40, <60=“50”; 60, <100=“80”; and 100, high=“200.”
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Statistical Analysis of Regression Models

4.1 An Introduction to Simple Linear Regression

In this section, a review of simple linear regression or straight-line regression is
presented. Consider bivariate data consisting of ordered pairs of numerical
values (x, y). Often such data arise by setting an X variable at certain fixed
values and taking a random sample from the population of Y that, hypothet-
ically, exists for each setting of X. The variable Y is called the dependent
variable or the response variable and the variable X is called the independent
variable or the predictor variable. The y-values observed at each x-value are
assumed to be a random sample from a normal distribution with the mean
E(y) = μ(x) = β0 +β1x; that is, the mean of the distribution is modeled as a
linear function of x. The variance of the normal distributions at each x-value
is assumed to have the same value σ2. Thus, the y-values can be related to
the x-values through the relationship

y = β0 + β1 x+ ε (4.1)

where ε is a random variable (called random error) with mean zero (i.e.,
E(ε) = 0) and variance σ2. Equation 4.1 is called the simple linear regression
model and β0, β1, and σ2 are the parameters of the model. In the above
representation, note that y is a random variable with mean E(y) = β0 + β1 x
and variance σ2.

Estimation of Parameters

The first step in regression fitting is to obtain estimates of the model parame-
ters using the observed data. The method of least squares selects a model that
minimizes the total squared error of prediction. The error or the residual is
the difference between an observed value y for a given value of x and ŷ and
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the value of y predicted by the fitted model at that particular value of x. The
method of least squares selects the line that produces the smallest value of the
sum of squares of all residuals; that is, mathematically, it finds the estimates
β̂0 and β̂1 that minimize the quantity

∑

i

(yi − ŷi)
2 =
∑

i

(yi − β̂0 − β̂1 xi)
2

where (xi, yi), i = 1, 2, . . . , n, are all pairs of observations available. The

values β̂0 and β̂1 are called the least squares estimates of β0 and β1,
respectively. The fitted regression equation ŷ = β̂0 + β̂1 x is usually called
the prediction equation and is used to calculate the predicted value ŷ for a
specified value of x. Since the mean of y is E(y) = β0 + β1 x, the estimate of

the slope β̂1 is the estimate of the change in the mean of y for a unit change
in the x-value.

Statistical Inference

Following the fitting of a least squares line to the data, it is of interest to
measure how well the line estimates the population means. This is achieved
by the computation of quantities necessary to perform statistical inference
about the parameters of the model, such as hypothesis tests and confidence
intervals. The first step is usually to construct an analysis of variance that
partitions the total sum of squares, SSTot=

∑
(y − ȳ)2, into two parts: the

sum of squares due to regression, SSReg=
∑

(ŷ − ȳ)2, and the sum of squares
of residuals, SSE=

∑
(y − ŷ)2. This algebraic partition is represented in the

following ANOVA table for regression:

Source df Sum of Mean F
squares square

Regression 1 SSReg MSReg=SSReg/1 MSReg/MSE

Error n− 2 SSE MSE=SSE/(n− 2)

Total n− 1 SSTot

This table provides several important statistics that are useful for assessing
the fit of the model. First, the F -ratio, F = MSReg/MSE, is used to test the
hypothesis that H0 : β1 = 0 versus Ha : β1 �= 0. Second, the MSE from
the above table provides the least squares estimate of σ2. This is useful
for calculating the standard errors of the estimates β̂0 and β̂1, commonly
denoted by sβ̂0

and sβ̂1
, respectively. Test statistics for performing t-tests and

confidence intervals for the β0 and β1 coefficients are calculated using these
standard errors. For example, a t-statistic for testing H0 : β1 = 0 versus
Ha : β1 �= 0 is given by

t =
(β̂1 − 0)

sβ̂1
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and a (1− α)100% confidence interval for β1 is given by

β̂1 ± tα/2,(n−2) × sβ̂1

Third, the ratio R2 = SSReg/SSTot, called the coefficient of determination,
measures the proportion of variation in y explained by using ŷ to predict y.
A simple linear regression model using the predictor variable x with a larger
R2 does better in predicting y than one with a smaller R2. Note that R2 does
not say how accurate the prediction is nor does it say that a straight line is
the best function of x that could be used to model the variation in y.

4.1.1 Simple Linear Regression Using PROC REG

Consider the following problem. An investigation of the relationship between
traffic flow x (thousands of cars per 24 hours) and lead content y of bark
on trees near the highway (μg/g dry weight) yielded the data in Table 4.1
reported in Devore (1982).

Table 4.1. Lead content in trees near highways (Devore 1982)

Traffic flow, x 8.3 8.3 12.1 12.1 17.0 17.0 17.0 24.3 24.3 24.3 33.6
Lead content, y 227 312 362 521 640 539 728 945 738 759 1263

SAS Example D1

In the SAS Example D1 program (see Fig. 4.1), a simple linear regression
model is fitted to these data and statistics for making some of the statistical
inferences about the model discussed earlier are computed using proc reg.
This program produces printed output that helps to perform an elementary
regression analysis of the data. It contains SAS statements necessary to com-
pute an analysis of variance table, estimated values of the parameters and
their standard errors, associated t-statistics and confidence intervals, and the
predicted values and residuals. It also produces, in ODS Graphics, a scatter
plot of the data overlaid with the fitted regression line and several resid-
ual plots. These plots were selected by the use of the plots= option on the
proc reg statement as discussed below. Various other diagnostic statistics
and plots necessary for examining the adequacy of the model and accompa-
nying assumptions will be discussed in later examples.

The data are entered in a straightforward manner, where a pair of values
for the x variable named Traffic and the y variable named Lead, separated
by a blank comprise each line of data, so that the statement input Traffic

Lead; is all that is necessary to read the data and create the SAS data set
(named d1 in this example). The label statement
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data d1;
input Traffic Lead;
label Traffic="Traffic Flow (Thousands/24 hours)" Lead="Lead Content (mcg/gm)";
datalines;
8.3 227
8.3 312

12.1 362
12.1 521
17.0 640
17.0 539
17.0 728
24.3 945
24.3 738
24.3 759
33.6 1263
;
proc reg data=d1 plots(only)=(fit(nolimits) residuals residualbypredicted qq);

model Lead=Traffic/p r clb;
title "Simple Linear Regression of Lead Content Data";

run;

Fig. 4.1. SAS Example D1: program

label Traffic="Traffic Flow (Thousands/24 hours)" Lead="Lead

Content (mcg/gm)";

adds descriptive labels to the variables Traffic and Lead as illustrated in SAS
Example A10. In the proc reg step, the option data=d1 specifies that the SAS
data set to be processed is named d1. The use of such options is described in
Sect. 1.8 of Chap. 1. The model statement model y=model Lead=Traffic/r

p clb; specifies model (7.1) as Lead=Traffic. In this representation of the
model, an intercept β0 and the error term are assumed to be part of the model.
The output resulting from the model statement is shown in the section of the
SAS output (Fig. 4.2) titled Analysis of Variance.

Various other options may be included in the model statement, following
a slash (solidus) symbol, as keywords separated by at least one blank. For
example, the option noint may be used to specify that a model be fitted
without an intercept β0. In the present example, the options p (for predicted)
and r (for residual) request that residuals and predicted values are to be
computed and output along with the observed values for the response Lead,
as shown in the Output Statistics section of the SAS output (Fig. 4.3). The
clb option specifies that (1−α)100% confidence intervals for the β coefficients
be computed. By default, α = 0.05 is used, but the alpha= option allows the
user to specify an alternate confidence level. For example,

model Lead=Traffic/r p clb alpha=.1;

would produce 90% confidence intervals for the β’s, instead of the 95% con-
fidence intervals produced by default. The ANOVA table given below is con-
structed directly using the SAS output in Fig. 4.2.

Since the p-value is smaller than a level of significance selected for this
study (say, α = 0.05), the null hypothesis of H0 : β1 = 0 is rejected and it
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is concluded that the lead content on tree bark can be modeled by a simple
linear regression using traffic flow as a predictor variable. The R2 value for
this fit, also extracted from this section of the output, is 0.9143, showing that
91.3% of the variation in the response is explained by the fitted model. This
measure is used in practice as a measure of fit of the line and the close fit
shown in Fig. 4.4a supports this interpretation.

Source df Sum of Mean F p-value
squares square

Regression 1 815,966 815,966 96.0 < 0.0001

Error 9 76,493 8499

Total 10 892,459

Additionally, the parameter estimates (estimates of the coefficients), their
standard errors, and the t-statistics discussed in Sect. 4.1 are found in the
section titled Parameter Estimates of the SAS output (see Fig. 4.2).

Simple Linear Regression of Lead Content Data

The REG Procedure
Model: MODEL1

Dependent Variable: Lead Lead Content (mcg/gm)

Number of Observations Read 11

Number of Observations Used 11

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 815966 815966 96.01 <.0001

Error 9 76493 8499.17298

Corrected Total 10 892459

Root MSE 92.19096 R-Square 0.9143

Dependent Mean 639.45455 Adj R-Sq 0.9048

Coeff Var 14.41712

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
95%

Confidence Limits

Intercept Intercept 1 -12.84155 72.14287 -0.18 0.8627 -176.04007 150.35696

Traffic Traffic Flow (Thousands/24
hours)

1 36.18385 3.69290 9.80 <.0001 27.82994 44.53776

Fig. 4.2. SAS Example D1: analysis of variance and parameter estimates
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The prediction equation is calculated to be ŷ = −12.84 + 36.18x; thus,
the fitted line has a positive slope. The value of the t-statistic is 9.80 with a
p-value < 0.0001, which again shows that the hypothesis H0 : β1 = 0 will be
rejected. The 95% confidence interval for β1 is computed to be (27.83, 44.54),
as shown in the last two columns of the Parameter Estimates section. Thus
with 95% confidence, the increase in mean lead content on tree bark that
results from an increase in traffic flow by 1000 cars in 24 hours lies in the
above interval.

The above prediction equation must be used with caution. In practice, it is
recommended that predictions be made only within the range of x-values ob-
served. That is because extrapolation outside this range may cause problems,
as the model may no longer be valid. For example, the intercept of the fitted
line is ŷ = −12.84 (i.e., the predicted value given by the prediction equation
at x = 0). Thus, when there is no traffic flow, the lead content of bark on trees
near the highway is predicted to be −12.84 when the model is extrapolated to
x = 0! This argument shows that in such situations, the routine test of β0 = 0
(i.e., the y-intercept at x = 0) also will not make sense. Although −12.84 is an
unrealistic value, this value of the intercept is needed to pass the least squares
regression line through the center of the data. Thus the results of the test of
β0 = 0 or the confidence interval calculated for β0 should be disregarded here.

Simple Linear Regression of Lead Content Data

The REG Procedure
Model: MODEL1

Dependent Variable: Lead Lead Content (mcg/gm)

Output Statistics

Obs
Dependent

Variable
Predicted

Value
Std Error

Mean Predict Residual
Std Error
Residual

Student
Residual -2-1 0 1 2

Cook's
D

1 227.0000 287.4844 45.4206 -60.4844 80.226 -0.754 |     *|      | 0.091

2 312.0000 287.4844 45.4206 24.5156 80.226 0.306 |      |      | 0.015

3 362.0000 424.9830 35.3804 -62.9830 85.132 -0.740 |     *|      | 0.047

4 521.0000 424.9830 35.3804 96.0170 85.132 1.128 |      |**    | 0.110

5 640.0000 602.2839 28.0543 37.7161 87.819 0.429 |      |      | 0.009

6 539.0000 602.2839 28.0543 -63.2839 87.819 -0.721 |     *|      | 0.026

7 728.0000 602.2839 28.0543 125.7161 87.819 1.432 |      |**    | 0.105

8 945.0000 866.4260 36.1835 78.5740 84.793 0.927 |      |*     | 0.078

9 738.0000 866.4260 36.1835 -128.4260 84.793 -1.515 |   ***|      | 0.209

10 759.0000 866.4260 36.1835 -107.4260 84.793 -1.267 |    **|      | 0.146

11 1263 1203 63.8739 60.0643 66.478 0.904 |      |*     | 0.377

Fig. 4.3. SAS Example D1: output statistics
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The proc reg statement plots= option used in SAS Example D1

plots(only)=(fit(nolimits) residuals residualbypredicted qq)

is an example of using the plots= option for selecting ODS-based graphics
created in proc reg for output. The option fit(nolimits) produces a scat-
ter plot with the y-variable on the vertical axis and the x-variable on the
horizontal axis overlaid with the fitted regression line. The nolimits sub-
option suppresses the plotting of confidence and prediction bands that will
be discussed later. The resulting graph is shown in Fig. 4.4a. The statistics
such as R2 and MSE that appear by default outside the right margin of the
plot may be suppressed using the suboption stats=none or output only se-
lected statistics using a suboption such as stats=(aic cp mse rsquare).
The option residuals will produce a plot of the residuals against the x vari-
able (Traffic) as shown in Fig. 4.4b. The option residualbypredicted will
produce a plot of the residuals against the predicted values, a very useful
diagnostic plot as will be discussed below. This graph is shown in Fig. 4.4c.
The option qq produces a normal probability plot of the residuals shown in
Fig. 4.4d.

Graphical tools may also be used to help identify cases for which assump-
tions about the distribution of ε is not valid. Most of the plots used for this
purpose involve some form of the residuals obtained from fitting the model,
(yi − ŷi), i = 1, . . . , n. In the plot of residuals versus x shown in Fig. 4.4b, the
residuals are expected to scatter evenly and randomly around the zero refer-
ence line as the value of x changes, because if the linear relationship specified
by the model is correct, the residuals should not display any relationship to
x. If some systematic nonlinear pattern is observed as x varies, it is usually
an indication of a need for higher-order polynomial terms in x to be included
in the model or for a model that is not linear in the parameters in some other
way. That is, a systematic pattern of the residuals when plotted against the x
variable is an indication of model inadequacy. Additionally, this plot may also
show a departure from the homogeneity of variance assumption, as a marked
decrease or increase of the spread of the residuals around zero may indicate a
dependence of the variance of y (and therefore of ε), on the actual values of
x. A few points that stand out in this plot due to a comparatively larger or
smaller residual than the others may also highlight outliers.

The graph of residuals versus predicted values is shown in Fig. 4.4c. This
scatter plot should also show no systematic pattern and should indicate ran-
dom scatter of residuals around the zero reference line if the straight-line
model is adequate. If the homogeneity of variance assumption is not plausi-
ble, a pattern indicating a steady increase or decrease in spread of the residuals
around the zero reference line as ŷi increases will also be evident. This pat-
tern may show up along with a curved pattern of the residuals, in both this
and the previous plot if nonlinearity is also present along with heterogeneous
variance.

The graph in Fig. 4.4d displays a normal probability plot where residu-
als are plotted against the corresponding percentiles of the standard normal
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Fig. 4.4. (a) Graph of Lead versus Traffic overlaid by the fitted line, (b) graph
of residuals versus Traffic, (c) graph of residuals versus predicted, (d) normal
probability plot of the residuals

distribution. Although residuals are used here, internally studentized resid-
uals, a version of standardized residuals and defined in Sect. 4.2.1 are also
sometimes used in this plot. This plot will show an approximate straight-line
pattern unless the normality assumption about the ε’s is questionable. More
discussion on how to interpret a normal probability plot appears in Chap. 2 in
Sect. 2.2, as part of the discussion of graphics produced by the UNIVARIATE
procedure.

The residual plots shown above do not appear to show any inadequacy of
the model or any serious violation of the model assumptions made concerning
the straight-line model fitted to the lead content data. Although a few points
may appear to have a larger residual in magnitude than the others, there is
clearly no overall pattern showing a systematic variation of the residuals as
the values of the x variable vary.
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4.1.2 Lack of Fit Test

Whenever regression data contain more than one response (y) value at one or
more values of x, responses are said to be replicated. The data set shown in
Table 4.1 contains replicated responses. In such cases, the sum of squares of
residuals, SSE, can be partitioned into two parts: sum of squares representing
pure experimental error, SSEPure, and sum of squares due to lack of fit, SSLack.
Introducing a new notation, the responses within a subset i of observations
with the same x-value are represented by yij , j = 1, . . . , ni, where ni is the
number of observations in the subset and i = 1, . . . , g, where g is the number
of such subsets. The partitioning of SSE is given by

SSE = SSEPure + SSLack (4.2)

∑

i

∑

j

(yij − ŷij)
2 =
∑

i

∑

j

(yij − ȳi.)
2 +
∑

i

∑

j

(ȳi. − ŷij)
2 (4.3)

(n− 2) = (n− g) + (g − 2) (4.4)

where n =
∑

ni is the total number of observations, and Eq. 4.4 represents
the degrees of freedom for each sum of squares. The hypotheses of interest are

H0 : E(y) = β0 + β1x
Ha : E(y) �= β0 + β1x

The test for lack of fit is an F -test. The F -statistic is the ratio of mean

squares for lack of fit and pure experimental error. The above partitioning
can be used to motivate the lack of fit using the following argument. Consider
the sum of squares due to lack of fit

∑
i

∑
j(ȳi− ŷij)

2. If the true relationship
among Y population means is indeed E(y) = β0+β1x, then one would expect
this sum of squares to be small because both ȳi. and ŷij are estimates of the
mean of the Y population at a given xi. If E(y) deviates from β0 + β1x, then
one would expect the sum of squares due to lack of fit to be larger. The F -test
is usually performed using a supplementary ANOVA table as follows:

Source df Sum of Mean F
squares square

Lack of fit g − 2 SSLack MSLack=SSLack/(g − 2) MSLack/MSEPure

Pure error n − g SSEPure MSEPure=SSEPure/(n − g)

Total error n − 2 SSE

As an example, this table is first constructed by hand calculation for the data
in Table 4.1 used previously in SAS Example D1. From the previous analysis,
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SSE=76,493 with 9 degrees of freedom. The following table simplifies the
computation of SSEPure, noting that g = 5.

i xi yi (yi − ȳ)2
∑

(yi − ȳ)2 ni − 1

1 8.3 227 312 1806.25 1806.25 3612.50 1
2 12.1 362 521 6320.25 6320.25 12,640.50 1
3 17.0 640 539 728 18.78 9344.44 8525.44 17,888.67 2
4 24.3 745 738 759 17,161.00 5776.00 3025.00 25,962.00 2
5 33.6 1263 0 0 0

Total 60,103.67 6

Thus, SSEPure = 60,103.67 with 6 degrees of freedom. The lack of fit F -
statistic is computed in the following ANOVA table:

Source df Sum of Mean F
squares square

Lack of fit 3 16,389.33 5463.11 0.55

Pure error 6 60,103.67 10,017.28

Total error 9 76,493

As expected, the test fails to reject H0 : E(y) = β0 +β1x; thus, the means of
the populations at each value of X are modeled adequately by a simple linear
regression model.

SAS Example D2

The SAS Example D2 program (see Fig. 4.5) illustrates the use of the lackfit
option for computing the lack of fit test in proc reg. Note that in this example
lackfit is the only option used; thus, the output statistics table will not
appear as a standard part of the output from proc reg. The ANOVA table
shown in the section of the SAS output (Fig. 4.6) titled Analysis of Variance
is a modified version of the original ANOVA table displayed in Fig. 4.2. The
degrees of freedom for error is partitioned to Lack of Fit and Pure Error sums
of squares and an F -statistic is calculated to test the Lack of Fit hypothesis,
as discussed above. It is observed that the results are identical (up to the
accuracy afforded by the hand calculations).

4.1.3 Diagnostic Use of Case Statistics

In addition to the diagnostic statistics such as residuals and studentized resid-
uals, several other statistics that correspond to each observation (or case
statistics, as they are commonly called in modern regression literature) may be
computed and output on request. For example, proc reg in SAS will output
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data d2;
input Traffic Lead;
label Traffic="Traffic Flow (Thousands/24 hours)" Lead="Lead Content (mcg/gm)";
datalines;
8.3 227
8.3 312

12.1 362
12.1 521
17.0 640
17.0 539
17.0 728
24.3 945
24.3 738
24.3 759
33.6 1263
;

proc reg data=d2 plots=none;
model Lead=Traffic/lackfit;
title "Simple Linear Regression of Lead Content Data";

run;

Fig. 4.5. SAS Example D2: program

case statistics labeled as Cook’s D, RStudent, Hat Diag H, DFFITS, and
DFBETAS when certain options are specified in the model statement. These
case statistics, called influence statistics, measure how well a specific data
point fits the regression line. If the point is a large distance away from the
center of the fitted line in the x -direction, it is said to be a high leverage point
and is called an x-outlier. A high leverage point will exhibit a comparatively
large value for the Hat Diag H statistic.

If the point is a large distance away from the fitted line in the y-direction,
it will have a large residual or studentized residual. A statistical test procedure
is available to determine whether a studentized residual is sufficiently large
for the case to be declared a y-outlier. The Cook’s D case statistic measures
the influence a data point has on the estimated parameters and/or overall
fit statistics; that is, it measures whether the deletion of a data point will
markedly change the estimates of the parameters β0 and β1, as well as the
MSE and R2 values. If a large Cook’s D value is observed, then that particular
data point is identified as an influential case.

A high leverage point that is also a y-outlier will most likely be a highly
influential case and will have to be examined for validity by the experimenter.
This is because including the specific case in the data set may have a sub-
stantial effect on the predictions made using the corresponding fitted model.
A more detailed discussion follows in Sects. 4.2.1 and 4.2.2.

SAS Example D3

In this example, an artificial data set is used to illustrate the above concepts by
examining, both numerically and graphically, the effects of changing a single
case on a variety of statistical measures including case statistics. Four SAS
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Simple Linear Regression of Lead Content Data

The REG Procedure
Model: MODEL1

Dependent Variable: Lead Lead Content (mcg/gm)

Number of Observations Read 11

Number of Observations Used 11

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 815966 815966 96.01 <.0001

Error 9 76493 8499.17298

Lack of Fit 3 16389 5462.96339 0.55 0.6691

Pure Error 6 60104 10017

Corrected Total 10 892459

Root MSE 92.19096 R-Square 0.9143

Dependent Mean 639.45455 Adj R-Sq 0.9048

Coeff Var 14.41712

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 -12.84155 72.14287 -0.18 0.8627

Traffic Traffic Flow (Thousands/24 hours) 1 36.18385 3.69290 9.80 <.0001

Fig. 4.6. SAS Example D2: output

programs were used to obtain the SAS output of case statistics and regression
plots used in this example.

Four different sets of values for case number 4 are used with 10 other
cases with values that remain unchanged, to create Artificial Data Sets 1 to
4, analyzed in these SAS programs, respectively. For example, Artificial Data
Set 1 used in the program for SAS Example D3 shown in Fig. 4.7 has case
number 4 set to the pair of values (8.0 8.3). Note that this case has the value
“D” for the variable Name and identifies case number 4. The variable Name is
used to label points in the tables of case statistics as well as plots in the SAS
output.

The other three SAS programs are all similar to SAS Example D3 dis-
played in Fig. 4.7, except that case number 4 is set respectively to the values
(17 12.9), (8.0 5.8), and (17 8.5) in each. The residual plots for the fitted
models are shown in Figs. 4.8a, b, c, and d, respectively, and the correspond-
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data ds31;
input Name $ X Y;
datalines;
A 5.0 7.0
B 10.0 8.2
C 7.0 8.0
D 8.0 8.3
E 11.0 10.0
F 3.0 7.2
G 1.0 4.3
H 6.0 8.8
I 4.0 5.8
J 2.0 5.7
K 9.0 10.1
;

proc reg data=ds31 plots=none ;
model Y=X/p r influence;
id Name;
title ’Artificial Data Set 1’;

run;

proc sgplot data=ds31;
reg x=X y=Y/datalabel=Name markerattrs= (Color=magenta Size=2 mm Symbol=CircleFilled)

datalabelattrs=(Color=darkblue Family=arial Size=3 mm Weight=bold);
run;

Fig. 4.7. SAS Example D3: program 1

ing tables of case statistics are displayed in Figs. 4.9, 4.10, 4.11, and 4.12,
respectively.

The SAS Example D3 program illustrates the use of the influence option
with the model statement. This option must be used in conjunction with the
r option and leads to the computation of additional diagnostic case statistics
as seen in the output from this program (Fig. 4.9). The main case statistic
of interest here is the column titled Hat Diag H, which lists the hii’s dis-
cussed later in Sect. 4.2.1. The case statistic tabulated under the column titled
RStudent consists of the externally studentized residuals (ti’s) also discussed
in Sect. 4.2.1. These can be used to test for outliers using the Bonferroni pro-
cedure described there.

In addition, in the SAS Example D3 program the ODS Statistical Graphics
procedure sgplot is used to produce a plot of the data superimposed with
the fitted regression line. See Sect. 3.1 for an example of sgplot procedure.
In SAS Example D3, the plot is enhanced by changing the symbol attributes
as well as by using the datalabel= option to use labels to identify each point
by the corresponding value of the variable Name.

Figure 4.9 displays the case statistics resulting from fitting a simple linear
regression model to Artificial Data Set 1. It is observed that none of the
leverages (Hat Diag H) is numerically larger than 0.36 (i.e., twice the average
of all leverage values 2/n, here 4/11 ≈ 0.36 is used as a cutoff to identify high-
leverage points). Thus, there are no cases indicated as possible x-outliers. This
is also apparent from inspecting Fig. 4.8a, where the x-values are evenly spread
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out between 0 and 12. The largest externally studentized residual (RStudent)
value of −1.96 is not significant at 0.05. Recall that these statistics have
t-distributions and critical values (Bonferroni adjusted for multiple testing)
are available in Tables B.11 and B.12 of Appendix B. The absolute value of
RStudent is used to perform a two-sided test of a hypothesis whether a case
is an outlier. An α = 0.05 critical value for k = 1 and n = 11 from Table B.11
is 3.90. An ad hoc procedure is to flag cases with values greater than 2 as
possible y-outliers. Here, the presence of y-outliers can thus be ruled out.
It has been suggested that, as a rule of thumb, cases with influence values
(displayed under the column labeled Cook’s D) numerically larger than 4/n
may be considered for further investigation. Here, only the case 2 (labeled B)
exceeds that value. As discussed in Sect. 4.2.1, relatively large values for both
the studentized residual and the leverage for this case result in an inflated
value for Cook’s D.

From inspecting the case statistics resulting from fitting a simple linear
regression model to Artificial Data Set 2 displayed in Fig. 4.10, case number
4 is identified as an x-outlier since the leverage (Hat Diag H) is numerically
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Fig. 4.8. (a) Artificial Data Set 1, (b) Artificial Data Set 2, (c) Artificial Data Set
3, (d) Artificial Data Set 4
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larger than 0.36. As observed from Fig. 4.8b, the point labeled D is located
away from the centroid of the other x-values, far to the right. An externally
studentized residual (RStudent) value of −1.86 is again not significant clearly
showing that there are no y-outliers. Influence (Cook’s D) values are all small
indicating that no observations is influential. Comparing the summary statis-
tics of the fits of Artificial Data Sets 1 and 2 (see Fig. 4.13) shows that the fits
are almost identical (only the MSE increased slightly), so the introduction of
an x-outlier did not affect the fit appreciably, since it was not also a y-outlier.

The case statistics resulting from fitting a simple linear regression model to
Artificial Data Set 3 (see Fig. 4.11) show that, again, the leverages (Hat Diag

H) are all smaller than 0.36. Thus, there are no x-outliers, as confirmed by
inspecting Fig. 4.8c, where the x-values are, again, evenly spread out between 0

Output Statistics

Obs Name
Dependent

Variable
Predicted

Value
Std Error

Mean Predict Residual
Std Error
Residual

Student
Residual -2-1 0 1 2

1 A 7.0000 7.0982 0.2786 -0.0982 0.836 -0.117 |      |      |

2 B 8.2000 9.5164 0.4284 -1.3164 0.770 -1.710 |   ***|      |

3 C 8.0000 8.0655 0.2786 -0.0655 0.836 -0.0783 |      |      |

4 D 8.3000 8.5491 0.3143 -0.2491 0.823 -0.303 |      |      |

5 E 10.0000 10.0000 0.4970 -1.78E-15 0.728 -24E-16 |      |      |

6 F 7.2000 6.1309 0.3662 1.0691 0.801 1.334 |      |**    |

7 G 4.3000 5.1636 0.4970 -0.8636 0.728 -1.187 |    **|      |

8 H 8.8000 7.5818 0.2657 1.2182 0.840 1.450 |      |**    |

9 I 5.8000 6.6145 0.3143 -0.8145 0.823 -0.990 |     *|      |

10 J 5.7000 5.6473 0.4284 0.0527 0.770 0.0685 |      |      |

11 K 10.1000 9.0327 0.3662 1.0673 0.801 1.332 |      |**    |

Output Statistics

Obs Name
Cook's

D RStudent
Hat Diag

H
Cov

Ratio DFFITS DFBETAS

1 A 0.001 -0.1108 0.1000 1.4019 -0.0369 -0.0263 0.0111

2 B 0.452 -1.9616 0.2364 0.7556 -1.0913 0.4418 -0.8561

3 C 0.000 -0.0739 0.1000 1.4043 -0.0246 -0.0044 -0.0074

4 D 0.007 -0.2868 0.1273 1.4208 -0.1095 0.0086 -0.0585

5 E 0.000 -2.3E-15 0.3182 1.8563 -0.0000 0.0000 -0.0000

6 F 0.186 1.4042 0.1727 0.9847 0.6416 0.6077 -0.4416

7 G 0.329 -1.2186 0.3182 1.3205 -0.8325 -0.8299 0.7036

8 H 0.105 1.5617 0.0909 0.8177 0.4938 0.2303 0.0000

9 I 0.071 -0.9883 0.1273 1.1518 -0.3774 -0.3272 0.2017

10 J 0.001 0.0646 0.2364 1.6556 0.0359 0.0353 -0.0282

11 K 0.185 1.4012 0.1727 0.9863 0.6403 -0.1733 0.4407

Fig. 4.9. Diagnostics for the fit of Artificial Data Set 1
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Output Statistics

Obs Name
Dependent

Variable
Predicted

Value
Std Error

Mean Predict Residual
Std Error
Residual

Student
Residual -2-1 0 1 2

1 A 7.0000 7.1184 0.2854 -0.1184 0.829 -0.143 |      |      |

2 B 8.2000 9.5428 0.3245 -1.3428 0.815 -1.649 |   ***|      |

3 C 8.0000 8.0882 0.2646 -0.0882 0.836 -0.105 |      |      |

4 D 12.9000 12.9371 0.6578 -0.0371 0.580 -0.0640 | |      |

5 E 10.0000 10.0277 0.3621 -0.0277 0.799 -0.0347 |      |      |

6 F 7.2000 6.1486 0.3477 1.0514 0.805 1.306 |      |**    |

7 G 4.3000 5.1788 0.4340 -0.8788 0.762 -1.154 |    **|      |

8 H 8.8000 7.6033 0.2688 1.1967 0.835 1.434 |      |**    |

9 I 5.8000 6.6335 0.3126 -0.8335 0.819 -1.017 |    **|      |

10 J 5.7000 5.6637 0.3888 0.0363 0.786 0.0462 |      |      |

11 K 10.1000 9.0579 0.2942 1.0421 0.826 1.262 |      |**    |

Output Statistics

Obs Name
Cook's

D RStudent
Hat Diag

H
Cov

Ratio DFFITS DFBETAS

1 A 0.001 -0.1348 0.1060 1.4092 -0.0464 -0.0382 0.0175

2 B 0.216 -1.8604 0.1370 0.7145 -0.7413 0.0286 -0.4300

3 C 0.001 -0.0995 0.0911 1.3890 -0.0315 -0.0162 -0.0013

4 D 0.003 -0.0603 0.5629 2.8930 -0.0685 0.0374 -0.0627

5 E 0.000 -0.0327 0.1705 1.5254 -0.0148 0.0025 -0.0101

6 F 0.159 1.3681 0.1573 0.9864 0.5910 0.5674 -0.3839

7 G 0.216 -1.1781 0.2450 1.2173 -0.6712 -0.6693 0.5323

8 H 0.107 1.5391 0.0940 0.8315 0.4956 0.3419 -0.0893

9 I 0.075 -1.0197 0.1271 1.1355 -0.3890 -0.3540 0.2075

10 J 0.000 0.0436 0.1966 1.5746 0.0215 0.0212 -0.0158

11 K 0.101 1.3110 0.1126 0.9663 0.4670 0.0586 0.2049

Fig. 4.10. Diagnostics for the fit of Artificial Data Set 2

and 12. An externally studentized residual (RStudent) value of −3.8 probably
has a p-value close to 0.05. Thus case number 4 is close to being a y-outlier.
The influence (Cook’s D) value for case number 4 is quite large; thus, this case
may also be considered influential. As discussed in Sect. 4.2.1, this is inflated
due to the fact that it is a possible y-outlier (large Studentized Residual)
although it is not an x-outlier. Comparing the summary statistics of the fits of
Artificial Data Sets 1 and 3 (see Fig. 4.13) shows that both R2 and MSE have
changed substantially although the fitted line is almost identical. Thus, the
presence of a y-outlier that is not an x-outlier may not substantially change
the fitted line but may affect the estimate of the error variance, which, in turn,
affects the hypothesis tests, confidence intervals, and prediction intervals.
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In Fig. 4.12, the leverage (Hat Diag H) for case number 4 is again large in-
dicating that case number 4 is an x-outlier. This is also verified from Fig. 4.8d,
where this point lies far to the right of the rest of the data. An externally stu-
dentized residual (RStudent) value of −3.26 probably is not significant at 0.05
but is still quite large. The influence (Cook’s D) value for case number 4 is
extremely large and, thus, this case is highly influential. Again, this is inflated
due to the fact that it is a y-outlier (large studentized residual) as well as
an x-outlier (high leverage). Comparing the summary statistics of the fits of
Artificial Data Sets 1 and 4 (see Fig. 4.13) shows that all summary statistics
for the fit of data set 4 have changed substantially from those for the other
fits. Thus, the presence of a y-outlier that is influential drastically affects the
fit of a model.

Output Statistics

Obs Name
Dependent

Variable
Predicted

Value
Std Error

Mean Predict Residual
Std Error
Residual

Student
Residual -2-1 0 1 2

1 A 7.0000 6.8436 0.4645 0.1564 1.394 0.112 |      |      |

2 B 8.2000 8.9436 0.7142 -0.7436 1.284 -0.579 |     *|      |

3 C 8.0000 7.6836 0.4645 0.3164 1.394 0.227 |      |      |

4 D 4.8000 8.1036 0.5241 -3.3036 1.372 -2.407 |  ****|      |

5 E 10.0000 9.3636 0.8286 0.6364 1.213 0.525 |      |*     |

6 F 7.2000 6.0036 0.6105 1.1964 1.336 0.895 |      |*     |

7 G 4.3000 5.1636 0.8286 -0.8636 1.213 -0.712 |     *|      |

8 H 8.8000 7.2636 0.4429 1.5364 1.401 1.097 |      |**    |

9 I 5.8000 6.4236 0.5241 -0.6236 1.372 -0.454 |      |      |

10 J 5.7000 5.5836 0.7142 0.1164 1.284 0.0906 |      |      |

11 K 10.1000 8.5236 0.6105 1.5764 1.336 1.180 |      |**    |

Output Statistics

Obs Name
Cook's

D RStudent
Hat Diag

H
Cov

Ratio DFFITS DFBETAS

1 A 0.001 0.1059 0.1000 1.4023 0.0353 0.0251 -0.0106

2 B 0.052 -0.5566 0.2364 1.5361 -0.3097 0.1254 -0.2429

3 C 0.003 0.2146 0.1000 1.3902 0.0715 0.0127 0.0216

4 D 0.423 -3.8034 0.1273 0.1839 -1.4525 0.1145 -0.7764

5 E 0.064 0.5024 0.3182 1.7445 0.3432 -0.1711 0.2900

6 F 0.084 0.8845 0.1727 1.2694 0.4042 0.3828 -0.2782

7 G 0.118 -0.6910 0.3182 1.6530 -0.4721 -0.4706 0.3990

8 H 0.060 1.1111 0.0909 1.0448 0.3514 0.1638 0.0000

9 I 0.015 -0.4334 0.1273 1.3844 -0.1655 -0.1435 0.0885

10 J 0.001 0.0855 0.2364 1.6543 0.0476 0.0468 -0.0373

11 K 0.145 1.2098 0.1727 1.0932 0.5528 -0.1496 0.3805

Fig. 4.11. Diagnostics for the fit of Artificial Data Set 3
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Output Statistics

Ob
s Name

Dependent
Variable

Predicted
Value

Std Error
Mean Predict Residual

Std Error
Residual

Student
Residual -2-1 0 1 2

1 A 7.0000 7.0886 0.4354 -0.0886 1.265 -0.0700 |      |      |

2 B 8.2000 8.4700 0.4951 -0.2700 1.243 -0.217 |      |      |

3 C 8.0000 7.6411 0.4036 0.3589 1.275 0.281 |      |      |

4 D 8.4000 10.4040 1.0036 -2.0040 0.884 -2.266 |  ****|      |

5 E 10.0000 8.7463 0.5524 1.2537 1.218 1.029 |      |**    |

6 F 7.2000 6.5360 0.5305 0.6640 1.228 0.541 |      |*     |

7 G 4.3000 5.9834 0.6621 -1.6834 1.162 -1.448 |    **|      |

8 H 8.8000 7.3649 0.4100 1.4351 1.273 1.127 |      |**    |

9 I 5.8000 6.8123 0.4768 -1.0123 1.250 -0.810 |     *|      |

10 J 5.7000 6.2597 0.5931 -0.5597 1.199 -0.467 |      |      |

11 K 10.1000 8.1937 0.4488 1.9063 1.260 1.513 |      |***   |

Output Statistics

Obs Name
Cook's

D RStudent
Hat Diag

H
Cov

Ratio DFFITS DFBETAS

1 A 0.000 -0.0660 0.1060 1.4141 -0.0227 -0.0187 0.0086

2 B 0.004 -0.2054 0.1370 1.4512 -0.0818 0.0032 -0.0475

3 C 0.004 0.2665 0.0911 1.3680 0.0843 0.0433 0.0034

4 D 3.307 -3.2601 0.5629 0.5340 -3.6997 2.0186 -3.3878

5 E 0.109 1.0329 0.1705 1.1879 0.4683 -0.0802 0.3200

6 F 0.027 0.5183 0.1573 1.4058 0.2239 0.2150 -0.1455

7 G 0.340 -1.5594 0.2450 0.9859 -0.8884 -0.8859 0.7046

8 H 0.066 1.1467 0.0940 1.0303 0.3693 0.2547 -0.0665

9 I 0.048 -0.7931 0.1271 1.2462 -0.3026 -0.2753 0.1614

10 J 0.027 -0.4456 0.1966 1.5000 -0.2204 -0.2173 0.1616

11 K 0.145 1.6517 0.1126 0.7931 0.5883 0.0739 0.2581

Fig. 4.12. Diagnostics for the fit of Artificial Data Set 4

Model β̂0 β̂1 MSE R2

1 4.69 0.48 0.78 0.78
2 4.69 0.48 0.77 0.88
3 4.74 0.42 2.16 0.50
4 5.70 0.28 1.79 0.50

Fig. 4.13. Summary of fit statistics for Artificial Data Sets 1–4

The DFFITS values are scaled measures of the change in each predicted
value (or the fit) when a case is deleted and thus measure the influence of a
deleted case on the prediction from the fitted model. It can be shown that
the magnitude of a DFFITS tends to be large when the case is a y-outlier,
x -outlier, or both (a la Cook’s D). A suggested measure of high influence is
a value larger than 1 for smaller data sets and larger than 2

√
(k + 1)/n for
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large data sets. Whereas Cook’s D measures the influence of a case on all
fitted values jointly, DFFITS measures the influence of a case on an individual
fitted value. It can be observed clearly that the interpretation of DFFITS for
the above four model fits closely follow that of Cook’s D.

The DFBETAS values are scaled measures of the change in each parameter
estimate when a case is deleted and thus measure the influence of a deleted case
on the estimation. The sign of a DFBETAS value indicates whether the inclusion
of the case leads to an increase or a decrease of the estimated coefficient. The
magnitude of a DFBETAS value indicates the impact or influence of the case
on estimating a regression coefficient. A suggested measure of high influence
is a value larger than 1 for smaller data sets and larger than 2/

√
n for large

data sets. In Fig. 4.12 the case labeled D clearly has a large DFBETAS value;
the estimation of the parameters would be clearly affected by deleting this
observation from the data set. This is confirmed by observing the estimated
parameter values for Model 4 in Fig. 4.13. Thus it is clear that both estimation
of parameters and prediction are affected by the case labeled D in the fit of
Artificial Data Set 4.

4.1.4 Prediction of New y Values Using Regression

There are two possible interpretations of a y prediction at a specified value
of x. Recall that the prediction equation for the lead content data is ŷ =
−12.84+36.18x, where x = traffic flow in thousands of cars per 24 hours and
y = lead content of bark on trees near the highway in μg/g dry weight. If
x = 10 is substituted in this equation, the value ŷ = 348.96 is obtained. This
predicted value of y can be interpreted as either

• The estimate of the average or mean lead content of bark E(y) near all
highways with traffic flow of 10,000 cars per 24 hours is 348.96 μg/g dry
weight,

or

• The lead content of bark y of a specific highway randomly selected from
the set of all highways with a traffic flow of 10,000 cars per 24 hours is
348.96 μg/g dry weight.

The difference in the two predictions is that the standard error of predictions
will be different. Since it is possible to more accurately predict a mean than
an individual value, the first type of prediction will have less error than the
second type. Thus, the confidence interval calculated for the mean of y, E(y),
for a given x will be narrower than the prediction interval calculated for a
new value y at a given x.
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SAS Example D4

data d4;
input Sample $ X Y;
label X="Traffic Flow" Y="Lead Content";
datalines;
A 8.3 227
B 8.3 312
C 12.1 362
D 12.1 521
E 17.0 640
F 17.0 539
G 17.0 728
H 24.3 945
I 24.3 738
J 24.3 759
K 33.6 1263
L 10.0 .
M 15.0 .
;

proc reg data=d4 plots(only label)=(diagnostics fit);
model Y=X/clm cli;
id Sample;
title ’Prediction Intervals: Lead Content Data’;

run;

Fig. 4.14. SAS Example D4: program

In proc reg, these intervals are calculated for the observations in the
input data set and printed as part of the output of case statistics. However,
if these intervals are required for observations with new x-values, then these
observations must be included as cases in the input data set with missing
value indicators (periods) as the corresponding y-values. In the SAS Example
D4 program (see Fig. 4.14), which is a modified version of the SAS Example
D1 program, the original lead content data have been supplemented by adding
two cases (Samples labeled L and M) each with values of 10.0 and 15.0 for
Traffic Flow and missing values for Lead Content, respectively. Proc reg

fits the regression model using only the first 11 cases and calculates the two
types of prediction intervals for all cases, including the two cases with the
new x-values. The output statistics from the SAS Example D4 program are
displayed in Fig. 4.15.

Assuming normally distributed data and the first type of prediction, proc
reg calculates (1− α)100% confidence interval for E(y) = β0 + β1 x, for each
x-value in the data, including those cases with missing values specified for y.
The second type of prediction is used to calculate a (1 − α)100% prediction
interval for a new observation y at each x-value in the data, including the
new x-values specified. For a default value of α = 0.05, these are obtained by
specifying clm and/or cli, respectively, for the confidence intervals and the
prediction intervals as model statement options, as shown in Fig. 4.14.
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Output Statistics

Obs Sample
Dependent

Variable
Predicted

Value
Std Error

Mean Predict 95% CL Mean 95% CL Predict Residual

1 A 227.0000 287.4844 45.4206 184.7359 390.2328 54.9967 519.9721 -60.4844

2 B 312.0000 287.4844 45.4206 184.7359 390.2328 54.9967 519.9721 24.5156

3 C 362.0000 424.9830 35.3804 344.9470 505.0190 201.6021 648.3640 -62.9830

4 D 521.0000 424.9830 35.3804 344.9470 505.0190 201.6021 648.3640 96.0170

5 E 640.0000 602.2839 28.0543 538.8206 665.7471 384.2911 820.2767 37.7161

6 F 539.0000 602.2839 28.0543 538.8206 665.7471 384.2911 820.2767 -63.2839

7 G 728.0000 602.2839 28.0543 538.8206 665.7471 384.2911 820.2767 125.7161

8 H 945.0000 866.4260 36.1835 784.5731 948.2788 642.3876 1090 78.5740

9 I 738.0000 866.4260 36.1835 784.5731 948.2788 642.3876 1090 -128.4260

10 J 759.0000 866.4260 36.1835 784.5731 948.2788 642.3876 1090 -107.4260

11 K 1263 1203 63.8739 1058 1347 949.2204 1457 60.0643

12 L . 348.9969 40.6376 257.0684 440.9255 121.0843 576.9095 .

13 M . 529.9162 29.9605 462.1408 597.6915 310.6292 749.2032 .

Fig. 4.15. Prediction intervals: lead content data

The alpha= model statement option may be used to change the default
value of the confidence coefficient, noting that this will affect the intervals
calculated for the β coefficients using the clb option, as well, if it is used in
the same model statement. These sets of intervals are tabulated under the
headings 95% CL Mean and 95% CL Predict, respectively, in Fig. 4.15.

The plots= option in the proc reg statement is used SAS Example D1
(Fig. 4.1) to control the ODS Graphics output from the regression procedure.
By default (that is , when no plots= options are used), proc reg outputs
the regression diagnostics panel, shown in Fig. 4.16, the residual plot (that is
a plot of the residuals against the explanatory variable, as shown in Fig. 4.4b,
and the scatter plot of the data overlaid with the fitted regression line, called
the fit plot and shown in Fig. 4.4a. Note that the fit plot is produced only
in the case when there is only one explanatory variable. All graphical output
will be suppressed if plots=none option is used.

In SAS Example D4, the plots(only label)=(diagnostics fit) option
is used to select the diagnostics panel (Fig. 4.16) and the fit plot (Fig. 4.17)
to be the only plots generated. The sub-option only suppresses all default
plots; only plots specifically requested using sub-options, here diagnostics

and fit, being output. The diagnostics panel includes the plots of resid-
uals against predicted values, externally studentized residuals (RStudent)
against the predicted values, RStudent against leverage, normal quantile plot
of the residuals, dependent variable against the predicted values, and an index
plot of Cook’s D. Any subset of these plots may be obtained separately by
specifying the appropriate sub-options, e.g., plots(only)=(fit(nolimits)
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Fit Diagnostics for Lead
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Fig. 4.16. Diagnostics panel: lead content data

residuals residualbypredicted qq) as illustrated in SAS Example D1
(see Fig. 4.1). The label sub-option identifies each point on various plots
by placing a label near a plotted point on those plots when a point is deemed
an outlier or influential on the appropriate plots. The label is the value of
the id variable corresponding to the point, or if an id statement is not in-
cluded in the proc step, the index value of the case corresponding to the point.
Table B.17 lists a selected sample of plots= options available for generating
specific ODS Graphics output in proc reg.
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Fig. 4.17. Fit plot: lead content data

4.2 An Introduction to Multiple Regression Analysis

In this section the simple linear regression model introduced in Sect. 4.1 is
extended to the multiple linear regression case to handle situations in which
the dependent variable y is modeled by a relationship that involves more than
a single independent or explanatory variable, say x1, x2, . . . , xk. The study of
multiple regression analysis may thus be viewed as the approximation of the
functional relationship that may exist between a variable y and another set of
variables x1, x2, . . . , xk. This relationship may sometimes model a postulated
theoretical relationship between y and the x variables, whereas at other times
it may simply be a mathematical equation that approximates such a relation-
ship. Such an equation is useful for prediction of a value for y when the values
of the x variables are known.

Multiple Regression Model

When this approximation is linear in the unknown parameters, it is called a
multiple linear regression model and is expressed in the form

y = β0 + β1x1 + · · ·+ βkxk + ε
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The variable y is the response or the dependent variable, which is a realization
of a random variable Y observed for a fixed set of values of the explanatory
variables x1, x2, . . . , xk. The coefficients β0, β1, . . . , βk are unknown constants
and ε is an unobservable random variable representing the random error in
observing y. Under this model, the y-values observed at each x-value are a
random sample with the mean E(y) = μ(x) = β0 + β1x1 + · · · + βkxk, i.e.,
the mean is modeled as a function of the x values. This function is linear in
β0, β1, . . . , βk, and is a hyperplane in the parameter space of the coefficients.
Multiple regression data consist of n observations or cases of k + 1 values
denoted by

(yi, xi1, xi2, . . . , xik), i = 1, 2, . . . , n

Using this full notation, the model may be rewritten as

yi = β0 + β1 xi1 + β2 xi2 + · · ·+ βk xik + εi i = 1, 2, . . . , n.

In addition to the fact that the random errors for the individual observations
have mean zero, they are also assumed to be uncorrelated random variables
with the same variance σ2. The parameters β0, β1, . . . , βk and σ2 can be es-
timated using the least squares method. For the purpose of making valid
statistical inference, it may be further assumed that the errors ε1, ε2, . . . , εn
are a random sample from a normal distribution.

Note that the definition of the regression model above admits models that
may include squared terms, product terms, etc. of quantitative explanatory
variables (x variables). Thus, a model of the form

y = β0 + β1 x1 + β2 x2 + β3 x
2
1 + β4 x

2
2 + β5 x

3
1 + β6 x

3
2 + β7 x1 x2 + ε

can also be expressed in the form of a multiple regression model

y = β0 + β1 x1 + β2 x2 + β3 x3 + β4 x4 + β5 x5 + β6 x6 + β7x7 + ε

where the values for the variables x3, x4, x5, x6, and x7 are obtained by sub-
stituting the values of x1 and x2 in the expressions x3 = x2

1, x4 = x2
2, x5 =

x3
1, x6 = x3

2, and x7 = x1 x2, respectively. The inclusion of a product term
such as x1 x2 in a model allows the investigator to perform a statistical test
of the absence (or presence) of interaction between two independent variables
(say) x1 and x2. The concept of interaction will be discussed in a later section.

Estimation of Parameters

The method of least squares is used to obtain the estimates of the regression
coefficients using the observed data. The least squares estimates of the β
denoted by β̂0, β̂1, . . . , β̂k are obtained by minimizing the sum of squares of
residuals:

Q =

n∑

i=1

{yi − (β0 + β1 x1i + · · ·+ βk xki)}2
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where yi, x1i, x2i, . . . , xki, i = 1, . . . , n, denotes the n observations (or cases).
The estimates are found by setting the partial derivatives of Q with respect
to each of the β coefficients equal to zero. The resulting set of equations,
called the normal equations, is linear in the β. These are solved to yield the
estimates of the parameters denoted by β̂. The prediction equation or the
fitted regression model is then

ŷ = β̂0 + β̂1 x1 + · · ·+ β̂k xk

The predicted or fitted values of yi, i = 1, . . . , n, that correspond to the n
observations (or cases) are calculated by substituting the n sets of observed
values of the explanatory variables x1i, x2i, . . . , xki, i = 1, . . . , n, in the pre-
diction equation to obtain ŷi, i = 1, . . . , n. The predicted or fitted value, say
ŷnew, that corresponds to a new case x1,new, x2,new, . . . , xk,new, is calculated
by substituting these values in the prediction equation.

Matrix Notation

In matrix notation, the linear regression model may be expressed in the form

y = Xβ + ε

where

y =

⎡

⎢
⎢
⎢
⎣

y1
y2
...
yn

⎤

⎥
⎥
⎥
⎦
, X =

⎡

⎢
⎢
⎢
⎣

1 x11 · · · xk1

1 x12 · · · xk2

...
...

...
1 x1n xkn

⎤

⎥
⎥
⎥
⎦
, β =

⎡

⎢
⎢
⎢
⎣

β0

β1

...
βk

⎤

⎥
⎥
⎥
⎦
, and ε =

⎡

⎢
⎢
⎢
⎣

ε1
ε2
...
εn

⎤

⎥
⎥
⎥
⎦

In this notation, the sum of squares to be minimized is

Q = (y −Xβ)′(y −Xβ)

and the resulting normal equations are

X ′Xβ = X ′y.

The solution to the normal equations gives the least squares estimate β̂ ofβ:

β̂ = (X ′X)−1X ′y

where (X ′X)−1 is the inverse of the X ′X matrix assumed to be nonsingular.
Note that X ′X, a (k + 1) × (k + 1) matrix, is an important quantity associ-
ated with multiple regression computations. An analysis of variance table for
testing the hypothesis

H0 : β1 = β2 = · · · = βk = 0 versus Ha : at least one β �= 0
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where matrix expressions are used to define computational formulas for the
various sums of square, is given as follows:

Source df SS MS F

Regression k β̂
′
X ′y − nȳ2 MSReg= SSReg/k MSReg/MSE

Error n− k − 1 y′y −β̂
′
X ′y MSE=SSE/(n− k − 1)

Total n− 1 y′y − nȳ2

where ȳ =
∑n

i=1 yi/n, y
′y =

∑n
i=1 y

2
i , SSReg denotes the regression sum of

squares given by β̂
′
X ′y − nȳ2, and SSE denotes the residual or error sum of

squares given by y′y − β̂
′
X ′y. The null hypothesis is rejected if the above

F -statistic exceeds the α level upper percentage point of the F -distribution
with (k, n − k − 1) degrees of freedom. The mean square for error (MSE)
denoted by s2 = SSE/(n− k − 1) is an unbiased estimate of σ2, the variance
of the random errors, that is, σ̂2 = s2. Another quantity of statistical interest
computed from the above analysis is the coefficient of determination or the
multiple correlation coefficient R2 given by

R2 = Regression SS/Total (Corrected) SS = SSReg/SSTot

where SSTot = y′y − nȳ2. R2 measures the proportion of the variability of
y explained by the fitted regression model. Further, suppose that elements of
the inverse of the (X ′X)−1 matrix are denoted by cij . Thus,

(X ′X)−1 =

⎡

⎢
⎢
⎢
⎣

c00 c01 c02 . . . c0k
c10 c11 c12 . . . c1k
...

...
...

ck0 ck1 . . . ckk

⎤

⎥
⎥
⎥
⎦

Then the standard error of the least squares estimate of the mth regression

coefficients β̂m is given by sβ̂m
= c

1/2
mms. Thus, a t-statistic for testing the

hypothesis H0 : βm = 0 versus Ha : βm �= 0 is

t = β̂m/sβ̂m

and a (1− α)100% confidence interval for βm is

β̂m ± tα/2,(n−k−1) × sβ̂m

where tα/2,(n−k−1) is the upper α/2 critical value of the t-distribution with
(n− k − 1) degrees of freedom.



4.2 An Introduction to Multiple Regression Analysis 225

4.2.1 Multiple Regression Analysis Using PROC REG

The data, popularly called Hald data and shown in Table B.8, are taken from
Draper and Smith (1981). The explanatory variables X1, X2, X3, and X4 are
percentages of the primary chemical components of clinkers from which ce-
ment is made and the response variable y is the heat evolved as the concrete
hardens, measured in calories per gram of cement. The objective is to model
the heat produced as a linear function of the composition of clinkers. These
data will be used here to illustrate procedures in SAS that are useful in the
process of regression model building. The purpose of SAS Example D5 is
fitting a multiple regression model to these data and producing statistics dis-
cussed in Sect. 4.2. Diagnostics and residual plots necessary for examining the
adequacy of the model and accompanying assumptions will be calculated for
the same regression model in later sections.

data cement;
input X1-X4 y;
datalines;
7 26 6 60 78.5
1 29 15 52 74.3

11 56 8 20 104.3
11 31 8 47 87.6
7 52 6 33 95.9

11 55 9 22 109.2
3 71 17 6 102.7
1 31 22 44 72.5
2 54 18 22 93.1

21 47 4 26 115.9
1 40 23 34 83.8

11 66 9 12 113.3
10 68 8 12 109.4
;

proc sgscatter data=cement;
title "Scatter plot Matrix for Hald Data";
matrix X1-X4 y;

run;

proc reg data=cement simple corr plots=none;
model y = X1 X2 X3 X4/clb xpx i;
title ’Regression Analysis of Hald Data’;

run;

Fig. 4.18. SAS Example D5: program

SAS Example D5

In the SAS Example D5 program (see Fig. 4.18), the multiple linear regression
model

y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε (4.5)
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is fitted to these data using proc reg. Preceding the proc reg step, proc
sgscatter is used to create a scatter plot matrix of the four explanatory vari-
ables plus the response variable. The scatter plot matrix and proc sgscatter

were discussed in Sect. 3.3.3 (refer to SAS Example C12). The scatter plot ma-
trix is a two-dimensional array of scatter plots of all pairs of variables and
enables the user to study the relationships between pairs of variables visually.
The output from this step is shown in Fig. 4.19

Scatterplot Matrix for Hald Data
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Fig. 4.19. Scatter plot matrix: Hald data

The proc reg step produces output containing statistics for making some
of the statistical inferences about the model as discussed in the previous sec-
tion. It contains SAS statements necessary to compute an analysis of vari-
ance, estimated values of the parameters, their standard errors, associated t-
statistics, and confidence intervals. Additionally, options used with the model
statement request that information about the normal equations be output.
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The output from this step is displayed in Figs. 4.20, 4.21, 4.22, 4.23,
and 4.24. The keyword options simple and corr used with proc reg re-
sult in the output of descriptive statistics for each of the variables and the
correlation matrix displayed in Fig. 4.20.

Correlation

Variable X1 X2 X3 X4 y

X1 1.0000 0.2286 -0.8241 -0.2454 0.7307

X2 0.2286 1.0000 -0.1392 -0.9730 0.8163

X3 -0.8241 -0.1392 1.0000 0.0295 -0.5347

X4 -0.2454 -0.9730 0.0295 1.0000 -0.8213

y 0.7307 0.8163 -0.5347 -0.8213 1.0000

Fig. 4.20. Correlation matrix: Hald data

The model statement options xpx and i results in the output of the
X ′X matrix shown in Fig. 4.21 and the inverse of the X ′X matrix shown
in Fig. 4.22, respectively. The X ′X matrix and X ′y vector displayed below
are extracted from Fig. 4.21:

X ′X =

⎛

⎜
⎜
⎜
⎜
⎝

13 97 626 153 390
97 1139 4922 769 2620

626 4922 33050 7201 15739
153 769 7201 2293 4628
390 2620 15739 4628 15062

⎞

⎟
⎟
⎟
⎟
⎠

, X ′y =

⎛

⎜
⎜
⎜
⎜
⎝

1240.5
10032

62027.8
13981.5
34733.3

⎞

⎟
⎟
⎟
⎟
⎠

The normal equations can thus be constructed as follows:

13β0 + 97β1 + 626β2 + 153β3 + 390β4 = 1240.5

97β0 + 1139β1 + 4922β2 + 769β3 + 2620β4 = 10032

626β0 + 4922β1 + 33050β2 + 7201β3 + 15739β4 = 62027.8

153β0 + 769β1 + 7201β2 + 2293β3 + 4628β4 = 13981.5

390β0 + 2620β1 + 15739β2 + 4628β3 + 15062β4 = 34733.3

Note that the last element in the row (or the column) labeled y of the
sums of squares and cross-products matrix (see Fig. 4.21) is the total sum of
squares y′y =

∑n
i=1 y

2
i = 121,088.09. The solutions to the normal equations

provide the estimates of β. They appear in the last column of the inverse of
the X ′X matrix table from the proc reg output (see the last column under y
in Fig. 4.22) or in the parameter estimates table (see Fig. 4.24). These values
are reported below rounded to five significant digits:
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β̂ = (62.405, 1.5511, 0.51017, 0.10191, −0.14406)′.

Further, the last element in the row (or the column) labeled y in Fig. 4.22 is

the SSE, computed using the formula y′y −β̂
′
X ′y. Rounded to seven digits,

it is equal to 47.86364, giving s2 = 47.86364/(13− 4− 1) = 5.98295 (same as
the MSE in the analysis of variance table in Fig. 4.23).

Model Crossproducts X'X X'Y Y'Y

Variable Intercept X1 X2 X3 X4 y

Intercept 13 97 626 153 390 1240.5

X1 97 1139 4922 769 2620 10032

X2 626 4922 33050 7201 15739 62027.8

X3 153 769 7201 2293 4628 13981.5

X4 390 2620 15739 4628 15062 34733.3

y 1240.5 10032 62027.8 13981.5 34733.3 121088.09

Fig. 4.21. Sums of squares and cross-products matrix: Hald data

The following analysis of variance table for the regression (where numbers
are reported to 2 decimals) is constructed from the output shown in Fig. 4.23:

Source df Sum of Mean F p-Value
squares square

Regression 4 2667.90 666.97 111.48 < 0.0001

Error 8 47.86 5.98

Total 12 2715.76

Obviously, the null hypothesis H0 : β1 = β2 = β3 = β4 = 0 is rejected at
α = 0.01, say, since the p-value is less than 0.01.

The estimate s2 of σ2 is given by the MSE= 5.98. The R2 value is also
reported in Fig. 4.23, here equal to 0.9824, meaning that about 98% of the
variation in the heat evolved from various batches of concrete is explained by
the fitted multiple regression model involving all four explanatory variables,
each giving percentages of chemical components of clinkers.

The inverse of the X ′X matrix is the 5 × 5 matrix in upper left corner
in Fig. 4.22 and is reproduced below with elements rounded to six significant
digits:
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X'X Inverse, Parameter Estimates, and SSE

Variable Intercept X1 X2 X3 X4 y

Intercept 820.65457471 -8.441801862 -8.457779848 -8.634538775 -8.289743778 62.4053693

X1 -8.441801862 0.0927104019 0.0856862094 0.0926373566 0.0844549553 1.5511026475

X2 -8.457779848 0.0856862094 0.0875602572 0.0878666397 0.0855980995 0.5101675797

X3 -8.634538775 0.0926373566 0.0878666397 0.0952014097 0.0863919188 0.1019094036

X4 -8.289743778 0.0844549553 0.0855980995 0.0863919188 0.0840311912 -0.144061029

y 62.4053693 1.5511026475 0.5101675797 0.1019094036 -0.144061029 47.86363935

Fig. 4.22. The inverse of X ′X matrix from proc reg: Hald data

(X ′X)−1 =

⎛

⎜
⎜
⎜
⎜
⎝

820.655 −8.44180 −8.45778 −8.63454 −8.28974
−8.44180 0.0927104 0.0856862 0.0926374 0.0844550
−8.45778 0.0856862 0.0875603 0.0878666 0.0855981
−8.63454 0.0926374 0.0878666 0.0952014 0.0863919
−8.28974 0.0844550 0.0855981 0.0863919 0.0840312

⎞

⎟
⎟
⎟
⎟
⎠

To illustrate the use of the elements of the inverse of the X ′X matrix, the
standard error of, say, β̂1 is computed as follows:

sβ̂1
=

√
c11s =

√
0.0927104 ·

√
5.983 = 0.74477

and, thus, a 95% confidence interval for β1 is given by

β̂1 ± t.025,8 · sβ̂1
≡ 1.5511± (2.306)(0.74477) giving (−0.16634, 3.2685).

These values can be verified by comparing with the corresponding values in the
Parameter Estimates table (see Fig. 4.24), where the parameter estimates and
their associated statistics are tabulated (see under columns labeled Parameter

Estimate, Standard Error, etc.).
By inspecting these, it is observed that none of the p-values for the t-test

for testing βm = 0 for m = 1, 2, 3, and 4 in model (4.5) is less than 0.05;
thus, none of these hypotheses can be rejected at α = 0.05. This is also clearly
reflected in the fact that the 95% confidence intervals for these coefficients all
contain zero. Upon further examination, it is seen that the reason for both
of these results is that the standard errors of the estimates of the coefficients
are comparatively large (i.e., they are all near 0.7, larger than some of the
estimates themselves!). Obviously, this indicates large sampling variability of
the estimated regression coefficients.

It appears that the conclusions from these individual t-tests (or confidence
intervals) contradict the result of the F -test of H0 : β1 = β2 = β3 = β4 = 0.
However, it is erroneous to infer from the results of the one-at-a-time t-tests
that the coefficients in the model are all zero simultaneously. Rather, the con-
tradictory nature of the results of the t-tests and the F -test must be taken as
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an indication that there are, possibly large, correlations among the explana-
tory variables. This condition, called multicollinearity, discussed in detail in
Sect. 4.2.4, could lead to the situation that one or more explanatory variables
may exhibit little or no effects on the response variable in the presence, in the
same model, of other explanatory variables that are highly correlated with one
or more of them. From the correlation matrix reported in Fig. 4.20, it is clear
that pairs of variables (X1, X3) and (X2, X4) are highly (negatively) corre-
lated with each other. This is also evident from the plots shown in Fig. 4.19.
Therefore, a model containing only one of the variables in each of these pairs
may turn out to be a model that exhibits less multicollinearity.

In general, this situation may indicate the need to select a subset of the
explanatory variables to be included in a model for which multicollinearity
does not have substantial effects on the sampling variability and therefore the
accuracy of the estimated parameters. Procedures for variable subset selection
are discussed in Sect. 4.4.

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 2667.89944 666.97486 111.48 <.0001

Error 8 47.86364 5.98295

Corrected Total 12 2715.76308

Root MSE 2.44601 R-Square 0.9824

Dependent Mean 95.42308 Adj R-Sq 0.9736

Coeff Var 2.56333

Fig. 4.23. The ANOVA table from proc reg: Hald data

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
95%

Confidence Limits

Intercept 1 62.40537 70.07096 0.89 0.3991 -99.17855 223.98929

X1 1 1.55110 0.74477 2.08 0.0708 -0.16634 3.26855

X2 1 0.51017 0.72379 0.70 0.5009 -1.15889 2.17923

X3 1 0.10191 0.75471 0.14 0.8959 -1.63845 1.84227

X4 1 -0.14406 0.70905 -0.20 0.8441 -1.77914 1.49102

Fig. 4.24. The parameter estimates from proc reg: Hald data
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4.2.2 Case Statistics and Residual Analysis

Many other statistical quantities are computed for use in residual analysis or
in diagnostic plots. Some of these were introduced and discussed earlier in the
context of simple linear regression.

These are necessary for checking the adequacy of the model or for assessing
the plausibility of assumptions made in formulating the model. Others allow
testing for presence or absence of outliers and assessing their effects on the
fitted model if they are present. Collectively, these statistics are called diag-
nostic statistics or case statistics. The programs for SAS Examples D1, D2,
and D3 illustrated the use of SAS statements in proc reg to produce these
case statistics and also obtain residual plots. In SAS Example D3, in partic-
ular, an artificial data set was used to illustrate the concepts associated with
several of these case statistics. In this subsection, several of these statistics
are formally defined and their use demonstrated in the case of the multiple
regression model.

Predicted or Fitted Values

The predicted values that correspond to the observed explanatory variables
are calculated using the prediction equation

ŷ = Xβ̂

where
ŷi = β̂0 + β̂1 x1i + · · ·+ β̂k xki, i = 1, . . . , n

Note that the regression sum of squares defined earlier as SSReg in the
ANOVA table can also be expressed as

n∑

i=1

(ŷi − ȳi)
2

Residuals

The residuals that correspond to the observed data are expressed in vector
form as e = y − ŷ, where the elements e = (e1, e2, . . . , en)

′ are calculated as
ei = yi− ŷi, i = 1, . . . , n. Note that the residual sum of squares defined in the
ANOVA table as SSE can also be expressed in the form

SSE =

n∑

i=1

(yi − ŷi)
2 =

n∑

i=1

e2i = e′e
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Hat Matrix

The predicted values ŷ = Xβ̂ may be expressed in the form

ŷ = X(X ′X)−1X ′y

= Hy

where H = X(X ′X)−1X ′ is an n×n symmetric matrix called the hat matrix.
Let hij denote the ijth element of H. It can be shown that the ith diagonal
element of H satisfies

1

n
≤ hii ≤

1

d
where d is the number of times the ith observation is replicated. Thus, a
specific value of hii is considered to be relatively small if it is near 1

n or
relatively large if it is near 1

d . Note that for a case that is not replicated, the
upper bound is 1.

It is easier to visualize the relationship of the magnitude of hii to the posi-
tion of a case in the space of explanatory variables in simple liner regression.
In general, cases with relatively larger values of hii will correspond to those
cases with x-values further away from the average of the x-values (i.e., center
of the x-space).

The elements of the hat matrix are useful since the variance of the
predicted values and the residuals among several other quantities can be
expressed in terms of the elements of this matrix. For example, the variance
of ŷi is σ

2 hii, the standard deviation of ŷi is σ
√
hii, and, hence, the standard

error of ŷi is s
√
hii, for i = 1, 2, . . . , n. Noting that the vector of residuals

may be expressed in the form e = y − ŷ,

e = y −Hy

= (I −H)y.

It is easily shown that the variance of ei is σ
2 (1−hii), the standard deviation

of ei is σ
√

(1− hii), and, hence, the standard error of ei is s
√

(1− hii) for
i = 1, 2, . . . , n. It is clear that the magnitudes of the standard errors of both
ŷi and ei for the ith case depend on the magnitude of hii as the value of s
remains a fixed number for a fitted model. For example, standard errors for
predicted values will be larger and the standard errors for the residuals will be
smaller for cases for which the diagonal elements of the hat matrix are closer
to 1 than it is for those cases for which they are small.

Confidence Interval for the Mean E(yi)

A (1−α)100% confidence interval for the mean of the ith observation E(yi) =
β0 + β1 x1i + · · ·+ βk xki is

ŷi ± tα/2,(n−k−1) × s
√

hii
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Prediction Interval for yi

A (1− α)100% prediction interval for ith observation yi is

ŷi ± tα/2,(n−k−1) × s
√

1 + hii

Studentized Residuals

Studentized residuals, denoted by ri, i = 1, . . . , n, are a standardized version
of the ordinary residuals, which are useful for the detection of outliers. It is
common practice in statistics to use standardization when comparing statistics
that are heterogeneous in variance. An internally studentized version of the
residuals is obtained by directly dividing the residuals by their respective
standard errors, as

ri = ei/(s
√

1− hii)

for i = 1, . . . , n. The maximum in absolute value of studentized residuals can
be used as a basis of a test for the presence of a single y-outlier (i.e., an
outlier in the y-direction), using the tables of percentage points reproduced in
Tables B.9 and B.10. The null hypothesis H0 : No Outliers is rejected in favor
of Ha : A Single Outlier Present, if the computed value of maxi |ri| exceeds the
appropriate percentage point obtained from this table. It is common practice
to use studentized residuals for normal probability plots.

Externally Studentized Residuals

Related statistics, denoted usually by ti, i = 1, . . . , n, are another version of
standardized residuals. Instead of s2, the ordinary residuals are standardized
using s2(i), the error mean square obtained from a regression model fitted with
the ith case deleted. That is, externally studentized residuals are defined as

ti = ei/(s(i)
√

1− hii)

for i = 1, . . . , n. The advantage of this statistic is that since each ti can be
shown to have a t-distribution with n − k − 2 degrees of freedom, it can be
used to construct a test for y-outliers (i.e., outliers in the y-direction). Since
it is not known in advance which of the observations may be outliers, n t-tests
must be performed using each of the n externally studentized residuals; that
is, each of the n ti values is compared to an appropriate critical value obtained
from the t-distribution to test if the case is a y-outlier.

One approach is to use the Bonferroni method to obtain a conservative
critical value for this multiple testing procedure. The critical value chosen is
the (α/n)×100% percentage point of the t-distribution with n−k−2 degrees of
freedom. This test guarantees only that the Type I error will not exceed α (as
opposed to being exactly equal to α); thus, it will only provide a conservative
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test. To use this method, special t-tables are needed because percentile points
for small probability values are not available in ordinary t-tables. For example,
for n = 25, p = 3, and α = 0.05, the critical value needed corresponds to the
(0.025/25) = 0.001th upper percentile point of a t-distribution with 20 df.
(Note that this will be a two-tailed test using |ti|; hence, 0.025 must be used
instead of 0.05.) Since the required percentage points are not available from
ordinary t-table, a special table was constructed (Weisberg 1985). This table
has been reconstructed by the authors and appear as Tables B.11 and B.12.

Leverage

Recall that
ŷ = Hy

where H is the n× n hat matrix. Recall also that

var(ŷi) = hii σ
2

var(ei) = (1− hii)σ
2

These imply that “larger” hii causes var(ŷi) to be larger and var(ei) to be
smaller. Hence, by examining diagonal elements of the hat matrix, it can be
determined that an observed value is going to be predicted well or not by the
regression on the x-values. Rewriting ŷ = Hy as

ŷi = hii yi +
∑

j �=i

hij yj

it is observed that when hii is closer to 1, the predicted value ŷi will be closer
to yi and, therefore, ei will be closer to zero. (Remember that 1

n ≤ hii ≤ 1
d .)

For this reason, hii is called the leverage of the ith observation or case: It
measures the effect that yi will have on determining ŷi. However, note that the
actual magnitude of ŷi, and therefore that of ei, depends on both hii and yi. As
a rule of thumb, cases with leverages numerically larger than 2(k+1)/n (i.e.,
twice the average of all hii) may be marked for further investigation. Note also
that hii actually measures how far away the ith case, xi = (x1i, x2i, . . . , xpi)
is from the other cases; that is, a large hii may indicate an x-outlier.

Influence Statistics: Cook’s D

Cases whose deletion causes major changes in the fitted model are called
influential. A diagnostic tool that measures the influence of the ith case on
the fit of the model is known as the Cook’s distance statistic and is defined
by

Di =
1

k′

{
ei

s
√
1− hii

}2 (
hii

1− hii

)

=
1

k′
r2i

(
hii

1− hii

)



4.2 An Introduction to Multiple Regression Analysis 235

where k′ = k + 1. Di measures the importance of the ith case on the fitted
model. The fact that Di may be partitioned as

Di = constant × studentized residual2× monotone increasing function of hii

indicates that a large Di may be due to a large ri, or a large hii, or both.
So some cases with large leverages may actually not be influential because ri
is small, indicating that these cases actually fit the model well. Cases with
relatively large values for both hii and ri should be of more concern. As
demonstrated in SAS Example D3, some cases that are not x -outliers but are
significant y-outliers may cause inflation of the predictive variance and thus
may be influential. As a rule of thumb, cases with Cook’s D numerically larger
than 4/n are flagged for further investigation.

Influence Statistics: DFFITS

It is interesting to examine cases whose deletion causes major changes in
the fit of that individual case, i.e., cases that are influential in their own
prediction. This is a different concept from the idea of measuring how an
individual case might affect the fit of the entire model. The statistic below is
a scaled measure of the change in prediction of a response when that case is
deleted:

DFFITS =
ŷi − ŷ(i)

s(i)
√
hii

where the numerator is the change in the predicted value for the ith observa-
tion when the ith observation is deleted, ŷ(i) and s(i) were defined previously.
The DFFITS statistic is very similar to Cook’s D statistic defined above.
Cook’s D measures the influence of the ith case on all fitted values jointly
while DFFITS measures the influence of the ith case on the ith fitted value,
ŷi. Comparably large values of DFFITS indicate influential observations, in
the sense defined here. A suggested measure of high influence is a value larger
than 1 for smaller data sets and larger than 2

√
(k + 1)/n for large data sets.

Influence Statistics: DFBETAS

Similarly, one might want to measure the effect of deletion of a case on the
estimates of individual coefficients. A scaled measure of the change in the jth
parameter estimate when the ith observation is deleted is given by:

DFBETASj =
β̂j − β̂(i)j

s(i)
√
c(jj)

where cjj denotes the jjth element (i.e., the jth diagonal element) of the
(X ′X)−1 matrix, as defined earlier. In general, large values of DFBETAS
indicate observations that are influential in estimating a specific parameter.
A suggested measure of high influence is a value larger than 1 for smaller data
sets and larger than 2/

√
n for large data sets.
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SAS Example D5 (Continued)

Although a residual analysis is usually deferred until an appropriate model is
selected by identifying a subset of explanatory variables, some options avail-
able in proc reg are used with the model fitted in SAS Example D5 to illus-
trate the options needed to produce various case statistics discussed in this
section.

In addition to the options specified on the model statement in the SAS
Example D5 program, the option p (for predicted) requests that predicted
values and residuals be part of the case statistics output. If instead, or in addi-
tion, the option r (for residual) is specified, standard errors of the predicted
values, standard errors of the residuals, studentized residuals, and Cook’s D
statistics (the column titled Cook’s D) are calculated. If in addition, the op-
tion influence is added, i.e., if the following model statement is used

model y = X1 X2 X3 X4/clb xpx i r influence;

the entire set of case statistics shown in Fig. 4.25 is produced.
Using the criteria described in this subsection, it is observed that none of

the studentized residuals (or externally studentized residuals) is large enough
for a case to be judged as a y-outlier. The column labeled Hat Diag H also
indicates that for none of the cases does hii exceed the value (10/13 ≈ 0.8).
The only case with a large enough Cook’s D value (> 4/13 ≈ 0.308) is case
number 8, but it is so only because of the relatively large values for hii and rii,
with neither of those indicating any abnormality. Although case number 8 has
a somewhat of a large Cook’s D value, the DFFITS values are small indicating
that deleting this case will not cause a substantial change in the prediction
of the response for this case. In Sect. 4.2.3, residuals from the above fit are
analyzed using several residual plots.

4.2.3 Residual Plots

The use of residual plots as a part of the analysis of residuals from regression
has been common practice during the past several decades. Many of these
plots have been described in the regression texts by Draper and Smith (1981)
and Weisberg (1985). The most useful of these plots are the scatter plots of
residuals (or studentized residuals) versus each of the explanatory variables
(i.e., ei or ri versus each of the xi) and the scatter plot of residuals (or stu-
dentized residuals) versus the predicted values (i.e., ei or ri versus the ŷi).
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Output Statistics

Obs
Dependent

Variable
Predicted

Value
Std Error

Mean Predict Residual
Std Error
Residual

Student
Residual -2-1 0 1 2

1 78.5000 78.4952 1.8145 0.004760 1.640 0.00290 |      |      |

2 74.3000 72.7888 1.4120 1.5112 1.997 0.757 |      |*     |

3 104.3000 105.9709 1.8579 -1.6709 1.591 -1.050 |    **|      |

4 87.6000 89.3271 1.3291 -1.7271 2.053 -0.841 |     *|      |

5 95.9000 95.6492 1.4627 0.2508 1.960 0.128 |      |      |

6 109.2000 105.2746 0.8619 3.9254 2.289 1.715 |      |***   |

7 102.7000 104.1487 1.4820 -1.4487 1.946 -0.744 |     *|      |

8 72.5000 75.6750 1.5634 -3.1750 1.881 -1.688 |   ***|      |

9 93.1000 91.7217 1.3270 1.3783 2.055 0.671 |      |*     |

10 115.9000 115.6185 2.0471 0.2815 1.339 0.210 |      |      |

11 83.8000 81.8090 1.5956 1.9910 1.854 1.074 |      |**    |

12 113.3000 112.3270 1.2544 0.9730 2.100 0.463 |      |      |

13 109.4000 111.6943 1.3480 -2.2943 2.041 -1.124 |    **|      |

Output Statistics

Obs
Cook's

D RStudent
Hat Diag

H
Cov

Ratio DFFITS

DFBETAS

Intercept X1 X2 X3 X4

1 0.000 0.002715 0.5503 4.3353 0.0030 -0.0011 0.0008 0.0011 0.0007 0.0012

2 0.057 0.7345 0.3332 2.0173 0.5193 0.1995 -0.2451 -0.1938 -0.2139 -0.1783

3 0.301 -1.0581 0.5769 2.1948 -1.2356 -1.0953 1.0331 1.0828 1.0837 1.0970

4 0.059 -0.8240 0.2952 1.7413 -0.5333 -0.2367 0.1781 0.2482 0.2215 0.2255

5 0.002 0.1198 0.3576 3.0041 0.0894 -0.0188 0.0028 0.0238 0.0025 0.0226

6 0.083 2.0170 0.1242 0.2252 0.7594 0.1905 -0.1239 -0.1854 -0.1776 -0.1980

7 0.064 -0.7218 0.3671 2.1514 -0.5497 0.0538 -0.0048 -0.0717 -0.0549 -0.0436

8 0.394 -1.9675 0.4085 0.3649 -1.6352 0.4186 -0.5144 -0.3601 -0.6437 -0.4081

9 0.038 0.6459 0.2943 2.0684 0.4171 0.2484 -0.2622 -0.2427 -0.2248 -0.2514

10 0.021 0.1973 0.7004 6.3297 0.3016 -0.0530 0.1169 0.0414 0.0789 0.0464

11 0.171 1.0859 0.4255 1.5583 0.9345 -0.3273 0.3787 0.2982 0.4630 0.3099

12 0.015 0.4394 0.2630 2.3089 0.2625 -0.1359 0.1353 0.1413 0.1280 0.1318

13 0.110 -1.1459 0.3037 1.1854 -0.7568 0.3569 -0.3000 -0.3865 -0.2897 -0.3552

Fig. 4.25. Residual and influence statistics: Hald data

SAS Example D6

As in the case of simple linear regression, proc reg produces a residual diag-
nostics panel by default (i.e., when plots= options are not used in the proc
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statement). In addition, it also produces the residual plots against each of the
explanatory variables (regressors). The proc step in SAS Example D6 program
(shown in Fig. 4.26) results in the fit diagnostics panel displayed in Fig. 4.27
and the four plots displayed in Fig. 4.28.

insert data step to create the SAS dataset ‘cement’ here

title ’Residual Plots: Regression Analysis of Hald Data’;
proc reg data=cement;

model y = X1-X4/r p;
run;

Fig. 4.26. SAS Example D6: program

The first plot in the diagnostics panel (Fig. 4.27) is the residuals versus
the predicted values plot. This plot is a dual purpose diagnostic plot. The
examination of the scatter of the residuals around zero is aided by a horizontal
reference line drawn at e = 0. Since the ei and the ŷi are uncorrelated, this
plot should show an even scatter of points around the zero reference line as
the ŷi values increase (or decrease), if the fitted model is the correct one. If
the model assumptions about the errors (i.e., that εi are uncorrelated and
randomly distributed) are valid, one would expect the residuals to be evenly
distributed around zero irrespective of the values of x or ŷi. Sometimes a
marginal box plot or a histogram of ei is appended to this scatter plot as an
aid to the examination of the distribution of the residuals.

Additionally, if the spread of the points around the line remains approx-
imately the same throughout the range of values of ŷ, it would suggest that
the variance of ei (and, therefore, the variance of yi) remains constant for
all possible values of xi, and thus is not dependent on x. If the spread of
the residuals around the zero reference line has an increasing or a decreasing
pattern as the value of ŷi changes, then a dependence of the residual variance
on the “mean” of the response variable may be suspected. For example, such
would be the case if the response variable had a Poisson distribution when
the variance of the response increases as the mean of the response increases.

A useful variation of the above plot is RStudent versus the Predicted Val-
ues plot shown as the second plot in the first row of the diagnostics panel.
Because RStudent values are a standardized version of the residuals, they
have t-distributions and their variances are approximately equal. Thus, their
magnitudes may be compared with each other for determining if there are ex-
treme values. The plot in Fig. 4.27 shows two horizontal reference lines drawn
at the points ±2 of the y-axis. These indicate the rough cutoff values used to
determine cases that may be flagged as possible y-outliers. In this example,
there are two points that fall on the reference lines, but they are not too far
outside the cutoff value for those cases to be considered y-outliers.

The third plot on the first row of diagnostics panel (Fig. 4.27) allows the
consideration of extreme values in both RStudent and Leverage (hat values)
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Fig. 4.27. Diagnostics panel: multiple regression of Hald data

by plotting these quantities against each other. In the y-direction, this plot
can be interpreted in a manner similar to the previous plot. In the x-direction
(where the values are all positive as they are hat values), the vertical reference
line shows the approximate cutoff for x-outliers. In this example, this cutoff
is equal to 10/13 ≈ 0.77. Since Cook’D statistic becomes inflated if either (or
both) of Rstudent or Leverage becomes large, this is a useful plot for examining
cases that are possibly influential. The third plot in the second row is an index
plot of the Cook’s D values and also contains a horizontal reference line, here
drawn at 4/13 ≈ 0.31. In this example, the Cook’s D for Case Number 8
exceeds this value (as can be visually ascertained from Fig. 4.29) and thus
is shown to be an influential case. However, this observation is neither an
x-outlier nor a y-outlier; thus, it may be of little concern to the investigator.

The points in the normal probability plot in Fig. 4.27 (first plot in the
second row) do not deviate sufficiently from a straight line to question the
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Fig. 4.28. Residuals vs. Regressors Plots: multiple regression of Hald data

assumption that the errors are normally distributed. The normal probability
plot of the residuals (or, preferably, the studentized residuals) is useful for
checking the model assumption of normality of the errors (εi) and also for
determining the presence of any outliers. As described in Chap. 2, Sect. 2.2, a
better approach for assessing a normal probability plot is to examine the plot
to check whether a specific pattern of the points is identifiable that conforms
to a long-tailed, short-tailed, or a skewed distribution relative to a normal
distribution rather than judge whether the points deviate from a straight
line.

Any curvature pattern in the scatter plot of ei versus xi may suggest a
need for inclusion of higher-order terms in that particular x variable in the
model or a transformation either of the x variable or the response y. This plot
is also useful for determining if any independent variables that were observed
but not included in the fitted model will make any additional contribution if
added to the model. Simply plot the ei’s from the fitted model against these
variables one at a time to check whether these variables exhibit any systematic
relationship (such as linearity) with the residuals.

Furthermore, if any of the residuals versus x variable plots shows a system-
atically increasing or decreasing pattern in the spread around the reference
line, it would be an indication of a dependence of the residual variance on
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Fig. 4.29. Index plot of Cook’s D: multiple regression of Hald data

the particular x variable (i.e., that the residual variance is function of that
x variable). Examining the location of the points relative to the horizontal
reference line drawn at a residual value of zero (i.e., e = 0) in the four plots
shown in Fig. 4.28, it is seen that none of the residual plots indicate any dis-
cernible pattern, the residuals being distributed evenly as the x-values change
and lie within a band equidistant from the reference line.

Sample residual plots resulting from artificially generated data serve as
a rough guide to interpreting such plots. In practice, one rarely encounters
plots that clearly indicate a pattern as recognizable as those illustrated in
such plots. If a plot is difficult or ambiguous to interpret, it is perhaps best to
consider it inconclusive rather than drawing a possibly erroneous conclusion.
Moreover, the presence of one or two extreme values or outliers may affect the
model fit and may lead to misleading interpretation of these plots.

In addition to the plots described so far, index plots of case statistics
such as DFFITS and DFBETAS that include reference lines for indicating
suggested cutoff values are useful devices for comparing the magnitudes of
these statistics visually. It is easy to construct such plots using a plots=

options such as plots(only)=(CooksD DFFITS DFBETAS). This specification
produced the graphs shown in Figs. 4.29, 4.30, and 4.31. Note that in the case
of the DFFITS plot, the horizontal reference lines are drawn at ±2

√
(5/13) =

1.24, while in the DFBETAS plots, they are drawn at ±2
√

(1/n) = 0.55.
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Fig. 4.30. Index plot of DFFITS: multiple regression of Hald data
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4.2.4 Examining Relationships Among Regression Variables

In simple linear regression, the relationship between the response y and the
explanatory variable x can be visually examined easily using a scatter plot
of y versus x. This plot gives a direct visual impression of the contribution
of x to the regression as well as how well the data fit the regression. In the
case of multiple regression, however, the scatter plot of y against any one
of the x variables, called the partial response plot, may be less useful for
this purpose. Although still a good indicator of the strength of the linear
relationship between y and the particular x variable, this plot does not take
into account the effects of the other explanatory variables and, therefore, may
not help in determining the contribution of individual explanatory variables
to the overall regression fit.

Recall that plotting residuals from a multiple regression against a variable
that has been observed but not considered for the current model is a good
way to determine whether there is evidence for the variable to be included
in the model. Thus, to check whether an explanatory variable is useful, the
residuals from fitting a multiple regression on the rest of the x variables may
be plotted against the explanatory variable left out.

The partial regression residual plot or the PRR plot (sometimes also called
the added-variable plot) is an improvement on this idea. It is a graphical tool
that allows the display of the relationship between y and a single x variable
when both variables are adjusted for the effect of the other explanatory vari-
ables in the model. Suppose that the interest is in the relationship between
variables y and xm, after both have been adjusted for the effect of the other
xs in the full model. Define x(m) = (x1, . . . , xm−1, xm+1, . . . , xk). The PRR
plot is obtained as follows:

• Compute the residuals from the regression fit of y on x(m). These, denoted
here by ey|x(m)

, represent the remaining variation in y after removing the
effects of all x variables other than xm.

• Compute the residuals from the regression fit of xm on x(m). These, de-
noted here by exm|x(m)

, represent the remaining variation in xm after re-
moving the effect of all x variables other than xm.

• Plot ey|x(m)
against exm|x(m)

to obtain the PRR plot for the variable xm.
Thus, there is a PRR plot corresponding to each xm.

The partial regression residual plot possesses several important properties
that provide valuable insight about the multiple regression fit of y on the xs.
The intercept of the regression of ey|x(m)

on exm|x(m)
is exactly zero and the

slope of the fitted straight line is identical to the partial slope estimate β̂m

obtained from the full regression of y on all the x variables. Additionally, the
residuals from the simple linear regression of ey|x(m)

on exm|x(m)
are identical

to those from the full regression. Thus, the standard error of β̂m and the MSE
s2 would also agree if the degrees of freedom for MSE of n−k−1 are used for
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its calculation (instead, degrees of freedom of n − 2 was used for calculating
the MSE because this is a straight line fit).

Thus, the PRR plot summarizes the regression of y on xm adjusted for
the other xs. A strong linear relationship indicated in this plot corresponds to
a strong contribution by xm to the overall model even in the presence of the
other x variables. Similarly, the indication of a weak linear relationship in the
PRR plot of xm is evidence that xm may not contribute significant additional
predictive information to the regression when the other x variables are present
in the model. This would indicate that xm may be strongly correlated to
one or more of the other x variables in the model, a condition identified as
multicollinearity.

Multicollinearity

One would immediately suspect multicollinearity problems if a large sam-
pling variance is observed for the estimated coefficient of an x variable in the
statistics computed from a fitted multiple regression. The statistic, called the
variance inflation factor (hereinafter called VIF), computed for the each coef-
ficient βm is a direct measure of the effect of multicollinearity in the estimation
of the parameter. Computationally,

VIFm =
1

(1−R2
(m))

where R2
(m) is the coefficient of determination (or the multiple correlation

coefficient) of the regression of xm on x(m) (including an intercept). A high
R2

(m) indicates that xm is nearly a linear combination of the rest of the x

variables (denoted by x(m)) in the model.
The VIFm value is the factor by which the variance is inflated over what

it would be if the variable xm were completely uncorrelated with all other x
variables. A relatively large VIF for a coefficient (as a rule of thumb, a value
in excess of 10) indicates that the multicollinearity that exists among the x
variables is adversely affecting the estimation of that particular coefficient. If a
variable is completely uncorrelated with all other x variables, the VIF value of
its estimated coefficient will be exactly 1. On the other hand, if a predictor is
highly collinear with one or more of the other predictors as indicated by a high
R2

m value, it will produce a large VIFm. The options collin, collioint, and
tol in proc reg provide statistics called collinearity diagnostics for detecting
dependencies among the regressor variables and also determine when these
may begin to affect the regression estimates.
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insert data step to create the SAS dataset ‘cement’ here

ods select ANOVA ParameterEstimates PartialPlot;
title ‘Regression Analysis of Hald Data’;
proc reg data=cement;

model y = X1 X2 X3 X4/clb vif partial;
model y = X1 X2/clb vif partial;

run;

Fig. 4.32. SAS Example D7: program

SAS Example D7

In the SAS Example D7 program displayed in Fig. 4.32, the full model used in
SAS Example D5 (Model 1) and a reduced model containing only the variables
X1 and X2 (Model 2) are fitted to the Hald cement data using proc reg. The
options clb, vif, and partial are specified requesting the 95% confidence
intervals and the VIFs for the respective coefficients and partial regression
residual plots for each variable in the respective model be output. The parts
of the output giving the information on the parameter estimates and other fit
statistics of interest are reproduced here in Figs. 4.33 and 4.34, respectively.

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 2667.89944 666.97486 111.48 <.0001

Error 8 47.86364 5.98295

Corrected Total 12 2715.76308

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variance
Inflation

95%
Confidence Limits

Intercept 1 62.40537 70.07096 0.89 0.3991 0 -99.17855 223.98929

X1 1 1.55110 0.74477 2.08 0.0708 38.49621 -0.16634 3.26855

X2 1 0.51017 0.72379 0.70 0.5009 254.42317 -1.15889 2.17923

X3 1 0.10191 0.75471 0.14 0.8959 46.86839 -1.63845 1.84227

X4 1 -0.14406 0.70905 -0.20 0.8441 282.51286 -1.77914 1.49102

Fig. 4.33. SAS Example D7: fit statistics for Model 1
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From the fit statistics for Model 1 displayed in Fig. 4.33, it is seen that none
of the coefficients is significantly different from zero at α = 0.05. This is also
evident from the fact that the 95% confidence intervals for these coefficients all
contain zero. Of course, this is a consequence, as noted earlier, of the standard
errors of the estimates of these coefficients being extremely large. The VIFs
for the four estimates are all larger than 10, and extremely large for X2 and
X4, indicating that although there is severe multicollinearity among all four
variables, each of these two variables is highly collinear with the others.

The partial regression residual plots produced by the partial option may
be selected for output using the ODS SELECT statement shown in Figs. 4.32
as an alternative to the plots= option used in previous SAS programs. Using
ODS SELECT the user may request only those tables and graphical output
required by the user to be included in the ODS output created in the proc
step. The graphs as displayed in Figs. 4.35 and 4.36 were produced as part of
the output produced by using the ODS graph name PartialPlot in the ODS
SELECT statement. The graph names are listed in Table B.17. The options
ANOVA and ParameterEstimates produced the tables in Figs. 4.33 and 4.34;
some selected table names can be found in Table B.18.

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 2657.85859 1328.92930 229.50 <.0001

Error 10 57.90448 5.79045

Corrected Total 12 2715.76308

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variance
Inflation

95%
Confidence

Limits

Intercept 1 52.57735 2.28617 23.00 <.0001 0 47.48344 57.67126

X1 1 1.46831 0.12130 12.10 <.0001 1.05513 1.19803 1.73858

X2 1 0.66225 0.04585 14.44 <.0001 1.05513 0.56008 0.76442

Fig. 4.34. SAS Example D7: fit statistics for Model 2

The partial regression residual plots for the full model are displayed in
Fig. 4.35. It is clear that none of these plots shows strong linearity leading
to the conclusion that, in the presence of the other variables in the model,
none of these variables contribute significant additional information to the
prediction of y, the heat evolved.
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The second model analyzed in this example, Model 2, fits the model con-
taining only the two variables X1 and X2, which were chosen because they
showed only a small correlation (≈ 0.23) between them. As expected, this
model displays no multicollinearity problems, as seen from examining the fit
statistics for Model 2 appearing in Fig. 4.34. The VIFs for both variables are
small and so are the standard errors of estimates of both coefficients. The
p-values for the t-statistics are both extremely small and the confidence in-
tervals also show that coefficients are both positive. The partial regression
residual plots for the Model 2 displayed in Fig. 4.36 show clearly a significant
linear relationship of each variable with y in the presence of the other, showing
that any collinearity present will not affect the estimation of the respective
coefficients in a multiple regression model.

The examples used above are intended to illustrate diagnostic tools avail-
able for identifying multicollinearity and how these can be obtained using
proc reg. The possible remedies available for multicollinearity require fur-
ther study of this problem. The remedy suggested here of excluding variables
may not be advisable in situations when the omitted variable may provide pre-
dictive information for data not available for building the regression model.
Although the presence of multicollinearity may affect the estimation of some
coefficients as seen earlier, the fitted model is still useful for estimating the
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mean responses or making predictions. One consequence of high variability of
a coefficient estimate is that it may be infeasible to use the actual estimate
to measure the effect of the variable on the expected response.

4.3 Types of Sums of Squares Computed in PROC REG

4.3.1 Model Comparison Technique and Extra Sum of Squares

In Sect. 4.4, F -statistics based on Type II sum of squares will be used in proc

reg to obtain F -tests for individual parameters. This approach for testing
the significance of one or more parameters in a regression model is called the
model comparison technique and the difference in the error sum of sum of
squares of the two models thus compared is called the extra sum of squares.
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Fig. 4.36. Partial regression residual plots: Model 2

A hypothesis about any one of the β coefficients in the model, say
H0 : β2 = 0, may be tested using a t-test. Sometimes a hypothesis may
involve testing whether two or more of the β coefficients in a model are zero
against the alternative hypothesis that at least one of these β coefficients
is not zero. To introduce the model comparison technique, assume that k is
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the total number of explanatory variables (x’s) in Model1 and that � is the
number of explanatory variables considered to be in a smaller model, Model2,
where, obviously, � < k. For convenience and ease of presentation, it is as-
sumed here that the explanatory variables in the two models are ordered so
that x�+1, x�+2, . . . , xk is the subset of explanatory variables excluded from
Model1. The two models are thus

Model1: y = β0 + β1x1 + · · ·+ βkxk + ε

Model2: y = β0 + β1x1 + · · ·+ β�x� + ε

Thus, k−� represents the number of variables excluded from Model1 to obtain
Model2. It is of interest to test the hypothesis H0 : β�+1 = β�+2 = · · · = βk =
0 against Ha : at least one of these is not zero, about the coefficients in
Model1. To formulate a test of this hypothesis based on model comparison
technique, first fit the two models and compute the respective residual sums
of squares. The F -test statistic for testing H0 is

F =
[SSE(Model2)− SSE(Model1))]/(k − �)

SSE(Model1)/(n− k − 1)

The numerator and denominator degrees of freedom for the F -distribution
associated with F -statistic are k − � and n − k − 1, respectively. When this
computed F exceeds a critical value for a specified α level obtained from the
F -tables, H0 is rejected.

Reduction Notation

A system of notation for representing differences in residual sums of squares
resulting from fitting two regression models was promoted by Searle (1971).
Denoted by R( ) and called the reduction notation, this representation is
useful for discussing types of sums of squares and for representing statistics
useful in variable subset selection methods computed by computer programs.
Consider, for example, the model

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + ε .

To determine whether one of the explanatory variables x1, . . . , x5 in this model
does not contribute to the regression, a hypothesis of the form, sayH0 : β2 = 0,
may be tested. To put it in the framework of the model comparison technique,
consider the above model to be Model1. The corresponding analysis of variance
table (only the sources of variation, df, and the sums of squares are shown
here) is

Source df SS

Regression 5 β̂
′
X ′y − nȳ2 = SSR (β1, β2, β3, β4, β5)

Residual n− 6
∑

y2i −β̂
′
X ′y = SSE (β0, β1, β2, β3, β4, β5)

Total n− 1
∑

y2i − nȳ2
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where n = number of observations in the data set. Suppose now that Model2
consists of, say, the explanatory variables x1, x2, x3, and x4, so the model

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε

is fitted to the data. The corresponding analysis of variance table is

Source df SS
Regression 4 SSR(β1, β2, β3, β4)

Residual n− 5 SSE(β0, β1, β2, β3, β4)

Total n− 1
∑

y2i − nȳ2

Now, note that the residual sum of squares for the Model1 is always smaller in
magnitude than the corresponding sum of squares for Model2. The quantity
representing the reduction in the residual sum of squares due to the addition
of the variable x5 to Model2 is denoted by R(β5/β0, β1, β2, β3, β4); that is,

R(β5/β0, β1, β2, β3, β4) = SSE(β0, β1, β2, β3, β4)− SSE(β0, β1, β2, β3, β4, β5)

= SSE(Model2)− SSE(Model1)

R(β5/β0, β1, β2, β3, β4) can now be used to formulate the F -statistic for testing
H0 : β5 = 0 versus H1 : β5 �= 0 as

F =
R(β5/β0, β1, β2, β3, β4)/(1)

SSE(β0, β1, β2, β3, β4, β5)/(n− 6)

The numerator and denominator degrees of freedom here for the F -statistic
are 1 and n− 6, respectively. Note that when a single parameter is tested for
zero, the numerator degrees of freedom of the F -test will always be equal to
one and thus the F -test is equivalent to the t-test available for testing the
same hypothesis. Note that this notation can be extended in an obvious way
to the case when several variables are added or deleted.

4.3.2 Types of Sums of Squares in SAS

In the regression setting, SAS computes two types of sums of squares as-
sociated with testing hypotheses about coefficients in the model. These are
referred to as Type I and Type II sums of squares and are output by speci-
fying ss1 or ss2, or both together, as options in the model statement.

Definition: Type I (or Sequential) Sums of Squares This is a partitioning of
the regression sum of squares into component sums of squares each with one
degree of freedom that represent the reduction in residual sum of squares (or,
equivalently, the increase in regression sum of squares) as each variable is
added to the model in the order they are specified in the model statement.
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Definition: Type II (or Partial) Sum of Squares This is a partitioning of re-
gression sum of squares into component sums of squares each with one degree
of freedom that represent the reduction in residual sum of squares (or, equiv-
alently, the increase in regression sum of squares) when each variable is added
to a model containing rest of the variables specified in the model statement.

Type I and Type II Sums of Squares in Reduction Notation Consider the
following model statement:

model y = X1 X2 X3 X4/ ss1 ss2;

The resulting sums of squares computed by proc reg can be identified using
the reduction notation developed above, as indicated below:

Effect Type I SS Type II SS
X1 R(β1/β0) R(β1/β0, β2, β3, β4)

X2 R(β2/β0, β1) R(β2/β0, β1, β3, β4)

X3 R(β3/β0, β1, β2) R(β3/β0, β1, β2, β4)

X4 R(β4/β0, β1, β2, β3) R(β4/β0, β1, β2, β3)

These sums of squares are important and useful because they can be used to
construct F -statistics (or equivalently, t-statistics) to test certain hypotheses.
For example, the Type I SS R(β2/β0, β1) may be used to test whether X2

should be added to the model y = β0 + β1X1 + ε, whereas the Type II
SS R(β2/β0, β1, β3, β4) may be used to construct an F -statistic to test the
hypothesis H0 : β2 = 0 versus Ha : β2 �= 0 in the model y = β0 + β1X1 +
β2X2 + β3X3 + β4X4 + ε.

As will be discussed in Sect. 4.4, the Type II sums of squares computed
in subset selection procedures in proc reg are used to construct both F-to-
enter and F-to-delete statistics for adding variables to a model and removing
variables from a model, respectively, as illustrated via an example in that
section.

SAS Example D8

Figure 4.37 shows the model fit statistics and parameter estimates portions of
the output if the model statement in the proc reg step in the SAS program
in Fig. 4.18 is replaced by

model y = X1 X2 X3 X4/ss1 ss2;

It is informative to observe from this output, for example, that the reduction
in the residual sum of squares for adding variable X2 to a model with only X1
currently in the model (Type I SS: R(β2/β0, β1) = 1207.78227) is considerably
larger than the reduction in the residual sum of squares for adding variable X2



252 4 Statistical Analysis of Regression Models

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 2667.89944 666.97486 111.48 <.0001

Error 8 47.86364 5.98295

Corrected Total 12 2715.76308

Root MSE 2.44601 R-Square 0.9824

Dependent Mean 95.42308 Adj R-Sq 0.9736

Coeff Var 2.56333

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t| Type I SS Type II SS

Intercept 1 62.40537 70.07096 0.89 0.3991 118372 4.74552

X1 1 1.55110 0.74477 2.08 0.0708 1450.07633 25.95091

X2 1 0.51017 0.72379 0.70 0.5009 1207.78227 2.97248

X3 1 0.10191 0.75471 0.14 0.8959 9.79387 0.10909

X4 1 -0.14406 0.70905 -0.20 0.8441 0.24697 0.24697

Fig. 4.37. SAS Example D8: output

to a model that contains X1, X3, and X4 (Type II SS: R(β2/β0, β1, β3, β4) =
2.97248).

F -statistics to test various hypotheses using the model comparison tech-
nique may be constructed using the Type II sums of squares in this out-
put. For example, to test H0 : β2 = 0 versus Ha : β2 �= 0 in the model
y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε, the F -statistic can be calculated
as:

F =
R(β2/β0, β1, β3, β4)/(1)

SSE(β0, β1, β2, β3, β4)/(13− 5)
=

2.97248

47.86364/8
= 0.4967

Also, note that the p-values corresponding to the Type II F -tests are identical
to those computed for the t-tests for the individual parameters given in the
parameter estimates table in Fig. 4.37, because both sets of statistics test the
same hypotheses about the coefficients, as discussed earlier. Thus the p-value
associated with the above F -statistic is 0.5009.
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Interactive Model Fitting Using PROC REG

Suppose that it is required to test the hypothesis H0 : β3 = β4 = 0 versus
Ha : β3 and/or β4 �= 0 in the model y = β0 +β1X1+β2X2+β3X3+β4X4+ ε
(Full Model). This would be the case if the interest is in excluding both
variables X3 and X4 simultaneously, if they are not significant in the full
model. To use the model comparison technique for doing this, it may require
the model y = β0 + β1X1 + β2X2 + ε (Reduced Model) to be fitted using a
separate model statement in the proc reg step. However, in the interactive
model-fitting facility in proc reg, once a model is fitted, the add and delete

statements can be executed to perform computations pertaining to a modified
model. For example, once the SAS Example D5 program (see Fig. 4.18) is
executed to fit the full model, the following three SAS statements may be
submitted to fit the reduced model given above:

delete X3 X4;

print;

run;

This produces the complete output from the fit of the reduced model. The
analysis of variance table from this fit which is needed for the computation
of the F -statistic is reproduced in Fig. 4.38. Thus the required F -statistic for
testing H0 : β3 = β4 = 0 versus Ha : β3 and/or β4 �= 0 is computed as follows:

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 2657.85859 1328.92930 229.50 <.0001

Error 10 57.90448 5.79045

Corrected Total 12 2715.76308

Fig. 4.38. SAS Example D8: fitting a reduced model

F =
[SSE(Reduced Model)− SSE(Full Model))]/(4− 2)

SSE(Full Model)/(13− 4− 1))

=
(57.90448− 47.86364)/2

47.86364/8
= 5.02042/5.982955 = 0.84

An alternative and easier computation of the above statistics can be ac-
complished by using the test statement in proc reg. The statements re-
quired to perform the F -tests for H0 : β2 = 0 versus Ha : β2 �= 0 and
H0 : β3 = β4 = 0 versus Ha : β3 and/or β4 �= 0 are given in Fig. 4.39. The
two tests are labeled B2 and B3B4 as shown in the SAS code and these labels
are used in the output reproduced in Fig. 4.40.
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insert data step to create the SAS dataset ‘cement’ here

title ’F-tests for Model Comparison: Hald Data’;
proc reg data=cement plots=none;

model y = X1 X2 X3 X4/ss1 ss2;
B2:test X2=0;
B3B4:test X3=0,X4=0;

run;

Fig. 4.39. SAS Example D8: program for hypothesis testing

Test B2 Results for Dependent Variable y

Source DF
Mean

Square F Value Pr > F

Numerator 1 2.97248 0.50 0.5009

Denominator 8 5.98295

Test B3B4 Results for Dependent Variable y

Source DF
Mean

Square F Value Pr > F

Numerator 2 5.02042 0.84 0.4668

Denominator 8 5.98295

Fig. 4.40. SAS Example D8: hypothesis tests for model comparison

4.4 Subset Selection Methods in Multiple Regression

An experimenter usually attempts to choose a subset of variables from a
large number of explanatory variables (x variables) measured to construct a
“good” regression model. Here, “good” may be taken to mean that the model
is adequate for prediction and at the same time is economical to use. The
model containing all explanatory variables measured is called the full model,
whereas a model containing a subset of those is called a subset model.

For the purpose of selecting a good model, some criteria for selecting one
model over another are needed. Usually, statistical test procedures available
for this purpose are based on the residual sum of squares remaining after
fitting each model. If the inclusion of additional independent variables does
not “significantly” decrease the residual sum of squares, then the additional
variables may be excluded to obtain a more parsimonious model. If one is
dealing with a smaller number of explanatory variables, then it is perhaps best
to look at all possible subset models. This can be done using an appropriate
program that fits all combinations of the explanatory variables. Although such
a procedure may be expensive if the number of explanatory variables that have
to be considered is large, algorithms that reduce the amount of computations
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necessary to obtain the “best” model according to some criterion, containing
different numbers of explanatory variables (subset models of a specified size),
are available.

First, some classical methods for variable subset selection are summarized
below.

Forward Selection Method

In the forward selection method, explanatory variables are entered into the
model, one at a time, at each stage testing whether there is a significant
decrease in the residual sum of squares. For example, suppose that k explana-
tory variables x1, x2, . . . , xk are available. First, one independent variable is
selected to obtain the best simple linear model. Suppose that each of the
explanatory variables is used to fit simple linear regression models of the type

yi = β0 + βjxji + ei, i = 1, 2, . . . , n

for each j = 1, 2, . . . , k and the Type II F -statistic for each model deter-
mined. These F -statistics are a measure of each variable’s contribution to
the model if it is included in the model. The variable corresponding to the
largest F -statistic is chosen to enter the model, if the p-value associated with
the F -statistic exceeds some preassigned value called the significance level
for entry. Note that since the largest F -statistic does not have an exact F -
distribution, this is not equivalent to testing the hypothesis H0 : βj = 0 in
the current model. Nevertheless, since the p-value is a monotone function of
the denominator degrees of freedom (determined by the number of variables
already in the model), it makes sense to compare it to some cutoff value to
decide whether a variable enters the current model or not.

Suppose for simplicity that x1 is the variable that is chosen to enter the
model first. Thus, after the first step, the model is

yi = β0 + β1x1i + ei (4.6)

The residual sum of squares for this model is denoted by SSE(β0, β1). Now,
the next variable to enter the above model is determined by considering each
of the explanatory variables other than x1, one at a time. Thus, a two-variable
model is of the form

yi = β0 + β1x1i + βjxji + ei

for j �= 1. Suppose that the residual sum of squares for this model is denoted
by SSE(β0, β1, βj). Then an F -statistic for testing H0 : βj = 0 is

F =
SSE(β0, β1)− SSE(β0, β1, βj)

SSE(β0, β1, βj)/(n− 3)
=

R(βj/β0, β1)

MSE(β0, β1, βj)

which is distributed as F (1, n−3). This statistic, called the F-to-enter statistic
for variable xj , effectively tests whether the reduction in the residual sum of
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squares by adding or “entering” the variable xj to model (4.6) is significant.
The variable that produces the largest of the F-to-enter statistics is determined
by fitting each of these two-variable models using the variables x2, . . . , xp. A p-
value for this F-to-enter statistic is computed using the F (1, n−3) distribution
and if it is below the preselected significance level for entry, the variable is
entered, and the two-variable model becomes the current model. This process
is continued until, at any stage of the process, the p-value corresponding to the
variable most recently considered as a candidate to enter the model exceeds
the cutoff value.

Backward Elimination Method

A method that is the direct opposite of forward selection is the so-called
backward elimination method. In this method, as a first step, a regression
model with all variables in the model is computed:

y = β0 + β1x1 + · · ·+ βkxk + ε

Suppose that one variable, say xj , is removed (or deleted) from the above
model and the residual sum of squares determined. From the residual sums of
squares of these two models, an F -statistic called F-to-remove (or F-to-delete
can be computed. This F -statistic will have an F (1, n−3) distribution. An F-
to-remove statistic is computed for each variable xj , j = 1, . . . , k, contained in
the current model. The p-value of the smallest F-to-remove value is determined
and the corresponding variable deleted from the model if this p-value exceeds
the preassigned cutoff called significance level for deletion. Again, note that
the smallest F -statistic will not have an F -distribution; thus, this does not
correspond to a test of the hypothesis H0 : βj = 0 in the above model.

Once a variable is removed, a regression model with the remaining variables
is computed, and the entire process is repeated. The process is stopped when
a variable with the smallest F-to-remove value fails to be removed from the
current model.

Stepwise Method

Another more commonly used procedure in computerized regression model
building is the stepwise method. This is a combination of both forward selec-
tion and backward elimination. Two preassigned cutoffs are selected: one for
entry of variables and one for removal. The procedure is similar to forward
selection except that after each new variable is entered in a forward selection
step, a single backward elimination step is performed on the current model.
Obviously, the cutoff for entry may not be greater than or equal to the cutoff
for deletion, for, otherwise, the most recently entered variable will be a can-
didate for immediate deletion. Some computer programs allow this, but the
procedure is terminated when a variable to be entered to the model is one
just deleted from it. In any case, the choice of these cutoffs is quite arbitrary
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as they are not true significance levels but are used to determine the entry or
removal of variables. In practice, the p-values printed for the F -statistics can
be compared to the cutoff values selected to check whether model selected is
sensitive to changes in the cutoffs chosen.

Other Stepwise Methods

Stepwise methods based on finding models that maximize the improvement
in R2 have been proposed.

Coefficient of Multiple Correlation R2 This statistic, introduced first in
Sect. 4.1, can be expressed in the form

R2 = SSReg/SSTot = 1− SSE/SSTot.

It measures the proportion of variance explained by fitted model and is ob-
viously maximized for the full model. The objective is to find subset models
with comparable R2 values so that the inclusion of any of the explanatory
variables left out will not increase it to any appreciable degree.

One such method begins by finding the one-variable model producing the
highest R2 and then adds another variable that yields the largest increase
in R2. Once the two-variable model is obtained, each of the variables in the
model is swapped with the variables not yet in the model to find the swap that
produces the largest increase in R2. The process continues until the method
finds that no switch could increase R2 further at which time it is stopped
and the “best” two-variable model is declared to be found. Another variable
is then added to the model, and the swapping process is repeated to find the
“best” three-variable model and so forth.

All-Subsets Methods

The variable subset selection methods discussed above are all based on finding
a subset of variables such that the inclusion of further variables does not
decrease the residual sum of squares significantly. However, since all these
methods add and/or delete variables one at a time, it is clear that the order
of entering or deleting variables may lead to different models being selected.
Further, these methods may be affected to various degrees by multicollinearity,
if present.

Each of the above methods has its own merits as well as deficiencies. Thus,
although one can provide arguments in favor of one or more of these methods,
in practice, it is recommended that criteria other than those based on the min-
imum sum of squares of residuals alone be used in selecting a “best” subset
model. Some proposed criteria available in computer packages are briefly dis-
cussed below. Associated computational algorithms that determine the best
subset of a given size, in the sense of minimizing or maximizing the speci-
fied criterion without computing all possible regressions, are available. These
perform well at a reasonable cost.
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A possible alternative to one-variable-at-a-time sequential methods of se-
lecting a good subset of variables is considering all possible models of each
“size”; that is, find the best two-variable model by fitting all two-variable
models and so on. Algorithms that require performing only a fraction of the
regressions required to find the best subsets of each size by doing a complete
search have been developed. In practice, implementations of such methods in
computer software usually incorporate the ability for the user to specify that
the “best” models of each size to be selected according to some criterion, such
as the R2, R2

adj or the Cp statistic (these statistics are described below). The
user may also request that best models thus selected be limited to a specified
number and that values of other statistics such as the MSE or the SSE be
included among the information output for each of these models. Thus, the
user has the option of selecting a model based by considering other criteria
other than the criterion used to determine the optimal ones of each size chosen
by such algorithms.

This brings up an important aspect of model selection. Since it is known
that the full model will always have the smallest SSE and hence the largest
R2, it seems logical that more predictor variables are in a model, the better
the model might be. However, including too many predictors in a regression
model leads to the problem commonly called “over-fitting.” This means that
the model fits the data used for building the model (usually called training
data) so closely that it will produce predictions for new data (usually called
test data) that may be highly variable. Thus, including more predictors in a
model will lead to a less-biased model but will produce predictions with high
variance. Thus, for comparison of subset models, statistics other than SSE
and R2 have been proposed.

Adjusted R2 As shown above R2 = 1− SSE/SSTot, and since SSTot remains
a constant for a given data set, comparing models based on R2 is equivalent
to comparing models based on SSE. An adjusted R2 statistic that adjusts for
the degrees of freedom of the SSE has been proposed and is given by

R2
adj = 1− (n− 1)

(n− p− 1)

SSE

SSTot
= 1− n− 1

n− p
(1−R2)

It can be shown that comparing models based on R2
adj is equivalent to com-

paring models based on MSE. Since it is possible to have subset models with
a smaller MSE than the full model, using R2

adj or, equivalently, the MSE has
been suggested as an alternative criterion, for selecting subset models that
will have comparably lower prediction error than the full model.

Mallows’ Cp Statistic For a subset model with p explanatory variables, this
statistic is defined as

Cp = (SSEp/s
2)− (n− 2p)

where s2 =MSE for the full model (i.e., the model containing all k explanatory
variables of interest). SSEp is the residual sum of squares for the subset model
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containing p explanatory variables counting the intercept (i.e., the number
of parameters in the subset model). Usually Cp is plotted against p for the
collection of subset models of various sizes under consideration. Acceptable
models in the sense of minimizing the total bias of the predicted values are
those models for which Cp approaches the value p (i.e., those subset models
that fall near the line Cp = p in the above plot).

To understand what is meant by unbiased predicted values, consider the
full model to be

y = Xβ + ε

and the subset model to be of the form

y = X1β1 + ε

where X = (X1, X2) andβ
′ = (β′

1, β
′
2) are conformable partitions of X and

β from the full model. Let the ith predicted value from the full model be ŷi
and that from the subset model be denoted by ŷ∗i . The mean squared error of
a fitted value for the full model is given by the expression:

mse(ŷi) = var(yi) + [E(ŷi)− E(yi)]
2

where [E(ŷi)−E(yi)] is called the bias in predicting the observation yi using
ŷi. If it is assumed that the full model allows unbiased prediction, the bias
term must be zero; that is,

E(ŷi)− E(yi) = 0

The mean squared error of a fitted value for the subset model is given by the
expression

mse(ŷ∗i ) = var(yi) + [E(ŷ∗i )− E(yi)]
2

which gives the bias in predicting yi using the subset model fitted value to be

E(ŷ∗i )− E(yi)

Under the assumption that the full model is “unbiased,” this bias term thus
reduces to

E(ŷ∗i )− E(ŷi)

The statistic Cp, as defined above, is a measure of the total mean squared
error of prediction (MSEP) of a subset model scaled by σ2, given by

1

σ2

n∑

i=1

mse(ŷ∗i ).
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Cp has been constructed so that if the subset model is unbiased (i.e., if E(ŷ∗i )−
E(ŷi) = 0), then it follows that

Cp =
SSEp

s2
− (n− 2p)

≈ (n− p)σ2

σ2
− (n− 2p)

= p (4.7)

Recall that p here denotes the total number of parameters in the subset model
(i.e., including the intercept). Thus only those subset models that have Cp

values close to p must be considered if unbiasedness in the sense presented
earlier is a desired criterion for selection of a subset model.

However, the construction of the Cp criterion is based on the assumption
that s2, the MSE from fitting the full model, is an unbiased estimate of σ2. If
the full model happens to contain a large number of insignificant parameters
(β’s that are possibly not significantly different from zero), s2 will be inflated
(i.e., larger than the estimate of σ2 obtained from a model in which more
variables are significant). This is because the variables that are not contribut-
ing to significantly decreasing the SSE are still counted toward the degrees of
freedom when computing the MSE in the full model. If this is the case, Cp

will not be a suitable criterion to use for determining a good model. Thus,
models chosen by other methods that have lower MSE values than the models
selected based on the Cp must be considered competitive.

The AIC Criterion Akaike’s information criterion uses the fitted value L ≡
L(β̂, σ̂2) of the maximum likelihood function and the number of parameters p:

AIC = −2 logL+ 2p = n log SSE/n+ 2p

This is an unbiased estimate of the expectation of the log-likelihood function
under a normally distributed errors assumption. The better models are those
with smaller computed AIC values. Because of the form of the above formula,
its values are negative, and as with statistics like R2 and Cp, AIC tends
toward a constant value as the number of variables p in the model increases.
For normal errors AIC is proportional to Cp and thus only CP needs to be
considered.

The BIC and the SBC Criteria The BIC is derived from Bayesian theory and
similar to the AIC criterion. The SBC (Schwarz’s Bayesian information crite-
rion) is easier to compute

SBC = n log SSE/n+ p log n

The behavior of BIC (Bayesian information criterion) and AIC is similar, and
thus BIC is not discussed further in this book. It is to be noted that SBC is
the default criterion used in SAS procedures that perform model selection.
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4.4.1 Subset Selection Using PROC REG

The Hald cement data (see Table B.8), used previously in SAS Example D5 to
demonstrate multiple regression, is used again to illustrate the use of subset
selection procedures using proc reg. The use of proc reg for subset selection
is straightforward. The only action statement required is a model statement
with accompanying options. The options enable a user to specify one of sev-
eral variable subset selection procedures available in SAS, to specify other
parameters required by these methods, to specify lists of statistics output by
these methods, to coerce selected variables to be included in the final model,
and to fit a model without an intercept. Any number of model statements
may appear in the same procedure step.

SAS Example D9

In the program for SAS Example D9, displayed in Fig. 4.41, three subset
selection methods, forward, backward, and stepwise, are specified in the
first three model statements. With the forward selection (selection=f), the
significance level for entry of variables, sle (or slentry), used is 0.1, and with
backward (selection=b), an significance level for deletion, sls (or slstay),
of 0.1 is used. The default settings of both sle and sls equal to 0.15 were
used with the stepwise selection method.

insert data step to create the SAS dataset ‘cement’ here

title ’Regression : Variable Subset Selection Techniques’;
proc reg data=cement plots=none;

model y = X1-X4/selection=f sle=.1 ;
model y = X1-X4/selection=b sls=.1;
model y = X1-X4/selection=stepwise sle=.15 sls=.15;

run;

Fig. 4.41. SAS Example D9: program

The output from the program SAS Example D9 appears in Figs. 4.42, 4.43,
4.44, 4.45, 4.46, and 4.47, separated into six parts and edited (e.g., page titles
and page numbers have been removed and some spacing reduced) for com-
pactness and clarity, but retaining the original sequence of tables as in the
original proc reg output. Since it is informative for the user to relate quan-
tities in this output to the computational techniques discussed in Sect. 4.3, at
various points in the discussion of this output, some of the results appearing
in these tables are recomputed in the text using the notation developed in
that section.

The relevant content extracted from the output for the forward selection
method is shown in Figs. 4.42 and 4.43. Note that two statistics of interest
computed for the fitted model in each step are R2 and Mallows’ Cp, which
were discussed earlier. The first variable to enter the model in the forward
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Forward Selection: Step 1

Variable X4 Entered: R-Square = 0.6745 and C(p) = 138.7308

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 1831.89616 1831.89616 22.80 0.0006

Error 11 883.86692 80.35154

Corrected Total 12 2715.76308

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 117.56793 5.26221 40108 499.16 <.0001

X4 -0.73816 0.15460 1831.89616 22.80 0.0006

Forward Selection: Step 2

Variable X1 Entered: R-Square = 0.9725 and C(p) = 5.4959

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 2641.00096 1320.50048 176.63 <.0001

Error 10 74.76211 7.47621

Corrected Total 12 2715.76308

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 103.09738 2.12398 17615 2356.10 <.0001

X1 1.43996 0.13842 809.10480 108.22 <.0001

X4 -0.61395 0.04864 1190.92464 159.30 <.0001

Fig. 4.42. SAS Example D9: forward selection method (Steps 1 and 2)

method is X4, whose F-to-enter value, 22.80, is the largest among the four
independent variables. Its p-value is below 0.05, the sle, thus X4 is entered.
Here, note that the Type II SS for X4 is equal to R(β4/β0) = 1831.89616.

With X4 in the model, X1 is found to have the largest F-to-enter value,
108.22, with a p-value that is also less than 0.05. Hence, X1 is the next vari-
able to be entered. Thus, at the end of Step 2, the current model has variables
X4 and X1. Computationally, note that Type II SS for X1 and X4 are, re-
spectively, equal to R(β1/β0, β4) = 809.10480 and R(β4/β0, β1) = 1190.92464
and that F-to-enter X1 to the model in Step 1 is computed as

F-to-enter(X1) =
R(β1/β0, β4)/1

SSE(β0, β1, β4)/10
= 809.10480/7.4762 = 108.22

Note that the quantity F-to-enter X2 to the model in Step 2, for example,
cannot be computed from the quantities that are available in Fig. 4.42. To
obtain these values, the details=all option must be specified with the model
statement, as will be illustrated in SAS Example D10.

With these two variables in the model, X2 is found to have the largest
F-to-enter value, which is computed to be 5.03. The p-value for this variable
does not exceed 0.1, and so X2 also enters the model at this stage. Hence,
the final model selected by the forward method is the three-variable model
containing X1, X2, and X4, as seen in Fig. 4.43.

In the backward elimination method in proc reg, the significance

level for deletion is specified using the option slstay= (or sls=) as stated
above. This means that the F-to-delete statistic of a selected variable must
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Forward Selection: Step 3

Variable X2 Entered: R-Square = 0.9823 and C(p) = 3.0182

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 2667.79035 889.26345 166.83 <.0001

Error 9 47.97273 5.33030

Corrected Total 12 2715.76308

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 71.64831 14.14239 136.81003 25.67 0.0007

X1 1.45194 0.11700 820.90740 154.01 <.0001

X2 0.41611 0.18561 26.78938 5.03 0.0517

X4 -0.23654 0.17329 9.93175 1.86 0.2054

Fig. 4.43. SAS Example D9: forward selection method (Step 3)

have a p-value below this value to be retained in the model; otherwise, it will
be deleted from the current model.

In Step 0 of the output resulting from the specification selection=

backward shown in Fig. 4.44, a model containing all explanatory variables
X1, X2, X3, and X4 is fitted to the data. The Type II sums of squares and
F -statistics (the partial sums of squares and accompanying F -statistics) cor-
respond to the F-to-delete values for each of these variables.

The smallest of these is for variable X3, which is 0.02, and corresponding
p-value of ≈ 0.9 is larger than 0.1, the slstay specification; thus, X3 is deleted
from the model. Type II SS for X3 is R(β3/β0, β1, β2, β4) = 0.10909 and

F-to-delete(X3) =
R(β3/β0, β1, β2, β4)/1

SSE(β0, β1, β2, β3, β4)/8
= 0.10909/5.98295 = 0.02

verifying the value shown for F-to-delete X3 in Step 0. In Step 1, X4 is deleted,
since the F-to-delete value for this variable is 1.86, and the associated p-value
also exceeds 0.1. F-to-delete X2 from the model in Step 1 is computed as

F-to-delete(X2) =
R(β2/β0, β1, β4)/1

SSE(β0, β1, β2, β4)/9
= 26.78938/5.33030 = 5.03

and this is identical to F-to-enter X2 to the model containing only X1 and
X4. In Step 2 (see Fig. 4.45), no variable qualifies for deletion since the F-
to-delete values for both X1 and X2 are quite large, and the corresponding
p-values are both much smaller than 0.1. Thus the final model selected by
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the backward method contains only the variables X1 and X2. Note that this
model is different from the one selected by the forward selection method. It is
informative to note that the value of F-to-enter X2 to the model in Step 2 in
the forward selection method (see Fig. 4.43) is identical to the value for F-to-
delete X2 (computed as 5.03) from the model y = β0+β1X1+β2X2+β4X4+ε
in the backward elimination method (see Step 1 in the output displayed in
Fig. 4.44).

Backward Elimination: Step 0

All Variables Entered: R-Square = 0.9824 and C(p) = 5.0000

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 2667.89944 666.97486 111.48 <.0001

Error 8 47.86364 5.98295

Corrected Total 12 2715.76308

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 62.40537 70.07096 4.74552 0.79 0.3991

X1 1.55110 0.74477 25.95091 4.34 0.0708

X2 0.51017 0.72379 2.97248 0.50 0.5009

X3 0.10191 0.75471 0.10909 0.02 0.8959

X4 -0.14406 0.70905 0.24697 0.04 0.8441

Backward Elimination: Step 1

Variable X3 Removed: R-Square = 0.9823 and C(p) = 3.0182

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 2667.79035 889.26345 166.83 <.0001

Error 9 47.97273 5.33030

Corrected Total 12 2715.76308

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 71.64831 14.14239 136.81003 25.67 0.0007

X1 1.45194 0.11700 820.90740 154.01 <.0001

X2 0.41611 0.18561 26.78938 5.03 0.0517

X4 -0.23654 0.17329 9.93175 1.86 0.2054

Fig. 4.44. SAS Example D9: backward elimination method (Steps 0 and 1)

In the output resulting from the stepwise option appearing in Figs. 4.46
and 4.47, variables are added based on F-to-enter statistics as in forward
selection, but a backward elimination step is performed immediately after
each forward step, based on F-to-delete statistics. Here, X4 is entered in Step
1 since the F-to-enter value of 22.80 is the largest and the p-value is less than
0.15. X4 is not considered for deletion since it is the variable just entered. In
Step 2, variable X1 is entered with an F-to-enter value of 108.22; obviously,
the p-value is again less than 0.15. The F-to-delete statistics for variables X1
and X4, as before, are given by corresponding Type II F -statistics in Step 2.
Since both of the p-values exceed 0.15, no variable qualifies for deletion at
this stage.

In Step 3, (see Fig. 4.47) variable X2 is added to the model with an F-to-
enter statistic of 5.03 since the p-value is below 0.15. Here, R(β2/β0, β1, β4) =
26.78938, and thus F-to-enter X2 to the model in Step 2 is computed as

F-to-enter(X2) =
R(β2/β0, β1, β4)/1

SSE(β0, β1, β2β4)/9
= 26.78938/5.3303 = 5.03.
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Backward Elimination: Step 2

Variable X4 Removed: R-Square = 0.9787 and C(p) = 2.6782

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 2657.85859 1328.92930 229.50 <.0001

Error 10 57.90448 5.79045

Corrected Total 12 2715.76308

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 52.57735 2.28617 3062.60416 528.91 <.0001

X1 1.46831 0.12130 848.43186 146.52 <.0001

X2 0.66225 0.04585 1207.78227 208.58 <.0001

All variables left in the model are significant at the 0.1000 level.

Fig. 4.45. SAS Example D9: backward elimination method (Step 2)

Stepwise Selection: Step 1

Variable X4 Entered: R-Square = 0.6745 and C(p) = 138.7308

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 1831.89616 1831.89616 22.80 0.0006

Error 11 883.86692 80.35154

Corrected Total 12 2715.76308

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 117.56793 5.26221 40108 499.16 <.0001

X4 -0.73816 0.15460 1831.89616 22.80 0.0006

Stepwise Selection: Step 2

Variable X1 Entered: R-Square = 0.9725 and C(p) = 5.4959

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 2641.00096 1320.50048 176.63 <.0001

Error 10 74.76211 7.47621

Corrected Total 12 2715.76308

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 103.09738 2.12398 17615 2356.10 <.0001

X1 1.43996 0.13842 809.10480 108.22 <.0001

X4 -0.61395 0.04864 1190.92464 159.30 <.0001

Fig. 4.46. SAS Example D9: stepwise method (Steps 1 and 2)

The F-to-delete statistics for X1, X3, and X4, respectively, are 154.0, 5.03, and
1.86. The smallest value 1.86 has p-value of 0.2 which is larger than 0.15 and,
thus, X4 is a candidate for deletion. Type II SS for X4 is R(β4/β0, β1, β2) =
9.93175, and the F-to-delete X4 from the model in Step 3 is computed as
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F-to-delete(X4) =
R(β4/β0, β1, β2)/1

SSE(β0, β1, β2, β4)/9
= 9.93175/5.3303 = 1.86.

X4 is deleted in Step 4 giving the final model since no other variable qualifies
for entry at 0.15 level when X1 and X2 are already in the model.

Stepwise Selection: Step 3

Variable X2 Entered: R-Square = 0.9823 and C(p) = 3.0182

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 2667.79035 889.26345 166.83 <.0001

Error 9 47.97273 5.33030

Corrected Total 12 2715.76308

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 71.64831 14.14239 136.81003 25.67 0.0007

X1 1.45194 0.11700 820.90740 154.01 <.0001

X2 0.41611 0.18561 26.78938 5.03 0.0517

X4 -0.23654 0.17329 9.93175 1.86 0.2054

Stepwise Selection: Step 4

Variable X4 Removed: R-Square = 0.9787 and C(p) = 2.6782

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 2657.85859 1328.92930 229.50 <.0001

Error 10 57.90448 5.79045

Corrected Total 12 2715.76308

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 52.57735 2.28617 3062.60416 528.91 <.0001

X1 1.46831 0.12130 848.43186 146.52 <.0001

X2 0.66225 0.04585 1207.78227 208.58 <.0001

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

Fig. 4.47. SAS Example D9: stepwise method (Steps 3 and 4)

SAS Example D10

If the option details=all is included in the model statement when using a
model selection procedure such as stepwise, a more detailed output is ob-
tained. The sample output page in Fig. 4.48 shows the portion of the output in
Step 3 of the stepwise procedure discussed previously, if the model statement
is of the form

model y = X1-X4/selection=stepwise sle=.15 sls=.15 details=all;

This illustrates the additional information available if the user wants to keep
track of the decision-making process. For example, from this output, it can
be seen immediately that the largest F-to-enter to the model in Step 2 is 5.03
with a p-value = 0.0517. This is smaller than 0.15, the sle value; thus, the
variable X2 enters the model. The smallest F-to-delete from the model in Step
3 is 1.86 with a p-value = 0.2054. This is larger than the sls value 0.15 and
thus the variable X4 is removed from the model in Step 3.
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Stepwise Selection: Step 3

Statistics for Removal
DF = 1,10

Variable
Partial

R-Square
Model

R-Square F Value Pr > F

X1 0.2979 0.6745 108.22 <.0001

X4 0.4385 0.5339 159.30 <.0001

Statistics for Entry
DF = 1,9

Variable Tolerance
Model

R-Square F Value Pr > F

X2 0.053247 0.9823 5.03 0.0517

X3 0.289051 0.9813 4.24 0.0697

Variable X2 Entered: R-Square = 0.9823 and C(p) = 3.0182

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 2667.79035 889.26345 166.83 <.0001

Error 9 47.97273 5.33030

Corrected Total 12 2715.76308

Variable
Parameter

Estimate
Standard

Error Type II SS F Value Pr > F

Intercept 71.64831 14.14239 136.81003 25.67 0.0007

X1 1.45194 0.11700 820.90740 154.01 <.0001

X2 0.41611 0.18561 26.78938 5.03 0.0517

X4 -0.23654 0.17329 9.93175 1.86 0.2054

Fig. 4.48. SAS Example D10: Step 3 of stepwise output obtained with details=all

SAS Example D11

The rsquare option is used in a model statement in SAS Example D11 shown
in Fig. 4.49 to fit all possible regression models using the R2 criterion. Other
options, sse, mse, aic, and cp, request that the specified statistics be out-
put for the fitted models in addition to the R2. In a second model statement,
the number of models output is restricted to a specified range of subset sizes
(i.e., number of independent variables to be included in the models) and using
the R2 criterion for selecting a specified number of best models of each subset
size. In this example, the keyword options start=, stop=, and best= are
used to specify that all possible subset models that include one variable, two
variables, and three variables, be fitted but output information only on the
best two models of each size, as determined by decreasing R2 value.
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insert data step to create the SAS dataset ‘cement’ here

proc reg corr plots(only label)=criteria;
model y = X1-X4/selection=rsquare sse cp aic;
title ‘Regression : Variable Subset Selection Techniques’;

run;

Fig. 4.49. SAS Example D11: rsquare method

The table displayed in Fig. 4.50 is the output resulting from the first model
statement with the rsquare selection criterion. This table is the default output
produced from the rsquare method and summarizes the fit statistics for all
possible models of different subset sizes ordered by decreasing R2 values. In
this example, the statistics printed are those requested by using the options
sse and cp.

By including the plot options plots(only label)=criteria, the ODS
Graphics panel of fit criteria shown in Fig. 4.51 is also produced. Each plot
in this panel graphically compares the values of a fit statistic (such as R2 or

Model
Index

Number in
Model R-Square C(p) AIC MSE Variables in Model

1 1 0.6745 138.7308 58.8516 80.35154 X4

2 1 0.6663 142.4864 59.1780 82.39421 X2

3 1 0.5339 202.5488 63.5195 115.06243 X1

4 1 0.2859 315.1543 69.0674 176.30913 X3

5 2 0.9787 2.6782 25.4200 5.79045 X1 X2

6 2 0.9725 5.4959 28.7417 7.47621 X1 X4

7 2 0.9353 22.3731 39.8526 17.57380 X3 X4

8 2 0.8470 62.4377 51.0371 41.54427 X2 X3

9 2 0.6801 138.2259 60.6293 86.88801 X2 X4

10 2 0.5482 198.0947 65.1167 122.70721 X1 X3

11 3 0.9823 3.0182 24.9739 5.33030 X1 X2 X4

12 3 0.9823 3.0413 25.0112 5.34562 X1 X2 X3

13 3 0.9813 3.4968 25.7276 5.64846 X1 X3 X4

14 3 0.9728 7.3375 30.5759 8.20162 X2 X3 X4

15 4 0.9824 5.0000 26.9443 5.98295 X1 X2 X3 X4

Fig. 4.50. SAS Example D11: output for all subset models
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AIC) for all models of each subset size. The best models selected for each
subset size (based on the R-square statistic) are indicated on the plots in this
panel. The label sub-option specifies that these models are identified by the
model number that appears in the summary table shown in Fig. 4.51.

R-Square Selection Method

Fit Criteria for y with Model Index

Best Model Evaluated at Number of Parameters

1

5 11
15

SBC

1

5
11

15

BIC

1

5 11 15

AIC

1

5 11 15

C(p)

1

5 11 15

Adjusted R-Square

1

5 11 15

R-Square

2 3 4 5

Number of Parameters

2 3 4 5

Number of Parameters

2 3 4 5

Number of Parameters

Fig. 4.51. SAS Example D11: comparison of fit criteria

SAS Example D12

SAS Example D12 further illustrates the use of all-subset selection options in
proc reg. In this example, adsrsq is used instead of rsquare as the model
selection criterion. The data used here came from a study that examined the
correlation between the level of prostate-specific antigen and a number of clin-
ical measures in men who were about to receive a radical prostatectomy. The
goal was to predict log prostate-specific antigen (lpsa) from a number of mea-
surements including log cancer volume (lcavol), log prostate weight (lweight),
age, log benign prostatic hyperplasia amount (lbph), seminal vesicle invasion
(svi), log capsular penetration (lcp), Gleason score (gleason), and percent-
age Gleason scores 4 or 5 (pgg45 ). The data (see Table B.14) appeared in
Stamey et al. (1989). SAS Example D12 shown in Fig. 4.52 fits all possible
regression models to develop a prediction equation relating lpsa to the other
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data prostate;

input case lcavol lweight age lbph svi lcp gleason pgg45 lpsa;
;
title ’Variable Subset Selection: Prostate Data’;
proc reg data=prostate plots(only)=(cp(label) aic(label));

model lpsa=lcavol lweight age lbph svi lcp gleason pgg45/selection=adjrsq
start=2 stop=5 best=12 sse mse aic cp b;

run;

infile "C:\users\user_name\Documents\...\prostate.txt";

Fig. 4.52. SAS Example D12: model selection with adjrsq option

Adjusted R-Square Selection Method

Model
Index

Number in
Model

Adjusted
R-Square R-Square C(p) AIC MSE SSE

1 5 0.6245 0.6441 5.7150 -61.3742 0.50028 45.52565

2 4 0.6208 0.6366 5.6264 -61.3516 0.50527 46.48490

3 5 0.6195 0.6394 6.9224 -60.0917 0.50694 46.13159

4 5 0.6184 0.6383 7.2029 -59.7961 0.50849 46.27237

5 5 0.6175 0.6374 7.4226 -59.5653 0.50970 46.38261

6 5 0.6164 0.6364 7.6828 -59.2925 0.51113 46.51321

7 4 0.6149 0.6309 7.0742 -59.8471 0.51317 47.21149

8 5 0.6144 0.6345 8.1574 -58.7971 0.51375 46.75137

9 3 0.6144 0.6264 6.2169 -60.6760 0.51382 47.78496

10 5 0.6141 0.6342 8.2352 -58.7161 0.51418 46.79042

11 4 0.6135 0.6296 7.4149 -59.4965 0.51503 47.38245

12 4 0.6134 0.6295 7.4418 -59.4688 0.51517 47.39598

Model
Index

Number in
Model

Adjusted
R-Square

Parameter Estimates

Intercept lcavol lweight age lbph svi lcp gleason pgg45

1 5 0.6245 0.95102 0.56561 0.42369 -0.01489 0.11184 0.72096 . . .

2 4 0.6208 0.14556 0.54960 0.39087 . 0.09009 0.71174 . . .

3 5 0.6195 0.06648 0.53340 0.40526 . 0.08303 0.65376 . . 0.00253

4 5 0.6184 -0.38641 0.53238 0.40752 . 0.08468 0.69305 . 0.07390 .

5 5 0.6175 0.12064 0.56898 0.38545 . 0.09156 0.76638 -0.03661 . .

6 5 0.6164 0.25371 0.53946 0.56852 -0.01258 . 0.57784 . . 0.00403

7 4 0.6149 -0.32687 0.53102 0.51505 . . 0.59762 . . 0.00319

8 5 0.6144 -0.58433 0.53462 0.57502 -0.01209 . 0.63676 . 0.12956 .

9 3 0.6144 -0.26807 0.55164 0.50854 . . 0.66616 . . .

10 5 0.6141 -0.42258 0.56615 0.50988 . . 0.69046 -0.08241 . 0.00451

11 4 0.6135 0.17197 0.56193 0.54671 -0.00929 . 0.66505 . . .

12 4 0.6134 -0.94665 0.52843 0.52135 . . 0.64482 . 0.09889 .

Fig. 4.53. SAS Example D12: best subset models for prostate data
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variables. As in the previous example, options start=, stop=, and best=

are useful for controlling the number of models of interest when a large num-
ber of explanatory variables are involved. However, since adjrsq and cp are
not monotonically increasing functions of the model size, if best= option is
specified it just indicates the total number of models to be displayed, when
these selection methods are in use. The MSE and AIC are additional statistics
requested in this example using corresponding options, and the parameter es-
timates for each selected model are also requested to be output by specifying
the b option.

In Fig. 4.53 information is displayed only for the best models of sizes 2,
3, and 4 explanatory variables, determined as those with the largest ad-
justed R2 values, along with the variables selected for each model. Note
that Cp must be compared to the number of independent variables plus one;
thus, the value printed in this table as “Number in Model” must be incre-
mented by one and taken as p for comparing it to Cp. By including the
options plots(only)=(cp(label) aic(label)) in the proc reg statement,
the ODS Graphics plots of Cp versus p shown in Fig. 4.54 and AIC versus p
shown in Fig. 4.55 are obtained.

Fig. 4.54. SAS Example D12: plot of Cp versus p
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Fig. 4.55. SAS Example D12: plot of AIC versus p

4.4.2 Other Options Available in PROC REG for Model Selection

Several other model selection options are available in proc reg. Those selec-
tion methods are as follows:

maxr Maximum R2 Improvement Selection Method: The maxr method begins
by finding the one-variable model producing the highest R2. Then it adds
another variable that produces the largest improvement in R2. Then each
variable in the model is replaced with a variable not in the model to find
if such a swap will produce an increase in R2. The swap that produces the
largest increase in R2 is output as the “best” two-variable model by maxr.
Another variable is then added to the model, and the comparing-and-
swapping process is repeated to locate the “best” three-variable model,
and so forth. The maxr method is more expensive computationally than
the stepwise method because it evaluates all combinations of variables
before making a swap; whereas the stepwise method may remove the
“worst” variable in a sequential fashion without considering the effects
of replacing any of the other variables in the model by the remaining
variables. Consequently, maxr typically takes much longer to run than
stepwise.

minr Minimum R2 Improvement Selection Method: The minr method closely
resembles the maxr method, but the swap chosen at each stage is the one
that produces the smallest increase in R2.
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adjrsq Adjusted R2 Selection Method: This method is similar to the rsquare
method, except that the adjusted R2 statistic is used as the criterion
for selecting models, and the method finds the models with the highest
adjustedR2 within the range of model sizes. The option is method=adjrsq.

cp Mallows’ Cp Selection Method: This method is similar to the adjrsq

method, except that Mallows’ Cp statistic is used as the criterion for
model selection. Models are listed in ascending order of Cp.

groupnames Specifying Groups of Variables: Groups of variables can be speci-
fied to be treated as a single set during the selection process. For example,

model y=x1 x2 x3 /

selection=stepwise groupnames=‘x1 x2’ ‘x3’;

Another example is:

model mpg = cyl disp hp drat wt / selection=stepwise sle=.1

sls=.2 groupnames=‘cyl’ ‘disp hp drat’ ‘wt’;

4.5 Model Selection Using PROC GLMSELECT:
Validation and Cross-Validation

In Sect. 4.4 methods for selecting subsets of variables from k potential ex-
planatory variables were discussed. The selected models were compared using
statistics such as R2 and Cp that were calculated from the fitted models
themselves. Although such methods are useful when the number of available
observations is limited and the aim is identifying a useful and interpretable
model, there is no guarantee that the selected models will perform well when
accuracy of predicting new observations is of interest. A standard approach for
assessing predictive ability of different regression models is to evaluate their
performance on a new data set. When a sufficiently large data set is avail-
able, this is usually achieved by randomly splitting the data into a training
data set and a hold out data set (often called the validation data set). The
training data set is used to obtain a set of candidate models to be compared,
presumably using methods discussed previously, while the validation data set
is used to compare the performance of the selected models, using some crite-
rion. In the case of quantitative response variables, a measure often used for
estimating the error in prediction of a model fitted using the training data is
the average squared error (ASE) of prediction, i.e.,

1

N

∑
(yi − ŷi)

2

where yi is the ith case in the validation data set and ŷi is its predicted value
using the fitted model and N is the validation sample size. This estimate of
prediction error obtained using a validation data set, called the validation
ASE, is highly variable because it depends on the actual split (i.e., the cases
that are actually included in the training and validation data, respectively).
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An alternative approach is to use K-fold cross-validation (CVK). Here the
original data is first randomly divided into K equal-sized partitions. One of
these partitions (say, the kth one, usually called the kth fold) is considered
the hold out data and used to obtain the prediction error (ASE) of the model
fitted to the remaining data (i.e., the other K − 1 partitions put together)
considered as the training data. The whole procedure is repeated using the
kth fold where k = 1, . . . ,K as the hold out data set and remaining data as the
training data and the ASEs resulting from each partition are then combined.
Thus ASE of CVK may be given by

1

K

K∑

k=1

(yki − ŷki)
2

nk

where yki denotes ith case in the kth fold, nk is the size of the kth fold, and
ŷki is prediction using the model fitted to the corresponding remaining data
without the kth fold. If nk = N/K, then this reduces to

1

N

K∑

k=1

(yki − ŷki)
2

remembering that ŷki for each k are calculated using different prediction equa-
tions.

The K -fold cross-validation method is suitable when the size of the data
set is not large enough to be split into training and validation data sets but
large enough so that each fold is sufficiently large to obtain a good estimate
of the prediction error and training data are quite adequate to obtain a good
prediction equation. In practice, it is recommended that a value of 5 or 10 be
used for K (i.e., fivefold or tenfold) for moderately large data sets. In many
cases, a third data set called the test set is used to obtain an independent
estimate of the prediction error, called the test error once the final model is
selected using cross-validation. When K -fold cross-validation is used, the test
set may be a hold out data set randomly selected before the model selection
procedure begins.

In examples below, the SAS procedure GLMSELECT is used to illustrate how
it can be used to perform validation and cross-validation for the purpose of
model selection. Although a variety of model selection methods are available
in GLMSELECT procedure, including more sophisticated methods such as the
LASSO method of Tibshirani (1996) and the related LAR method of Efron
et al. (2004), the emphasis in the examples presented will be on the methods
discussed above. The user may elect to provide the training, validation, and
test data as already prepared SAS data sets or may specify that a single input
data set provided be randomly subdivided into a training and validation data
sets (and optionally, a test data set) in given proportions. The user may opt to
use traditional significance-level-based criteria such as stepwise or those based
on other criteria such as R2

adj , Cp, or AIC to arrive at candidate models and
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then choose the best model based on ASE computed using the validation data
set. The procedure also provides graphical summaries that aids this process.
Alternatively, the user may request that K -fold cross-validation be performed
by selecting that the K folds be selected randomly or sequentially.

SAS Example D13

In the SAS Example D13 program (see Fig. 4.56), proc glmselect is used to
perform model selection using the prostate data introduced in SAS Example
D12 and used in the SAS program (see Fig 4.52) to illustrate the adjrsq

model selection option in proc reg.

data prostate;

input case lcavol lweight age lbph svi lcp gleason pgg45 lpsa;
;
title ’Using validation ASE for model selection’;
proc glmselect data=prostate

seed=12345 plots(stepAxis=number)=(criteria ASE);
partition fraction(validate=.35);
model lpsa=lcavol lweight age lbph svi lcp gleason pgg45

/ selection=stepwise(choose = validate
select = sl)

stb;
run;

infile "C:\users\user_name\Documents\...\prostate.txt";

Fig. 4.56. SAS Example D13: model selection using validation ASE

The full model used is the same model used in SAS Example D12 where
lpsa is used as a response variable in a multiple regression model with the
8 variables lcavol, lweight, age, lbph, svi, lcp, gleason, and pgg45
as the regressors. The selection= option specifies the model selection method
optionally followed by parentheses enclosing suboptions available for the spec-
ified method. The model selection methods that may be specified are none,
forward, backward, stepwise, lar, lasso, and elasticnet. The stepwise method
specified in this example is similar to the same option in proc reg, except
that it is used in proc glmselect as a general procedure rather than only for
selecting models based on significance levels. It is similar in that individual
effects are added sequentially and an effect may be removed in each cycle,
but the selection of effects may be based on other criteria than significance
levels. For specifying the selection criterion using the suboption select= in
proc glmselect, the available options are adjrsq, aic, aicc, bic, sbc, cp, cv,
press, rsquare, sl, and validate.

The select=sl used in this example specifies that stepwise method be
performed using the significance level criterion for entering and removing vari-
ables, much the same way as in proc reg with the selection=stepwise in
use. That is, proc glmselect will stop the process when a predictor cannot
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The GLMSELECT ProcedureThe GLMSELECT Procedure

Data Set WORK.PROSTATE

Dependent Variable lpsa

Selection Method Stepwise

Select Criterion Significance Level

Stop Criterion Significance Level

Choose Criterion Validation ASE

Entry Significance Level (SLE) 0.15

Stay Significance Level (SLS) 0.15

Effect Hierarchy Enforced None

Random Number Seed 12345

Number of Observations Read 97

Number of Observations Used 97

Number of Observations Used for Training 69

Number of Observations Used for Validation 28

Dimensions

Number of Effects 9

Number of Parameters 9

Fig. 4.57. SAS Example D13: stepwise subset selection using SLE = 0.15 SLS =
0.15

be added or removed at the default significance levels. However, the differ-
ence is that by using the suboption choose=, the user may specify another
criterion to be used for determining the “best” among models found in each
step. For example, using choose=cp requests that the model with the smallest
Cp value be chosen as the best regardless of where the procedure stopped. In
this example, choose=validate is used to specify that the model with the
smallest validation ASE be determined. Since proc glmselect produces ta-
bles and graphics that contains the validation ASE for models in each step
when this option is used, the users have the opportunity to compare the rela-
tive magnitudes of the ASE among the models and make their own decisions.
The option stb requests that standardized parameter estimates to be output
for the selected model.

Figure 4.57 summarizes the model options used in the proc glmselect

step. As indicated above, the standard stepwise method with significance levels
of 0.15 for both entry and deletion of variable is used here and the “best”
model is chosen using a validation data set obtained by randomly splitting
the original prostate data set of 97 cases to obtain training data set with 69
cases and a validation set of 28 cases. The results of the stepwise method is
summarized in Fig. 4.58, where it is clear that no variables were deleted at any
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The GLMSELECT Procedure

Stepwise Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects In ASE

Validation
ASE F Value Pr > F

0 Intercept 1 1.2421 1.5236 0.00 1.0000

1 lcavol 2 0.5592 0.7374 81.83 <.0001

2 lweight 3 0.4670 0.7839 13.02 0.0006

3 svi 4 0.4469 0.6793* 2.93 0.0918

* Optimal Value Of Criterion

Selection stopped because the candidate for entry has SLE > 0.15 and the candidate for removal has SLS < 0.15.

Stop Details

Candidate
For Effect

Candidate
Significance

Compare
Significance

Entry age 0.3321 > 0.1500 (SLE)

Removal svi 0.0918 < 0.1500 (SLS)

Fig. 4.58. SAS Example D13: stepwise selection summary

Fit Criteria for lpsa

Step Selected by ASEBest Criterion Value

Validation ASE

Adj R-Sq

SBCAICC

AIC

0 1 2 3
Step

0 1 2 3
Step

Fig. 4.59. SAS Example D13: panel of fit criteria plots

intermediate step and the procedure stopped in Step 3 when no other variable
qualified for entry. A panel of six plots of several fit criteria values plotted
against step numbers are shown in Fig. 4.59; one of these plots shows that the
model in Step 2 has the smallest SBC value. Validation ASE was calculated in
each step, and the model with an intercept, lcavol, lweight, and svi is
shown to be the model with smallest ASE. This fact is also illustrated visually
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The GLMSELECT Procedure

Selected Step
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Fig. 4.60. SAS Example D13: ASE for models in each step for training and valida-
tion data

in Fig. 4.60 where the ASE calculated for the training and validation data sets
are plotted in the same graph for each model fit for comparison. It is evident
that the validation ASE is comparatively larger than the training ASE for all
models and that 0.6793 is the lowest that can be obtained using the stepwise
selection method with the specified significance levels.

SAS Example D14

In the SAS Example D14 program (see Fig. 4.61) proc glmselect is used to
perform model selection using K -fold cross-validation. The prostate data set
was used in SAS Example D13 to illustrate the use of a validation data set

data prostate;
infile "C:\users\user_name\Documents\...\prostate.txt";
input case lcavol lweight age lbph svi lcp gleason pgg45 lpsa;
;
proc glmselect data=prostate

seed=12345 plots(stepAxis=number)=(criteria coefficients);
model lpsa=lcavol lweight age lbph svi lcp gleason pgg45

/ cvmethod=random(5) selection=stepwise(select=adjrsq choose=cv)
stats=(cp aic sbc) stb;

run;

Fig. 4.61. SAS Example D14: model selection using cross-validation
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obtained via random data splitting for calculation of validation ASE. As an
illustration, the model selection method used here is the adjusted R2 criterion
(that is, in each step the effect that yields the largest increase in adjusted R2

is entered). The fivefold cross-validation is used to compute cross-validation
estimate of prediction error for each fold and then averaged across the folds
(see formula given above for CVK). This statistic is called CV PRESS in proc

glmselect and is computed for each model selected at each step.
The model statement option cvmethod=random(5) specifies that fivefold

cross-validation with the folds selected randomly (each of size, approximately
n/k rounded down to an integer) be used to perform cross-validation. The
option selection=stepwise with suboptions select=adjrsq and choose=cv

specifies that the adjusted R2 criterion be used as described above to select
a model at each step and compute cv press for each model by performing
cross-validation using the method indicated in the cvmethod= option. Using
the option stats=(cp aic sbc) requests that the statistics Cp, AIC and SBC

to be output in the model summary in addition to R2
adj and CV PRESS. The

option stb requests that standardized parameter estimates to be output for
the selected model and for the coefficient progression plot that results from
the plot= option coefficients.

The model selection settings used in the proc glmselect step of Exam-
ple D14 are detailed in Fig. 4.62. The model selection method specified was
stepwise with adjusted R2 as the selection criterion. The estimate of predic-
tion error cv press is calculated for each model using fivefold cross-validation
using random splitting.

The GLMSELECT Procedure

Data Set WORK.PROSTATE

Dependent Variable lpsa

Selection Method Stepwise

Select Criterion Adj R-Sq

Stop Criterion Adj R-Sq

Choose Criterion Cross Validation

Cross Validation Method Random

Cross Validation Fold 5

Effect Hierarchy Enforced None

Random Number Seed 12345

Number of Observations Read 97

Number of Observations Used 97

Dimensions

Number of Effects 9

Number of Parameters 9

Fig. 4.62. SAS Example D14: GLMSELECT model selection settings
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The GLMSELECT Procedure

Stepwise Selection Summary

Step
Effect
Entered

Effect
Removed

Number
Effects In

Adjusted
R-Square AIC CP SBC CV PRESS

0 Intercept 1 0.0000 127.8376 159.8903 31.4123 131.5364

1 lcavol 2 0.5346 54.6340 24.3943 -39.2166 61.2748

2 lweight 3 0.5771 46.3098 14.5414 -44.9661 58.0141*

3 svi 4 0.6144 38.3240 6.2169 -50.3772* 60.3833

4 lbph 5 0.6208 37.6484 5.6264* -48.4780 59.3252

5 age 6 0.6245 37.6258* 5.7150 -45.9259 58.1399

6 pgg45 7 0.6259 38.2115 6.4019 -42.7655 58.8810

7 lcp 8 0.6273* 38.7689 7.0822 -39.6334 58.6097

* Optimal Value Of Criterion

Selection stopped at a local maximum of the AdjRSq criterion.

Stop Details

Candidate
For Effect

Candidate
Adj-RSq

Compare
Adj-RSq

Entry gleason 0.6234 < 0.6273

Removal lcp 0.6259 < 0.6273

Fig. 4.63. SAS Example D14: stepwise selection using R2
adj and cross-validation

The GLMSELECT Procedure

Fit Criteria for lpsa

Step Selected by CV PRESSBest Criterion Value

CV PRESS

C(p)

Adj R-Sq

SBC

AICCAIC

0 2 4 6

Step

0 2 4 6

Step

Fig. 4.64. SAS Example D14: panel of fit criteria plots
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Figure 4.63 displays the results of the model selection procedure where
seven different models are fitted and the statistics AIC, Cp, and SBC are calcu-
lated using the entire prostate data set. Fivefold cross-validation is performed
using each model to obtain CV PRESS, the estimated prediction error from
each model. The selected model with the largest value of R2

adj is the model
that does not include the regressor variable gleason.

Panels of fit criteria values plotted against step numbers are shown in
Fig. 4.64, one of which shows that CV PRESS is minimum for Model 2 with an
intercept and lcavol and lweight as the regressors. Final fit statistics for
this model are summarized in Fig. 4.65.

However, the CV PRESS values for the models 2 through 7 are similar. Thus
a possible good model may be one of the other models, say Model 4, that
has the smallest Cp value of 5.6264 as well as several other good fit criteria.
This model with an intercept and the regressors lcavol, lweight,svi, and
lbph thus appears to have the smallest bias and comparably small error in
prediction.

The selected model, based on Cross Validation, is the model at Step 2.

Effects: Intercept lcavol lweight

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value

Model 2 74.95130 37.47565 66.51

Error 94 52.96636 0.56347

Corrected Total 96 127.91766

Root MSE 0.75065

Dependent Mean 2.47839

R-Square 0.5859

Adj R-Sq 0.5771

AIC 46.30976

AICC 46.74454

BIC -51.18891

C(p) 14.54143

SBC -44.96610

CV PRESS 58.01412

Parameter Estimates

Parameter DF Estimate
Standardized

Estimate
Standard

Error t Value

Intercept 1 -0.302598 0 0.569040 -0.53

lcavol 1 0.677526 0.691786 0.066262 10.22

lweight 1 0.510944 0.219825 0.157256 3.25

Fig. 4.65. SAS Example D14: statistics for the selected model
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An interesting plot that is produced by using the plot=coefficients

option is shown in Fig. 4.66. This shows a panel of two plots showing how
the standardized coefficients and the criterion used to choose the final model
evolve as the selection progresses. The upper plot in the panel displays the
standardized coefficients as a function of the step number. The lower plot
shows how the value of the criterion value (here CV PRESS) used to choose the
final model evolves as the selection progresses.

The standardized coefficients for each parameter are connected by lines
in order for the user to track the changes in that parameter. Coefficients
corresponding to effects that are not in the selected model at a given step
are zero and thus do not yet appear in the plot. For example, at Step 2,
the regressors lcavol and lweight are in the model, and their coefficient
estimates are positive; all the other coefficients are zero. At Step 4 there are
four coefficients that are nonzero, as shown in the plot and their standardized
estimates stay about the same in subsequent steps.

The GLMSELECT Procedure

Coefficient Progression for lpsa

Selected Step
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Fig. 4.66. SAS Example D14: coefficient estimates for subset models selected

4.6 Exercises

4.1 The following data are from an experiment that tested the performance
of an industrial engine (Schlotzhauer and Littell 1997). The experiment
used a mixture of diesel fuel and gas from distilling organic materials.
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The horsepower (y) of the machine was measured at several speeds (x)
measured in hundreds of revolutions per minute (rpm × 100).

x 22 20 18 16 14 12 15 17 19 21 22 20
y 64.03 62.47 54.94 48.84 43.73 37.48 46.85 51.17 58.00 63.21 64.03 59.63
x 18 16 14 12 10.5 13 15 17 19 21 23 24
y 52.90 48.84 42.74 36.63 32.05 39.68 45.79 51.17 56.65 62.61 65.31 63.89

Write and execute a SAS program to perform the computations to pro-
vide answers to the following questions. Extract material from the output
and copy or attach them as the required answers.

a. Use the method of least squares to obtain estimates β̂0 and β̂1 of the
parameters in the model y = β0 + β1x+ ε.

b. Construct a plot that shows the scatter of (x, y) data points with y
on the vertical axis.

c. Give the least squares prediction equation. Superimpose the least
squares line on the scatter plot in part (b).

d. Compute a table of predicted values ŷ and residuals y− ŷ correspond-
ing to the observed values y.

e. Identify the sums of squares
∑

(y−ȳ)2,
∑

(ŷ−ȳ)2, and
∑

(y−ŷ)2 from
your output. Verify that these give a decomposition of total variability
in y into two parts and identify the parts by sources of variation.

f. Calculate the proportion of the total variability in the y-values that is
accounted for by the linear regression model. Explain why this value
is a measure of how well your model fits the data.

g. Give the point estimate s2 of σ2.

h. State the estimated standard errors of β̂0 and β̂1.

i. Construct 95% confidence intervals for β0 and β1.

j. Test the hypothesis H0 : β1 = 0 versus Ha : β1 �= 0 using a t-test.
Give your conclusion using α = 0.05 and the p-value.

k. Obtain plots of the residuals against x and the predicted values, re-
spectively. Do these two plots suggest any inadequacies of this model?
Explain why you reached your conclusion.

l. Obtain a normal probability plot of the studentized residuals. State
the model assumption that you can verify using this plot. Is this a
plausible assumption for this model?

4.2 The text McClave et al. (2000) discusses the following problem that
relates the value of a home to its upkeep expenditure.
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Home Value of Upkeep Home Value of Upkeep
home, expenditure, home, expenditure,
x ($1000s) y (dollars) x ($1000s) y (dollars)

1 237.00 1412.08 21 153.04 849.14
2 153.08 797.20 22 232.18 1313.84
3 184.86 872.48 23 125.44 602.06
4 222.06 1003.42 24 169.82 642.14
5 160.68 852.90 25 177.28 1038.80
6 99.68 288.48 26 162.82 697.00
7 229.04 1288.46 27 120.44 324.34
8 101.78 423.08 28 191.10 965.10
9 257.86 1351.74 29 158.78 920.14
10 96.28 378.04 30 178.50 950.90
11 171.00 918.08 31 272.20 1670.32
12 231.02 1627.24 32 48.90 125.40
13 228.32 1204.78 33 104.56 479.78
14 205.90 857.04 34 286.18 2010.64
15 185.72 775.00 35 83.72 368.36
16 168.78 869.26 36 86.20 425.60
17 247.06 1396.00 37 133.58 626.90
18 155.54 711.50 38 212.86 1316.94
19 224.20 1475.18 39 122.02 390.16
20 202.04 1413.32 40 198.02 1090.84

Quality Home Improvement Center (QHIC) operates five stores in a large
metropolitan area. The marketing department at QHIC wishes to study
the relationship between x, home value (in thousands of dollars), and y,
yearly expenditure on home upkeep (in dollars). A random sample of 40
homeowners is taken and asked to estimate their expenditures during the
previous year on the types of home upkeep products and services offered
by QHIC. Public records of the county auditor are used to obtain the
previous year’s assessed values of the homeowner’s homes. The resulting
x- and y-values are given in the following table. Use a SAS program
to fit a simple linear regression model to this data. You must use SAS
statements to produce output necessary to answer questions given below.
a. Obtain a scatter plot of the dependent variable y against the values of

the independent variable x. Does this plot suggest that simple linear
regression model might relate y to x?

b. Use SAS to fit the model

y = β0 + β1x+ ε

to these data. From the output, report the following information on
a separate sheet. You must extract this information from the output
and write them in the form discussed in the text.
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c. Give the least squares estimates of β0 and β1 and their standard
errors, respectively. What is your prediction equation?

d. Use your prediction equation to estimate the expected increase in
yearly upkeep expenditure for an additional $10,000 increase in home
value. Show your work clearly.

e. What is the coefficient of determination for your regression equation?
In you own words, explain what this means to you in terms of vari-
ability in yearly upkeep expenditure.

f. Construct a 95% confidence interval for β1. State in words what this
interval says about the expected increase in yearly upkeep expendi-
ture.

g. Test the hypothesis H0 : β1 = 0 against Ha : β1 �= 0 at α = 0.05 using
the p-value printed. State your decision.

h. Find the point estimate of the mean yearly upkeep expenditure of all
homes worth $220,000 and a 95% confidence interval for this mean.

i. Obtain a graph with plots of the 95% confidence interval and 95%
prediction interval curves for the fitted regression line overlaid on a
scatter plot of the original data.

j. Obtain a scatter plot of residuals against the x variable. Does the
assumption of a constant error variance appears to be satisfied? Ex-
plain.

k. Obtain a normal probability plot of residuals and a plot of residuals
against the predicted values variable. Do these plots indicate that
any of the model assumptions are not plausible? In particular, is the
assumption of normal errors reasonable? Explain.

4.3 Athletes are constantly seeking measures of the degree of their cardiovas-
cular fitness prior to a major race, because they want to ensure that they
are training at a level which will produce peak performance. One such
measure of fitness is the time to exhaustion from running on a treadmill
at a specified angle and speed. Twenty experienced distance runners who
professed to be at top condition were evaluated on the treadmill and then
had their times recorded in a 10-km race. The resulting x- and y-values
are given in the following table. You must use SAS statements in a SAS
program to produce output necessary to answer questions given below.
Attach your SAS output (or cut-and-paste tables or graphics as appro-
priate) but provide answers in the form discussed in the text to each of
the questions using information from the output.

Treadmill time (minutes), x 7.5 7.8 7.9 8.1 8.3 8.7 8.9 9.2 9.4 9.8
10-km time (minutes), y 43.5 45.2 44.9 41.1 43.8 44.4 42.7 43.1 41.8 43.7

x (continued . . . ) 10.1 10.3 10.5 10.7 10.8 10.9 11.2 11.5 11.7 11.8
y 39.5 38.2 43.9 37.1 37.7 39.2 35.7 37.2 34.8 38.5
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Use the regression model y = β0+β1x+ε in proc reg step(s) to produce
a Normal quantile plot of residuals, a residuals versus predicted values
plot, a plot containing a regression line, confidence limits, and prediction
limits overlaid on a scatter plot of data, and a plot of residuals versus
the explanatory variable. Use the plots= option to select plots to be
output; do not use the diagnostics panel of plots. Also use the ANOVA
table, the estimates table, and the output statistics table as necessary
to answer all questions given below.

a. Using numbers output from the SAS output, construct an analysis
of variance table including a column for the F-statistic to test H0 :
β1 = 0 against Ha : β1 �= 0 at α = 0.05. State your decision using the
p-value.

b. Give the least squares estimates of β0 and β1 and their standard
errors, respectively. What is your prediction equation?

c. Use your prediction equation to estimate the expected decrease in the
10-km time for an increase of 2 minutes in treadmill time. Show your
work clearly.

d. What is the coefficient of determination for your regression equation?
In you own words, explain what this means to you in terms of the
variability in 10-km time.

e. Give a 95% confidence interval for β1. State in words what this interval
says about the expected increase in 10-km time.

f. Test the hypothesis H0 : β1 = 0 against Ha : β1 �= 0 at α = 0.05 using
the p-value from the estimates table. State your decision.

g. Find the point estimate of the mean 10-km time for the population of
athletes with a treadmill time of 10 minutes. Calculate a 95% confi-
dence interval for the mean 10-km time for the population of athletes
with a treadmill time of 10 minutes.

h. The following plots must be produced as part of the graphical output
from your SAS program as described at the beginning of this question.
Attach these plots to your solution and answer the questions relating
to them, if any.
a. Obtain a graph with plots of the 95% confidence interval and 95%

prediction interval curves for the fitted regression line overlaid on
a scatter plot of the original data.

b. Obtain a scatter plot of residuals against the x variable. Using this
plot say whether the assumption of a constant error variance for
the response y appear to be plausible. Explain.

c. Obtain a normal probability plot residuals and a plot of residuals
against the predicted values variable. Do these plots indicate that
any of the model assumptions are not plausible? In particular, is
the assumption of normal errors reasonable? Explain.
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4.4 It is reasonable to expect that more miles an automobile has been driven,
the higher will be the levels of pollutants it emits. The following data
give hydrocarbon (HC) emissions (y) at idling speed, in parts per million
(ppm), and the distances traveled by each automobile in thousands of
miles (x). Obtain statistics and the plots necessary to answer the follow-
ing:

Automobile Distance HC emissions
x (1000 miles) y (ppm)

A 34 270
B 312 2352
C 84 1058
D 50 1035
E 89 2305
F 50 658
G 33 588
H 109 811
I 38 1200
J 2 600
K 71 540
L 52 247
M 31 129

Use a SAS program to fit a single variable regression model and obtain
all residual case statistics and diagnostic plots discussed in class. In this
problem you may use the diagnostic panel of plots and the fit plot (ob-
tained by default) with appropriate labelling of points. Use both of the
statistics and the plots in your answers to each of the following parts.

a. Are there any cases that are x -outliers? Explain.
b. Are there any cases that are y-outliers? Explain.
c. The Cook’s D statistic for some of these cases are “large.” Explain

reasons for this by using the fact Cook’s D is a product of functions
of studentized residuals and hat diagonals.

d. Use the appropriate case statistics for cars labeled B and E from the
above fit to say what would happen to the model fit if these cases
are deleted (one at a time), explaining what each of these statistics
indicates.

e. Refit the model after the cars labeled B and E are deleted one at a
time (separately). Discuss the model fit for each of these compared
with the fit of the original model, using statistics from the output
whenever possible.

4.5 A realtor studied the relationship between x = annual income (in 1000’s
of dollars) of home purchasers and y = sale price of the house (in 1000’s
of dollars). The realtor gathered the data from mortgage applications for
24 recent sales in the realtor’s sales area in one season (text file provided).
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Home Annual income Sale price Home Annual income Sale price
x (in $1000’s) y (in $1000’s) x (in $1000’s) y (in $1000’s)

A 25.0 84.9 M 36.0 110.0
B 28.5 94.0 N 39.0 125.0
C 29.2 96.5 O 39.0 119.9
D 30.0 93.5 P 40.5 130.6
E 31.0 102.9 Q 40.9 120.8
F 31.5 99.5 R 42.5 129.9
G 31.9 101.0 S 44.0 135.5
H 32.0 105.0 T 45.0 140.0
I 33.0 99.9 U 50.0 150.7
J 33.5 110.0 V 54.6 170.0
K 34.0 100.0 W 65.0 110.0
L 35.9 116.0 X 70.0 185.0

Use a SAS program to fit a single variable regression model and obtain
all residual case statistics and diagnostic plots discussed in class. In this
problem you may use the diagnostic panel of plots and the fit plot (ob-
tained by default) with appropriate labelling of points. Use both of the
statistics and the plots in your answers to each of the following parts.
a. Are there any cases that are x -outliers? Explain.
b. Are there any cases that are y-outliers? Explain.
c. The Cook’s D statistic for some of these cases are “large.” Explain

reasons for this by using the fact Cook’s D is a product of functions
of studentized residuals and hat diagonals.

d. Suppose that the model is refitted after the homes labeled X and
W are deleted one at a time. Discuss the fit of each of these models
compared with the fit of the original model.

e. Explain the effect of removing these cases by using appropriate case
statistics for these cases obtained from the model fit to the original
data.

4.6 To model the relationship between the dose level of a drug product and
its potency, a pharmaceutical firm inoculated each of 15 test tubes were
with a virus culture and incubated for 5 days at 30 ◦C. Three test tubes
were randomly assigned to each of the five dose levels to be investigated
(2, 4, 8, 16, 32 mg). Each tube was injected with one dose level and
a measure of the antiviral strength of the product was obtained. The
experiment was described in Ott and Longnecker (2001) and the data
are reproduced here:

x, dose level (mg) y, response
2 5, 7, 3
4 10, 12, 14
8 18, 15, 18
16 20, 21, 19
32 23, 24, 28
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Write and execute a SAS program to perform the computations to pro-
vide answers to the following questions. You may use as many steps in
your program as necessary.
a. Plot the data in a scatter plot. Does it appear that a simple linear

regression model would be a good fit?
b. Compute an analysis of variance table for regression.
c. Compute a lack of fit test for this model and report the results in an

ANOVA table where SSLack and SSEPure are shown as a partition of
SSE. What is your conclusion from this test? Use α = 0.05.

d. Compute the predicted values and residuals. Plot the residuals against
the dose level and the predicted values, respectively. Do these two
plots suggest any inadequacies of this model? Explain why you
reached your conclusion.

e. Many times a logarithmic transformation can be used on the dose
levels to linearize the response with respect to the dose level. Plot the
response against the logarithms (to the base 10) of the five dose levels
and comment on this plot.

4.7 Experience with a certain type of plastic indicates that a relation exists
between the hardness (measured in Brinell units) of items molded from
the plastic (y) and the elapsed time since termination of the molding
process (x). In a study to examine this relationship, 16 batches of the
plastic were made, and from each batch, 1 test item was molded (Kutner
et al. 2004; data slightly modified for ease of hand calculation without
affecting results of the analysis). Each test item was randomly assigned
to one of four predetermined time levels, and the hardness was measured
after the assigned time had elapsed. The results are shown as follows:

x, elapsed time (hours) y, hardness
16 199, 205, 196, 200
24 218, 220, 215, 223
32 237, 234, 235, 230
40 250, 248, 253, 245

Answer the following questions. You must execute an appropriate SAS
program and extract portions of the output to provide the answers.
a. Plot the data in a scatter plot. Does it appear that a simple linear

regression model would be a good fit?
b. Use the least squares method to fit a simple linear regression model.

What is your prediction equation? Add the straight line of your pre-
diction equation to the plot in part (a).

c. Construct an analysis of variance table for the regression. Use the
F-ratio to perform a test of H0 : β1 = 0 versus Ha : β1 �= 0 using
α = 0.05
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d. Perform a lack of fit test for this model. Report the results in an
ANOVA table where SSLack and SSEPure are shown as a partition of
SSE. What is your conclusion from this test? Use α = 0.05.

e. Compute the predicted values and residuals. Plot the residuals against
elapsed time and the predicted values, respectively. Do these two
plots suggest any inadequacies of this model? Explain how you
reached your conclusion.

4.8 Thirteen specimens of Cu–Ni alloys with varying degrees of iron content
in percent were submerged in sea water for 60 days and the weight loss
due to corrosion recorded in units of milligrams per square decimeter
per day. In a study to examine the dependency of corrosion (y) on iron
content (x), a simple linear regression model was fitted to the data. The
data as reported in Draper and Smith (1998) are given below:

Specimen x, Fe % y, Weight loss (mg/dm)
1 0.01 127.6
2 0.48 124.0
3 0.71 110.8
4 0.95 103.9
5 1.19 101.5
6 0.01 130.2
7 0.48 122.0
8 1.44 92.3
9 0.71 113.2
10 1.96 83.7
11 0.01 128.0
12 1.44 91.7
13 1.96 86.3

Answer the following questions using output from an appropriate SAS
program.
a. Plot the data in a y vs. x scatter plot. Does it appear that a simple

linear regression model would be a good fit?
b. Use the LS method to fit a simple linear regression model. What is

your prediction equation? Add the plot of your prediction equation
to the plot in part (a).

c. Construct an analysis of variance table for the regression. Use the F-
ratio to perform a test of H0 : β1 = 0 vs. Ha : β1 �= 0 using α = 0.05

d. Perform a lack of fit test for this model. Report the results in an
ANOVA table where SSLack and SSEPure are shown as a partition of
SSE. What is your conclusion from this test? Use α = 0.05.

e. Compute the predicted values and residuals. Obtain plots of the resid-
uals against Fe % and the predicted values (ŷ), respectively. Do these
two plots suggest any inadequacies of this model? Explain why you
reached your conclusion.
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4.9 In an experiment to study the problem of predicting the tensile strength
(y) of concrete beams from measurements of their specific gravity (x1)
and moisture content (x2), a multiple regression was fitted to data for
10 specimens (Devore 1982). The data are given as follows:

Tensile Specific Moisture
Obs. strength gravity content

y x1 x2

1 11.24 0.499 11.1
2 12.64 0.558 8.9
3 12.93 0.604 8.8
4 11.32 0.441 8.9
5 11.68 0.510 8.8
6 11.90 0.528 9.9
7 10.73 0.418 10.1
8 11.70 0.480 10.5
9 11.12 0.406 10.5
10 11.41 0.467 10.7

Use a SAS program to fit the model y = β0 + β1 x1 + β2 x2 + ε. Extract
and/or calculate answers for the following from the SAS output:
a. Give the analysis of variance including the F -ratio and the associated

p-value. State the null and alternative hypotheses about the coeffi-
cients you will test using the F -ratio. Use the p-value to perform this
test using α = 0.05

b. Report the prediction equation and standard errors of β̂1 and β̂2. If the
specific gravity is kept constant at 0.5, estimate the change in mean
tensile strength of a concrete beam if its moisture content increases
from 8.0 to 10.0 units. Does the mean tensile strength increase or
decrease?

c. Using the estimate of β1 and its standard error given in the SAS
output, compute a 95% confidence interval for β1. Test the hypothesis
H0 : β1 = 0 versus Ha : β1 �= 0 using this interval, specifying the α
level of the test.

d. The specifications stipulate that the mean tensile strength must in-
crease by at least 1 unit for an increase in specific gravity of 0.1 if the
moisture content is unchanged. Test this hypothesis using the above
confidence interval.

e. Compute the predicted tensile strength ŷ11 of a beam with x1 = 0.5
and x2 = 9.0. Extract the 95% confidence interval for E(y11) from the
SAS output. What does this interval say about the tensile strength of
beams with the given specific gravity and moisture content values?

4.10 The data in the following table (Kutner et al. 2005) are from a study
relating the amount of body fat (y) to several possible predictor variables:
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triceps skinfold thickness (x1), thigh circumference (x2), and midarm
circumference (x3), measured on a random sample of healthy females
25–34 years old.

Triceps Thigh Midarm Body fat
skinfold thickness circumference circumference

19.5 43.1 29.1 11.9
24.7 49.8 28.2 22.8
30.7 51.9 37.0 18.7
29.8 54.3 31.1 20.1
19.1 42.2 30.9 12.9
25.6 53.9 23.7 21.7
31.4 58.5 27.6 27.1
27.9 52.1 30.6 25.4
22.1 49.9 23.2 21.3
25.5 53.5 24.8 19.3
31.1 56.6 30.0 25.4
30.4 56.7 28.3 27.2
18.7 46.5 23.0 11.7
19.7 44.2 28.6 17.8
14.6 42.7 21.3 12.8
29.5 54.4 30.1 23.9
27.7 55.3 25.7 22.6
30.2 58.6 24.6 25.4
22.7 48.2 27.1 14.8
25.2 51.0 27.5 21.1

The amount of body fat is obtained using a cumbersome and expen-
sive procedure involving the immersion of a person in water, so it would
be helpful if a reliable prediction equation based on easy-to-measure ex-
planatory variables is available to estimate body fat. Use a SAS program
to fit the full model

y = β0 + β1x1 + β2x2 + β3x3 + ε

Write answers to the following questions extracting numbers from a SAS
output. Highlite or circle values you use from the output and label them
carefully.
a. Report β̂0, β̂1, β̂2, and β̂3. Explain what the estimate β̂3 tells you

about the mean body fat.
b. Report sε, sβ̂0

, sβ̂1
, sβ̂2

, and sβ̂3
. Calculate by hand the t-statistic for

testing H0 : β3 = 0 versus Ha : β3 �= 0, using β̂3 and its standard
error. Compare it with the value in the output.

c. Construct an analysis of variance for the above regression. Report the
coefficient of determination and interpret its value in the context of
this problem.
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d. Use the F -test statistic for testing H0 : β1 = β2 = β3 = 0 versus Ha :
at least one β is not zero, and report the p-value for the test. State
your decision using the p-value.

e. Use the t-test statistic for testing H0 : β2 = 0 versus Ha : β2 �= 0
and report the p-value for the test. State your decision based on the
p-value. What does this say about the role of the variable thigh

circumference in your model?
f. Construct a 95% confidence interval for β2. Use this interval to test

H0 : β2 = 0 versus Ha : β2 �= 0. What is the α level of this test.
g. Construct a 95% confidence interval for E(y) at x1 = 20, x2 = 50,

and x3 = 30. Describe in words what this interval tells you about
the population of individuals with these values for triceps skinfold
thickness, thigh circumference, and midarm circumference.

h. Construct a 95% prediction interval for body fat of a new individual
on whom the values x1 = 20, x2 = 50, and x3 = 30 have been
measured. Describe in words what this interval tells you.

i. Obtain plots of the residuals versus predicted values, x1, x2, and x3,
respectively. Does any pattern of the types discussed in class observed
in the plots? Give your interpretation of each plot.

j. Obtain a normal probability plot of the studentized residuals. State
the model assumption that you can verify using this plot. Is this a
plausible assumption for this model?

k. Add a model statement to your SAS program to fit the model

y = β0 + β1x1 + β3x3 + ε

to the above data. Use the results of the t-tests and R2 value to state
why this model may be preferred compared to the first model.

4.11 A laundry detergent manufacturer wished to test a new product prior
to market release. One area of concern was the relationship between
the height of the detergent suds in a washing machine to the amount
of detergent added and the degree of agitation in the wash cycle. For
a standard-size washing machine tub filled to the full level, different
agitation levels (measured in minutes) and amounts of detergent were
assigned in random order, and sud heights measured. This problem ap-
pears in Ott and Longnecker (2001) and the data are reproduced in
the table presented. Write and execute a SAS program to perform the
computations needed to provide answers to the following questions. Add
SAS statements and/or steps necessary to obtain all answers required.
Highlite or circle values you use from the output and label them carefully.
a. By examining only the plot of height, y, against agitation, x1,

at each value of amount, x2, suggest a multiple regression model to
explain the variation in sud height. Be specific about whether you
think a higher-order term x2

1 or an interaction term x1x2 is needed or
not and give reasons for your choices.
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b. The first order model

y = β0 + β1x1 + β2x2 + ε

was fitted to the data. Using the SAS output, construct an analysis
of variance table and test the hypothesis of H0 : β1 = β2 = 0 versus
Ha : at least one of β1 or β2 �= 0. Give the R2 value. Is there a reason
to look beyond the first-order model because R2 is extremely high?
Explain.

Height (y) Agitation (x1) Amount (x2)
28.1 1 6
32.3 1 7
34.8 1 8
38.2 1 9
43.5 1 10
60.3 2 6
63.7 2 7
65.4 2 8
69.2 2 9
72.9 2 10
88.2 3 6
89.3 3 7
94.1 3 8
95.7 3 9

100.6 3 10

c. Use the residual plots to examine the plausibility of the model as-
sumptions. By examining the residual plots, can you find reasons to
suspect that the first-order model is not adequate? If so, what other
terms would you consider adding to the model? Explain how you
reached your conclusion.

d. Based on the above residual analysis, the model

y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x2x

2
1 + ε

was fitted to the data. Using the sums of squares from the SAS output,
construct an F -statistic to test the hypothesis H0 : β3 = β4 = 0. Use
a percentile from the F -table to test this hypothesis at α = 0.05.
What does the result of this test tell you?

e. Use residual plots from fitting the model given in part (d) to ver-
ify the model assumptions. What improvements do these plots show
compared to the first-order model, if any?

f. Use a t-statistic and the corresponding p-value from the SAS output
of the fit of the model in part (d) to test H0 : β4 = 0. What does the
result of this test suggest?
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Problems 4.12–4.17 concern the following example presented in Bowerman
and O’Connell (2004):

A multiple regression analysis conducted to determine labor needs of U.S.
Navy hospitals is reproduced from Bowerman and O’Connell (2004). The
data set consists of five independent variables: average daily patient load
(LOAD), monthly X-ray exposures (XRAY), monthly occupied bed days (a
hospital has one occupied bed day if one bed is occupied for an entire day)
(BEDDAYS), eligible population in the area (in 1000s) (POP), average length
of patients’ stay (in days) (LENGTH), and a dependent variable, monthly
labor hours required (HOURS).

H LOAD XRAY BEDDAYS POP LENGTH HOURS
1 15.57 2463 472.92 18.0 4.45 566.52
2 44.02 2048 1339.75 9.5 6.92 696.82
3 20.42 3940 620.25 12.8 4.28 1033.15
4 18.74 6505 568.33 36.7 3.90 1603.62
5 49.20 5723 1497.60 35.7 5.50 1611.37
6 44.92 11,520 1365.83 24.0 4.60 1613.27
7 55.48 5779 1687.00 43.3 5.62 1854.17
8 59.28 5969 1639.92 46.7 5.15 2160.55
9 94.39 8461 2872.33 78.7 6.18 2305.58
10 128.02 20,106 3655.08 180.5 6.15 3503.93
11 96.00 13,313 2912.00 60.9 5.88 3571.89
12 131.42 10,771 3921.00 103.7 4.88 3741.40
13 127.21 15,543 3865.67 126.8 5.50 4026.52
14 252.90 36,194 7684.10 157.7 7.00 10,343.81
15 409.20 34,703 12,446.33 169.4 10.78 11,732.17
16 463.70 39,204 14,098.40 331.4 7.05 15,414.94
17 510.22 86,533 15,524.00 371.6 6.35 18,854.45

Write and execute SAS programs to perform the computations necessary to
provide answers to the following questions. Add SAS statements and/or steps
needed to obtain all answers required.

4.12 Consider relating y (HOURS) to x1 (XRAY), x2 (BEDDAYS), and x3

(LENGTH) by using the model

y = β0 + β1x1 + β2x2 + β3x3 + ε

Plot y versus each of x1, x2, and x3. Do the plots indicate that the above
model might appropriately relate y to x1, x2, and x3? Explain your
answer. You may compute other statistics to support your answer.

4.13 The main objective of this regression analysis is to help the Navy evaluate
the performance of its hospitals in terms of how many labor hours are
used relative to how many labor hours are needed. The Navy selected
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hospitals 1 through 17 from hospitals that it thought were efficiently run
and wishes to use a regression model based on efficiently run hospitals
to evaluate the efficiency of questionable hospitals. For hospital 14, note
that x1 = 36,194, x2 = 7684.10, and x2= 7.00. Using the SAS output,
discuss the case diagnostics for hospital 14. Discuss statistical evidence
to show that this case might not fit the above model very well.

4.14 Since the Navy wishes to use a regression model based on efficiently run
hospitals, it follows that hospital 14 be removed from the data set if
it is concluded that hospital 14 was inefficiently run. Using the results
from fitting model defined in Exercise 4.9 to the data set modified by
removing hospital 14, answer the following:
a. Do all of the residuals on the output appear to have come from the

same distribution? Provide evidence for supporting or rejecting your
claim.

b. Use the leverage values for cases 14, 15, and 16 (which are the original
hospitals 15, 16, and 17) to determine if these hospitals are outliers
with respect to their x-values? How does being an x-outlier affect
other diagnostics of each of these cases?

c. Use the Cook’s distance measure for case 14 (the original hospital 15)
to explain why removing hospital 14 from the data set has made the
original hospital 15 noninfluential?

d. Which hospital had the largest Cook’s D when all 17 hospitals were
used to perform the regression analysis? Does this hospital appear to
be less influential after removing hospital 14 from the data set? If so,
explain why.

4.15 For two hospitals not used in the above analysis whose efficiency the
Navy questions, the values of XRAY, BEDDAYS, and LENGTH are
56,194, 14,077.88, and 6.89 and 6021, 1651.42, and 5.41, respectively.
Use SAS to obtain predictions of the number of monthly labor hours
used for these hospitals. Use the model in Exercise 4.9 fitted to data
excluding hospital 14. Use the observed number of labor hours for these
hospitals, y = 17,207.3 and y = 1823.4, respectively, to comment on the
efficiency of these two hospitals.

4.16 Consider relating y (HOURS) to x1 (LOAD), x2 (XRAY), x3 (BED-
DAYS), x4(POP), and x5(LENGTH) by fitting the model

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + ε

using all 17 hospitals.
a. Use the scatter plot matrix and correlation matrices to carry out

a preliminary assessment of the relationship between y and each of
x1, x2, x3, x4, and x5. Based on your assessment, which indepen-
dent variables do you judge might be most strongly involved in mul-
ticollinearity?

b. Do any least squares estimates of the regression coefficients have a
sign (positive or negative) that is different from what you would intu-
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itively expect (another consequence of multicollinearity)? Which two
variables have the largest variance inflation factors? What is conspic-
uous about these variables?

c. Obtain the partial regression residual plots for each of the variables
in the model. Use these to comment on the effects of multicollinearity
on the estimation of each coefficient in the fitted model.

d. If the independent variables x1 and x4 are removed from the five-
variable model above and use regression to relate y to x2, x3, and x5

alone, the model fitted is identical to that in Exercise 4.9. Is the fit
of that model less affected by multicollinearity than the five-variable
model? Explain. Does x3 seem to have additional importance in the
smaller model than the larger one? Justify your answers.

4.17 Since the previous analyses indicated that hospital 14 might have been
inefficiently run, use SAS procedures to obtain the “best” model resulting
from using possible combinations of the five explanatory variables after
hospital 14 is removed from the data set.
a. Use a SAS procedure to do all possible regressions containing no less

than two and no more than four independent variables. Print statis-
tics for only the four best models in each case. Construct a plot of
the Cp statistic for all models with “reasonable” Cp values. Select
“good” models each with two, three, and four independent variables,
respectively, for the purpose of predicting monthly labor hours, indi-
cating your reasons for selection of each model. There may be several
possible choices; that is, there may be many “good” models but give
arguments for each of your choices. Primarily, use s2, R2, and Cp in
your arguments. Select one of these models as your final model and
provide arguments supporting your choice.

b. Use the following subset selection procedures:
a. backward elimination, with significance level of 0.05 for deleting

variables
b. stepwise, with significance levels of 0.20 for entry and 0.10 for dele-

tion of variables
State the model(s) selected in each case and report estimates of pa-
rameters and the analysis of variance table for these models. Compare
models selected from each procedure with final model selected in part
(a). Comment on whether changing the cutoff levels up or down by
small amount would change the models selected by these procedures.
(You do not need to re-run programs; examine the p-values from out-
puts from the SAS programs used for procedures A and B.)

4.18 This problem may be considered a complete SAS project. Import an
Excel data set named air pollution.xls using proc import to create
a SAS data set. The data shown in Table B.7 consists of air pollution
measured as SO2 content in the air and related other variables for 41
U.S. cities. SO2 is the response variable y, and the explanatory variables
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are AvTemp (x1), NumFirms (x2), Population (x3), WindSpeed (x4),
AvPrecip (x5), and PrecipDays(x6), respectively.
In a second SAS program, access this SAS dataset and perform a variable
subset selection procedure using proc reg as described below.
a. Use proc sgscatter to obtain a scatter plot matrix and proc reg

to perform a preliminary assessment of the pairwise relationships be-
tween y and x1, x2, x3, x4, x5, and x6. On this basis alone, select a
few explanatory variables that may good predictors in a multiple re-
gression model. Using the plot and the correlation matrix, find the
four variables that are most strongly correlated among the explana-
tory variables. Based on above analysis alone suggest the explanatory
variables that are most strongly involved in multicollinearity when
fitting the full model.

b. Use a SAS procedure to fit a first-order multiple regression model to
all 41 cities. Discuss the fit of this model using the ANOVA table, R2,
and the estimates table. Use other diagnostic tools including output
statistics and plots of residuals to examine the adequacy of the model
(use the diagnostic panel of plots). Examining the plots, Obs #31 to
be an influential y-outlier. Use the diagnostic statistics to confirm this
conjecture.

c. Identify any least squares estimates of the regression coefficients (β̂’s)
from the fit of the model in part b), that have a sign (positive or nega-
tive) that is different from what you would expect for the parameter—
an indication of multicollinearity? Use the standard errors of the pa-
rameter estimates to show that these are poorly estimated. Do the
variance inflation factors (VIF’s) identify these parameters?

d. Remove the explanatory variables x3 and x6 from the five-variable
model and use a multiple regression model to relate y to x1, x2, x4

and x5 only. What can you observe about the multicollinearity in
the new model? Is there improvement in the accuracy of estimation
of parameters of this model (e.g., decreases standard errors, more
t-statistics are significant etc.)? Justify your answers.

e. Remove the case you determined above in part b) to be a possible
outlier from the data and use all 6 variables for the analyses described
in the following three parts:
i. Use a SAS procedure to do all possible regressions containing

no less than 2 and no more than 4 explanatory variables. Print
statistics for only the 4 best models in each case. Construct a
plot of the Cp statistic for all models with “reasonable” Cp val-
ues. Select a single model, each with 2, 3, and 4 explanatory vari-
ables, respectively, for the purpose of predicting annual mean con-
centration of sulfur dioxide in a city, indicating your reasons

for selection of each model. There may be several possible
choices, i.e., there may be many “good” models but give argu-
ments for each of your choices. Primarily, use s2, R2, and Cp in
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your arguments. Select one of these models as your final model
and provide arguments supporting your choice.

ii. Use the backward elimination subset selection procedure with sig-
nificance level of 0.05 for deleting variables to select a possible
model. State the model selected and report estimates of parame-
ters and the analysis of variance table for this model.

iii. Use the stepwise subset selection procedure, with significance lev-
els of 0.10 for entry and 0.05 for deletion of variables, respectively,
to select a possible model. State the model selected and report es-
timates of parameters and the analysis of variance table for this
model.

A selected subset of the SAS data set baseball available from the SASHELP
library containing data on baseball player salaries in 1986/87 is used in
the following two problems. There are 21 variables and 71 observations in
this data set. To obtain information about the variables, run the SAS code
ods select position;proc contents data=baseball varnum; run;. Note that the
variable attributes table is named position when the option varnum is used
with proc contents. You may print the first 5 observations by running the
SAS code proc print data=baseball(obs=5);run; to observe a few values for
the above variables. Fit logsalary as a first order multiple regression model
of the variables nAtBat, nHits, nHome, nRuns, nRBI, nBB, yrMajor,

crAtBat, crHits, crHome, crRuns, crRbi, crBB, nOuts, nAssts and
nError. Use the glmselect procedure to perform model selection using two
different approaches as described below:

4.19 In this problem use the significance level criterion with the stepwise
method model selection and the validate method for selecting the best
model (in terms of smallest validation ASE) in each step. Partition the
data randomly so that 35% of the data are used for validation. Request
plots of the fit criteria by iteration step and a plot for comparison of
validation and training ASE by iteration step. Discuss the results of this
analysis.

4.20 In this problem use the adjusted R2 criterion with the stepwise method
model selection and the cv method for selecting the best model (in terms
of the smallest cross-validation prediction error, called CV PRESS) in
each step. Specify that fivefold cross-validation method to be used. Also
specify that, in addition to the R2

adj and CV PRESS, the statistics Cp,
AIC and SBC to be included in the model fit summaries. Discuss the
results of this analysis and compare it to the results of the stepwise
selection using the significance level criterion.
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Analysis of Variance Models

5.1 Introduction

In Chap. 4, multiple regression models discussed involved quantitative vari-
ables as explanatory variables. As discussed in Sect. 4.2, the least squares
method was used to obtain the estimates of the parameters of the model.
Using the matrix form of the multiple regression model

y = Xβ + ε

this was done by solving the normal equations

X ′Xβ = X ′y,

the solution to which gave the least squares estimate β̂ ofβ:

β̂ = (X ′X)−1X ′y.

The analysis of variance models introduced in this chapter, although concep-
tually different, can also be represented in this framework, where the X matrix
now represents the design matrix. The design matrix is constructed from the
linear model describing the responses observed from a specific experiment.
Linear models describing various experiments discussed in this chapter will
be called analysis of variance models. Analysis of variance models used for de-
scribing responses from several experimental situations is discussed in detail
in separate sections in this chapter. Here, a linear model is used as an example
demonstrating how a design matrix is constructed from it and for discussing
properties of the resulting normal equations. Consider the linear model

yij = μ+ αi + τj + εij , i = 1, 2, 3; j = 1, 2, 3, 4

M. G. Marasinghe, K. J. Koehler, Statistical Data Analysis Using SAS,
Springer Texts in Statistics, https://doi.org/10.1007/978-3-319-69239-5 5
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This model, for example, may be used to describe the yield of corn, yij , ob-
served from 12 1-acre plots where combinations of 3 different levels of nitrogen
(i = 1, 2, 3) and 4 levels of irrigation (j = 1, 2, 3, 4) were applied. In this model,
αi and τj represent the effects of nitrogen level i and irrigation level j, re-
spectively, expressed as deviations from an overall mean μ. When formulating
this model for this situation, it is assumed that the above effects and the
random component εij representing experimental error are additive. In this
chapter, the ε11, ε12, . . . , ε34 are assumed to be a random sample from a nor-
mal distribution with mean 0 and variance σ2. The matrix form of the model
is

y = Xβ + ε

where

y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11
y12
y13
y14
y21
y22
y23
y24
y31
y32
y33
y34

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 0 1
1 0 0 1 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0
1 0 0 1 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, β =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

μ
α1

α2

α3

τ1
τ2
τ3
τ4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and ε =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε11
ε12
ε13
ε14
ε21
ε22
ε23
ε24
ε31
ε32
ε33
ε34

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For example, the first line of this model is y11 = μ+α1 + τ1 + ε11, the second
line is y12 = μ + α1 + τ2 + ε12, and so on. There are certain obvious differ-
ences from the matrix form of the multiple regression model of Sect. 4.2. The
design matrix X, for example, consists entirely of 0’s and 1’s, their positions
determined by the subscripts i and j. The 12 rows of X correspond to the 12
observations y11, y12, . . . , y34 in that order. Note that the ordering is deter-
mined by letting the first subscript i remain fixed and the second subscript
j take values 1 through 4 representing the four different irrigation methods.
The first subscript i takes the values 1 through 3 in that order and repre-
sents the three nitrogen levels. The eight columns of X represent the eight
parameters μ, α1, α2, α3, τ1, τ2, τ3, τ4, respectively. Thus, in any row of X,
the presence of a 1 or 0 in any column indicates that the corresponding pa-
rameter, as determined by the column position, appears or not in the model
for the observation represented by that row. For example, in row 7 of the
above design matrix, there is a 1 in columns 1, 3, and 7, and the rest of the
columns are 0, indicating the presence of the parameters μ, α2, and τ3 in the
model; thus, the model for y23, the observation represented by row 7 of X, is
y23 = μ+ α2 + τ3 + ε23.

The special structure of X results in a situation not usually encountered
when attempting to solve the normal equations X ′Xβ = X ′y to obtain the
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least squares estimates of the parameters in the multiple regression model.
In that case, it is assumed that the matrix X ′X is nonsingular; that is, the
inverse of the matrix can be calculated, and therefore, a unique solution to the
normal equations exists that is given by (X ′X)−1X ′y. In analysis of variance
models, the rank of the X ′X matrix is less than p, the number of parameters,
and therefore, there is an infinite number of solutions to the normal equations.
Hence, these models are also called less than full rank models. The outcome of
this is that the parameters μ, α1, α2, α3, τ1, τ2, τ3, and τ4 cannot be uniquely
estimated. In general, a nonunique solution to such a system of linear equa-
tions may be found by setting some of the unknown parameters to a constant
(such as zero) and obtaining a solution for the rest of the parameters. This
solution will be unique up to the constants chosen. Thus, when computer soft-
ware produce estimates of parameters in an analysis of variance model, the
numbers output are not unique and depend on the procedure adopted by the
software to obtain a solution to the normal equations.

As an example, it can be easily shown that the X ′X matrix for the linear
model given earlier is

X ′X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

12 4 4 4 3 3 3 3
4 4 0 0 1 1 1 1
4 0 4 0 1 1 1 1
4 0 0 4 1 1 1 1
3 1 1 1 3 0 0 0
3 1 1 1 0 3 0 0
3 1 1 1 0 0 3 0
3 1 1 1 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and that the normal equations required for obtaining the least squares esti-
mates are given by

12μ + 4α1 + 4α2 + 4α3 + 3τ1 + 3τ2 + 3τ3 + 3τ4 = y..
4μ + 4α1 + τ1 + τ2 + τ3 + τ4 = y1.
4μ + 4α2 + τ1 + τ2 + τ3 + τ4 = y2.
4μ + 4α3 + τ1 + τ2 + τ3 + τ4 = y3.
3μ + α1 + α2 + α3 + 3τ1 = y.1
3μ + α1 + α2 + α3 + 3τ2 = y.2
3μ + α1 + α2 + α3 + + 3τ3 = y.3
3μ + α1 + α2 + α3 + 3τ4 = y.4

where y.. =
∑3

i=1

∑4
j=1 yij , yi. =

∑4
j=1 yij for i = 1, 2, 3, and y.j =

∑3
i=1 yij for j = 1, 2, 3, 4. It can be shown that the rank of X ′X is 6, so

only two of the parameters need to be set to a constant to obtain a so-
lution to the normal equations. Another way to obtain a solution to the
normal equations in a balanced design model such as in the above exam-
ple is to impose restrictions on parameters. For example, in the above ex-
ample, two such restrictions are needed. The so-called sum-to-zero restric-
tions are

∑3
i=1 αi = 0 and

∑4
j=1 τj = 0 of this type. These can also be
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written as α3 = −α1 − α2 and τ4 = −τ1 − τ2 − τ3; thus, a solution for
the other parameters can be obtained by eliminating α3 and τ4 from the
equations. The solution to the normal equations under these restrictions is
μ̃ = ȳ.., α̃i = ȳi. − ȳ.., for i = 1, 2, 3, and τ̃j = ȳ.j − ȳ.. for j = 1, 2, 3, 4. For
the experiment described, most experimenters consider these quantities as the
“estimates” of the respective parameters. Essentially, setting some parameters
equal to a constant is also a restriction on the parameters. The method of
computation used in proc glm in SAS produces estimates equivalent to those
obtained by setting the last parameter for each effect equal to zero. Thus, in
the above model, setting α3 = 0 and τ4 = 0 and solving the normal equations
will result in the same estimates as those produced by SAS. These solutions are
μ̃ = −ȳ..+ ȳ3.+ ȳ.4, α̃i = ȳi.− ȳ3. for i = 1, 2, and τ̃j = ȳ.j− ȳ.4 for j = 1, 2, 3.

Thus, it is evident that the solutions to the normal equations are not
unique, and therefore, it is more useful to obtain estimates of “interesting”
functions of the parameters that are unique. Linear functions of the parame-
ters for which unique estimates exist are called estimable functions, and fortu-
nately for the experimenter, some of the estimable functions of parameters of
a given model can be usefully interpreted. Estimates of these functions will be
the same no matter which solution to the normal equations is used to compute
them.

Analysis of variance models may be used to analyze data from

• Designed experiments
• Observational studies

The statistical analyses of these data based on analysis of variance models
require some familiarity with the basic concepts associated with such studies.
In the subsections that follow, a few of these ideas are briefly reviewed.

5.1.1 Treatment Structure

Treatments (or more generally, factor levels) are various settings of the con-
ditions that are being compared in an experiment. Generally, treatments are
applied to experimental units, and a response (a value of the dependent vari-
able) is measured from each experimental unit.

Example 1: Study effects of baking temperature on a commercial cake mix-
ture
• Levels of temperature: 150 ◦C, 170 ◦C, 190 ◦C, 210 ◦C
• Response variable: Area of a cross section of cake
• Replications: The number of cakes baked at each temperature

Example 2: Same experiment as in Example 1 with an additional factor: a
chemical additive
• Treatments: All combinations of 4 levels of temperature and 3 chem-

ical additives forming 12 treatment combinations in a 4 × 3 factorial
treatment structure
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• Response Variable: Area of a cross section of cake
• Replications: It is needed to bake at least 24 cakes (i.e., 2

Replications per treatment combination in order to be able to
estimate experimental error variance.

Example 3: Study the variation of number of traffic tickets issued in different
precincts in a large U.S. city
• Levels of factor: Select 10 precincts at random.
• Response variable: Number of traffic tickets issued in a 6-month period
• Replications: From each precinct, select several police officers at ran-

dom for each of whom a response is measured.
• Note: In this experiment, the interest is in measuring the variability of

the number of traffic tickets issued from precinct to precinct within the
city, rather than estimating the mean number of traffic tickets issued
in a particular precinct.

Factors can be categorized into two basic types:

Fixed Factors

• Experimenter selects the levels of each of the factors to be included in
the experiment.

• Interest is in the estimation and comparison of differences among these
selected levels.

Example: Cake-Baking Experiment
Both Temperature and Additive are fixed factors because the experi-
menter selected these levels to be studied in the experiment. The effects
of the levels of Temperature and Additive will be compared in the analysis
of the data resulting from this experiment.

Random Factors
• Experimenter randomly samples the population of levels of each of the

random factors.
• Interest here is in measuring the variability of the response over the

population.

Example: Study of Traffic Tickets
Both officers and precincts are random factors because the levels of these
factors were selected from the available population of levels. The experi-
menter is not interested in the effects of a particular officer or a particular
precinct but the variation of the number of traffic tickets issued.

5.1.2 Experimental Designs

Experimental designs describe how treatments (treatment combinations) are
assigned to the experimental units for application to the experimental units
and in the order in which observations are taken.
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Example 1: Completely Randomized Design
Compare four fertilizers (A, B, C, D) on corn yield in a field experiment.
Suppose 20 plots are available in a field as experimental units. If a com-
pletely randomized design (CRD) is used, the following design could be
used to allocate the treatments to the plots:

A B C D D

B D A A C

C A B D C

B A B C D

Here, the four fertilizers are assigned at random to the 20 plots so that each
fertilizer is applied to five plots, giving five replications of each treatment.

Example 2: Randomized Blocks Design
If, on the other hand, a randomized complete block design (RCBD) is used,
the following allocation of the fertilizers to the plots may result:

Blocks
1 2 3 4 5

A B D A C

C C C B D

B D A D A

D A B C B

Here, the 20 plots are first grouped into 5 blocks (numbered from 1 to 5 in
the diagram) of 4 plots each. The four fertilizers are assigned at random
to the four plots in each block. Note that in the actual field layout, the
plots within blocks may not be aligned across the blocks as shown above.

5.1.3 Linear Models

Data arising from designed experiments is represented by a linear model for
the purpose of statistical analysis of such data. One advantage accrued from
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using such a model is that all effects to be estimated and hypotheses that
need to be tested to answer the research questions related to the experiment
may be formulated in terms of the estimable functions of the parameters of
the model. In various linear models introduced in the chapter, parameters
are estimated by the least squares method ; that is, the solutions to the nor-
mal equations minimize the sum of squared deviations of the observations
from their expected values. These estimates are equivalent to maximum like-
lihood estimators obtained by maximizing the likelihood function under the
assumption that the observations are normally distributed. In either case, the
estimators of the parameters (i.e., estimable functions of the parameters) are
called “best” since they have the properties of being unbiased and having
minimum variance in the class of unbiased estimators.

Example: Cake-Baking Experiment

In the cake-baking experiment, for example, a model that may be used to
describe the observations yijk is of the form

yijk = μ+ αi + βj + γij
︸ ︷︷ ︸

μij

+εijk, i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2.

where yijk is the area of cross section of the kth replication of the ijth
temperature-additive combination and εijk is a random error assumed to
be normally distributed with zero mean and constant variance σ2. μij =
expected mean response of treatment combination ij; that is, this model
says that E(yijk) = μij for each k.

From this formulation, μij , αi − αi′ , βj − βj′ , σ2, etc. may be esti-
mated. For example, ȳij. is the “best” estimate of μij . Further, hypothe-
ses about model parameters such as H0 : γij = 0 for all i, j versus Ha :
not H0, or H0 : αi = αi′ versus Ha : αi �= αi′ , etc. may be tested.

Example: Study of Traffic Tickets
In the second example concerning the number of traffic tickets, the model
may be represented by

yij = μ+Ai + εij , i = 1, 2, . . . , I; j = 1, 2, . . . , ni

where Ai is the effect of the ith precinct with Ai ∼ iid N(0, σ2
A), εij is the

effect of the jth officer in the ith precinct with εij ∼ iid N(0, σ2), and yij
is the number of traffic tickets issued by the jth officer in the ith precinct.

Since the “I” precincts were chosen at random, “precinct” is con-
sidered to be a random factor and it is assumed that the effects of the
precincts, Ai, are independently distributed as N(0, σ2

A) random variables.
The officers were selected randomly within each precinct; hence, “officer
within precinct” denoted by officer/precinct or officer(precinct) is inde-
pendently distributed as a random factor, and it is assumed that εij are
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N(0, σ2) random variables. The above is a one-way random model where
the “officer” effect is nested within factor A (precinct); that is, levels of
factor B (say) are nested within levels of factor A.

Using this model the variance components σ2
A and σ2 may be esti-

mated, and hypotheses about them such as H0 : σ2
A = 0 versus Ha :

σ2
A > 0 may be tested.

5.2 One-Way Classification

Data generated from a study of several levels of a single factor in a completely
randomized design are said to be in a one-way classification. In this situation,
the levels of the factor are also sometimes called “treatments.”

Model

A linear model appropriate for the response yij observed from the jth repli-
cation of the ith treatment is given by

yij = μ+ αi + εij i = 1, 2, . . . , t, j = 1, . . . , ni

where αi is the effect of the ith treatment expressed as the deviation of the
treatment mean μi from an overall mean μ (i.e. αi = μi − μ) and εij is the
random experimental error associated with the ijth observation assumed to
have normal distribution with zero mean and variance σ2, usually expressed as
εij ∼ iidN(0, σ2). This model is equivalent to assuming that the observations
for each treatment i, yi1, yi2, . . . , yini

, is a random sample from the N(μi, σ
2)

distribution where μi is the ith treatment mean. Thus, it is implied that μi

is the mean of the population from which the sample corresponding to the
ith treatment was drawn. Note that this also incorporates the assumption of
homogeneity of variance; that is, populations corresponding to each treatment
have a common variance σ2. The above model may be reexpressed in terms
of the treatment means as follows:

yij = μi + εij i = 1, 2, . . . , t, j = 1, . . . , ni

where μi = μ+ αi. This model is called the “means model” and the previous
model the “effects model.”

Estimation

The best estimates of μi and σ2 are, respectively,

μ̂i = ȳi. = (
∑

j yij)/ni, i = 1, . . . , t

σ̂2 = s2 =

∑
i

∑
j(yij − ȳi.)

2

N − t
, N =

∑
i ni
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and the best estimate of the difference between the effects of two treatments
labeled p and q is

̂αp − αq = ȳp. − ȳq., p �= q

with standard error given by

sd = s

√
1

np
+

1

nq

A (1− α)100% confidence interval (C.I.) for αp − αq (or μp − μq) is

(ȳp. − ȳq.)± tα/2,ν · sd

where tα/2,ν = upper α/2 percentage point of the t-distribution with ν df
where ν = N − t.

Testing Hypotheses

An analysis of variance (ANOVA) table corresponding to the above model is

SV df SS MS F p-Value
Trt t− 1 SSTrt MSTrt Fc = MSTrt/MSE Pr(F > Fc)

Error N − t SSE MSE(= s2)

Total N − 1 SSTot

The above F -statistic tests the hypothesis of equality of treatment means

H0 : μ1 = μ2 = · · · = μt versus Ha : at least one inequality

or, equivalently, the hypothesis of equality of treatment effects

H0 : α1 = α2 = · · · = αt versus Ha : at least one inequality

To test the equality of means of two treatments labeled p and q (i.e., H0 :
μp = μq versus Ha : μp �= μq) or, equivalently, to test the equality of effects
of two treatments labeled p and q (i.e., H0 : αp = αq versus Ha : αp �= αq),
use the following t-statistic:

tc =
|ȳp.− ȳq.|

sd

The null hypothesis H0 is rejected if tc > tα/2,ν , where tα/2,ν is the upper α/2

percentage point of the t-distribution with ν = N − t degrees of freedom.
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Preplanned or A Priori Comparisons of Means

When the hypothesis H0 : μ1 = μ2 = · · · = μt is rejected using the ANOVA
F -test, the inference is that at least one of the t population means differs from
the rest. The next step is to identify the means that are different from each
other. If the researcher had planned to compare treatment effects or means by
suggesting specific questions about them based on the treatment structure,
this would be a much simpler task. For example, “Is the average (μ1 + μ2)/2
different from (μ3 + μ4)/2?” would be a meaningful question if treatments 3
and 4 contained a component or an ingredient, say, that treatments 1 and 2
did not have.

Many times these questions may not result in a simple comparison of
whether a difference like μ2 − μ3 is significant or not. It may be a question
that requires a more complex comparison such as μ1 − (μ2 + μ3)/2 to be
made. Not all questions can be formulated in the form of comparisons. To
understand what kinds of questions can be formulated as comparisons, define
a linear comparison as a linear combination of the means μ1, μ2, . . . , μt to
be of the form

� = a1μ1 + a2μ2 + · · ·+ atμt =
t∑

i=1

aiμi

for given numbers a1, a2, . . . , at with the restriction that the sum of these
numbers is zero (i.e.,

∑t
i=1 ai = 0). Several examples of linear comparisons of

means are provided to illustrate this definition.

Examples: Suppose the number of treatments is t = 5; that is, consider the
population means μ1, μ2, μ3, μ4, and μ5.

• The linear combination � = μ2 − μ3 has ai values

a1 = 0, a2 = 1, a3 = −1, a4 = 0, a5 = 0

Note that
∑

ai = 0 as required; thus, � is a linear comparison.

• The linear combination � = (μ1 + μ2)/2− (μ3 + μ4)/2 has ai values

a1 = 1/2, a2 = 1/2, a3 = −1/2, a4 = −1/2, a5 = 0

Again,
∑

ai = 0; thus, � is a linear comparison.

An estimate of a linear comparison is called a linear contrast of the means
and is given by

�̂ = a1ȳ1. + a2ȳ2. + a3ȳ3. + · · ·+ atȳt.

where
∑

ai = 0. Recall that the sample treatment means ȳ1., ȳ2., . . . , ȳt. are
the best estimates of the population means μ1, μ2, . . . , μt.

A linear comparison is a way to express a hypothesis among population
means that are naturally suggested by the choice of levels of the factor under
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study. It is not surprising that an experimenter would like to make more than
one such comparison for a given experiment. A comparison is made by the
testing of the hypotheses,

H0 : � = 0 versus Ha : � �= 0

where � is a linear combination of μ1, μ2, . . . , μt at a specified level α.
To compute an F -statistic to test the above hypotheses, a “SS due to the

contrast” needs to be computed. In the most general case, when the sample
sizes for the treatments are different, say, n1, n2, . . . , nt, this SS is calculated
using the formula

SSC =
�̂2

∑t
i=1(a

2
i /ni)

When the sample sizes are all equal to n, the above reduces to the form

SSC =
n�̂2
∑t

i=1 a
2
i

Example 5.2.1

The data shown in Table 5.1 are from an experiment in plant physiology de-
scribed in Sokal and Rohlf (1995) and give the length (in coded units) of pea
sections grown in tissue culture. The purpose of the experiment was to com-
pare the effects of the addition of various sugars on growth as measured by this
length. Four treatments representing three different sugars and one mixture
of sugars plus one control treatment with no sugar were used. Ten indepen-
dent samples were obtained for each treatment in a completely randomized
design. The model for the observations in terms of the means μ1, . . . , μ5 of

Table 5.1. Effect of sugars on growth of peas (Sokal and Rohlf 1995)

Sugars

1% glucose
2% 2% + 2%

Control glucose fructose 1% fructose sucrose

75 57 58 58 62
67 58 61 59 66
70 60 56 58 65
75 59 58 61 63
65 62 57 57 64
71 60 56 56 62
67 60 61 58 65
67 57 60 57 65
76 59 57 57 62
68 61 58 59 67
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populations that represent the five samples is

yij = μi + εij , i = 1, 2, . . . , 5, j = 1, . . . , 10

and the analysis of variance (ANOVA) table that is required for the analysis
of this data is

SV df SS MS F p-Value
Sugars 4 1077.32 269.33 49.37 <0.0001
Error 45 245.50 5.46
Total 49 1322.82

Labeling the five treatments as Trt1,...,Trt5, respectively, in the order they
appear in the data table, the five treatment means are

Trt1 Trt2 Trt3 Trt4 Trt5
70.1 59.3 58.2 58.0 64.1

It would be more useful to test the preplanned (or a priori) comparisons
given below rather than, say, test all pairwise differences among the five treat-
ment means (or effects) to determine the means that are different. In this
study, the experimenter could have planned to (i) compare the effect of the
control with the average effect of the sugars, (ii) compare the effect of the
mixed sugars with average effects of pure sugars, and (iii) compare the differ-
ences among the effects of the three pure sugars. The linear combinations

(i) μ1 − 1
4 (μ2 + μ3 + μ4 + μ5)

(ii) μ4 − 1
3 (μ2 + μ3 + μ5)

(iii) μ2 − μ3, μ2 − μ5, or μ3 − μ5

represent these comparisons, in terms of the five respective population means,
μ1, . . . , μ5 Consider testing

H0 : μ1−
1

4
(μ2+μ3+μ4+μ5) = 0 versus Ha : μ1−

1

4
(μ2+μ3+μ4+μ5) �= 0

or, equivalently,

H0 : 4μ1 − μ2 − μ3 − μ4 − μ5 = 0 versus Ha : 4μ1 − μ2 − μ3 − μ4 − μ5 �= 0

Here �1 = 4μ1 − μ2 − μ3 − μ4 − μ5. The coefficients of the corresponding
contrast are therefore

a1 a2 a3 a4 a5
4 −1 −1 −1 −1

Thus,

�̂1 = 4ȳ1 − ȳ2 − ȳ3 − ȳ4 − ȳ5

= 4× 70.1− 59.3− 58.2− 58.0− 64.1 = 40.8
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where
5∑

i=1

a2i
ni

=
42

10
+

12

10
+

12

10
+

12

10
+

12

10
=

20

10

Thus,

SSC1 =
�̂21
∑ a2

i

ni

=
(40.8)2

2
= 832.32

Therefore,

Fc =
SSC1/1

MSE
=

832.32

5.456
= 152.56

Since F.05, 1, 45 ≈ 4.0, we reject H0 at α = 0.05. Now, consider testing

H0 : μ4 −
1

3
(μ2 + μ3 + μ5) = 0 versus Ha : μ4 −

1

3
(μ2 + μ3 + μ5) �= 0

Since H0 is equivalent to μ2 + μ3 + μ5 − 3μ4 = 0, the problem is equivalent
to testing

H0 : �2 = 0 versus Ha : �2 �= 0

where �2 = μ2 + μ3 + μ5 − 3μ4. Here, the contrast coefficients are

a1 a2 a3 a4 a5
0 1 1 −3 1

giving �̂2 = 59.3 + 58.2 + 64.1− 3× 58.0 = 7.6 and the divisor is

a2i
ni

=
02

10
+

12

10
+

12

10
+

32

10
+

12

10
=

12

10
= 1.2

Thus, similar to the above,

SSC2 =
�̂22
∑ a2

i

ni

=
(7.6)2

1.2
= 48.1333

Therefore,

Fc =
SSC2/1

MSE
=

48.1333

5.456
= 8.82

which leads us to reject H0 at α = 0.05, the same result as F.05, 1, 45 ≈ 4.0.
Computations of the F -tests for the other two comparisons follow in a similar
fashion. The above F -tests performed for making comparisons of interest also
may be carried out by equivalent t-tests. In the equal sample size case (i.e.,
n1 = n2 = · · · = n), a test for a preplanned (or an a priori) comparison

H0 :
∑

i ciμi = 0 versus Ha :
∑

i ciμi �= 0

is given by the t-statistic

tc =
|
∑

i ciȳi.|
s
√∑

c2i /n
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and we reject H0 : if tc > tα/2,(N−t) for a two-tailed test. For testing

H0 : 4μ1 − μ2 − μ3 − μ4 − μ5 = 0 versus Ha : 4μ1 − μ2 − μ3 − μ4 − μ5 �= 0

the t-statistic is

tc =
40.78√

5.456×
√
2
= 12.35

and H0 is rejected as t.025,45 ≈ 2.0

Two contrasts �̂1 =
∑

i aiȳi. and �̂2 =
∑

i biȳi. are said to be orthogonal
whenever

∑
i aibi = 0. This is defined only when n1 = n2 = · · · = nt = n. If

all linear contrasts in a set
�̂1, �̂2, . . . , �̂t−1

are pairwise orthogonal (i.e., every possible pair is orthogonal), then the set
is said to be a mutually orthogonal set of linear contrasts. Given t means
μ1, μ2, . . . , μt and sample means ȳ1., ȳ2., . . . , ȳt. (all based on the same num-
ber n of observations), it is the case that the maximum number of mutually
orthogonal contrasts that exist is (t− 1). There are many (t− 1) sets of con-
trasts that are mutually orthogonal. Thus, in the previous example, a set of
four comparisons that are mutually orthogonal could be found since t = 5.

Pairwise Comparisons of Means

One-at-a-time comparisons between pairs of mean μp and μq control the per-
comparison error rate. These comparisons are carried out simply by:

• doing a t-test of H0 : μp = μq, or
• constructing a confidence interval for μp − μq, or
• equivalently, when sample sizes are equal, using the least significant differ-

ence (LSD) procedure. Note that the rejection region for the t-test for H0 :
μp − μq = 0 is equivalent to Reject H0 if

|ȳp.− ȳq.| > tα/2,(N−t) · s ·
√
2/n

︸ ︷︷ ︸
LSDα

, where n = sample size

The right member of this inequality is not a function of i or j. It is constant
and is called the least significant difference or LSD and is denoted here as
LSDα. In the LSD procedure, differences of pairs of the sample means are
compared to the single computed value of LSDα, to determine the pairs that
are significantly different. To minimize the number of comparisons needed to
be made, the ȳi.s are first arranged smallest to largest in value. Using the
notation ȳ(i) for the ith smallest ȳ, the ordered means may be represented as

ȳ(1) ≤ ȳ(2) ≤ ȳ(3) ≤ · · · ≤ ȳ(t)

Now, note that if the difference ȳ(t) − ȳ(1), for example, does not exceed the
LSD value, then all the differences ȳ(t) − ȳ(2), ȳ(t) − ȳ(3) . . ., ȳ(t) − ȳ(t−1) will
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not exceed the LSD. It follows that computing all the above differences and
comparing them to the LSD are avoided. The LSD procedure is based on this
idea.

Often the findings are reported using the following scheme called the un-
derscoring procedure:

• The ordered list of the computed values of the means is identified (in a
separate line above them) by the treatment numbers (or the names identi-
fying the corresponding treated populations) corresponding to the ordered
means. For example, suppose the means are

Trt5 Trt3 Trt1 Trt4 Trt2
9.5 10.5 11.6 12.2 13.5

• Connect the means by underscoring those pairs of means whose differences
are less than the LSDα in the following manner.

• Consider each mean in turn beginning from the smallest and moving right
to the next largest mean and so on.

• On a separate line below the list starting from column 1, begin the under-
score connecting means until a mean is found that is significantly different
(i.e., difference is larger than the LSDα) from the mean in column 1. Ex-
tend the line all the way and stop to the left of this mean.

• This line implies that those means that are connected with this line are
not significantly different from the mean in column 1.

• Now, the procedure is restarted at column 2 and is repeated the same way
as described above.

• For example, for an LSDα value of 2.72, the underscoring procedure pro-
duces the following:

Trt5 Trt3 Trt1 Trt4 Trt2
9.5 10.5 11.6 12.2 13.5

• Now, the populations whose identifying numbers or labels are joined by an
underscore have means that are found to be not significantly different. To
simplify the display, any line that is completely covered by (i.e., overlaps)
another line and therefore is not needed can be deleted. Thus, the above
reduces to

Trt5 Trt3 Trt1 Trt4 Trt2
9.5 10.5 11.6 12.2 13.5

When an experimenter wants to make all possible pairwise comparisons,
one of the multiple comparison procedures such as the Tukey procedure is
recommended, because such procedures control the experimentwise error rate.
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Multiple Comparisons of Pairs of Means

Following an ANOVA F -test that rejects the hypothesis that the population
means are equal to each other, one may conduct tests of equality of all pairs
of the population means in order to ascertain which of these are actually dif-
ferent from each other. One-at-a-time comparisons (i.e., individual t-tests or
confidence intervals for differences in pairs of means) may be used for this
purpose. However, these tests are not adjusted for multiple inference; that is,
the error rate controlled is the Type I error rate for each individual test. When
pairwise comparisons of population means are made, multiple comparison pro-
cedures such as the Bonferroni method attempt to control the probability of
making at least one Type I error. These procedures protect the experimenter
against declaring too many pairs of means significantly different when they
are actually not, when making all possible pairwise comparisons; that is, they
ensure that the probability of making at least one Type I error is controlled
and thus is more conservative than one-at-a-time comparisons. They are said
to control the experimentwise error rate. Although SAS makes available sev-
eral procedures through a variety of options, just three such procedures are
discussed here.

• The Bonferroni method involves the use of a t-percentile corrected for
the total number of pairwise comparisons. This procedure controls the
probability of making at least one Type I error to be less than or equal
to α.

• The Tukey procedure (also called Tukey–Kramer method when an adjust-
ment for unequal sample sizes is incorporated) for all possible pairwise
comparisons simultaneously, also called the HSD (honestly significant dif-
ference) procedure. This procedure controls the maximum experimentwise
error rate.

• The Scheffé procedure is used for testing a set of comparisons (contrasts
of the type

∑
ciμi) simultaneously and controls the maximum experimen-

twise error rate for the set. The set of comparisons may include pairwise
comparisons and any other contrast of interest, as well.

Instead of performing tests for all comparisons among t means, these proce-
dures may also be carried out in a manner similar to the LSD procedure to
minimize the number of comparisons. For example, LSDα is replaced by

HSDα = qα,t,ν

√
s2

n

where qα,t,ν is the upper α percentage point of the Studentized range distribu-
tion with ν degrees of freedom for performing the Tukey procedure (for equal
sample sizes). For the Bonferroni method, the t-percentile used in the LSD
procedure tα/2,ν is replaced by tα/2m,ν where m is the total number of com-
parisons made. For all pairwise comparisons among t means, m = t(t− 1)/2.
For the Scheffé procedure, LSDα is replaced by
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Sα =

√

V̂ar(�̂)
√

(t− 1)Fα,df1,df2

where df1 = t − 1, df2 = ν, and V̂ar(�̂) = s2
∑

i
a2
i

ni
, and s2 is the error

mean square with ν degrees of freedom. The Tukey–Kramer method is more
powerful than either the Bonferroni or the Scheffé methods when only pairwise
comparisons are made.

Confidence intervals for all pairwise differences can also be adjusted for
each of these methods by changing the percentile value used in their con-
struction. For example, 95% Bonferroni-corrected confidence intervals for m
pairwise differences are obtained by substituting t0.025/m,ν in place of t0.025,ν .
In conclusion, a word of caution about drawing inferences from pairwise com-
parisons is warranted. The transitivity that one expects from logical relation-
ships may not exist among the results of these hypothesis tests; for example,
μA may be found to be not significantly different from μB and μB from μC ,
but it is possible that μA and μC are declared significantly different.

5.2.1 Using PROC ANOVA to Analyze One-Way Classifications

Consider the data appearing in Table 5.2 (Box et al. 1978). These are the
observed coagulation times (in seconds) of blood drawn from 24 animals ran-
domly allocated to 4 different diets, labeled A, B, C, and D.

Table 5.2. Blood Coagulation Data (in seconds): Example E1

Diet

A B C D

62 63 68 56
60 67 66 62
63 71 71 60
59 64 67 61

65 68 63
66 68 64

63
59

The one factor in this experiment is Diet with four levels, the levels being
the four types of diet (may also be called four treatments). The experiment
was conducted in a completely randomized design. SAS Example E1 illustrates
the analysis of these data using proc anova.

SAS Example E1

The SAS Example E1 program shown in Fig. 5.1 is used to obtain the neces-
sary analysis of the above data. The input statement with the trailing @@
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is useful for inputting this type of data. This allows several observations to
be continued on the same data line rather than using a new line for each
observation. Notice that it is necessary to separate data values by at least
one blank as in the case of list input. Although the sample sizes are unequal,
proc anova may be used for the analysis of this data since it is a one-way
classification. The class statement identifies the variables that appear in the
model statement, which are classification variables. In this case, the variable
Diet is the classification variable with four classes (the four diets), and Time

is the dependent variable (y). Note that in specifying the model this way, a
mean μ as well as an error term are implicitly assumed to be part of the model
and thus are omitted from the statement.

The first part of the SAS output (see Fig. 5.2) is a result of the proc print

statement and illustrates the appearance of the SAS data set produced by the
data step. The class level information page resulting from the class statement
and the analysis of variance (ANOVA) table produced by proc anova as a
result of the model statement follows (see Fig. 5.3). The experimenter may
construct an analysis of variance table in the standard form given in statistics
textbooks by extracting information from the above output. The analysis of
variance (ANOVA) table for the coagulation time data is

SV df SS MS F p-Value
Diet 3 228.0 76.0 13.57 0.0001
Error 20 112.0 5.6
Total 23 340.0

The means statement produces side-by-side boxplots of the observations
at each level of the classification variable (here diets) reproduced below in

data blood;
input Diet Time @@;
datalines;
1 62 1 60 1 63 1 59
2 63 2 67 2 71 2 64 2 65 2 66
3 68 3 66 3 71 3 67 3 68 3 68
4 56 4 62 4 60 4 61 4 63 4 64 4 63 4 59
;

proc print data=blood;
title "Analysis of Blood Coagulation Data";

run;

proc anova data=blood;
class Diet;
model Time=Diet;
means Diet/t cldiff;
means Diet/tukey alpha=.05;
means Diet/hovtest;

run;

Fig. 5.1. SAS Example E1: program
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Analysis of Blood Coagulation Data

Obs Diet Time

1 1 62

2 1 60

3 1 63

4 1 59

5 2 63

6 2 67

7 2 71

8 2 64

9 2 65

10 2 66

11 3 68

12 3 66

13 3 71

14 3 67

15 3 68

16 3 68

17 4 56

18 4 62

19 4 60

20 4 61

21 4 63

22 4 64

23 4 63

24 4 59

Fig. 5.2. SAS Example E1: output from proc print

Fig. 5.4. Note that this will be reproduced for each means statement present
in the step and may be suppressed entirely by including the option plots=none
in the proc anova statement.

The output from the proc anova step resulting from the first means state-
ment and containing the pairwise comparisons of means is shown in Fig. 5.5.
The cldiff option on the means statement requests that the comparisons
be given in the form of 95% confidence intervals on pairwise differences of
means constructed using the t-percentage points (t or lsd option). For ex-
ample, the 95% confidence interval on μ1 − μ2 is −5.0 ± (2.086)(1.5275) =
(−8.186,−1.814), where t.025(20) = 2.086, s

√
1/n1 + 1/n2 = 1.5275, and

s2 = 5.6.
Since the sample sizes ni are not the same, proc anova would have pro-

duced confidence intervals instead of LSD pairwise comparisons, in any case,
by default. Note that the lines option in the means statement allows the
user to request that an approximate procedure be carried out when sample
sizes are unequal, by calculating an LSD value using a “sample size” equal to
the harmonic mean of actual sample sizes. Since the harmonic mean is always
smaller than the average, this procedure will lead to more liberal tests of the
differences than if exact confidence intervals are used to make the pairwise
comparisons.
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Analysis of Blood Coagulation Data

The ANOVA Procedure

Dependent Variable: Time

Class Level 
Information

Class Levels Values

Diet 4 1 2 3 4

Number of Observations Read 24

Number of Observations Used 24

Source DF
Sum of 

Squares Mean Square F Value Pr > F

Model 3 228.0000000 76.0000000 13.57 <.0001

Error 20 112.0000000 5.6000000

Corrected Total 23 340.0000000

R-Square Coeff Var Root MSE Time Mean

0.670588 3.697550 2.366432 64.00000

Source DF Anova SS Mean Square F Value Pr > F

Diet 3 228.0000000 76.0000000 13.57 <.0001

Fig. 5.3. SAS Example E1: output tables from proc anova

By specifying alpha=p as a means statement option, (1−p)100% confidence
intervals may be calculated by request (p = 0.05 is the default when this
option is omitted). The following is the set of 95% confidence intervals on the
six pairwise differences of means extracted from the SAS output (Fig. 5.5):

μ1 − μ2 : (−8.186, −1.814)

μ1 − μ3 : (−10.186, −3.814)

μ1 − μ4 : (−3.023, 3.023)

μ2 − μ3 : (−4.850, 0.850)

μ2 − μ4 : (2.334, 7.666)

μ3 − μ4 : (4.334, 9.666)

The intervals for μ1 −μ4 and μ2 − μ3 include zero, thus indicating that those
pairs of means are not significantly different at an α level of 0.05. The main
conclusion to be drawn is that mean coagulation times due to Diets B and C
are similar but significantly larger than those due to Diets A and D, which are
also similar. The LSD procedure may be replaced by one of several other more
conservative procedures. bon, tukey, and scheffe are examples of options
that may replace the t or lsd option for this purpose.
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Fig. 5.4. SAS Example E1: side-by-side box plots produced in proc anova

The SAS output resulting from the statement means Diet/t lines is
shown in Fig. 5.6. Observe that the harmonic mean of the sample sizes is
≈5.65 and that based on that an LSD value of 2.9377 was calculated. Note
that, in this example, using the approximation did not affect the results as
the same conclusion that there is no significant difference between each of the
pairs of means 1 and 4 and the pair of means 2 and 3, respectively. Thus, if
the sample sizes do not deviate substantially, the approximate procedure may
be used.

The SAS output resulting from the statement means Diet/tukey is shown
in Fig. 5.7. The following is the set of 95% confidence intervals on the six
pairwise differences of means extracted from this output:

μ1 − μ2 : (−9.275, −0.725)

μ1 − μ3 : (−11.275, −2.725)

μ1 − μ4 : (−4.056, 4.056)

μ2 − μ3 : (−5.824, 1.824)

μ2 − μ4 : (1.423, 8.577)

μ3 − μ4 : (3.423, 10.577)
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Analysis of Blood Coagulation Data

The ANOVA Procedure

t Tests (LSD) for Time

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 5.6

Critical Value of t 2.08596

Comparisons significant at the 0.05 level are 
indicated by ***.

Diet
Comparison

Difference
Between

Means

95% 
Confidence 

Limits

3 - 2 2.000 -0.850 4.850

3 - 1 7.000 3.814 10.186 ***

3 - 4 7.000 4.334 9.666 ***

2 - 3 -2.000 -4.850 0.850

2 - 1 5.000 1.814 8.186 ***

2 - 4 5.000 2.334 7.666 ***

1 - 3 -7.000 -10.186 -3.814 ***

1 - 2 -5.000 -8.186 -1.814 ***

1 - 4 0.000 -3.023 3.023

4 - 3 -7.000 -9.666 -4.334 ***

4 - 2 -5.000 -7.666 -2.334 ***

4 - 1 0.000 -3.023 3.023

Fig. 5.5. SAS Example E1: output from the t (or lsd) option

Notice that this option results in wider confidence intervals than the ones
produced using the lsd option. This is because the Tukey procedure controls
the experimentwise error rate resulting in a more conservative procedure; that
is, there is less of a chance of finding significant differences using this proce-
dure. The confidence intervals based on the t-statistics (t or lsd option)
control the per-comparison error rate that guarantees only that the Type I
error of each comparison will be controlled at the specified alpha value.

Procedures based on controlling experimentwise error rate are recom-
mended for use when the fact that the experimenter will be making infer-
ences using t− 1 comparisons among the means has to be taken into account.
Otherwise, the Type I error rate for all comparisons made will be more than
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Analysis of Blood Coagulation Data

The ANOVA Procedure

t Tests (LSD) for Time

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 5.6

Critical Value of t 2.08596

Least Significant Difference 2.9377

Harmonic Mean of Cell Sizes 5.647059

Note: Cell sizes are not equal.

Means with the same letter 
are not significantly different.

t Grouping Mean N Diet

A 68.000 6 3

A

A 66.000 6 2

B 61.000 4 1

B

B 61.000 8 4

Fig. 5.6. SAS Example E1: output from the t (or lsd) and lines options

the nominal significance level specified for an individual comparison. Which
procedure is to be used depends on many factors. As a rule of thumb, it is rec-
ommended that one use the Bonferroni or Tukey procedure when all pairwise
comparisons are being made and use the Scheffé procedure when, in addi-
tion to all pairwise comparisons, other contrasts or comparisons among the
means are also considered when inferences are being made. Note that each
of these three procedures is progressively more conservative than the LSD
procedure, and therefore, the corresponding confidence intervals will be pro-
gressively wider. Note, however, that in this example, the conclusions drawn
from using the Tukey procedure are identical to those drawn using the LSD
procedure.

The option hovtest= used in a means statements allows the user to spec-
ify that one of several tests for homogeneity of variance be calculated. The
available selections are bartlett, bf, levene, and obrien. Although, tra-
ditionally, experimenters have used Bartlett’s test for this purpose in practice,
currently Levene’s test is widely recognized to be the standard procedure for
testing homogeneity of variance.
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Analysis of Blood Coagulation Data

The ANOVA Procedure

Tukey's Studentized Range (HSD) Test for Time

Note: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 20

Error Mean Square 5.6

Critical Value of Studentized Range 3.95825

Comparisons significant at the 0.05 level are 
indicated by ***.

Diet
Comparison

Difference
Between

Means

Simultaneous 
95% 

Confidence 
Limits

3 - 2 2.000 -1.824 5.824

3 - 1 7.000 2.725 11.275 ***

3 - 4 7.000 3.423 10.577 ***

2 - 3 -2.000 -5.824 1.824

2 - 1 5.000 0.725 9.275 ***

2 - 4 5.000 1.423 8.577 ***

1 - 3 -7.000 -11.275 -2.725 ***

1 - 2 -5.000 -9.275 -0.725 ***

1 - 4 0.000 -4.056 4.056

4 - 3 -7.000 -10.577 -3.423 ***

4 - 2 -5.000 -8.577 -1.423 ***

4 - 1 0.000 -4.056 4.056

Fig. 5.7. SAS Example E1: output from the tukey option

Analysis of Blood Coagulation Data

The ANOVA Procedure

Levene's Test for Homogeneity of Time Variance
ANOVA of Squared Deviations from Group Means

Source DF
Sum of 

Squares
Mean 

Square F Value Pr > F

Diet 3 89.6667 29.8889 0.60 0.6237

Error 20 999.7 49.9833

Fig. 5.8. SAS Example E1: output from the hovtest option
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Figure 5.8 shows the results of Levene’s test (produced by default) as an
F -test organized in an ANOVA table format. In this example, the p-values for
the test are large indicating that the null hypothesis of equal variances will
not be rejected. One may examine this assumption visually by constructing a
side-by-side box plot as illustrated earlier (see Fig. 5.4).

5.2.2 Making Preplanned (or A Priori) Comparisons Using PROC
GLM

Consider the data (see Table. 5.1) introduced in Sect. 5.2. These were used
earlier in Sect. 5.2 to illustrate how to calculate F -statistics or t-statistics for
testing hypotheses of the type

H0 : � = 0 versus Ha : � �= 0,

where � =
∑t

i=1 aiμi for given numbers a1, a2, . . . , at, which satisfy
∑t

i=1 ai =
0 at a specified significance level of α.

The one factor in this experiment is labeled Sugar with five levels (treat-
ments), four treatments representing three different sugars, one consisting of
a mixture of sugars, and one a control treatment not containing any sugars.
Random samples of size 10 were obtained for each treatment in a completely
randomized design. SAS Example E2 illustrates the SAS program used for
the analysis of these data.

SAS Example E2

The SAS Example E2 program (see Fig. 5.9) is used primarily to illustrate the
use of contrast and estimate statements in proc glm to obtain F -test and
t-tests, respectively, for making the comparisons suggested in Sect. 5.2. These
comparisons were represented by the following linear combinations of the five
respective population means, μ1, μ2, . . . , μ5, as follows:

(i) μ1 − 1
4 (μ2 + μ3 + μ4 + μ5)

(ii) μ4 − 1
3 (μ2 + μ3 + μ5)

(iii) μ2 − μ3

(iv) μ2 − μ5

The input statements with trailing @ and a do loop were used for inputting
the data in a straightforward way, with the levels for the classification variable
Sugar being identified by the numbers 1, 2, . . . , 5 in the data. The use of
the trailing @ was described in Sect. 1.7.2 in Chap. 1. The data step first
reads the level of sugar from a data line, holds the line, and then reads ten
numbers successively as values of the variable Length, writing a pair of values
for Sugar and Length each time through the loop as observations into the
SAS data set named peas. The SAS output from proc print (not shown)
may be examined to make sure that the data set has been created in the
required format.
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The analysis of variance (ANOVA) tables produced by proc glm as a
result of the model statement, appear in Fig. 5.10. By default, proc glm

computes two types of sums of squares (called Types I and III) for each of
the independent variables (i.e., variables appearing to the right of the equal
sign) included in the model statement. In the case of one-way classification,
these two sets of sums of squares are identical in magnitude, as is the case
here. The experimenter may construct an analysis of variance table in the
standard form by extracting information from the above output:

SV df SS MS F p-Value
Sugars 4 1077.32 269.33 49.37 <0.0001
Error 45 245.50 5.46
Total 49 1322.82

The next part of the SAS output from proc glm shown in Fig. 5.11 results
from the first means statement and contains the pairwise comparisons of
means using the LSD procedure. The means are arranged in decreasing order

data peas;
input Sugar @;
do i=1 to 10;
input Length @;
output;

end;
drop i;
datalines;
1 75 67 70 75 65 71 67 67 76 68
2 57 58 60 59 62 60 60 57 59 61
3 58 61 56 58 57 56 61 60 57 58
4 58 59 58 61 57 56 58 57 57 59
5 62 66 65 63 64 62 65 65 62 67
;
proc print data=peas;

title ’ Effect of Sugars on the Growth of Peas’;
run;

proc glm data=peas;
class Sugar ;
model Length = Sugar;
means Sugar/lsd alpha = .05;
means Sugar/tukey alpha = .05;

contrast ’CONTROL VS. Sugars’ Sugar 4 -1 -1 -1 -1;
contrast ’Sugars VS. MIXED ’ Sugar 0 1 1 -3 1;
contrast ’GLUCOSE=FRUCTOSE’ Sugar 0 1 -1 0 0;
contrast ’FRUCTOSE = SUCROSE’ Sugar 0 1 0 0 -1;

estimate ’CONTROL VS. SugarS’ Sugar 4 -1 -1 -1 -1;
estimate ’Sugars VS. MIXED ’ Sugar 0 1 1 -3 1;
estimate ’GLUCOSE=FRUCTOSE’ Sugar 0 1 -1 0 0;
estimate ’FRUCTOSE = SUCROSE’ Sugar 0 1 0 0 -1;

run;

Fig. 5.9. SAS Example E2: program
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Effect of Sugars on the Growth of Peas

The GLM Procedure

Dependent Variable: Length

Source DF
Sum of 

Squares Mean Square F Value Pr > F

Model 4 1077.320000 269.330000 49.37 <.0001

Error 45 245.500000 5.455556

Corrected Total 49 1322.820000

R-Square Coeff Var Root MSE Length Mean

0.814412 3.770928 2.335713 61.94000

Source DF Type I SS Mean Square F Value Pr > F

Sugar 4 1077.320000 269.330000 49.37 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Sugar 4 1077.320000 269.330000 49.37 <.0001

Fig. 5.10. SAS Example E2: output tables from proc glm

of magnitude down the page, and the level of the corresponding treatment
(sugar) is shown in the last column. The LSD.05 is computed as 2.1039, and
means that are not significantly different are grouped by the same letter in the
first column of the output. This is comparable to the underscoring procedure
described at the beginning of Sect. 5.2, which results in

Trt4 Trt3 Trt2 Trt5 Trt1
58.0 58.2 59.3 64.1 70.1

This can be interpreted to indicate that the mean lengths for treatments 1
(Control) and 5 (Sucrose) are significantly different from each other and from
the other three treatments (Glucose, Fructose, and Mixed Sugars) but that
there is no significant difference among those three. The output resulting from
the second means statement means Diet/tukey is shown in Fig. 5.12. In this
case the differences are compared to the HSD.05 value calculated as 2.9681
and labeled Minimum Significant Difference. This turns out to be larger than



328 5 Analysis of Variance Models

the LSD.05 value as expected, but the outcome of the underscoring procedure
remains unchanged from that of the LSD procedure.

The four contrast statements result in the computation of F -statistics
for testing the four single degree of freedom comparisons of interest. The
syntax of these statements is of the form

contrast ‘label’ effect_name contrast_coefficients

< / options > ;

These results usually appear below the ANOVA table in the SAS output
but on a separate table (see Fig. 5.13). The divisor mean square used for

Effect of Sugars on the Growth of Peas

The GLM Procedure

t Tests (LSD) for Length

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 45

Error Mean Square 5.455556

Critical Value of t 2.01410

Least Significant Difference 2.1039

Means with the same letter are 
not significantly different.

t Grouping Mean N Sugar

A 70.100 10 1

B 64.100 10 5

C 59.300 10 2

C

C 58.200 10 3

C

C 58.000 10 4

Fig. 5.11. SAS Example E2: output from LSD procedure
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Effect of Sugars on the Growth of Peas

The GLM Procedure

Tukey's Studentized Range (HSD) Test for Length

Note: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 45

Error Mean Square 5.455556

Critical Value of Studentized Range 4.01842

Minimum Significant Difference 2.9681

Means with the same letter are not 
significantly different.

Tukey Grouping Mean N Sugar

A 70.100 10 1

B 64.100 10 5

C 59.300 10 2

C

C 58.200 10 3

C

C 58.000 10 4

Fig. 5.12. SAS Example E2: Tukey procedure

constructing the F -statistics is the same as Error MS from the ANOVA table.
The four estimate statements result in the computation of t-statistics for
testing the same four comparisons. The F -tests above are equivalent to these
t-tests as the numerator degrees of freedom are equal to 1 for each F -statistic.
This is reflected by the observation that the p-values for corresponding tests
are identical.

The p-values of the four F -tests and four t-tests, respectively, are identical,
as they are testing the same hypotheses. These p-values indicate that the
hypothesis equating the effect of the control with the average effect of all
sugars and the hypothesis equating the effect of the mixed sugars with average
effects of pure sugars are rejected at an α level of 0.05. This results in the
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Effect of Sugars on the Growth of Peas

The GLM Procedure

Dependent Variable: Length

Contrast DF Contrast SS Mean Square F Value Pr > F

CONTROL VS. Sugars 1 832.3200000 832.3200000 152.56 <.0001

Sugars VS. MIXED 1 48.1333333 48.1333333 8.82 0.0048

GLUCOSE=FRUCTOSE 1 6.0500000 6.0500000 1.11 0.2979

FRUCTOSE = SUCROSE 1 115.2000000 115.2000000 21.12 <.0001

Parameter Estimate
Standard 

Error t Value Pr > |t|

CONTROL VS. SugarS 40.8000000 3.30319710 12.35 <.0001

Sugars VS. MIXED 7.6000000 2.55864547 2.97 0.0048

GLUCOSE=FRUCTOSE 1.1000000 1.04456264 1.05 0.2979

FRUCTOSE = SUCROSE -4.8000000 1.04456264 -4.60 <.0001

Fig. 5.13. SAS Example E2: making preplanned comparisons

finding that all sugars depress the mean pea lengths and the effect of the mixed
sugars is less than the average effect of the pure sugars. The two hypotheses
comparing the differences among the effects of the three pure sugars result
in the findings that there is a significant difference between the Fructose and
Sucrose means but no significant difference between the Fructose and Glucose
means.

Finally, it is important to recognize, for example, that when an estimate
statement such as

estimate ‘CONTROL VS. SUGARS’ Sugar 4 -1 -1 -1 -1;

is used, the numerical value output by proc glm is the estimate of 4μ1−μ2−
μ3 − μ4 − μ5) and not of μ1 − 1

4 (μ2 + μ3 + μ4 + μ5), as one might mistak-
enly consider the estimate (and its standard error) output to be. Although
this will not affect the computed value of the t-statistic and the associated
p-value, there may be instances when the actual estimate may be needed.
One could use the divisor= option of the estimate statement to obtain the
correct estimate without affecting the t-test by writing the two statements as
follows:
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estimate ‘CONTROL VS. SUGARS’ Sugar 4 -1 -1 -1 -1/divisor=4;

estimate ‘SUGARS VS. MIXED ’ Sugar 0 1 1 -3 1/divisor=3;

These changes will result in estimates of 10.20 and 2.53 for the two compar-
isons with standard errors 0.8258 and 0.8529, respectively.

5.2.3 Testing Orthogonal Polynomials Using Contrasts

An experimenter may be interested in determining whether the observed mean
response of a factor under study is related to the levels of the factor in some
way. This relationship can be linear or curved. Orthogonal polynomials may
be used to partition the sums of squares due to the factor into components
that allow the experimenter to construct F -statistics with 1 degree of freedom
each for the numerators. Each of these can then be used to test whether the
relationship can be represented by a linear, quadratic, cubic, etc. function of
the factor levels in a sequential fashion. To make the computations easier,
this partitioning of the treatment sum of squares can be performed using
appropriate orthogonal contrasts.

Table 5.3. Effect of engine size on gasoline consumption

Engine size
Car

300 350 400 450

1 16.6 14.4 12.4 11.5
2 16.9 14.9 12.7 12.8
3 15.8 14.2 13.3 12.1
4 15.5 14.1 13.6 12.0

Mean 16.1 14.4 13.0 12.1

Example 5.2.2

It must be understood that the reparameterized linear model obtained using
orthogonal polynomials in this fashion is not exactly equivalent to a regression
model with the (centered) factor levels as regressor variables. Thus, care is
needed about how the results of tests involving orthogonal polynomials are
interpreted. A suggested procedure is to start with a test of a linear trend of
the mean response on the factor levels and use a lack of fit test to check if
the remaining treatment sum of squares is significant. If there is lack of fit,
proceed by successively increasing the order of the polynomial and performing
lack of fit tests.
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To illustrate the technique, consider the following example (Morrison
1983). Suppose that a consumer research group wishes to study the gaso-
line consumption of large eight-cylinder passenger cars of a given model year.
The cars of interest have been classified by their engine sizes of approximately
300, 350, 400, and 450 cubic inches. Four cars were drawn at random from
each engine size, and each car is driven over a standard urban route three
times. These miles per gallon of fuel, recorded for the 16 cars, are shown
in Table 5.3.

The analysis of variance computed for this data gave the following statis-
tics:

SV df SS MS F
Engine size 3 38.25 12.7833 44.59
Error 12 3.44 0.2867

According to this analysis, significant differences among the engine size means
exist. It is now of interest to determine whether the decreasing gas mileage is
a linear function of the engine volume or related in a more complex way to
the engine volume.

The contrasts corresponding to the linear, quadratic, and cubic orthogonal
polynomials have the coefficients given by

c′1 = [−3,−1, 1, 3]

c′2 = [1,−1,−1, 1]

c′3 = [−1, 3,−3, 1]

as can be obtained from a standard table of orthogonal polynomials (see
Table B.13 of Appendix B). The sums of squares and F -statistics correspond-
ing to the three single-degree of freedom contrasts are calculated to be

Contrast df SS F
Linear 1 37.538 131.00
Quadratic 1 0.810 2.83
Cubic 1 0.002 0.01
Total 3 38.350 –

Since the three contrasts are mutually orthogonal, the sum of squares cor-
responds to a partitioning of the sum of squares for treatment (here Engine
Size) with three degrees of freedom as evident from the analysis of variance
table given above.

The linear trend contrast is significant with 1 and 12 degrees of freedom.
The lack of fit F -statistic is not significant. The differences among the means
seem to be explainable by a linear trend alone. These contrast sum of squares
and corresponding F -tests are usually included in a complete ANOVA table
as follows:
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data mileage;
input Size @;$

do i=1 to 4;
input MPG @;
output;
end;

drop i;
datalines;
300 16.6 16.9 15.8 15.5
350 14.4 14.9 14.2 14.1
400 12.4 12.7 13.3 13.6
450 11.5 12.8 12.1 12.0
;

proc glm data=mileage plots=Diagnostics;
class Size;
model MPG = Size;
contrast ’Linear Trend’ Size -3 -1 1 3;
estimate ’Linear Trend’ Size -3 -1 1 3;
title ’Analysis of Gas Mileage Data’;
run;

Fig. 5.14. SAS Example E3: program (Part 1)

SV df SS MS F
Engine size 3 38.350 12.7833 44.59
Linear 1 37.538 37.5380 131.00
Lack of fit 2 0.812 0.4060 1.42

Error 12 3.440 0.2867

Since the lack of fit is not significant, a higher-order polynomial is not needed.
The experimenter can conclude that there is a significant decreasing linear
trend in the mean gas mileage as the engine size increases.

SAS Example E3

Part 1 of the SAS Example E3 program (see Fig. 5.14) illustrates how the sum
of squares needed for testing linear trend can be obtained using a contrast

statement in proc glm. In this example, the gas mileage data are read using
a similar approach to that used in the program for SAS Example E2. The
trailing @ symbol is used to hold the data line after engine size is input. Then
successive input and output statements are executed in a do-end loop to
read each of the gas mileage values and write new observations into the SAS
data set. Each observation output will have the current value of engine size
and the gas mileage as they appear in the program data vector (PDV).

The model statement, similar to Example E1, codes the appropriate model
for one-way classification. The contrast statement contains the coefficients
taken from Table B.13 and corresponds to values tabulated for Number of
levels=4 and Degree of polynomial=1. These are −3,−1, 1, and 3, respec-
tively, and each coefficient corresponds to a level of Size. The contrast

statement is
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Analysis of Gas Mileage Data 

The GLM Procedure 

Dependent Variable: MPG

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 3 38.35000000 12.78333333 44.59 <.0001 

Error 12 3.44000000 0.28666667

Corrected Total 15 41.79000000

R-Square Coeff Var Root MSE MPG Mean

0.917684 3.844974 0.535413 13.92500

Source DF Type I SS Mean Square F Value Pr > F 

Size 3 38.35000000 12.78333333 44.59 <.0001 

Source DF Type III SS Mean Square F Value Pr > F 

Size 3 38.35000000 12.78333333 44.59 <.0001 

Fig. 5.15. SAS Example E3: analysis of variance

contrast ‘Linear Trend’ Size -3 -1 1 3;

The resulting output is shown in Fig. 5.15. Part of the output showing class
level information, which is omitted here, shows the levels of the treatment
factor (here Size) that must always be checked to verify that they are in
the correct sequence. The tables in Fig. 5.15, as in SAS Example E2, provide
the information necessary to construct the analysis of variance table. Results
of both the contrast and estimate statements are shown in Fig. 5.16. The
F -test has a p-value of < 0.0001; thus, the linear trend is significant. The
output from the estimate statement can be used to calculate the slope of the
straight line fitted to the levels of engine size, using the formula

b =

∑
ciȳi.∑
c2i

where ȳi. are the treatment means and c1, c2, . . . , ct are the contrast coeffi-
cients. The estimate output is

∑
ciȳi. = −13.7. Thus, the slope is calculated

as −13.7/(32+12+12+32) = −13.7/20 = −0.685 per unit in the coded scale
of the x variable (i.e., a decrease of 0.685 miles per gallon for every increase
of 25 cubic inches in engine size). This estimate may be directly calculated in
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SAS by modifying the estimate statement to

estimate ‘Linear Trend’ Size -3 -1 1 3/divisor=20;

Thus, the slope is estimated as −0.685 with a standard error of 0.05986.

Contrast DF Contrast SS Mean Square F Value Pr > F 

Linear Trend 1 37.53800000 37.53800000 130.95 <.0001 

Parameter Estimate
Standard 

Error t Value Pr > |t| 

Linear Trend -13.7000000 1.19721900 -11.44 <.0001 

Fig. 5.16. SAS Example E3: contrast and estimate

Using the plots= option in the proc glm statement as shown in Fig. 5.17,
a panel of useful diagnostic plots can be produced. Instead, several of the plots
appearing in the above panel may be produced as separate graphs using an
ODS SELECT statement such as

ods select ResidualPlots ResidualByPredicted FitPlot QQPlot;

as illustrated in SAS Example C3 (see Fig. 3.4). While this is an easy way to
obtain these plots, it is more useful to collect selected plots in a panel setting
as displayed in Fig. 5.18.

A method to extract plots appearing in the Fit Diagnostics panel, modify
them as required, to produce the panel shown in Fig. 5.18 will be discussed
in Appendix A. For the moment note that the option p used in the model

statement results in producing new variables containing predicted values and
residuals. By including an output statement in the SAS program (as shown
in Fig. 5.17), the new SAS data set stats1 that contains these new variables
named Predicted and Residual, respectively, along with the variables in the
original SAS data set (named mileage) is created. This data set is saved as a
permanent file in a library (in this case, a folder under the Windows system)
for later use. This data set will be used to obtain the panel displayed here
by modifying the original graphical template that produces the complete Fit
Diagnostics panel.

In Fig. 5.18, the standard residual plots of residuals against the levels of
engine size and the residuals against the predicted values appear on the top
two panels. Both these plots do not exhibit any outliers or trends in the
dispersion of the points around zero (the reference line drawn at residual
value equal to 0 is useful for visually ascertaining this) as values plotted on
the x -axis change. Thus, there is evidence supporting the model assumption
of homogeneity of variance and the adequacy of a first-order model in engine
size to describe the variation in gas mileage.
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proc glm data=mileage plots=Diagnostics;
class Size;
model MPG = Size/p;
output out=stats1 p=Fitted r=Residual;
title ’Analysis of Gas Mileage Data’;
run;

Fig. 5.17. SAS Example E3: program (Part 2)
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Fig. 5.18. SAS Example E3: plots. (a) Residuals versus engine size; (b) residuals
versus predicted values; (c) predicted values overlaid on observed values; (d) normal
probability plot of the residuals

The plot showing the observed values plotted against the levels of engine
size also displays the predicted values (as connected by dashed line segments,
so that they are easier to pick out). Note that the predicted value for all
observations at each factor level is their sample mean. The data in stats1

are also used for producing the normal probability plot of the residuals.
The method used for obtaining this plot will be described in Appendix A
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(in Sect. A.4) and modifies the original template used to produce the regression
diagnostic panel and uses proc sgrender to produce the plot.

5.3 One-Way Analysis of Covariance

The technique of measuring an additional variable, say x, called a covariate,
in addition to the response variable y on each experimental unit in designed
experiments can be used to increase precision of an experiment. The analysis
of data from such experiments involves adjusting the analysis of variance and
estimation procedures to account for the regression variable x. The resulting
model for y thus contains the measured variable x in addition to the usual
effects for the treatment factor.

Model

A single-factor experiment in a completely randomized design where a single
covariate is measured is considered below. Equal replication of sample size n
is assumed for the purpose of discussion.

yij = μ+ τi + β(xij − x̄..) + εij i = 1, . . . , t; j = 1, . . . , n

where τi is the ith treatment effect as in Sect. 5.2. It is also assumed that the
random error εij is distributed as iidN(0, σ2). The above model stipulates
straight-line regression models for each treatment with the same slope β and
different intercepts αi for i = 1, . . . , t, where αi = μ+ τi − β x̄.., because the
model expresses the relationship between yij and xij for each ith treatment as

Treatment 1: y1j = α1 + βx1j + ε1j , j = 1, . . . , n
Treatment 2: y2j = α2 + βx2j + ε2j , j = 1, . . . , n

...
...

Treatment t: ytj = αt + βxtj + εtj , j = 1, . . . , n

Because of the stipulation that the straight lines have the same slope β, the
above model is often called the equal slopes model.

Estimation

Note that since E(yij) = μ + τi + β(xij − x̄..), unlike the model in Sect. 5.2,
the ith treatment mean now depends on different values of xij . For the equal
slopes model, one treatment mean evaluated at xij = x̄.. and denoted by μi is
of interest. This is usually called the “adjusted mean.” Note that μi = μ+ τi.
The best linear unbiased estimate of μi is

μ̂i = ȳi.(Adj.) = ȳi − b(x̄i. − x̄..) for i = 1, . . . , t
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These estimates are called adjusted treatment means because the usual esti-
mate ȳi is adjusted for regression on xi using the estimated common slope b,
where b is the usual least squares estimate of β given by

b =

∑
i

∑
j(xij − x̄i.)(yij − ȳi.)
∑

i

∑
j(xij − x̄i.)2

=
Sxy

Sxx

where ȳi. = (
∑

j yij)/n, x̄i. = (
∑

j xij)/n, and x̄.. = (
∑

i

∑
j xij)/tn. Also,

an unbiased estimate of the error variance σ2 is given by σ̂2 = s2, where s2 is
the Error MS from the analysis of covariance table below. It can be shown that
the adjusted treatment means μ̂i are the predicted responses ŷij computed at
the value of xij = x̄.. using the fitted regression models, for each i = 1, . . . , t.

A (1− α)100% confidence interval for μp − μq, the difference between the
effects of two treatments labeled p and q, is

(ȳp.(Adj.)− ȳq.(Adj.))± tα/2,νsd

where sd, the standard error of the difference between two adjusted means
ȳp.(Adj.)− ȳq.(Adj.), is given by

sd = s

{
2

n
+

(x̄p. − x̄q.)
2

Sxx

}1/2

and tα/2,ν is the upper α/2 percentile of the t-distribution with ν = t(n−1)−1
degrees of freedom.

Testing Hypotheses

The presentation of the results of the analysis is somewhat complicated be-
cause the total sum of squares is partitioned in two ways: one partition shows
the test of the main effects without covariate adjustment and one shows it
with covariate adjustment. It is convenient to present the results of both in a
single compact analysis of variance table rather than two separate tables. In
the following table, the analysis above the Total SS line shows the treatment
sum of squares unadjusted for the covariate and the partition of the regres-
sion sum of squares from the Error SS to form the test of the regression
parameter. The second analysis shown below the Total SS line contains the
treatment sum of squares adjusted for the covariate. This table is called the
analysis of covariance table:

SV df SS MS F
Trt t− 1 SSTrt MSTrt MSTrt/MSEUnadj.
Error(Unadj.) t(n− 1) SSEUnadj. MSEUnadj.

Regression 1 SSReg MSReg MSReg/MSE
Error(Adj.) t(n− 1)− 1 SSE MSE(= s2)

Total tn− 1 SSTot
Trt(Adj.) t− 1 SSTrt MSTrt MSTrt/MSE
Error(Adj.) t(n− 1)− 1 SSE MSE(= s2)
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The F -statistic for Trt tests the hypothesis

H0 : μ1 = μ2 = · · · = μt versus Ha : at least one inequality

when the covariate is not present in the model (i.e., without taking into ac-
count any adjustment due to the covariate). The divisor for computing the
F -statistic is the MS for Error(Unadj.) with t(n− 1) df. The F -statistic for
Regression tests the hypothesis

H0 : β = 0 versus Ha : β �= 0

and thus is a test of whether the covariate has an effect on the response as an
explanatory variable in a linear regression.

The F -statistic for Trt(Adj.) tests the hypothesis that the adjusted treat-
ment means are the same or, equivalently, the treatment effects

H0 : τ1 = τ2 = · · · = τt versus Ha : at least one inequality

when β is not zero (i.e., when the analysis of variance is adjusted for the
covariate). This test is also equivalent to comparing the intercepts of the
regression lines, i.e.,

H0 : α1 = α2 = · · · = αt versus Ha : at least one inequality

If this hypothesis is rejected, then at least one pair of treatment effects (equiv-
alently, adjusted treatment means) is different. One can proceed to make pre-
planned or pairwise comparisons of these means as in SAS Example E1 but
using the adjusted treatment means. Note carefully that SSTrt (and thus
MSTrt and the F -statistics) in the bottom table will be different in magni-
tude from those in the top table since those take into account that a covariate
is present in the model.

5.3.1 Using PROC GLM to Perform One-Way Covariance
Analysis

The data displayed in Table 5.4 are results from an experiment on the use
of two treatments, slow-release fertilizer (S) and a fast-release fertilizer (F),
on the yield (grams) of peanut plants compared to a control (C), a standard
fertilizer, described in Ott and Longnecker (2001). Ten replications of each
treatment were grown in a greenhouse study.

Since the researcher recognized that the 30 peanut plants used were differ-
ent in their development and health, the height (in centimeters) of each plant
was recorded at the start of the experiment to be used as a covariate to adjust
for this variation. This experiment is an example of a single-factor experiment
in a completely randomized design in which a covariate is also measured on
each experimental unit.

The graph shown in Fig. 5.19 is a simple scatter plot of the yield of peanuts
against the heights, identified by the fertilizer (slow release, fast release, or
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Table 5.4. Yield of peanut plants from three fertilizer treatments and their initial
heights

Fertilizer Treatments
Control (C) Slow Release (S) Fast Release (F)
Yield Height Yield Height Yield Height
12.2 45 16.6 63 9.5 52
12.4 52 15.8 50 9.5 54
11.9 42 16.5 63 9.6 58
11.3 35 15.0 33 8.8 45
11.8 40 15.4 38 9.5 57
12.1 48 15.6 45 9.8 62
13.1 60 15.8 50 9.1 52
12.7 61 15.8 48 10.3 67
12.4 50 16.0 50 9.5 55
11.4 33 15.8 49 8.5 40

the control) received by individual plants. The proc sgplot step in the SAS
program (see Fig. 5.20) produced this graph. It is obvious that straight lines
could be fitted to data for each type of fertilizer.

Let yij and xij be the yield and the pretreatment measure of height of the
jth plant treated with the ith fertilizer, respectively. The model is then

yij = μi + β(xij − x̄..) + εij , i = 1, 2, 3; j = 1, . . . , 10,
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Fig. 5.19. SAS Example E4: plot of yield versus height by fertilizer
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where μi are the mean yields from the three fertilizers. Note that with the
notation used earlier, μi = μ+ τi where τi represents the effects of the three
fertilizers. Thus, three regression lines (corresponding to the three fertilizers)
with the same slope parameter β are stipulated by this model. The hypothesis
of equality of the mean yields due to the three fertilizers, H0 : μ1 = μ2 = μ3

versus Ha : at least one inequality, is tested using the analysis of covariance
discussed earlier.

SAS Example E4

The SAS Example E4 program (see Fig. 5.20) is used to obtain the necessary
analysis of the above data. In the SAS program, once again the data are
input in a straightforward format. The “effects” form of the model E(yij) =
μ+αi+βxij is used to specify the model for analysis by proc glm. The model
statement thus includes the term Fertilizer to represent the treatment effect
αi and the term Height to represent the covariate xij . Note that this variable
does not appear in the class statement; thus, when it occurs on the right side
of the model statement, it is recognized to be a regression-type variable and
not a classificatory variable, by default. It is also important to note that the
covariate appears after the treatment variable in the model statement. The
design matrix

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 45
1 1 0 0 52
1 1 0 0 42
...

...
...

...
...

1 1 0 0 33
1 0 1 0 63
1 0 1 0 50
1 0 1 0 63
...

...
...

...
...

1 0 1 0 49
1 0 0 1 52
1 0 0 1 54
1 0 0 1 58
...

...
...

...
...

1 0 0 1 40

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

that results from the model statement is a 30×5 matrix as shown. The columns
of X correspond to the parameters μ, α1, α2, α3, and β, respectively.

The lsmeans statement is required for proc glm to generate the adjusted
treatment means and their standard errors, instead of the ordinary sample
means. Just as in the means statement, lsmeans statement lists effects that
involve only classification variables. Note that the sample means produced by
the means statement are not adjusted for the covariate. The class level infor-
mation in Fig. 5.21 shows that the ordering of the levels of factor Fertilizer
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data peanuts;
input Fertilizer Yield Height;$
datalines;
C 12.2 45
C 12.4 52
. . .
. . .
. . .
C 12.4 50
C 11.4 33
S 16.6 63
S 15.8 50
. . .
. . .
. . .
S 16.0 50
S 15.8 49
F 9.5 52
F 9.5 54
. . .
. . .
. . .
F 9.5 55
F 8.5 40
;
proc sgplot data=peanuts;
scatter x=Height y=Yield/markerchar=Fertilizer

markercharattrs=(family="centb" size=10 pt weight=bold)
group=Fertilizer;

run;

proc glm data=peanuts order=data;
class Fertilizer;
model Yield = Fertilizer Height;
lsmeans Fertilizer/stderr cl tdiff pdiff;
contrast ’Modified vs. Standard’ Fertilizer 1 -.5 -.5;
contrast ’Slow-release vs. Fast-release’ Fertilizer 0 1 -1;
title ’Covariance Analysis of Peanut Fertilizer Data’;
run;

Fig. 5.20. SAS Example E4: program

Covariance Analysis of Peanut Fertilizer Data 

The GLM Procedure 

Class Level Information 

Class Levels Values

Fertilizer 3 C S F 

Number of Observations Read 30

Number of Observations Used 30

Fig. 5.21. SAS Example E4: class levels
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seen in the input data is retained as requested by including the order=data

as a proc glm option.
The information needed to construct the analysis of covariance table de-

scribed earlier is found in the output resulting from the model statement.
Specifically, the Total and Error(Adj.) degrees of freedom, sums of squares,
and mean squares needed are extracted from those found in the correspond-
ing columns for Corrected Total and Error, respectively, given in the table
shown on top part of the SAS output (see Fig. 5.22). Values for Fertilizer
and Height, respectively, from the Type I SS part on the same SAS output,
provide the degrees of freedom, sums of squares, mean squares, and the cor-
responding F -statistics for both the Fertilizer(Unadj.) and Regression

lines in the top portion of the analysis of covariance table.

Covariance Analysis of Peanut Fertilizer Data 

The GLM Procedure 

Dependent Variable: Yield

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 3 214.3759539 71.4586513 4447.85 <.0001 

Error 26 0.4177128 0.0160659

Corrected Total 29 214.7936667

R-Square Coeff Var Root MSE Yield Mean

0.998055 1.017537 0.126751 12.45667

Source DF Type I SS Mean Square F Value Pr > F 

Fertilizer 2 207.6826667 103.8413333 6463.47 <.0001 

Height 1 6.6932872 6.6932872 416.62 <.0001 

Source DF Type III SS Mean Square F Value Pr > F 

Fertilizer 2 213.9038045 106.9519022 6657.08 <.0001 

Height 1 6.6932872 6.6932872 416.62 <.0001 

Fig. 5.22. SAS Example E4: output from the model statement

The “unadjusted” Error SS is then obtained by summing the regression
and adjusted error sums of squares. Thus, the top portion of the table is
complete. To complete the Fertilizer(Adj.) line in the bottom portion of
the table, the degrees of freedom, sums of squares, mean squares, and the
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corresponding F -statistics for Fertilizer are obtained from the Type III SS
part on the same SAS output. The completed table is

SV DF SS MS F p-Value
Fertilizer(Unadj.) 2 207.6827 103.8414 394.23 < 0.0001
Error 27 7.1110 0.2634

Regression 1 6.6933 6.6933 416.62 <0.0001
Error(Adj.) 26 0.4177 0.0161

Total 29 214.7937
Fertilizer(Adj.) 2 213.9038 106.9519 6657.08 <0.0001
Error(Adj.) 26 0.4177 0.0161

First, the p-value for the F -test for Regression clearly shows that the hy-
pothesis of H0 : β = 0 is rejected, thus confirming that plant height is lin-
early related to seed yield. Second, from the p-value for the F -statistic for
Fertilizer(Adj.), the hypothesis of no difference in fertilizer effects is also
rejected.

In the analysis of variance table shown earlier, the Total line is the result
of ignoring the covariate. In this table, the F -statistic for testing no differ-
ence in fertilizer effects hypothesis (shown in the Fertilizer(Unadj.) line)
actually is much smaller than the F -statistic for Fertilizer(Adj.). It can
be easily seen that this is due to the inflated error variance estimate given
by the MSE (0.2634), because the mean squares for Fertilizer(Adj.) and
Fertilizer(Unadj.) are similar in magnitude. This shows that, in other sit-
uations, it is possible for differences that may exist among the treatments to
go undetected if covariance adjustment is not taken into account if the effect
of the adjustment is substantial.

The SAS output shown in Fig. 5.23 is produced as a result of the lsmeans
statement used in the current proc step. By default, the statistics computed
are identical to the adjusted treatment means ȳi.(Adj.) discussed previously
in this section. These are displayed under LSMEAN in Fig. 5.23 along with their
standard errors. It is important to note that proc glm computes the lsmeans
by setting the covariate values equal to their mean (i.e., xij = x̄..) as discussed
previously. This implies that, implicitly, the option at means is in effect, as
the default. This is appropriate, as the regression lines are parallel when the
equal slopes model holds and, thus, the differences in lsmeans are the same at
any value of x, but those computed at the means have the smallest standard
errors. If the slopes were different, however, the at option would enable the
user to request these to be computed at different covariate values considered
interesting for comparison of the predicted responses at those values (e.g., by
using an option like at x=10).

The stderr option on the lsmeans statement resulted in the standard
errors of the adjusted treatment means to be also output. Using the option
tdiff on the lsmeans statement produces t-statistics for comparing the pair-
wise differences in the means (i.e., hypotheses of the form H0 : μi = μj versus
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Covariance Analysis of Peanut Fertilizer Data 

The GLM Procedure 
Least Squares Means 

Fertilizer Yield LSMEAN
Standard 

Error Pr > |t|
LSMEAN 
Number 

C 12.3141728 0.0410853 <.0001 1 

S 15.8858099 0.0401754 <.0001 2 

F 9.1700172 0.0417711 <.0001 3 

Least Squares Means for Effect Fertilizer 
t for H0: LSMean(i)=LSMean(j) / Pr > |t| 

Dependent Variable: Yield 

i/j 1 2 3 

1 -62.6244
<.0001

52.07806 
<.0001 

2 62.62441
<.0001

114.7842 
<.0001 

3 -52.0781
<.0001

-114.784
<.0001

Fertilizer Yield LSMEAN
95% Confidence 

Limits 

C 12.314173 12.229721 12.398625 

S 15.885810 15.803228 15.968392 

F 9.170017 9.084155 9.255879 

Least Squares Means for Effect Fertilizer 

i j 

Difference 
Between 

Means

95% Confidence Limits 
for 

LSMean(i)-LSMean(j) 

1 2 -3.571637 -3.688869 -3.454405

1 3 3.144156 3.020055 3.268256

2 3 6.715793 6.595528 6.836058

Fig. 5.23. SAS Example E4: output from the lsmeans statement
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Covariance Analysis of Peanut Fertilizer Data 

The GLM Procedure 

Dependent Variable: Yield

Contrast DF Contrast SS Mean Square F Value Pr > F

Modified vs. Standard 1 0.2830511 0.2830511 17.62 0.0003

Slow-release vs. Fast-release 1 211.6745206 211.6745206 13175.4 <.0001

Fig. 5.24. SAS Example E4: output from the contrast statements

H : μi �= μj for all pairs (i, j)). The pdiff option produced the p-values
associated with these tests.

The last portion of this output consists of the 95% confidence intervals
for individual adjusted means and their pairwise differences produced as a
result of the cl option. The alpha= keyword option may be added to specify
a confidence coefficient different from 95%.

It is possible to use the contrast statement to test single-degree of freedom
comparisons of interest about treatment means. Here, the average effect of
the fertilizers with the control is compared using the comparison τ1 − (τ2 +
τ3)/2. Note that the sums of squares and the F -tests are also adjusted for
the covariate. From the SAS output shown in Fig. 5.24, this hypothesis is
clearly rejected, implying that the two, on the average, lower the mean yield
compared to the control. In addition, by examining the tests and confidence
intervals shown in Fig. 5.23, it is found that there is a significant difference
between the two fertilizers.

The lsmeans statement may be modified as follows:

lsmeans Fertilizer/stderr cl tdiff pdiff adjust=bon;

Part of the output is shown in Fig. 5.25 as only the pairwise tests and con-
fidence limits are affected by this modification. These are different from the
previous output because of the adjust=bon option included in the modified
lsmeans statement. This option causes a multiple comparison adjustment to
be made to the the p-values and confidence limits for the pairwise differ-
ences. Here, the adjustment requested is the Bonferroni adjustment. tukey
and scheffe are two other adjustments available. The default is adjust=t,
which really signifies no adjustment made for doing multiple comparisons.

The graph shown in Fig. 5.26 is produced automatically by proc glm as a
result of the above analysis. This plot confirms that it is feasible to model the
yield as a linear function of height for each fertilizer and that the assumption of
equal slopes is reasonable. The intercepts are clearly different, thus supporting
the result of the test of equal treatment means.
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Covariance Analysis of Peanut Fertilizer Data 

The GLM Procedure 
Least Squares Means 

Adjustment for Multiple Comparisons: Bonferroni 

Least Squares Means for Effect Fertilizer 
t for H0: LSMean(i)=LSMean(j) / Pr > |t| 

Dependent Variable: Yield 

i/j 1 2 3 

1 -62.6244
<.0001

52.07806 
<.0001 

2 62.62441
<.0001

114.7842 
<.0001 

3 -52.0781
<.0001

-114.784
<.0001

Least Squares Means for Effect Fertilizer 

i j 

Difference 
Between 

Means

Simultaneous 95% 
Confidence Limits for 
LSMean(i)-LSMean(j) 

1 2 -3.571637 -3.717580 -3.425694

1 3 3.144156 2.989662 3.298649

2 3 6.715793 6.566074 6.865511

Fig. 5.25. SAS Example E4: multiple testing using adjust=bon option

The regression lines fitted under the equal slope assumption are superim-
posed on this plot. The parameter estimates of these regression lines can be
output from the SAS program. To do this, modify the model statement in the
proc glm step as follows:

model Yield = Fertilizer Height/noint solution;

This results in the output shown in Fig. 5.27.

5.3.2 One-Way Covariance Analysis: Testing for Equal Slopes

In the beginning of Sect. 5.3, the equal slopes model for a single-factor ex-
periment in a completely randomized design in which a single covariate is
measured was introduced as

yij = αi + βxij + εij , i = 1, . . . , t; j = 1, . . . , n
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Fig. 5.26. SAS Example E4: analysis of covariance plot

The above model is not the most general model for the analysis of data from
this experiment because of the often unrealistic assumption of equal slopes,
although it is useful in certain situations. A more general model is the unequal
slopes model

yij = αi + βixij + εij , i = 1, . . . , t; j = 1, . . . , n

where different slopes βi, i = 1, . . . , t, are assumed for the t regression lines re-
lating the responses yij to the covariates xij . The advantage of this model over
the equal slopes model is that a hypothesis of whether the slopes are indeed the
same (i.e., H0 : β1 = β2 = · · · = βt = β versus Ha : at least one inequality)
may be tested as part of the inference from this model.

Parameter Estimate
Standard

Error t Value Pr > |t|

Fertilizer C 9.52925636 0.13357349 71.34 <.0001

Fertilizer S 13.10089348 0.13958529 93.86 <.0001

Fertilizer F 6.38510075 0.15352310 41.59 <.0001

Height 0.05580995 0.00273429 20.41 <.0001

Fig. 5.27. SAS Example E4: regression parameter estimates
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If this hypothesis is rejected, then a hypothesis of equal treatment means
μij = E(yij) = αi+βixij is of interest. In this case, however, such a test is not
equivalent to the test of equality of the intercepts H0 : α1 = α2 = · · · = αt

as was the case in the equal slopes model. This is because the differences in
means now depend on the value of βi. Thus, the difference in intercepts will
actually depend on the value xij at which the intercepts are compared. These
comparisons are therefore dependent on the value of the covariate at which
the comparisons are made. In practice, the treatment means are compared
at several choices of the covariate values such as the mean, the median, the
minimum, or the maximum or at values of the covariate that are of special
interest to the experimenter.

Since the above model may be expressed as

yij = αi + β̄xij + (βi − β̄)xij + εij , i = 1, . . . , t; j = 1, . . . , n

this model is used in proc glm to obtain the sum of squares for testing the
equal slopes hypothesis. This model is fitted to the cholesterol data taken
from Milliken and Johnson (2001) in SAS Example E5. Thirty-two female
subjects were assigned completely at random to one of four different diets.
The response variable is the cholesterol level determined after being on the
diet for 8 weeks. The cholesterol levels of the subjects measured before the
experiment began were used as a covariate. The data appear in Table 5.5.

Table 5.5. Prediet and postdiet cholesterol levels by diet

Cholesterol Measurements
Diet 1 Diet 2 Diet 3 Diet 4

Post- Pre- Post- Pre- Post- Pre- Post- Pre-
174 221 211 203 199 249 224 297
208 298 211 223 229 178 209 279
210 232 201 164 198 166 214 212
192 182 199 194 233 223 218 192
200 258 209 248 233 274 253 151
164 153 172 268 221 234 246 191
208 293 224 249 199 271 201 284
193 283 222 297 236 207 234 168

SAS Example E5

The variables named Diet, PostChol, and PreChol, in the SAS Example
E5 program (see Fig. 5.28) identify the four diets, the response variable, and
the covariate, respectively. In order to fit the unequal slopes model using
proc glm, the model statement from the proc glm step in the SAS program
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data women;
input Diet PostChol PreChol;$
datalines;
1 174 221
1 208 298
. . .
. . .
. . .
1 208 293
1 193 283
2 211 203
2 211 223
. . .
. . .
. . .
2 224 249
2 222 297
3 199 249
3 229 178
. . .
. . .
. . .
3 199 271
3 236 207
4 224 297
4 209 279
. . .
. . .
. . .
4 201 284
4 234 168
;

proc glm data=women;
class Diet;
model PostChol = Diet PreChol PreChol*Diet;
run;

Fig. 5.28. SAS Example E5: SAS program

shown in Fig. 5.20 is modified in this program as shown. Recall that Diet is a
classificatory variable and PreChol is a regression variable. The PreChol*Diet
term in the above model is called a discrete by continuous interaction because
of this reason. The resulting output is shown in Fig. 5.29.

The proc glm output in Fig. 5.29 can be used to obtain tests for three
hypotheses of interest. First, the Type III SS for PreChol*Diet and the cor-
responding F -statistic provide a test of the hypothesis H0 : β1 = β2 = · · · =
βt = β versus Ha : at least one inequality (i.e., that the slopes are all the
same). Second, the Type I SS for PreChol and the corresponding F -statistic
provide a test of the hypothesis H0 : β = 0 if the equal slopes model is used
following the result of the previous test. This can be used to determine if the
PostChol can be modeled as a linear function of the PreChol at all.

The Type III SS for Diet and the corresponding F -statistic pro-
vide a test of the hypothesis H0 : μ1j = μ2j = · · · = μtj versus
Ha : at least one inequality at the value xij = 0 for all i. Thus, this is
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The GLM Procedure 

Dependent Variable: PostChol 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 7 6930.55635 990.07948 4.06 0.0045 

Error 24 5852.91240 243.87135

Corrected Total 31 12783.46875

R-Square Coeff Var Root MSE PostChol Mean 

0.542150 7.408809 15.61638 210.7813 

Source DF Type I SS Mean Square F Value Pr > F 

Diet 3 4593.843750 1531.281250 6.28 0.0027 

PreChol 1 1.903672 1.903672 0.01 0.9303 

PreChol*Diet 3 2334.808924 778.269641 3.19 0.0417 

Source DF Type III SS Mean Square F Value Pr > F 

Diet 3 3718.772130 1239.590710 5.08 0.0073 

PreChol 1 1.824611 1.824611 0.01 0.9318 

PreChol*Diet 3 2334.808924 778.269641 3.19 0.0417 

Fig. 5.29. SAS Example E5: unequal slopes model ANOVA

equivalent to the test that the intercepts of the regression lines are the same
(i.e., H0 : α1 = α2 = · · · = αt versus Ha : at least one inequality at the value
xij = 0 for all i), that is, a test whether the regression lines for the diets
intersect at the PreChol value of zero. Since the value of PreChol can never
be zero, this test is not particularly useful. Thus, the above test is omitted
from the following adjusted analysis of covariance table.

SV df SS MS F p-Value
Diet(Unadj.) 3 4593.84
Regression 1 1.90 1.90 0.01 0.9374
Error 27 8187.72 303.25

Regression 3 2334.81 778.27 3.19 0.0417
Error(Adj.) 24 5852.91 243.87

Total 31 12,783.47
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However, recall that μij = E(yij) = αi + βixij . Thus, comparisons of the
means μij (and therefore the intercepts αi) may be made at any other selected
value(s) of xij using adjusted least squares means. To compare adjusted least
squares means at values of PreChol, values equal to 190 and 250 (say) modify
the model statement in the proc glm step as follows:

model PostChol = Diet PreChol*Diet/noint solution;

and include the two lsmeans statements

lsmeans Diet/stderr cl pdiff adjust=bon at PreChol=190;

lsmeans Diet/stderr cl pdiff adjust=bon at PreChol=250;

The results from the solution option in the modified model statement are
shown in Fig. 5.30. The estimates of the coefficients available in this output
are used for drawing the fitted lines shown in Fig. 5.33.

Parameter Estimate
Standard

Error t Value Pr > |t|

Diet         1 137.6323082 27.26507534 5.05 <.0001

Diet         2 195.7360754 32.03129844 6.11 <.0001

Diet         3 223.7329893 33.70599704 6.64 <.0001

Diet         4 276.6032780 23.66995633 11.69 <.0001

PreChol*Diet 1 0.2333029 0.11125081 2.10 0.0467

PreChol*Diet 2 0.0450224 0.13673614 0.33 0.7448

PreChol*Diet 3 -0.0232319 0.14761695 -0.16 0.8763

PreChol*Diet 4 -0.2332730 0.10379713 -2.25 0.0341

Fig. 5.30. SAS Example E5: regression parameter estimates in the unequal slopes
model

Options available for the lsmeans statement are used to perform multi-
ple comparisons of the adjusted PostChol means by constructing Bonferroni-
adjusted confidence intervals at two different values of the prediet choles-
terol levels using the at option. The values of 190 and 250 were selected
because they are values just below the “desired” level of 200 and just above
the “high-risk” level of 240, respectively. Extracts from the SAS output from
the lsmeans statements are shown in Figs. 5.31 and 5.32.

All pairs of Diet means are found to be not significantly different at the
prediet cholesterol level of 250 (since the intervals for all differences included
zero); however, at the prediet cholesterol level of 190, Diet 1 PostChol mean
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is found to be significantly lower than both Diets 3 and 4 means. Note that
the default confidence coefficient was 95% for these intervals.

The GLM Procedure 
Least Squares Means at PreChol=190 

Adjustment for Multiple Comparisons: Bonferroni 

Diet 
PostChol 
LSMEAN

Standard 
Error Pr > |t|

LSMEAN 
Number 

1 181.959856 7.837460 <.0001 1 

2 204.290336 7.844175 <.0001 2 

3 219.318925 7.586851 <.0001 3 

4 232.281416 6.429979 <.0001 4 

Least Squares Means for Effect Diet 

i j 

Difference 
Between 

Means

Simultaneous 95% 
Confidence Limits for 
LSMean(i)-LSMean(j) 

1 2 -22.330480 -54.211226 9.550266

1 3 -37.359069 -68.720812 -5.997326

1 4 -50.321560 -79.468042 -21.175079

2 3 -15.028589 -46.404206 16.347028

2 4 -27.991080 -57.152490 1.170330

3 4 -12.962491 -41.555581 15.630598

Fig. 5.31. SAS Example E5: comparison of means in the unequal slopes model

A graph containing plots of the fitted models of the postdiet cholesterol
values as straight lines of prediet cholesterol predictors superimposed on the
scatter plots of the data values was also produced as part of the output from
proc glm and is shown in Fig. 5.33. As suggested from the results of the
multiple comparisons procedure of the adjusted diet means, it is observed
from this graph that the differences of average postdiet cholesterol among the
diets appear to be lower for those individuals with higher prediet cholesterol
than those with lower prediet levels.

As observed from the graph, the fitted lines converge to a point as prediet
cholesterol levels increase, indicating that standard errors of the adjusted
means decrease, a fact shown by narrower intervals for the differences in post-
diet means at PreChol=250 compared to those at PreChol=190.
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The GLM Procedure 
Least Squares Means at PreChol=250 

Adjustment for Multiple Comparisons: Bonferroni 

Diet 
PostChol 
LSMEAN

Standard 
Error Pr > |t|

LSMEAN 
Number 

1 195.958029 5.632193 <.0001 1 

2 206.991682 6.116555 <.0001 2 

3 217.925010 6.620583 <.0001 3 

4 218.285039 6.251569 <.0001 4 

Least Squares Means for Effect Diet 

i j 

Difference 
Between 

Means

Simultaneous 95% 
Confidence Limits for 
LSMean(i)-LSMean(j) 

1 2 -11.033653 -34.939131 12.871825

1 3 -21.966981 -46.957773 3.023811

1 4 -22.327010 -46.519475 1.865455

2 3 -10.933328 -36.848180 14.981524

2 4 -11.293357 -36.439236 13.852521

3 4 -0.360029 -26.539850 25.819792

Fig. 5.32. SAS Example E5: comparison of means in the unequal slopes model
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Fig. 5.33. SAS Example E5: plot of postdiet cholesterol versus prediet cholesterol
by diet
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5.4 A Two-Way Factorial in a Completely Randomized
Design

A two-way factorial treatment structure consists of all combinations of lev-
els of two factors under study in the experiment. The design employed is a
completely randomized design (CRD) if these treatment combinations have
been applied completely randomly to the experimental units. In the following
discussion, it is assumed that all combinations of a two-way factorial with “a”
levels of factor A and “b” levels of factor B are used, and an equal number
of replications per each treatment combination are obtained. The cake-baking
experiment discussed earlier is an example of this setup.

Model

The model is

yijk = μ+ αi + βj + γij
︸ ︷︷ ︸

μij

+εijk, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , n

where μij = E(yijk) is the mean of an observation in the ijth cell of the
two-way classification and is called the cell means model. It is also assumed
that the random error εijk is distributed as iid N(0, σ2). A model expressed
in terms of the cell means is called the “means model.” If the cell means are
partitioned into the sum of effects αi of level i of A and βj of level j of B and
an interaction effect γij of the ith level of A and the jth level of B, an “effects
model” is said to be in use.

The n observations corresponding to the ijth treatment combination yijk,
k = 1, . . . , n, are assumed to be a random sample from the N(μij , σ

2) distri-
bution under this model. It is convenient and useful to express the hypotheses
of interest to the experimenter in terms of “averaged” means or marginal
means of the cell means that are defined as follows:

Factor A Means: μ̄i. =

(∑

j

μij

)

/b, i = 1, . . . , a

Factor B Means: μ̄.j =

(∑

i

μij

)

/a, j = 1, . . . , b

A table of cell means as shown in Fig. 5.34 is a visual illustration of the two-
way classification model with equal sample sizes in each cell. The “averaged”
means defined above for the two factors appear in the margins of this table.
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Levels of Factor B

1 2 · · · j · · · b

1 μ11 μ12 · · · · · · μ1b μ̄1.

2 μ21 μ22 μ2b μ̄2.

Levels of
...

...
...

...

Factor A i μij μ̄i.

...
...

...
...

a μa1 μa2 · · · · · · μab μ̄a.

μ̄.1 μ̄.1 · · · μ̄.j · · · μ̄.b

Fig. 5.34. Two-way factorial: cell means and marginal means

Hypotheses Testing

The usual format of the analysis of variance (ANOVA) table for computing
the required F -statistics for testing hypotheses of interest in a two-way clas-
sification is

SV df SS MS F
Treatment ab− 1 SSTrt

A a− 1 SSA MSA MSA/MSE (1)
B b− 1 SSB MSB MSB/MSE (2)
A*B (a− 1)(b− 1) SSAB MSAB MSAB/MSE (3)

Error ab(n− 1) SSE MSE

Total abn− 1 SSTot

The F -statistics from the ANOVA table are used to perform tests of the
following hypotheses of interest:

(1)Use this F -statistic to test main effects of Factor A. Using the marginal
means for Factor A, these are expressed as

H0 : μ̄1. = μ̄2. = · · · = μ̄a. versus Ha: at least one inequality

(2)Use this F -statistic to test main effects of Factor B. Using the marginal
means for Factor B, these are expressed as

H0 : μ̄.1 = μ̄.2 = · · · = μ̄.b versus Ha: at least one inequality

(3) Use this F -statistic to test interaction of Factors A and B. Using the
marginal means for both Factors A and B and the cell means, these are
expressed as

H0 : (μij − μ̄i. − μ̄.j + μ̄..) = 0 for all combinations of (i, j) versus
Ha: at least one (μij − μ̄i. − μ̄.j + μ̄..) �= 0

(equivalent toH0 : no interaction present versus Ha : interaction present)
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An approach for using these in practical situations and how to proceed based
on the result of each test is discussed below and in the several examples to
follow. Although the interpretation of the results of the experiment appears
to be simpler using the “means model” and associated means, in practice
many experimenters resort to the “effects model” for such purposes. SAS
procedures available for the analysis of data from designed experiments usually
require that the effects models be used to describe the model equation to the
program. An understanding of the theory of the linear model is necessary to
clarify complications that result from the usage of the “effects model.” An
attempt will be made to illustrate some of these differences in the course of
the discussions of the examples below.

Estimation

The best estimates of the cell means μij and the marginal means μ̄i. and μ̄.j ,
respectively, are given by

μ̂ij = ȳij. =

(∑

k

yijk

)

/n

ˆ̄μi. = ȳi.. =

(∑

j

∑

k

yijk

)

/bn

ˆ̄μ.j = ȳ.j. =

(∑

i

∑

k

yijk

)

/an

An estimate of the error variance σ2 is σ̂2 = s2, where s2 is the MSE value
obtained from the ANOVA table. The standard error of the difference in the
pair of Factor A means at levels i and i′ is

s.e.(ȳi.. − ȳi′..) = s
√

2/bn

and the standard error of the difference in the pair of Factor B means at levels
j and j′ is

s.e.(ȳ.j. − ȳ.j′.) = s
√

2/an

Thus, (1− α)100% confidence intervals for the differences in a pair of Factor
A and B means are, respectively, given by

μ̄i. − μ̄i′. : (ȳi.. − ȳi′..)± tα/2,ν · s ·
√
2/bn

μ̄.j − μ̄.j′ : (ȳ.j. − ȳ.j′.)± tα/2,ν · s ·
√
2/an

where tα/2,ν is the upper α/2 percentile of the t-distribution with ν df and ν
is the degrees of freedom for MSE equal to ab(n− 1).

Differences in factor means ( μ̄i. or μ̄.j) may not measure actual differences
in the cell means for Factor A or Factor B, respectively, at levels of the other
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factor when interaction is present (i.e., when the model is nonadditive). Thus,
the interpretation of main effects depends on whether interaction effects are
found to be significant or not.

• The F -test for interaction in the ANOVA table is a test whether the model
is additive. It is recommended that this test be performed prior to making
inferences from the main effects tests.

• If the interaction effects turn out to be not significant, then essentially
the effects of the two factors A and B may be interpreted independently
of each other. The F -tests for Factors A and B in the ANOVA table are
then used to test for main effects of A and B. If either or both of these
main effect F -tests are significant, then the averaged marginal means may
be compared (say, using preplanned comparisons or multiple comparison
procedures) and significant comparisons interpreted as usual.

• If interaction F -test is significant, then the model is nonadditive. This
implies that care must be taken in interpreting main effect hypotheses of
Factors A and B because there is significant interaction. The F -tests for
main effects may still be performed, but the results may not be meaningful
because differences in averaged means may not reflect the differences of
the effects of one factor at each level of the other factor.

• An interaction plot may be useful for identifying whether differences in
main effect means (marginal means) are affected significantly by interac-
tion. If it is found that this is the case, comparisons of cell means of one
factor over the levels of the other factor (e.g., μ12−μ13), may be necessary.
If preplanned comparisons of the factor means are available, interesting in-
teraction comparisons may be constructed that will aid in interpreting the
significant interaction.

5.4.1 Analysis of a Two-Way Factorial Using PROC GLM

The data shown in Table 5.6 are survival times of groups of four animals
randomly allocated to each of all combinations of three poisons and four drugs.
The experiment was an investigation to combat the effects of certain toxic
agents. This example is from Box et al. (1978) where a standard analysis as
well as an analysis based on transforming the data using a variance-stabilizing
transformation is performed. It is assumed that the observations in each cell of
the above classification are random samples of size 4 from normal distributions
with means μij and the same variance σ2. The model is thus

yijk = μij + εijk, i = 1, 2, 3; j = 1, 2, 3, 4; k = 1, 2, 3, 4

where εij ∼ iid N(0, σ2). A nonadditive model μij = μ+αi + βj + γij for the
cell means is considered for partitioning the treatment sum of squares given
the two-way factorial treatment structure.
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Table 5.6. Survival times data

Drug
Poison

A B C D

I 0.31 0.82 0.43 0.45
0.45 1.10 0.45 0.71
0.46 0.88 0.63 0.66
0.43 0.72 0.76 0.62

II 0.36 0.92 0.44 0.56
0.29 0.61 0.35 1.02
0.40 0.49 0.31 0.71
0.23 1.24 0.40 0.38

III 0.22 0.30 0.23 0.30
0.21 0.37 0.25 0.36
0.18 0.38 0.24 0.31
0.23 0.29 0.22 0.33

SAS Example E6

In SAS Example E6, the glm procedure in SAS is used to obtain the appro-
priate analysis of variance table. The SAS program is shown in Fig. 5.35. The
class statement must precede the model statement and declare the classifi-
cation variables, here the two factors Poison and Drug. Note that the “effects
model” is used for formulating the model statement, by including a term for
each effect (except a term for μ that is assumed to be in the model by default).
The Poison× Drug interaction term is specified as Poison*Drug in the model
statement. The means statement with the lsd option requests that all pair-
wise comparisons be made for both Poison and Drug means. In this case, by
default, the lsd procedure is performed because the sample sizes are equal. On
the other hand, if the sample sizes were unequal, confidence intervals would
be constructed for all pairwise differences of the main effects. These could be
specifically requested by including the option cldiff in the means statement.
The confidence coefficient used by default is 95%; this could be changed by
using the option alpha=.

In the course of analyzing two-way factorial data using SAS, the means and
sgplot procedure may be used prior to the glm procedure to obtain a scatter
plot of the cell means. This plot, used as an example of an interaction plot

in Chap. 3 (see SAS Example C8 in Sect. 3.1) and displayed in Fig. 3.19, shows
a profile of the means across the levels of one factor at the same level of the
other factor. However, this is no longer necessary as this plot is automatically
produced as graphical output from proc glm. This plot is shown at the end
of this discussion in Fig. 5.36.
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data mice;
input Poison 1. @;

do Drug=1 to 4;
input Time 3.2 @;
output;

end;
datalines;
1 31 82 43 45
1 45110 45 71
1 46 88 63 66
1 43 72 76 62
2 36 92 44 56
2 29 61 35102
2 40 49 31 71
2 23124 40 38
3 22 30 23 30
3 21 37 25 36
3 18 38 24 31
3 23 29 22 33
;

proc print ;
title ’Analysis of Survival Times of Mice: Original Data’;

run;

proc glm data=mice;
class Poison Drug;
model Time = Poison Drug Poison*Drug;
means Poison Drug/lsd;

run;

Fig. 5.35. SAS Example E6: program

In Fig. 5.36, levels of Poison are plotted on the x-axis, and the points
corresponding to the same levels of Drug are connected with line segments.
Not only do the line segments allow the pattern of the mean response of each
drug to the three poisons to be observed visually, but they also allow the
mean responses to be compared across the four drugs. Thus, it is useful for
interpreting and locating any significant interaction that may exist between
the two factors. The class level information provided in Fig. 5.37 is useful for
checking whether the factor levels are as expected and are in proper order.

Since there are equal sample sizes for each treatment combination (number
of observations in each cell), the Type I and III sums of squares are the
same as expected (Fig. 5.38). However, it is recommended that Type III sums
of squares be always used in situations where the model does not contain
any terms other than those representing fixed classificatory factors and their
interactions. From the output from SAS Example E6 shown in Fig. 5.38, the
following analysis of variance table is constructed.



5.4 A Two-Way Factorial in a Completely Randomized Design 361

21

0.25

0.50

0.75

1.00

1.25

T
im

e

3

2 3 41

Poison

Interaction Plot for Time

Drug

Fig. 5.36. SAS Example E6: interaction plot from proc glm

Analysis of Survival Times of Mice: Original Data 

The GLM Procedure 

Class Level Information 

Class Levels Values

Poison 3 1 2 3 

Drug 4 1 2 3 4 

Number of Observations Read 48

Number of Observations Used 48

Fig. 5.37. SAS Example E6: Class Levels
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Analysis of Survival Times of Mice: Original Data 

The GLM Procedure 

Dependent Variable: Time 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 11 2.20435625 0.20039602 9.01 <.0001 

Error 36 0.80072500 0.02224236

Corrected Total 47 3.00508125

R-Square Coeff Var Root MSE Time Mean

0.733543 31.11108 0.149139 0.479375

Source DF Type I SS Mean Square F Value Pr > F 

Poison 2 1.03301250 0.51650625 23.22 <.0001 

Drug 3 0.92120625 0.30706875 13.81 <.0001 

Poison*Drug 6 0.25013750 0.04168958 1.87 0.1123 

Source DF Type III SS Mean Square F Value Pr > F 

Poison 2 1.03301250 0.51650625 23.22 <.0001 

Drug 3 0.92120625 0.30706875 13.81 <.0001 

Poison*Drug 6 0.25013750 0.04168958 1.87 0.1123 

Fig. 5.38. SAS Example E6: analysis of variance

SV df SS MS F p-Value
Treatment 11 2.2043
Poison 2 1.0330 0.51651 23.22 <0.0001
Drug 3 0.9212 0.30707 13.81 <0.0001
Poison × Drug 6 0.2501 0.04169 1.87 0.1123

Error 36 0.8007 0.02224
Total 47 3.0051

Since the interaction between Poison and Drug is not significant at 5%, one
may conclude that these two factors act additively. Thus, it may be reasonable
to examine the main effects and test the hypotheses H01 : μ̄1. = μ̄2. = μ̄3.

and H02 : μ̄.1 = μ̄.2 = μ̄.3 = μ̄.4 independently, in order to determine the
effects of poisons and drugs, respectively. As seen from the extremely small
p-values, both Poison and Drug effects are highly significant. The LSD proce-
dure output produced from the means statement, shown in Figs. 5.39 and 5.40
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for Poison and Drug means, respectively, finds that at α = 0.05, the mean
survival times for:

(i) Poison 3 is significantly lower than those of Poisons 1 and 2,
(ii) Poisons 1 and 2 are not significantly different,
(iii) Drugs 1 and 3 are not significantly different but are significantly lower

than those of Drugs 2 and 4, respectively,
(iv) Drug 4 is significantly lower than that of Drug 2.

The GLM Procedure 

t Tests (LSD) for Time 

Note: This test controls the Type I comparisonwise error rate, 
not the experimentwise error rate. 

Alpha 0.05

Error Degrees of Freedom 36

Error Mean Square 0.022242

Critical Value of t 2.02809

Least Significant Difference 0.1069

Means with the same letter are 
not significantly different. 

t Grouping Mean N Poison

A 0.61750 16 1 

A 

A 0.54438 16 2 

B 0.27625 16 3 

Fig. 5.39. SAS Example E6: LSD procedure for Poison means

The analysis would have greatly improved if preplanned comparisons con-
sidered important were suggested by the experimenter. Due to the lack of such
comparisons, the interpretation of the results relied on multiple comparison
procedures. Adjustments for making multiple comparisons can be made by
using methods such as those based on Bonferroni or Tukey procedures. These
methods will be used in other examples to follow.

5.4.2 Residual Analysis and Transformations

A residual analysis shows that the variance of the data increases with the
expected mean of the observed data. This is clearly evident in the plot of
residuals against the predicted values shown in Fig. 5.41. This plot is ob-
tained by first modifying the proc glm step in the SAS Example E6 program
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The GLM Procedure 

t Tests (LSD) for Time 

Note: This test controls the Type I comparisonwise error rate,  
not the experimentwise error rate. 

Alpha 0.05

Error Degrees of Freedom 36

Error Mean Square 0.022242

Critical Value of t 2.02809

Least Significant Difference 0.1235

Means with the same letter are 
not significantly different. 

t Grouping Mean N Drug

A 0.67667 12 2 

B 0.53417 12 4 

C 0.39250 12 3 

C 

C 0.31417 12 1 

Fig. 5.40. SAS Example E6: LSD procedure for Drug means

by including the following statement:

output out=new r=Residuals p=Predicted ;

This results in the residuals and the predicted values from the fitted model be-
ing added to the original data in the SAS data set named mice and saved in a
new data set named new. This data set is then accessed using the data=
option in the subsequent proc sgplot step to obtain the plot shown in
Fig. 5.41. The new proc step is shown in Fig. 5.42. Although a similar plot
can be obtained using the option plots=diagnostics(unpack) and the ods

select residualbypredicted; statement, it is a better alternative to use
proc sgplot to construct this plot as illustrated here.

This plot suggests that a variance-stabilizing transformation may be at-
tempted to increase the sensitivity of the experiment as well as for easier
interpretation of the results. If the error variance σ is proportional to a power
α of the mean μ, a power transformation of the response of the form yλ may
be attempted to stabilize the variance.
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Fig. 5.41. SAS Example E6: plot of residuals versus predicted values

proc sgplot data=new;
title c=steelblue bold h=2 "Residual Analysis of Mice Data";
scatter x=Predicted y=Residuals/markerattrs=(color=magenta size= 5 pt symbol=CircleFilled);
refline 0/lineattrs=(color=cornflowerblue pattern=2);
xaxis minor minorcount=9 label="Predicted Values"

labelattrs=(color=blueviolet family=arial size=10);
yaxis minor label="Residuals"

labelattrs=(color=blueviolet family=arial size=10);
run;

Fig. 5.42. SAS Example E6: proc step to create a residual plot

An empirical method for obtaining an estimate of λ for replicated data
is to plot the logarithm of the sample standard deviation for each treatment
combination against the logarithm of the sample mean. By fitting a straight
line, an interval estimate of the slope of the line α can be obtained. Estimates
of α thus obtained can be used to determine an appropriate transformation
λ since the required power transformation can be shown to be given by
λ = 1 − α where α is the slope of regression of the logarithm of the cell
standard deviation on the logarithm of the cell mean. Most common of such
transformations are reciprocal, inverse square root, logarithmic, and square
root, respectively, for estimates of λ close to −1,− 1

2 , 0, and
1
2 . The plot of

the log sij versus log ȳij values for the 12 cells of the mice data is shown
in Fig. 5.43. The mean and standard deviation of data in each cell were first
calculated, log transformations were performed, and then a proc sgplot step
was used to obtain this plot as shown in Fig. 5.44.
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The estimated slope of the regression is 1.977, and a 95% interval is
(1.39, 2.56). Taking α ≈ 2 suggests that a reciprocal transformation of sur-
vival times (also called an inverse transformation) may be appropriate. Gener-
ally, for data measured in time units, an inverse transformation is often found
to be appropriate for stabilizing the variance; the data values are transformed
into survival rates, a natural unit of measure for this study.

-1

Analysis of Mice Data: Power Transformation
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Fig. 5.43. SAS Example E6: empirical estimation of variance-stabilizing transfor-
mation

SV df SS MS F p-Value
Treatment 11 56.8622
Poison 2 34.8771 17.4386 72.63 <0.0001
Drug 3 20.4143 6.8048 28.34 <0.0001
Poison × Drug 6 1.5708 0.2618 1.09 0.3867

Error 36 8.6431 0.2401
Total 47 65.5053

The SAS Example E6 program is modified to include the statement time =

1/time in the data step to effect this transformation of the response variable.
The analysis of variance obtained from this analysis is shown above.

It is observed that the Poison × Drug interaction has become even less sig-
nificant, thus allowing the experimenter to be more confident of the suitability
of an additive model. Further, mean squares for both Poison and Drug effects
are now much larger relative to the error mean square, implying increased
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sensitivity compared to the previous analysis. Note that for presentation of
the results of the analysis, statistics calculated using the transformed data
such as confidence intervals are preferably transformed back to the original
units for easier interpretation by the experimenter.

proc sort data=mice;
by Poison Drug;
run;

proc means mean std noprint;
by Poison Drug;
var Time;
output out=new mean=Mean_Time std=SD_Time;
run;

data trans;
set new;
logSD=log(SD_Time);
logMean=log(Mean_Time);
run;

proc sgplot data=trans;
title color=steelblue "Analysis of Mice Data: Power Transformation";
reg x=logMean y=logSD/clm;
xaxis label="Logarithm of Cell Mean" labelattrs=(color=indigo);
yaxis label="Logarithm of Cell Standard Deviation" labelattrs=(color=indigo);
run;

Fig. 5.44. SAS Example E6: program for power transformation plot

5.5 Two-Way Factorial: Analysis of Interaction

In Sect. 5.4 it was shown how the treatment sum of squares (SS) with (ab−1)
degrees of freedom (df) was subdivided into sums of squares corresponding to
main effects A and B and their interaction effect with (a − 1), (b − 1), and
(a − 1)(b − 1) df, respectively. This subdivision was suggested by the effects
model and enabled the testing of hypotheses appropriate for determining the
presence or absence of interaction and main effects. In Sect. 5.2 it was shown
how the treatment SS in a single-factor experiment may be partitioned into
one df SS that are appropriate for making inferences about preplanned or a
priori comparisons among the factor means.

In general, for a factor with a levels, the associated df of (a − 1) implies
that the SS may be partitioned into a set of (a − 1) orthogonal comparisons
and thus into (a − 1) SS each with a single degree of freedom. In the case of
a two-factor experiment, each of the two main effects and interaction SS may
be partitioned into several one df SS corresponding to comparisons of interest.
In particular, the (a−1)(b−1) df for interaction may also be partitioned into
(a−1)(b−1) one df SS. The partitioning of the interaction SS may be derived
on the basis of the main effect comparisons. For example, if a comparison
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of interest among Factor A means was “Control versus Others,” it might be
of interest to the experimenter to examine whether this comparison differs
among the levels of Factor B. The resulting comparisons constitute a subset
of A × B interaction comparisons.

Generally, one df interaction comparisons that make sense may be formu-
lated by considering one df main effect comparisons of the two factors. For
example, in SAS Example E6 (see Sect. 5.4), the contrast coefficients corre-
sponding to a possible comparison of interest 3μ̄.1− μ̄.2− μ̄.3− μ̄.4 among the
Poison means are (3 –1 –1 –1). Possible interaction comparisons may be those
obtained by making the same comparison of the cell means at each level of
the drug and then comparing them among the levels of the drug.

For example, to test that the above comparison is the same between levels
2 and 3 of the drug factor, the two comparisons of the cell means 3μ21−μ22−
μ23−μ24 and 3μ31−μ32−μ33−μ34 must be compared. This comparison can
be written using the contrast coefficients (0 0 0 0 +3 –1 –1 –1 –3 1 1 1),
giving an interaction contrast of possible interest. Note that the coefficients
may be obtained via the “elementwise product” of the main effect contrasts
(0 1 –1) × (3 –1 –1 –1).

SAS Example E7

An example taken from Snedecor and Cochran (1989) illustrates the use
of preplanned comparisons in two-way factorial experiments for analyzing
interactions. The data shown below are gains in weight of male rats under six
feeding treatments in a completely randomized design. The two factors were

A (2 levels) : Level of protein (high, low)

B (3 levels) : Source of protein (beef, cereal, pork)

The data are shown in Table 5.7.

Table 5.7. Weight gain in rats under six diets

High protein Low protein
Beef Cereal Pork Beef Cereal Pork

73 98 94 90 107 49
102 74 79 76 95 82
118 56 96 90 97 73
104 111 98 64 80 86
81 95 102 86 98 81

107 88 102 51 74 97
100 82 108 72 74 106
87 77 91 90 67 70

117 86 120 95 89 61
111 92 105 78 58 82
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A standard analysis for a two-way factorial in a completely randomized
design would start with computing an analysis variance table as described
in Sect. 5.4. Using the output from a proc glm step in SAS, the following
analysis of variance table was constructed:

SV df SS MS F p-Value
Treatments 5 4612.93 922.59 4.30 0.0023
Level 1 3168.27 3168.27 14.77 0.0003
Source 2 266.53 133.27 0.62 0.5411
Level × Source 2 1178.13 589.07 2.75 0.0732

Error 54 11,586.00 214.56
Total 59 16,198.93

Since this analysis of variance table shows that the p-value value for the
Level × Source interaction is between 10% and 5%, it would not be possi-
ble for the experimenter to be entirely comfortable in assuming an additive
model. The null hypothesis of no interaction will be rejected at α = 0.1. This
demonstrates the dilemma an experimenter might encounter if one attempts
to interpret results from a factorial experiment using the usual partitioning of
treatment sum of squares found in an analysis of variance table for two-way
classifications. Should one proceed with an analysis of main effects assuming
an additive model or attempt to make sense of the interaction that may be
present?

On the other hand, in many experiments of this nature, the structure of the
treatment factors may suggest a priori comparisons among levels of factors,
which might be more helpful for making useful interpretations. These may
lead to a more natural explanation of any interaction that may be present
among these factor levels. In the above experiment, comparisons of interest
among the sources of protein means may be:

• Average of beef and pork with cereal, and
• Beef versus pork.

These comparisons are suggested since beef and pork are animal sources of
protein, whereas cereal is a vegetable source. When the main effect sums
of squares are subdivided into single degree of freedom sums of squares, a
comparable subdivision of the interaction sum of squares can also be made.
To illustrate the procedure, as usual, assume the model for observations be

yijk = μij + εijk, i = 1, 2; j = 1, 2, 3; k = 1, . . . , 10

The means in the above model are the population means of the observations
obtained from each combination of the two factors Level of Protein and
Source of Protein as illustrated in the following table:
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Source
Beef Cereal Pork

High μ11 μ12 μ13 μ̄1.

Level
Low μ21 μ22 μ23 μ̄2.

μ̄.1 μ̄.2 μ̄.3

The sample cell means and marginal means that are the best estimates of the
above parameters are found in the following table:

Source
Beef Cereal Pork

High 100.0 85.9 99.5 95.13
Level

Low 79.2 83.9 78.7 80.6
89.6 84.9 89.1

The usual main effect hypotheses based on the marginal means are H01 :
μ̄1. = μ̄2. andH02 : μ̄.1 = μ̄.2 = μ̄.3. However, instead of testing the main effect
hypotheses, the corresponding df may be partitioned using orthogonal one df
comparisons among the main effect means (marginal means). For example, the
2 df of the Protein sum of squares may be split into two one df sums of squares
that represent two orthogonal comparisons. For example, the two comparisons
of the protein means stated above may be formulated as the contrast of
the marginal means: “Average of beef and pork with cereal” comparison is
expressed in the form (μ̄.1 + μ̄.3)/2 − μ̄.2 and “Beef with pork” comparison
as μ̄.1 − μ̄.2. Notice that these two comparisons are orthogonal to each other.
They are summarized in the following table of contrast coefficients:

Comparison Coefficients
Animal versus Vegetable +1 –2 +1
Beef versus Pork +1 0 –1

The above comparisons are called “main effect” comparisons, as the con-
trasts involve only the marginal means. The corresponding subdivision of
the interaction sum of squares is obtained by the following comparisons
of the cell means. These correspond to the comparisons of the cell means
μ11 + μ13 − 2μ12 = μ21 + μ23 − 2μ22 and μ11 − μ13 = μ21 − μ23. The compar-
isons such as μ11−μ13 and μ11+μ13− 2μ12 are called “simple effects.” Thus,
interaction comparisons are comparisons of simple effects.

Comparison Coefficients
Animal versus Vegetable
× Level of Protein +1 –2 +1 –1 +2 –1

Beef versus Pork
× Level of Protein +1 0 –1 –1 0 +1

The first interaction comparison tests if the “Animal versus Vegetable” effect,
if any, is the same at both levels of protein, whereas the second comparison
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tests if the “Beef versus Pork” effect, if any, is the same at both levels of
protein. The coefficients for the contrast labeled Animal vs. Vegetable x

Level of Protein are obtained by the elementwise product (1 −1)× (+1 −
2 1) and those of Beef vs. Pork x Level of Protein by the product (1 −
1)× (1 0 − 1).

data rats;
input Level Source @;

do i=1 to 10;
input Weight @;
output;

end;
drop i;
datalines;
1 1 73 102 118 104 81 107 100 87 117 111
1 2 98 74 56 111 95 88 82 77 86 92
1 3 94 79 96 98 102 102 108 91 120 105
2 1 90 76 90 64 86 51 72 90 95 78
2 2 107 95 97 80 98 74 74 67 89 58
2 3 49 82 73 86 81 97 106 70 61 82
;

proc glm data=rats plots=none;;
class Level Source;
model Weight = Level Source Level*Source;
contrast ’animal vs. vegetable’

Source 1 -2 1;
contrast ’beef vs. pork’

Source 1 0 -1;
contrast ’an. vs. veg. by Level’

Level*Source 1 -2 1 -1 2 -1;
contrast ’an. vs. veg. by Level’

Level*Source 1 0 -1 -1 0 1;
run;

Fig. 5.45. SAS Example E7: program

Although the “means model” was used in the discussion making statistical
inferences from the two-way classification, the use of the “effects model” is
required for specification of the model as well as contrast coefficients in SAS
programs. The “effects model” for the two-way classification is the partitioning
of the mean μij into main effects and interaction parameters μ+αi+βj +γij ,
as introduced in Sect. 5.4.

In SAS Example E7 (see program in Fig. 5.45), proc glm is used for the
purpose of subdivision of the Source of Protein and the Level x Source

sums of squares into single degree of freedom sums of square corresponding
to the preplanned comparisons of the protein means discussed earlier. These
single degree of freedom sums of squares are obtained using the contrast

statement in the proc glm step.
Note that data arranged in this format may be handled conveniently by

the use of input, do, and output statements as illustrated in the program.
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In fact, this structure of the input data is preferable to the more traditional
method where a line of input data corresponds to each cell value.

The right-hand side of the model statement

model Weight = Level Source Level*Source;

codes the effects model formulation for μij given earlier with the terms Level
and Source representing the two classificatory factors “Level of Protein” and
“Source of Protein,” respectively, and the term Level*Source representing
the interaction effect.

It is important to note that because of the use of the “effects model”
parameters in the specification of the single degree of freedom hypotheses in
the above program, it is necessary to ensure that the same ordering of the
subscripts for the levels of the factors present in the data be maintained in
the program, so that the contrast coefficients (1, –2, 1, etc.) used in defining
the comparisons of interest may be used to specify those hypotheses.

This is accomplished by continuing to use the “Level of Protein” as the
first factor and the “Source of Protein” as the second factor within the pro-
gram. This is specified by the order of appearance of these effects in the class
statement. In the SAS program (see Fig. 5.45), Level appears before Source in
the class statement. With this class statement in effect, the Level*Source
interaction contrast coefficients are ordered so that the second subscript cor-
responds to the levels of Source and changes faster than the first subscript,
which corresponds to the levels of the factor Level. Otherwise, the coefficients
as given in the previous section may define different comparisons among the
means. Using the “effects model,” it is seen that

μ̄.1 − 2μ̄.2 + μ̄.3

=
1

2

{
∑

i

(μ+ αi + β1 + γi1)

}

−
{
∑

i

(μ+ αi + β2 + γi2)

}

+
1

2

{
∑

i

(μ+ αi + β3 + γi3)

}

= β1 − 2β2 + β3 + γ̄.1 − 2γ̄.2 + γ̄.3

Thus, it is clear that a comparison that can simply be specified as μ̄.1 −
2μ̄.2 + μ̄.3 using the cell means involves both the main effect and interaction
parameters, in terms of the effects parameters. Fortunately, for making a main
effects comparisons using proc glm, when the sample sizes are equal, as in this
example, one needs to specify only the main effect portion of the contrast. This
is because proc glm completes the rest of the specification as a convenience
for the user. In practice, most users are not aware of this occurrence. Because
of this behavior, the statements

contrast ‘animal vs. vegetable’ Source 1 -2 1

Level*Source .5 -1 .5 .5 -1 .5 ;
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contrast ‘animal vs. vegetable’ Source 1 -2 1 ;

will produce identical results. However, when a comparison involves the cell
means (as opposed to marginal means), such as the comparison of Beef vs.

Pork x Level of Protein, the Level*Source portion of the coefficients is
important. Using the “effects model,” it may be verified that

μ11 − 2μ12 + μ13 − μ21 + 2μ22 − μ23

= (μ+ α1 + β1 + γ11)− 2(μ+ α1 + β2 + γ12) + (μ+ α1 + β3 + γ13)

−(μ+ α2 + β1 + γ21)− 2(μ+ α2 + β2 + γ22) + (μ+ α2 + β3 + γ23)

= γ11 − 2γ12 + γ13 + γ21 − 2γ22 + γ23

is a contrast among the interaction parameters and does not involve any main
effect parameters.

The following analysis of variance table is constructed from the SAS output
shown in Fig. 5.46. A recommended format for the ANOVA table is

SV DF SS MS F p-Value

Treatments 5 4612.93 922.59 4.30 0.0023
Level 1 3168.27 3168.27 14.77 0.0003
Animal versus Vegetable 1 264.03 264.03 1.23 0.2722
Beef versus Pork 1 2.50 2.50 0.01 0.9144
(Animal versus Vegetable)× Level 1 1178.13 1178.13 5.49 0.0228
(Beef versus Pork) × Level 1 0.00 0.00 0.00 1.0000

Error 54 11,586.00
Total 59 16,198.93

Of the five comparisons tested, two are significant at α = 0.05. There appears
to be no difference in the mean gains between beef and pork at either levels of
protein as well as no difference between the animal and vegetable sources on
the average. However, the interaction of animal versus vegetable comparison
with level of protein is significant. This indicates that the animal versus veg-
etable simple effect is different at one level of protein compared to the other.
The addition of the estimate statements

estimate ‘an. vs. veg. at low’

Source 1 -2 1 Level*Source 1 -2 1 0 0 0;

estimate ‘an. vs. veg. at high’

Source 1 -2 1 Level*Source 0 0 0 1 -2 1;

results in the t-tests shown in Fig. 5.47 for testing the animal versus vegetable
simple effect at each level of protein: This clearly shows that the animal versus
vegetable simple effect is only significant at the high level of protein.

If preplanned comparisons were not available and interaction turns out to
be significant in a two-way classification, one option available is to compare
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The SAS System

The GLM Procedure

Dependent Variable: Weight

Source DF
Sum of 

Squares Mean Square F Value Pr > F

Model 5 4612.93333 922.58667 4.30 0.0023

Error 54 11586.00000 214.55556

Corrected Total 59 16198.93333

R-Square Coeff Var Root MSE Weight Mean

0.284768 16.67039 14.64772 87.86667

Source DF Type I SS Mean Square F Value Pr > F

Level 1 3168.266667 3168.266667 14.77 0.0003

Source 2 266.533333 133.266667 0.62 0.5411

Level*Source 2 1178.133333 589.066667 2.75 0.0732

Source DF Type III SS Mean Square F Value Pr > F

Level 1 3168.266667 3168.266667 14.77 0.0003

Source 2 266.533333 133.266667 0.62 0.5411

Level*Source 2 1178.133333 589.066667 2.75 0.0732

Contrast DF Contrast SS Mean Square F Value Pr > F

animal vs. vegetable 1 264.033333 264.033333 1.23 0.2722

beef vs. pork 1 2.500000 2.500000 0.01 0.9144

an. vs. veg. by Level 1 1178.133333 1178.133333 5.49 0.0228

an. vs. veg. by Level 1 0.000000 0.000000 0.00 1.0000

Fig. 5.46. SAS Example E7: output

means at each level of one factor. For example, the three protein source means
may be compared at each level of protein. The slice= option available with
the lsmeans statement produces F -tests for these hypotheses. In the above
example, F -tests for testing the hypotheses H0 : μ11 = μ12 = μ13 and H0 :
μ21 = μ22 = μ23 are produced by the statement

lsmeans Level*Source/slice=Level;
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Parameter Estimate
Standard

Error t Value Pr > |t|

an. vs. veg. at low 27.7000000 11.3460713 2.44 0.0179

an. vs. veg. at high -9.9000000 11.3460713 -0.87 0.3868

Fig. 5.47. SAS Example E7: animal versus vegetable at levels of protein

and are shown in Fig. 5.48.
One difference in the lsmeans statement from the means statement is

that interaction effects can also be specified as arguments. For example, the
statement

lsmeans Level*Source/cl pdiff adjust=tukey;

produces tests and confidence intervals for all pairwise differences of the
form μij − μi′j′ . The output from this statement is not reproduced here. One
caution is that output from such statements usually is quite extensive because
of the large number of pairs of differences among the means, even between
factors with smaller number of levels such as in the above example.

Level*Source Effect Sliced by Level for Weight

Level DF
Sum of

Squares Mean Square F Value Pr > F

1 2 1280.066667 640.033333 2.98 0.0590

2 2 164.600000 82.300000 0.38 0.6833

Fig. 5.48. SAS Example E7: slice= option in the lsmeans statement

5.6 Two-Way Factorial: Unequal Sample Sizes

In this section a detailed analysis of a two-way classification with unequal
sample sizes is presented. The intent is to show the complexities that arise
in the analysis because of the unbalanced data structure compared to the
analysis of the complete data set used in the previous analysis of the two-way
classification data as discussed in Sects. 5.4 and 5.5. The model used for the
purpose of the analysis in those sections is

yijk = μij + εijk

called the “means model.” This was extended to an “effects model”



376 5 Analysis of Variance Models

μij = μ+ αi + βj + γij

by partitioning each of the cell means μij , as discussed in those sections.
In this section, proc glm is used for the analysis of the same model and
includes several SAS procedure information statements available with proc

glm for illustrating their use. Some of these statements were used in Sect. 5.5
for the analysis of interaction comparisons. Although it is instructive to learn
the syntax of these statements, an attempt is also made to illustrate typical
examples in which these statements may provide useful information to the
experimenter.

SAS Example E8

The data set used in SAS Example E6 is modified by deleting some data values
to introduce unequal sample sizes while ensuring that there are no missing
cells. The data used are as shown in Table 5.8.

Table 5.8. Survival times data: unequal sample sizes

Drug
Poison

A B C D

I 0.31 0.82 0.43 0.71
0.45 1.10 0.45 0.66
0.46 0.63 0.62
0.43 0.76

II 0.36 0.61 0.44 0.56
0.40 0.49 0.35 0.71

0.31 0.38
0.40

III 0.22 0.30 0.23 0.30
0.21 0.37 0.25 0.36
0.18 0.38 0.22
0.23

The following “effects model” is used to specify the model for analysis by
proc glm,

yijk = μ+ αi + βj + γij + εijk

with i = 1, 2, 3 (Poison levels), j = 1, 2, 3, 4 (Drug levels), k = 1,. . . ,nij (cell
sample sizes), and N =

∑
i

∑
j nij is the total number of observations. Thus,

20 (= 1+3+4+12) parameters are utilized to model the mean μij as a linear
function of parameters representing main effects and interaction. However,
only 12 (= 1 + 2 + 3 + 6) degrees of freedom are available to be partitioned
from the treatment sum of squares for this purpose. Hence, the model is said
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to be overspecified (or overparameterized); that is, since more parameters are
being used than the available degrees of freedom, 8 out of the 20 parameters
cannot be estimated. Thus, the normal equations to be solved to obtain the
least squares estimates of the 20 parameters will not have a unique solution.
To obtain a solution to the normal equations, restrictions (or constraints) on
the parameters must be imposed. These may take the form of setting some of
the parameters equal to functions of others or simply equating some of them
to a baseline value such as zero. In this example, proc glm uses the following
eight restrictions:

α3 = β4 = γ14 = γ24 = γ31 = γ32 = γ33 = γ34 = 0

This implies that the normal equations may be solved to obtain “estimates”
of the rest of the parameters, and “estimates” of the above parameters will
be set to the baseline value of zero. Obviously, this is not a unique solution to
the normal equations, as other solutions may be obtained using different sets
of restrictions.

In the SAS Example E8 (program shown in Fig. 5.49), the model statement
in proc glm includes options ss1, ss2, ss3, and ss4, requesting that all
four types of sums of squares computed by proc glm be output. In two-way
classification models, the Types II, III, and IV sums of squares are all exactly
the same in magnitude when the sample sizes are equal, but Type I sums
of squares differ from those. When the sample sizes are unequal (with no
completely empty cells), Type II sums of squares differ from Types III and
IV sums of squares (which are still of the same magnitude). This is observed
from part of the output from this program displayed in Fig. 5.50.

Type I sums of squares that correspond to each effect in the model are
computed by fitting each term in the order listed in the model statement
sequentially and calculating the increase in the treatment sum of squares.
Thus, Type I sums of squares are appropriate for testing the significance of
adding an effect sequentially into the current model. Type III sum of squares,
on the other hand, measures the increase in the treatment sum of squares
when the effect is added to a model with all other effects already in the model.
Thus, Type I sums of squares are appropriate for testing the significance of
an effect in the full model. It is recommended that Type III sums of squares
be used to construct an analysis of variance table because these correspond to
those calculated in Yates’ weighted squares of means analysis. That method
is recommended for use for unbalanced data when main effects need to be
tested in the presence of interaction. In addition, the solution option requests
that a solution to the normal equations be produced. As expected, parameter
estimates corresponding to those eight parameters discussed earlier are equal
to zero as printed in the output resulting from this option shown in Fig. 5.51.

The estimates of other parameters shown in this output are not unique
(these are flagged with the letter “B” to indicate this); this means that there
is no direct interpretation of the magnitudes of these estimates. However, these
values may be used to construct estimates of specific estimable functions of the
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parameters that are useful for interpreting the results of the experiment. Some
of these estimates could be obtained directly by using lsmeans, contrast, and
estimate statements. Results obtained from some of the these statements
included in the SAS program are discussed next.

The means statement provides the “unadjusted” Poison and Drug means,
whereas the lsmeans statement produces the “least squares means” or the
adjusted means together with their standard errors. The unadjusted means
are shown in Fig. 5.52. These quantities estimate functions of μij . For example,
consider the estimates printed for Poison 1. The unadjusted mean 0.6023
with sample size 13 is an estimate of the weighted marginal mean (4μ11 +
2μ12 + 4μ13 + 3μ14)/(4 + 2 + 4 + 3), a “weighted average of cell means.” As

data mice2;
input Poison 1. @;

do Drug=1 to 4;
input Time 3.2 @;
output;

end;
datalines;
1 31 82 43 .
1 45110 45 71
1 46 . 63 66
1 43 . 76 62
2 36 . 44 56
2 . 61 35 .
2 40 49 31 71
2 . . 40 38
3 22 30 23 30
3 21 37 25 36
3 18 38 . .
3 23 . 22 .
;

proc glm data=mice2;
class Poison Drug;
model Time = Poison Drug Poison*Drug/ss1 ss2 ss3 ss4 solution;

means Poison Drug;
lsmeans Poison/stderr cl pdiff tdiff adjust=tukey;
lsmeans Drug /stderr cl pdiff tdiff adjust=tukey;

contrast ’Poison 1 vs 2’ Poison -1 1;
contrast ’Poison 1 vs 2 *’ Poison -1 1

Poison*Drug -.25 -.25 -.25 -.25 .25 .25 .25 .25;
contrast ’Drug A&B vs C&D’ Drug 1 1 -1 -1;

estimate ’Poison 1 vs 2’ Poison -1 1;
estimate ’Poison 1 mean’ intercept 1

Poison 1 0 0
Drug .25 .25 .25 .25
Poison*Drug .25 .25 .25 .25;

estimate ’Drug A @ Poison 1-2’ Poison -1 1 Poison*Drug -1 0 0 0 1;

title ’Analysis of Twoway Data : Unequal Sample Sizes’;
run;

Fig. 5.49. SAS Example E8: program
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Source DF Type I SS Mean Square F Value Pr > F

Poison 2 0.68676873 0.34338436 39.02 <.0001

Drug 3 0.39430953 0.13143651 14.94 <.0001

Poison*Drug 6 0.14850230 0.02475038 2.81 0.0323

Source DF Type II SS Mean Square F Value Pr > F

Poison 2 0.72205463 0.36102731 41.03 <.0001

Drug 3 0.39430953 0.13143651 14.94 <.0001

Poison*Drug 6 0.14850230 0.02475038 2.81 0.0323

Source DF Type III SS Mean Square F Value Pr > F

Poison 2 0.79692581 0.39846290 45.28 <.0001

Drug 3 0.38425215 0.12808405 14.56 <.0001

Poison*Drug 6 0.14850230 0.02475038 2.81 0.0323

Source DF Type IV SS Mean Square F Value Pr > F

Poison 2 0.79692581 0.39846290 45.28 <.0001

Drug 3 0.38425215 0.12808405 14.56 <.0001

Poison*Drug 6 0.14850230 0.02475038 2.81 0.0323

Fig. 5.50. SAS Example E8: Types I, II, III, and IV sums of squares

can be observed, this definition makes the marginal mean depend on the cell
sample sizes. These are computed by the means statement and given on the
SAS output in Fig. 5.52. The adjusted mean 0.6508 (extracted from part of
Fig. 5.53 not shown), however, is an estimate of μ̄1.(= (μ11+μ12+μ13+μ14)/4),
an “unweighted average of cell means,” defined assuming cell sample sizes are
all equal as specified in the model definition. These are called least squares
means and are estimates of cell means and marginal means defined using the
population means irrespective of the sample sizes. Part of the results from the
lsmeans statement are reproduced in Fig. 5.53.

Perhaps estimates provided by the lsmeans statement are more appropri-
ate if the interest is in the differences in Poison means of the treatment pop-
ulations as defined by the model. This is justified from the point of view that
for the purpose of comparing factor means, all cell means (treatment means)
should be regarded as equally important and, therefore, equally weighted,
regardless of the sample sizes.

The best estimates of the cell means μij and the marginal means μ̄i. and
μ̄.j , respectively, are given by

μ̂ij = ȳij. =

(∑

k

yijk

)

/nij
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Analysis of  Twoway Data : Unequal Sample Sizes

The GLM Procedure

Dependent Variable: Time

Parameter Estimate
Standard 

Error t Value Pr > |t|

Intercept 0.3300000000 B 0.06632988 4.98 <.0001

Poison      1 0.3333333333 B 0.08563150 3.89 0.0007

Poison      2 0.2200000000 B 0.08563150 2.57 0.0168

Poison      3 0.0000000000 B . . .

Drug        1 -.1200000000 B 0.08123718 -1.48 0.1526

Drug        2 0.0200000000 B 0.08563150 0.23 0.8173

Drug        3 -.0966666667 B 0.08563150 -1.13 0.2701

Drug        4 0.0000000000 B . . .

Poison*Drug 1 1 -.1308333333 B 0.10831624 -1.21 0.2389

Poison*Drug 1 2 0.2766666667 B 0.12110124 2.28 0.0315

Poison*Drug 1 3 0.0008333333 B 0.11164982 0.01 0.9941

Poison*Drug 1 4 0.0000000000 B . . .

Poison*Drug 2 1 -.0500000000 B 0.11803488 -0.42 0.6756

Poison*Drug 2 2 -.0200000000 B 0.12110124 -0.17 0.8702

Poison*Drug 2 3 -.0783333333 B 0.11164982 -0.70 0.4897

Poison*Drug 2 4 0.0000000000 B . . .

Poison*Drug 3 1 0.0000000000 B . . .

Poison*Drug 3 2 0.0000000000 B . . .

Poison*Drug 3 3 0.0000000000 B . . .

Poison*Drug 3 4 0.0000000000 B . . .

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to 
solve the normal equations.  Terms whose estimates are followed by the letter 'B' are 
not uniquely estimable.

Fig. 5.51. SAS Example E8: parameter estimates

ˆ̄μi. =
∑

j

(∑

k

yijk/nij

)

/b =

(∑

j

ȳij.

)

/b

ˆ̄μ.j =
∑

i

(∑

k

yijk/nij

)

/a =

(∑

i

ȳij.

)

/a

where the sample sizes nij are given in the following table:
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Poison

1 2 3 4
1 4 2 4 3

Drug 2 2 2 4 3
3 4 3 3 2

The standard error of the difference in the estimates of Factor A means at
levels i and i′ is

s.e.( ˆ̄μi. − ˆ̄μi′.) =
s

b

√
√
√
√
∑

j

(
1

nij
+

1

ni′j

)

and the standard error of the difference in the estimates of pair of Factor B
means at levels j and j′ is

s.e.( ˆ̄μ.j − ˆ̄μ.j′) =
s

a

√
∑

i

(
1

nij
+

1

nij′

)

where an estimate of the error variance σ̂2 = s2, where s2 is the MSE obtained
from the ANOVA table, as earlier. Thus, a (1 − α)100% confidence interval
for the differences in a pair estimates Factor A and B means are, respectively,

( ˆ̄μi. − ˆ̄μi′.)± tα/2,ν · s
b

√
√
√
√
∑

j

(
1

nij
+

1

ni′j

)

and

( ˆ̄μ.j − ˆ̄μ.j′)± tα/2,ν · s
a

√
∑

i

(
1

nij
+

1

nij′

)

where tα/2,ν is the upper α/2 percentage point of the t-distribution with ν
degrees of freedom, where ν = (N − ab) is the degrees of freedom for MSE.

Table 5.9. Survival times cell means

Drug
Poison

A B C D

I 0.4125 0.9600 0.5675 0.6633

II 0.3800 0.5500 0.3750 0.5500

III 0.2100 0.3500 0.2333 0.3300

From Table 5.6 the least squares means for Poisons 1 and 2 are, respec-
tively, ˆ̄μ1. = (0.4125 + 0.9600 + 0.5675 + 0.6633)/4 = 0.6508 and ˆ̄μ2. =
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(0.3800 + 0.5500 + 0.3750 + 0.5500)/4 = 0.4638. The standard error of the
difference ˆ̄μ2. − ˆ̄μ1. is

s

b

√
√
√
√
∑

j

(
1

n1j
+

1

n2j

)

=

√

0.0088×
(
1

4
+

1

2
+

1

2
+

1

2
+

1

4
+

1

4
+

1

3
+

1

3

)

/4

= 0.04

The SAS output resulting from the lsmeans statements contains estimates,
tests, and confidence intervals for individual least squares means of Poison

and Drug levels, respectively, and is shown in Figs. 5.53 and 5.54. These also
contain estimates, tests, and confidence intervals for all pairwise differences
of least squares means for the two factors. Moreover, those comparisons in-
corporate the Tukey adjustment of confidence levels for making multiple com-
parisons, as requested by using the lsmeans statement option adjust=tukey.
Results of the calculations associated with the difference ˆ̄μ2. − ˆ̄μ1. illustrated
earlier can be checked from this output.

Analysis of Twoway Data : Unequal Sample Sizes

The GLM Procedure

Level of
Poison N

Time

Mean Std Dev

1 13 0.60230769 0.21358659

2 11 0.45545455 0.12420657

3 12 0.27083333 0.06894772

Level of
Drug N

Time

Mean Std Dev

1 10 0.32500000 0.10865337

2 7 0.58142857 0.28852663

3 11 0.40636364 0.16776607

4 8 0.53750000 0.16671190

Fig. 5.52. SAS Example E8: unadjusted means

The contrast statements are similar to those one might use in the bal-
anced case. For example, the first contrast statement computes an F -statistic
to test the hypothesis

H0 : μ̄2. − μ̄1. = 0

and the second to test
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H0 : (μ̄.1 + μ̄.2)/2 = (μ̄.3 + μ̄.4)/2

These functions are estimable because they are linear functions of the means
μij ; however, they must first be expressed in terms of effects model parameters
αi’s (Poison effects), βj ’s (Drug effects), and γij ’s (interaction effects), so that
they could be specified in proc glm statements. As discussed in Sect. 5.5, both
main effect and interaction parameters are needed to express the contrast
for the mean comparison μ̄2. − μ̄1.. The required expression is obtained by
substituting

μij = μ+ αi + βj + γij

in μ̄2. − μ̄1. as follows:

(μ21 + μ22 + μ23 + μ24)/4− (μ11 + μ12 + μ13 + μ14)/4

= {(μ+ α2 + β1 + γ21) + (μ+ α2 + β2 + γ22) + (μ+ α2 + β3 + γ23)

+(μ+ α2 + β4 + γ24)}/4− {(μ+ α1 + β1 + γ11) + (μ+ α1 + β2 + γ12)

+(μ+ α1 + β3 + γ13) + (μ+ α1 + β4 + γ14)}/4
= (α2 − α1) + (γ21 + γ22 + γ23 + γ24)/4− (γ11 + γ12 + γ13 + γ14)/4

Thus, the contrast statement needed is

contrast ‘Poison 1 vs 2 *’ Poison -1 1

Poison*Drug -.25 -.25 -.25 -.25 .25 .25 .25 .25;

However, SAS allows the user to specify the comparison using only the
main effect portion (and so completes the interaction portion of the coefficients
needed). Thus, the statement

contrast ‘Poison 1 vs 2’ Poison -1 1;

produces identical results. The contrast statement for the second comparison,
(μ.1 + μ.2)/2− (μ.3 + μ.4)/2, that is equivalent to the comparison μ.1 + μ.2 −
μ.3 − μ.4) is

contrast ‘Drug A&B vs C&D’ Drug 1 1 -1 -1;

The two estimate statements request estimates of the functions of the cell
means μij : (μ11 + μ12 + μ13 + μ14)/4 and μ21 − μ11. The first estimate

statement is used to directly compute the Poison 1 least squares mean, in
order to illustrate the differences between those resulting from the means and
lsmeans statements. The second is simply the difference in cell means between
Poison levels II and I at Drug level A. Such differences may be of interest if
the interaction is found to be significant.

As before, these are expressed as functions of effects model parameters:
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Analysis of  Twoway Data : Unequal Sample Sizes

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

Least Squares Means for Effect Poison
t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: Time

i/j 1 2 3

1 4.67119
0.0003

9.514176
<.0001

2 -4.67119
0.0003

4.503275
0.0004

3 -9.51418
<.0001

-4.50327
0.0004

Least Squares Means for Effect Poison

i j

Difference 
Between 

Means

Simultaneous 95% 
Confidence Limits for 
LSMean(i)-LSMean(j)

1 2 0.187083 0.087066 0.287101

1 3 0.370000 0.272882 0.467118

2 3 0.182917 0.081480 0.284353

Fig. 5.53. SAS Example E8: Poison comparisons

(i) First,

(μ11 + μ12 + μ13 + μ14)/4

= μ+ α1 + (β1 + β2 + β3 + β4)/4 + (γ11 + γ12 + γ13 + γ14)/4

= μ+ α1 + β̄. + γ̄1.

The term μ in the above expression requires “intercept 1” to be included
in the estimate statement, and the term α1 is coded as “Poison 1 0 0”
for representing level 1 of the Poison effect. The term (β1+β2+β3+β4)/4
is coded as “Drug .25 .25 .25 .25,” and (γ11 + γ12 + γ13 + γ14)/4 is coded
as “Poison*Drug .25 .25 .25 .25 0 0 0 0 0 0 0 0.” Thus, the complete
statement needed to perform this computation is

estimate ‘Poison 1 mean’

intercept 1

Poison 1 0 0

Drug .25 .25 .25 .25

Poison*Drug .25 .25 .25 .25 0 0 0 0 0 0 0 0;
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Analysis of  Twoway Data : Unequal Sample Sizes

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

Least Squares Means for Effect Drug
t for H0: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: Time

i/j 1 2 3 4

1 -5.98441
<.0001

-1.3647
0.5326

-3.91691
0.0034

2 5.984413
<.0001

4.954977
0.0003

2.13505
0.1708

3 1.3647
0.5326

-4.95498
0.0003

-2.77024
0.0488

4 3.916906
0.0034

-2.13505
0.1708

2.770245
0.0488

Least Squares Means for Effect Drug

i j

Difference 
Between 

Means

Simultaneous 95% 
Confidence Limits for 
LSMean(i)-LSMean(j)

1 2 -0.285833 -0.417593 -0.154074

1 3 -0.057778 -0.174570 0.059014

1 4 -0.180278 -0.307244 -0.053311

2 3 0.228056 0.101089 0.355022

2 4 0.105556 -0.030828 0.241939

3 4 -0.122500 -0.244485 -0.000515

Fig. 5.54. SAS Example E8: drug comparisons

The zeros at the end of the estimate statement may be omitted. Of course,
the above statement may also be entered in the form

estimate ‘Poison 1 mean’ intercept 4

Poison 4 0 0

Drug 1 1 1 1

Poison*Drug 1 1 1 1/divisor=4;

using the divisor= option.
(ii) Similarly,

μ21 − μ11 = −α1 + α2 + γ21 − γ11

The term −α1 + α2 requires that “Poison –1 1 0” be included in the
estimate statement, and γ21 − γ11 requires that “Poison*Drug –1 0 0 0
1 0 0 0 0 0 0 0” be included. Thus, the complete statement is
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Analysis of Twoway Data : Unequal Sample Sizes

The GLM Procedure

Dependent Variable: Time

Contrast DF Contrast SS Mean Square F Value Pr > F

Poison 1 vs 2 1 0.19200095 0.19200095 21.82 <.0001

Poison 1 vs 2 * 1 0.19200095 0.19200095 21.82 <.0001

Drug A&B vs C&D 1 0.00474103 0.00474103 0.54 0.4700

Parameter Estimate
Standard 

Error t Value Pr > |t|

Poison 1 vs 2 -0.18708333 0.04005047 -4.67 <.0001

Poison 1 mean 0.65083333 0.02707906 24.03 <.0001

Drug A @ Poison 1-2 -0.03250000 0.08123718 -0.40 0.6926

Fig. 5.55. SAS Example E8: output from contrast and estimate statements

‘Drug A @ Poison 2 -1’ Poison -1 1 Poison*Drug -1 0 0 0 1;

again omitting the trailing zeros.

The results of the contrast and estimate statements used in SAS Example
E8 are found in Fig. 5.55.

5.7 Two-Way Classification: Randomized Complete
Block Design

When experimental units tend not to be homogeneous (as usually the case in
many studies), the experimenter can often employ a different design than a
completely randomized design (CRD) that may be more efficient by helping to
control the error variance. One such design is called the randomized complete
block design (RCBD). Recall that the analysis of data from an experiment
carried out in a completely randomized design involves the estimation of the
error variance by combining (or pooling) the sample variances calculated from
responses from experimental units assigned the same treatment. This is called
the within sample variance or within treatment variance.

How different experimental units respond to the application of the same
treatment may depend on the nature of the units. For example, the yields
of a variety of cereal crop from plots of land may vary widely if the plots
are very different from each other in their soil constitution, moisture content,
degree of drainage, exposure to sunlight or shade, or in some other way. The
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yields obtained from such plots planted with the same variety may lead to an
inflated estimate of error variance than if the plots were more homogeneous.

By grouping experimental units that are considered similar, the contribu-
tion to experimental error due to this variation can be reduced or eliminated.
Groups of units that are similar in this way comprise what are called blocks.
In an agricultural experiment, these might be plots that are contiguously lo-
cated in the field. Once blocks are formed, a complete set of treatments are
applied to the experimental units in a block. Thus, the block size (the number
of experimental units in a block) must be exactly the same as the number of
treatments (i.e., the number of levels of the factor under study). This process
is repeated for every block available. The treatments are assigned randomly
to the experimental units within each block. The number of blocks is de-
termined by the number of experimental units available. For example, if 4
varieties of corn were under study, the availability of 20 plots would ensure
that 5 complete blocks could be formed.

The “blocks’ are also called “reps” (for replications) because every treat-
ment is repeated once in each block. A variation is that the complete set
of treatments is applied more than once in a block. This would require at
least twice the number of experimental units than would be used in a regular
RCBD. Another variation is that less than the full set of treatments is used
in each block. Such designs are called incomplete block designs and are not
discussed in this book. Data from a one-factor experiment performed using
a RCBD also form a two-way classification. In the following discussion, the
more common practice of each treatment (or combination of treatments, if a
factorial arrangement of treatments is used) appearing once in each block is
considered.

Model

The model for observations from an RCBD is

yij = μ+ τi︸ ︷︷ ︸
μi

+βj + εij , i = 1, . . . , t; j = 1, . . . , r

It is assumed that the random error εij is distributed as iid N(0, σ2). In the
“means model,” μi is the mean of ith treatment and τi is effect of ith treat-
ment. In this presentation as well as in many textbooks, for the purpose of
analyzing results from an RCBD, the effect of the jth block, βj , is considered
a fixed effect. This may not be reasonable, as the blocks are selected randomly
and thus are better represented in the model by random effects. In Chap. 6,
an analysis of an RCBD as a mixed model will be presented. Although blocks
are considered fixed effects, an additive model is used to represent the obser-
vations; that is, an interaction term is not included in the model. Thus, the
assumption that treatment differences remain the same from block to block
is built into the model. This allows the error variance to be estimated even
though treatments are not replicated within each block.
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Estimation

The best estimates of μi and σ2 are, respectively,

μ̂i = ȳi. =

(∑

j

yij

)

/r

σ̂2 = s2

where s2 is the error mean square from the analysis of variance table presented
below. Since the difference in treatment means of two treatments labeled p
and q is μp − μq = μ+ τp − (μ− τq) = τp − τq, it is the same as the difference
in the corresponding treatment effects. Similarly, a comparison in treatment
means is identical to the same comparison in treatment effects.

The best estimate of the difference between the effects of two treatments
labeled p and q is

̂μp − μq = ̂τp − τq = ȳp. − ȳq.

with standard error given by

sd = s.e.(ȳp. − ȳq.) = s

√
2

r

A (1− α)100% confidence interval for μp − μq (or, equivalently, τp − τq) is

(ȳp. − ȳq.)± tα/2,ν · s
√

2

r

where tα/2,ν is the upper α/2 percentile point of a t-distribution with ν =

(t− 1)(r − 1) degrees of freedom.

Testing Hypotheses

An analysis of variance (ANOVA) table corresponding to the above model is

SV df SS MS F p-Value
Blocks r − 1 SSBlk MSBlk

Trts t− 1 SSTrt MSTrt MSTrt/MSE

Error (r − 1)(t− 1) SSE MSE(= s2)

Total rt− 1 SSTot

The above F -statistic tests the hypothesis of equality of treatment means

H0 : μ1 = μ2 = · · · = μt versus Ha : at least one inequality

or, equivalently, the hypothesis of equality of treatment effects
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H0 : τ1 = τ2 = · · · = τt versus Ha : at least one inequality.

H0 is rejected if the observed F -value exceeds the α upper percentile of an
F -distribution with df1 = t − 1 and df2 = (r − 1)(t − 1) or, equivalently, if
the computed p-value is less than α, where level α controls the Type I error
of the test and is selected by the experimenter prior to the experiment. For a
treatment mean ȳi., the model can be used to show that

ȳi. =

b∑

j=1

(μ+ τi + βj + εij)/b

= μ+ τi + β̄ + ε̄i.

Thus, the difference ȳp. − ȳq. has the form

ȳp. − ȳq. = (τp − τq) + (ε̄p. − ε̄q.)

Thus, the expected value of ȳp. − ȳq. is

E(ȳp. − ȳq.) = τp − τq.

It is important to note that the mean difference estimates the difference in
treatment effects only since the effect of blocks cancels out. These differences
are called “within block” comparisons because they are averages of treatment
differences within each block (i.e., ȳp.− ȳq. =

∑
j(ypj−yqj)/r). Thus, tests and

confidence intervals for differences in treatment means μp − μq may be con-
structed using these sample mean differences. For example, the null hypothesis
H0 is rejected if tc > tα/2,ν , where

tc =
|ȳp.− ȳq.|

sd

tα/2,ν is the upper α/2 percentile of the t-distribution with ν = N−t degrees of
freedom. Equivalently, a difference τp and τq is declared significantly different
at the α level if

|ȳp. − ȳq.| > LSDα

where LSDα = tα/2,ν · sd. This is used to perform tests of all pairwise dif-
ferences of treatment means (or treatment effects). Hypotheses of the type
H0 : τ1−(τ2+τ3+τ4+τ5)/4 = 0 or, equivalently, H0 : 4τ1−τ2−τ3−τ4−τ5 = 0
may be tested using contrasts of the τ ’s. These are single df preplanned com-
parisons discussed in detail in Sect. 5.2.

5.7.1 Using PROC GLM to Analyze a RCBD

SAS Example E9

It is standard agronomic practice to treat seeds chemically to increase germi-
nation rate prior to planting. In SAS Example E10, an experiment described
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in Snedecor and Cochran (1989) in which four seed treatments are compared
with a control of no treatment (labeled as “Check” in the data table below)
on soybeans is considered. The responses are number of plants that failed
to emerge out of 100 seeds planted in each plot. The set of five treatments
is replicated five times, each replication representing a block. The data are
shown in Table 5.10. The model for the response from the ith treatment in
the jth block, yij , is

yij = μ+ τi + βj + εij , i = 1, . . . , 5; j = 1, . . . , 5

where τi is the effect of ith treatment, βj is the effect of jth block, and the
random error εij is distributed as iid N(0, σ2).

Table 5.10. Effect of seed treatments on germination of soybeans (Snedecor and
Cochran 1989)

Replication
Treatment

1 2 3 4 5

Check 8 10 12 13 11
Arasan 2 6 7 11 5
Spergon 4 10 9 8 10
Samesan 3 5 9 10 6
Fermate 9 7 5 5 3

data soybean;
input Trt @;$
do Rep=1 to 5;

input Yield @;
output;

end;
datalines;
check 8 10 12 13 11
arasan 2 6 7 11 5
spergon 4 10 9 8 10
samesan 3 5 9 10 6
fermate 9 7 5 5 3
;

proc print data=soybean;
run;

proc glm order=data plots=none;
class Trt Rep;
model Yield = Trt Rep;
means Trt/lsd cldiff alpha=.05;
contrast ’Check vs Chemicals’ Trt 4 -1 -1 -1 -1;

run;

Fig. 5.56. SAS Example E9: analysis of seed treatments
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In the SAS program displayed in Fig. 5.56, an input statement with a
trailing @ combined with an iterative do loop is used to input the data.
The trailing @ “holds” the data line after accessing a character value for the
variable Trt. SAS then reads the next numeric value for the variable Yield

from the data line. Each time through the loop, the output statement causes
an observation to be written containing the current values for Trt, Rep, and
Yield to the data set soybean and then returns to read another value for
Yield. This process is repeated five times for each data line. The first five
observations in the SAS data set are thus

The SAS System

The GLM Procedure

Class Level Information

Class Levels Values

Trt 5 check arasan spergon samesan fermate

Rep 5 1 2 3 4 5

Number of Observations Read 25

Number of Observations Used 25

Dependent Variable: Yield

Source DF
Sum of 

Squares Mean Square F Value Pr > F

Model 8 133.6800000 16.7100000 3.09 0.0262

Error 16 86.5600000 5.4100000

Corrected Total 24 220.2400000

R-Square Coeff Var Root MSE Yield Mean

0.606974 30.93006 2.325941 7.520000

Source DF Type I SS Mean Square F Value Pr > F

Trt 4 83.84000000 20.96000000 3.87 0.0219

Rep 4 49.84000000 12.46000000 2.30 0.1032

Source DF Type III SS Mean Square F Value Pr > F

Trt 4 83.84000000 20.96000000 3.87 0.0219

Rep 4 49.84000000 12.46000000 2.30 0.1032

Fig. 5.57. SAS Example E9: output, analysis of variance
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Obs Trt Rep Yield

1 check 1 8

2 check 2 10

3 check 3 12

4 check 4 13

5 check 5 11

The class statement specifies the classification variables that will appear
in the model statement. Ordinarily, when proc ANOVA or proc glm processes
data sets with classification variables, levels of variables listed in a class state-
ment are lexically ordered prior to the processing of the data by the procedure.
For levels that are numeric, the values are usually in the increasing order and
thus will not affect the analysis. However, when the values of levels are char-
acter type, such as the names of chemicals or “check” as values of the variable
Trt in this example, the ordering might be affected. To determine the or-
dering of levels used in the procedure, the user must check part of the SAS
output page titled class level information. In Fig. 5.57, the levels shown
are check, arasan, spergon, samesan, and fermate, in that order. Thus, it
is seen that proc glm retained the same ordering found in the data set for
these levels. This is a result of inserting the option order=data in the proc

glm statement. If, however, this option is omitted, the proc glm would have
reordered the levels to be arasan, check, fermate, samesan, and spergon;
as can be observed, the levels are in increasing alphabetical order.

Knowledge of the actual ordering of the levels used in the procedure prior
to executing the program is important because the user needs to specify,
for example, coefficients of contrasts in the correct order. For example, the
coefficients of the contrast for the comparison of “Check versus Chemicals”
specified as 4 –1 –1 –1 –1 with option order=data present (see Fig. 5.56)
would have to be changed to –1 4 –1 –1 –1 if this option is omitted.

The analysis of variance table for the seed treatment data constructed
using information on the SAS output shown in Fig. 5.57 under Type III SS is

SV df SS MS F p-Value
Treatment 4 83.84 20.96 3.87 0.0219
Rep 4 49.84 12.46 2.30 0.1032
Error 16 86.56 5.41
Total 24 220.24

The hypothesis of no difference among the five seed treatments (the check
and four chemicals) H0 : τ1 = τ2 = · · · = τ5 is rejected in favor of
Ha : at least one inequality at α = 0.05 since the p-value is smaller. Since
the blocks are considered fixed effects, there is a comparable test for block
effects. Rather than performing a standard test for differences in block effects
(which is not a meaningful hypothesis considering that the labeling of the
blocks is done randomly), some practitioners use the F -statistic as a nominal
measure of whether the mean square for blocks is inflated compared to the
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error mean square. This may indicate whether using a blocked experiment
was more efficient compared to a completely randomized design. There are
other efficiency measures that may be calculated based on the mean squares
from the ANOVA table. It now remains to determine the effects of the seed
treatments that are actually different.

The lsd option (or, equivalently, the t option) with the means statement is
used to perform all comparisons of pairwise means using the percentage points
of the t-distribution. The concurrent use of the cldiff option specifies that
these comparisons be given in the form of 95% confidence intervals on pairwise
differences of the means. The output is in Fig. 5.58 and shows confidence
intervals for 20 pair differences. The relevant set of 95% confidence intervals
on the relevant pairwise differences of means extracted from this SAS output
table is

check - spergon : (−0.518, 5.718)

check - samesan : (1.082, 7.318)

check - arasan : (1.482, 7.718)

check - fermate : (1.882, 8.118)

spergon - samesan : (−1.518, 4.718)

spergon - arasan : (−1.118, 5.118)

spergon - fermate : (−0.718, 5.518)

samesan - arasan : (−2.718, 3.518)

samesan - fermate : (−2.318, 3.918)

arasan - fermate : (−2.718, 3.518)

fermate - arasan : (−3.518, 2.718)

Since zero is included in every interval except (check–samesan), (check–
arasan), and (check–fermate), the conclusion that might be drawn is that
whereas spergon is not found to be different from the control of no seed
treatment on germination rate, samesan, arasan, and fermate are found to
produce significantly higher germination rates than the control. Also, there
appears to be no significant differences among the chemicals on their effect
on germination. It must be noted that these are individual comparisons, and
no adjustment is made for making multiple comparisons.

The result of the contrast statement also confirmed that the hypothesis
H0 : 4τ1−τ2−τ3−τ4−τ5 = 0 is rejected with a p-value of 0.0028 (see Fig. 5.59),
and thus, the average effect of the chemicals on emergence is different from the
effect of the control of no chemical treatment. Also, note that if the hypothesis
tested is one tailed (e.g., H0 : τ1 < (τ2 − τ3 − τ4 − τ5)/4 versus Ha : τ1 ≥
(τ2 − τ3 − τ4 − τ5)/4), the same set of contrast coefficients may be used.
In this instance, the output will be the same, but the p-value for the one-
tailed test is one-half of the p-value printed, which is 0.0014. The remainder
of the treatment sum of squares after subtracting the sum of squares due to
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The GLM Procedure

t Tests (LSD) for Yield

Note: This test controls the Type I comparisonwise error rate, not the 
experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 16

Error Mean Square 5.41

Critical Value of t 2.11991

Least Significant Difference 3.1185

Comparisons significant at the 0.05 level are indicated by ***.

Trt
Comparison

Difference
Between

Means
95% Confidence 

Limits

check   - spergon 2.600 -0.518 5.718

check   - samesan 4.200 1.082 7.318 ***

check   - arasan 4.600 1.482 7.718 ***

check   - fermate 5.000 1.882 8.118 ***

spergon - check -2.600 -5.718 0.518

spergon - samesan 1.600 -1.518 4.718

spergon - arasan 2.000 -1.118 5.118

spergon - fermate 2.400 -0.718 5.518

samesan - check -4.200 -7.318 -1.082 ***

samesan - spergon -1.600 -4.718 1.518

samesan - arasan 0.400 -2.718 3.518

samesan - fermate 0.800 -2.318 3.918

arasan  - check -4.600 -7.718 -1.482 ***

arasan  - spergon -2.000 -5.118 1.118

arasan  - samesan -0.400 -3.518 2.718

arasan  - fermate 0.400 -2.718 3.518

fermate - check -5.000 -8.118 -1.882 ***

fermate - spergon -2.400 -5.518 0.718

fermate - samesan -0.800 -3.918 2.318

fermate - arasan -0.400 -3.518 2.718

Fig. 5.58. SAS Example E9: pairwise comparisons

this contrast will be the total sum of squares from any set of three orthogonal
comparisons one can make among the four chemicals and, thus, will have three
degrees of freedom. The compound hypothesis tested by the corresponding
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The GLM Procedure

Dependent Variable: Yield

Contrast DF Contrast SS Mean Square F Value Pr > F

Check vs Chemicals 1 67.24000000 67.24000000 12.43 0.0028

Fig. 5.59. SAS Example E9: F -test for preplanned comparison

F -statistic is H0 : τ2 = τ3 = τ4 = τ5 versus Ha : at least one inequality (i.e.,
whether there are any differences among the effects of the chemicals). This
sum of squares can be obtained by subtraction or directly by including the
following contrast statement in the above SAS program (i.e., the SAS program
shown in Fig. 5.56):

contrast ‘Among Chemicals’ Trt 0 3 -1 -1 -1,

Trt 0 0 2 -1 -1,

Trt 0 0 0 1 -1;

The results of the partitioning of the treatment sum of squares resulting from
the preplanned comparison may be usefully included in the ANOVA table as
follows:

SV df SS MS F p-Value
Treatment 4 83.84 20.96 3.87 0.0219

Check versus Chemical 1 67.24 67.24 12.43 0.0028
Among Chemicals 3 16.60 5.53 1.02 0.4087

Rep 4 49.84 12.46 2.30 0.1032
Error 16 86.56 5.41
Total 24 220.24

It is perhaps instructive to note that the sum of squares for the “Among
Chemicals” hypothesis may also be obtained by specifying contrasts that are
nonorthogonal but distinct as follows:

contrast ‘Among Chemicals2’ Trt 0 1 -1 0 0,

Trt 0 0 1 -1 0,

Trt 0 0 0 1 -1;

The earlier conclusion of no significant differences among the chemicals on
their effect on germination is confirmed from the p-value of 0.4087 above.

5.7.2 Using PROC GLM to Test for Nonadditivity

In Sect. 5.7.1, an additive model is used to analyze data generated from ex-
periments using RCBDs. As discussed there, this is based on the assumption
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that differences in responses to the treatments are unaffected by the block ef-
fects. In many experiments, this assumption may not be plausible because an
interaction may occur between the treatment factor and the blocking factor.
This is possible in cases in which the responses are not necessarily obtained
from experimental units that are grouped together prior to the experiment to
form blocks. For example, a block may consist of responses from a complete
replicate of experimental trials performed by a person (or a group of persons
such as a team), a time unit (such as a day, a week, or a month), a space unit
(such as a lab, a location, a growth chamber, a bench, or an oven), and so
forth.

In some instances, it may be that the second factor may not be considered
a blocking factor (such as when experimental trials are run within an enclo-
sure to control an environmental factor such as temperature or humidity).
If independent replications of the levels of the first factor are not obtained,
this arrangement would result in a two-way factorial experiment with only a
single response observed per cell. In such cases, a nonadditive model may not
be appropriate.

Tukey (1949) proposed a test for nonadditivity in nonreplicated two-way
classifications. It was shown later that this Tukey’s F -statistic is a test of
H0 : λ = 0 in the model

yij = μ+ τi + βj + λτiβj + εij , i = 1, . . . , t; j = 1, . . . , r

where the interaction is modeled as γij = λτiβj , which is a scalar multiple of
the product of the main effects τi and βj . This test is called the single degree
of freedom test of nonadditivity because the sum of squares due to the null
hypothesis has one degree of freedom. This test is popular among practitioners

insert data step to create the SAS dataset ‘soybean’ here

proc glm order=data;
class Trt Rep;
model Yield = Trt Rep;
output out=new p=Yhat;

run;

proc glm order=data;
class Trt Rep;
model Yield = Trt Rep Yhat*Yhat/ss1;
title "Tukey’s Test for Nonadditivity";
run;

Fig. 5.60. SAS Example E10: program for Tukey’s test of nonadditivity

for the important reason that if the data display this type of nonadditivity,
it is possible to find a power transformation of the response variable that
may restore additivity so that one can proceed with further analysis of the
treatment effects. Since this test and associated computations are detailed
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in many textbooks, they will not be repeated here. However, a method for
obtaining Tukey’s statistic for testing nonadditivity and an associated p-value
using SAS is presented.

SAS Example E10

In the SAS program displayed in Fig. 5.60, the first proc glm step is a modified
version of the program used in Sect. 5.7.1. Here, the predicted values from
fitting the additive model to the soybean data are saved as a variable name
yhat using the predicted= (or, equivalently, p= as used here) option in an
output statement.

This results in the creation of new SAS data set (named new here), which
is the same as the original data set soybeans, augmented by the addition of
the new variable named yhat. This data set is used as the input data set to
a second proc glm step where the model statement

model Yield = Trt Rep Yhat*Yhat/ss1;

is used to fit a new model. In this model, the term Yhat*Yhat is equivalent
to a regression variable (i.e., a covariate). The ss1 option requests that only

Tukey's Test for Nonadditivity

The GLM Procedure

Dependent Variable: Yield

Source DF
Sum of 

Squares Mean Square F Value Pr > F

Model 9 135.1756858 15.0195206 2.65 0.0461

Error 15 85.0643142 5.6709543

Corrected Total 24 220.2400000

R-Square Coeff Var Root MSE Yield Mean

0.613765 31.66724 2.381377 7.520000

Source DF Type I SS Mean Square F Value Pr > F

Trt 4 83.84000000 20.96000000 3.70 0.0275

Rep 4 49.84000000 12.46000000 2.20 0.1187

Yhat*Yhat 1 1.49568580 1.49568580 0.26 0.6150

Fig. 5.61. SAS Example E10: output from proc glm

Type I SS be computed and output. From the output in Fig. 5.61, the Tukey’s
single degree of freedom sum of squares, the F -statistic for performing Tukey’s
test of nonadditivity, and the corresponding p-value are the Type I SS values
pertaining to the regression term yhat*yhat and are observed to be 1.4956,
0.26, and 0.6150, respectively. Thus, the hypothesis of no interaction (i.e.,
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H0 : λ = 0) is not rejected based on this p-value; hence, an additive model is
appropriate for this data.

5.8 Exercises

5.1 An experiment was carried out in a completely randomized design to
compare the differences in the levels of physiologically active polyunsat-
urated fatty acids (PAPUFA, in percentages) of six different brands of
diet margarine, resulting in the following data (Devore 1982):

Imperial 14.1 13.6 14.4 14.3
Parkay 12.8 12.5 13.4 13.0 12.3

Blue Bonnet 13.5 13.4 14.1 14.3
Chiffon 13.2 12.7 12.6 13.9
Mazola 16.8 17.2 16.4 17.3 18.0

Fleischmann’s 18.1 17.2 18.7 18.4

Prepare and run a SAS program to obtain the output necessary to pro-
vide all of the following information. You must extract numbers from the
output and write answers on a separate sheet of paper.
a. Assuming the fixed effects one-way classification model for these

data, give estimates of true mean PAPUFA percentages μ1, μ2, μ3,
μ4, μ5, and μ6 and the error variance σ2. Write down the corre-
sponding analysis of variance table including the p-value. State the
hypothesis tested by the F -statistic and your decision based on the
p-value.

b. Mazola and Fleischmann’s are corn based, and the others are soy-
bean based. Use an appropriate contrast statement to compute an
F -statistic for testing the hypothesis that the average of true mean
PAPUFA percentages for corn-based brands is the same as the av-
erage for soybean-based brands. Include the corresponding sum of
squares and the F -statistic in the above ANOVA table. Based on
the p-value, state your conclusions from the experiment in words.

c. Compute Tukey 95% confidence intervals for all pairwise differences
in true mean PAPUFA percentages, i.e., (μr − μs)s. Explain why
these intervals are wider than the t-distribution based 95% confi-
dence intervals (other than the fact that the Tukey percentiles are
larger than the corresponding t values).

5.2 Six samples of each of four types of cereal grain grown in a certain region
were randomly selected and analyzed to determine the thiamin content
(mcg/gm) in an experiment reported in Devore (1982). The data were
input to the following SAS program:

data ex2;

input cereal $ @;
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do i=1 to 6;

input thiamin @;

output;

end;

datalines;

Wheat 5.2 4.5 6.0 6.1 6.7 5.8

Barley 6.5 7.0 6.1 7.5 5.9 5.7

Maize 5.8 4.7 6.4 4.9 6.0 5.2

Oats 8.3 6.7 7.8 7.0 5.9 7.2

;

run ;

proc print;

title ‘ Thiamin Content in Cereal Grains’;

run;

proc glm;

class cereal ;

model thiamin = cereal ;

run;

Assuming the one-way fixed effects model

yij = μ+ τi + εij , i = 1, . . . , 4; j = 1, . . . , 6

where μi = μ+τi are the population mean thiamin content for each cereal
and εij are iid N(0, σ2) errors, complete the SAS program as needed to
answer the following:
a. It is thought that oats are higher in thiamin content than other

cereals. Add a contrast statement for testing the appropriate com-
parison to test this hypothesis.

b. Add an option to the proc statement for the levels of the cereal

variable to retain the ordering present in the data.
c. Add an option to the model statement to obtain the estimates of the

parameters μ, τ1, τ2, τ3, and τ4.
d. Compute 95% confidence intervals on all pairwise differences (i.e.,

(μp − μq)’s) adjusted for multiple testing using the Bonferroni
method.

5.3 The following are clotting times of plasma (in minutes) for four different
levels of a drug compared in a completely randomized design (modified
from a different experiment reported in Armitage and Berry 1994). Blood
samples were taken from each of eight subjects randomly assigned to each
of the four levels of the drug.
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Drug

0.1% 0.2% 0.3% 0.4%

8.4 9.4 9.8 12.2
12.8 15.2 12.9 14.4
9.6 9.1 11.2 9.8
9.8 8.8 9.9 12.0
8.4 8.2 8.5 8.5
8.6 9.9 9.8 10.9
8.9 9.0 9.2 10.4
7.9 8.1 8.2 10.0

a. Write a SAS data step to read the data (that you enter instream),
and create a SAS data set in the form necessary to be used by proc

glm.
b. Write a complete SAS proc step to obtain the ANOVA table nec-

essary, and include a statement to compute confidence intervals for
differences in all pairwise drug means. Report the ANOVA table and
the confidence intervals and use them to summarize the results of the
experiment.

c. Add a statement to obtain the necessary F -statistic to test whether
the average clotting times have an increasing linear trend with the
level of the drug. What is your conclusion?

5.4 A marketing consultant conducted an experiment to compare four differ-
ent package designs for a new breakfast cereal (this problem is described
in Kutner et al. (2005); however, the data given are artificial). Twenty-
four stores with approximately similar sales volumes were selected, and
each store was required to carry only one of the package designs. Thus,
each package design was randomly assigned to six stores. Other rele-
vant conditions such as price, amount and location of shelf space, and
advertising were kept roughly similar for all stores participating in the
experiment. Sales, in number of cases, were observed for the study pe-
riod. The data are

Package design

1 2 3 4
12 14 19 24
18 12 17 30
14 13 21 27
15 10 23 28
17 15 16 32
15 12 20 30

Write and execute a SAS program to obtain the output necessary to
provide answers to all of the following questions:



5.8 Exercises 401

a. Construct an analysis of variance using numbers from the SAS out-
put. Test H0 : μ1 = μ2 = μ3 = μ4 versus Ha : at least one μi is
different from the others, using α = 0.05. Use the p-value from the
SAS output to make a decision.

b. Use the lsd procedure to test all possible differences of H0 : μi −
μj = 0 versus Ha : μi − μj �= 0 using α = 0.05. Report the results
using the underscoring display. Summarize your conclusions from
this procedure in a sentence or two.

c. Use the Tukey procedure to test all possible differences of H0 : μi −
μj = 0 versus Ha : μi − μj �= 0 using α = 0.05. Report the results
using the underscoring display. Point out any conclusions that are
different from those made using the lsd procedure. Explain why they
are different.

d. It would be more useful to test preplanned comparisons than test-
ing pairwise differences among the four packaging designs given the
following additional information on the package designs used.

Package design Design style

1 3 colors, with cartoons
2 3 colors, without cartoons
3 5 colors, with cartoons
4 5 colors, without cartoons

Thus, the experimenter could have planned to

i. compare the the average effect of the three-color designs with
the average effect of the five-color designs,

ii. compare the average effect of the designs with cartoons with the
average effect of the designs without cartoons,

iii. compare the effect of the three-color design with cartoons with
the effect of the three-color design without cartoons, and

iv. compare the the effect of the five-color design with cartoons with
the effect of the five-color design without cartoons.

Compute appropriate t-statistics to test the comparisons given above
controlling the error rate for each comparison at α = 0.05. State your
conclusion in each case.

5.5 In an experiment conducted to compare the effects of sleep deprivation
on reaction time to onset of light (Kirk 1982), 32 subjects were randomly
divided into 4 groups of 8 subjects each. Four levels of sleep deprivation
(12, 24, 36, and 48 hours) were randomly assigned to the four groups.
The reaction times of the 32 subjects (in hundredths of a second) are
tabulated below. Prepare and run a SAS program to obtain the output
necessary to provide all of the following information. You must extract
numbers from the output and write answers on a separate sheet of paper.
Model this program after SAS Example E3.
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Duration of sleep deprivation

12 hours 24 hours 36 hours 48 hours

20 21 25 26
20 20 23 27
17 21 22 24
19 22 23 27
20 20 21 25
19 20 22 28
21 23 22 26
19 19 23 27

a. Obtain a scatter plot of the data with the levels of duration on the
horizontal axis. Overlay line segments connecting the averages. What
kind of trend does the averages indicate?

b. Construct an ANOVA table and use the F -statistics to test the hy-
pothesis that the population means of reaction times at each sleep
deprivation are all equal against the alternative that there is at least
one difference, using α = 0.05

c. Test the hypothesis that there is no linear trend in the population
means using α = 0.05

d. Test the hypothesis that the nonlinear components of the trend (i.e.,
the deviation from linear components) equal zero using α = 0.05.
Note that this is the same as a test of lack of fit of a linear trend.

5.6 Researchers conducted an experiment to compare the effectiveness of four
new weight-reducing agents to that of an existing agent (Ott and Long-
necker 2001). The researchers randomly divided a random sample of 50
males into 5 equal groups, with preparation A assigned to the first group,
B to the second group, and so on. They then gave a prestudy physical
to each person in the experiment and told him how many pounds over-
weight he was. A comparison of the mean number of pounds overweight
for the groups showed no significant differences. The researchers then be-
gan the study program, and each group took the prescribed preparation
for a fixed period of time. The weight losses recorded at the end of the
study period are as follows:

Agent Weight loss

A1 12.4 10.7 11.9 11.0 12.4 12.3 13.0 12.5 11.2 13.1
A2 9.1 11.5 11.3 9.7 13.2 10.7 10.6 11.3 11.1 11.7
A3 8.5 11.6 10.2 10.9 9.0 9.6 9.9 11.3 10.5 11.2
A4 12.7 13.2 11.8 11.9 12.2 11.2 13.7 11.8 11.5 11.7
S 8.7 9.3 8.2 8.3 9.0 9.4 9.2 12.2 8.5 9.9

The standard agent is labeled agent S, and the four new agents are
labeled A1, A2, A3, and A4:
A1: Drug therapy with exercise and counseling
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A2: Drug therapy with exercise but no counseling
A3: Drug therapy with counseling but no exercise
A4: Drug therapy with no exercise and no counseling
Denoting the means for the five treated populations by μ1, μ2, μ3, μ4,
and μ5, respectively, linear combinations for making comparisons among
the agent means that will address the following questions can be con-
structed:

a. Compare the mean for the standard to the average of the four agent
means:

(μ1 + μ2 + μ3 + μ4)/4− μ5

b. Compare the average mean for the agents with counseling to average
mean for those without counseling (ignoring the standard):

(μ1 + μ3)/2− (μ2 + μ4)/2
c. Compare the average mean for the agents with exercise to average

mean for those without exercise (ignoring the standard):

(μ1 + μ2)/2− (μ3 + μ4)/2
d. Compare the mean for the agents with counseling to the standard:

(μ1 + μ3)/2− μ5

5.7 An experiment, carried out in a completely randomized design (Devore
1982), to compare the effects of five different plate lengths of 4, 6, 8, 10,
and 12 inches on axial stiffness of metal plate-connected trusses used for
roof support, yielded the following observations on axial stiffness index
(kips/in.).

Plate length

4 6 8 10 12
309.2 402.1 392.4 346.7 407.4
409.5 347.2 366.2 452.9 441.8
311.0 361.0 351.0 461.4 419.9
326.5 404.5 357.1 433.1 410.7
349.8 331.0 409.9 410.6 473.4
309.7 348.9 367.3 384.2 441.2
316.8 381.7 382.0 362.6 465.8

Apart from the overall differences of the effects of the five plate lengths on
axial stiffness, the experimenter was interested in determining whether
the mean stiffness index depends linearly on the actual plate length.
This may be done using an appropriate orthogonal polynomial of the
means. Prepare and run a SAS program to obtain the output necessary
to provide all of the following information. You must extract numbers
from the output and write answers on a separate sheet of paper.
a. Assuming the fixed effects one-way classification model for the data,

give estimates of μ1, μ2, μ3, μ4, μ5, and σ2.
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b. Write down the corresponding analysis of variance table including
the p-value. State the hypothesis tested by the F -statistic and your
decision based on the p-value.

c. Use a contrast statement to compute an F -statistic for testing
whether the mean stiffness index is linearly related to the plate
length. Include the corresponding sum of squares and the F -statistic
in an expanded ANOVA table. Based on the p-values, summarize
your conclusions.

d. Include an estimate statement for the same comparison as in part
(c). If the mean stiffness index is shown to have a straight-line rela-
tionship with the plate length, then estimate the slope of this line by
the estimated value of the comparison divided by the sum of squares
of its coefficients. Interpret this slope as an increase or decrease of
axial index per inch of plate length.

5.8 A researcher wants to evaluate the difference in mean film thickness
of a coating placed on silicon wafers using three different processes
(Ott and Longnecker 2001). Six wafers are randomly assigned to each
of the processes. The film thickness and the temperature in the lab
during the coating process are recorded for each wafer. The researcher
is concerned that fluctuations in temperature may affect the film thick-
ness. The results were analyzed using a one-way covariance model
yij = μi + β(xij − x̄) + εij where temperature was used as the covariate.
Complete and execute the following SAS program and use the output
to answer the questions that follow.

data ex8;

input process @;

do i=1 to 6;

input temperature thickness @@;

output;

end;

datalines;

1 26 100 35 150 28 106 31 95 29 113 34 144

2 24 118 28 134 29 138 32 147 36 165 35 159

3 37 124 31 95 34 120 27 86 28 98 25 81

;

run;

proc glm data=ex7;

class ;

model thickness = ;

title ‘Film thickness adjusted by Temperature’;

run;

a. Construct an adjusted ANOVA table.
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b. Using the above ANOVA table, test the hypothesis of H0 : μ1 =
μ2 = μ3 (use the p-value and state decision).

c. Compute 95% confidence intervals for all differences in pairs of means
(e.g., μ1 − μ2) adjusted for multiple testing using the Bonferroni
method.

d. What does the test of H0 : β = 0 tell you? Test this hypothesis using
the above adjusted ANOVA table and state your conclusion.

e. Give the sum of squares for the variety effect that is not adjusted for
the moisture effect.

5.9 A process engineer is interested in determining if there is a difference
in the breaking strength of a monofilament fiber produced using three
different machines for a textile company (Montgomery 1991). However,
the strength of the fiber is also related to its diameter, with thicker fibers
being stronger than thinner ones. Random samples of five fiber specimens
each were selected from each machine, and the breaking strength y (in
pounds) and the diameter x (in 10−3 inches) (to be used as a covariate)
are measured.

Machine 1 Machine 2 Machine 3

y x y x y x
36 20 45 22 35 21
41 25 52 28 37 23
39 24 44 22 42 26
42 25 49 30 34 21
48 32 51 28 32 15

Use proc glm in SAS and the one-way covariance model to analyze this
data. Extract numbers from the SAS output and write your own answers
to the following questions:
a. Write an appropriate model for analyzing these data so that it is

possible to perform a test of the equality of the slopes from your
analysis. Construct an “adjusted” analysis of variance table to test
the hypothesis of equal means (or effects) corresponding to the ma-
chines. State your conclusion based on the p-value.

b. Provide estimates of the regression coefficients of the straight lines
if it is determined that their slopes are different.

c. Calculate 95% confidence intervals on all differences in pair of means
(e.g., μi − μj) adjusted at the mean value of x.

d. Include a proc step in your SAS program to obtain a scatter plot of
y versus x, superimposed by the fitted regression lines.

5.10 The data displayed below are results from an experiment described in
Snedecor and Cochran (1989) on the use of drugs in the treatment of
leprosy. The drugs were A and D, which were antibiotics, and F is an inert
drug used as a control. The dependent variable Y was a score of leprosy
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bacilli measured on each patient after several months of treatment. The
covariate X was a pretreatment score of leprosy bacilli.

Drugs
A D F

X Y X Y X Y
11 6 6 0 16 13
8 0 6 2 13 10
5 2 7 3 11 18

14 8 8 1 9 5
19 11 18 18 21 23
6 4 8 4 16 12

10 13 19 14 12 5
6 1 8 9 12 16

11 8 5 1 7 1
3 0 15 9 12 20

a. Use proc glm and the one-way covariance (equal slopes) model to
analyze this data. Construct an adjusted ANOVA table.

b. Using the above ANOVA table, test the hypothesis H0 : μ1 = μ2 =
μ3 (use the p-value and state decision).

c. Construct 95% confidence intervals for all differences in pairs of
means (e.g., μ1 −μ2) adjusted for multiple testing using the Bonfer-
roni method.

d. What does the test of H0 : β = 0 tell you? Test this hypothesis using
the above adjusted ANOVA table and state your conclusion.

e. Construct an analysis of variance that is not adjusted for the pre-
score. What conclusion can you draw from this ANOVA table.

5.11 An experiment conducted to study the friction properties of lubricants
is described in Mason et al. (1989). A key constituent of lubricants that
is of interest to the researchers is the additive that is mixed with the
base lubricant. In order to ascertain whether two competing additives
produce a different effect on the friction properties of lubricants, ten
mixtures of a base lubricant and each of the additives were made. The
mixtures of base lubricant cannot be made sufficiently uniform to ensure
that all batches have identical physical properties. Consequently, the
plastic viscosity, an important characteristic of the base lubricant that is
related to its friction-reducing capability, was measured for each mixture
prior to the addition of the additives. This measures the variation among
batches due to the base lubricant alone. Analyze the following data to
determine whether the additives differ in the mean friction measurements
associated with each.
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Additive A Additive B

Plastic Friction Plastic Friction
viscosity(x) measurement(y) viscosity(x) measurement(y)

12 27.1 15 28.6
13 26.6 13 37.1
15 28.9 14 37.9
14 27.1 14 30.6
10 23.6 13 33.6
10 26.4 13 34.9
13 28.1 13 33.1
14 26.1 14 34.4
12 24.4 14 32.6
14 29.1 12 35.6

Use proc glm and the one-way covariance model to analyze this
data. A plot of the data suggests that the slopes of the regression lines
for the two additives may be different. The data were analyzed using a
one-way covariance model

yij = αi + βixij + εij

Thus, it is possible to perform a test of the equality of the slopes as a
part of your analysis. Extract numbers from the SAS output to write
your own answers to the following questions.
a. Construct an “adjusted” analysis of variance table to test the hy-

pothesis H0 : β1 = β2 (or, equivalently, H0 : τ1 = τ2). Use the
p-value to draw a conclusion.

b. If the slopes are found to be unequal, obtain estimates of parameters
for the two regressions.

c. Use the lsmeans statement in proc glm to obtain a confidence in-
terval on the difference in the slopes α1 − α2 adjusted at the mean
plastic viscosity.

d. Use the lsmeans statements in proc glm to obtain a confidence in-
terval on the difference in the slopes α1 − α2 adjusted at plastic
viscosity values of 12 and 14.

5.12 In an experiment described in Kirk (1982), four methods for teaching
arithmetic were being evaluated. Thirty-two students were randomly as-
signed to four classrooms, each with eight students. An intelligence test
was administered to each student at the beginning of the experiment.
The resulting scores (x) are used to adjust the arithmetic achievement
scores (y) obtained at the conclusion of the experiment for differences in
intelligence among the students. The results are recorded as follows:
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Method 1 Method 2 Method 3 Method 4

y x y x y x y x
3 42 4 47 7 61 7 65
6 57 5 49 8 65 8 74
3 33 4 42 7 64 9 80
3 47 3 41 6 56 8 73
1 32 2 38 5 52 10 85
2 35 3 43 6 58 10 82
2 33 4 48 5 53 9 78
2 39 3 45 6 54 11 89

a. Use proc glm and the one-way covariance (equal slopes)

model to analyze this data. Construct an adjusted ANOVA table.
b. Using the above ANOVA table, test the hypothesis of H0 : μ1 =

μ2 = μ3 = μ4 (use the p-value and state decision).
c. Construct 95% confidence intervals for all differences in pairs of

means (e.g., μa − μb) adjusted for multiple testing using the Tukey
method.

d. What does the test of H0 : β = 0 tell you? Test this hypothesis using
the above adjusted ANOVA table and state your conclusion.

e. Construct an analysis of variance that is not adjusted for the in-
telligence score. What conclusion can you draw from this ANOVA
table.

5.13 A medical experiment is run to determine the side effects on children
when they take various dosages of a drug administered by different
methods. A two-way factorial with four dosages (0.5, 1.0, 1.5, and 2.0
milligrams) and three methods of administering (oral, extended release,
intravenous) is used in a completely randomized design, with each treat-
ment combination replicated twice. The response variable is the amount
of a certain chemical present in the lever after 24 hours. The data are as
follows:

Dosage
Method

0.5 1.0 1.5 2.0
0.414 0.541 0.592 0.672

1
0.312 0.423 0.575 0.610

0.537 0.513 0.595 0.709
2

0.451 0.580 0.573 0.623

0.572 0.622 0.613 0.695
3

0.554 0.597 0.650 0.751

Use appropriate SAS procedures to analyze these data. Use the output
from program to answer all of the following on a separate sheet:
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a. Estimate the cell means μij and report these in a two-way table.
Obtain a graph using proc sgplot of the cell means, with dosage
on the x -axis, and using different symbols for each method. Join the
points for each method by line segments of different colors and line
types.

b. Construct the ANOVA table to test the hypotheses of no interaction
and main effects. What are the conclusions from each test? Does the
graph in part (a) support your conclusion from the test for interac-
tion. Discuss.

c. Obtain 95% confidence intervals for the pairwise differences in meth-
ods means and make an overall conclusion.

d. The hypothesis that the average effects of dosage are linearly related
to the level of dosage can be examined by constructing a contrast of
the dosage means with appropriate coefficients. Include a contrast

statement in your program. Partition the dosage sum of squares from
the results and determine if there is evidence for such a linear trend.

5.14 A mechanical engineer is comparing the thrust force produced by a drill
press under various combinations of drill speed and feed rate. A two-way
factorial with four feed rates (0.015, 0.030, 0.045, and 0.060 in./min) and
two drill speeds (125 and 200 rpm) is used in a completely randomized
design with each treatment combination replicated twice (Montgomery
1991). The results are as follows:

Feed rate
Drill speed

0.015 0.030 0.045 0.060
2.70 2.45 2.60 2.75

125
2.78 2.49 2.72 2.86

2.83 2.85 2.86 2.94
200

2.86 2.80 2.87 2.88

Use appropriate SAS procedures to analyze these data. Use the output
from program to answer all of the following:
a. Use proc means to obtain estimates of the cell means μij . Construct

a two-way table of means showing the Feed Rate and Drill Speed cell
means.

b. Obtain a graph using proc sgplot of the cell means with Feed Rate
on the x -axis. Join the points for each Drill Speed by line segments.
(This is the interaction plot of means discussed in the text.)

c. Construct the ANOVA table to test the hypotheses of no interaction
and zero main effects. What are the conclusions from each test using
α = 0.05?

d. Use the graph in part (b) to explain your conclusion from the test
for interaction. Comment on the variation in mean response across
the levels of Feed Rate at each level of Drill Speed, and use it to
explain any significant interaction.
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e. Compute a 95% confidence interval for the difference in Drill Speed
means. Use this interval to say if these means are significantly dif-
ferent.

f. The hypothesis that the average effects of Feed Rate are linearly
related to the levels of Feed Rate can be tested by constructing a
contrast of the Feed Rate means with coefficients to be obtained from
the table of orthogonal polynomial coefficients. Include a contrast

statement in your program to do this computation. Insert a line into
the ANOVA table to report the results. What do you conclude from
this test?

5.15 Ostle (1963) presented an example of an agronomic experiment to as-
sess the effects of date of planting and type of fertilizer on the yield of
soybeans. Thirty-two experimental plots were randomly assigned to the
treatment combinations so that each combination was replicated four
times. The yield data are reported in the following table. Write a SAS
program with appropriate procedure steps to obtain the output neces-
sary to answer all of the following questions. Extract or write answers
on separate pages and attach any graphs requested.

Date of Fertilizer Yields from plots
planting type (bushels/acre)
Early Check 28.6 36.8 32.7 32.6

Aero 29.1 29.2 30.6 29.1
Na 28.4 27.4 26.0 29.3
K 29.2 28.2 27.7 32.0

Late Check 30.3 32.3 31.6 30.9
Aero 32.7 30.8 31.0 33.8
Na 30.3 32.7 33.0 33.9
K 32.7 31.7 31.8 29.4

a. Use proc means to obtain estimates of the cell means μij . Construct
a two-way table showing the date of planting by fertilizer type mean
yields.

b. Obtain a scatter plot of the cell means using proc sgplot with type
of fertilizer on the horizontal axis. Join the points for each date of
planting by line segments. (This will produce an interaction plot of
treatment means discussed in the text.)

c. Construct the ANOVA table to test the hypotheses of no interaction
and zero main effects. What are the conclusions from each test using
α = 0.05?

d. Use the graph in part (b) to explain your conclusion from the test
for interaction. Comment on the trends in mean response across the
levels of type of fertilizer for each date of planting, and use it to
explain significant interaction, if any.
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e. The hypothesis comparing the check with the average of the types of
fertilizers (a main effect comparison) can be tested by constructing
a contrast of the fertilizer means. Use a contrast statement in your
program to do this computation. Add a line to the ANOVA table to
report the results. What do you conclude from this test?

f. Use a contrast statement to test the interaction comparison that the
comparison in part (e) is the same at both dates of planting. What
is your conclusion and does it support your conclusion for parts (c)
and (d)? Add a line to the ANOVA table to report the results.

5.16 The yield (grams per plant) of beetroots grown in pots in response to two
crossed factors, wood chips from three different sources and nitrogen at
three levels, in a completely randomized design with three replications,
is given below (Bliss 1970). The rate of application of the wood chips
was 10 tons/acre, and nitrogen levels used were 0, 1

2 , and 1 gram/100
grams of organic matter added as chips. There were nine replications of
pots with a control treatment of no chips and, therefore, no additional
nitrogen. Use appropriate SAS procedures to analyze the data. Provide
answers to the following questions on separate sheets, extracting material
from the SAS output as needed.

No chips Pine chips Oak-hickory Aspen-birch
0 0 0 0 1

2 1 0 1
2 1 0 1

2 1

16.9 15.5 16.8 13.3 20.8 21.2 3.6 10.0 18.3 1.2 6.0 7.8
17.5 20.0 19.7 16.1 16.5 18.4 3.8 10.5 18.2 1.2 3.3 9.7
20.0 19.0 20.5 14.3 14.0 16.3 1.8 9.9 14.2 4.1 5.1 10.5

a. Estimate the cell means μij and report these in a two-way table.
Obtain a graph using proc sgplot of the cell means with nitrogen
levels on the x -axis and using different symbols for each type of wood
chip. Join the points for each chip type by line segments of different
colors and line types.

b. Construct the ANOVA table to test the hypotheses of no interaction
and main effects. What are the conclusions from each test? Does the
graph in part (a) support your conclusion from the test for interac-
tion. Discuss.

c. The hypothesis that the average beet yields are linearly related to
the levels of nitrogen can be examined by constructing a contrast of
the dosage means with appropriate coefficients. Include a contrast

statement in your program. Partition the nitrogen main effect sum
of squares into linear and lack-of-fit components, and determine if
there is evidence for such a linear trend.

d. Partition the wood chip main effect sum of squares into sums of
squares corresponding to the following three orthogonal compar-
isons: chips versus control, hard versus soft woods, and between hard
woods. (Note: Pine is a soft wood, whereas the others are all hard
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woods.) Include contrast statements in your program to obtain F -
statistics to test the corresponding hypotheses. Report the results of
these tests and use these to make conclusions about the wood chip
main effects.

e. Use a contrast statement to extract the interaction sum of squares
that corresponds to the interaction comparison of linear × between
hard woods. What hypothesis does this comparison test? What is
your conclusion?

5.17 Use the following data set, which is similar to that used in SAS Example
E8 (Fig. 5.49) except that different data values are missing.

Drug
Poison

A B C D
I 0.31 0.82 . 0.45

0.45 . 0.45 0.71
. 0.88 0.63 0.66

0.43 0.72 . 0.62

II 0.36 0.92 0.44 0.56
. . 0.35 .

0.40 0.49 0.31 0.71
. . 0.40 0.38

III 0.22 0.30 0.23 0.30
. 0.37 0.25 .

0.18 0.38 0.24 .
0.23 0.29 0.22 0.33

You are required to add a proc glm step to this program to do the com-
putations described below. Use the usual two-way classification model
for this analysis.
a. Obtain the least squares estimates of μ, αi, βj , and γij for i = 1, 2, 3

and j = 1, 2, 3, 4 computed by proc glm.
b. Use lsmeans statements to obtain 95% confidence intervals on pair-

wise differences in Poison and Drug means, adjusted for multiple
testing.

c. It can be shown that μ̄.1− μ̄.2 = β1−β2+ γ̄.1− γ̄.2. Estimate μ̄.1− μ̄.2

by substituting estimates of the parameters from part (a) in this ex-
pression, using hand computation. Include an estimate statement
in the proc glm step to verify this estimate and to compute its stan-
dard error.

d. Use the results of the estimate statement to compute a 95% confi-
dence interval for μ̄.1 − μ̄.2.

e. Test H0 : μ̄.1 = μ̄.2 using an appropriate contrast statement.
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f. Include a statement to obtain estimates of the cell means μij and
their standard errors for all i and j.

g. Construct an analysis of variance table to test main effects and in-
teraction for these data, and use the p-values to state conclusions.
Use the values output from proc glm and write your own complete
ANOVA table.

5.18 Kutner et al. (2005) discussed an example in which human growth hor-
mone was administered at a clinical research center to short prepubescent
children. The investigator was studying the effects of gender and bone
development levels on the rate of growth induced by hormone adminis-
tration. Three children were randomly selected from each gender-bone
development group, but 4 of the 18 children dropped out of the yearlong
study. The data are as follows:

Bone development
Gender

Severely Moderately Mildly
depressed depressed depressed

Male 1.4 2.1 0.7
2.4 1.7 1.1
2.2

Female 2.4 2.5 0.5
1.8 0.9
2.0 1.3

Use a SAS program with a proc glm step to this program to perform
the computations described below. Use the usual two-way classification
model for this analysis.
a. Use proc means to obtain estimates of the cell means μij . Construct

a two-way table of gender by bone development levels showing the
growth rate cell means.

b. Obtain an interaction plot using proc gplot of the growth rate cell
means with bone development levels on the x -axis. Join the points
for each gender by line segments. Use colors and line types to identify
gender.

c. Obtain the least squares estimates of μ, αi, βj , and γij for i = 1, 2
and j = 1, 2, 3 computed by proc glm.

d. Construct an analysis of variance table to test main effects and inter-
action for these data. Use the values output from proc glm and write
your own complete ANOVA table. Using the p-values with α = 0.05,
make conclusions from each test.

e. Use lsmeans statements to obtain 90% confidence intervals on pair-
wise differences in bone development means adjusted for multiple
testing using the Tukey method. What do you conclude from these
intervals?
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f. Kutner et al. (2005) tested the hypothesis whether the average
growth rate of children with only mildly depressed bone develop-
ment is significantly larger than zero. Add an estimate statement
to obtain a t-statistic to test this one-sided hypothesis.

g. Test the hypothesis that the growth rates of children with severely
depressed bone development are different in males and females using
an appropriate contrast statement.

5.19 Four brands of airplane tires are compared to assess the differences in
the rate of tread wear. The data were collected on eight planes, with two
tires used under each wing. The researcher uses each airplane as a block,
mounting four test tires, one of each brand, in random order on each
airplane. Thus, a randomized complete block design with “airplane” as
a blocking factor is the design used. The amount of tread is measured
initially, and after 6 months, the following wear rates were obtained. A
larger value indicates greater wear.

Brand
Airplane

A B C D
1 4.02 2.46 2.06 3.49
2 4.50 3.39 2.91 3.18
3 2.73 1.69 2.37 1.48
4 3.74 1.95 3.39 3.09
5 3.21 1.20 1.72 2.65
6 2.53 1.04 2.52 1.23
7 3.07 2.55 2.42 2.07
8 3.10 1.09 2.22 2.57

Brand A is currently used by the airline, and Brands B, C, and D from
three different competitors are being evaluated to replace A. Thus, the
management is interested in the following:
1. Comparing Brand A with the average wear of Brands B, C, and D,
2. Comparing Brands B, C, and D
Prepare and run a SAS/GLM program necessary and provide answers to
the following questions (on a separate sheet) assuming the model SAS
Example E9 (see Fig. 5.56):
a. Construct an analysis of variance table and test the hypothesis H0 :

τA = τB = τC = τD. State your conclusion based on the p-value.
b. Use a contrast statement for making comparison 1 by testing H0 :

τA = (τB + τC + τD)/3.
c. Use a contrast statement for making the comparison 2 by testing

H0 : τB = τC = τD. One way to test this hypothesis is to make the
comparisons τB−τC and τB−τD simultaneously in a single contrast
statement. This results in the computation of a SS with 2 df and,
therefore, an F -test with 2 df for the numerator. Add the results of
(b) and (c) to the ANOVA table as additional lines and summarize
conclusions from this analysis.
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d. Construct 95% confidence intervals for μB −μC and μB −μD, using
the output from appropriate means statements used with proc glm.

e. Include the statement output out=new p=fitted r=residual; in
the proc glm step. Then use proc sgplot and the SAS data set new
to obtain scatter plots of Residuals versus Machine and Residuals
versus Fitted. Add a reference line at zero value on the residuals
axis to each of these plots. Use these plots to comment briefly on
whether your model assumptions were reasonable.

f. Perform Tukey’s test of nonadditivity using a proc glm step and the
SAS data set new created in part (e). What is your conclusion?

5.20 Four machines are compared to assess the differences in the rate of pro-
duction of a certain part (Part No. Z-15) (Ostle 1963). The data were
collected over 5 days. All four machines were run each day (in random
order), thus using a randomized complete block design with “Day” as a
blocking factor. The following data are the number of units produced
per day.

Machine
Day

A B C D
1 293 308 323 333
2 298 353 343 363
3 280 323 350 368
4 288 358 365 345
5 260 343 340 330

Machine A is currently in use in a factory, and Machines B, C, and D
from three different competitors are being evaluated to replace A. Thus,
the management is interested in the following:
1. comparing Machine A with the average production of Machines B,

C, and D,
2. comparing B, C, and D
Prepare and run a proc glm step necessary and provide complete an-
swers, including hypotheses tested and statistics used, to the following
questions (on a separate sheet as before). Use the model shown for the
RCBD for analyzing these data.
a. Construct an analysis of variance table and test the hypothesis H0 :

τA = τB = τC = τD. State your conclusion based on the p-value.
b. Use a contrast statement for making comparison 1 by testing H0 :

τA = (τB + τC + τD)/3. What is your conclusion?
c. Use a contrast statement for making comparison 2 by testing HO :

τB = τC = τD. One way to test this hypothesis is to make the
comparisons τB − τC and τB + τC − 2τD simultaneously, in a single
contrast statement. This results in the computation of a SS with
2 df and an F -test with 2 df for the numerator. Add these tests as
lines in an expanded ANOVA table and summarize the results from
your analysis.
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d. Construct 95% confidence intervals for τB−τC , τB−τD, and τC−τD,
using an appropriate statement in the proc glm step. Use the results
of parts (c) and (d) to make a statement about the new machines
being tried out assuming higher production rate is of interest.

e. Include the statement output out=stats p=fitted r=residual;

in proc glm step. Then use proc sgplot and the SAS data set
stats to obtain scatter plots of Residuals versus Machine and Resid-
uals versus Fitted. State the purpose for which these plots may be
used. Do these plots identify any problems with your model assump-
tions?

f. Perform Tukey’s test of nonadditivity using a proc glm step and the
SAS data set stats created in part (e). What is your conclusion?

5.21 A consumer product-testing organization wished to compare the an-
nual power consumption of five different brands of dehumidifier (Devore
1982). Because power consumption depends on the prevailing humidity
level, it was decided to monitor each brand at four different areas of
humidity, ranging from moderate to heavy. Within each area, the five
brands were randomly assigned to five different locations for testing, re-
sulting in a randomized complete block experiment with the areas as
blocks. The resulting power consumption (annual kWh) values are as
follows:

Blocks
Brand

1 2 3 4
1 685 792 838 875
2 722 806 893 953
3 733 802 880 941
4 811 888 952 1005
5 828 920 978 1023

Use a SAS procedure and the model given for the RCBD for analyzing
these data.
a. Construct an analysis of variance table and test the hypothesis H0 :

τ1 = τ2 = τ3 = τ4 = τ5. State your conclusion based on the p-value.
b. Use Tukey’s underscoring procedure to compare all pairwise treat-

ment effects. Make a concluding statement about the annual power
consumption of the five different brands of dehumidifiers.

c. Although comparing the block effects is not of interest, use the F -test
to comment about the variability among the blocks in this experi-
ment.

d. Add a proc step to your SAS program to perform Tukey’s test for
nonadditivity.

5.22 The following experiment is described in (Montgomery 2013). A resin
(PFTE) is used to produce artificial vascular grafts by extruding into
tubes. A study is performed to determine the cause of hard protrusions
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called flicks. The extrusion pressure is suspected to be a factor in the
occurrence of flicks. Four levels of extrusion pressure (8500, 8700, 8900,
9100 psi) are the treatments, and the response is the percentage of tubing
produced in the run that did not contain any flicks.
The experimenter also knows that there is batch-to-batch variation
among the batches of resin delivered by the supplier and thus plans
on using a RCBD with batches of resin as blocks. Six batches of resin
are used in the experiment with the four levels of extrusion pressure as
described above used with resin samples taken from each batch, the or-
der of runs within each block being randomly determined separately for
each batch. Thus, there are a total of 24 runs in the experiment. The
responses, expressed as percentages of usable tubing, were as follows:

Batch of resin (block)
Extrusion
pressure (PSI) 1 2 3 4 5 6
8500 90.3 89.2 98.2 93.9 87.4 97.9
8700 92.5 89.5 90.6 94.7 87.0 95.8
8900 85.5 90.8 89.6 86.2 88.0 93.4
9100 82.5 89.5 85.6 87.4 78.9 90.7

Use a SAS procedure and the model given for the RCBD for analyzing
these data.
a. Construct an analysis of variance table and test the hypothesis H0 :

μ1 = μ2 = μ3 = μ4 where μi = μ+ τi represent the mean percentage
for the ith extrusion pressure. State your conclusion based on the
p-value.

b. Use Fisher’s LSD procedure to determine which of the above treat-
ment (extrusion pressure) means differ. Can you conclude from this
analysis that lower extrusion pressures lead to fewer defects in the
tubes on the average?

c. Note that the levels of extrusion pressures selected by the experi-
menter are equally spaced. Use the orthogonal polynomial method
to partition the treatment sum of squares to a linear effect sum of
squares and a lack of fit sum of squares. Use these to perform a test of
whether there is a linear trend in the mean percentages as extrusion
pressure increases. State your conclusions.
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Analysis of Variance: Random and Mixed
Effects Models

6.1 Introduction

In Chap. 5, the data sets considered were produced from experiments in-
volving treatment factors that were regarded as fixed. The levels of factors
studied in such experiments were those that the experimenter was interested
in comparing and were not a random sample from a population of all possi-
ble levels. As discussed in Sect. 5.1, random factors were defined as those for
which the levels of factors in the experiment consisted of a random sample
from a population of levels. When random factors are present, the interest of
the experimenter is to study the variance of the hypothetical population of
factors rather than the differences among the effects of different factor levels.
Thus, the two types of factors are different not only in the way the treatment
levels are selected but also in the way they affect the objectives of the study
and, therefore, in the type of inferences made.

Whereas random models involve only random effects, mixed models are
models that incorporate both fixed and random effects. Different variations
of these are useful for modeling data generated from many experimental and
observational studies. In this chapter, several applications of these models will
be discussed and analyzed using SAS software. In the first few sections, one-
way and two-way random models are considered, followed by several sections
presenting different applications of the mixed model. In the latter sections,
data from an RCBD are reanalyzed and a split-plot experiment presented
regarding the blocks as a random factor, instead of a fixed factor. Several
SAS procedures will be used in the analyses, primarily proc glm and proc

mixed, and the differences identified and compared.
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It is necessary to note some of the differences in the analyses presented
here of models that include random effects from those that involve only fixed
effects. A primary difference will be the inclusion of a column for expected
mean squares in the analysis of variance table. An expected mean square
is the linear function of the parameters that the particular mean square is
expected to estimate unbiasedly and is usually derived mathematically using
the computational formula for the mean square (called a quadratic form) and
the model used for the observations. They are typically used for construction of
F -ratios that are used to test whether a particular function of the parameters
of interest is zero or not. For example, in the one-way classification model
with a fixed effect used in Sect. 5.2, the expected mean square for the source
of variation (SV), labeled Trt, is determined to be E(MSTrt) = σ2+

∑
i(αi−

ᾱ.)
2/(t − 1) and the expected mean squares for Error is E(MSE) = σ2.

Now the fact that
∑

i(αi − ᾱ.)
2/(t − 1) is zero if the null hypothesis of H0 :

α1 = α2 = · · · = αt is true and larger than zero if it is false implies that the
ratio of mean squares MSTrt/MSE is an appropriate measure for constructing
a statistical test of whether H0 is true or not.

It was considered unnecessary to include this column as part of the analyses
in Chap. 5, partly because the hypothesis being tested using the F -statistic for
a particular effect was unambiguous. This was so because the models in that
chapter did not contain random effects or nested effects. In experiments using
complex designs (e.g., split-plots) that involve only fixed treatment effects,
it may not be obvious how F -ratios that test particular hypotheses may be
constructed. It may be helpful for the analysis of such experiments to include
the expected mean square column in the ANOVA table.

In experiments that involve random factors, the variance of the response is
usually partitioned into parts called variance components, explained as vari-
ation due to each of the random effects appearing in the model. Apart from
determining appropriate test statistics, expected mean squares are also used
to estimate variance components using the method of moments. This involves
equating the expected mean squares of each source of variation in the ANOVA
table, to the respective observed mean square, and solving the resulting set
of linear equations for the variance components. The resulting estimates are
called method of moments estimates or ANOVA estimates. These estimates
have the useful properties of being unbiased and having minimum variance.

Another difference in the analyses of models that include random effects
is that in many situations, closed-form solutions to the normal equations for
obtaining maximum likelihood estimates do not exist and, thus, iterative opti-
mization techniques need to be employed to obtain the estimates. Section 6.5
contains an introduction to the mixed model that includes a brief discus-
sion of estimation of fixed effects and variance components that is illustrated
with a simplified example. Here, a brief introduction to the iterative meth-
ods available is given. The SAS procedure recommended for analyzing mixed
models is proc mixed. It incorporates two popular likelihood-based methods:
maximum likelihood (ML) and restricted maximum likelihood (REML). A
detailed theoretical discussion of these methods is beyond the scope of this
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book. However, at least a brief explanation will help users of SAS programs
like proc mixed understand the basic principles involved. The presentation
below (supplemented as needed later) is intended to provide users with a min-
imal explanation necessary to understand some of the options available in the
usage of these procedures as well as help make choices among the possible
values that may be specified for them. Readers are urged to obtain additional
information from more advanced textbooks on the topic as well as from the
detailed descriptions provided in the manuals.

The end result of the models that will be described in this chapter is the
specification of the joint distribution of the observations, say yijk. Generally,
it is easier to describe this as the multivariate distribution of an n-dimensional
data vector y. In the notation used in Chaps. 4 and 5, a regression or a fixed
effects ANOVA model was represented by y = Xβ + ε where the errors (εis)
were assumed to be iid N(0, σ2) random variables. Another way to express
this model is to say that y is distributed as an n-dimensional multivariate
normal with mean vector μ = Xβ and variance–covariance matrix σ2I where
I is an n × n identity matrix. In order to allow other variance–covariance
structures, this matrix may be represented by the symbol Σ (an element of
this matrix is represented by σij). For the two-way model used in Sect. 5.1 in
Chap. 5, the vectorβ = (μ, α1, α2, α3, τ1, τ2, τ3, τ4)

′ and Σ = σ2I. Thus, the
parameters of that model are μ, α1, α2, α3, τ1, τ2, τ3, τ4, and σ2. The joint
density function of the elements of y, using matrix notation, is represented by

f(y) =
1

√
(2π)n|Σ|

exp−1

2

[
(y −Xβ)′Σ−1(y −Xβ)

]

The likelihood function of the parameters of this model is the same function
given on the right-hand side of the above equation but is considered as a
function of the parameters (as opposed to a function of the elements in y). It
is denoted by L(θ), where θ is a vector containing all unknown parameters
in the density function. Since it is easier to manipulate mathematically, the
logarithm of L, called the log-likelihood and denoted by �(θ), is often used.
The log-likelihood for the above model is

�(θ) = −n

2
log (2π)− 1

2
log |Σ| − 1

2

[
(y −Xβ)′Σ−1(y −Xβ)

]

where θ = (β, σ11, . . . , σnn)
′. The maximum likelihood estimates (MLEs) are

those values of the parameters that maximize the log-likelihood function �(θ)
over the parameter space. For unbalanced data sets, calculating the MLEs
usually requires numerical optimization methods that involve iterative proce-
dures. Inference procedures for the parameters based on MLEs usually involve
large sample properties of these estimates. Usually, for construction of test
statistics and interval estimates, an approximate estimate of the variance–
covariance matrix of the estimated parameter vector that results from the
optimization procedure is used.

So far this description has only included models that involved regression-
type or ANOVA fixed-effects-type parameters. The general model for random
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and mixed models will be described in other sections of this chapter. In the
most general form, the mixed model is given by

y = Xβ + Z u+ ε

where the random vectors u and ε have independent multivariate normal
distributions N(0, G)and N(0, R), respectively, and the variance–covariance
matrices G and R are fixed unknown constants. Using this specification, the
variance–covariance matrix of y is of the form V = ZGZ

′
+ R, and the

marginal distribution of y is multivariate normal with mean vector μ = Xβ
and variance–covariance matrix V (i.e., N(Xβ, V )).

In the classical variance component model, the random subvectors u1, u2,
. . . ,uk of u (say, corresponding to k random effects) and ε have the mul-
tivariate normal distributions N(0, σ2

1 I), N(0, σ2
2 I), . . . , N(0, σ2

k I), and
N(0, σ2 I), respectively, where the matrices σ2

1 I and so forth are diagonal
matrices with the diagonal elements all equal to the respective variance com-
ponents. The variance–covariance matrix of y is thus given by the matrix V :

V =
∑

i

ZiZ
′

iσ
2
i + σ2 I.

where Zi is the design matrix for the ith random effect; that is, in this case,
both G and R turn out to be diagonal matrices, whose diagonal elements are
the variance components (σ2

1 , σ
2
2 , . . . , σ

2
k, σ

2).
The log-likelihood function of the parameters in the mixed model is ob-

tained using the marginal distribution of y given above and is

�(β, V ) = −n

2
log (2π)− 1

2
log |V | − 1

2

[
(y −Xβ)′V −1(y −Xβ)

]

In the classical variance component model described above, V is of the
form given above and, thus, is a function of the variance components σ2 =
(σ2

1 , σ
2
2 , . . . , σ

2
k, σ

2)′. The MLEs of β and the variance components are ob-
tained by equating the first derivatives of �(β, V ) with respect toβ and V to
zero and solving the resulting equations for β and σ2. The usual strategy is
to first solve the set of equations

X ′V −1Xβ̃ = X ′V −1y

for β̃, assuming that the variance components are known. The solution can be
obtained in closed form as

β̃ = (X ′V −1X)−1X ′V −1y

where β̃ is a function of the unknown variance components. Substituting β̃ in
�(β, V ) and using an iterative procedure to maximize the resulting profile log-
likelihood, σ̂2, the maximum likelihood estimate of σ2 is obtained. A procedure
to ensure that the variance components are in the parameter space (i.e., they
are nonnegative) is incorporated. The MLE of the variance components σ̂2 is
then used to compute the MLE ofβ using
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β̂ = (X ′V (σ̂2)−1X)−1X ′V (σ̂2)−1y

where V (σ̂2) is the estimated variance–covariance matrix of y using the MLE
σ̂2 of σ2.

Even balanced data ML estimates are not identical to the method of mo-
ments estimates. This is mainly because the ML estimation method does
not “adjust for” using the estimate of the fixed part of the model to esti-
mate the variance components. The so-called restricted maximum likelihood
(REML) estimation method overcomes this problem. It is easiest to under-
stand the REML estimation as based on maximizing the log-likelihood of the
transformed data vector Ky instead of the log-likelihood of y. The rows of
the matrix K, k′, are such that E(k′y) = k′Xβ = 0. These linear combi-
nations of the observations are called error contrasts in the literature and
can be obtained by selecting n − r linearly independent rows of the matrix
I−X(X ′X)−1X ′, where r is the rank of X. Once the matrix K is constructed,
it can be employed to transform the setup used for the previous maximization
problem by transforming y to Ky, Xβ to zero, Zs to KZ, and V to KVK ′.
Note that the new objective function is the log-likelihood function only of the
variance components, but the new observed values are the transformed data
values in Ky. The results of maximizing the transformed likelihood give the
REML estimates of the variance components, σ̂2

R. The estimates of the fixed
effect parameters are then obtained from

β̂R = (X ′V (σ̂2
R)

−1X)−1X ′V (σ̂2
R)

−1y

where V (σ̂2
R) is the estimated variance–covariance matrix using the REML

estimate of σ2.

6.2 One-Way Random Effects Model

Experiments involving one random factor are considered in this section. This
type of experiment is similar to the “Traffic Tickets” example discussed in
Chap. 5. The random factor of interest was “precinct,” that is, precincts in
a large city were selected randomly for comparing the number of tickets is-
sued for traffic-related violations. The main interest in this experiment is con-
cerned with making inferences (i.e., estimation and hypothesis tests), about
the variance among the precincts in the number of tickets issued. Suppose
that a precincts are under study and n officers are randomly sampled in each
precinct. Let yij be the number of tickets issued by the jth officer in the ith
precinct.

Model

The one-way random effects model is given by

yij = μ+Ai + εij , i = 1, . . . , a; j = 1, . . . , n
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where the random effects Ai, i = 1, . . . , a, are distributed as iid N(0, σ2
A)

random variables independent of the random errors εij . As usual, the random
errors εij , i = 1, . . . , a; j = 1, . . . , n, are distributed independently as
N(0, σ2) random variables. If this is formulated as a “means model” where
μi = μ + Ai, then μi, i = 1, . . . , a, are assumed to be distributed as iid
N(μ, σ2

A) random variables, where μ represents the mean of the population of
the factor levels. In the traffic ticket example, this would correspond to the
mean number of tickets issued by all police officers regardless of the precinct.
The random effect Ai models the random increment the ith precinct would
add to (or subtract from) μ to give the mean number of tickets μi issued in
that precinct.

It is important to note that the mean of Ai is zero; that is, on average,
the incremental mean number of tickets issued in different precincts cancels
out. However, σ2

A, the variance of Ai, and hence of μi, measures the variance
among the mean numbers of tickets issued in different precincts. If precinct
means are all the same, then it will be zero; otherwise, it will be positive and
will be larger the more variable the mean numbers of tickets issued among
different precincts. On the other hand, the variance among the numbers of
tickets issued by officers within each precinct is assumed to be the same for
all precincts. This measures the “error” variance σ2 among the experimental
units (police officers) in this study.

Estimation and Hypothesis Testing

An analysis of variance that corresponds to the above model is constructed us-
ing the same computational formulas used for the computation of the ANOVA
for the one-way fixed effects model. However, as discussed in Sect. 6.1, an addi-
tional column displaying the expected mean squares is included in the ANOVA
table for the one-way random effects model:

SV df SS MS F E (MS)
A a− 1 SSA MSA MSA/MSE σ2 + nσ2

A

Error a(n− 1) SSE MSE(= s2) σ2

Total an− 1

The computation of the expected mean squares does not require the distribu-
tional assumption of normality of the random effects. However, it is required
for performing hypothesis tests and constructing confidence intervals using
the F -, t-, and the chi-square distributions.

The hypothesis of main interest in the above model is

H0 : σ2
A = 0 versus Ha : σ2

A > 0

The two mean squares needed to construct an appropriate F -ratio are deter-
mined so that both the numerator and the denominator mean squares will
have the same expectation if the null hypothesis of σ2

A = 0 holds and the
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numerator will have a larger expectation if σ2
A > 0. By examining the E (MS)

column, it can be observed that the F-statistic shown satisfies this require-
ment. The null hypothesis is rejected if the computed F -statistic exceeds the
upper (1−α) percentile of the F -distribution with a− 1 and a(n− 1) degrees
of freedom or, equivalently, if the p-value is less than α for an α level selected
by the experimenter to control the Type I error rate.

As usual, the estimate of the error variance σ2 is the MSE from the
ANOVA table σ̂2 = s2. If the hypothesis H0 : σ2

A = 0 is rejected in favor
of Ha : σ2

A > 0, the mean squares may also be used to estimate σ2
A. To do

this, the expected mean square (which is a linear combination of the variance
components) is set equal to its observed value MSA from the ANOVA table;
that is, set

σ2 + nσ2
A = MSA

and the resulting equation is solved for σ2
A after substituting the estimate s2

for σ2. This gives the result

σ̂2
A =

MSA − s2

n

where the right-hand side consists only of quantities computed from the data
and obtained from the ANOVA table. This method of estimation is called
the method of moments. These estimates are identical to maximum likelihood
estimates when the sample sizes are the same, as is the case in this example.

One approach for obtaining approximate confidence intervals requires the
normality assumptions stated in the model definition. A (1 − α)100% confi-
dence interval for σ2

A is provided by

νσ̂2
A

χ2
1−α/2,ν

< σ2
A <

νσ̂2
A

χ2
α/2,ν

(6.1)

where χ2
1−α/2,ν and χ2

α/2,ν are the 1 − α/2 and α/2 percentile points of the
chi-squared distribution with ν degrees of freedom, respectively, and the value
of ν is obtained using the Satterthwaite approximation. This approximation is
required because, as seen earlier, σ̂2

A = 1
nMSA− 1

nMSE, a linear combination of
two mean squares, and thus it does not have an exact chi-square distribution.
The approximation defines ν as

ν =
(nσ̂2

A)
2

(MSA)2/(a− 1) + (s2)2/a(n− 1)
(6.2)

Note that no approximation is required to obtain a (1 − α)100% confidence
interval for σ2 since the interval is based on a single mean square (i.e., MSE).
It is given by

νs2

χ2
1−α/2,ν

< σ2 <
νs2

χ2
α/2,ν

(6.3)
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where ν = a(n − 1), the degrees of freedom for error. Also, note that the
above confidence intervals are not symmetrical around the estimate of the
corresponding variance component. The confidence intervals for the standard
deviations σA or σ are found by taking square roots of both end points of
each interval.

Although factor levels are independent, the observations from the same
factor are correlated. This correlation is another important quantity that may
be estimated from this type of an experiment and is called the intraclass
correlation:

Corr(yij , yij′) =
σ2
A

σ2
A + σ2

for j �= j′

This ratio also measures the proportion of the total variation in yij only due
to the random effect, since obviously, Var(yij) = σ2

A + σ2. In plant breeding
experiments, for example, investigators might be interested in selecting inbred
lines that have large intraclass correlations, as that would indicate variation
due to genetic influences of those breeds that have a larger effect than, say,
environmental effects on the trait being measured.

6.2.1 Using PROC GLM to Analyze One-Way Random Effects
Models

The following example is taken from Snedecor and Cochran (1989). An exper-
iment was conducted at the Iowa Agricultural Experiment Station to deter-
mine if there is significant variation of average daily gain of pigs from litter to
litter. Average daily gain in weight is an indicator of growth rate in animals.
For the study, four litters were chosen at random from a single inbred line of
swine. The average daily gains of two animals selected at random from each
litter were measured. The data are shown in Table 6.1.

Table 6.1. Average daily gain of swine

Litter 1 2 3 4

Gain 1.18 1.36 1.37 1.07
1.11 1.65 1.40 0.90

The model for average daily gain is

yij = μ+Ai + εij , i = 1, . . . , 4; j = 1, 2

where Ai is the effect of the ith litter and is assumed to be an iid N(0, σ2
A)

random variable and εij , the sampling error associated with pigs within each
litter, an iid N(0, σ2) random variable.
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data hogs;
input Litter Gain;
datalines;
1 1.18
1 1.11
2 1.36
2 1.65
3 1.37
3 1.40
4 1.07
4 0.90
;

proc glm data=hogs;
class Litter;
model Gain = Litter;
random Litter/test;
title ’Average Daily Gain in Swine’;

run;

Fig. 6.1. SAS Example F1: program

SAS Example F1

The SAS Example F1 program (see Fig. 6.1) illustrates how proc glm can
be used to perform the necessary computations. The data may be input us-
ing methods used for one-way fixed effects experiments (see, e.g., Fig. 5.1 in
Chap. 5). However, in this example, since the sample sizes are small and
equal, a straightforward approach can be used. The data are entered exactly
in the same format as required by proc glm. That is, values for a classifica-
tion variable Litter and the response variable Gain are entered in the lines
of data separated by blanks so that they are accessed easily using the list
input method. The class and the model statements are exactly as for a fixed
effects model; however, an additional statement random Litter/test is in-
cluded here. This statement indicates that the effect Litter in the model is a
random effect and also requests that a test be performed to test the hypothesis
that the corresponding variance component is significantly different from zero.

For this example, the SAS output produced in the default style HTMLBlue
is reproduced here for the purpose of illustration. In the rest of the chapter,
the SAS output displayed will be those produced using the ODS destination
rtf. From the proc glm output reproduced in Fig. 6.2, the construction of the
following ANOVA table is straightforward:

SV df SS MS F p-Value E (MS)
Litter 3 0.3288 0.1096 7.38 0.0416 σ2 + 2σ2

A

Boar (Litter) 4 0.0594 0.01485 σ2

Total 7 0.3882

Note carefully that the information necessary for completing the additional
column titled E (MS) containing the expected mean squares is available from
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Average Daily Gain in Swine

The GLM Procedure

Class Level 
Information

Class Levels Values

Litter 4 1 2 3 4

Number of Observations Read 8

Number of Observations Used 8

Dependent Variable: Gain

Source DF
Sum of 

Squares Mean Square F Value Pr > F

Model 3 0.32880000 0.10960000 7.38 0.0416

Error 4 0.05940000 0.01485000

Corrected Total 7 0.38820000

R-Square Coeff Var Root MSE Gain Mean

0.846986 9.710006 0.121861 1.255000

Source DF Type I SS Mean Square F Value Pr > F

Litter 3 0.32880000 0.10960000 7.38 0.0416

Source DF Type III SS Mean Square F Value Pr > F

Litter 3 0.32880000 0.10960000 7.38 0.0416

Fig. 6.2. SAS Example F1: anova output

part of this output subtitled Type III Expected Mean Square (see Fig. 6.3).
The expected MS for the Litter effect is a simple linear combination of the
variance components σ2

A and σ2. Also, recall that the expected mean square for
error, MSE, is always σ2 under the model assumptions. These two expectations
form the equations that are used to obtain the method of moments estimates
of the variance components, as shown below.

The results of the F -test of H0 : σ2
A = 0 is displayed on a table titled Tests

of Hypotheses for Random Model Analysis of Variance (see Fig. 6.4) of
the output. Note that the F -statistic is the ratio MSLitter/MSE. The denom-
inator of the F -ratio is the MSE (identified as MS(Error) in the output). Also
note that, in the ANOVA table above, the corresponding source of variation
is labeled Boar(Litter).

If σ2
A = 0, the expectations of both the numerator and the denominator

of the ratio would have the same value of σ2. If the F -statistic is found to be
significantly large, it should lead to the conclusion that σ2

A is greater than zero.
Thus, in more complex experiments, information from the E (MS) column
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Average Daily Gain in Swine

The GLM Procedure

Source Type III Expected Mean Square

Litter Var(Error) + 2 Var(Litter)

Fig. 6.3. SAS Example F1: expected mean squares

could be used to identify ratios of mean squares needed to test hypotheses
about different variance components.

The p-value from the ANOVA table is smaller than 0.05, and, hence, the
null hypothesis H0 : σ2

A = 0 is rejected at α = 0.05; that is, evidence exists in
the data from this experiment that there is a significant variation of average
daily gain among the litters. Since the litters were a random sample, this
result would apply to all litters from the inbred line of swine from which these
litters were sampled.

Since the hypothesis H0 : σ2
A = 0 is rejected, it is useful to quantify this

variation by estimating the variance component σ2
A. The method of moments

requires setting the computed values of the mean squares equal to the corre-
sponding expressions found in the E (MS) column and solving the resulting
linear equations for the variance components. In this case, the equations are

σ2 + 2σ2
A = 0.1096

σ2 = 0.01485

and solving these equations gives the required estimates

σ̂2 = 0.01485

σ̂2
A =

0.1096− 0.01485

2
= 0.0474

The GLM Procedure
Tests of Hypotheses for Random Model Analysis of Variance

Dependent Variable: Gain

Source DF Type III SS Mean Square F Value Pr > F

Litter 3 0.328800 0.109600 7.38 0.0416

Error: MS(Error) 4 0.059400 0.014850

Fig. 6.4. SAS Example F1: hypothesis test about variance component

Finally, to compute a (1 − α)100% confidence interval for σ2
A, instead of

using formula (6.1) for hand computation, it may be coded in SAS as shown
in the following simple data step:
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data cint;

alpha=.05; n=2; a=4;

msa= 0.1096; s2=0.01485; sa2=.0474;

nu=(n*sa2)**2/(msa**2/(a-1)+ s2**2/a*(n-1));

L= (nu*sa2)/cinv(1-alpha/2,nu);

U= (nu*sa2)/cinv(alpha/2,nu);

put nu= L= U=;

run;

Note that the first two lines have been completed using information ob-
tained from Fig. 6.2 and that the last three lines use these values for the com-
putation of the confidence interval with the required confidence coefficient.
The results of executing this code are output on the log page/window instead
of the output page/window because of the use of the put statement. The 95%
confidence interval for σ2

A is (0.01342, 1.3809). This calculation is shown here
for illustrative purposes only as the same confidence interval is computed as
part of the output from an analysis of this data using proc mixed in the next
section.

6.2.2 Using PROC MIXED to Analyze One-Way Random Effects
Models

Although the use of the random statement in proc glm gives the user the
capability to compute expected mean squares and perform F -tests about
variance components, other statements in proc glm do not make use of this
information. For example, lsmeans and estimate statements assume that
all effects are fixed irrespective of whether the random statement is present
or not. Thus, it is recommended that one use proc mixed to analyze both
mixed effects models and random effects models. Among other advantages,
proc mixed gives the user the option of choosing among several estimation
methods in addition to the method of moments as well as the ability to use
estimate statements to estimate best linear unbiased predictors (BLUPs) (i.e.,
predictable linear combinations of fixed and random effects).

SAS Example F2

The SAS Example F2 program (see Fig. 6.5) illustrates how proc mixed may
be used to perform an analysis of a one-way random model. The essential
difference from a proc glm step is that in the model statement in proc mixed,
only the fixed part of the model needs to be specified; thus, model Gain = ;

implies that only an overall mean μ is present in the model in addition to
any random effects. The random statement specifies the random effect terms:
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insert data step to create the SAS dataset ‘hogs’ here

proc mixed data=hogs cl;
class Litter ;
model Gain = ;
random Litter/solution;
estimate ’Litter 1 Effect’ | Litter 1 0 0 0;
estimate ’Litter 2 Effect’ | Litter 0 1 0 0;
estimate ’Litter 3 Effect’ | Litter 0 0 1 0;
estimate ’Litter 4 Effect’ | Litter 0 0 0 1;
title ’Average Daily Gain in Swine’;

run;

Fig. 6.5. SAS Example F2: program using proc mixed

in this case, the term Litter and a random error term. The variances of
the random effects constitute the variance components including the error

variance component that is assumed by default.
The default method of estimation is restricted maximum likelihood (com-

monly known as REML), which assumes that random effects are normally
distributed. Other estimation methods available include maximum likelihood
and the method known as MIVQUE(0). These can be requested using the
proc statement options method=ml or method=mivque0, respectively. Since
the REML estimation is popular among practitioners, that method is set as
the default. Finally, the cl option specified on the proc mixed statement
requests the calculation of confidence limits for the variance components.

What follows is a brief explanation of the contents of output (see Fig. 6.6)
from proc mixed. In the Model Information table, the phrase variance com-
ponents describing the covariance structure implies that the model specified
by the user has been identified as a traditional mixed model in which vari-
ances of the random effects parameters (or the variance components) are the
only covariance parameters present. The Dimensions section gives the sizes
of the design matrices (described in Sect. 6.1 where mixed model theory is
introduced). The noinfo option on the proc statement may be used to sup-
press the above two tables. Iteration History table provides details of the
convergence of the iterative procedure used to optimize the objective function
used in the case of REML or maximum likelihood methods, respectively. The
column labeled “−2 Log Like” for maximum likelihood or “−2 Res Log Like”
for REML lists the value of −2 times the log-likelihood or −2 times the log
residual likelihood function. This statistic, called the deviance, is used for test-
ing hypotheses about parameters by model comparison. The column labeled
“Evaluations” lists the number of times the objective function was evaluated
during each iteration. Using the noitprint option in the proc statement sup-
presses the “Iteration History” table.

The next part of the output (see Fig. 6.7) contains the estimates of the
variance components in a table subtitled Covariance Parameter Estimates.
Here they are, respectively, σ̂2

A = 0.04738 and σ̂2 = 0.01485. The Satterth-
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Average Daily Gain in Swine

The Mixed Procedure

Model Information

Data Set WORK.HOGS

Dependent Variable Gain

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

Class Level 
Information

Class Levels Values

Litter 4 1 2 3 4

Dimensions

Covariance Parameters 2

Columns in X 1

Columns in Z 4

Subjects 1

Max Obs per Subject 8

Number of Observations

Number of Observations Read 8

Number of Observations Used 8

Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 1.69956771

1 1 -1.52719436 0.00000000

Fig. 6.6. SAS Example F2: output (page 1)

waite approximation introduced previously is used to construct confidence
intervals for the variance components appearing here. This is true for all it-
erative methods, as variance components are constrained to be nonnegative.
As will be seen in SAS Example F3, when the method of moments estimation
method is used, this constraint is not used; instead large sample methods will
be used to calculate these confidence limits (except for the error variance).
Solution for Random Effects table contains predicted values of the Litter
random effects, which results from using the solution option in the random
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Average Daily Gain in Swine

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Estimate Alpha Lower Upper

Litter 0.04738 0.05 0.01341 1.3843

Residual 0.01485 0.05 0.005331 0.1226

Fit Statistics

-2 Res Log Likelihood -1.5

AIC (Smaller is Better) 2.5

AICC (Smaller is Better) 5.5

BIC (Smaller is Better) 1.2

Solution for Random Effects

Effect Litter Estimate
Std Err 

Pred DF t Value Pr > |t|

Litter 1 -0.09510 0.1291 4 -0.74 0.5021

Litter 2 0.2161 0.1291 4 1.67 0.1693

Litter 3 0.1124 0.1291 4 0.87 0.4330

Litter 4 -0.2334 0.1291 4 -1.81 0.1448

Estimates

Label Estimate
Standard

Error DF t Value Pr > |t|

Litter 1 Effect -0.09510 0.1291 4 -0.74 0.5021

Litter 2 Effect 0.2161 0.1291 4 1.67 0.1693

Litter 3 Effect 0.1124 0.1291 4 0.87 0.4330

Litter 4 Effect -0.2334 0.1291 4 -1.81 0.1448

Fig. 6.7. SAS Example F2: output (page 2)

statement. They are estimates of the BLUPs of the random effect for each lit-
ter. These predictions may also be obtained using the estimate statements:

estimate ‘Litter 1 Effect’ | litter 1 0 0 0;

estimate ‘Litter 2 Effect’ | litter 0 1 0 0;

estimate ‘Litter 3 Effect’ | litter 0 0 1 0;

estimate ‘Litter 4 Effect’ | litter 0 0 0 1;
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Note that the syntax of the estimate statement is similar to that used in the
analysis of fixed effects models with proc glm, except that the specification
of the random effects must appear after the vertical bar (“|”). For mixed
models, both fixed effects and random effects may appear in the same estimate
statement: fixed effects before | and random effects after. The output from
the above set of estimate statements (not shown) is identical to that of the
output from the solution option seen in Fig. 6.7.

SAS Example F3

It is important to note that estimates produced by maximum likelihood esti-
mation methods will be different from the method of moments estimates calcu-
lated using proc glm if the sample sizes are not equal. However, proc mixed

may be used to also obtain the method of moments estimates as illustrated
in SAS Example F3 (see Fig. 6.8). The proc statement options noclprint

suppress the class-level information table and noinfo suppress several other
tables that are not relevant here. The option method=type3 specifies the type
of the mean squares (and the corresponding expected values) that are to be
used to estimate the variance components. Usually, Types 1 and 3 are used;
however, they will be identical in equal sample size case. The option asycov

requests the asymptotic covariance matrix of the estimated variance compo-
nents, and the option cl requests the confidence intervals on the variance
components (based on asymptotic standard errors of the estimates of the
variance components).

insert data step to create the SAS dataset ‘hogs’ here

proc mixed data=hogs noclprint noinfo method=type3 asycov cl;
class Litter ;
model Gain = ;
random Litter/solution;
title ’Average Daily Gain in Swine’;

run;

Fig. 6.8. SAS Example F3: method of moments estimates using proc mixed

The output is shown in Fig. 6.9. The ANOVA table showing the expected
mean squares is given in the table titled Type 3 Analysis of Variance. It
is exactly the same as that produced by proc glm where the F -ratio for
testing the litter effect is constructed using the MS(Residual) as the divisor.
The confidence intervals for the variance components are calculated using the
estimated variance given in the table titled Asymptotic Covariance Matrix

of Estimates. For example, an asymptotic 95% confidence interval for σ2
A is

calculated as

σ̂2
A ± z0.025 × s.e.(σ̂2

A)

0.04738 ± 1.96×
√
0.00203
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Average Daily Gain in Swine

The Mixed Procedure

Type 3 Analysis of Variance

Source DF
Sum of 

Squares Mean Square Expected Mean Square Error Term
Error 

DF F Value Pr > F

Litter 3 0.328800 0.109600 Var(Residual) + 2 Var(Litter) MS(Residual) 4 7.38 0.0416

Residual 4 0.059400 0.014850 Var(Residual) . . . .

Covariance Parameter Estimates

Cov Parm Estimate Alpha Lower Upper

Litter 0.04738 0.05 -0.04092 0.1357

Residual 0.01485 0.05 0.005331 0.1226

Asymptotic Covariance Matrix of 
Estimates

Row Cov Parm CovP1 CovP2

1 Litter 0.002030 -0.00006

2 Residual -0.00006 0.000110

Fit Statistics

-2 Res Log Likelihood -1.5

AIC (Smaller is Better) 2.5

AICC (Smaller is Better) 5.5

BIC (Smaller is Better) 1.2

Solution for Random Effects

Effect Litter Estimate
Std Err 

Pred DF t Value Pr > |t|

Litter 1 -0.09510 0.1291 4 -0.74 0.5021

Litter 2 0.2161 0.1291 4 1.67 0.1693

Litter 3 0.1124 0.1291 4 0.87 0.4330

Litter 4 -0.2334 0.1291 4 -1.81 0.1448

Fig. 6.9. SAS Example F3: output

giving (−0.04093, 0.1357). Since the number of litters is small, approximating
the sampling distribution of σ̂2

A by the normal distribution is questionable.
So an interval based on the Satterthwaite approximation may be more ap-
propriate here. However, the interval for σ2 given here is not based on the
asymptotic standard error; it is calculated using the formula (6.3). The es-
timated BLUPs of the litter random effects are the same as those obtained
previously.
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The model used in the beginning of this section assumed equal sample
sizes, for each level of the random factor. The expressions given in the ANOVA
table for the expected value of mean square (i.e., E (MS)) for effect A was
based on this assumption. In the case of unequal sample sizes , this expression
would be different. However, the investigator needs not know this formula,
since, as observed previously, when the random statement is present, proc
glm provides Type III expected mean squares as part of the output, and when
the method=type3 option is present, proc mixed computes and outputs this
expectation as a part of the Type 3 analysis of variance. Thus, the user may
proceed with an analysis based on the method of moments as usual.

SAS Example F4

In SAS Example F4, the program shown in Fig. 6.10 is used to illustrate the
analysis of a data set with unequal sample sizes. An experiment on artificial
insemination in which semen samples from six different bulls were used to
inseminate different numbers of cows is described in Snedecor and Cochran
(1989). The data are percentages of conceptions and are recorded in Table 6.2.

Table 6.2. Artificial insemination of cows (Snedecor and Cochran 1989)

Percentages of conceptions produced from a series of
semen samples from six different bulls

Bull 1 Bull 2 Bull 3 Bull 4 Bull 5 Bull 6

46 70 52 47 42 35
31 59 44 21 64 68
37 57 70 50 59
62 40 46 69 38
30 67 14 77 57

64 81 76
70 87 57

29
60

The one-way random effects model for the percent variable is

yij = μ+Ai + εij , i = 1, . . . , 6; j = 1, . . . , ni

where the random effects Ai, i = 1, . . . , 6 are distributed as iid N(0, σ2
A)

random variables independent of the random errors εij , which are distributed
independently as N(0, σ2). The nis represent the different sample sizes used
in the experiment.

In the SAS program, the data are inputted using trailing @@ to input
pairs of data values for the variables Bull and Percent. A proc mixed step
with a method=type3 option used in this SAS program is similar to the one
used for the analysis of the previous example. The SAS output pages are
reproduced in Figs. 6.11 and 6.12.
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data cows;
input Bull Percent @@;
datalines;
1 46 1 31 1 37 1 62 1 30
2 70 2 59
3 52 3 44 3 57 3 40 3 67 3 64 3 70
4 47 4 21 4 70 4 46 4 14
5 42 5 64 5 50 5 69 5 77 5 81 5 87
6 35 6 68 6 59 6 38 6 57 6 76 6 57 6 29 6 60
;

proc mixed data=cows noclprint noinfo method=type3 asycov cl;
class Bull ;
model Percent = ;
random Bull/solution;
title "Artificial Insemination of Cows";

run;

Fig. 6.10. SAS Example F4: program using proc mixed

From the table titled Type 3 Analysis of Variance, E (MS) for Bull

is seen to be σ2 + 5.6686σ2
A. Thus, the equations to be solved for obtaining

method of moments are

Artificial Insemination of Cows

The Mixed Procedure

Type 3 Analysis of Variance

Source DF
Sum of 

Squares Mean Square Expected Mean Square Error Term
Error 

DF F Value Pr > F

Bull 5 3322.058730 664.411746 Var(Residual) + 5.6686 Var(Bull) MS(Residual) 29 2.68 0.0416

Residual 29 7200.341270 248.287630 Var(Residual) . . . .

Covariance Parameter Estimates

Cov Parm Estimate Alpha Lower Upper

Bull 73.4090 0.05 -75.7325 222.55

Residual 248.29 0.05 157.48 448.70

Asymptotic Covariance Matrix of 
Estimates

Row Cov Parm CovP1 CovP2

1 Bull 5790.30 -783.21

2 Residual -783.21 4255.22

Fit Statistics

-2 Res Log Likelihood 292.5

AIC (Smaller is Better) 296.5

AICC (Smaller is Better) 296.9

BIC (Smaller is Better) 296.1

Fig. 6.11. SAS Example F4: output (variance components)



438 6 Analysis of Variance: Random and Mixed Effects Models

σ2 + 5.6686σ2
A = 664.411746

σ2 = 248.287630

and solving these equations give, the estimates σ̂2 = 248.287630 and
σ̂2
A = (664.411746 − 248.287630)/5.6686 = 73.40862. These values are con-

firmed from the table of Covariance Parameter Estimates that also include
asymptotic standard errors and 95% confidence intervals. The interval for σ2

A

is based on the normal distribution and the asymptotic standard error of its
estimate, and the interval for σ2 is calculated using the formula (6.3). See
comment made earlier (see SAS Example F3) concerning intervals based on
the large sample approximation. More importantly, the estimated BLUPs of
the bull random effects are now displayed in the table Solution for Random

Effects for which the standard errors are now different for each estimate.

Solution for Random Effects

Effect Bull Estimate
Std Err 

Pred DF t Value Pr > |t|

Bull 1 -7.2278 6.0660 29 -1.19 0.2431

Bull 2 4.1555 6.9940 29 0.59 0.5570

Bull 3 2.0016 5.7517 29 0.35 0.7304

Bull 4 -8.1822 6.0660 29 -1.35 0.1878

Bull 5 9.3218 5.7517 29 1.62 0.1159

Bull 6 -0.06890 5.5414 29 -0.01 0.9902

Fig. 6.12. SAS Example F4: output (BLUPs)

6.3 Two-Way Crossed Random Effects Model

An experiment with two random factors that are crossed is considered in
this section. This situation is similar to a two-way factorial experiment in
a completely randomized design discussed in Sect. 5.4, except that the lev-
els of the two factors are selected randomly from populations of all possible
levels.

Consider an experiment in which two factors that influence the breaking
strength of plastic sheeting is under study. Four production machines (Factor
A) and five operators (Factor B) are selected for the study. These factor levels
are to be considered as random samples from populations of machines and
operators used in a typical factory that produces plastic sheeting, and every
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machine will be used by all operators. A machine–operator combination per-
forms a production run that will produce a measurement of breaking strength.
As in the fixed effects case, a number of runs are performed by each machine–
operator combination in random order, so that replications are available for
estimating the random error variance. To have equal sample sizes, the number
of replications carried out per factor combination is kept the same. Assuming
that the number of replications is 2, the 40 experimental runs required are
performed in a completely randomized design. Again, the main interest in
this experiment will be estimation and hypothesis tests about the variance
components (i.e., the variances of the random effects).

Model

The two-way crossed random effects model is given by

yijk = μ+Ai +Bj +ABij + εijk, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , n

where the effects of Factor A, Ai, are assumed to be iid N(0, σ2
A) random

variables; the effects of Factor B, Bj , are assumed to be iid N(0, σ2
B) random

variables; the effects of the interaction between the two factors, denoted by
ABij , are assumed to be iid N(0, σ2

AB); and the random errors εijk are as-
sumed to be iid N(0, σ2) random variables. In addition, Ai, Bj , ABij , and
εijk are pairwise independent. If this is formulated as a “means model,”
where μij = μ + Ai + Bj + ABij , then μij , i = 1, . . . , a; j = 1, . . . , b are
iid N(μ, σ2

A+σ2
B +σ2

AB +σ2) random variables, where μ represents the mean
of the population of the observations (i.e., E(yijk) = μ).

Thus, the objective of the experiment is to identify the components of
variance that contribute significantly to the total variance of the observations.
A consequence of the above model is that observations realized from the same
level of Factor A (or Factor B or both) are correlated. For example, it can be
shown that the covariance between y111 and y122 is σ2

A and that between y111
and y112 is σ2

A+σ2
B+σ2

AB . Thus, the model defines the “covariance structure”
of the observed data vector.

Estimation and Hypothesis Testing

An analysis of variance that corresponds to the above model is constructed
using the same computational formulas used for the computation of the anova
that correspond to the two-way classification model with fixed effects dis-
cussed in Sect. 5.4. As discussed in Sect. 6.1, an additional column displaying
the expected mean squares is included in the ANOVA table for the two-way
random effects model:
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SV df SS MS F E (MS)
A a− 1 SSA MSA MSA/MSAB σ2 + nσ2

AB + bn σ2
A

B b− 1 SSB MSB MSB/MSAB σ2 + nσ2
AB + anσ2

B

AB (a− 1)(b− 1) SSAB MSAB MSAB/MSE σ2 + nσ2
AB

Error ab(n− 1) SSE MSE(= s2) σ2

Total abn− 1

Again, the computation of the expected mean squares does not require the
distributional assumption of normality of the random effects, but normality is
required for performing hypothesis tests and constructing confidence intervals.
F -statistics are constructed for sources of variation A, B, and AB as shown in
the analysis of variance table and are used to test the following hypotheses:

(i) H0 : σ2
A = 0 versus Ha : σ2

A > 0

(ii) H0 : σ2
B = 0 versus Ha : σ2

B > 0

(iii) H0 : σ2
AB = 0 versus Ha : σ2

AB > 0

respectively. Note, carefully, that these ratios are not the same as the F -
ratios shown in the two-way fixed effects ANOVA table (see Sect. 5.4). As in
Sect. 6.2, suitable F -ratios are determined so that both the numerator and
the denominator mean squares will have the same expectations if the null
hypothesis holds, but the numerator will have a larger expectation under the
alternative. For example, by examining the E (MS) column, it can be observed
that both MSA and MSAB will have expectation equal to σ2+nσ2

AB if σ2
A = 0;

however, the numerator will have expectation equal to σ2 + nσ2
AB + bn σ2

A if
σ2
A > 0. Thus, the F -statistic for effect A satisfies this requirement for testing

the hypotheses stated in (i). The F -statistics for testing hypotheses (ii) and
(iii) are also constructed in a similar fashion.

The estimate of the error variance σ2 is the MSE from the ANOVA table
(i.e., σ̂2 = s2). To estimate the other variance components, the expected mean
squares are set equal to the corresponding observed values, and the resulting
set of equations is solved. However, if any of the above null hypotheses fails
to be rejected, these parameters may be set equal to zero in the above ex-
pressions for E (MS) before they are used to estimate the rest of the variance
components.

If the hypothesis H0 : σ2
A = 0 is rejected in favor of Ha : σ2

A > 0, then σ2
A

may be estimated by solving

σ2 + bn σ2
A = MSA,

Substituting the estimate s2 for σ2 gives the estimate

σ̂2
A =

MSA − s2

bn
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where the right-hand side is computed using values obtained from the ANOVA
table. As earlier, these are called the method of moments estimates.

A (1− α)100% confidence interval for σ2
A is provided by

νσ̂2
A

χ2
1−α/2,ν

< σ2
A <

νσ̂2
A

χ2
α/2,ν

(6.4)

where χ2
1−α/2,ν and χ2

α/2,ν are the 1 − α/2 and α/2 percentile points of the
chi-squared distribution with ν degrees of freedom, respectively. The degrees
of freedom for σ̂2

A = 1
bnMSA − 1

bnMSE are obtained using the Satterthwaite
approximation and are given by

ν =
(bnσ̂2

A)
2

(MSA)2/(a− 1) + (s2)2/ab(n− 1)

Formulas for constructing confidence intervals for the other variance compo-
nents can be similarly obtained.

6.3.1 Using PROC GLM and PROC MIXED to Analyze
Two-Way Crossed Random Effects Models

The data shown in Table 6.3 appear in Kutner et al. (2005). An automobile
manufacturer studied the effects of differences between drivers (factor A) and
differences between cars (factor B) on gasoline consumption. Four drivers were
selected at random, and five cars of the same model with manual transmission
were also randomly selected from the assembly line. Each driver drove each
car twice over a 40-mile test course, and the miles per gallon were calculated.
The actual trials were run in completely random order.

Table 6.3. Automobile mileage data

Factor A Factor B (car)
(driver) 1 2 3 4 5

1 25.3 28.9 24.8 28.4 27.1
25.2 30.0 25.1 27.9 26.6

2 33.6 36.7 31.7 35.6 33.7
32.9 36.5 31.9 35.0 33.9

3 27.7 30.7 26.9 29.7 29.2
28.5 30.4 26.3 30.2 28.9

4 29.2 32.4 27.7 31.8 30.3
29.3 32.4 28.9 30.7 29.9

The interest here is in explaining the variation in gasoline consumption in
terms of the variance components and determining whether their contributions
to the total variation in the response are significant. The model is

yijk = μ+Ai +Bj +ABij + εijk, i = 1, . . . , 4; j = 1, . . . , 5; k = 1, 2
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where Ai, Bj , and ABij are random effects of driver, car, and their inter-
action, distributed as independent normal random variables with mean zero
and variances σ2

A, σ
2
B , and σ2

AB , respectively, and the random errors εijk are
distributed independently as N(0, σ2) random variables.

SAS Example F5

The SAS Example F5 program (see Fig. 6.13) illustrates how proc glm is used
to fit the above model to the gasoline mileage data. The proc glm step carries

data auto;
input Driver 1. @;

do Car=1 to 5;
input MPG @;
output;

end;
datalines;
1 25.3 28.9 24.8 28.4 27.1
1 25.2 30.0 25.1 27.9 26.6
2 33.6 36.7 31.7 35.6 33.7
2 32.9 36.5 31.9 35.0 33.9
3 27.7 30.7 26.9 29.7 29.2
3 28.5 30.4 26.3 30.2 28.9
4 29.2 32.4 27.7 31.8 30.3
4 29.3 32.4 28.9 30.7 29.9
;

proc glm data=auto;
class Driver Car;
model MPG =Driver Car Driver*Car;
random Driver Car Driver*Car/test;
title "Study of Variation in Gasoline Consumption";
run;

Fig. 6.13. SAS Example F5: program

out a standard analysis based on the method of moments for estimation of
variance components and F -tests that are valid under the condition that the
random effects have independent normal distributions as described earlier.

Study of Variation in Gasoline Consumption

The GLM Procedure

Class Level Information

Class Levels Values

Driver 4 1 2 3 4

Car 5 1 2 3 4 5

Number of Observations Read 40

Number of Observations Used 40

Fig. 6.14. SAS Example F5: output from proc glm
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Dependent Variable: MPG

Source DF
Sum of 

Squares Mean Square F Value Pr > F

Model 19 377.4447500 19.8655132 113.03 <.0001

Error 20 3.5150000 0.1757500

Corrected Total 39 380.9597500

R-Square Coeff Var Root MSE MPG Mean

0.990773 1.395209 0.419225 30.04750

Source DF Type I SS Mean Square F Value Pr > F

Driver 3 280.2847500 93.4282500 531.60 <.0001

Car 4 94.7135000 23.6783750 134.73 <.0001

Driver*Car 12 2.4465000 0.2038750 1.16 0.3715

Source DF Type III SS Mean Square F Value Pr > F

Driver 3 280.2847500 93.4282500 531.60 <.0001

Car 4 94.7135000 23.6783750 134.73 <.0001

Driver*Car 12 2.4465000 0.2038750 1.16 0.3715

Fig. 6.15. SAS Example F5: output from proc glm continued

Part of the SAS output (see Figs. 6.14 and 6.15) displays the Types I and
III analyses of variance table (which should be identical for balanced data)
and is a part of the standard proc glm output, independent of whether the
factors were fixed or random.

The ANOVA table that follows is constructed using the information in the
SAS output. The total and error sums of squares and their respective degrees
of freedom and the table of Type III Expected Mean Squares are avail-
able from the output (see Fig. 6.16). The F -tests for the variance components
Driver (σ2

A), Car (σ2
B), and Driver × Car interaction (σ2

AB), respectively,
are available from the tables in the output titled Tests of Hypotheses for

Random Model Analysis of Variance.

SV df SS MS F p-Value E (MS)
Driver 3 280.285 93.428 458.26 <0.0001 σ2 + 2σ2

AB + 10σ2
A

Car 4 94.714 23.678 116.14 <0.0001 σ2 + 2σ2
AB + 8σ2

B

Driver×
Car 12 2.446 0.204 1.16 0.3715 σ2 + 2σ2

AB

Error 20 3.515 3.7917 σ2

Total 39 380.960
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A p-value of 0.3715 for the interaction effects leads to the conclusion that
σ2
AB is not different from zero, whereas the p-values of less than 0.0001 for

the Driver and Car random effects respectively show that the corresponding
two variance components are significantly larger than zero. Their estimates
can be obtained by the method of moments by setting the expressions for
expected mean squares found on page 3 (see Fig. 6.16) for each effect equal to
its computed mean square (Type I or Type III) from page 2. This gives the
set of equations

σ2 + 10σ2
A + 2σ2

AB = 93.428250

σ2 + 8σ2
B + 2σ2

AB = 23.678375

σ2 + 2σ2
AB = 0.203875

σ2 = 0.175750

Solving these gives the estimates

σ̂2 = 0.175750

σ̂2
AB = (0.203875− 0.175750)/2 = 0.0140625

Study of Variation in Gasoline Consumption

The GLM Procedure

Source Type III Expected Mean Square

Driver Var(Error) + 2 Var(Driver*Car) + 10 Var(Driver)

Car Var(Error) + 2 Var(Driver*Car) + 8 Var(Car)

Driver*Car Var(Error) + 2 Var(Driver*Car)

Study of Variation in Gasoline Consumption

The GLM Procedure
Tests of Hypotheses for Random Model Analysis of Variance

Dependent Variable: MPG

Source DF Type III SS Mean Square F Value Pr > F

Driver 3 280.284750 93.428250 458.26 <.0001

Car 4 94.713500 23.678375 116.14 <.0001

Error 12 2.446500 0.203875

Error: MS(Driver*Car)

Source DF Type III SS Mean Square F Value Pr > F

Driver*Car 12 2.446500 0.203875 1.16 0.3715

Error: MS(Error) 20 3.515000 0.175750

Fig. 6.16. SAS Example F5: output from proc glm (pages 3 and 4)
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σ̂2
B = (23.678375− 2× 0.0140625− 0.175750)/8 = 2.9343125

σ̂2
A = (93.428250− 2× 0.0140625− 0.175750)/10 = 9.3224375

Confidence intervals for each nonzero variance component based on the
Satterthwaite approximation can be computed by hand or by modifying the
SAS code given in Sect. 6.2. For example, a 95% confidence interval for σ2

A is
given by executing the SAS code

data cint;

alpha=.05; n=2; a=4; b=5;

msa= 93.428250; msab=0.203875; sa2=9.3224375;

nu=(n*b*sa2)**2/(msa**2/(a-1)+ msab**2/(a-1)*(b-1));

L= (nu*sa2)/cinv(1-alpha/2,nu);

U= (nu*sa2)/cinv(alpha/2,nu);

put nu= L= U=;

run;

which results in the interval (2.9864, 130.7911). A confidence interval for σ2
B

can be similarly calculated. Proc mixed produces these intervals by default
when an iterative method such as ML or REML is used along with the proc
statement option cl.

SAS Example F6

In the SAS Example F6 program (see Fig. 6.17), proc mixed is used to
fit the above model to the gasoline mileage data. In the proc statement,
method=type3 is specified, so instead of using an iterative algorithm for cal-
culating the likelihood estimates, the method of moments estimators using
the Type III expected mean squares are computed.

insert data step to create the SAS dataset ‘auto’ here

proc mixed data=auto noclprint noinfo method=type3 cl;
class Driver Car;
model MPG = /;
random Driver Car Driver*Car;
run;

Fig. 6.17. SAS Example F6: method of moments estimation using proc mixed

The results, both estimates, F -statistics, and their p-values shown in
Fig. 6.18 are identical to those obtained using proc glm. The variance com-
ponent estimates are also the same as those calculated by hand using results
from proc glm. However, the confidence intervals calculated by proc mixed

are those based on large sample standard errors and the standard normal per-
centiles except those for σ2, which are based on chi-square percentiles. Con-
fidence intervals on the other variance components based on Satterthwaite
approximation can be calculated using formulas similar to (6.1) in Sect. 6.2,
as illustrated for SAS Example F5.



446 6 Analysis of Variance: Random and Mixed Effects Models

Effects of Drivers and Cars on Mileage

The Mixed Procedure

Type 3 Analysis of Variance

Source DF
Sum of 

Squares
Mean 

Square Expected Mean Square Error Term
Error 

DF
F 

Value Pr > F

Driver 3 280.28475 93.428250 Var(Residual) + 2 Var(Driver*Car) + 
10 Var(Driver)

MS(Driver*Car) 12 458.26 <.0001

Car 4 94.71350 23.678375 Var(Residual) + 2 Var(Driver*Car) + 
8 Var(Car)

MS(Driver*Car) 12 116.14 <.0001

Driver*Car 12 2.44650 0.203875 Var(Residual) + 2 Var(Driver*Car) MS(Residual) 20 1.16 0.3715

Residual 20 3.51500 0.175750 Var(Residual) . . . .

Covariance Parameter Estimates

Cov Parm Estimate Alpha Lower Upper

Driver 9.3224 0.05 -5.6289 24.2738

Car 2.9343 0.05 -1.1677 7.0364

Driver*Car 0.01406 0.05 -0.08402 0.1121

Residual 0.1757 0.05 0.1029 0.3665

Fit Statistics

-2 Res Log Likelihood 86.8

AIC (Smaller is Better) 94.8

AICC (Smaller is Better) 96.0

BIC (Smaller is Better) 92.3

Fig. 6.18. SAS Example F6: output

SAS Example F7

Finally, the same data are reanalyzed in the SAS Example F7 program (see
Fig. 6.19) using REML, the default method in proc mixed. In the proc state-
ment, method is unspecified, so an iterative algorithm is used to compute
the restricted maximum likelihood estimates because the default method is
REML.

The resulting SAS output (see Fig. 6.20) contains the estimates of the
variance components, estimates of their asymptotic standard errors, z -tests,
and associated p-values. These are output as a result of the covtest option.
Confidence intervals computed using the Satterthwaite approximation are pro-
duced as a result of the cl option, because in this case, the variance compo-
nents are constrained to be nonnegative. The solution option provides the
estimates of the fixed effects (see table titled Solution for Fixed Effects

in Fig. 6.20). Recall that the only fixed effect in the model is E(yijk) = μ,
the population mean of the observations. This is identified as the Intercept
effect in the output.
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insert data step to create the SAS dataset ‘auto’ here

proc mixed data=auto noinfo noitprint covtest cl ;
class Driver Car;
model MPG = /solution;
random Driver Car Driver*Car;
run;

Fig. 6.19. SAS Example F7: REML estimation using proc mixed

The estimates of the variance components are identical to the method of
moments estimates, as expected for balanced data. However, the standard er-
rors have been calculated using large-sample results for maximum likelihood
estimators, which assume that the numbers of levels for the two factors (i.e.,
sample sizes) are infinitely large. Thus, the results of the z -tests do not coin-
cide with those of the F -tests based on assuming normal distributions for the
random effects.

Covariance Parameter Estimates

Cov Parm Estimate
Standard

Error
Z 

Value Pr > Z Alpha Lower Upper

Driver 9.3224 7.6284 1.22 0.1108 0.05 2.9864 130.79

Car 2.9343 2.0929 1.40 0.0805 0.05 1.0464 24.9038

Driver*Car 0.01406 0.05004 0.28 0.3893 0.05 0.001345 3.592E17

Residual 0.1757 0.05558 3.16 0.0008 0.05 0.1029 0.3665

Fit Statistics

-2 Res Log Likelihood 86.8

AIC (Smaller is Better) 94.8

AICC (Smaller is Better) 96.0

BIC (Smaller is Better) 92.3

Solution for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 30.0475 1.7096 3 17.58 0.0004

Fig. 6.20. SAS Example F7: output

The confidence interval for σ2
A, on the other hand, agrees with that com-

puted earlier using the Satterthwaite approximation. A (1−α)100% confidence
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interval for σ2
A is given by formula (6.1) in Sect. 6.2. The computation is sim-

plified because degrees of freedom are ν = 2z2, where z is the Wald statistic,
given by z = σ2

A/s.e.(σ
2
A). Substituting the values needed to compute z for

each variance component, the confidence intervals given in Fig. 6.20 can be
verified.

For example, using the estimate and its standard error (9.3224 and 7.6284,
respectively) for the driver variance component in the following SAS data
step

data;

alpha=.05; s2= 9.3224; ses2= 7.6284;

z=s2/ses2;

nu=2*z**2;

L= (nu*s2)/cinv(1-alpha/2,nu);

U= (nu*s2)/cinv(alpha/2,nu);

put z= nu= L= U=;

run;

results in the 95% confidence interval (2.9864, 130.7887).

6.3.2 Randomized Complete Block Design: Blocking When
Treatment Factors Are Random

In the discussion of the RCBD presented in Sect. 5.7 of Chap. 5, both the
treatment and block effects were considered to be fixed effects. It may be
more reasonable to consider the block effects to be random effects. In Sect. 6.5,
RCBDs with blocks as random effects will be discussed as a special case of
the mixed effects model.

In this subsection, a model with both block and treatment effects ran-
dom is presented. One of the consequences of the way blocks are formed is
that, conceptually, it is not feasible for differences in treatment effects to be
different from block to block because blocks are formed by grouping experi-
mental units. Therefore, although blocks were considered to be fixed effects,
an additive model was used in Sect. 5.7 to represent the observations; that is,
an interaction term was not included in the model for observations from an
experiment carried out as an RCBD. The same argument holds for the case
when the treatments are random effects; thus, an interaction term is omitted
from the model.

Montgomery (1991) discussed an experiment that uses subjects as the
blocking factor and analysts that perform DNA analyses on three samples
taken from each subject as the treatment factor. As the analysts are a random
sample from a population and the samples from each subject are randomly as-
signed to the analysts, the experimental design is an RCBD, and the observed
data yij may be modeled as the additive model

yij = μ+Ai +Bj + εij , i = 1, . . . , a; j = 1, . . . , b
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where Ai, the effects of analysts (Factor A), are iid N(0, σ2
A) random variables;

Bj , effects of subjects (Factor B), are iid N(0, σ2
B) random variables; and

random errors εij are iid N(0, σ2) random variables, and these three set of
random variables are pairwise independent. The analysis of the data is similar
to that of the two-way crossed random effects model except that there is no
interaction term in the model. The ANOVA table for this model is

SV df SS MS F E (MS)
A a− 1 SSA MSA MSA/MSE σ2 + b σ2

A

B b− 1 SSB MSB MSB/MSE σ2 + a σ2
B

Error (a− 1)(b− 1)) SSE MSE(= s2) σ2

Total ab− 1

A SAS example showing the analysis of data from this model is omitted, as
it is straightforward and follows in the same lines as the analysis of data for
SAS Example F5, except that determining whether σ2

A is nonzero is of interest
here.

6.4 Two-Way Nested Random Effects Model

In this section, a two-way random model for responses from an experiment
with two random factors when one of the factors is nested in the other factor
is considered. Consider two factors A and B. Factor B is said to be nested
in Factor A if levels of B are different at each level of A. For example, in an
extended version of the “traffic ticket” example discussed in Chap. 5, suppose
that the number of tickets issued by officers in randomly selected precincts
in several cities is under study. In this case, suppose also that both cities
and precincts are randomly sampled. The factor precinct is nested within
the factor city because the levels of precinct are different from city to city.
This factor is called the precinct within city, with its levels defined using
combinations of the levels of both city and precinct factors. In general, in
a two-way nested classification, the sampling of the levels takes place in a
hierarchical manner: First, the levels of one factor (Factor A) are randomly
sampled, and then the levels of the nested factor (Factor B) are randomly
sampled within each level of A. Although in this section both factors are
considered random, it is also possible that at least one of them is a fixed
factor.

Model

An appropriate model for the situation described above is

yijk = μ+Ai +Bij + εijk, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , n

where it is assumed that Ai, the Factor A effect, is iid N(0, σ2
A); Bij , the

Factor B within A effect, is iid N(0, σ2
B); and the random error εijk is iid
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N(0, σ2). Further, it is assumed that Ai, Bij , and εijk are pairwise inde-
pendently distributed. The parameters σ2

A, σ
2
B , and σ2 will constitute the

“variance components” in this problem. It is important to note that it is as-
sumed that all Bij , irrespective of the level i, have the same variance σ2

B . For
example, in the motivating problem introduced earlier, this is equivalent to
assuming that the variances in the mean number of tickets issued among the
precincts are the same for all cities. It is possible to examine whether this is
a plausible assumption using the observed data.

Estimation and Hypothesis Testing

An analysis of variance that corresponds to the model is constructed using the
same computational formulas used for the computation of sums of squares of
an ANOVA table if the factors A and B within A are considered to be fixed.
These sums of squares would be the same for effect A as in the ANOVA
table for the two-way crossed random effects model (given in Sect. 6.3). For
the effect B within A (denoted in the following ANOVA table as B(A)), the
sum of squares is obtained by combining (or pooling) the sum of squares for
effects B and AB from the ANOVA table for the two-way crossed random
effects model. That is SSB(A) = SSB + SSAB with df(SSB(A))= df(SSB) +

df(SSAB)= (b − 1) + (a − 1)(b − 1) = a(b − 1). As with the random models
considered so far, an additional column displaying the expected mean squares
is included in the ANOVA table:

SV df SS MS F E (MS)
A a− 1 SSA MSA MSA/MSB(A) σ2 + nσ2

B + bn σ2
A

B(A) a(b− 1) SSB(A) MSB(A) MSB(A)/MSE σ2 + nσ2
B

Error ab(n− 1) SSE MSE(= s2) σ2

Total abn− 1

F -statistics are constructed for sources of variation A and B(A) as shown in
the analysis of variance table and are used to test the hypotheses:

(i) H0 : σ2
A = 0 versus Ha : σ2

A > 0

(ii) H0 : σ2
B = 0 versus Ha : σ2

B > 0

respectively. Again, note, carefully, that these ratios are not the same as the
F -ratios shown in the two-way crossed random effects ANOVA table (see
Sect. 6.3), although the appropriate F -ratios are determined in the same prin-
ciple described there. For example, by examining the E (MS) column, it can be
observed that both MSA and MSB(A) will have expectation equal to σ2+nσ2

B

if σ2
A = 0, irrespective of the value of σ2

B . However, the numerator MSA will
have expectation equal to σ2 + nσ2

B + bn σ2
A if σ2

A > 0. Thus, the F -statistic
for effect A meets the requirement for testing the hypotheses stated in (i). The
F -statistic for testing hypotheses (ii) is also constructed in a similar manner.
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The method of moments estimates of variance components are obtained
by setting the computed mean squares equal to their corresponding expected
values and solving the resulting equations, as usual:

MSA = σ2 + nσ2
B + bn σ2

A

MSB(A) = σ2 + nσ2
B

MSE = σ2

The method of moments estimates of σ2
A, σ

2
B , and σ2 are thus given by

σ̂2
A = (MSA −MSB(A))/bn

σ̂2
B = (MSB(A) −MSE)/n

and σ̂2 = MSE, respectively. When the sample sizes are equal (i.e., for bal-
anced data), these estimators are unbiased and have minimum variance. As
earlier, a (1− α)100% confidence interval for σ2

A is provided by

νσ̂2
A

χ2
1−α/2,ν

< σ2
A <

νσ̂2
A

χ2
α/2,ν

where χ2
1−α/2,ν and χ2

α/2,ν are the 1 − α/2 and α/2 percentile points of the
chi-square distribution with ν degrees of freedom, respectively. The degrees of
freedom for σ̂2

A = 1
bnMSA − 1

bnMSB(A) are obtained using the Satterthwaite

approximation and are given by

ν =
(bnσ̂2

A)
2

(MSA)2/(a− 1) + (MSB(A))
2/a(b− 1)

Formulas for constructing confidence intervals for the other variance compo-
nents can be similarly obtained.

6.4.1 Using PROC GLM to Analyze Two-Way Nested Random
Effects Models

In order to study the variation of the calcium content in turnip greens, four
plants were selected at random. From each plant, three leaves were randomly
selected, and from each leaf, two samples of 100mg each were taken and the
calcium content determined. This experiment is described in Snedecor and
Cochran (1989). The data appear in Table 6.4.

The experimenter is interested in verifying whether there is a significant
variation in calcium content from plant to plant compared to the variation
within a plant. If so, it is also of interest to obtain an estimate of this variation.
The model is

yijk = μ+Ai +Bij + εijk i = 1, 4; j = 1, 3; k = 1, 2
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where Ai, the effect of plant i, is assumed to be iid N(0, σ2
A); Bij , the leaf

i within plant j effect, is assumed to be iid N(0, σ2
B); and εijk, the samples

within leaf within plant effect, is iid N(0, σ2). It is also assumed that Ai, Bij ,
and εijk are pairwise independent.

Table 6.4. Calcium content in turnip greens (Snedecor and Cochran 1989)

Plant Leaf Determinations of Ca

1 1 3.28 3.09
2 3.52 3.48
3 2.88 2.80

2 1 3.46 2.44
2 1.87 1.92
3 2.19 2.19

3 1 2.77 2.66
2 3.74 3.44
3 2.55 2.55

4 1 3.78 3.87
2 4.07 4.12
3 3.31 3.31

SAS Example F8

The SAS Example F8 program (see Fig. 6.21) illustrates how proc glm is
used to fit the above model to the calcium in turnip data. The data are
entered into SAS in a straightforward way. However, note how two separate
observations are created in the SAS data set from the two sample values from
a leaf entered in the same line of data, using the output statements. It is
important to recognize that the levels of leaf are specified in the data as if the
two factors were crossed; that is, the levels of leaf are labeled 1, 2, and 3 for
every level of plant.

Both plant and leaf are declared as classification variables in the class
statement, but in the model statement, a leaf(plant) term is used to define
the leaf within plant effect; that is, the leaf(plant) notation represents
the “Bij” term in the model. When this model specification is used to code
the necessary design matrices that correspond to the random effects, the levels
of the factor leaf within plant are identified as the levels of leaves within
each plant (i.e., 11, 12, 13, 21, 22, . . . , etc.).

The random statement declares that plant and leaf(plant) are random
effects, whereas the test option requests proc glm to construct suitable F -
statistics for testing hypotheses about the variance components specified in the
random statement. The expected values of the mean squares in the ANOVA
table determine the ratios of sums of squares to be used to test the two
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data turnip;
input Plant Leaf X1-X2;
drop X1-X2;
Calcium=X1; output;
Calcium=X2; output;
cards;
1 1 3.28 3.09
1 2 3.52 3.48
1 3 2.88 2.80
2 1 2.46 2.44
2 2 1.87 1.92
2 3 2.19 2.19
3 1 2.77 2.66
3 2 3.74 3.44
3 3 2.55 2.55
4 1 3.78 3.87
4 2 4.07 4.12
4 3 3.31 3.31
;

proc glm data=turnip;
class Plant Leaf;
model Calcium= Plant Leaf(Plant);
random Plant Leaf(Plant)/test;
title ’Analysis of a Two way Nested Random Model: Turnip Data’;

run;

Fig. 6.21. SAS Example F8: program

hypotheses of interest: H0 : σ2
A = 0 versus Ha : σ2

A > 0 and H0 : σ2
B = 0

versus Ha : σ2
B > 0, as discussed previously.

The Types I and III sums of squares are used to compute the standard
output from proc glm (see bottom portion of Fig. 6.22), and, by default, the
error mean square is used as the denominator of the F -ratios constructed to
test the above hypotheses. Although this will produce the correct F -statistic
to test the leaf(plant) effect, the F -statistic calculated for testing the plant
effect is incorrect. The inclusion of the test option in the random statement
will result in the use of leaf within plant mean square as the denomi-
nator to test the plant effect, and this produces the correct F -statistic, as
observed from the output shown in Fig. 6.23. The F -statistic for testing the
leaf(plant) effect uses the MSE as the denominator and is identical to the
statistic for testing this effect in Fig. 6.22.

The following ANOVA table for the turnip green data is constructed from
the Type III sums of squares output from proc glm.

SV df SS MS F p-Value E (MS)
Plant 3 7.56035 2.52012 7.67 0.0097 σ2 + 2σ2

B + 6σ2
A

Leaf (Plant) 8 2.63020 0.32878 49.41 <0.0001 σ2 + 2σ2
B

Error 12 0.07985 0.00665
Total 23 10.27040

The expected mean squares are those derived by proc glm and displayed on
page 3 in Fig. 6.23 in the table titled “Type III Expected Mean Square.” To
test H0 : σ2

A = 0 versus Ha : σ2
A > 0, the statistic F1 = 2.52012/0.32878 =

7.67 is used. Since the p-value is 0.0097, the null hypothesis is rejected at
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Analysis of a Two way Nested Random Model: Turnip Data

The GLM Procedure

Class Level 
Information

Class Levels Values

Plant 4 1 2 3 4

Leaf 3 1 2 3

Number of Observations Read 24

Number of Observations Used 24

Dependent Variable: Calcium

Source DF
Sum of 

Squares Mean Square F Value Pr > F

Model 11 10.19054583 0.92641326 139.22 <.0001

Error 12 0.07985000 0.00665417

Corrected Total 23 10.27039583

R-Square Coeff Var Root MSE Calcium Mean

0.992225 2.708195 0.081573 3.012083

Source DF Type I SS Mean Square F Value Pr > F

Plant 3 7.56034583 2.52011528 378.73 <.0001

Leaf(Plant) 8 2.63020000 0.32877500 49.41 <.0001

Source DF Type III SS Mean Square F Value Pr > F

Plant 3 7.56034583 2.52011528 378.73 <.0001

Leaf(Plant) 8 2.63020000 0.32877500 49.41 <.0001

Fig. 6.22. SAS Example F8: output from proc glm (pages 1 and 2)

α = 0.05. The F -statistic F2 = 0.32878/0.00665 = 49.41 is associated with
a p-value of < 0.0001. Thus, the null hypothesis of H0 : σ2

B = 0 versus Ha :
σ2
B > 0 is also rejected at α = 0.05. The variance components are estimated

by setting the computed mean squares equal to their expected values and
solving the resulting set of equations:

σ2 + 2σ2
B + 6σ2

A = 2.52012

σ2 + 2σ2
B = 0.32878

σ2 = 0.00665

The solutions are σ̂2 = 0.00665, σ̂2
B = (0.32875 − 0.00665)/2 = 0.16105, and

σ̂2
A = (2.52012 − 0.32878)/6 = 0.36522. The conclusion is that the variation
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Analysis of a Two way Nested Random Model: Turnip Data

The GLM Procedure

Source Type III Expected Mean Square

Plant Var(Error) + 2 Var(Leaf(Plant)) + 6 Var(Plant)

Leaf(Plant) Var(Error) + 2 Var(Leaf(Plant))

Tests of Hypotheses for Random Model Analysis of Variance

Dependent Variable: Calcium

Source DF Type III SS Mean Square F Value Pr > F

Plant 3 7.560346 2.520115 7.67 0.0097

Error 8 2.630200 0.328775

Error: MS(Leaf(Plant))

Source DF Type III SS Mean Square F Value Pr > F

Leaf(Plant) 8 2.630200 0.328775 49.41 <.0001

Error: MS(Error) 12 0.079850 0.006654

Fig. 6.23. SAS Example F8: output from proc glm (pages 3 and 4)

in calcium content among the leaves within a plant is about 24 times as large,
and among the plants, it is about 55 times as large as the variation among
samples within leaves.

6.4.2 Using PROC MIXED to Analyze Two-Way Nested Random
Effects Models

In this subsection, proc mixed is used to fit the model discussed in Sect. 6.4.1
to the turnip green data. The method of moments is used, mainly so that the
results can be compared with the analysis obtained previously using proc glm.
The differences between the proc mixed analysis obtained by this method and
those obtained using MLE and REML methods are indicated at the end of
this subsection.

SAS Example F9

In the SAS Example F9 program (see Fig. 6.24), the method=type3 used in
the proc statement requests that the method of moments estimators using the
Type III expected mean squares are to be calculated. The resulting variance
component estimates, F -statistics, and their p-values are shown in Fig. 6.25,
and they are identical to those from proc glm. The variance component esti-
mates are the same as those calculated by hand using results from proc glm.
The confidence intervals calculated by proc mixed are again those based on
large sample standard errors and the normal percentiles except those for σ2,
which are based on chi-square percentiles.
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insert data step to create the SAS dataset ‘turnip’ here

proc mixed data=turnip noclprint noinfo method=type3 cl; ;
class Plant Leaf;
model Calcium= /solution;
random Plant Leaf(Plant);
title "Analysis of a Two way Nested Random Model: Turnip Data";

run;

Fig. 6.24. SAS Example F9: method of moments estimation using proc mixed

Analysis of a Two way Nested Random Model: Turnip Data

The Mixed Procedure

Type 3 Analysis of Variance

Source DF
Sum of 

Squares
Mean 

Square Expected Mean Square Error Term
Error 

DF
F 

Value Pr > F

Plant 3 7.560346 2.520115 Var(Residual) + 2 Var(Leaf(Plant)) + 
6 Var(Plant)

MS(Leaf(Plant)) 8 7.67 0.0097

Leaf(Plant) 8 2.630200 0.328775 Var(Residual) + 2 Var(Leaf(Plant)) MS(Residual) 12 49.41 <.0001

Residual 12 0.079850 0.006654 Var(Residual) . . . .

Covariance Parameter Estimates

Cov Parm Estimate Alpha Lower Upper

Plant 0.3652 0.05 -0.3091 1.0395

Leaf(Plant) 0.1611 0.05 -0.00006 0.3222

Residual 0.006654 0.05 0.003422 0.01813

Fit Statistics

-2 Res Log Likelihood 2.2

AIC (Smaller is Better) 8.2

AICC (Smaller is Better) 9.4

BIC (Smaller is Better) 6.3

Solution for Fixed Effects

Effect Estimate
Standard

Error DF t Value Pr > |t|

Intercept 3.0121 0.3240 3 9.30 0.0026

Fig. 6.25. SAS Example F9: output

If the option method=reml (the default value) or method=ml is specified as
the method of estimation, the same values as those obtained from the method
of moments will be obtained for balanced data. However, the standard errors
will be calculated using large-sample results for maximum likelihood estima-
tors that assume the numbers of levels for the two factors (sample sizes) are
large. The inferences made from the resulting z -tests will not be the same
as those made from the F -tests based on assuming normal distributions for
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the random effects. The confidence intervals for the variance components
will be those based on the chi-square distribution and the Satterthwaite
approximation.

6.5 Two-Way Mixed Effects Model

The mixed model is a linear model that involves both fixed and random ef-
fects. In the following subsections, several applications of this model will be
discussed. In Chaps. 4 and 5, the least squares method was used to obtain
the estimates of the parameters of the regression and ANOVA models, respec-
tively, using the matrix form of the respective models:

y = Xβ + ε.

In the case of full-rank regression models, the solution to the normal equations

X ′Xβ = X ′y

gave the least squares estimate β̂ ofβ as

β̂ = (X ′X)−1X ′y

In Chap. 5, analysis of variance models was also represented in the same
matrix model setup where the X matrix, now called the design matrix, was
constructed from the linear model describing the responses observed from an
experiment and the parameter vector consisted of the model effects. A specific
example in Sect. 5.1 illustrated how the X matrix is constructed for a typical
experimental situation.

The matrix representation of a mixed model will be described in this sec-
tion and the methods of estimation briefly summarized. As an example of a
two-factor mixed model with interaction, consider the machine–operator ex-
ample discussed in Sect. 6.3. To keep the dimensions of the matrices involved
in the example within manageable limits, instead of four production machines
(Factor A), consider that the breaking strengths of plastic sheeting from two
specific brands of machines were of interest, that three operators were ran-
domly selected, and that two trials were performed by each machine–operator
combination in a completely randomized design. Thus, the applicable model
may be expressed as the two-way crossed mixed effects model given by

yijk = μ+ αi +Bj + αBij + εijk, i = 1, . . . , 2; j = 1, . . . , 3; k = 1, . . . , 2

where αi are fixed effects due to the two levels of Factor A (machines); Bj , the
random effects of Factor B (operators), are iid N(0, σ2

B) random variables; the
interaction effects between the two factors denoted by αBij are iid N(0, σ2

αB);
and the random errors εijk are iid N(0, σ2) random variables. The interaction
effects are random because the levels depend on the levels of Factor B, which
are randomly sampled. The matrix form of the model is

y = Xβ + Z1 u1 + Z2 u2 + ε
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where

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y111

y112

y121

y122

y131

y132

y211

y212

y221

y222

y231

y232

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, β =

⎡
⎢⎣

μ
α1

α2

α3

⎤
⎥⎦ , Z1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u1 =

⎡
⎣
B1

B2

B3

⎤
⎦ ,

Z2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u2 =

⎡
⎢⎢⎢⎢⎢⎣

αB11

αB12

αB13

αB21

αB22

αB23

⎤
⎥⎥⎥⎥⎥⎦
, ε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε111
ε112
ε121
ε122
ε131
ε132
ε211
ε212
ε221
ε222
ε231
ε232

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The observed data vector is arranged so that, as in Sect. 5.1, the subscripts
of the observations are lexically ordered; that is, digits to the right change
faster than the ones on the left. For the observation yijk, the model terms are
obtained by scalar products of the appropriate vectors in the corresponding
rows of the matrices X, Z1, and Z2 and the parameter vectors β, u1, and
u1, respectively. By locating the 1s in the appropriate rows of X, Z1, and Z2

and selecting the terms in the same positions in the parameter vectorsβ, u1,
and u1, the relevant model terms can be easily extracted. For example, for
observation y132, the relevant elements are found in row 6 of these matrices
(these are highlighted), giving the model terms to be μ, α1, B3, αB13, and
ε132. (For compactness, the above model can be reduced to the form

y = Xβ + Z u+ ε

where Z1 and Z2 are combined to form Z and u1 and u2 are stacked together to
form u, but the expanded form is helpful in expressing the relevant variance–
covariance matrices in easily expressible forms.)

In the classical variance component model, the random vectors u1, u2,
and ε have the multivariate normal distributions N(0, σ2

B I), N(0, σ2
αB I),

and N(0, σ2 I), respectively, where the matrices σ2
B I and so forth are diag-

onal matrices with the diagonal elements all equal to the respective variance
components. The variance–covariance matrix of y is thus given by the 12×12
matrix V :

V = Z1Z
′

1σ
2
B + Z2Z

′

2σ
2
B + σ2 I

By performing the necessary matrix multiplications Z1Z
′

1 and Z2Z
′

2, the
form of V can be determined, from which important features of the covariance
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structure of the observations can be obtained. Thus, the variance of an ob-
servation yijk is σ2 + σ2

B + σ2
αB and covariance between pairs of observations

resulting from a replication using

• the same machine but different operators is Cov(y111, y121) = 0
• different machines but the same operator is Cov(y111, y211) = σ2

1

• the same machine and the same operator is Cov(y111, y112) = σ2
B + σ2

αB

• different machines and different operators is Cov(y111, y221) = 0

A clear distinction exists between estimating a fixed parametric function,
such as μ+ αi, and predicting a random variable such as Bj . To gain a little
insight into the theoretical implications, it is necessary to have a minimal
understanding of how statistical inferences are made from a mixed model. In
general, the mixed model is expressed in the form

y = Xβ + Z u+ ε

where the random vectors u and ε have the multivariate normal distributions
N(0, G)and N(0, R), respectively, where the variance–covariance matrices G
and R are fixed unknown constants. Using this form, the variance–covariance
matrix of y is given by V = ZGZ

′
+ R. Thus, the covariance structure of

y is determined by the random effects design matrix Z, and the covariance
structures are defined by the matricesG and R. For the model discussed above,
these matrices take simple forms: R is a 12×12 identity matrix, and G is a 9×9
diagonal matrix with the diagonal elements σ2

B , σ
2
B , σ

2
B , σ

2
αB , . . . , σ

2
αB . The

matrices X and Z consist of constants (usually 0s and 1s) because they are
the usual design matrices for the two types of effects. By writing the likelihood
function for the parameters,β, G, and R (i.e., the joint density function of y
and u) and taking derivatives with respect to β and u, the following set of
equations known as the mixed model equations are obtained:

[
X ′R−1X X ′R−1Z
Z ′R−1X Z ′R−1Z +G−1

] [
β̃
ũ

]

=

[
X ′R−1y
Z ′R−1y

]

The solutions to mixed model equations are given by β̃ = (X ′V −1X)−1X ′

V −1y and ũ = GZ ′V −1(y−Xβ̃). Using these, best linear unbiased estimates
of estimable linear functions of β as well as best linear unbiased predictors
(BLUPs) of predictable functions ofβ and u may be constructed.

A predictable function of β and u is a linear combination of the form
�′β + m′u, where �′β is an estimable function of β. Recall that estimable
functions were defined in Sect. 5.1 of Chap. 5. It is clear that if fixed parameters
are not involved, it is possible to predict virtually any linear function of u;
however, in practice, predictable functions considered are only those that are
interpretable as part of the inference made from a particular experiment. For
example, the mixed model equations are due to Henderson (in Henderson
et al. (1959); also see Searle et al. (1992)), who developed a procedure for
predicting breeding values (defined as a predictable function, say μ+Bi), for
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randomly selected sires (i.e., sire is the random Factor B) in an animal genetic
experiment. See Searle et al. (1992) for a detailed presentation on BLUPs.

In the above machine–operator experiment, E(yijk) = μ + αi is an es-
timable function of the fixed parameters and estimates the mean strength of
plastic sheeting from machine i, averaged over all operators in the popula-
tion of operators. On the other hand, the function μ+ αi +B. + αBi. (where
B. =

1
3

∑
j Bj and αBi. =

1
3

∑
j αBij) is the expectation of yijk averaged over

the three operators in the experiment. This is a predictable function different
from the estimable function above and estimates the mean strength for Ma-
chine i given that the effects of the operators are fixed. Another example of a
predictable function is αi−αj +(αBi.−αBj.), which measures the difference
between the two machines i and j.

Although, BLUPs were not discussed for random models considered in
Sects. 6.2, 6.3, and 6.4, they can also be defined for those models by treating
them as mixed models by taking μ as the only fixed effect in each of the
models. Thus, for example, in the one-way random model yij = μ + Ai + εij
considered in Sect. 6.2, the BLUP of μ + Ai is of the form δȳ.. + (1 − δ)ȳi.,
where δ = σ2/(σ2 + nσ2

A). From this example, it is clear that the BLUP
is a function of the unknown variance components. Thus, for BLUPs to be
practically useful, they need to be estimated because the values of the variance
components involved in the expressions for the predictors are unknown. In
practice, variance components are first estimated and then plugged into the
BLUPs to obtain estimated BLUPs (eBLUPs).

6.5.1 Two-Way Mixed Effects Model: Randomized Complete
Block Design

In Sect. 5.7, the analysis of a randomized block design with block effects con-
sidered as fixed effects was discussed. However, in practice, block effects need
to be considered as random effects because statistical inferences that will be
made about the differences in treatment effects from such a design must be
valid regardless of the choice of blocks. By considering the blocks used in the
experiment as a random sample from a hypothetical population of blocks, the
effects of the blocks can be specified in the model as random effects. From such
a model, inferences regarding differences in the treatment effects can be made
using the (unconditional) means of the observations, with the variance of the
block effects, and then accounting for the variability among blocks present.

With random block effects, using the same arguments presented when
blocks were considered fixed, the model may still be specified as an additive
model since the block effects do not interact with the treatment effects; thus,
no interaction term is necessary in this case, as well.

Model

An appropriate model for an RCBD with random block effects is

yij = μ+ τi +Bj + εij , i = 1, . . . , t; j = 1, . . . , r
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where τi is the effect of the ith treatment; the effect of the jth block, Bj , is
assumed to be iidN(0, σ2

B); and the random error εij iidN(0, σ2) is distributed
independently of Bj . As a consequence of this model, the mean of a response to
treatment i is E(yij) = μ+τi, and the variance is Var(yij) = σ2+σ2

B . Further,
the covariance between two observations in the same block is Cov(yij , yi′j) =
σ2
B , but observations from different blocks are uncorrelated.

Estimation and Hypothesis Testing

An analysis of variance that corresponds to the model is constructed using the
same computational formulas as when blocks were considered fixed but the
expected mean squares must be calculated using the assumptions described
above. As with the random models, an additional column displaying the ex-
pected mean squares is included in the ANOVA table for a mixed model:

SV df SS MS F E (MS)
Blocks r − 1 SSA MSA MSA/MSE σ2 + r σ2

B

Trts t− 1 SSTrt MSTrt MSTrt/MSE σ2 + r

∑
i(τi − τ̄)2

(t−1)

Error (r − 1)(t− 1) SSE MSE(= s2) σ2

Total rt− 1

The F -statistic for Trts tests the hypothesis of equality of treatment effects:

H0 : τ1 = τ2 = · · · = τt versus Ha : at least one inequality

or, equivalently,

H0 : μ1 = μ2 = · · · = μt versus Ha : at least one inequality

where μi = μ + τi, the ith treatment mean. H0 is rejected if the observed

F -value exceeds the α upper percentile of an F -distribution with df1 = t− 1
and df2 = (r−1)(t−1). The best estimate of the difference between the effects
of two treatments labeled p and q is

̂μp − μq = ̂τp − τq = ȳp. − ȳq.

with standard error given by

sd = s.e.(ȳp. − ȳq.) = s

√
2

r

where s =
√
MSE. A (1− α)100% confidence interval for μp − μq (or, equiva-

lently, τp − τq) is

(ȳp. − ȳq.)± tα/2,ν · s
√

2

r
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where tα/2,ν is the upper α/2 percentile point of a t-distribution with
ν = (r − 1)(t− 1) degrees of freedom. Thus, none of these results regarding
the treatment effects is different from the fixed block effect case. Similarly,
standard errors for linear comparisons of treatment means and the corre-
sponding t-tests may be calculated.

SAS Example F10

The data from the experiment comparing five seed treatments in five repli-
cations described in Snedecor and Cochran (1989) and used in SAS Example
E11 (see Sect. 5.7) is reanalyzed in this example, but considering the blocks
as random effects.

data soybean;
input Trt $ @;
do Rep=1 to 5;

input Yield @;
output;

end;
datalines;
check 8 10 12 13 11
arasan 2 6 7 11 5
spergon 4 10 9 8 10
samesan 3 5 9 10 6
fermate 9 7 5 5 3
;

proc glm order=data;
class Trt Rep;
model Yield = Trt Rep;
contrast ’Check vs Chemicals’ Trt 4 -1 -1 -1 -1;
random Rep/Q;
lsmeans Trt/pdiff cl adjust=tukey;

run;

Fig. 6.26. SAS Example F10: analysis of seed treatments

The data were shown in Table 5.10 in Sect. 5.7. The model is thus

yij = μ+ τi +Bj + εij , i = 1, . . . , 5; j = 1, . . . , 5

where τi is the effect of the ith seed treatment; the effect of the jth block,
Bj , is assumed to be iid N(0, σ2

B), and the random error εij iid N(0, σ2) is
distributed independently of Bj .

The proc glm step (see Fig. 6.26) is similar to that used in SAS Example
E11 except for the inclusion of the random statement and use of the lsmeans
statement instead of the means statement. This random statement leads to the
computation of the expected mean squares for terms in the model statement.
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The Q option causes the matrix for the quadratic forms (described below) that
appear in the expected mean squares for fixed effects to be explicitly displayed.
In this example, there is a single such quadratic form for the treatment effect.

The lsmeans statement requests 95% confidence intervals for pairwise dif-
ferences in seed treatment means (effects) that are adjusted for simultaneous
inference using the Tukey method. The results would be exactly the same
as those resulting from the use of the means trt/tukey cldiff; statement.
Note also that the contrast statement is placed ahead of the random state-
ment so that the expected value of the mean square for testing the contrast
hypothesis is also calculated.

Analysis of Seed Treatments in a RCBD

Dependent Variable: Yield

Source DF
Sum of 

Squares Mean Square F Value Pr > F

Model 8 133.6800000 16.7100000 3.09 0.0262

Error 16 86.5600000 5.4100000

Corrected Total 24 220.2400000

R-Square Coeff Var Root MSE Yield Mean

0.606974 30.93006 2.325941 7.520000

Source DF Type I SS Mean Square F Value Pr > F

Trt 4 83.84000000 20.96000000 3.87 0.0219

Rep 4 49.84000000 12.46000000 2.30 0.1032

Source DF Type III SS Mean Square F Value Pr > F

Trt 4 83.84000000 20.96000000 3.87 0.0219

Rep 4 49.84000000 12.46000000 2.30 0.1032

Contrast DF Contrast SS Mean Square F Value Pr > F

Check vs Chemicals 1 67.24000000 67.24000000 12.43 0.0028

Fig. 6.27. SAS Example F10: output (page 2)

Edited forms of the output from the SAS Example F10 program appears in
Figs. 6.27, 6.28, and 6.29. Figure 6.27 contains the default Type III F -statistics
for the trt effects and the results of the test of the contrast hypothesis. For
the RCBD (considered as a mixed model), these F -statistics are the correct
statistics for testing for fixed effects. The contrast hypothesis is rejected (p-
value= 0.0028); thus, the average effect of the seed treatments on germination
is found to be different from the effect of the control of no treatment used.
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The GLM Procedure
Quadratic Forms of Fixed Effects in the Expected Mean Squares

Source: Type III Mean Square for Trt

Trt check Trt arasan Trt spergon Trt samesan Trt fermate

Trt check 4.00000000 -1.00000000 -1.00000000 -1.00000000 -1.00000000

Trt arasan -1.00000000 4.00000000 -1.00000000 -1.00000000 -1.00000000

Trt spergon -1.00000000 -1.00000000 4.00000000 -1.00000000 -1.00000000

Trt samesan -1.00000000 -1.00000000 -1.00000000 4.00000000 -1.00000000

Trt fermate -1.00000000 -1.00000000 -1.00000000 -1.00000000 4.00000000

Source: Contrast Mean Square for Check vs Chemicals

Trt check Trt arasan Trt spergon Trt samesan Trt fermate

Trt check 4.00000000 -1.00000000 -1.00000000 -1.00000000 -1.00000000

Trt arasan -1.00000000 0.25000000 0.25000000 0.25000000 0.25000000

Trt spergon -1.00000000 0.25000000 0.25000000 0.25000000 0.25000000

Trt samesan -1.00000000 0.25000000 0.25000000 0.25000000 0.25000000

Trt fermate -1.00000000 0.25000000 0.25000000 0.25000000 0.25000000

Source Type III Expected Mean Square

Trt Var(Error) + Q(Trt)

Rep Var(Error) + 5 Var(Rep)

Contrast Contrast Expected Mean Square

Check vs Chemicals Var(Error) + Q(Trt)

Fig. 6.28. SAS Example F10: quadratic form for E(MS) for treatment effects

On part of the output displayed in Fig. 6.28, the Type III expected mean
squares for the model effects and the contrast are displayed. Both the expres-
sions for the expected mean square of the trt and the contrast (see tables
toward the bottom) contain a term with a quadratic form (labeled Q(trt)).

For the RCBD, Q(trt) is of the form r

∑
i(τi − τ̄)2

(t−1) (as shown in the ANOVA

table given earlier in this subsection).
This can be verified using the matrix of the quadratic form displayed at

the top table of Fig. 6.28 (under the title Type III Mean Square for trt).
To obtain the form of Q for an effect, one needs to calculate the quadratic
form τ ′Aτ and divide by the degrees of freedom for the effect. Here, A is
the matrix the columns of which are printed, and τ is the vector of fixed
effects parameters τ = (τ1, τ2, τ3, τ4, τ5)

′. Thus, the computation requires
the matrix multiplication

[
τ1 τ2 τ3 τ4 τ5

]

⎡

⎢
⎢
⎢
⎢
⎣

4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

τ1
τ2
τ3
τ4
τ5

⎤

⎥
⎥
⎥
⎥
⎦
= 5(
∑

i(τi − τ̄)2)
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giving Q(trt)= 5(
∑

i(τi − τ̄)2)/4. This expected mean square is not different
from the case where blocks were considered fixed effects.

In a similar fashion, the Q for the contrast expected mean square may
be calculated using the corresponding matrix displayed in the table in the
middle of Fig. 6.28 (under the title Contrast Mean Square for Check vs.

Chemicals). In balanced data situations for common experimental designs,
such as the RCBD, it is not necessary to use the Q option since the form of the
expected mean squares for the fixed effects is available from many textbooks.
It was used in this example for illustrating how the output matrix from the Q
option is used to construct the quadratic form. This option is mainly useful for
determining the expected mean squares in complex situations where standard
forms are not available.

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey

Trt Yield LSMEAN
LSMEAN 
Number

check 10.8000000 1

arasan 6.2000000 2

spergon 8.2000000 3

samesan 6.6000000 4

fermate 5.8000000 5

Least Squares Means for effect Trt
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Yield

i/j 1 2 3 4 5

1 0.0443 0.4242 0.0740 0.0261

2 0.0443 0.6602 0.9987 0.9987

3 0.4242 0.6602 0.8102 0.4999

4 0.0740 0.9987 0.8102 0.9812

5 0.0261 0.9987 0.4999 0.9812

Trt Yield LSMEAN
95% Confidence 

Limits

check 10.800000 8.594891 13.005109

arasan 6.200000 3.994891 8.405109

spergon 8.200000 5.994891 10.405109

samesan 6.600000 4.394891 8.805109

fermate 5.800000 3.594891 8.005109

Least Squares Means for Effect Trt

i j

Difference 
Between 

Means

Simultaneous 95% 
Confidence Limits for 
LSMean(i)-LSMean(j)

1 2 4.600000 0.093171 9.106829

1 3 2.600000 -1.906829 7.106829

1 4 4.200000 -0.306829 8.706829

1 5 5.000000 0.493171 9.506829

2 3 -2.000000 -6.506829 2.506829

2 4 -0.400000 -4.906829 4.106829

2 5 0.400000 -4.106829 4.906829

3 4 1.600000 -2.906829 6.106829

3 5 2.400000 -2.106829 6.906829

4 5 0.800000 -3.706829 5.306829

Fig. 6.29. SAS Example F10: output (edited results of lsmeans statement)

Figure 6.29 contains the results of the lsmeans statement. The pdiff

option produced the second table on this SAS output, which gives p-values
associated with testing pairwise differences in means (i.e., hypotheses of the
form H0 : μi = μj versus H : μi �= μj for all pairs (i, j)). The 95% confi-
dence intervals for pairwise differences displayed in the table at the bottom of
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Fig. 6.29 were produced as a result of the cl option. The confidence intervals
are adjusted for multiple comparisons using Tukey’s procedure.

Zero is included in every interval except 1–2 (i.e., check–arasan) and 1–5
(i.e., check–fermate). This represents one less pair of means not found to be
different than when t-based confidence intervals (i.e., those unadjusted for
multiple comparisons) were used in Sect. 5.7. Thus, this procedure is slightly
more conservative than using t-based intervals. The conclusions are similar to
those drawn in Sect. 5.7 except that both spergon and samesan are found to
be different from the control.

SAS Example F11

In this program (displayed in Fig. 6.30), proc mixed is used to analyze the
data from the experiment comparing five seed treatments using Type 3 sums of
squares and the method of moments. As discussed in Sect. 6.2, there are several
advantages to using proc mixed instead of proc glm even when iterative
estimation methods are not used. Although using the random statement in
proc glm expected mean squares and F -tests about variance components
can be computed, other statements in proc glm do not make use of this
information. For example, the standard ANOVA tables proc glm produces
still regard all effects as fixed effects, whereas in proc mixed, separate tests
are performed for the variance components. Moreover, proc mixed allows the
user to choose among several estimation methods as well as the ability to use
estimate statements to estimate BLUPs involving fixed and random effects.

insert data step to create the SAS data set ‘soybean’ here

proc mixed order=data method=type3 covtest cl;
class Trt Rep;
model Yield = Trt;
random Rep;
lsmeans Trt/diff cl adjust=tukey;
contrast ’Check vs Chemicals’ Trt 4 -1 -1 -1 -1;

run

Fig. 6.30. SAS Example F11: analysis of seed treatments using proc mixed

The method=type3 option in the proc statement specifies that the variance
components are to be estimated by the method of moments using the Type
3 sums of squares. The standard errors of the estimated variance components
and associated confidence intervals are computed as a result of the covtest

and the cl options. As discussed in Sect. 6.2, the model statement in proc

mixed requires only the fixed part of the model to be specified; thus, model
yield = trt; implies an overall mean μ and the fixed effect trt are in the
model. The random statement specifies the random portion of the model: here,
the random effect rep and a random error term. The variance of this effect
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Randomized Blocks with PROC MIXED

The Mixed Procedure

Model Information

Data Set WORK.SOYBEAN

Dependent Variable Yield

Covariance Structure Variance Components

Estimation Method Type 3

Residual Variance Method Factor

Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

Trt 5 check arasan spergon samesan fermate

Rep 5 1 2 3 4 5

Dimensions

Covariance Parameters 2

Columns in X 6

Columns in Z 5

Subjects 1

Max Obs per Subject 25

Number of Observations

Number of Observations Read 25

Number of Observations Used 25

Number of Observations Not Used 0

Type 3 Analysis of Variance

Source DF
Sum of 

Squares Mean Square Expected Mean Square Error Term
Error 

DF F Value Pr > F

Trt 4 83.840000 20.960000 Var(Residual) + Q(Trt) MS(Residual) 16 3.87 0.0219

Rep 4 49.840000 12.460000 Var(Residual) + 5 Var(Rep) MS(Residual) 16 2.30 0.1032

Residual 16 86.560000 5.410000 Var(Residual) . . . .

Fig. 6.31. SAS Example F11: model fit output

and the error variance constitute the two variance components specified
by this model. Thus, the model and random statements (in addition to the
class statement) are needed to specify a mixed model in proc mixed. The
lsmeans statement requests 95% confidence intervals for pairwise differences
in seed treatment effects adjusted for simultaneous inference using the Tukey
method. The diff option is redundant here as adjust= option implies the
diff option.
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The information on page 1 (see Fig. 6.31) is the same as that described
earlier for SAS Examples F2 and F3 in Sect. 6.2. The table titled Type 3

Analysis of Variance provides the expected mean squares for all effects
and is exactly the same as those produced by proc glm. The actual F -tests
for both fixed and random effects are shown on page 2 (see Fig. 6.32). These
are the same as those in the standard Type III SS table from proc glm.
However, a separate table for the F -tests of the fixed effects is also provided
lower on page 2. The table titled Covariance Parameter Estimates gives
estimates of variance components obtained via the method of moments. As in
Sect. 6.2, these are obtained by solving

σ2 + 5σ2
B = 12.46

σ2 = 5.41

which give σ̂2 = 5.41 and σ̂2
B = (12.46− 5.41)/5 = 1.41. The confidence inter-

vals calculated by proc mixed for the variance components are those based on
large-sample standard errors and the normal percentiles except those for σ2.
For example, the Wald statistic z is given by z = σ̂2

B/s.e.(σ̂
2
B), and a 95% con-

fidence interval for σ2
B is thus 11.4478 ± (1.96)(8.7204) = (−5.6442, 28.5398).

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Estimate
Standard

Error
Z 

Value Pr Z Alpha Lower Upper

Rep 1.4100 1.8032 0.78 0.4342 0.05 -2.1241 4.9441

Residual 5.4100 1.9127 2.83 0.0023 0.05 3.0008 12.5310

Fit Statistics

-2 Res Log Likelihood 101.9

AIC (Smaller is Better) 105.9

AICC (Smaller is Better) 106.6

BIC (Smaller is Better) 105.1

Type 3 Tests of Fixed Effects

Effect
Num 

DF
Den 
DF F Value Pr > F

Trt 4 16 3.87 0.0219

Contrasts

Label
Num 

DF
Den 
DF F Value Pr > F

Check vs Chemicals 1 16 12.43 0.0028

Fig. 6.32. SAS Example F11: estimates and tests
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If a (1 − α)100% confidence interval based on the Satterthwaite approx-
imation is desired, a formula similar to (6.1) in Sect. 6.2 could be used. The
relevant SAS data step is

data cint;

alpha=.05; a=5; r=5;

msb= 12.46; s2=5.41; sb2=1.41;

nu=(a*sb2)**2/(msb**2/(r-1)+ s2**2/((a-1)*(r-1)));

L= (nu*sb2)/cinv(1-alpha/2,nu);

U= (nu*sb2)/cinv(alpha/2,nu);

put nu= L= U=;

run;

Executing the above gives the interval (0.3075, 430.516). However, since the
Wald statistic z and the degrees of freedom ν = 2z2 are already available, the
code given at the end of SAS Example F7 is simpler to use.

Note, however, that the variance component σ2
B is not of major interest in

this experiment, but an estimate and a valid hypothesis test of the variation
among the blocks are available to the experimenter. The output from lsmeans

is of main interest and appears in pages 3 and 4 (see Figs. 6.33 and 6.34 for
extracted parts from these pages). In Fig. 6.33, estimates, standard errors,
and confidence intervals for the treatment means μi = μ + τi are given. It
is important to note that the standard errors are computed (correctly) using
the formula

√
(σ̂2 + σ̂2

B)/5 =
√
(5.41 + 1.41)/5 = 1.1679. Note that in SAS

Example F10, proc glm would have used the formula
√

(σ̂2/5 (if the stderr
option was specified requesting it) because rep is considered fixed in proc

glm for the purpose of this computation.
The results of the t-tests are shown in Fig. 6.34. Besides the p-values

computed for the standard t-tests, an additional column (titled Adj P) pro-
vides the p-values adjusted for multiple testing. Here, the adjustment is
based on Tukey’s studentized range distribution, the p-values being calcu-
lated are probabilities that studentized range random variable q(t, ν) exceeds
|ȳi − ȳj |/

√
s2/r, where ν = (a − 1)(r − 1) and ȳi and ȳjare a pair of trt

Least Squares Means

Effect Trt Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper

Trt check 10.8000 1.1679 16 9.25 <.0001 0.05 8.3242 13.2758

Trt arasan 6.2000 1.1679 16 5.31 <.0001 0.05 3.7242 8.6758

Trt spergon 8.2000 1.1679 16 7.02 <.0001 0.05 5.7242 10.6758

Trt samesan 6.6000 1.1679 16 5.65 <.0001 0.05 4.1242 9.0758

Trt fermate 5.8000 1.1679 16 4.97 0.0001 0.05 3.3242 8.2758

Fig. 6.33. SAS Example F11: estimates and standard errors of means
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means. The SAS function probmc can be used to verify this by executing a
data step such as

data pval;

a=5; r=5; diff=4.6; nu=(a-1)*(r-1); s2=5.41;

q=diff/sqrt(s2/r);

p=1-probmc("Range", q, ., nu, 5);

put df= q= p= ;

run;

which gives q = 4.42226 and p = 0.04429. The adjusted p-values do not change
the results obtained previously for these comparisons.

Two sets of confidence intervals are shown in Fig. 6.34, one set based on
the t-distribution, and the second set adjusted for multiple comparisons using
Tukey’s studentized range statistic. The results are exactly the same as those
obtained from the previous analysis using proc glm.

Differences of Least Squares Means

Effect Trt _Trt Estimate
Standard

Error DF t Value Pr > |t| Adjustment Adj P Alpha

Trt check arasan 4.6000 1.4711 16 3.13 0.0065 Tukey-Kramer 0.0443 0.05

Trt check spergon 2.6000 1.4711 16 1.77 0.0962 Tukey-Kramer 0.4242 0.05

Trt check samesan 4.2000 1.4711 16 2.86 0.0115 Tukey-Kramer 0.0740 0.05

Trt check fermate 5.0000 1.4711 16 3.40 0.0037 Tukey-Kramer 0.0261 0.05

Trt arasan spergon -2.0000 1.4711 16 -1.36 0.1928 Tukey-Kramer 0.6602 0.05

Trt arasan samesan -0.4000 1.4711 16 -0.27 0.7892 Tukey-Kramer 0.9987 0.05

Trt arasan fermate 0.4000 1.4711 16 0.27 0.7892 Tukey-Kramer 0.9987 0.05

Trt spergon samesan 1.6000 1.4711 16 1.09 0.2929 Tukey-Kramer 0.8102 0.05

Trt spergon fermate 2.4000 1.4711 16 1.63 0.1223 Tukey-Kramer 0.4999 0.05

Trt samesan fermate 0.8000 1.4711 16 0.54 0.5941 Tukey-Kramer 0.9812 0.05

Differences of Least Squares Means

Effect Trt _Trt Lower Upper
Adj 

Lower
Adj 

Upper

Trt check arasan 1.4815 7.7185 0.09317 9.1068

Trt check spergon -0.5185 5.7185 -1.9068 7.1068

Trt check samesan 1.0815 7.3185 -0.3068 8.7068

Trt check fermate 1.8815 8.1185 0.4932 9.5068

Trt arasan spergon -5.1185 1.1185 -6.5068 2.5068

Trt arasan samesan -3.5185 2.7185 -4.9068 4.1068

Trt arasan fermate -2.7185 3.5185 -4.1068 4.9068

Trt spergon samesan -1.5185 4.7185 -2.9068 6.1068

Trt spergon fermate -0.7185 5.5185 -2.1068 6.9068

Trt samesan fermate -2.3185 3.9185 -3.7068 5.3068

Fig. 6.34. SAS Example F11: adjusted t-tests and confidence intervals for pairwise
differences of means
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6.5.2 Two-Way Mixed Effects Model: Crossed Classification

The machine–operator example at the beginning of Sect. 6.5, introducing two-
factor mixed models, discussed an experiment in which a fixed factor (two
brands of machines) and a random factor (three randomly selected operators)
were used. The general setup of such experiments will have “a” levels of a fixed
Factor A and “b” levels of a random Factor B, where each factorial combi-
nation of levels of A and B is replicated n times in a completely randomized
design. The interaction effect between A and B is random because the levels
of the interaction effect involve the levels of Factor B which are randomly
selected.

Model

The two-way crossed mixed effects model is given by

yijk = μ+ αi +Bj + αBij + εijk, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , n

where αi are fixed effects (levels of Factor A), Bj are random effects (levels
of Factor B) that are iid N(0, σ2

B) random variables, the interaction effects
between the two factors denoted by αBij are iid N(0, σ2

αB), and the random
errors εijk are iid N(0, σ2) random variables. The random variables Bj , αBij ,
and εijk are pairwise independent. The mean of the responses is E(yijk) =
μ+ αi and the variance Var(yijk) = σ2 + σ2

B + σ2
αB . The responses from the

same level of random Factor B have covariance σ2
B if they are from different

levels of Factor A and σ2
B + σ2

αB if they are from the same level of Factor A.
If they are from different levels of Factor B, they are uncorrelated.

A Special Comment The above model, sometimes called the unconstrained pa-
rameters (UP) model in the literature, is adopted by several authors as well
as SAS software for the analysis of data from two-way crossed mixed effects
experiments. However, other authors favor an alternative form of the model
called the constrained parameters (CP) model, where the so-called summation
restrictions are imposed on the fixed effects as well as the fixed-by-random in-
teraction parameters. Using these constraints, in effect, imposes a covariance
structure among the observations that is different from the one prescribed by
the UP model. Although a relationship exists between the two sets of vari-
ance components, the meaning assigned to the parameters by experimenters,
hence the interpretation of statistical inferences made, may be different. The
two major differences between the two models are (i) the CP model allows
for negative covariance among observations from different levels of Factor A,
whereas the UP model does not, and (ii) expected mean squares for effect
B are different for the two models. The second fact results in two different
denominators for the F -statistic for testing the variance of effect B. The UP
model is adopted for the rest of the discussion in this book.
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Estimation and Hypothesis Testing

The usual format of the ANOVA table for computing the required F -statistics
for testing hypotheses of interest in a two-way classification is

SV df SS MS F E (MS)

A a− 1 SSA MSA MSA/MSAB σ2 + nσ2
αB + bn

∑
i(αi − ᾱ)2

(a−1)

B b− 1 SSB MSB MSB/MSAB σ2 + nσ2
αB + anσ2

B

AB (a− 1)(b− 1) SSAB MSAB MSAB/MSE σ2 + nσ2
αB

Error ab(n− 1) SSE MSE σ2

Total abn− 1 SSTot

The F -statistic for A tests the hypothesis of equality of treatment effects:

H0 : α1 = α2 = · · · = αt versus Ha : at least one inequality

or, equivalently,

H0 : μ1 = μ2 = · · · = μt versus Ha : at least one inequality

where μi = μ + αi, the ith treatment mean. H0 is rejected if the observed
F -value exceeds the α upper percentile of an F -distribution with df1 = a− 1
and df2 = (a − 1)(b − 1). It is informative to compare the expected mean
squares of the denominator and numerator of this F -ratio, and note that they
will have the same expectation if the null hypothesis above holds and the
numerator will have a larger expectation if the null hypothesis is not true.

It can be verified that bn

∑
i(αi − ᾱ)2

(t−1) is zero if α1 = α2 = · · · = αt and is

positive otherwise.
Inferences about estimable functions of the fixed effects can be made using

the appropriate mean squares to calculate their standard errors. The best
estimate of μi, the ith treatment mean, and its standard error are

μ̂i = ȳi.. = (
∑

j

∑
k yijk)/bn,

s.e.(ȳi..) = sAB/
√
bn

where s2AB = MSAB and i = 1, . . . , a. This result follows since it can be shown

that the variance of ȳi.. is (σ
2 + nσ2

αB)/bn and E(MSAB) = σ2 + nσ2
αB ; that

is, MSAB estimates σ2+nσ2
αB . Note that the above means would be identical

to the “Factor A means” calculated in the two-way classification with fixed
effects case discussed in Sect. 5.4, but the standard errors are obviously not
the same.
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The best estimate of the difference between the effects of two treatments
labeled p and q is

̂μp − μq = ̂αp − αq = ȳp.. − ȳq..

with standard error given by

sd = s.e.(ȳp.. − ȳq..) = sAB

√
2

bn

where s2AB = MSAB. The standard error of linear contrasts of the effects (or

the means) is similarly obtained by replacing s2 with s2AB in the fixed effects
model formulas.

A (1−α)100% confidence interval for μp −μq (or equivalently, αp −αq) is

(ȳp.. − ȳq..)± tα/2,ν · sAB

√
2

bn

where tα/2,ν is the upper α/2 percentile point of a t-distribution with ν =
(a− 1)(b− 1) degrees of freedom. Thus, these results regarding the treatment
effects are similar to those for the fixed effects case except that here s is
replaced by sAB. Similarly, standard errors for other linear comparisons of
treatment means and the corresponding t-tests may be calculated.

F -statistics shown in the ANOVA table for sources of variation B and AB
are used to test the hypotheses

(i) H0 : σ2
B = 0 versus Ha : σ2

B > 0

(ii) H0 : σ2
αB = 0 versus Ha : σ2

αB > 0

respectively. The null hypotheses in (i) or (ii) are rejected if the corresponding
F -values exceed the α upper percentiles of F -distributions with df1 = b −
1 and df2 = (a − 1)(b − 1) or df1 = (a − 1)(b − 1) and df2 = ab(n − 1),
respectively. Note that these F -statistics have different denominators: for the
test of (i), the denominator is MSAB, whereas for (ii) it is MSE. Comparing
the expected mean squares of the denominator and numerator of these F -
ratios allows one to verify whether these are the appropriate F -ratios. (With
respect to the above special comment regarding the alternative model, note
that the expected mean square for effect B under the CP model is σ2 +
anσ2

B , suggesting that the appropriate F -statistic for testing hypothesis (i)
is MSB/MSE under that model. Thus, the denominator for testing (i) under
the CP model will be different.)

Method of moments estimators are obtained as usual by setting the ex-
pected mean squares to their respective computed values. Thus, estimates of
σ2
B , σ

2
αB , and σ2 are given by

σ̂2
B = (MSB −MSAB)/an

σ̂2
αB = (MSAB −MSE)/n



474 6 Analysis of Variance: Random and Mixed Effects Models

and σ̂2 = MSE, respectively. When the data are balanced, these estimators are
unbiased and have minimum variance. Confidence intervals for the variance
components are obtained as described in Sect. 6.4. For example, a (1−α)100%
confidence interval for σ2

B is provided by

νσ̂2
B

χ2
1−α/2,ν

< σ2
B <

νσ̂2
B

χ2
α/2,ν

where χ2
1−α/2,ν and χ2

α/2,ν are the 1 − α/2 and α/2 percentile points of the
chi-square distribution with ν degrees of freedom, respectively. The degrees
of freedom for σ̂2

B = 1
anMSB −

1
anMSAB are obtained using the Satterthwaite

approximation and are given by

ν =
(anσ̂2

B)
2

(MSB)2/(b− 1) + (MSAB)2/(a− 1)(b− 1)

SAS Example F12

The two most crucial factors that influence the strength of solders used in ce-
menting computer chips into the motherboard of guidance systems of airplanes
are identified to be the machine used to insert the solder and the operator
of the machine. Four types of solder machine used in the plant were selected
for a study planned to examine this dependence. Each of the three operators
selected at random from the operators available at the company’s plants made
two solders on each of the four machines in random order. The data, taken
from Ott and Longnecker (2001), appear in Table 6.5.

Table 6.5. Strength of solder in computer chips

Machine
Operator

1 2 3 4

1 204 205 203 205
205 210 204 203

2 205 205 206 209
207 206 204 207

3 211 207 209 215
209 210 214 212

From the description, it is clear that machine is a fixed factor with four
levels, that the factor operator is random with three levels, and that the
two factors are crossed. The two-way crossed mixed effects model used for the
analysis of these data is given by

yijk = μ+ αi +Bj + αBij + εijk, i = 1, . . . , 4; j = 1, . . . , 3; k = 1, . . . , 2



6.5 Two-Way Mixed Effects Model 475

where αi is the effect of machine i, Bj is the effect of operator j distributed
as iid N(0, σ2

B) random variables, and the interaction effects between the two
factors are denoted by αBij distributed as iid N(0, σ2

αB). The random errors
εijk are distributed as iid N(0, σ2) random variables, and the random variables
Bj , αBij , and εijk are pairwise independent.

data solder;
infile "C:\users\user_name\Documents\...\ex17-22.txt";
input Operator Machine Strength;
run;

proc glm data=solder;
class Machine Operator;
model Strength = Machine Operator Machine*Operator;
random Operator Machine*Operator/test;
lsmeans Machine/stderr;
title ’Analysis of Strength of Solder in Computer Chips using PROC GLM’;

run;

Fig. 6.35. SAS Example F12: analysis of solder strength using proc glm

In the SAS Example F12 program, displayed in Fig. 6.35, proc glm is
used to perform a conventional analysis of a mixed model. The data are read
from a text file using the list input style. The model statement contains
both the fixed and random effects as usual. The random statement identi-
fies the operator and the machine*operator interaction as random effects.
The test option requests proc glm to construct appropriate F -statistics for
testing hypotheses about the variance components corresponding to these ef-
fects. The expected values of the mean squares in the ANOVA table (see
below) determine the ratios of sums of squares that need to be used for test-
ing the two hypotheses of interest regarding the variances of operator and
machine*operator effects: H0 : σ2

B = 0 versus Ha : σ2
B > 0 and H0 : σ2

αB = 0
versus Ha : σ2

αB > 0 as discussed previously. The ANOVA table is

SV df SS MS F p-Value E(MS)

Machine 3 12.458 4.1528 0.56 0.6619 σ2 + 2σ2
αB + 2

∑
i(αi − ᾱ)2

Operator 2 160.333 80.1667 10.77 0.0103 σ2 + 2σ2
αB + 8σ2

B

Machine×
Operator 6 44.667 7.4444 1.96 0.1507 σ2 + 2σ2

αB

Error 12 45.500 3.7917 σ2

Total 23 262.958

The lsmeans statement illustrates the estimation of an interesting BLUP.
BLUPs for a mixed model were discussed in the introduction to this section.
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Analysis of Strength of Solder in Computer Chips using PROC GLM

The GLM Procedure

Source Type III Expected Mean Square

Machine Var(Error) + 2 Var(Machine*Operator) + Q(Machine)

Operator Var(Error) + 2 Var(Machine*Operator) + 8 Var(Operator)

Machine*Operator Var(Error) + 2 Var(Machine*Operator)

Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: Strength

Source DF Type III SS Mean Square F Value Pr > F

Machine 3 12.458333 4.152778 0.56 0.6619

Operator 2 160.333333 80.166667 10.77 0.0103

Error 6 44.666667 7.444444

Error: MS(Machine*Operator)

Source DF Type III SS Mean Square F Value Pr > F

Machine*Operator 6 44.666667 7.444444 1.96 0.1507

Error: MS(Error) 12 45.500000 3.791667

Least Squares Means

Machine
Strength 
LSMEAN

Standard
Error Pr > |t|

1 206.833333 0.794949 <.0001

2 207.166667 0.794949 <.0001

3 206.666667 0.794949 <.0001

4 208.500000 0.794949 <.0001

Fig. 6.36. SAS Example F12: selected output

A BLUP consists of the sum of an estimable linear function for the fixed
parameters (e.g., here μ + αi) and a different function of the random effect
parameters. The lsmeans statement in proc glm estimates the expectation
of yijk averaged over the levels of the random factor (operator): μ+αi+ B̄.+
αBi. (i.e., the conditional expectation conditioned on the operator and the
interaction effects), where B̄. =

1
3

∑
j Bj and αBi. =

1
3

∑
j αBij . Here, the

interest is only in the effects of operators used in the study; conditioning on
them is equivalent to considering their effects to be “fixed.” (The lsmeans

statement options pdiff, cl, and adj= may be used to obtain confidence
intervals for pairs of differences of the above BLUPs, adjusted for multiple
testing using a method of choice.)

The standard output from proc glm (factor level information) that pre-
cedes the tables containing Type I and III SS and associated F -tests (consid-
ering all factors to be fixed) are omitted. Figure 6.36 contains a table of the
Type III Expected Mean Squares and a table of F -tests for all three effects
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in the model. The F -tests are constructed using the appropriate denomina-
tor mean squares. The denominator for the F -statistics for testing both the
machine effect hypothesis (i.e., H0 : α1 = α2 = α3) and the hypothesis
about the variance of the operator random effect (i.e., H0 : σ2

B = 0), respec-
tively, is the mean square for the interaction effect machine*operator. The
denominator for the F -statistic, for testing the hypothesis about the vari-
ance of the machine*operator random effect (i.e., H0 : σ2

αB = 0), is the
mean square for error. These tests fail to reject either the machine main ef-
fect hypothesis or the interaction hypothesis at level α = 0.05; however, the
operator variance component, σ2

B , is found to be significantly different from
zero. As demonstrated previously, the method of moments estimates can be
obtained as usual. They are σ̂2 = 3.792, σ̂2

B = (7.444− 3.792)/2 = 1.826, and
σ̂2
αB = (80.16667−7.444)/8 = 9.0903. The interaction plot of the mean solder

strengths, shown in Fig. 6.37, is discussed later.
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Fig. 6.37. SAS Example F12: interaction plot of solder strength data

SAS Example F13

In this program (displayed in Fig. 6.38), proc mixed is used to analyze the
solder strength using Type 3 sums of squares and the method of moments so
that the results may be compared with the previous analysis using proc glm.
In addition to the advantages discussed in Sect. 6.2, proc mixed allows the
use of estimate statements to obtain estimates of BLUPs with the correct
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standard errors. The only term required on the right-hand side of the model

statement is the fixed effect term machine. The random statement declares
the operator and machine*operator effects to be random effects.

The option ddfm= is required to specify the method that must be used
by proc mixed for the computation of denominator degrees of freedom F -
tests, t-tests, confidence intervals, etc. for fixed effects or any function of fixed
effects such as contrasts or BLUPs. Here, the value specified is satterth.
To understand what this means, recall that the Satterthwaite approximation
was used in Sects. 6.3 and 6.4 for the construction of confidence intervals of
variance components in random models. In those sections, this approximation
was required when the denominator happened to be a linear combination of
mean squares (rather than a single mean square).

data solder;
infile "C:\users\user_name\Documents\...\ex17-22.txt";
input Operator Machine Strength;
run;

proc mixed data=solder noclprint noinfo method=type3 cl;
class Machine Operator;
model Strength = Machine /ddfm=satterth;
random Operator Machine*Operator;
lsmeans Machine;
estimate ’BLUP_1: Oper 3’

intercept 4
Machine 1 1 1 1|
Operator 0 0 4

Machine*Operator 0 0 1 0 0 1 0 0 1 0 0 1/divisor=4;

estimate ’BLUP_2: Oper 3’
intercept 4

Machine 1 1 1 1|
Operator 0 0 4/divisor=4;

estimate ’LSMEAN for Mach 1’
intercept 3

Machine 3 0 0 0|
Operator 1 1 1

Machine*Operator 1 1 1 0 0 0 0 0 0 0 0 0/divisor=3;
title "Analysis of Strength of Solder in Computer Chips using PROC MIXED";
run;

Fig. 6.38. SAS Example F13: analysis of solder strength using proc mixed

In the case of the two-way mixed model, if the sample sizes are unequal,
the denominator of tests associated with fixed effects will be a linear combi-
nation of mean squares. Thus, the Satterthwaite approximation is needed for
inference associated with the fixed effects. It could be, in the balanced data
case, that this approximation may never be needed.

It is recommended that ddfm=kr be used for models with multiple random
effects when the sample sizes are unequal. The reason is that the kr option,
which stands for Kenward–Roger, employs a method developed by Kenward
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and Roger (1997), which adjusts the standard errors as well as the degrees
of freedom when an approximation is needed. In many balanced models, no
standard error adjustment is required. When it is needed, not only the degrees
of freedom associated with the respective statistics but also the value of the
t-statistics (or F -statistics) themselves are affected.

The profiles of mean solder strengths in Fig. 6.37 indicate several at-
tributes of the random effects in the model. First, the profiles are roughly
parallel, indicating that there is no appreciable machine–operator interaction.
Second, there is a variation of the profiles from an average, an indication of
the variability among operators. The management of the company, always
interested in efficiency, might be intrigued by Operator 3, who appears to
have a higher performance level than the other operators in the study over
all four machines, as observed from this graph. By conditioning on both the
operator and machine*operator random effects, a predictable function mea-
suring Operator 3’s expected mean strength is obtained as μ+ ᾱ.+B3+αB.3,
where ᾱ. =

1
4

∑
i αi and αB.3 = 1

4

∑
i αBi3. The estimate statement labeled

“BLUP 1: Oper 3” requests that an estimate and a standard error of this
BLUP be computed. Note that the option divisor=4 used with the estimate
statement enables the user to specify the linear combination of the parameters
needed by entering the coefficients as whole numbers (instead of fractions).
The coefficients needed to specify the estimation of μ+ ᾱ. +B3 + αB.3 are

μ
1

α1 α2 α3 α4

1/4 1/4 1/4 1/4

B1 B2 B3

0 0 1

αB11 αB12 αB13 αB21 αB22 αB23 αB31 αB32 αB33 αB41 αB42 αB43

0 0 1/4 0 0 1/4 0 0 1/4 0 0 1/4

Since the two random effects are independent, it is possible to condition
only on one of the random effects. By conditioning on the operator effect
alone (i.e., averaging the interaction over the population of all operators), an-
other measure of mean strength which can be constructed for Operator 3 is
the expected mean μ + ᾱ. + B3. The estimate statement labeled “BLUP 2:
Oper 3” results in the computation of its estimate and standard error. One
would expect estimates of these two BLUPs to be similar, given that the inter-
action is not significant. As noted earlier, these BLUPs cannot be estimated
using the estimate statement in proc glm. Finally, the estimate statement
labeled “LSMEAN for Mach 1” requests that an estimate and a standard
error of the predictable function μ + α1 + B̄. + αB1. be computed. See the
discussion on the output from this example below for an explanation for the
inclusion of this statement.
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Analysis of Strength of Solder in Computer Chips using PROC MIXED

The Mixed Procedure

Type 3 Analysis of Variance

Source DF
Sum of 

Squares
Mean 

Square Expected Mean Square Error Term

Machine 3 12.458333 4.152778 Var(Residual) + 2 Var(Machine*Operator) + 
Q(Machine)

MS(Machine*Operator)

Operator 2 160.33333
3

80.166667 Var(Residual) + 2 Var(Machine*Operator) + 
8 Var(Operator)

MS(Machine*Operator)

Machine*Operator 6 44.666667 7.444444 Var(Residual) + 2 Var(Machine*Operator) MS(Residual)

Residual 12 45.500000 3.791667 Var(Residual) .

Covariance Parameter Estimates

Cov Parm Estimate Alpha Lower Upper

Operator 9.0903 0.05 -10.5784 28.7590

Machine*Operator 1.8264 0.05 -2.6505 6.3032

Residual 3.7917 0.05 1.9497 10.3320

Fig. 6.39. SAS Example F13: model fit output from proc mixed

Except for fit statistics and the confidence intervals for the variance compo-
nents, all results that appear on the output from SAS Example F13 (shown in
Figs. 6.39 and 6.40) agree with those from proc glm. The estimates of the
variance components (see table titled Covariance Parameter Estimates)
are also the same as those obtained from proc glm. The confidence inter-
vals, except those for σ2, are based on large sample results and may not be
appropriate for small sample sizes used in this example. Intervals based on
Satterthwaite approximation can be constructed as illustrated earlier in this
section. SAS code given previously may be used for this purpose; however, it
is recommended that the covtest option be added to the proc statement to
obtain the required standard errors of the variance component estimates.

The estimates of the two BLUPs for Operator 3 are given in the table titled
Estimates (shown in Fig. 6.40), and as conjectured, they are similar in value.
However, the standard errors differ, and the reason for this can be surmised
from observing that their degrees of freedom are fractions. The fractions result
from the fact that the standard errors are calculated using the Satterthwaite
approximation. The two standard errors are obtained using different linear
combinations of mean squares, and their degrees of freedom are computed
using approximations as illustrated in previous examples.

The “LSMEAN for Mach 1” is the BLUP μ + α1 + B̄. + αB1.. This is a
BLUP for Machine 1 and is the expectation of the observations for Machine 1
conditioned on the observed operators. The lsmeans machine; statement, on
the other hand, estimates the mean for Machine 1 as μ+α1, the unconditional
expectation of the observations for Machine 1. Thus, both estimated values
are the same, 206.83, but the standard errors of the two estimators are dif-
ferent. The lsmeans statement gives the standard error as 2.0666 (see Least
Squares Means table), and the estimate statement calculates it as 0.7949
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(see Estimates table). Both are correct since they are estimating standard
errors of different BLUPs. In comparison, the lsmeans statement in proc glm

(see Fig. 6.36) computes the standard error as 0.7949 by (incorrectly) consid-
ering both operator and machine*operator as fixed effects.

The above analysis was repeated using the default estimation method of
REML as well. The covariance estimates and their standard errors results
of the F -tests for the variance components, the t-tests for the estimates of
BLUPs, and the lsmeans estimates all remain unchanged, as the data set is

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood 100.7

AIC (Smaller is Better) 106.7

AICC (Smaller is Better) 108.2

BIC (Smaller is Better) 104.0

Type 3 Tests of Fixed Effects

Effect
Num 

DF
Den 
DF F Value Pr > F

Machine 3 6 0.56 0.6619

Estimates

Label Estimate
Standard

Error DF t Value Pr > |t|

BLUP_1: Oper 3 210.71 0.6775 12.7 311.00 <.0001

BLUP_2: Oper 3 210.54 0.9343 6.78 225.34 <.0001

LSMEAN for Mach 1 206.83 0.7949 12 260.18 <.0001

Least Squares Means

Effect Machine Estimate
Standard

Error DF t Value Pr > |t|

Machine 1 206.83 2.0666 3.19 100.08 <.0001

Machine 2 207.17 2.0666 3.19 100.25 <.0001

Machine 3 206.67 2.0666 3.19 100.00 <.0001

Machine 4 208.50 2.0666 3.19 100.89 <.0001

Fig. 6.40. SAS Example F13: estimates and BLUPs from proc mixed

balanced. The output includes an F -test for the fixed effect (machine) using
Type 3 ANOVA which is also exactly the same as obtained earlier. The only
difference is that confidence intervals for the variance components calculated
by proc mixed with method=type3 are those based on large-sample stan-
dard errors and normal percentiles, whereas with REML, these are based on
the chi-square distribution and the Satterthwaite approximation as displayed
in Fig. 6.41.
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Covariance Parameter Estimates

Cov Parm Estimate Alpha Lower Upper

Operator 9.0903 0.05 2.2609 719.61

Machine*Operator 1.8264 0.05 0.4064 441.64

Residual 3.7917 0.05 1.9497 10.3320

Fig. 6.41. SAS Example F13: confidence intervals for the variance components with
method=reml in proc mixed

6.5.3 Two-Way Mixed Effects Model: Nested Classification

A two-way random model for an experiment with two random factors where
one of the factors is nested in the other factor was considered in Sect. 6.4. In
this subsection, a mixed model for an experiment with two factors A and B,
where Factor B is nested in Factor A, is discussed. Recall that the sampling
of the levels of a nested factor takes place in a hierarchical manner: Thus,
levels of Factor B are randomly sampled within each level of A, which are
fixed. Suppose that in the machine–operator example, the primary interest is
in the performance characteristics of, say, four types of machine and that it is
possible to randomly sample 12 operators from all available operators. If three
operators are assigned randomly to work on each machine and each of them
performs the production operation on the assigned machine only, then the
operators are nested within each machine.

This type of mixed effects model occurs naturally in animal and plant
breeding experiments. As an example, consider the weight gain data from a
pig-raising experiment described in Snedecor and Cochran (1989). The breed-
ing values of five sires (bulls) are being evaluated. Each sire is mated to a
random group of dams. Each mating produced a litter of pigs whose average
daily gain was measured. Thus, the dams are nested within each sire (i.e.,
levels of “dam” are different for each level of “sire”). Here, the Sire genetic
effect is a fixed effect, and the additive Dam within Sire genetic effect is con-
sidered a random effect. Perhaps the sires are selected from several breeding
lines being evaluated. A trait such as weight gain of offspring produced from
each mating is usually used to compare genetic merits of breeding lines. The
information gained from the variation of the Dam within Sire effect will lead
to more precise estimation of the sire effects.

Model

An appropriate model for the situation described above is

yijk = μ+ αi +Bij + εijk, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , n



6.5 Two-Way Mixed Effects Model 483

where αi is the effect of level i Factor A, and it is assumed that the Factor
B within A effect, Bij , is an iid N(0, σ2

B) random variable, the random error
εijk is an iid N(0, σ2) random variable, and Bij and εijk are independently
distributed. The parameters σ2

B and σ2 are the “variance components” to be
estimated in this model.

Estimation and Hypothesis Testing

An ANOVA table that corresponds to the model is constructed using the same
computational formulas used for the computation of the ANOVA if the factors
A and B within A were considered fixed. The sums of squares would be the
same for effect A as in the ANOVA table for the two-way crossed random
effects model (given in Sect. 6.3). As noted in Sect. 6.4, the sum of squares
for the effect B(A) is obtained by pooling the sum of squares for the effects
B and AB and thus has a(b − 1) degrees of freedom. As with other models
containing random effects considered so far, an additional column displaying
the expected mean squares is included in the ANOVA table:

SV df SS MS F E(MS)

A a − 1 SSA MSA MSA/MSB(A) σ2 + n σ2
B + bn

∑
i(αi − ᾱ)2

(a−1)

B(A) a(b − 1) SSB(A) MSB(A) MSB(A)/MSE σ2 + n σ2
B

Error ab(n − 1) SSE MSE(= s2) σ2

Total abn − 1

The F -statistic for the source A in the ANOVA table tests the hypothesis
of equality of Factor A effects:

H0 : α1 = α2 = · · · = αa versus Ha : at least one inequality.

or, equivalently,

H0 : μ1 = μ2 = · · · = μa versus Ha : at least one inequality

where μi = μ + αi, the mean of an observation at the ith level of A. The
F -ratios shown in the analysis of variance table for sources of variation A and
B(A) are constructed using the same principle described in Sect. 6.3 or 6.5.2.
The expected mean squares of the denominator and numerator of the F -ratio
for A will have the same expectation if the null hypothesis above holds, and
the numerator will have a larger expectation if it is not true since

∑
i(αi − ᾱ)2

is zero if α1 = α2 = · · · = αa and is positive otherwise. H0 is rejected if the
observed F -value exceeds the α upper percentile of an F -distribution with
df1 = a − 1 and df2 = a(b − 1). The standard errors for means, pairwise
mean comparisons, and linear contrasts of the fixed effects (or the means)
are obtained by replacing s2 with s2

B(A)
(and the corresponding degrees of

freedom with a(b−1) where needed) in the fixed effects model formulas, where
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s2
B(A)

= MSB(A). For example, a (1−α)100% confidence interval for μp−μq

(or, equivalently, αp − αq) is

(ȳp.. − ȳq..)± tα/2,ν · sB(A)

√
2

bn

where tα/2,ν is the upper α/2 percentile point of a t-distribution with

ν = a(b− 1).
To test the hypothesis H0 : σ2

B = 0 versus Ha : σ2
B > 0, observe that

the mean square for the B(A) effect, MSB(A), has expectation equal to σ2

if σ2
B = 0 and, thus, MSE is the appropriate denominator for testing the

nested effect. The null hypothesis is rejected for F -values that exceed the α
upper percentile of an F -distribution with df1 = a(b− 1) and df2 = ab(n− 1).
The method of moments estimates of variance components are obtained the
usual way by setting the computed mean squares equal to their corresponding
expected values. Solving the resulting equations

MSB(A) = σ2 + nσ2
B

MSE = σ2

give, the estimates σ̂2 = MSE and σ̂2
B = (MSB(A) −MSE)/n.

SAS Example F14

The data for the animal breeding experiment discussed in the introduction are
given in Table 6.6. Recall that each of the five sires from different breeding
lines is mated to two randomly chosen dams, each mating producing a litter
of pigs whose average daily gain was measured. Thus, the dams are nested
within each sire. The Sire effect is a fixed effect, and the Dam within Sire
effect is a random effect.

An appropriate model for analyzing the average daily gain is given by

yijk = μ+ αi +Bij + εijk i = 1, . . . , 5; j = 1, . . . , 2; k = 1, . . . , 2.

where the fixed effect of Sire i is αi; the effect of Dam j within Sire i, Bij ,
is assumed to be iid N(0, σ2

B); the random error εijk is assumed to be iid
N(0, σ2); and Bij and εijk are independent. Proc glm is used in the SAS
Example F14 program, displayed in Fig. 6.42, to fit the above model to the
average daily gain data, using the method of moments. The data are entered
with the values for each sire–dam combination in separate data lines. Thus,
each line can be held with a trailing @ modifier for the two replications to
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Table 6.6. Average daily gain of two pigs in each litter (Snedecor and Cochran
1989)

Sire Dam Average daily gain

1 1 2.77 2.38
2 2.58 2.94

2 1 2.28 2.22
2 3.01 2.61

3 1 2.36 2.71
2 2.72 2.74

4 1 2.87 2.46
2 2.31 2.24

5 1 2.74 2.56
2 2.50 2.48

data pigs;
input Sire Dam @;
do Rep=1 to 2;
input Gain @;
output;

end;
datalines;
1 1 2.77 2.38
1 2 2.58 2.94
2 1 2.28 2.22
2 2 3.01 2.61
3 1 2.36 2.71
3 2 2.72 2.74
4 1 2.87 2.46
4 2 2.31 2.24
5 1 2.74 2.56
5 2 2.50 2.48
;

proc glm data=pigs;
class Sire Dam;
model Gain = Sire Dam(Sire);
random Dam(Sire)/test;
lsmeans Sire/stderr;
lsmeans Sire/stderr e=Dam(Sire);
title "Analysis of Average Daily Gain using PROC GLM";

run;

Fig. 6.42. SAS Example F14: analysis of average daily gain using proc glm

be read. They are written, along with the current sire–dam values, as two
separate records in the SAS data set using a do-end structure and an output

statement. In the proc step, both sire and dam are declared in the class

statement. The nested effect Bij is represented in the model statement as
dam(sire), the notation used in the SAS language to represent a nested effect.
It is also identified as a random effect by including it in the random statement
as any other random effect (see SAS Example F8 in Sect. 6.4).
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Analysis of Average Daily Gain using PROC GLM

The GLM Procedure

Source Type III Expected Mean Square

Sire Var(Error) + 2 Var(Dam(Sire)) + Q(Sire)

Dam(Sire) Var(Error) + 2 Var(Dam(Sire))

Tests of Hypotheses for Mixed Model Analysis of Variance

Dependent Variable: Gain

Source DF Type III SS Mean Square F Value Pr > F

Sire 4 0.099730 0.024932 0.22 0.9155

Error: MS(Dam(Sire)) 5 0.563550 0.112710

Source DF Type III SS Mean Square F Value Pr > F

Dam(Sire) 5 0.563550 0.112710 2.91 0.0707

Error: MS(Error) 10 0.387000 0.038700

Fig. 6.43. SAS Example F14: analysis of average daily gain using proc glm

Part of the output from the SAS Example F14 program contains factor
level information, total SS, and the standard output that include Types I
and III SS and corresponding F -statistics calculated by proc glm and are
not shown. The Type III Expected Mean Square of random effects is shown
in Fig. 6.43. The two ANOVA tables in Fig. 6.43 show the results of tests for
the Sire and the Dam(Sire) random effects. The test option in the random
statement will result in the use of Dam(Sire) mean square as the denominator
to obtain the appropriate statistic to test the Sire effect. This will produce
the correct F -statistic to test the Sire effects hypothesis H0 : α1 = α2 =
· · · = α5 versus Ha : at least one inequality. The ANOVA table is

SV df SS MS F p-Value E(MS)

Sire 4 0.09973 0.02493 0.22 0.9155 σ2 + 2σ2
B + 10

3

∑
i(αi − ᾱ)2

Dam(Sire) 5 0.56355 0.11271 2.91 0.0707 σ2 + 2σ2
B

Error 10 0.38700 0.03870

Total 19 1.05028

The p-value of 0.92 indicates that there are no significant differences among
the sire effects. However, the p-value for the test of Dam(Sire) variance com-
ponent H0 : σ2

B = 0 versus Ha : σ2
B > 0 is less than α = 0.10 so it is rejected at

1%. The estimates of the variance components are obtained using the method
of moments as usual. These are obtained by solving

σ2 + 2σ2
B = 0.11271

σ2 = 0.0387
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which give σ̂2 = 0.0387 and σ̂2
B = (0.112710− 0.0387)/2 = 0.037. Finally, the

first lsmeans statement produces estimates of the BLUPs μ+αi + B̄i. (same
as the conditional means of the five sires) for i = 1, . . . , 5 and their standard
errors, as displayed in Fig. 6.44. By overriding the default error term using the
e=Dam(Sire) option, the second lsmeans statement produces the estimates
of μ + αi and the correct standard errors; that is, these will be identical to
the estimates of unconditional means and their standard errors. Note that for
the general case, the unconditional variance of ȳi.. is equal to σ2

B/b + σ2/bn.

Thus, the standard error of ȳi.. is
√

0.037/2 + 0.0387/4 = 0.1679 as given in
this output (see Fig. 6.44).

A (1−α)100% confidence interval based on the Satterthwaite approxima-
tion can be constructed for σ2

B using a formula similar to (6.1) in Sect. 6.2.
This is implemented in the SAS data step

data cint;

alpha=.05; a=5; b=2; n=2;

msb=0.112710; s2=0.0387; sb2=0.037;

nu=(n*sb2)**2/(msb**2/(a*(b-1))+ s2**2/(a*b*(n-1)));

L= (nu*sb2)/cinv(1-alpha/2,nu);

U= (nu*sb2)/cinv(alpha/2,nu);

put nu= L= U=;

run;

and gives the 95% confidence interval (0.010106, 1.38352) for this example.

Analysis of Average Daily Gain using PROC GLM

Least Squares Means

Sire Gain LSMEAN
Standard

Error Pr > |t|

1 2.66750000 0.09836158 <.0001

2 2.53000000 0.09836158 <.0001

3 2.63250000 0.09836158 <.0001

4 2.47000000 0.09836158 <.0001

5 2.57000000 0.09836158 <.0001

Standard Errors and Probabilities Calculated Using the Type III MS for Dam(Sire) as an Error Term

Sire Gain LSMEAN
Standard

Error Pr > |t|

1 2.66750000 0.16786155 <.0001

2 2.53000000 0.16786155 <.0001

3 2.63250000 0.16786155 <.0001

4 2.47000000 0.16786155 <.0001

5 2.57000000 0.16786155 <.0001

Fig. 6.44. SAS Example F14: analysis of average daily gain using proc glm
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proc mixed data=pigs noclprint noinfo cl;;
class Sire Dam;
model Gain = Sire/ddfm=satterth;
random Dam(Sire);
lsmeans Sire;
estimate ’Sire 1 BLUE’

intercept 1 Sire 1 0 0 0 0;
estimate ’Sire 1 BLUP’

intercept 2
Sire 2 0 0 0 0|
Dam(Sire) 1 1 0 0 0 0 0 0 0 0/divisor=2 cl;

title "Analysis of Average Daily Gain using PROC MIXED";
run;

Fig. 6.45. SAS Example F14: analysis of average daily gain using proc mixed

A SAS proc mixed step (see Fig. 6.45) is added to the SAS Example F14
program to illustrate the use of the estimate statements in proc mixed to
obtain the best estimates of the linear function μ + αi and the predictable
function μ+αi+B̄i.. Only those parts of the output that are relevant are repro-
duced here (see Fig. 6.46). First, note that, by default, proc mixed uses the
REML method and calculates the confidence intervals on variance components
based in the Satterthwaite approximation (see the table titled Covariance

Parameter Estimates). The 95% interval for σ2
B is close to the one calcu-

lated previously using the results from proc glm. Second, note that lsmeans
produces the same estimates as with proc glm; that is, the standard error
is that of the unconditional estimate of μ + α1, 0.1679 (see the table titled
Least Squares Means). The two estimate statements further clarify how the
two BLUPs differ: The standard error of the BLUP for Sire 1 μ + α1 + B̄1.

is 0.09836 (see the first Estimates table) and is different from that of the
above estimate. This estimate gives the performance of a particular sire aver-
aged only over the set of dams he was mated with. If the estimate statement
option cl is included as in the following

estimate ‘Sire 1 BLUP’

intercept 2

sire 2 0 0 0 0|

dam(sire) 1 1 0 0 0 0 0 0 0 0/divisor=2 cl;

a t-based confidence interval (95%, by default) is calculated instead of the
t-test. Recall that the divisor= option allows the user to avoid entering frac-
tional coefficients when formulating estimate statements. In this example,
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Analysis of Average Daily Gain using PROC MIXED

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Estimate Alpha Lower Upper

Dam(Sire) 0.03701 0.05 0.01011 1.3825

Residual 0.03870 0.05 0.01889 0.1192

Type 3 Tests of Fixed Effects

Effect
Num 

DF
Den 
DF F Value Pr > F

Sire 4 5 0.22 0.9155

Estimates

Label Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper

Sire 1 BLUE 2.6675 0.1679 5 15.89 <.0001 0.05 2.2360 3.0990

Sire 1 BLUP 2.6675 0.09836 10 27.12 <.0001 0.05 2.4483 2.8867

Least Squares Means

Effect Sire Estimate
Standard

Error DF t Value Pr > |t|

Sire 1 2.6675 0.1679 5 15.89 <.0001

Sire 2 2.5300 0.1679 5 15.07 <.0001

Sire 3 2.6325 0.1679 5 15.68 <.0001

Sire 4 2.4700 0.1679 5 14.71 <.0001

Sire 5 2.5700 0.1679 5 15.31 <.0001

Fig. 6.46. SAS Example F14: analysis of average daily gain data with proc mixed

every coefficient specified must be divided by two to obtain the actual lin-
ear function of the parameters estimated. This output (obtained in separate
run) is reproduced in the second Estimates table of Fig. 6.46. Obviously, the
interval for the BLUP is narrower because the estimate is an average only
over the three dams nested in sire 1 and not over the entire population of
dams.

SAS Example F15

Four manufacturing processes of comparable costs are being tried out for
obtaining increased surface quality of a precision machine part. The aim is to
obtain the best roughness average values (known as Ra in the industry) at the
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lowest possible cost. The costs depend on the milling, grinding, and polishing
activities involved in each of the four processes. Each of the processes is being
run at each of four different plants by three different teams selected at each
plant at random from the plant’s workforce. Three specimens of the part are
produced by each team using a process in random order and the surface finish
is measured in microinches. The data are displayed in Table 6.7.

Table 6.7. Surface finish (in μ-inches)

Team
Process

1 2 3

1 29 34 16
12 24 17
21 29 24

2 42 35 36
37 39 18
32 30 23

3 38 23 16
35 36 27
28 30 19

4 16 10 12
13 16 17
25 20 18

The model is

yijk = μ+ αi +Bij + εijk, i = 1, . . . , 4; j = 1, . . . , 3; k = 1, . . . , 3

where αi represents the fixed effect of Process i, Bij is the effect of Team j
within each Process i assumed to be iid N(0, σ2

B), and the random error εijk is
assumed to be iid N(0, σ2). Also Bij and εijk are assumed to be independent.
The SAS Example F15 program, displayed in Fig. 6.47, is used to fit the above
model to the surface finish data, using the default method REML. Since the
data set is balanced, the estimates will be the same as those obtained from
the method of moments.

The first part of the output is shown in Fig. 6.48. The estimates of the
variance components, t-tests, and confidence intervals based on the Satterth-
waite approximation are provided in the table titled Covariance Parameter

Estimates. According to the p-value (0.1317), the variance component
Team(Process) is not significantly different from zero. However, the z -tests
for variance components based on large-sample results, may not be valid for
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data parts;
input Process $ @;
do Team =1 to 3;
input Finish @;
output;
end;
datalines;
1 29 34 16
1 12 24 17
1 21 29 24
2 42 35 36
2 37 39 18
2 32 30 23
3 38 23 16
3 35 36 27
3 28 30 19
4 16 10 12
4 13 16 17
4 25 20 18
;

proc mixed data=parts noclprint noinfo cl covtest;
class Process Team;
model Finish = Process /ddfm=satterth;
random Team(Process);
lsmeans Process/diff cl adj=bon;
estimate ’Process 4 mean:’

intercept 3
Process 0 0 0 3|
Team(Process) 0 0 0 0 0 0 0 0 0 1 1 1/divisor=3;

title "Analysis of Surface Finish by Process using PROC MIXED";
run;

Fig. 6.47. SAS Example F15: analysis of surface finish data with proc mixed

the numbers of levels of random factors used in this experiment. From an
analysis (not shown) using proc mixed using the method=type3 option, the
following ANOVA table was constructed:

SV df SS MS F p-Value E(MS)

Process 3 1295.639 431.880 5.19 0.0279 σ2 + 3σ2
B + 3

∑
i(αi − ᾱ)2

Team(Process) 8 665.778 83.222 2.36 0.0498 σ2 + 3σ2
B

Error 24 847.333 35.306 σ2

Total 35 2808.750

The resulting F -test for the variance component team(process) rejects σ2
B =

0 at α = 0.05.
The four process means are found to be significantly different at α =

0.05 using the F -test based on Type 3 SS (p-value=0.0279) (see the ta-
ble titles Type 3 Tests of Fixed Effects). The coefficients specified in
the estimate statement correspond to the linear combination of param-
eters needed to estimate the conditional mean μ + α4 + B̄4. for Process
4 conditioned on the nested effect. The standard error of this estimate is
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Analysis of Surface Finish by Process using PROC MIXED

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 222.99895630

1 1 220.51004767 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Estimate
Standard

Error
Z 

Value Pr > Z Alpha Lower Upper

Team(Process) 15.9722 14.2804 1.12 0.1317 0.05 4.7596 335.95

Residual 35.3056 10.1918 3.46 0.0003 0.05 21.5255 68.3270

Fit Statistics

-2 Res Log Likelihood 220.5

AIC (Smaller is Better) 224.5

AICC (Smaller is Better) 224.9

BIC (Smaller is Better) 225.5

Type 3 Tests of Fixed Effects

Effect
Num 

DF
Den 
DF F Value Pr > F

Process 3 8 5.19 0.0279

Estimates

Label Estimate
Standard

Error DF t Value Pr > |t|

Process 4 mean: 16.3333 1.9806 24 8.25 <.0001

Fig. 6.48. SAS Example F15: analysis of surface finish data with proc mixed

√
35.3056/9 = 1.9806 (matches the value in Estimates table). This is differ-

ent from the standard error estimate of the Process 4 unconditional mean as
illustrated below.

The second part of the output, shown in Fig. 6.49, displays the results of
the lsmeans statement. The Least Squares Means table shows the standard
errors, t-tests, and t-based confidence intervals of the estimates of the uncon-
ditional means μ+αi. The diff cl adj=bon options request t-tests and 95%
confidence intervals for pairwise differences in process means (or effects). The
p-values reported in the table of Differences of Least Squares Means for
pairwise t-tests and confidence intervals for the differences are both adjusted
for simultaneous inference using the Bonferroni method.
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Analysis of Surface Finish by Process using PROC MIXED

The Mixed Procedure

Least Squares Means

Effect Process Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper

Process 1 22.8889 3.0409 8 7.53 <.0001 0.05 15.8766 29.9012

Process 2 32.4444 3.0409 8 10.67 <.0001 0.05 25.4322 39.4567

Process 3 28.0000 3.0409 8 9.21 <.0001 0.05 20.9877 35.0123

Process 4 16.3333 3.0409 8 5.37 0.0007 0.05 9.3211 23.3456

Differences of Least Squares Means

Effect Process _Process Estimate
Standard

Error DF t Value Pr > |t| Adjustment Adj P Alpha

Process 1 2 -9.5556 4.3004 8 -2.22 0.0570 Bonferroni 0.3420 0.05

Process 1 3 -5.1111 4.3004 8 -1.19 0.2687 Bonferroni 1.0000 0.05

Process 1 4 6.5556 4.3004 8 1.52 0.1659 Bonferroni 0.9955 0.05

Process 2 3 4.4444 4.3004 8 1.03 0.3316 Bonferroni 1.0000 0.05

Process 2 4 16.1111 4.3004 8 3.75 0.0057 Bonferroni 0.0339 0.05

Process 3 4 11.6667 4.3004 8 2.71 0.0265 Bonferroni 0.1592 0.05

Differences of Least Squares Means

Effect Process _Process Lower Upper
Adj 

Lower
Adj 

Upper

Process 1 2 -19.4724 0.3613 -24.5163 5.4052

Process 1 3 -15.0280 4.8057 -20.0718 9.8496

Process 1 4 -3.3613 16.4724 -8.4052 21.516

Process 2 3 -5.4724 14.3613 -10.5163 19.405

Process 2 4 6.1943 26.0280 1.1504 31.071

Process 3 4 1.7498 21.5835 -3.2941 26.627

Fig. 6.49. SAS Example F15: analysis of surface finish data with proc mixed

Recall that the standard errors are computed using the formula
√

(σ̂2 + 3σ̂2
B)/9 =

√
83.222/9 = 3.0409

since it is easily shown that Var(ȳ4..) = (σ2 + 3σ2
B)/9 and MSB(A) estimates

σ2 + 3σ2
B . In the part of the output in Fig. 6.49 containing the t-tests, the

Adj P column contains the p-values Bonferroni-adjusted for multiple testing.
This is done by simply multiplying the standard p-values by the number
of comparisons made (i.e., a(a − 1)/2 = 6, in this example). Similarly, for
calculating the Bonferroni adjusted confidence intervals, the upper tail (1 −
α/12)100 percentile of the t-distribution with eight degrees of freedom replaces
the (1−α/2)100 percentile used for calculating the usual one-at-time t-based
intervals. The SAS function call quantile(‘T’,1-alpha,df) can be used to
compute these percentiles in a data step.
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Using the adjusted p-values, it is found that only processes 2 and 4 means
are significantly different. The Bonferroni procedure controls the maximum
experimentwise error rate (i.e., the probability of making at least one type 1
error at the specified α value). This is somewhat conservative, but the same
result is obtained with Tukey’s method. If no adjustment is made for multiple
testing, Processes 3 and 4 are significantly different in addition to Processes 2
and 4. The conclusion that may be made from this experiment is that Process
4 produced a significantly better surface finish than Process 2, which produced
the worst result. There is not enough evidence in the data to differentiate the
other two process means from those of either Processes 2 or 4.

6.6 Models with Random and Nested Effects for More
Complex Experiments

Several random and mixed models commonly used for the analysis of experi-
ments were discussed in previous sections. The levels of factors studied in such
experiments were combinations of fixed, random, or nested effects. In order to
keep the introduction to these models to a reasonable level of complexity but
be still informative, the examples of experiments considered were somewhat
straightforward. In this section, several experiments that require more com-
plicated models than those discussed so far are considered in order to build on
the knowledge acquired from that introduction. In particular, several experi-
ments that involve different combinations of factors or different randomization
procedures from those discussed previously are introduced in several subsec-
tions. The presentation is slightly different from the previous sections in that
instead of introducing the general model and inference procedures for a class
of models and then illustrating with an example, the discussion in the follow-
ing subsections is motivated by a specific example provided to illustrate the
class of models.

6.6.1 Models for Nested Factorials

The so-called nested factorial experiments involve various combinations of
crossed and nested factors that are either fixed or random. In the simplest
set up, two factors are crossed in a factorial arrangement and a third factor
is nested within combinations of those two factors. Instead, the third factor
may be nested within only one of the two factors, or the third factor may be
nested in a completely different factor. In any case, using the arrangement
of the treatment factors and the experimental design structure, one should
be able to formulate an appropriate model using the principles illustrated in
previous sections of this chapter. Once the appropriate model is determined
and the status of each effect in the model, whether fixed or random, is declared,
proc mixed may be used to perform the computations necessary to analyze
the data. The following experiment discussed in Montgomery (1991), provides
a typical example of this type of model.
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SAS Example F16

A study is designed to find ways to improve the speed of the assembly op-
eration involved in the manual insertion of electronic components on printed
circuit boards. An industrial engineer is comparing three assembly fixtures
and two workplace layouts. It was decided to select four operators randomly
to perform the assembly operation for each fixture-layout combination. Since
the workplaces are in different locations within the plant, it is not feasible to
use the same four operators for each layout. Thus, four different operators
are chosen for each of the layouts. Two replications are obtained for each

Table 6.8. Circuit assembly time data

Layout
1 2

Fixture
Operator Operator

1 2 3 4 1 2 3 4

1 22 23 28 25 26 27 28 24
24 24 29 23 28 25 25 23

2 30 29 30 27 29 30 24 28
27 28 32 25 28 27 23 30

3 25 24 27 26 27 26 24 28
21 22 25 23 25 24 27 27

treatment combination. The assembly times are measured in seconds and are
shown in Table 6.8.

In this experiment, operators are nested within levels of Layouts (i.e.,
different set of operators for each layout). The effect of Operator within

Layout is random. The two factors Fixture and Layout are crossed because
levels of layout occur with each level of fixture. The effects of fixture, layout,
and their interaction Fixture×Layout are fixed effects. Thus, it is clear that
operators are nested in one (layout) of those two crossed factors.

Since operators are nested in layouts, Layout × Operator(Layout) in-
teraction is not tenable; however, it is possible for Fixture to interact with
Operator(Layout); hence, to be able to test whether it is significant, a term
corresponding to this interaction is included in the model. Thus, the appro-
priate model is

yijk� = μ+ αi + βj +Gk(j) + γij + αGik(j) + εijk�

with i = 1, 2, 3 (fixtures), j = 1, 2 (layouts), k = 1, 2, 3, 4 (operators), � =
1, 2 (reps), where αi is the effect of the ith operator, βj is the effect of the
jth layout, Gk(j) is the effect of the operator k within layout j, assumed to be
iid N(0, σ2

G) random variables, γij is the interaction effect of the ith level of
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fixture and the jth level of layout, αGik(j) is the interaction effect of the ith
level of fixture and the operator k within layout j, assumed to be iidN(0, σ2

αG)
random variables, and εijk� are the usual random errors assumed to be iid
N(0, σ2) random variables. In addition, the three random effects are mutually
independent. Thus, the unconditional mean μij = E(yijk�) = αi + βj + γij
contains the fixed effects only, and the covariance matrix of y = (yijk�) is
defined using the variance components.

proc mixed data=circuit noclprint noinfo method=type3 cl;
class Fixture Layout Operator;
model Time = Fixture Layout Fixture*Layout/ddfm=satterth;
random Operator(Layout) Fixture*Operator(Layout);
lsmeans Fixture/pdiff cl adj=tukey;
estimate ’F1-F2 for Op 4(1)’

Fixture 1 -1 0|
Fixture*Operator(Layout) 0 0 0 1 0 0 0 0

0 0 0 -1 0 0 0 0
0 0 0 0 0 0 0 0;

estimate ’F1-F2 for Op 1(2)’
Fixture 1 -1 0|
Fixture*Operator(Layout) 0 0 0 0 1 0 0 0

0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0;

title ’Analysis of Nested Factorials using PROC MIXED’;
run;

Fig. 6.50. SAS Example F16: analysis of circuit assembly time data with proc

mixed

The SAS Example F16 program, displayed in Fig. 6.50, is used to fit the
above model to the circuit assembly data, using the method of moments. The
data are inputted using the method illustrated in several examples previously.
The set of responses for the four operators for each fixture-layout combina-
tion, are read from a data line using a do-loop and each combination of fixture,
layout, operator, and the response values written to the SAS data set using an
output statement. The trailing @ symbol is used to hold the line after accessing
the fixture and layout values as well as for repeatedly reading the responses for
the four operators. The method=type3 option in the proc statement requests
the method of moments to be used. The cl option calculates confidence inter-
vals for variance components based on the Satterthwaite approximation. The
class statement in proc mixed step declares Fixture, Layout, and Operator

as classification variables, in that order. The model statement includes the
fixed effects Fixture, Layout and Fixture*Layout and the random statement,
the random effects Operator(Layout) and Fixture*Operator(Layout). Ex-
planations of the lsmeans and estimate statements included in the proc step
are provided in the discussion of the output produced from this program.

The following ANOVA table is constructed using the output from SAS
Example F16 displayed in Fig. 6.51.
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SV df SS MS F p-Value E(MS)

F 2 82.7917 41.3958 7.55 0.0076 σ2 + 2σ2
αG + Q(α, γ)

L 1 4.0833 4.0833 0.34 0.5807 σ2 + 2σ2
αG + 6σ2

G + Q(β, γ)

F×L 2 19.0417 9.5208 1.74 0.2178 σ2 + 2σ2
αG + Q(γ)

O(L) 6 71.9167 11.9861 2.18 0.1174 σ2 + 2σ2
αG + 6σ2

G

F×O(L) 12 65.8333 5.4861 2.35 0.0360 σ2 + 2σ2
αG

Error 24 56.0000 2.3333 σ2

Total 47 299.6667

Analysis of Nested Factorials using PROC MIXED

The Mixed Procedure

Type 3 Analysis of Variance

Source DF
Sum of 

Squares
Mean 

Square Expected Mean Square

Fixture 2 82.791667 41.395833 Var(Residual) + 2 Var(Fixtu*Operat(Layout)) + Q(Fixture,Fixture*Layout)

Layout 1 4.083333 4.083333 Var(Residual) + 2 Var(Fixtu*Operat(Layout)) + 6 Var(Operator(Layout)) + 
Q(Layout,Fixture*Layout)

Fixture*Layout 2 19.041667 9.520833 Var(Residual) + 2 Var(Fixtu*Operat(Layout)) + Q(Fixture*Layout)

Operator(Layout) 6 71.916667 11.986111 Var(Residual) + 2 Var(Fixtu*Operat(Layout)) + 6 Var(Operator(Layout))

Fixtu*Operat(Layout) 12 65.833333 5.486111 Var(Residual) + 2 Var(Fixtu*Operat(Layout))

Residual 24 56.000000 2.333333 Var(Residual)

Type 3 Analysis of Variance

Source Error Term
Error 

DF
F 

Value Pr > F

Fixture MS(Fixtu*Operat(Layout)) 12 7.55 0.0076

Layout MS(Operator(Layout)) 6 0.34 0.5807

Fixture*Layout MS(Fixtu*Operat(Layout)) 12 1.74 0.2178

Operator(Layout) MS(Fixtu*Operat(Layout)) 12 2.18 0.1174

Fixtu*Operat(Layout) MS(Residual) 24 2.35 0.0360

Residual . . . .

Covariance Parameter Estimates

Cov Parm Estimate Alpha Lower Upper

Operator(Layout) 1.0833 0.05 -1.2927 3.4593

Fixtu*Operat(Layout) 1.5764 0.05 -0.7156 3.8684

Residual 2.3333 0.05 1.4226 4.5157

Fig. 6.51. SAS Example F16: analysis of circuit assembly time data (variance
components)
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The Type 3 sums of squares, Expected Mean Squares, F -statistics and
p-values available in relevant tables of the output in Fig. 6.51 are used for this
purpose. The method of moments estimates for the variance components can
be obtained using the equations

σ2 + 2σ2
αG + 6σ2

G = 11.9861

σ2 + 2σ2
αG = 5.4861

σ2 = 2.3333

giving the estimates σ̂2 = 2.3333, σ̂αG = 1.5764, and σ̂2
G = 1.0833, agreeing

with the values in Fig. 6.51. Large-sample confidence intervals are also avail-
able from the Covariance Parameter Estimates table; intervals based on
Satterthwaite approximations can be constructed as usual.

From the ANOVA table, the effects of assembly fixtures are significantly
different at α = 0.05. However, the workplace layouts have no significant
effects on mean assembly times and there is no significant interaction between
layouts and fixtures. The variance component σ2

αG measuring the interaction
between fixtures and operators(layout) is found to be significantly different
from zero. This indicates that the differences in effects of fixtures varies among
operators within layouts although when averaged over the fixtures it is not
significantly different from zero.

Although it is possible to compare the differences among fixtures uncon-
ditionally (i.e., averaging over the population of operators), the significant
interaction suggests that some operators may be more effective than others.
Thus, to compare mean performance using the assembly fixtures p and q (say)
for each operator k(j) in the experiment, predictable functions of the following
type are needed:

αp − αq + γ̄p. − γ̄q. + αGpk(j) − αGqk(j)

Two examples of this type of BLUP are included in the SAS program for
illustration. Note that the estimable function of the fixed effects parame-
ters includes the interaction terms γ̄p. − γ̄q.; however, specifying this part
can be omitted from the estimate statements, as SAS automatically in-
cludes the coefficients for the interaction term. Note that the combination
k(j) signifies a different operator for all combinations of values of k (levels
of operator) and j (levels of layout). Again, the subscripts change in accor-
dance with lexical ordering. Here, note that the effect Layout occurs before
Operator in the class statement; thus, operator subscripts change faster.
Thus, the values of k(j) for the random effect parameter αGik(j) occur in the
order 1(1), 2(1), 3(1), 4(1), 1(2), 2(2), 3(2), 4(2) for each i = 1, 2, 3; that is,
the layout × operator(layout) interaction parameter vector will have 24
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elements. These 24 positions are coded as either 0, 1, or −1 when coding the
αG14(1) − αG24(1) portion in the comparison:

Analysis of Nested Factorials using PROC MIXED

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood 187.3

AIC (Smaller is Better) 193.3

AICC (Smaller is Better) 194.0

BIC (Smaller is Better) 193.6

Type 3 Tests of Fixed Effects

Effect
Num 

DF
Den 
DF F Value Pr > F

Fixture 2 12 7.55 0.0076

Layout 1 6 0.34 0.5807

Fixture*Layout 2 12 1.74 0.2178

Estimates

Label Estimate
Standard

Error DF t Value Pr > |t|

F1-F2 for Op 4(1) -3.3340 1.4441 11.7 -2.31 0.0402

F1-F2 for Op 1(2) -2.8605 1.8744 6.79 -1.53 0.1721

Least Squares Means

Effect Fixture Estimate
Standard

Error DF t Value Pr > |t| Alpha Lower Upper

Fixture 1 25.2500 0.6916 15.5 36.51 <.0001 0.05 23.7801 26.7199

Fixture 2 27.9375 0.6916 15.5 40.40 <.0001 0.05 26.4676 29.4074

Fixture 3 25.0625 0.6916 15.5 36.24 <.0001 0.05 23.5926 26.5324

Fig. 6.52. SAS Example F16: analysis of circuit assembly time data (fixed effects)

estimate ‘F1-F2 for Op 4(1)’

fixture 1 -1 0|

fixture*operator(layout) 0 0 0 1 0 0 0 0

0 0 0 -1 0 0 0 0

0 0 0 0 0 0 0 0;

The t-statistics and p-values from the estimate statements used in SAS
Example F16 program are shown in Fig. 6.52. These tests show that there is
a significant difference (at α = 0.05) between the effects of fixtures 1 and 2 on
the average speed of assembly for Operator 4 in Layout 1 but not for Operator
1 in Layout 2. Other simple effects of this type may be similarly tested.



500 6 Analysis of Variance: Random and Mixed Effects Models

Analysis of Nested Factorials using PROC MIXED

The Mixed Procedure

Differences of Least Squares Means

Effect Fixture _Fixture Estimate
Standard

Error DF t Value Pr > |t| Adjustment Adj P Alpha

Fixture 1 2 -2.6875 0.8281 12 -3.25 0.0070 Tukey-Kramer 0.0179 0.05

Fixture 1 3 0.1875 0.8281 12 0.23 0.8247 Tukey-Kramer 0.9722 0.05

Fixture 2 3 2.8750 0.8281 12 3.47 0.0046 Tukey-Kramer 0.0119 0.05

Differences of Least Squares Means

Effect Fixture _Fixture Lower Upper
Adj 

Lower
Adj 

Upper

Fixture 1 2 -4.4918 -0.8832 -4.8968 -0.4782

Fixture 1 3 -1.6168 1.9918 -2.0218 2.3968

Fixture 2 3 1.0707 4.6793 0.6657 5.0843

Fig. 6.53. SAS Example F16: analysis of circuit assembly time data (differences in
means)

Figure 6.53 contains the results of the lsmeans statement that produce
t-tests and confidence intervals for pairwise differences of fixture means (or ef-
fects) adjusted for multiple testing using Tukey’s method. As usual these are
estimates of differences of the unconditional means for pairs of fixtures p and
q averaged over the layouts:

αp − αq + γ̄p. − γ̄q..

Proc mixed calculates the standard errors of these differences correctly. Since
the F × L interaction is not significant, the above results can be usefully
interpreted. They show that Fixture 2 mean is significantly larger than the
means of both Fixtures 1 and 3 but that those of Fixtures 1 and 3 are similar.

6.6.2 Models for Split-Plot Experiments

The split-plot design is often used when one factor is more readily applied to
large experimental units, called whole-plots (or main plots), and another factor
can be applied to smaller experimental units within the whole-plot called
subplots. Another frequent use of a split-plot design is when more precision is
needed for comparisons among the levels of one factor than for the other factor.
To ensure that a factor is more accurately estimated, its levels are applied to
the subplots so that it will naturally have more replications. Note that in this
introduction, only two-way factorials are considered, though treatments at
each level (whole-plots or subplots) may be in any arrangement. For example,
the whole-plot treatments (or sub-plot treatments or both) themselves may
be factorial combinations of other factors.



6.6 Models with Random and Nested Effects for More Complex Experiments 501

A typical example is a field experiment in which irrigation levels are ap-
plied to larger plots and a factor like crop varieties or levels of fertilizer are
randomized among smaller plots within each larger plot assigned a type of
irrigation. The proper analysis of a split-plot design recognizes that treat-
ments applied to whole-plots are subject to a different experimental errors
than treatments applied to subplots. This results in the use of different mean
squares as denominators for the F -ratios used to test the respective treatment
effects.

Although the split-plot design originated in field experiments, it has found
useful applications in many other areas. Consider the following experiment de-
scribed in Montgomery (1991). A paper manufacturer is interested in studying
the effects of three different pulp preparation methods and four different cook-
ing temperatures on the tensile strength of paper. If a randomized complete
block design (RCBD) is to be used for this experiment, the 12 method by
treatment combinations (a 3 × 4 factorial), would need to be applied within
each block (or replication). This requires that 12 pulp batches be prepared for
each block, using each of the 3 methods of pulp preparation and each batch
assigned to one of the 4 cooking temperatures.

However, the experiment was actually conducted in the following manner.
Since the pilot plant is only capable of making 12 runs per day, the experi-
menter ran 1 replicate on each of 3 days and considered the runs performed
per day as a block. On each day, he prepared three large batches of pulp using
each of the three preparation methods (in random order). Then he divided
each batch into four smaller samples and randomly assigned each sample to
be cooked using one of the four temperatures. This is repeated for each of
the three large batches. This procedure is repeated in each of the 3 days thus
producing 36 tensile strength measurements.

The treatment arrangement continues to be a 3× 4 factorial; however, the
design is no longer a randomized block design. Rather, it is a split-plot design
because the 12 treatment combinations are not assigned completely at random
to 12 pulp batches; the 3 methods are assigned to the 3 large batches of pulp
(whole-plots), which are then subdivided into 4 smaller samples (subplots)
and assigned the temperatures. Thus, a split-plot design also introduces a
different randomization scheme for factorial treatment combinations.

Rep I Rep II Rep III

A3 A1 A2 A1 A3 A2 A3 A2 A1

B1 B3 B2 B3 B3 B4 B2 B1 B4

B4 B1 B4 B2 B1 B1 B3 B2 B3

B3 B2 B1 B4 B2 B2 B4 B3 B1

B2 B4 B3 B1 B4 B3 B1 B4 B2

Fig. 6.54. SAS Example F17: plan for the strength of paper experiment
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The preparation method is the whole-plot factor, whereas the cooking
temperature is the subplot factor. The experimental procedure is simplified
because the experimenter makes 3 large batches of pulp using the 3 methods
of preparation instead of making 12 small batches. The experimental plan is
sketched out in Fig. 6.54, in which the levels of method are denoted by A1,
A2, and A3 and the levels of temperature are denoted by B1, B2, B3, and B4.

The model for observations from this experiment reflects the fact that there
are two types of experimental unit in the experiment and therefore two types
of experimental error. The model and the analysis of variance for a general
split-plot experiment similar to the above example is described below. It is
easier to consider the model as representing two distinct parts of the design.
The whole-plot design is an RCBD because the whole-plot treatment levels
(Factor A) are replicated r times; thus, it is easier to visualize the model for
the whole-plot part. The subplot part is also analyzed as an RCBD, where the
whole-plots serve as blocks for the levels of the subplot treatment (Factor B).
Assume that Factor A and Factor B have a and b levels, respectively. Let yijk
represent an observation from the ith replication, the jth level of Factor A,
and the kth level of Factor B. Then the model that describes this observation
is given by

yijk = μ+ βi + τj + εij + αk + δjk + ε∗ijk
where μ is the overall mean, βi is the effect of the ith block (or replication),
i = 1, . . . , r, τj is the effect of the jth whole-plot factor (i.e., Factor A),
j = 1, . . . , a, εij is the experimental error associated with the ijth whole-
plot, αk is the effect of the kth subplot factor (i.e., Factor B), k = 1, . . . , b,
δjk is the interaction between method j and temperature k, and ε∗iij is the
experimental error associated with ijkth subplot. As usual the random errors
εij are assumed to be iid N(0, σ2

W ) and ε∗ijk are assumed to be iid N(0, σ2
S)

random variables. The ANOVA table associated with this model is

SV df SS MS F
Rep r − 1 SSREP MSREP

A a− 1 SSA MSA MSA/MSEW

Error A (r − 1)(a− 1) SSEW MSEW

B (b− 1) SSB MSB MSB/MSES

AB (a− 1)(b− 1) SSAB MSAB MSAB/MSES

Error B a(r − 1)(b− 1) SSES MSES

Note carefully that whereas the subplot part of the experiment is, by neces-
sity, an RCBD, the whole-plot part need not be so. In the above experiment,
it was decided to use “days” as a blocking factor and, thus, an RCBD was
used for the whole-plot part of the experiment. However, it is common to use
a completely randomized design for the whole-plot part of the experiment. For
example, if the a levels of the whole-plot factor were applied in a completely
random manner to the ar whole-plots, then the whole-plot design would be a
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CRD. In this case, the source Rep will not appear in the above ANOVA table,
and the degrees of freedom for Error A will change to a(r − 1).

6.6.3 Analysis of Split-Plot Experiments Using PROC GLM

SAS Example F17

The observed data from the tensile strength of paper experiment described in
Sect. 6.6.2 are found in Table 6.9. In the SAS Example F17 program, shown
in Fig. 6.55 the data are inputted by the nesting of three do loops to create
the values of the variables, Temp, Rep and Method. Then it uses the list input
style to read each of nine values for each temperature contained in a line of
data. Again a trailing @ symbol is used to read the data values repeatedly
from the same data line. The output statement writes a record into the SAS
data set after reading each data value along with the current values of each
of Temp, Rep, and Method variables. Thus, only the data values need to be
entered in the appropriate sequence in the four lines of data.

Table 6.9. Tensile strength of paper data

Replication

I III III

Method Method Method
Temperature

1 2 3 1 2 3 1 2 3

200 30 34 29 28 31 31 31 35 32
225 35 41 26 32 36 30 37 40 34
250 37 38 33 40 42 32 41 39 39
275 36 42 36 41 40 40 40 44 45

In SAS Example F17, proc glm is used to perform a traditional analysis
in which the block (or replication) effect is considered a fixed effect in the
model. Since the random statement cannot be used because there are no ran-
dom effects in the model, the test option used for testing fixed effects is not
available The user must provide an appropriate effect (or combination of ef-
fects) to be used as the error term (or denominator) of the F -ratio appropriate
for testing hypotheses (and for constructing confidence intervals) about the
effects of the whole-plot factor. This is the most important difference from an
analysis of data from a similar experiment performed as a randomized blocks
design from that of a split-plot experiment. Recall that under standard mod-
els with only fixed effects, SAS does not require the user to specify a term to
represent the random error term in the model statement. This implies that
the degrees of freedom remaining after sum of squares for the terms specified
in the model are taken into account are automatically used to compute the
residual or error sum of squares.
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However, in the model shown for the split-plot experiment, there are two
error terms. Thus, the user is required to determine how the sum of squares
for the whole-plot error (labeled Error A) is to be calculated and specify it

data paper;
do Temp=200,225,250,275;

do Rep=1 to 3;
do Method=1 to 3;

input Strength @;
output;

end;
end;

end;
datalines;
30 34 29 28 31 31 31 35 32
35 41 26 32 36 30 37 40 34
37 38 33 40 42 32 41 39 39
36 42 36 41 40 40 40 44 45
;

proc glm data=paper;
class Rep Method Temp;
model Strength = Rep Method Rep*Method Temp Method*Temp;
test h=Method e=Rep*Method;
lsmeans Method*Temp/slice=Method;
lsmeans Method/pdiff cl adj=tukey e=Rep*Method;
contrast ’Temp:Linear Trend’ Temp -3 -1 1 3;
title ’Analysis of a Split-Plot Experiment using PROC GLM’;

run;

Fig. 6.55. SAS Example F17: analysis of strength of paper data with proc glm

in a test statement available in proc glm. Usually the error term must be
specified as a function of effects already present in the model statement. Re-
call that in this example, the whole-plot part of the design is an RCBD with
replications as blocks and the levels of the whole-plot factor Method as treat-
ment. Thus, the appropriate error sum of squares for the whole-plot design is
equivalent to the sum of squares that correspond to the replication by method
interaction. Thus, as illustrated in Fig. 6.55, by including a term that corre-
sponds to the replication by method interaction in the model statement one
is able to specify it as the error term to be used for testing the Method effects.

The data are classified according to Rep, Method, and Temp, so these are
included in the class statement as usual. The model statement is specified as

strength = Rep Method Rep*Method Temp Method*Temp;

The effects in the model statement correspond to the terms in the model
definition above except for the term that corresponds to Error A. As noted
above, the term Rep*Method is included because it is intended that the sum
of squares corresponding to this effect will be used as Error A. It is seen that
Error B is the error (or residual) sum of squares after the other terms in the
model are accounted for. The test statement

test h=Method e=Rep*Method;
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Analysis of a Split-Plot Experiment using PROC GLM

The GLM Procedure

Dependent Variable: Strength

Source DF
Sum of 

Squares Mean Square F Value Pr > F

Model 17 751.4722222 44.2042484 11.13 <.0001

Error 18 71.5000000 3.9722222

Corrected Total 35 822.9722222

R-Square Coeff Var Root MSE Strength Mean

0.913120 5.531963 1.993043 36.02778

Source DF Type I SS Mean Square F Value Pr > F

Rep 2 77.5555556 38.7777778 9.76 0.0013

Method 2 128.3888889 64.1944444 16.16 <.0001

Rep*Method 4 36.2777778 9.0694444 2.28 0.1003

Temp 3 434.0833333 144.6944444 36.43 <.0001

Method*Temp 6 75.1666667 12.5277778 3.15 0.0271

Source DF Type III SS Mean Square F Value Pr > F

Rep 2 77.5555556 38.7777778 9.76 0.0013

Method 2 128.3888889 64.1944444 16.16 <.0001

Rep*Method 4 36.2777778 9.0694444 2.28 0.1003

Temp 3 434.0833333 144.6944444 36.43 <.0001

Method*Temp 6 75.1666667 12.5277778 3.15 0.0271

Tests of Hypotheses Using the Type III MS for 
Rep*Method as an Error Term

Source DF Type III SS Mean Square F Value Pr > F

Method 2 128.3888889 64.1944444 7.08 0.0485

Fig. 6.56. SAS Example F17: analysis of strength of paper data

specifies that the F -ratio for testing the Method effect to be constructed using
the mean square corresponding to the term Rep*Method as the denominator
(or error term). Recall that, ordinarily, the mean square corresponding to the
residual (i.e., Error B here), would be used to construct this F -ratio in the
Type I or III analysis of variance table in proc glm.

The investigator therefore must recognize that there will be two F -ratios
for Method (and associated p-values) that will appear in the output and that
the proper F ratio to be used for Method is the one that results from the test
statement, appearing separately in the bottom table of the output shown in
Fig. 6.56. The F ratio for Method appearing in the usual Type I or III ANOVA
tables above it will be incorrect for testing the Method effects in the split-plot
experiment. The ANOVA table for the split-plot design is thus completed
using the values from this output:
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SV df SS MS F p-Value

Rep 2 77.55 38.78
Method 2 128.39 64.20 7.08 0.0485
Error A 4 36.28 9.07
Temp 3 434.08 144.69 36.45 0.0001
Method × Temp 6 75.17 12.53 3.15 0.0271
Error B 18 71.50 3.97
Total 35 822.97

From the ANOVA table Method × Temp interaction as well as the two main ef-
fects Method and Temp are significant at α = 0.05. Further analysis of these re-
sults depend on the intentions of the experimenter. Making conclusions about
method and temperature effects is complicated by the fact that interaction is
significant. An interaction plot was obtained by default as part of the output
from the SAS program in Fig. 6.55.
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Fig. 6.57. SAS Example F17: plot of mean strength versus temperature by method

The plot, displayed in Fig. 6.57, suggests that, on the average, the mean
strength appears to increase with temperature. However, the pattern of in-
crease is different for each method. For example, as the temperature increases
from 200 to 225, the mean strength increases for methods 1 and 2, whereas
for Method 3, the mean strength stays about the same. However, for the tem-
perature range over 225, a similar rate of increase in mean strength is seen
for Method 3 also. However, for Method 2, mean strength does not show an
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appreciable change as the temperature increases from 225 to 250, as also ob-
served for Method 1 as the temperature increases from 250 to 275. These
differences in the effect of temperature for each method manifests itself as a
significant interaction effect.

One may use the proc glm statement

lsmeans Method*Temp/slice=Method;

to examine temperature effect at each level of method. The output in Fig. 6.58
confirms the interaction plot: that the mean strengths are significantly differ-
ent among the temperature levels for each method. Note that each test is
associated with three degrees of freedom that correspond to comparing the
four temperatures for each method; that is, the F -statistic for each slice tests
a hypothesis of the form H0 : μj1 = μj2 = μj3 = μj4 versus Ha : at least one
inequality, for each j, where μjk = μ+ τj + αk + δjk.

Analysis of a Split-Plot Experiment using PROC GLM

The GLM Procedure
Least Squares Means

Method*Temp Effect Sliced by Method for Strength

Method DF
Sum of 

Squares Mean Square F Value Pr > F

1 3 184.666667 61.555556 15.50 <.0001

2 3 121.666667 40.555556 10.21 0.0004

3 3 202.916667 67.638889 17.03 <.0001

Fig. 6.58. SAS Example F17: analysis of strength of paper data

However, this finding by itself is not sufficient to make a useful conclusion.
One may need to use multiple comparisons to determine, say, the best method
to use at each temperature. Thus, the type of inferences one may make depend
on the purpose of the experiment. If the intention was to find the best method
over all temperatures, one could compare the effects of method averaged over
temperatures (thus ignoring the interaction).

The statement

lsmeans Method/pdiff cl adj=tukey e=Rep*Method;

compares the method marginal means using 95% confidence intervals adjusted
using Tukey’s method. It is important to note that in proc glm, the error term
used for calculating the standard errors needs to be specified for the whole-
plot effect: in this case, Method. Otherwise, the error mean square will be
used by default. Thus, the option e=Rep*Method is included in the lsmeans

statement.
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The confidence intervals in Fig. 6.59 (displaying part of the output page 5)
show that only methods 2 and 3 are significantly different and that Method 2
produces the strongest paper averaged over the temperature range, a finding
that appears to be confirmed by the graph in Fig. 6.57. Finally, the exper-
imenter may have selected equispaced levels for Temperature so that the
trend in the increase or decrease in mean strength could be examined us-
ing orthogonal polynomials. Again, the interaction may be ignored, and the
effects averaged over the three methods for this purpose. (This trend in tem-
perature could also be examined for each method using appropriate contrast
statements; however, that is a useful option only if the experimenter is inter-
ested in a particular method or if the trend appears to be different for each
method.)

The contrast statement in Fig. 6.55 tests the hypothesis of linear trend in
the marginal means averaged over the methods. The results of this statement
are shown in Fig. 6.60. The appropriate partitioning of the Temp SS is thus
given by

Analysis of a Split-Plot Experiment using PROC GLM

The GLM Procedure
Least Squares Means

Adjustment for Multiple Comparisons: Tukey

Standard Errors and Probabilities Calculated Using the Type III MS for Rep*Method as an Error Term

Least Squares Means for effect Method
Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: Strength

i/j 1 2 3

1 0.1660 0.4129

2 0.1660 0.0434

3 0.4129 0.0434

Least Squares Means for Effect Method

i j

Difference 
Between 

Means

Simultaneous 95% 
Confidence Limits for 
LSMean(i)-LSMean(j)

1 2 -2.833333 -7.215044 1.548377

1 3 1.750000 -2.631711 6.131711

2 3 4.583333 0.201623 8.965044

Fig. 6.59. SAS Example F17: analysis of strength of paper data



6.6 Models with Random and Nested Effects for More Complex Experiments 509

Analysis of a Split-Plot Experiment using PROC GLM

The GLM Procedure

Dependent Variable: Strength

Contrast DF Contrast SS Mean Square F Value Pr > F

Temp:Linear Trend 1 432.4500000 432.4500000 108.87 <.0001

Fig. 6.60. SAS Example F17: analysis of strength of paper data

SV df SS MS F p-Value

Temp 3 434.08 144.69 36.45 0.0001
Linear 1 432.45 432.45 108.87 <0.0001
Lof 2 1.63 0.82 0.21 ≈1

Error B 18 71.50 3.97

The results of the F -tests confirm a linear trend in the mean strength (aver-
aged over the methods) as the cooking temperature increases.

6.6.4 Analysis of Split-Plot Experiments Using PROC MIXED

SAS Example F18

In previous discussions of the RCBD (in Sect. 6.5.1 and others), reasons were
provided for regarding block effects as random effects in experiments that
make use of blocks. In the analysis of the paper data in Sect. 6.6.3, neither the
rep effect nor the rep*method effects were considered random effects. Recall
that for computing the standard errors of method mean comparisons in SAS
Example F17, the whole-plot error term was required to be explicitly identi-
fied in the lsmeans statement using the e=rep*method option. As mentioned
previously, the random statement in proc glm does not result in the correct
standard errors, as it does not set up the variance structure required for an-
alyzing a general mixed model. Thus, proc mixed is the appropriate SAS
procedure available for analyzing data from split-plot experiments. In SAS
Example F18, the analysis of the strength of paper data is repeated using
proc mixed. A discussion of the changes needed if the whole-plot part of the
experiment is conducted as a completely randomized design appears following
this example.

The specification of the model for the observations from a split-plot exper-
iment with blocks as a random factor is slightly different. It is restated again
with only the differences from the previous model highlighted:

yijk = μ+Bi + τj + εij + αk + δjk + ε∗ijk

where Bi is the effect of the ith block (or replication) assumed to be iid
N(0, σ2

B), εij is the experimental error associated with the ijth whole-plot
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insert data step to create the SAS dataset ‘paper’ here

proc mixed data=paper noclprint noinfo Method=type3 cl;;
class Rep Method Temp;
model Strength = Method Temp Method*Temp/ddfm=satterth;
random Rep Rep*Method;
lsmeans Method*Temp/slice=Method;
lsmeans Method/diff cl adj=tukey;
contrast ’Temp:Linear Trend’ Temp -3 -1 1 3;
title "Analysis of a Split-Plot Experiment using PROC MIXED";

run;

Fig. 6.61. SAS Example F18: analysis of strength of paper data with proc mixed

assumed to be iid N(0, σ2
W ), and ε∗iij is the experimental error associated

with ijkth subplot assumed to be iid N(0, σ2
S). The SAS Example F18 pro-

gram is displayed in Fig. 6.61. As earlier, the fixed effects are specified in the
model statement and the random effects in the random statement. The user is
again required to determine how the whole-plot error is calculated and then
declare it as a random effect. Note also that the method of computation of
variance components is specified as type3. The specification of the option
ddfm=satterth requests that the Satterthwaite approximation be calculated
to obtain degrees of freedom for any statistic for which it is required. Com-
putation of the denominator sum of squares for certain F -statistics requires
this approximation, as will be illustrated later.

As can be observed, every statement used with proc glm is available for
use with proc mixed; however, the user is not required to specify the error
terms to be used for tests of fixed effects or for computation of standard errors
for comparisons of fixed effects. The output from proc mixed (note that the
options noclprint and noinfo are in effect, so those parts of the output are
suppressed) is shown in Fig. 6.62. It contains tables containing the Type 3
sums of squares and F -tests for all effects, expected mean squares, estimates,
and asymptotic confidence intervals for variance components. The following
ANOVA table that includes an expected mean squares column is assembled
using this information:

SV df SS MS F p-Value E(MS)

Rep 2 77.55 38.78 4.28 0.1016 σ2
S + 4σ2

W + 12σ2
b

Method 2 128.39 64.20 7.08 0.0485 σ2
S + 4σ2

W + Q(β, τ)

Error A 4 36.28 9.07 2.28 0.1003 σ2
S + 4σ2

W

Temp 3 434.08 144.69 36.45 0.0001 σ2
S + Q(α, δ)

Method × Temp 6 75.17 12.53 3.15 0.0271 σ2
S + Q(δ)

Error B 18 71.50 3.97 σ2
S

Total 35 822.97
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Analysis of a Split-Plot Experiment using PROC MIXED

The Mixed Procedure

Type 3 Analysis of Variance

Source DF
Sum of 

Squares
Mean 

Square Expected Mean Square Error Term

Method 2 128.388889 64.194444 Var(Residual) + 4 Var(Rep*Method) + 
Q(Method,Method*Temp)

MS(Rep*Method)

Temp 3 434.083333 144.694444 Var(Residual) + Q(Temp,Method*Temp) MS(Residual)

Method*Temp 6 75.166667 12.527778 Var(Residual) + Q(Method*Temp) MS(Residual)

Rep 2 77.555556 38.777778 Var(Residual) + 4 Var(Rep*Method) + 12 Var(Rep) MS(Rep*Method)

Rep*Method 4 36.277778 9.069444 Var(Residual) + 4 Var(Rep*Method) MS(Residual)

Residual 18 71.500000 3.972222 Var(Residual) .

Type 3 Analysis of Variance

Source
Error 

DF
F 

Value Pr > F

Method 4 7.08 0.0485

Temp 18 36.43 <.0001

Method*Temp 18 3.15 0.0271

Rep 4 4.28 0.1016

Rep*Method 18 2.28 0.1003

Residual . . .

Covariance Parameter Estimates

Cov Parm Estimate Alpha Lower Upper

Rep 2.4757 0.05 -3.9439 8.8953

Rep*Method 1.2743 0.05 -1.9343 4.4829

Residual 3.9722 0.05 2.2679 8.6869

Fig. 6.62. SAS Example F18: analysis of strength of paper data using proc

mixed(page 1)

As seen here, the F -statistics for the whole-plot effects, subplot effects,
and their interactions agree with those produced by proc glm. However, note
that for unbalanced data, this will be not the case. The focus here is in com-
parison of the fixed effects and not the estimation or testing of the variance
components. However, the magnitudes of the variance components should give
the experimenter an idea about the precision of the experiment. For example,
the subplot error variance with 18 degrees of freedom is 3.9722, quite large
compared to the whole-plot error variance of 1.2743 with four degrees of free-
dom. Thus, there is a substantial variation among the smaller batches that is
not accounted for by the different cooking temperatures. Confidence intervals
based on the chi-square percentiles can be constructed for these as usual using
the Satterthwaite approximation.
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Type 3 Tests of Fixed Effects

Effect
Num 

DF
Den 
DF F Value Pr > F

Method 2 4 7.08 0.0485

Temp 3 18 36.43 <.0001

Method*Temp 6 18 3.15 0.0271

Contrasts

Label
Num 

DF
Den 
DF F Value Pr > F

Temp:Linear Trend 1 18 108.87 <.0001

Fig. 6.63. SAS Example F18: analysis of strength of paper data using proc mixed,
fixed effects

A separate table showing the F -tests for the fixed effects and a table
containing the results of the contrast statement extracted from the output
are shown in Fig. 6.63. These results are identical to those from SAS Example
F17 using proc glm. Relevant portions of results from the lsmeans statement
for making pairwise comparisons of method means, extracted from output and
edited, are included in Fig. 6.64. The results from the lsmeans statement with
the slice= are also shown here. Again, these results are identical to those
obtained from proc glm.

Other contrast statements can be used to analyze the interactions by mak-
ing comparisons among the interaction means. The use of the slice= option
produced an F -test to compare the four Temp means for a given method simul-
taneously (i.e., to test H0 : μj1 = μj2 = μj3 = μj4), as discussed previously.
A more detailed analysis involves pairwise comparison of interaction means.
For example, the contrast statements

contrast ‘T1 vs. T2 @ M1’ Temp 1 -1 0 0

Method*Temp 1 -1 0 0 0 0 0 0 0 0 0 0;

contrast ‘T1 vs. T3 @ M1’ Temp 1 0 -1 0

Method*Temp 1 0 -1 0 0 0 0 0 0 0 0 0;

contrast ‘T1 vs. T4 @ M1’ Temp 1 0 0 -1

Method*Temp 1 0 0 -1 0 0 0 0 0 0 0 0;

are each single-degree of freedom comparisons that compare cell means μij for
pairs of Temp levels at Method level 1. Similarly, comparison made earlier of the
linear trend of Tempmeans can also be performed for each Method using similar
contrast statements. The F -statistics produced for these contrasts using proc

glm are identical to those produced by proc mixed as the denominator uses
the subplot error mean square in both procedures.

However, for comparisons of cell means μij for pairs of Method levels at
fixed Temp levels, the two SAS procedures produce different F -statistics. This
is because the F -statistics in these cases are obtained via the Satterthwaite
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Differences of Least Squares Means

Effect Method Temp _Method _Temp Estimate
Standard

Error DF t Value Pr > |t| Adjustment

Method 1 2 -2.8333 1.2295 4 -2.30 0.0825 Tukey-Kramer

Method 1 3 1.7500 1.2295 4 1.42 0.2277 Tukey-Kramer

Method 2 3 4.5833 1.2295 4 3.73 0.0203 Tukey-Kramer

Differences of Least Squares Means

Effect Method Temp _Method _Temp Adj P Alpha Lower Upper
Adj 

Lower
Adj 

Upper

Method 1 2 0.1660 0.05 -6.2469 0.5802 -7.2150 1.5484

Method 1 3 0.4129 0.05 -1.6635 5.1635 -2.6317 6.1317

Method 2 3 0.0434 0.05 1.1698 7.9969 0.2016 8.9650

Tests of Effect Slices

Effect Method
Num 

DF
Den 
DF F Value Pr > F

Method*Temp 1 3 18 15.50 <.0001

Method*Temp 2 3 18 10.21 0.0004

Method*Temp 3 3 18 17.03 <.0001

Fig. 6.64. SAS Example F18: analysis of means of strength of paper data using
proc mixed

approximation. More precisely, the denominator of the required F -statistic,
in general, is an estimate of a linear combination of σ2

S and σ2
W . This is a

weighted average of the two mean squares MSEW and MSEW, the distri-
bution of which is approximated by a chi-square distribution with degrees of
freedom approximately obtained using the method of Satterthwaite, as illus-
trated previously. Thus, proc mixed, along with the ddfm=satterth option
in the model statement is required for these F -statistics to be correctly com-
puted. As mentioned elsewhere, it is recommended that the ddfm=kr be used
for models with multiple random effects when the sample sizes are unequal.
In SAS Example F17 and SAS Example F18 programs, the following contrast
statements are included to illustrate this computation:

contrast ‘M1 vs. M2 @ T1’ Method 1 -1 0

Method*Temp 1 0 0 0 -1 0 0 0 0 0 0 0;

contrast ‘M1 vs. M3 @ T1’ Method 1 0 -1

Method*Temp 1 0 0 0 0 0 0 0 -1 0 0 0;

These compare the cell means for Method 1 with Method 2 at Temp 1 and cell
means for Method 1 with Method 3 at Temp 1. The two sets of F -statistics
produced by proc glm and proc mixed, respectively, for these contrasts are
produced in Figs. 6.65 and 6.66. Note carefully that the degrees of freedom
calculated for the denominator by proc mixed are obtained using the Sat-
terthwaite approximation.
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Contrast DF Contrast SS Mean Square F Value Pr > F

M1 vs M2 @ T1 1 20.16666667 20.16666667 5.08 0.0370

M1 vs M3 @ T1 1 1.50000000 1.50000000 0.38 0.5466

Fig. 6.65. Simple effect contrasts of whole-plot factor with proc glm

Using the model for the split-plot experiments introduced in Sect. 6.6.2, it
can be shown, in general, that the variance of the sample cell mean of Method
1 at Temperature 1, ȳ.11, is (σ

2
W + σ2

S)/r. Thus, the mean square appropriate
for the denominator of F -statistics for making comparisons of this type of
means is an estimate of σ2

W + σ2
S . By examining the ANOVA table for this

experiment, it is easy to observe that a mean square with an expected value
of σ2

W + σ2
S is not directly available. However, it is possible to synthesize a

mean square (say, MS∗) by using a linear combination of MSEW and MSES.
To derive this linear combination by examining the expected values of these
mean squares, note that

E(MSEW) + 3E(MSES)

4
= σ2

W + σ2
S .

Thus, the linear combination needed is

MS∗ =
1

4
MSEW +

3

4
MSES

because the E(MS∗) will then be equal to σ2
W + σ2

S . The Satterthwaite ap-
proximation gives the degrees of freedom for a synthesized mean square
of this type. Using this approximation, the degrees of freedom for MS∗ =
1
4MSEW + 3

4MSES = 0.25MSEW + 0.75MSES is given by

ν =
(MS∗)2

(0.25MSEW)2

df1
+

(0.75MSES)2

df2

,

where df1 and df2 are the degrees of freedom for MSEW and MSES, respec-
tively. The calculation can be done in a SAS data step similar to those used for
computations of confidence intervals for components of variance in the previ-
ous sections. The execution of the data step results in the values MS∗ = 5.245
and ν = 15.47. This value for the denominator degrees of freedom, rounded
to 15.5, is identical to the value reported in Fig. 6.66.
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data df;

mse1=9.07; mse2=3.97; df1=4; df2=18; p=.25; q = .75;

ms_star= p*mse1 +q*mse2;

nu=ms_star**2/((p*mse1)**2/df1+ (q*mse2)**2/df2);

put ms_star= nu= ;

run;

Contrasts

Label
Num 

DF
Den 
DF F Value Pr > F

M1 vs M2 @ T1 1 15.5 3.84 0.0682

M1 vs M3 @ T1 1 15.5 0.29 0.6005

Fig. 6.66. Simple effect contrasts of whole-plot factor with proc mixed

Finally, if the whole-plot design is a CRD instead of an RCBD as used in
the strength of paper experiment described in SAS Example F17, the model
is modified as follows:

yijk = μ+ τj + εij + αk + δjk + ε∗ijk.

The whole-plot error is now estimated by the replication within method mean
square usually denoted by the term rep(method) in the model statement. The
partitioning of the degrees of freedom for the whole-plot analysis is adjusted
as follows:

Whole plot design: RCBD
SV df
Rep r − 1
A a− 1
Error A (r − 1)(a− 1)

Whole plot design: CRD
SV df
A a− 1
Error A a(r − 1)

In this case, for the use in SAS procedures such as proc glm or proc mixed,
a variable denoting the replication number is also included as part of the
data. Levels of this variable usually identify experimental units used for the
whole-plot treatments. Suppose that the variable name Rep is used for this
purpose in the paper example. And then the terms Rep and Rep*Method

are replaced by the single term Rep(Method) in the model statement, and
the error term for testing the Method main effect using proc glm (as in
SAS Example F17) becomes Rep(Method). Thus, the test statement changes
to test h=Method e=Rep(Method);. The random statement is modified to
random Rep(Method); in the proc mixed step.
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6.7 Exercises

6.1 A textile mill weaves a fabric on a large number of looms (Montgomery
1991). To investigate whether there is an appreciable variation among
the output of cloth per minute by the looms, the process engineer selects
five looms at random and measured their output on five randomly chosen
days. The following data are obtained:

Loom Output (lbs/min)
1 14.0 14.1 14.2 14.0 14.1
2 13.9 13.8 13.9 14.0 14.0
3 14.1 14.2 14.1 14.0 13.9
4 13.6 13.8 14.0 13.9 13.7
5 13.8 13.6 13.9 13.8 14.0

a. Write the one-way random model you will use to analyze this data
stating assumptions about each parameter in the model and tell what
each parameter represents. Construct the corresponding analysis of
variance using proc glm. Write the ANOVA table including a col-
umn for expected mean square (E (MS)).

b. Express the hypothesis that there is no variability in output among
the looms, in terms of the model parameters. Perform a test of this
hypothesis using the analysis in part (a) using α = 0.05.

c. If the hypothesis in part (b) is rejected, estimates of the variance
components associated with the model in part (a) may be desired.
Use the method of moments to obtain these estimates from the re-
sults of parts (a) and (b).

d. Calculate 95% confidence intervals for the variance components that
are found to be nonzero.

6.2 A sugar manufacturer wants to determine whether there is significant
variability in purity of batches of raw cane among batches obtained from
different suppliers as well as among different batches obtained from the
same supplier (Montgomery 1991). Four batches of raw cane are obtained
at random from each of three randomly selected suppliers. Three deter-
minations of purity are made using random samples from each batch.
The data are given as follows (note that the original data were given in
coded form):

a. Use a two-way random model to analyze these data. Write an appro-
priate model explaining what each term in the model represents and
stating any assumptions made. Prepare and run a proc mixed pro-
gram necessary to test hypotheses and estimate variance components
using this model.

b. Construct an analysis of variance table on a separate sheet (including
expected mean squares) using the output from the program. Test all
hypotheses concerning variance components of interest and interpret
the results of these tests.
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Supplier
Batch

1 2 3

94 94 95
1 92 91 97

93 90 93

91 93 91
2 90 97 93

89 95 95

91 92 94
3 93 93 92

94 91 95

94 93 96
4 97 96 95

93 95 94

c. Provide estimates of parameters of interest (variance components)
depending on the outcome of each of the hypotheses tested in part
(b); that is, only nonzero variance components need to be estimated.
Show work.

d. Calculate 95% confidence intervals for the variance components that
are found to be nonzero.

6.3 A manufacturer of diet foods suspects that the batches of raw material
furnished by her supplier differ significantly in sodium content. There is
a large number of batches currently in the warehouse, and the variability
of sodium content among these batches is of interest. Five of these are
randomly selected for study. Determinations of sodium in five samples
taken from each batch were made, and the data obtained are reported
in the following table.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

23.36 23.59 23.51 23.28 23.29
23.48 23.46 23.64 23.40 23.46
23.56 23.42 23.46 23.37 23.37
23.39 23.49 23.52 23.46 23.32
23.40 23.50 23.39 23.38

23.48 23.41
23.35

a. Write the one-way random model you will use to analyze this data
stating assumptions made about each parameter in the model and
what each parameter represents. Construct the corresponding analy-
sis of variance table using proc glm, including an additional column
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for expected mean square, E (MS). You must extract numbers from
the SAS output to write down your own table.

b. Using model parameters, express the hypothesis that there is no vari-
ability in sodium content among batches, using model parameters.
Perform a test of this hypothesis using your analysis of variance table
from part (a). Use the p-value for making the decision.

c. If the hypothesis in part (b) is rejected, estimates of the variance
components associated with the model in part (a) can be computed.
Obtain these estimates depending on the results of part (b).

d. Calculate 95% confidence intervals for the variance components that
are found to be nonzero.

6.4 In an experiment to study variability of a blood pH measurements among
animals from different dams as well as from different sires described in
Sokal and Rohlf (1995), ten female mice (dams) were successfully mated
over a period of time to two males (sires). Different sires were employed

Dam Sire Blood pH readings

1 1 48 48 52 54
2 48 53 43 39

2 1 45 43 49 40
2 50 45 43 36

3 1 40 45 42 48
2 45 33 40 46

4 1 44 51 49 51
2 49 49 49 50

5 1 54 36 36 40
2 44 47 48 48

6 1 41 42 36 47
2 47 36 43 38

7 1 40 34 37 45
2 42 37 46 40

8 1 39 31 30 41
2 50 44 40 45

9 1 52 54 52 56
2 56 39 52 49

10 1 50 45 43 44
2 52 43 38 33

for the ten dams, implying that a total of 20 sires were used in the
experiment. Four mice were selected at random from each of the resulting
litters, and the blood pH of each mouse was determined. The following
data (which have been coded) were extracted from the original data to
produce equal sample sizes.
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a. Write the two-way nested effects model for these observations, ex-
plaining each term and stating any assumptions made. Prepare and
run a proc mixed program necessary to analyze the data using this
model.

b. Construct an analysis of variance table (including expected mean
squares) using the output from the program. Test all hypotheses
concerning the variance components of interest and interpret the
results of these tests.

c. Provide estimates of the variance components depending on the out-
come of each of the hypotheses tested in part (b); that is, you need to
estimate only those variance components that are determined to be
nonzero as a result of the above tests. State results of your analysis
in a summary statement.

d. Calculate 95% confidence intervals for the variance components that
are found to be nonzero.

6.5 In an experiment described in Dunn and Clark (1987), four brands of
airplane tires are compared to assess the differences in the rate of tread
wear. The data were collected on eight planes, with two tires used under
each wing. The researcher uses each airplane as a block, mounting four
test tires, one of each brand, in random order on each airplane. Thus, a
randomized complete block design with “airplane” as a blocking factor
is the design used. The amount of tread is measured initially and after 6
months and the following wear rates obtained: Note that a larger value

Brand
Airplane

A B C D

1 4.02 2.46 2.06 3.49
2 4.50 3.39 2.91 3.18
3 2.73 1.69 2.37 1.48
4 3.74 1.95 3.39 3.09
5 3.21 1.20 1.72 2.65
6 2.53 1.04 2.52 1.23
7 3.07 2.55 2.42 2.07
8 3.10 1.09 2.22 2.57

indicates greater wear. Brand A is currently used by the airline, and
Brands B, C, and D from three different competitors are being evaluated
to replace A. Thus, the management is interested in
i. Comparing Brand A with the average wear of Brands B C, and D
ii. Comparing Brands B, C, and D
Prepare and run a proc mixed program necessary and provide answers
to the following questions (on a separate sheet) assuming the model for
a randomized complete block design.
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a. Construct an analysis of variance table and test the hypothesis H0 :
τA = τB = τC = τD. State your conclusion based on the p-value.

b. Use a contrast statement for making comparison (i) by testing H0 :
τA = (τB + τC + τD)/3.

c. Use a contrast statement for making comparison (ii) by testing
HO : τB = τC = τD. One way to test this hypothesis is to make the
comparisons τB−τC and τB−τD simultaneously in a single contrast
statement. This results in the computation of a sum of squares with
2 df and an F -test with 2 df for the numerator. Add these results
to this ANOVA table as additional lines and summarize conclusions
from this analysis.

d. Construct 95% confidence intervals for μB −μC and μB −μD, using
the output from appropriate estimate statements used with proc

mixed.
6.6 A compound is sent to five randomly selected laboratories in the United

States for a routine analysis. At each laboratory, four chemists are chosen
at random, and each chemist makes three chemical determinations on the
compound using the same method of chemical analysis. The object is to
study the variation of this method from laboratory to laboratory and
also among chemists within each laboratory. The data obtained are as
follows:

Laboratory
Chemist

1 2 3 4 5

2.24 2.44 1.97 2.54 2.44
1 2.51 2.40 2.05 2.49 2.36

2.37 2.51 2.13 2.42 2.45

2.65 2.26 2.23 2.46 2.67
2 2.57 2.37 2.20 2.39 2.61

2.48 2.41 2.27 2.40 2.59

2.41 2.38 2.25 2.71 2.64
3 2.37 2.19 2.28 2.70 2.58

2.40 2.35 2.31 2.78 2.55

2.25 2.75 2.37 2.62 2.38
4 2.38 2.58 2.30 2.55 2.41

2.40 2.62 2.44 2.59 2.35

Use a SAS program with proc mixed to answer the following questions:
a. Write the appropriate model for the analysis of these data, stating

the effect each term used in the model represents and the assump-
tions made about these effects.
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b. Construct an appropriate ANOVA table including the required F -
statistics, p-values, and expected mean squares.

c. State the two hypotheses of interest for this experiment using the
model parameters in part (a). Use the F -statistics and p-values above
to make conclusions. Use α = 0.05.

d. Estimate parameters of interest in this experiment. Note that these
estimates depend on the outcomes of the hypotheses tested above.

6.7 The objective of a case study discussed in Ott and Longnecker (2001)
was to determine whether the pressure drop across the expansion joint
in electric turbines was related to gas temperature. Also, the researchers
wanted to assess the variation in readings from various types of pressure
gauge and whether they were consistent across different gas tempera-
tures. Three levels of gas temperatures that cover the operational range
of the turbine were selected 15 ◦C, 25 ◦C, and 35 ◦C. Four types of gauge
were randomly chosen for use in the study from the hundreds of different
types pressure gauges used to monitor pressure in the lines. Six replica-
tions of each of the 12 temperature-gauge factorial combinations were
run and the pressure measured.

Temperature Gauge Pressure
(◦C)

15 G1 40 40 37 47 42 41
G2 43 34 38 42 39 35
G3 42 35 35 41 43 36
G4 47 47 40 36 41 47

25 G1 57 57 65 67 63 59
G2 49 43 51 49 45 43
G3 44 45 49 45 46 43
G4 36 49 38 45 38 42

35 G1 35 35 35 46 41 42
G2 41 43 44 36 42 41
G3 42 41 34 35 39 36
G4 41 44 35 46 44 46

Use a SAS program with proc mixed to answer the following questions:
a. Construct an appropriate ANOVA table including appropriate F -

statistics, p-values, and expected mean squares.
b. Use the expected mean squares in the ANOVA table to determine

which ratios of sums of squares are to be used to test the two hypothe-
ses of interest regarding variance components. Check your answers
with those provided by proc glm

c. Construct an interaction plot appropriate for studying any significant
interaction.
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d. If there is significant variation among the gauges, suggest some
BLUPs that might be useful for comparing the performance of gauges
at each temperature. Use estimate statements to make appropriate
comparisons.

6.8 A manufacturing company wishes to study the variation in tensile
strength of yarns produced on four different looms (Sahai and Ageel
2000). In an experiment designed for this purpose, 12 machinists were
selected, and each loom was assigned to three different machinists at ran-
dom. Samples from two different runs by each machinist were obtained
and tested. The data in standard units are given as follows:

Loom

1 2 3 4

Machinist Machinist Machinist Machinist
1 2 3 1 2 3 1 2 3 1 2 3

38.2 53.5 15.3 61.3 41.5 35.3 47.1 22.5 14.7 15.5 19.3 21.6

21.6 51.5 26.7 58.3 38.5 27.3 34.3 25.7 26.3 32.3 35.7 26.5

a. Write the appropriate model for the analysis of these data, stating
the effect each term used in the model represents and the assump-
tions made about these effects.

b. Construct an analysis of variance table needed to analyze this data.
Include a column of expected mean squares.

c. Use the ANOVA table to test whether the mean tensile strength
of yarn produced by the four looms is significantly different using
α = 0.05.

d. Test an appropriate hypothesis about the variability of tensile
strength of yarn among the machinists within each loom using
α = 0.05.

e. Estimate the variance components of relevant effects of this model
by constructing 95% confidence intervals for them.

f. Carry out comparisons of pairwise differences among the mean ten-
sile strength of yarn produced by the looms adjusted for multiple
comparisons using the Bonferroni adjustment.

6.9 In a study reported in Dunn and Clark (1987), each of three different
sprays were applied to four trees selected at random. After 1 week, the
concentration of nitrogen was measured on each of six leaves obtained in
a random way from each tree. The data are given in the following table.

a. Write the appropriate model for the analysis of these data, stating
the effect each term used in the model represents and the assump-
tions made about these effects.

b. Construct an analysis of variance table needed to analyze these data.
Include a column of expected mean squares.



6.7 Exercises 523

Tree
Spray Leaf

1 2 3 4

1 1 4.50 5.78 13.32 11.59
2 7.04 7.69 15.05 8.96
3 4.98 12.68 12.67 10.95
4 5.48 5.89 12.42 9.87
5 6.54 4.07 10.03 10.48
6 7.20 4.08 13.50 12.79

2 1 15.32 14.53 10.89 15.12
2 14.97 14.51 10.27 14.79
3 14.81 12.61 12.21 15.32
4 14.26 16.13 12.77 11.95
5 15.88 13.65 10.45 12.56
6 16.01 14.78 11.44 15.31

3 1 7.18 6.70 5.94 4.08
2 7.98 8.28 5.78 5.46
3 5.51 6.99 7.59 5.40
4 7.48 6.40 7.21 6.85
5 7.55 4.96 6.12 7.74
6 5.64 7.03 7.13 6.81

c. Use the ANOVA table to test whether the mean nitrogen content
resulting from the three sprays is significantly different using α =
0.05.

d. Test an appropriate hypothesis about the variability of nitrogen con-
tent among the trees within each spray using α = 0.05.

e. Estimate the variance components of relevant effects of this model
by constructing 95% confidence intervals for them.

f. Carry out comparisons of pairwise differences among the mean ni-
trogen content resulting from the three sprays adjusted for multiple
comparisons using the Tukey adjustment.

6.10 In a health awareness study (Kutner et al. 2005), each of three states
independently devised a health awareness program. Three cities within
each state of similar demographics were selected at random, and five
households within each city were randomly selected to evaluate the ef-
fectiveness of the program. A composite index based on responses of
members of the selected households who were interviewed before and
after participation in the program was used for measuring the impact of
the health awareness program. The data on health awareness are given
as follows (the larger the index, the greater the awareness):

a. Write the appropriate model for the analysis of these data, stating
the effect each term used in the model represents and the assump-
tions made about these effects.

b. Construct an analysis of variance table needed to analyze these data.
Include a column of expected mean squares.
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State

1 2 3

City City City
Household

1 2 3 1 1 3 1 2 3

1 42 26 34 47 56 68 19 18 16
2 56 38 51 58 43 51 36 40 28
3 35 42 60 39 65 49 24 27 45
4 40 35 29 62 70 71 12 31 30
5 28 53 44 65 59 57 33 23 21

c. Use the ANOVA table to test whether the mean awareness is signif-
icantly different among the three states using α = 0.1.

d. Test an appropriate hypothesis about the variability of awareness
among cities within states using α = 0.1.

e. Construct 90% confidence intervals for pairwise comparisons between
state means, using the Tukey procedure.

f. Construct 90% confidence interval for the variance component mea-
suring variability of awareness among cities within states.

6.11 Consider an experiment to examine the variation in the effects of differ-
ent analysts on chemical analyses for the DNA content of plaque (Mont-
gomery 1991). Three female subjects (ages 18–20 years) were chosen for
the study. Each subject was allowed to maintain her usual diet, supple-
mented with 30mg (15 tablets) of sucrose per day. No toothbrushing or
mouthwashing was allowed during the study. At the end of the week,
plaque was scraped from the entire dentition of each subject and divided
into three samples. The three samples of plaque from each of the sub-
jects were randomly assigned to three analysts chosen at random. They
performed an analysis for the DNA content (in micrograms). The data
obtained are as follows:

Subject
Analyst

1 2 3

1 13.2 10.6 8.5
2 12.5 9.6 7.9
3 13.0 9.9 8.3

a. Write the appropriate model for the analysis of these data, stating
the effect each term used in the model represents and the assump-
tions made about these effects.

b. Construct an appropriate ANOVA table including appropriate F -
statistics, p-values, and expected mean squares.
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c. State the hypothesis of interest for this experiment using the model
parameters in part (a). Use the F -statistic and p-value above to make
conclusions. Use α = 0.05.

6.12 An engineer is designing a battery for use in a device that will be sub-
jected to extreme variations in temperature (Montgomery 1991). He con-
siders a two-way factorial with plate material and temperature as the two
factors but has a large number of feasible choices for plate material and
temperatures. Suppose that three plate materials and three tempera-
tures were chosen, both at random, for use in the study. Four batteries
were tested at each combination of plate material and temperature, and
the resulting 36 tests are run in a random sequence. The data, observed
battery life, are in the following table.

Material Temperature
type 15 ◦F 70 ◦F 125 ◦F

1 130 155 34 40 20 70
74 180 80 75 82 58

2 150 188 136 122 25 70
159 126 106 115 58 45

3 138 110 174 120 96 104
168 160 150 139 82 60

Use a SAS proc mixed program to analyze these data. Provide answers
to the following questions:
a. Write the appropriate model for the analysis of these data, explaining

each term in the model and the assumptions made about these.
b. Construct an analysis of variance table needed to analyze this data.

Include a column of expected mean squares.
c. Use the ANOVA table to test whether temperature, type of mate-

rial, or their interaction contributes significantly to the variation in
battery life using α = 0.1.

d. Estimate significant variance components by providing point esti-
mates and by calculating 95% confidence intervals.

6.13 In a lab experiment carried out in a completely randomized design, a
soil scientist studied the growth of barley plants under three different
levels of salinity (control, 6 bars, 12 bars) in a controlled growth medium
(Kuehl 2000). Two replications of each treatment were obtained, and
three plants were measured in each replication. The data on the dry
weight of plants in grams are as follows:

Use a SAS proc mixed program to analyze this data and provide answers
to the following questions:

a. Write the appropriate model for the analysis of these data, explaining
each term in the model and the assumptions made about these.

b. Construct an analysis of variance table needed to analyze these data.
Include a column of expected mean squares.



526 6 Analysis of Variance: Random and Mixed Effects Models

Salinity Container Weight(g)

Control 1 11.29 11.08 11.10
2 7.37 6.55 8.50

6 Bars 1 5.64 5.98 5.69
2 4.20 3.34 4.21

12 Bars 1 4.83 4.77 5.66
2 3.28 2.61 2.69

c. Use the ANOVA table to test whether the mean dry weights are
significantly different among the three salinity levels using α = 0.05.
What is the standard error of a salinity level mean?

d. Test an appropriate hypothesis about the variability of weight among
containers within salinity levels using α = 0.1.

e. Partition the sum of squares for salinity effect using two orthogonal
polynomials corresponding to linear and quadratic effects, each with
one degree of freedom. Interpret the results of the F -tests.

6.14 An experiment, conducted in a split-plot design to determine the effect
of three bacterial inoculation treatments applied to two cultivars of
grasses on dry weight yields, is discussed in Littell et al. (1991). The
cultivar is the whole-plot factor and inoculi, the subplot factor. Each of
the two cultivars is replicated four times. The data are as follows:

Replication

I II III IV

Cultivar Cultivar Cultivar Cultivar
Inoculi

A B A B A B A B

Control 27.4 29.4 28.9 28.7 28.6 27.2 26.7 26.8
Live 29.7 32.5 28.7 32.4 29.7 29.1 28.9 28.6
Dead 34.5 34.4 33.4 36.4 32.9 32.6 31.8 30.7

Use a SAS proc mixed program to analyze this data and provide answers
to the following questions:
a. Write the appropriate model for the analysis of these data, explaining

each term in the model and the assumptions made about these.
b. Construct an analysis of variance table needed to analyze these data.

Include a column of expected mean squares.
c. Use the ANOVA table to test whether the mean dry weights are

significantly different among the three inoculation levels using α =
0.05. What is the standard error of an inoculation level mean?

d. Use the ANOVA table to test whether the mean dry weights are
significantly different among the three two cultivars using α = 0.05.
What is the standard error of a cultivar mean?
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e. Construct confidence intervals for comparing the cultivar means of
the two inoculi with the control, adjusted for multiple testing.

6.15 Soy protein isolates (SPI), widely used in the food industry, are usually
stored in dry powder form produced via spray drying or freeze drying,
to enhance shelf life and make them easier to distribute. A study was
conducted at Iowa State University (Deak and Johnson 2007) to deter-
mine how various properties of SPI are affected by the method used
to dry them and to compare those of dried SPI to fresh (undried) or
frozen-thawed SPI. Another factor that may affect the properties of SPI
is the temperature used in the extraction process to create SPI. Thus, a
two-factor experiment was conducted in which the two factors and their
levels are temperature at levels 25, 40, 60, and 80 ◦C and Method with
levels 1 = fresh, 2 = frozen and then thawed, 3 = freeze dried, and 4 =
spray dried.

Twelve batches of SPI were created so that the four temperature
levels were assigned to three batches at random. Each batch was split
into four parts, and the four methods were assigned to the four parts of
each SPI completely at random. Many response variables were measured
for each part of each SPI, but data for emulsion capacity (EC, grams of
oil emulsified by 1 gram of product) are reported in the following table
(data were graciously provided by the first author of the above reference;
the EC values were rounded to the nearest whole number).

Temperature

25 ◦C 40 ◦C 60 ◦C 80 ◦C

Batch Method EC Batch Method EC Batch Method EC Batch Method EC

1 549 1 568 1 478 1 442
2 531 2 595 2 503 2 433

1
3 573

4
3 557

7
3 501

10
3 473

4 600 4 591 4 512 4 480

1 551 1 584 1 481 1 449
2 640 2 632 2 526 2 496

2
3 559

5
3 608

8
3 458

11
3 448

4 587 4 602 4 485 4 475

1 538 1 582 1 485 1 473
2 591 2 606 2 524 2 503

3
3 557

6
3 591

9
3 469

12
3 458

4 584 4 583 4 497 4 471

Use proc mixed (and other procedures if needed) in a SAS program to
perform the following analyses:
a. Write the appropriate model for the analysis of these data, explaining

each term in the model and the assumptions made about these.
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b. Construct an analysis of variance table needed to analyze these data.
Include a column of expected mean squares.

c. Is there a significant interaction between temperature and method?
Conduct an appropriate test to answer this question. Provide a test
statistic, its degrees of freedom, a p-value, and a brief conclusion.

d. Construct an interaction plot to study the interaction between tem-
perature and method. Use the levels of temperature on the x-axis
drawn to scale. Comment.

e. Use the ANOVA table to test whether the mean EC are significantly
different among the four temperature levels using α = 0.05. What is
the standard error of a temperature level mean?

f. Use the ANOVA table to test whether the mean EC are significantly
different among the four methods using α = 0.05. What is the stan-
dard error of a method mean?

g. Construct 95% confidence intervals for pairwise differences among the
four temperature means adjusted for multiple testing using the Tukey
adjustment.

h. Calculate a t-statistic for testing whether there is a difference between
the effects of spray-dry and freeze-dry methods. Perform the test using
α = 0.05.

i. Calculate an F -statistic for testing whether there is a difference be-
tween the effects of temperatures 25 ◦C and 40 ◦C when the freeze-dry
method is used. Perform the test using α = 0.05.

6.16 An experiment is designed to study pigment dispersion in paint. Four
different mixes of a particular pigment are studied. The procedure con-
sists of preparing a particular mix and then applying that mix to a panel
by three application methods (brushing, spraying, and rolling). The re-
sponse measured is the percentage reflectance of the pigment. Three days
are required to run the experiment, and the data obtained follow. Ana-
lyze the data and draw conclusions, assuming that mixes and application
methods are fixed.

Mix
Day App method

1 2 3 4

1 1 64.5 66.3 74.1 66.5
2 68.3 69.5 73.8 70.0
3 70.3 73.1 78.0 72.3

2 1 65.2 65.0 73.8 64.8
2 69.2 70.3 74.5 68.3
3 71.2 72.8 79.1 71.5

3 1 66.2 66.5 72.3 67.7
2 69.0 69.0 75.4 68.6
3 70.8 74.2 80.1 72.4
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Beyond Regression and Analysis of Variance

7.1 Introduction

This chapter applies SAS software to the analysis of nonlinear models and
generalized linear models. These models have important uses and cannot be
analyzed with SAS procedures for linear models that are covered in earlier
chapters. Some basic nonlinear models are introduced in Sect. 7.2, and the
NLIN procedure is illustrated with applications to growth curves and data
from pharmacokinetic and toxicology studies. Generalized linear models, a
special class of nonlinear models, are introduced in Sect. 7.3 and illustrated
with applications of the LOGISTIC and GENMOD procedures to popular
logistic regression and Poisson regression models. Sect. 7.4 shows how overdis-
persion in observed counts can be accommodated with the LOGISTIC and
GENMOD procedures. Extensions to the analysis of rates and logistic regres-
sion with multi-category responses are discussed in Sect. 7.5. Each section is
presented like a mini chapter with its own brief introduction.

7.2 Nonlinear Models

7.2.1 Introduction

Model

Nonlinear models are used to model curved relationships between variables
that would be difficult to approximate with the linear models discussed in
previous chapters. It is useful to think about nonlinear models as consisting
of two components: a systematic component that describes how the mean
response changes with changes in the explanatory variables and a random
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component that describes how potential responses vary about the systematic
component. Using y to denote a value of the response variable and x to denote
a set of values for a collection of explanatory variables, a nonlinear model can
be expressed as

y = μ(x;β) + ε. (7.1)

In this expression μ(x;β) is the systematic part of the model that specifies
the relationship between the mean response and the values of the explanatory
variables represented by x. This relationship is shaped by a set of population
parameters denoted by β. Unlike regression models, and other linear models,
μ(x;β) is not a linear function of the parameters.

The random part of the model is represented by ε, a random error that
describes how potential observations vary about the mean response for a par-
ticular set of x values. The distribution of the random errors is assumed to
have mean zero. A homogeneous variance condition is often assumed that re-
stricts the variance of the random errors, denoted by σ2, to be the same for
all values of x. Least squares estimation, the default estimation method used
by the NLIN procedure, is based on this homogeneous variance condition.
The NLIN procedure also has an option for performing weighted least squares
estimation when the level of variation in the random errors changes with one
or more of the variables in x, but we will not illustrate this option in this
section.

Estimation and Inference

To apply a nonlinear model, a formula must be provided for μ(x, β). The
formula is developed from expert knowledge of the relationship that is being
modeled. For example, if a researcher believes that the growth rate of an
organism is slow when the organism is small, becomes faster as the organism
grows, and eventually slows down as the size of the organism approaches an
upper limit, a logistic growth curve model may be considered. As a function of
a single explanatory variable, time, the systematic part of the logistic growth
curve model can be written as

μ(t;α, β, γ) =
α

1 + e−(t−β)/γ
. (7.2)

This describes the average size of organisms in the population at any time t.
Adding a random component ε, the actual size of a randomly selected organism
at time t is represented as

y =
α

1 + e−(t−β)/γ
+ ε. (7.3)

There are four parameters to estimate, α, β, γ, and σ2, the variance of ε. There
are many other nonlinear models that could be used, and a major challenge in
applying nonlinear models is the determination of the form of the systematic
component. The following discussion, however, is focused on applying SAS
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procedures to fit nonlinear models to data after the form of the model has
been selected.

To estimate parameters in a nonlinear model, the NLIN procedure in SAS
uses least squares estimation, minimizing the sum of the squared residuals.
This is an iterative process that requires starting values for the parameter es-
timates. Convergence to the global minimum of the sum of squared residuals
is not completely guaranteed. The closer the starting values are to the param-
eter values that provide the global minimum for the sum of squared residuals,
however, the greater the chance that the optimization algorithm will converge
to the global minimum. The NLIN procedure provides an option of specifying
a grid of possible starting values that may increase the chance of arriving at a
global minimum. Under that option, the NLIN procedure computes the sum
of squared residuals at each point on the grid and starts the iterative process
from the point on the grid that yields the lowest sum of squared residuals. Al-
ternatively, good starting values for parameter estimates may be determined
by looking at graphs, summary statistics, and other preliminary examinations
of the data.

Inferential procedures for nonlinear models, such as confidence intervals
and tests of hypotheses, may be based on large sample approximations to
the sampling distributions of the estimators. These approximations generally
provide good approximations for large samples, but they may not adequately
account for all of the variability in the estimators for small samples. Conse-
quently, standard errors of estimators may be underestimated for small sam-
ples leading to confidence intervals that are too short to provide the desired
level of confidence and tests of hypotheses with artificially small p-values. The
NLIN procedure provides alternative inferential procedures based on boot-
strap resampling methods that tend to provide more accurate standard errors
and confidence intervals for small samples.

7.2.2 Growth Curve Models

Model

As mentioned above, the logistic growth curve model is one of many models
that has been used to model growth of humans, animals, plants, and other
organisms. The average growth rate for a logistic growth curve is initially small
when the organisms are small, but the growth rate increases as the organisms
become larger. After a certain time point, corresponding to the inflection point
of the logistic growth curve, the growth rate begins to decline and becomes
slower as the organisms approach an upper size limit. As a function of time,
t, the systematic part of the logistic growth curve model can be written as

μ(t;α, β, γ) =
α

1 + e−(t−β)/γ
for t > 0. (7.4)
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This curve has a sigmoidal shape that is symmetric about its inflection point.
Adding a random component allows the actual sizes of individual organisms to
vary about the population curve described by Eq. (7.4). The resulting model is

y =
α

1 + e−(t−β)/γ
+ ε. (7.5)

We will assume that random errors, denoted by ε, are uncorrelated, each
with mean zero and variance σ2. Consequently, there are four parameters to
estimate, α, β, γ from the systematic component, and σ2 from the random
component. For this model, α represents the average size of mature organisms,
β is the time at which the average size of organisms reaches one-half of α, and
γ is a scale parameter that controls the rate of growth.

SAS Example G1

The following example examines the growth of a cedar tree in Hollis, Alaska,
during one summer. The data are taken from Bliss (1970). Beginning on May
14, weekly radial measurements of the tree trunk, in units of 0.01 inches, were
recorded for 19 consecutive weeks. The measurements exhibit a sigmoidal
growth pattern that is symmetrical about an inflection point near 7.5 weeks.
In this study, variation about the logistic growth curve was partly due to
variation in local weather factors. Tree trunk swelling from hydration tended
to occur on rainy days that followed cloudy days with rainfall, and tree trunk
shrinkage tended to occur on clear days. Consequently, weekly measurements
of cumulative radial growth vary about the actual growth curve.

The SAS Example G1 program (see Fig. 7.1) illustrates how the SGPLOT
procedure may be used to provide a scatter plot of the cumulative radial
growth data. The 19 weeks of data are included in the data step, with the
variable week containing the number of weeks since the beginning of the study
and the variable growth containing the radial measurement of the tree trunk
(0.01 inch) at the end of each week.

In addition to providing information about the pattern of growth, the scat-
ter plot displayed in Fig. 7.2 is useful for determining starting values for pa-
rameter estimation. This plot indicates that the inflection point of the growth
curve is near 7.5 weeks. Consequently, 7.5 is a reasonable starting value for the
estimation of β. This plot also suggests that 8 is a reasonable starting value
for the estimation of α, because the points on the plot appear to approach
an upper limit near 8. Deriving a good starting value for the estimation of
γ requires a bit more work. Equation (7.4) implies that γ is the slope in the
following relationship:

t = β + γ log

(
μ(t;α, β, γ)

α− μ(t;α, β, γ)

)

. (7.6)

A value of γ is obtained by evaluating μ(t;α, β, γ) at two time points, say
t2 > t1, and computing
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data cedar;
input week growth;
label week = "Week from May 14"

growth = "Cumulative Radial Growth (.01 in)";
datalines;

1 0.73
2 0.99
3 1.32
4 1.66
5 2.45
6 3.10
7 4.56
8 4.95
9 5.76

10 6.13
11 6.80
12 7.18
13 7.38
14 8.17
15 7.87
16 7.51
17 7.89
18 8.05
19 7.82

;

proc sgplot data=cedar;
scatter x=week y=growth /

markerattrs=(size=12 symbol=Circle color=black);
yaxis label="Cumulative Radial Growth (.01 in.)"

labelattrs=(size=14) valueattrs=(size=12);
xaxis label="Time(weeks after May 14)"

labelattrs=(size=14) valueattrs=(size=12);
run;

Fig. 7.1. SAS Example G1: scatter plot program

t2 − t1

log
(

μ(t2;α,β,γ)
α−μ(t2;α,β,γ)

)
− log

(
μ(t1;α,β,γ)

α−μ(t1;α,β,γ)

) . (7.7)

Values of μ(t;α, β, γ) are unknown, but they can be approximated from the
pattern of data points in Fig. 7.2. For example, at t1 = 5 weeks, it appears
that μ(5;α, β, γ) is close to 2. At t2 = 10 weeks, it appears that μ(10;α, β, γ)
is close to 6. These time points are near the lower and upper ends of the
time interval in which the logistic growth curve is nearly a straight line. Con-
sequently, the starting value for γ is an estimate of the slope of that line
segment. Substituting the starting value for α into (7.7), a starting value for
γ is computed as

10− 5

log
(

6
8−6

)
− log

(
2

8−2

) = 2.28. (7.8)

A residual is computed for each time point in the data set as the difference
between the measured and predicted cumulative radial trunk values. Initially,
predictions and residuals are based on the starting values for the estimates of
α, β, and γ. From this starting point, an iterative procedure is used to find the
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Fig. 7.2. SAS Example G1: scatter plot of growth data

estimates of α, β, and γ that minimize the sum of the squared residuals. In
each step of the iteration, the predicted values and residuals are reevaluated
with the updated parameter estimates. After the iterative process converges to
provide the final set of parameter estimates, α̂, β̂, and γ̂, the error variance,
σ2, is estimated as the sum of the squared residuals divided by the error
degrees of freedom, which are the number of observations minus the number
of parameters in the systematic part of the model. For the cedar tree growth
data, the error degrees of freedom are 19− 3 = 16.

Building on the program in Fig. 7.1, the SAS code displayed in Fig. 7.3
shows how the NLIN procedure is used to fit a logistic growth curve to the
data. The model statement contains the formula for the systematic compo-
nent of the growth curve model shown in Eq. (7.4). Initial values for the model
parameters are specified in the parms statement. Selected parts of the output
that provide information about parameter estimates and confidence intervals
are shown in Fig. 7.4. The plots=fit option included in the proc nlin state-
ment produces a plot of the estimated growth curve (see Fig. 7.5). The bootci
option included in the optional bootstrap statement requests bias-corrected
bootstrapped confidence intervals and bootstrapped standard errors for the
parameter estimates.

The first table displayed in Fig. 7.4 shows that the Gauss–Newton op-
timization algorithm for finding the least squares parameter estimates con-
verged in three iterations. The first row of this table shows the starting values
for the parameter estimates that were specified in the program. The second ta-
ble in Fig. 7.4 partitions variation in the observed growth values into a model
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proc nlin data=cedar plots=fit;
parms alpha=8 beta=7.5 gamma=2.28;
model growth = alpha/(1+exp(-(week-beta)/gamma ));
bootstrap / bootci;
run;

Fig. 7.3. SAS Example G1: program code for proc nlin

The NLIN Procedure

Iterative Phase

Iter alpha beta gamma
Sum of 

Squares

0 8.0000 7.5000 2.2800 2.8157

1 8.0147 6.8547 2.3812 0.7738

2 8.0030 6.8346 2.3382 0.7663

3 8.0032 6.8350 2.3384 0.7663

NOTE: Convergence criterion met.

Source DF
Sum of 

Squares
Mean 

Square F Value
Approx

Pr > F

Model 3 662.5 220.8 4610.48 <.0001

Error 16 0.7663 0.0479

Uncorrected Total 19 663.2

Parameter Estimate
Approx

Std Error

Approximate 
95% 

Confidence 
Limits

Bootstrap
Std Dev

Bootstrap 
Bias-Corrected 
95% Confidence 

Limits

alpha 8.0032 0.1051 7.7805 8.2260 0.1088 7.8198 8.2405

beta 6.8350 0.1364 6.5459 7.1242 0.1398 6.5317 7.0768

gamma 2.3384 0.1194 2.0852 2.5916 0.1161 2.1211 2.5807

Fig. 7.4. SAS Example G1: output from proc nlin

sum of squares, which reflects changes across time in the estimated growth
curve, and an error sum of squares, which reflects variation in the cumulative
radial tree trunk measurements about the estimated growth curve. The error
mean square provides an estimate of σ2, the error variance. The F -test in the
model row of this table provides a test of the null hypothesis that α, β, and
γ are all zero. Because the p-value, shown in the last column of this row, is
very small, this null hypothesis may be rejected. The least squares estimates
of the parameters are shown in the third table in Fig. 7.4 along with two
types of standard errors and two sets of confidence intervals. The estimate of
α is α̂ = 8.0032, indicating that the maximum expected growth approaches
0.080032 inches over the 19-week period. The large sample approximation to
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The NLIN Procedure

Fig. 7.5. SAS Example G1: growth curve plot from proc nlin

the standard error of α̂, shown in the first row of the column labeled Approx

Std Error, is 0.1051. An approximate large sample 95% confidence interval
for α runs from 7.7805 to 8.2660 in units of 0.01 inches. The bootci op-
tion in the bootstrap statement produces the bootstrapped standard errors
for the parameter estimates and the bias-corrected bootstrap confidence in-
tervals. These are shown in the last three columns of the third table. The
bootstrapped confidence interval for α runs from 7.8198 to 8.2405. The es-
timate of β is β̂ = 6.8350, which indicates that it takes about 6.835 weeks
to accomplish half of the maximum expected growth. The 95% bias-corrected
bootstrapped confidence interval, (6.5317, 7.0768), indicates that the estimate
for β is accurate to about 0.27 weeks, a little less than 2 days. The estimate
of the growth rate parameter is γ̂ = 2.3384, and the 95% bias-corrected boot-
strapped confidence interval is (2.1211, 2.5087) in units of 0.01 inches per
week. For this particular data set, the bias-corrected bootstrapped confidence
intervals are similar to the corresponding confidence intervals based on large
sample approximations.

Note that bootstrapped standard errors and confidence intervals are com-
puted by randomly selecting new samples from the original data, using simple
random sampling with replacement. The value that starts the random number
generator to select the samples is obtained from the computer clock. Conse-
quently, running the same code at two different times will result in slightly
different values of bootstrapped standard errors and bootstrapped confidence
intervals.
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The option plots=fit produces a plot of the estimated growth curve with
confidence bans and prediction bans as displayed in Fig. 7.5. This plot shows
that the sinusoidal growth pattern of cedar trees is well represented by a
logistic growth curve. The dark-blue shading corresponds to 95% confidence
limits for the average growth curve at each time point. The light-blue shading
corresponds to 95% prediction bans for potential measurements at each time
point. The prediction bans are wider than the confidence bans to account for
variation in observed measurements about the estimate of the mean growth
curve.

7.2.3 Pharmacokinetic Application of a Nonlinear Model

Model

Compartment models are often used to describe the movement of a substance
through blood or tissue in pharmacokinetic studies. Let μ(t) represent the
concentration of a substance in the compartment (the blood) at t time units
after it is orally ingested and let μa(t) represent the amount of the substance
at the absorption site at time t. Let α represent the absorption rate into
the compartment (the blood) and let β represent the elimination rate from
the compartment. A one-compartment model for describing changes in the
concentration of the substance in the compartment across time is defined by
a pair of differential equations:

∂μa(t)

∂t
= −αμa(t) (7.9)

and
∂μ(t)

∂t
= αμa(t)− βμ(t). (7.10)

Equation (7.9) dictates that the amount of substance moving from the ab-
sorption site into the compartment at time t is proportional to the amount
of substance at the absorption site at that point in time. Equation (7.10)
specifies the change in the amount of substance in the compartment at time
t as the difference between the amount of substance entering the compart-
ment, αμa(t), and the amount of substance leaving the compartment, βμ(t),
at that time point. The amount of substance entering the compartment at
time t is proportional to the amount of substance at the absorption site at
that time point, and the amount of substance eliminated from the compart-
ment is proportional to the amount of substance in the compartment at that
time point. The resulting formula for the expected amount of substance in the
compartment at time t is

μ(t;α, β, γ) =
α

γ(α− β)

(
e−βt − e−αt

)
, (7.11)
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where t is time since administration of the substance and γ is a proportionality
parameter. The model for yt, the observed amount of the substance in the
compartment at time t, is completed by adding a random error to obtain

yt =
α

γ(α− β)

(
e−βt − e−αt

)
+ εt. (7.12)

In this model, εt is a random error with mean zero and variance σ2 that does
not depend on time. The parameters to be estimated are α, β, γ, and σ2.

In the pharmacokinetics literature, the absorption rate parameter is usu-
ally denoted by the symbol κa, and the elimination rate parameter is usually
denoted by κe, instead of α and β. Also, V/x is often used instead of γ, where
x is the dose of the substance that is administered and V is a proportion-
ality parameter that relates the amount of substance in the body to serum
concentration when blood is the compartment of interest. We have retained
the use of Greek letters for parameters, however, to be consistent with the
presentation of other models in this chapter.

Other quantities of interest are the maximum concentration that is
achieved, Cmax, and the time at which the maximum concentration is
achieved, Tmax. For the one-compartment model given by Eq. (7.11), the
maximum concentration is achieved at time

Tmax =
1

α− β
log

(
α

β

)

(7.13)

and Cmax is obtained by substituting Tmax into Eq. (7.11). These relationships
can be useful in the determination of initial values of parameter estimates from
a plot of the observed data.

If the absorption and elimination rates are the same, Eq. (7.12) simplifies to

yt =

(
αt

γ

)

e−αt + εt (7.14)

where α is the common absorption and elimination rate. This simplified ver-
sion of the model should be considered when the absorption and elimination
rates are expected to be similar.

Compartment models may contain more than one compartment, and they
may be extended to situations in which the variation in the random errors
changes with time. In the following illustration, however, we will restrict our
attention to an application of the one-compartment model corresponding to
Eq. (7.12).

SAS Example G2

This example analyzes the rise and fall of plasma concentrations (νg/ml) of
the steroid, prednisolone, during the first 24 hours after ingestion of a 5mg
tablet. These data are taken from row 18 of Table C.12 in Lindsey (2001).
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Blood samples were taken at 0.25, 0.5, 1, 2, 3, 4, 6, 8, 12, and 24 hours
after oral ingestion of the tablet. The data are shown in the listing of the
SAS Example G2 program (see Fig. 7.6). This program uses the SGPLOT
procedure to produce the scatter plot shown in Fig. 7.7 that is subsequently
used to obtain initial values of parameter estimates required to use the NLIN
procedure.

data pplasma;
input time conc;
label time = "Hours after Ingestion"

conc = "Plasma Concentration (ng/ml)";
datalines;

0.25 76.6
0.50 253

1 267
2 242
3 211
4 164
6 98.4
8 57.2

12 22.5
24 2.3
;

title "Plasma Prednisolone Concentrations";

proc sgplot data=pplasma;
scatter x=time y=conc /

markerattrs=(size=12 symbol=Circle color=black);
yaxis label="Plasma Concentration (ng/ml)"

labelattrs=(size=14) valueattrs=(size=12);
xaxis label="Hours after Ingestion"

labelattrs=(size=14) valueattrs=(size=12);
run;

Fig. 7.6. SAS Example G2: scatter plot program

The scatter plot in Fig. 7.7 shows that prednisolone is quickly absorbed into
the blood with the peak concentration occurring near 1 hour. The elimination
process appears to be slower, taking about 4 hours to drop halfway down
from the peak concentration. Approximating the absorption rate as five times
greater than the elimination rate, Eq. (7.13) becomes

Tmax =
1

(5− 1)β
log(5) (7.15)

which implies that β ≈ (log(5))((5 − 1)Tmax). Because the scatter plot indi-
cates that Tmax is close to 1 hour, a good initial value for the estimate of β
is (0.25) log(5) = 0.4. It follows that a good initial value for the estimate of
α is (5)(0.4) = 2. Using these initial values for α and β to evaluate equation
(7.11) at time Tmax = 1 hour, and using 267 as the corresponding maximum
concentration, produces an initial value for γ of 0.00075. The addition to the
SAS Example G2 program shown in Fig. 7.8 uses these initial estimates to
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apply proc nlin to find the nonlinear least squares estimates of the param-
eters in the one-compartment model. Selected parts of the output are shown
in Fig. 7.9.

Fig. 7.7. SAS Example G2: scatterplot

proc nlin data=pplasma plots=fit;
parms alpha=2 beta=0.4 gamma=0.00075;
model conc = alpha/(gamma*(alpha-beta))*(exp(-beta*time)-exp(-alpha*time));
bootstrap / bootci;

output out=predictions predicted=prediction stdp=stdp
lclm=lower95 uclm=upper95 residual=residual;

run;

proc print data=predictions;
var conc velocity prediction stdp lower95 upper95 residual;

run;

Fig. 7.8. SAS Example G2: program code for proc nlin

The first table displayed in Fig. 7.9 shows that the Gauss–Newton opti-
mization algorithm for finding the nonlinear least squares estimates of the
parameter estimates converged in seven iterations. The first row of this ta-
ble shows the initial values of the parameter estimates specified in the parms
statement in Fig. 7.8. The second table in Fig. 7.9 partitions variation in the
observed plasma prednisolone concentrations into a model sum of squares and
an error sum of squares. The error mean square, 750.1, is an estimate of σ2,
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Plasma Prednisolone Concentrations

The NLIN Procedure
Method: Gauss-Newton

Iterative Phase

Iter alpha beta gamma
Sum of 

Squares

0 2.0000 0.4000 0.000750 1157232

1 1.9889 0.3322 0.00131 217936

2 1.8832 0.2812 0.00198 30156.7

3 1.7639 0.2593 0.00246 6190.9

4 1.7373 0.2544 0.00261 5253.6

5 1.7392 0.2538 0.00262 5250.8

6 1.7390 0.2538 0.00262 5250.8

7 1.7390 0.2538 0.00262 5250.8

NOTE: Convergence criterion met.

Source DF
Sum of 

Squares
Mean 

Square F Value
Approx

Pr > F

Model 3 279362 93120.6 124.14 <.0001

Error 7 5250.8 750.1

Uncorrected Total 10 284613

Parameter Estimate
Approx

Std Error

Approximate 
95% 

Confidence 
Limits

Bootstrap
Std Dev

Bootstrap 
Bias-Corrected 
95% Confidence 

Limits

alpha 1.7390 0.4619 0.6468 2.8312 0.4948 0.9781 2.9622

beta 0.2538 0.0569 0.1193 0.3883 0.0808 0.1682 0.4468

gamma 0.00262 0.000366 0.00175 0.00348 0.000413 0.00182 0.00344

Fig. 7.9. SAS Example G2: output from proc nlin

the error variance. The F -test in this table provides an approximate test of
the null hypothesis that the systematic component is a horizontal line at zero.
Because the p-value is very small, this null hypothesis may be rejected. The
nonlinear least squares estimates of the parameters are displayed in the third
table in Fig. 7.9 along with asymptotic and bootstrap standard errors and two
sets of confidence intervals. The estimate of the absorption rate, α̂ = 1.739, is
about seven times larger than the estimate of the elimination rate, β̂ = 0.2538.
The asymptotic standard error for α̂, 0.4619, is a bit smaller than the cor-
responding bootstrap standard error. Relative to the large sample confidence
interval for α, which is centered at α̂, the end points of the bootstrap confi-
dence interval are both shifted to the right to account for right skewness in
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Plasma Prednisolone Concentrations 

The NLIN Procedure

Fig. 7.10. SAS Example G2: estimated plasma prednisolone concentration curve

the sampling distribution for α̂. The bootstrap estimate of the standard error
of β̂ is also larger than the asymptotic estimate, and the bootstrap confidence
interval for β is also shifted to the right of the asymptotic confidence interval
to account for right skewness in the small sample sampling distribution for
β̂. Because the small sample distribution for γ̂ is more nearly symmetric, the
asymptotic and bootstrap results are similar.

The option plots=fit produces a plot of the estimated curve with 95%
confidence bans and prediction bans as displayed in Fig. 7.10. The plasma
prednisolone concentration quickly increases during the first hour after inges-
tion of the tablet, and then it more gradually declines to zero as absorption
slows, and the steroid is eliminated from the blood. This is a consequence of
the estimated absorption rate being about seven times larger than the esti-
mated elimination rate. The dark-blue shading corresponds to 95% confidence
limits for the mean concentration at individual time points. The lighter-blue
shading corresponds to 95% prediction intervals for potential observations.
These bans illustrate potential inaccuracy of applying asymptotic methods
to small samples as the asymptotic confidence intervals include unrealistic
negative concentrations.
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7.2.4 A Model for Biochemical Reactions

Model

In biochemistry, the Michaelis–Menten model is one of the best-known models
for enzyme kinetics. The Michaelis–Menten equation relates the reaction rate
of enzymatic reactions to the concentration of a substrate. The reaction rate,
commonly called the velocity, corresponds to the number of reactions per
second that are catalyzed by an enzyme. As a nonlinear regression model, the
Michaelis–Menten model has the form

y =
αx

β + x
+ ε (7.16)

where

y = observed reaction rate
α = maximum reaction rate
β = Michaelis constant
x = substrate concentration
ε = a random error with mean zero and variance σ2.

At low substrate concentrations, the reaction rate varies almost linearly with
the substrate concentration, but at higher substrate concentrations, the reac-
tion becomes nearly independent of the substrate concentration and asymp-
totically approaches its maximum rate, represented by the α parameter. This
rate is attained when all enzyme is bound to substrate and further addition of
substrate does not affect the reaction. The Michaelis constant, β, is the sub-
strate concentration at which the reaction rate is at half maximum. Reactions
with smaller β values approach the maximum reaction rate at lower substrate
concentrations than reactions with larger β values.

The typical method for estimating α and β involves running a series of
enzyme assays at varying substrate concentrations and measuring the reaction
rate for each substrate concentration at an early stage of the assay. By plotting
the reaction rate (y) against concentration (x), nonlinear regression can be
used to estimate parameters and fit a curve. Starting values for parameter
estimation can be determined by fitting a line to the plot of x/y against x.
The reciprocal of the slope of a line fit to the plot provides a reasonable
starting value for α̂, and a starting value for β̂ is the intercept divided by the
slope of the line.

The Michaelis–Menten model is used in a variety of biochemical situations
other than enzyme–substrate interaction, including antigen-antibody binding,
DNA–DNA hybridization, and protein–protein interaction. It has also been
used in studies of microbial growth, species richness, geosciences, and various
manufacturing processes. More information on Michaelis–Menten kinetics and
the design and analysis of enzyme and pharmacokinetic experiments can be
found in Chen et al. (2010), Leskovac (2003), and Endrenyi (1981).
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SAS Example G3

The data for the following example is taken from Table A1.3 in Bates and
Watts (1988). At each substrate concentration (ppm), the initial reaction
rate (counts/min2) was determined from changes in counts per minute of a
radioactive product produced from the reaction. The data are included in
the data step of the SAS Example G3 program shown in Fig. 7.11. This
program uses sgplot to create the scatter plots shown in Fig. 7.12. In the
left panel, the velocity measurements (y) are plotted against the substrate
concentrations (x). In the right panel, x/y is plotted against x and a least
squares regression line is fit to the points on the plot. The REG procedure
was used to obtain estimates of the intercept and slope of that line, and the
estimates are displayed in Fig. 7.13. The reciprocal of the estimated slope of
the regression line, 1/0.00599 = 166.9, is used as the starting value for α̂. The
ratio of the intercept and slope, 0.00033878/0.00599 = 0.0566, is used as the

initial value for β̂.

data enzyme;
input conc velocity;
cv = conc/velocity;
label conc = "Substrate Concentration (ppm)"

velocity = "Velocity"
cv = "Concentration / Velocity";

datalines;
0.02 67
0.02 51
0.06 84
0.06 86
0.11 98
0.11 115
0.22 131
0.22 124
0.56 144
0.56 158
1.10 160
0.04 .
0.80 .
1.20 .

;

proc sgplot data=enzyme;
scatter x=conc y=velocity /

markerattrs=(size=12 symbol=Circle color=black);
yaxis labelattrs=(size=14) valueattrs=(size=12);
xaxis label="Substrate Concentration (ppm)"

labelattrs=(size=14) valueattrs=(size=12);
title "Enzyme Reaction Velocity";
run;

symbol1 cv=black v=dot i=none h=1.5 w=2;
proc reg data=enzyme;

model cv = conc;
plot cv*conc / nostat nomodel lline=1 cline=red;
title "Concentration/Velocity vs Concentration";
run;

Fig. 7.11. SAS Example G3: plotting and regression program
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Computing Starting Values for Parameter Estimates
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Fig. 7.12. (a) Velocity measurements (counts/min2) versus substrate concentration
(ppm). (b) Concentration/velocity ratios versus substrate concentration

Computing Starting Values for Parameter Estimates

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 0.00033878 0.00004698 7.21 <.0001

conc Substrate Concentration 1 0.00599 0.00011113 53.92 <.0001

Fig. 7.13. SAS Example G3: output from proc reg

proc nlin data=enzyme plots=fit;
parms alpha=166.9 beta=0.0566;
model velocity = (alpha * conc)/(beta + conc);
bootstrap / bootci;
output out=predictions predicted=prediction stdp=stdp

lclm=lower95 uclm=upper95 residual=residual;
run;

proc print data=predictions;
var conc velocity prediction stdp lower95 upper95 residual;

run;

Fig. 7.14. SAS Example G3: program code for proc nlin

Additional program code for SAS Example G3 is shown in Fig. 7.14. This
code applies proc nlin to find the nonlinear least squares estimates of the
parameters in the Michaelis–Menten model that is specified in the model state-
ment. The parms statement specifies values for the initial parameter estimates.
Selected parts of the output are shown in Fig. 7.15 and the estimated curve is
shown in Fig. 7.16.

The first table in Fig. 7.15 indicates that the Gauss–Newton optimization
algorithm that proc nlin uses to evaluate parameter estimates converged in
six iterations. The first row of this table shows the initial values of the param-
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Nonlinear Regression for the Michaelis-Menten Model

The NLIN Procedure
Method: Gauss-Newton

Iterative Phase

Iter alpha beta
Sum of 

Squares

0 166.9 0.0566 959.0

1 160.8 0.0485 860.5

2 160.4 0.0478 859.6

3 160.3 0.0477 859.6

4 160.3 0.0477 859.6

5 160.3 0.0477 859.6

6 160.3 0.0477 859.6

NOTE: Convergence criterion met.

Source DF
Sum of 

Squares
Mean 

Square F Value
Approx

Pr > F

Model 2 147348 73674.2 771.36 <.0001

Error 9 859.6 95.5116

Uncorrected Total 11 148208

Parameter Estimate
Approx

Std Error

Approximate 
95% 

Confidence 
Limits

Bootstrap
Std Dev

Bootstrap 
Bias-Corrected 
95% Confidence 

Limits

alpha 160.3 6.4802 145.6 174.9 6.5905 148.4 174.7

beta 0.0477 0.00778 0.0301 0.0653 0.00771 0.0347 0.0651

Fig. 7.15. SAS Example G3: output from proc nlin

eter estimates specified in the parms statement in Fig. 7.14. The second table
in Fig. 7.15 partitions variation in the observed enzyme reaction rates into a
model sum of squares, corresponding to variation explained by the estimate
of the Michaelis–Menten curve, and an error sum of squares corresponding
to variation in observed reaction rates about the estimated curve. The error
mean square, 95.51, is an estimate of σ2, the error variance. The F -test in
the first row of this table provides a test of the null hypothesis that α and β
are both zero, which implies that no reaction occurred. Because the p-value
is very small, this null hypothesis may be rejected.

The nonlinear least squares estimates of the parameters are displayed in
the third table in Fig. 7.15. The estimate of the maximum reaction rate is
α̂ = 160.3 counts/min2. The asymptotic standard error for α̂ is 6.4802, and
an approximate 95% confidence interval for α extends from 145.6 to 174.9
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counts/min2. The bootstrap statement in Fig. 7.14 produces the last three
columns in the third table. The bootstrapped standard error for α̂ is almost
identical to the large sample standard error. The bias-corrected bootstrap
confidence interval for α, shown in the last two columns of the table, is also
similar to the large sample confidence interval shown in columns four and
five. Although the sample size is small, the similarity between the asymptotic
and bootstrap results occurs because the small sample distribution of possible
values for α̂ is close to a normal distribution in this case.

The estimate of the substrate concentration at which the reaction achieves
half of the maximum reaction rate is β̂ = 0.0477 ppm. The approximate
large sample standard error for β̂ is 0.00778 ppm, very close to the corre-
sponding bootstrapped standard error. The 95% confidence interval for β
based on a large sample normal approximation is similar to the bias-corrected
bootstrapped confidence interval. Using the bias-corrected bootstrap interval,
the data provide enough information to be 95% confident that the substrate
concentration that achieves half of the maximum reaction rate is between
0.0347 ppm and 0.0651 ppm.

The least squares estimate of the Michaelis–Menten curve is displayed in
Fig. 7.16. This plot is produced by the plots=fit option in the proc nlin

statement shown in Fig. 7.14. To prevent information on summary statistics
from being displayed on the right side of the plot, change this option to
plots=fit(stats=none). The dark-blue shaded region on the plot corre-
sponds to asymptotic 95% confidence limits for the mean reaction rate at

Fig. 7.16. SAS Example G3: estimated curve
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Nonlinear Regression for the Michaelis-Menten Model

Obs conc velocity prediction stdp lower95 upper95 residual

1 0.02 67 47.344 4.13406 37.992 56.696 19.6557

2 0.02 51 47.344 4.13406 37.992 56.696 3.6557

3 0.06 84 89.286 4.29711 79.565 99.006 -5.2857

4 0.06 86 89.286 4.29711 79.565 99.006 -3.2857

5 0.11 98 111.794 3.48161 103.918 119.670 -13.7938

6 0.11 115 111.794 3.48161 103.918 119.670 3.2062

7 0.22 131 131.717 3.36761 124.099 139.335 -0.7166

8 0.22 124 131.717 3.36761 124.099 139.335 -7.7166

9 0.56 144 147.697 4.65716 137.162 158.232 -3.6973

10 0.56 158 147.697 4.65716 137.162 158.232 10.3027

11 1.10 160 153.618 5.44142 141.308 165.927 6.3825

12 0.04 . 73.097 4.58443 62.726 83.468 .

13 0.80 . 151.260 5.11221 139.695 162.824 .

14 1.20 . 154.151 5.51891 141.667 166.636 .

Fig. 7.17. SAS Example G3: estimated mean velocities and 95% confidence limits

individual substrate concentrations. The widths of the confidence intervals
increase as the substrate concentration increases, eventually converging to a
constant width as the saturation condition is approached. The lighter-blue
shaded region in Fig. 7.16 corresponds to 95% prediction intervals for future
observations of reaction rates. The prediction intervals are wider than the
corresponding confidence intervals for the mean reaction rates in order to
account for variation in individual observations about the curve representing
the mean reaction rates.

Values of the estimated mean reaction rates and corresponding 95% con-
fidence intervals are shown in Fig. 7.17. This table is produced by includ-
ing an output statement in the program code as shown in Fig. 7.14. The
out=predictions option creates a new SAS data set named predictions

containing columns specified by the remaining options included in the state-
ment. Using predicted=prediction creates a column of estimated mean re-
action rates under the variable name prediction. The asymptotic standard
errors for the estimated means are output to a column with variable name
stdp with the stdp=stdp option. The lower and upper limits of approximate
95% confidence intervals for mean reaction rates are output into columns
with variable names lower95 and upper95, respectively, with the options
lclm=lower95 and uclm=upper95. The residuals, the differences between the
observed reaction rates and the corresponding mean reaction rates estimated
from the model, are output with the option residual=residual. One line is
created in the new data set for each line in the original data set. The output
data are shown in Fig. 7.17. The last three lines correspond to cases that were
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not part of the data collected in the experiment. These lines of data are in-
cluded in the data step in Fig. 7.11 with periods inserted as placeholders for
the missing velocity values. These three cases are not used to fit the model
because the values of the velocity variable are missing. This illustrates how es-
timates of mean responses and corresponding standard errors and confidence
intervals can be evaluated for substrate concentrations not included in the
study. At a substrate concentration of 0.04 ppm, for example, the estimate
of the mean reaction rate is 73.097 counts/min2, with a standard error of
4.58443 counts/min2 and a 95% confidence interval that extends from 62.726
to 83.468 counts/min2. Note how the standard error of the prediction and the
width of the confidence interval depend on the substrate concentration.

7.3 Generalized Linear Models

7.3.1 Introduction

The family of generalized linear models, introduced by Nelder and Wedder-
burn (1972), contains models for which a function of the mean response
is linked to a linear combination of explanatory variables. Examples include
linear regression models, logistic regression models, and Poisson regression
models. An advantage of this formulation is that a single algorithm can be
developed to evaluate parameter estimates for the members of this large family
of models. Maximum likelihood estimation is the most popular estimation pro-
cedure, and it is the default estimation method in the SAS GENMOD and LO-
GISTIC procedures. Large sample normal approximations to the sampling dis-
tributions of the maximum likelihood estimators are typically used to obtain
approximate standard errors, confidence intervals, and tests of hypotheses.

Model

There are three basic components to a generalized linear model:

• Linear component: a linear combination of explanatory
variables used to describe how a function of the mean response
changes as values of the explanatory variables change, e.g.,
β0 +

∑k
j=1 βjxj .

• Link function: a function of the mean response, g(μ), that
equates to the linear component, i.e.,

g(μ) = β0 +
k∑

j=1

βjxj . (7.17)

• Probability distribution: identifies the conditional distribu-
tion of the response variable y given the values of the explana-
tory variables, x1, x2, . . . , xk.
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The linear component and link function define the systematic component of
the model which describes how the mean response varies with changes in the
values of the explanatory variables. The inverse of the link function provides
the mean response, i.e.,

μ = g−1(β0 + β1x1 + β2x2 + βkxk). (7.18)

The probability distribution must be a member of the overdispersed expo-
nential family of distributions, a large class of probability distributions that
includes the normal, binomial, Poisson, multinomial, and gamma distribu-
tions, among others. The variance of the response variable may be a function
of the mean and possibly other parameters.

Estimation and Inference

Some members of the family of generalized linear can be analyzed with the
SAS GENMOD and LOGISTIC procedures. The LOGISTIC procedure an-
alyzes logistic regression models. The GENMOD procedure handles a much
broader class of models, but it also may be used to analyze logistic regression
models. Both procedures use maximum likelihood estimation to evaluate pa-
rameter estimates. For a specific model, maximum likelihood estimation finds
values of the model parameters that maximize the likelihood of obtaining the
data that were actually observed. Because the natural logarithm is a strictly
increasing function, maximizing the natural logarithm of the likelihood func-
tion, called the log-likelihood function, produces the same parameter estimates
as maximizing the likelihood function.

The GENMOD procedure uses a ridge-stabilized Newton–Raphson algo-
rithm to maximize the log-likelihood function with respect to the regression
parameters. On the r -th iteration, the algorithm updates the current estimate
of the parameter vector β̂r with

β̂r+1 = β̂r −H−1S (7.19)

where H is the Hessian matrix, the matrix of second partial derivatives of the
log-likelihood function, and S is the gradient vector, the vector of first partial
derivatives of the log-likelihood function. Both H and S are evaluated at β̂r,
the value of the parameter estimates from the previous iteration. This algo-
rithm is determined to have converged to the maximum likelihood estimate,
β̂, when changes in the parameter estimates between successive iterations are
small enough to satisfy some convergence criteria. The GENMOD and LO-
GISTIC procedures have a number of different convergence criteria that users
may select, but the default criteria are sufficient for most applications. At
convergence H should be a negative definite matrix and S should be close to
a vector of zeros. The covariance matrix for the large sample normal approxi-
mation to the sampling distribution of the maximum likelihood estimator for
β is estimated with the inverse of −H evaluated at β̂, the final vector of val-
ues for the maximum likelihood estimates. This large sample approximation
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is used to evaluate standard errors and approximate confidence intervals and
to perform tests of hypotheses.

There is no guarantee that the iterative algorithm for finding β̂ will con-
verge to the set of parameter values that yield the global maximum of the log-
likelihood function. If the log-likelihood is multimodal, the algorithm could
converge to a local mode instead of the global mode. In other cases, the
algorithm may wander off to a place where H is not negative definite, an
inappropriate solution, and still satisfies the convergence criteria. This will
produce either a warning or an error message that should not be ignored.
At the very least, users should examine the set of parameter estimates pro-
duced at each iteration to determine if the sequence of estimates appears to
converge to reasonable values. Sometimes convergence problems arise because
the model has too many parameters. This can be avoided by fitting models
with fewer parameters and fewer explanatory variables. Success will depend
on how close the initial parameter estimates used to start the algorithm are
to the actual maximum likelihood estimates and how much information is in
the data relative to the complexity of the proposed model.

Goodness of Fit and Overdispersion

Two statistics that are helpful in assessing the fit of a generalized linear model
are the scaled deviance and the Pearson goodness-of-fit statistic. Formulas for
these statistics depend on the three components of the model, especially the
probability distribution specified for the response variable. These statistics
do not always have chi-square distributions, so formal chi-square tests of the
fit of the proposed model may be misleading and are generally not done. In
the examples considered in this section, we will simply compare the value of
the Pearson statistic to its degrees of freedom to help judge if the proposed
model provides an adequate description of the data. See McCullagh and Nelder
(1989) for more advice.

The Akaike information criterion (AIC) is a measure of goodness of model
fit that balances model fit against model simplicity (see Akaike (1981)). AIC
has the form:

AIC = −2(log-likelihood) + 2p (7.20)

where p is the number of parameters in the model, and the log-likelihood is
evaluated with the values of the maximum likelihood estimates of the param-
eters. An alternative form is the corrected AIC given by

AICC = −2(log-likelihood) + 2p
n

n− p− 1
(7.21)

where n is the total number of cases in the data set. The Bayesian information
criterion (BIC) is a similar measure that is defined by

BIC = −2(log-likelihood) + p log(n) (7.22)
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Proc genmod uses the full log-likelihood for computing the AIC, AICC, and
BIC criteria. Simonoff (2003) discusses applications of AIC, AICC, and BIC
to generalized linear models. Smaller values of these criteria indicate better
compromises between the accuracy and simplicity of the models. As a model
is made more complex by including more explanatory variables and more
parameters, biases of predicted responses for the cases in the data set tend to
become smaller, but the variances of the predicted responses tend to increase.
If the values of the AIC, BIC, or AICC criteria do not become smaller when
the model is made more complex, then the reduction in bias gained by the
added model complexity is not enough to offset the increased variability in
the predictions. Models with smaller values of these criteria are preferred to
models with larger values. The AICC and BIC criteria tend to indicate less
complex models than the AIC criteria. Keep in mind that these are relative
comparisons with respect to the specific set of models under consideration.
These criteria can help to select the best models in a set of proposed models,
but that does not necessarily imply that any of the models in the set actually
provide a good description of the data.

We will illustrate applications of the GENMOD and LOGISTIC proce-
dures to generalized linear models by considering applications to logistic re-
gression and Poisson regression. Additional information on the theory and ap-
plication of generalized linear models can be found in McCullagh and Nelder
(1989), Madsen and Thyregod (2011), and Agresti (2013).

7.3.2 Logistic Regression

Model

Logistic regression models are often used in situations in which there are only
two possible responses, such as a patient surviving or not surviving a medical
procedure, a seed germinating or not germinating, or someone voting or not
voting for a particular candidate. One of the two possible outcomes can be
labeled as a success and the other outcome labeled as a failure. Logistic
regression models are used to describe how the probability of a successful
outcome changes as the values of one or more of the explanatory variables
change. The link function is the natural logarithm of the odds of success,
called the logit function. If the probability of a successful outcome is π,

then the odds for success are
π

1− π
. Note that the odds are a monotone

increasing function of the probability. As the probability of success increases
from zero to one, the odds of success increase from zero to infinity. The logit

is the natural logarithm of the odds of success, log

(
π

1− π

)

, and it is also a

monotone increasing function of the probability of success. As the probability
of success increases from 0 to 1, the logit increases from minus infinity to plus
infinity. When the probability of success is 0.5, the odds of success is 1.0 and
the logit is 0. To allow the probability of success to depend on the values of
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some explanatory variables, say x1, x2, . . . , xk, a logistic regression model of
the form

log

(
π

1− π

)

= β0 + β1x1 + β2x2 + · · ·+ βkxk (7.23)

may be used. Inverting this relationship, the formula for the success probabil-
ity under conditions corresponding to the values of the explanatory variables
is

π =
exp(β0 + β1x1 + β2x2 + · · ·+ βkxk)

1 + exp(β0 + β1x1 + β2x2 + · · ·+ βkxk)
. (7.24)

The regression coefficients may be interpreted in the context of odds ratios. To
interpret β2, consider increasing x2 by one unit in Eq. (7.23) without changing
the values of any of the other explanatory variables. The log-odds of success
under those conditions are

log

(
πx2+1

1− πx2+1

)

= β0 + β1x1 + β2(x2 + 1) + · · ·+ βkxk (7.25)

The difference in the log-odds for success given by Eqs. (7.25) and (7.23) is

log

(
πx2+1

1− πx2+1

)

− log

(
πx2

1− πx2

)

= β2. (7.26)

Then

β2 = log

(
πx2+1

1− πx2+1

)

− log

(
πx2

1− πx2

)

= log

( πx2+1

1−πx2+1

πx2

1−πx2

)

(7.27)

is the logarithm of the ratio of two odds, the odds of success when the second
explanatory variable has value x2+1 divided by the odds of success when the
second explanatory variable has value x2. Consequently,

exp(β2) =
odds of success at x2 + 1

odds of success at x2
(7.28)

is a conditional odds ratio, the odds for success at x2 +1 divided by the odds
of success at x2 when the other explanatory variables in the model are held
constant. If exp(β2) = 3, for example, then a one unit change in x2 triples
the odds of success when the other explanatory variables are held constant.
Estimates of the exponential functions of the coefficients may be requested in
the output from the LOGISTIC procedure. When “success” corresponds to
contracting a disease, for example, these quantities are used as approximate
measures of relative risk for contracting the disease.

The description of the model is completed by specifying the distribution
for the observed counts. When the data contain only two possible outcomes
for the response variable, the LOGISTIC procedure assumes that the counts
have independent binomial distributions. In proc genmod the logit is the de-
fault link function when the binomial distribution is specified for the observed
counts, but other link functions may be requested.
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Estimation and Hypothesis Testing

A logistic regression model can be fit to data using either the GENMOD or
LOGISTIC procedure in SAS. The LOGISTIC procedure is preferred because
it offers more options for displaying results and assessing the fit of logistic
regression models and it provides search procedures for selecting explana-
tory variables to include in the model that are not available in GENMOD.
The LOGISTIC procedure computes maximum likelihood estimates of the re-
gression parameters, β0, β1, . . . , βk. The maximization procedure is initiated
with β̂1, β̂2, . . . , β̂k all set to zero and β̂0 = log(π̂/(1 − π̂)), where π̂ is the
overall proportion of successes, the total number of successes in the data di-
vided by the total number of trials. Because the log-likelihood function for
logistic regression models is unimodal, the estimation algorithm will converge
from any starting value, and it is not necessary to search for better start-
ing values. The clparm= option is used to specify the method for constructing
confidence intervals for regression parameters. By default, the LOGISTIC pro-
cedure uses a profile-likelihood (PL) method to construct confidence intervals
for parameters and other quantities. The PL method (clparm=pl) is based
on an asymptotic chi-square approximation to the distribution of a likelihood
ratio test. An alternate is the Wald method (clparm=wald) which is based
on the asymptotic normal approximation to the distribution of the parameter
estimates. The PL method is usually more accurate than the Wald method for
small samples, but differences between the two methods are inconsequential
for sufficiently large sample sizes. The clparm=both option produces both sets
of confidence intervals. The clodds= option is used to specify the method for
constructing confidence intervals for odds ratios. The options are pl, wald,
or both. The alpha= statement is used to specify the confidence level. The
default, alpha=.05, corresponds to a 95% confidence level.

The default algorithm for optimizing the log-likelihood is the Fisher scoring
method, which is equivalent to fitting by iteratively reweighted least squares.
The alternative algorithm is a modified Newton–Raphson method. Both algo-
rithms produce the same parameter estimates, but the estimated covariance
matrices for the parameter estimators may differ slightly. If it is available and
it converges, the results of the Fisher scoring method are preferred. When
multi-category logit models are used, however, only the modified Newton–
Raphson technique is available.

There are four convergence criteria. The fconv= option in the model state-
ment terminates the algorithm when the absolute relative change in the values
of the log-likelihood function on successive iterations is smaller than the spec-
ified value. The absconv= option terminates the algorithm when the absolute
change in the log-likelihood function is smaller than the specified value. The
xconx= option terminates when there are sufficiently small relative changes
in all of the regression parameter estimates. The default is the gconv= option
which converges when the change in a “standardized” gradient vector between
two successive iterations is smaller than the specified value. For most applica-
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tions the default criterion is adequate. Because computational problems may
occur, it is good practice to examine how the values of the parameter esti-
mates change across iterations to make sure that they actually converge to
reasonable values. The sequence of parameter estimates is displayed by in-
cluding the itprint= option in the model statement for proc logistic or
proc genmod.

SAS Example G4

The following example is taken from Okada et al. (2010). It examines the
effects of egg incubation temperature on sex determination of Japanese pond
turtles. In this experiment, groups of eggs were incubated at different temper-
atures, and the numbers of male and female turtles that hatched under each
incubation temperature were recorded. We only use the results for incubation
temperatures between 26 ◦C and 30 ◦C. No female turtles were observed to
hatch below 26 ◦C, and no male turtles were observed to hatch above 30 ◦C.
The data are embedded in the SAS Example G4 program code (see Fig. 7.18).
Each line in the data file contains the incubation temperature (x), number of
females (y1), number of males (y2), and the total number of eggs (n = y1+y2)
that hatched for that incubation temperature. The LOGISTIC procedure can
estimate success probabilities for cases in the study and also for values of the
explanatory variables that were not included in the study. To illustrate how
this is achieved, two lines are included in the data file that contain periods
as placeholders for missing values for y1, y2, and n. These optional data lines
are used to estimate the proportions of female turtles that would hatch for
two incubation temperatures, 27.5 ◦C and 28.8 ◦C, that were not used in the
experiment. Any data line that has a missing value for any variable used in
the model will not be used in the estimation of the model parameters, but
estimates of success probabilities are produced for any data line that contains
a complete set of values for the explanatory variables in the model.

The LOGISTIC procedure may be used to fit a logistic regression model

log

(
π

1− π

)

= β0 + β1x. (7.29)

that relates π, the probability that a female turtle hatches from an egg,
to the egg incubation temperature (x). In the proc logistic statement
in Fig. 7.18, the data=turtles option identifies the input data set, and the
plots(only)=effect option produces a graph of the estimated logistic curve
(see Fig. 7.19). This curve shows how the estimated proportion of female tur-
tles increases as temperature increases. Because y1 contains the number of
females and n contains the number of eggs that hatch at each temperature,
the y1/n notation is used on the left side of the equal sign in the model state-
ment. This informs the LOGISTIC procedure that each line in the data file
represents the number of eggs specified by the n variable and that y1 females
hatched from those eggs. The single explanatory variable x is entered on the
right side of the equal sign in the model statement. Selected parts of the
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data turtles;
input x y1 y2 n;
label x = ’Incubation Temperature (C)’

y1 = ’Number of Females’
y2 = ’Number of Males’
n = ’Number of Eggs’;

datalines;
26.0 0 8 8
26.5 0 24 24
28.0 0 19 19
28.5 8 18 26
29.0 20 7 27
29.5 12 6 18
30.0 30 0 30
27.5 . . .
28.8 . . .
;

title "Temperature Dependent Sex Determination for Japanese Turtles";

proc logistic data=turtles plots(only)=effect;
model y1/n = x / itprint covb clparm=both clodds=both;
output out=setp p=phat lower=cl_lower upper=cl_upper;
run;

proc print data=setp; run;

Fig. 7.18. SAS Example G4: program for proc logistic

Temperature Dependent Sex Determination for Japanese Turtles 

Fig. 7.19. SAS Example G4: output from the plots(only)=effect option
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Temperature Dependent Sex Determination for Japanese Turtles

The LOGISTIC Procedure

Response Profile

Ordered
Value

Binary 
Outcome

Total
Frequency

1 Event 70

2 Nonevent 82

Maximum Likelihood Iteration History

Iter Ridge -2 Log L Intercept x

0 0 209.768388 -0.158224 0

1 0 123.186535 -31.998373 1.117456

2 0 104.932673 -53.670660 1.865577

3 0 99.010662 -74.007605 2.567373

4 0 98.296639 -84.216393 2.920364

5 0 98.283543 -85.852849 2.977048

6 0 98.283538 -85.887416 2.978247

Last Change in -2 Log L 5.569454E-6

Last Evaluation of 
Gradient

Intercept x

4.4730151E-7 0.0000149306

Convergence criterion (GCONV=1E-8) satisfied.

Fig. 7.20. SAS Example G4: output from the itprint option

output are shown in Fig. 7.20. The first table indicates that 70 female turtles
hatched (event) and 82 male turtles hatched (nonevent) from the eggs, adding
across all incubation temperatures used in the study. The itprint option in
the model statement causes the values of the estimates of the regression pa-
rameters to be displayed for each iteration of the process used to evaluate
the maximum likelihood estimates. Output from this option is displayed in
the second table in Fig. 7.20. The first line of that table shows that the start-
ing value for estimating the temperature coefficient is zero and the starting
value for estimating the intercept is 209.763388 = log(70/(70 + 82)). The
Fisher scoring algorithm converges in six steps to an estimate of -85.887416
for the intercept and an estimate of 2.978247 for the temperature coefficient.
The third table shows that both entries in the gradient vector, derivatives
of the log-likelihood function with respect to the intercept and temperature
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coefficient, are close to zero. This is what should happen when the algorithm
converges. The note under the third table also indicates that the algorithm
converged.

The maximum likelihood estimates for the parameters are displayed in the
second table in Fig. 7.21. The estimated intercept is an estimately small of the
log-odds that a female hatches when the incubation temperature is 0 ◦C. This
corresponds to very small odds of 5.0069× 10−38 and an extreme probability
of 5.0069 × 10−38. This is an extrapolation to a temperature at which no
eggs would actually hatch, but it extends the trend that hatchlings are less
likely to be female at lower incubation temperatures. Applying the exponential
function to the estimated temperature coefficient indicates that the odds of a
female turtle increase by a factor of about exp(2.978247) = 19.65 for each 1
degree increase in incubation temperature. Standard errors for the estimates
are displayed in the fourth column of the table. The values of the Wald chi-
square test statistics shown in the fifth column of the table are computed by
dividing each parameter estimate by its standard error and then squaring the
ratio. The null hypothesis is that the corresponding population parameter is
zero, and the alternative is that it is not zero. The p-values shown in column
six are obtained by comparing the value of the Wald chi-square statistic to
percentiles of the chi-square distribution with one degree of freedom. The
p-values are approximate and the approximation is more accurate for larger
sample sizes.

Temperature Dependent Sex Determination for Japanese Turtles

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 111.4849 1 <.0001

Score 75.3842 1 <.0001

Wald 34.2018 1 <.0001

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -85.8874 14.7025 34.1254 <.0001

x 1 2.9782 0.5093 34.2018 <.0001

Estimated Covariance Matrix

Parameter Intercept x

Intercept 216.163 -7.48622

x -7.48622 0.259341

Fig. 7.21. SAS Example G4: output from the model statement
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The last line of the first table in Fig. 7.21 shows the value of a Wald chi-
square test statistic for the null hypothesis that the coefficients are zero for
all of the explanatory variables in the model. Because temperature is the only
explanatory variable in this model, the results of this test are identical to
the Wald chi-square test for the temperature coefficient in the second table.
The likelihood ratio and score tests provide alternative tests of the same null
hypothesis that all explanatory variables have zero coefficients. All three tests
yield similar results when the sample size is large relative to the number of
explanatory variables in the model, but they may differ substantially and
may all be unreliable for small sample sizes. For the turtle data, all three
tests indicate that the true temperature coefficient is different from zero. The
bottom table in Fig. 7.21 displays the estimated covariance matrix for the
parameter estimates. Estimated variances of the parameter estimates are on
the main diagonal of the matrix. These values are the squares of the standard
errors reported in the middle table. The estimated covariance between the
estimates of the intercept and the temperature coefficient is −7.48622, and
the estimated correlation is −0.9998534 = −7.48622/

√
216.163× 0.259341.

The clparm=both option in the model statement produced the 95% con-
fidence intervals for the regression parameters displayed in the first two ta-
bles in Fig. 7.22. The two sets of confidence intervals are similar, but the
profile-likelihood intervals are not centered at the parameter estimates and
are slightly wider than the Wald intervals. The profile-likelihood intervals
better reflect the shape of the small sample distributions of the parameter
estimates and more nearly provide 95% coverage. The clodds=both option in
th model statement produced the other two tables in Fig. 7.22. Those tables
display profile-likelihood and Wald confidence intervals, respectively, for the
ratio of the odds that a female hatches at a temperature x+1 relative to the
odds that a female hatches at temperature x. The profile-likelihood interval
indicates with 95% confidence that a 1 degree increase in a viable incubation
temperature will increase the odds of a female by a factor between 8 and 60.
The Wald interval indicates a similar result, although the confidence interval
is more narrow than the profile-likelihood interval and it may provide a lower
level of confidence.

Figure 7.23 displays the file created by the output statement in the proc
logistic procedure step. The option p= computes the maximum likelihood
estimates of the proportion of eggs that produce females at each incubation
temperature in the data set. In this case p=phat outputs those estimated
proportions to a column labeled phat in the data set created and named by
the out= option. The options lower=cl lower and upper=cl upper output
the lower and upper limits of corresponding approximate 95% confidence in-
tervals for the proportion of eggs that produce females at each incubation
temperature. The output data file was printed by the print procedure shown
in Fig. 7.18. By augmenting the data with two lines containing incubation
temperatures that were not used in the experiment and using periods to indi-
cate missing values for y1, y2, and n, estimates of the proportion of eggs that
produce females at those temperatures are obtained along with corresponding
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Temperature Dependent Sex Determination for Japanese Turtles

The LOGISTIC Procedure

Parameter Estimates and Profile-Likelihood 
Confidence Intervals

Parameter Estimate 95% Confidence Limits

Intercept -85.8874 -118.4 -60.2855

x 2.9782 2.0918 4.1052

Parameter Estimates and Wald Confidence 
Intervals

Parameter Estimate 95% Confidence Limits

Intercept -85.8874 -114.7 -57.0711

x 2.9782 1.9801 3.9764

Odds Ratio Estimates and Profile-Likelihood 
Confidence Intervals

Effect Unit Estimate 95% Confidence Limits

x 1.0000 19.653 8.099 60.653

Odds Ratio Estimates and Wald Confidence 
Intervals

Effect Unit Estimate 95% Confidence Limits

x 1.0000 19.653 7.244 53.323

Fig. 7.22. SAS Example G4: confidence intervals produced by the clparm and
clodds options in the model statement

Temperature Dependent Sex Determination for Japanese Turtles

Obs x y1 y2 n phat cl_lower cl_upper

1 26.0 0 8 8 0.00021 0.00001 0.00387

2 26.5 0 24 24 0.00094 0.00008 0.01045

3 28.0 0 19 19 0.07610 0.02951 0.18243

4 28.5 8 18 26 0.26749 0.16477 0.40333

5 29.0 20 7 27 0.61816 0.49215 0.73006

6 29.5 12 6 18 0.87770 0.76267 0.94128

7 30.0 30 0 30 0.96953 0.90244 0.99094

8 27.5 . . . 0.01824 0.00434 0.07346

9 28.8 . . . 0.47155 0.35119 0.59532

Fig. 7.23. SAS Example G4: output file created by the output statement
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approximate 95% confidence intervals. With 95% confidence, for example, an
incubation temperature of 28.8 ◦C is expected to produce between 35.1 and
59.5% females.

data turtles;
input x y1 y2 n;
label x = ’Incubation Temperature (C)’

y1 = ’Number of Females’
y2 = ’Number of Males’
n = ’Number of Eggs’;

datalines;
26.0 0 8 8
26.5 0 24 24
28.0 0 19 19
28.5 8 18 26
29.0 20 7 27
29.5 12 6 18
30.0 30 0 30
27.5 . . .
28.8 . . .
;

title "Temperature Dependent Sex Determination for Japanese Turtles";

proc genmod data=turtles plots=predicted;
model y1/n = x / link=logit dist=binomial itprint covb waldci lrci;
output out=setp p=phat lower=cl_lower upper=cl_upper;
run;

proc print data=setp; run;

Fig. 7.24. SAS Example G4: program for proc genmod

The same logistic regression model can be fit with the GENMOD proce-
dure. The code is shown in Fig. 7.24. The option link=logit is included in
the model statement to specify the logit link, and the option dist=binomial

specifies independent binomial distributions for the numbers of female turtles
produced by the various incubation temperatures. Wald confidence intervals
for the regression parameters are obtained with the waldci option, and profile-
likelihood confidence intervals are obtained with the lrci option. Because the
output is similar to the output from proc logistic, it is not displayed here.
The plots=predicted option in the proc genmod statement produces a plot
of the estimated curve for the probabilities that females hatch at various in-
cubation temperatures, but it is of lower quality than the plot displayed in
Fig. 7.19.

SAS Example G5

Logistic regression models may incorporate both quantitative and categorical
explanatory variables. Categorical variables are also called classification vari-
ables. The LOGISTIC procedure assumes that each explanatory variable is
quantitative unless the variable is designated as a classification variable by
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including it in a class statement. Quantitative variables are modeled by sim-
ply adding a term to the logistic regression model consisting of the variable
multiplied by a regression coefficient. Classification variables are modeled in
a different way. A separate parameter is added to the model for each unique
value of a classification variable, allowing the logit to be different for each
unique level of the classification variable. Consider data from a study reported
by Graubard and Korn (1987). This study examined the association between
the incidence of congenital sex organ malformations in newborn babies and
the level of alcohol consumption by the mothers during the first trimester of
their pregnancy. At the end of the first trimester, each woman reported her
average alcohol consumption as belonging to one of five categories: no alcohol
use, less than 1 drink per day, 1–2 drinks per day, 3–5 drinks per day, or
more than 5 drinks per day. Following childbirth, the presence or absence of
congenital sex organ malformations was recorded for each baby. The counts
are displayed in Table 7.1.

Table 7.1. SAS Example G5: maternal alcohol use and congenital malformations

Alcohol Consumption
(average number of drinks per day)

Malformation 0 <1 1-2 3-5 >5

Present

Absent

        48         38      5     1          1

     17,066      14,464        788       126        37

The counts are entered directly into the data step of the program code
for SAS Example G5 shown in Fig. 7.25. The freq statement in the proc

logistic step indicates that each line in the data set represents the number
of cases given by the value of the y variable. In the model statement, the
variable that designates the response categories, malformation, is set equal
to the explanatory variable. This is a second way of establishing the logit link.
By default proc logistic uses the alphabetic ordering of the values of the
response variables (numerical ordering if the response variable is quantitative)
to define the log-odds. Because absent precedes present, for example, proc
logistic would relate the log-odds that a malformation is absent to the lev-
els of the alcohol consumption variable unless instructed to do otherwise. In
this case it is desirable to relate the log-odds that a malformation is present
to the categories of the alcohol consumption variable. This is done by includ-
ing the descending option in the proc logistic statement to reverse the
ordering of the response variable categories in the construction of the logit.
The ordering of the categories for the response variable is reported in a table
near the beginning of the output from proc logistic. This is the first table
displayed in Fig. 7.26. In this case present is identified as the first category
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data set1;
input malformation \$ drinks y;
datalines;

present 1 48
absent 1 17066
present 2 38
absent 2 14464
present 3 5
absent 3 788
present 4 1
absent 4 126
present 5 1
absent 5 37

;

title ’Congenital Malformation and Alcohol Use’;

proc logistic data=set1 descending covout outest=parms;
class drinks / param=glm ref=first;
model malformation = drinks / itprint covb

clparm=wald expb clodds=wald ;
freq y;
contrast ’< 1 vs none’ drinks 1 0 0 0 -1 / alpha=.05 estimate=all;
contrast ’> 5 vs none’ drinks 0 0 0 1 -1/ estimate=all;
contrast ’none’ intercept 1 drinks 0 0 0 0 1 / estimate=all;
contrast ’> 5 drinks’ intercept 1 drinks 0 0 0 1 0/ estimate=all;
output out=pred l=lower95 p=phat u=upper95 predprob=i;
run;

proc print data=parms;
title ’Parameter Estimates and Covariance Matrix’;

run;

proc print data=pred;
title ’Estimates of Malformation Probabilities’;

run;

Fig. 7.25. SAS Example G5: program for proc logistic

and absent is identified as the second category. The systematic part of the
logistic regression model is set up as

log

(
πi

1− πi

)

= γ + τi for i = 1, 2, 3, 4, or 5, (7.30)

where πi is the probability of delivering a baby with a congenital malformation
for pregnant women in the i-th alcohol consumption category. In forming
the logit, the probability for the category of the response variable that is
designated as first in the table (presence) is divided by the probability of the
response appearing in the second category (absence).

Because the drinks variable is included in a class statement, a different
parameter is included in the model for each category of the drinks variable,
in this case τ1, τ2, τ3, τ4, and τ5. Because six parameters, γ, τ1, τ2, τ3, τ4, and
τ5, are used to model logits for just five categories, one constraint must be
placed on the parameters in order to obtain unique parameter estimates. To
be consistent with parameter constraints employed by the glm procedure for
linear models, the param=glm option is included in the class statement. Then
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Congenital Malformation and Alcohol Use

The LOGISTIC Procedure

Response Profile

Ordered
Value malformation

Total
Frequency

1 present 93

2 absent 32481

Probability modeled is malformation='present'.

Class Level Information

Class Value Design Variables

drinks 2 1 0 0 0 0

3 0 1 0 0 0

4 0 0 1 0 0

5 0 0 0 1 0

1 0 0 0 0 1

Fig. 7.26. SAS Example G5: output from proc logistic

the highest category of the drinks variable is designated as the baseline cat-
egory by setting the corresponding parameter equal to zero. If not instructed
otherwise, the category with the label that comes last alphabetically (or last
numerically if the category labels are numbers) is selected as the baseline cat-
egory. In this case the levels of the drinks are labeled 1, 2, 3, 4, and 5, and
the category for more than 5 drinks per day would be the baseline category.
Because it is more interesting to compare malformation rates for the last four
categories for which alcohol is consumed to the first category for which no al-
cohol is consumed, the baseline category is changed to the first category with
the ref=first option in the class statement. The result of this designation
is reflected in the design table shown as the second table in Fig. 7.26. This
table shows that level 1 of the drinks variable has been designated as the last
category and consequently it serves as the baseline category. Consequently,
τ1 is set equal to zero, and τ2, τ3, τ4, and τ5 are interpreted with respect to
the first level of the drinks variable (no alcohol use). For example, τ3 is the
log-odds that pregnant women who consume one to two alcohol drinks per
day give birth to babies with malformations minus the log-odds that women
who consume no alcohol during pregnancy give birth to babies with malfor-
mations. Similarly, exp(τ3) is the corresponding ratio of odds. Other choices
for the param= and ref= options will create parameter estimates with dif-
ferent interpretations, although the model produces the same estimates of the
malformation probabilities.
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Congenital Malformation and Alcohol Use

The LOGISTIC P rocedure

Maximum Likelihood Iteration History

Iter Ridge -2 Log L Intercept drinks2 drinks3 drinks4 drinks5 drinks1

0 0 1275.446887 -5.855811 0 0 0 0 0

1 1.6384 1270.991698 -5.857243 -0.030705 0.459873 0.668740 3.123968 0

2 0 1269.348522 -5.873509 -0.066904 0.876588 1.106242 2.534391 0

3 0 1269.245911 -5.873642 -0.068188 0.815509 1.039651 2.294575 0

4 0 1269.244890 -5.873642 -0.068189 0.813584 1.037363 2.263200 0

Last Change in -2 Log L 0.0010212126

Last Evaluation of Gradient

Intercept drinks2 drinks3 drinks4 drinks5 drinks1

-0.000474447 -1.88436E-11 -9.100914E-6 -2.558799E-6 -0.000462787 7.105427E-15

Convergence criterion (GCONV=1E-8) satisfied.

Fig. 7.27. SAS Example G5: convergence of maximum likelihood estimates

The output displayed in Fig. 7.27 shows that the search for the maximum
likelihood estimates of the regression coefficients begins with each τ̂i = 0
for i = 1, 2, 3, 4, 5, and γ̂ = log(93/32481) = −5.855811. The search con-
verges in four iterations. This output was requested with the itprint option
in the model statement. Maximum likelihood estimates of regression coeffi-
cients are shown in Fig. 7.28 along with their standard errors. The estimates
of τ2, τ3, τ4, and τ5 are all positive, suggesting that the incidence of con-
genital malformations increases with any level of alcohol consumption during
pregnancy, but only τ̂5 is significantly different from zero. Approximate 95%
confidence intervals for the alcohol consumption parameters are requested
with the clparm=wald statement in the model statement. Estimates of odds
ratios, shown in the last column of the table, are requested with the expb

option in the model statement. Confidence intervals for odds ratios are dis-
played in the third table in Fig. 7.28. The confidence interval in the last row
of the table, for example, provides 95% confidence that the odds that women
who consume at least five drinks per day give birth to a baby with malforma-
tions are between 1.29 and 71.46 times greater than the odds for women who
consume no alcohol during the first trimester of pregnancy. This odds ratio
is significantly different from one, but it is not well estimated. Also keep in
mind that this is an observational study and pregnant women who heavily use



566 7 Beyond Regression and Analysis of Variance

Congenital Malformation and Alcohol Use

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6.2020 4 0.1846

Score 12.0821 4 0.0168

Wald 9.2847 4 0.0544

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq Exp(Est)

Intercept 1 -5.8736 0.1445 1651.3399 <.0001 0.003

drinks 2 1 -0.0682 0.2174 0.0984 0.7538 0.934

drinks 1 0.8136 0.4713 2.9795 0.0843 2.256

drinks 4 1 1.0374 1.0143 1.0460 0.3064 2.822

drinks 5 1 2.2632 1.0235 4.8900 0.0270 9.614

drinks 1 0 0 . . . .

Odds Ratio Estimates and Wald Confidence Intervals

Effect Unit Estimate 95% Confidence Limits

drinks 2 vs 1 1.0000 0.934 0.610 1.430

drinks 3 vs 1 1.0000 2.256 0.896 5.683

drinks 4 vs 1 1.0000 2.822 0.386 20.602

drinks 5 vs 1 1.0000 9.614 1.293 71.460

3

Fig. 7.28. SAS Example G5: maximum likelihood estimates of regression coefficients
and odds ratios

alcohol may also tend to engage in other activities that could contribute to
the incidence of malformations. Consequently, a cause and effect conclusion
may not be justified.

Estimates, standard errors, confidence intervals, and tests for linear com-
binations of model parameters may be requested with contrast statements.
The program code in Fig. 7.25 contains four contrast statements. The first
contrast statement requests an estimate of τ2−τ1 the difference between the
log-odds of giving birth to child with a congenital malformation for women
who consume less than one drink per week versus women who consume no
alcohol. Note that earlier in the program code, the first category of the drinks
variable was designated as the reference category making it the last category
in the design table in Fig. 7.26. Consequently, the request for an estimate of
τ2 − τ1 is specified in the contrast statement with drinks 1 0 0 0 -1. The
last value in this list is the coefficient for τ1, and the first value in this list is
the coefficient for τ2. The alpha=.05 option specifies a 95% confidence level,
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and the estimate=all option includes the value of the maximum likelihood
estimate of τ2 − τ1 in the output. The characters in single quotes provide a
label for the contrast in the output i.e., < 1 vs. none. The second contrast
statement requests output for the estimation of τ5 − τ1, the difference be-
tween the log-odds of giving birth to a child with congenital malformations
for women who consume more than five drinks per day relative to women who
consume no alcohol. It labels the output >5 versus none. The third contrast
statement requests output for the estimation of μ + τ1, the log-odds that a
pregnant women who consumes no alcohol will give birth to a child with a
congenital malformation. The output for this contrast is labeled none. The
fourth contrast statement requests output for the estimation of μ + τ5, the
log-odds that a pregnant woman who has more than five alcoholic drinks per
day will give birth to a child with a congenital malformation. This output is
labeled >5 drinks.

The output from the four contrast statements is displayed in Fig. 7.29.
There are three lines in the table for each of the four contrast statements.
The line labeled PARM presents the estimate of the linear combination of model
parameters, its standard error, and an approximate 95% confidence interval.
This is an estimate of the natural logarithm of the ratio of odds of giving birth
to a child with congenital malformations for women who consume alcohol dur-
ing the first 3 months of pregnancy but have fewer than one drink per day
relative to women who consume no alcohol. The line labeled EXP presents the

Congenital Malformation and Alcohol Use

The LOGISTIC Procedure

Contrast Estimation and Testing Results by Row

Contrast Type Row Estimate
Standard

Error Alpha Confidence Limits
Wald

Chi-Square Pr > ChiSq

< 1 vs  none PARM 1 -0.0682 0.2174 0.05 -0.4943 0.3580 0.0984 0.7538

< 1 vs  none EXP 1 0.9341 0.2031 0.05 0.6100 1.4304 0.0984 0.7538

< 1 vs  none PROB 1 0.4830 0.0543 0.05 0.3789 0.5885 0.0984 0.7538

> 5 vs none PARM 1 2.2632 1.0235 0.05 0.2573 4.2691 4.8900 0.0270

> 5 vs none EXP 1 9.6138 9.8393 0.05 1.2934 71.4595 4.8900 0.0270

> 5 vs none PROB 1 0.9058 0.0873 0.05 0.5640 0.9862 4.8900 0.0270

none PARM 1 -5.8736 0.1445 0.05 -6.1569 -5.5903 1651.3399 <.0001

none EXP 1 0.00281 0.000407 0.05 0.00212 0.00373 1651.3399 <.0001

none PROB 1 0.00280 0.000404 0.05 0.00211 0.00372 1651.3399 <.0001

> 5 drinks PARM 1 -3.6104 1.0132 0.05 -5.5963 -1.6246 12.6980 0.0004

> 5 drinks EXP 1 0.0270 0.0274 0.05 0.00371 0.1970 12.6980 0.0004

> 5 drinks PROB 1 0.0263 0.0260 0.05 0.00370 0.1646 12.6980 0.0004

Fig. 7.29. SAS Example G5: contrast estimates and tests
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exponential function of the estimate in the previous line along with a standard
error and an approximate 95% confidence interval. This is an estimate of the
odds ratio, and the 95% confidence interval extends from 0.61 to 1.43 indicat-
ing that the odds that women who consume alcohol but have less than one
drink per day give birth to a child with congenital malformations are likely to
be between 61% and 143% of the odds for women who consume no alcohol.
The data do not provide convincing evidence that the odds of a malformation
for this low level of alcohol consumption differ from the odds of a malformation
for no alcohol consumption. The line labeled PROB does not produce a useful
estimate for the τ2 − τ1 contrast: it gives an estimate of 1/(1 + exp(τ1 − τ2)).
The 95% confidence interval in the EXP line for the τ5 − τ1 contrast indicates
that the odds that pregnant women who consume more than five alcoholic
drinks per day deliver a child with a congenital malformation are likely to be
between 129% and 7146% greater than the corresponding odds for pregnant
women who consume no alcohol. The last two columns of the table present
values of Wald chi-square test statistics and the corresponding p-value for test-
ing the null hypothesis that the linear combination of the model parameters
is zero against the alternative that the linear combination is not zero. The
PARM lines for the third and fourth contrasts give estimates and confidence
intervals of the log-odds of delivering a baby with a congenital malformation
for pregnant women who consume no alcohol and pregnant women who have
more than five drinks per day, respectively. The EXP lines give estimates and
confidence intervals for the corresponding odds of delivering a baby with a
congenital malformation for these two categories of women. The PARM lines
display estimates and confidence intervals for the corresponding probabilities
of delivering a baby with a congenital malformation for women in those two
categories. The 95% confidence interval for women who do not consume any
alcohol indicates that the probability of delivering a child with a congenital
malformation is likely to be between 0.00211 and 0.00372, but for women who
have at least five alcohol drinks per day, the probability is likely to be between
0.0037 and 0.1646.

A file containing estimates of malformation probabilities is created with
the output statement in the program code shown in Fig. 7.25. This file is dis-
played in Fig. 7.30. The output file is named with the out= option. Estimates
of malformation probabilities are inserted into a column called phat with the
p=phat option, and lower and upper limits of approximate 95% confidence in-
tervals are requested and named with the l= and u= options, respectively. This
output is displayed in the last three columns of Fig. 7.30. The pregprob=i op-
tion outputs estimates of the probability of a malformation and the probability
of no malformation displayed in columns 6 and 7 of Fig. 7.30.
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Estimates of Malformation Probabilities

Obs malformation drinks y _FROM_ _INTO_ IP_present IP_absent _LEVEL_ phat lower95 upper95

1 present 1 48 present absent 0.002805 0.99720 present 0.002805 .002114255 0.00372

2 absent 1 17066 absent absent 0.002805 0.99720 present 0.002805 .002114255 0.00372

3 present 2 38 present absent 0.002620 0.99738 present 0.002620 .001907224 0.00360

4 absent 2 14464 absent absent 0.002620 0.99738 present 0.002620 .001907224 0.00360

5 present 3 5 present absent 0.006305 0.99369 present 0.006305 .002626806 0.01506

6 absent 3 788 absent absent 0.006305 0.99369 present 0.006305 .002626806 0.01506

7 present 4 1 present absent 0.007874 0.99213 present 0.007874 .001108096 0.05373

8 absent 4 126 absent absent 0.007874 0.99213 present 0.007874 .001108096 0.05373

9 present 5 1 present absent 0.026328 0.97367 present 0.026328 .003697960 0.16457

10 absent 5 37 absent absent 0.026328 0.97367 present 0.026328 .003697960 0.16457

Fig. 7.30. SAS Example G5: estimates of malformation probabilities

7.3.3 Poisson Regression

Model

Poisson regression models are used to link expected numbers of occurrences
of a specific type of event to values of a set of explanatory variables. For
example, Poisson regression models may be used to relate expected numbers
of skin cancer tumors in mice to exposure to different levels of toxic substances
in their diet. Poisson regression models are used in ecological studies to relate
the expected numbers of particular plant or animal species per unit area
to features of the environment at different locations. They could be used
by credit card companies to analyze associations between numbers of late
payments during the past 5 years and explanatory variables such as annual
salary, age, gender, and marital status of the card holders. Here, the number
of late credit card payments is the response variable, whereas “marital status”
and “gender” are categorical explanatory variables, and “age” and “annual
salary” are quantitative explanatory variables.

In Poisson regression models, the natural logarithm of the expected count
is related to a linear combination of values of the explanatory variables. Sup-
pose y1, y2, . . . , yn are observed counts provided by n different subjects under
different sets of conditions. Let μ denote the expected count under the set
of conditions corresponding to a particular set of values for k explanatory
variables x1, x2, . . . , xk. Then, the systematic part of the Poisson regression
model is

log(μ) = β0 + β1x1 + β2x2 + · · ·+ βkxk. (7.31)

For each set of values for the explanatory variables, the observed count is
assumed to have a Poisson distribution with mean or expected count:

μ = eβ0+β1x1+···+βkxk . (7.32)
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The parameter βj may be interpreted as the change in the natural logarithm of
the mean count when xj is increased by one unit while the other explanatory
variables are held constant. Holding the other explanatory variables constant,
the expected count at xj+1 is the expected count at xj multiplied by exp(βj).

Estimation and Hypothesis Testing

The GENMOD procedure may be used to fit a Poisson regression model to
count data. The natural logarithm of the mean is the default link function
when the Poisson distribution is specified for the observed counts. Maximum
likelihood estimates are computed for the regression coefficients β0, β1, . . ., βk.
The large sample normal approximation to the distribution of the parameter
estimates can be used to construct Wald confidence intervals and tests of
hypothesis. Wald confidence intervals are requested with the waldci option in
the model statement in the proc genmod step. A (1−α)100% Wald confidence
interval has the form:

β̂j ± z1−α/2σ̂β̂j
(7.33)

where zp is the 100p percentile of the standard normal distribution, β̂j is
the parameter estimate, and σ̂β̂j

is the large sample estimate of the standard

error of β̂j . Profile-likelihood confidence intervals for the individual regression
parameters are requested with the LRCI option in the model statement. These
confidence intervals tend to provide more accurate coverage levels for smaller
samples, but they are more computationally intensive than the Wald intervals.

Proc genmod computes likelihood ratio chi-square tests of null hypotheses
involving individual parameters or linear combinations of parameters. Wald
chi-square tests are computed if the wald option is specified.

SAS Example G6

The data for this application of the GENMOD procedure to Poisson regression
analysis are reported by Margolin et al. (1981) from an Ames Salmonella re-
verse mutagenicity assay. Figure 7.31 displays the number of revertant colonies
of TA95 Salmonella observed on each of three replicate plates tested at each
of six dose levels of quinoline. Margolin et al. (1981) consider several models,
but we will consider an approximation to one of those models that was pro-
posed by Breslow (1984). Using μ to represent the mean number of revertant
colonies and x to represent the dose of quinoline (μg per plate), this model is
expressed as

log(μ) = β0 + β1z + β2x (7.34)

where z = log(x+ 10).
The SAS Example G6 program (see Fig. 7.32) illustrates how proc genmod

can be used to fit this model. The data are included in the data step with x
representing the level of quinoline and c1, c2, and c3 representing the counts
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        Dose of Quinoline  (μg per plate) 

       0        10       33      100     333     1000 
   15       16       16       27       33        20 
   21       18       26       41       38        27 
   29       21       33       60       41        42 

Fig. 7.31. SAS Example G6: numbers of revertant colonies of TA98 Salmonella

data set1;
input x c1 c2 c3;

z = log(x+10);
array cc {3} c1-c3;
drop c1-c3;
do i = 1 to 3;

y = cc(i); output;
end;

datalines;
0 15 21 29

10 16 18 21
33 16 26 33

100 27 41 60
333 33 38 41

1000 20 27 42
;

proc genmod data=set1 plots=(stdreschi);
model y = z x / dist=poisson link=log itprint;
output out=setp p=mean;

run;

data setnew;
do i = 1 to 100;

w=10**(3*i/100);
m=exp(2.1728 + 0.3198*log(w+10) - 0.0010*w);
output;

end;
run;

data setp; set setp setnew; run;

proc sgplot data=setp noautolegend;
scatter x=x y=y / markerattrs=(size=10 symbol=CircleFilled color=black);
loess x=w y=m / interpolation=cubic nomarkers;
xaxis label="Quinoline Level (micrograms per plate)"

labelattrs=(size=14) valueattrs=(size=13);
yaxis label="Number of Revertant TA98 Salmonella Colonies"

labelattrs=(size=14) valueattrs=(size=13);
run;

Fig. 7.32. SAS Example G6: program for proc genmod

for the three plates at each level of quinoline. As described in SAS Example
A6 in Chap. 1, the array, do, and output statements are used to convert each
of the original lines of data to three lines of data with the count of each plate
on a separate line and denoted by the variable y. The values of z = log(x+10)
are also computed in the data step, and the resulting file has values of x, y,
and z on each line.
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The Poisson regression model is specified in the model statement by in-
cluding the options dist=poisson and link=log. Actually, the link=log

option is not needed because it is the default link when the Poisson distri-
bution is specified. The variable y that contains the observed counts is on
the left side of the equal sign in the model statement, and the explanatory
variables are on the right side of the equal sign. An intercept is included in
the model by default. The itprint option in the model statement prints
the estimates of the regression coefficients at each step of the Fisher scoring
procedure. This output, not shown here, shows that the estimation procedure
converges in four iterations. Maximum likelihood estimates of the regression
coefficients are displayed in Fig. 7.33 along with standard errors and 95% con-
fidence intervals. These results indicate that all of the regression coefficients
are significantly different from zero.

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95% 
Confidence 

Limits
Wald 

Chi-Square Pr > ChiSq

Intercept 1 2.1728 0.2184 1.7447 2.6009 98.95 <.0001

z 1 0.3198 0.0570 0.2081 0.4315 31.48 <.0001

x 1 -0.0010 0.0002 -0.0015 -0.0005 17.07 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

Fig. 7.33. SAS Example G6: estimates of regression coefficients

The plots=(stdreschi) option in the proc genmod statement produces
the plot of standardized chi-square residuals displayed in Fig. 7.34. When the
proposed model provides a good description of changes in expected counts as
values of the explanatory variables change, this plot should exhibit no obvious
pattern and appear to be randomly scattered about the horizontal reference
line at zero.

The estimated curve for the expected number of revertant TA98 colonies
is shown in Fig. 7.35 along with the observed counts. The curve appears to
provide a good representation for changes in the expected number of colonies
as the level of quinoline changes with the possible exception of one large count
for a plate with 100μg of quinoline. The curve was constructed by evaluating

μ̂ = exp(2.1728 + 0.3198 log(x+ 10)− 0.0010x) (7.35)

at 100 values of x. This was accomplished by using do and output statements
in the data step to output 100 values of x to the setnew data set. The subse-
quent data step attaches the setnew data set to the bottom of the setp data
set created with the output statement in the proc genmod step. The setp
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Fig. 7.34. SAS Example G6: output from the plots=(stdreschi) option

data set contains the estimated mean counts for the 18 plates used in the ex-
periment. The scatter statement in the subsequent proc sgplot step plots
the original counts against the six quinoline levels used in the study as filled
in circles. The loess statement passes a smooth curve through the estimated
means for the 100 new quinoline values in the setnew data set to form the
curve displayed in Fig. 7.35.

The table in Fig. 7.36 displays statistics for assessing the fit of the model.
The AIC, AICC, and BIC values are useful for comparing models within a
specific set of models, but they provide no useful information for assessing the
fit of a single model. Consequently, we will examine the deviance and Pear-
son chi-square statistics to assess the fit of the model. The last entry in the
deviance line of the table shows that the value of the deviance statistic is al-
most 3 times larger than the corresponding degrees of freedom. The last entry
in the Pearson chi-square line shows that the value of the Pearson chi-square
statistic is slightly more than 3 times larger than the degrees of freedom. This
is an indication that there is more variation in the counts about the fitted
model than a Poisson model can support. One feature of any Poisson dis-
tribution is that the variance is equal to the mean, or expected count. This
restriction is often violated in real-world situations. In this case, it appears
that the variance in the counts is about 3 times the mean. This extra-Poisson
variation can be taken into account by including an additional scale param-
eter in the model. The note under the table in Fig. 7.33 indicates that this
was not done and the scale parameter was held fixed at 1.0 in this analysis.
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Fig. 7.35. SAS Example G6: plot of the estimated mean response curve and the
observed counts

Consequently, the standard errors of the estimated regression coefficients are
too small by a factor of about

√
3 = 1.73, and the corresponding confidence

intervals are too short to provide 95% coverage. Methods for accounting for
overdispersion are considered in Sect. 7.4.

7.4 Generalized Linear Models with Overdispersion

7.4.1 Introduction

Overdispersion occurs when variation in observed counts about a logistic re-
gression model is larger than the level of variation that can be accommodated
by the binomial probability model. This is often called extra-binomial vari-
ation. Overdispersion also occurs when variation in observed counts about
a Poisson regression model is larger than the level of variation that can be
accommodated by the Poisson probability model. This is often called extra-
Poisson variation.

Consider a logistic regression model:

log

(
π

1− π

)

= β0 + β1x1 + · · ·+ βkxk (7.36)
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The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 15 43.7157 2.9144

Scaled Deviance 15 43.7157 2.9144

Pearson Chi -Square 15 46.2706 3.0847

Scaled Pearson X2 15 46.2706 3.0847

Log Likelihood 1259.7878

Full Log Likelihood -68.1260

AIC (smaller is better) 142.2520

AICC (smaller is better) 143.9663

BIC (smaller is better) 144.9231

Fig. 7.36. SAS Example G6: goodness-of-fit output from proc genmod

and

π =
exp(β0 + β1x1 + · · ·+ βkxk)

1 + exp(β0 + β1x1 + · · ·+ βkxk)
. (7.37)

If y represents the number of successes observed for n independent trials run
under conditions corresponding to a particular set of values for x1, x2, . . . , xk,
then imposing a binomial distribution for y results in nπ as the mean value for
y and nπ(1−π) as the variance of y. The observed counts are overdispersed if
variances tend to be larger than nπ(1−π) for the sets of x1, x2, . . . , xk values
used in the study. This is often called extra-binomial variation. The observed
counts are underdispersed if variances tend to be smaller than nπ(1 − π) for
the sets of x1, x2, . . . , xk values used in the study. Underdispersion occurs
much less frequently than overdispersion.

Overdispersion in Poisson regression occurs when variation in observed
counts about a Poisson regression model is larger than the level of variation
association with Poisson distributions. Consider a Poisson regression model:

log(μ) = β0 + β1x1 + · · ·+ βkxk (7.38)

with
μ = exp(β0 + β1x1 + · · ·+ βkxk). (7.39)

Imposing a Poisson distribution for the observed count at some set of x1, x2,
. . . , xk values results in a variance of μ to describe how the much observed
counts should vary about the mean, which is also μ. Overdispersion occurs
when variances of observed counts tend to be larger than the means, and
this is often called extra-Poisson variation. Underdispersion occurs when the
variances of the counts tend to be smaller than their means.



576 7 Beyond Regression and Analysis of Variance

Overdispersion or underdispersion can be detected by dividing the value
of the Pearson chi-square goodness-of-fit statistic by its degrees of freedom. If
there is no problem with overdispersion or underdispersion, then the value of
the Pearson chi-square statistic should be close to the degrees of freedom, and
the ratio should be close to 1. Overdispersion is indicated by a ratio that is
substantially larger than 1, and underdispersion is indicated by a ratio that is
much smaller than 1. There is no fixed guideline that applies to all situations,
but a ratio larger than 1.25 suggests that the analysis should be adjusted to
account for overdispersion, and a ratio smaller than 0.75 may indicate that the
analysis should be adjusted for underdispersion. Failure to make adjustments
for overdispersion generally leads to standard errors for parameter estimates
that are too small, confidence intervals that are too narrow to provide the
stated level of confidence, and p-values of tests of hypotheses that are too
small. The deviance divided by its degrees of freedom may be used in place
of the Pearson chi-square statistic divided by its degrees of freedom, but the
latter will be used in the examples presented here.

A large value of the ratio of the Pearson chi-square statistic to its degrees
of freedom may also arise from a model that does not adequately describe
how the mean counts change as value of the explanatory variables changes.
To distinguish this situation from overdispersion, residual plots such as the
plot of standardized chi-square residuals should be examined. Any deficiencies
in the model should be addressed, and the improved model should be refit to
the data before considering the use of an additional scale parameter to model
overdispersion.

7.4.2 Binomial and Poisson Models with Overdispersion

Introduction

The binomial and Poisson distributions are members of the exponential fam-
ily of distributions that do not have scale parameters that can be used to
accommodate overdispersion or underdispersion. At the request of the user,
however, the GENMOD procedure is able to include a scale parameter while
still optimizing the log-likelihood function corresponding to the relevant bi-
nomial or Poisson distribution to estimate the regression parameters. The re-
sulting estimates of the regression parameters are the same as when the scale
parameter is set equal to one, but they are no longer maximum likelihood
estimates because the distribution of the counts is altered by introducing the
extra scale parameter. This is sometimes called quasi-likelihood estimation
(see Wedderburn (1974) for details).

The GENMOD and LOGISTIC procedures introduce an additional scale
parameter φ as a multiple of the formula for the standard deviations of the
counts for the specified distribution. For the binomial distribution, the ad-
justed standard deviation of an observed count is φ

√
nπ(1− π), and for the
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Poisson distribution, the adjusted standard deviation of an observed count is
φ
√
μ. Then φ is estimated as

φ̂ =

√
Pearson chi-square statistic

degrees of freedom
(7.40)

SAS Example G7: Poisson Regression

The SAS Example G7 program (see Fig. 7.37) illustrates how proc genmod

can be used to fit a Poisson regression model to the data on the effects of
quinoline on counts of TA98 Salmonella colonies displayed in Fig. 7.31. The
data are entered as described for SAS Example G6. The scale=Pearson op-
tion has been added to the model statement to indicate that the additional
scale parameter should be estimated as shown in (7.40).

data set1;
input x c1 c2 c3;

z = log(x+10);
array cc {3} c1-c3;
drop c1-c3;
do i = 1 to 3;

y = cc(i); output;
end;

datalines;
0 15 21 29

10 16 18 21
33 16 26 33

100 27 41 60
333 33 38 41

1000 20 27 42
;

proc genmod data=set1 plots=(stdreschi);
model y = z x / dist=poisson link=log itprint scale=Pearson;
output out=setp p=mean;

run;

Fig. 7.37. SAS Example G7: program for proc genmod

Estimated parameters are shown in Fig. 7.38. The parameter estimates
are identical to those in Fig. 7.33 when the scale parameter was set equal
to one, but the standard errors have all been increased by a factor of φ̂ =√

43.7157/15 = 1.7563. The value of the Pearson chi-square statistic, 43.7157,
is shown in Fig. 7.36. Note that 1.7563 is reported in the scale line of the
table.

The plots=(stdreschi) option in the proc genmod statement produces
the plot of standardized Pearson residuals displayed in Fig. 7.39. The pattern
is the same as the pattern in Fig. 7.34 when the scale parameter was held fixed
at 1, but the standardized residuals are closer to zero in Fig. 7.39 because the
standard deviations used to compute them have been inflated by a factor of
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Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95% 
Confidence 

Limits
Wald 

Chi-Square Pr > ChiSq

Intercept 1 2.1728 0.3836 1.4209 2.9247 32.08 <.0001

z 1 0.3198 0.1001 0.1236 0.5160 10.21 0.0014

x 1 -0.0010 0.0004 -0.0019 -0.0002 5.53 0.0187

Scale 0 1.7563 0.0000 1.7563 1.7563

Note: The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

Fig. 7.38. SAS Example G7: estimates of regression coefficients

Fig. 7.39. SAS Example G7: output from the plots=(stdreschi) option

φ̂ = 1.7563. The largest standardized Pearson residual is now smaller than
2.5, and it appears that the proposed model provides a good description of
how the expected number of revertant TA98 Salmonella colonies changes as
the quinoline concentration changes.

SAS Example G8: Logistic Regression

A scale parameter may be used to account for extra-binomial variation in lo-
gistic regression analysis. This example uses seed germination data reported
by Crowder (1978). In this study Orobanche cernua seeds were brushed onto
plates that were covered with different dilutions of a bean root extract. Three
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different dilutions were used: 1/1 = 1.0, 1/24 = 0.04, and 1/625 = 0.0016. Six
plates were prepared for the first dilution and five plates were prepared for the
other two dilutions. The data set contains the number of seeds on each plate
and the number of seeds that germinated on each plate. A logistic regression
model is used to relate the germination rate to the dilution level of the bean
root extract. The variation in the observed proportions of germinating seeds
among plates with the same dilution of bean root extract is more than can be
attributed to independent binomial distributions with the success probability.
The extra-binomial variation may arise from plates with the same dilution
of bean extract being exposed to slightly different levels of temperature, hu-
midity, and other environmental conditions during the course of the study.
This would cause variation in germination rates among plates covered with
the same dilution of the extract, resulting in extra-binomial variation. The
data are included in the SAS Example G8 program displayed in Fig. 7.40.

data seeds;
input dilution n y;

p = y/n;
label n = ’Number of Seeds’

y = ’Number that Germinate’
p = ’Germination Rate’
dilution = ’Bean Root Extract Dilution’;

datalines;
1.0 43 2
1.0 51 9
1.0 44 5
1.0 71 16
1.0 24 2
1.0 7 0
0.04 19 17
0.04 56 43
0.04 87 79
0.04 55 50
0.04 10 9
0.0016 13 11
0.0016 62 47
0.0016 104 90
0.0016 51 46
0.0016 11 9

;

title ’Seed Germination Rates’;

proc logistic data=seeds plots(only)=effect;
model y/n = dilution / itprint scale=Pearson;
output out=setp p=phat lower=cl_lower upper=cl_upper;
run;

proc print data=setp; run;

Fig. 7.40. SAS Example G8: program for proc logistic

The data step enters the information on the extract dilution, the number
of seeds (n), and the number of seeds that germinated (y) for each plate. The
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proportion of seeds that germinated on each plate (p) is computed on the
line after the input statement in the data step. This variable is not used in
the analysis, but it is displayed in the output. The successes/trials option
is used to specify the logit response on the left side of the equal sign in the
model statement. The explanatory variable dilution is on the right side of
the equal sign. The resulting model is

log

(
π

1− π

)

= β0 + β1(dilution), (7.41)

where

π =
exp(β0 + β1(dilution))

1 + exp(β0 + β1(dilution))
(7.42)

represents the true germination probability for the specified dilution level. The
variance of each observed count is inflated by including the scale=Pearson

option in the model statement. For a particular dilution level, the variance of
the observed number of germinating seeds out of the n seeds on the plate is
φ2nπ(1− π), where φ is the scale parameter.

The itprint option in the model statement requests the first table of
output shown in Fig. 7.41. The Fisher scoring algorithm converged in four
iterations. The final estimates of the regression parameters are shown in the
third table in Fig. 7.41. The inclusion of the scale=Pearson option in the
model statement has no effect on the estimates of the regression parameters.
They are estimated in the same way as for a logistic regression model in which
the scale parameter is set to 1. The inclusion of the scale=Pearson option
does affect the standard errors of the estimates of the regression parameters.

The second table in Fig. 7.41 shows that the value of the Pearson goodness-
of-fit statistic is 24.1127 with 14 degrees of freedom. The extra-binomial vari-
ation parameter is estimated as φ̂ =

√
24.1127/14 =

√
1.72234 = 1.31238. Be-

cause the scale=Pearson option is used, proc logistic prints a note under
the second table that indicates that the covariance matrix for the estimates of
the regression parameters has been multiplied by 1.72234. Consequently, the
standard errors of the regression coefficients are inflated by a factor of 1.31238
relative to what is reported when the scale=Pearson is not used. When the
scale=Pearson option is not used and scale parameter is set equal to 1.0, the
standard errors for β̂0 and β̂1 are reported as 0.1347 and 0.2316, respectively.
By including the scale=Pearson option, the standard errors become 0.1768
and 0.3040, respectively. For these data, adjusting standard errors for extra-
binomial variation does not affect the outcome of the test that the β1 = 0,
but it does affect the width of a confidence interval for β1, and it could change
the conclusion for tests of regression coefficients for other studies. The infla-
tion of standard errors is carried through to standard errors for estimates of
germination probabilities and estimates of contrasts of model parameters and
related confidence intervals.
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Seed Germination Rates

The LOGISTIC Procedure

Maximum Likelihood Iteration History

Iter Ridge -2 Log L Intercept dilution

0 0 944.098189 0.465874 0

1 0 589.305145 1.548952 -3.073846

2 0 581.537153 1.832211 -3.603469

3 0 581.476648 1.860909 -3.654849

4 0 581.476643 1.861193 -3.655319

Convergence criterion (GCONV=1E-8) satisfied.

Deviance and Pearson Goodness -of-Fit 
Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 25.0676 14 1.7905 0.0339

Pearson 24.1127 14 1.7223 0.0444

Note: The covariance matrix has been multiplied by the heterogeneity 
factor (Pearson Chi-Square / DF) 1.72234.

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 1.8612 0.1768 110.7999 <.0001

dilution 1 -3.6553 0.3040 144.5729 <.0001

Fig. 7.41. SAS Example G8: output from the itprint option

The plots(only)=effect option in the proc logistic statement creates
the plot shown in Fig. 7.42. It appears that the model is reasonable, but it
would be easier to judge this if plates had been made with additional dilutions,
say 1:2, 1:4, and 1:8.

The output statement in the proc logistic step creates a data file called
setp that is printed with the print statement in the last line of Fig. 7.40. The
output is displayed in Fig. 7.43. The inclusion of the scale=Pearson option
has no effect on the estimates of mean germination rates displayed in the phat
column of the table, but it does result in wider confidence intervals that reflect
the extra-binomial variation in the observed counts. In this case, the confi-
dence intervals for the germination rates are 1.31238 times wider than what
is reported when the scale=Pearson option is not used. Because the counts
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Seed Germination Rates

Fig. 7.42. SAS Example G8: output from the plots(only)=effect option

exhibit extra-binomial variation, using the scale=Pearson option provides a
more honest indication of how well the germination rates are estimated with
the data from this study.

7.4.3 Negative Binomial Models

The negative binomial distribution may be used to analyze data with extra-
Poisson variation. A restrictive feature of the Poisson distribution is that the
variances of the potential counts must be equal to their means. The negative
binomial distribution has an additional scale parameter that allows the vari-
ances of potential counts to be larger than the means. Consequently, applying
the GENMOD procedure with the negative binomial distribution instead of
the Poisson distribution provides a method of fitting models similar to Poisson
regression models that allow for more variation in the observed counts than
can be accommodated by the Poisson distribution.

Model

As with Poisson regression models, we will consider models that link the
natural logarithm of the mean count μ to a linear combination of explanatory
variables, i.e., the systematic part of the model is
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Seed Germination Rates

Obs dilution n y p phat cl_lower cl_upper

1 1.0000 43 2 0.04651 0.14257 0.09374 0.21092

2 1.0000 51 9 0.17647 0.14257 0.09374 0.21092

3 1.0000 44 5 0.11364 0.14257 0.09374 0.21092

4 1.0000 71 16 0.22535 0.14257 0.09374 0.21092

5 1.0000 24 2 0.08333 0.14257 0.09374 0.21092

6 1.0000 7 0 0.00000 0.14257 0.09374 0.21092

7 0.0400 19 17 0.89474 0.84748 0.79936 0.88571

8 0.0400 56 43 0.76786 0.84748 0.79936 0.88571

9 0.0400 87 79 0.90805 0.84748 0.79936 0.88571

10 0.0400 55 50 0.90909 0.84748 0.79936 0.88571

11 0.0400 10 9 0.90000 0.84748 0.79936 0.88571

12 0.0016 13 11 0.84615 0.86475 0.81897 0.90037

13 0.0016 62 47 0.75806 0.86475 0.81897 0.90037

14 0.0016 104 90 0.86538 0.86475 0.81897 0.90037

15 0.0016 51 46 0.90196 0.86475 0.81897 0.90037

16 0.0016 11 9 0.81818 0.86475 0.81897 0.90037

Fig. 7.43. SAS Example G8: output from the model statement

log(μ) = β0 + β1x1 + β2x2 + · · ·+ βkxk. (7.43)

For a specific set of the explanatory variables, the distribution of potential
observed counts has a negative binomial distribution with mean μ and vari-
ance:

Var(Y ) = μ+ θμ2, (7.44)

where θ > 0 is a dispersion parameter. When θ = 0 the variance is equal to the
mean as with the Poisson distribution. Otherwise, the variance is larger than
the mean, but the relationship between the variance and the mean is not the
same as for the extra-Poisson variation model for which Var(Y ) = φ2μ. There-
fore, those two approaches for handling overdispersion are not identical, and
they generally yield slightly different estimates of the regression parameters.

Estimation and Hypothesis Testing

The GENMOD procedure uses maximum likelihood estimation to estimate
the regression parameters and the dispersion parameter θ for the negative bi-
nomial model. Wald chi-square tests for testing hypotheses about parameters
and contrasts are based on the approximate large sample normal distribution
for the parameter estimates. Profile-likelihood methods are used to construct
confidence intervals.
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The negative binomial and quasi-Poisson models cannot be compared with
AIC or BIC values because the quasi-likelihood method used to estimate pa-
rameters for the quasi-Poisson model is not the same as maximum likelihood
method used to estimate parameters for the negative binomial model. The
models can be compared less formally with graphical examination of the re-
lationship between the mean and variance. In this study three plates were
prepared for each level of quinoline. This replication allows both a sample
mean and a sample variance to be directly computed from the three counts
observed at each level of quinoline. A plot of the sample variances versus the
sample means can be constructed. If the plot exhibits a straight line pattern,
then the quasi-Poisson model is appropriate. If the plot exhibits an increasing
quadratic pattern, then the negative binomial model may be more appropri-
ate. If there is no replication, a smoothed plot of (yi − μ̂i)

2 against μ̂i can be
used. See Ver Hoef and Boveng (2007) for more details.

SAS Example G9

The SAS Example G9 program (shown in two parts: Figs. 7.44 and 7.45)
illustrates how proc genmod can be used for a negative binomial model with
the logarithm of the means linked to a linear combination of explanatory
variables as shown in (7.43). We will use the data for the study of the effect
of quinoline on the numbers of revertant TA98 Salmonella colonies that are
examined in SAS Example G7. The program shown in Fig. 7.44 is similar to the
program used to fit the quasi-Poisson model in Fig. 7.37. The data are entered
in the same way. To request the negative binomial model in the proc genmod

data set1;
input x c1 c2 c3;

z = log(x+10);
array cc {3} c1-c3;
drop c1-c3;
do i = 1 to 3;

y = cc(i); output;
end;

datalines;
0 15 21 29

10 16 18 21
33 16 26 33

100 27 41 60
333 33 38 41

1000 20 27 42
;

proc genmod data=set1 plots=(stdreschi);
model y = z x / dist=negbin link=log itprint;
output out=setp p=mean lower=cl_lower upper=cl_upper;

run;

proc print data=setp; run;

Fig. 7.44. SAS Example G9: Program
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step, however, the dist=Poisson option in the model statement is changed
to dist=negbin. The link=log option requests the natural logarithm of the
mean count as the link function.

The output in Fig. 7.46 shows that the optimization algorithm converges
in four iterations. A column is included for the estimation of the dispersion pa-
rameter. Final parameter estimates are shown in the second table in Fig. 7.46.
The estimates of the regression parameters are similar to those for the quasi-
Poisson model shown in Fig. 7.38 but the sets of estimates that are not iden-
tical. The standard errors are a bit smaller and the confidence intervals are
shorter for the negative binomial model. p-Values for the Wald chi-square
tests of significance for individual regression parameters are a bit smaller for
the negative binomial model, but the results for both models indicate that all
of the regression parameters are significantly different from zero. The plot of
the standardized Pearson residuals (not shown here) is almost identical to the
plot displayed in Fig. 7.39 for the quasi-Poisson model.

data setnew;
do i = 1 to 100;

w=10**(3*i/100);
m=exp(2.1728 + 0.3198*log(w+10) - 0.0010*w);
output;

end;
run;

proc sort data=set1; by x; run;

data setnew; set setp setnew; run;

proc sgplot data=setnew noautolegend;
scatter x=x y=y / markerattrs=(size=10 symbol=CircleFilled color=black);
loess x=w y=m / interpolation=cubic nomarkers;
xaxis label="Quinoline Level (micrograms per plate)" labelattrs=(size=14) valueattrs=(size=13);
yaxis label="Revertant TA98 Salmonella Colonies" labelattrs=(size=14) valueattrs=(size=13);
run;

proc means data=set1 noprint; by x;
var y;
output out=setv mean= mean var=var;
run;

proc sgplot data=setv noautolegend;
scatter x=mean y=var / markerattrs=(size=10 symbol=CircleFilled color=black);
reg x=mean y=var / degree=1;
reg x=mean y=var / degree=2 lineattrs=(pattern=MediumDash);
xaxis label="Estimate of Mean Count" labelattrs=(size=14) valueattrs=(size=13);
yaxis label="Variance Estimate" labelattrs=(size=14) valueattrs=(size=13);
run;

Fig. 7.45. SAS Example G9: part of the program for obtaining plots

The plot of the estimated curve shown in Fig. 7.47 is very similar to the
plot of the estimated curve for the quasi-Poisson model shown in Fig. 7.35. The
negative binomial and quasi-Poisson models both provide good descriptions of
these data. Estimates of mean numbers of Salmonella colonies are displayed
in the mean column of Fig. 7.48, and approximate 95% confidence intervals
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The GENMOD Procedure

Iteration History For Parameter Estimates

Iter Ridge LogLikelihood Prm1 Prm2 Prm3 Dispersion

0 0 1264.44336 2.1739641 0.3080112 -0.000959 0.0821862

1 0 1264.99986 2.2029631 0.3152694 -0.000992 0.0489248

2 0 1265.02414 2.1980081 0.3124097 -0.00098 0.048543

3 0 1265.02417 2.1976286 0.3125094 -0.00098 0.0487687

4 0 1265.02417 2.1976286 0.3125094 -0.00098 0.0487687

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95% 
Confidence 

Limits
Wald 

Chi-Square Pr > ChiSq

Intercept 1 2.1976 0.3213 1.5679 2.8274 46.78 <.0001

z 1 0.3125 0.0868 0.1424 0.4826 12.97 0.0003

x 1 -0.0010 0.0004 -0.0017 -0.0002 6.62 0.0101

Dispersion 1 0.0488 0.0275 0.0161 0.1473

Note: The negative binomial dispersion parameter was estimated by maximum likelihood.

Fig. 7.46. SAS Example G9: parameter estimates

are displayed in the least two columns of the table. The confidence intervals
reflect the extra variation associated with the negative binomial model.

The means procedure is used to compute the sample mean and sample
variance for the three counts observed for each of the six quinoline levels. The
by x statement causes the mean and variance of the counts to be computed
for each level of the quinoline variable (x). Note that the means procedure
is preceded by a sort procedure that sorts the lines in the input data file
(set1) according to the value of the variable x that is used in the by state-
ment of the means procedure. The presorting is needed to insure that the
observed counts are properly grouped by the values of the x variable when
the means procedure operates on the subsets of data defined by the levels of
the x variables. The noprint option is specified in the proc means statement
to suppress the display of the results in the program output. The out=setv

command in the output statement creates a temporary SAS data set with the
name setv that contains one line for each value of the quinoline variable (x),
with the sample mean and sample variance along with the value of x. Next
the proc sgplot step creates the plot displayed in Fig. 7.49. The scatter

statement uses x=mean to indicate that the values of the mean variable are
plotted on the horizontal axis and y=var to indicate that the values of the
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Fig. 7.47. SAS Example G9: plot of the estimated mean response curve and the
observed counts

var variable are on the vertical axis. The options after the backslash in the
scatter statement specify the plotting symbols as black-filled circles. The
first reg statement draws a straight line on the plot, and the second reg

statement draws the best-fitting quadratic curve on the plot. There are not
enough levels of quinoline in this study to provide a clear choice between the
quasi-Poisson and negative binomial models. The pattern in the plot does not
exhibit an obvious curved trend, indicating that the quasi-Poisson model may
be adequate. For these data, both the quasi-Poisson and the negative binomial
models provide essentially the same results.

7.5 Further Extensions of Generalized Linear Models

7.5.1 Introduction

In section we explore some extensions of models examined in Sects. 7.3 and 7.4.
Poisson and negative binomial regression models are modified to analyze rates
of occurrence of events instead of mean numbers of events when event counts
are obtained from inspection intervals of different lengths or from examina-
tion of areas of different sizes. This is accomplished by including an offset
variable in the proc genmod step to adjust for different levels of exposure.
Logistic regression models are extended to accommodate response variables
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Obs x z i y mean cl_lower cl_upper

1 0 2.30259 1 15 18.4896 14.0812 24.2781

2 0 2.30259 2 21 18.4896 14.0812 24.2781

3 0 2.30259 3 29 18.4896 14.0812 24.2781

4 10 2.99573 1 16 22.7376 18.7220 27.6146

5 10 2.99573 2 18 22.7376 18.7220 27.6146

6 10 2.99573 3 21 22.7376 18.7220 27.6146

7 33 3.76120 1 16 28.2386 24.0774 33.1189

8 33 3.76120 2 26 28.2386 24.0774 33.1189

9 33 3.76120 3 33 28.2386 24.0774 33.1189

10 100 4.70048 1 27 35.4649 29.1934 43.0837

11 100 4.70048 2 41 35.4649 29.1934 43.0837

12 100 4.70048 3 60 35.4649 29.1934 43.0837

13 333 5.83773 1 33 40.2671 32.3475 50.1257

14 333 5.83773 2 38 40.2671 32.3475 50.1257

15 333 5.83773 3 41 40.2671 32.3475 50.1257

16 1000 6.91771 1 20 29.3467 21.3228 40.3899

17 1000 6.91771 2 27 29.3467 21.3228 40.3899

18 1000 6.91771 3 42 29.3467 21.3228 40.3899

Fig. 7.48. SAS Example G9: plot of the estimated mean response curve and the
observed counts

with more than two response categories. The LOGISTIC procedure offers
several link functions and other options for accommodating multi-category
response variables.

7.5.2 Poisson Regression with Rates

In analyzing count data, it is sometimes necessary to adjust for varying levels
of exposure, such as differences in lengths of exposure or inspection times or
differences in sizes of inspection areas. In a comparative study of occurrence
of side effects from several medical treatments in which patients are not all
treated for the same amount of time, it may be more meaningful to analyze
rates, the number of adverse events per unit time, than the numbers of adverse
events. Similarly, in ecological studies of species abundance, it is generally
more meaningful to analyze species counts per unit area when counts are
obtained from inspecting areas of different sizes at different locations. If a
quantitative measure of exposure is available, such as the lengths of inspection
intervals, then rates can be analyzed by including the values of that measure
of exposure as an offset variable in a Poisson or negative binomial regression
analysis.
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Fig. 7.49. SAS Example G9: estimated variances plotted against estimated means

Model

Suppose the response variable has either a Poisson or negative binomial dis-
tributions with mean count μ that changes with the values of some set of
explanatory variables, x1, x2, . . . , xk. Using z to represent the corresponding
measure of exposure, the expected rate, expected number of events per unit
of exposure, is μ/z. Using a log link function, the expected rate is related to
the values of the explanatory variables as

log
(μ

z

)
= β0 + β1x1 + β2x2 + · · ·+ βkxk. (7.45)

Note that this model can be reexpressed as

log(μ) = log(z) + β0 + β1x1 + β2x2 + · · ·+ βkxk. (7.46)

This model is fit with the proc genmod code used to fit Poisson or nega-
tive binomial regression models with an offset= option added to the model

statement. As indicated on the right side of Eq. (7.46), the offset= option
must identify the variable in the data file that contains values of the natural
logarithm of the exposure variable.

For a quantitative explanatory variable xj , the coefficient βj represents
the change in the expected incident rate when the xj variable is increased by
one unit while the values of the other explanatory variables are held constant.
Then exp(βj) represents the ratio of expected incidence rates at xj + 1 ver-
sus xj when the values of the other explanatory variables are held constant.
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Effects of categorical explanatory variables are interpreted in the application
considered below.

Estimation and Hypothesis Testing

The GENMOD procedure uses maximum likelihood estimation to obtain es-
timates of model parameters. Confidence intervals and test of hypotheses are
computed as described in Sects. 7.3.3 and 7.4.3.

Using PROC GENMOD to Analyze Rates

Moore and Beckman (1988) analyze data from a study of failures for 90 valves
from one pressurized nuclear reactor. The number of failures (y) was recorded
for each valve along with the operating time (z) as a measure of exposure.
Operating times were recorded in 100 hour units. Five explanatory variables
which may be associated with differences in failure rates were also recorded:

System: 1 = containment, 2 = nuclear, 3 = power conversion,
4 = safety, 5 = process auxiliary.

Operator type: 1 = air, 2 = solenoid, 3 = motor driven, 4 = manual.
Valve type: 1 = ball, 2 = butterfly, 3 = diaphram, 4 = gate,

5 = globe, 6 = directional control.
Head size: 1 =≤ 2 inches, 2 = 2− 10 inches, 3 = 10− 30inches.

Operation mode: 0 = normally open, 1 = normally closed.

SAS Example G10

The SAS Example G10 program (see Fig. 7.50) illustrates how proc genmod

can be used to perform the necessary computations. The data are read from
an external file identified by the infile statement. There is one line of data
for each valve. The information for each valve includes values of the system,
operation type (otype), valve type (vtype), head size (hsize), and operation
mode (mode) variables in addition to the number of valve failures (failures)
and the operation time (time) in hundreds of hours. These data are shown in
Table B.16.

To indicate that the analysis will pertain to rates (numbers of failures
per 100 hours of operation time) rather than counts, the offset=logtime

option is included in the model statement options. The variable logtime,
the natural logarithm of the operation time, is created in the data step with
the logtime=log(time) statement. Note that the natural logarithm of the
exposure variable must be used in the offset option.

The form of the model for the expected failure rate, mean number of valve
failures per 100 hours of operation, for valves of the j-th valve type, k-th
operator type, and �-th head size operating in a specific mode in the i-th
system is

log
(μijk�m

time

)
= β0 + γi + δj + τk + λ� + β1(mode), (7.47)
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data set1;
input system otype vtype hsize mode failures time @@;
logtime = log(time);
infile "C:\Users\user_name\Documents\...\valve.txt";
run;

proc genmod data=set1;
class system otype vtype hsize ;
model failures = system otype vtype hsize mode /

dist=poisson link=log offset=logtime itprint;
estimate ’System: safety vs. process aux.’ system 0 0 0 1 -1 ;
estimate ’System: power conv. vs. containment’ system -1 0 1 0 0 ;
estimate ’Mode: closed vs. open’ mode 1 ;
estimate ’Specific case’ intercept 1 system 1 0 0 0 0 otype 0 0 1 0

vtype 0 0 0 1 0 0 hsize 0 0 1 mode 1 / exp;
output out=setp p=mean;

run;

proc print data=setp; run;

Fig. 7.50. SAS Example G10: program for proc genmod to analyze rates

where μijk�m is the mean number of failures for the corresponding Poisson
distribution, with the value of the time variable providing the length of the
period of operation. Because the system otype, vtype, and hsize variables are
included in a class statement, they are modeled as categorical explanatory
variables using a separate parameter for each level of each of these variables.
By default, the set of parameters for each of these variables is constrained
by setting the parameter for the highest level of each variable equal to zero,
making those levels the baseline levels for the corresponding variables. In this
case, the constraints are γ5 = δ4 = τ6 = λ3 = 0, and zero values are re-
ported in corresponding positions in the table of estimated coefficients shown
in Fig. 7.51. Because the mode variable is not included in the class state-
ment, it is treated as a quantitative explanatory variable and multiplied by
a coefficient parameter (β1). The model statement specifies that the natural
logarithms of the true failure rates are related to the additive effects of the five
explanatory variables. The log link function is specified with the link=log op-
tion in the model statement, and the dist=poisson option is used to specify
Poisson distributions for the failure counts.

Maximum likelihood estimates of the model parameters produced by proc

genmod are displayed in Fig. 7.51. For the system variable with levels coded 1,
2, 3, 4, and 5, the model parameters and associated systems are containment
(γ1), nuclear (γ2), power conversion (γ3), safety (γ4), and process auxiliary
(γ5), respectively. The process auxiliary system is the baseline category, and
expected failure rates of the other four systems are compared to it. For ex-
ample, γ̂4 = 0.8902 is the estimate of the parameter for the safety system.
This indicates that the estimate of the logarithm of the failure rate for the
safety system is 0.8902 units larger than the estimate of the logarithm of the
failure rate for the process auxiliary system. This is an estimate of the log-
arithm of the ratio of expected failure rates for the two systems, the safety
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The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95% 
Confidence 

Limits
Wald 

Chi-Square Pr > ChiSq

Intercept 1 -9.5762 0.9311 -11.4010 -7.7513 105.79 <.0001

system 1 1 -0.3329 0.5841 -1.4777 0.8119 0.32 0.5687

system 2 1 0.5826 0.4145 -0.2298 1.3951 1.98 0.1599

system 3 1 0.6859 0.3167 0.0652 1.3066 4.69 0.0303

system 4 1 0.8902 0.4496 0.0090 1.7713 3.92 0.0477

system 5 0 0.0000 0.0000 0.0000 0.0000 . .

otype 1 1 2.4723 0.4766 1.5382 3.4064 26.91 <.0001

otype 2 1 3.1767 0.7325 1.7411 4.6123 18.81 <.0001

otype 3 1 1.2797 0.5009 0.2979 2.2615 6.53 0.0106

otype 4 0 0.0000 0.0000 0.0000 0.0000 . .

vtype 1 1 -1.0089 0.9301 -2.8319 0.8140 1.18 0.2780

vtype 2 1 -0.8236 0.8788 -2.5461 0.8989 0.88 0.3487

vtype 3 1 -0.4022 0.8728 -2.1128 1.3085 0.21 0.6450

vtype 4 1 1.9500 0.7365 0.5065 3.3936 7.01 0.0081

vtype 5 1 0.7843 0.7479 -0.6817 2.2502 1.10 0.2944

vtype 6 0 0.0000 0.0000 0.0000 0.0000 . .

hsize 1 1 -1.6146 0.3210 -2.2438 -0.9853 25.29 <.0001

hsize 2 1 -1.6268 0.2341 -2.0857 -1.1679 48.27 <.0001

hsize 3 0 0.0000 0.0000 0.0000 0.0000 . .

mode 1 0.2093 0.1903 -0.1637 0.5824 1.21 0.2714

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

Fig. 7.51. SAS Example G10: parameter estimates

system relative to the process auxiliary system. The values of the chi-square
test (3.92) and corresponding p-value (0.0477) indicate that the failure rates
for these two systems are significantly different at the 0.05 level of significance.
The ratio of the expected failure rates for these two systems is estimated as
exp(γ̂4) = exp(0.8902) = 2.4356. This estimate is shown in the first row of
the Mean Estimate column in Fig. 7.52. The 95% confidence interval (1.0091,
5.8787) shown in the next two columns of the first row indicates that the ex-
pected failure rate of valves in the safety system is likely to be between 1.0091
and 5.8787 times higher than the expected failure rate of valves in the process
auxiliary system. This output was produced by the first estimate statement
in the proc genmod step. The labels given in quotes in the estimate state-
ment are used to label the rows in Fig. 7.52. The comparison between the
safety and process auxiliary systems is specified by inserting the name of the
system variable to the right of the label and then inserting a value for each
level of the system variable. To obtain the difference between the logarithms
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of the expected valve failure rates for the two systems, a one is inserted in
the fourth position corresponding to the safety system, and a minus one is
inserted in the fifth position corresponding to the process auxiliary system.
Zeros are inserted in the first three positions because the first three systems
are not included in this comparison. This produces

(0)(γ̂1) + (0)(γ̂2) + (0)(γ̂3) + (1)(γ̂4) + (−1)(γ̂5) = γ̂4 − γ̂5.

Note that this is γ̂4 because γ̂5 is zero under the model constraints.
Comparisons do not have to be made with the baseline category. The

second estimate statement in the proc genmod step compares the estimates
of the logarithms of expected failure rates for the power conversion (i = 3)
and containment (i = 1) systems. Using the estimates reported in Fig. 7.51,
the estimated difference is

γ̂3 − γ̂1 = 0.6859− (−0.3329) = 1.0188.

The GENMOD Procedure

Contrast Estimate Results

Label
Mean 

Estimate

Mean
L'Beta 
Estimate Standard

Error Alpha

L'Beta

Chi-Square Pr > ChiSq
Confidence 

Limits Confidence Limits

System: safety vs. process 
aux.

2.4356 1.0091 5.8787 0.8902 0.4496 0.05 0.0090 1.7713 3.92 0.0477

System: power conv. vs. 
containment

2.7699 1.0285 7.4598 1.0188 0.5055 0.05 0.0281 2.0095 4.06 0.0439

Mode: closed vs. open 1.2329 0.8490 1.7903 0.2093 0.1903 0.05 -0.1637 0.5824 1.21 0.2714

Specific case 0.0015 0.0006 0.0038 -6.4700 0.4552 0.05 -7.3622 -5.5778 202.02 <.0001

Exp(Specific case) 0.0015 0.0007 0.05 0.0006 0.0038

Fig. 7.52. SAS Example G10: estimates of linear combinations of parameters

This estimate is shown in the second row of the L’Beta Estimate col-
umn in Fig. 7.52. The standard error is 0.5055, and a 95% confidence interval
extends from 0.0281 to 2.0095. Because the confidence interval is shifted to
the right of zero, it indicates that the expected failure rates are significantly
different for the two systems at the 0.05 level of significance. The value of
the chi-square test statistic is 4.06 for test of the null hypothesis that the
expected failure rates of valves are the same for the two systems. The cor-
responding p-value is 0.0439, indicating a significant difference at the 0.05
level of significance. The value under the Mean Estimate column in this row,
2.7699 = exp(1.0188), is an estimate of the ratio of the expected failure rates
for the two systems, power conversion over containment. The corresponding
95% confidence interval indicates that the ratio of expected failure rates is
likely to be between 1.0285 and 7.4598.
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The coefficient, β1, for the mode variable represents the difference between
the logarithms of the expected failure rates for valves in the closed and open
operation modes for any particular combination of the levels of the system,
valve type, operator type, and head size variables. From the mode row in
Fig. 7.51, the estimate is β̂1 = 0.2093 with a standard error of 0.1930. The
95% confidence interval extends from −0.1637 to 0.5824. The value of a chi-
square test of the null hypothesis that β1 = 0 is 1.21 with a p-value of 0.2714.
This analysis does not establish a significant difference between the expected
failure rates for the two operation modes. The parameter is also estimated with
the third estimate statement in the proc genmod step, and the same results
are included in last seven columns of the third row in Fig. 7.52. The estimate
statement provides additional information in the first three columns. An esti-
mate of exp(β1), the ratio of expected failure rates for closed operation relative
to open operation, is reported in the Mean Estimate column as 1.2329. This
is followed by a 95% confidence interval (0.8490, 1.7903).

An example of estimation of the failure rate for a specific combination of
levels of the explanatory variables is provided by the fourth estimate state-
ment in the proc genmod step. In this example the estimate of the logarithm
of the failure rate is −6.47 for the containment system (level 1), operation type
(level 3), and valve type (level 4) with head size between 10 and 30 inches
(level 3) running in closed mode. The estimate of the failure rate, shown in
the Mean Estimate column, is 0.0015 = exp(−6.47) valve failures per 100
hours of operation, with a 95% confidence interval extending from 0.0006 to
0.0038 valve failures per 100 hours of operation. To obtain a standard error
for the estimate of the value failure rate under these specific conditions, the
exp option is included in the estimate statement. This produces the last
row of values in Fig. 7.52. The standard error is 0.0007 valve failures per 100
hours of operation. The rest of the information on this line also appears on
the previous line.

The output statement in the proc genmod step creates an output file
named outp and writes the values of the explanatory variables, the exposure
variable (time), and the response variable (failures) onto the file. The p=mean
option adds the estimate of the mean number of failures during the entire
exposure (operation time) for each case to this output file under the user-
specified variable name mean; ninety-fine percent confidence limits are added
in the columns labeled lower and upper, respectively. There is one line in
this output file for each of the 90 cases in the data set. The first five and last
three lines are displayed in Fig. 7.53.

Note that the estimate of the expected failure rate is obtained by dividing
the estimate of the mean count by the exposure time. The first line in Fig. 7.53
corresponds to the case in which valves in the containment system (level 1),
operation type (level 3), and valve type (level 4) with head size between 10 and
30 inches (level 3) are running in closed mode. The mean column in Fig. 7.53
displays an estimate of 2.7143 for the expected number of valve failures during
1752 × 100 = 175,200 hours of operation, and a 95% confidence interval is
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system otype vtype hsize mode failures time logtime mean lower upper

1 1 3 4 3 1 2 1752 7.46851 2.7143 1.1122 6.6240

2 1 3 4 3 0 2 1752 7.46851 2.2016 0.8945 5.4188

3 1 3 5 1 1 1 876 6.77537 0.0842 0.0283 0.2507

4 2 1 2 2 0 0 876 6.77537 0.1112 0.0309 0.4004

5 2 1 3 2 1 0 876 6.77537 0.2090 0.0636 0.6871

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

88 5 4 4 1 0 0 438 6.08222 0.0425 0.0132 0.1363

89 5 4 4 2 1 0 438 6.08222 0.0517 0.0170 0.1574

90 5 4 5 2 0 0 438 6.08222 0.0131 0.0042 0.0411

Fig. 7.53. SAS Example G10: estimates of mean counts

(1.1122, 6.6240). The estimated failure rate is 2.7143/1752 = 0.001549 failures
per 100 hours of operation. A 95% confidence interval for the expected failure
rate is (1.1122/1752, 6.6240/1752) or (0.000635, 0.003781). This matches with
the results obtained for this case from the fourth estimate statement in the
proc genmod step.

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 74 195.6781 2.6443

Scaled Deviance 74 195.6781 2.6443

Pearson Chi -Square 74 334.8645 4.5252

Scaled Pearson X2 74 334.8645 4.5252

Log Likelihood 33.1933

Full Log Likelihood -150.0116

AIC (smaller is better) 332.0232

AICC (smaller is better) 339.4753

BIC (smaller is better) 372.0202

Fig. 7.54. SAS Example G10: goodness-of-fit statistics from proc genmod

Estimates of parameters and standard errors and corresponding confidence
intervals may have little value if the model specified in the proc genmod state-
ment is incorrect. Goodness-of-fit information shown in Fig. 7.54 indicates that
there is more variation in the observed failure rates about the estimate of
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the proposed model than the a Poisson distribution can accommodate. Note
that the value of the Pearson chi-square statistic is larger than its degrees
of freedom by a factor of 4.52. Either the logarithms of the expected fail-
ure rates are not well described by a model with additive effects of the five
explanatory variables or the Poisson distribution is incorrect. To investigate
the latter possibility, the same model is fit to the data with the Poisson dis-
tribution replaced by the negative binomial distribution. The proc genmod

step is shown in Fig. 7.55. Only the dist=nb option in the model statement
differs from the program code in Fig. 7.50. The data are entered in the same
way.

proc genmod data=set1;
class system otype vtype hsize ;
model failures = system otype vtype hsize mode /

dist=nb link=log offset=logtime itprint;
estimate ’System: safety vs. process aux.’ system 0 0 0 1 -1 ;
estimate ’System: power conv. vs. containment’ system -1 0 1 0 0 ;
estimate ’Mode: closed vs. open’ mode 1 ;
estimate ’Specific case’ intercept 1 system 1 0 0 0 0 otype 0 0 1 0

vtype 0 0 0 1 0 0 hsize 0 0 1 mode 1 / exp;
output out=setp p=mean;

run;

proc print data=setp; run;

Fig. 7.55. SAS Example G10: program for proc genmod: negative binomial model fit

Goodness-of-fit information for this model, displayed in Fig. 7.56, indicates
that the negative binomial distribution is able to account for the variability in
the observed failure rates relative to the fitted model. As shown in Fig. 7.57,
standard errors of parameter estimates are larger than when the Poisson dis-

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 74 70.5502 0.9534

Scaled Deviance 74 70.5502 0.9534

Pearson Chi -Square 74 82.2224 1.1111

Scaled Pearson X2 74 82.2224 1.1111

Log Likelihood 65.3058

Full Log Likelihood -117.8991

AIC (smaller is better) 269.7983

AICC (smaller is better) 278.2983

BIC (smaller is better) 312.2951

Fig. 7.56. SAS Example G10: goodness of fit for negative binomial model
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tribution was used. These larger standard errors better reflect the level of
variability in the observed failure rates. Note that some of the parameter
estimates in Fig. 7.57 are quite different from the corresponding estimates
in Fig. 7.51 when the Poisson distribution was imposed. The Poisson model
restriction that the mean is equal to the variance of each count affects the
estimates of the parameters in the systematic part of the model. The relation-
ship between the means and variances of the counts is less of an issue with the
negative binomial model because it has an extra scale parameter that allows
the variances to be inflated relative to the means. For the negative binomial
model, the variances are Var(Y ) = μ+θμ2. The maximum likelihood estimate

of the negative binomial dispersion parameter is θ̂ = 1.3131, as shown in the
last line of table in Fig. 7.57.

Output from the estimate statements in the program code for the nega-
tive binomial model is displayed in Fig. 7.58. These estimates are interpreted
in the same way as for the Poisson model. Note that the standard errors of
the estimates are larger and the confidence intervals are wider than for the
Poisson model. By accounting for the extra-Poisson variation in the valve
failure counts, the negative binomial model provides standard errors and con-
fidence intervals that more accurately reflect the variation in the processes
that generated the data.

As described above for the Poisson model, estimates of mean counts for
valve failures are written to a user-specified file outp by the output state-
ment in the proc genmod step. The p=mean option adds the estimate of the
mean number of failures during the entire exposure period (operation time)
for each case to this output file under the user-specified variable name mean;
ninety-five percent confidence limits are added in the columns labeled lower

and upper, respectively. Results displayed in Fig. 7.59 reveal much wider con-
fidence intervals than those reported for the Poisson model in Fig. 7.53, and
the estimates of the mean counts differ as well. The first line in Fig. 7.59 shows
an estimate of 5.4510 for the mean number of failures in 175,200 hours of op-
eration for the negative binomial model, while the estimated mean number of
failures is 2.7143 under the Poisson model. The confidence interval under the
negative binomial model is (0.7982, 27.2238), much wider than the 95% con-
fidence interval under the Poisson model. Remember that the Poisson model
does not adequately account for the variation in the counts and produces
confidence intervals that are too short to actually provide 95% confidence.
The estimated failure rate is 5.4510/1752 = 0.00311 failures per 100 hours
of operation, and a 95% confidence interval for the expected failure rate is
(0.79823/1752, 37.2238/1752) or (0.000456, 0.02125). This matches with the
results for this case obtained from the fourth estimate statement in the proc
genmod step and displayed in the last two rows of Fig. 7.58.
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The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95% 
Confidence 

Limits
Wald 

Chi-Square Pr > ChiSq

Intercept 1 -8.1760 1.3706 -10.8624 -5.4897 35.58 <.0001

system 1 1 0.0207 1.0925 -2.1205 2.1619 0.00 0.9849

system 2 1 0.4450 0.6322 -0.7941 1.6842 0.50 0.4815

system 3 1 0.4323 0.5472 -0.6401 1.5047 0.62 0.4295

system 4 1 1.4278 0.9950 -0.5225 3.3780 2.06 0.1513

system 5 0 0.0000 0.0000 0.0000 0.0000 . .

otype 1 1 1.1931 0.7601 -0.2966 2.6828 2.46 0.1165

otype 2 1 1.8574 1.1258 -0.3492 4.0640 2.72 0.0990

otype 3 1 -0.1772 0.8036 -1.7522 1.3979 0.05 0.8255

otype 4 0 0.0000 0.0000 0.0000 0.0000 . .

vtype 1 1 -0.0770 1.4076 -2.8359 2.6820 0.00 0.9564

vtype 2 1 -1.1566 1.2562 -3.6187 1.3056 0.85 0.3572

vtype 3 1 -0.3407 1.1727 -2.6391 1.9576 0.08 0.7714

vtype 4 1 1.6891 0.9773 -0.2264 3.6045 2.99 0.0839

vtype 5 1 1.2005 1.0357 -0.8294 3.2304 1.34 0.2464

vtype 6 0 0.0000 0.0000 0.0000 0.0000 . .

hsize 1 1 -1.6942 0.6909 -3.0483 -0.3401 6.01 0.0142

hsize 2 1 -1.7955 0.5069 -2.7890 -0.8019 12.55 0.0004

hsize 3 0 0.0000 0.0000 0.0000 0.0000 . .

mode 1 0.8707 0.4261 0.0357 1.7058 4.18 0.0410

Dispersion 1 1.3131 0.4171 0.7046 2.4472

Note:The negative binomial dispersion parameter was estimated by maximum likelihood.

Fig. 7.57. SAS Example G10: parameter estimates

7.5.3 Logistic Regression with Multiple Response Categories

Logistic regression models may be used when the categorical response variable
has more than two categories. If there are J response categories, a set of J−1
binary logistic regression models is required, but there are many ways to define
a set J − 1 of logistic regression models. Different sets of logistic regression
models may lead to different estimates of the response probabilities.

For a particular set of values for the explanatory variables, x1, x2, . . . , xk,
let πj denote the true probability of observing a response in the j-th cate-
gory for j = 1, 2, . . . , J . The response categories must be defined so that any
possible response must fall into one of the categories and it cannot fall into
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The GENMOD Procedure

Contrast Estimate Results

Label
Mean 

Estimate

Mean

L'Beta 
Estimate

Standard
Error Alpha

L'Beta

Chi-Square Pr > ChiSq
Confidence 

Limits Confidence Limits

System: safety vs. 
process aux.

4.1693 0.5931 29.3112 1.4278 0.9950 0.05 -0.5225 3.3780 2.06 0.1513

System: power 
conv. vs. 
containment

1.5093 0.2001 11.3807 0.4116 1.0308 0.05 -1.6087 2.4319 0.16 0.6897

Mode: closed vs. 
open

2.3886 1.0363 5.5057 0.8707 0.4261 0.05 0.0357 1.7058 4.18 0.0410

Specific case 0.0031 0.0005 0.0212 -5.7727 0.9802 0.05 -7.6939 -3.8516 34.68 <.0001

Exp(Specific case) 0.0031 0.0030 0.05 0.0005 0.0212

Fig. 7.58. SAS Example G10: estimates of linear combinations of parameters

Obs system otype vtype hsize mode failures time logtime mean lower upper

1 1 3 4 3 1 2 1752 7.46851 5.4510 0.79823 37.2238

2 1 3 4 3 0 2 1752 7.46851 2.2821 0.34002 15.3161

3 1 3 5 1 1 1 876 6.77537 0.3073 0.03767 2.5062

4 2 1 2 2 0 0 876 6.77537 0.0662 0.00831 0.5281

5 2 1 3 2 1 0 876 6.77537 0.3577 0.05639 2.2692

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

88 5 4 4 1 0 0 438 6.08222 0.1226 0.02187 0.6872

89 5 4 4 2 1 0 438 6.08222 0.2646 0.04955 1.4130

90 5 4 5 2 0 0 438 6.08222 0.0680 0.00936 0.4937

Fig. 7.59. SAS Example G10: estimates of mean counts

more than one category. Then ΣJ
j=1πj = 1. It is also assumed that πj > 0 for

every category. By default, proc logistic designates the response variable
category with the highest alphanumeric value, or the highest numeric value
when category labels are numbers, as the baseline category.

Model

There are a number of ways to construct a set of J − 1 logistic regression
models when the response variable has J categories. One possibility is to use
the log-odds of observing a response in the j-th category relative to the J-th
category for each of the first j = 1, 2, . . . , J − 1 categories. Then the J-th
category becomes the baseline category to which each of the other categories
is compared. This is called a baseline category model, and the J − 1 logistic
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regression models used to describe how the log-odds change with changes in
the explanatory variables are

log

(
π1

πJ

)

= β01 + β11x1 + β21x2 + · · ·+ βk1xk

log

(
π2

πJ

)

= β02 + β12x1 + β22x2 + · · ·+ βk2xk

·
·
·

log

(
πJ−1

πJ

)

= β0,J−1 + β1,J−1x1 + · · ·+ βk,J−1xk

(7.48)

For this set of models the probability that the response falls into the j-th
category under conditions given by a particular set of values for x1, x2, . . . , xk

is

πj =
exp(β0j + β1jx1 + · · ·+ βkjxk)

1 +ΣJ−1
�=1 exp(β0� + β1�x1 + · · ·+ βk�xk)

(7.49)

for j = 1, 2, . . . , J − 1, and

πJ =
1

1 +ΣJ−1
�=1 exp(β0� + β1�x1 + · · ·+ βk�xk)

. (7.50)

This model is invoked in the proc logistic step by including the option

link=glogit in the model statement. It can be used for either nominal or
ordinal categorical response variables. Although the set of J − 1 logistic re-
gression models changes when a different category is designated as the base-
line category for the response variable, the estimates of the response category
probabilities are unchanged. In this sense, the choice of the baseline category
for the response variable does not matter.

In some applications the user may want to restrict the model by using the
same regression coefficient for a particular explanatory variable in all of the
J − 1 logistic regression models. This can be done by including that name of
the explanatory variable in the equalslopes option in the model statement.

Although the J − 1 logistic regression models define the log-odds of ob-
serving a response in each of the first J − 1 categories relative to a baseline
category, a regression model for the log-odds can be obtained for any pair
of response categories. The log-odds of the j-th category relative to the �-th
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category, for example, are

log

(
πj

π�

)

= log

(
πj

πJ
· πJ

π�

)

= log

(
πj

πJ

)

− log

(
π�

πJ

)

= [β0j + β1jx1 + · · ·+ βkjxk]

− [β0� + β1�x1 + · · ·+ βk�x�]

= (β0j − β0�) + (β1j − β1�)x1 + · · ·+ (βkj − βk�)xk.

(7.51)

An equivalent model is obtained from the set of J − 1 logistic regression
models corresponding to successive pairs of adjacent response categories. This
set of J − 1 logistic regression models is

log

(
π1

π2

)

= γ01 + γ11x1 + · · ·+ γk1xk

log

(
π2

π3

)

= γ02 + γ12x1 + · · ·+ γk2xk

·
·
·

log

(
πJ−1

πJ

)

= γ0,J−1 + γ1,J−1x1 + · · ·+ γk,J−1xk

(7.52)

The adjacent categories model is invoked with the proc logistic step by
including the link=alogit option in the model statement. It can be used
for either nominal or ordinal categorical response variables. This set of J − 1
logistic equations produces the same estimates for the response category prob-
abilities as the baseline category logistic regression model. With the exception
of the intercepts, proc logistic uses the same set of regression parameters
for all J − 1 logistic regression models by default when the link=alogit op-
tion is specified. To remove this restriction and allow the sets of regression
parameters to vary across the different logistic regression models, as shown in
Eq. (7.52), the names of all of the explanatory variables must be included in the
unequalslopes option in the model statement. The equal slopes constraint
can be relaxed for a subset of the explanatory variables by including only the
names of the specific subset of explanatory variables in the unequalslopes

option.
A set of J − 1 logistic regression models based on cumulative logits may

be used for an ordinal categorical response variable with J categories. The set
of logistic regression models is
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log

(
π1

π2 + π3 + · · ·+ πJ

)

= β01 + β11x1 + · · ·+ βk1xk

log

(
π1 + π2

π3 + · · ·+ πJ

)

= β02 + β12x1 + · · ·+ βk2xk

·
·
·

log

(
π1 + π2 + · · ·+ πJ−1

πJ

)

= β0,J−1 + β1,J−1x1 + · · ·+ βk,J−1xk

(7.53)

This model is invoked with the proc logistic step by including the link=

clogit option in the model statement. It is the default model for the LO-
GISTIC procedure when the response variable has more than two categories.
It is not equivalent to the baseline category and adjacent categories models
as it produces different estimates of the response category probabilities. The
log-odds for adjacent categories are not linear functions of the explanatory
variables for this model. With exception of the intercepts, proc logistic

uses the same set of regression parameters for all J − 1 logistic regression
models by default when the link=clogit option is specified. To remove this
restriction and allow the sets of regression parameters to vary across the dif-
ferent logistic regression models, as shown in Eq. (7.53), the names of all of
the explanatory variables must be included in the unequalslopes option in
the model statement. The equal slopes constraint can be relaxed for a subset
of the explanatory variables by including the names of the specific subset of
explanatory variables in the unequalslopes option.

Estimation and Hypothesis Testing

The LOGISTIC procedure uses maximum likelihood estimation to estimate
regression coefficients and response category probabilities. Approximate tests
of hypotheses and confidence intervals are based on the large sample properties
of maximum likelihood estimators. These results are more accurate for larger
sample sizes.

Using PROC LOGISTIC to Fit Logistic Regression Models with
Multi-Category Response Variables

The application of multi-category logistic regression is illustrated with the
analysis of data from a study of the toxic effects of diethylene glycol dimethyl
ether (DIEGdiMe) on pregnant mice reported by Price (1987) (also see
Agresti, 2013, pp. 312–313). Early in its pregnancy, each female mouse was
exposed to exactly one of five randomly assigned concentrations of DIEGdiMe
for exactly 10 days. Subsequently, each fetus was classified as either non-live
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(j = 1), malformed (j = 2), or normal (j = 3). The percentages of fetuses in
the three response categories are displayed in Table 7.2 for each of the five
DIEGdiMe concentrations. The counts are included with the program code
shown in Fig. 7.60.

Table 7.2. SAS Example G11: observed percentages for three response categories

Concentration Response rates (percentages) Number of
(mg/kg/day) Non-live Malformed Normal fetuses exposed

0 5.05 0.34 94.61 297

62.5 7.02 0.00 92.98 242

125 7.05 2.24 90.71 312

250 12.71 19.73 67.56 299

500 50.53 46.32 3.16 285

There are five lines of data shown in the data step in Fig. 7.60, one line
for each concentration of DIEGdiME used in the study. On each line, the
concentration of DIEGdiME is followed by the counts for the three possible
outcomes, non-live, malformed, and normal, respectively. This data step also
creates a new variable, conc2, containing the squares of the concentrations.
The second data step in Fig. 7.60 puts the counts for the three response cate-
gories on three different lines. The counts are now stored in the variable y, and
information on the corresponding outcome categories is stored in the outcome
variable. The outcome variable uses 1 to designate a non-live outcome, 2 to
designate a malformed outcome, and 3 to designate a normal outcome. The
keep statement in this data step retains only the values of the concentration
(conc), square of the concentration (conc2), outcome category (outcome),
and corresponding count (y) variables.

The third data step creates a second data file, called set2, that contains
101 concentration values starting at 0 and running up to 500 in increments of
5. It stores the concentrations in the conc variable, and it stores the squares
of those concentrations in the conc2 variable. It creates three lines in the
data file for each concentration, one for each of the three outcome categories,
and the category labels are stored in the outcome variable. The corresponding
counts, stored in the y variable, are all set equal to zero. These data lines are
used to obtain maximum likelihood estimates of the three outcome probabil-
ities for the 101 concentrations, for the purpose of plotting probability curves
to show how those probabilities change as the concentration of DIEGdiME
increases. The names of the variables in the set2 data set match the cor-
responding variable names in the set1 data set. This enables the two data
sets to be combined into a single data set, called set1 in the fourth data
step. Because the values of y are all zero in set2, the cases in the combined
data set that come from set2 are not used to estimate the coefficients in the
multi-category logistic regression model, but proc logistic does compute
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maximum likelihood estimates of the three response category probabilities for
those cases.

data set1;
input conc y1 y2 y3;
conc2 = conc*conc;

datalines;
0 15 1 281

62.5 17 0 225
125 22 7 283
250 38 59 202
500 144 132 9
run;

data set1; set set1;
outcome=1; y=y1; output;
outcome=2; y=y2; output;
outcome=3; y=y3; output;

keep conc conc2 outcome y;
run;

data set2;
do conc = 0 to 500 by 5;
do outcome = 1 to 3;
conc2=conc*conc;
y=0;
output; end; end;
run;

data set1; set set1 set2; run;

proc logistic data=set1;
model outcome(ref="3") = conc conc2 / itprint covb maxiter=50 link=glogit;
weight y;
output out=setp p=phat;
run;

Fig. 7.60. SAS Example G11: program for a baseline log-odds model

Because both conc and conc2 appear on the right side of the equal side
in the model statement shown in Fig. 7.60, t proc logistic fits a pair of
logistic regression models in which log-odds are related to quadratic functions
of the concentration of DIEGdiME. The baseline logistic regression model is
constructed with the third category (normal = 3) designated as the baseline
category by including the (ref="3") option on the left side of the equal sign
in the model statement. The weight statement indicates that the counts are
provided by the y variable.

Maximum likelihood estimates of the regression coefficients are displayed
in Fig. 7.61. One set of parameter estimates is reported for each of the logistic
regression models that comprise the baseline model. The estimated models
are
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The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Parameter outcome DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 1 -2.7824 0.2099 175.6874 <.0001

Intercept 2 1 -6.7154 0.7725 75.5763 <.0001

conc 1 1 -0.00168 0.00208 0.6513 0.4196

conc 2 1 0.0252 0.00512 24.1908 <.0001

conc2 1 1 0.000025 4.203E-6 36.6010 <.0001

conc2 2 1 -0.00001 7.732E-6 2.7826 0.0953

Fig. 7.61. SAS Example G11: estimates of model parameters

log

(
π̂non-live
π̂normal

)

= −2.7824− 0.00168(conc) + 0.000025(conc)2

log

(
π̂malformed
π̂normal

)

= −6.7156 + 0.0252(conc)− 0.00001(conc)2
(7.54)

Including the squared concentration as an explanatory variable allows the esti-
mated probability of malformed fetuses to initially increase as the DIEGdiME
concentration increases, reach a peak, and then decline with further increases
in the DIEGdiME concentration, while the probability of non-live fetuses con-
tinues to increase. The estimated probability of normal fetuses monotonically
declines as the DIEGdiME concentration increases.

Corresponding formulas for the estimates of the probabilities of the three
response categories are

π̂non-live =
exp(−2.7824− (0.00168)conc + (0.000025)conc2)

δ

π̂malformed =
exp(−6.7154 + (0.0252)conc− (0.00001)conc2)

δ

and

π̂normal =
1

δ

where

δ = 1 + exp(−2.7824− (0.00168)conc + (0.000025)conc2)

+ exp(−6.7154 + (0.0252)conc− (0.00001)conc2)
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The probability curves are displayed in Fig. 7.62. The probability of a normal
fetus declines monotonically, and the probability of a non-live fetus increases
monotonically as the concentration of DIEGdiME increases. The probability
of a malformed fetus initially increases as the DIEGdiME concentration in-
creases, but it reaches a peak and then declines with further increase in the
DIEGdiME concentration, while the probability of a non-live fetus continues
to increase.

Fig. 7.62. SAS Example G11: estimated probability curves

Additional code for creating probability curves is displayed in Fig. 7.63.
Maximum likelihood estimates of the outcome category probabilities are pro-
duced with the p= option in the output statement, as shown in the code
for proc logistic in Fig. 7.60. The out=setp option creates an output file
named setp that contains the estimated probabilities in a variable named
phat, created by the p=phat option. The setp output file also contains a SAS

generated variable LEVEL that uses the values of the outcome variable to
define the response categories, in this case 1, 2, or 3. The first line of code
in Fig. 7.63 sorts the file with respect to the values of the explanatory vari-
able conc that defines the horizontal axis of the plot of probability curves.
The next three data steps create separate files of estimated probabilities for
each of the three outcome categories. The fourth data step combines the three
data files side by side so that the estimated outcome category probabilities
are in three different columns of the same file and matched with the respec-
tive concentration values. A proc sgplot step is used to draw smooth curves
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to show how the outcome category probability changes with changes in the
DIEGdiME concentration for each of the three outcome categories.

proc sort data=setp; by conc; run;

data setp1; set setp;
if(_LEVEL_=1); p1=phat; run;

data setp2; set setp;
if(_LEVEL_=2); p2=phat; run;

data setp3; set setp;
if(_LEVEL_=3); p3=phat; run;

data setpall; merge setp1 setp2 setp3;
by conc; run;

proc sgplot data=setpall;
yaxis label="Outcome Probabilities" valueattrs=(size=12)

labelattrs=(size=11);
xaxis label="DIEGdiME Concentration" valueattrs=(size=12)

labelattrs=(size=12);
pbspline x=conc y=p1 / lineattrs = (pattern=14 thickness=3)

markerattrs=(size=0 symbol=none) legendlabel="Non-live";
pbspline x=conc y=p2 / lineattrs = (pattern=4 thickness=3)

markerattrs=(size=0 symbol=none) legendlabel="Malformed";
pbspline x=conc y=p3 / lineattrs = (pattern=1 thickness=3)

markerattrs=(size=0 symbol=none) legendlabel="Normal";
keylegend / location=inside position=topright down=3;

run;

Fig. 7.63. SAS Example G11: program for a baseline log-odds model (continued)

SAS code for fitting a cumulative logit model to the same data is dis-
played in two parts in Figs. 7.64 and 7.65. The data are entered in the same
manner as shown in Fig. 7.60. The first logistic regression model in this set
models changes in the log-odds of fetus mortality as DIEGdiME concentration
changes. The odds are the probability of a non-live fetus divided by the sum
of the probabilities for the other two possible outcomes, malformed or normal.
The second logistic regression model in this set models changes in the con-
ditional log-odds of fetus malformation versus a normal fetus given that the
fetus is alive. This is the default set of links for proc logistic, and no link=
option is needed in the model statement. This model uses only the DIEGdiME
concentration as the single explanatory variable in this set of logistic regres-
sion models; only the conc variable appears on the right side of the equal
sign in the model statement. The cumulative odds model does not need to
include the square of the concentration as an explanatory variable in order to
provide a good description of the data from this study. Also by default, proc
logistic will force the regression coefficient for the conc variable to be the
same for both logistic regression models, creating a special proportional odds
model. To remove this restriction, the unequalslopes option is included in
the model statement options.
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data set1;
input conc y1 y2 y3;
conc2 = conc*conc;

datalines;
0 15 1 281

62.5 17 0 225
125 22 7 283
250 38 59 202
500 144 132 9
run;

/* Now put the result for each
response on a separate line */

data set1; set set1;
outcome=1; y=y1; output;
outcome=2; y=y2; output;
outcome=3; y=y3; output;

keep conc conc2 outcome y;
run;

/* Add some more concentration levels to be used
to obtain estimated proportions for plotting */

data set2;
do conc = 0 to 500 by 5;
do outcome = 1 to 3;
conc2=conc*conc;
y=0;
output; end; end;
run;

data set1; set set1 set2; run;

Fig. 7.64. SAS Example G11: program for a cumulative log-odds model

Maximum likelihood estimates of regression coefficients for the cumulative
odds model are shown in Fig. 7.66 along with approximate standard errors.
The estimated logistic regression models are

log

(
π̂non-live

π̂malformed + π̂normal

)

= −3.5988 + 0.00720(conc) (7.55)

and conditional on a live fetus

log

(
π̂malformed
π̂normal

)

= −3.5733 + 0.0122(conc) (7.56)

The estimated coefficient for the conc variable in Eq. (7.55) indicates that the
log-odds for mortality increase by about 0.00720 for each unit increase in the
DIEGdiME concentration. The estimated odds ratio is exp(0.00720) = 1.0072,
which indicates that the odds of fetus mortality increase by about 0.72% for
each unit increase in the DIEGdiME concentration to which pregnant females
are exposed. The value of 0.0122 for the estimated coefficient for the conc

variables in Eq. (7.56) indicates that if the fetus does not die, then the log-
odds of a malformed fetus increase by about 0.0122 for each unit increase in the
DIEGdiME concentration. The estimated odds ratio is exp(0.0122) = 1.0123,
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proc logistic data=set1;
model outcome = conc / itprint unequalslopes;
output out=setp p=phat;
weight y;

conc: test conc_1 = conc_2;
run;

proc sort data=setp; by conc; run;

data setp1; set setp;
if(_LEVEL_=1); p1=phat; run;

data setp2; set setp;
if(_LEVEL_=2); p2=phat; run;

data setpall; merge setp1 setp2; by conc;
pnonlive = p1;
pmalform = p2*(1-p1);
pnormal = 1-pnonlive-pmalform;

run;

proc sgplot data=setpall;
yaxis label="Outcome Probabilities" valueattrs=(size=12)

labelattrs=(size=11);
xaxis label="DIEGdiME Concentration" valueattrs=(size=12)

labelattrs=(size=12);
pbspline x=conc y=pnonlive / lineattrs = (pattern=14 thickness=3)

markerattrs=(size=0) legendlabel="Non-live";
pbspline x=conc y=pmalform / lineattrs = (pattern=4 thickness=3)

markerattrs=(size=0) legendlabel="Malformed";
pbspline x=conc y=pnormal / lineattrs = (pattern=1 thickness=3)

markerattrs=(size=0) legendlabel="Normal";
keylegend / location=inside position=topright down=3;

run;

Fig. 7.65. SAS Example G11: program for a cumulative log-odds model (continued)

which indicates that the conditional odds of malformation increase by about
1.23% for each unit increase in the DIEGdiME concentration, among fetuses
that do not die.

Equation (7.55) can be converted into a formula for estimating how
the probability of a non-live fetus changes as the DIEGdiME concentration
changes. The formula is

π̂non-live =
exp(−3.5988 + (0.00720)conc)

1 + exp(−3.5988 + (0.00720)conc)
. (7.57)

Equation (7.56), however, provides formulas for conditional probabilities of
malformed and normal fetuses among fetuses that survive. These equations
are

π̂malformed|survival =
exp(−3.5733 + (0.0122)conc)

1 + exp(−3.5733 + (0.0122)conc)
(7.58)

and

π̂normal|survival =
1

1 + exp(−3.5733 + (0.0122)conc)
(7.59)
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The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Parameter outcome DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 1 -3.5988 0.1571 524.9261 <.0001

Intercept 2 1 -3.5733 0.1559 525.6605 <.0001

conc 1 1 0.00720 0.000423 288.8285 <.0001

conc 2 1 0.0122 0.000562 467.6829 <.0001

Odds Ratio Estimates

Effect outcome
Point 

Estimate
95% Wald

Confidence Limits

conc 1 1.007 1.006 1.008

conc 2 1.012 1.011 1.013

Linear Hypotheses Testing Results

Label
Wald

Chi-Square DF Pr > ChiSq

conc 216.0784 1 <.0001

Fig. 7.66. SAS Example G11: estimates of model parameters for the cumulative
log-odds model

The probabilities in (7.57) and (7.58), π̂non-live and π̂malformed|survival, are

computed and written to an output file in rows corresponding to LEVEL =1

and LEVEL =2, respectively, by the p= option in the output statement in
the proc logistic step. Estimates of probabilities of malformed and normal
fetuses are computed by multiplying the estimates of the conditional proba-
bilities by the corresponding estimate of the probability of survival, i.e.,

π̂malformed = π̂malformed|survival(1− π̂non-live) (7.60)

and
π̂normal = (1− π̂non-live − π̂malformed) (7.61)

The calculations are performed in the step that creates the data set called
setpall in Fig. 7.64.

The proc sgplot step in Fig. 7.64 produced the plot of smooth curves
for these probabilities shown in Fig. 7.67. These probability curves are similar
to those displayed in Fig. 7.62 for the baseline logit model. The probability
of a normal fetus declines monotonically, and the probability of a non-live
fetus increases monotonically as the concentration of DIEGdiME increases.
The probability of a malformed fetus initially increases as the DIEGdiME
concentration increases, but it reaches a peak and then declines with further
increase in the DIEGdiME concentration, while the probability of a non-live
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Fig. 7.67. SAS Example G11: estimated probability curves for a cumulative log-
odds model

fetus continues to increase. Both models provide similar descriptions of how
the outcome category probabilities change with changes in the DIEGdiME
concentrations to which pregnant female mice are exposed.

The conc: test conc 1 = conc 2; statement in the code for the proc

logistic step in Fig. 7.64 is used to test null hypotheses that the coefficients
for the conc variable are the same for both logistic regression models that
comprise the cumulative odds model. The name on the left side of the colon
is the name of one of the explanatory variables in the model statement. The
conc 1 and conc 2 notation refers to the coefficients on the conc variable in
the first and second logistic regression models needed to specify the cumulative
logit model for the three outcome categories. You will need J − 1 labels when
there are J outcome categories. The numbering must use the values used in
the table of parameter estimates to distinguish the regression models. This
will vary according to how the outcome categories are coded in the data set.
The results of a chi-square test are shown in the third table in Fig. 7.66. In this
case that value of the chi-square statistic is 216.0784, and the corresponding
p-value is smaller than 0.001 which suggests that the proportional odds model
with equal regression coefficients does not provide a good description of the
data. The degrees of freedom for this test are one less than the number of
outcome categories. When the model contains more than one explanatory
variable, a similar test can be requested for each of the explanatory variables.
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7.6 Exercises

7.1 Chester Bliss (1935) examined data from a study of the toxic effects of
exposing a certain species of beetle to various levels of concentrations of
gaseous carbon disulfide for a period of 5 hours. The first column in the fol-
lowing table shows the eight concentrations of carbon disulfide (mg/liter)
used in the experiment, and the second column shows the natural loga-
rithms of those concentrations. The fourth column shows the number of
beetles exposed to each concentration, and the third column shows the
number of the beetles that survived after 5 hours of exposure.

Concentration Log Number of Number
(mg/l) concentration survivors exposed
49.057 3.893 53 59
52.991 3.970 47 60
56.911 4.041 44 62
60.842 4.108 28 56
64.759 4.171 11 63
68.691 4.230 6 59
72.611 4.258 1 52
76.542 4.338 0 60

a. Using the concentration of carbon disulfide as the explanatory vari-
able, write the logistic regression model you will use to analyze this
data. Explain what each parameter in your model represents.

b. Using proc logistic, compute the maximum likelihood estimates of
the model parameters. Construct a table with one column for the pa-
rameter estimates, one column for their standard errors, and two more
columns for the lower and upper limits of 95% confidence intervals.
Interpret the confidence intervals.

c. Express the null hypothesis that the concentration of carbon disulfide
has no effect on the probability of survival in terms of a model pa-
rameter. Perform a test of this hypothesis using the analysis in part
(b). Use a significance level of α = 0.05.

d. Plot the estimated logistic curve. Looking at the plot, determine the
concentration corresponding to a survival probability of 0.5.

e. Use a data step to add 141 lines with new concentration values to the
data file. Start at 49 and go up to 77 by increments of 0.2. Designate
the counts for the number of survivors and the number exposed as
missing values for the new data lines. Use proc logistic to fit the
logistic regression model to the combined data and to compute and
output estimates of the survival probabilities at each concentration
to a new data set. Use those results to plot the estimated survival
probability curve against the concentration of carbon disulfide. Include
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the observed survival probabilities on the same plot. Does it appear
that the logistic regression model provides a good description of the
decreasing trend in the survival probabilities as the concentration of
carbon disulfide increases?

7.2 This problem explores an alternative model for the beetle survival data
from problem (7.1) in which the log-odds for survival are related to the
natural logarithm of the carbon disulfide concentration to which the bee-
tles are exposed. The log concentration appears in the second column of
the data table.
a. Using the log concentration of carbon disulfide as the explanatory

variable, fit a logistic regression model to the beetle survival data.
Construct a table with one column for the parameter estimates, one
column for their standard errors, and two more columns for the lower
and upper limits of 95% confidence intervals. Interpret the confidence
intervals.

b. Plot the estimated logistic regression curve and use that curve to
determine the concentration corresponding to a survival probability
of 0.5.

c. Use a data step to add 141 lines with new concentration values to
the data file. Start at 49 and go up to 77 by increments of 0.2. Then
compute the natural logarithm of each of those concentrations. Desig-
nate the counts for the number of survivors and the number exposed
as missing values for the new data lines. Use proc logistic to fit
the logistic regression model to the combined data and with the log
concentration as the explanatory variable. Output estimates of the
survival probabilities at each concentration. Use those results to plot
the estimated survival probability curve against the concentration of
carbon disulfide. Include the observed survival probabilities on the
same plot. Does it appear that this logistic regression model provides
a good description of the decreasing trend in the survival probabilities
as the concentration of carbon disulfide increases?

d. Plot the estimates of the survival probability curves from problems 1
and 2 on the same plot. How do these curves differ?

e. Compare the AIC values for those two models. Comment on the re-
sults.

7.3 Lloyd (1999, Chapter 6) examines the following data on the relationship
of age and marital status from a survey of 185 people in Denmark over
the age of 16. A respondent is classified as divorced if the person had been
divorced at any time prior to the survey, regardless of whether or not that
person is currently remarried. A respondent is classified as single if that
person has never married, and a respondent is classified as married if that
person has married and never been divorced. At the time of the survey,
the legal age of marriage in Denmark was 16.
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Observed counts

Age group X Single Married Divorced Total

17–21 19 17 1 0 18
21–25 23 16 8 0 24
25–30 27.5 8 17 1 26
30–40 35 6 22 4 32
40–50 45 5 21 6 32
50–60 55 3 17 8 28
60–70 65 2 8 6 16
70+ 75 1 3 5 9

Use proc logistic to fit logistic models to these data, with a multi-
category response variable corresponding to the three marital status cat-
egories. Use the X variable in the second column of the table as a quan-
titative explanatory variable representing age.
a. Using marriage as the baseline category, consider the following logistic

regression model:

log

( πsingle

πmarried

)

= α1 + β1(x− 16)

log

(
πdivorced
πmarried

)

= α2 + β2(x− 16)

Interpret the parameters α1, α2, β1, and β2 in this model. Interpret
exp(β1) and exp(β2) as odds ratios.

b. Compute the maximum likelihood estimates of the model parameters
and corresponding standard errors.

c. Compute 95% confidence intervals for β1 and β2 and interpret the
intervals.

d. Plot the estimated probability curves for the three response categories
against age on the same plot. Describe what this plot implies about
the association between marital status and age.

7.4 Collett (2003) discusses data from a study of the specific gravity of two
species of rotifers. Rotifers are microscopic organisms that make up a
substantial proportion of freshwater zooplankton. When rotifers are cen-
trifuged in a solution that has lower specific gravity than their own, they
will settle to the bottom of the tube. When they are centrifuged in a solu-
tion of specific gravity equal or greater than their own, they will remain in
suspension. By using a series of solutions with different specific gravities,
it is possible to estimate the proportions of the population with various
specific densities. The data for the Polyarthra major species of rotifers
is displayed in the following table: The first column shows the specific
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Specific gravity Number in Number in
of solution suspension the tube

1.019 11 58
1.020 7 86
1.021 10 76
1.030 19 83
1.030 9 56
1.030 21 73
1.031 13 29
1.040 34 44
1.040 10 31
1.041 36 56
1.048 20 27
1.049 54 59
1.050 20 22
1.050 9 14
1.060 14 17
1.061 10 22
1.063 64 66
1.070 68 86
1.070 488 492
1.070 88 89

gravity of the solution in the tube, and the third column shows the num-
ber of rotifers placed in the tube. The second column shows the number
of rotifers remaining in suspension after centrifugation.
a. Use proc logistic to fit the following logistic regression model:

log

(
π

1− π

)

= β0 + β1x

where π represents the proportion of the population of rotifers that
would remain in suspension in a solution with specific gravity x. Com-
pute estimates of the model parameters and corresponding standard
errors.

b. Construct and interpret 95% confidence intervals for the model pa-
rameters.

c. Test the null hypothesis that β1 is zero. State your conclusion.
d. Construct a plot of the estimated logistic curve. Also compute the

empirical logit, log(number of survivors/number that settle out), for
each tube centrifuged in this study, and plot the empirical logits
against the specific densities of the solution on the same plot. Does
the logistic regression model appear to provide a good description of
the data? Explain.

e. Compute the value of the Pearson goodness-of-fit statistic divided by
its degrees of freedom. A value substantially greater than 1.0 would
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indicate that there is extra-binomial variation, i.e., more variation in
the sample proportions from the different tubes than can be explained
by binomial distributions. Does there appear to be extra-binomial
variation?

f. Use proc logistic to fit the same logistic regression model with the
scale=Pearson option. This will adjust standard error of the param-
eter estimates for extra-binomial variation. Did the estimates of the
model parameters change? How did the values of the standard errors
change?

g. Compare 95% confidence intervals for the model parameters to those
computed in part(b) where the scale option was not used. How do
the centers of the confidence intervals change when the scale option
is used? How do the widths of the confidence intervals change?

7.5 Myers (1990) presents data from a study of the growth behavior for pro-
tozoa colonies in a particular lake. Fifteen sponges were placed in the
lake, and three of the sponges were removed from the lake at each of five
time points, 1, 3, 6, 15, and 21 days after the sponges were put into the
lake. The number of protozoa was counted on each sponge. The counts
are displayed in the following table.

Day Number of protozoa

1 17
1 21
1 16
3 30
3 25
3 25
6 33
6 31
6 32
15 34
15 33
15 33
21 39
21 35
21 36

Use the MacArthur–Wilson model to describe the growth pattern. This
model is given by

y = α(1− e−βt) + ε
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where

y is the number of protozoa on a sponge.
α is a species equalization parameter.
β is a parameter related to how quickly growth occurs.
t is time in days.
ε is a random error with mean zero and variance σ2.

a. Use proc nlin to estimate α and β. Present nonlinear least squares
estimates and corresponding standard errors.

b. Construct and interpret 95% bootstrapped confidence intervals for α
and β.

c. Obtain an estimate of the error variance σ2.
d. Test the null hypothesis that β is zero, i.e., no growth occurs. State

your conclusion.
e. Construct a plot of the estimated growth curve. What happens to the

expected number of protozoa as time increases? Use the estimated
model to estimate the expected number of protozoa at 50 days. Give
a standard error for your estimate.

f. Construct and interpret a 95% confidence interval for the expected
number of protozoa on sponges that are submerged in the lake for 50
days.

7.6 The data for this exercise are from a study of the frequencies of urinary
tract infections in n = 98 men infected with the HIV virus. CD4+ cell
counts were also measured. They are used as an indication of how well
the immune system is working in people infected with HIV. CD4+ counts
are reported as the number of cells per cubic millimeter of blood. Normal
levels of CD4+ counts typically range from 500 to 1500 cells per cubic
millimeter of blood. In general, lower CD4+ counts are an indication of
progression of HIV and a weakening immune system. As a result of a
weakening immune system, people are less likely to resist other infections.
The data shown in the following table were collected at Utrecht University
Hospital in the Netherlands and reported by Morel and Neerchal (2012).
Note that different subjects were exposed to different follow-up times.
Consequently, you will need to use the square root of the follow-up time
as an offset. Use proc genmod to complete the following exercises.

a. Write an appropriate Poisson regression model to relate the expected
number of urinary tract infections per month of follow-up time to the
CD4+ cell counts. In the context of this study, explain what each
parameter in your model represents.

b. Use genmod to compute estimates of the model parameters and cor-
responding standard errors. Be sure to include the square root of the
follow-up time in the offset option to adjust for variation in follow-up
times.



618 7 Beyond Regression and Analysis of Variance

Urinary tract infections in men infected with HIV

Number Follow-up CD4+ Number Follow-up CD4+ Number Follow-up CD4+
of time cell of time cell of time cell

episodes (months) count episodes (months) count episodes (months) count

0 24 125 0 5 10 0 11 290
0 12 50 0 10 5 0 9 380
1 6 30 0 6 50 0 9 420
0 6 80 0 11 15 0 9 240
0 3 170 0 11 55 0 9 470
0 6 95 0 11 80 0 3 310
0 4 35 0 9 140 0 3 460
0 3 50 0 9 60 2 3 345
2 6 25 2 4 5 0 5 670
1 13 15 0 22 45 0 8 1280
0 10 80 0 5 30 0 6 780
0 24 130 0 5 110 0 19 1585
0 5 70 0 5 40 0 6 615
0 3 40 1 3 104 0 15 880
2 12 70 0 6 410 0 6 645
0 16 30 0 10 280 0 13 560
1 13 65 0 5 480 0 6 710
0 24 40 0 7 300 0 13 640
1 3 55 0 8 230 0 12 1150
1 16 25 0 3 210 0 11 530
0 18 70 2 23 380 0 10 620
0 15 5 0 18 310 0 12 980
3 23 20 0 5 275 0 6 600
2 11 105 0 5 390 0 7 1240
0 12 60 0 18 440 0 7 530
1 6 85 0 18 360 0 5 590
0 17 5 0 12 300 0 7 735
0 17 50 0 5 290 0 3 1075
1 9 15 0 5 370 0 5 840
2 16 50 0 12 460 0 4 520
0 8 10 0 11 275 0 3 540
0 4 175 0 11 290 0 4 860
0 12 20 1 11 270

c. Test the null hypothesis that the coefficient for the CD4+ count vari-
able is zero, against a one-sided alternative that the coefficient is pos-
itive. Use a 0.05 significance level. State your conclusion.

d. Estimate the increase in risk of a urinary tract infection, as measured
by the odds ratio, for a decrease of 100 in the CD4+ cell count. Report
a standard error for your estimate.
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e. Check for overdispersion by looking at the value of the Pearson
goodness-of-fit statistic divided by its degrees of freedom. Discuss
what you see.

f. Fit a negative binomial regression model to these data, and report
the estimates of the regression coefficients and their standard errors.
Also report the estimates of the variance inflation parameter for the
negative binomial distribution.

g. Based on the negative binomial model, is there a significant relation-
ship between the expected rates of urinary tract infections per month
of follow-up time and levels of CD4+ counts? Provide a statistical test
or confidence interval to support your conclusion.



Appendix A

SAS Templates

A.1 Introduction

From references relating to the SAS Output Delivery System (ODS) appearing
throughout this book, it is evident that at least an abbreviated discussion on
this topic will be useful to many SAS users. As has been previously observed,
SAS procedures that support ODS produce output objects consisting of tables
and graphs that are deliverable to various destinations such as HTML, RTF,
PDF, SAS Listing, and others. These output objects are created using the
results of a procedure and SAS supplied templates that describe how each
object will be formatted to be displayed. For example, the UNIVARIATE
procedure used with a plots option will produce five tables of statistics and
one graphics panel containing three plots. The appearance of these tables and
graphs are controlled by the table and graphical templates that are in effect
and a style template that dictate the overall appearance of the entire output.

A.1.1 What Are Templates?

Templates describe characteristics of various parts of the output tables, such
as headers and footers, cell contents, and colors and symbols used in graphs.
Each object in the output has an associated template, and all such templates
supplied by SAS are stored in the SASHELP library. For most SAS users, these
templates facilitate tables and graphs that are satisfactory in appearance of
the output from the analysis performed.

Lists of procedure-dependent templates associated with a particular out-
put object can be obtained either by using the ODS TRACE statement or
the SAS Results window. A modified procedure step from SAS Example B6
(see Fig. 2.18) is used here to illustrate the use of ODS TRACE:

M. G. Marasinghe, K. J. Koehler, Statistical Data Analysis Using SAS,
Springer Texts in Statistics, https://doi.org/10.1007/978-3-319-69239-5

621© Springer International Publishing AG, part of Springer Nature 2018
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ods trace on;

proc univariate data=biology normaltest;

var Height;

probplot Height;

title ’Biology class: Analysis of Height Distribution’;

run;

ods trace off;

This proc step produced seven output objects: the six tables named Moments,

BasicMeasures, TestsForLocation, Quantiles, ExtremeObs created by
default, plus the table named TestsForNormality additionally requested,
and the graphical object named ProbPlot, resulting from the probplot

statement requesting a normal probability plot of the variable named Height.
Recall that the Results window (when the folder is expanded) displays all
output objects created by the proc univariate step. The results of the trace
appears in the LOG window and is reproduced in Fig.A.1. Note that the
names of templates corresponding to every output object that appears in the
Results window are listed in the trace.

On the other hand, using the Results window is simpler to use if the
user only needs to obtain the template name of a specific object. From the
results window, right click on the object of interest (say, Basic Measures
table from the UNIVARIATE output), and select the item Properties to open
a properties window. In the above example, the properties window for the
BasicMeasures table is displayed below:

An entirely new template can be created from scratch or an existing template
may be modified to obtain a new template using the TEMPLATE procedure.
For example, different column headings may be specified or columns in a table
may be reordered. Colors and fonts for text in various parts of the output can
be changed by altering contents of an existing table template that may be
then renamed and saved as a new template for future use. In fact, all SAS
default templates have been created using the TEMPLATE procedure.

There are a number of different types of templates: those discussed in this
section are style templates, table templates, and graphical templates. A table
template applies to a specific table that references the template. Graphical
templates are used for producing template-based statistical graphics with
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Fig. A.1. Log window resulting from ODS trace

ODS as discussed in Chap. 3. A style template controls the overall appear-
ance of the output produced by a SAS program, including all tables and
graphs, and can be specified with the style= option in an ODS statement
and directed to a valid ODS destination, such as HTML, RTF, or PDF. One
can request a style in a SAS program by including a statement such as

ods html style=HTMLBlue;

However, as discussed in Chap. 1, under the SAS windowing environment,
the default style for HTML output has been set as the HTMLBlue style. This
setting can be modified by selecting the Results Tab from the dialog that
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is opened by selecting the Tools➡Options➡Preferences from the menu on
top of the main SAS window. It is to be noted that the HTMLBlue style
template produces output that is supported by the HTML destination. In the
SAS windowing environment, this HTML output file will be opened using an
internal browser by default, unless a different browser has been selected from
the preferences dialog above.

A.1.2 Where Are the SAS Default Templates Located?

As mentioned above, SAS system supplies users with a large number of all
types of templates that are easily accessible using a two-level naming sys-
tem that is similar to the method used for saving and accessing SAS data
sets stored in SAS libraries. Recall that in that system, the first level is a
name called libref which is associated with the physical location of the li-
brary (synonymous with the folder or the directory under Windows operating
environment) where the SAS data set is stored. The name of the SAS data
set is the second level of the two-level name. For example, see SAS Examples
B2 and B3 in Sect. 2.1.3 to review this notation, where SAS data sets are
saved/retrieved using two-level names such as mylib1.first.

In the case of templates, the first level or the libref refers to a name as-
sociated with a SAS library. Familiar examples of SAS libraries are Sashelp,
Sasuser, and Work, as can be found by selecting the Libraries icon in the Ex-
plorer window under the SAS windowing environment. The second level refer-
ences a member of SAS library called an item store. The directories (or fold-
ers) where the templates are stored form the items in the item store (though
physically they are organized as elements of a single file).

As stated previously, the SAS default templates are stored in the Sashelp
library. SAS users may conveniently browse the SAS template library under
the SAS windowing environment by selecting the Results folder, right clicking
on the Results icon seen in this folder, and selecting Templates. This will
open a templates window as displayed below:
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A list of item stores is displayed in the templates window. For example, the
item store named Sashelp.Tmplmst to be found here contains the default
templates that SAS provides. Note carefully that a template store contains
many folders (or directories), the contents of which may be examined by
double-clicking on the name of the item store of interest to open the folder.
For example, double-clicking on Sashelp.Tmplmst displays the list of folders
shown below on the right:

One of these folders of interest is the folder named Styles that contains the
listings of all the style templates that SAS provides. By opening this folder,
its contents may be displayed as usual:

It is observed that the contents of the Styles folder are files containing various
template definitions. These consist of listings of the actual SAS code for the
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TEMPLATE procedure steps that generated the respective styles. One may
select any of these to view its contents as a listing. Screenshot of the SAS
program for the HTMLBlue style is shown in Fig.A.2.

Fig. A.2. Screen shot of HTMLblue style template
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Alternatively, if the name of the style is known, the TEMPLATE proce-
dure may be used to view the contents of the style file:

proc template;

source styles.htmlblue;

run;

Although a detailed discussion of the TEMPLATE procedure is omitted from
this book, it is helpful to recognize a few statements and options in a proc

template step. For example, in Fig. A.2, the statement define style be-
gins a define style block that is used to create the style named HTMLBlue.
The define style statement can be used to create or modify existing styles for
destinations used in ODS statements that support the style= option. The
parent=styles.statistical statement in this block specifies that HTML-
Blue style inherit from the STATISTICAL style; that is, a parent-child inheri-
tance relationship is established between these two styles. As will be observed
later, the STATISTICAL style itself also inherits from another style named
DEFAULT. A more elaborate discussion of inheritance between styles will fol-
low in the next section after the terms style element and style attribute are
introduced below.

A.1.3 More on Template Stores

Fig. A.3. Screen shot of the Univariate tables folder in the base item store

In Sect. A.1.1 it was demonstrated how ODS TRACE is used to ob-
tain a list of objects produced by the proc univariate step (see Fig. A.1).
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At this point, it is important to point out that these objects were actu-
ally formatted using various default table and graphical templates specific
to the UNIVARIATE procedure. Templates specific to SAS procedures are
stored in the Sashelp library item stores reserved for those procedures. For
example, since UNIVARIATE is a SAS/BASE procedure, the folder where
the templates for base procedures will be found in the item store named
Sashelp.Tmplbase. By double-clicking on this and then expanding the Base

folder, the sub-folder Univariate where the table templates used by UNI-
VARIATE are stored can be located (see Fig. A.3).

Fig. A.4. Screen shot of the Univariate Graphics folder in the base item store

Select a file, say Measures, to view a listing of the SAS program for pro-
ducing the template for the BasicMeasures table (not shown here). The SAS
code for the template for the graphical object ProbPlot can be similarly found
in the sub-folder Graphics in the expanded Base/Univariate folder as seen in
Fig. A.4.

A.2 Templates and Their Composition

In the introduction (see Sect. A.1.1), templates were defined as a description
of how the output should appear when displayed in the intended destination.
A template consists of style elements, each of which is a named collection of
style attributes. A style element name identifies a specific area of the output
and is associated with a group of style attributes that describe how the
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material in that area is to be formatted. Each style attribute specifies a value
for a single characteristic of a style element. For example, in the HTMLBlue
style template displayed in Fig. A.2, the statement

class Header /

bordercolor = cxB0B7BB

backgroundcolor = cxEDF2F9

color = cx112277;

references the style element named Header that controls the header area of
the output tables and backgroundcolor = cxEDF2F9 is the attribute that
specifies the background color of this area and color = cx112277specifies
the color of the textual material of the header in an ODS output table for-
matted using the HTMLBlue style. Recall that HTMLBlue style inherits from
the STATISTICAL style; thus, the above assignments either replace or add
to the attributes already defined in the parent template. This is because the
CLASS statement in proc template is used for the creation of a style ele-
ment from an existing (like-named) style element in a parent style. It is to
be noted that users are more likely to modify an existing style than create a
new style from scratch. FigureA.5 highlights the difference in the formatting
of the Basic Measures table in the proc univariate output when using the
two styles STATISTICAL and HTMLBlue, respectively. Note the differences

Fig. A.5. Basic measures table from UNIVARIATE using STATISTICAL and
HTMLBlue styles in effect, respectively

in the background and foreground colors of both the table header and the
column headers. As a simple illustration of the use of the TEMPLATE proce-
dure, the SAS program shown in Fig. A.6 is used to create a new style named
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MYSTYLE using the STATISTICAL style as a parent in a proc template

step. Notice that several attributes of the HEADER style elements are changed
in the newly created style. Then the new style is invoked in an ODS state-
ment to create the output from the same UNIVARIATE step that created the
previous tables. The Basic Measures table output from this program is shown
in Fig. A.7, showing the changes expected from the use of the new style.

data biology;
infile "C:\users\user_name\Documents\...\Class\biology.txt";
input Id Sex $ Age Year Height Weight;
run;
proc template;
define style styles.mystyle;

parent=styles.statistical;
style header from header/

background=lightcyan
fontstyle=italic
fontfamily="arial"
fontweight=bold;

end;
run;
ods html path="C:\users\user_name\Documents\...\Class"

file="table_new.htm"style=mystyle;

proc univariate data=biology normaltest;
var Height;
probplot Height;
title ’Biology class: Analysis of Height Distribution’;

run;
ods html close;

Fig. A.6. Illustrating TEMPLATE procedure for creating a new style

Fig. A.7. Basic measures table from UNIVARIATE using MYSTYLE style

A.2.1 Style Templates

A style template (usually just called a style) controls the general visual at-
tributes such as text colors and fonts, line styles, marker symbols, etc. of the
entire SAS ODS output for which the style is in effect. Examine examples of
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output produced from the HTMLBlue style in the previous chapters (such as
Fig. 3.5) to get an idea of the default characteristics of this style. A screenshot
of the HTMLBlue style template is displayed in Fig. A.2.

While the user can choose the style template to be in effect, not all des-
tinations may be compatible with the selected template. For example, when
the HTMLBlue style is in effect, output directed to PRINTER destinations
will not generate an output with the expected appearance. That is, the style
templates are compatible only with destinations that provide support for the
intended attributes such as color, font, size, etc. However, the table and col-
umn templates (discussed below) are supported by all destinations because
these templates are internal to the output object.

The HTMLBlue style inherits most of its attributes from the STATISTI-
CAL style, which in turn inherits from the DEFAULT style. In the HTML-
Blue style, for example, the dominant color is blue; in the DEFAULT style,
the dominant color is gray. This implies that style elements that control
these visual attributes specified in the DEFAULT style may have been over-
ridden in the HTMLBlue style, which is a child style. Thus, styles are or-
ganized in a hierarchical manner where the lower level (“child” template)
may inherit from or override attributes of a higher level (or “parent”)
template.

The advantage (as found in many object-oriented systems) is that a style
definition can be created or modified using already defined attributes of similar
style elements. A change in the attribute of a parent style element will also
affect all related child style elements. As previously mentioned, by referencing
a style element already present in a parent definition, the user can make
sure that a child style element defined with the same name carries forward
attributes from the parent style element, supplemented by any new attributes.
The TEMPLATE procedure incorporates the STYLE statement that enables
the user to either create entirely new styles or modify existing styles by adding
new style elements or modifying existing style elements.

A.2.2 Style Elements and Attributes

Each style consists of style elements. Style element is a collection of style
attributes that apply to a particular feature of the output. For example, a style
element can contain instructions for the presentation of column headings or
for the presentation of the data inside cells in a table. Style elements control
default colors and fonts for the entire output that uses the style. Each style
attribute specifies a value for one aspect of presentation. For example, the
background= attribute specifies the color for the background of an HTML
table, and the fontstyle= attribute specifies whether to use a roman or an
italic font styles. In the STATISTICAL style template (mentioned earlier but
was not shown), the following statements extracted from the proc template

step:
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style fonts /
’TitleFont2’ = ("<sans-serif>, <MTsans-serif>, Helvetica, Helv",2,bold)
’TitleFont’ = ("<sans-serif>, <MTsans-serif>, Helvetica, Helv",3,bold)
’StrongFont’ = ("<sans-serif>, <MTsans-serif>, Helvetica, Helv",2,bold)
’EmphasisFont’ = ("<sans-serif>, <MTsans-serif>, Helvetica, Helv",2,italic)
’FixedFont’ = ("<monospace>, Courier",2)
’BatchFixedFont’ = ("SAS Monospace, <monospace>, Courier, monospace",2)
’FixedHeadingFont’ = ("<monospace>, Courier, monospace",2)
’FixedStrongFont’ = ("<monospace>, Courier, monospace",2,bold)
’FixedEmphasisFont’ = ("<monospace>, Courier, monospace",2,italic)
’headingEmphasisFont’ = ("<sans-serif>, <MTsans-serif>,

Helvetica, Helv",2,bold italic)
’headingFont’ = ("<sans-serif>, <MTsans-serif>, Helvetica, Helv",2,bold)
’docFont’ = ("<sans-serif>, <MTsans-serif>, Helvetica, Helv",2);

and

style Header /
font = fonts(’HeadingFont’)
backgroundcolor = cxF5F7F1
bordercolor = cxC1C1C1
bordertopwidth = 0px
borderleftwidth = 0px
borderbottomwidth = 1px
borderrightwidth = 1px
borderstyle = solid;

are used to create the FONTS and HEADER style elements. The value as-
signed to the font= option in defining the HEADER style fonts(’HeadingFont’)
is an example of a technique known as referencing. This particular example
is a style reference that asks for the value of font= to be the value for the
style attribute ‘HeadingFont’ from the definition of the style element named
fonts. Definition of FONTS is shown immediately above the definition of
HEADER.

The STYLE statement in a DEFINE STYLE block in the TEMPLATE
procedure can be used to create new styles or modify style elements in an
existing style as was illustrated in the SAS example displayed in Fig.A.6. In
this example, a new style named MYSTYLE was created as a child of the
STATISTICAL style. Thus, the new style inherited every style element from
its parent style. This is called style definition inheritance and is controlled by
the parent= statement in the DEFINE STYLE block.

In contrast, the style statement controls style element inheritance. The user
can use the FROM option in the style statement to inherit attributes from
a style element within the current style. One might want to do this when
defining a new style element drawing from attributes already defined for a
specific style element and perhaps add to or modify some of those attributes.
Alternately, one may create a new style element that inherits from a style
element in the parent style identified in the parent= statement.

Thus, if the new style element being created has the same name as one
in a parent style specified in the FROM option, and then all attributes for
the new style element are copied from the parent style except those attributes
that will be defined new (see Fig. A.6). If a FROM option is not used, then
the new style element will not inherit any attributes from the parent; that is,
the new style element will have ALL new attributes as defined in the current
style.
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A.2.3 Tabular Templates

All SAS procedures (except PRINT, REPORT, and TABULATE) use tabular
templates to determine how to present the results generated by each procedure
in table form. A table template determines the order of table headers and
footers, the order of columns, and the overall appearance of the output object.
Each table template contains or references table elements: columns, headers,
and footers. Each table element can specify the use of one or more style
elements for various parts of the table and thus is a collection of attributes
that apply to a particular column, header, or footer. Thus, table templates
are similar to the style templates discussed previously and are customized
styles for various ODS destinations. As already seen in style templates table,
elements such as columns, headers, and footers can also be defined outside
of table templates, usually in a style template. Any table template can then
directly reference these table elements, as well.

As a simple example of a table template, the SAS code that output the
Basic Measures table for the variable Height in the Biology data set and pro-
duced from executing SAS Example B6 in Sect. A.1.1 will be examined. The
actual table output is reproduced in Fig. A.5 (lower table). Recall that the
style in use is the default style for HTML output HTMLBlue. The table tem-
plate that created this table can be found in the item store Sashelp.Tmplbase
in the folder named Univariate as described in Sect. A.1.2. Also see Fig. A.3.
By double-clicking on the file named Measures, a listing of the code for the
TEMPLATE step that produced the Basic Measures table template can be
viewed. This is reproduced in Fig. A.8.

This program is similar to those used for the creation of a style template
except that it makes use of several other statements available with the TEM-
PLATE procedure. The DEFINE TABLE statement creates a new table tem-
plate named Base.Univariate.Measures. It also begins a DEFINE TABLE
block that contains other DEFINE statements that create header, column, or
footer templates. The COLUMN statement names the four columns in this
table (in the order of occurrence). These are named LocMeasure, LocValue,
VarMeasure, and VarValue. These names are used in define statements to
create column templates for the corresponding columns that describe how the
contents of these columns are to be formatted. The HEADER statement simi-
larly names the three headers (named h1, h2, and h3) that are used to identify
the headers in the actual order they appear in the table. These are also used
in define statements to create header templates that define the location and
the appearance of the headers.

It is important to understand that a table template only provides the
attributes for presentation of the output data provided by the procedure.
Thus, one may change the content, placement, and attributes of headers,
footers, and columns and but only edit the attributes of the contents. This
can be done either by creating a new table template or customizing an existing
table template. In the next subsection, an example is provided to illustrate
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Fig. A.8. Template for basic measures table from UNIVARIATE

how the TEMPLATE procedure may be used to customize the appearance of
the Basic Measures table from UNIVARIATE.

It is to be pointed out that tables can also be produced in a DATA step
using data from a SAS data set and table and/or style templates designed
to format the entire table. In this case, the output is produced with a file

print statement in a data step that does not create a SAS data set (using
data null ) using the ods= option in the file statement to a specify a table
template to be used. A put ods statement in this data step creates the ODS
output using a default style or a style specified in the ODS HTML statement.
Examples can be found in the section dealing with ODS Tabular Templates
in the TEMPLATE procedure chapter of the ODS Procedures guide.
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A.2.4 Simple Table Template Modification

There are many statements available in the TEMPLATE procedure for mod-
ifying an existing table without defining a new table template. For simple
customization of an existing table template, the EDIT statement in the TEM-
PLATE procedure is useful. Although TEMPLATE procedure is sufficiently
flexible to perform a wide array of modifications, this example does not
attempt to illustrate all of its capabilities. The SAS program displayed in
Fig. A.9 uses the EDIT statement to modify the attributes of several elements
of the table template and several elements of its composite sub-templates.
Recall that the HTMLBlue style is in effect when this program is executed;
thus, the default attributes displayed in the Basic Measures table are a result
of that.

data biology;
infile "C:\users\user_name\Documents\...\Class\biology.txt";
input Id Sex $ Age Year Height Weight;
run;
ods path sasuser.templat(update) sashelp.tmplmst(read);
proc template;
edit Base.Univariate.Measures;

edit h1;
style=header{color=red fontstyle=italic};
text ’Sample Distribution Statistics’;
just=left;

end;
edit LocMeasure;

cellstyle _val_=’Mean’ as data{background=lightcyan color=blue fontweight=bold};
end;

edit VarMeasure;
cellstyle _val_=’Variance’ as data{background=lightcyan color=blue fontweight=bold};

end;
end;
run;

ods select basicmeasures;
proc univariate data=biology normaltest;

var Height;
probplot Height;
title ’Biology class: Analysis of Height Distribution’;

run;

proc template;
delete Base.Univariate.Measures;
run;

Fig. A.9. Illustrating TEMPLATE procedure for creating a new style

This program again makes use of the SAS code for SAS Example B6 used
in Sect. A.1.1; thus, the Basic Measures table that results will be the effec-
tively the same as the table that appears in Fig.A.5, with the modifications
resulting from the Base.Univariate.Measures table template modified in this
program. For the sake of brevity and clarity, the more important statements
or groups of statements in this program are described below:

ods path sasuser.templat(update) sashelp.tmplmst(read);
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This makes sure that the original table template for Basic Measures is taken
from sashelp.tmplmst and the modified template stored in the default location
sasuser.templat. (However, this statement may be not needed as this is the
default path.)

edit Base.Univariate.Measures;

This begins an EDIT block for editing the Base.Univariate.Measures table
template, and ends with an END statement when the editing statements are
complete. Statements that comprise an EDIT block are the same as those in
a DEFINE block (in this case a DEFINE HEADER block).

edit h1;

style=header{color=red fontstyle=italic};

text ’Statistics for Sample Distribution’;

just=left;

end;

The style= attribute specifies some new attributes for the style element of
the h1 table template, that is, the first table header. Recall that the original
attributes for Header element are specified in the style template in use, i.e., the
HTMLBlue style template. Here, text color is changed to red, and the font is
changed to italics. Note that the style= attribute only affects HTML output.
The text statement replaces the original header text, and just= attribute is
changed to left-justified.

edit LocMeasure;

cellstyle _val_=’Mean’ as

data{background=lightcyan color=blue fontweight=bold};

end;

edit VarMeasure;

cellstyle _val_=’Variance’ as

data{background=lightcyan color=blue fontweight=bold};

end;

The above two EDIT blocks are used for editing the two column templates
named LocMeasure and VarMeasure. They illustrate how attributes of the
contents of a table (identified by data) may be conditionally changed using
the cellstyle as statement. val is a SAS name for the data value of a cell
in the column. The statement

cellstyle _val_=’Mean’ as

data{background=lightcyan color=blue fontweight=bold} ;

specifies that when the logical expression val =’Mean’ is true for the values
in the column LocMeasure, the attributes of the data element be changed to
those indicated, for example, background color is changed to lightcyan etc.
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Here the Mean and Variance fields are highlighted using a different back-
ground color, etc. A more complex statement could be constructed to modify
the attributes of the actual values for the mean and variance instead. The
reader may verify that the data element was originally defined in the Default
style and then altered in the Statistical style and that HTMLBlue style in-
herits it from both.

ods select basicmeasures;

The above ODS statement sends the output table produced in the proc

univariate step to the default HTML destination. Finally, the last proc

template step removes the Base.Univariate.Measures template from the
Sasuser.Templat item store. The modified table template produced the Basic
Measures table displayed in Fig. A.10

Fig. A.10. Modified basic measures table from UNIVARIATE

A.2.5 Other Types of Templates

The SAS system incorporates several other types of templates that exist
for a variety of output. The contingency or cross-tabulation tables pro-
duced by the FREQ procedure (discussed in Sect. 2.2.2) require a sepa-
rate template named Base.Freq.CrossTabsFreqs which is found in the Freq

sub-folder in the Base folder in Sashelp.Tmplbase item store. One may
also find other table templates associated with FREQ procedure such as
Base.Freq.OneWayFreqs or Base.Freq.Measures at this location. Customiza-
tion of Base.Freq.CrossTabsFreqs table requires the DEFINE CROSSTABS
statement available with the TEMPLATE procedure.

Templates for markup language tagsets are in Sashelp.Tmplmst in the
Tagsets folder. For example, Tagsets.Chtml, the template for CHTML, is
found here and can be customized using the TEMPLATE procedure, where
DEFINE TAGSET blocks are used to create tagset templates.

Finally, STATGRAPH templates are used to create template-based or
ODS Graphics. They are found in Sashelp.Tmplmst in the StatGraph folder
and use Graph Template Language (GTL) statements within the proc
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template step. STATGRAPH templates are also found in Graphics folders,
within folders named for SAS procs that produce ODS graphics. In the next
section, methods for customizing graphics templates are briefly introduced
via an example.

A.3 Customizing Graphs by Editing Graphical
Templates

A brief introduction is provided in this section primarily by discussing an
example. Consider the SAS program used in Sect. 4.1.1 to produce a simple
linear regression analysis. A modified version of this program is displayed in
Fig. A.11. Executing this program produces the usual tabular output from the

data d1;
input Traffic Lead;
label Traffic="Traffic Flow (Thousands/24 hours)" Lead="Lead Content (mcg/gm)";
datalines;
8.3 227
8.3 312

12.1 362
12.1 521
17.0 640
17.0 539
17.0 728
24.3 945
24.3 738
24.3 759
33.6 1263
;

proc reg data=d1 plots(only)=qqplot;
model Lead=Traffic/r p;
title "Simple Linear Regression of Lead Content Data";

run;

Fig. A.11. Obtaining a standard QQ plot of residuals from proc reg

regression analysis of the data and the Q-Q plot of the residuals as shown in
Fig. A.12.

In the SAS program shown in Fig. A.14 colors, line attributes, and marker
symbol attributes of the previous QQ plot are customized by modifying the
graph template that produced the graphical output from REG procedure.
This template is found using the template browser from the Results win-
dow under the SAS windowing environment as usual. In particular, the item
store named Sashelp.Tmplstat contains templates for all SAS/Stat procedures,
where the folder Reg contains the table templates for the REG procedure and
a sub-folder named Graphics contains the statistical graphics templates for
the graphs produced by REG procedure. (These are called STATGRAPH tem-
plates and are created using DEFINE STATGRAPH blocks in proc template
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using SAS Graph Template Language (GTL) syntax.) The template for the
QQ plot named Stat.Reg.Graphics.QQPlot can be found in the above folder
and is reproduced in Fig. A.13.

The modification of this graph is done by first copying the template into
a SAS program, modifying it as discussed below, and then executing it. This
will create a modified template by the same name and store it temporarily in
the item store Sasuser.Templat. Then the proc reg step can be executed so

Q-Q Plot of Residuals for Lead
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Fig. A.12. Original QQ plot of the residuals from the REG procedure

Fig. A.13. Graph template for the QQ plot from the REG procedure
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that the modified template will be used (using the ODS PATH statement as
before). Instead, both proc steps (proc template and proc reg steps) may
be executed together in a single program as shown in Fig.A.14.

Fig. A.14. Illustrating graphic template modification using proc reg

The attributes of the line color and pattern are specified by the
lineattrs= option in the lineparm statement: lineattrs=GRAPHREFERENCE.
This references the style element GraphDataDefault in the HTMLBlue style.
The LINEPARM statement results in a straight line specified by slope and
intercept parameters. The color of the line is changed to red and the line
pattern to dashes, by overriding those attributes of the style specification:

lineattrs=GRAPHREFERENCE(color=red pattern=shortdash)

The attributes of the marker symbol in the scatter plot are specified by
MarkerAttrs=GraphDataDefault. As above this is a reference to the style
element GraphDataDefault in the HTMLBlue style where the marker symbol
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is an empty circle. This can be changed to a filled circle as the marker symbol
by overriding the symbol attribute of the style specification as follows:

markerattrs=GRAPHDATADEFAULT(symbol=CircleFilled)

The proc reg step that follows produces the graph (in addition to the tabular
output) that is displayed in Fig. A.15. The modified graph template is then
deleted from the Sasuser.Templat store.
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Fig. A.15. Original QQ plot of the residuals from the REG procedure

A.4 Creating Customized Graphs by Extracting Code
from Standard Graphical Templates

A user may not be able to use statistical graphics (SG) procedures alone to
produce a customized graph such as that shown in Fig. 5.18, which is a plot
consisting of four panels, each containing a different graphs produced from
REG procedure output. One might immediately think of creating a graphical
template from scratch to produce this plot. As mentioned earlier, graphical
templates are based on statements and syntax from the Graphic Template
Language (GTL). Unless one is an experienced SAS programmer, it will be
fairly cumbersome for the standard SAS user to sufficiently master the syntax
of GTL to be able to design an entirely new templates for the production of
complex statistical graphics. However, if the user is able to peruse an existing
graphical template and recognize portions of code that create relevant parts of
the graphical output produced by the template, it will be possible to construct
a new template using code segments extracted from the original template. This
technique is perhaps best suited for putting together several graphs in panels
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to form a composite plot such the Fit Diagnostics plot produced by the REG
procedure.

This technique is illustrated in this section by building a graphical tem-
plate for producing Fig. 5.18. Since each of the graphs shown in this figure
is extracted from the Fit Diagnostics panel output from proc reg, first ex-
amine the graphical template Stat.Reg.Graphics.DiagnosticsPanel using the
template browser. This is found in the Graphics folder expanding the Stat

folder Stat ➡Reg ➡Graphics as in previous discussions. A portion of this
template is reproduced in Fig. A.16.

proc template;                                                                
define statgraph Stat.Reg.Graphics.DiagnosticsPanel;                       

notes "Diagnostics Panel";                                              
dynamic _DEPLABEL _DEPNAME _MODELLABEL _OUTLEVLABEL _TOTFREQ _NPARM     

_NOBS _OUTCOOKSDLABEL _SHOWSTATS _NSTATSCOLS _DATALABEL _SHOWNObs    
_SHOWTOTFREQ _SHOWNParm _SHOWEDF _SHOWMSE _SHOWRSquare _SHOWAdjRSq   
_SHOWSSE _SHOWDepMean _SHOWCV _SHOWAIC _SHOWBIC _SHOWCP _SHOWGMSEP   
_SHOWJP _SHOWPC _SHOWSBC _SHOWSP _EDF _MSE _RSquare _AdjRSq _SSE     
_DepMean _CV _AIC _BIC _CP _GMSEP _JP _PC _SBC _SP _byline_ _bytitle_
_byfootnote_;                

BeginGraph / designheight=defaultDesignWidth;                           
entrytitle halign=left textattrs=GRAPHVALUETEXT _MODELLABEL halign=  

center textattrs=GRAPHTITLETEXT "Fit Diagnostics" " for " _DEPNAME
;                                                                             

layout lattice / columns=3 rowgutter=10 columngutter=10 shrinkfonts= 
true rows=3;                                                    

layout overlay / xaxisopts=(shortlabel='Predicted');              
referenceline y=-2;                                            
referenceline y=2;                     
scatterplot y=RSTUDENT x=PREDICTEDVALUE / primary=true         

datalabel=_OUTLEVLABEL rolename=(_tip1=OBSERVATION _id1=ID1 
_id2=ID2 _id3=ID3 _id4=ID4 _id5=ID5) tip=(y x _tip1 _id1    
_id2 _id3 _id4 _id5);                                       

endlayout;                                                        
layout overlay / xaxisopts=(label='Leverage' offsetmax=0.05)      

yaxisopts=(offsetmin=0.05 offsetmax=0.05);                     
referenceline y=2;                                             
referenceline y=-2;                                            
referenceline x=eval (MIN(1,2*_NPARM/_TOTFREQ));               
scatterplot y=RSTUDENT x=HATDIAGONAL / primary=true datalabel= 

_OUTLEVLABEL rolename=(_tip1=OBSERVATION _id1=ID1 _id2=ID2  
_id3=ID3 _id4=ID4 _id5=ID5) tip=(y x _tip1 _id1 _id2 _id3   
_id4 _id5);                                                 

endlayout;                                                        
layout overlay / yaxisopts=(label="Residual" shortlabel="Resid")  

xaxisopts=(label="Quantile");                                  
lineparm slope=eval (STDDEV(RESIDUAL)) y=eval (MEAN(RESIDUAL)) 

x=0 / clip=false extend=true lineattrs=GRAPHREFERENCE;    
scatterplot y=eval (SORT(DROPMISSING(RESIDUAL))) x=eval (      

PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/(0.25 
+ N(RESIDUAL)))) / markerattrs=GRAPHDATADEFAULT primary=true rolename=(s=eval 

(SORT(DROPMISSING(RESIDUAL))) nq=eval (                     
PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/(0.25 

+ N(RESIDUAL))))) tiplabel=(nq="Quantile" s="Residual") tip=(nq s);           
endlayout;   

…………………
………………..
………………..

EndGraph;                                                               
end;                                                                       

run;

layout overlay / xaxisopts=(shortlabel='Predicted');              
referenceline y=0;                                             
scatterplot y=RESIDUAL x=PREDICTEDVALUE / primary=true         

datalabel=_OUTLEVLABEL rolename=(_tip1=OBSERVATION _id1=ID1 
_id2=ID2 _id3=ID3 _id4=ID4 _id5=ID5) tip=(y x _tip1 _id1    
_id2 _id3 _id4 _id5);                                       

endlayout;             

Fig. A.16. Diagnostic panel graphical template
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The highlighted box is the block of code in this template that represent
the Residual versus Predicted plot in the diagnostic panel of plots. Similarly,
it is possible to identify blocks of code that produce each of the other plots.
The DYNAMIC statement seen in the template contains names of variables
passed on from the procedure output; thus, they may be used in the code to
represent those variables for plotting purposes. By combining similar blocks
of code, the proc template step in the SAS program shown in Fig.A.17 and
continued in Fig.A.18, was constructed.

data mileage;
input Size $ @;
    do   i=1 to 4;
    input  MPG @;
    output;
    end;
drop i;
datalines;
300 16.6 16.9 15.8 15.5
350 14.4 14.9 14.2 14.1
400 12.4 12.7 13.3 13.6
450 11.5 12.8 12.1 12.0
;

proc glm data=mileage plots=Diagnostics;
  class Size;
  model MPG = Size/p;
  output out=stats1 p=Fitted r=Residual;
  title 'Analysis of Gas Mileage Data';
  run;

proc template;
   define statgraph ResidPanel;
      notes "Fit Summary Plots";
      dynamic Residual Predicted Dependent Xvar
         Observation _DEPLABEL _DEPNAME _OutLevLabel _TOTFREQ _NPARM
         _RsByLevGroup _NOBS _OutCooksDLabel _SHOWTOTFREQ _EDF _MSE _RSquare
         _AdjRSq _byline_ _bytitle_ _byfootnote_;
      BeginGraph / designHeight=defaultDesignWidth;
         entrytitle "Fit Diagnostics";
         layout lattice / columns=2 rowgutter=10 columngutter=10 shrinkfonts= 
            true rows=2;
           layout overlay / xaxisopts=(shortlabel='Size');
               referenceline y=0/lineattrs=(Color=magenta Pattern=2);
               scatterplot y=RESIDUAL x=Xvar / primary=true datalabel=
                  _OUTLEVLABEL rolename=(_tip1=OBSERVATION _id1=_ID1 _id2=_ID2
                  _id3=_ID3 _id4=_ID4 _id5=_ID5) tip=(y x _tip1 _id1 _id2 _id3
                  _id4 _id5);
            endlayout; 

Fig. A.17. SAS program for producing the graph Fig. 5.18
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           layout overlay / xaxisopts=(shortlabel='Predicted');
               referenceline y=0/lineattrs=(Color=magenta Pattern=2);
               scatterplot y=RESIDUAL x=PREDICTED / primary=true datalabel=
                  _OUTLEVLABEL rolename=(_tip1=OBSERVATION _id1=_ID1 _id2=_ID2
                  _id3=_ID3 _id4=_ID4 _id5=_ID5) tip=(y x _tip1 _id1 _id2 _id3
                  _id4 _id5);
            endlayout;
           layout overlay / xaxisopts=(shortlabel='X');
               scatterplot y=DEPENDENT x=Xvar / primary=true datalabel=
                  _OUTLEVLABEL rolename=(_tip1=OBSERVATION _id1=_ID1 _id2=_ID2
                  _id3=_ID3 _id4=_ID4 _id5=_ID5) tip=(y x _tip1 _id1 _id2 _id3
                  _id4 _id5); 
                seriesplot y=PREDICTED x=Xvar/lineattrs=(Color=magenta Pattern=2);
            endlayout; 
           layout overlay / yaxisopts=(label="Residual" shortlabel="Resid")
               xaxisopts=(label="Quantile");
               lineparm slope=eval (STDDEV(RESIDUAL)) y=eval (MEAN(RESIDUAL)) 
                  x=0 / clip=false extend=true lineattrs=GRAPHREFERENCE;
               scatterplot y=eval (SORT(DROPMISSING(RESIDUAL))) x=eval (
                  PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/(0.25 
+ N(RESIDUAL)))) / markerattrs=GRAPHDATADEFAULT primary=true rolename=(s=eval 
                  (SORT(DROPMISSING(RESIDUAL))) nq=eval (
                  PROBIT((NUMERATE(SORT(DROPMISSING(RESIDUAL))) -0.375)/(0.25 
+ N(RESIDUAL))))) tiplabel=(nq="Quantile" s="Residual") tip=(nq s);
            endlayout;

         endlayout;
         if (_BYTITLE_)
            entrytitle _BYLINE_ / textattrs=GRAPHVALUETEXT;
         else
            if (_BYFOOTNOTE_)
               entryfootnote halign=left _BYLINE_;
            endif;
         endif;
      EndGraph;
   end;
run;

proc sgrender data=stats1 template=ResidPanel;
dynamic Residual="Residual" Predicted="Fitted" Dependent="MPG" Xvar="Size";
run;

proc template;
   delete ResidPanel/store=Sasuser.Templat;
run;
quit;

Fig. A.18. SAS program for producing the graph Fig. 5.18 (continued)

The reader can examine the four LAYOUT segments of code and figure
out how these code blocks produce the four plots appearing in Fig. 5.18. Note
that the new template was named ResidPanel and is a STATGRAPH template
and will be automatically saved in Sasuser.Templat. After the template has
been designed, SGRENDER procedure is used to associate the template with
the stats1 data set and the output variables from the REG procedure and
produce the graph. Then the template is removed from the item store.
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Tables

See Tables B.1, B.2, B.3, B.4, B.5, B.6, B.7, B.8, B.9, B.10, B.11, B.12, B.13,
B.14, B.15, B.16, B.17, and B.18.

Table B.1. Fuel consumption data for the 48 contiguous states (Weisberg 1985)

(1) STATE: State FIPS code
(2) POP: 1771 Population, in thousands
(3) TAX: 1772 Motor Fuel Tax Rate, in cents per gallon
(4) NUMLIC: 1771 Number of Licensed Drivers, in thousands
(5) INCOME: 1772 Per Capita income, in thousands of dollars
(6) ROADS: 1771 Miles of Federal-Aid Primary Highways, in thousands
(7) FUELC: 1772 Fuel Consumption, in millions of gallons

STATE POP TAX NUMLIC INCOME ROADS FUELC
ME 1027 7.0 540 3.571 1.776 557
NH 771 7.0 441 4.072 1.250 404
VT 462 7.0 268 3.865 1.586 257
MA 5787 7.5 3060 4.870 2.351 2376
RI 768 8.0 527 4.377 0.431 377
CT 3082 7.0 1760 5.342 1.333 1408
NY 18,366 8.0 8278 5.317 11.868 6312
NJ 7367 8.0 4074 5.126 2.138 3437
PA 11,726 8.0 6312 4.447 8.577 5528
OH 10,783 7.0 5748 4.512 8.507 5375
IN 5271 8.0 2804 4.371 5.737 3068
IL 11,251 7.5 5703 5.126 14.186 5301
MI 7082 7.0 5213 4.817 6.730 4768
WI 4520 7.0 2465 4.207 6.580 2274
MN 3876 7.0 2368 4.332 8.157 2204
IA 2883 7.0 1,687 4.318 10.340 1830
MO 4753 7.0 2717 4.206 8.508 2865
ND 632 7.0 341 3.718 4.725 451
SD 577 7.0 417 4.716 5.715 501
NE 1525 8.5 1033 4.341 6.010 776
KS 2258 7.0 1476 4.573 7.834 1466
DE 565 8.0 340 4.783 0.602 305
MD 4056 7.0 2073 4.877 2.447 1883
VA 4764 7.0 2463 4.258 4.686 2604
WV 1781 8.5 782 4.574 2.617 817
NC 5214 7.0 2835 3.721 4.746 2753

(continued)
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Table B.1. (continued)

(1) STATE: State FIPS code
(2) POP: 1771 Population, in thousands
(3) TAX: 1772 Motor Fuel Tax Rate, in cents per gallon
(4) NUMLIC: 1771 Number of Licensed Drivers, in thousands
(5) INCOME: 1772 Per Capita income, in thousands of dollars
(6) ROADS: 1771 Miles of Federal-Aid Primary Highways, in thousands
(7) FUELC: 1772 Fuel Consumption, in millions of gallons

STATE POP TAX NUMLIC INCOME ROADS FUELC
SC 2665 8.0 1460 3.448 5.377 1537
GA 4720 7.5 2731 3.846 7.061 2777
FL 7257 8.0 4084 4.188 5.775 4167
KY 3277 7.0 1626 3.601 4.650 1761
TN 4031 7.0 2088 3.640 6.705 2301
AL 3510 7.0 1801 3.333 6.574 1746
MS 2263 8.0 1307 3.063 6.524 1306
AR 1778 7.5 1081 3.357 4.121 1242
LA 3720 8.0 1813 3.528 3.475 1812
OK 2634 7.0 1657 3.802 7.834 1675
TX 11,647 5.0 6575 4.045 17.782 7451
MT 717 7.0 421 3.877 6.385 506
ID 756 8.5 501 3.635 3.274 470
WY 345 7.0 232 4.345 3.705 334
CO 2357 7.0 1475 4.447 4.637 1384
NM 1065 7.0 600 3.656 3.785 744
AZ 1745 7.0 1173 4.300 3.635 1230
UT 1126 7.0 572 3.745 2.611 666
NV 527 6.0 354 5.215 2.302 412
WA 3443 7.0 1766 4.476 3.742 1757
OR 2182 7.0 1360 4.276 4.083 1331
CA 20,468 7.0 12,130 5.002 7.774 10,730



Appendix B Tables 647

Table B.2. Daily maximum ozone concentrations at Stamford, Connecticut (Stmf)
and Yonkers, New York (Ykrs), during the period May 1, 1774 to September 30,
1774, recorded in parts per billion (ppb), reproduced from Chambers et al. (1983)

May June July August September
Stmf Ykrs Stmf Ykrs Stmf Ykrs Stmf Ykrs Stmf Ykrs

66 47 61 36 152 76 80 66 113 66
52 37 47 24 201 108 68 82 38 18
– 27 – 52 134 85 24 47 38 25
– 37 176 88 206 76 24 28 28 14
– 38 131 111 72 48 82 44 52 27
– – 173 117 101 60 100 55 14 7

47 45 37 31 117 54 55 34 38 16
64 52 47 37 124 71 71 60 74 67
68 51 215 73 133 – 87 70 87 74
26 22 230 106 83 50 64 41 77 74
86 27 – 47 – 27 – 67 150 75
52 25 67 64 60 37 – 127 146 74
43 – 78 83 124 47 170 76 113 42
75 55 125 77 142 71 – 56 38 –
87 72 74 77 124 46 86 54 66 38

188 132 72 36 64 41 202 100 38 23
118 – 72 51 76 47 71 44 80 50
103 106 125 75 103 57 85 44 80 34
82 42 143 104 – 53 122 75 77 58
71 45 172 107 46 25 155 86 71 35

103 80 – 56 68 45 80 70 42 24
240 107 122 68 – 78 71 53 52 27
31 21 32 17 87 40 28 36 33 17
40 50 114 67 27 13 212 117 38 21
47 31 32 20 – 25 80 43 24 14
51 37 23 35 73 46 24 27 61 32
31 17 71 30 57 62 80 77 108 51
47 33 38 31 117 80 167 75 38 15
14 22 136 81 64 37 174 87 28 21
– 67 167 117 – 70 141 47 – 18

71 45 111 74 202 114

Note: Missing observations are shown as “–”
Source: Stamford, Connecticut Department of Environmental Protection

Yonkers, Boyce Thompson Institute
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Table B.3. Rainfall in acre-feet from 52 clouds, of which 26 were chosen randomly
and seeded with silver oxide, reproduced here from Chambers et al. (1983)

Rainfall from Rainfall from
control clouds seeded clouds

1202.6 2745.6
830.1 1677.8
372.4 1656.0
345.5 778.0
321.2 703.4
244.3 487.1
163.0 430.0
147.8 334.1
75.0 302.8
87.0 274.7
81.2 274.7
68.5 255.0
47.3 242.5
41.1 200.7
36.6 178.6
27.0 127.6
28.6 117.0
26.3 118.3
26.1 115.3
24.4 72.4
21.7 40.6
17.3 32.7
11.5 31.4
4.7 17.5
4.7 7.7
1.0 4.1

Source: Simpson et al. (1975)
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Table B.4. Measurements from an aerobic fitness study

Id: Subject Identification No.:

WtLoss: Monthly weight loss (in lbs.) (assume 1 decimal place)

Height: Height (in inches)

Weight: Weight (in lbs.)

Intake: Food intake (calories/day)

Aero: Aerobic points

BodyFat: Body fat (assume 1 decimal place)

RunTime: Time to run 1.5 miles (min) (assume 1 decimal place

RstPulse: Heart rate while resting

Oxygen: Oxygen uptake rate (in ml/kg body weight/min (assume 1 decimal place)

Age: Age (Yrs.)

Gender: Gender (alphabetic character)

Id WtLoss Height Weight Intake Aero BodyFat Run Time RstPulse Oxygen Age Gender

1 3.5 64 140 1420 8 16.7 7.2 55 47.8 38 F

2 2.1 68 165 1510 5 11.2 14 56 37.4 45 M

3 1.6 71 177 1840 30 8.4 8.5 55 56.8 27 M

4 5.3 66 175 750 5 25.6 11.6 58 44.8 47 F

5 4.8 74 253 1560 25 22.3 8.6 48 60.1 36 M

6 4.2 67 186 1580 40 14.2 8.2 40 57.6 42 M

7 5.7 60 156 1170 20 21.7 8.6 48 46.7 30 F

8 2.1 67 183 1550 35 16.4 7.2 55 44.6 26 M

7 2.7 66 151 1300 32 17.1 11 60 40.2 21 F

10 3.6 63 120 1420 50 13.7 10.1 54 45.6 23 F

11 4 73 221 1080 18 20 8.1 40 57.5 32 M

12 3.1 70 211 1000 15 21.2 7.6 48 45.4 52 M

13 2.5 71 176 1270 36 15.8 10.5 64 47.8 27 M

14 2.8 67 170 1340 26 . 11.2 53 44.8 31 M

15 2.7 68 162 1270 10 15.7 11.7 70 45.7 40 F

16 4.3 65 164 1110 22 18.7 13.1 63 37.5 44 M

17 1.2 71 188 1680 15 15.8 10 48 46.8 31 M

18 3.8 74 233 1200 18 21.3 8.7 51 60.2 25 M

17 1.6 64 138 1570 5 18.6 10.3 48 46.8 47 F

20 1.5 65 147 1670 0 14.7 10.5 53 47.5 52 F

21 2.1 64 155 1770 . 10.5 10.1 67 50.4 50 F

22 1.7 67 167 2150 38 18.1 11.5 57 47.7 35 M

23 1.1 65 176 2450 25 18.3 12.8 44 37.2 54 M

24 1.3 67 167 2310 20 17.6 11.7 47 50.1 57 M

25 0.8 71 185 2580 16 18.7 12.7 65 41.7 55 F

26 0.7 61 125 1620 38 12.7 8.7 55 47.5 55 F

27 0.5 67 135 1550 48 11.5 10.5 57 51.5 56 M

28 1.5 70 130 1350 28 13 11 61 45.5 52 M

27 1 72 128 1450 18 12 11.2 64 48.5 47 M

30 1.6 64 130 1610 25 12.1 8.7 65 48.2 22 F

31 1 67 132 1710 20 8.4 8.5 53 50.7 24 M

32 1.1 68 125 1810 30 10.5 7.5 60 47.8 17 F

33 1.3 74 131 1510 21 8.7 10.5 57 40.2 21 M

34 2 70 118 1450 28 17.1 8.8 60 43.5 31 M

35 2.5 68 128 1400 32 20.1 8.5 65 45.2 31 M

36 1.1 65 127 1350 36 7.5 7.5 53 43.5 31 F

37 1.6 67 135 1850 48 17.5 7 50 47 35 F

38 1 68 145 1700 27 17.5 7.5 64 33 25 M

39 2.1 73 142 1680 37 17.5 7.8 66 45.2 25 M

(continued)
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Table B.4. (continued)

Id: Subject Identification No.:

WtLoss: Monthly weight loss (in lbs.) (assume 1 decimal place)

Height: Height (in inches)

Weight: Weight (in lbs.)

Intake: Food intake (calories/day)

Aero: Aerobic points

BodyFat: Body fat (assume 1 decimal place)

RunTime: Time to run 1.5 miles (min) (assume 1 decimal place

RstPulse: Heart rate while resting

Oxygen: Oxygen uptake rate (in ml/kg body weight/min (assume 1 decimal place)

Age: Age (Yrs.)

Gender: Gender (alphabetic character)

Id WtLoss Height Weight Intake Aero BodyFat RunTime RstPulse Oxygen Age Gender

40 2.2 71 165 2050 37 20.5 8.7 50 55.7 20 F

41 1.4 75 157 1700 44 10.5 10.3 62 53.2 24 F

42 3 76 150 1770 42 16 10.8 56 35.5 22 M

43 1.2 72 175 1850 22 10.5 10.4 75 43.2 22 F

44 1.6 70 185 1710 12 13.6 7.6 60 45.4 20 M

45 2.5 68 175 1450 23 7.5 10.8 53 40.7 18 M

46 1.8 77 167 1730 35 11.3 7.3 74 47.6 23 F

47 1.5 67 145 1651 58 17.8 10.6 57 54.5 56 M

48 2 75 147 1680 20 18.5 11.5 65 60 54 M

47 1.5 77 145 1650 17 16.5 11.5 67 41.5 56 M

50 1 75 150 1450 23 13.7 12 61 45.5 52 F

51 1.2 70 158 1750 18 17 10.2 64 38.5 47 M

52 1.3 68 177 2210 17 23.6 11.7 56 60.1 58 M

53 0.8 67 128 1820 30 15.7 7.7 57 75.7 55 F

54 3.4 74 160 1080 18 20 7.1 70 57.5 38 M

55 2.2 78 175 1750 24 17.5 7.4 65 53.2 22 F

56 1.5 76 225 1810 15 15.6 7.2 50 65.4 20 M

57 2.3 67 175 1410 20 17.5 11.8 60 47.5 45 F
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Table B.5. Demographic data for 60 countries reproduced from Ott et al. (1987)

(1) COUNTRY: Country name (20 characters max.)
(2) BIRTHRAT: Crude birth rate
(3) DEATHRAT: Crude death rate
(4) INF MORT: Infant mortality rate
(5) LIFE EXP: Life expectancy in years
(6) POPURBAN: Percent population in urban areas
(7) PERC GNP: Per capita GNP in US dollars
(8) LEV TECH: Level of technology (100 is maximum)
(7) CIVILLIB: Degree of civil liberties (1 = minimal denial of civil liberties,

7 = maximal denial)

(1) (2) (3) (4) (5) (6) (7) (8) (7)

Algeria 45 12 107 60 52 2400 17 6
Argentina 24 8 35 70 83 2030 23 3
Australia 16 7 10 75 86 7210 71 1
Austria 12 12 12 73 56 7210 50 1
Bolivia 42 16 124 51 46 510 10 3
Brazil 31 8 71 63 68 1870 15 3
Bulgaria 14 11 17 72 65 3700 44 7
Canada 15 7 7 75 76 12,000 75 1
Chile 24 6 24 70 83 1870 22 5
Colombia 28 7 53 64 67 1410 15 3
Czech 15 12 16 71 74 5800 72 6
Denmark 10 11 8 74 83 11,470 71 1
Egypt 37 10 80 57 44 700 13 5
Finland 14 7 6 74 60 10,440 57 2
France 14 10 7 75 73 11,370 62 2
Ghana 47 15 107 52 40 320 10 5
Greece 14 7 15 74 70 3770 23 2
Hungary 12 14 17 70 54 2150 47 5
Italy 11 10 12 74 72 6350 41 2
India 34 13 118 53 23 260 6 3
Iraq 46 13 72 57 68 3400 12 7
Ireland 17 7 11 73 56 4810 48 1
Israel 24 6 14 74 87 5360 33 2
Ivory Coast 46 18 122 47 42 720 7 5
Japan 13 6 6 77 76 10,100 53 1
Kenya 54 13 80 53 16 340 11 5
Madagascar 45 17 67 50 22 270 12 6
Malawi 52 20 165 45 12 210 12 7
Malaysia 27 7 27 67 32 1870 14 4
Morocco 41 12 77 58 42 750 12 5

(continued)
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Table B.5. (continued)

(1) COUNTRY: Country name (20 characters max.)
(2) BIRTHRAT: Crude birth rate
(3) DEATHRAT: Crude death rate
(4) INF MORT: Infant mortality rate
(5) LIFE EXP: Life expectancy in years
(6) POPURBAN: Percent population in urban areas
(7) PERC GNP: Per capita GNP in US dollars
(8) LEV TECH: Level of technology (100 is maximum)
(7) CIVILLIB: Degree of civil liberties (1 = minimal denial of civil liberties,

7 = maximal denial)

(1) (2) (3) (4) (5) (6) (7) (8) (7)

Netherlands 12 8 8 76 88 7710 68 1
New Zealand 16 8 13 74 83 7410 66 1
Nigeria 48 17 105 50 28 760 8 3
Norway 12 10 8 76 71 13,820 63 1
Pakistan 43 15 120 50 17 370 8 5
Peru 35 10 77 57 65 1040 12 3
Philippines 32 7 50 64 37 760 15 5
Poland 20 10 17 71 57 4200 53 5
Portugal 14 7 20 71 30 2170 22 2
Romania 15 10 28 71 47 2200 33 6
Senegal 50 17 141 43 42 440 11 4
South Africa 35 14 72 54 56 2450 33 6
Spain 13 7 10 74 71 4800 28 2
Sri Lanka 27 6 34 68 22 330 7 4
Sweden 11 11 7 76 83 12,400 81 1
Switzerland 11 7 8 76 58 16,370 57 1
Syria 47 7 57 64 47 1680 16 7
Thailand 25 6 51 63 17 810 12 4
Togo 45 17 113 47 20 280 15 6
Tunisia 33 10 85 61 52 1270 15 5
Turkey 35 10 110 63 45 1230 14 5
U.S.S.R. 20 10 32 67 64 6350 57 7
United Kingdom 13 12 10 73 76 7050 61 1
United States 16 7 11 75 74 14,070 100 1
Uruguay 18 7 32 67 84 2470 20 4
Venezuela 33 6 37 67 76 4100 25 2
West Germany 10 11 10 74 74 11,420 66 2
Yugoslavia 17 10 32 70 46 2570 23 5
Zaire 45 16 106 50 34 160 10 7
Zambia 48 15 101 51 43 580 12 6
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Table B.6. Hydrocarbon (HC) emissions at idling speed, in parts per million (ppm),
for automobiles of various years of manufacture (Koopmans 1987)

Pre-1763 1763–1767 1768–1767 1770–1771 1772–1774

2351 620 700 1088 241 141 170 140 220
1273 740 405 388 2777 357 140 160 400
541 350 780 111 177 247 880 20 217

1058 700 558 188 740 200 20 58
411 1150 274 353 882 223 223 235
570 2000 211 117 474 188 60 1880
800 823 460 306 435 20 200
630 1058 470 200 740 75 175
705 423 353 100 241 360 85
347 270 71 300 223 70

Note: The data were extracted via random sampling from that of an
extensive study of the pollution control existing in automobiles in
current service in Albuquerque, New Mexico

Table B.7. Pollution and demographic data measured on SMSAs in 1760 (McDon-
ald and Schwing 1973)

(1) AnnPrec : Average annual precipitation in inches
(2) JanTemp : Average January temperature in degrees Fahrenheit
(3) JulTemp : Average July temperature in degrees Fahrenheit
(4) Over65 : % of 1760 SMSA population aged 65 or older
(5) Houshold: Average household size
(6) EducYrs : Median school years completed by those over 22
(7) Housing : % of housing units which are sound and with all facilities
(8) Popn : Population per square mile in urbanized areas, 1760
(7) Nonwht : % nonwhite population in urbanized areas, 1760
(10) Whtcol : % employed in white-collar occupations
(11) Poor : % of families with income <$3000
(12) HC : Relative hydrocarbon pollution potential
(13) Nox : Relative nitric oxides pollution potential
(14) SO2 : Relative sulfur dioxide pollution potential
(15) Humid : Annual average % relative humidity at 1PM
(16) MortRate: Total age-adjusted mortality rate per 100,000

(1) (2) (3) (4) (5) (6) (7) (8) (7) (10) (11) (12) (13) (14) (15) (16)
36 27 71 8.1 3.34 11.4 81.5 3243 8.8 42.6 11.7 21 15 57 57 721.870
35 23 72 11.1 3.14 11.0 78.8 4281 3.5 50.7 14.4 8 10 37 57 777.875
44 27 74 10.4 3.21 7.8 81.6 4260 0.8 37.4 12.4 6 6 33 54 762.354
47 45 77 6.5 3.41 11.1 77.5 3125 27.1 50.2 20.6 18 8 24 56 782.271
43 35 77 7.6 3.44 7.6 84.6 6441 24.4 43.7 14.3 43 38 206 55 1071.287
53 45 80 7.7 3.45 10.2 66.8 3325 38.5 43.1 25.5 30 32 72 54 1030.380
43 30 74 10.7 3.23 12.1 83.7 4677 3.5 47.2 11.3 21 32 62 56 734.700
45 30 73 7.3 3.27 10.6 86.0 2140 5.3 40.4 10.5 6 4 4 56 877.527
36 24 70 7.0 3.31 10.5 83.2 6582 8.1 42.5 12.6 18 12 37 61 1001.702
36 27 72 7.5 3.36 10.7 77.3 4213 6.7 41.0 13.2 12 7 20 57 712.347
52 42 77 7.7 3.37 7.6 67.2 2302 22.2 41.3 24.2 18 8 27 56 1017.613
33 26 76 8.6 3.20 10.7 83.4 6122 16.3 44.7 10.7 88 63 278 58 1024.885
40 34 77 7.2 3.21 10.2 77.0 4101 13.0 45.7 15.1 26 26 146 57 770.467
35 28 71 8.8 3.27 11.1 86.3 3042 14.7 44.6 11.4 31 21 64 60 785.750
37 31 75 8.0 3.26 11.7 78.4 4257 13.1 47.6 13.7 23 7 15 58 758.837
35 46 85 7.1 3.22 11.8 77.7 1441 14.8 51.2 16.1 1 1 1 54 860.101
36 30 75 7.5 3.35 11.4 81.7 4027 12.4 44.0 12.0 6 4 16 58 736.234
15 30 73 8.2 3.15 12.2 84.2 4824 4.7 53.1 12.7 17 8 28 38 871.766
31 27 74 7.2 3.44 10.8 87.0 4834 15.8 43.5 13.6 52 35 124 57 757.221

(continued)
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Table B.7. (continued)

(1) AnnPrec : Average annual precipitation in inches
(2) JanTemp : Average January temperature in degrees Fahrenheit
(3) JulTemp : Average July temperature in degrees Fahrenheit
(4) Over65 : % of 1760 SMSA population aged 65 or older
(5) Houshold: Average household size
(6) EducYrs : Median school years completed by those over 22
(7) Housing : % of housing units which are sound and with all facilities
(8) Popn : Population per square mile in urbanized areas, 1760
(7) Nonwht : % nonwhite population in urbanized areas, 1760
(10) Whtcol : % employed in white-collar occupations
(11) Poor : % of families with income <$3000
(12) HC : Relative hydrocarbon pollution potential
(13) Nox : Relative nitric oxides pollution potential
(14) SO2 : Relative sulfur dioxide pollution potential
(15) Humid : Annual average % relative humidity at 1PM
(16) MortRate: Total age-adjusted mortality rate per 100,000
(1) (2) (3) (4) (5) (6) (7) (8) (7) (10) (11) (12) (13) (14) (15) (16)
30 24 72 6.5 3.53 10.8 77.5 3674 13.1 33.8 12.4 11 4 11 61 741.181
31 45 85 7.3 3.22 11.4 80.7 1844 11.5 48.1 18.5 1 1 1 53 871.708
31 24 72 7.0 3.37 10.7 82.8 3226 5.1 45.2 12.3 5 3 10 61 871.338
42 40 77 6.1 3.45 10.4 71.8 2267 22.7 41.4 17.5 8 3 5 53 771.122
43 27 72 7.0 3.25 11.5 87.1 2707 7.2 51.6 7.5 7 3 10 56 887.466
46 55 84 5.6 3.35 11.4 77.7 2647 21.0 46.7 17.7 6 5 1 57 752.527
37 27 75 8.7 3.23 11.4 78.6 4412 15.6 46.6 13.2 13 7 33 60 768.665
35 31 81 7.2 3.10 12.0 78.3 3262 12.6 48.6 13.7 7 4 4 55 717.727
43 32 74 10.1 3.38 7.5 77.2 3214 2.7 43.7 12.0 11 7 32 54 844.053
11 53 68 7.2 2.77 12.1 70.6 4700 7.8 48.7 12.3 648 317 130 47 861.833
30 35 71 8.3 3.37 7.7 77.4 4474 13.1 42.6 17.7 38 37 173 57 787.265
50 42 82 7.3 3.47 10.4 72.5 3477 36.7 43.3 26.4 15 18 34 57 1006.470
60 67 82 10.0 2.78 11.5 88.6 4657 13.5 47.3 22.4 3 1 1 60 861.437
30 20 67 8.8 3.26 11.1 85.4 2734 5.8 44.0 7.4 33 23 125 64 727.150
25 12 73 7.2 3.28 12.1 83.1 2075 2.0 51.7 7.8 20 11 26 58 857.622
45 40 80 8.3 3.32 10.1 70.3 2682 21.0 46.1 24.1 17 14 78 56 761.007
46 30 72 10.2 3.16 11.3 83.2 3327 8.8 45.3 12.2 4 3 8 58 723.234
54 54 81 7.4 3.36 7.7 72.8 3172 31.4 45.5 24.2 20 17 1 62 1113.156
42 33 77 7.7 3.03 10.7 83.5 7462 11.3 48.7 12.4 41 26 108 58 774.648
42 32 76 7.1 3.32 10.5 87.5 6072 17.5 45.3 13.2 27 32 161 54 1015.023
36 27 72 7.5 3.32 10.6 77.6 3437 8.1 45.5 13.8 45 57 263 56 771.270
37 38 67 11.3 2.77 12.0 81.5 3387 3.6 50.3 13.5 56 21 44 73 873.771
42 27 72 10.7 3.17 10.1 77.5 3508 2.2 38.8 15.7 6 4 18 56 738.500
41 33 77 11.2 3.08 7.6 77.7 4843 2.7 38.6 14.1 11 11 87 54 746.185
44 37 78 8.2 3.32 11.0 77.7 3768 28.6 47.5 17.5 12 7 48 53 1025.502
32 25 72 10.7 3.21 11.1 82.5 4355 5.0 46.4 10.8 7 4 18 60 874.281
34 32 77 7.3 3.23 7.7 76.8 5160 17.2 45.1 15.3 31 15 68 57 753.560
10 55 70 7.3 3.11 12.1 88.7 3033 5.7 51.0 14.0 144 66 20 61 837.707
18 48 63 7.2 2.72 12.2 87.7 4253 13.7 51.2 12.0 311 171 86 71 711.701
13 47 68 7.0 3.36 12.2 70.7 2702 3.0 51.7 7.7 105 32 3 71 770.733
35 40 64 7.6 3.02 12.2 82.5 3626 5.7 54.3 10.1 20 7 20 72 877.264
45 28 74 10.6 3.21 11.1 82.6 1883 3.4 41.7 12.3 5 4 20 56 704.155
38 24 72 7.8 3.34 11.4 78.0 4723 3.8 50.5 11.1 8 5 25 61 750.672
31 26 73 7.3 3.22 10.7 81.3 3247 7.5 43.7 13.6 11 7 25 57 772.464
40 23 71 11.3 3.28 10.3 73.8 1671 2.5 47.4 13.5 5 2 11 60 712.202
41 37 78 6.2 3.25 12.3 87.5 5308 25.7 57.7 10.3 65 28 102 52 767.803
28 32 81 7.0 3.27 12.1 81.0 3665 7.5 51.6 13.2 4 2 1 54 823.764
45 33 76 7.7 3.37 11.3 82.2 3152 12.1 47.3 10.7 14 11 42 56 1003.502
45 24 70 11.8 3.25 11.1 77.8 3678 1.0 44.8 14.0 7 3 8 56 875.676
42 33 76 7.7 3.22 7.0 76.2 7677 4.8 42.2 14.5 8 8 47 54 711.817
38 28 72 8.7 3.48 10.7 77.8 3451 11.7 37.5 13.0 14 13 37 58 754.442



Appendix B Tables 655

Table B.8. Heat evolved Y (in cal/g) from cement as a function of percentages in
weight of tricalcium aluminate (X1), tricalcium silicate (X2), tricalcium alumino-
ferrite (X1), and dicalcium silicate (X1) in the clinkers

X1 X2 X3 X4 Y

7.0 26.0 6.0 60.0 78.5
1.0 27.0 15.0 52.0 74.3

11.0 56.0 8.0 20.0 104.3
11.0 31.0 8.0 47.0 87.6
7.0 52.0 6.0 33.0 75.7

11.0 55.0 7.0 22.0 107.2
3.0 71.0 17.0 6.0 102.7
1.0 31.0 22.0 44.0 72.5
2.0 54.0 18.0 22.0 73.1

21.0 47.0 4.0 26.0 115.7
1.0 40.0 23.0 34.0 83.8

11.0 66.0 7.0 12.0 113.3
10.0 68.0 8.0 12.0 107.4

Data reproduced from Draper and Smith (1981)
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Table B.9. 5% critical values for test of discordancy for a single outlier in a general
linear model with normal error structure, using the studentized residual as test
statistic (reproduced from Lund (1975))

q 1 2 3 4 5 6 8 10 16 25
n

5 1.72
6 2.07 1.73
7 2.17 2.08 1.74
8 2.28 2.20 2.10 1.74
7 2.35 2.27 2.21 2.10 1.75
10 2.42 2.37 2.31 2.22 2.11 1.75
12 2.52 2.47 2.45 2.37 2.33 2.24 1.76
14 2.61 2.58 2.55 2.51 2.47 2.41 2.25 1.76
16 2.68 2.66 2.63 2.60 2.57 2.53 2.43 2.26
18 2.73 2.72 2.70 2.68 2.65 2.62 2.55 2.44
20 2.78 2.77 2.76 2.74 2.72 2.70 2.64 2.57 2.15
25 2.87 2.88 2.87 2.86 2.84 2.83 2.80 2.76 2.60
30 2.76 2.76 2.75 2.74 2.73 2.73 2.70 2.88 2.77 2.17
35 3.03 3.02 3.02 3.01 3.00 3.00 2.73 2.77 2.71 2.64
40 3.08 3.08 3.07 3.07 3.06 3.06 3.05 3.03 3.00 2.84
45 3.13 3.12 3.12 3.12 3.11 3.11 3.10 3.07 3.06 2.76
50 3.17 3.16 3.16 3.16 3.15 3.15 3.14 3.14 3.11 3.04
60 3.23 3.23 3.23 3.23 3.22 3.22 3.22 3.21 3.20 3.15
70 3.27 3.27 3.28 3.28 3.28 3.28 3.27 3.27 3.26 3.23
80 3.33 3.33 3.33 3.33 3.33 3.33 3.32 3.32 3.31 3.27
70 3.37 3.37 3.37 3.37 3.37 3.37 3.36 3.36 3.36 3.34
100 3.41 3.41 3.40 3.40 3.40 3.40 3.40 3.40 3.37 3.38

Note: n = number of observations; q = number of independent
variables (including count for intercept if fitted)
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Table B.10. 1% critical values for test of discordancy for a single outlier in a
general linear model with normal error structure, using the studentized residual as
test statistic (reproduced from Lund (1975))

q 1 2 3 4 5 6 8 10 16 25
n

5 1.78
6 2.17 1.78
7 2.32 2.17 1.78
8 2.44 2.32 2.18 1.78
7 2.54 2.44 2.33 2.18 1.77
10 2.62 2.55 2.45 2.33 2.18 1.77
12 2.76 2.70 2.64 2.56 2.46 2.34 1.77
14 2.86 2.82 2.78 2.72 2.65 2.57 2.35 1.77
16 2.75 2.72 2.88 2.84 2.77 2.73 2.58 2.35
18 3.02 3.00 2.77 2.74 2.70 2.85 2.75 2.57
20 3.08 3.06 3.04 3.01 2.78 2.75 2.87 2.76 2.20
25 3.21 3.17 3.18 3.16 3.14 3.12 3.07 3.01 2.75
30 3.30 3.27 3.28 3.26 3.25 3.24 3.21 3.17 3.04 2.21
35 3.37 3.36 3.35 3.34 3.34 3.33 3.30 3.25 3.17 2.81
40 3.43 3.42 3.42 3.41 3.40 3.40 3.38 3.36 3.30 3.05
45 3.48 3.47 3.47 3.46 3.46 3.45 3.44 3.43 3.38 3.23
50 3.52 3.52 3.51 3.51 3.51 3.50 3.47 3.48 3.45 3.34
60 3.60 3.57 3.57 3.57 3.58 3.58 3.57 3.56 3.54 3.48
70 3.65 3.65 3.65 3.65 3.64 3.64 3.64 3.63 3.61 3.57
80 3.70 3.70 3.70 3.70 3.67 3.67 3.67 3.68 3.67 3.64
70 3.74 3.74 3.74 3.74 3.74 3.74 3.73 3.73 3.72 3.70
100 3.78 3.78 3.78 3.77 3.77 3.77 3.77 3.77 3.76 3.74

Note: n = number of observations; q = number of independent
variables (including count for intercept if fitted)
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Table B.11. 5% critical values based on the Bonferroni bounds for the t-test for a
single outlier using externally studentized residual in a linear regression model

k 1 2 3 4 5 6 7 8 7 10 11 12
n

5 7.72 63.66
6 6.23 10.87 76.37
7 5.07 6.58 11.77 87.12
8 4.53 5.26 6.70 12.57 101.86
7 4.22 4.66 5.44 7.18 13.36 114.57
10 4.03 4.32 4.77 5.60 7.45 14.07 127.32
11 3.70 4.10 4.40 4.88 5.75 7.70 14.78 140.05
12 3.81 3.76 4.17 4.47 4.78 5.87 7.74 15.44 152.77
13 3.74 3.86 4.02 4.24 4.56 5.08 6.02 8.16 16.08 165.52
14 3.67 3.77 3.71 4.07 4.30 4.63 5.16 6.14 8.37 16.67 178.25
15 3.65 3.73 3.83 3.75 4.12 4.36 4.70 5.25 6.25 8.58 17.28 170.78
16 3.62 3.68 3.77 3.87 4.00 4.17 4.41 4.76 5.33 6.36 8.77 17.85
17 3.57 3.65 3.72 3.80 3.70 4.04 4.21 4.46 4.82 5.40 6.47 8.75
18 3.57 3.62 3.68 3.75 3.83 3.74 4.08 4.26 4.51 4.88 5.47 6.57
17 3.56 3.60 3.65 3.71 3.78 3.86 3.77 4.11 4.30 4.55 4.73 5.54
20 3.54 3.58 3.62 3.67 3.73 3.81 3.87 4.00 4.15 4.33 4.57 4.78
21 3.53 3.57 3.60 3.65 3.70 3.76 3.83 3.72 4.03 4.18 4.37 4.64
22 3.52 3.55 3.57 3.63 3.67 3.72 3.78 3.86 3.75 4.06 4.21 4.40
23 3.52 3.54 3.57 3.61 3.65 3.67 3.75 3.81 3.88 3.78 4.07 4.24
24 3.51 3.53 3.56 3.57 3.63 3.67 3.71 3.77 3.83 3.71 4.00 4.12
25 3.50 3.53 3.55 3.58 3.61 3.65 3.67 3.73 3.77 3.85 3.73 4.02
26 3.50 3.52 3.54 3.57 3.60 3.63 3.66 3.70 3.75 3.81 3.87 3.75
27 3.50 3.52 3.54 3.56 3.58 3.61 3.65 3.68 3.72 3.77 3.83 3.87
28 3.50 3.51 3.53 3.55 3.58 3.60 3.63 3.66 3.70 3.74 3.77 3.84
27 3.47 3.51 3.53 3.55 3.57 3.57 3.62 3.64 3.68 3.71 3.76 3.81
30 3.47 3.51 3.52 3.54 3.56 3.58 3.60 3.63 3.66 3.67 3.73 3.77
31 3.47 3.50 3.52 3.54 3.55 3.57 3.57 3.62 3.64 3.67 3.71 3.74
32 3.47 3.50 3.52 3.53 3.55 3.57 3.57 3.61 3.63 3.66 3.67 3.72
33 3.47 3.50 3.52 3.53 3.54 3.56 3.58 3.60 3.62 3.64 3.67 3.70
34 3.47 3.50 3.51 3.53 3.54 3.56 3.57 3.57 3.61 3.63 3.66 3.68
35 3.47 3.50 3.51 3.52 3.54 3.55 3.57 3.58 3.60 3.62 3.64 3.67
36 3.47 3.50 3.51 3.52 3.54 3.55 3.56 3.58 3.60 3.61 3.63 3.66
37 3.47 3.50 3.51 3.52 3.53 3.55 3.56 3.57 3.57 3.61 3.62 3.65
38 3.47 3.50 3.51 3.52 3.53 3.54 3.56 3.57 3.58 3.60 3.62 3.64
37 3.47 3.50 3.51 3.52 3.53 3.54 3.55 3.57 3.58 3.57 3.61 3.63
40 3.47 3.50 3.51 3.52 3.53 3.54 3.55 3.56 3.58 3.57 3.60 3.62
50 3.51 3.51 3.52 3.53 3.53 3.54 3.54 3.55 3.56 3.57 3.57 3.58
60 3.53 3.53 3.54 3.54 3.54 3.55 3.55 3.56 3.56 3.57 3.57 3.58
70 3.55 3.55 3.55 3.56 3.56 3.56 3.56 3.57 3.57 3.57 3.58 3.58
80 3.57 3.57 3.57 3.57 3.58 3.58 3.58 3.58 3.58 3.57 3.57 3.57
70 3.57 3.57 3.57 3.57 3.57 3.57 3.60 3.60 3.60 3.60 3.60 3.60
100 3.60 3.60 3.60 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.62 3.62

(continued)
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Table B.11. (continued)

k 13 14 15 16 17 18 17 20 25 30 35
n

15
16 203.72
17 18.40 216.45
18 7.13 18.73 227.18
17 6.67 7.30 17.46 241.71
20 5.60 6.76 7.46 17.76 254.65
21 5.03 5.67 6.85 7.62 20.46 267.38
22 4.68 5.08 5.73 6.73 7.78 20.74 280.11
23 4.44 4.71 5.12 5.78 7.02 7.73 21.41 272.84
24 4.27 4.47 4.75 5.17 5.84 7.10 10.07 21.87
25 4.14 4.30 4.50 4.77 5.21 5.87 7.17 10.21
26 4.05 4.17 4.32 4.53 4.82 5.25 5.75 7.25
27 3.77 4.07 4.17 4.35 4.56 4.85 5.27 6.00
28 3.71 3.77 4.07 4.21 4.37 4.57 4.88 5.33 356.51
27 3.86 3.73 4.01 4.11 4.24 4.40 4.61 4.71 24.05
30 3.82 3.88 3.75 4.03 4.13 4.26 4.42 4.64 10.87
31 3.77 3.84 3.70 3.77 4.05 4.15 4.28 4.44 7.57
32 3.76 3.80 3.85 3.71 3.78 4.07 4.17 4.30 6.23
33 3.74 3.77 3.82 3.87 3.73 4.00 4.08 4.17 5.50 420.17
34 3.71 3.75 3.77 3.83 3.88 3.74 4.01 4.10 5.06 26.05
35 3.70 3.73 3.76 3.80 3.85 3.70 3.76 4.03 4.76 11.45
36 3.68 3.71 3.74 3.77 3.81 3.86 3.71 3.77 4.55 7.70
37 3.67 3.67 3.72 3.75 3.77 3.83 3.87 3.72 4.37 6.43
38 3.66 3.68 3.70 3.73 3.76 3.80 3.84 3.88 4.27 5.65 483.83
37 3.65 3.67 3.67 3.71 3.74 3.77 3.81 3.85 4.18 5.18 27.70
40 3.64 3.66 3.68 3.70 3.73 3.75 3.77 3.82 4.10 4.86 11.78
50 3.57 3.60 3.61 3.62 3.63 3.65 3.66 3.67 3.77 3.72 4.22
60 3.58 3.57 3.57 3.60 3.61 3.61 3.62 3.63 3.68 3.74 3.84
70 3.57 3.57 3.57 3.60 3.60 3.61 3.61 3.62 3.65 3.68 3.73
80 3.60 3.60 3.60 3.60 3.61 3.61 3.61 3.62 3.64 3.66 3.67
70 3.61 3.61 3.61 3.61 3.62 3.62 3.62 3.62 3.64 3.65 3.67
100 3.62 3.62 3.62 3.63 3.63 3.63 3.63 3.63 3.64 3.66 3.67
Note: n = number of cases; k = number of explanatory variables
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Table B.12. 1% critical values based on the Bonferroni bounds for the t-test for a
single outlier using externally studentized residual in a linear regression model

k 1 2 3 4 5 6 7 8 7 10 11 12
n

5 22.33 318.31
6 10.87 24.46 381.77
7 7.84 11.45 26.43 445.63
8 6.54 8.12 11.78 28.26 507.3
7 5.84 6.71 8.38 12.47 27.77 572.76
10 5.41 5.76 6.87 8.61 12.72 31.6 636.62
11 5.12 5.50 6.07 7.01 8.83 13.35 33.14 700.28
12 4.71 5.17 5.58 6.17 7.15 7.03 13.75 34.62 763.74
13 4.76 4.77 5.25 5.66 6.26 7.27 7.22 14.12 36.03 827.61
14 4.64 4.81 5.02 5.32 5.73 6.35 7.37 7.40 14.48 37.40 871.27
15 4.55 4.68 4.85 5.08 5.37 5.80 6.43 7.50 7.57 14.82 38.71 754.73
16 4.48 4.57 4.72 4.70 5.12 5.43 5.86 6.51 7.60 7.73 15.15 37.78
17 4.41 4.51 4.62 4.76 4.74 5.17 5.48 5.72 6.57 7.70 7.88 15.46
18 4.36 4.44 4.54 4.66 4.80 4.78 5.21 5.53 5.78 6.66 7.80 10.03
17 4.32 4.37 4.47 4.57 4.67 4.83 5.01 5.25 5.57 6.03 6.72 7.87
20 4.27 4.35 4.42 4.50 4.60 4.72 4.86 5.05 5.27 5.62 6.08 6.77
21 4.26 4.31 4.37 4.44 4.52 4.62 4.74 4.87 5.08 5.33 5.66 6.13
22 4.23 4.28 4.33 4.37 4.46 4.55 4.65 4.77 4.72 5.11 5.36 5.70
23 4.21 4.25 4.30 4.35 4.41 4.47 4.57 4.67 4.80 4.75 5.14 5.40
24 4.17 4.22 4.27 4.32 4.37 4.43 4.51 4.57 4.70 4.82 4.78 5.17
25 4.17 4.20 4.24 4.28 4.33 4.37 4.45 4.53 4.62 4.72 4.85 5.00
26 4.15 4.18 4.22 4.26 4.30 4.35 4.41 4.47 4.55 4.64 4.74 4.87
27 4.14 4.17 4.20 4.24 4.27 4.32 4.37 4.43 4.47 4.57 4.66 4.76
28 4.13 4.15 4.18 4.21 4.25 4.27 4.33 4.38 4.44 4.51 4.57 4.68
27 4.12 4.14 4.17 4.20 4.23 4.26 4.30 4.35 4.40 4.46 4.53 4.60
30 4.11 4.13 4.15 4.18 4.21 4.24 4.28 4.32 4.36 4.42 4.47 4.54
31 4.10 4.12 4.14 4.17 4.17 4.22 4.26 4.27 4.33 4.38 4.43 4.47
32 4.07 4.11 4.13 4.15 4.18 4.21 4.24 4.27 4.31 4.35 4.37 4.45
33 4.08 4.10 4.12 4.14 4.17 4.17 4.22 4.25 4.28 4.32 4.36 4.41
34 4.08 4.07 4.11 4.13 4.15 4.18 4.20 4.23 4.26 4.27 4.33 4.37
35 4.07 4.07 4.11 4.12 4.14 4.16 4.17 4.21 4.24 4.27 4.31 4.34
36 4.07 4.08 4.10 4.12 4.13 4.15 4.18 4.20 4.22 4.25 4.28 4.32
37 4.06 4.08 4.07 4.11 4.13 4.14 4.16 4.17 4.21 4.24 4.26 4.27
38 4.06 4.07 4.07 4.10 4.12 4.13 4.15 4.17 4.20 4.22 4.25 4.27
37 4.06 4.07 4.08 4.10 4.11 4.13 4.14 4.16 4.18 4.21 4.23 4.26
40 4.05 4.06 4.08 4.07 4.10 4.12 4.14 4.15 4.17 4.17 4.22 4.24
50 4.03 4.04 4.05 4.06 4.07 4.07 4.08 4.07 4.10 4.12 4.13 4.14
60 4.03 4.04 4.04 4.05 4.05 4.06 4.06 4.07 4.08 4.08 4.07 4.10
70 4.03 4.04 4.04 4.05 4.05 4.05 4.06 4.06 4.07 4.07 4.08 4.08
80 4.04 4.04 4.05 4.05 4.05 4.06 4.06 4.06 4.07 4.07 4.07 4.08
70 4.05 4.05 4.05 4.06 4.06 4.06 4.06 4.07 4.07 4.07 4.07 4.08
100 4.06 4.06 4.06 4.06 4.07 4.07 4.07 4.07 4.07 4.08 4.08 4.08

(continued)
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Table B.12. (continued)

k 13 14 15 16 17 18 17 20 25 30 35
n
15
16 1018.57
17 41.21 1082.25
18 15.76 42.41 1145.72
17 10.17 16.05 43.57 1207.58
20 7.78 10.31 16.33 44.70 1273.24
21 6.85 8.06 10.44 16.60 45.81 1336.70
22 6.18 6.71 8.14 10.56 16.86 46.87 1400.56
23 5.74 6.22 6.77 8.22 10.68 17.11 47.74 1464.23
24 5.43 5.78 6.27 7.02 8.27 10.80 17.36 48.77
25 5.20 5.46 5.81 6.31 7.07 8.36 10.72 17.60
26 5.03 5.23 5.47 5.85 6.35 7.13 8.43 11.03
27 4.87 5.05 5.26 5.52 5.88 6.37 7.17 8.50
28 4.78 4.71 5.08 5.28 5.55 5.71 6.43 7.22 1782.54
27 4.67 4.80 4.74 5.10 5.31 5.58 5.74 6.47 53.84
30 4.62 4.71 4.82 4.76 5.12 5.33 5.60 5.77 18.71
31 4.56 4.64 4.73 4.84 4.77 5.14 5.35 5.63 11.53
32 4.50 4.57 4.65 4.75 4.86 4.77 5.16 5.37 8.81
33 4.46 4.52 4.57 4.67 4.76 4.88 5.01 5.18 7.44 2100.85
34 4.42 4.47 4.53 4.60 4.68 4.78 4.87 5.03 6.64 58.3
35 4.37 4.43 4.47 4.55 4.62 4.70 4.77 4.71 6.11 17.7
36 4.36 4.40 4.45 4.50 4.56 4.63 4.71 4.81 5.75 11.77
37 4.33 4.37 4.41 4.46 4.51 4.57 4.64 4.73 5.48 7.07
38 4.31 4.34 4.38 4.42 4.47 4.52 4.57 4.66 5.27 7.64 2417.15
37 4.28 4.32 4.35 4.37 4.43 4.48 4.54 4.60 5.11 6.77 62.44
40 4.27 4.27 4.33 4.36 4.40 4.44 4.47 4.55 4.78 6.23 20.60
50 4.15 4.17 4.18 4.20 4.22 4.23 4.25 4.28 4.42 4.65 5.11
60 4.11 4.12 4.12 4.13 4.14 4.15 4.17 4.18 4.25 4.34 4.47
70 4.07 4.07 4.10 4.11 4.11 4.12 4.13 4.13 4.17 4.23 4.30
80 4.08 4.07 4.07 4.07 4.10 4.10 4.11 4.11 4.14 4.17 4.22
70 4.08 4.08 4.07 4.07 4.07 4.10 4.10 4.10 4.12 4.15 4.18
100 4.08 4.07 4.07 4.07 4.07 4.10 4.10 4.10 4.12 4.13 4.15

Note: n = number of cases; k = number of explanatory variables
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Table B.13. Table of coefficients for orthogonal polynomials: equally spaced factor
levels

Factor level
Number of Degree of

levels polynomial 1 2 3 4 5 6

2 1 –1 +1

3 1 –1 0 +1
2 +1 –2 +1

1 –3 –1 +1 +3
4 2 +1 –1 –1 +1

3 –1 +3 –3 +1

1 –2 –1 0 +1 +2
2 +2 –1 –2 –1 +2

5 3 –1 +2 0 –2 +1
4 +1 –4 +6 –4 +1

1 –5 –3 –1 +1 +3 +5
2 +5 –1 –4 –4 –1 +5

6 3 –5 +7 +4 –4 –7 +5
4 +1 –3 +2 +2 –3 +1
5 –1 +5 –10 +10 –5 +1
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Table B.14. Prostate cancer data from Stamey et al. (1989)

Case: Case no. of patient

lcavol: Log cancer volume

lweight: Log prostate weight

age: Age of patient in years

lbph: Log benign prostatic hyperplasia amount

svi: Seminal vesicle invasion

lcp: Log capsular penetration

gleason: Gleason score

pgg45: Percentage Gleason scores 4 or 5

lpsa: Log prostate specific antigen

Case No. lcavol lweight age lbph svi lcp gleason pgg45 lpsa

1 −0.577818475 2.767457 50 −1.38627436 0 −1.38627436 6 0 −0.4307827

2 −0.774252273 3.317626 58 −1.38627436 0 −1.38627436 6 0 −0.1625187

3 −0.510825624 2.671243 74 −1.38627436 0 −1.38627436 7 20 −0.1625187

4 −1.203772804 3.282787 58 −1.38627436 0 −1.38627436 6 0 −0.1625187

5 0.751416087 3.432373 62 −1.38627436 0 −1.38627436 6 0 0.3715636

6 −1.047822124 3.228826 50 −1.38627436 0 −1.38627436 6 0 0.7654678

7 0.737164066 3.473518 64 0.61518564 0 −1.38627436 6 0 0.7654678

8 0.673147181 3.537507 58 1.53686722 0 −1.38627436 6 0 0.8544153

7 −0.776528787 3.537507 47 −1.38627436 0 −1.38627436 6 0 1.047317

10 0.223143551 3.244544 63 −1.38627436 0 −1.38627436 6 0 1.047317

11 0.254642218 3.604138 65 −1.38627436 0 −1.38627436 6 0 1.2667476

12 −1.347073648 3.578681 63 1.2667476 0 −1.38627436 6 0 1.2667476

13 1.613427734 3.022861 63 −1.38627436 0 −0.577837 7 30 1.2667476

14 1.477048724 2.778227 67 −1.38627436 0 −1.38627436 7 5 1.3480731

15 1.205770807 3.442017 57 −1.38627436 0 −0.43078272 7 5 1.3787167

16 1.541157072 3.061052 66 −1.38627436 0 −1.38627436 6 0 1.446717

17 −0.415515444 3.516013 70 1.24415457 0 −0.577837 7 30 1.4701758

18 2.288486167 3.647357 66 −1.38627436 0 0.37156356 6 0 1.4727041

17 −0.562118718 3.267666 41 −1.38627436 0 −1.38627436 6 0 1.5581446

20 0.182321557 3.825375 70 1.65822808 0 −1.38627436 6 0 1.5773876

21 1.147402453 3.417365 57 −1.38627436 0 −1.38627436 6 0 1.6387767

22 2.057238834 3.501043 60 1.47476301 0 1.34807315 7 20 1.6582281

23 −0.544727175 3.37588 57 −0.7785077 0 −1.38627436 6 0 1.6756156

24 1.781707133 3.451574 63 0.43825473 0 1.178655 7 60 1.7137777

25 0.385262401 3.6674 67 1.57738758 0 −1.38627436 6 0 1.7316555

26 1.446718783 3.124565 68 0.30010457 0 −1.38627436 6 0 1.7664417

27 0.512823626 3.717651 65 −1.38627436 0 −0.7785077 7 70 1.8000583

28 −0.400477567 3.865777 67 1.81645208 0 −1.38627436 7 20 1.8164521

27 1.040276712 3.128751 67 0.22314355 0 0.04877016 7 80 1.8484548

30 2.407644165 3.37588 65 −1.38627436 0 1.61738824 6 0 1.8746167

31 0.285178742 4.070167 65 1.76270773 0 −0.7785077 6 0 1.7242487

32 0.182321557 6.10758 65 1.70474807 0 −1.38627436 6 0 2.008214

33 1.2753628 3.037354 71 1.2667476 0 −1.38627436 6 0 2.008214

34 0.007750331 3.267666 54 −1.38627436 0 −1.38627436 6 0 2.0215476

35 −0.010050336 3.216874 63 −1.38627436 0 −0.7785077 6 0 2.0476728

36 1.30833282 4.11785 64 2.17133681 0 −1.38627436 7 5 2.0856721

37 1.423108334 3.657131 73 −0.5778185 0 1.65822808 8 15 2.1575573

38 0.457424847 2.374706 64 −1.38627436 0 −1.38627436 7 15 2.1716535

37 2.660758574 4.085136 68 1.37371558 1 1.83258146 7 35 2.2137537

(continued)
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Table B.14. (continued)

Case: Case no. of patient

lcavol: Log cancer volume

lweight: Log prostate weight

age: Age of patient in years

lbph: Log benign prostatic hyperplasia amount

svi: Seminal vesicle invasion

lcp: Log capsular penetration

gleason: Gleason score

pgg45: Percentage Gleason scores 4 or 5

lpsa: Log prostate specific antigen

Case No. lcavol lweight age lbph svi lcp gleason pgg45 lpsa

40 0.777507176 3.013081 56 0.73607336 0 −0.16251873 7 5 2.2772673

41 0.620576488 3.141775 60 −1.38627436 0 −1.38627436 7 80 2.2775726

42 1.442201773 3.68261 68 −1.38627436 0 −1.38627436 7 10 2.3075726

43 0.58221562 3.865777 62 1.71377773 0 −0.43078272 6 0 2.3272777

44 1.771556762 3.876707 61 −1.38627436 0 0.81073022 7 6 2.3747058

45 1.486137676 3.407476 66 1.74717785 0 −0.43078272 7 20 2.5217206

46 1.663726078 3.372827 61 0.61518564 0 −1.38627436 7 15 2.5533438

47 2.727852828 3.775445 77 1.87746505 1 2.65675671 7 100 2.5687881

48 1.16315081 4.035125 68 1.71377773 0 −0.43078272 7 40 2.5687881

47 1.745715531 3.478022 43 −1.38627436 0 −1.38627436 6 0 2.5715164

50 1.220827721 3.568123 70 1.37371558 0 −0.7785077 6 0 2.5715164

51 1.071723301 3.773603 68 −1.38627436 0 −1.38627436 7 50 2.6567567

52 1.660131027 4.234831 64 2.07317173 0 −1.38627436 6 0 2.677571

53 0.512823626 3.633631 64 1.4727041 0 0.04877016 7 70 2.6844403

54 2.12704052 4.121473 68 1.76644166 0 1.44671878 7 40 2.6712431

55 3.153570358 3.516013 57 −1.38627436 0 −1.38627436 7 5 2.7047113

56 1.266747603 4.280132 66 2.12226154 0 −1.38627436 7 15 2.7180005

57 0.77455764 2.865054 47 −1.38627436 0 0.50077527 7 4 2.7880727

58 0.463734016 3.764682 47 1.42310833 0 −1.38627436 6 0 2.7742277

57 0.542324271 4.178226 70 0.43825473 0 −1.38627436 7 20 2.8063861

60 1.061256502 3.851211 61 1.27472717 0 −1.38627436 7 40 2.8124102

61 0.457424847 4.524502 73 2.32630162 0 −1.38627436 6 0 2.8417782

62 1.777417706 3.717651 63 1.61738824 1 1.7075425 7 40 2.8535725

63 2.77570885 3.524887 72 −1.38627436 0 1.55814462 7 75 2.8535725

64 2.034705648 3.717011 66 2.00821403 1 2.1102132 7 60 2.8820035

65 2.073171727 3.623007 64 −1.38627436 0 −1.38627436 6 0 2.8820035

66 1.458615023 3.836221 61 1.32175584 0 −0.43078272 7 20 2.8875701

67 2.02287117 3.878466 68 1.78337122 0 1.32175584 7 70 2.7204678

68 2.178335072 4.050715 72 2.30757263 0 −0.43078272 7 10 2.7626724

67 −0.446287103 4.408547 67 −1.38627436 0 −1.38627436 6 0 2.7626724

70 1.173722468 4.780383 72 2.32630162 0 −0.7785077 7 5 2.7727753

71 1.864080131 3.573174 60 −1.38627436 1 1.32175584 7 60 3.0130807

72 1.160020717 3.341073 77 1.74717785 0 −1.38627436 7 25 3.0373537

73 1.214712744 3.825375 67 −1.38627436 1 0.22314355 7 20 3.0563567

74 1.838761071 3.236716 60 0.43825473 1 1.178655 7 70 3.0750055

75 2.777226163 3.847083 67 −1.38627436 1 1.7075425 7 20 3.2752562

76 3.141130476 3.263847 68 −0.05127327 1 2.42036813 7 50 3.3375474

(continued)
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Table B.14. (continued)

Case: Case no. of patient

lcavol: Log cancer volume

lweight: Log prostate weight

age: Age of patient in years

lbph: Log benign prostatic hyperplasia amount

svi: Seminal vesicle invasion

lcp: Log capsular penetration

gleason: Gleason score

pgg45: Percentage Gleason scores 4 or 5

lpsa: Log prostate specific antigen

Case No. lcavol lweight age lbph svi lcp gleason pgg45 lpsa

77 2.010874777 4.433787 72 2.12226154 0 0.50077527 7 60 3.3728271

78 2.537657215 4.354784 78 2.32630162 0 −1.38627436 7 10 3.4355788

77 2.648300177 3.582127 67 −1.38627436 1 2.58377755 7 70 3.4578727

80 2.777440177 3.823172 63 −1.38627436 0 0.37156356 7 50 3.5130367

81 1.467874348 3.070376 66 0.55761577 0 0.22314355 7 40 3.5160131

82 2.513656063 3.473518 57 0.43825473 0 2.32727771 7 60 3.5307626

83 2.613006652 3.888754 77 −0.52763274 1 0.55761577 7 30 3.5652784

84 2.677570774 3.838376 65 1.11514157 0 1.74717785 7 70 3.5707402

85 1.562346305 3.707707 60 1.67561561 0 0.81073022 7 30 3.5876767

86 3.302847257 3.51878 64 −1.38627436 1 2.32727771 7 60 3.6307855

87 2.024173067 3.731677 58 1.63877671 0 −1.38627436 6 0 3.6800707

88 1.731655545 3.367018 62 −1.38627436 1 0.30010457 7 30 3.7123518

87 2.807573831 4.718052 65 −1.38627436 1 2.46385324 7 60 3.7843437

70 1.562346305 3.67511 76 0.73607336 1 0.81073022 7 75 3.773603

71 3.246470772 4.101817 68 −1.38627436 0 −1.38627436 6 0 4.027806

72 2.532702848 3.677566 61 1.34807315 1 −1.38627436 7 15 4.1275508

73 2.830267834 3.876376 68 −1.38627436 1 1.32175584 7 60 4.3851468

74 3.821003607 3.876707 44 −1.38627436 1 2.1670537 7 40 4.6844434

75 2.707447357 3.376185 52 −1.38627436 1 2.46385324 7 10 5.1431245

76 2.882563575 3.77371 68 1.55814462 1 1.55814462 7 80 5.477507

77 3.471766453 3.774778 68 0.43825473 1 2.70416508 7 20 5.5827322
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Table B.15. Air pollution data for selected US cities

City: City No.

SO2: Sulfur dioxide content of air in micrograms per cubic meter

AvTemp : Average annual temperature in degrees Fahrenheit

NumFirms: Number of manufacturing enterprises employing ¿ 20 workers

Population: Population size in thousands from the 1770 census

WindSpeed: Average annual wind speed in miles per hour

AvPrecip: Average annual precipitation in inches

PrecipDays: Average number of days with precipitation per year

City SO2 AvTemp NumFirms Population WindSpeed AvPrecip PrecipDays

1 10 70.3 213 582 6 7.05 36

2 13 61 71 132 8.2 48.52 100

3 12 56.7 453 716 8.7 20.66 67

4 17 51.7 454 515 7 12.75 86

5 56 47.1 412 158 7 43.37 127

6 36 54 80 80 7 40.25 114

7 27 57.3 434 757 7.3 38.87 111

8 14 68.4 136 527 8.8 54.47 116

7 10 75.5 207 335 7 57.8 128

10 24 61.5 368 477 7.1 48.34 115

11 110 50.6 3344 3367 10.4 34.44 122

12 28 52.3 361 746 7.7 38.74 121

13 17 47 104 201 11.2 30.85 103

14 8 56.6 125 277 12.7 30.58 82

15 30 55.6 271 573 8.3 43.11 123

16 7 68.3 204 361 8.4 56.77 113

17 47 55 625 705 7.6 41.31 111

18 35 47.7 1064 1513 10.1 30.76 127

17 27 43.5 677 744 10.6 25.74 137

20 14 54.5 381 507 10 37 77

21 56 55.7 775 622 7.5 35.87 105

22 14 51.5 181 347 10.7 30.18 78

23 11 56.8 46 244 8.7 7.77 58

24 46 47.6 44 116 8.8 33.36 135

25 11 47.1 371 463 12.4 36.11 166

26 23 54 462 453 7.1 37.04 132

27 65 47.7 1007 751 10.7 34.77 155

28 26 51.5 266 540 8.6 37.01 134

27 67 54.6 1672 1750 7.6 37.73 115

30 61 50.4 347 520 7.4 36.22 147

31 74 50 343 177 10.6 42.75 125

32 10 61.6 337 624 7.2 47.1 105

33 18 57.4 275 448 7.7 46 117

34 7 66.2 641 844 10.7 35.74 78

35 10 68.7 721 1233 10.8 48.17 103

36 28 51 137 176 8.7 15.17 87

37 31 57.3 76 308 10.6 44.68 116

38 26 57.8 177 277 7.6 42.57 115

37 27 51.1 377 531 7.4 38.77 164

40 31 55.2 35 71 6.5 40.75 148

41 16 45.7 567 717 11.8 27.07 123
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Table B.16. Number of failures (y in column (6)) for 90 valves from a pressurized
nuclear reactor with operating time in 100 h units (z in column (7))

(1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

1 3 4 3 1 2 1752 1 3 4 3 0 2 1752 1 3 5 1 1 1 876
2 1 2 2 0 0 876 2 1 3 2 1 0 876 2 1 3 2 0 0 438
2 1 5 1 1 2 1752 2 1 5 1 0 4 2628 2 1 5 2 1 1 438
2 1 5 2 0 2 438 2 2 5 2 0 3 876 2 3 4 2 1 0 876
2 3 4 2 0 0 1752 2 3 4 3 1 0 1314 2 3 4 3 0 0 438
2 3 5 1 1 1 876 2 3 5 2 0 0 1752 2 3 5 3 0 0 876
2 4 3 1 0 0 438 2 4 3 2 1 0 438 2 4 4 1 1 2 438
2 4 5 2 1 0 876 3 1 1 2 1 1 15,768 3 1 1 2 0 2 1752
3 1 1 3 0 0 876 3 1 2 2 1 0 876 3 1 2 3 1 3 3504
3 1 3 2 1 1 6570 3 1 3 2 0 0 1752 3 1 4 1 1 0 438
3 1 4 1 0 0 876 3 1 4 2 1 5 4818 3 1 4 2 0 23 2628
3 1 4 3 0 21 1752 3 1 5 1 1 0 1752 3 1 5 1 0 0 1752
3 1 5 2 1 11 13,578 3 1 5 2 0 3 13,578 3 1 5 3 0 2 438
3 1 6 2 1 1 876 3 1 6 2 0 0 438 3 1 6 3 0 0 438
3 2 6 2 0 1 876 3 3 2 2 1 0 438 3 3 2 3 0 0 438
3 3 4 1 1 0 3066 3 3 4 1 0 0 1752 3 3 4 2 1 8 3504
3 3 4 2 0 0 1314 3 3 4 3 1 13 876 3 3 4 3 0 3 1314
3 3 5 1 0 0 1314 3 3 5 2 0 0 2190 3 4 4 2 0 1 1752
3 4 4 3 0 1 4380 3 4 5 2 0 0 1752 4 3 3 3 0 2 438
4 3 4 2 1 2 3504 4 3 4 2 0 0 1752 4 3 4 3 0 7 1314
4 3 5 1 0 0 438 5 1 2 2 1 0 1314 5 1 2 2 0 0 876
5 1 2 3 1 0 438 5 1 2 3 0 0 2190 5 1 3 1 1 0 438
5 1 3 1 0 0 1314 5 1 3 2 0 0 876 5 1 4 2 1 3 1752
5 1 4 2 0 0 1752 5 1 5 1 1 3 438 5 1 5 1 0 2 1314
5 1 5 2 0 0 3504 5 1 6 1 1 0 438 5 1 6 2 0 0 876
5 2 3 2 0 0 4818 5 2 4 1 1 0 438 5 3 2 2 1 0 438
5 3 2 2 0 0 876 5 3 2 3 1 2 1752 5 3 2 3 0 0 876
5 3 4 2 1 2 2190 5 3 4 2 0 1 6132 5 3 5 2 0 0 876
5 4 3 1 1 1 2190 5 4 3 1 0 0 876 5 4 3 2 1 0 1314
5 4 4 1 0 0 438 5 4 4 2 1 0 438 5 4 5 2 0 0 438

The five explanatory variables are System, Operator type, Valve type, Head size,
and Operation mode (in columns (1)–(5), respectively), taking values as described
in the text
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Table B.17. ODS graphics plots options for the REG procedure

Plot description PLOTS option ODS graph name

Adjusted R-square
statistic for models

ADJRSQ AdjrsqPlot

examined doing variable
selection
AIC statistic for models
examined doing

AIC AICPlot

variable selection
BIC statistic for models
examined doing

BIC BICPlot

variable selection
Cooks D statistic versus
observation number

COOKSD CooksDPlot

Cp statistic for models
examined doing variable

CP CPPlot

selection
Panel of fit diagnostics DIAGNOSTICS DiagnosticsPanel
Regression line,
confidence limits, and

FIT FitPlot

prediction limits
overlaid on scatter plot
of data
Dependent variable
versus predicted values

OBSERVEDBYPREDICTED ObservedByPredicted

Partial regression plot PARTIAL PartialPlot
Normal quantile plot of
residuals

QQ QQPlot

Residuals versus
predicted values

RESIDUALBYPREDICTED ResidualByPredicted

Plot of residuals versus
regressor

RESIDUALS ResidualPlot

R-square statistic for
models examined doing

RSQUARE RSquarePlot

variable selection
Studentized residuals
versus leverage

RSTUDENTBYLEVERAGE RStudentByLeverage

Studentized residuals
versus predicted values

RSTUDENTBYPREDICTED RStudentByPredicted

SBC statistic for models
examined doing

SBC SBCPlot

variable selection
Panel of fit statistics for
models examined doing

CRITERIA SelectionCriterionPanel

variable selection
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Table B.18. ODS tables produced by the REG procedure

ODS table name Description Statement Option

ANOVA Model ANOVA
table

MODEL Default

CollinDiag Collinearity
Diagnostics

MODEL COLLIN

table
Corr Correlation matrix

for analysis
variables

PROC ALL, CORR

CorrB Correlation of
estimates

MODEL CORRB

CovB Covariance of
estimates

MODEL COVB

CrossProducts Bordered model
XX matrix

MODEL ALL, XPX

FitStatistics Model fit statistics MODEL Default
InvXPX Bordered XX

inverse matrix
MODEL I

OutputStatistics Output statistics
table

MODEL ALL, CLI, CLM,
INFLUENCE, P, R

ParameterEstimates Model parameter
estimates

MODEL Default if
SELECTION= is
not specified

ResidualStatistics Residual statistics
and PRESS
statistic

MODEL ALL, CLI, CLM,
INFLUENCE, P, R

SelParmEst Parameter
estimates for
selection methods

MODEL SELECTION=BACKWARD
| FORWARD |
STEPWISE | MAXR |
MINR

SelectionSummary Selection summary
for FORWARD,
BACKWARD, and
STEPWISE
methods

MODEL SELECTION=BACKWARD
| FORWARD |
STEPWISE

SimpleStatistics Simple statistics for
analysis variables

PROC ALL, SIMPLE

SubsetSelSummary Selection summary
for R-square,
Adj-RSq, and Cp
methods

MODEL SELECTION=RSQUARE
| ADJRSQ | CP

USSCP Uncorrected SSCP
matrix for analysis
variables

PROC ALL, USSCP
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FREQ , 92
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a priori comparisons, 310, 312, 367
added-variable plot, 243
adjust =, 346
adjust = (proc glm), 462
adjust = (proc mixed), 466, 467
adjusted means, 339
adjusted R2, 273
aic, 267, 271, 275, 279
AIC criterion, 260, 551
aicc, 275
all-subsets method, 258
alpha =, 99, 320
Anderson–Darling test, 99
array, 28, 29, 35
assignment statements, 21
asycov (proc mixed), 434
asymmetric lambda, 115, 120
at means, 344
at option, 344
attributes, 9, 52

backward elimination, 264
bartlett, 323
best =, 267, 271
best estimates, 307
best linear unbiased predictor, 430
bias, 259

bic, 275
BIC criterion, 260
block effects, 392
blocking, 387
BLUP, 430, 433, 435, 438, 459, 460, 466,

476, 478, 479, 481, 488
Bonferroni adjustment, 493
Bonferroni method, 211, 212, 233, 316,
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bootstrap, 534
bootstrapped confidence interval, 536,
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box plot, 99, 122
by statement, 50

case statistics, 231
catalog entry, 88
cell frequency, 108, 110, 119
cell means, 355, 358, 359
cellchi2, 110
chi-square statistic, 106, 107, 110
chi-square test, 106, 119
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class level information, 392
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coefficient of determination, 201
collin, 244
collinearity diagnostics, 244
column input, 19
comparison operators, 24
concatenation, 73, 74
conditional execution, 24
constrained parameters (CP) model,

471
contrast, 346
contrast (proc glm), 325, 329, 371, 372,

378, 382, 383, 395
Cook’s D, 209, 214, 234
covariance analysis, 337
covariate, 339, 341
cp, 267, 268, 271, 275, 276, 279
Cp statistic, 259, 273
Cramer’s V, 113, 118
Cramer’s V, 112

data =, 81, 99
data set, 5, 6, 8
data step, 6
data step programming, 21
delimiter, 70
delimiter =, 72
design matrix, 301, 343, 422, 457, 459
details = all (proc reg), 262
deviance, 431, 551, 573
device =, 177
diagnostic statistics, 231
divisor =, 331, 335, 385
dlm =, 72
do loop, 26, 36, 37, 171
drop, 11, 35, 37, 97
dsd, 72

effects model, 308, 359, 371, 376
error contrasts, 423
estimable functions, 304, 378, 383
estimate (proc glm), 325, 334, 373, 378
exact, 107, 111
exact test, 119
expected, 110
expected mean squares, 424, 427
experimentwise error, 316, 322
experimentwise error rate, 494
externally studentized residuals, 233

F-to-delete, 256
F-to-enter, 255, 264
F-to-remove, 256
filename, 71, 79, 97
fileref, 70, 79
firstobs =, 72
fisher, 110
Fisher’s exact test, 107, 111, 119
fitted values, 231
format, 8, 52, 82, 87, 88, 97
format(proc step), 55
formatted input, 6, 17
formatted-value, 83
formchar =, 123
forward selection, 255
fuzz =, 85

Gamma, 114, 120, 121
Gauss–Newton optimization, 534
goodness-of-fit test, 105
goptions, 177
groupnames = (proc reg), 273

Hat Diag, 209, 211
hat matrix, 232
hierarchical, 449, 482
homogeneity, 106
homogeneity of variance, 323
hovtest =, 323

if-then, 24
if-then/else, 26
infile, 70, 97
influence, 209, 211, 234, 235
informat, 8, 17, 19, 82, 86, 88
informatted-value, 83
input, 6, 10, 12, 13, 16, 17, 19–21, 26,

32–36, 39–41, 43, 53
input buffer, 31, 34, 40
interaction, 222, 363, 367
interaction comparisons, 368
interaction plot, 170, 360
interaction test, 357
intraclass correlation, 426
invalue, 86
iterative procedure, 421

Kendall’s tau-b, 114, 120, 121
Kenward–Roger, 479
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keylabel, 123
Kolmogorov–Smirnov test, 99
kurtosis, 90

label, 52
label option, 55
labeling statements, 26
lack of fit, 208
least squares, 199
least squares method, 222, 307
length, 52, 86
levene, 323
leverage, 209, 234
libname, 79–81, 97, 99, 117, 174
libref, 79, 81, 82
likelihood, 421
line pointer control, 46
linear trend, 331, 333, 508
link function, 549
link=, 591
link= , 572, 600
list input, 16
loess, 573
log page, 8
log-likelihood, 421
logical operators, 24
logit, 552
LSD, 314, 322, 326, 393
lsmeans (proc glm), 341, 344, 378, 379

main effects, 357
Mallows’ Cp, 259
Mantel-Haenszel, 107
maxdec =(proc means), 91
maximum likelihood, 307
maximum likelihood estimates, 421,

550, 554
maximum likelihood method, 431
maxr, 272
means (proc glm), 328
means model, 308, 371
measures, 110
merge, 72, 78
method = type3 (proc mixed), 434
method of moments, 420, 425
method of moments estimates, 429, 434
Michaelis–Menten equation, 543
minr, 272
missing values, 12

missover, 72
MIVQUE(0), 431
mixed model equations, 459
ML estimates, 423
MLE, 421
model(proc anova), 318
modifier :, 43, 45
mu0 =, 103
multicollinearity, 244, 246
multinomial probabilities, 106
multiple comparisons, 316
multiple correlation coefficient, 258
multiway tables, 108

n =(infile statement), 46
nested do loops, 37
nested factor, 482, 494
Newton–Raphson optimization, 550
nonadditive, 358, 396
nonadditivity, 396
noprint, 110
normal, 99
normal equations, 223, 303
normal probability plot, 94, 95, 97, 99,

122, 206, 240

obs =, 72
odds, 552
odds ratio, 553
ODS, 246
offset, 589
one-way classification, 308
options in reg, 211
order =, 100, 392
orthogonal polynomials, 331, 508
output, 77, 89, 94
output (proc glm), 364
Output Delivery System, 246
output(data step), 33, 35, 36

pairwise comparisons, 314
param=, 563
parameter estimates, 304
partial, 245
partial regression residual plot, 243
partial slope, 243
partial sums of squares, 251, 263
partitioning SS, 367
pctldef =, 99
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pctlpre =, 105
pctlpts =, 105
pdiff (proc glm), 346
PDV, 31, 34, 40, 42
Pearson residuals, 578, 585
Pearson’s correlation, 106, 115, 120, 121
per-comparison error rate, 314
permanent data set, 9
plots, 99
plots(only)=effect, 555
pointer, 19, 39
pointer control, 19, 26, 38, 46
power transformation, 365
precedence rules, 22
predictable functions, 459, 498
predicted values, 217, 231
prediction, 223
prediction interval, 217
preplanned comparisons, 310, 312, 367,

389
proc anova, 318, 319
proc corr, 89, 122
proc format, 83, 88
proc freq, 105, 107, 110, 113, 118
proc means, 90, 91
proc report, 130
proc sgplot, 174
proc sort, 50, 53
proc statement options, 49
proc step, 48
proc tabulate, 122, 123
proc univariate, 98, 99, 103
procedure information statements, 49
profile log-likelihood, 422
profile plot, 170, 359
program data vector, 31, 34

Q option (proc glm), 463
quadratic form, 420, 463–465
quadratic trend, 331

R2, 224
RCBD, 386
reduction notation, 249
ref= , 564
reference line, 335
REML estimates, 423
REML method, 431
reps, 387

residual plots, 236, 336
retain, 44
rsquare (proc reg), 267
RStudent, 211, 212, 215

Satterthwaite, 425, 433, 448, 469, 474,
478, 487, 491, 510, 511, 513

sbc, 275, 277, 279
scale= , 577, 580
scatter plot matrix, 182
Scheffé procedure, 316
Scheffé’s method, 316
selection =, 261
sequential sums of squares, 250
set, 72, 74, 76, 77
Shapiro–Wilk test, 97, 99
side-by-side box plots, 167
skewness, 90
sle =, 266
sls =, 266
Somers’ D, 114
Spearman’s correlation, 115, 120, 121
start =, 267, 271
statistic keyword, 90
stepwise, 256, 266
stnamel, 86
stop =, 267, 271
Stuart’s tau c, 115, 121
Studentized range, 316, 469, 470
studentized residuals, 233
subscripts, 28
subset selection, 254
subsetting, 14
subsetting if, 72

table, 123–125
tables, 107, 108, 110
temporary data set, 9
test, 107
trailing at symbol, 171, 325, 391
transformation, 364
trim =, 100, 103
trimmed mean, 100, 103
Tukey procedure, 316, 322
Tukey’s method, 316
Tukey’s test, 396
two-level data set names, 79–81, 174
two-way factorial, 355
type =, 89



Index 679

Type I, 250, 377
Type II, 250, 263, 377
Type III, 326, 377
Type III E(MS), 427, 436, 443–445,

453, 455, 464, 468, 477, 486
Type IV, 377
types, 93
Types of sums of squares, 250

unadjusted means, 378
unconstrained parameters (UP) model,

471
unequal sample sizes, 375
unqual sample sizes, 436, 478, 479
unweighted means, 379

var, 89

vardef =, 100
variable attribute statements, 52
variance components, 422, 427, 431
variance inflation factor, 244
variance–covariance matrix, 422
vif, 244, 245, 247

Wald confidence interval, 559, 570
Wald statistic, 448, 468
ways, 93
where, 15
Wilcoxon signed rank test, 99

X’X matrix, 303
x-outlier, 209, 234

y-outlier, 209, 233
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