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Series  Introduction 

The  primary objectives of  the Biostatistics book series are  to  provide 
useful  reference  books  for researchers and scientists in  academia,  industry, 
and  government,  and also to offer  textbooks  for  undergraduate andor 
graduate courses in  the  area  of  biostatistics. This series provides  compre- 
hensive  and  unified  presentations  of the statistical  designs  and  analyses  of 
important applications in biostatistics,  such as those  in  biopharmaceuticals. 
A well-balanced  summary  will  be  given  of current and  recently  developed 
statistical  methods  and  interpretations  for  both statisticians and  researchers 
and scientists with  minimal  statistical  knowledge  who  are  engaged  in ap- 
plied biostatistics. The series is  committed to providing easy  to  under- 
stand, state-of-the-art reference books  and  textbooks. In each  volume,  sta- 
tistical concepts and  methodologies are illustrated  through  examples. 

Clinical  development  in  pharmaceutical  research  and  development  is 
a lengthy  and costly process. It is necessary, however, to  provide  substan- 
tial  evidence regarding the  efficacy  and  safety  of  the  pharmaceutical  entity 
under  investigation  prior  to  regulatory  approval. To ensure the success of 
clinical  development  in  pharmaceutical research and  development,  good 
clinical practices (GCP) are essential.  Biopharmaceutical statistics play  an 
important  role for the  implementation  of  good clinical practices. Good  sta- 
tistics  practices (GSP) provide a valid  and fair assessment  of  the  pharma- 
ceutical entity under  investigation  with a desired  accuracy  and  reliability. 

Statistical Methods for Clinical Trials discusses important  statistical 
concepts including  statistical  power,  multiplicity, testing for  therapeutic 
equivalence,  and missing values,  which are commonly  encountered  in 
clinical  research  and  development. This volume also provides a unique 
summarization  of  most current statistical methodologies for analysis of 
longitudinal  and  survival data, which are commonly  collected  for  the 
evaluation  of  the  safety  and  efficacy  of  the  pharmaceutical entities under 
investigation. In addition, this volume provides statistical  interpretation  of 
the results from various procedures  of SAS, such as four  types of sum  of 
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squares  in  PROC GLM, repeated  measures  in  PROC MIXED, and  cate- 
gorical  data in PROC GENMOD. 

Statistical  Methods for  Clinical  Trials serves as a  bridge  among 
biostatisticians, clinical researchers and scientists, and  regulatory agen- 
cies by providing not  only  a firm understanding  of  key statistical con- 
cepts regarding  design, analysis, and interpretation of  clinical studies, but 
also a  good sense for the planning and the conduct  of clinical trials in 
clinical research and  development. 

Shein-Chung  Chow 



Preface 

Because  human subjects are constantly influenced by innumerable 
known  and  unknown factors, individual patients are not directly 
comparable. The direct cause of this incomparability is  the  confounding 
among these factors. The greatest challenge in clinical research is the 
control of confounding. Unlike other statistical books, which are either 
filled with statistical theories that do not touch on this reality, or are too 
superficial in statistical technicality to be truly useful  in the design and 
analysis of clinical studies, this book faces that challenge and presents 
solutions. 

This book is comprehensive. It covers almost all useful statistical 
methods that medical researchers may  come across in the design and 
analysis of clinical studies. This book is up-to-date and advanced. It 
includes fkequently debated issues in the design and analysis of clinical 
trials, the recent development  in meta-analysis and data visualization, 
and  some  of the most recent statistical methods that are frequently 
requested by statistical authorities in the evaluation of clinical trials. 
This book is innovative. It presents new ideas, new perspectives, and 
new techniques. This book is also controversial. It promotes graphical 
data analysis for data visualization as the gold standard as opposed to 
statistical testing; it streamlines a variety of existing statistical 
techniques into a single line of thinking so that medical researchers can 
focus on their research interest without having to be concerned with the 
statisticians’ craft. 

Like all human learning activities, clinical research requires 
measurement  and judgment, and the two cannot be separated. The ideal 
candidates for the job are people who  know the essential techniques for 
measurement  and  have the professional experience for judgment. 
Therefore, this book is primarily targeted to those who are experienced 

vii 
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in clinical research and desire to know  more about the techniques for 
measurement.  Research physicians, epidemiologists and medical writers 
will cheer this book. It will not take them long to learn all they need to 
know about statistics. They will be  set  free to do whatever analysis they 
desire to do without having to passively rely on  what is available and 
deliverable from statisticians. Just as physicians order and interpret 
diagnostic tests without too much involvement in the technical details, 
the goal of this book is to empower medical researchers to design cost- 
efficient clinical study programs  and conduct intelligent data analysis 
but leave most  of the technical details to statisticians or personnel 
experienced in computation and  computer  programming. 

But the audience is not limited to medical researchers. Data analysts, 
applied statisticians and statistical programmers will welcome this book. 
It re-exposes them to statistics from a completely different perspective. 
From that perspective, their thinking and analyses will  come across 
easily to medical researchers. This book clarifies issues of multiplicity, 
statistical power, testing for equivalence, and missing data that may  have 
been haunting them since their first day  of statistical training. By 
mastering the skills in this book, they can provide valuable services to 
clinical research. Fellows, senior residents, senior medical students, and 
senior students in health sciences and applied statistics will find this 
book a useful source on research methodology. Students are set free 
from the burden  of digesting the unrealistic statistical theory of  Neyman 
and Pearson. Their focus is directed to research methodology  and 
essential quantification techniques. By learning the skills in this book, 
they  will be ready to participate and  make  immediate contributions to 
clinical research projects. The book provides research initiatives for 
students with a statistical major to study toward  advanced degrees in 
statistics. Mathematical statisticians, who often talk about clinical 
studies without personal experience, may  find this book challenging. 
This book criticizes the statistical theory of  Neyman  and Pearson that 
has been dominating current statistical educational programs, presents 
that theory’s most adverse impact on clinical research practice, and 
completely removes that theory from playing a roll in clinical research. 
This book ignores the asymptotic theory, presents the maximum 
likelihood techniques in the original sense of  Ronald A. Fisher, and 
streamlines a variety of computational techniques for the analysis of 
variance. 
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Statistics, as it is conceived today, is mostly a job for statisticians 
trained in  academic programs, and it is, for the  most part, an arcane 
discipline feared by  most medical researchers. This book, written in 
plain English, will help conquer the fear. A good deal of mathematical 
training is not required to read and understand this book. Experience in 
clinical research is helpful, but not essential. No technical jargon and 
mathematical derivations appear in this book. Although  words  that  have 
special meaning in the statistical literature may appear in this book, they 
are not used  in  that technical sense unless explicitly so defined. Critical 
concepts and techniques are illustrated with artificial data. I have  made 
my best effort to  keep the writing straight to the point. The pace is a bit 
fast, and conciseness is emphasized. References are kept to the 
minimum. Interested readers are referred to the books  of  Ronald  A. 
Fisher published in the early decades of  the twentieth century, which, in 
my opinion, are truly original, inspiring, and relevant to clinical 
research. For a list of other statistical references of uncertain relevance 
to clinical research, readers are referred to the dissertation of  Xuemin 
Xie. The names  of statistical authors appear only when referring to 
those names is conventional or necessary to avoid ambiguity. 

Readers  with different backgrounds  may  approach this book 
differently. Those  who  do not have prior exposure to statistics may 
read the first three chapters and  become immediately productive. 
Chapter Eight concentrates on fundamental principles for setting up 
comparable groups, basic techniques for estimating sample sizes, and 
measures  of information for comparing efficiency. That chapter is 
intended to help medical researchers design cost-efficient clinical 
study programs. Chapter  Nine presents guidelines and techniques for 
integrated analysis of multiple related studies with focus on the 
quality of clinical studies and the consistency and heterogeneity of 
study results. Meta-analysis is discussed in the last section of 
Chapter Nine. Chapter  Seven discusses the techniques for survival 
analysis. The basic measures  in the first three sections are sufficient 
for the analysis of survival data for all practical purposes. Most  of 
the chapters stand alone, and cross-referencing is kept to the 
minimum. Non-statistical readers may postpone Chapters Four, Five 
and Six until they really want to peek into statisticians’ 
armamentaria. Chapter Four provides the core for understanding the 
analysis of variance technique. Chapter Five illustrates some  of the 
controversies among statisticians on the use  of the analysis of variance 
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technique. Chapter  Six  simply presents some  technical variations of the 
analysis of  variance,  which are of little use in clinical research but tend 
to  be  overplayed  by statisticians. Those who have  been exposed to 
statistics, especially the theory of Neyman and Pearson, need to read 
Chapter Ten before proceeding beyond Chapter Two. Chapter Ten 
clearly states my views on the misuse of statistics and  will help readers 
to understand the book better. 

I hope this book lights a torch. I hope it is not just a torch for  medical 
researchers, but  a  torch that lights up thousands of others carried along 
by researchers in other disciplines who  need statistics for data 
presentation and unambiguous communication. What transcends all the 
technicalities presented in this book is the right use of human reasoning 
power, with which all intelligent people are equally concerned. That 
unleashed  human  reasoning power should make this book exciting to 
read. 

Mark X Norleans 
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l 
The Logical Basis of Clinical Studies 
and  Statistical  Methods 

Summary 
Due to the complexity of human subjects, clinical studies are subject 

to confounding from innumerable factors. Characterization and 
comparison of groups of patients, as opposed to individual patients, 
afford a means  for the control of confounding. Therefore, groups, or 
comparable groups, of patients form the logical basis of clinical studies. 
In clinical study, factors that potentially exert effects on the responses 
are categorized into the controlled and uncontrolled factors. For clinical 
research, statistics concerns measurement for characterization of the data 
from groups of patients. Statistical evaluation is comparison of the 
effects of the controlled and uncontrolled factors. The statistical 
methods  presented  in this book include graphical data analysis, 
comparison of summary measures, the analysis of dispersion, and the 
analysis of variance. 

1.1 The logical basis of clinical studies 
The greatest challenge in clinical studies is the ever presence of 
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2 Chapter l 

confounding. Confounding is logical indetermination, which happens 
when a claimed effect can be logically attributed to multiple possible 
causes. If two patients on different treatments, for instance, are also 
different in  regard  to a genetically inherited trait, as illustrated in the 
following table, 

I Trait A I Treatment A I Patient 1. resDonse = 50 I 
I Trait B I Treatment B I Patient 2, response = 100 I 

then the difference between the responses can  not be attributed solely to 
the effects of treatment. This is because there is no logical reason not to 
attribute the difference to the effects of that genetic trait. When 
numerous causes are confounded  in this manner, it is logically 
impossible to determine a causal relationship. 

In general, clinical studies are carried out for either characterization 
of a disease entity or comparison of the effects of different therapeutic 
interventions. Due to the extreme complexity of human subjects, who 
are constantly influenced by innumerable known  and  unknown factors, 
clinical studies for either of the purposes cannot be based on individual 
patients. A disease entity characterized by observations made on an 
individual patient, for instance, cannot be generalized to a different 
patient with the same disease. This is simply because we cannot 
separate a disease from the patient who  has  the disease, and patients are 
all different. In other words, disease and characteristic of the patient are 
confounded in interpretation of clinical findings. Therefore, in clinical 
practice, a disease is usually  documented  by the common manifestations 
of a group of patients, with  an  equal appreciation of the diversity of 
individual patients. For the same reason, comparisons of individual 
patients are almost always inconclusive.  For  any comparison  of 
individual patients to be conclusive, the patients must be identical  in all 
aspects other than the few designated factors under comparison, which  is 
clearly infeasible. What  is operable and  generally accepted in the 
current clinical research practice is comparison of groups  of patients. 
Groups of patients can be made comparable by fairly distributing all 
potentially confounding factors to the groups  by means of 
randomization, stratification, and blinding. As such, a common 
background  is established for  all the groups, and against this 



The  Logical  Basis of Clinical Studies and Statistical Methods 3 

background, any difference among the groups may be logically 
attributed to the effects of the grouping factor or factors. 

Therefore, the logical basis of clinical studies is group of patients if 
the purpose is to characterize a disease entity or comparable  groups of 
patients if the purpose is to compare the effects of different therapeutic 
interventions. Characterization or comparison of groups, as opposed to 
individual patients, affords a means for the control of confounding. 

1.2 The principle of statistical methods 
As we know, patients are constantly influenced by innumerable 

known and unknown factors. In clinical study, these factors are 
categorized into controlled factors and uncontrolled factors. The 
controlled factors are those whose effects are either being studied or 
controlled by stratification. The concept of stratification is discussed in 
Chapter Eight. The uncontrolled factors are all other factors that are yet 
to be identified or have not  been controlled by stratification. For 
example, in a multicenter trial in which patients in each center are 
randomly assigned to treatment groups, treatment and center are the 
controlled factors, whereas other factors, including age, sex, race, 
baseline measures, medical history, and etc., are the uncontrolled 
factors. Treatment is the factor being studied, while center is the factor 
that stratifies the patients so that treatment effects can  be compared 
within centers. In this sense, the effects of center on patients’ responses 
are controlled for a more precise comparison of  the treatment effects. 
Other factors are not controlled because the design does not provide a 
mechanism that precisely controls their distribution among the treatment 
groups. It could happen, for instance, that most of the  women appear in 
one treatment group and most of the men  in another. Then, the effects 
of gender would confound with the effects of treatment. Therefore, the 
effects of the uncontrolled factors potentially confound with the effects 
of the controlled factors. 

In clinical research, statistics concerns measurement for 
characterization of data from groups of patients. Parallel to the 
categorization of controlled and uncontrolled factors is the 
categorization of statistical measures into those that quantify the effects 
of the controlled factors and those the overall effects of the uncontrolled 
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factors. Different purposes dictate the view  and  use  of those two 
categories of statistical measures. Measures of the controlled factors 
may be viewed as the signals of interest and  used  to characterize a group 
of patients; measures of the uncontrolled factors may be viewed as the 
noise in the background and  used  to measure the degree of variation and 
the quality of characterization. In a study  where  the patients are 
randomly assigned to two treatment groups,  for instance, the treatment is 
the controlled factor, and factors other than the treatment are 
uncontrolled. If we  use the mean  and  standard  deviation to summarize 
the responses of patients in each treatment group, the mean quantifies 
the effects of treatment, the controlled factor, and  the standard deviation 
quantifies the effects of all other factors, the uncontrolled factors. While 
each mean characterizes the treatment group as a whole, its standard 
deviation measures the data variation  from that mean  and may  be used  to 
indicate the quality of that mean, as a single measure, in characterizing 
the responses of that group of patients. 

Because the effects of the uncontrolled factors potentially confound 
with the effects of the controlled factors, statistical analysis of clinical 
data constantly involves comparison  of the effects of controlled and 
uncontrolled factors. When music  is played in a noisy stadium, it has to 
be loud enough to be enjoyed. Indeed, most researchers insist that the 
effects of the controlled factors be significant only  when they are clearly 
distinguishable from the effects of the uncontrolled factors. While this 
principle is not much arguable, what is open to dispute is how these 
claimed effects are quantitatively measured  and the extent of difference 
between them. 

If, for instance, we  use the mean  to characterize treatment effect and 
its standard deviation to characterize the effects of the uncontrolled 
factors, then their ratio, mean + standard deviation, of 2 implies that 
50% of the treatment effects confound  with the effects of the 
uncontrolled factors. If the ratio is 1.3, then  up to 70% of the treatment 
effects, as measured  by the mean,  confound with the effects of the 
uncontrolled factors. However, the significance of this confounding can 
only be appreciated by  the researchers in  the context of  the clinical 
study. If the disease entity being studies highly fluctuates, presumably 
caused by the uncontrolled factors, treatment effects really have to be 
substantial to emerge  from a chaotic background  by 30%. On the other 
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hand, if the behavior of the disease entity is fairly robust against the 
effects of the uncontrolled factors, the treatment effects may be trivial 
for practical purpose even though  they are outstanding of the 
background by 50%. 

Statistics per se does not make  any judgment. It is false that statistics 
can tell us the degree of truthfulness of a conclusion with p-value; it is 
false that statistics can tell us  how confident we can generalize the result 
from a single study to the general population; it is also false that 
statistics can give us any guideline on the adequacy of sample sizes and 
the ‘power’ of a study. Those who have pre-exposed to statistics, 
especially the theory of Neyman and Pearson, may read Chapter Ten for 
a discussion on this matter. The immediate point is that statistics 
concerns only measurement, and it is humans who judge and decide for 
their purposes. 

1.3 Statistical methods for clinical studies 

The following analyses of the data fi-om a blood sugar trial present an 
overview of how statistical methods may  be utilized for effective 
evaluation of clinical study and unambiguous communication. The trial 
was to compare the effect of drug D to that of placebo on  blood sugar. 
Five patients were on placebo and seven on drug D, and the blood sugar 
values are tabulated as follows: 

Treatment I Blood sugar  values 
Drug D I 67 123 322 232 89  109 42 
Placebo I 89 80 140  108  96 

The question is whether drug D and placebo have different effects on 
these patients’ blood sugar. 

1.3.1 Data visualization and graphical data analysis 

The gold standard for clinical data analysis is visualization of data 
with graphical techniques. Graphics presents patterns without losing 
sight of individual data values. Patterns characterize the data and 
highlight the effects of the controlled factors, while individual data 
values fully represent the effects of the uncontrolled factors. Graphics is 
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highly informative and appeals to  human eyes. Complex information 
contained in huge volume  of numerical values can be  condensed  on a 
single page of graphs, and viewers can synchronize their eyes and  mind 
to grasp the information quickly. Furthermore, multiple graphs can be 
cross-displayed by the factors under study to facilitate visual 
comparisons. Finally, graphical data presentation enhances scientific 
communication.  The mean  and  standard deviation can never fully 
represent the rich information in clinical data, let alone p-value. 
Appreciation of clinical data largely depends upon the experience and 
purpose of the analyst. Graphics presents complete data unbiasedly and 
leaves judgment of the data to the viewers. Judgment is, after all, a 
human intellectual activity, which is so complex and, for the most part, 
intangible, that it is far beyond  the scope of statistics. 

Graphical data analysis requires fast computer  and large memory. 
Because of the insufficient computing power  and high cost of memory 
devices in the past, sophisticated graphical  data analysis techniques were 
not widely available, and  most researchers do not have much exposure 
to the concept and techniques of  graphical  data analysis. Chapter Two  is 
an introduction to the garden  of  graphical data analysis and presents the 
beauty of CrossGraphsB, a great  graphical data analysis software 
package  made available by  Belmont  Research. Nevertheless, to  get the 
flavor now, let us look at this symmetric cumulative fiequency plot of 
the blood sugar data: 

Figure 1.1 Frequency  distribution of blood  sugar  data 

@ CrossGraphs is a trademark of Belmont Research,  Inc. 
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The horizontal axis marks  blood sugar values, and the vertical axis 
marks the percentiles for the blood sugar values less than the median  and 
l-percentiles for the blood sugar values greater than the median. The 
peak  of each curve represents the data value closest to the median. 
Chapter Two describes the construction of  symmetric cumulative 
frequency plot. 

As we can clearly see that data distributions in the two groups 
overlap, and the medians are very similar. However, the data in drug D 
group scatter over a greater span than the data in placebo group. This 
difference in variation or dispersion indicates that the effect of drug D 
may be quite different from that of placebo. Such diverse responses to 
drug D suggest that some patients responded to drug D beautifully while 
others might not respond at all. Then, characterization of the responders 
and non-responders will help gain insight into the disease and 
pharmacodynamics  of the drug. Had  we  compared only the medians, 
this important information on dispersion might  have  been missed. 

1.3.2 Comparison of summary measures 

Summary implies that few  measures are being used to represent 
many data values. The most  commonly  used  summary  measures are the 
mean  and median. Sometimes,  few percentiles are used to characterize 
data distribution. Summary is attractive for its simplicity. Indeed, if the 
data from thousands of patients can  be fully represented by the mean, 
then the comparison  of  two treatment groups is nothing more than a 
simple contrast between the means. The reality is, however, that 
patients are all different, and the uncontrolled factors will make their 
response to any therapeutic intervention vary greatly. Thus, the 
immediate question to data analysis by  summary is how well the few are 
able  to represent many? 

Quality is vital for the usefulness of a summary measure. The single 
most important measure  of quality is the number  of observations. In 
small study with few patients, each patient makes a significant 
contribution to the summary measure. If an uncontrolled factor has a 
significant impact on a patient, that impact will largely pass through that 
patient and alter the magnitude of that summary measure. However,  in 
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large study with  many patients, each patient makes a relatively small 
contribution to the summary measure, and therefore, the effects of the 
uncontrolled factors on any single patient are proportionally dampened. 
This concept and its implications are illustrated in Chapters Three and 
Seven, and utilized in Chapter Eight for estimating sample size. The 
other two  commonly used measures  of quality for the mean  or median 
are the standard deviation and average deviation. They  measure the 
average difference between the summary measure  and the actual data 
values and reflect the effects of the uncontrolled factors that preclude 
uniform responses to a therapeutic intervention from different patients. 
The standard deviation and average deviation are defined in Chapter 
Three. 

Suppose the mean is chosen to summarize the data  from  the blood 
sugar trial, and the standard deviation ( s t 4  is chosen to measure the 
quality of summarization. The following  table summarizes the analysis 
with these summary measures: 

Table 1.1 A Summary of the Blood Sugar  Data 

Number of 

21% 21  102 5 Placebo 
66% 93 140 7 Drug D 
Std l Mean Deviation Mean Patients Treatment 

Standard 

This study has twelve patients, with  seven  on drug D and five on 
placebo. The  numbers of patients and their distribution between the 
groups under comparison must always be  shown  in the summary table. 
They are the most important measures for assessing the strength of 
evidence and determine the robustness and reliability of other summary 
measures. Without sufficient quantity of observations, nothing else 
matters. The  mean blood sugar for Drug D is 140, and placebo 102. 
The standard deviation measures the mean distance between the mean 
and the actual blood  sugar  values. On average, the mean  of ,drug D 
group deviates from the actual data  by 93, and placebo by 21. However, 
since the magnitude of  standard  deviation depends upon the magnitude 
of the mean, a more appropriate measure of  quality for the mean is the 
ratio of standard deviation  and  mean, better called percent deviation. 
For the blood sugar data, the mean appears to be a good summary for the 
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placebo group because, on average, the data deviate from the mean  by 
only 21%. However, the mean does not seem to represent drug D group 
satisfactorily because, on average, the  mean deviates from the data by as 
much as 66%. Thus, the mean of 140 conveys little information on the 
actual blood sugar values in drug D group, and consequently, 
comparison of means between  the  two groups has no meaning. 

1.3.3 The analysis of variance 

The analysis of variance technique is entirely due to Ronald A. 
Fisher. It  is truly a useful  tool  for data analysis, especially for 
simultaneous evaluation of the effects of interrelated factors and for 
exploration of the causes of heterogeneity. It is fairly safe to say that, 
for the most part, the statistical methods in  the current practice of 
clinical data analysis and reporting are, under a broad definition, the 
analysis of variance. The development of linear model techniques, after 
Fisher, greatly facilitates the computations for the analysis of variance. 

This book adopts a broad definition for the analysis of variance. It  is 
a mode of analysis in which the data are summarized with the mean and 
the quality of summarization is measured by the standard error of the 
mean. Standard error is discussed in detail in Chapter Three. This 
simple definition streamlines all  the technical formalities for the analysis 
of variance presented in Chapters Four, Five, Six and Seven. Under this 
broad definition, t-test, chi-square test, multiple regression, logistic 
regression and survival analysis that are familiar to medical researchers, 
and nonparametric tests, repeated measures analysis and analysis of 
variance on complex scales that are not so familiar to medical 
researchers, become special cases of the analysis of variance. By 
coming down to the  mean  and standard error, we are able to fully 
appreciate the simplicity and flexibility of the analysis of variance 
technique; by coming down to the mean and standard error, we can 
clearly see how those mathematically complicated and extravagantly 
claimed statistical methods lose their ground. 

For the blood sugar trial, the result from the analysis of variance are 
summarized in  the following table: 
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I I Number of I I Standard I 
Treatment 

30 140 7 Drue. D 
error Mean patients 

Placebo 1 5  I 102 I 35 1 
The  means  and their standard  errors  are graphically presented with  this 
bar chart: 

I Drug D Placebo 

This  example  simply  shows how the  result of analysis of variance is 
presented  with  the mean and standard error. The 111 flavor of the 
analysis  of  variance technique is given in Chapters Four and Five. 

However, the  analysis of variance has  serious  limitations. Mean is 
subject  to  overdue  influences from very few  extraordinary  data  values 
and  becomes  completely  useless when the  data  distribute  in clusters. A 
potentially more serious  limitation comes from the use of standard error. 
In  general,  standard  error  decreases in proportion to  the number of 
observations. When the number of observations  is large, the  standard 
error may underestimate  the  diversity of the  data,  creating  a false 
impression on the  quality of summarization. Finally, in the  analysis of 
variance,  a  standard  error  is not specific  for  the mean. The  standard 
error of a mean is based on  the common numerator, called  the  residual 
mean sum of  squares, which measures  the  overall  quality of 
summarization with all the means in the analysis.  When the  primary 
interest  is  individual  means,  the  standard  errors from the  analysis  of 
variance may not  be  an adequate measure of their  precision. 
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1.3.4 The analysis of dispersion 

Patients always  respond to therapeutic intervention differently, 
presumably due to the effects of the uncontrolled factors. When 
evaluating the effects of a therapeutic intervention, it is always desirable 
to  see what patients responded  and  what patient did not. Also, because 
clinical study is, after all, an exploration of the unknown world, it is not 
surprising that some factors, previously unknown  and therefore not 
controlled in the study, can have significant impact on the patients’ 
response to treatment. Our learning experience comes fiom 
identification of those factors and characterization of their effects. The 
analysis of dispersion serves for these purposes. 

Dispersion is the spread of data, and it  is a measure  of variation. A 
simple measure  of dispersion is the absolute deviations fiom the mean, 
where 

absolute deviation = 1 data values - mean I. 

Absolute deviations closely associate with residuals: 

residual = data values - average. 

For both absolute deviation and residual, the mean is the reference point 
at the center. 

In general, dispersion represents the effects of the uncontrolled 
factors. However, dispersion can be  an important measure  of treatment 
effects. For instance, if two groups, comparable at the baseline, 
demonstrate drastic difference in dispersion after receiving different 
treatments, the difference in dispersion should be interpreted as the 
effect of treatment, and the cause of this difference can only be the joint 
effects of treatment and the uncontrolled factors. 

The following table lists the absolute deviations for the blood sugar 
trial: 

Treatment 

12 17 14 23 37 5 7 Placebo 
50 78 74 18 181 91 52 32 99 DrugD 
Std Mean Absolute deviations 
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These absolute deviation values  may be viewed as a new set of data, to 
which  any data analytic methods may be applied. Graphical analysis 
confirms that the deviations clearly distribute in two separate clusters: 

50 IO0 150 

Absolute Deviation 

Figure 1.2 Frequency  distribution of absolute  deviations 

Permutation test, which will be discussed in the next section, shows that 
the deviations in the placebo group are very much different from vast 
majority of the permutations, with the p-value being  0.008. The  means 
and standard errors from the analysis of variance are 78 and 16 for the 
drug D group, and  17  and 19 for the placebo group. These analyses 
converge to a conclusion that the two groups are indeed different in 
dispersion. 

The above  analysis  of  dispersion  indicates  that  the two groups are 
different. The interpretation  of  this  difference  needs  to  be  made  in  the 
context  of  overall  study  evaluation.  If  the two groups are comparable  with 
respect  to  all  identifiable  factors in the  course  of  study,  this  difference is 
dispersion  suggests  that  patients  had  responded  to  drug D but quite 
heterogeneously.  If so, the  most  informative  analysis  next is the 
characterization  of  responders  and  non-responders. 

1.3.5 Permutation test 

The idea of permutation was  introduced  by  Ronald A. Fisher to 
illustrate the concept of fiducial inference in his book entitled The 
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Design of Experiments. In  my opinion, permutation test is not effective 
for clinical data analysis, and it will not be further pursued  in this book 
beyond this section. Permutation test is discussed here mainly because 
extravagant claims, such as its exactness for small sample sizes, have 
been associated with this test in the statistical literature. Those claims 
often confuse clinical researchers and  some statisticians as well. 

Permutation is a systemic exchange  of data values among groups. 
The following table lists some permutations between the drug D and 
placebo groups: 

Table 1.2 Four  Permutations  from  the Blood Sugar  Data 

140 

Only the data values exchanged to the placebo group are shown; the data 
values to the drug D group are complementary. The first permutation is 
the original observations in the placebo group. For the rest of the 
permutations, the original observations in the drug D group sequentially 
replace those in the placebo group. The total number  of unique 
permutations is 792 = ( 1 2 x 1 1 ~ 1 0 ~ 9 ~ 8 )  + (5x4x3x2xl), which is the 
number  of unique combinations of five out of the twelve blood sugar 
values. 

A permutation test is comparison  of permutations. Each permutation 
is first represented with a single summary measure, for example, the 
sum of the permutation, and then the permutations are compared through 
the distribution of their summary measures. Figure 1.3 is the histogram 
presenting the distribution of  792 sums, each representing the 
corresponding permutation of the blood sugar data. This distribution, 
called permutation distribution, is used to count the number  of 
permutations that give rise to extreme  summary measures. The 
reference point of extremity is the summary  measure  of the original 
observations. For the blood sugar trial data, the sum  of the original data 
values in the placebo group is 5 13. 206, 26%  of 792, Permutations give 
rise to sums less than 5 13,  and the sums of the remaining permutations 
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are  greater than 5 13. Therefore, 26% of the  permutations  are  extreme 
compared  to  the  original data values in the  placebo group. The 
percentage of extreme  permutations is referred to  as  the p-value of the 
permutation test. 

4 0 0  $ 0 0  8 0 0  100  @W eo0 

.I" .l ,...I*. *I.". 

Figure 1.3 Frequency  distribution of the sum of permutations 

If  drug D and  placebo  are identical, the  permutations  of  their  data 
should  also  be identical. However, due to  the  effects of the  uncontrolled 
factors, the  actual  permutations differ even though drug D and placebo 
are identical. In the ideal situation where drug D and placebo  are 
identical  and  the uncontrolled factors  are evenly distributed between the 
two groups, it would be  reasonable  to  expect  that the permutations 
fluctuate around the  original observations, and the p-value of the 
permutation  test be 50%. Therefore,  the p-value of a permutation test 
that  is  significantly  smaller than 50% indicates  that majority of the 
permutations  are  quite  different from the  original observations. In 
Fisher's  fiducial argument, this small p-value may be used to  contradict 
the  hypothesis  of  equivalent treatments. 

Permutation  test  has  limitations.  The test relies more on the inter- 
relationship among the  data values than their actual  magnitudes,  and 
consequently,  important information in the data could  be overlooked. A 
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permutation test may present a small p-value indicating a significant 
difference between virtually identical groups of data. For instance, the 
p-value of the permutation test for comparing (1.01, 1.001, 1.001) to 
(0.99, 0.999, 1 .OO) is as small as 0.05. Much as it may overstate a trivial 
difference, a permutation test may underestimate a significant 
difference. For instance, the p-values of the permutation tests for 
comparing (32, 54) to (89, 98, 123) and (32, 54) to (1233, 2333, 3344) 
are the same of 0.10, even though the difference between the second pair 
of groups is much larger than that of the first pair. Generally speaking, 
when data distribute in separate clusters, permutation test is not quite 
useful. 

The burden of computation for permutation test  can be formidable. 
In general, permutation tests are technically manageable only when  the 
number of observations is small. However, it is by no means that 
permutation test is superior to any other statistical methods in presenting 
underlying information even  when  the number of available observations 
is small. Insufficient quantity of observations equally disqualifies the 
result of any analysis. At most, permutation test is a unique mode of 
data evaluation that makes it not directly comparable to others. The p- 
value of a permutation test is simply a measure that is meaningful only 
in the context that test. Neither is this p-value comparable to nor is it 
more exact than the p-values out of any other valid statistical methods. 
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2 
Graphical Data Analysis 

Summary 

Graphical  data  analysis  must be based  on  the  visualization of 
individual data  values. As opposed  to  graphical  display of summary 
measures  that  emphasizes  magnitudes,  the  technical basis of graphical  data 
analysis is simultaneous  display of both  magnitudes  and  frequencies of 
individual  data values in  order to characterize  data distribution. Cross 
display of multiple  graphs  by  the  factors  under  comparison  affords 
excellent visual  contrast for comparison of data  distributions.  Bar charts 
are the graph of choice for  categorical  data.  For  continuous data, several 
graphical  techniques  are  available.  Picket  fence  plot  and  histogram  are  the 
graph of choice for direct  display  of  frequencies,  box  plots  show  main 
body and outliers, and cumulative  or  symmetric  cumulative  frequency 
plots are  good  for  comparing  multiple  distributions on a single graph. 
Delta plots are the  graph of choice for showing  changes  from baseline. 
Tree plots are a  variant of delta  plots  and  are  effective  for  efficacy 
analysis. For  profile analysis, scatter  plots  and  smoothing  techniques are 
helpful. 

17 
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2.1 Cross display of data distribution 

Graphical  data analysis must  be  based  on  the  visualization of 
individual data values. A pictorial  presentation of individual  data values 
reveals global pictures without losing sight of  the  diversity of individuals. 
The technical basis of graphical data analysis is simultaneous  visualization 
of the magnitudes and  frequencies of individual  data  values. In general, 
these two dimensions l l l y  characterize  the  distribution of data  values. 

Graphical data analysis  must  be  distinguished  from  graphical  display  of 
summary measures, such as a  bar chart of  the means and standard 
deviations. Graphical  display  of  summary  measures  emphasizes 
magnitudes and lacks information  on  the  frequencies  of  individual data 
values.  Although  visualization  of  summary  measures expedites 
comparison, it does not  add  any  more  information  to  the  summary 
measures themselves.  Because  no  single  numerical  summary  measure is 
flawless, important  information  in  the  data  could  be  overlooked  by 
exclusive use of summary  measures. It cannot  be  overemphasized, 
therefore, that graphical  data  analysis  must  present  individual  data  values. 

A l 1 1  characterization of data  distribution is not enough.  Graphical 
data analysis must allow for comparison  of multiple data distributions. 
Just like cross tabulation of summary  measures  facilitates  comparison,  a 
simple and effective graphical  analysis  technique is cross display of 
multiple data distributions  by  the factors under  comparison. This 
organized presentation of multiple  data  distributions,  each  characterized 
by  a single graph,  provides  excellent  visual  contrasts.  For  a  typical 
clinical study where  the  patients  are  randomly  assigned  to  few  treatment 
groups  and  followed at a series of clinic visits,  the  responses to treatment 
at each visit may be presented  with  a  graph,  and  then  an  array of graphs 
for the entire study  may be cross-displayed  by  treatment  and  visit: 

Visit 1 Visit  5 Visit 4 Visit  3 Visit  2 
Treatment  1 

Graph -53 Graph 4 3  Graph -33 GraDh  -23 GraDh  -13 Treatment 3 
Graph  -52 Graph 4 2  Graph  -32 Graph -22 Graph  -12 ' Treatment 2"- 
Graph -5 1 Graph 4 1  Graph -3 1 Graph -21 Graph -1 1 

Compared to cross tabulation  of  summary  measures,  the only difference is 
that  summary measures are  substituted  for  graphs. 
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Thanks to CrossGraphs,  an  excellent  graphical  data analysis computer 
software package from  Belmont  Research,  graphical  data analysis by  cross 
display  of multiple data  distributions has become  an  easy  task. In fact, 
almost all the graphical  analyses  in this book  are  carried out with 
CrossGraphs. 

2.2 Categorical data and continuous data 

Categorical  data are symbols to  denote  categories  or  groups.  For 
example, gender  may  be  recorded  with 0 for  female  and  1  for  male. The 
fact that  1 is greater  than 0 has no  meaning  when  these  two  numbers  are 
chosen to represent  gender.  What  matters is that 1 and 0 are different. 
Continuous data  are  numeric  values  to  represent  magnitude,  usually  taking 
any  admissible values within  a  range.  Between  categorical  and  continuous 
data is grading  data,  which  denote  the  order  or  rank  of  a  list of categories 
or groups. 

Once  appropriately  coded,  there is no  need to distinguish  these  three 
types of data  for  summarization  with  numerical  measures. It is necessary 
to make  a  distinction,  however, for graphical  data  analysis.  Categorical 
data  usually  have  few  distinct  values  each of which  may  appear  frequently, 
while  continuous  data  have  many  distinct  values,  each of which  may 
appear just once. Thus,  direct  display  of  the  frequencies of categorical 
data is generally visible and  highly  informative,  whereas  direct  display of 
the  frequencies of continuous  data  usually  shows little variation  from  one 
and is virtually  useless.  In  general,  more  sophisticated  graphical 
techniques  are  required  to  visualize  continuous  data. The presentation  of 
grading data  depends  upon  the  number  of  categories  or  groups.  When  the 
number is small, the  data  may  be  viewed  as  categorical  data;  when  the 
number is large, the  data  may  be  presented as if  they  were  continuous data. 

2.3 Direct display of frequencies 
Bar chart, picket  fence  plot  and  histogram  are  demonstrated to display 

the  frequency  distribution  of data. If  appropriately  constructed,  these 
graphs authentically  represent  the  information  in  the data. The drawback 
is that these  graphs  tend to be bulky,  and it is sometimes  difficult to place 
closely for visual  comparison. Bar chart  and  histogram are perhaps the 
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most  frequently  used  graphical  analysis  technique  and is familiar to most 
researchers. 

2.3.1 Bar chart for categorical data 

Bar  chart is the graph  of  choice  for  direct  display  of  the  distribution  of 
categorical  data. The following  graph  shows the distribution  of  symptom 
scores from  a  trial  where  the  intensity  of  the  symptoms  was  graded  from 0 
for none to 3 for  severe  by  an  increment  of 0.5. 

21 27 

Figure 2.1 Frequency  distribution of symptom  scores 

On the top  of each bar is the number  of  patients  in  the  score  category  in 
which  the  bar  stands.  Because  the  number  of  patients is different  among 
treatment  groups  and  across  days,  the  absolute  head  counts are not  directly 
comparable. A more  appropriate  measure  for  direct  comparison is the 
percentage  of  patients in  each  score  category,  shown in Figure 2.2 on  the 
next  page.  In  that  chart,  the  absolute  head counts are  still  shown  on  the  top 
of each bar,  but  the  bars are scaled in accordance  with  the  percentage  of 
patients in each  category  at  each  of  the  treatment-day  combinations. It is 
perceivable  from  these  charts  that  although  symptom  scores  improved  in 
the  course  of the study  as  more  patients  moved  down  to  low  score 
categories,  the  drug  at  neither  dose  demonstrated  apparent  therapeutic 
advantage  over  placebo. 
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Days Afler  Dosing 
7 14 21 21 

Figure 2.2 Adjusted  frequency  distribution  of  symptom  scores  in  percentage 

2.3.2 Picket fence  plot for continuous data 

A picket is a  vertical  line  whose  length  represents the magnitude  of  a 
data  value from a  patient. A picket  fence  plot is a list of  pickets in 
descending  order.  The  following  graph is a picket  fence  plot  for  a  single 
group  of  data  values. 

0 30  60 90 I20 150 

Number of patients 

Figure 2.3 Distribution  of  data  values 
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The y axis marks the data values, and the x axis marks the number of 
pickets or patients. Like cumulative frequency plot  to be discussed in  the 
next section, the scale of x axis may  be  changed to percentage: 

0 20 40 60 80 100 

Percent of patients 

Figure 2.4 Percent  distribution of data values 

A problem with picket fence plot is that multiple groups cannot be 
distinctively displayed on a single  plot,  and  this causes inconvenience for 
visual comparison. For the three groups of data shown in the following 
Plots, 

ncamlem 

Figure 2.5 Distribution of data values by treatment 
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for  instance,  only two groups can be clearly  visualized  if they are placed  in 
a single  plot: 

0 20 40 M) BO 1 0 0  

Perm1 of patients 

Figure 2.6 Overlay  display of three data distributions 

A solution to this problem is  to display only the top of each picket, instead 
of the whole  line. For the same three groups of data, the picket top 
presentation clearly depicts the distribution of data: 

0 m m W no 
r n d W  

1% 

Figure 2.7 Picket top display of three  data  distributions 
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2.3.3 Histogram for continuous data 

The histogram is  also effective to directly display the frequency 
distribution of continuous data. Continuous data need to  be cut into 
categories in order to  be displayed with  histogram.  Once categories are 
defined, the construction and  appearance  of  histogram is not  different  from 
that  of bar chart, both being a direct display of the number or percentage 
of obsqvations in every category. 

The cutting of continuous data into categories affects the appearance of 
histogram. In general, the greater the number  of  categories, the smaller 
the frequency of each category.  If the number of categories continues to 
increase, the histogram will eventually turn into a useless horizontal line. 
The following histograms are generated  from the same data cut evenly into 
5,20, and 500 categories: 

I I  PWI Pew I 

Note the scale  of frequencies declines as the number of categories 
increases. There are  no hard-and-fast  rules  for the optimal number of 
categories to  cut continuous data  to. The best number has to  be 
determined on a trial-and-error  basis. The goal is  to maximally present the 
variation of the data. 

2.4 Cumulative frequency plot for continuous data 

The cumulative frequency to a value is defined as  the percentage of 
observations equal to or less than that  value.  For  instance, the cumulative 
frequency to 3 in  data, (1,2,2.5,3,4.5,6),  is 4/6,  where 4 is the number of 
data values equal to or less than 3, and 6 is the total  number of data values. 
A cumulative frequency plot is a scatter plot of cumulative frequencies 
against the corresponding data values: 
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Fin1 Visit Second Visit 
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l 
Figure 2.8 Cumulative  frequency  distribution of FEVl data  by  treatment 

Cumulative frequency curves are non-decreasing. The frequencies 
continue to increase from zero to one as the value  on the horizontal axis 
increases. In  viewing cumulative graphs, attention should be  paid to the 
shape and shift of the curves. In this graph,  a shift to the right indicates 
improvement in FEV 1. 

A variant of cumulative frequency  plot is symmetric cumulative 
frequency plot, which is a scatter plot of cumulative frequencies against 
data values equal  to or less than the median  and  complimentary 
cumulative frequencies against data values  greater  than  the median. A 
complimentary cumulative frequency  of  a  value  is the percentage of 
observations greater  than that value. If 60% of  data  values are equal  to or 
less than 5 ,  for instance, the cumulative frequency of 5 is 60% and  the 
complimentary cumulative frequency is 40% = 1 - 6O%, meaning that 
40% of data values are greater  than 5 .  The plots in  Figure 2.9 on the next 
page are generated  from the same FEVl data shown  in the previous 
cumulative frequency plots. Symmetric cumulative frequency plot is 
simply a  fold of the corresponding cumulative frequency  plot around the 
median. The folding helps highlight the medians  and data spans. 

Cumulative  frequency plot or its symmetric counterpart affords 
excellent visual contrast for comparing distributions of continuous data. 
The data in each group are represented  by  a curve so that multiple curves 
can be closely placed on a single graph. This degree of closeness is 
generally difficult to achieve with histogram. However, cumulative or 
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symmetric cumulative frequency  plots  are  not  the  graph of choice for 
direct display  of  frequencies.  Compare  these  graphs  generated  from  the 
same data: 

10 30 50 70 90 110 

A striking feature is that  the  data  distribute  in two clusters.  While an 
appropriately constructed  histogram  shows  the  mountains and valley, this 
change of frequencies is not sensitively  reflected  on the symmetric 
cumulative frequency plot. When  the  number of observations is large, 
drastic frequency  variations  may  cause  only subtle changes  in  curving. A 
steep segment  corresponds to a  cluster of high frequencies,  and  a flat 
segment corresponds to a  cluster  of  low  frequencies. This lack of 
sensitivity to change of  frequencies  could  falsely  impress  a  quick  browser 
that the data distribute in  a  bell  shape. 

First Visit Second Visit 

I 2 3 4 5  I 2 3 4 5  

FEVl value FEVl value 

Figure 2.9 Symmetric  cumulative  frequency  distribution  of FEW data  by 
treatment 
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2.5 Box plot for showing main  body  and outliers 

Box plot shows the main  body  of continuous 
data and individual data values outlying the main 
body. The box is where the main  body resides, 
covering 50% of data values around  the  median. 
The  top of the box  marks  the  third quartile (Q3 = 

I I 

75 percentile), and the bottom  marks  the first 
quartile (Q1 = 25 percentile). The  horizontal  line &l 
inside the box represents the  median (50 I 

percentile). The  vertical  dash lines extending 
from the box are called whiskers. There are several definitions of the 
maximal whisker length. This book adopts the conventionally definition 
of 1.5 x (Q3 - Ql). The  actual  length of a  whisker  depends  upon the 
range of the data. The whiskers mark  the outskirts of the main body. The 
outskirts vary depending upon the spread  of the main body. The dots 
beyond the whiskers represent outlying data  values. 

loot- 

l 

. 

Box plot is a  shorthanded  description of data distribution. The 
following box plots are generated  from  the  same FEVl data previously 
shown  with cumulative fiequency plots: 

l 
I 

1 
I 

D 20 mg 
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Figure 2.10 Box plots  of  FEVl  data by treatment  and visit 

Compared to histogram  and cumulative frequency  plot,  box plot lacks 
detailed information on  the  magnitudes  and  frequencies of data values. 



28 Chapter 2 

The gathering  and  spread  of  data  are  described  with the few  percentiles. 
An advantage is that  multiple  box  plots  can  be  arranged  on  a  single  graph, 
which  greatly  enhances  visual  contrast  for  comparison  of data 
distributions. In addition,  the  outliers  identified  on  box  plots  draw 
attention  to  rule out possible  data  errors,  investigate  the  causes of outlying, 
and  study  their  influence  on  summary  measures. 

Another  use  of  box  plots is to  evaluate the adequacy  of  summary 
measures  in the background  of  data  distribution. In the following  graph, 
the  means  and  their  standard  errors  are  evaluated.  The  green  zones 
represent the range of mean f standard  error. 
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Figure 2.11 Box plots of data  distributions,  means,  and  outliers by treatment  and 
visit 

The  means appear  to be similar  between D and P across  all  visits. 
However,  at  visits 6, 7,9  and 10, the  range  determined by the  mean  and its 
standard  error does not  seem  to  reside  within  the  main  body  of  the  data, 
and  this is especially  true  for  the  group  on  treatment P where  more 
observations are below  the  mean.  This  discrepancy  demonstrated  in  these 
box  plots,  once  again,  underscores  that  important  principle  that  graphical 
data  analysis  must be based  on  the  visualization of individual  data  values, 
not  summary  measures.  For  this  example,  had  the  data  been  summarized 
only  with the means  and  their  standard  errors,  the true underlying 
information  in  the  data  would  have  been  largely  missed. 



Graphical  Data Analysis 29 

2.6 Delta plot and tree plot for within-patient contrasts 

Delta plot and tree plot  are a fascinating  graphical  technique  for 
presenting data from  clinical  studies.  They  are  probably  the  only  effective 
graphical  technique to date to present  within-patient  contrasts.  They  can 
be  used to demonstrate  change  from  baseline,  the  phenomenon  of 
regression to the  mean  and  the  effect of time  on  disease  fluctuation. Tree 
plot is particular use l l  to demonstrate  efficacy  because it presents the 
whole  spectrum  of  responses  from  individual  patients. 

2.6.1 Delta  plot for change  from baseline 

A delta plot depicts individual subjects 
each with a horizontal line. Each line has a 
start value and an end value with the length of 9 o 
the line representing the change from  the start 
to end values. The lines may  be sorted by the 
start values, end values, or changes. In this 
particular plot, the lines are stacked up  in ascending order by the start 
values. 

4 8- ![ "" ~ . . ": . c- "~ - -_ 
VJ -2 ~- r--- v 
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Figure 2.12  on  the  next  page is the  delta  plots  presenting  the  change 
from  baseline values of FEVl . The lines  are  sorted  in  ascending  order  by 
the  baseline FEVl values  marked  by  dots.  Lines  pointing to the  left 
represent  decreases  in  FEV1, and lines  pointing to the  right  represent 
increases  in FEVl. It is interesting  that  more  improvements  in FEW 
occurred  in  patients  with  low  baseline FEVl values  and  more declines in 
FEVl occurred  in  patients  with  high  baseline FEVl values. This is  often 
referred to as the  phenomenon of "regression  to  the  mean." The cause of 
this phenomenon is likely to be the change of uncontrolled  factors  in the 
course of study: The factors  that  caused  high  baseline FEVl measures 
may  have  disappeared  or  changed  their  status  at  the  time  when  subsequent 
FEVl measures  were  taken. It is this same phenomenon  that cautions 
physicians  not  to  diagnose a patient  as  having  hypertension  until  three 
consecutive assessments  weeks  apart  demonstrate a consistently  high 
blood pressure. In clinical  studies,  regression  to  the  mean  generally 
reflects the  natural  fluctuation  of  the  disease  process  under  study,  not  the 
effect of  therapeutic  intervention. 
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First Visit Second Visit 
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Figure  2.12  Delta  plot  of FEVl change  from  baseline  data  by  baseline,  visit  and 
treatment 

Top: Visit Number Bottom: Steroid Dose x 100 

3 4 5 6 7 9 10 11 12 

Figure  2.13  Delta  plot  of  change  from  last  visit by visit  and  treatment 
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If a baseline measure represents the severity  of  the illness to treat, delta 
plot is fascinating in showing the magnitude  of  response to the therapeutic 
intervention over the spectrum  of  severity as measured  by the baseline 
measure. It is not uncommon that while  regression to the mean inundates 
the magnitude  of response to ineffective treatment, as demonstrated in 
Figure 2.12, effective treatment  generally results in responses in a single 
direction, either increase or decrease from the baseline, not a mixture of 
both as in Figure  2.12.  Regression to the  mean,  however,  still plays its 
role in the background  in that the magnitude  of responses spreads out over 
a spectrum. In general, effective treatments work better in sicker patients. 
In other words, the magnitude  of responses from critically ill patients 
tends to be greater than  that  from patients whose  illness is moderately 
severe. 

When patients are followed  for  a  period  of time, delta plots can  be  very 
insightfbl by presenting the sequential changes of response in the time 
course. Figure 2.13 on the previous page demonstrates the dose changes 
of corticosteroids from  a  steroid-sparing study, in  which steroids were 
sequentially adjusted  to  maintain  symptom  control  within  a specified 
range. Instead of  a  fixed baseline for  all visits, the baseline measures at 
each visit are the steroid doses at last visit, depicted  by  dots. Lines 
pointing to the left depict decreases in  steroid doses, and lines pointing to 
the right depict increases in  steroid doses. It  is clearly shown  that the 
steroid doses were  reduced  for  most patients at the first  2 or 3 visits and 
started to fluctuate. The fluctuation  may be largely  attributed to the effects 
of the uncontrolled factors and reflect the  waxing  and  weaning nature of 
the disease. Overall, there is no  apparent difference between  groups A and 
B during the entire course of study. 

2.6.2 Tree plot for efficacy  analysis 

Tree plot is a  variant  of  delta plot, where 
the start values are aligned  vertically at zero, 
and the lines are sorted  in  ascending  order 
by changes. Tree plots are excellent  for 
demonstrating efficacy  by  showing the - 2 - 1 0  1 2  3 

number  of patients who  do  and  do  not Change 
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benefit from treatment and the extent of beneficial  and non-beneficial 
effects. 

Figure 2.14 is  tree plots  showing  change from baseline measures of 
FEW by visit and treatment. The  blue lines away from zero to  the  right 
represent the  patients with  improving FEW from the baseline, the red 
lines away from zero to  the left represent the patients with deteriorating 
FEVl fkom the baseline,  and the hinge represents the patients  with no 
change in  FEVl from the baseline. These tree  plots give a complete list of 
individual patients' responses, whereas the mean responses are only the 
net  result of those positive and negative responses. 

Fint Visit S a d  Visit 

Figure 2.14 Tree  plot of change  from baseline by visit and  treatment 

Tree plots are also useful to show efficacy for  studies  where each 
patient receives multiple treatments. A 2 x 2 cross-over study is an 
example, where a patient receives two treatments each in a period. Figure 
2.15 on  the  next page is a tree plot that presents the result from a 2 x 2 
cross-over study where each patient receives both placebo and treatment. 
In this tree graph, the start values aligned vertically at zero are  the 
responses in  the period  on placebo, and the end values are the responses in 
the period  on treatment; the length between each pair of start and end 
values represents the  within-patient  contrast  between the periods on 
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treatment and placebo. The color of the lines indicates  other 
characteristics  of the patients. The overall  treatment  effects are the s u m  of 
all the negative and  positive  contrasts. 

L 
Figure 2.15 Tree  plot of within-patient  contrasts  in 2 x 2 crossover  trial 
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2.7 Scatter plot  for profile analysis 

Most clinical  studies are longitudinal  where the patients are assigned to 
different treatment groups  and  followed over a time  course.  For these 
studies, it is much more informative and  reliable to evaluate the response 
profiles over the course of the study than to focus merely  on the responses 
at few static time points. A simple and  effective presentation of response 
profiles is to draw a response curve for each patient  on a scatter  plot. In 
the scatter plots shown  in  Figure 2.16, each patient’s  steroid doses at all 
attended visits are linked with  straight  lines.  When the number  of  patients 
is small as in the placebo group, this  method is effective.  However,  when 
the number of patients  is as large as it is in the treatment  group, it becomes 
difficult to visually discern any pattern out of  this  chaotic  weave  of  lines. 
In this situation,  smoothing  techniques are helpful. 

In essence, smoothing is local  averaging. The whole range of the data 
values is cut into several intervals,  and the data  in each interval are 
represented by  their average. A smooth  line is then drawn connecting the 
averages of these intervals. By smoothing,  we  sacrifice information in 
exchange for  visual  clarity.  How  much  information  we  would  like to 
preserve depends upon the number  of  intervals  that  the data are cut into. 
The greater the number  of  intervals, the closer the smoothed  curve is  to the 
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observed  data.  With  the same data  displayed  in  the  Figure 2.16, the  scatter 
plots in Figure  2.17 present the  smoothed  profiles. 

Treatment 

P 

0 2 4 6 8 1 0 1 2  0 2 4 6 8 1 0 1 2  
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Figure 2.16 Individual  response  profiles by direct  link of data values over time 
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Figure 2.17 Individual  response profiles after smoothing over data values over time 
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By smoothing,  some  details  fall  into  the  background  and  a  clear  pattern 
of response  profiles  emerges.  It is clearly  shown  that  the  steroid  doses  for 
most  patients  are  reduced  before  visit 6, and  after  that,  many  patients’ 
steroid  doses  had  to  be  up-titrated. This pattern is shown  in  both  treatment 
and  placebo  groups,  and  it is difficult  to  appreciate  any  difference  between 
the  two  groups  because  the  numbers  of  patients  are  different. 
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3 
Data Analysis with  Summary  Measures 

Summary 

Cross tabulation and display of  summary  measures by the factors 
under study expedite comparison. Bar charts are good for showing 
magnitudes, and line-scatter plots are good for showing trends. 
Commonly  used  summary  measures are the number of observations, 
mean,  median, standard deviation, average deviation, and standard error. 
Except for categorical data in a single category where the mean  and 
number of observations are sufficient to characterize the data, all 
summary  measures  have limitations that prevent them  from capturing 
the complete information in the data. The mean is subject to overdue 
influences from  few outlying data values, and neither the mean nor 
median is apt to summarize data that distribute in clusters. The standard 
error  has no simple interpretation, and  if it is used to represent the 
effects of uncontrolled causes, the standard error can be misleading 
when the number of observations is large. 

3.1 Cross tabulation and display of summary measures 
Cross tabulation of  summary  measures  presents  summary  measures  in 

a table by the factors under comparison. The  following table is a summary 

37 
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of the FEVl data  from  a  study: 

Table 3.1 Summary of FEVl Data 

This table is designed  for  a  quick  browse  of  the  summary  measures  across 
treatment  groups  at each visit. 

Three  panels  of  summary  measures  are  tabulated.  The  first is the 
number  of  observations,  denoted  by N. This measure of study  size is most 
critical  in  determining  the  strength  of  observed  evidence.  Without 
sufficient  observations,  nothing  else  matters. The second  panel  consists  of 
three  measures.  They  are  the  mean,  standard  deviation,  and  their ratio. 
The mean is a  fair  representation  of  the  contributions  from  individual  data 
values. The standard  deviation  measures  the  average  deviation  of  the 
mean  from  the  data. The ratio of  the  mean  and  standard  deviation is an 
assessment  of the quality  of  summarization  with  the  mean. The third 
panel is a  collect  of  percentiles  for  a  scratch  of  the  data  distributions. 

Human  eyes may handle  a 2 x 2 table  easily,  but  they  soon  become 
powerless  for  mastering  any  table  larger  than 4 x 4. When  a  large  number 
of  summary  measures  are  compared  across  multiple  categories,  graphical 
presentation is  no longer  an  option  but  a  necessity.  The  graphical 
technique  of  choice is cross  display  of  summary  measures  by  the  factors 
under  comparison. 

Bar  charts are convenient  for  a  clear  display  of  the  magnitudes  of 
summary  measures,  especially  when  they  are  numerically  close. The 
following  vertical  bar  charts  show  the  means,  medians  and  standard 
deviations  in  the  previous  table: 
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First Visit Second Visit 
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Figure 3.1 Bar  chart  display of summary  measures 

The vertical lines that  extend  from the top of the  bars represent the 
standard deviations of the means in the first row  and the average 
deviations of the medians  in the second row. The average deviation will 
be defined in section 3.4. When the primary  interest is looking  for  trends, 
summary  measures may  be shown with a line-scatter  plot. Figure 3.2 on 
the next page is a line-scatter plot that depicts the means  and  their standard 
errors in each treatment group over the time come  of the study.  Each dot 
represents a mean  value,  and  the  vertical bars extending  from the dot in 
both directions represent the standard  deviation of the mean. This  plot 
allows the viewer to compare the mean  responses  over time and across 
groups. The mean responses in all four  groups  improved over time. The 
placebo group has the worst  mean responses across all time points, and the 
best mean responses are shown  in  the  group on competitor’s medicine. 
The mean responses to drug D at both doses are similar,  and  their  effects 
lie between the effects  of placebo and  competitor’s  medicine. 

It  is concise to characterize groups  of  data  with few summary 
measures, and communication  with  summary measures is precise. 
Researchers should be aware,  however,  that  every  summary measure has 
limitations  that  prevent it from capturing all the information .in the data. 
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Exclusive  use  of  summary  measures in data  analysis  can  be  misleading. A 
good  practice is to visualize  data  with  graphical  techniques  before 
attempting  any  summary  measures.  If  summary  measures are chosen  to 
represent  the data, they  must  not be presented  in  isolation.  Instead,  they 
must be presented  together  with  at  least  a  measure  of  precision  to  indicate 
the  quality of summarization. 

0 2 4 6 8 1 0 1 2 1 4  
. "- " ~ . .  .." 

21 21 28 
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Figure 3.2 Line-scatter  plot  of  means  and  their  standard  deviations by time  and 
treatment 

3.2 Number of patients for reliability and robustness 

The number of patients,  also known as study  size  and  sample  size, is 
perhaps the single  most  important  parameter in determining the strength  of 
observed  evidence,  and  it is a  direct  measurement  of the reliability  and 
robustness  of  study  results.  Reliability is the  repeatability of a  result in a 
series of similar  studies.  Robustness is the  stability  of  a  result  against 
minor  fluctuations. 

The reliability  and  robustness  of  results  from  small  studies  are 
generally  poor.  Small  studies  suffer  from  lack  of  representability. The 
patients enrolled  in  study do not full  represent  the  patient  population,  and 
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the result cannot be  generalized to guide  management of other  patients. 
Also, due to  significant  differences  from  sample to sample,  small  studies 
often  present  fragments  of  the  whole  picture,  and  the  results  are  not 
reproducible.  Small studies also suffer  from  confounding  from  the 
uncontrolled factors. Imagine  that  if  an  uncontrolled  factor exerts some 
significant effect  on two of  the  ten  patients  in  a study, that  effect  may 
significantly alter the  study  result,  to  which  the  contribution  from  the  two 
patients is as high as 20%. If  the  effect  of  that  uncontrolled  factor is not 
separable from the effects of  treatment,  that  uncontrolled factor will 
seriously confound  with  the effects of  treatment. 

The shortcomings of small studies are  overcome with large studies. 
The results of large studies are  more  reproducible  due  to  diminished 
differences among  samples.  Intuitively, two 50% samples  of 100 patients 
should be much  more alike than two 10% samples. The result of large 
study is also more robust against the effects of  the  uncontrolled factors. 
Much as a drop of  dye  will  not  change  the  color  of  the  Pacific Ocean, the 
effect of any  particular  uncontrolled  factor  on  few  patients  are  diluted  in 
proportion to the  total  number  of  patients,  even  though  that effect may  be 
significant. 

Ideally, the larger  the  study,  the  better  the  result.  In  reality,  clinical 
study cannot be  infinitely large due  to  the  limitation of resource. 
Unfortunately,  a  universally  accepted  standard  to  determine an adequate 
study size does not  exist.  Some  criteria  for  determination  of  sample  size 
are discussed  in  Chapter  Eight. The key is to strike a  balance  between 
variation and certainty. If large variation is expected,  a large study  may  be 
necessary to demonstrate  a  pattern  with  satisfactory  degree of certainty so 
that claim can  be  made  and  comfortably  accepted. 

The determination  of  sample size with  statistical  power  is  a  utopia 
based  on  the  unrealistic  statistical  theory  of  Neyman  and  Pearson. The 
fantasy  and  absurdity  of  their  theory  and  statistical  power  are  exposed  in 
Chapter  Ten.  Although  statistical  power  has  no  practical  meaning 
whatsoever,  it is the  current  practice  that  sample  size  must  be  calculated 
from  statistical  power  and  documented  in  the  research  protocol.  Knowing 
that officials are  in  charge  even  they  are  necesskrily  evil,  researchers  have 
no choice but comply  in  order to gain  research  funding,  permission for 
marketing  and  publication.  For  all  practical  purposes,  the entire power 
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calculation  may  be  viewed as a  pipeline  of  pure  mathematical 
manipulations,  which  starts off with  few  presumptuous  numbers  and ends 
up  with  few  different  numbers. To compute  sample  size,  the 
presumptuous  numbers  are  power,  a  standard  deviation  and  a  “clinically 
significant  difference.” To avoid  unnecessary  trouble,  power  must be 
aimed  high,  and  there is little room to play, 90% to 99% are  generally 
regarded to be high. The trick  to  get  the  desired  sample  size for your 
practical  and scientific purposes is to  find  the  right  standard  deviation  and 
declare  a  “clinically  significant  difference’’  that is right  for  you  and 
acceptable  by  others.  While a search in literature  should  provide  sufficient 
options for  a  standard  deviation,  it  often  requires  careful  negotiation  for  a 
“clinically  significant  difference.”  Most  of  the  time,  this  strategy  works 
out  well.  First,  figure out the  target  sample  size  for  your  study.  Then,  use 
a  computer  to try on different  combinations  of  power,  standard  deviation 
and  “clinically  significant  difference”  till  you  find  a  right  combination  that 
produces  a  sample  size  close  to  your  target.  Unfortunately, as long as 
statistical  testing  based  on  the  theory  of  Neyman and Pearson is required 
in clinical research  by  authority,  this  crying,  nevertheless  harmless  game, 
will  continue  on  and  on. 

3.3 Mean and number of observations for categorical data 
If positive responses to a  category are coded  with 1 and 0 otherwise, 

the  mean  and  number  of  observations  are sufficient to  characterize the data 
distribution. The mean is the  frequency or percentage  of  positive 
responses. The following  table 

Patient 
1 
2 
3 
4 
Mean 

A 
0 
0 
1 

i i.25 0.75 

shows  that  one  patient  responds  to  category A, three  to B and  none  to C. 
The means  are  exactly  the  percentages  of  patients  who  responded 
positively  to  categories A, B, and C. 
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The number  of  observations  indicates  the  strength  of  observed 
evidence, and  for  a  single  category,  the  mean  completely  characterizes  the 
distribution  of  data.  For  categorical  data  in  a  single  category,  both  the 
average deviation (ad) and  standard  deviation  (std)  are  completely 
determined by  the  mean: 

where  p denotes the  mean  response in the  category.  Thus,  these two 
deviation measures have no more information  than  the  mean  itself  for 
characterization of  categorical data in  a  single  category. 

3.4 Frequently used summary measures 

This section discusses the  mean,  median,  standard  deviation,  average 
deviation and standard  error. In  the  current  practice,  the  mean  and  its 
standard error are  most  commonly  used  in  publications. While median 
enjoys the same popularity as mean,  standard  deviation  is  losing  favor. 
Average  deviation is seldom  used. The conclusion  of this section is that 
the  mean  and  average  deviation  are  better  measures  than  the  median  and 
standard deviation,  and  standard  error  is  a  problematic  measure  without 
clear interpretation. 

3.4.1 Mean and median 
The mean,  or  average, is the  most  commonly  used  summary  measure 

defined  as: 

mean = 
sum of data  values 

number of data  values 

Each data value  makes  a fair contribution to the  mean. The relative 
contribution from each  data  value  decreases as the  total  number of data 
values gets large. The mean of a  large  number of data  values is fairly 
robust  against  fluctuations  caused  by  the  uncontrolled  factors. The means 
are comparable across groups  with  different  numbers  of  observations, 
whereas  the sums are  not.  Generally  speaking,  if  data  distribute  within  a 
narrow  range,  the  mean  can  be  a  fairly  good  representation of the  data. 
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A problem is that  the  mean is subject  to  overdue  influence  from  even  a 
single  extraordinary  value,  especially  when  the  number  of  observations is 
not  very  large. For instance, the mean of (1, 2, 3,4, loo), which is 22, is 
completely  carried  away  from  majority  of  the  data  values (1, 2, 3, 4) by 
the single  outlying  value of 100. Of course,  when  the  number  of  data 
values is large, the mean is relatively  robust  to  a  small  number of outliers 
because  their  contributions  to  the  mean  are  diluted in proportion  to the 
number  of  observations. 

Comparing  to  mean,  the  median is robust  to  a  small  number of outliers 
even  though  the  number of observations is small,  making  it  a  candidate  to 
substitute  for the mean.  But  median is much  less  sensitive  a  measure  than 
mean.  Data  contribute  to the median  by  their  ranks,  not  magnitudes. 
Consider the following  data: 

Group 

10  13.14 2 5 6 10 14  25 30 D2 
10 8.86 1 5 9 10 11 13 13 Dl  
Median  Mean  Data 

These two groups  of  data  appear  to  be  quite  different.  While  the  message 
is  more or less picked  up  by  the  means,  it is completely  missed  by  the 
medians.  Although  robustness is an  attractive  property  for  a  summary 
measure  to  have,  one  should  carefully  balance  that  property  with its low 
sensitivity  and the consequent loss of information. 

Both  mean  and  median are poor  measures  to  characterize  data that 
distribute  in  clusters.  For  the  data shown in  the  following  histogram, 



Data Analysis with  Summary  Measures 45 

3.4.2 Standard deviation and average deviation 
The standard deviation (std) of a  summary  measure is defined as 

values - summary  measure) 2 
sid = 

number of data  values 
, 

and the average deviation (ad) of a  summary  measure  is  defined as 

sum (I data  values - summary  measure1 ) 

number of data  values 
ad = 

Both the standard deviation and  average  deviation  measure  how  the 
summary  measure deviates from the observations on average. Although 
the average deviation appears to be more straightforward a measure, the 
standard deviation is more  commonly  used in the current practice of data 
analysis and reporting. 

Both  measures  can be directly  used to indicate  the quality of 
summarization. However, since the magnitude  of both standard deviation 
and average deviation  depends  upon  the  magnitude of the summary 
measure, a  more reasonable measure is the ratio 

standard  deviation  average  deviation 
summary  measure  summary  measure 

or 

A large standard deviation or average deviation suggests two 
possibilities. One is that the summary  measure is not a  good  measure to 
capture the information in the data. In that case, another measure  may 
have to be attempted. More  often is the other possibility that the data vary 
too much to be summarized  with  a single measure. In this situation, the 
data need to be  firther analyzed to identify the cause of  variation. If the 
variation is largely due to the uncontrolled factors, critical factors may 
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have to be identified  and  controlled in future  studies.  If the variation is 
due to treatment,  then the variation  becomes  an  important  measure  for  the 
treatment  effects,  indicating  diverse  responses  to  the  treatment. 

3.4.3 Standard error 

The standard  error  (stderr) is specific  for  the  mean,  defined as 

stderr = 
standard  deviation of the mean 

Jnumber of data  values 

It is a  composite  measure,  recognizing  the  importance  of  deviation  in 
assessing the precision  of  summarization  and the number  of  observations 
in evaluating the strength of observed  evidence.  The  standard  error is a 
derived  measure  in  mathematical  statistics.  It  associates  exclusively with 
the  mean  and is often  referred  to as the  variance of the mean. The 
mathematical  operation is stipulated to follow  the rule of  probability 
theory.  Let xi, x2, ..., Xn denote  n  independent  values,  and let ~2  denote 
the variance  of  each  data  value,  then  var  (Cxi/n) = C var(xi)/n2 = 0%. 

Independence  and  variance to each  data  value  are  the  stipulation  to  fit in 
the theory  of  probability. This unfortunate  attachment  of  statistics  to 
probability  theory is discussed in Chapter  Ten. 

Unlike  standard  deviation,  the  standard  error  of  mean  does  not  have  a 
straightforward  interpretation.  People  who  have  a  touch  of  reality 
generally  have  trouble  to  understand  the  concept  that  a  single  data  value, 
such  as the mean,  has  any  variation. In statistical  textbooks,  this  concept 
is often  explained  with  an  imagined  series  of  studies.  If  the  same  study is 
repeated  many  times,  the  variance  of  the  mean  implies  how  those  means 
would  vary. 

For  a  single  study,  the  meaning  of  standard  error is obscured. As a 
measure,  it is not  nearly as good as standard  deviation.  For  instance, the 
mean of data  consisting of fifty l's and  fifty -l's is 0, and its standard 
deviation is 1. While  the  standard  deviation  accurately  reflects  the  average 
deviation  of  the  mean from the  data,  the  standard  error  of  the  mean, 0.1 = 

1 /m, gives no clue as to how  well  the  mean  represents  the  data. 
Moreover,  for  a  group  of  data  with  five  thousand  1 'S and  five  thousand - 
1 'S, while the mean  and  standard  deviation  remain  the  same,  the  standard 
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error now becomes 0.01 = 1 l JW, which  creates a false  impression 
that  the mean  be a quite good summary  of the data. 

If standard error is used to represent the effects  of the uncontrolled 
factors, the result  of  statistical analysis can be seriously misleading. The 
following symmetric cumulative frequency  plots  show the distributions  of 
two groups of data with increasing  numbers  of  observations: 

Number of Observations 

N=ZO C 30 

0 0  gu 
0 2 0 4 0 8 0  0 2 0 4 0 6 0  0 2 0 4 0 6 0  

Figure 3.3 Frequency  distributions of data in two groups  with  increasing  number 
of data  values 

It is  quite obvious that  the two groups are almost identical,  and  this is 
confirmed with increasing number of observations.  However, in terms of 
standard errors, as shown  in the following  table, 

N = 20130 N = 200013000 N = 2001300 
Group Mean 

0.18 30.98 0.57 31.24  2.02 30.55 B 
0.21 29.94  0.75  28.63 2.33 31.40 A 
Stderr  Mean  Stderr  Mean  Stderr 

the opposite conclusion  that  the two groups are different  may  be  drawn. 
The standard error quickly fades  away as the number of observations 
becomes large.  Eventually, the magnitude  becomes so small that any 
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trivial  difference  of  the  means  appears  to  be  significant  when  compared to 
that fading  standard  error. 

The standard  error is often  used  to  claim  inconsequential  differences. 
It tends  to be used  more often than  standard  deviation  in  research 
presentations  because  standard  error is generally  smaller  than  the 
corresponding  standard  deviation. A public  secret is that  with  standard 
error, any  hypothesis  of no difference  can  be  rejected in principle  by 
simply  increasing the number  of  observations. This problem  with  standard 
error  in  the  analysis  of  large  studies  has  led  to  propositions  of  limiting the 
number of observations  to  prevent  false  claims  even  though  the  resource 
allows  for  more  observations.  It  has  been  proposed  that  the  sample  size  of 
a  study  should  not be as large as the  researcher  wishes  to  be,  and it must be 
determined  with  statistical  power  based  on  the  theory  of Neyman and 
Pearson.  While  deliberately  using  a  poor  measure is bad  enough,  resorting 
to  an  unrealistic  theory  to justi@ a  poor  measure is hopeless. 



4 
The Analysis of Variance 

Summary 

The analysis of variance summarizes data with the mean,  and the 
quality of summarization is measured  with the standard error. The  major 
use is simultaneous evaluation  of multiple interrelated factors. The basic 
operation is grouping  and curve fitting.  When multiple factors are 
evaluated simultaneously, any specific effect  may  be  quantified with up to 
three types of measures, depending  upon the relationship among the 
factors. Type  I  measures  quantify  the effects of  single  factor  in  isolation 
from others. More  useful are type I1  and  I11 measures.  While  type I1 
measures quantify the additive effects, type I11 measures quantify the joint 
effects of multiple factors.  Both  type I1  and  I11 measures  may  be 
combined.  The  combined  measures are referred to as marginal or least 
squares means. The result of  analysis  of  variance is best  presented  by 
graphical display of the means  and  their standard errors. 

4.1 The method 

The analysis of variance (ANOVA) summarizes data with the means, 
and the quality of summarization is quantified with the standard errors. 
This broad definition of analysis of variance applies to all the analytical 

49 
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methods to be discussed in Chapters Four, Five  and  Six, including 
multiple regression analysis, logistic regression analysis, categorical 
data analysis, survival data analysis and repeated measures analysis. 
The definition of  mean in the analysis of variance is the same as that in 
Chapter Three. The standard error is, however,  defined quite differently. 
As  opposed to the conventional standard error that is specific to the 
mean, the standard error in the analysis of variance is based  on  a  global 
measure for all the means.  For  a  mean  in the analysis of variance, its 
standard error is defined as 

standard error in anova = 
mean residual sum of squares 

number of observations the  mean represents ’ 

where the mean residual sum  of squares measures the average deviation 
of all  the  means, not any specific mean, ti-om the data. 

The arithmetic from steps A to D in the following table illustrates the 
method. The data are from the blood sugar trial, and the purpose is to 
compare drug D to placebo. 

Table 4.1 Arithmetic  in  the  Analysis of Variance 

Step A is list of  the  original  data  values  and  group  means.  At  step B, the 
original  data are replaced  with  the  group  means. Step B is critical,  where 
the  group  means  are  chosen  to  characterize  the  observations in treatment 
groups.  Had  another  summary  measure  been  chosen,  the  result  would 
have  been  different.  The  grand  mean is the  average  of  all  observations 
regardless of treatment.  Tabulated  at  step C are  the  squared  differences 
between the group  means  and  grand  mean;  for  instance,  (140 - 124)2 = 
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250. The sum of these squared  differences, known as sum of squares, 
presents an  alternative measure of treatment  effects. If the effects of drug 
D and placebo are the same, the sum  of squares should be small. Step D 
lists  the squared differences between the original observations and  group 
means;  for  instance, (67 - 140p = 5412  in drug D group  and (89 - 102)2 
= 184 in placebo group. The sum of these  squared  differences, known as 
residual sum of squares, measures the average deviation of group means 
from the original observations and is generally  interpreted as the  variation 
caused  by the uncontrolled  factors. 

Treatment effects are evaluated  by  comparing  the  group  means to their 
standard errors. The standard e r rm are derived  from the residual sum of 
squares at  step D. The first is  to compute the mean residual sum of 
squares: 

Mean  residual  sum of squares: residual s u m  of squares - 62536.91 = 6253.69 . 
degree of freedom 10 

- 

Then the standard errors of group  means are simply 

Drug D: /F = 30 , and  Placebo: /F=35. 
Comparison can be  easily  made  by  visual  contrast: 

Drug D Placebo 

Treatment effects can also be  evaluated  by  comparing the mean sum of 
squares of treatment to the residual  mean  sum of squares. The mean  sum 
of squares is sum of squares divided  by the number of essential pairwise 
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contrasts, known as the degree  of  freedom.  Essential  pairwise  contrasts 
are mutually  exclusive  and  form  a basis for  deriving  any  other painvise 
contrasts. Between  treatment  groups,  there is only  one  essential  contrast, 
140 - 102, and  thus,  the  degree  of  freedom  for  treatment  effects is 1. 
Within  treatment  groups,  there  are  four  essential  pairwise  contrasts  in  the 
placebo  group,  such as 89 - 80,89 - 140,89 - 108, and 89 - 96, and six in 
the  drug D group,  such  as 67 - 123,  123 - 322,322 - 232,232 - 89,89 - 
109, and 109 - 42. Thus,  the  degree of freedom  for  residual  sum  of 
squares,  the  effects  of  the  uncontrolled  factors, is 10 = 4 + 6. These  ten 
contrasts are essential in the  sense  that  any  within-group  contrast  can be 
derived  from  them;  for  example,  in  the  placebo  group, 80 - 140 = (89 - 
140) - (89 - 80). Essential  contrasts  are  not  unique.  In  the  placebo  group, 
for  instance,  another  set  of  four  essential  contrasts  may  be 89 - 80,  80 - 
140,  140 - 108, and 108 - 96. The  mean  sum  of  squares is invariant  upon 
the  formation  of  essential  contrasts.  Any  mean sum of  squares  with  more 
than  one  degree  of  freedom is an agglomerate  measure. As opposed  to 
specific  comparisons  of  group  means,  the  mean  sum  of  squares  measures 
the  average  of  a class of  pairwise  comparisons. In terms  of  mean  sum  of 
squares,  the  result  of  analysis  of  variance  may be summarized  in  a  table, 
known as ANOVA table: 

ANOVA Table 
Source DF SS MS F P 
Treatment 1 4205 4205 0.67  0.43 
Residual 10 62537 6254 
SS: sum of squares, MS: mean sum of squares, 
DF: degree of freedom, F: ratio over residual MS, P: p-value 

This  table  states  that  the  variation  due  to  treatment is not  significantly 
larger  than  the  variation  caused  by  the  uncontrolled  factors,  and  therefore, 
the effects of treatment  are  not  significant. 

4.2 Basic operations in the analysis of variance 

The analysis  of  variance  allows  for  simultaneous  evaluation  of the 
effects of  multiple  factors,  which is very  convenient  and  effective  for 
investigating  heterogeneity.  However,  the  analysis  of  variance  does not 
automatically  attribute  effects  duly  to  the  causal  factor  or  factors,  and the 
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method  itself does not  offer  any  mechanism for the control of 
confounding.  Researchers  must  be  constantly  conscious of the  fact  that 
the analysis of variance as well as any  other  statistical  analytic  methods 
are techniques for  human  purposes.  Therefore,  researchers  must  know 
their  purposes  before data analysis. 

Nowadays the analysis of  variance  can  be  done  automatically  with  a 
computer, and what  the  user  has to do  is to select  factors  and plug them 
into the  computer. This wide  availability of computer  programs  for 
carrying out  analysis  of  variance  has  spread  misconception of the 
technique and  prompted  misuse.  Confounding  may be introduced  by 
unscrupulously  adding  factors  into  the analysis. As an extreme example, 
if  a volcano erupts in Los Angeles at the same time  when  the  crystal  ball 
lights up year 2000 in  New  York  City,  the  analysis of variance  can 
establish a  perfect  correlation  between  these  two events. Misuse of 
analysis of variance,  like  this,  might  have  accounted  for  many of shocking 
conclusions that  hit  the  headline news and  made  the  reporting  “scientist”  a 
national kangaroo.  While  the  absurdity shown in this example is obvious, 
the practice of using  computer to select  factors  for  the  analysis  of  variance 
is potentially dangerous because the technical  complexity  conceals the 
absurdity of same nature from  untrained  people. Stepwise multiple 
regressions and stepwise  logistic  regressions  are  often  encountered  in 
medical literature for  selecting  a set of factors  to  account for the  variation 
of data. These selection  algorithms  use  some  arbitrary  thresholds  on  the 
reduction of mean  residual  sum  of  squares to include  or eliminate factors. 
By  using  these  algorithms,  data  analysis  is  turned  into  a  game  of  gambling 
on  those  thresholds,  not  different  from  looking  at  crystal  ball  in  strategic 
planning or  tossing  coin  in  decision  making.  Man-made  computers  will 
continue to improve,  but  they  will  never  take  away  careful  thinking of 
research purposes  from  the  computer  between  our  ears. 

The aim of this section  is  to  demonstrate  what  we  should  think for the 
analysis of variance,  what  the  analysis  of  variance  can  do for us, and  how 
the computation  in analysis of  variance  can  be  carried  out  with  the  linear 
model technique. 
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4.2.1 Controlled versus uncontrolled factors 

It is important  to  distinguish  controlled  from  uncontrolled  factors. The 
controlled  factors  determine  the  assignment  of  patients  to  treatment.  They 
are the  backbone  of  study  design. By including  these  factors  into  analysis, 
the  mechanism  for  the  control  of  confounding  inherited in the  design is 
hlly utilized. The uncontrolled  factors do not relate to patient  assignment. 
They are called  covariates  if  recorded. In general,  the  uncontrolled  factors 
confound  with the controlled  factors.  The  only  effective  means to control 
the  confounding is equal  distribution  of  the  uncontrolled  factors  among 
treatment  groups. In general, the magnitude  of  confounding  from the 
uncontrolled  factors  cannot  be  altered  unless  they  are  controlled  by 
stratification. Only  occasionally,  incorporating  covariates  into  analysis 
may  reduce  the  magnitude  of  confounding. 

The following table illustrates the structure of  a ten-center trial: 

Table  4.2 Struc ture  of a Multicenter  Trial 

Factors  that  categorize  patients 
Age/Sex/Race Treatment Center 1 

visit 1 I visit 2 I visit 2 I visit 4 

Center, AgeISexRace Treatment Center 2 
Placebo 

Treatment, AgelSexlRace Placebo 

Responses subject to the effects o AgelSexlRace 

... Demographic classification ... ... 
Visit (the time factor) 

I I I 

Center 10 I Treatment I AgeISexRace I Baseline measures 
I Placebo 1 Aee/SexRace I 1 

After baseline measurement, the patients in each center are randomly 
assigned to treatment and  placebo  and  followed  at  four clinic visits. The 
patients’ responses are affected  by center, treatment, age, sex, race, the 
time of visit, baseline measures, and other factors unknown to this study. 
Of those known factors, center  and  treatment  are  the  controlled  factors. 
The patients are stratified  by  center,  and  they  are  randomly  allocated to 
treatment  groups.  Visit is a  chronological  marker.  Although  the  schedule 
is planned,  visit is not  a  controlled  factor  because  it  has no bearing  to 
patient  assignment  to  treatment  assignment.  Visit  potentially  confounds 
with  treatment effects if compliance  to  visit  schedule is different  between 
treatment  groups.  Baseline  and  demographics are covariates,  i.e.,  they are 
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recorded  uncontrolled  factors.  Because  covariates  are  not controlled, 
patients divided  by  covariates  are not necessarily  comparable.  For 
instance, there might  be 10 male and 5 female  patients  in  the  treatment 
group in  a center, and 5 male  and 10 female  patients  in  the  placebo  group. 
This uneven  distribution of patients  between  gender  groups renders gender 
a confounding factor  in  the  evaluation  of  treatment effects in  that  center. 
If  gender is added to the  analysis  of  variance  together  with  center  and 
treatment,  part of variations  that  would  have  been  duly  attributed to the 
effects of treatment  will  be  wrongly  attributed  to  the effects of  gender. 
Analysis of variance  with  covariates  is  further  addressed  in  Chapter  Five, 
section 5.4. 

4.2.2 Grouping and curve fitting 
A categorical  factor  in  the  analysis  of  variance  means  that  the  patients 

are  divided  into  groups by this  factor,  and  the  means  and  their  standard 
errors are computed  in  these  groups. A continuous  factor  in  the  analysis  of 
variance  means  that  the  mean  response  curve is fitted  over  the  continuous 
factor such that  the  sum  of  the  squared  differences  between this mean 
curve and  data is minimal.  In  statistical  textbooks,  this is often  called  least 
squares estimation.  Simultaneous  presence  of  categorical  and  continuous 
factors in the analysis  of  variance  means  that  mean  response  curves  are 
fitted  in  each  category  and  then  compared  among  the  categories. 
Therefore, grouping  and  curve  fitting  are two basic  operations in the 
analysis of variance. 

Knowing  the  basic  operations  in  the  analysis of variance,  researchers 
can  plan analysis and  make  specifications to technical  personnel.  Much as 
using laboratory forms to order  diagnostic  tests,  forms like what is shown 
in Table 4.3 may  be  helpful  to  order  an  analysis.  Forms like that  contain 
instructions on 

the  identification  of  response  variable,  controlled factors, covariates 
and  chronological  marker, 
whether  or  not  interaction effects or  covariates  are  included  in  the 
analysis, 
whether  the  means  are  computed  and  then  compared at each  visit  or 
the  mean  response  curves  over  time  are  fitted  and  then  compared as a 
whole,  and  finally 
how  the results of  analysis  are  presented. 
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The analysis  specified  in  this  table is to  group  the  patients  by  center  and 
treatment  at  each  visit,  compute  the  means  and  their  standard  errors,  and 
present the result  with  an ANOVA table  and  a  graphical  display  of the 
means. If the effects of  center-treatment  interaction is excluded, the 
analysis  will  be two separate  groupings  first  by  center  and  then  by 
treatment. The effects of  treatment  are  represented  with the means  of 
treatment  groups,  and  the  effects  of  center  are  represented  with  the  means 
of  centers. 

Table 4.3 The  Analysis of Variance  Specification Form 

~~ ~~ 

Least squares means I treatment effects J 

The most  conservative  analysis is including  only  the  controlled  factors 
and  attributing  the  unaccounted  variations  to  the  effects  of  the 
uncontrolled  factors.  The  design  of  the  study  determines  the  logical 
validity  of  the  analysis.  Occasionally,  it is profitable  to  adjust  for  the 
effects of covariates.  Suppose we  add  sex,  a  categorical  covariate,  into  the 
analysis. The result is that  the  patients  in  each  center  are  first  divided  into 
groups  of  males  and  females,  and  treatment  effects are then  compared 
within  each  group  of  males  or  females.  This  adjustment  for  the  effects  of 
covariate is profitable if the distribution  of  gender is roughly  balanced 
between  treatment  groups. If the  distribution is unbalanced,  adjusting  for 
covariate  would  be  a  perfect  way  of  introducing  confounding,  not  present 
previously,  into  the  evaluation  of  treatment  effects.  Adding  continuous 
covariates results  in  mean  response  curves  over  the  covariates,  not just few 
means,  being  compared  between  treatment  groups.  Suppose  we  add 
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continuous  baseline  measure as covariate  into  the  analysis.  What the 
analysis does is to  fit  a  straight  line  in  each  treatment  group  in  each  center 
and  then  compare the straight  lines  across  treatment  and  center. The 
analysis of  covariates is fblly  discussed  in  Chapter  Five,  section 5.4. 

The effects of  time on patients’  response  to  treatment  are  best 
evaluated  by  comparing  treatment  effects  at  each  visit. A line-scatter  plot 
of  the  means  over  visit  may be used  to  highlight  the  average  response 
profiles.  When  visit  schedule is irregular  or  there are abundant  missing 
observations,  however,  timely  comparison  of  treatment  effects  may  not  be 
feasible. In this situation,  we  may  use  mean  response  curves  to  represent 
the response  profiles  over  the  time  and  compare  the  whole  profiles 
between  treatment  groups.  In  the  above  table,  curve  over the time is a  call 
for this strategy  of  incorporating  time  into  the  evaluation  of  treatment 
effects. 

4.2.3 Linear models as a technical language 

Linear  models are a  technical  language  for  the  analysis  of  variance. 
Suppose  the  primary  interest is the  effects  of  baseline,  center,  treatment, 
and  center-treatment  interaction,  and we  would  like  to  attribute  all 
unaccounted  variations  to  the  effects  of  the  uncontrolled  factors.  With 
linear  model,  this is simply 

responses = baseline + center + treatment + 
center-treatment interaction + residuals. 

The actual  variables  corresponding  to  the  specified  effects are called 
explanatory  variables.  If  an  explanatory  variable  is  continuous, its effects 
are represented  by  a  mean  response  curve, known as  regression  curve; if it 
is categorical, its effects  are  represented by a  group  of  means. 

A linear  model is essentially  rules  of  mathematical  manipulations  for 
computing  group  means,  mean  response  curves  and  their  standard  errors. 
The technical  detail  of  general  linear  models is given  in  Appendix B. The 
use of mathematical  distribution  and  the  parameterization  of  linear  models 
are entirely  technical.  Whatever rules set  forth  for  a  linear  model are for 
the  sole  purpose  of  getting  the  desired  summary  measures,  not the other 
way  around.  It is unfortunate  that  some  rules  of  linear  models  are  written 
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in statistical textbooks as “assumptions,”  which  makes careless readers 
believe that those “assumptions” have to be  validated prior to analysis. It 
is  not uncommon that clauses on checking for  model assumptions are 
written in research protocols; examples are checking for nonnal 
distribution, homogeneity of variance, additivity,  and so on. Checking for 
these “assumptions” often requires making other assumptions,  and the 
result is a logical loop that is going to nowhere. 

4.3 Effects and  their  measurement 

When multiple factors are evaluated simultaneously in  the analysis of 
variance, the  effects of any  specific  factor  may  be quantified with up to 
three different types of measures, depending  upon  how  that  factor is being 
evaluated in  relation to others. The three types of measures are  best 
explained with an example.  Suppose two medical centers each recruit 155 
patients, and the primary  interest is the effects of center, treatment and 
center-treatment interaction. The data are summarized in the following 
table: 

Table 4.4 Summary of Data in a Two-Center  Trial 

A striking feature of the data is the uneven  distribution of patients between 
treatments A and B across centers 1 and 2. 

4.3.1 Type I measure 

In essence, type I measure is simple averages  without  stratification. 
With type I measure, the effects  of  any  factor are evaluated in  isolation 
from the  effects of other factors. The type I measure of the effects of 
treatment, for  instance, is simply the means of pooled  data across centers: 
A = 109, B = 80, and C = 124, as  if the data  were not stratified  by center at 
all. A good thing about type I measure is that the data values are equally 
weighted,  and they make  fair contributions to the means regardless of 
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other factors. Problem is that  the stratification by  center  in  the study is not 
incorporated into the analysis, and consequently, the mechanism  intended 
to control the confounding effects of  center is not fully  utilized. As shown 
in the summary table, most patients who  received treatment A came  from 
center 1, whereas  most patients who  received  treatment  B  came  from 
center 2. Therefore, the comparison  of treatments A and  B is also, more or 
less, a  comparison  of centers 1  and 2. In other words, quantified with type 
I measures, treatment and  center  confound the effects of each other. 

The type  I  measure  of the effect of  center-treatment interaction is six 
essential contrasts among  the  means  in the shaded  area  of the summary 
table: 110 - 103, 110 - 128, 110 - 72, 110 - 79, and  110 - 119, as an 
example. This measure  of center-treatment interaction contains the effects 
of center and treatment in the sense  that  if  the  six  means are similar, no 
effect can be claimed whatsoever.  But if there is a difference, we  have no 
clue from this measure  whether the difference is due to the effects of 
center, treatment, center-treatment interaction, or any combination of the 
three. Because  of this lack  of specificity, type I measures are virtually 
useless for interaction effects. 

Simple arithmetic may  be all that is needed to compute type I 
measures. Of course, linear  models  can  always  be  used for complex 
computations. With linear models, we put one  factor or the interaction of 
multiple factors at a  time.  For  instance, three linear  models are needed to 
compute the type I measures  for the effects of center, treatment and center- 
treatment interaction, with  one  factor or interaction at a time: 

responses = center + residuals, 
responses = treatment + residuals, and 
responses = center-treatment interaction + residuals. 

Some computational details are given  in  Appendix  A.  In general, type  I 
measures are not desirable because they  do not fully utilize the power  of 
the analysis of  variance  technique. 

4.3.2 Type I1 measure 

Type I1 measure is stratified averages representing the additive effects 
of involving factors. By additive effects, as opposed to joint or synergistic 
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effects which  feature type III measures, we are making  an  assumption that 
the involving factors exert their  effects  on  patients’ responses 
independently. With type II measures, the effects  of one factor are 
identical across other factors.  As  shown  in  the following table,  for 
instance, the effects  of treatment are  the same in both centers: 

Type II Measures 
I ( A  I B  I C  l 
L 

Center 1 
116 80 95 Center 2 
131 95 110 

From this table, A - B = 1 10 - 95 = 15 in center 1 is identical to  A - B = 
95 - 80 = 15 in center 2, and so are any other contrasts  among the 
treatment groups. The graphical presentation is most  characteristic  for 
parallelism: 

131 
116 

A B C 

A linear  model is generally required to compute type 11 measures. All 
we have  to do is to put the factors  of  interest  in the model without 
interaction  effects.  For  instance, we  may  use 

responses = center + treatment + residuals 

to get the type Il measures for the effects of center and treatment. More 
details on using linear models to compute type II measures are given  in 
Appendix A. 
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Type 11 measure is averages weighted  mostly  by the number  of 
observations across strata. The following  table compares the means of 
treatment A in centers 1  and 2 to  their  type 11 counterparts: 

The two measures are consistent in  center 1 where 100 patients  were 
observed, whereas  discrepancy  shows in center 2 where  only 5 patients 
were available. The assumption  of additive relationship  between center 
and treatment is blamed for this discrepancy.  When the actual  relationship 
is not perfectly additive, type 11 measures are adjusted to meet the 
restriction of parallelism. The actual  computation  is  much  like a lever; the 
groups with most of the patients  dominate the balance,  and groups with 
small number of patients are sacrificed to meet the requirement of 
additivity. While stratification  distincts type II from type I measures, 
weighted averaging across strata  by the number  of observations distincts 
type 11 from  type 111 measures. 

4.3.3 Type 111 measure 
Type III measure is stratified  averages  representing the joint effects  of 

involving factors.  Joint  effects  can  be additive if the involving factors 
exert their effects  independently.  Joint  effects are most  interesting  when 
they are significantly  different  from  the additive effects  of the involving 
factors. This  is when the joint effects are better known as synergistic 
effects. The following table presents the type 111 measures for  the  joint 
effects of center, treatment and  center-treatment  interaction: 

Type III measures 
I Center I C  I 
L 

1 
2 72 79 119 

They are actually the means in the shaded area of the s u m m a r y  table. The 
analysis may simply carried out with the l i n e a r  model, 
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responses = center + treatment + center-treatment interaction + residuals. 

Compared to their non-specific type I counterparts with 5 degrees of 
freedom, the type 111 measures for the effects of center-treatment 
interaction are cross-center  contrasts  of the within-center  essential 
treatment contrasts: 

A-B  between C1 and  C2: (1 10 - 103) - (72 - 79),  and 
A-C  between C1 and C2: (110 - 128) - (72 - 119), 

which have 2 degrees of freedom. 

Type III measures preserve the rich information  in the original data 
without any superimposed restrictions  and present the  joint effects of 
interrelated  factors. Type III measures are good for evaluating 
heterogeneity. The  effects of center-treatment interaction, far example, 
measure the differences of treatment effects across centers. Type Ill 
measures are good  for searching for the combination of factors that 
generates the optimal therapeutic effects. The following table,  for 
instance,  clearly demonstrates the superiority  of B + D combination over 
any other combinations: 

1 

If the  factors being studied have multiple levels, a grid surface of mean 
responses as shown  in Figure 4.1 on the next page  may be constructed in 
search for optimal responses. This three-dimensional plot of 121 mean 
responses represents the joint effects of drugs A and B  at different 
concentration levels. This graph  clearly  shows  that high mean responses 
generally associate with  low concentrations of drug  B. The effects of drug 
A depend on the level of drug B. At  low  levels of drug B, three peak 
responses are observed at high, medium  and  low  levels  of drug A, with the 
highest response at a low  level of drug A. At high levels of drug B, the 
peak response occurs only at low  levels of drug A. The only  drawback  of 
type III measures is that they  may not be optimal for estimating the effects 
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Figure 4.1 Mean  response  surface by concentrations of drugs A and B 

4.3.4 Pros and cons and  making choices 
The pros  and cons of  the  three  types  of  measures  are  recapitulated  in 

the following  table: 

Table 4.5 Features of Three  Types of Measures 

Type I measures  quantify  the  effects  of  a  single  factor  in  spite  of  its 
actual  interaction  with  other  factors. On one  hand,  type I measures 
represent the  fair  contributions of  data  values  regardless  of strata; on  the 
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other  hand,  because  more  weight is given  to  strata  with  more  patients, 
confounding  from  strata  may be introduced  when  the  number  of  patients is 
very  different  from  stratum to stratum.  Type I measures  for  interaction 
effects are not  specific  to  the  synergistic  effects  that  most  people  refer  to 
when  speaking  interaction. 

Type I1 measures  are  also  mainly  used  for  evaluating the effects  of 
individual  factors.  Compared  to  type  I  measures,  the  evaluation is 
stratified  by  other  factors. The relationship  among  possible  interrelated 
factors is assumed  to  be  additive,  and  therefore,  interaction  effects are 
excluded  by  definition. The effects  of  a  single  factor,  known  as the main 
effects, are quantified  with  averages  of  data  across  strata  weighted  by the 
number of patients in each  stratum.  As  type  I  measures,  confounding  from 
strata  may  be  introduced  when  the  number  of  patients is different  from 
stratum to stratum. 

' Type 111 measures  are  the  measures  of  choice  for  studying  the effects 
of  interrelated  factors  unless  it is known  that  those  factors act additively  on 
patients' responses.  Because  the  data in each  stratum  stand  alone,  possible 
confounding  from  strata is curbed.  Problem is when  type I11 measures are 
combined  to  estimate  the  effects  of  a  single  factor,  strata  with  quite 
different  numbers  of  patients  are  equally  weighted.  This  problem  is 
further  addressed in section 4.4.2 on  marginal  means. 

4.4 Presentation of analysis results 

The analysis  of  variance  gives  rise  to  results in different  form  and 
complexity,  and  the  presentation  requires carehl consideration  of 
purposes.  Graphical  display  of  the  means  and  their  standard  errors is 
perhaps  the  best  presentation.  When the interest is the  effects  of 
individual  factors,  the  least  squares  means  are  concise  measures to 
quantify  those  effects.  Finally,  the  mean  sum  of  squares may be  used  to 
measure the average  effects  of  a  class  of  factors.  From  the  means to least 
squares means  and  to  mean  sum  of  squares,  there is a  continuous loss of 
information  in  exchange  for  conciseness.  Although  statistical  testing is 
widely  advocated in the  statistical  academia  and  adopted in the  current 
research  practice, it has  absolutely no role  in  the  analysis  of  variance  here 
whatsoever. 
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4.4.1 Graphical presentation 

Graphical display  of  means  and  their standard errors is perhaps the 
most informative way to present the results of analysis of  variance.  The 
following line-scatter plot presents the type I11 means  for the joint effects 
of center and  treatment: 

I 2 

CENTER 

The means are computed  with  the linear model, 

responses = center + treatment + center-treatment interaction + residuals. 

It appears that the mean responses to treatment C are significantly higher 
than those to treatments A and B in both centers. The  mean responses to 
treatments A and B are similar. The differences among treatments in 
center 1 are somewhat smaller than  the differences in center 2. 

Graphical presentation is a  necessity  when analysis involves 
continuous explanatory variables. The result of analysis is mean response 
curves, and the number of means directly depends  on the number  of 
unique values of the continuous explanatory  variables. Presenting mean 
response curves as opposed to voluminous  numeric  means  makes it easy 
to grasp the information. In the analysis specified  in the linear model, 

responses = baseline + center + treatment + 
center-treatment  interaction + residuals. 
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baseline is a continuous variable. The analysis results in about 150 means 
representing the  joint effects  of  baseline,  center,  and treatment. If 
numerically listed, these 150 means would be a great challenge to human 
eyes and mind. It becomes a breeze to sort out the underlying information 
when they are nicely presented together with  their  standard errors on the 
following graph 

Center 1 Center 2 Center 3 Center 4 Center 5 

M m  Mtnn M m  MCUI MCUI 

Bpselii BnSeli Baselme Baselme Bpselii 

Figure 4.2 Mean  response awes over  baseline  by  center  and  treatment 

In this graph, each line represents the mean responses over baseline values 
in each treatment group in each center. There are significant treatment 
effects because the lines are well  separated,  and the treatment effects are 
consistent across all centers.  For  computing  least  squares  means, the 
points of interest are where the vertical  line at the mean baseline crosses 
each oblique line  in each center. These points represent the mean 
responses in  different treatment groups and centers at the mean  baseline. 

4.4.2 Marginal means or  least  squares means 

When multiple factors are evaluated simultaneously with the analysis 
of variance, the mean responses may  be  combined to estimate the  effects 
of individual factors. A way of combination is averaging the mean 
responses, and the resulting  means are referred to  as marginal or least 
squares means (LSM). 
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It is straightforward to compute least squares means if all explanatory 
variables are categorical.  For the analysis  specified  in this linear  model, 

responses = center + treatment + residuals, 

there are six type 11 means representing the additive effects of center and 
treatment, and  they are tabulated  in the shaded  area: 

Center 2 
LSM 

The least squares means  for the effects  of treatment alone are simply the 
average of those type I1 means  in each treatment group over centers: 

The least squares means  derived  from  type 11 means can be quite 
different  from those derived  from  type 111 means.  By the additive nature 
of type 11 means, the effects of treatment are identical across centers. 
Therefore, the contrast of  least  squares means between  any two treatment 
groups is identical  to the corresponding  contrast in every  center: A - B = 
102 - 87 (LSM) = 95 - 80 (Center 2) = 1 10 - 95 (Center 1) = 15. This is 
not necessarily true  for the least  squares  means  derived fiom type III 
means.  From the analysis specified  in the linear  model: 

responses = center + treatment + center-treatment  interaction + residuals. 

the following table presents the type 111 means  for the joint effects  of 
center and  treatment: 

Center 

90 119 79 72 2 
1 

LSM C B A 
" f 7" 14 ' : v  

'.I l,o 

LSM I 91 I 91 I 124 I I 
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The least  squares  means  of  center  are 

110+103+128 =114and 72+79+119 
3 3 

= 90 , 

and  the  least  squares  means of treatment  are 

The contrast  of  least  squares  means  between  treatments A and B is 91 - 91 
= 0 while its within-center  counterparts are 110 - 103 = 7 in center  1  and 
72 - 79 = -7 in center 2. This inconsistency is due  to  the effects of  center- 
treatment  interaction.  The  cffccts  of  treatment  are  different from center  to 
center,  and the least  squares  tneans  of  treatment  represent  a  combination 
of  heterogeneous  effects  over  centers. In the  presence  of  significant 
center-treatment  interaction  effects,  the  least  squares  means  of  any  single 
factor  can be very  misleading  because  they are averages  over  a 
hodgepodge  of  measures  that  do  not  belong  to  the  same  category. 

The least  squares  means  from  type I1 measures are generally  weighted 
with the numbers  of  observations,  while  the  least  squares  means  from  type 
I11 measures  are not. By weighting  with  the  number  of  observations,  the 
least squares means are a  fair  representation  of  contributions  from 
individual  data  values. The shortcoming  is  possible  introduction  of 
confounding  from  unbalanced  patient  distribution  over  strata.  For 
example, of the 105 patients  who  contribute  to  the  least  squares  mean  of 
treatment A, 100 are from  center 1 while  only 5 from  center 2. Thus, the 
least squares mean  more  represents  the  effect  of  center 1 than  that  of 
center 2. The  least  squares  mean  of  treatment B is the  opposite. 
Consequently,  the  effects  of  center  more  or  less  confound the effects  of 
treatment.  Confounding of this  kind is confined  with  type I11 measures. 
The type I11 means  are  specific  to  both  treatment  and  center,  and  because 
there is  no averaging  across  strata,  they  are  independent  of  each  other. 
This independence  confines in  some  degree  the  effects  of  confounding, if 
any,  between  treatment  and center, The least  squares  means  are  averages 
with an equal  weight. The problem  with  this  equal  weighting is that  the 
quality  of  type 111 means is not  taken  into  account.  For  example,  the  type 
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I11 mean  from 5 patients generally has poor reliability and robustness than 
that from 100 patients. Indiscriminate combination  of type I11 means  of 
different quality may jeopardize the quality  of resulting least squares 
means. 

If the analysis involves continuous  explanatory  variables, the current 
practice is to use the mean response at the means  of continuous 
explanatory variables to represent their effects. Although it leads to the 
smallest variance, choosing the  mean  is entirely a  convention.  Once  the 
mean responses at the means  of  continuous variables have  been 
determined, the continuous variables may be viewed as categorical 
variables, and  one  may proceed, as usual, to compute the marginal or least 
squares means. 

4.4.3 The analysis of variance table 
A less informative summary  than  graphics  is the analysis of  variance 

table, known as ANOVA table, in terms of mean  sum  of squares. Sum of 
squares, mean  sum  of squares and degree of  freedom are defined in section 
4.1. The following table  summarizes  the result of  the analysis specified in 
this model, 

responses = center + treatment + center-treatment interaction + residuals: 

ANOVA Table 
Source DF SS MS F P 
Center 1 11326 11326 8.22  0.0044 
Treatment 2 29157 14579 10.59 0.0001 
Interaction 2 4147 2073 1.5  1  0.2235 
Residual 304 418625 1377 
S S :  sum of squares, MS: mean sum of squares, 
DF: degree of freedom, F: ratio over residual MS, P: p-value 

Two unfamiliar elements in this table  are the F and P values. F value or F 
statistic is the ratio of  mean  sum  of squares for  the effects of interest over 
the residual mean  sum  of  squares. A large F value indicates that the 
variation caused by the effects is greater than  that caused by the effects of 
the uncontrolled factors, and  therefore, suggests a significant effect. P 
value is a  map  of F statistic to the scale of 0 to 1, [0, l], by comparing to 
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an F distribution.  As  a  measure,  p-value is equivalence  to  the 
corresponding F value. The only  difference is scale. A general  discussion 
on mathematical  distribution  and P value is given  in  Chapter Ten. At this 
point,  one  must  not  fantasize F and  p  values,  but  view  them as alternatives, 
preferred  by  some, to the ratio of  mean  sums  of  squares. 

With  ANOVA  table,  we  sacrifice  detailed  information  for  conciseness. 
The mean  sum  of  squares is not  specific  to  any  particular  comparison  of 
means;  rather,  it is an  agglomerate  measure  representing  the  average  of  a 
class of  pairwise  comparisons  of  means. A large  contrast  may  be 
dampened  when  averaged  together  with  a  large  number  of  small  contrasts 
and  could  be  overlooked  if  the  resulting  mean  sum  of  squares is not 
significant. On the other  hand,  a large mean sum of  squares  by no  means 
guarantees  that all the  constituent  contrasts  are  equally  large  because the 
contributions  from  few  large  contrasts  may just be sufficient  to  make the 
mean  sum  of  squares  significant. 

4.5 Limitations 

The analysis  of  variance  technique  has  limitations.  It is well known 
that the mean is subject  to  overdue  influences  from  few  outlying  data 
values  and is completely  useless  when  the  data  distribute in clusters. 
However,  more  critical is the  use  of  standard  error,  which  generally 
decreases  in  proportion  to  the  number  of  observations  and  may 
underestimate the effects of the  uncontrolled  factors.  Further  discussion 
on the mean  and  standard  error  are  given  in  Chapter  Three. 

The standard  error  of  in  analysis  of  variance  has  its own problem  that  it 
is not  specific  to  the  mean  itself.  The  residual  mean  sum  of  squares is the 
common numerator  for  the  standard  errors  of  all the means. That residual 
mean  sum  of  squares  measures  the  average  deviation  of  all  the  means,  not 
any  specific  mean,  from  the  original  observations.  Therefore,  the  standard 
error  of  a  mean  in  the  analysis  of  variance  may  not  be  a  good  measure  of 
the  quality  of  that  mean. 

4.6 Pairwise comparisons of multiple means 

In  recognition that the standard  error  in the analysis  of  variance is not 
specific  to  the mean, pairwise  comparisons  of  individual  means  involving 
only the observations in the  comparing  groups  may be preferred, 
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especially when the quality of comparisons is quite  different firom pair to 
pair. Simultaneous pairwise comparisons of means are best made visually 
with graphs.  For  even a small number of means, the number of pairwise 
comparisons can be formidable.  By graphical presentation,  however, a 
large number of means can be condensed on a single page, and 
conspicuous features  can be quickly spotted.  Suppose two medical centers 
recruit 90 patients  and the data are summarized  in the following  table. 

Summary Table 

To evaluate the effects  of  center,  treatment,  and  their  interaction, 23 
pairwise comparisons need to be  made. These laborious comparisons are 
largely saved by the following graph 

Center 1 Center 2 Pooled 

A B C  A B C  A B C  

Treatment group Treatment p u p  Treatment group 

Figure 4.3 Pairwise  comparisons of means  and their standard  deviations 

which  delivers a clear  message  that the mean  responses are similar in both 
centers. 

The analysis of variance and simultaneous pairwise  comparisons of 
means are two different  approaches  of  data  analysis,  and it is not 
surprising,  therefore,  that the results  may  disagree. Pairwise comparisons 
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are specific  and  sometimes  preferred  to  the  analysis  of  variance.  Of 
course,  when  multiple  factors are evaluated  simultaneously,  the  number  of 
pairwise  comparisons  can  be  prohibitively  large. In that  situation, the 
analysis  of  variance,  offering  measures  that  summarize  the  data in various 
detail, may be used  for  an  overview of the data, 

It is scientifically  profitable  to  make  all  possible  comparisons  of 
observations. The concept  widely  spread  in  the  statistical  academia  that  a 
conclusion  drawn  from  multiple  comparisons is more  prone to error  than 
one  from  a  single  comparison is baseless.  This  so-called  issue  of 
multiplicity is analyzed  and  criticized  in  Chapter  'Ten.  The  only  practice 
that  should be avoided is selecting  the  results  of  favorite  comparisons  and 
generalizing  them.  In  general,  comparisons  based on subset  of  data  may 
not  have  sufficient  quantity  of  observations  to  warrant  an  adequate  control 
of  confounding.  The  results  of  the  selected  comparisons  may  be  simply 
caused  by  an  uneven  distribution  of  the  uncontrolled  factors  between  the 
comparing  groups. By averaging  over  a  large  number  of  observations,  the 
impact  of  any  single  uncontrolled  factor is proportionally  dampened. 
Therefore,  when  the  analysis  of  variance  based  on  whole  set of data  shows 
no significance  even  though  some  individual  comparisons  do,  researchers 
should  exercise  caution  before  arriving  at  any  hasty  conclusion. 

4.7 The analysis of variance for categorical data 

Table 4.6 Summary  Table of Categorical  Data  in  a  Trial 

If categorical  responses  are  coded  with 1 and 0, the  mean  for  a  specific 
category is the  percentage  of  data  coded  with 1. As long as the  mean is 
used  to  summarize  the  data,  the  analysis  of  variance  for  categorical  data 
can  be  proceeded  as if the  data  were  continuous. This practice  generally 
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produces  acceptable  results  for  categorical data. The only  difference is 
that for polychotomous  responses,  the same analysis  needs  to  be  repeated 
for all  the categories. 

Suppose in  a  multicenter tial the  response of any  particular  patient 
falls in one of three  mutually  exclusive  categories:  up for increase,  zero 
for no change and  down  for  decrease. The data  are  summarized in Table 
4.6 on the  previous  page for three  selected  centers.  Because  the  responses 
are trichotomous,  the effects of center,  treatment,  and  their  interaction 
need to be evaluated  in  each  category.  Therefore,  three similar analyses 
need to be run, and  they  may be specified with the  linear  models, 

up,  down  or  zero = center + treatment + 
center-treatment  interaction + residuals. 

The type I11 means  from  the  analysis  are  identical to those  means  in  the 
summary  table except for  center 2 where  the  mean  of  ZERO  for  placebo is 
-0.0000 from  the analysis of variance. 

Regular linear  models  are  simple,  practical  and  generally  acceptable 
for categorical  data; but they  are  not  technically  perfect. The means  from 
the analysis of variance  may  go  out of the  range  slightly  especially  when 
the  observed  frequencies  are  close to 0 or 1. An example is that  negative 
mean of -0.0000, while  the  observed  frequency is 0. This problem  can  be 
easily solved by  performing  the  analysis  on  a  scale  that  does  not  admit 
negative values;  for instance, the  logarithmic  scale: 

log  (up,  down  or  zero) = center + treatment + 
center-treatment  interaction, 

The logit scale is well  accepted  for  the  analysis  of  variance  on  categorical 
responses.  With  the  logit  scale,  the  mean  responses  are  guaranteed  to  be 
within [0, l]. Linear  models  on  the  logit  scale  are  called  logistic  models. 
Chapter Six will  discuss  the  analysis of variance  on  an  arbitrary scale, 
where  logistic models, log-linear  models  and etc. are  special cases. The 
analysis of  variance  on  categorical  data  can  largely replace the  widely 
taught  chi-square  tests for contingency tables and  the  commonly  used 
Mantel-Haenszel  test  in  epidemiological  textbooks. 
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5 
Frequently Debated  Issues in the  Analysis 
of Clinical Trial Data 

Summary 

The issues discussed in this chapter are frequently  encountered  in the 
analysis of clinical trial data. There are no  universally agreed solutions to 
these issues, and  they are often  open to debate  in  scientific  forums  or 
public hearings.  The first issue concerns the effects of center-treatment 
interaction. When the number of observations in  each center is small, the 
center-treatment interaction effects may  be  evaluated  by  comparing the 
trends of  treatment effects across centers. However,  if  the interaction 
effects and the residual  sum  of squares cannot  be  reliably estimated at the 
same time, the interaction effects should not be  claimed. The second issue 
concerns adjustment for  the effects of covariates. Comparisons  of 
treatment effects may  be  improved  by  appropriately attributing some 
variations to the effects of  covariates.  However, covariates must not 
confound  the effects of  treatment  for  a profitable adjustment. The third 
issue concerns end-point analysis versus analysis over the time course. It 
is most informative to compare  treatment effects over time, and it is 
technically advantageous when  there are abundant  missing  data. 

75 
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5.1 An overview 

This is a typical clinical trial that multiple centers are initiated 
simultaneously, patients are screened and  baseline measures are taken 
during the run-in period, eligible patients in each center are randomly 
assigned to treatment groups, and  the  randomized patients are followed 
in a series of planned visits. An example  was given in Chapter Four, 
section 4.2.1, where a table was  designed  to visualize the structure of 
such a trial. 

Medical practice can be quite different from center to center, and 
indeed, the effects of center generally cause a great deal of data 
variation. Because  of the high cost  of clinical studies, however, instead 
of reducing the number of centers, the current designs continue the trend 
of initiating many study centers simultaneously and allocating to each 
center a very limited patient recruitment quota. This practice speeds up 
patient enrollment and reduces the impact of individual centers on the 
business process and final result. The drawback is the lack of sufficient 
observations to evaluate the consistency of treatment effects across 
centers. In the analysis of  variance, center-treatment interaction 
measures the consistency of treatment across centers. The first two 
sections will focus on the evaluation of center-treatment interaction. 

Chapter Four, section 4.2.1 explains the importance to distinguish 
between the controlled and  uncontrolled factors. Controlled factors are 
those that determine the assignment of patients to treatment groups, 
while uncontrolled factors have  nothing  to do with patient assignment. 
Analysis with only the controlled factors fully utilizes the mechanism  of 
study design, such as randomization and stratification, for the control of 
confounding. Nevertheless, some uncontrolled factors, such as baseline 
measures and patient demographics, often have significant effects on the 
responses. Stratification by these factors in analysis creates 
homogeneous patient groups in which comparisons of treatment effects 
will have a better precision. Recorded uncontrolled factors are 
collectively called covariates. Section 5.4 will discuss the analysis of 
variance with covariates. 

Currently, the reporting of clinical studies is still by  and large based 
on endpoint analysis, the analysis of data collected only at the end of 
study. There  is  no doubt that endpoint analysis greatly simplifies the 
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reporting process, and often, the endpoint result is what  many  people 
care about after all. It is important to realize, however, that endpoint 
analysis has serious problems. Conceptually, no one  knows for sure 
when is the end. When knowledge a priori is extremely limited, 
endpoint is usually  defined arbitrarily. One point  may be  just as good as 
another. Technically, a clear-cut endpoint is difficult to define for a 
study because a 15% withdrawal rate is generally expected in even a 
well tolerated and  well controlled study. If we define end  point  as  the 
planned end  of the study, those patients lost in follow-up will  not 
contribute any information to the analysis. To recover the information 
from patients lost in  follow-up, a popular definition of  end point is the 
last observed responses at or before the  planned  end  of the study, the so- 
called last-observation-carried-forward (LOCF) approach. This 
approach neglects the time effect on  responses. The resulting data  for 
analysis are a mixture of both early  and late responses. Section 5.5 
proposes an alternative to  end-point  analysis. The philosophy is 
presenting response profiles over  time. 

Mean responses have  been the primary  interest  in  the analysis of 
clinical trial data. Individual responses not  fully represented by the 
means are, however,  equally  important  and  deserve careful evaluation. 
Examination of residuals is effective for identification of far-from- 
average individuals. Section 5.6 is devoted  to  residual analysis that has 
long been overlooked. 

5.2 No center-treatment interaction 

Evaluation  of  center-treatment  interaction  generally  involves 
comparisons  of  treatment  groups  between  centers. As a simple  example, 
for  the  data  summarized  in  the  following  table, 

where M and N denote  the  mean  and  number  of  observations  in  each 
treatment  group in each  center,  the  effects  of  center-treatment  interaction 
are measured  by  the  contrast, 
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which is the difference  of  within-center  treatment  contrasts  between 
centers. 

In multicenter  trials  where  each  center  recruits  only  few  patients,  the 
claimed effects of  center-treatment  interaction  are  often  based on the 
means of insufficient  observations. In the  previous  example,  the N’s can 
be as small as 1  or 2, and the M’s are the means  of  those  1  or 2 data 
values.  Those  means are almost as volatile as a  single  observation  against 
the  uncontrolled  factors.  Hence,  the  claimed  interaction  effects  by  and 
large  confound  with  the effects of  the  uncontrolled  factors.  In this 
circumstance, the effects of center-treatment  interaction  and the effects of 
the  uncontrolled  factors  cannot  be  truly  separated  and  reliably  estimated  at 
the same time, and  a  conservative  approach is not to claim the effects of 
interaction,  but  ascribe  them  to  the  effects  of  the  uncontrolled  factors. 

Suppose  20  centers  are  initiated  for  a  trial,  and  each is budgeted  for 8 
patients being  assigned  randomly  to 4 treatment  groups.  Although  it is 
technically  feasible  to  claim  the  effects  of  center-treatment  interaction  by 
the  analysis, 

responses = center + treatment + center-treatment  interaction + residuals, 

which is summarized in the  following  table: 

ANOVA Table 
Source DF SS MS F P 
Center 18 23.89 1.33 1.54 0.10 
Treatment 3 0.5 1 0.17 0.20  0.90 
Interaction 54 4 1.9 1 0.89 1.03 0.46 
Residual 69  59.63 0.86 
SS: sum of squares, MS: mean sum of squares, 
DF: degree of freedom, F: ratio over residual MS, P: p-value 

The claimed  effects  of  center-treatment  interaction are based  on  the  means 
of  at  most  two  observations in each  treatment  group  in  each  center,  and  the 
mean  sum of squares  measures  the  average  of 54 essential  contrasts  of 
those  means.  It  would be difficult  to  convince  people  that the means  of 
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two observations  are  robust  against  the  effects of the  uncontrolled  factors. 
The interaction  effects  might just be  a  misclaim  of  what  would  have  been 
the effects of  the  uncontrolled  factors.  It  would  be  more  reasonable to 
give  up  the  claim  and  ascribe  the  variation  to its true  source. This may be 
done  by  fitting the main  effects  model, 

responses = center + treatment + residuals, 

which is summarized in the  following  table: 

ANOVA Table 
Source DF SS MS F P 
Center 18 25.43 1.42 1.62 0.07 
Treatment 3  0.64 0.2 1 0.24  0.87 
Residual 123  107.53 0.87 
SS: sum of squares, MS: mean sum of squares, 
DF: degree of freedom, F: ratio over residual MS, P: p-value 

The  sum  of  squares  that  was  claimed  as  the  effects  of  center-treatment 
interaction is now  part of the  residual  variation,  and  the  residual  mean  sum 
of  squares is now  more  reliably  estimated  with 123 essential  contrasts. 

There are no hard-and-fast  rules  to  determine  when  the  effects  of 
interaction  should  not  be  claimed.  Strong  center-treatment  interaction 
generally  requires  fewer  observations  to  show its effects  than  interaction 
of  borderline  significance.  It is often  an  occurrence  that  the  number of 
observations in each  treatment  group in each  center is moderate,  and 
analyses  with  and  without  center-treatment  interaction  show  noticeable 
differences.  Then  it is a  matter of judgment  whether  or  not  the  effects  of 
center-treatment  interaction  really  exist  and  can be reliably  estimated. 

5.3 The effects of center-treatment interaction 
In  multicenter  trials,  significant  center-treatment  interaction  suggests 

that  the  effects  of  treatment  are  different  from  center  to  center.  Whenever 
possible,  the  effects  of  center-treatment  interaction  should  be  evaluated  to 
demonstrate  the  consistency  of  treatment  effects  across  centers.  However, 
to  speed  up  patient  enrollment  and  minimize  the  impact  of  individual 
centers  on  the  overall  results,  the  current  practice  tends  to  initiate  a  large 
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number  of  investigation  centers  simultaneously  and  allows each center to 
enroll  only  a  small  number  of  patients.  When the number  of  patients in 
each center is small,  the  means  in each treatment  group  in  each  center  can 
be as volatile as individual  data  values  against  the  uncontrolled  factors, 
and the variation  of  these  volatile  means  cannot  be  claimed  to be any but 
the effects of the uncontrolled  factors. So the  question is how  to  evaluate 
center-treatment  interaction  when the number  of  observations in each 
center is not  large. 

When  direct  comparisons  of  group  means  are  not  reliable,  an  option is 
to  compare  the  trends  of  treatment  effects  across  centers.  Although 
comparisons  of  trends  may  not  be as informative  and  sensitive as direct 
comparisons  of  group  means  for  detecting  the  effects of center-treatment 
interaction,  trends  may  be  more  reliably  estimated  by  averaging  all 
available  observations in each  center,  whereas  the  already  insufficient 
number  of  observations in each  center  have  to  be  broken  down  by 
treatment  in  order  to  get  group  means. 

Suppose 20 centers  each  recruit  three  patients  who are then  assigned to 
drugs  A, B, and  placebo.  There is only  one  patient  in  each  treatment  group 
in  each  center. The analysis  for  comparing  treatment  effects  and  the linear 
trends  of  treatment  effects  across  centers  can  be  specified as 

responses = center + treatment + center-treatment  interaction + residuals, 

where treatment is coded  with 1 for drug A, 2 for drug B, and 3 for 
placebo and viewed as a continuous variable. The coding of treatment 
groups is completely technical, and the order  has no meaning. When 
treatment is  viewed as a continuous explanatory variable, the center- 
treatment interaction in this model defines a  group  of straight lines, and 
the slopes of these lines are compared across centers. The result of this 
analysis is pictorially presented in Figure 5.1 in the following page, 
where each line represents the trend  of treatment effects in  a center. The 
treatment effects in four centers shown  in the upper  plot are significantly 
different from the majority of centers, Down trend is shown  in roughly 
50% of the centers, and  up  trend  in the other 50%. The overall picture 
does not seem to support the claim of consistent treatment effects across 
centers. 
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When treatment is coded  into a continuous explanatory variable, the 
shape of trend must be defined  in the analysis.  By  default, a continuous 
explanatory variable in a linear  model defines a straight  line. A defined 
shape may be too rigid  to fit the data.  For  instance,  when the response 
profiles are better described with a curve, fitting a straight line may not 
capture the signal. In fact, speculating a shape  for  the  response curve is 
required in the analysis of variance  with  any continuous explanatory 
variables,  and there is always a risk  for lack of fit. The pain is partially 
relieved with polynomial curves, which  allow  for more flexibility  when 
straight lines are not  adequate.  Graphical exploration of the data is also 
helpful to specifying an appropriate shape  for  the  response curve. 

~~ ~~~~~~ ~~ ~~ ~ ~ 

Figure 5.1 Linear  trend of mean  responses across centers 

5.4 The analysis of variance with covariates 
Covariates are factors or explanatory variables that are observed and 

recorded, but not  used to guide  the  assignment  of  patients to treatment 
groups. Chapter Four, section 4.2 introduces the use of covariates in the 
analysis of variance. In adjustment  for the effects of covariates, the basic 
operation is stratification if the covariates are categorical or fitting of 
curves if they are continuous. The purpose is  to improve the comparisons 
of treatment effects  by  attributing  some  of the variations to the effects of 
covariates. 
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5.4.1 Baseline measures 

Baseline is the  measurement  of  response  parameters  before the 
administration  of  treatment.  Baseline  measures  are  separated  from other 
covariates that are not  direct  measurement  of  response  parameters. 
Together with patients’  demographic  measures,  baseline  may be compared 
among  treatment  groups  to  evaluate  the  effectiveness  of  randomization. In 
crossover trials (see  Chapter  Eight),  baseline  measures  are  extremely 
important  in  the  evaluation of crossover  effects.  Another  important  use  of 
baseline is to  improve the precision  of  the  comparisons  of  treatment 
effects by  explaining  some  variations  of  responses,  and  this is the  primary 
interest in this section. 

The effects of  baseline  may  be  adjusted  for in three  different  ways. 
The first is change  from  baseline: 

change  from  baseline = response  measure  after  treatment - baseline. 

Change  from  baseline is ideal  when  responses  to  treatment are 
independent  of  baseline.  For  example,  if  all  patients  on  treatment  gain 30 
pounds  regardless  of  their  baseline  body  weights,  change from baseline  for 
these  patients  would be all 30, and  thus,  the  variation  due  to  baseline is 
totally  eliminated.  However, if overweight  patients  tend  to  gain  more 
weight  than  patients  of  normal  weight,  percent  change  from  baseline is 
more  appropriate: 

percent change from baseline = 
measure after treatment - baseline 

baseline (if f 0) 

The ideal  situation  for  percent  change  from  baseline is when  responses to 
treatment are proportional  to  baseline. 

A note  of  caution is that  both  change  from  baseline  and  percent  change 
from  baseline  may  fail  to  improve  comparisons  and  even  introduce 
additional  variations  if  the  underlying  relationship  between  response  and 
baseline does not  warrant  either  of  the  adjustments. A good  practice is to 
explore the relationship  with,  for  instance,  graphical  techniques  before 
attempting  any  adjustment. 
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The third is statistical  adjustment  and  will  be  discussed  next  in  the 
context  of analysis of variance  with  covariates. 

5.4.2 Statistical adjustment for the  effects  of covariates 

In clinical studies, baseline  measures,  medical  history,  prior  treatment 
as well as demographic  information  of  the  patients are the  commonly 
encountered  covariates.  Appropriate  adjustment  for  their  effects  may 
significantly  improve  the  comparisons of treatment effects. 

Adding  categorical  covariates  into  the  analysis  stratifies  the  patients so 
that  treatment effects are compared  within  the  strata.  Suppose  three 
treatment  groups are compared in a  six-center  trial. The analysis  without 
adjustment for the effects of gender is specified  in  the  model, 

responses = center + treatment + residuals, 

and  the results are  summarized  in  the  following  table: 

ANOVA Table 
Source DF SS MS F P 
Center 5  7.9472 1 S9 1.07 0.38 
Treatment 2 0.573 1 0.29  0.19 0.82 
Residual 134  199.14  1.49 
SS: sum of squares, MS: mean sum of squares, 
DF: degree of freedom, F: ratio over residual MS, P: p-value 

The least squares means  of  treatments  are  presented  in  the  following  table: 

Treatment C 

Now  we adjust for  the effects of  gender  by  adding sex into  the  model: 

responses = center + sex + treatment + residuals. 
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By adding  sex,  the  patients in each center  are  stratified  by  gender,  and  then 
the effects of treatment  are  compared  within each gender  group. The 
improvement  in  precision is reflected  on the reduction  of  residual  mean 
sum  of  squares  and  the  standard  errors  of the least  squares  means: 

ANOVA Table 
Source DF SS MS F P 
Center 5 10.95 2.19 2.49 0.0342 
Gender 1 82.27  82.27  93.62 0.0001 
Treatment 2 0.01 1 0.006 0.01 1 0.9940 
Residual 133 116.9 0.879 
S S :  sum  of squares, MS: mean sum of squares, 
DF:  degree  of  freedom, F: ratio over residual MS, P: p-value 

and 

I I LSM I STDERR I 
Treatment A I 2.40 I 0.16 
Treatment B I 2.39 I 0.14 

I I 1 Treatment C I 2.36 I 0.28 1 

It is not  always  profitable  to  adjust  for  the  effects  of  categorical 
covariates. As a  principle,  covariates  must  not  confound  with the effects 
of  treatment.  Suppose  treatment  group T has 10 male  and 2 female 
patients while  treatment  group P has 2 male  and 10 female  patients: 

T P  
Male 

10 2 Female 
2 10 

More male patients  contribute  to  the  effects  of T, and  more  female  patients 
contribute  to  the  effects  of P. Therefore,  the  effects  of  treatment  more  or 
less  confound  with  the  effects  of  gender.  If  we  adjust  for  the  effects  of 
gender  when  comparing  the  effects  of  treatment, we might just mistakenly 
attribute to the  effects  of  gender  some  variations  that  should  have  been 
attributed  to  the  effects  of  treatment.  Another  situation  where  adjustment 
for  the  effects  of  categorical  covariates is not  beneficial is when the 
covariates  cause  too  much  reduction  in  the  degree  of  freedom  but  not 
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enough reduction in the residual  sum of squares. This over-consumption 
of degree of freedom  may  actually  inflate  the  mean residual sum of 
squares. Although  this has to do with the analysis of variance technicality, 
the underlying problem  may  well  be  that the effects of covariates are too 
trivial comparing to  the  effects of other uncontrolled  factors. In 
circumstances like this,  one  may stop claiming for the effects  of covariates 
and return the covariates back to the pool of uncontrolled  factors. 

Adding continuous covariates into  the  analysis defines mean response 
curves, and the effects of treatment are evaluated  by  comparing response 
curves instead of static means. The following analysis adjusts  for the 
effects of baseline: 

responses = baseline + center + treatment + 
center-treatment interaction + residuals. 

The means and  their standard errors line  up  in  lines  and are presented  in 
the following graph 

Center 1 Center 2 

M a  Mean 
Baseline Baseline 

Center 3 

M a  
Baseline 

Center 4 Center 5 

Mean M a  
Baseline Baseline 

Figure 5.2 Mean  responses over baseline  measures  by  center  and  treatment 

The slope of these lines represents the effects  of  baseline,  and the variation 
along these lines is accounted  for  with  baseline,  which  would otherwise 
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have  been  part  of  the  residual  sum  of  squares  ascribed  to  the effects of the 
uncontrolled  factors. 

Statistical  adjustment  for  the  effects  of  baseline  can be misleading if 
the baseline  levels  are  uneven  between  treatment  groups, or the treatment 
tends to have  different  effects  at  different  baseline  levels. The latter is 
known as baseline-treatment  interaction. If the  baseline  level in treatment 
group is higher  than  the  level  in  placebo  group,  for  instance,  the  analysis 
adjusted  for the effects  of  baseline  may  falsely  attribute  the  variations  truly 
caused  by  treatment to the  effects  of  baseline.  Therefore,  a  check  for 
equal  distribution  of  baseline  between  comparing  groups is necessary. 
Nonetheless,  for  large,  well-designed  trials,  it is generally  safe to adjust  for 
the effects of  baseline  measures,  knowing that effective  randomization 
guarantees  equal  distribution  of  baseline  measures. 

As with all continuous  explanatory  variables in  the  analysis  of 
variance,  the  shape  of  mean  response  curves  must  be  defined in the 
analysis.  Whatever  a  shape  defined in analysis is a  speculation  of  the  data, 
and  chances are that the shape  may  not  fit  the  data  and  result  in loss of 
information. By default,  continuous  covariates  in  linear  models  define 
straight  lines.  When  straight  lines  appear  to be  too  restrictive,  polynomial 
curves are much  more  flexible.  The  next  section  will  show  how  to  specifL 
polynomial  curves  in  the  analysis  of  variance. 

5.5 Mean response profiles in a time course 

When patients  are  followed up  for  a  period  of  time,  their  response 
profiles  over  the  time  course  are  generally  much  more  informative  than 
their  responses  at  any  particular  moment.  This  section  discusses  two  basic 
techniques  to  characterize  mean  response  profiles to treatment  over  time. 

Comparison  of  mean  response  profiles  with  the  analysis  of  variance 
depends  upon  the  schedule  of  data  acquisition. If the  schedule is regular 
with  a  narrow  window,  such as every 7 f 3 days,  the  responses  may be 
analyzed  separately  at  every  time  point,  and  the  results  are  simultaneously 
presented  over  the  time  points. An example is comparing the mean 
response  profiles  of  an  efficacy  parameter fiom a  multicenter  trial. 
Because  the  visit  schedule is regular,  timely  comparisons  of  treatment 
effects are feasible.  The  mean  response  profiles  are  obtained  by  first 
repeating the same analysis  specified  in this linear  model, 
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scores = center + treatment + center-treatment interaction + residuals, 

at  every  visit  and  then  plotting  the  least  squares  means  and  their  standard 
errors for  treatment  against  the  scheduled  time: 
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Figure 5.3 Mean  response  profiles  over  time by treatment 

Although at some  points  of  time,  there  are  some  differences  among  the 
four  treatment  groups,  overall,  the  study  failed  to  demonstrate  any 
significant  therapeutic  advantage  over  placebo.  This  study  demonstrated  a 
significant  placebo  effect. A good  deal  of  improvement is observed  in  the 
placebo  group  over  time. 

If  the  schedule is irregular or missing  visits  are  abundant,  it  would be 
impossible to make  comparisons  within  a  common  time  frame. A solution 
is to  fit  mean  response  curves  in  each  treatment  group  and  then  compare 
the  curves  among  treatment  groups.  Comparing  patterns  instead  of  points 
is always  an  effective  strategy  for  handling  missing  data.  This is because  a 
pattern  may be perceived  from  only  few  observations.  For  instance,  if  the 
response  profile is adequately  represented  with  a  straight  line  over  time, in 
principle, two observations  are  sufficient  to  estimate  the  line,  no  matter 
how  many  other  observations are missing.  This is consistent  with our 
geometrical  experience  that two points  make  a  line,  and  three  points  could 
make  a  curve.  However,  the  assumption is that  there are no capricious 
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changes from point to point, and the transition  from point to point is 
smooth. This  is illustrated  in the following graph 
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The smooth link through the responses at time 4,6 and 8, shown  in the left 
graph, is based  on the assumption  that those three responses can roughly 
predict the responses between 4 and 8. If the responses obtained  later at 5 
and 7 tum out to be black sheep, as shown  in the right graph, then the 
beautill theory is brutally  destroyed  by the ugly  fact. Nevertheless, “God 
is subtle, not capricious.”  If the time  interval is reasonably  small, smooth 
link through discrete points is seldom upset by  surprises. 

Suppose in a single center trial the visit schedule is irregular  and 
missing values are abundant. The linear  model  on the identity  and 
logarithmic scales  specifies the analysis for  comparing the frequencies of 
disease progression between treatment groups over time: 

mean(freq) 
log[mean(f?eq)] 

= poly(time,2) + treatment + poly(time,2) - treatment  interaction, 

where poly(time, 2) denotes a quadratic  polynomial curve over the time 
points: 

poly (time,  2) = atime + b.time2, 

a and b are the coefficients to  be determined. In this  model, poly(time, 2) 
represents the combined  mean  polynomial curves over treatment groups; 
treatment represents the combined  mean responses in each treatment 
group over time points;  most  interesting is  the effects represented by 
poly(time, 2)-treatment  interaction,  which is the difference of  mean 
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response profiles between treatment groups. The form introduced in 
Chapter Four, section 4.2.2 is actually  better to specify this analysis 
clearly: 

Specification  for  Analysis  of  Variance 
Response  Variable: frequencies of progression 
0 Scale  identity  and  logarithm 
Controlled  Factors: treatment 
0 Interaction  Yes 
Covariates: 
Chronological  Marker: 
0 Time-specific 

1 Curve  over  the  time  quadratic  polynomial 
Presentation: 
0 ANOVA table  Yes 
0 Graphics 

0 Means  Yes 
0 Least  squares  means 

The identity  scale  means  that we compare the mean responses directly; the 
logarithmic scale means that  we  compare the logarithm of mean 
responses. The logarithmic scale is used to avoid negative means  for 
frequency data. The means  and  their  standard errors are summarized  in 
the following charts: 

Identity scale Logarithmic scale 

10 20 30 

Months a h  tmbnmt 

Figure 5.4 Mean  response  profiles over time by treatment 
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The result of the analysis is also summarized in this ANOVA  table: 

ANOVA Table 
Source DF SS MS F P 
Time 2  68.41  34.21 1.75 0.17 
Treatment 1 27.94 27.94 1.52 0.22 
Interaction 2 188.87  94.44 5.12  0.006 
Residual 564 10395  18.43 
S S :  sum of squares, MS: mean sum of squares, 
DF: degree of freedom, F: ratio over residual MS, P: p-value 

In this analysis, the most  desirable  comparisons are represented by the 
time-treatment  interaction,  which  measures  the  difference  of  mean 
response profiles between  treatment  groups.  Collapse  over  time  makes 
treatment effects not  time-specific;  collapse  over  treatment  makes  time 
effects virtually  useless  for  comparing  the  effects  of  treatment. The 
analysis  clearly  demonstrates  a  significant  therapeutic  advantage  over 
placebo  growing  over  the  time  course. 

Notice  that the degree  of  freedom  for  the  residual  sum  of  squares is 5 6 4  
while  there are only 80 patients in the  study.  What  happened is that  the 
number  of  observations,  not  the  number  of  patients,  was  used  to  compute 
the  degree  of  freedom. A criticism  to  this is that  observations  from  a 
single  patient are not  distinguished  from  observations  from  different 
patients,  and  when a large  number  of  observations  are  actually  obtained 
from very  few  patients,  the  observations  do  not  represent  the  patient 
population.  Some  statistical  authorities  insist  that  a  “repeated  measures” 
type of analysis be more  appropriate,  in  which  the  responses  from each 
patient are viewed as a  unit  and  the  number  of  patients,  not  observations, 
is used  to  measure the strength  of  evidence.  “Repeated  measures”  analysis 
will be discussed  in  Chapter  Six.  Nevertheless,  this  problem is minor  for 
most  clinical  studies  where  the  number  of  patients is much  larger  than  the 
maximal  number  of  observations  from  each  patient.  In  fact,  if  the 
patients’  responses are more  different  over  time  than  among  them, the 
above  method  may  end  up  to  be  more  conservative.  In  general,  the 
method  presented  here is simple  and  effective. 
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5.6 Far-from-average individual response  profiles 

An individual response profile is the response profile of a single patient 
over time.  Because the responses of any  individual  patient are influenced 
by innumerable factors, it is hitless, in  general, to examine  every 
individual response profile. It  is those far-from-average individual 
response profiles  that are most  informative. Surprising discoveries are 
often made after scrutiny of  far-from-average  individuals. 

Residuals are the measure  of  choice  for  identifying  far-from-average 
individuals. A residual is  the difference between  data value and the mean. 
Residuals are ready for use  once the means  have  been obtained from the 
analysis of variance. Given  residuals, the formation  of individual residual 
profiles is simply the linking of the residuals of every patient over the time 
points. The following charts depict the  residual  profiles  from the previous 
analysis of the disease progression data: 

Placebo 

10 20 30 

Months  after  treatment 

I I I I 

10 20 30 
Months  after  treatment 

Figure 5.5 Deviation of individual  response  profiles  from the means by treatment 

Without  treatment, the progression  of the disease was quite heterogeneous 
and might not be fully  characterized  with a single  average response curve. 
With treatment, however, the progression was fairly consistent and is well 
characterized by the means  from the analysis  of  variance, except for only 
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two patients. This pattern of dispersion is what  a  great drug should 
demonstrate. 



Nonparametric Analysis,  Analysis on a 
Complex Scale, Analysis of Longitudinal 
Data, and Mixed Linear  Models 

Summary 

The methods  presented  in this chapter  are  still  in  the  framework  of 
analysis of variance  because  the  mean  and  standard  error are still the  main 
measures to characterize  data.  In  essence,  nonparametric analysis is the 
analysis of  variance on transformed data, analysis  on  a  complex scale 
compares functions of the  means  instead  of  the means themselves, 
analysis of longitudinal  data is the analysis  of  variance  with  the  standard 
errors derived from  an  average  over  the  number  of patients instead  of 
observations, and finally, mixed  linear  models  afford  a means to compare 
far-from-average  individual  response profiles. Nonparametric analysis 
and analysis on a  complex scale are  discouraged  due to the  technical 
complexity and lack  of  scientific  benefit. The analysis  of  longitudinal  data 
presents an alternative  approach to evaluate  data  with  abundant  within- 
patient observations. Mixed  linear  models  are  occasionally  useful  for 
selecting far-from-average  individual  response  profiles. 
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6.1 An overview 
The  analytic  techniques  to  be  presented in this  chapter  are  still  under 

the  broad  umbrella  of  analysis  of  variance,  because  the  data  are  still 
summarized with the mean  and  standard  error,  and the residual  mean sum 
of  squares is still  the  common  numerator  for  all  the  standard  errors. 
However,  compared to the  traditional  analysis of variance  methodology 
discussed  in  Chapter  Four,  these analpcal techniques  are  much  more 
complex;  yet  it is questionable,  at  least  in my opinion,  whether  they are 
more  scientifically  advantageous  in  improving  our  understanding  of data 
from  clinical  studies.  Nevertheless, it is beneficial  for  researchers  to be 
familiar  with  these  techniques,  because  these  techniques  have  been 
associated  with  numerous  extravagant  claims in statistical  literature,  and 
requests  to  use  them are frequent  from  statistical  authorities  in  the  review 
of  study  proposals or reports. 

6.2 Nonparametric analysis 

The word,  nonparametric,  really  means no involvement  of 
mathematical  distributions. The use  of  mathematical  distribution is 
entirely  technical  and  is  discussed  in  detail  in  Chapter Ten. The requests 
for  nonparametric  analysis  often  come  from  statistical  authorities for 
hypothetical  reasons  that  are  adduced  against  the  use  of  certain 
mathematical  distributions  on  certain  types  of  data. The most common 
allegation is that the data are not normally  distributed.  For  some 
researchers,  more  often  than  not,  the  real  motivation  behind  nonparametric 
analysis is seeking  a  lucky  p-value  for  making  a  claim.  The  most 
commonly  performed  “nonparametric”  analyses are essentially the 
traditional  analysis  of  variance  on  transformed  data,  although, in theory, 
permutation  test,  instead  of  the  standard  normal  distribution  or its 
equivalence,  should  be  used  to  obtain  the  p-value  for  a  nonparametric  test. 
Examples of nonparametric  analysis  are  the  Wilcoxon,  Mann-Whitney, 
and  Kruskal-Wallis  tests on ranks.  Technically  speaking,  mathematical 
distributions  can be used  to  expedite  the  computation  in  these 
nonparametric  analyses  to  obtain  “asymptotic  p-values.”  In  this  sense, 
those  nonparametric  analyses are not  truly  nonparametric.  I  will  not 
elaborate  nonparametric  statistics  any  further.  Readers  who  are  not 
familiar  with  nonparametric  statistics  may  find  it in  many  applied 
statistical  textbooks. 
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Ranking  is  a  popular  protocol  of  data  transformation for nonparametric 
analysis.  Ranking preserves the order but ignores  the  magnitude of 
original observations.  When  the  variation of data is large,  ranking 
magnifies small values and  dampens  large  values,  which is thought to be 
advantageous by  some  who  are  interested  in  a  reduced  variation  and is 
thought to be disastrous by others who are concerned  with loss of 
information. Speaking  in  terms of p-values,  the results of analysis of 
variance  on  original  data  and  their  ranks  are  not  capriciously different; in 
terms of other measures,  however,  the  results are generally  not 
comparable. 

Proposals for  data  transformation  are  numerous. The scientific 
justification is,  however,  seldom  seen. The transformed  data  do  not 
necessarily  bear  any  information  in  the  original  observations,  and  the 
consequence of data  transformation is not  predictable  in  general.  For 
scientific research,  researchers  should  strongly  discourage  any  data 
transformation  for  any  alleged  rationale  having to do with  a  mere 
statistical technicality. 

6.3 The analysis of variance on a complex scale 
With  the  traditional analysis of variance,  the  means  are  compared 

directly. With the analysis of variance  on  a  complex scale, directly 
compared are functions  of  the  means. A scale is a  function. A familiar 
function is logit for log  odds: 

log ( mean ) , 
1 - mean 

which is commonly  requested  for  the  analysis  of  dichotomous  categorical 
data. The logit transformations  of 0.4 and 0.8, for  instance,  are -0.41 and 
1.39.  With  the  analysis of variance on the  logit  scale,  it is -0.41 and 1.39 
that are directly  compared,  as  opposed to 0.4 and 0.8 with  the  traditional 
analysis of variance. 

A computation  tool  for  the  analysis  of  variance  on  a  complex scale is 
linear  model  on  the  scale of choice;  for  example, 

g [mean(up)] = center + treatment + center-treatment interaction, 



96 Chapter 6 

where  g  denotes  the  function. A linear  model  on  an  arbitrary  scale is 
called  generalized linear model. Two special  cases  of  generalized  linear 
models are logistic  regression  models  and  log-linear or Poisson  regression 
models. The former is on  the  logit  scale,  and  the  latter is on  the 
logarithmic  scale. Of course, if  we define  the  mean  itself  as  being  on the 
identity  scale,  the  traditional  linear  models are also  special  cases of 
generalized  linear  models. 

Much as the  same  distance  may  be  measured  on  the  metric  or  non- 
metric  scale,  whatever  the  scale  of  choice is does not  have  much  impact on 
data  evaluation  in  principle. In reality,  however,  a  complex scale often 
imposes some  restrictions on mathematical  manipulations so that the 
actual results of  analysis  of  variance  on  different  scales  can be slightly 
different.  Perhaps the best way  to  study  the  effects  of  scales  on  the results 
of  analysis  of  variance is by  comparing  the  means  and  their  standard  errors 
from models  on the scales of  choice. The mean sums of  squares  from 
models  on  different  scales are, however,  not  directly  comparable. 

The means are robust  to  change  of  scales as long as the  explanatory 
variables  are  all  categorical.  The  standard  errors  are  less  robust  but 
generally  agree  from  scale to scale. The following  analyses  assess the 
effects of  center,  treatment  and  center-treatment  interaction on the  identity, 
logarithmic,  and  logit  scales: 

Mean(up) 
Log[Mean(up)] = center + treatment + center - treatment  interaction. 

Logit[Mean(up)] 

The standard  errors  of  the  means  are  converted to the  identity  scale  with 
this formula: 

See Appendix B for  notations  and  details. The following  table lists the 
means  and  their  standard  errors fi-om the  analyses: 
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0 0 0 1  

0002 

0003 

0004 

0005 

0006 

0007 

0008 

0009 

'*0010 
0 0 1 1  

.* 

Drug 
Placebo 
Drug 

Drug 
Placebo 

Placebo 
Drug 

Drug 
Placebo 

Placebo 
Drug 

Drug 
Placebo 

Drug 
Placebo 

Placebo 
Drug 
Placebo 
D m 9  
Drus 

0 . 1 1 1 1  
0 . 0 7 5 0  
0 .1000 
0 . 0 2 5 0  
0 .1250 

0 .0562 
0 .0000  

0.0200 
0 .2162 
0 .0625 
0 . 0 9 6 3  
0 .1702 
0 .0896 
0 . 1 0 5 3  
0 .2000 
0 . 1 1 1 1  
0 .1638 
0 . 1 3 1 1  

0 .1284 
-. 0000 

0 . 1 1 1 1  
0 .0150 
0 . 1 0 0 0  
0 .0250 
0 .1250 

0 .0562 
0 .0000  

0 . 0 2 0 0  
0 .2162 
0 . 0 6 2 5  
0 .0963 

0 . 0 8 9 6  
0.1702 

0 . 1 0 5 3  
0 .2000 
0.1111 
0.1638 
0 . 1 3 1 1  
0.0000 
0.1284 

0 . 1 1 1 1  
0 .0750 
0 .1000 
0 .0250 
0 .1250 

0 .0562 
0 .0000  

0.0200 
0 .2162 
0 .0625 
0 .0963 
0 .1702 
0 .OB96 
0 .1053 
0 .2000 
0 . 1 1 1 1  
0 .1638 
0 . 1 3 1 1  

0 . 1 2 8 4  
0 .0000  

Center  Treatment  Identity Log Logit 
""" _"""" """"  """ """ 

0.1119 0.0000 0.0000 
0.0303 0.0324  0 .0322 

Placebo 0 .2167   0 .2167   0 .2167   0 .0409  0 .0568   0 .0534  
0 .2000   0 .2000   0 .2000   0 .1001  0 . 1 3 3 7   0 . 1 2 7 1  0 0 1 2  Drug 

"" Standard  Errors----- 
Identity Log Logit 

0.0373 0 . 0 3 7 1  0 .0372 
0 . 0 5 0 0  0 .0409 0 .0418 
0.0354 0 .0334 0 .0337 
0 .0500 0 .0236 0 .0248 
0 . 0 6 4 6  0 .0682 0 .9678 
0.1582 0.0000 0.0000 
0.0335 0 .0237 0 .0245 
0 .0448 0 .0189 0 .0199 
0 .0520 0 .0722 0 .0680 
0 . 0 7 9 1  0 . 0 5 9 1  0 .0608 
0 .0272 0 .0252 0 .0255 
0 .0462 0 .0569 0 . 0 5 5 1  
0 . 0 3 8 7  0 . 0 3 4 6  0 . 0 3 5 0  
0 .0726 0 .0703 0 .0707 
0 . 1 4 1 5  0 .1890 0 .1797 
0 .1055 0 .1050 0 .1052 
0.0294 0 .0355 0 .0345 
0 .0405 0 .0438 0 .0434 

"""" """ """ 

Two noteworthy differences are highlighted  in  the  table.  One is that the 
mean  of drug D in  center 10 is 0.0000 on the log and  logit scales, whereas 
it is -0.0000 on the identity scale. This is because negative values are not 
admissible by the definition of logarithm. This restriction on negative 
values is desirable for analyzing  categorical  data  but presents a  problem 
for data with negative values.  The other difference is  that  the standard 
errors on the log and logit scales are all zero  when  the  means are zero,  and 
this is not happening  on the identity scale. The cause of this difference is 
the functional association of  mean  and its standard error on the log and 
logit scales so that  by  mathematical definition, when  the  mean is zero, its 
standard error is always zero. This functional  association  between  the 
means  and their standard errors is one of many  technical disadvantages 
with  complex scales. 

Note that this fhctional association  between  the  means  and  their 
standard errors in the analysis of  variance  on  a  complex scale does not 
imply that the variances of the means  are  really  some  complex functions 
of the means as advocated in some  statistical  textbooks.  The  means  and 
their variances are associated only in  the sense that the means determine 
their variances. This is because  the sufficient statistics for the variance of 
mean is the residuals, and once the  mean has been determined from the 
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data, the residuals  are  simply  the  difference  between  the  data  and  the 
mean. That functional  association  merely  means  that  the  variance is 
parameterized as a  function  of  the  mean.  Parameterization is naming,  and 
technically,  it is a  matter  of  convenience. As a  result  of  using a complex 
scale, instead  of  a  single  Greek  letter 02, a  complex  function  of  mean, 
such as o2f(p), is used to represent  the  variance,  where p denotes  mean, 
and f(p) denotes  a  mathematical  function  of  the  mean.  If  the  mean is 
given  and its variance  is,  say, 10, the  whole  matter  of  parameterization is 
to let o2f(p), not  that  simple  Greek  letter 02, to  represent  that  variance  of 
10. It is exactly  like  naming  a  girl  Nicholas  rather  than  Katherine. 
Although this naming is bit  exotic,  it  does  not  do  any  harm as long as the 
function  contains  an  independent  parameter  other  than  the  mean.  Problem 
arises when  the  function  contains  only  the  mean,  for  example f(p), and is 
used to represent  the  variance. This happens  when  the  Poisson  distribution 
is used  to  represent  the  frequencies  of  data,  and  the  problem is referred  to 
as “overdispersion or underdispersion.”  What  happens is that  once  the 
mean is determined,  the  variance is restricted  by  function f(p) to fully 
represent the variation  of  data  as  measured  with  the  residuals.  If  the 
variance  estimated  with  residuals is larger  than  that  determined  with 
function f(p), overdispersion  occurs;  if  smaller,  underdispersion  occurs. A 
solution to this problem is to  introduce  an  element, 4, independent  of  the 
mean, p, so that  function f(p,@) can be any  value  without  being  restricted 
by the value  of p. By  definition, f(p,$) and p are  functionally  related, but 
they are independent  in  representing  different  measures.  Since  Katherine 
is a  beautiful  name, we  may just use K to  replace  that  awkward f(p,+). The 
Chinese  proverb  that  bad  names  make  difficult  conversations  literally 
speaks  up  the  problem. 

Complex  scales do have  some  impact  on  the  results  of  analysis of 
variance  involving  continuous  explanatory  variables. The following charts 
show  the  mean  dose-response  curves  from  the  analysis  specified  with the 
following  modcls  on  the  scales  of  identity,  complementary  log-log,  and 
logit, 

mean(up), log [-log( 1 - mean(up))], logit [mean(up)] = 
dose + treatment: 
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Identity scale Complementary Log-Log scale Logit scale 
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Dose Dose Dose 

Figure 6.1 Mean  response  curves  defined  with  three  different  scales 

Another  example is comparing the mean response profiles !?om the data of 
disease progression  analyzed  in Chapter Five on the identity and 
logarithmic scales: 

mean(freq) 
log[mean(freq)] 

= poly(time,2) + treatment + poly(time,2) - treatment interaction, 

where poly (time,  2) denotes polynomial curves up to quadratic order. 

Figure 6.2 Mean  recurrence  over  time by treatment on two different  scales 
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The mean  response  curves  are  noticeably  different  upon  change  of  scales, 
although  they  generally  agree  around  the  average  follow-up  month  after 
treatment,  the  continuous  explanatory  variable.  Unlike  categorical 
variables  whose  effects  are  characterized  by  a  group  of  means, the effects 
of  continuous  explanatory  variables  are  characterized  by the mean 
response  curves,  the  shape  of  which  has  to  be  specified  prior  to the 
analysis. A scale defines  a  family  of  curves  and  resulting  response curves 
cannot go beyond  the  family.  For  instance,  the  identity  scale  defines 
straight  lines,  and  the  logit  scale  defines  sigmoidal  curves. If the  analysis 
uses  a scale that  defines  straight  lines,  the  resulting  mean  response  profiles 
cannot  be  curly.  In  this  sense  of  restriction,  scales do matter  in  the 
analysis of  variance  involving  continuous  explanatory  variables. 
However, as long as the scales  of  choice  are  not  too  restrictive, as they 
would  be if they  define,  for  instance,  straight  lines  for  data  scattering in 
circle, the  results  of  analyses  on  these  scales  should  not be capriciously 
different. 

In  clinical  research,  scientific  justification  for  complex  scales  hardly 
exists. The request  for  the  analysis  of  variance  on  a  complex  scale  often 
comes from  statistical  authorities  who  are,  for  hypothetical  reasons, 
against the use  of  certain  mathematical  distributions  under  certain 
circumstances.  Unless  there is a  reason  for  others,  the  identity  scale 
should  always  be  the  scale  of  choice.  When  it is inevitable  to  perform the 
requested  analyses  under  the  pressure  from  authorities,  researchers  should 
not  hesitate  to  proceed,  knowing  that, in general,  the  result of analysis  of 
variance  depends  more  on  the  choice of  summary  measures  than  on  the 
choice of scales. Most  of  the  time,  change  of  scale  results in 4 being 
compared  to 8 while  previously  it  was 1 being  compared  to 2. 

6.4 Recent proposals for the analysis of longitudinal data 
Data  sequentially  collected fi-om a  subject  over  time  are  called 

longitudinal  data  or  repeated  measures.  Data  from  most  clinical  studies 
are  longitudinal. The recent  proposals  for the analysis  of  longitudinal data 
are  based  on  the  thought  that  longitudinal  data are correlated.  In  statistical 
literature, correlation,  when  spoken  by  different  people,  could  mean 
completely  different  things.  For  longitudinal  data,  correlation  could  mean 
either that a  patient’s  response  at  a  moment is closely  related to this 
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patient’s previous responses, or that a series of responses come  from  a 
Chinese patient. The consensus is that the responses from each patient 
should be viewed as a  unit,  and it is the  number  of patients, not the number 
of observations, that should be  used to measure  the strength of evidence 
and  compute the standard errors. 

The recently proposed  methods are generally referred to as “repeated 
measures” or longitudinal data analysis, The  methods are still  in the broad 
scope of analysis of  variance,  but  the  standard errors are defined 
differently. While the standard errors in  the  traditional analysis of 
variance are based on  an average over the total  number  of observations, 
even  though  they  all  come  from  a single patient, the standard errors in  a 
repeated measures analysis are derived  from  an average over the number 
of patients, no matter how  many observations are made  from each patient. 
Thus, when  a large number  of observations are made  from each patient 
and the variations of within-patient observations are smaller than the 
variations of between-patient observations, the newly defined standard 
errors tend to be larger than their traditional  counterparts. 

Technically, the residual variations due  to  the  uncontrolled factors are 
represented with  a matrix, known as the  residual matrix, in linear models 
for repeated measures analysis, while  they are represented  with  a scalar in 
linear models  for the traditional analysis of  variance. Linear models  for 
repeated measures analyses are often  referred to as repeated measures 
models or generalized estimating equations (GEES) for scales other than 
identity. The  technical complexity for fitting repeated  measures  models 
can be formidable, but the result is not always satisfactory. This is mainly 
because the residual matrix cannot be  reliably  estimated  when missing 
data are abundant or the  number  of  within-patient observations is larger 
than the number  of patients. The  matrix  then has to take some arbitrary 
structure. To minimize the impact  of  this arbitrariness on the result of 
analysis, the current solution is to derive  the  standard errors directly from 
the residuals. In statistical literature, such directly estimated standard 
errors have  many  names  like  “empirical estimators,” “sandwich 
estimators,” or “robust estimators,” just  to name  a  few. 

Compared  to its traditional counterpart, the results from  an appropriate 
repeated measures analysis of  variance are not very different for most 
clinical studies where the number  of patients is much  greater  than the 
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maximal  number of observations  from  each  patient.  Suppose  about 900 
patients are  assigned  to four treatment  groups  and are evaluated  over 16 
visits. The following  models  specify the effects of interest. 

responses = treatment + visit + treatment-visit  interaction + residuals 
(scalar,  unstructured  matrix,  autoregressive matix). 

The model  with  a  scalar is a  traditional  linear  model,  and  the  models  with 
matices are repeated  measures  models. The unstructured  and 
autoregressive matices are two of  many  arbitrary  structures  that  a matix 
can  take. The following  table  compares  the  means  and  their  standard 
errors for  treatment A: 

Table 6.1 Comparison  of  Means  and  Standard  Errors  from  Two 
Models 

Traditional  Repeated 
Linear """ Measures  Models----- 

"" Model--- --unstruct" --autoreg--- 
Treatment  Visit  Mean  Stderr  Mean  Stderr  Mean  Stderr 

Drug A 0 1.62  0 .0620  1 .62  0 .0582  1 .61  0 .0582 
1 1.44   0 .0618  1 .44   0 .0616  1 .44   0 .0616 
2 1.35  0 .0622  1 .36  0 .0603  1 .36  0 .0603 
3 1.32  0 .0622  1 .33  0 .0607  1 .32  0 .0607 
4 1.24  0.0622  1.25  0.0602  1.25  0.0602 
5 1.30  0 .0625  1 .32  0 .0615 1 . 3 1  0.0617 
6 1.26  0 .0627  1 .28  0 .0596  1 .27  0 .0597 
7 1.28  0.0628  1.30  0.0608  1.29  0.0610 
8 1.22  0 .0630  1 .24  0 .0629  1 .23  0 .0631 
9 1.20  0 .0630  1 .22  0 .0624  1 .21  0 .0626 
10 1 . 2 1  0 .0631  1 . 2 2  0.0654 1 . 2 1  0.0658 
11 1 .16  0.0634 1 . 1 6  0.0600 1 .16  0.0604 
12  1.15 0.0634 1 .17  0.0619 1.16 0 .0626  
13  1 . 1 0  0.0636 1.12 0.0605 1.11 0.0614 
1 4  1 .07  0.0640 1.09 0.0608 1.08 0.0617 
15 1.07 0.0648 1 .08  0.0626 1.07 0.0635 
1 6  0 . 9 6  0.0754 0 .98  0.0663 0.97 0.0674 

"""_" "_" "" """ "" """ "" """ 

"""""""""""""""""""""~"""""""--" 
unstruct:  Unstructured 
autoreg:  The  first-order  autoregressive  structure 

While  the  means are almost  identical,  their  standard  errors  agree up  to the 
second  decimal  point.  In  this  analysis,  the  means  are  actually  computed in 
each treatment  group  at  each  visit,  and  they  are  linked  over  visits  to form 
the  mean  response  profiles.  This is feasible  because  there are sufficient 
observations  at  each  visit.  With  the  same  data,  the  mean  response  profiles 
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are specified as polynomial  curves  and  compared with the following 
models: 

responses = treatment + poly(days, 2) + treatment-poly(days, 2) interaction 
+ residuals  (scalar,  unstructured  matrix,  autoregressive  matrix). 

The  results are summarized  in the following  graph with comparison to  the 
mean response profiles  directly  computed from the data without using a 
linear model: 

Tnditiond (Scllu) Simpk Summpry 

Figure 6.3 Comparison of means  and  standard  errors from linear models  with 
different  parameters for residual  variations 

Once again, the analyses with  linear  models  give rise to similar results, 
and  they  seem to agree to the  result of simple summary  without a linear 
model. 

The repeated measures type of analysis is perhaps  most  useful  when 
the number of observations from each patient is much  larger than the total 
number of patients,  and there is a deep  concern  with the representability of 
data to  the patient  population. The following analysis presents the profiles 
of success rate  from a trial  in  which 18 patients  were  assigned to three 
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treatment groups, each patient was sequentially tested 180 times, and the 
responses are dichotomous, with 1 for success and 0 otherwise. The 
effects of interest are specified with the models: 

responses = poly(seq. No., 2) + treatment + poly(seq. No., 2)-treatment 
interaction + residuals  (scalar,  autoregressive matrix), 

where the model with a scalar represents the traditional analysis of 
variance, and the model with an autoregressive matrix represents a 
repeated measures analysis of variance. The means and  their standard 
errors are presented in  the following two charts: 

Traditional  linear  model Repeated measurn linear  model 

Figure 6.4 Comparison of means  and  standard  errors  from  linear  models  using 
scalar and matrix for residual  variations 

The means from both analyses are almost identical.  However, the 
standard errors  from the repeated measures model are 2 or 3 times as large 
as those fiom  the traditional  linear  model. The large standard errors 
reflect the fact  that the means are based  on 18 patients  rather  than 18 x 180 
= 3240 observations. 
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6.5 Analysis of longitudinal data with mixed linear models 
Mixed linear models  contain both fixed  and  random effects terms. The 

model  was  proposed by Charles R. Hendersen,  who  was primarily 
interested in the deviations from  the  means  than  the  means  themselves. 
His purpose was selecting extraordinary, not average, animals for 
breeding. The deviations were  what  he  meant  by  random,  and the means 
were  what he meant  by fixed. All the linear  models discussed thus far are 
for the computation of means, and  they  are  collectively called fixed effects 
models. The  name  of  random effects has indeed  generated  a  good deal of 
confusion. Some statistical authors even link the name to the process of 
randomization or sampling, saying that mixed  models especially suit 
longitudinal data because the patients are randomly samples and, 
therefore, should have  some  random effects. A  better  name that appeals to 
me is individual effects, reflecting that  random effects truly represent the 
deviations of individual patients from their averages. 

When the primary  interest  is  means,  mixed  linear  models are not any 
better than fixed effects linear models. For  longitudinal data, mixed linear 
models afford at  most  a  means to define a  matrix  to represent the residual 
variations due to the  uncontrolled  factors.  But  when the residual matrix is 
estimated directly from residuals, whatever structure of choice is 
inconsequential. As  an example, the sequential testing  data  on 18 patients 
are analyzed with  the  mixed linear model, 

Fixed effects: responses = poly(seq. No., 2) + treatment 
+ poly(seq. No., 2)-treatment interaction 

Random effects: + intercept + poly(seq. No., 2) for every patient 
Residuals: + residuals 

The result is graphically  compared  to  that  from  a  traditional linear model 
with identical fixed effects, 

responses = poly(seq. No., 2) + treatment+poly(seq. No., 2)-treatment 
interaction + residuals: 
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Traditional  linear  model Mixed linear  model 

0 50 100 150 0 50 I 0 0  I 5 0  

Scquamnumbu Sequence numbu 

Figure 6.5 Comparison of means  and  standard errors from fixed effects and mixed 
effects  linear  models 

Compared to  its fixed effects  model  counterpart, the mixed effects model 
first computes the mean quadratic polynomial response curves and then 
the deviations between the mean curves and the quadratic polynomial 
response curves for each patient: 

intercept f poly(seq. No., 2). 

It  is  not surprising that the means  from  these  two models are almost 
identical. Indeed, if  any difference is noticed  after  addition of random 
terms in a model, one should be very  skeptical  of  the  validity of 
computation. Comparing Figures 6.4 and 6.5, the standard  errors  from the 
mixed  linear  model are not different  from those fiom the previous analysis 
with the repeated measures model. As a matter of  fact, as long as  the 
residual variation matrix is directly estimated from the residuals, the 
standard errors hardly change at all, no matter what  random  effects are 
specified in a mixed  linear  model. 

Mixed  linear  models are useful only when the primary  interest is far- 
from-average individual response profiles.  Compared to passive linking 
of residuals, a mixed  linear  model affords a means to specify a pattern for 
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each patient. The following graph presents the residuals from the 
traditional  linear  model  and the random or individual  effects  from the 
mixed  linear  model  for the sequential  testing  data,  where the random or 
individual effects are specified as, 

intercept + poly(seq. No., 2), for every patient, 

with poly (seq. No., 2) denoting quadratic  polynomial  curves: 

Residuals from  traditional  linear  model  Individual  residual profiles from Mixed  model 

9 . 5  

Figure 6.6 Comparison of individual  residual  profiles  from  fixed  effects and mixed 
effects  models 

Because the responses are dichotomous (0 or l), the  residuals clump 
together, and the resulting  graph  provides little information  for  figuring 
out far-from-average  individual  response  profiles.  With  mixed  linear 
model, each patient's response  profile is represented with a polynomial 
curve, and  this  curve is compared  to the mean  response curves. There are 
six  curves in each treatment group,  each curve representing the deviation 
of that individual's response profile  from the mean  response  profile. 
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Survival Analysis 

Summary 

The constant flow  of time makes  survival observations from patients 
lost in follow-up meaningful.  Comparisons  of  survival time values 
themselves are not quite meaningful  when  a  considerable  number of 
observations are from  the patients lost in  follow-up. An appropriate 
measure  for  summarizing  survival observations is time-specific death or 
survival rate, which is the ratio of  deaths or lives at  a specific time point 
over the number  of patients at risk of death. Comparisons  of  survival 
information may be made with life tables or Kaplan-Meier plots. The 
former is cross tabulation of  time-specific  death  rates,  and the latter is 
cross display of cumulative survival rates. The  analysis of variance on 
survival data may  be carried out with linear models as described in 
Chapter Four or Cox’s regression  models. 

7.1 Survival data and  summary  measures 
The constant flow  of  time  makes  survival observations from patients 

lost in  follow-up meaningful. For  instance, that a  patient died at age of  45 
and that a patient was last found alive at  age  of 45 are equally informative. 
The first patient survived for 45 years, and  the  second patient survived for 

109 
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at  least 45 years.  For  non-survival  data,  however,  loss  of  follow-up  means 
complete loss of information.  For  instance,  that  a  patient’s  blood  sugar 
was  not known at  age  of 45 due  to loss of  follow-up  means  a  complete 
lack  of  information  on  that  patient’s  blood  sugar at that  time.  Because 
time  values  themselves are not  indicative  of  death  and loss of  follow-up, 
the recording of survival  information  requires  at  least two numbers, one 
for  the  time  and the other  for  the  event that associates  with the time.  If  we 
choose 1 to indicate  death  and 0 to  indicate loss of  follow-up,  survival 
information  can  be  recorded as (time,  death = 1 or 0). In  the  statistical 
literature, loss of  follow-up is also known as  censoring,  and the associated 
time  values  are  often  referred  to as censored  survival  data. 

Because  time  values  carry  only  partial  survival  information,  regular 
measures  focusing  on  time  values,  such  as  the  mean  and  standard 
deviation,  are  not  quite  meaningful  unless  none  of  the  time  values  is 
associated  with loss of  follow-up,  or in other  words,  none is censored. An 
appropriate  measure  for  survival  data is time-specific  death  rate  or 
survival  rate: 

time - specific - number of patients  died at a time - 
death rate  number of observable patients  right before the time ’ 

time - specific 
survival rate  number of observable patients  right before the  time 

- - number of patients alive at a time 

These two rates are complementary:  death  rate = 1 - survival  rate. The 
number  of  deaths or lives  contributes  to  the  numerator.  The  denominator 
is the  number  of  patients  at risk of  death.  Those  who  died  or  are  not 
observable  due  to loss of  follow-up  before  the  time are not  counted  toward 
the denominator.  Therefore,  the  number  of  losses  in  follow-up  contributes 
to the value  of  denominator. 

When the  causes of death  are known, their  deadly  force  may be 
measured  with  cause  and  time-specific  death  or  survival  rate: 

cause and  time - - - number of patients died of the cause at a time 
specific death rate  number of observable patients  right before the  time ’ 
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cause and time - number of patients not died of the cause at a time 
specific survival rate number of observable patients right before the time 

- - 

Here  "survival"  means no death  from  the  cause,  not  the  literal  sense  of 
being alive. 

7.2 Cross tabulation of death  and  projected survival rates 

Tables  showing  death  rates  and  their  derivatives are known as life 
tables. The essential  steps  in  construction of a  life  table are grouping  time 
values  into  intervals  and  then  counting  the  number  of  deaths  and  the 
number of patients  at  risk: 

Table 7.1 Life Table 

In  this  table,  patients at risk is the  number  of  observable  patients  at the 
beginning of an  interval,  and  projected  survival  rate is the  cumulative 
product  of  survival  rates  from  the  first  interval;  for  instance, 

projected survivival rate 3 5 
beyond 20 14 10 

=(1-")X(1-")X100% =39.29%. 

The projected  survival  rate  is  an  estimate  of  the  percentage  of  patients  who 
may  survive  longer  than  a  specific  time  interval.  The  logical  basis  of this 
multiplication  of  time-specific  survival  rates is that  if  a  patient is found 
alive  at  a  time  point,  this  patient  must  have  survived  all  the  way  through  to 
the point.  The  projected  survival  rate is a  projection  of  time-specific 
survival  information  rather  than  a  simple  ratio  of  lives  and  patients  at  risk, 
such as 42% = 6/14 at  the  end  of 20. The difference is that the  projected 
survival  rate is adjusted  for  the  number  of  losses  in  follow-up,  while  the 
simple  ratio is not. 
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The death rate is time-specific,  while  the  projected  survival  rate is both 
time-specific  and  cumulative;  both  are  the  commonly  used  measures for 
summarizing  survival  data.  However,  these two measures  must be 
interpreted  together  with  other two important  pieces  of  information:  the 
number of patients  at  risk  and  the  number  of  patients  lost in follow-up. 
The number  of  patients  at  risk  determines  the  reliability  and  robustness  of 
the  estimated  death  rate  against the background  of  the  uncontrolled 
factors.  Any rate based  on  a  small  number  of  patients  at  risk is not  reliable 
because  the  contribution  from  each  patient is too  large to warrant  an 
adequate  control  of  confounding  from  the  uncontrolled  factors.  When two 
patients are at  risk,  for  instance,  the  death rate can  be  different  by 50% 
upon  the  fate  of  a  single  patient. Loss of  follow-up,  on  the  other  hand, 
potentially  confounds  with  death  rates,  especially  when  the  underlying 
causes  of  death  have  direct  impact  on  the  number  of  patients lost in 
follow-up. Thus, a  complete  summarization  of  survival  information 
requires four  measures:  death  rate,  projected  survival rate, loss  of  follow- 
up,  and patients at risk. 

Cross  tabulation  of  those  four  measures  expedites  the  comparison  of 
survival  information  across  groups.  The  following  table is an  example 
where the time-specific  death  rates,  projected  survival  rates, loss of 
follow-up,  and  patients at risk  are  denoted  by  death,  survival, LoF, and  at 
risk: 

Table 7.2 Summary of Survival  Data  by  Treatment 

The  projected  survival  rates  and  patients  at  risk  are  graphically  presented: 
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L A  

Survival time 

Figure 7.1 Projected  survival  rates  and  patients at risk by treatment 

7.3 Kaplan-Meier plot of projected  survival  rates 

The result of a life table depends, more  or  less,  on  the grouping of 
survival time values.  When the number  of observations is small, grouping 
could produce artifacts. An alternative is to calculate projected survival 
rates at the moments  of death, instead of in arbitrarily  defined intervals, 
and a graphical presentation  of the resulting projected survival rates is 
known as the Kaplan-Meier plot. The  projected  survival rate at the 
moment of death, t, is the cumulative product  of  survival rates at times  of 
death before t: 

projected  survival rate (t) = 

product (1 - death rates at times  of  death before t). 

The projected survival rates at all times of  death are referred to as the 
product-limit or  Kaplan-Meier estimate of survival function. The death 
rate at any  moment is not very informative as a global assessment of 
survivorship, not only because only  one  death occurs at a time mostly, but 
also because deaths do not occur  at  the  same  time so that comparisons of 
death rates can not be made  in a common time frame.  On the other hand, 
projected survival rates are cumulative and,  therefore,  much smoother. 
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They  generally  measure  a  process  of  survivorship  within  a  period  of  time 
rather  than  sporadic events at  specific  time  points. 

The following is a  Kaplan-Meier  plot  of  projected  survival rates by 
stratum and treatment: 

Stratum 1 Stratum 2 

t 
o / l " -  ~L" I I , L",_ "" I"- 

0 200 400 600 800 1000 0 200 400 600 800 1000 

Survival  time  Survival  time 

Figure 7.2 Kaplan-Meier  plot  of  projected  survival  rates by stratum  and  treatment 

When  the  curves  become  flat,  the  survival  times  are  when  the  patients 
were last seen,  meaning  that  the  patients  survived  beyond the end  of the 
study. 

In general,  survival  curves  are  not  quite  reliable  when  they  reach  the 
end,  because  only  few  patients  remain  under  observation. The number  of 
patients  at  risk is the  single  most  important  indicator  for  the  reliability  and 
robustness  of  any  estimate.  It is questionable  whether  deviation  measures 
such as the  standard  deviation  have  any  meaning  for  a  single  survival  rate. 
For  a  single  time-specific  death  or  survival rate, a  measure  of  reliability is 
the reciprocal  of  patients  at  risk, 

1 
patients at risk ' 

contribution to time - specific death or survival rate = 
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which  measures the contribution  of  each  individual patient to the rate. 
Suppose 3 deaths occur at a time when 5 patients are at risk. The death 
rate is 3/5 = 60%. If the fate of  a patient had  changed  due to the effects of 
the uncontrolled factors, the death rate would  have  been either 4/5 = 80% 
or 2/5 = 40%. Thus, the fate  of  a patient could affect death rate by 1/5 = 
20%. Since the projected survival rate is the cumulative product  of  time- 
specific survival rates, from 

projected survival projected survival 1 
rate at time t rate at time (t - 1) 

- - x (survival rate at t f 1, patients at risk 

we  may  measure the impact  of  each  patient at a time point  on  projected 
survival rate  by 

impact on projected projected survival rate at the previous time (t - 1) 
survival rate at time t patients at risk right before time t 

- - 
9 

which is the difference that  the fate of  a single patient  could  make  on  the 
projected survival rate at time  t.  With  this  measure  of impact, the 
projected survival rates are replotted  in  the  following  graph: 

Stratum 2 

l-F 

0 200 400 600 800 IMX) 0 200 400 600 800 I O 0 0  
Survival time Surv~val time 

Figure 7.3 Kaplan-Meier  plot of projected  survival  rates with measure of impact 
from a single  patient 
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The  vertical  line  extending  from  the  survival  curves  at  a  point  indicates 
how much the curve  could  vary  upon  the  fate of a  single  patient  at  that 
point. 

7.4 The analysis of variance on survival data 

The analysis  of  variance  technique in Chapter Four may  be  directly 
used to compare  time-specific  death or survival  rates.  However,  the 
survival  data  need  to  be  specially  arranged  in  such  a way that,  at  any  time 
of death, the dead  patient or patients,  and  patients  at  risk  can  be  explicitly 
identified. The following  table  illustrates  the  data  structure  ready  for the 
analysis  of  variance  with  traditional  linear  models: 

Table 7.3 Data  Rearranged  for a Direct 
Count  of  Deaths  with  Linear  Model 

Original  Data  Structure 
Variables: I Time I Death I x 

I IO I 1  I 1  
One record 
for a  patient 

20 

6 1 40 
5 0 30 
4 1 

Death = 0 means loss of follow-up. ] Rearranged  Data  Structure 

2 deaths 
6 at  risk 

10 0 4 
IO 0 5 

At  time 20: 
I death 
4 at  risk 

_ _  risk , . ~ 1 -  

:ans alive at  the  time. 
1 -  
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In the original data set, deaths and  patients at risk are  implicitly  indicated 
by  the  time  values of death  and  loss  of  follow-up.  In  the  rearranged  data 
set, the  information of all  observable  patients at any  specific  time of death 
is explicitly  presented. The records  are  indexed  by  the  time of death. The 
time of loss in follow-up  contributes  only to patients at risk.  “x” is a 
explanatory variable  that  may  change  its  value  over time. The survival 
time values are  used as a  chronological  marker  to  figure  out  whether  or  not 
a  patient has died at a specific time  and  the  values of time-dependent 
explanatory variables. 

With explicit death  and  risk  information,  the  analysis  of  variance for 
comparing time-specific  death  or  survival rates is straightfonvard. 
Suppose  about 30 patients  from  Africa  and  Asia  are  randomly  assigned to 
drug and placebo, and  the  purpose  of  the  study  is to compare  the effects of 
drug on patients’ survival. The effects  of  interest  are  specified  in  the 
following  linear  model: 

deaths = continent + time + treatment + 
time-treatment interaction + residuals, 

where  continent represents the effects of  patients’  origin  on  death rates, 
time represents the  overall  effects  of  time  on  death  rates,  treatment 
represents the effects of  treatment  on  the  combined  death rates across 
time, and  time-treatment  interaction  represents  the  effects  of  treatment  on 
time-specific death rates. The death rates are compared  on both the 
identity and logarithmic  scales. The logarithmic  scale  prevents  negative 
means. The results are summarized  in  Figure 7.4 on  the  next  page. 

Because  only  few  patients  remained  in  the  study  after 400 days,  the 
claimed effects of  time-treatment  interaction  might  have  been  confounded 
with the effects of  the  uncontrolled factors. Without  claiming  the 
interaction  effects,  the  treatment  effects  on  the  combined  death rates are 
compared  with  the  model, 

deaths = continent + time + treatment + residuals, 

and  the results are  summarized  in  Figure 7.5. The  results of analysis may 
also be presented  with  the  survival  curves  estimated  from  the  means: 
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On logarithmic scale On  identity scale 
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Figure 7.4 Time-specific  death  rates by continent  and  treatment  from  linear  models 
on  different  scales 
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Figure 7.5 Time-specific  death  rates by continent  and  treatment  from  linear  models 
on  different  scales  under  the  assumption  of  equal  survivorship 
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projected survival rate at time t = prod (l-mean) 
at all death points up to t. 

The survival  curves are plotted  in  Figure 7.6. It appears  that  the  patients 
on drug have a  lower  survival rate than the patients  on placebo although 
the difference may not be  very  significant. 

Logarithmic scale Identity scale 

3 
6 < 

200 400 600 200 400 600 

Survival time Survival time 

Figure 7.6 Projected  survival  rates  based on the  means  from  analysis  of  variance 

7.5 Analysis of variance  with  proportional  hazard models 

Comparisons of time-specific  death  rates  can also be  made  with  a 
model  proposed  by  David R. Cox, known as  the  proportional  hazard 
model  or Cox’s regression  model.  Hazard is a  synonym of death  rate. The 
proportional  hazard  model  is  most  conveniently  specified at times of 
death; for instance, 

death rate  at time t cc exp (baseline + insulin dose at time t + treatment), 

where a p  denotes  the  exponential  operator. The main  purpose of 
operating  on  the  exponential scale is to prevent  negative  values. The 
effects of interest are  baseline,  treatment  and  insulin dose. The effects  of 
baseline  and  treatment  are  not  time-dependent,  and  thus,  they  represent  the 
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overall  effects  across  all  time  points. The effect of insulin is time- 
dependent  because the dose  of  insulin  changes  over  time. 

The basic  operation in fitting  a  proportional  hazard  model is to  count, 
at each time of death, the  numbers of deaths  and  patients  at  risk,  and to set 
the current  values  of  explanatory  variables.  Time-dependent  variables 
take  different  values at different  time.  This  operation is identical  to the 
rearrangement  of  data  structure  in  section 7.4. Both  utilize  survival time 
values as a  chronological  marker to figure out the  number of deaths,  the 
number of patients  at  risk,  and  the  values of time-dependent  explanatory 
variables.  In  Cox’s  model,  the  death  rate  at  each  time  point  is  actually 
represented  by  a ratio with unknown parameters, 

death rate  at time t: exp (effects  of interest)  for  patients who died at time t 
sum of exp (effects  of interest)  for  patients at risk before t ‘ 

Numerical  computational  techniques are used  to  find  a  set  of  parameter 
values that maximize the joint product  of  these  death rate representatives 
at  all  times of death. 

Because  of  this  peculiar  parameterization,  the  direct  estimate  from 
Cox’s  model is risk  ratio,  not  death  rate.  Risk  ratio is the ratio of  predicted 
deaths  under  different  conditions  specified  with  explanatory  variables. 
The risk ratio between  treatment  groups,  for  instance, is obtained  by 

exp (baseline + insulin + treatment = 1)  
exp (baseline + insulin + treatment = 0) 

= exp (treatment = 1)  , 

where  only  the  treatment  variable  changes  values,  and  the others are  held 
constant.  The  effects  of  time  on  death  rates  are  difficult  to  evaluate 
directly  with  Cox’s  model.  In  order  to  evaluate  the  effects  of  time  on 
death  rates  with  Cox’s  model,  the  time  variable  has  to  be  re-scaled, 
grouped,  or  associated  with  a  time-dependent  variable.  The  purpose is to 
gather  sufficient  number  of  deaths  in  each  time  interval so that  the 
parameters  can be reliably  estimated. 

On comparable  measures,  the  results from a  traditional  linear  model 
and the corresponding  Cox’s  model  are  not  capriciously  different. The 
following  analyses of survival  data  from  an  oncology tnal are an example, 
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where the effects of recurrence, number  and size of the tumor at diagnosis, 
and treatment on patients’ survival are evaluated.  The  following table 
presents the results from  the  traditional  linear model, 

deaths = recurrence + number + size + time + treatment + residuals 

and the Cox’s models, 

death at time t = exp (number + size + treatment), 
stratified by recurrence, 

and 

death at time t = exp (recurrence + number + size + treatment): 

Table 7.4 Comparison of Results  Out of Linear  and  Cox  Models 

* ratio of the  least squares means for treatment, 0.0324/0.0504. 
Cox model (1): stratified  by  recurrence. 
Cox model (2): recurrence  is  an  explanatory  variable. 

In these models, recurrence, treatment, and time are categorical variables, 
and  number  and size are continuous variables. The analyses suggest 
significant treatment effects over time,  and  the  treatment appears to reduce 
the chance of death. 
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The Design of Clinical Study Programs 

Summary 

Control of confounding at  the  stage  of  data acquisition is the main 
focus. The  idea  is setting up comparable  treatment groups so that  any 
difference among  the groups can  be  logically  and  reliably attributed to the 
effects of treatment, not the effects of other factors. Basic operations 
include setting up study groups,  randomization  in patient assignment to 
treatment, the use  of control, blinding in evaluation  of  treatment effects, 
and finally, stratification to improve the precision  of estimates. The 
determination of  sample size is another  main  topic  of  this chapter. 
Statistical power calculation is criticized  for its lack of logical basis and 
determination of sample size with  non-observable measures. The criteria 
of sensitivity, stability, and  precision  are  proposed to set the minimal 
number  of patients. 

8.1 An overview 
Like any other scrupulous commercial business, clinical studies are an 

investment for  useful results, and  a clinical study program is a  complex 
business process. A scientific and  ethical  standard is set forth in  an 
international documentation, known as the  Good  Clinical Practice (GCP) 
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guidelines,  which  will be the  topic  of  Chapter  Eleven.  The  characteristic 
of  clinical  studies is the  constant  presence  of  innumerable  known  and 
unknown factors  that  potentially  confound  with the factors  under  study. 
While  measurement  of  confounding  effects  has  been the main  focus  in 
statistical  analysis  of  available  data,  the  main  concern  in  this  chapter is 
techniques  for  the  control  of  confounding  at  the  stage  of data acquisition, 
so that the results derived  from  the  data  are  valid  and  reliable. 

Conclusion  on  treatment is valid if the  difference  between  treatment 
groups  can be logically  attributed  to  the  effects  of  treatment,  not  to  the 
effects of  other  factors;  conclusion  on  treatment is reliable if it is robust 
against the effects of  the  uncontrolled  factors  and  can  be  consistently 
demonstrated  in  a  series  of  studies. It generally  requires  an  even 
distribution  of  all  possible  confounding  factors  among  treatment  groups  to 
establish  logical  validity,  and it generally  requires  adequate  quantity  of 
observations  in  treatment  groups  to  ensure  reliability. 

Because  of  the  complexity  of  human  subjects  and  limitation  of 
resources,  most  clinical  study  programs  consist  of  a  series  of  studies, each 
of  which is designed  to  address  a  specific  question.  Each  study is 
designed  to  be  simple,  with  few  groups  under  comparison  and  limited 
stratification. In general,  a  series  of  studies are sequentially  carried  out, 
and the study  program is constantly  adjusted,  based  upon the knowledge 
available  from  the  completed  studies.  Eventually,  the entire series are 
combined  for  a  comprehensive  account  of  the  study  topic. 

8.2 Parallel and crossover setups 

The foundation  of  clinical  study is setting  up  groups  for  comparison. 
Parallel  and  crossover  setups  are  the  basic.  In  a  parallel  setup,  each  patient 
is assigned  to  only  one  treatment.  If  a  patient  receives  treatment A, for 
instance,  this  patient  will  not  receive  treatment  B. In a  crossover  setup, 
each  patient is assigned  to  multiple  treatments  in  a  sequence.  For  instance, 
a  patient  may  receive  treatment A and  then  treatment B, and  another 
patient  may  receive  treatment B first  and  then  treatment A. 

8.2.1 Parallel setups 

A parallel  setup is simply  a  number  of  clearly  defined  groups  to  which 
patients are assigned  in  a  mutually  exclusive  manner, so that the  data  can 
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be directly  compared  among  the  groups. It is straightforward to set up 
studies like  this;  for  example,  an  investigational  drug  at  10  and 20 mg  tid 
is compared to placebo  and  active  controls: 

1 Drug 10 mg tid I Drug 20 mg tid I Placebo  control I Active control I 
where  each  cell  represents  a  treatment  group.  In  this  setup, each treatment 
acts alone, and comparison  among  treatment  groups is straightforward. 

It is slightly  complicated  to  explore  the joint effects  of  multiple drugs. 
A special  grouping  of  treatments,  known  as  the  factorial  structure,  due  to 
Ronald A. Fisher, is very  effective.  The  factorial  structure  for  a  placebo- 
controlled, two-drug  study is best  presented  with  a  table: 

Drug A  Placebo 

Placebo 

where  each  cell represents one of  four  possible  combinations  of  the drug 
and placebo. If  we  rearrange this table  of  four cells into 

I Placebo I Drug  A I Drug  B 1 DrugsA+B I 
we will see that this is still a  parallel  setup,  in  which  patients  are  allocated 
to four independent  treatment  groups. The difference  from  the  previous 
unstructured  parallel setup is that  the  combinations of treatments  have  an 
intrinsic structure. This intrinsic  factorial structure allows  for the effects 
of drugs A and B being evaluated  both  separately  and  in  combination. The 
factorial setup for  evaluating  the joint effects  of  three  drugs is shown as 
follows: 

Drug C Placebo 
Drug A  Placebo  Drug  A  Placebo 

DrugB 
P A C  A + C Placebo 
B A + B  B + C  A + B + C  

This table  may  be  viewed as a  replicate  of the 2x2  setup for A and B at C 
and  placebo.  If 30 patients  are  recruited  to  each of  the eight groups, 
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Drug Drugs Drugs  Drugs  Drugs  Drug Drug 
Placebo A + B + C   B + C   A + C   A + B  C B A 

this may  still  be  a  manageable  study. 

Simple  factorial  setup  becomes  inefficient  to  evaluate  four  or  more 
drugs  simultaneously.  The  number  of  groups  shoots  up  exponentially  in 
the  order of 2n,  where  n  denotes  the  number  of  drugs. A setup with a  huge 
number of groups,  24 = 16  for 4 drugs  for  instance,  creates  insurmountable 
management  problems  that  may  result in  slow  patient  recruitment  and 
poor  data  quality.  Furthermore,  resources  may be wasted  on  many drug 
combinations  whose  effects are likely  to  be  undesirable. 

It is  more efficient to adopt a stepwise  approach to study  multiple 
drugs simultaneously.  Suppose  after  the  three-drug  trial, we  find  that  the 
B-C combination is the  best,  and  we  would  like  to  add  drug D. Instead  of 
setting up  a  4-drug  factorial,  16-group  trial,  it  would  be  cost-effective  to 
setup  up  a  4-group  trial, 

1 Placebo 1 DrugD I DrugB+C I DrugsB+C+D I 
which may be viewed as another  2x2  factorial  setup, 

Drugs B + C 

Placebo Drum B + C Placebo 
Drug D Drugs B + C + D Drug D 
Placebo 

This setup  allows us to  evaluate the effects  of  drug D alone  and  together 
with the current  best  combination.  It is possible,  of  course,  that A-D is in 
fact  the  best  combination,  which  clearly  has  been  missed  by this path  of 
search. To search in a  broader  scope,  one  may  add  another two groups so 
that the setup becomes 

IPlacebo I D I B + C  I A + D  I B + D  I D + B + C  1 
Another  option is to  run  a  separate  trial  with  the  following  setup, 

LPlacebo I A + D  I B + D  I 
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and the  results  from the two studies are  pooled  together to find out the best 
combination. 

In setting up a series of  trials,  it  is  extremely  important to have  a 
control  group  in  each  trial in recognition  that  the  same  drug  may  show 
completely different  effects  from  trial to trial,  due  to  the  uncontrolled 
factors. The comparison  of  placebo  groups across trials is an objective 
evaluation of the  effects  of  trials.  If  the  placebo  groups  are  similar,  other 
groups may  be  directly  comparable  across  trials.  If  the  opposite is true, 
directly comparable  are  only  the  within-trial  contrasts  with  placebo,  such 
as A - placebo in one  trial  and B - placebo  in  the  other.  Without  adequate 
control groups,  it is difficult to combine  results  from  a series of  trials. 
Furthermore,  if  the  purpose is for  comparison,  the  placebo  group is as 
important as the  groups  receiving  active  treatments,  for  comparisons to 
placebo cannot  be  made  precisely  until  precise  information  is  available in 
both treatment  and  placebo  groups. One must  think  about  the  purpose 
very carefully when  planning  uneven  allocation  of  patients to placebo  and 
active treatments. 

8.2.2 Crossover setups 

A crossover setup is a  number of treatment  sequences,  with  each 
patient assigned in  a  mutually  exclusive  manner to one of those sequences. 
Once assigned to a  sequence,  the  patient  receives  multiple  treatments  in 
the  designated  order  of  that  sequence.  Take  a 2 x 2 crossover setup as  an 
example. Patients are  assigned  to  treatment  sequence A 3 B or B 3 A. 
Depending on the  sequence,  a  patient  receives  treatment A or B for a 
period of time and,  after  a  washout  period,  the  alternate  treatment  for 
another period  of  time. The following  table  represents  the setup: 

Period 1 Period 2 Washout 
Sequence A a B  

Treatment A no  treatment Treatment B Sequence B a A  
Treatment B no  treatment  Treatment A 

Notice that  it is the  sequences  of  treatment,  not  any  particular  treatment, 
that  the  patients  are  assigned to. This is important at the  time of 
randomization. 

The real  motivation  for  crossover  setup is reducing  cost  by  generating 
large quantity  of  data  from  very  few  patients. The claim that  crossover 



128 Chapter 8 

trials  improve  precision  by  making  within-patient  comparisons is 
questionable in clinical  research  practice. The difference  from  time to 
time  for  a  single  patient  can  be just as much as the  difference  from  patient 
to patient  can  be. 

The ideal  condition  for  crossover  setup is when  the  patients  are 
identical  before  receiving  any  treatment  in  any  period. If this condition is 
reasonably  true,  there is no need  to  balance  treatments  in  each  period,  and 
the  use  of  multiple  sequences is only  for  the  purpose  of  blinding.  For 
instance,  instead  of  using  four  sequences  to  compare  the effects of  drugs 
A, B, C and D, 

Seq. 3 D 
A t 

only  two  of  the  four  sequences  may  be  selected so that  neither  patients  nor 
evaluators are able to  figure  out  the  assignment  of  treatment  easily.  In 
other  words,  the  purpose  of  using  multiple  sequences is blinding.  Perhaps 
the  best  way  to  verify  that  ideal  condition is by  comparing  a  broad 
spectrum  of  baseline  information  collected  at  the  beginning  of  every 
period. The following  table  illustrates  a 2 x 4 crossover  trial with baseline 
measurements: 

Period 1 Period 4 Period 3 Period 2 
Seq. 1 

Baseline I A Baseline I D Baseline I C Baseline I B Sea. 2 
Baseline I D Baseline I C Baseline I B Baseline I A 

Equivalence  of  baseline  measures  is  reasonable  evidence  to  believe  the 
comparability  of  treatment  groups  between  different  periods. 

Confounding is inherited in crossover  setups. Of sequence,  period,  and 
treatment,  the  effects  of  any  one  confound  with  the  interaction effects of 
the  remaining two. Consider  the 2 x 2 crossover  setup  illustrated  in the 
following  table: 
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Let X denote  the  values  at  the  combinations of  sequence  and  period. 
measure  of  treatment  effects is 

A 

Treatment Penod-sequence interaction 
A - B  = ( X I + X ~ ) - ( X ~ + X ~ )  = (X, - X,) - (X2 - X,) 

which is also  the  difference  of  period  effects  between  sequences,  a 
measure  of  the  effects  of  period-sequence  interaction.  Therefore,  it is 
equally  valid  to  interpret A - B as either  the  effects  of  treatment  or  the 
effects of  period-sequence  interaction.  Similarly,  the  sequence  effects 
confound  with  the  effects of period-treatment  interaction,  and the period 
effects confound  with  the  effects  of  sequence-treatment  interaction,  both 
of  which  can  be  simply  demonstrated  by  rearranging  the  table. In the 
following  table,  for  instance, 

Period 1 Period 2 
Treatment A 

X, Sequence 1 X, Sequence 2 Treatment B 
X3 Sequence 2 X, Sequence 1 

it is easy  to  demonstrate  that 

Sequence period-treatment  interaction 
+ x41 - + = (X, - X,) - (X, - X,) 

If the  patients  assigned  to  treatment  sequences  are  identical,  which 
logcally rules out  any  sequence  effects,  the  period-treatment  interaction 
effects may  also  be  interpreted as carry-over  effects,  meaning  that  the 
treatment  effects in  one  period still exist in  the  subsequent  periods. 
Although  zero  drug  concentration  at  the  end  of  washout  period is a  strong 
evidence  for  small  carry-over  effects,  it  cannot be  used as sole  evidence  to 
argue  for  small  period-treatment  interaction  effects. 

Therefore,  crossover  setups are useful  only  when  convincing  evidence 
is available  from  experiences  or  literature  that  the  ideal  conditions  are 
generally  met.  When  such  evidence is not  available  or  when  substantial 
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patient withdrawals are expected  after  the  first  period,  crossover setups 
should be avoided. 

8.3 Randomization 
Randomization is a  technique to assign  patients to treatment groups 

with an equal opportunity. The purpose is to make treatment groups 
comparable by  evenly distributing the  uncontrolled factors among  groups. 

Simple randomization is generally  effective  for this purpose  when large 
number of patients are  allocated to a  small  number  of  groups.  By simple 
randomization, each  patient is assigned  an  identification  number,  and this 
number is then  randomly  matched to the  group  identification  numbers. 
When the number of patients in treatment  groups  is small, chances  are  that 
the groups may differ from  each  other  considerably.  Then  randomization 
has to be  balanced  with  respect  to  critical  factors  that  may  have substantial 
impact on the outcome. 

By  balanced  randomization,  newly  recruited  patients  are  classified  by 
critical factors, and  assignment is based  on  the  distribution  of existing 
patients in  the trial. Suppose at a  point of patient  recruitment, 80% of the 
patients on active treatment have history  of  chronic  ischemic heart disease 
while only 30% of the  patients  on  placebo  have  the  history. To balance 
the treatment and  placebo groups in this regard,  incoming patients with a 
positive history  should  be  given  a  chance  greater  than 50% to the placebo 
group, and vice versa for patients  with  a  negative  history. The actual 
percentage for balancing depends upon  how  soon  the  recruitment  quota is 
being met. Balanced  randomization  can  only be dynamically  carried out 
during the trial, and  telecommunication is essential  for  fast  access to a 
centrally controlled  computer. 

The outcome of randomization  cannot  be  precisely  predicted,  and thus, 
the effectiveness of randomization  should  always  be  scrutinized. A good 
practice is to take  baseline  measurement  before  randomization and, after 
completion of patient  enrollment, not necessarily  completion  of study, 
carehlly compare the  baseline  measures  among  treatment  groups. 
Nowadays, most randomization  plans  are  generated  with computer 
programs, taking into  account  study logistics such as drug supply, 
packaging, shipping,  storage  and  dispense. The quality of computer 
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programs varies, so it is prudent to validate  the  program  before  patient 
enrollment. 

8.4 Stratification 

Stratification is grouping  of  patients  by  certain characteristics before 
randomization. The purpose is to make  comparisons  on  similar  patients. 
Stratification is a  great  technique to control  the  effects of critical  factors  on 
patients’ responses so that  the  comparisons of primary  interest can be 
made more precisely. However,  it is also  a  restriction to randomization 
that  may  prolong  the  time of patient  recruitment,  increase  study  cost,  and 
even jeopardize the  study for an  increased  chance  of  unbalanced  patient 
distribution  within  strata. The general  principle  is to use  large  strata 
without too much slowing  down  patient  recruitment. The following  table 
illustrates a  parallel setup stratified  by  investigator  center  and  the  history 
of steroid  use: 

Yes 
No 2 2 2  

In  each center, twelve  patients  need to be identified,  and  they are divided 
into two groups of six by  the  history  of  steroid  use. The six  patients  in 
each  group are then  randomly  assigned to treatments A, B and C, with  two 
patients under each treatment. 

Stratification slows down  patient  recruitment. A block of patients who 
meet  the  stratification  criteria  have  to  be  identified  before  they  can  be 
randomized, and  the  block  size  has  to be large  enough to keep the 
evaluators blind of treatment  assignment.  Suppose  the  primary  interest is 
comparing  the  effects of drug D and  placebo,  and  the  patients  are  stratified 
by the history  of  methotrexate  use. The minimal  block size is two 
patients;  i.e.,  two  patients  on or not  on  methotrexate  must  consent to 
participate in  the  trial  before  randomization.  However,  because  it is too 
easy to  find out who is on drug D or  placebo  by  randomizing just two 
patients,  we  may  have  to  identify  four  patients  and  randomize  them to 
drug D and  placebo. 
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The problem  that is potentially  serious is that  stratification may 
introduce  confounding  if the strata are small.  The  following  table 
illustrates  the  problem: 

Drug A Drug B 
Center 1 

2 patients 0 (withdrawn) Center 2 
0 (withdrawn) 2 patients 

I Drug A I Drug B I I 
I -Cent& 1 I I 0 (withdrawn) 1-2 iatients 
I Centei 2 I I 2 oatients I 0 (withdrawn) 

where four patients were  assigned to Drugs A and B in each center. 
Later, each center had two patients withdrawn  from the study, and  they 
happened to be  on the same drug. The consequence is that between the 
two pairs of available patients, A - B = Cl - C2;  in other words, drug 
and center confound the effects of each other. Such unbalance due to 
patient withdrawals is unlikely  to occur if  there are a moderate  number 
of patients in each center. However, if each center is required to recruit 
too many patients, some studies might take decades to complete. 

Investigator  center is the  most common stratification  factor in 
multicenter  trials.  The  current  practice is to  initiate  many  centers 
simultaneously,  with  limited  quota  of  patient  recruitment  to  each  center. 
The following  table  presents  a  typical  patient  distribution  from  study 
designed  for  comparing  three  treatments  with  10  patients  anticipated  in 
each treatment  group: 

In this table, x denotes  available  observations.  Each  center is required  to 
identify  three  patients  and  given  a  block  of  supply  of  placebo  and drugs A 
and B. The  advantage  with  this  setup is twofold.  First,  each  center  makes 
a  relatively  small  contribution  to  the  final  result so that  confounding  from 
centers,  if  any,  will  be  relatively  small.  Second,  within-center 
comparisons can still be made  for the majority  of  centers, so that the 
variation  due to centers is more or less  controlled.  Problem  with this setup 
is that  the effects of  center-treatment  interaction  may  not be evaluable for 
all  centers.  The  issue  of  evaluating  center-treatment  interaction is 
discussed in Chapter Five, A solution is to group  centers by similarity  in 
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medical  practice.  For  instance,  the  fifteen  centers  may be grouped  into 
five or six  clusters,  within  each  of  which  the  medical  practice is 
considered  to  be  similar.  Then  the  question is how  to  determine  similarity. 
On the  long list of  factors  that  affect  medical  practice,  the  patient 
population  and  institutions  where  the  physicians  received  his  or  her  major 
training  are  perhaps  most  determinate. 

8.5 Blinding 
Blinding is a  technique  to  keep  the  patients,  investigators  or  both  from 

knowing the assignment  of  treatment.  The  knowledge  of  treatment 
assignment  can  profoundly  impact  the  patients’  responses  as  well as the 
investigators’  assessment  of  treatment  effects.  The  purpose  of  blinding is 
to eliminate  the  potential  confounding  effects  of  that  knowledge on the 
evaluation  of  treatment  effects.  Most  highly  regarded  studies  are  double- 
blind  studies,  meaning  that  neither  the  patients  nor  investigators  know  the 
assignment  of  treatment  until  study  completion  and  data  freeze.  After  data 
freeze, no changes to the  data  are  supposed  to  be  made  without  careful 
documentation. 

There are no  fast-and-hard  rules  to  determine  the  extent  of  blinding.  It 
is largely  determined  by  the  appreciation  of  the  effects  of  open  labeling  on 
the outcome,  and  for  most of the part, it is a  judgment call. From  patients’ 
perspective,  the  knowledge of therapeutic  intervention  may  alter  the 
patients’  behavior,  the  perception  of  well  being,  and  the  seeking  of 
alternative  care.  For  patients,  the  adventure  with  an  unknown  therapeutic 
intervention  creates  a  mixture  of  anxiety  and  hope,  whichever is more 
depends  upon  the  prognosis  of  the  disease  being  treated.  From 
investigators’  perspective,  conscious  or  subconscious  discrimination  of 
patients  on  different  treatments  at  the  stage  of  treatment  administration 
and  assessment  of  responses  is  perhaps  the  most  significant  confounding 
factor in interpretation  of  treatment  effects.  For  investigators, 
experimentation  with  a  therapeutic  intervention is a  mixture of curiosity 
and  desire  for  success,  and  that  driving  force  makes  blinding an extremely 
tough job. 

Extensive  experience  has  accumulated  for  blinding in drug  trials.  In 
experienced  laboratories,  variety  of  compounds  can be formulated  into 
dispensable  drugs  of  similar  appearance,  texture  and  taste  that  ordinary 
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people  can  hardly  tell  any  difference.  In  spite  of  this,  blinding  may  still be 
difficult to  maintain  for  long  if  any  of  the  comparing  drugs  can be 
identified  by its unique  clinical  profile,  such  as  outstanding  efficacy  or 
unusual  adverse effects. Blinding is most  difficult  in  trials  involving 
procedures,  such as massage,  acupuncture,  psychological  counseling, 
group  therapy  and  etc.,  and  it is almost  impossible in trials involving 
surgery,  radiation,  imaging  and  medical  devices. 

If  blinding is difficult  or  impossible,  a  few  other  options  are  available 
to minimize  the  confounding  from  knowing  treatment.  One is to  utilize 
what is generally  believed  objective  parameters to measure  therapeutic  or 
adverse effects. Survival,  for  instance,  enjoys  wide  acceptance as an 
outcome  measure,  not  only  because  it  directly  translates  into  patient 
benefit,  but also because  there is not  a  whole  lot  of  ambiguity  when  talking 
about  death.  Men  can  live  a  thousand  lives,  but  never  have  a  different 
death.  Others,  such as microbiology  studies,  biochemistry  and  cytology 
profiles,  biopsies,  hemodynamic  measures  and  some  image  studies, 
generally  have  high  reproducibility in similar  clinical  settings  and  through 
similar  operating  procedures.  In  acute  settings,  these  parameters  are less 
subject  to the influence  from  patients’  knowledge  on  therapeutic 
intervention,  and  the  investigators  have  no  direct  control  without  giving 
concomitant  treatments.  Another  option is to  measure  long-term, as 
opposed to short-term,  outcome.  Episodic  issues  and  the  intensity of 
intervention  affect  short-term  outcome,  whereas  long-term  outcome  more 
depends upon  the  nature  of  the  disease  and  the  effectiveness of 
intervention  in  modifying the underlying  disease  process.  Blinding is 
most  effective in eliminating  confounding  due to the  knowledge  of 
treatment  assignment  for  trials  of  therapeutic  interventions  that are 
equivocal or borderline  efficacious  and  on  indications  that  are  waxing  and 
waning in manifestation.  Blinding is probably  not  necessary  for trials of 
therapeutic  interventions  that  are  highly  effective  or  on  indications  that are 
rapidly  progressing  with  ominous  prognoses. 

Nothing  can  prevent  fraud,  however,  unless  the  execution  and 
evaluation  of  trial  are  completely  dissociated  from  the  consequence  of trial 
result.  Such  dissociation is only  achievable in large-scale trials with 
adequate  financial  support.  Independent  investigators may be employed 
and  compensated  for  execution  of  study  protocols. An independent, 



The Design of Cliriical Study Programs 135 

service-oriented third  party  evaluation  team is also valuable  in monitoring 
ongoing trials. 

In  summary, blinding is important for the control of confounding due 
to the knowledge  of  treatment assignment and  the consequent potential 
discrimination of patients on different treatments, However, blinding is 
difficult to implement. The standard practice that dissociates the 
beneficiary of trial result from the execution  and  evaluation  of  trial is 
generally very costly, and it is by  and  large  an organizational behavior. 
For less funded studies where complete blinding is not feasible, the 
investigators need to perform careful interest analysis  of participating 
parties, explore the impact  of potential discrimination on  study result, and 
to seek opinions from peers and regulatory agents for consensus. 

8.6 Control 
Control is the basis against which the effects of treatment are 

evaluated. There are two basic types of  control: longitudinal control and 
parallel control. Parallel controls are categorized into placebo control and 
active control. Appropriate control is vital  for  the integrity of  a clinical 
study program. 

8.6.1 Longitudinal control 
Longitudinal control is the measurement  of responses at a time point, 

usually before the administration of treatment, and  treatment effects are 
measured  by comparisons to the control. If, for  instance, the control  is 
baseline measures  before treatment, treatment effects may  be simply 
measured  by  change  from  baseline. If, as another example, the control  is 
responses at the early stage of treatment, the comparison  of responses 
between the early  and late stages of  treatment  measures  the effects of 
treatment. With longitudinal control, treatment effects are measured  by 
within-patient comparisons,  meaning  that  the responses from the same 
patient separated over time are compared. The use  of  longitudinal control 
is profitable if the precision of  within-patient comparisons is much higher 
than that of between-patient comparisons, the  comparison  of responses 
between different patients. 

Time effects confound  the effects of  treatment as measured  from 
longitudinal control. In clinical practice, time is always a critical factor in 
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making  diagnosis  and  assessing  the  effects  of  therapy.  Time  cures. This 
is perhaps  true  for  all  self-limiting  diseases.  With  time,  the  body  utilizes 
its reserve to maintain  life,  builds  up  immunity  and  repairs  structural 
damages.  If  treatment is given  to  patients  with  a  self-limiting  disease, the 
effects of  treatment,  measured  by  the  difference  before  and after treatment, 
cannot be separated  from  the  pure  effect  of  time.  Had the treatment  not 
been  given,  the  same  difference  might  have  been  observed  over  the same 
period of time.  Disease  fluctuates  over  time. This is true  for  many 
chronic  diseases  that  undergo  remission  and  exacerbation  over  a  long 
period of time,  presumably  due  to  the  self-limiting  nature  of  acute  insults 
and  adequate  functional  reserve  of  the  body.  Sometimes,  the  severity  of 
illness  during  an  acute  insult  is  merely  a  manifestation  of  organ  reserve. 
Any  difference  demonstrated  with  longitudinal  comparisons  within  a 
relatively  short  period  of  time  may just  be a  snap  shot of the  disease  roller 
coaster.  Therefore,  the  effects  of  treatment  to  induce  remission, as 
measured  by the difference  before  and  after  treatment, are confounded 
with the disease’s  natural  tendency  to  remit  after  exacerbation. 

Daily  occurrence, like the  following,  demonstrates  the  importance  of 
time  effects.  Anxious  parents  bring  their  child  to  clinic  for  wheezing,  and 
the child is diagnosed  for  bronchiolitis  probably  secondary  to  respiratory 
syncytial  viral  infection  and  sent  home  with  a  nebulizer. The parents are 
told to bring the  child  back in two  weeks.  Ten  days  have  passed,  and  the 
child is still  wheezing.  Now  the  parents  become  very  skeptical  to  the  first 
pediatrician. They then  bring  the  child  to  another  pediatrician  in  a  highly 
regarded  institute.  The  doctor  does  exactly  the  same  thing  except  that  he 
also prescribes  a  course of erythromycin. Two days  later,  the  child stops 
wheezing  and  the  parents  choose  the  child  a  new  pediatrician.  Most  likely, 
that erythromycin  does  nothing.  The  child  stops  wheezing  because  the 
disease is self-limiting,  and  twelve  days  are  what  it  takes  to  resolve. 
While  the  second  pediatrician  might  not  offer  a  better  management  of  the 
child,  he is certain  a  master  of  the  parents’  psychology. 

Treatment  effects  as  measured  from  longitudinal  control are also 
confounded  with  placebo effect. Placebo  effect is a  significant  change 
from  baseline  observed  from  patients  on  placebo  after  being in trial  for  a 
period of time. The nature of placebo  effect is rather  complex. It may be 
due  to  behavior  modification,  such as better  compliance  with  medications 
and  cessation  of  cigarette  smoking; it may be due  to  close  surveillance  and 
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timely  treatment  that  are  not  otherwise  available  to  general  population; it 
may be due  to  the  natural  fluctuation  of  the  disease  being  studied. 
Because  patients  might  well  improve  for just being  in  the  trial  without 
active  treatment, the claimed  effects of treatment, as measured  by  any 
longitudinal, before-and-afcer-treatment comparisons,  cannot  actually be 
separated  from  that  effect  of  placebo. 

Because  treatment  effects  based  on  longitudinal  control  confound  with 
the  effects  of  time  and  placebo,  longitudinal  control is most usehl for 
studies in  which  the  effects  of  time  and  placebo  are  minimal.  Longitudinal 
control  may be used  in  studies  on  steadily  progressive  diseases,  diseases  at 
their  late  stages  when  symptoms  persist,  and  any  other  diseases  with 
predictable  course  and  prognosis.  Chronic  obstructive  pulmonary  disease 
(COPD) is an  example.  If the patients  have  persistent  hypoxia, 
hypercapnia,  and  dyspnea,  any  consistent  improvement in oxygenation 
and  ventilation as measured  by  arterial  blood  gases  and  pulmonary 
function  test  are  more  likely  attributed  to  the  effects  of  treatment,  not  to 
the effects of time  or  placebo. This is  because  COPD at its late  stage 
progressively  deteriorates  over  time,  and  to  date,  nothing  can  actually 
reverse  the  progression.  Congestive  heart  failure  of  all  causes  and  primary 
pulmonary  hypertension are other  examples  for  which  the  effects  of 
treatment  may be measured  against  longitudinal  control,  because  few 
things  can  consistently  alter  the  course  of  these  diseases. 

8.6.2 Parallel control 

Parallel  control is an  independent  group of patients who are 
comparable  to  the  group  or  groups  of  patients on treatment  of  primary 
interest. The idea is to  let  the  patients  in  both  control  and  treatment  groups 
expose  to  otherwise  the  same  condition  over  the  time  course  of  trial. The 
purpose  of  employing  parallel  control  is  to  eliminate  the  confounding 
effects of  time  and  placebo  in  the  assessment  of  treatment  effects. 

Because  parallel  control is a  different  group of patients,  the  effects  of 
treatment are evaluated  by  comparisons  between  control  and  treatment 
groups. As opposed  to  within-patient  comparisons  with  longitudinal 
control,  treatment  effects are measured  with  between-patient  comparisons. 
Comparability  between  control  and  treatment  groups is vital  for  the  logical 
validity  of  estimated  treatment  effects.  Comparability is generally 



138 Chapter 8 

achieved  with  effective  randomization  in  the  beginning  of  trial  and  proper 
blinding, if possible,  during the trial. 

The precision  of  measures  in  control  group  directly  determines  the 
precision  of  any  comparisons  with  them.  Therefore, it requires  careful 
planning to set  up  parallel  control.  If  the  purpose is comparison,  measures 
of control  group  ought  to be as precise as measures of treatment  groups. 
Researchers  should  resist  the  temptation  of  “savings”  by  reducing  the 
number  of  patients  in  control  group.  If  the  quality  of  control is poor,  the 
quality of any  comparison  with  control  goes  down  with it. In designing  a 
series of studies,  researchers  need  to  exercise  caution  when  planning  small 
control  groups  for  individual  studies  and  hoping  a  large  control  group  by 
pooling the study  series . Few  can  argue  against the fact  that the same 
treatment  may  show  different  effects in different  studies.  Thus,  the  control 
group  pooled  from  a series of  studies  may  not be the same as a  control 
group  of  the same size  in  a  single  study. 

However,  if  the  purpose is exposure,  control  groups  smaller  than 
treatment  groups may be justified. Studies  for  safety  generally  require 
wide  patient  exposure  to  capture  rare  serious  adverse  events.  For  instance, 
if  the  incidence of a  rare  event is once  every  thousand,  then  on  average,  at 
least  a  thousand of patients  are  required  for just a  single  catch.  The  size  of 
control  group  may  be  determined  by  the  minimal  incidence  of  adverse 
events to  be  compared. If the  purpose of control is to  compare  adverse 
events of  minimal 5% incidence,  for  instance,  then 200 patients  in  the 
control  group may be sufficient  for  a  reliable  comparison  of  those  adverse 
events. As long as the  number  of  patients in  the  control  group is sufficient 
for  comparing  adverse  events  of  high  incidence,  the  majority  of  patients 
should  be  assigned  to  treatment  groups. 

8.6.3 Placebo control versus active control 

Placebo  control  sets  a  clean  background.  Just  like  white  paper  for 
colors and  clear  window  for  scenic  views,  placebo  control  allows for 
estimate of  the  pure  and  absolute  effects  of  treatment.  For  a  clinical  study 
program,  placebo  control  forms  a  basis  for  combining  or  cross-evaluating 
different  studies.  Problem  with  placebo  control is that it may  be  difficult 
to  design  long-term  studies if treatment  drastically  changes  the  course  of 
disease  in  either  direction.  First,  it  would  not  take  long  for  the  evaluators 
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to figure out who is on  what,  and  thus,  it  is  going  to be difficult to 
maintain  blind  for  the  study.  Second,  once  a  drastic  difference is 
observed, it may  not  be  ethical  to  continue  placebo if treatment is 
beneficial, or to continue  treatment  even  if it is temporarily  harmful.  For 
trial  of  angiotension-converting  enzyme  (ACE)  inhibitor on diabetic 
nephropathy,  for  instance,  if  the  trial is stopped  because  of the elevation  of 
serum creatinine,  the  long  term  benefit in preserving  kidney  functions  may 
not have  a  chance to show. 

There are indications  for  which  standard  treatments  are  available,  and  it 
may  not be ethically  acceptable  to  conduct  placebo-controlled  studies. 
Then,  active  control,  control  with  active  treatment, is the  natural  choice. 
Compared  to  placebo  control,  active  control sets a  background  at  a 
relatively  higher level. Just like color  paper  for  colors  and  tinted  window 
for  scenic  views,  active  control  allows  one  to  evaluate  the  relative  effects 
of  treatment.  Active  control  can  also  form  a  basis  for  combining  or  cross- 
evaluating  studies  in  a  clinical  study  program,  provided that the same 
active  control is used  throughout  the  program.  Active  control is favored  in 
some  clinical  settings.  First,  when  standard  treatment  is  available,  it 
would be most  meaningful  to  compare  any  new  treatment  to  that  standard. 
Second,  active  control is more  acceptable  for  patients,  and  therefore,  it 
would be easier  to  get  patients’  consent  for  the  study. A drawback  with 
active control is that  some  well-known  characteristics  of  standard 
treatment  make  it  difficult  to  keep  the  investigators  blind  of  treatment 
assignment. 

The logical basis of  utilizing  control  in  evaluation  of  treatment  effects 
remains  the  same no matter  whether  the  control is active  or  placebo.  The 
use  of  one as opposed  to  the  other is entirely  determined  by  the  research 
purposes.  In  the  current  research  practice,  however,  the  use  of  active 
control is strongly  discouraged.  The  rigid  formality  of  statistical 
hypothesis  testing  in,  based on the  unrealistic  statistical  theory  of Neyman 
and  Pearson,  can  be  blamed  for  this  underplay  of  active  controls. The 
absurdity  of  that  theory is fully  exposed  in  Chapter  Ten.  The  statistical 
tests formulated  under  that  theory  could  only  claim  significance  for large 
differences  with  small  p-values.  Most  of  the  time,  comparisons  to  active 
treatment  give  rise  to  smaller  differences  than  do  comparisons  to  placebo. 
Because  of  the  unfortunate  adoption  of  p 0.05 in decision-making,  small 
differences no matter  what  and  the  resulting  large  p-values  put  researchers 
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in  a  disadvantageous  position in  making  claims,  even  though  evidence is 
otherwise  strong  for  superior  therapeutic  effects. 

Difference  itself does not  directly  translate  into  anything. It is merely  a 
formality  depending on how  the  contrast is made. As  we  will  clearly see 
in  Chapter  Ten,  the  statistical  test  of  hypothesis is nothing  but  a  crying 
game  that  these  days  researchers  have  to  play  for  publications  and  making 
claims. 

8.6.4 Pivotal control in clinical study program 

A well-designed  clinical  study  program  should  allow  for  integration  of 
its studies to evaluate  the  consistency  and  heterogeneity  of  treatment. 
Appropriate  control is vital  for  valid  integration  of  clinical  studies.  The 
idea  of  pivotal  control is using  the  same  control  to  link  all  the  studies. 

The following  table  outlines  three  studies: 

Study Treatment  Control  Patient  Population 
1 

B, C, D Placebo Idiopathic cardiomyopathy 3 
A, B, C Placebo Ischemic  cardiomyopathy 2 
A, B Placebo Ischemic  cardiomyopathy 

Studies 1 and 2 are very  much  the  same  except  that  only  study 2 has 
treatment C group.  If  the  placebo  groups are comparable  with  respect  to 
all the  measures,  the  two  studies  may  be  pooled  together,  and  treatment 
group C may be directly  compared  to the combined  treatment  groups A 
and B. If the placebo  groups  are  not  comparable,  which  suggests  some 
difference  between  studies,  the two studies  cannot  be  directly  combined 
but  compared.  What  are  comparable  is  the  within-study  contrasts with 
placebo: 

Study 
1 

Combinable  contrasts  Patient  Population 

A - Placebo, B - Placebo, C - Placebo Ischemic cardiomvonathv 2 
A - Placebo, B - Placebo Ischemic cardiomyopathy 

The placebo  control in  these two studies is a pivot  to  connect  the  two 
studies.  Because  of  the  unique  nature  of  placebo  control,  comparison 
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between  placebo  groups  affords  the  most  convincing  evidence  on  the 
combinability of studies. 

It is out of the  question to directly  combine  study 3 with studies 1 and 2 
because they are on different patients.  However,  it  would  be  interesting to 
compare the effects of treatments  in  different  patient  populations. 
Treatment groups  are  not  directly  comparable across studies.  Directly 
comparable are within-study  contrasts  with  placebo: 

Study Comparable  contrasts Patient  Population 
1 

B - Placebo, C - Placebo, D - Placebo IdioDathic  cardiomvoDathv 3 
A - Placebo, B - Placebo, C - Placebo Ischemic cardiomyopathy 2 
A - Placebo, B - Placebo Ischemic cardiomyopathy 

Within-study  comparison to placebo  adjusts  both  the  effects of patient 
population  and  the effects of  study  implementation  on  the  patients’ 
responses to treatment.  Once  again, this placebo  control sets a  common 
ground  for  integrating  the  results  of  these  three  related  but  different 
studies. 

8.7 Studies for dose-efficacy-safety relationship 

Dose-efficacy-safety  relationship  is  perhaps  the  most  clinically  relevant 
information  for  physicians to exercise  clinical judgment in  the  care of 
individual  patients.  Information  on  efficacy  and  safety at a  fixed  dose  in 
terms of averages is less useful  for  physicians  to  provide  optimal care to 
individual patients. Deviation  from  recommended doses may  render the 
physician liable to potential  adverse  consequences. A well  established 
dose-efficacy-safety  allows  physicians to calculate  the  risk  and  benefit of 
treatment  on  an  individual  basis. 

A dosing regimen  must  not  be  confused  with  dose,  the  mere  quantity of 
the  drug  that  the  patient  takes at a  time.  Clinicians  concern  more of dosing 
regimen than  dose. A dosing  regimen  may be characterized  with  three 
parameters: 

drug  concentration in serum  or  target  organs, 
variation of drug concentration  between  dosing,  e.g., peak and trough 

the time course of treatment,  e.g.,  chemotherapy  cycles. 
levels, and 
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Pharmacokinetic  data  and  drug  levels  are  necessary  to  define  these 
parameters.  Although  drug  levels are not  necessarily  clinically  useful  in 
predicting  efficacy  and  safety  on  an  individual  basis,  it is useful  in  clinical 
studies  on  groups  of  patients to define  dosing,  delineate  what  appear  to be 
different  regimens,  and  explain  patient  heterogeneity.  It is impossible  for 
a single business  entity  to  exhaustively  explore  the  efficacy  and  safety 
profiles of all possible  dosing  regimens  and  all  possible  combinations  of 
those  parameters  at  all  possible  levels.  Once  the  industry  provides  the 
initial data, both  the  industry  and  medical  society  should  carry  the  burden 
of continuous  research on dose-efficacy-safety  relationships.  The  purpose 
of this section is to  discuss  appropriate  designs  for  studying dose-effcacy- 
safety  relationships. 

8.7.1 Confounding factors in evaluation of dosing 
The biggest  confounding  factor  is  time.  If  a  drug is taken  over  a  period 

of time, the patients’  responses,  both  toward  and  untoward,  may be 
attributed  to either the effects of  dose  or  the  cumulative  effects  of  dose 
over  time. If, for  instance,  a  patient  takes  a  drug  at 10 mg  twice  a  day  over 
ten  days,  and  then  the  same  drug  at 20 mg  twice  a  day  over  another  ten 
days,  the  responses  at 20 mg  may  not be comparable to those  at 10 mg. 
The argument is that 10 mg  twice  a  day  over 20 days may be  just as 
effective,  and  hence, 20 mg,  although  well  tolerated,  does  not  necessarily 
produce  more  beneficial  effects  than  10  mg. In other  words, the 
cumulative effects of 10 mg  confound  with  the  effects  of  a  later  dose 
increment.  Therefore,  unless  there  are  substantial  evidences  that 
cumulative  effects are negligible,  studies  with  longitudinal  control  cannot 
separate the effects  of  dose  changes  over  time  from the effects  of 
cumulative  dosing. 

Another  important  confounding  factor is patient  heterogeneity. 
Patients  are all different,  and so are  their  responses  to  any  therapeutic 
intervention. This presents  a  problem  to  studies  that  adopt  a  dose  titration 
schedule  to  a  target. In these  studies,  the  patients  are  started  with  a  low 
dose,  and  then the dose is pushed  higher  and  higher till the  responses  meet 
a  pre-specified  target  criterion  of  efficacy  or  safety. The result  of  this  dose 
titration is a  spread  of patients over the spectrum  of  their  responsiveness to 
the  drug.  The  titration  tends to stop  at  low  dose  levels  for  patients  who are 
sensitive to the drug  for  whatever  reason.  These patients meet the 
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response  criterion  before  incurring  further  dose  increment. On the  other 
hand,  for  patients  who  are  not  as  sensitive,  the  titration  may go on to high 
dose  levels  till  the  patients  meet  the  criterion  or  suffer  intolerable  side 
effects.  Therefore,  patients  on  high  doses  are  not  comparable  to  patients 
on low  doses  simply  because  their  differences  are  a  mixture  of  the  effects 
of  different  drug  levels  and  the  heterogeneity  in  response  to  the  drug. 

Because of these  confounding  effects,  studies  for  dose-efficacy-safety 
relationships  should  adopt  a  parallel  design  with  the  main  focus on dosing 
regimens,  not  merely  dose,  a  static  quantity  at  a  time.  The  purpose is to 
allow for  a  clear  comparison  of  different  treatment  strategies  that  are 
implementable in clinical  practice. A parallel  design  for  dose  escalating 
study is illustrated in  the  following  table, 

v m g  once a day F20 mg twice a d a j  I -10 mg twice a day I ~~ ~~~ 

This study  allows  us  to  compare  the  three  dosing  regimens. A clear  dose- 
response  relationship is not  only  clinically  useful,  but  also  the  best 
demonstration  of  efficacy. It is not  necessary  to  always  include  a  placebo 
control  to  demonstrate  efficacy.  Placebo  means  zero  drug,  which  may  be 
viewed just  as another  level  of  dosing.  If no differences  among the three 
groups  are  observed,  a  broader  span  of  dosing  may  have  to  be  explored  to 
demonstrate  efficacy,  knowing  that  the  range  of  dosing  in  any  particular 
study  may be completely  off  the  optimal  range  where  a  dose-response 
relationship is present. 

The  most  sensitive  statistical  analytic  technique  to  present  dose- 
efficacy-safety  relationship  is  visualization  of  individual  response  profiles 
over  the  time  course.  Much  of  the  information is lost  when  data  analysts 
focus  only  on  the  mean  responses  at  few  static  time  points,  and  statistical 
tests have  absolutely  no  role.  Most  clinically  usefhl  insights  are  gained 
through  thorough  investigation  for  cause  of  heterogeneity. An effective 
analytic  strategy  for this purpose is to  group  the  patients  by  their 
responses,  and  then  characterize  the  groups  with  respect  to  both 
pharmacokinetic  measures  and  clinical  features. 
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8.7.2 Dose escalating studies 
Dose escalating  studies  are  often  phase I1 trials  to  find  a  safe  and 

effective  dosing regimen. The usual practice  is  to push the  dose, if 
safety  warrants,  for  the maximal therapeutic  effect  in  a series of studies. 
However, trial initiation is  a time-consuming and expensive  process. 
Externally,  protocols  must  circulate  around  through  regulatory  agencies 
if necessary,  outside  experts,  site investigators, and  Institutional Review 
Boards (IRBs); investigators and their staff must  be  selected,  visited  and 
trained.  Internally,  guidelines  and procedures in all aspects of the trial 
must be initiated, documented, reviewed, validated if deemed necessary, 
and  finally approved; collaborations  must  be  established and tested 
among clinical department,  data management, study logistic, clinical 
laboratories and investigator sites. There  are  circumstances, however, 
when programming  a  single dose escalating trial can save  tremendous 
time  and manpower in trial initiations. Effective telecommunication 
techniques  make  this feasible. 

The following is  a heuristic design, not to  be copied in  practice. The 
purpose is  to illustrate  how a slightly  complex  design  may be programmed 
in a flexible organization with the aid of telecommunication  techniques. 

Suppose we have known that the drug at dose 5 mg is  safe but has  no 
clinically use l l  therapeutic effects. The next step  would be  to increase 
the dose and monitor the safety. If the increased dose turns out  to be safe, 
the dose may be further  increased  till a plateau in therapeutic effects  is 
demonstrated. This idea is illustrated  in the following table: 

The initial assignment of patients  follows 1:2:2 ratios to  placebo  and 
drugs at 10  and 20 mg doses. If  no  serious  adverse  events  are  detected, 
newly recruited  patients  are assigned to  placebo and higher dose groups 
in  the  same  ratios.  There is a  placebo group at  each  step of dose 
escalation.  This  setup guarantees the comparability of the  groups  at 
each  step of dose  escalation.  The  highest dose group at  each  dose 
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increment is always repeated at the next step of dose increment. The 
purpose is to accumulate more observations for reliable estimates and  to 
increase the chance to pick  up  adverse events of  low incidence. Of 
course, if there is no interest in low dose groups, it is not necessary to 
repeat them. Dose advance may be conservative at the beginning and  a 
bit aggressive if a safety profile starts to emerge. Fixed ratios for patient 
assignment to treatment groups are preferred  because  they simplify 
management and reduce the chance for errors. However,  because  we 
often do not know in advance  exactly  when the escalation stops, it would 
be prudent to assign more patients to  placebo initially. The purpose is to 
guarantee an adequate number of patients in  the  placebo  group  when 
escalation stops unexpectedly. 

The most critical decision is when the dose  can be safely increased. 
This has to do with the number  of patients exposed  to the drug. After 
the first dose increment, as shown  in the table, 60 patients have  exposed 
to the drug. The study at that point  has the sensitivity to detect adverse 
events of minimal incidence of  1.7% (1/60). For  dose-dependent 
adverse effects, the  study  at the highest dose of  20  mg  has the sensitivity 
to detect adverse events of  minimal  incidence of 2.5% (1/40). An 
independent safety review committee is necessary to constantly monitor 
the emerge of adverse events and  to judge whether or not patient 
exposure is sufficient to comfortably  advance  the  dose. 

A dose  escalating  study  like  this  greatly  increases  the  difficulty  of 
study logistic. The drug  at  a  series  of  doses  has  to  be  formulated,  and  the 
quantity  has  to be large  for  quick  shipping  upon  requests  from  investigator 
sites. If the drug is  very  expensive,  the  cost of the  drug  may  not justify 
such  a  design. This design  requires  an  independent  safety  review 
committee  who  have  constantly  access  to  the  data  and  flag  at  the 
programmed  turning  points  for  dose  increment.  This  design  also  requires 
dynamic  randomization  that  fast  telecommunication is essential  for 
investigators  to  access  the  randomization  code  and  receive  the  correct 
shipment  of  drug  supplies.  Despite  these  managerial  complexities,  the 
study is indeed  programmable  within  a  flexible  organization.  All  activities 
are limited  to  the  matching  of  randomization  code  to  the  correct  drug 
supply.  The  investigators  see  no  difference from a  regular  parallel  study 
except  that  they  need  to  make  more  phone  calls  to  get  randomization  code 
and  shipment  of the drug that  matches  the  code. 
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8.7.3 Reflection on the traditional phases I1 and I11 paradigm 

The clinical  development  of  an  investigational  drug (IND) is divided 
into phases I1 and 111. The focus of phase I1 studies is exploring the safety 
and  efficacy  profiles,  and  particularly, identifying a  tolerable  dose  that 
may achieve the maximal  therapeutic  effects.  The  results  of  phase I1 trials 
are consolidated,  and  a  go  or  no-go  decision is made  to  cast the die for  a 
large phase I11 trial, the result  of  which, if favorable, is used  to  support  an 
new drug application @A). 

Question is whether  a  large  phase 111 trial  generates  more  clinically 
use l l  information  than  a  series  of  quality  phase I1 trials  of  high  quality. 
In my  opinion,  most of the  current  phase III trials are  merely  designed  to 
fit in the rigid  formality  for  statistical  test  of  hypothesis  and  to  obtain 
small  p-values.  Usually,  the  information  collected  in  phase I11 trials is not 
much  different  from  that  in  phase I1 trials.  The  design is, however,  geared 
for  obtaining  small  p-values. To obtain  small  p-values  with the usual 
statistical  tests,  the  difference  of  the  means  between  comparing  groups has 
to be large, and  the  standard  error  has  to  be  small.  It is not  uncommon to 
see that in  phase I11 trials,  the  largest  tolerable  dose is compared  to the 
least efficacious control so that  the  difference  can  be  large.  The  sample 
size is fairly  large  in  phase I11 trials.  When  the  standard  deviation is stable 
with certain  number  of  patients,  further  increment  of  sample  size  reduces 
the standard error. 

What  information is clinically  useful?  Clinically  useful  information 
should help calculate  the  benefits  and  risks  of  a  therapeutic  decision on 
individual  patients.  Information  on  dose-efficacy-safety  relationship  and 
characterization  of  responders  and  nonresponders  are  helpful.  What  study 
result is most  convincing? In my opinion,  result  consistently  demonstrated 
in  a  series  of  studies is much  more  convincing  than  result  flashed  in a large 
single  study.  I  recommend  drugs  that  come in  with  clinically  relevant 
information  consistently  demonstrated  in  a  series  of  studies  with  logical 
designs  and  quality  data.  I am skeptical  of  drugs that merely  associate 
with  statistically  significant  averages  in  a  study  of  whatever  a  size. 
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8.8 Studies for treatment substitution 

Study for treatment substitution is to see whether  or not a new 
therapeutic intervention can partially or completely substitute for the 
existing one, An interesting aspect of this design illustrates the concept 
of sensitivity and confounding from  patient  heterogeneity. The study is 
usually conducted when  standard treatment is available, and the new 
treatment is either an adjunct to or a potential substitute for the standard 
treatment. A typical clinical scenario is the management  of allergic and 
autoimmune disorders where cytotoxic drugs, like azathioprine, 
cyclophosphamide, methotrexate and  cyclosporine, are constantly being 
attempted to reduce or spare the use  of corticosteroids. Those studies 
are often referred to as steroid-sparing studies. Studies for treatment 
substitution provide not only evidence on the efficacy of new treatment 
but also valuable guidance on  treatment transition. 

8.8.1 Target range of disease control and study sensitivity 

Typically, patients selected for  study are already on standard 
treatment, and a target range  of disease control is specified. The patients 
are randomly assigned to a control  and the new treatment  for 
substitution, and they are followed regularly over a period of time.  At 
follow-up visits, disease control is assessed, and the underlying  standard 
treatment is adjusted to  maintain disease control  within the specified 
range. The usual practice is to  wean  the  standard treatment if disease 
control is within the specified range,  and to intensify the standard 
treatment quickly if the disease flares or exacerbates beyond the 
specified range. The end points are the magnitude, timing and 
consequences of treatment substitution. 

It is interesting that the sensitivity of  the  study,  to some extent, 
depends upon  the specified range  of disease control. If the range is 
wide, the disease is allowed  to  fluctuate  within  that range without 
triggering the adjustment of standard treatment. Therefore, as measured 
by change  of standard  treatment,  the  study  will  not  be sensitive to detect 
the effects of  new treatment if they are weak or borderline. The weak 
effects of new treatment may  be  demonstrated  by a better disease 
control. However, any change in disease control  beyond that specified 
range will trigger the adjustment  of  standard  treatment. Thus, the 
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difference in disease control cannot be greater than the limits set  by that 
specified range. 

Suppose cyclosporine is being studied for its steroid-sparing effect, 
and the criteria for steroid reduction are clearance of proteinuria and 
clear chest x-rays. Unless cyclosporine has dramatic effect to clear up 
inflammation, this study may not be able to demonstrate any steroid- 
sparing effect. Although the negative result might suggest a complete 
lack of efficacy with cyclosporine, it is well possible that the criteria are 
not sensitive enough to pick up its real beneficial effects. The benefit 
may be found  by comparing disease control. We may find that more 
patients on steroid and cyclosporine combined therapy have less protein 
in their urine and less severe pneumonitis as shown by high resolution 
chest CT than patients on steroid only. 

The  above  example  shows how insensitive criteria in assessing 
disease control allow for wide changes without triggering steroid 
adjustment. Studies for treatment substitution are most sensitive when 
the range of disease control is tight so that any  small change in disease 
activity duly translates into adjustment of the underlying treatment to be 
substituted. Problem is that if the range is too tight to allow for 
clinically acceptable disease fluctuation, the study may end up with 
clinically irrelevant result. Suppose now, for the same steroid sparing 
study on cyclosporine, the criteria for tapering steroid are improvement 
of constitutional symptoms, quantified reduction of  immune  complex 
deposition and reduced  gallium avidity in  lung scans. With these 
criteria, the effects of cyclosporine may be  shown  with respect to both 
reduction in overall steroid use  and  a better control  of the disease. 

8.8.2 Patient heterogeneity and disease fluctuation 
Because patients respond  to treatment differently, dose adjustment by 

achieving a target disease control spreads out the patients over a 
spectrum of responsiveness. Dose reduction tends to occur in patients 
who readily respond to the treatment, whereas dose increment tends to 
occur in patients who are not sensitive or responsive. Therefore, it is 
important in study for treatment substitution that the patients are divided 
into responders and nonresponders. Characterization of responders and 
nonresponders helps to gain  insight to the clinical problem. 
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Another fact that design of studies for treatment substitution needs to 
take into account is that disease fluctuates over time. Remission 
prompts a better disease control and results in dose reduction, whereas 
flare or exacerbation prompts a worsening disease control and results in 
dose increment. These adjustments cannot be attributed to the effects of 
treatment, but the natural history of the disease. This confounding effect 
of disease fluctuation precludes the use of longitudinal control in such 
studies. Parallel control is necessary to demonstrate the true therapeutic 
advantage on top of disease fluctuation. 

8.9 Determination of sample size 

Adequate  quantity  of  observations  is  essential  for  reliable  conclusion. 
The more  we  observe,  the more we  learn. There is no gold  standard  to 
judge how  many  observations  are  adequate.  Resources  generally set the 
top limit.  Only  occasionally, a lower  limit  may  be set for  reasons. 

That the  sample size of a study  can  be  determined  with  statistical 
power is entirely a utopia  built on the  unrealistic  statistical  theory  of 
Neyman  and  Pearson.  Power is defined  as  the  probability of rejecting a 
hypothesis correctly.  Although  sounds  attractive,  power is not 
implementable  with  observable  measures.  The  question is that no one 
knows  if  we  have  done  the  right  thing  without  testing  it  in hture studies. 
True power  requires the knowledge of truth to make judgment. In 
experimental sciences,  truth is not  readily  available,  but  what to be  found 
out.  Because  no  observable  information is available to compute  power, 
Neyman and  Pearson  utilized  mathematical  distributions as a surrogate  of 
truth to judge the  decision  on  rejection  or  acceptance  of a hypothesis. 
Because statistical  power is not  measurable,  the  sample size determined 
with  power  has  absolutely no touch  to reality. 

There has not  been  much  development  on  sample size estimation on a 
realistic  basis. This section  will  explore  few  ideas  and develop the 
corresponding measures  for a rough  estimation of sample  size. The 

, criteria used  are  sensitivity,  stability  of  measures,  target  standard errors, 
and information. The idea of information is due  to  Ronald  A.  Fisher. 
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8.9.1 Sampling unit 

Sampling  unit is the  accounting  unit  for  the  quantity  of  observations 
and is entirely  determined  by  the  research  purposes.  In  general,  the 
sampling  unit  for  a  study  should be the accounting  unit  of the population 
to  which  the  result  of  study is intended  to  apply.  For  case  studies  where 
the  primary  interest is specific  patients,  the  sampling  unit  should be one 
piece  of  information.  Therefore,  resource  should be spent  on  exhaustive 
search  for  information  on  those  specific  patients. For most  clinical  studies 
where the primary  interest is patient  population,  the  sampling  unit  should 
be  one  patient,  and  ideally,  that  sample  should  be  representative  of  the 
patient  population.  Therefore,  spending  of  resource  should  be  balanced 
between  adequate  number  of  patients  and  sufficient  information  from  each 
patient. 

The question  constantly  facing  all  clinical  researchers is whether to 
spend  limited  research  funding  on  exhaustive  study  of  few  patients or a 
focused  study  of  a  good  number  of  patients.  Just as a  better way to  see 
New York  City is walking  on  the  street,  not  scrutinizing  every  brick of a 
building,  a  better way to  understand  a  patient  population is to see as many 
patients as possible,  not  every  cell  of  one  patient. A common  mistake is 
generating  a  good  deal of data  from  exhaustive  examination  of  specimens 
from  few  patients  while  the  research  purpose is to  get  a  result  for  the 
patient  population. That detailed  knowledge  about  those  few  patients  may 
cost  a  great  deal,  but is of  little  use  to  draw  conclusions  on  that  patient 
population. 

8.9.2 Criteria for projecting sample size 
Sensitivity is a  criterion  for  setting  the  minimum  number  of 

observations. A measure  of  sensitivity is the  reciprocal  of  the  number  of 
observations: 

1 
number of observations 

sensitivity = x 100%. 

If  the  incidence  of  an  adverse  event is l%, for  instance,  the  sample size, on 
average,  needs  to  be  at  least 100 in order  to  expect  a  catch  of  that  event. A 
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study  of  100  patients,  hence,  has  the  minimal  sensitivity  for  detecting 
adverse  events  whose  incidences  are 1 % or  higher. 

If the  response  measure is ratio or percentage,  the  sensitivity  measure 
also  indicates  the  robustness  of  that  measure  against  the  change  of  a  single 
observation.  Suppose  50% is the  percentage  estimated  from  10 
observations,  i.e.,  5/10 = 50%.  If  the  value  of  one  observation is different 
for  any  reason,  the  result  would be either  4/10 = 40%  or  6/10 = 60%. As 
such, the percentage  could  change  by  1/10 = 10%  upon the fate  of  a  single 
patient.  Had  the  percentage  been  estimated  from  100  observations,  that 
percentage  would  have  wobbled  only  from 49% to  5 1% upon  the  change 
of a single observation. 

Stability is another  criterion  for  setting  the  minimum  number  of 
observations.  If  a  series  of  studies on  the  same  topic are available,  one 
may select critical  measures  for the response  parameter  of  interest  and 
compare  their  magnitudes  among  studies  of  different  sample  sizes. In the 
following  graph,  five  summary  measures  are  presented  along  studies  of 
increasing  sample  sizes: 

Mean  Standard deviation Median Maximum M i n i u m  

0 S 0 0  l o o 0  ISW 

Figure 8.1 Fluctuation of summary  measures by sample  size 

When  the  sample  size  reaches  between  100  to 200, the  mean  and  median 
become  fairly  stabilized.  The  standard  deviation is not  stabilized, 
however,  until  the  sample  size  reaches  500.  Further  increase  of  sample 
size  does  not  significantly  change  these  measures.  Therefore,  the  sample 
size  may be chosen to be  150  patients.  With this number,  we  may  expect  a 
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mean or median that  fairly represents the patient population without 
compromise of precision. 

If a series of studies are not available, a single study on the study topic 
may be useful. To study stability, we first identie  the summary measure 
of primary interest and then watch the changes of that  measure  upon 
sequential additions of a single  observation. The projected sample size is 
where the changes converge to zero. The following graph presents the 
changes of mean fiom a 750-patient study: 

Placebo 

Number of patima 
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Figure 8.2 Changes of mean  with  increasing  sample size by treatment 

The observations are sorted in descending order by  their absolute 
deviations from their respective group  means. The sequential changes of 
mean in each group upon the addition of one  patient with a smaller 
deviation at a time are computed by 

change of mean = mean of first n observations - 
mean of first n - 1 observations, 

where the nth observation has a smaller deviation fiom the group mean 
than the (n - 1)fh observation, The graph shows that  when the sample size 
reaches 40 - 80 for each group, the means of all three groups  become 
stabilized. Therefore, the sample size of 60 patients  in each treatment 
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group appears to be  adequate  if  we  use  the  means to characterize  the 
patient population. 

The sample size estimated  from  a  single  study  with this method  should 
be used  with  caution.  First,  the  estimate is rather  conservative. The large 
fluctuations in  the  beginning  are  artificial.  Observations  are  sorted  by 
their deviations from  the  group  means,  which is meant to create  the  worst 
scenario. For real data, such  an  order does not  exist.  Second,  the estimate 
heavily depends upon  the  exposure  and  sample size of source study, and 
therefore, it  could  be  misleading  if  the  source  study  does  not  represent  the 
patient population. 

The drawback from  arbitrary  sorting  of  data  may  be  totally  avoided if 
we  can  use  re-sampling  technique. The idea  is  to  draw  a series of samples 
of increasing size, with  or  without  replacement,  from  patients  in  the  source 
study, and then  compare  the  distributions  of  these  samples. The number 
beyond  which  further  increment of sample size does  not  significantly alter 
the distribution may be chosen to be  the  estimated  sample  size. 

Careful  review  of patients in  placebo  groups  in  completed studies may 
shed  light  in  planning  studies  in  similar  patient  population. This is 
particular useful when  no  information a priori is available  for  the 
treatment to be studied. Suppose  five studies have placebo control  on 
similar patient  populations.  If  a  consistent  profile is demonstrated  in  three 
out of the  five  control  groups,  the  sample sizes of  those  three  control 
groups provide a  valuable  reference to determine the sample size for future 
studies on the same patient  population.  Suppose  the  sample sizes of those 
three control  groups  are 90, 150 and 200. Then  a  sample size of 100 
patients may be  set as the  minimum  for  a  study  in  this  patient  population. 
The idea is this:  Although  the  actual  responses  to  treatment  may be 
diverse and more patients are  required to characterize  them, at least 100 
patients are necessary to just present  a  picture  of  that  patient  population 
that is robust  enough to be  consistently  demonstrated in a series of  studies. 

Finally, the  precision of mean, as measured  by  its  standard error, can 
be  a criterion. Suppose  that  a  previous  study has sufficient  number of 
observations, so that  the  mean  and  its  standard  deviation  for  a critical 
measure are rather  stabilized. The sample size for  achieving  a  desired 
standard error for  the same measure  in  a  similar  study  may  be  projected  by 
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sample  size = 
standard deviation from  the previous study 
desired standard  error for the planned  study 

This utilizes the functional  relationship  between the standard  error  and 
standard  deviation: 

standard  error = 
standard deviation 

Jnumber of observations 

If the  standard  deviation  from  a  large  study is 100,  and  the  desired 
standard error is 5 ,  for  instance,  the  projected  sample  size  would  be 400 = 
(100/5)2. The same  calculation  may  also  be camed out  in  terms of 
information,  which  is  the  reciprocal  of  squared  standard  error: 

information = 
number of observations - 1 

" 

(standard deviation)*  (std)' 
x number of observations. 

(l/std)2  is the  unit  information  contributed  from  every  single  observation. 
From the previous  study,  the  unit  information  from  each  patient is 0.0001 
= (1/100)2. To achieve  information of 0.04 = (1/5)2, the  number  of 
patients should be 400 = 0.04/0.0001. 

Because  the  standard  error is used  to  quantify the quality of 
summarization  in  many  analytical  procedures,  one  may  set  forth  the  most 
desirable  result  from  an  analytic  procedure  and  work  backward  to  find out 
what the standard  error  ought  to  be.  Once  the  desired  standard  error is 
defined,  it is straightforward  to  compute  the  sample  size.  For  instance,  a 
small  p-value is expected  from  the  analysis  of  variance  if  the  difference  of 
means is twice as much  as  the  standard  error. If the  difference is 10,  the 
standard  error  should  be at most 5 in  order  for  the ratio to  be  greater  than 
2. 

The  problem  with  the  standard  error  criterion is that  the  standard  error 
itself is a  questionable  measure  with  no  straightforward  interpretation. 
The practical  meaning  of  small  standard  error is rather  obscure,  and claims 
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based on small standard errors can be seriously  misleading.  Although it 
may  be  used  to evaluate the efficiency of clinical studies, the standard 
error should not be  used solely to determine the sufficiency of patient 
exposure. 

8.9.3 Measurement of efficiency 

Efficiency is the dollars spent for  unit information. While dollars are 
tangible and their face value is easy to measure, information is not. Here, 
information is defined as 

number of observations - 1 information = - 
(standard  deviation)2  (standard  error)2 * 

This narrow definition of information does not seem  to  be  immediately 
helpful for the design  of clinical study. However,  this  measure  can  be 
useful for evaluating the designs of  completed studies. The experience 
from  completed studies may  be  invaluable  for  the success of future 
studies. 

Suppose each patient costs $3000 in  a simple randomized  study  and 
$3200 if the patients are stratified by  their  prior treatment. Is the money 
well spent on stratification? To answer this question,  we  may choose few 
critical measures  from  which  the conclusions are drawn, and  then  perform 
the analyses of variance for  treatment effects with  and without the 
stratification factor. Suppose 100 patients were  enrolled  in the study, and 
the standard errors for a critical measure are 5 with stratification, and 7 
without stratification. Now we  compare  the dollars spent on  unit 
information: 

Without stratification: $3000 x 100 / ( ~ 7 2 )  = $14,700,000; 
With stratification: $3200 x 100 / (162) = $8,000,000. 

Although the spending is $200 more  on  each patient with stratification, the 
gain of information was so great that the spending on unit information is 
only an half of  that  without stratification. 

Researchers must not be  horrified  by those astronomical  numbers after 
the dollar sign. Those  numbers are only  meaningful for comparison 
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purposes.  Unit  information  appears  to  be  rather  large  a  unit.  Microunit 
information  may  be  more  convenient,  where  microunit  information is 
1/1,000,000 of  unit  information.  Now  if we repeat the previous 
calculation  in terms of  microunit  information,  we  should  feel  much more 
comfortable  with  the  following  less  spectacular  numbers  on  the  earth: 

Without  stratification: $3000 x 100 /(1,000,000 / 72) = $14.7 
With  stratification: $3200 x 100 / (1,000,000 / 52) = $8 

The calculation  speaks out that the cost  of  microunit  information is $8 
with stratification,  and $14.7 without.  Therefore,  stratification  for  this 
study is money  well  spent. 



Integration of Clinical Studies 

Summary 

This chapter focuses on  the  principles  and  techniques  for  integration  of 
clinical studies. The whole  idea is assessing the quality  of clinical studies 
and putting together related clinical studies for a comprehensive  account 
of a therapeutic intervention. A set of parameters are parceled out for 
assessing study quality, and  they are sample size, comparability among 
treatment groups, time course, precision  of  estimates,  and documentation. 
The behavior of medical publication is analyzed  to  gain insight to the 
information contained  in  medical literature. The  techniques  of data 
analysis are designed to demonstrate the  consistency  and heterogeneity of 
study results against measures  of  their  quality,  and  the  main techniques are 
data visualization and the analysis of variance. A general analysis of 
variance technique is developed for an  integrated analysis of multiple 
studies with the maximum  likelihood  technique  of  Ronald A. Fisher. The 
last section is devoted to the current statistical methods  on meta-analysis. 

9.1 An overview 

The efficacy and  safety  of a therapeutic  intervention  generally  need to 
be evaluated in the following  aspects: 

157 
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the  consistency  across  different  patient  populations  and  care  givers, 
the relationship  between  the  intensity  of  therapeutic  intervention  and 
the  magnitude  of  response,  i.e.,  the  dose-response  relationship,  and 
the  long-term  impact  on  the  patients  being  treated. 

Due  to the complexity  of  human  subjects  and  limitation  of  resources, it is 
impossible  to  design  a  single  study  to  address  all  these  aspects  at  the  same 
time. The current  practice is to design  simple  studies  each to address  a 
specific  question  with  data  of  high  quality.  Therefore,  a  series  of  clinical 
studies are necessary  for  a  comprehensive  evaluation  of  every  therapeutic 
intervention. 

A comprehensive  evaluation of therapeutic  intervention  may  be 
accomplished  in two different  approaches. The ideal  approach is going 
through  a  rigorous  clinical  study  program  that  consists  of  a  series  of 
carefully  planned  studies. The integnty of  a  clinical  study  program 
requires  a  focused  target,  strategic  planning,  and  quality  control.  The 
success of  a  clinical  study  program  depends  upon  medical  insight, 
adequate  funding  and  managerial  skills in a  regulated  environment. The 
clinical development  programs  in  the  pharmaceutical  industry are mostly 
of this type.  They  are  not  different in  any  way  from  any  other  scrupulous 
commercial  business. 

The other  approach is by  review  of  literature. To gain  insight  into 
medical  literature,  careful  study  of  the  behavior  of  medical  publication is 
required.  Section 9.2.3 is devoted to this  matter. By  and  large, 
contributions  to  medical  literature are made  by  individuals,  often 
physicians,  who  are  interested in research,  review  the  literature, identify a 
problem yet to be satisfactorily  resolved,  propose  a  study  to  address  the 
problem,  and, if funded,  carry  out  the  study.  Compared  to  studies in a  well 
designed  clinical  study  program,  the  focus is broad,  the  quality  varies,  and 
the  conclusion  heavily  depends on the  reviewer,  who  may  be  biased, 
consciously or subconsciously, in selecting  studies  from  the  medical 
literature. 

In  recent  decades,  the  volume  of  medical  literature  has  exploded. In 
line with this is call  for  a  systematic  approach  to  organize  and  evaluate this 
ever  expanding  body  of  information. The development  of  meta-analysis is 
a  response  to this call. A widely  quoted  definition  of  meta-analysis is a 
statistical  technique  for quantitative integration  of  clinical  studies. 
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Although  it is not lack of serious  doubt  whether  or  not  those  statistical 
concepts and  techniques  in  meta-analysis  are  truly useful, the  idea  of 
integration is indeed  inspiring,  and  the  pioneers  of  meta-analysis deserve 
credit. 

This chapter focuses on some of the key issues on evaluation and 
putting together of clinical studies. I benefit a great deal from some of 
the interesting discussions put forward by several panels of experts in 
meta-analysis. The evaluation of clinical studies and the analysis of 
publication behavior are very much in line with those already discussed 
in meta-analysis. The technical development, however, takes a different 
approach for a completely different interest. Instead of weighted 
averages over a hodgepodge of studies, the primary interest is to 
demonstrate the consistency and heterogeneity of study results against 
measures of their quality. The techniques are, therefore, data 
visualization and the analysis of variance with respect to measures of 
study quality. When the original data are available, a generalized 
analysis of variance technique is proposed for an integrated analysis of 
multiple studies with the maximum likelihood technique of Ronald A. 
Fisher. 

9.2  The principle of integration 

Integration of clinical  studies  requires  meticulous  planning,  and  it 
presents an  intellectual  challenge. The points  discussed  in this section 
may help researchers  to  form a framework  in  putting  together  studies. 
Those points are gathered with respect to study  objective,  parameter 
selection, and  source of information. 

9.2.1 Consistency and heterogeneity 
The sole  purpose of putting  together  clinical studies is to demonstrate 

both  the  consistency  and  heterogeneity of patients’  responses to a 
therapeutic  intervention.  Consistency is repeated  occurrence  of  the same 
event in  response to an intervention  in  the same setting. In expedition to 
the unknown world  where  no  experience a priori is available to judge 
whatever occurs to us,  consistency is perhaps  the  single  most  important 
criterion to judge the  meaning  of  our  findings  in  that  world  and to guide 
our operation  to  that  world.  Indeed,  it  has  been a respectful  practice  in 
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research  society to repeat  studies  to  verify  any  critical  result  before  further 
actions take  place.  With  no  exception,  consistency is one  of  the  necessary 
criteria  to  establish the effects  of  a  therapeutic  intervention,  and  studies 
showing  a  consistent  result  afford  the  strongest  evidence  for  making 
claims. 

On the other  hand,  patients are all  different. Two patients never 
respond  to  the same treatment  exactly  the  same.  Heterogeneity is, 
therefore,  inherited  in  all  clinical  studies,  and  it  represents  the  rich 
information  brought  from  studying  groups  of  patients. In fact,  studying 
heterogeneity is not  only  challenging  but  also  most  rewarding in clinical 
research.  Only  by  studying  heterogeneity are we able  to  identify  important 
factors that exerted  significant  effects  on  the  patients  but  had  never  been 
recognized  prior  to  the  study;  only  by  studying  heterogeneity  can  we hlly 
appreciate the effects of  therapeutic  intervention.  Immediately  identifiable 
causes of heterogeneity  include  study  design,  patient  population,  care 
giver,  treatment,  and  the time frame  of  data  acquisition.  Most  of the 
heterogeneity  cannot  be  explained,  however,  and is ascribed  to the 
uncontrolled causes. 

In  the  statistical  literature on meta-analysis,  there are authors  who 
advocate  that  the  purpose  of  meta-analysis,  or  integration  of  clinical 
studies, is to  increase  “statistical  power” in  order to gain  a  “statistically 
significant”  result  from  studies  whose  results  are  not  “statistically 
significant”. To understand  what  this  advocation  really  means,  we  have to 
know  the  analytic  techniques  proposed  by  those  authors.  Almost  all  the 
statistical  testing  procedures  in  the  current  statistical  literature  on  meta- 
analysis are based on the  means.  Most  of  the  time,  these  means are 
gathered  from  published  articles,  they  are  averaged  over  selected studies, 
and the averaging is weighted  by  some  arbitrary  parameters  that are 
believed  to  represent  the  contributions  from  those  selected  studies. 
Generally  speaking,  the  statistical  test  on  this  weighted  mean is to 
compare  it  to its standard error. The  calculation  for  standard  error is 
discussed in the last  section.  In  summary,  the  primary  interest  of 
statistical  testing in meta-analysis is a  weighted  mean  and its standard 
error.  Comparing  this  mean  to its standard  error  yields  a  p-value, 
considered  to be “statistically  significant” if it is small  or  “statistically 
insignificant”  if  it is large. 
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In  my  opinion, this advocation  of  statistical  testing  in  meta-analysis is 
leading  researchers  astray  from  the  genuine  interest  of  clinical  research, 
and  its  absurdity  lies in the  unrealistic  statistical  theory  of  Neyman  and 
Pearson  and the entire fabrications  of  statistical  testing  flowing out of  that 
theory.  Interested  readers  may go to  Chapter  Ten  for  a  more  detailed 
account  of  that  theory  and  statistical  testing.  My  point is that  statistical 
testing  by  comparing  means  to  their  standard  errors  does  not help us 
understand  the  data  and  clinical  problems  in  clinical  studies.  Never  can  a 
mean  fully  represent  the  rich  information in a  clinical  study,  and  rarely  are 
clinical  studies  exact  replicates. A mean  over  a  hodgepodge  of 
heterogeneous  studies  makes  no  practical  sense.  Such  a  mean  may  be 
used, at most,  as  a  reference  point  to  measure  heterogeneity.  There  are 
times  when  pooling  of  studies  may  give  rise  to  a  more  reliable  estimate  of 
the magnitude  of  therapeutic  effect.  Those  times  are  when  the  studies  to 
be pooled  demonstrate  a  consistent  therapeutic  effect.  Even  then, the main 
focus should  still be the  consistency  and  heterogeneity. It is because  the 
scientific  objective of clinical  research is to  understand  the  clinical 
problem.  Studying  consistency  and  heterogeneity  helps us to achieve  that 
objective,  while a narrow  focus  on  the  means  takes  us  to  nowhere. 

9.2.2 Parameters to consider in planning integration studies 
Different  integration  studies  have  different  plans  for  achieving 

different  study  objectives.  However,  the  following  considerations  are 
probably  essential to every  integration  study. 

The first is the  nature  of  therapeutic  intervention to be  evaluated.  For 
the  purpose of integration,  a  therapeutic  intervention  can  be  defined  either 
as a  specific  treatment,  such  as  a  single drug at  a  specific  dose,  or as 
different  treatments  for  the  same  therapeutic  objective,  such as 
modification  of  cardiovascular  risk  factors  by  all  means.  The  goal is to 
identify  the  common  ground  on  which  the  studies  can be sensibly 
integrated. 

The  second  consideration is the  patient  population. A patient 
population  can  be  defined  with  a  variety  of  parameters.  Demographic 
parameters  are  certainly  important.  Past  medical  history,  established 
prognostic  factors,  performance  status,  severity  and  chronology  of  illness 
and  perhaps  socioeconomic  condition  may  also  be  pertinent  parameters  for 
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stratifying patients. The goal  is  to  determine  a  set  of  inclusion  criteria  for 
the  study  and to stratify  the  included  patients  for  a  better  precision  during 
data  analysis. 

The third  consideration is the  quality  of  clinical  studies.  Garbage in, 
garbage out. A single  study  of  poor  quality  may jeopardize the entire 
integration  study by introducing  confounding  and  destroying the precision 
of  estimates. The rule  of  thumb is that  studies  of  different  qualities  should 
not  mix.  The  quality  of  a  clinical  study  may be judged by two different 
standards.  One is novelty,  and  the  other is reliability.  Studies  that  present 
novel ideas, reveal  problems,  share  experiences,  and  provoke  research 
initiatives are extremely  valuable,  However,  these  conceptually 
interesting  studies do not  necessarily fit in  an  integration  study  where the 
main  objective is to  seek  consistency  and  investigate  heterogeneity.  The 
reason is fairly  intuitive  that  while  solid  blocks  build  the  Great  Wall, 
fictions can  only  make up a  ghost. An integration  study is most  usefbl 
when each of  the  included  studies  affords  reliable  information.  Section 
9.2.4 discusses  some  of  the  criteria  for  selecting  reliable  studies. The 
point is to keep  an  open  mind  to  great  ideas,  but  pick  only  reliable  studies 
for  integration. 

The final  consideration is the  choice  of  endpoint  parameters.  For 
integration  of  clinical  studies,  it  is  vital  to  define  the  endpoint  parameters 
without  ambiguity.  The  goal is to  make  sure  that no oranges are mixed in 
when  the  interest is apples.  While  some  endpoint  parameters are well 
defined,  for  instance,  5-year  survival  rate,  many  require  elaboration. 
Belonging to that  many  are  quality  of  life,  response  rate,  symptoms  and 
composite  measures.  When  dealing  with  these  parameters,  one  should 
meticulously  study  every  single  element  of  a  composite  parameter, the 
timeframe  involved,  the  questionnaires  used,  the  grading  of  symptoms, 
and  both  the  numerator  and  denominator  of  a  reported  ratio.  Sometimes,  a 
phone  call  away is just what  it  takes  to  clarify  subtle  issues  that  cannot  be 
fully  appreciated  by  merely  reading  the  article.  Sometimes,  the 
parameters  are so intrinsically  complex, as ejection  fraction,  intracranial 
pressure,  or  measures of a  dynamic  process,  that  they  have  to be 
appreciated  in  the  specific  pathophysiological  setting.  Socioeconomic 
parameters  are  even  trickier.  Hospitalization,  for  instance, is entirely 
depending  on the admitting  procedure  of  the  hospital.  Studies  that  utilize 
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these “soft” parameters  generally  show  great  heterogeneity,  and  the 
conclusions  are  often  open  to  dispute. 

Modern  research  protocols  often  set  an  arbitrary  hierarchy  for  endpoint 
parameters.  The  hierarchy is usually  a  pyramid,  consisted  of  a  single 
primary  endpoint  parameter on the  top,  followed  by  groups  of  secondary 
and  even  tertiary  endpoint  parameters. The rationale  behind  such  a 
pyramid is to  avoid  multiplicity,  an  issue  often  raised  by  statisticians  based 
on the unrealistic  statistical  theory  of  Neyman  and  Pearson.  The  absurdity 
of  that  theory is fully  exposed  in  Chapter  Ten.  What I want to point  out 
here is that  the entire hierarchical  structure  of  endpoints is a  hallucination, 
and multiplicity is completely  a  non-issue. The practical  meanings  of 
endpoint  parameters  and  their  quality  are  most  important.  Not  all  endpoint 
parameters  are  interesting,  and  not  all  endpoint  parameters  translate 
directly  into  patient  benefit.  Researchers  should  have  the  flexibility  to 
choose whatever  parameters  of  interest,  and  must  never be distracted  from 
genuine  scientific  interest  by  any  pyramid  based on  merely  a  statistical 
ground. 

9.2.3 Source of information 

Except  when  an  appropriately  designed  clinical  study  program is 
available,  the  main  source  of  information  for  integration  studies is the 
medical  literature. An analysis  of  the  authors’  interest  and  a  review  of  the 
convention  in  medical  publication  would  help  us  gain  insight  into  what we 
get  from  that  source.  The  main  objective of this  section  is  to  analyze  of 
the behavior  of  current  medical  publication. 

Publication  promotes  recognition. The quantity  and  quality  of 
publications  are  an  important,  sometimes  the  sole,  measurement  of 
achievement.  “Publish  or  perish”  best  characterizes  this  tie  of  authors’ 
personal  interest  to  publication.  The  consequence is that  only  publishable 
studies are conducted. The shortage of long-term  studies  for  chronic 
diseases is an  example.  That job takes  a  young  physician,  who  has  to  live 
and  hold  the  position  long  enough,  and  is  willing  to  do  tremendous  work, 
not  immediately  visible,  for  a  hopeful  publication  before  retirement.  This 
lack of incentive  from  publication  perhaps  explains  the  shortage.  The  only 
solution  to this problem  that I can  see is making  the job a  commercial 
business  for  organizations. The point  is  to  compensate  for  clinical 
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research  of  great  public  interest,  but  not  immediately  visible  by 
publication,  with  direct  financial  benefit. 

Publication  presents  happy  endings.  It is a  well-recognized 
phenomenon  that  studies  with  positive  results are more  likely  to be 
published  than  studies  with  negative  results.  People  like  happy  endings, 
and  medical  publication is not  different  from  Hollywood  in  this  regard. 
This selective publication  of  positive  studies  introduces  bias  and  creates, 
what is referred  to  in  meta-analysis  literature,  the  iceberg  phenomenon. 
For scientific purposes,  studies of high  quality  are  equally  important 
regardless of their  results.  Even  studies  without  a  result,  the  so-called 
failed  studies,  can  offer  valuable  experience  that  increases  the  chance of 
success in future studies. In recognition  of  this  publication  bias,  the 
importance of collecting  both  published  and  unpublished  studies  cannot  be 
overemphasized  for  an  objective  and  balanced  review  of  available 
evidences. 

Statistics is misused  to  determine  happiness.  While  the  Hollywood 
goes  by  basic  instinct  to  determine  happiness,  medical  publication  uses the 
p-value of a  statistical  test. It has  been  a  disaster  that  p I 0.05 is adopted 
to determine  significance  in  medical  publication.  Most  statistical  analyses 
used  in  medical  literature  fall  in  the  broad  category  of  analysis of variance. 
With the analysis  of  variance,  p I 0.05 merely  means  that the average is 
about  twice as much as its  standard  error,  no  more  and no less.  Does  p I 
0.05 suggest  a  degree  of  certainty  to  reject  or  accept  a  hypothesis? No. 
Does it imply  the  logical  validity of study  result in terms  of  control of 
confounding? No. Does  it  convey  in  any  sense  the  quality  of  study? No. 
Does it even  a  good  measure  of  the  precision  of  mean? The answer is, 
again,  no.  Because  statistical  testing  is  such  garbage  and  has no practical 
meaning  whatsoever,  statistical  significance  must  never  be  used as a 
criterion to select  and judge clinical  studies. 

Quality  control is not  required  for  publication.  For  integration  of 
clinical  studies, we are  most  concerned  with  the  quality  of  published 
studies. The key  in  quality  control is access  to,  and  independent  audit  of, 
the  data.  While  data  access  has  been  an  extremely  sensitive  issue  and is 
difficult to obtain,  auditing  can be  very  expensive.  This is probably  why 
most  of  medical  publications  rely  solely  on  the  faith  to  authors  than  a  valid 
quality  control process, The  consequence is that  the  published  results may 
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be fraudulent, inaccurate, fragmented, biased  and unreliable, and queries 
to the authors can  be time-consuming, unwelcome,  and expensive with no 
guaranteed payoff. 

Novelty  and quality, in  my  opinion, should be  the sole criteria for 
medical publication. Novelty provokes controversy, and quality 
safeguards decision-making.  Both are healthy signs of scientific research. 
Publication should not be  just story telling, but an  invitation to the data 
generated from the study. The agreement for scientific publication  should 
include terms for  free access to the data. The  idea  of database network or 
web under  a global standard of clinical data  management is appealing. A 
global standard will greatly facilitate data sharing and quality control. 
Discussion on this matter is continued in Chapter Twelve. 

9.3 The quality of clinical studies 
Appraisal  of clinical studies is difficult to make  with clear-cut 

guidelines, simply because it cannot be  dissociated  from the problems 
under study. Each specialty has to  develop its own criteria to determine 
the quality of their studies. Here,  we  merely discuss the principles of 
quality assessment for  this  generic clinical study. The patients are 
screened for eligibility. After a run-in period, if  necessary, eligible 
patients are assigned to treatments and  followed,  usually at a set schedule, 
over  a period of time. The patients’ responses are assessed  in the period  of 
follow-up. A study like this is assessed  from three perspectives: the 
integnty of study design, the quantity  of observations, and the 
completeness of study documentation. The  central concept is the control 
of confounding. 

9.3.1 The integrity of study design 
The integrity of study design is evaluated  with respect to treatment 

assignment, follow-up,  and assessment of  response.  The  primary interest 
is prospective studies. The problems  with  retrospective studies are briefly 
mentioned in the end. 

Treatment assignment is critical  for  the  integrity  of  a clinical study, 
because it determines the comparability  of  treatment groups at the 
beginning. Randomization is generally an effective technique to assign  a 
large number  of patients to a small number  of treatment groups with 
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satisfactory  comparability.  Its  effectiveness  is,  however,  not  guaranteed, 
especially  when the number  of  patients is relatively  small to the number  of 
treatment  groups.  Therefore, the comparability  of  treatment  groups needs 
to be carefully  examined. A reliable  method  of  examination is comparing 
baseline measures  across  treatment  groups.  Significant  differences  among 
treatment  groups can seriously  confound the effects  of  treatment. 

Follow-up is essential  to  assessing  the  patients’  responses  over  a time 
course.  However,  it  also  opens up opportunities  for  confounding. 
Concomitant  treatments  and  patient  withdrawals are two major  sources  of 
confounding.  Lack  of  efficacy  and  toxicity  are two common  causes  for 
the patients  to seek concomitant  treatments  or  withdraw  from  the  study. 
Because  their  close  relation to the  effects of treatment,  both  concomitant 
treatments  and  patient  withdrawals  require  early  recognition,  careful 
documentation  and  tight  control.  The  key is to  prevent  them  from 
occurring,  provided  that it is ethical,  and  to  document  the  causes  by  all 
means if the events  have  occurred.  Cause-specific  comparison  of 
concomitant  treatments  and  patient  withdrawals  among  treatment  groups 
must be integrated in  all  well  designed  and  executed  clinical  studies.  Lack 
of such comparison  should  be  considered  a  study  flaw. 

The assessment  of  response  by  both  the  patients  and  investigators may 
introduce bias toward  favorite  treatment  for  non-scientific  purposes. 
Ideally,  people  who do not  benefit  from  the  study  result  should assess the 
responses.  Blinding  of  treatment  assignment  during  assessment of 
response  has  been  a  respectful  practice  in  clinical  research.  If  blinding is 
impossible,  an  independent  third  party  may be hired.  Both  blinding  and 
third  party  assessment  are  effective  ways  to  exclude  the  potential bias 
from the knowledge  of  treatment  and  non-scientific  interest.  If  neither 
blinding  nor  third  party  assessment is possible,  the  use  of,  what are 
generally  believed,  objective  parameters is clearly  a  choice. An example 
is the  so-called  measurable  disease in oncology  trials.  The  last  resort is the 
faith  of  investigators,  declared by raising  one  hand  in  the air and  putting 
down the other  on  the  Bible.  In  front  of  suspicious  and  sophisticated 
audience,  this  presents  the  weakest  defense  against  the  accusation of 
assessment  bias. 

Retrospective  studies  are  valuable  for  summarizing  experiences 
accumulated  over a long  period  of  time.  However,  they  generally  do not 
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have the same degree of  control as that attainable in prospective studies. 
Selection bias constantly troubles retrospective  studies.  It is difficult to 
find  a group of people, as control, who are truly  comparable to the selected 
series of patients. In addition, the history of the selected patients may be 
incomplete. Thus, any  association  between  the current outcome  and 
whatever  a historical event may be entirely artificial. It is not surprising 
that  most  of the shocking conclusions made  to  the  front  page of 
newspapers are from retrospective studies. Comparing to prospective 
studies with comparable treatment groups  and appropriate follow-up, the 
strength of evidence from retrospective studies is weak. 

9.3.2 The sufficiency of observations 

While  a  good design eliminates the  confounding  from structural flaws, 
sufficient quantity of observations diminishes the confounding  from  the 
uncontrolled factors. The  quantity  of observations directly determines the 
reliability and robustness of study results, and it is the single most 
important parameter in determining the strength of evidence. Without 
sufficient quantity of observations, nothing else matters. 

No single criterion is universally  accepted  for determining the 
sufficiency of observations. Statistical  power  and the sample size 
determined with statistical power are fictions and  have absolutely no role 
in determining sufficiency. Sensitivity, defined as the reciprocal of the 
number  of patients, may  be  used for frequency endpoints, such as 
incidences of adverse effects, response rate, and  etc. This measure is 
discussed in detail in Chapter Eight, section 8.9.2. Robustness, measured 
by the extent of  fluctuation  caused  by small disturbances,  may  be  used  for 
quantitative measures. 

A simple measure  for  assessing robustness is the  change or percent 
change caused by  deletion of few extreme data values.  Suppose  mean is 
the measure  of interest. The  change of  mean  upon deleting 2 extreme 
values is defined as 

change(2-) = mean  with  all  data - mean  with  two extreme values deleted, 
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where  the two extreme  values  are  either  greater  or less than the mean;  in 
other  words,  they  are  on  the  same  side  of  the  mean,  whichever  more  away 
from the mean. The percent  change is defined as 

percent  change(2-) = 
change (2-) 

mean with all data values 

If the extreme  values  excluded  are  moderately  different fiom the  mean, the 
percent  change  after  data  deletion  measures  the  sensitivity  of  the  mean  to 
the impact  of the uncontrolled  factors.  If  the  number  of  patients is small, 
deletion of  few data  values  may  dramatically  change  the mean; on the 
other  hand, if the  number  of  patients is large,  the  effect  of  data  deletion is 
proportionally  dampened,  and  the  mean  may  not  change  at  all.  Because 
extreme  values are mostly  due  to  the  effects  of  the  uncontrolled  factors, 
the sheer quantity  of  observations  affords  an  excellent  control  of 
confounding. 

9.3.3 Documentation  in clinical study reports 

Documents  are  the  vehicle  carrying  intellectual  products.  By 
possession  of  documents,  the  society  enjoys  intellectual  products  without 
heavily  relying on the  individual  producers.  In  this  sense,  documentation 
is an  institutional  behavior  that  holds  together  individuals  and  the 
institution  to  produce  intellectual  products,  yet  keeps  both  parties 
independent in a  long run. Clinical  studies  are  intellectual  activities,  and 
clinical  study  report is the  final  product.  Therefore,  the  importance  of 
documentation  in  study  report  cannot be overemphasized. This section 
lists some of the most  important  points that require  careful  documentation 
in order  for  readers of the  study  report to fully  evaluate  the  study. 

The intended  patient  population  for  the  study  needs  to  be  clearly 
defined. A tabulation  of  eligibility  criteria is usually  enough.  The  actual 
patients  may  differ  significantly fiom the  intended  patient  population. 
Thus, a  description  of  the  actual  patient  population is necessary. The 
difference  between  the  intended  and  actual  patient  populations also 
partially  reflects  the  quality  of  study  execution. 

Treatment  arms  and  controls  must  be  clearly  defined.  There is little 
dispute in this  regard.  If  an  active  control is used  in  the  study,  it  would  be 



Integration of Clinical Studies 169 

helpful, although not essential, to review its therapeutic profile in the 
literature. A significant deviation  from  what are commonly  reported  in  the 
literature should trigger the alarm for  unusual  things  in  the  study  and  the 
vigilance for its quality. 

Treatment assignment must  be  carefully  documented.  Randomization 
remains the  gold standard for  treatment assignment. Nevertheless, the 
effectiveness of randomization is not guaranteed. Thus, the comparability 
of treatment groups must  be  thoroughly examined. Balanced distribution 
of baseline measures  among treatment groups is convincing evidence on 
the effectiveness of randomization. Traditionally, randomization is cast 
before patient enrollment, and baseline measures are compared  after the 
completion of data acquisition. With  the  advance  of telecommunication 
technique, dynamic randomization will be more  and  more available for 
studies of  moderate size for which simple randomization  may not produce 
satisfactory comparability. In  dynamic  randomization, baseline measures 
are constantly monitored during patient enrollment. 

Follow-up  and timely assessment of responses must  be  documented in 
detail. Careful follow-up  and  unbiased  timely  assessment are as important 
as randomization for the control  of  confounding.  They  must not be 
overlooked in study report. The schedule and  windows  of  follow-up  need 
to be clearly defined, and compliance to schedule needs to be evaluated. 
Compliance is not only  a parameter to assess the quality of study 
execution, but also an  important  means for the  control  of confounding 
from the time factor, especially when time is vital for the disease process 
and the effects of treatment. 

Documentation  of  cause-specific patient withdrawals  and concomitant 
treatments is  part  of the assessment of  treatment effects. Without  a cause- 
specific analysis of  withdrawal  and concomitant treatment, the  study  is 
inconclusive. A 15% withdrawal rate is expected  in  even  a  best designed 
and executed clinical study, and  without  documentation,  we just cannot 
assume that those withdrawals are not the consequences of an 
inefficacious or toxic  treatment. Similarly, unrestricted concomitant 
treatments can seriously jeopardize an otherwise perfect clinical study by 
rendering the final result uninterpretable. It  is well possible that the 
patients were  seeking concomitant treatments simply because the 
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treatment  under  study is inefficacious,  too  toxic or too  cumbersome  to 
administrate. 

The actual  patients  included  in  analysis  must be clearly  defined. The 
so-called  intent-to-treat (ITT) population  consists  of all the  patients  who 
are actually  treated  and  whose  responses are, at  least,  partially  assessed. 
This is the patient  population  preferred  by  most  researchers,  because  it 
represents the actual  patients  in  the study, The so-called  per-protocol  (PP) 
population consists of  patients  who  belong  to  the  intent-to-treat  population 
but also meet  the  eligibility  criteria.  This  is  the  planned  patient  population 
interested  by some for  a  what-if  type  of  analysis.  Analyses  on  subsets  of 
patients,  the  so-called  subset  analyses,  should  be  encouraged  to  explore 
heterogeneity. In fact,  PP  analysis,  the  analysis on the PP  population, is a 
subset  analysis. The multiplicity  argument  against  subset  analyses is 
baseless. The results  of  subset  analyses  can  be  equally  valid  and  reliable if 
the  comparisons  are  not  confounded  and  the  number  of  patients is 
sufficient. 

Finally, the data  actually  used  in  analysis  must be clearly  defined,  and 
any  data  manipulation  must  be  explicitly  documented. The traditional 
endpoint  analysis  takes  data  values  at  the  end  of  study. To take  into 
account the data  from  patients  lost in  follow-up,  a  variant  of  endpoint 
analysis is what is called last-observation-carried-forward (LOCF), where 
endpoint is defined as the  last  observation  in  study.  Suppose  patients are 
seen in clinic  weekly  up  to  twelve  weeks.  If  a  patient  drops  out  at  week 
three,  by LOCF, this  patient’s  data  collected  at  his  or  her last visit,  week 
three,  will be put together  with  other  patients’  data  collected  at  the  end  of 
week 12. Endpoint  analysis  ignores  the  effects  of  time.  More  problematic 
with  endpoint  analysis is that no one  knows  when is the  end. A narrow 
focus on an  arbitrary  end  point  results  in loss of  information. This 
practice,  once  again,  has  much  to  do  with  the  unrealistic  statistical  theory 
of Neyman and  Pearson.  Interested  readers  are  referred  to  Chapter  Ten  on 
criticism  of  that  theory. The most  informative  analysis is comparison of 
response  profiles  over  the  time  of  follow-up,  what  we  call  profile  analysis. 
Profile  analysis  requires  no  data  manipulation  across  different  time  points 
and hlly utilizes  all  the  data  from  study. 
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9.4 Graphical analysis of integrated studies 

Graphical analysis of  integrated studies is visualization of data or study 
results by their quality. The  idea is not different from that in Chapter two, 
except that the studies are stratified by measures  of their quality. If data 
are available from all the integrated studies, graphical techniques may be 
used to visualize them. If data are not available, and study results are 
expressed with  means  and their standard deviations for continuous data 
and count or percentage for categorical data, graphical techniques may be 
used to visualize their magnitudes.  For the latter, information on data 
distribution is not available. Complex measures, as odds, odds ratio, 
relative risk, or any other transformations, will not be  used to present study 
results. By graphical analysis, rich information is condensed  in the visual 
field, and both consistency and heterogeneity are shown at the  same time. 
When the number  of studies to be  integrated  is  large,  graphical analysis is 
much  more efficient than  tabulation  of  numeric  numbers. 

9.4.1 Stratification by quality 

The qualities of  integrated studies are assessed  with respect to integrity 
of design and quantity of observations. For the sake  of discussion, study 
designs are graded into three categories: the good,  the  bad  and the 
arguable. Good  study designs share the following  features:  comparable 
treatment groups by effective randomization, unbiased assessment of 
responses, well  planned  follow-up schedules with  good compliance, and 
patients withdrawals and concomitant treatments being unrelated to 
treatment. Bad designs are simply the opposite: incomparable treatment 
groups resulting from either ineffective randomization or non-randomized 
treatment assignment, potentially  biased  assessment  of responses, as- 
needed  follow-up or noncompliance to the  scheduled  follow-up,  and lack 
of documentation on  the causes of  patient  withdrawals  and concomitant 
treatments. Table 9.1 on the next page portraits the  good,  the  bad  and  the 
arguable. 

Between the good  and  bad is the arguable.  Evaluation  of  these studies 
is not quite straightforward. If treatment  assignment is not randomized, 
even  though treatment groups are comparable  with respect to baseline 
measures, their comparability is still arguable because chances are that 
they are not comparable  with  respect  to  measures not included in baseline 
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measurement. As another  example,  if  time is known not  critical,  then 
strict enforcement  of  follow-up  schedule  may  not  be  necessary  at  all. On 
the other hand, if the actual  visit  times are comparable  between  treatment 
groups  even  though  a  regular  follow-up  schedule is not  planned, the 
confounding  from  time  may be negligible. If patient  withdrawals  and 
concomitant  treatments  are  clearly  related  to  treatment,  they  themselves 
are measures  of  treatment  effects  and  must  be  incorporated  into  data 
analysis.  However,  if  the  frequency  distributions  of  patient  withdrawals 
and  concomitant  treatments are comparable  among  treatment  groups even 
though  the  causes  are  not  documented,  one  may  argue  that  these events be 
not related to treatment  since  treatment  makes  no  difference in these 
regards. 

Table 9 .1  Assessment of Design:  the Good, the Bad, the  Arguable 

f i e  Good %e  Bad f i e  Arguable 
Treatment assignment 

randomized 
systemic 

Not comparable Comparable 

Not balanced Balanced bv investigator 
Not balanced Balanced 

treatment 
cause not documented 

Related to treatment Not related to cause documented 
Concomitant treatments 

Not equally distributed Equally distributed 

tmen t I I 
cause not documented I lEqually distributed p o t  equally distributed 

The quantity  of  observations is straightforward  a  parameter.  Studies  of 
similar design  may be simply  sorted  by  this  parameter.  One  may  group 
studies by  their  quantity  of  observations.  The  grouping  can  go  by  gut 
feelings  or  some  criteria  like  the  previously  discussed  sensitivity  and 
robustness. 
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9.4.2 Graphical arrays 

Lechat et al.' performed  a  meta-analysis  of 18 double-blind,  placebo- 
controlled  randomized  studies  for  the  clinical  effects of p blockade  in  the 
treatment  of  chronic  heart  failure  due to either  idiopathic  dilated 
cardiomyopathy  or  coronary  artery  disease.  The  data  are  tabulated  in 
Appendix E. The endpoint  parameters  are  death  rate,  hospitalization  rate 
and  left  ventricular  ejection  fiaction.  The  studies  are  characterized  with 
the  numbers  of  patients  in  the  placebo  and  treatment  arms,  drug  names, 
and  the  duration  of  blind  treatment. No information  was  given  in  the 
article  for  assessing the integrity of the  designs. 

The  following  graphs  present  the  death  rates. The studies  are  sorted  by 
the  number  of  patients,  shown  at  the  top of each  bar  chart: 
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Figure 9.1 Death  rates by treatment  from  studies  of  increasing  sample  size 

*Circulation. 1998; 98: 1 184- 1 19 1. Copyright of American  Hear! Association, Inc. 
Used with permission. 
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Except  for  the  study  with  383  patients in the  last  row  and  second  column, 
a  lower  mortality is consistently  demonstrated in treatment  groups. The 
magnitude  of  difference  ranges  roughly  from 2% to 5%. The  largest 
difference is observed  in  the  study  with  345  patients  in  the  third  row  and 
last column,  where 261 patients  were  assigned  to  treatment,  and  only  84  to 
placebo. 

The following is a  similar  graph  showing  the  mean  left  ventricular 
ejection fiactions with  their  standard  deviations: 

366 383 415 6 4 1  

Figure 9.2 Left  ventricular  ejection  fraction by treatment  from  studies  of 
increasing  sample  size 

A higher  ejection  fraction,  by  about 5% on  average, is consistently 
demonstrated  in  most  of  the  treatment  groups.  Inconsistency is 
demonstrated  in  the  first  row  among  small  studies.  Interestingly,  when the 
sample size  goes  beyond  40  patients,  little  precision is gained  for  the  mean 
ejection  fraction  with  increasing  numbers of patients. The standard 
deviations are about  30%  of  the  corresponding  means,  and this is fairly 
consistent  in  studies  shown  in  the  last  three  rows. 
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To evaluate  whether the duration of  blind  treatment  and  uneven 
allocation  of  patients  between  treatment  and  placebo  have  any  impact on 
the results,  the  studies  are  partitioned  with  respect  to  these two factors. 
The following  graph  shows  death  rates  by  treatment,  number  of  patients, 
duration  of  blind  treatment,  and  the  ratio  of  patients  on  placebo  and 
treatment.  The  duration  of  blind  treatment is divided  into  less or greater 
than  ten  months,  and  the  ratio  of  patients  on  placebo  and  treatment  into 
less or greater  than 35%. 
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Figure 9.3 Death  rate  by  treatment  from  studies of different  sample  size,  duration 
of treatment,  and  patient  allocation  between  treatment  groups 

A better  consistency is demonstrated  among  long-term,  large  studies. 
Short-term,  small  studies  present  the  greatest  heterogeneity.  There are 
four  studies  where  less  than 35% of  the  patients  were  assigned to placebo. 
This uneven  distribution  of  patients  raises  the  question  of  comparability. 
Suppose  that  group A has  five  patients  and  group B has  ten.  If  only  one 
patient  died  in  each  group,  the  mortality  rates  would  be 20% for  group A 
and 10% for  group B, and  their  difference is 10% and  their ratio is 200%. 
It is well  possible  that  the  difference  between  groups A and B is 
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insignificant,  and  the  death is entirely  caused  by  the  uncontrolled  factors. 
The difference  in  mortality  rate is simply  an  artifact  from  using  mortality 
as a  measure  in  groups  with  different  numbers  of  patients. 

A similar  graph  shows  the  left  ventricular  ejection  fractions: 
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Figure 9.4 Left  ventricular  ejection  fraction by treatment  from  studies of different 
sample size, duration  of  treatment,  and  patient  allocation  between  treatment  groups 

The duration  of  blind  treatment  does  not  seem  to  have  much  impact on 
ejection  fractions.  Inconsistencies  are  mainly  shown in small  studies  and, 
perhaps,  studies  of  uneven  patient  distribution. 

Graphical  analysis  can  also  be  used  to  compare  responses  among 
subsets  of  patients.  For  illustration  purpose,  let us compare  hospitalization 
rates  between  patients  taking  selective p1 blockers  and  non-selective 
blockers.  Again,  the  studies  are  categorized  by  the  duration  of  blind 
treatment  and  total  number  of  patients: 
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Figure 9.5 Hospitalization  rate by treatment  and  selectivity  from  studies  of 
different  sample  size  and  duration of treatment 

For both selective and  non-selective p blockers, lower  admission rates are 
consistently observed in large studies. Inconsistencies are once again 
shown  in short-term, small studies.  In  the four long-term, large studies in 
the second column  of graphic array, selective p blockers apparently made 
a larger difference than  did  non-selective p blockers. 

The above  graphical analyses of  integrated studies differ from the 
meta-analysis of  Lechat, et a1 in  several  aspects.  The  main interest is to 
look for consistency and heterogeneity among the studies.  The studies are 
stratified by several factors that potentially  influence  the results. A great 
deal of heterogeneity is simply explained  by  sorting the studies by the 
number  of patients. Simple  measures, as rate and the number  of patients, 
are used to summarize  the  responses.  Complex measures, as relative risk, 
odds or odds ratio, are not  used.  Agglomerate averages over the studies 
are not attempted. The studies are not differentiated by their primary 
endpoint parameters for the purpose  of integration, although it is aware 
that the selection of  primary  endpoint parameters at the time might  have 
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greatly  influenced  the  design  of  individual  studies.  Statistical  testing  has 
no role in the analyses. 

9.5 The  analysis of variance on pooled data 
The availability  of  data,  not  merely  summary  measures,  from 

integrated  studies  presents  a  new  opportunity  for  true  scientific 
democracy. It allows  for  thorough  assessment  of  study  quality  and 
detection  of  fraud.  Data  may  be  analyzed  and  appreciated  for  different 
purposes,  from  different  perspectives,  and  with  different  expertise  and 
sophistication.  Nobody  has  to  follow  anybody else without  personal 
experience  with  the  data.  Data,  when  made  accessible  to  the  public, 
ultimately  benefit  the  society  and  can  save  tremendous  resource  from  full 
utilization  of  information. 

The  aim of this section is to  demonstrate  how the analysis  of  variance 
technique  can  be  utilized  to  analyze  the  data  from  integrated  studies. The 
technique is convenient  for  computing  averages  or  weighted  averages in a 
variety  of  settings. The main  purpose is to  explore  heterogeneity. A 
general  analysis  of  variance  technique is developed,  based on the 
maximum likelihood  technique  of  Ronald A. Fisher,  to  compile  complex 
studies. 

9.5.1 Common ground and appropriate stratification 

Studies to be integrated may  all be different. To do analysis of 
variance over different studies, the key is to identify the common ground 
to put together the studies and the cause of variations for appropriate 
stratification. This section discusses several common scenarios where 
integration of different studies can be  performed with simple linear 
model techniques. 

Studies with the same treatment groups in similar clinical settings 
may  be pooled together. The following table illustrates two parallel 
studies, 

Study 1 I Placebo I Drug A 
Study 2 I Placebo I Drug A 
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The mean responses between treatment groups  can be simply compared 
with the analysis of variance specified  in the following linear model: 

responses = study + treatment + residuals. 

Treatment is the common factor, and its effects are measured  with  the 
means over the two studies. The difference  between the two studies may 
account for significant variations of  the responses, and it is represented 
by the effects of  study  and  measured  with two grand means. Here, the 
grand  mean is the average of  all data values in each study, regardless of 
treatment. 

If the studies to be integrated are stratified, by center, prior treatment, 
and etc., the stratification should be included in analysis. The following 
table illustrates two parallel, multicenter studies: 

Study 1 I Centers I Placebo 1 Treatment A 
Studv 2 I Centers I Placebo I Treatment A 

The patients are stratified by center. An appropriate analysis is specified 
with the linear model: 

responses = study + center(study) + treatment + residuals, or 
responses = study + center(study) + treatment + 

treatment-center(study) interaction. 

In these models, center(study) denotes center nested  in study, meaning 
that patients are grouped  by studies and  then  sub-grouped  by centers 
within each study, In this analysis, the effects of center are taken into 
account. By  grouping centers into study, the effects of study specified in 
the linear model are measured  with the sum  of  center effects within each 
study. 

Even studies with different stratification can  be  put together. The 
following table illustrates three  parallel studies with different 
stratifications: 
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Study 

Treatment A Placebo None Study 3 
Treatment A Placebo History Study 2 
Treatment A Placebo Centers Study 1 

Treatment  Groups Strata 1 

Study 1 is stratified by center, study 2 history, and study 3 is not 
stratified. Since the studies are stratified differently, when  they are 
pooled together, generic  term “strata” is used to represent the strata 
generated with different stratifications. The analysis is either 

responses = strata + treatment + residuals, or 
responses = strata + treatment + treatment-strata interaction. 

Study 3, as a whole, is viewed as a stratum. The effects of study are not 
included in the analysis. Strata are nested  in studies, and for study 3, 
study and strata are synonyms. 

Studies of the same treatment in different patient populations may be 
put together. Suppose that the same design is carried out in adult and 
pediatric patients, as illustrated in the following table: 

Study 1 I Adults I Placebo I Treatment A 
Study 2 I Children 1 Placebo I Treatment A 

Appropriate analysis should include the interaction effects of study and 
treatment: 

responses = study + treatment + study-treatment interaction + residuals. 

A significant study-treatment interaction effect implies that the effects 
of treatment are different in  two patient populations. Significant 
treatment effects, in the absence of study-treatment interaction effects, 
imply that the mean responses, over  both patient populations, are 
different between treatment groups.  But this difference can result from, 
say, 10 - 5 = 5 or 20 - 15 = 5. The effects of  study indicate the absolute 
magnitudes of  mean responses in each patient population. 
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In general, studies of different treatments should  not  go together. An 
exception is when treatments differ only in quantity. Dose escalating 
studies are a typical  example: 

Study 1 I Placebo I Drug A at 5 mg  bid I Drug A at 20 mg  bid 
Study  2 1 Placebo I Drug A at 25 mg bid I Drug A at 40 mg  bid 

If we are interested in dose-specific mean  responses,  the two studies 
cannot be combined. The effects of Drug A at 5 mg bid in study 1 are 
not directly comparable to that of  Drug A at 25 mg  bid  in study 2. If, 
however, the primary interest is dose-response relationship, measured 
with mean response curves, the two studies share a common ground, and 
they can be  simply  combined  on  that ground. A linear model for the 
analysis is this: 

responses = study + treatment + study-treatment interaction + residuals, 

where treatment is viewed as a continuous  variable indicating doses, and 
it represents a linear dose-response relationship. Since there are three 
dose levels in each study, a quadratic dose-response relationship could 
also be specified. Significant study-treatment interaction  means that the 
mean dose-response curves in  two studies are not parallel. Significant 
treatment effects, in the absence of study-treatment interaction effects, 
suggest that the mean  dose-response curves are not flat. Significant 
study effects indicate that the mean dose-response curves separate by 
some distance between two studies. 

If  the  interest is response  profiles  over  time, we  need  to  pay  attention  to 
follow-up  schedules.  Studies  may  be  pooled  when the follow-up 
schedules are similar. The following table presents two studies with 
similar follow-up schedules: 

Visit  Window: Week f days 
Study1 
Studv2 

I f 3   I 2 f 3   I 5 f 7  I 1 0 f 7   I 2 0 f 1 4  
l f 3  I 2 f 3  I 5 f 1 0  I ] O f 1 4   1 2 0 f 2 0  

These  two  studies  can be directly  combined.  The  week  numbers  can be 
used as chronological  marker,  and  comparisons  can be made  at  each  visit. 
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Studies with  different  visit  schedules  present a problem.  The  following 
table  illustrates two studies  with  different  follow-up  schedules: 

I I Visit  Window: Daw f 5 I 
Study 1 I 7 I 14 I 28 I 42 I 70 
Study2 I 7 I 21 I 35 I 49 I 63 

This lack of common chronological marker renders it impossible to pool 
these two studies for making comparisons in the same time frame. 
However, if the primary interest is the mean response curves over time, 
not the mean responses at specific time points, the two studies may  be 
put together with the same technique for comparing dose-response 
curves. The analysis may be specified with this linear model: 

responses = study + treatment + poly(time, 2) 
+ treatment-poly(time, 2) interaction, 

where  poly(time, 2) denotes  quadratic  curves.  The  term,  treatment- 
poly(time, 2) interaction,  measures  the  difference  of  mean  response  curves 
among  treatment  groups.  If we expect  different  response  profiles in 
different  studies, we may  add  interactions  with  study: 

responses = study + treatment + poly(time, 2) + treatment-poly(time, 2) 
interaction + study-{treatment + poly(time, 2) + 
treatment-poly(time, 2)) interaction + residuals. 

The last interaction is the  sum  of  following  interaction  effects:  study- 
treatment,  study-poly(time, 2), and  study-treatment-poly(time, 2). A 
significant  effect  from  any  of  these  interactions  indicates  some  differences 
of  mean  response  profiles  between  studies. 

By  focusing  on  mean  response  profiles,  represented  with  curves, as 
opposed  to  specific  mean  responses  at  points, we gain  technical 
advantages. We may  appreciate  this  with our geometric  experience that 
two points  make a line,  and  three  points  could  make a curve.  If  we  assume 
that  the  response  profiles  can  be  represented  by  smooth  curves,  then  few 
points  may  be  all  it  takes  to  estimate  those  curves. 
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9.5.2 An analysis of variance technique for compiling studies 

Most of the analyses on multiple studies can be simply conducted 
with a linear model and clever parameterization. The technique 
developed here is for integration of  complex studies to which a single 
linear model cannot accommodate.  The idea is to  use two surrogate 
measures to compile complex studies, and it comes directly from the 
maximum likelihood technique of Ronald A. Fisher. 

Factors in complex studies are partitioned into study-specific factors 
and the common factors. The table below illustrates this partition: 

Study-specific  factors The common  factor 
Study 1 

Treatment.  denoted bv T Desien factors.  covariates.  denoted bv B? Studv 2 
Treatment, denoted by T Design factors, covariates, denoted by p1 

Study-specific factors are specific to  the  study,  not shared by other 
studies to be integrated, and  they  are  local factors. The common factors 
are those shared by  all the studies, and  they  are  global factors. The 
mean responses measuring the effects of study-specific factors are 
estimated from the study itself; the  mean responses measuring the 
effects of common factors are estimated from  all the studies. The 
following linear models represent the  partition: 

Study 1: responses = study-specific factors (pi) + 
treatment (1) + residuals, 

Study 2: responses = study-specific factors (p2) + 
treatment (1) + residuals. 

The  maximum  likelihood  technique is used  to  compute  the  mean 
responses  for  both  study-specific  factors  and  the  common  factors.  In 
essence, the contribution from each patient to the mean response is 
quantified with an efficient score, and its quality is measured with the 
Fisher information. Efficient  score is an  intermediate  quantity in the 
maximum likelihood  technique.  For  each  parameter in the  linear  model, 
its  efficient scores represent  the  contributions  from  individual  patients  to 
the  mean  response  represented  by  that  parameter.  For  the effects of study- 
specific  factors,  the  mean  responses  are  estimated  from  the  efficient  scores 
of that  specific  study.  For  the  effects  of  common  factor,  which is 
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treatment in the above  linear  models,  the  mean  responses are estimated 
from  the  sum of efficient  scores  in  all  the  studies. The Fisher  information 
associated  with  each  efficient  score  can be simply  added  up  to  measure  the 
quality of mean  responses.  Appendix C details  the  mathematical 
development  of this technique. 

For  complex  studies,  the  advantage  of  efficient  scores  over  individual 
data values is threefold. First, the effects  of  common  factors are more 
precisely  estimated  by  adjusting  for  the  effects  of  study-specific  factors. 
Second,  the  efficient  scores  can be simply  added  up  to  compute  the  mean 
responses  across  any  studies or strata. This flexibility is particular 
appealing to integration  of  complex  studies.  Finally,  the  efficient  scores 
themselves  can  be  viewed as individual  data  values  for  assessment  of 
heterogeneity. A graphical  display  of  efficient  scores  along  with the 
suspected  causes  of  heterogeneity  is  perhaps  all we have  to do. 

9.6 Some other techniques in meta-analysis 

The analysis of variance on  summary measures essentially 
characterizes the technical development of meta-analysis. However, the 
main focus of meta-analysis, at  least presently, has  been statistical 
hypothesis testing, which,  in  my opinion, does not help improve our 
understanding of the data. Agglomerate averages over heterogeneous 
studies have  no practical meaning. It is probably more scientifically 
profitable focusing on  the heterogeneity of  summary measures. This 
section demonstrates how the analysis of variance technique may be 
utilized to explore heterogeneity, criticizes the measure  of effect size 
and clarifies the concept of  random effects. 

9.6.1 The analysis of variance on summary measures 

The idea  and technique are exactly the same as those discussed in 
Chapter Four except that, first, the data are consisted of  summary 
measures, and second, measures on  study quality are incorporated into 
the analysis for explanation of heterogeneity. The data published by 
Lechat et. al., tabulated in  Appendix E and  analyzed  in  section 9.4.2, are 
re-analyzed  to  illustrate  the  technique.  The  endpoint  parameters  are  death 
rate, hospitalization  rate  and  left  ventricular  ejection  fraction. The 
independent  variables are treatment  (placebo  or  a p blocker),  study 
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identification,  and  the  duration  of  blind  treatment.  Due  to  limited  quantity 
of  summary  measures,  the  comparison  of  treatment effects is stratified 
with  respect  to  only  one  independent  variable  at  a  time. 

The following  linear  models  specify  the  effects  of  treatment  stratified 
by  study: 

death  rates,  hospitalization  rates,  or  left  ventricular  ejection  fractions = 
study + treatment + residuals. 

The results are summarized in the  following ANOVA table: 

Strong  study  effects  suggest  large  variations  among the study results. 
Both  death rate and  hospitalization  rate  are  quite  heterogeneous  from 
study to study.  For  left  ventricular  ejection  fraction  (LVEF),  however, 
variations  among  studies  are  rather  small.  Considerable  treatment  effects 
are  demonstrated  on  hospitalization  rate  and LVEF. The  treatment  effects 
on  death rate are,  however,  very  small.  Weighted  analysis  with  the 
standard  deviations  of  the  means  does  not  change  the  result  on  LVEF. 

To explore  the  cause  of  heterogeneity on  death  rate  and  hospitalization 
rate,  the  comparison  of  treatment  effects is stratified  with  respect  to 
selectivity  and  duration  of  blind  treatment.  Selectivity is 1 if  the p blocker 
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is selective  on p1 receptors,  and 0 otherwise.  The  analyses  are  specified 
with  the linear models: 

death  rates,  hospitalization  rates = 
selectivity + duration + treatment + residuals. 

The results  are  summarized  in  the  following  table: 

IResidual 132 10.1387 10.0043 I 10.1289 P 
DF: degree of freedom, SS: sum of squares, D: p blocker, P: placebo 
LS: least  square, STD: standard deviation. B,,: Non-selective. B,: selective B blocker 

It seems that the  duration  of  blind  treatment is an  important  cause  of 
heterogeneity  in  both  mortality  and  hospitalization. The analysis  shows 
that p blockade  significantly  reduces  the  chance  of  hospitalization.  Less 
hospitalization is seen in studies  with  non-selective p blockers.  Notice 
that  selectivity  refers  to  study,  not  treatment.  In  studies  with  non-selective 
p blockers, the patients  may  take  either  placebo or a  non-selective p 
blocker.  Therefore,  non-selective p blockers do not  necessarily  cause less 
hospitalization  seen  in studies with  non-selective p blockers.  Here, 
inclusion of selectivity  in the analysis is just a  demonstration how to 
explain  heterogeneity  with  the  analysis  of  variance  technique. 

Because little data values are available, the analysis of variance on 
summary  measures is limited to studies of  very  few factors at  a time. 
Compared to graphical analysis, the analysis of variance allows us to 
calculate the mean responses in different categories and the trends over 
continuous variables. However, graphical analysis presents complete 
data, and the data can be evaluated  in broader perspectives. The analysis 
of variance is an effective technique, but should never substitute for data 
visualization. 
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9.6.2 Effect size versus group-specific measures 
Effect size is an early measure in meta-analysis proposed for 

compiling clinical studies. The idea is to use a single measure to 
summarize the result of a study. For instance, if the response rates  to 
treatment A and placebo P in a study are reported to be 80% and 40%, 
respectively, the effect size can be either D = 80% - 40% = 40%, R = 
80% t 40% = 2, or odds ratio = (80% + 20%) + (40% t 60%) = 6. If the 
response variable is continuous, and the  mean responses to treatment A 
and placebo P are 10 and 20, and their corresponding standard errors are 
5 and 4, a definition of effect size is 

Effect size = 
meantrealmentA - meanplacebo - 10 - 20 

standard error of placebo 4 
- - = -2.5. 

Another  definition is essentially  the  same  except  that  the  pooled  standard 
error, instead of the  standard  error  of  placebo, is used  in  the  denominator. 

Effect size is an awkward measure and suffers from serious loss of 
information. If a study has three treatment groups, not only is there a 
lack of unique definition of effect size, but also more than one effect 
sizes have to be defined to represent the information in three treatment 
groups. However, if multiple effect sizes are used to summarize a study, 
the original idea of parsimony can no longer be  fulfilled. Even if a study 
has only two treatment groups, an effect size of whatever definition 
cannot fully preserve the original information in group-specific 
measures. The following table, for instance, well presents the fact that 
240 out of 6500 high risk women taking placebo developed breast 
cancer while 120 out of 6500 taking tamoxifen developed breast cancer 
over six years: 

Exposure 

4% 6500  240 Placebo 
2%  6500 120 Tamoxifen 
Risk Total  Patients Breast  Cancer 

If the result is expressed in terms of following effect sizes, it can be 
seriously misleading. The first effect size is relative risk, which is 2 = 
4% +- 2%; the other is risk reduction, which is -50% = (2% - 4%) +- 4%. 
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A 50% risk reduction does not tell us  whether  it is 50% versus 25% or 
0.2% versus 0.1%. There  is no doubt that a 50% risk reduction is news 
making and sufficient to justify the risks of  tamoxifen for prophylaxis. 
But if we look at the actual incidences, the balance of benefit-risk 
calculation could have tilted the other way, 

When data fiom published studies are not available, summary 
measures in each treatment group, not effect size or other derivations 
from them, should be the original data for meta-analysis. The  most 
informative summary  measures are the mean, standard deviation, 
number of patients, and number of events in each treatment group. 

9.6.3 Variations among studies and the random effects 

In meta-analysis, the variance of  combined effect size over studies 
has two components: the variance within  individual studies and the 
variance between  individual studies. The within-study variance 
represents the sum of variations within each study, and the between- 
study variance represents the heterogeneity among studies. Suppose 10 
studies each is  summarized with  an effect size and its standard error. 
Most  of the combined effect size in meta-analysis, such as combined 
odds ratio, is a weighted  average: 

combined effect sue = 
sum (effect size x weight) 

sum (weights) 

The  most  commonly used weight is the standard error of effect size from 
each study. By  the conventional mathematical definition of variance, 
the variance of this combined effect size is 

1 
sum (weights) ’ 

variance of combined effect size = 

This variance represents only the within-study variations and overlooks 
the between-study variations. 

The overall variance of  combined effect size should include 
variations both  within  and  between studies, and its estimate should base 
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on the deviations between the combined effect size and contributing 
effect sizes: 

overall variance = 
mean (effect sizes in individual studies - combined effect size)2. 

The difference between this overall variance and within-study variance 
measures  the between-study variance: 

between-study variance = overall variance - within-study variance, 

Between-study variance can be negative if the within-study variance is 
greater than the overall variance. A negative behveen-study variance 
suggests that the effect  sizes of  poor precision are close in magnitude 
from study to study. 

Because the conventional mathematical definition of variance fails to 
take into account between-study variation, the concept of random effects 
was introduced. This concept has generated a good deal of confusion, 
mainly due to its verbatim that the studies to  be integrated are a 
“random”  sample  of all possible studies. This verbatim of  “random” 
came from mathematical statisticians who grossly misunderstood the 
original concept of Charles Henderson. Chapter Six, section 6.5, has 
more discussions on  random effects. “A random  sample of all possible 
studies’’ is entirely an inoperable concept. The technical nature of 
random effects is to direct the mathematical manipulations so that the 
between-study variance is included in the calculation. If the primary 
interest is mean responses, the result from meta-analysis with random 
effects should not be capriciously different from that of the analysis of 
variance with an equivalent fixed-effects linear model. 
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l 0  
The Fiction behind  the  Current Statistics 
and Its Consequences 

Summary 
This chapter  criticizes  the  statistical  theory  of  Neyman  and  Pearson  and 

points  out  how  the  concept  of  errors  and  test  of  hypothesis  in  formal  logic 
fostered  by  their  theory  most  adversely  impact  the  practice  of  clinical 
research.  The  issue  of  multiplicity  raised  from  the  concept  of  error 
discourages  researchers  from  making  as many observations  and 
evaluations as possible. The rigd test of hypothesis  with  formal  logic 
discourages  the  use  of  active  control  and  makes  it  impossible  to  draw 
conclusions  from  studies  designed  for  showing  equivalence.  P-value  and 
confidence  interval  are  interpreted as measures,  and  the  confusion 
surrounding  them is clarified. The absurdity  of  power  and  determination 
of  sample  size  with  power is demonstrated.  Finally,  the  maximum 
likelihood  technique is introduced,  and  the  technical nature of 
mathematical  distribution is explained. 

10.1 An overview 
The discipline  of  statistics  deserves  credit  for  providing  graduates  with 

191 
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basic  quantification  skills  essential  to  operating  in  the  demanding  research 
society.  However,  some  foundation  of that discipline is not  compatible,  at 
least  in  my  opinion,  with  the  principles  of  learning  and  experimentation 
cherished  by  most  clinical  researchers.  Graduates  from  that  discipline are 
more or less influenced  by  that  foundation,  and  they  carry  that  influence 
into  their  comments  and  recommendations on research  proposals, 
publications  and  government  regulations,  which  in turn contribute  to  the 
decisions  on  distribution  of  research  funding  and  permission  of  marketing 
for  profit. 

In  recognition  of  the  difference  between the statistical  theories  and  the 
principles  of  clinical  research,  medical  researchers  need  to  have  a  realistic 
image  of statistics as a  discipline. A realistic  image is not only  important 
to  working  effectively  with  statisticians  trained in the  current  statistical 
educational  programs,  but  also  crucial  to  the  right  use  of  research 
methodology,  without  being  confused  by  those  unrealistic  statistical 
theories.  The  aim  of  this  chapter  is  to  discuss  the  fundamental  concepts 
and  techniques  in  statistics  that  have  profound  impact on the  design  and 
evaluation  of  clinical  studies. 

10.2 The fantasy of truth and the concept of errors 
That statistics  can  tell  the  truth  or  at  least  indicate  how  close  a  sample 

is to the truth is the ultimate  fantasy  held  consciously  or  subconsciously  by 
most  of  the  statisticians  trained  in  the  current  statistical  educational 
programs. The paradigm  adopted  in  the  current  statistical  academia is 
largely  founded  on  the  concept  of  errors,  entirely  due  to  Jersey Neyman 
and  Egon  Pearson. In a  collection  entitled Joint  Statistical Papers, 
Neyman and  Pearson  argued  that  people  make  two  kinds  of  error  when 
mahng a  decision on rejection  or  acceptance  of  a  hypothesis: 

the error of  rejecting  a  hypothesis  that is in  fact  right - the  error  of 

0 the  error  of  accepting  a  hypothesis  that is in  fact  wrong - the  error of 

This  argument is conveniently  summarized in Table 10.1 on the  following 
page. The decision  theory  of  Neyman  and  Pearson  states  that  a  decision- 
making  process  can  be  simply  formulated  into  a  mathematical  process that 
minimizes  the  probability  of  making  both  types  of  errors. The probability 
of  type  I  error is known as  the  p-value,  denoted  by a, and  the  complement 

the  first  kind  or  the  type I error,  and 

the  second  kind or the  type 11 error. 
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of p-value, 1 - a, is known as the  confidence level; the probability  of  type 
I1 error is denoted by p, and its complement, 1 - p, is known as the power. 

Table 10.1 Decision-Making  Theory of Neyman  and  Pearson 

I DECISION 
TRUTH: I Reiection  of  hypothesis 1 Acceptance of hypothesis 1 
Hypothesis 
is  right 

Confidence level: Type I error: 

Accept the wrong hypothesis Reject the wrong hypothesis is  wrong 
Type I1 error: Power: Hypothesis 
Accept  the  right hypothesis Reject  the  right hypothesis 

The concept of errors is unrealistic.  The  fundamental  problem is that 
we do  not know the truth. The reality of clinical research is that we learn 
by experimentation and  hope  to  know  the truth, not the other way  around 
that the truth is already known  and is available for judging our 
observations. A decision based on the currently available information may 
prove to be  wrong only when  further  information is available. When such 
information is not available, it is logically  impossible  to evaluate a 
decision with the current information from  which  the decision was  made. 
For  a single study, the only available information  comes  from the study 
itself. A decision to reject or accept  a hypothesis can  only be made after 
scrutiny of available information  and careful balancing  of conflicting 
interests. Until  information  from subsequent studies becomes  available, 
there is  no information to evaluate whether the current decision is right or 
wrong. Therefore, the concept  of errors has no  meaning  in  any sense for  a 
single study. 

10.3 Assumption of distribution 

Like all mathematical deductions, the theory  of  Neyman  and  Pearson is 
essentially a formal logic. The  axiom  or  precondition of their theory is 
knowing the truth. Because  the  true is uncertain  or  unknown,  they  must 
come  up  with  a  solution to sustain  their  theory.  By  using mathematical 
distribution to symbolize the unknown  truth,  Neyman  and Pearson 
cleverly chose an entity to  represent  uncertainty  or ignorance and passed 
that ignorance to  an  uncommitted conclusion, known as the probability 
statement. By symbolizing the truth, they avoided the burden  of  knowing 
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the truth,  and  by  using  an  entity  of  unknown  meaning  to  human  inductive 
thinking,  they  met  the  requirement  of  formal  logic. 

A mathematical  distribution is merely  a  mathematical  function  whose 
domain is limited  from 0 to 1. A mathematical  distribution  itself has no 
information  other  than rules of  computation.  The  following  mathematical 
function is the  popular  normal  distribution: 

1 N(xI p ,  02)=- 
JGo 

It is simply  a  series  of  calculations  conveniently  expressed  with  a  set of 
Roman  and  Greek  letters.  When  x, p, and G are  actual  numeric  values,  the 
calculations  give  rise  to  a  numeric  number  between 0 and 1. Interestingly, 
the  lack  of  a  symbolic  system  to  effectively  document  complex 
computations  has  been  considered  to be a  major  drawback of the  Chinese 
language. 

The use  of  mathematical  distribution in statistics  probably  originates 
from  the  historical  link  between  statistics  and  probability.  Probability is a 
quantification  of  uncertainty or degree of ignorance.  Gambling  was  the 
driving  force  behind  the  development  of  probability  theory  for  calculation 
of  uncertainty  or risk. The development  of  mathematics  and  physics in the 
nineteenth  century  created  a  paradigm  of  deductive  thinking  that  was  once 
pushed  to  the  point  that  our  knowledge of the  world  was  believed  to  be 
self-contained  and  could be entirely  deducted.  Although  attempts  to  prove 
self-containing,  like  all  the  machines  designed  for  eternal  motion  without 
outside  energy,  ended  up  with  total  failure,  the  paradigm  of  deductive 
thinking is still  embraced  by  many  mathematicians  who  enjoy  building  a 
complex  theory  from  few  axioms.  The  advance  of  experimental  science, 
however,  demonstrated  the  power  of  yet  another  human  reasoning, the 
inductive  thinking,  with  the  most  renowned  success  being  Charles 
Darwin’s  theory of evolution.  In  contrast  to  deductive  thinking,  it  was 
well  recognized  that  inductive  thinking  is  not  precise  and  carries 
uncertainty,  and  skepticism  to  the  merit  of  inductive  thinking  was  widely 
spread.  Thanks  to  the  experimental  psychology  pioneered  by  Jean  Piaget, 
we now have  a  better  understanding  of  inductive  thinking  as the link 
between  concepts  and  operation.  We  have  accepted  inductive  thinking as 
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the human intellectual behavior and  pay our attention  only to observed 
evidence. At the turn  of the nineteenth to twentieth  century,  however, 
there were constant attempts to fit inductive  thinking into the paradigm  of 
deductive thinking by  imposing elements of preciseness and formal logic. 
Quantification of the uncertainty in inductive  thinking  was  one  of  those 
attempts. The probability theory, developed  for gambling, was  borrowed 
to cast the process of inductive thinking, a  complex intellectual activity  of 
our brain, into a  mathematical  framework.  The statistical decision-making 
theory of  Neyman  and  Pearson is an elaborate combination  of formal logic 
and probability. 

Because  mathematical distribution is essential  to  the  decision-making 
theory of  Neyman  and  Pearson, statistical testing  fostered  from  their 
theory always requires that the frequency distribution of  real data resemble 
a mathematical distribution. The  assumption  of distribution in trial 
protocols is the commonly  seen statement of this requirement.  Because  of 
its logical position in statistical testing, lack of verification of that 
assumption creates anxiety. For  those  who  swallowed the theory of 
Neyman  and Pearson, it is not irrational to verify the assumption of 
distribution. Unfortunately, no  guidelines  are available for verifying 
assumption of distribution. Data  visualization has been  widely  used  for 
this purpose. Trouble is to use statistical testing  to  verify assumption of 
distribution, which creates a  logical circle because verifying  an 
assumption requires the  making  of  another assumption. As  long as the 
statistical theory  of  Neyman  and  Pearson is used  for  decision-making, it is 
inevitable to make  assumption  of distribution, and  the trouble of 
verification will  go  on  and  on. 

In practice, the popular  use  of  normal  distribution partially eases the 
pain from  making distribution assumption of unknown practical meaning. 
When the interest is the  mean  and its standard error, the assumption  of 
normal distribution leads to a sensible comparison  of their magnitudes, the 
mean + its standard error, through  the  system  of  Neyman  and Pearson. 
Such sensible comparison  is  generally  not  achievable  with assumption of 
other distributions. Most  of the time, the mathematical  manipulation 
involved is so complex  that  construction  of  a sensible comparison relies 
solely on  purposefhl approximations. The Taylor series expansion is the 
commonly  used  approximation technique, justified with the asymptotic 
argument. The essence of asymptotic argument  is  that large sample size 
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justifies the  first-order  Taylor  series  approximation. The entire purpose  of 
picking  only  the  first-order  Taylor  series  is  directing  the  mathematical 
manipulation  under  the  theory  of  Neyman  and  Pearson to a  comparison 
between the mean  and its standard  error. 

10.4 P-value 
P-value is a  reminiscence  of  the  glorious  time  when  humans  were 

struggling to  master  their  intellectual  activities  precisely  with  mechanics 
and  mathematics. The persistent  use  of  p-value  in  current  statistical 
practice comes  mainly  from  the  stubborn  embrace  of  the  unrealistic 
formalism  of Neyman and  Pearson  and  the  disrespect  of  the  advance  of 
experimental  psychology  on  human  cognitive  behavior.  Nevertheless, to 
be respectful  to  that  glorious  history  on  exploration  of  human  reasoning 
power,  p-value  may  still be used  as  it  has  been,  but  it  must  not be 
interpreted as a  probability  of  error in the  sense  of  Neyman  and  Pearson. 
P-value  must be viewed as a  measure  expressing  how  reluctantly  we 
would  like to accept  an  opinion.  Technically,  p-value is meaningful  only 
in the  context  of  the  analysis  where  it is defined  and  computed. An 
isolated  p-value  has  no  meaning,  and  p-values  from  different  analyses are 
not  necessarily  comparable.  Moreover,  p-value  does  not  follow  any rules 
of  probability  calculation.  Any  mathematical  manipulation  of  p-values  by 
the  theory  of  probability,  such  as  the  Bonferroni’s  protocol, is doomed  to 
meaningless  result. 

For  all  practical  purposes,  p-value  may be viewed as an  equivalent 
measure  to  the  comparison  between  measures  of  claimed  effects  and the 
effects of the uncontrolled  factors.  The  p-value  of  permutation  test 
measures the difference  between  what  has  been  observed  and  what  could 
have  been  observed  had  the  patients  been  affected  only  by the 
uncontrolled  factors. The p-value  in  the  analysis  of  variance is equivalent 
to  the  comparison  of  mean  to its standard  error.  The  result  of  that 
comparison is matched to the standardized  normal,  or its equivalent  t  or F, 
distribution in order to obtain  a  p-value.  The  standardized  normal,  t  and F 
distributions are mathematical  distributions  derived fkom the assumption 
of  normal  distribution.  Matching  to  these  distributions is nothing  more 
than  a  change of scale. The relationship  established  through the matching 
is that  the  smaller  the  p-value,  the  better  the  precision  of  the  mean. 
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As a  measure,  p-value  does  not  improve  our  understanding  of  data  in 
any  way.  Comparing to other  measures,  it carries the  least  amount  of 
information.  Choosing  p-value as opposed to any  other  measures is, at 
most, like choosing the yard  as  opposed to meter to measure  distance. 
There is no logical basis whatsoever to endorse  the rule of  p-value I 0.05 
for declaring significance. 

10.5 Confidence interval 

Confidence interval is equivalent to p-value  but  more  involved  with  the 
underlying  analytic  procedure. For instance,  the ratio of  mean  and its 
standard error being  greater  than  1.96, 

gives rise to p-value  of 0.05 when  it  is  compared  to  the  standardized 
normal or t distribution. Equivalent  but  complementary to that  inequity is 
the ratio being equal to or  smaller  than  1.96, 

which  can  be  rearranged  directly  into  the  95%  confidence  interval: 

mean - 1.96 x standard  error I expected mean I mean + 1.96 x standard  error. 

In statistical testing,  p-value  and  confidence  interval are used  to  make 
probability statement of  a  statistical  test result. For  the ratio of  mean  and 
its standard error, the  p-value  of  5%  means  that  the  probability is 5% for 
the ratio to be larger  than 1.96. The equivalent  statement  in terms of 
confidence interval is that  the  probability is 95%  for  the  mean to be  in  the 
confidence interval.  In  reality,  the  probability of 5% does not imply  that  if 
the same study  is  repeated  100  times,  5  out  of  100  times  the ratios will be 
greater than  1.96.  For  a  single  study,  this  probability of 5% is meaninghl 
only in the sense that  the  mean of 5% p-value is more  precise  than  the 
mean of, say,  15%  p-value.  Similarly,  the  probability of 95% does not 
imply  that  if  the same study is repeated  100  times,  95  out of 100 times the 
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means  will  be  within  that  confidence  interval.  For  a  single  study,  the 
confidence  interval  of 95% is narrower  than  that  of,  say, 90%. It must be 
kept in mind that for  a single study,  whatever  probability  statement, no 
matter  it is in  terms  of  p-value  or  confidence  interval, is an  expression  of 
attitude only, not  a  prediction  of  anything  beyond  that  single  study. 

10.6 Devastating impact on clinical research 

The concept of errors  has  devastating  impact  on  the  current  clinical 
research  practice.  Because  there is a  chance  of  error  from  any  test  of 
hypothesis,  a  conclusion  from  multiple  tests  is  inevitably  opt  to  more 
chance of error  than  that  from  a  single  test.  This  creates  a  dilemma 
between the scientific  need of evaluating  as  much  information  as  possible 
and  the  resulting  unfavorable  p-value  from  multiple  tests. This is the 
notorious  issue  of  multiplicity.  The  concept  of  errors  directly  leads  to  the 
notion  of  statistical  power  and  the  practice of determining  sample  size 
with  statistical  power.  Because  statistical  power is unrealistic  and 
intangible  with  observable  measures,  it  leads  researchers  astray  from 
observable  evidence  to  an  endless  logical  gyrate. This is the mysterious 
issue of statistical  power  and  sample  size  determination. 

10.6.1 Multiplicity 

With  the  statistical  decision-making  theory of Neyman  and  Pearson, 
multiplicity is a  ubiquitous  issue.  This  issue  arises  whenever  the  results of 
multiple  statistical tests are  consolidated  for  making  a  claim.  Suppose  that 
the p-values  from  two  statistical  tests  are 0.05. By the theory  of  Neyman 
and  Pearson, the p-value  of 5% is the  probability  of  making  a  wrong 
conclusion.  If  we  draw  a  conclusion  from the results of these  two  tests, 
the  conclusion is right  only  if  the  results  of  both  tests are right.  In other 
words, the conclusion is wrong  if  the  result of any  of  the  tests is wrong. 
By the rules of  probability,  the  probability  of  making  a  false  claim  from 
two tests each  having  a  chance  of 5% is 0.05 + 0.05 = 10%. Therefore,  a 
conclusion  from  studying  two  parameters is more  likely  to be wrong  than 
that  from  studying  only  one!  In  a  system  where  p-values  from  statistical 
tests are heavily  weighted  in  decision-making,  the  multiplicity  issue 
creates a  dilemma  between the scientific  need  of  evaluating as many 
parameters as possible  and  the  disadvantage  from  the  resulting 
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unfavorable p-value for  making  a claim. The  more  you study, the  more 
the conclusion is likely to be  wrong! 

Technical strategies on statistical tests have  been  developed to get 
around this dilemma,  and  they are true mathematical nightmares. In 
statistical academia, the issue of  multiplicity is also known as the problem 
of multiple testings or multiple comparisons. Mathematical statisticians 
attack this problem  by either using  order statistics to reduce the number  of 
tests, or assuming  a  uniform  distribution  of the p-values and  comparing 
the combined p-value to the chi-square distribution with  one degree of 
freedom. Applied statisticians tend  to  favor  a hierarchical pyramid  for the 
parameters of interest. In research protocols, this pyramid  often appears 
with a single “primary” parameter on the top  followed  by  numerous 
“secondary” and  even “tertiary” parameters. The advantage of testing 
only the primary parameter is often offset by  the  excessive risk of betting 
the entire trial on  a single cast. The  most bizarre strategy is using 
composite parameters, such as a  linear  combination  of spirometric 
measures  and  symptom scores. The  advantage  of testing a  giant  combo is 
offset by the obvious absurdity. 

Strategies of designing large “confirmatory” trials as opposed to small 
trials of  good quality have to do  with  the  issue  of multiplicity. Multiple 
trials inevitably involve multiple testings, whereas  a single t ia l  eliminates 
this multiplicity. Researchers who  run multiple trials to demonstrate 
consistency are punished with a diminished chance of  making  a successhl 
claim. The discouragement of interim analyses when  partial data become 
available from tial  is a direct consequence of the multiplicity issue. This 
leaves researchers little opportunities to learn and  improve clinical studies 
from  immediate feedback. End point analysis as opposed to profile 
analysis over the time course is another  strategy to avoid multiple testings. 
The result is unnecessary data manipulations and loss of information. 

The issue of  multiplicity  unnecessarily aggravates the conflict between 
clinical researchers and regulatory authorities in  the  evaluation  of clinical 
studies. Because there are so many  ways  to  get  a p-value, researchers 
might try everything to get  a  small  p-value,  and  knowing this, reviewers 
are very  skeptical  of  any analysis and  reporting  fi-om the researchers. A 
documented analysis and  reporting  plan  is  often  required before the 
researchers actually see the data.  When  data  become available and the 
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planned  analyses  are  found  inadequate,  any  “ad  hoc  analysis”  needs  to be 
carefhlly  explained in order  to  eliminate the suspicion that only  results  in 
favor of the researchers  have  been  reported. 

Ironically,  some  physicians  promote  the  folklore  that  a  normal patient 
is a  less-tested  patient  and  attribute  this  phenomenon to the  problem  of 
multiplicity.  It is true  that  the  more  we  test  a  patient,  the  more  we  will 
likely find an  abnormal  test  result  for  the  patient.  However,  a  patient  with 
an  abnormal  test  result is not  necessarily  a  sick  patient. An abnormal  test 
result  could  simply  mean  that  the  patient is an  individual  who is different 
from  the  patient  population  on  which  the  norm is defined.  While  a test 
result  labeled  abnormal  can be psychologically  stressfhl  for the patient  and 
generate  a  chain  reaction  calling  for  more  tests,  there is  no logical  problem 
with  collecting as much  information  as  possible  from  a  patient.  Only 
ethics and resources  could  hold  physicians  from  exhaustive  investigation. 

10.6.2 Statistical power  and sample size 

In the theory  of Neyman and  Pearson,  power is the  probability  of 
correctly  rejecting  a  wrong  hypothesis.  Because  there is no  knowledge a 
priori to judge whether  a  decision  to  reject  a  hypothesis is correct or not, 
the  power is, again,  an  unrealistic  concept  with no practical  meaning. To 
compute  power,  it is essential  to  assume  not  only  that  the  frequency 
distribution  of  the  data  yet to be collected  resemble  a  mathematical 
distribution,  but  also  that  a  “clinically  significant  difference’’  yet  to be 
found or confirmed  in  the  study  must be declared  before  the  study. 
Defense  for  these  assumption  and  declaration  generally  requires  making 
other  assumptions. 

If  the  standard  error is used  in  statistical  test,  the  process  for  power 
calculation  can  be  reversed to compute  the  sample  size. The following 
statement,  frequently  appearing in clinical  trial  protocols,  exemplifies  the 
typical  requirement  for  computing  sample  size.  Assuming  that  the  data 
follow  a  normal  distribution  and  the  standard  deviation  be 20, to  detect  a 
clinically  significant  difference of 20 with 5% error  protection (type I 
error),  at  least 76 patients  with 38 to  each  group  are  required  to  achieve  a 
99% power.  The  underlying  statistical  test  for  this  statement is a  t-test,  the 
analysis  of  variance  for  comparing two groups. The declared  “clinically 
significant  difference”  and  the  assumed  standard  deviation  by  and  large 
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dictate the resulting power  and  sample size. A large difference and a 
relatively small standard deviation  could result in a sample size as small as 
one patient. On the other hand, a small difference and a relatively large 
standard deviation could raise the sample size to as large as ten million 
patients. For instance, if  we declare in the previous statement that the 
difference be 300, only four patients are required to achieve that 
magnificent 99% power, whereas 7356 patients would  have to be  recruited 
if the difference was  declared to be 2. 

Because  power  and  the  sample size determined with  power are based 
on non-observable measures,  they  have never been truly useful  for clinical 
research. Behind  an apparently rigorous statement are negotiations on 
meaningless assumptions and declarations. The  final  power or sample size 
is merely  an arbitrary number tolerable by  all  parties,  and for most people, 
that number is merely whatever has been  arrived at through a process of 
complex calculation, which  could  have  been  made simpler by just looking 
at a crystal ball. Perhaps the real  motivation  behind this stubborn  belief  in 
power  is the protection that researchers wish to gain  from  assuming 
personal responsibility for  undesirable business results. Indeed, 
“inadequate power” is perhaps one  of  the  most  frequently  heard excuses 
for non-conclusive trials. 

10.7 Statistical inference and testing for equivalence 

The entire statistical decision-making theory  of  Neyman  and Pearson is 
formal logic. Statistical inference, also known as statistical testing and  test 
of hypothesis, is reasoning in  formal  logic. A hypothesis is a statement 
with exactitude. Statistical inference starts with a hypothesis, flowing out 
of  which is an  expectation quantified with a measure;  then, the expectation 
is compared to the  actual observations with  intention to contradict the 
hypothesis. 

To think in  formal logic, the hypothesis  must  be exact. Before 
anything is known  from the study, the  hypothesis  of  no effect, known as 
the null hypothesis, is perhaps  the only statement that  could possibly be 
made  with exactitude. For instance, the  null  hypothesis  for  comparing A 
and B is A - B = 0 or A + B = 1, meaning  that A and B are not different. 
Technically, the  expression  of difference or ratio is a matter of formality. 
If one has some  idea  how  much A and  B differ, the difference must be 
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precisely  specified in order  to  test  with  formal  logic. If the  hypothesized 
difference is D, the  hypothesis  of A - B = D may be transformed  into  a 
null  hypothesis  of  either A - (B + D) = 0 or (A - D) - B = 0. 

Inference in formal  logic  can  only  prove  a  hypothesis  to be false. A 
null  hypothesis is proven  to  be  false  upon  detection  of  any  difference. 
However,  failure  in  detecting  a  difference  does  not  logically  prove 
equivalence.  First,  poor  technique  or  inappropriate  measure may be 
responsible  for  the  failure.  Had  a  better  technique or an  appropriate 
measure  been  used,  the  result  might  have  been  different.  Second,  failure 
in  detecting  a  difference  does  not  exclude  other  differences,  and  given the 
experimental  nature  of  clinical  research,  there is no way to exhaustively 
test everything. 

Statistical  inference is too  rigid  to  be  useful  in  clinical  studies.  Not 
only is it  extremely  cumbersome  to  make  exact  hypotheses  about 
everything  under  exploration,  but  also is it  extremely  restrictive  that 
conclusion  can  only be drawn  by  proof  of  falsity.  In  the  current  statistics, 
all  statistical  tests  use  this  formal  logic  and  are  designed  to  prove  falsity  of 
the null hypothesis  by  detecting  a  difference.  This  one-way  logic  favoring 
large  differences  presents  a  big  problem  for  studies  where  the  primary 
interest is to  demonstrate  equivalence,  and  the  differences  between 
treatment  groups are expected  to  be  small.  For  the  same  reason  that  the 
difference  between  treatment  and  active  control  tends to be smaller  than 
that  between  treatment  and  placebo,  statistical  inference  discourages  the 
use  of  active  controls.  This  lack of statistical  tests  for  studies  where  by 
design the differences  among  treatment  groups  ought  to be small is 
referred to as the problem  of  testing  for  equivalence. 

There are  no  solutions  to the problem  of  testing  for  equivalence  within 
the  domain of Neyman and  Pearson.  The  widely  adopted  confidence 
interval  approach is a  pseudo-resolution.  The  key  to the confidence 
interval  approach is statistical  power  and  a  “clinically  significant 
difference”  declared  before  the  trial.  The  technique  itself is 
straightforward.  In  fact,  when  the  exact  difference  between the comparing 
groups is given,  a  null  hypothesis  can  be  formed  and  a  confidence  interval 
is merely  a  different  wording  of  usual  test  of  hypothesis  in  terms  of p- 
value. It is the argument  used  to justify the  technique  that requires 
scrutiny. To claim  equivalence,  the  statistical  test  must  have  extraordinary 
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power to detect  difference  of  arbitrary  size.  The  reason is that if a 
powerful  test  fails  to  detect  any  difference,  the  difference,  if  any,  may 
indeed  not  be  significant.  Then  the  question  is  how  much  difference is 
different. A recommendation  of 20% has  been  widely  adopted as a 
“clinically  significant  difference.”  If  the  difference  between  two  means 
are less than 20%, and  the  power  of  the  statistical  test is satisfactory,  the 
two  treatment  groups  will  be  considered  to  be  equivalent. 

That pseudo-solution  once  again  demonstrates  the  conflict  between  the 
exactness  required  in  statistical  inference  and  the  uncertainty  of  scientific 
exploration.  First,  statistical  power  is  a  mirage  and  entirely  non- 
observable. A power  of 99% has  no  bearing  on  the  actual  outcome. A 
doctor joke perfectly  makes  the  point. A sick  man  was  admitted  and 
telling his doctor  that he had  cancer.  “Don’t  worry,  my  son, this time I 
guarantee  you  walk  out  of  here alive.” “How  can  you  be so sure,  Doc?” 
Knowing  his  poor  prognosis,  the  man  was  very  skeptical.  “Well,  the  cure 
rate for  your  disease is lo%, and  since  nine  of  the  ten  patients  I  saw  had 
died,  you  must  be  that  lucky  one.”  More  troublesome is defining  a 
“clinically  significant  difference.” A clinical  significant  difference is what 
needs  to  be  demonstrated in the  study.  It is absurd  to  declare a difference 
in  research  document  and  later  defense  it  when  the  study  proves  otherwise. 
Moreover,  a  clinically  significant  difference is a  very  slippery  concept  and 
its real  meaning  can  be  rather  obscured.  Except  for  life  and  death,  it is 
really  disputable  to  define  clinical  significance  with  a  single  parameter. 

The only  solution  to  this  problem is to  abandon  the  rigid  test  of 
hypothesis  formalism  and  to free the  human  reasoning  power  for  true 
scientific  inference.  True  scientific  inference is presentation  of  facts  and 
exercise  of  professional  judgment.  True  scientific  inference is highly 
flexible  and  its  conclusions  are  not  always  black  and  white. In scientific 
inference,  the  formality  of  difference or equivalence is a  matter  of 
convenience,  and the problem  of  testing  for  equivalence  becomes  a  non- 
issue.  Scientifically  minded  researchers  are  conscious  of  what  effects  are 
being  examined,  how  the  effects  are  measured,  how  strong  the  observed 
evidences  are,  and  what  the  conclusion  means  for  the  benefit  of  human 
being.  Such  a  complex  human  intellectual  activity  does  not  lend  itself  to 
be completely  comprehended  by  a  system  of  formal  logic, nor to  be fully 
represented  by  any  numeric  system  and  mathematics.  There  are  times 
when  a  decision  has  to be made  and  a  point  of  determination  has  to  be 
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imposed. That is the  time  when  the  researchers  or  the  representatives  of 
different interests  must  take  personal  responsibility.  Although  statistical 
methods  may  be  utilized  to  evaluate  the  strength  of  observed  evidences 
effectively  and  to  argue  different  opinions  unambiguously,  decisions can 
only be made by people,  and  in  a  democratic  system,  the  majority  should 
prevail,  in  principle. 

10.8 The maximum likelihood technique 

In my opinion,  the  maximum  likelihood  technique  of  Ronald A. Fisher 
is truly  useful  an  analytic  technique  that  statisticians  may  offer  to  clinical 
research. It is the  core  technical  component  underlying  all  the analyhc 
methods  presented in Chapters Four, Five,  Six  and  Seven  of this book. 
The  technique  utilizes  mathematical  distribution  with  undetermined 
parameters  to  represent  the  frequency  distribution of data  values. The 
distribution  functions  for  all the data  values  are  then  multiplied  together, 
giving  rise  to  what is known as the  likelihood  function,  and  the  parameters 
are determined  by  maximizing  the  likelihood  function.  The  maximization 
guarantees  that  when  the  parameters so determined  are  substituted in the 
mathematical  distribution  functions,  the  resulting  frequencies, on average, 
best represent the observed  frequencies  of  the  data  values. A technical 
presentation  of  the  maximum  likelihood  technique is given  in  Appendix B. 

Both the maximum likelihood  technique  and the theory  of  Neyman  and 
Pearson  utilize  mathematical  distributions.  In  the  theory  of Neyman and 
Pearson,  mathematical  distribution is an  entity  that  symbolizes the 
imaginary  truth  to  determine  errors.  It is logically  necessary  that  the  data 
follow  exactly  the  assumed  mathematical  distribution.  There is no 
objective  evidence  to  sustain  the  assumption  of  distribution,  and  therefore, 
the  assumption is eternally  vulnerable  to  criticism  from  authorities. In the 
maximum likelihood  technique,  the  use  of  mathematical  distribution is 
entirely  technical. It does not require  that  the  data  follow  any 
mathematical  distribution,  and  verification  of  distribution  assumption is 
totally  unnecessary.  It  only  requires  that  the  mathematical  distribution  be 
admissible  to  all  the  data  values  and  convenient so that  the  parameters are 
interpretable.  For  instance, if the  interest is the  mean  and its standard 
deviation, the normal  distribution  with two functionally  unrelated 
parameters is very  convenient,  with  one  representing  the  mean  and the 
other the  standard  deviation  of  the  mean. A mathematical  distribution 



The Fiction behind  the  Current Statistics and Its Consequences 205 

without  sufficient parameters for the purpose results in loss of information, 
much  like  scooping oceans with  a teacup. An example is exponential and 
binomial  distribution being used for the purpose  of analysis of variance. 
These distributions have only one  parameter,  and  when  they are used to 
compute the mean  and its standard error, there is no independent 
parameter to represent standard error once the  mean  is  determined. This 
lack of  independent parameters to represent two  pieces  of information 
results in  an  artificial  dependence  between the mean  and its standard error, 
and the problem is referred to as overdispersion or underdispersion. On 
the other hand, a  mathematical distribution with too many parameters for 
the purpose results in  technical difficulties, much  like drinlang tea  with  a 
ten-gallon  drum. The problem  of ancillary parameters is due to the use of 
complex  mathematical functions, and  the  so-called conditional 
distribution, marginal distribution, and  partial  likelihood are some of the 
struggles to simplify the mathematics. 

10.9 Clinical research and statistical methods 
Clinical research is exploration of  the  unknown  world  by  humans. 

Measurement, as precise and objective as it can be, is only half of the 
researcher’s duty. The more  important  half  is judgment, which is 
ultimately  up to the  intuition  and  wisdom  of  human  beings, no matter  how 
fuzzy,  subjective  and  emotional  they  may be. In exploration of the 
unknown  world  without reference points, consistency  and operability are 
perhaps the only criteria to judge the results of clinical research. To 
establish consistency,  a large database contributed  and shared by the entire 
medical  society  is  a necessity. The convention  of paper publication of 
“statistically significant” studies should give  way  to standardization of 
study methodologies, sharing of data electronically, standardization  of data 
visualization  techniques,  and exercise of  quality  control. 

Statistics should only concern measurement  for  the purpose of clinical 
research and  unambiguous  communication.  Statistical  measurement 
should be as flexible as human reasoning and  must not be  a prisoner of 
human  intelligence. A story told  in  my  kindergarten actually makes the 
point. There was  a  man  who  measured  his  feet  and  went shopping for 
shoes. In the store  he  realized the measure  was  not  with  him.  He ran back 
home  and  came  back  with the measure,  but  the store had closed. Folks 
asked  why  not try with  his  feet at the first  place.  The  answer  was “I trust 
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my  measure  better  than  my  feet.”  The  whole  nonsense  in  the  current 
clinical  research  practice  discussed in this  chapter is very  much  like  that 
shoes-shopping  man. It is entirely  due  to  Neyman  and  Pearson  who  forced 
the  highly  flexible  human  intellectual  activity  into  a  rigid  formal  logic. 
The statistical  theory  of  Neyman  and  Pearson  was born lifeless,  and it has 
been  haunting  us  for  about  a  century.  We just have  to  have the 
intelligence  and  decency  to  sign  the  death  certificate  and  move  on to true 
scientific challenges  in  the  twenty-first  century. 



l 1  
Good Clinical Practice Guidelines 

Summary 
The ICH  good clinical practice guidelines  set an ethical and quality 

standard  for clinical investigations submitted to the regulatory 
authorities in the European  Union,  Japan  and the United States. 
Associated  with GCP  is an  evolving  body of technical guidelines with 
respect to clinical studies in general as well as in specific therapeutic 
areas. Most  of  these guidelines are published  in  Federal Regster, and 
recent publications are available electronically through the US FDA. 
This chapter introduces the ICH  good clinical practice guidelines 
concerning the role of physician as a clinical investigator and discusses 
the responsibilities of investigators, informed consent, protocol 
development  and handling of adverse  events. 

11.1 A brief history 
Misadventures  with  untested  drugs  and  well  publicized  tragedies,  as 

that  of  thalidomide,  prompted  the  regulation of pharmaceutical  products. 
A series  of legslations in  the  United  States  in  the  middle  decades of the 
twentieth  century  established  the  requirements  for  adequate  and  controlled 
clinical  studies  in  development of pharmaceutical  products  in  the US 
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jurisdiction. The US Food  and Drug Administration  (FDA)  first 
developed  a set of  guidelines  in 1970s, which  defined  the  responsibilities 
of  sponsors,  investigators,  monitors  and  institutional  review  boards.  These 
guidelines,  published  within  the  Code  of  Federal  Regulations  and  Federal 
Register,  unfolded the worldwide  development  of  good  clinical  practice 
(GCP)  guidelines.  In 1980s, GCP  guidelines  had  been  developed  and 
published  in the European  countries,  Japan,  Canada  and  Australia. The 
emerge  of  world  market  and  the  shared  concern  of  human  ultimate  interest 
drive the movement  toward  a  global  harmonization  of  the  clinical  study 
guidelines  developed in  individual  countries. A milestone  of this 
movement is the  first  International  Conference  on  Harmonization  (ICH) 
held  in  Japan  in 1995. 

The ICH  guidelines  for  good  clinical  practice  (ICH  GCP)  have  been 
suggested  for  adoption  to  facilitate  the  acceptance  of  clinical  data  by the 
regulatory  authorities in the  European  Union,  Japan  and  the  United States. 
In this chapter,  we  will  discuss  the  ICH  guidelines,  particularly  those 
concerning  the role of  physicians.  Although  these  guidelines  have  been 
primarily  developed  to  regulate  the  pharmaceutical  industry  whose focus 
is marketing  pharmaceutical  products,  the  principle  of  ethical  collection  of 
quality  data  applies to academic  clinical  research as well,  where  the 
primary  interest is treatment  options,  not  marketing  pharmaceutical 
products. 

The ICH  GCP  guidelines  as  well as other ICH technical  guidelines 
were  published  in  Federal  Register. At the  time  of  writing  this  book,  those 
documents  were  available  for  the  public  at http://www.fda.gov, under 
Regulatory  Guidance.  The  public is encouraged to comment  on  the 
guidelines in writing. 

11.2 An overview 

GCP concerns  ethics. The purpose is to  protect  the  right,  safety,  and 
well-being  of  trial  subjects  and  to  protect  the  public  from  the  results of 
incredible  trials. The guidelines  set  a  standard  to  govern  the design, 
conduct,  monitoring,  recording  and  reporting  of  clinical  studies  that are 
intended  for  submission  to  regulatory  authorities.  GCP  guidelines 
themselves are not  law,  and  compliance  with  GCP is voluntary  in  most 
countries.  However,  GCP  guidelines  are  by  and  large  initiated,  sponsored 
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and eventually adopted by  law  enforcement  agencies,  like the US  FDA. 
Therefore, for all practical purposes,  they act as law. Violation  of  GCP 
may result in rejection of  submitted data and denial of marketing. 
Discovery of  fraud  may  lead  to  government sanction, and  possibly 
criminal charges. 

In essence, GCP guidelines are consisted  of definitions of 
responsibilities to key players in clinical trials, standards of  key 
operations, and outlines of  critical  documents.  The  key players are 
sponsors, investigators and  institutional review boards (IRBs). Key 
operations are informed consent, selection  of qualified personnel, data 
acquisition and  flow, monitoring for  safety  and  prompt reporting of 
adverse events, and auditing for  quality assurance. Critical documents 
include protocol, informed consent form, investigator’s brochure, and 
study report. 

The  working  flow in a clinical  trial starts with documentation of 
planned operations. Upon approval, the  plan  is implemented, and the 
implementation is documented  to the degree that  an auditor can 
reconstruct the entire operation from  the documents. The  documented 
implementation is then  audited  against the approved  plan. The entire 
working flow is,  therefore,  documented plan, documented  implementation, 
and  documented  validation.  The  logic  behind  this  flow is this:  First,  you 
must  know  what  you are supposed to do before you do anything. Second, 
you  must do what  you are supposed  to  do. Third, whatever  you do must 
be auditable; in other words,  you  must  be able to prove to others that you 
know  and  have indeed done  what  you are supposed to do. The idea of 
auditing prompts the vital role of  documentation  for  the acceptance of 
clinical studies by  regulatory authorities. 

11.3 Benefits of compliance  with GCP guidelines 

GCP guidelines are highly  operable.  They are the  backbone  of 
standard operating procedures (SOP) in almost all international 
pharmaceutical corporations who  aggressively pursue compliance. 
Compliance  with the guidelines is no  longer  an  option but a necessity for 
success in international  commerce.  Because  studies  in compliance with 
GCP are readily acceptable by authorities that  have adopted GCP, 
compliance is the  most efficient way  to  approach a broad  market over 
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different jurisdictions. Quality  products  demonstrated  by  quality  studies 
protect  not  only  the  public  from  ineffective  and  unsafe  products,  but  also 
the  pharmaceutical  industry  from  poor  public  image  and  losses  in  lawsuits. 

For  clinical  researchers,  GCP  guidelines  must  not  be  considered as 
government  restrictions  on  industrial  clinical  trials.  They  are  a  rich  source 
of  information  for  everybody  to  design  and  conduct  ethical  and 
scientifically  sound  clinical  studies.  GCP  guidelines  help  physicians  to  be 
knowledgeable  to  the  processes  and  legal  obligations in clinical  studies,  to 
write SOPS to sustain the consistency  and  efficiency  of  a  research  team in 
today’s  dynamic  and  diverse  labor  market,  to  gain  credit  and  favorable 
publicity  by  presenting  quality  studies,  and  to  avoid  common  mistakes  and 
litigations.  Compliance  with GCP guidelines  for  clinical  investigators is 
essential  for  physicians  to  stay  in  the  mainstream  of  drug  development 
business in  the  developed  countries. 

11.4 Investigators 

An investigator  is  a  person  who  actually  conducts  the  trial.  This  person 
takes or  supervises the care  of  trial  subjects,  and  under  the  direction  of this 
person, the trial  product is administrated  to  trial  subjects. An investigator 
is a  key  player  in  clinical  trials.  This  player  links  the  sponsor, IRB, trial 
subjects,  site  staff  and  monitor  personnel. An investigator  must be 
qualified  by  education,  training  and  experience  for  taking  medical  care  of 
trial  subjects,  must  hold  the  responsibility  to  conduct  the  investigation  in 
accordance  to  the  approved  plan,  and  needs  to  have  adequate  resources  for 
fulfill  the  responsibilities. 

11.4.1 Responsibilities 

The  investigator  for  a  trial  must  know  the  investigational  product by 
reading  the  investigator’s  brochure,  protocol  and  any  other  product 
information  from the sponsor. If the  investigator  delegates  duties  to  other 
persons,  she  or  he  must be conscious  of,  preferably  document, the duties 
delegated,  and is responsible  to  inform  the  delegated  persons  of  the  trial 
product. 

The investigator  must  prepare  an  informed  consent  form,  preferably 
after  consultation  with  the IRB who  must  eventually  sign  off  the  form. 
Usually, the sponsor  provides  a  sample,  which  may  be  adopted  or 
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modified. The consent form  must  disclose  the  experimental nature of the 
trial, procedures involved, treatments under  comparison, the chance of 
being assigned to a particular treatment, expected benefits, known or 
foreseeable risks, and alternative managements other than the treatment 
under trial. The consent form  must state that it is completely  voluntary to 
participate in the trial, to continue with the trial  and to withdraw  from the 
trial, and whatever a subject chooses will not result in loss of right and 
benefit that the subject is otherwise entitled to.  Payment  and reimbursable 
expenses need to be prorated  to ensure that  participation in the trial is not 
unduly  influenced  by financial gain.  The  consent  form  must  include 
statement on confidentiality and the protection  of subjects’ identification. 
In the meanwhile, the form  must also request authorization, by signing the 
form, for legal access to the data  for  the trial or anything related to the 
trial. The tone of the writing should  be neutral, and the content must  be 
factual. The consent form  must  never  sound like advertising from  an 
automobile retailer. 

The investigator is responsible to  communicate  with the IRB to obtain 
approval for  the  protocol,  informed  consent  and advertising for patient 
recruitment. A  protocol needs to be sent to the IRJ3 for review and 
approval at least annually.  The  investigator  must  update the IRB with all 
newly developed safety issues, changes in  trial conduction, deviation from 
the protocol for any  reason  and  any  other issues that  may jeopardize the 
subjects’ right and  well  being. 

The investigator must  uphold responsibilities by signing an  agreement 
with the sponsor, and filing necessary forms to regulatory authorities, for 
instance, the FDA  Form  1572.  The  investigator  must agree to conduct the 
trial in accordance with the approved  protocol.  The  protocol  should not be 
deviated unless the trial subjects’ interest is jeopardized and there is  no 
instruction in the protocol to deal  with  the situation. Any deviations from 
the protocol  must  be  reported  to  the IRB and sponsor in  a timely fashion. 

The investigator is responsible to obtain  signed  and  dated  informed 
consent from trial subjects. Sufficient time  should  be  allowed  for subjects 
to read and  make  a decision. Questions  should  be  answered  to the 
subject’s satisfaction. The informed consent form  must  be  signed  and 
dated before any  trial  procedure is applied  to  the subject. This is a  legal 
requirement. 
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The investigator is responsible  to  collect  and  report  data as specified  in 
case  report  forms  (CRFs). The collection  and  recording  of CRF required 
data  must be accurate  and  complete. If the  data on CRFs  are  derived  from 
a  source.document,  the  data  must be consistent  with  the  source  document. 
Any  discrepancies  must  be  resolved  or  explained. To maintain  an  audit 
trail,  any  correction  or  change  must be documented,  signed  and  dated,  and 
the  original entries must  not be obscured. The investigator is responsible 
to  retain  all  documents  that  relate  to the trial  activities  at  the  site  for  at 
least two years  after  termination  of  the  clinical  development  program  from 
the  sponsor. 

The  investigator is responsible  to  report  adverse  events  to  the  sponsor. 
Serious  adverse  events  must be reported  immediately  to  the  sponsor  and 
IRB. Serious  adverse  events  should be treated  for the best  interest  of the 
subject. If that  treatment  presents  a  protocol  violation,  the  sponsor  and 
JRB should be notified.  All  correspondence  must  be  put  on writing. 
Attention  must be paid  to  preserve  blinding  and  not  to  violate  subjects’ 
confidentiality.  It is preferred  to  use  subjects’  trial  identification  number 
in  all  correspondence. 

The investigator is responsible  to  strictly  follow the instructions  from 
the  sponsor on the  storage,  dispensing  and  disposition  of  trial  product. An 
inventory  of  trial  product  must be maintained  and  kept in record. 
Collaboration  with  a  pharmacy  is  often  helpfbl in this  regard. The 
accountability  of  trial  product is vital  for  the  credibility  of  the  trial.  Upon 
audit,  the  investigator  must  be  able to demonstrate  that  the  trial  product 
was  indeed  dispensed in  accordance  to the protocol,  and  the  trial  product 
was  only  used on trial  subjects. 

11.4.2 Necessary  resources for an investigator site 
Investigators  are  usually  identified  by  reviewing  their  education, 

training  and  experience in the  medical  specialty  of  the  trial.  However, 
even  an  expert  with  great  enthusiasm in the trial may  not  qualify  to be an 
investigator.  Functionally,  an  investigator is not  viewed just as a person 
but the representative  of  a  team  and  resources  available  for  the  team. 
Although the investigator is held  for  responsibilities,  daily  activities are 
mostly camed out by  a  team  of  site  personnel  in  a  supportive  facility. 
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The patient  population  under  service  is  one  of  the  most  important 
resources. An adequate  number  of  patients  with the trial  indication 
directly  determine  whether or not  the  quota of patient  recruitment  can  be 
met  within  a  limited  time  frame. As a  candidate  investigator,  it  would  be 
most  impressive  if  you  can  present  statistics  on  the  patients  with  the  trial 
indication  who  are  under  your  care or accessible  by referral. Statistics  in 
the  local  area is also helpful  if  you  plan  advertising to speed  up  patient 
recruitment. 

To my best  knowledge,  clinical  research is not  taught  in  any  school  of 
any  lund. Therefore, a  demonstration of knowledge in GCP,  training  and 
experience  in  clinical  research  for  the  whole  team  will  add  a  competitive 
edge.  Delivery of quality  work  requires  qualified  work  force. To maintain 
a  consistent  service  over  a  long run with  today’s  dynamic  and  diverse 
labor  market,  developing  and  maintaining  SOPs,  compliant  with  GCP  and 
tailored  for  the  facility,  seem to make  good  business sense. Clinical 
research  associates (CRAs) from  any  established  pharmaceutical  company 
who  are  experienced  in site monitoring  can  be  a  rich source of  information 
for  laying  down procedures and  developing  SOPs. 

As a  candidate  investigator,  you  have to be aware of competing  trials, 
trials  that  demand  not  only  the  time  of  your  staff  but  the  patients as well. 
A good  trackmg of workload,  staff  hours  and  cost is important  not  only for 
management of the  team, but also  for  demonstrating staff availability  and 
negotiating  budget. 

Information  about IRE3 should be available.  It  includes  the  members, 
their  qualification,  services,  availability  and  fee.  Requirements of the IRE3 
should  be  disclosed  in case they  present  a  problem for the  trial. 

A properly  operated  clinical  laboratory  should  be  available. 
Certification  for  operation,  quality  control  measures,  normal  ranges,  data 
flow  and  fee  schedule  should  be  carefully  evaluated  and  presented  if 
necessary.  Special  services,  such  as  radiology,  surgery,  pathology,  and 
hospital  that  are  required  for  the  trial or for the  treatment  of  adverse  events 
should  be  available. The arrangement  with, and an assessment of, these 
services  may  have to be  presented. 

Reliable  services  from  a  quality  pharmacy are invaluable to fulfill  the 
investigator’s  responsibilities. A tour of the  pharmacy,  guided by a 
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competent  pharmacist,  should  be  planned  at  the  initial  site  visit.  The  tour 
should  show the facility  for  storage  and  dispensing  of  trial  product  and the 
security  system. The tour  must  also  show the system  for  tracking  drug 
accountability,  implementing  randomization,  and  preserving  blinding. 
Studies with  dynamic  randomization  heavily  rely  on  pharmacy  services. 
Pharmacist’s  experience in clinical  trial is highly  appreciated.  For  trial 
with  complex  randomization  and  drug  dispensing,  the  sponsor  usually 
offers training  to  pharmacists. As an  investigator,  you  should  encourage 
or  sponsor  interested  pharmacists  to  take  those  paid  learning  opportunities. 

11.5 Institutional review boards 

An institutional  review  board (IRB) or  an  independent  ethics 
committee  (IEC)  is  a  group  of  people,  usually  designated  by or affiliated 
with  an  medical  institution,  who  review  and  approve  proposed  and 
ongoing  clinical  trials. An IRE3 or  IEC  should  have  at  least  five  members, 
of  whom  one  must be independent  of  the  institution  or  trial site, one  must 
be of  nonscientific  profession,  for  instance,  an  attorney,  and one must be 
of  scientific  profession. An IRE? or  IEC  must  have  both  men  and  women. 
The objective  of IRE3 is to  protect  the  rights,  safety  and  well  being of trial 
subjects and  to  provide  public  assurance of that  protection. 

The IRE3 or  IEC  for  a  trial is responsible  to  assess  the risks to  trial 
subjects on a  continuous basis and  make  decisions  on  whether the risks to 
trial  subjects  are  minimized.  Protocol,  investigator’s  brochure,  available 
safety  information,  progress  reports,  and  any  updates or amendments  of 
the  above  documents  must  be  reviewed.  Following  the  assessment,  the 
IRB must  offer its opinion  and  document  its  decision on approval, 
modification,  disapproval,  suspension  or  termination  of  the  proposed or 
ongoing  trial. 

The IRE3 or IEC is responsible  to  ensure  that  trial  subjects  are fully 
informed.  The  informed  consent  form  must  be  reviewed  against  legal 
requirements,  government  regulations,  GCP  guidelines  and  all  other 
ethical  concerns.  Special  attention  must  be  paid to vulnerable  subjects, 
payments  to  subjects,  and  advertising  for  subject  recruitment.  Vulnerable 
subjects are children,  the  mentally  or  physically  impaired  who  might  not 
be  able  to  fully  understand  the  implications  of  being in  the  trial  and  make 
voluntary  decisions  for  their  best  interest.  The IRE3 must identify 
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vulnerable subjects and ensure that  ethical issues are addressed  and their 
interest is protected. The  IRB  must  curb  excessive  payments to subjects. 
Excessive payments  may  invalidate  informed consent and  be  considered 
as coercion. Regional or national statistics on  payments  to  trial subjects 
may  be  a  useful reference. 

The IRB or IEC communicate with the investigator, not the sponsor in 
general. Their operation is to request information, review the information, 
make  a decision and inform the investigator of the decision. IRB 
operations are regulated and subject to inspection  fiom regulatory 
authorities. Thus, the  members  must be familiar with all legal 
requirements, government regulations, and  GCP guidelines, and operate 
accordingly. Every operation must be documented  and available for audit 
and inspection. The  documents  should  be  retained  for at least three years 
after termination of the clinical development  from  the sponsor. If the IRB 
is found guilty of noncompliance, the whole  institution  may  be  sanctioned 
by regulatory authorities from  clinical  trials. 

11.6 Sponsors 
A sponsor is an  individual or any business entity who initiates, 

manages, finances and  potentially  benefits fi-om a clinical trial.  There is a 
long list of sponsor’s responsibilities in ICH  GCP  guidelines. The main 
focus here is development  of  protocol  and  handling  of adverse events. 
These are the butter and  bread  of  sponsor physicians in daily clinical trial 
business. 

11.6.1 Development of protocol 

Protocol is a comprehensive document that describes a trial from  the 
idea to the very details of operation. The  content  generally includes 
objective, design, patient population, parameters to be observed, and 
procedures for  data acquisition and analysis. The information in the 
protocol will  be  used  by  regulatory authorities to  inspect  for compliance, 
by IRBs to assess ethics, by  investigators, as part  of  the contract with the 
sponsor, to carry out the trial  in the set standard, by CFUs to design CRFs 
and monitoring guidelines, by data management  team to design database, 
and  by statisticians to initiate an analysis and reporting plan. 
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The ICH GCP guidelines  recommend  the  contents  of protocol. The 
following is a commonly  used  format to organize  those  contents: 

Title 
Describe the drug, objective,  design,  indication  and 
population. 

Contacts 
Names  and titles, numbers  and  addresses.  Emergency 
contacts must  be  included. 

Summary  (Optional) 
Briefly  describe  the  treatment,  design, time frame, population, 
and  endpoints. 

Background 
0 Summary of the  current  findings,  clinical  and  non-clinical, 

Highlight  the  rationale of this trial  in  the  above  context. 

0 Specify what  the  trial is designed to demonstrate  and claims 

with  attention  to  safety  and  potential  benefits. 

Objective 

to be made. 
Trial  Design 

Draw a flowchart.  Describe  in  detail: 
0 the  phases,  such  as  run-in,  screening,  randomization, 

follow-up  and  trial  stop, 
0 the  schedule of each  phase, 
0 data to  be  collected  in  each  phase, 
0 the schedule of procedures  and  data  acquisition. 

0 Specify  the  number of subjects  in each treatment  group. 
0 Specify  the  number of centers  initiated  and a rough  quota 

0 Delineate  the  inclusion  and  exclusion  criteria  by a series 

0 Trial subjects: 

to each center  if it is a multicenter  trial. 

of tick  boxes. 
0 Treatment: 

0 Give complete  prescription  information. 
0 Specify  permitted  and  prohibited  concomitant  treatments. 
0 Measure compliance  with,  for  example,  diary  cards, 

0 Prompt  documentation  of drug accountability. 
returned drugs. 
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Efficacy 
0 Define every efficacy parameter  and its measurement. 
0 Discuss, optional but helpful,  how  the efficacy measures 

translate to patient benefit. 
Safety 

0 Define safety parameters, including critical laboratory values. 
0 Define serious adverse events and guidelines for assessing 

0 Define criteria for  reportable  adverse events and the time 

0 Provide guidelines for the contents and extent of  safety data. 
0 Describe the system  for the flow  of  safety  data. 

0 Define criteria for patient withdrawal. 
0 Provide guidelines  for  investigating  withdrawals  with 

attention to the time and  relation  to  lack  of efficacy or 
intolerable adverse reactions. 

causality. 

frame. 

Withdrawal 

0 Specify a  follow-up plan to withdrawn  subjects, if necessary. 

0 Describe the SOPs for  handling  of CRFs, data entry, quality 

Define data  flow  and  system validation. 

Specify  sample size, design  and  the  randomization process. 
0 Define data for analysis, such as the intent-to-treat, evaluable 

Define primary  and  secondary parameters to avoid 

0 Make  a statistical analysis plan  and declare a  significant level. 

Pharmacokinetic studies, pharmacoeconomic studies. 

The SOPs for  trial  monitoring  and  internal auditing. 

(Appendices). 
0 Instruction for  shipping  and  handling  of  trial products. 

Data  management 

control (QC) and query. 

Statistics 

and  per-protocol  populations. 

unnecessary  troubles. 

Special  sections 

Quality  control 

Technical  issues 
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Description  of  test  procedures,  specimen  handling  and 
labeling, etc. 

In the pharmaceutical  industry,  the  development  of trial protocols is 
directed by an overall  product  development  plan  with  focus  on  marketing. 
A protocol is an  assembled  document  from  contributions of a team, 
consisted of physicians,  CRAs, CRF design  group,  data  management, and 
statisticians. A  medical  writer  usually  coordinates  the  team activities and 
physically assembles the  documents  from  the  involved  parties. The draft 
protocol normally circulates for  several  times for reviews  and revisions. 
The final draft is presented to the  management  team for sign off. 

11.6.2 Handling of adverse events 
Adverse event or adverse  experience is any  untoward signs, symptoms, 

or  disease  that is temporally  associated  with, not necessarily  caused  by,  the 
use of a  medicinal  product. The GCP  guidelines require expedited 
reporting of serious and  unexpected  adverse  drug reactions to regulatory 
authorities within  a  time  frame,  prompt  notification of the  discovery to the 
investigators and IRBs,  and  amendment  of  the  investigator’s  brochure 
with  the  new  information. 

The sponsor  physician is responsible  to  identify adverse events that 
require expedited  reporting. A reportable  adverse  event  must  be  serious, 
unexpected  and  possibly  caused  by  the  investigational  product. An 
adverse event is defined to be  serious  if it results  in death, is life 
threatening, requires or  prolongs  hospitalization,  results  in persistent or 
significant disability, or is a  congenital  defect.  Seriousness is defined  by 
the outcome. It must  not be confused with severity,  which describes the 
intensity. An adverse  event is defined  to  be  unexpected if the nature or 
severity is not  consistent  with  the  current  knowledge  in relevant 
documents. For  investigational  products,  the  information  in investigator’s 
brochure is commonly  used to determine  unexpectedness.  If  a  compound 
is investigated in multiple formulations  or  on  multiple  indications, it is 
important  that  the  investigator’s  brochure is specific for the  formulation  or 
indication  under  trial.  Unexpectedness is product-specific  and indication- 
specific. To qualify  for  expedited  reporting,  a  causal  relationship  between 
the adverse event and  the  investigational  product  must  be  assessed to be a 
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reasonable  possibility. The sponsor  physician  must  consult  with  the 
reporting  investigator  in  assessment of the adverse event. In general,  the 
sponsor  physician  should  not  overrule  the investigator’s assessment.  If  the 
treatment is blinded,  the  assessment of causal relationship  requires 
breaking  the  blind. The extent  of  unblinding  should  be  minimized to avoid 
compromising the validity of the  trial. 

If  an  adverse  event is fatal  or  life  threatening,  the  sponsor  must  report 
it, by  all  means, to regulatory  authorities as soon as possible but no later 
than 7 days after first knowledge  that  the case qualifies for  expedited 
reporting. The initial report should be followed  by as complete  a  report as 
possible  within 8 additional  days.  If  an  adverse  event is qualified for 
expedited reporting but not fatal  or  life-threatening,  the  sponsor  must 
report it as soon as possible  but  no  later  than 15 days after  knowledge  by 
the  sponsor. The initial  report  must  contain the information  for  identifying 
the patient, the  source of report  and  the  investigational  product.  It  must 
also  contain the information  that  describes the event  and  qualifies it to be 
reportable. To ensure  compliance,  the  timing of the  reporting  process 
must be documented. 

GCP  guidelines  list  the  following  key data elements  to  be  included  in 
expedited reports of  adverse  events.  They read as follows: 
1. Patient  details: 

Initials, 
Other  relevant  identifier  (clinical  investigation  number,  for 

Gender,  age  or  date of birth,  weight  and  height. 

Brand  name  as  reported,  International  Nonproprietary  Name 

Batch  number, 
Indication(s)  for  which  it  was  prescribed or tested, 
Dosage  form  and  strength, 
Daily  dose  and  regimen  (specify  units:  mg, d, mgkg, etc.), 
Route of administration, 
Starting  date  and  time,  stopping  date  and  time,  duration of 

example), 

2. Suspected  medicinal  product(s): 

(W, 

treatment. 
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3. Other  treatment(s): 
For  concomitant  medicinal  products  and  nonmedicinal 
product  therapies,  provide  the  same  information as for the 
suspected  product. 

4. Details of suspected  adverse  event: 
0 Full  description  of  reaction(s)  including  body site and 

severity, as well as the  criterion  for  regarding  the  report as 
serious,  if  possible,  specific  diagnosis. 
Start  date  and  time,  stop  date  and  time,  and  duration. 
Dechallenge  and  rechallenge  information. 
Setting,  e.g.,  hospital,  outpatient  clinic,  home,  nursing  home. 

0 Outcome:  Information  on  recovery  and any sequelae;  specific 
tests  and/or  treatments  and  their  results;  for  a  fatal  outcome, 
cause of  death  and  a  comment on its  possible  relationship  to 
the  suspected  reaction;  autopsy  or  other  post-mortem  findings 
if  available;  any  other  information  relevant  for  assessing the 
case. 

5. Details  on  reporter of event: 

6. Administrative  and  sponsor  details: 
Name,  address,  telephone  number  and  profession  (specialty). 

Source  of  report:  spontaneous, from a  clinical  investigation, 

Date  of the event  report  received,  country  where the event 

Type  of  report  filed  to  regulatory  authorities  (initial,  follow- 

Name,  address  and  contact  information. 
Regulatory  code  or  number  for  marketing  authorization 
dossier or clinical  investigation (IND and NDA numbers). 

the  literature. 

occurred. 

up,  etc.). 
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Data Management in Clinical Research 

Summary 
A focus  of  this  chapter is to  explain  the  qualitative  nature  of  clinically 

useful  information  for  management  of  individual  patients.  It is advocated 
that  integration  of  information is more  important  than  the  mere  precision 
of  measurement.  Under  this  thinlung is the  promotion  of  clinically 
meaningful  scales  and  data  representing  judgment. The result is 
improvement  of  efficiency  in  data  acquisition,  data  flow,  and  data  storage 
without  compromise  of  information.  Another  focus  of this chapter is to 
introduce  a  few  basic  ideas of data  management  to  individual  physicians 
who  cannot  rely  on  professional  services  for  data  management.  Those  tips 
may help  them  organize  their  data  better  and  translate  their  hard  work 
more  readily  into  analyzable  data. 

12.1 Perspective 
Clinical  data  management  (CDM) is a  profession. The book  edited by 

Rondel et. d .  is  a  good  introduction  to  that  profession.  My  perspective  in 
this  chapter is to  explore  the  collection  and  management  of  clinically 
useful  data.  This  initiative  originates  from  my  experience  in  the  analysis 
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and  reporting  of  clinical  trial  data  in  the  pharmaceutical  industry  and  with 
individual  physicians.  Clinical  studies  generate  high  volume  of  data,  and 
clinical  data  management is very  labor-intensive  and  time-consuming  a 
business. I saw  boxes  afier  boxes  of  paper  report  docked  for  review  and 
submission. I saw  working  bees,  female  mostly,  in  rows  after  rows of 
cubicles  in  data  management  department,  busy  between  computers  and 
piles  of  CRFs. I shared  the  fkustrations  of  data  cleaning  and  querying. 
However,  my  worst  experience  was  workmg  with  individual  physicians 
who conducted  clinical  research on a  shoestring  budget  and  had no 
slightest  idea on data  management. 

Ignoring  data  management  in  clinical  research is like  an  all-hated 
parsimonious  man  who  bargains  hard  for  a  diamond  and  then  throws it in  a 
trash  bin. On the other  hand,  unthoughtful  collection of everything  is  like 
mixing  diamond  and  trash in a  security  box in  the  Federal  Reserve. The 
goal of this chapter is going  through  a  thinking  process  with  focus  on 
defining  clinically  useful  information  and  providing  rudimental  guidelines 
for  individual  physicians.  The  purpose is to  avoid  waste  of  resource  on 
generating  large  amount of data of little  use  and  translate  the  hard  work  of 
individual  physicians  more  readily  into  analyzable  data. 

12.2 Grading with clinically meaningful scales 

There has  been  a  constant  struggle  to  quantify  subjective  responses in 
clinical  trials.  Grading  has  been  a  widely  accepted  practice.  However,  the 
scale of grading  remains  controversial.  The  goal  of this section is to 
promote  grading  subjective  response in clinical  meaningful  scales  and  to 
argue  against  the  use  of  equivocal  scales  in  grading. 

12.2.1 Pain scores and visual analog scale 

A ridiculous  practice in history  taking is to  ask  the  patient  to  grade  pain 
from 0 for no pain  and 10 for  the  worst  pain.  Even  worse is the  adoption 
of visual  analog  scale (VAS). A visual  analog  scale is usually  a  straight 
line  with one end  representing  the  minimum  and  the  other the maximum. 
The  patients  are  instructed to strike  a  mark  on  the  line  to  indicate the 
severity  of  their  symptoms,  and  a  distance is used  to  quantify to subjective 
responses. By  visual  analog  scale,  the  severity  of  pain,  for  instance, is 
measured  with  a  numeric  number,  say,  13.5cm. 



Data Management in Clinical  Research 223 

It is seriously doubted  that grading with scales like  pain score from 0 to 
10 or visual analog scale help  us collect any clinically meaningful 
information from the patients. The reason is that  those scales have  no 
specific meaning, and people do not think  in terms of  numeric  numbers 
without clear meanings attached to them.  At least it is my experience that 
most patients are  stunned  when  asked  to grade their  symptoms  from 0 to 
10, and  they hesitate to give  an  answer simply because they  do not know 
what those numbers  mean to them. If the patient gives an  answer right 
away,  you immediately know  that  he or she is a  professional patient, and 
you should watch out for drug seeking. Indeed, what does a pain score of 
5 mean?  How  much  more  pain does score 8 represent than does score 5? 
Should  we intervene if the  pain score is 9.5? Without clear answers to 
these questions, the pain score is totally  useless  for clinical practice. 

Not only are the data so generated  carry  no clinically useful 
information, visual analog scale or scales from 0 to 10 with  no clearly 
defined meaning  to  each  number  greatly  increase  the  volume  and 
complexity of data operation.  Imagine  that  the site personnel have to 
measure the distance and enter the number onto the CRF. If the site 
person inaccurately measures  the  distance or enters a  wrong  number  but 
within the acceptable range  on  the CRF, this error may slip through 
computer  check  and is only detectable upon  audit. Furthermore, even  if 
the site person has done anything right, the  decimal  point,  for instance, 
may  be blurred during the  transportation  of paper CRFs or completely 
missed  by the data entry technician. Finally, floaters take more  computer 
space than integers, although  nowadays this is a relatively trivial issue. 

If we carefully review the history, it is not difficult to find out that the 
real motivation behind this strange practice has to do with statistical 
testing. Because  of the mathematical  complexity  associated  with discrete 
numbers, there is a lack of  well-developed  statistical  tests  by  the  theory  of 
Neyman  and  Pearson  for  discrete  numbers. The asymptotic approximation 
is generally required to construct a sensible test, and  for some, this 
mathematical approximation is not acceptable. Some argue that abundant 
discrete scales or  visual  analog scale can pick up  subtle differences even 
though  a particular point has no specific meaning.  Indeed,  by  using 
continuous data, there might  be  a slightly better chance to obtain  a small p- 
value from statistic test  for claiming significance, for instance, between 
the mean pain scores of 14 and  15.  The  point is that  a continuous or near- 



224 Chapter 12 

continuous  scale  gives  no  clinically  useful  information,  and  because 
people  do  not  think in terms  of  numbers  for  their  symptoms,  whatever 
numbers the patients are forced  to  pick  may  not  well  represent  the  true 
messages  they  intend  to  convey. 

12.2.2 Clinically meaningful scales 

In  my  opinion,  clinically  useful  scales  should  closely  associate  with 
clinical  assessment  and  intervention.  Instead of  from 0 to 10, for  instance, 
one may simply  grade  the  severity  of  nausea  with 
0 0 for no nausea, 

1 for  nausea  but  oral  intake is adequate  and no malnutrition, 
2 for  nausea  and  nutrition  support is required. 

As another  example,  pain,  depending on the  clinical  scenario,  may be 
simply  graded  with 

0 for no pain, 
1 for  pain  but  tolerable,  knowing  the  physiology  of  pain  and  the 

2 for  pain  that  requires  relief  with  analgesics  despite  the  knowledge  of 

3 for  pain  but  drug  craving is suspected  or  documented. 
The percentage  of  patients  in  each  category  can be directly  used  by 
clinicians  to  calculate  the  benefit  and  risk  when  they  recommend  the 
treatment  to  individual  patients. A typical  calculation is this. The durable 
response  rate  with  this  best  available  treatment is 10% based  on  reliable 
studies. The risk  of  life-threatening  adverse  events  associated  with this 
treatment is 50%. However,  the  chance  of  survival  within  a  year  without 
treatment is 5%. Therefore,  the  balance is a 5% gain  in  survivorship if 
treat  but  a 50% risk  of  suffering  serious  illness  fiom  the  treatment. A 
statement,  like 0.5 improvement  in  mean  score,  does  not  help  in this kind 
of  calculation.  In  addition,  because  scales  based  on  clinical  assessment 
and  intervention are clearly  defined  and  meaningful  for  both  patients  and 
physicians,  the  result  of  study is much  more  reproducible,  and  the  data  can 
be  audited  by  referring  to  the  assessment  and  intervention in the  source 
document. 

adverse  effects  of  analgesics, 

pain  physiology  and  the  adverse  effects  of  analgesics, 

From  the  perspective  of  data  management,  a  clearly  defined scale 
system  saves  tremendous  manpower.  The  scales  can  be  easily  illustrated 
with  few  tick  boxes  on  the CRF, which  will  simplify  data  entry  and  reduce 
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the chance for errors. In fact, with  electronic CRFs, the site personnel  may 
actually select the appropriate options while interviewing the patient, and 
then print out the relevant pages to  be  included  in  the source documents 
after reviewed and signed by the physician.  If  the initial entry is correct, 
this virtually rules out any chance for error in the entire data flow. 

12.3 Raw data and data representing judgment 

Patient diaries, routine laboratory values, records of continuous 
monitoring, and  machine  generated reports often bring in  tremendous 
volume  of data, most  of  which are of little use  for  producing clinically 
relevant information. This is the time when  we  have to decide what to 
keep  in the database, for instance, every byte of the electronic signals that 
produce  an  EKG versus clinically relevant diagnosis from  an independent 
cardiologist who reads the EKG.  While electronic signals are hard data, 
the diagnosis from  an  EKG reader is a  judgment  call. 

My  view is that data representing judgment calls are at  least as good as 
raw data from routine procedures and  monitoring.  My  argument for this 
view is that the art  of  medicine  is  more  about  integration  of information 
than the mere  precision  of measurement. With so much unknown 
influences and  uncertainty, sticking with  ballpark  numbers  is not as earth- 
shuttering a disaster as missing critical information  and losing sight of the 
global picture. A qualified physician  generally has a better chance to 
interpret the data from the patient she or he is actually caring than does an 
in-house officer with  a  fancy computer. Although  human brains are losing 
the match in the  speed  of calculation to computers, human brains still  do 
much  a better job in integration  of  information  than computers do.  When 
comes to clinical evaluation  of patients, that clicht still holds true that 
system performance depends  more  on system optimization than  the 
optimization of  individual components. 

Therefore, instead of everything on  diary cards, we  may  keep the diary 
cards as source documents  and  only enter the results of diary review at 
each visit by  the site investigators. The result may be categorized into, for 
instance, compliance with treatment, noncompliance, stable disease, 
unstable disease, and etc. Routine  laboratory  should be done locally and 
reviewed by  the site investigator in reference to  the  local  norms. The 
result may be recorded as being normal  without further values and 
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abnormal  with  values  grouped  into  panels.  For  machine-generated data as 
those fkom EKG,  only  critical  parameters  with  clear  clinical  interpretations 
should be selected  and  kept  in  the  database. If such  parameters  are  not 
readily  available,  diagnoses in standard  terminology,  preferably from a 
standard  dictionary,  may be kept  in  the  database.  Subjective  evaluation is 
most  reproducible  if the criteria  are  clear  cut,  in  conformance  with  general 
practice,  and  formatted  into  a  series  of  simple  questions  with  answers 
restricted to yes  or  no. 

12.4 Data  management for physicians on a shoestring budget 
For  individuals,  data  management is not so much  about  the  data.  It is 

about  ideas  and  structures.  The  purpose  of  this  section is to  discuss  some 
basic  ideas  and  structures  for  individual  physicians  who  would  like  to 
accumulate  data  efficiently  and  have  their  data  ready  for  analysis. 

Unlike  stethoscope,  which is worn  more as a  symbol  of  medical 
profession  than  a  tool  for  diagnosis,  computer is indispensable for 
management  of  information.  While  fast  and  expensive  computers  are 
good  for  telecommunication  and  fascinating  games,  a  personal  computer 
with a  good  monitor  and  supporting  video  card is usually more than 
enough  for  managing  clinical  data  for  individual  physicians.  Tools  for 
data  management  constantly  change,  but  the  idea  and  data  structure 
seldom  do.  Therefore,  the  focus  here is to  discuss  some  basic  ideas  of  data 
management  and  data  structure.  For  all  practical  purposes,  a  spreadsheet 
is sufficient. I chose  the  Microsoft  Excel@  because  it is widely  available 
and  supports  dynamic  data  exchange  with  other  database  and  statistical 
analysis  software  packages.  If  you  never  used  a  computer,  you  may  start 
now  by  learning  few  basic  operations;  open  a  file,  edit the data, save the 
file,  and  copy the file  to  a  floppy  disk as backup.  Two  operations are 
essential  to  data  editing:  enter  and  delete. Do not  even try to  read  manual, 
consult your  high  school  children  instead.  There is  no need  to chase the 
fad  of  computer  market,  and do not  be  lured  by  unbelievable 
demonstrations. 

The key in constructing  databases is unique  identification  of 
information.  Suppose  you  do  not  have  an  idea  exactly  what  data  you are 
going to collect. An open  structure  may  be  the  only  choice.  The  structure 
is based on the  assumption  that 
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the data are measurements  from  individual patients, 
each patient may be assessed over a period  of time, and 
at each time the  same  measurement  may  be repeated several times. 

Each piece of information is uniquely identified with patient, the time of 
patient evaluation and data acquisition, the sequence of repeated 
measurement,  and a description of the measurement.  Because patient is 
the primary identifier of patient related information, it  is convenient to 
construct a separate database for patient identification: 

Patient  Identification  File 

12/23/2005 
09/15/1891 

W 04/21/1966 
SSN: social  securitv  number. MRN: medical  record  number 

Whenever a new patient is included in the study, you just simply update 
the database with  that patient’s identification  information. In this  file, 
each patient is uniquely  identified  with  the patient’s ID number,  and  this 
number  can  used  in or linked to other data files. The  following is a 
database in  open structure: 

Each  piece of information is uniquely identified with a combination of ID, 
Date, Series, and Field. 

But  this database is too  crowded. It is  going  to  be  your nightmare at 
the time of analysis when  you  have  to  gather  common  things together. If 
you  have  some  idea  on the information  you are going to collect and 
accumulate, you  may break down  the  information into panels. This is the 
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idea  of  fragmentation.  For  instance,  you  may  isolate AGBs and  group the 
parameters  into  another  database.  With  spreadsheets,  you  simply  open  a 
new sheet  and set up the database.  If  you  are  still  not  sure  whether  or not 
you may add  other  parameters  later  on,  you  may  still  use an open 
structure: 

However, if  you  have  very  much  determined  the  parameters  for a 
database,  you may adopt  a  more  closely  defined  database  structure: 

ABG Database with a  Close  Structure I 

In summary,  the  key  for  building  a  database is unique  identification  of 
information,  and  when it is feasible,  fragmentation  of  information into 
panels.  The  panels are linked  with  a  combination  of  identifiers.  Whether 
you  choose  an  open  or  close  structure is a  matter of convenience.  If  you 
are not  sure of the  parameters,  an  open  structure  allows  you  to  add 
whatever  parameters to whichever  patient. A close  structure is more 
convenient  if  you  know  the  parameters  and  chance  of  adding  more is 
small. 

Few tools may  make  data  management  easier.  You  might  want to 
build or purchase  few  dictionaries,  preferably  electronic,  for  diagnostic 
codes, drug codes,  and  perhaps  adverse  event  codes.  Numeric  data are 
ready  for  analysis.  It  is  non-standardized  text  entries  that  are  analyst’s 
nightmares.  For  instance,  today  you  enter CAD under  in  the  field  of 
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DIAGNOSIS in your database, few  weeks later, you  may enter coronary a. 
disease, and years later, you  may enter ischemic  heart  disease.  Although 
the entries are meant to represent the same disease entity, a computerized 
analysis will present these as separate entities. A dictionary will help  you 
standardize your text entries and  make  your data ready for statistical 
analysis with computers. 

If an electronic dictionary is used, I suggest that  you enter the code in 
your database. If the dictionary is on  paper,  you  need to enter both  code 
and text. Commercial dictionaries are constantly updated.  The text 
matched to a  code  today  may not be the  same  tomorrow.  By including 
code in your database, you  can always match  the  code  to whatever text 
that is current. On the other hand, if  you only enter the text in  your 
database, you  have to manually  change it if the updated dictionary adopts 
a  new nomenclature system. With code in  the database, sophisticated 
programs can actually link the code automatically  in the background to the 
text in the dictionary so that the meaning  of  the code in your database is 
automatically updated  when  the  dictionary  is  updated. 

The last thing is safety. It  is  a  good  practice  to  backup  your electronic 
files from the hard drive to numerous  floppy diskettes and  keep  two in 
your office, two  in  your briefcase, one  in  your car, and  one at your  home. 
This reduces the chance of  total loss of  data.  However,  when the master 
files are updated, all the backups  need  to  be refreshed, and  if  some  of  them 
are left unchanged, shuffling diskettes may  generate  a  good  deal  of 
confusion. If network drives are available,  it is safer to store data on 
network drives than on local  hard  drives.  Network drives are usually 
maintained by  professional services with  adequate safety measures. 
However, before you store your data on  a  professionally maintained 
network device, you  need  to first work out a confidentiality agreement 
with the service provider. 

12.5 Global clinical data management 

With the advance  of  telecommunication  technique, it is probably about 
the time to entertain the  idea  of  global clinical data management  with 
flexible services to individual clinical researchers. It  is probably too 
ambitious to  implement  a centralized system  managed  by  a single business 
entity. To me,  it is more  practical  and flexible to  implement  a  global 
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standard  to  individual  researchers  for  the  storage,  quality  control  and 
sharing of data  from  clinical  trials. The result  would be a  web of 
databases and  a  central  registration  system  for  clinical  studies,  saving the 
need  for  searching  engines.  With  such  a  web,  future  medical  publication 
will  not be just few  pages of printed  material,  but  an  invitation  to the data. 
I believe  that  only  the  United  States  government  has  the  capacity  to  initiate 
a  project like this  by  requiring  mandatory  adoption  of  a  standard for 
government  funded  research  projects  and  trials  for  marketing  government 
controlled  products  to  the  public.  The  data  with  assured  quality  and  more 
efficient use  of  scientific  information  should justify the  initial  cost  over  a 
long run. 



Appendices 

A Get results with SAS@ 

SAS@ is a  computer  software  package.  This  appendix  shows  how to 
use SAS to carry  out  the  analyses  presented  in  Chapters  Four,  Five, Six 
and Seven. 

CENTER PID VISIT TRT BSL FEVl 

0001 001 1 D 5 . 3 5  5 . 3 2  
0001 0 0 1  2 D 5 . 3 5  6 . 2 5  
0001 001 3 D 5 . 3 5  4 . 9 8  
0001 001 4 D 5 . 3 5  5 . 7 2  
0001 001 5 D 5 . 3 5  6 . 8 4  
0001 0 0 2  1 P 4 . 7 8  5 . 3 0  
0001 0 0 2  2 P 4 . 7 8  5 . 9 2  
0001 002 3 P 4 . 7 8  5 . 3 4  
0001 0 0 2  4 P 4 . 7 8  6 . 0 2  
0001 002 5 P 4 . 7 8  5 . 8 6  
0001 0 0 3  1 P 5 . 6 7  4 . 3 6  
0001 003 2 P 5 . 6 7  4 . 8 3  
0001 0 0 3  3 P 5 . 6 7  5 . 5 2  
0001 0 0 4  1 D 4 . 9 6  6 . 8 2  
0001 0 0 4  3 D 4 . 9 6  6 . 9 2  
0001 004 4 D 4 . 9 6  5 . 9 1  

A.l SAS-ready data 

Data organized  in  the  list  format  are  ready  for SAS. The above  table 
shows the  list  format  for  data  from  a  typical  multicenter  study,  where 
patients  in  each  center  are  randomly  assigned  to  treatment (TRT) groups 

g SAS is  a  registered  trademark of SAS Institute, Inc. 

23 1 
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and then  followed at a  sequence  of  visits.  Each  record  (row)  is  uniquely 
identified by  the  combination  of  CENTER, PID (patient  id)  and  VISIT. 
TRT (treatment)  and BSL (baseline)  are  patient-specific; FEVl  is visit 
specific. Columns are  referred  by names on  the  top. 

A.2 PROC GLM for the analysis of variance 
For  all  practical  purposes,  PROC  GLM is the  procedure of choice for 

the analysis of variance. GLM stands for  general linear models.  PROC 
GLM can be used to compute the means  and  their  standard errors, the least 
squares means and  their  standard  errors,  and  the  mean sums of squares for 
building an ANOVA  table. 

Suppose the  data  illustrated  in  section A.l are  ready  for analysis. For 
the analysis specified in  the  linear  model, 

fevl  =baseline + center + treatment + center-treatment  interaction 
+ residual, 

the following SAS code  produces  the  desired  summary  measures  at  each 
visit: 

Means,  Least  Squares Means, Standard  Errors  and ANOVA Table 

PROC GLM OUTSTAT=ANOVATAB DATA=in-awl; 
BY VISIT; 
CLASS center trt; 
MODEL fevl = bs l  center trt center*trt / SS4; 
LSMEANS trt / stderr pdiff out=LSM&ANS; 
OUTPUT OUT=MBANSTDR PREDICTEDdnean STDP=stderr; 

RUN; 

The means and  their  standard  errors are listed  in  the  output data file 
MEANSTDR. The least  squares  means  of  treatment  groups  and their 
standard errors are output to data  file  LSMEANS. The mean sums of 
squares for  building  the  ANOVA  table  are  output to data file 
ANOVATAB.  For  the analysis specified  in this model, 

fevl = baseline + center + poly(visit,2) + treatment 
+ treatment-poly(visit,2)  interaction + residual, 
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the mean response profiles over the time course are represented with 
quadratic curves. The  following SAS code produces  the  desired  mean 
responses and their standard errors for  all  unique combinations of the 
independent variable values. 

Means,  Standard  Errors  and ANOVA Table 

DATA  POLY;  SET Al; 
vl=visit; 
v2=visit*visit; 

CLASS  center  trt; 
MODEL  fevl = bsl center  v1  v2  trt  trt*vl  trt*v2 1 ss4; 
OUTPUT OUT=hfEXVSTDR PREDICTEDanean  STDP=stderr; 

PROC G M  OUTSTAT=ANOVATAB  DATA=poly; 

RUN; 

The  mean response profiles are best  visualized  with  graphical  display  of 
the means  and  their standard errors from  the output data set 
MEANSTDER. 

PROC GLM can also be  used  to  compute  the  three  types  of  measures 
discussed in Chapter Four, section 4.3. To get  type I measures for the 
effects of center, treatment  and  center-treatment  interaction, each factor is 
put in the model at a time: 

Type I Measures:  Means,  Standard  Errors  and ANOVA Table 

PROC  GLM  data=al; 
CLASS  center  trt; 
MODEL  fevl = center / ss4; 
LSMEANS  center / stderr  pdiff  out=LShiEANS; 

CLASS  center  trt; 
MODEL  fevl = trt / ss4; 
LSMEANS  trt / stderr  pdiff  out=LSMEANS; 

CLASS center  trt ; 
MODEL  fevl = center*trt / 9134; 
LSMEANS  center*trt / stderr  pdiff  out=LSMEANS; 

PROC  GLM  data=al; 

PROC G M  data=al; 

RUN; 
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To get type I1 measures for  the effects of center  and  treatment,  the two 
factors are put in  the  model  together  without  interaction  effects: 

Type II Measures:  Means,  Standard  Errors  and  ANOVA  Table 

PROC GLM data=al; 
CLASS center trt; 
MODEL fevl = center trt / 6 8 4 ;  
LSMEANS center trt / stderr pdifi out=LSMglLNS; 

RUN; 

To get type 111 measures  for the joint effects  of  center  and treatment, the 
two factors and  their  interaction  are  put  in  the  model: 

Type III Measures:  Means,  Standard  Errors and ANOVA  Table 

PROC GLM data=al; 
CLASS center trt; 
MODEL fevl = center trt center*trt / ss4; 
LSMEANS center*trt / stderr pdiif out=LSMEXNS; 

RUN: 

A.3 The four types of sum of squares in PROC GLM 
PROC GLM allows users to choose from four types of sum of 

squares to build an ANOVA table. Different from the three types of 
measures discussed in Chapter Four, section 4.3, these four types of sum 
of squares often confuse novice users. They are better explained with an 
example. Suppose that we  are interested in  the effects of center, 
treatment and center-treatment interaction. Those four types of sum of 
squares may be viewed as four different ways to attribute data variations 
to the factors under analysis. The type I sums of squares are the 
additional variations attributed to a factor after taking into account the 
effects of other factors before it. When the effects of multiple factors 
are analyzed simultaneously, their type I sums of squares depend upon 
the order in which these factors are entered in the model statement of 
PROC GLM. For the analysis specified in the following linear model, 

responses = center + treatment + center-treatment  interaction + residuals, 
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the following table summarizes  the  interpretation  of the three effects as 
measured  by  their type I sums  of squares: 

Because type I sums of squares are order-dependent, interaction effect 
must not stay ahead  of their single components.  For instance, if the 
order  of the factors in the model is changed to 

responses = center-treatment interaction + center + treatment + residuals, 

the type I sums  of squares of  center  and  treatment effects will be all zero. 
The following table explains the  reason: 

Center-treatment 

No variation  to  center  after  the joint effects Center effects: 

Variation due to  the joint effects of center  and 
interaction  effects: 

No variation  due  to  treatment after the joint effects Treatment effects: 

treatment 

The type I1 sums  of squares are additional  variations after taking into 
account the effects of all other factors except  for interaction effects: 

Type I1 sums  of squares have  nothing to do  with  the order in  which the 
effects are entered  in  the  model  statement.  The types I11 and IV sums  of 
squares are additional variations after taking into account any other 
effects, including interaction  effects: 
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Center effects: 

additional  variation  due to the  interaction effects Center-treatment 

additional  variation  due to treatment  after center  Treatment effects: 

additional  variation  due  to  center  after  treatment 
and  center-treatment  interaction effects 

and  center-treatment  interaction effects 

interaction effects: after  center  and  treatment effects 

Type IV may be preferred to type III sums of squares when the analysis 
includes interaction  effects and there are missing observations in  certain 
treatment arms at certain  centers. Suppose the following table represents 
the distribution  of  patients  in a study: 

Center 1 
Center 2 
Center3 I 75 I 35 I 65 

There  is  no observation in treatment group C at center 1, and  that  cell is 
known as an empty  cell. In the presence of  empty  cells, the type IV sums 
of squares are computed  from  non-empty cells that both define the effects 
of interaction and make balanced contributions to main  effects. The type 
IV sum of squares for the effects of treatment,  for  instance,  may  be 
computed from the data in centers 2 and 3, where the effects of center- 
treatment interaction can be well  defined  and each cell makes fair 
contribution for the estimate of treatment effects.  However, type TV sums 
of squares are not unique. Users need to carellly examine the estimable 
fimctions associated with each type of sums of squares,  which  may be 
requested with the El through to E4 options of the model  statement. 

The four types of sums of squares can be  easily  obtained  with the SS 
option: 

I Types I, II, III and JY Sums of Squares 

1 RUN; PROC GLM; 
CLASS center trt; 
MODEL response = center trt  center*trt / ss1 ss2 

ss3 ss4; 
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A note of caution is that when  several types of sums  of squares are 
specified for the same effects, PROC  GLM  compares all types of  sums  of 
squares to the same  residual sum of square. This may not be always 
desirable for the type I1 sums of squares when there are interaction effects 
in the model. 

Without interaction effects, all four types of  sums  of squares are the 
same. Types I11 and N sums  of squares are the same if there are no empty 
cells. When there are empty cells, the user  needs to carefully examine the 
estimable functions. The balancing property  of  type  IV  sums  of squares 
may be preferred. 

A.4 PROC MIXED for mean and individual profiles 
PROC  MIXED allows for  a matrix, as opposed to a scalar in  PROC 

GLM, to represent the residual mean  sum  of squares, which has been 
advocated by  some statistical authorities to  be  necessary  for  longitudinal 
data. For  comparing the effects of  treatment  at  each visit, the  following 
analysis, 

fevl  =baseline + center + visit + treatment + visit-treatment interaction 
+ visit-treatment-center interaction + residual, 

can be carried out with the following  SAS  code: 

Means,  Standard  Errors  and ANOVA Table 

PROC MIXED NOBOUND METHOD=ML EMpIRrcAL; 
CLASS  pid  visit  center  trt; 
MODEL  fevl = bsl center  trt  visit  visit*trt 

REPEATED / SUBJECT=pid  TYPE=UN; 
LSMEANS  visit*trt / DIFF; 
MAKE ’TESTS’ OUT=tests; 
MAKE ‘LSMEANS‘ OUT=lsmeans; 
MAKE ‘PREDMEANS’ OUT=predmean; 

visit*trt*center / PM; 

1 RUN; 

The REPEATED statement defines the  residual matrix. Although  an 
unstructured residual matrix, specified with UN, is advocated to be more 
“natural”, it is fairly  arbitrary  to choose whatever  a  matrix to expedite 
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computation, as long as the  EMPIRICAL  option is specified in the  PROC 
statement. The EMPIRICAL  option  directs  the  program  to  compute  the 
standard errors directly  with  the  residuals. The standard errors computed 
as such are robust  to  a  variety  of  matrix  structures  that  user  may  choose to 
represent  the  residual  mean  sum  of  squares.  The NOBOUND option,  a 
pure  technical  issue, directs the  program  to  accept  negative  variance 
components  to  preserve  the  relationship  among the components. The 
MAKE statements  create  three  data  sets: TESTS for  building an ANOVA 
table,  LSMEANS  for  the  least  squares  means  and  their  standard errors, 
and  PREDMEAN  for  the  means  and  their  standard  errors. 

PROC MIXEiD can  be  used  to  compute  individual  response  profiles. 
This is achieved by defining  appropriate  random  effects in the  analysis. In 
the  analysis  of  variance,  fixed  effects  define  means  whereas  random 
effects define  individual  effects  and  they  are  measured  with  the  deviations 
of  individual effects from  the  means. The following  model, 

fevl  =baseline + center + poly(visit,2) + treatment + poly(visit,2)- 
treatment  interaction + poly(visit,2)-treatment-~enter interaction 

+ RANDOM{intercept + poly(visit, 2)) + residual, 

Average  and  Individual  Response  Profiles 

DATA INDPROF; SET  Al; 
Vl=VISIT; 
V2=VISIT*VISIT; 

PROC  MIXED NOBOUND METHOD=ML EMPIRICAL; 
CLASS pid center  trt; 
MODEL fevl = bsl center trt  v1  v2  vl*trt  v2*trt 

RANDOM  intercept  v1  v2 / SUBJECT=pid; 
MAKE 'PREDICTED' OUT=all; 
MAKE ' PREDMEANS ' OUT= f ixed ; 

vl*trt*center  v2*trt*center / P  PM; 

RUN ; 
data random; 

a l l ( rename=(gred_=al l ) ) f ixed( rename=gred=f ixed) ;  

RUN; 

merge 

randomzall-fixed; 
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includes both  fixed  and  random effects. The  random effects between the 
curly brackets represent a quadratic response curve for each individual 
patient. The analysis may  be  viewed as this:  Each patient’s responses are 
characterized with  a quadratic curve, and  the  mean response curves are 
calculated fiom the individual response curves in  the  treatment groups in 
each center. The SAS code after the model produces both the average and 
individual response profiles. 

PROC  MIXED does not directly output estimates of  random effects. 
They  have to be derived  from  two data sets, PREDICTED  and 
PREDMEANS. The data step after PROC  MIXED  computes the random 
effects. 

A S  PROC GENMOD for ANOVA on an  arbitrary scale 

PROC  GENMOD allows the users to choose from a variety of 
mathematical distributions and scales for  the analysis of variance.  The 
following model  uses  the logarithmic scale: 

log[mean(fevl)] =baseline + center + treatment + center-treatment 
interaction, 

and the following SAS code computes the summary  measures: 

Mean  and  Standard  Error  at  Each  Visit 

PROC GENMOD; 
BY VISIT; 
CLASS center trt; 
MODEL fevl = bsl  center  trt  center*trt 

/ pscale distapoisson link=log 
obstats; 

RUN; 
MAKE ‘OBSTATS‘ out=obstats; 

PSCALE allows a scalar to be  incorporated  in the model to represent 
residual variations, and  is  indispensable  in case that  some  mathematical 
distributions, like the Poisson  and binomial, do not have  independent 
parameters to represent the residual  mean  sum  of squares. The  DIST 
option specifies a  mathematical distribution to represent the observed data 
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frequencies.  For  the  analysis of variance,  the  normal  distribution is most 
convenient  regardless  of  the  scale of choice. The LINK option  specifies 
the  scale.  OBSTATS is a  data  set  with  the  means  and  their  standard 
errors. 

If,  besides  a  complex  scale,  a  matrix is required  to  represent  the 
residual  mean  sum  of  squares,  not  uncommon  for  the  analysis  longitudinal 
data, the REPEATED statement  can be added. The analysis of variance 
technique with both  complex  scale  and  residual  matrix is known as the 
generalized  estimating  equations  (GEEs).  The  analysis  specified  in  the 
model: 

log[mean(fevl)] = baseline + center + visit + treatment + visit-treatment 
interaction + visit-treatment-center  interaction 

compares  the effects of  treatment  across  centers  at  each  visit. If GEEs are 
mandatory, the following SAS code  may be used to carry  out the 
computation: 

Mean  and  Standard  Error at  Each  Visit 

PROC GENMOD; 
CLASS pid visit center trt; 
MODEL fevl = bsl center trt  visit visit*trt 

visit*trt*center 
/ dist=normal link=log obstats; 

REPEATED SUBJECT=pid / TYPE=AR (1) ; 
MAKE 'OBSTATS' out=obstats; 

RUN; 

Unlike  PROC  MIXED  where  the  EMPIRICAL  option  is  required  to  direct 
the  program  computing  the  standard  errors  with  the  residuals,  PROC 
GENMOD,  at the time  of  writing  this  appendix,  automatically  utilizes 
residuals  to  estimate  the  standard  errors.  Therefore,  the  structure of the 
residual  matrix is inconsequential.  In  this  example,  the  first-order 
autoregressive  structure is picked,  specified  as  an  option  of  the REPEAT 
statement,  type = AR( 1). 
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B Linear models for the analysis of variance 
Linear models are  the  core  computational  technique  for  virtually  all  the 

analysis of variance  techniques  described  in this book.  In  more 
mathematically oriented  statistical  textbooks,  there are a  variety of 
technical specifications with  respect to parameterization  and ways to 
derive normal  equations for solving  out  parameters.  I  must  emphasize  that 
those specifications are strictly technical. The wording of two commonly 
seen technical specifications has caused  a  great  deal of confusion,  and  that 
confusion is often  exaggerated  when  inexperienced  statisticians try to 
explain them to their  non-statistical  audience. 

One technical  specification  pertains  to  the  use  of  normal  distribution  to 
derive normal  equations  for  resolving  parameters. The wording  of  that 
specification often  reads:  “The  data is assumed  to  be  normally 
distributed,” or “the data is assumed to follow  a  normal  distribution.” This 
specification  by  no  means  implies  that  the  data  must  follow  whatever  a 
specified  mathematical  distribution in order  for  the  analysis to be  valid. It 
should  be  understood as this: The normal  distribution is particularly 
convenient to compute  the  mean  and its standard  error  because  it is 
admissible to all  data  values  and  has two parameters  with  one  representing 
the  mean and the other the  standard  error. 

The other technical  specification  pertains to the  computation of pooled 
residual  mean  sum of squares. The wording of this  specification  often 
reads:  “The variations of the data  are  assumed to be  homogeneous.” This 
specification  must  not  be  interpreted  that  the  variations of the data in 
different groups have to be  the same for the  analysis to be  valid. It is 
merely a  technical  stipulation to direct  the  mathematical  manipulations so 
that  the  designated  parameter, 02 for  instance,  represents  the  pooled 
residual mean  sum of squares. A technical  difficulty  with  complex scale is 
that  the  parameter  designated  to  represent  residual  mean  sum of squares 
functionally  related to the  parameter  designed to represent the mean.  With 
the Poisson distribution  on  logarithmic scale, for  instance,  if  we  use h to 
represent  the  mean,  the  parameter  representing  its  standard error is h&, 
where 02 is the  overdispersion  parameter.  Given  the sufficient statistics, h 
and h02, although  functionally related, are in fact  independent.  Once  the 
mean  has  determined,  its  standard  error is also  determined  and  the 
residuals are the  sufficient statistics, and  it is really  a  matter of naming  the 
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standard  error  with 02, h02  or  Catherine.  Since  “homogeneity  of 
variation” is just a  rule  of  mathematical  manipulation  for our purpose,  a 
check for this “homogeneity  assumption’’ is catch 22, and  entirely 
unnecessary. 

Mathematics  has no divine  mysteries.  It is nothing  but  human 
operations  for  human  purposes. 

B.l The  maximum likelihood technique 

Let XI, x2, ..., Xn denote n observations, with their frequencies 
represented by f(x1, e), f(x2, e), ..., f(xn, e), where  f is a convenient 
mathematical distribution with unknown parameters denoted by vector 
8. The  maximum likelihood estimate of 8 is a set of values 0 such that 
f(x1, Q), f(x2, e), ..., f(Xn, 0) best represent the observed data 
frequencies on average. The process  of maximization is  done by 
forming the log-likelihood function, 

L = log(h) = log nf(xi ,  e) = c logf (x i ,  e)  
(iI, 1 i:, 

and then mathematically maximizing the log-likelihood function. The 
score equations, a ~ / % ,  are sufficient for estimating e. - 8 2 ~ ~ 1 2 ,  
known as the Fisher information, measures the precision of 0, the 
maximum likelihood estimates (MLE) of 8. The inverse of Fisher 
information approximates the standard errors of the MLEs. 

The frequency distribution of the data  values is nof required to 
resemble any mathematical distribution. The choice of mathematical 
distribution is technical. The minimal criteria for  a mathematical 
distribution for this purpose are 
0 an adequate number of  independent parameters to represent the 

the range of the mathematical function must cover all admissible 

For the analysis of variance, the  normal distribution is convenient. It has 
two independent parameters, one representing the mean  and the other the 
standard error. On the other hand, the Poisson  and binomial 
distributions, for instance, are not adequate for that purpose, not only 

desired summary measures, and 

data values. 
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because they are not admissible to negative values, but also because they 
do not have two independent parameters to represent the mean and its 
standard error. Nevertheless, if  the data values are all positive, and we 
add a parameter, known as overdispersion parameter as what the 
PSCALE option does in  PROC  GENMOD, to represent the residual 
mean sum of squares, these two mathematical distributions can be used 
to carry out all the computations that we  would normally do with a 
normal distribution. 

The maximum likelihood estimates are consistent with the 
mathematical h c t i o n  that is used to represent the observed data 
frequencies. They are also efficient in the sense that the Fisher 
information approaches to the maximum with increasing number of 
patients. The Fisher information may be used independently to measure 
the precision of maximum likelihood estimates. The validity of this 
measure has nothing to do with the sample size. If  p-value is required, 
one may multiple the MLEs with their Fisher information, and then 
compare this product to the standard normal distribution. 

B.2 General linear models 

Let Y denote the vector of responses and X denote the values of the 
explanatory variables. A general linear model is defined as E(Y) = Xp, 
where E denotes expectation or averaging. The frequencies of Y are 
represented with normal distributions, N(XP, I&), where N denotes 
normal distribution, Xp denotes the means, and 102 denotes the residual 
mean sum of squares. The maximum likelihood estimates of E(Y) are 

X(  X'X)-X'Y, 

where ""' denotes generalized inverse, and the MLE of 02 is 

[Y - E(Y)]' [Y - E(Y)]/n, 

where n is the number of observations in  Y. The standard errors of  the 
means are the diagonal elements in matrix 
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B.3 Generalized linear models  on  an arbitrary scale 

Let  Yi = (yil, yi2, ..., yid denote the t responses of patient i. A 
generalized linear model  is defined as 

g [pi =E(Yi)] = Xip+  Zibi, i being  any  of the n patients, 

where g is the function representing the scale of choice. Xip represents 
the mean responses in the group that patient i belongs to, and Zibi 
represents the average responses over the observations from patient i. 
X$ is generally referred to as the fixed effects and Zibi the random 
effects. Random effects contribute to  the  variation  of the mean 
responses represented by the fixed effects, and the contribution is 
denoted by 

The  maximum likelihood estimation of p and hi's goes  through  an 
iterative process. Function g is first linearized by the first-order Taylor 
series expansion: 

where ei = Yi - pi. The first two  moments  of  Ui are 

E(Ui) = Xip and 

where diag[g‘(pi)] is a diagonal matrix. Then a multivariate normal 
distribution is used  to represent the frequency  of  Ui: 

It is straightforward to form the log-likelihood function and apply the 
available numerical techniques to solve out p and hi's. These p and hi's 
are then plugged back into the Taylor series expansion formula to update 
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Ui, followed by another iteration of  the  maximum likelihood estimation 
of p and bi's. The entire process consists of linearization, maximization 
and gpdating (LIMU). This LIMU iteration goes on  and  on till the p and 
hi's series converge. 

If g is  identity, the model  degenerates to a mixed  linear  model: 

Yi = Xip+ Zibi + ei , for any  of the n patients. 

If the random  terms  are  dropped  out  and  the  Fisher  scoring  algorithm  is 
used  to solve the  likelihood  function,  the  model  reduces to the  generalized 
estimating equations (GEES): 

Of course,  if g is  identity,  the  random  terms  are  dropped out, and var(Yi) 
is represented  with a scalar, the  model is simply a general  linear  model: 

More  technical details on  LIMU  were  given  in  the  dissertation of Xie. 

C Analysis of variance for integrating  a series of studies 

The technique presented in this appendix is useful to perform an 
integrated analysis of variance on data from multiple studies that share 
the common treatment of interest. It  is particularly useful when  the 
studies to be integrated are designed differently with respect to group 
setup, stratification, and covariates. These differences dictate that the 
data from those studies cannot be simply pooled and analyzed with a 
single linear model. 

The idea is this: First, global factors are separated from local factors. 
Global factors are those of shared interest in the studies to be integrated. 
Local factors are those specific to individual studies. Then, we use a 
linear model, with  both  local and global factors, to specify the analysis 
for each study. The efficient scores from  the maximum likelihood 
estimation of the effects of global factor are used to represent the 
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contributions from individual studies. These  global efficient scores are 
then summed up over studies, and the effects of the global factors are 
estimated from the combined efficient scores. 

Let  Yi denote the vector of responses for study i,  and Xi denote the 
values of the explanatory variables for the same study. The explanatory 
variables are partitioned into two sets:  Xi1 represents the variables that 
are specific for study i, and  Xi2 represents the variables that are shared 
by all the studies to be integrated. If we  use the linear model, 

to specify the analysis for study i, the score equations for both Pi1  and 
P2 are 

The  combined estimate of P2 is obtained by first adding up the score 
equations for P2 from all the studies and  then solving the combined 
score equations. 

This idea can  be simply extended to the analysis of variance on an 
arbitrary scale with the LIMU algorithm discussed  in  Appendix B. A 
generalized linear model may be specified for each of the p studies, 

where g represents the scale of  choice.  By  linearization, 

where ei = Yi - Pi , and the score equations for Pi1 and P2 are, 
respectively, 
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where 
W-1 = var(Ui) = diag[g’(pi)] var(Yi) diag[g’(pi)]} 

The score equations for (32 can be simply added up together, and the 
Fisher information of the combined P2 is 

A simple algorithm is this: First, find out the maximum likelihood 
estimates for both Oil’s and P2’s  in all the studies. Then, define Zi = Ui 
- Xilp11, and solve the combined score equation for P2 iteratively. 
Given p11 ’S and P2 , the residuals, 

can be used directly to estimate var(Yi). 
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D The results of 18 trials on p blockade 

Appendices 

The following algorithm is used to derive a single  value  for  duration 
when the original  data are a range:  duration = 0.8 x lower end + 0.2 x 
upper end. 
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