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Preface

Every now and then, research interests that have hitherto been tucked away in the
recesses of the mind suddenly converge and come to the fore. So, it is with the
present contribution. Any social scientist has constantly to face up to the problem of
comparing distributions, whether across people, across nations, over time or how
they might impact on the survival of a financial entity. And the audience being what
it typically is, one has to present such comparisons and contrasts with as much
impact as possible, but also with as much brevity as limited time, and even more
limited attention (in the media for instance), typically allows. It had always struck
me how little the standard metrics really inform such comparisons.

Likewise, I had been reasonably familiar with information theory, from the time
of my Manchester Ph.D. thesis on the spectral domain and later, from the work on
income distribution of scholars like Henri Theil. But it did seem to me at the time
that the standard entropy metric, as it stood, told one remarkably little. Yet, the
fascination remained, just as I think it still does with so many researchers across
many fields.

Then, in more recent times, the epochal rise in income and wealth inequality
started to focus everyone’s attention on just how to measure and report such trends.
The thought occurred to me that instead of imposing this or that metric as an
external commentator, perhaps there was another way of looking at things, namely
from the point of view of the income earners themselves, and their collective
aggregate.

Things started to converge at this point with some earlier work on distribution
shifting, which in turn had been initiated in the context of financial risk manage-
ment. I had in addition been lucky enough to attend a series of research workshops
moderated by Guenther Loeffler of Ulm University in Germany. At one of these, in
the relaxing environment of Heligkreutztal abbey, I attended an informative talk by
Matthias Boehm, at the time a Ph.D. student, on subjectivist probability. It seemed
to me that once again, there was effectively an example of distribution shifting.

At this point, convergence was more or less complete and the present project got
underway as such. It was helped along by a Gambrinus Research Fellowship at
Dortmund Technical University where I worked in conjunction with Peter Posch
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and Daniel Ullman. Daniel’s energy and thoroughness has informed much of the
empirical work reported in our joint papers. Walter Kraemer has also been very
supportive; he knows much more about income distribution and related measures
than I will ever know.

In the latter stages of preparation, global warming has probably helped the
project along. Already famous as the windiest capital city in the world, Wellingon’s
extreme winter over the past 2 years has meant little else was possible save to cower
inside and work. However, in this respect, I was fortunate to have the encourage-
ment of Stephen Jones, regional editor of Springer Nature. Thanks also go to
Sanjiev Mathiazhagan for keeping me on the ball, as production editor, also Komala
Jaishankar. A special vote of thanks goes to two reviewers of the manuscript, who
have provided the independent perspectives and detail that can be so valuable to
any author.

Kelburn, New Zealand Roger Bowden
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Introduction

In the study that follows, the objects of comparison take the form of probability or
frequency distributions that share a contextual relevance. There is a range of such
contexts in the social sciences: over time, across different countries or social groups,
alternative investments, or of opinions. In many cases, the social importance of
comparisons calls for special attention to their meaning, with a requirement that any
proposed methodology should encompass any inherent complexity in ways that
standard textbook measures and metrics may fall short. Thus, a first and primary
agenda is to bring together an emerging body of work on measures and metrics for
the comparison of distributions, measures that in a very broad sense could be
regarded as sufficient statistics for complexity.

As to complexity in itself, a suitable vantage point is complexity as it is defined
and developed in informational entropy. In this respect, the classic Shannon entropy
metric is often reported for this or that distribution, but is rarely used; or if used, is
subject to a range of objections rooted in context. One agenda is therefore to show
that well-motivated directional decompositions of total entropy can indeed yield
more meaningful distributional comparisons. In turn, the metrics that result have
meaning in their own right, even without the need to call on a dedicated entropic
interpretation. In a social science context, they amount to a different perspective, in
which the focus shifts to how the subjects themselves might view things.

In this respect, an initial commentary on generic distributions may be in order.
A beginning student of statistics could be forgiven for thinking of the normal and
related distributions as canonical, applying not only to asymptotic sampling dis-
tributions but to the realities of physical phenomena and of economic and social
data analysis. Especially, in the latter contexts, however, a normal distribution tends
to be an exception rather than the rule. Empirical distributions are often charac-
terised by long tails in one or both directions, over time scales that may vary from
the very short run to the longer. Indeed, there would hardly be any point in studying
income distributions if a perfect bell-shaped curve was always evident.

The structural mechanisms that generate these asymmetries and temporal
changes may or may not be known. Either way, there are often welfare outcomes
associated with long tails, especially if these are more pronounced on one side. It is
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the comparison of such outcomes over different distributions that is the core agenda
of the present study.

A complete welfare evaluation could in theory be carried out if a well-defined
preference function existed between alternative distribution functions. But this itself
is a relative rarity, fraught with its own difficulties. Thus, there may not be universal
agreement between users as to what such a function should look like. Indeed,
Kenneth Arrow showed very early on that a social welfare function to reconcile
such individual preferences does not in general exist.

Likewise, textbooks of finance still exposit a portfolio theory based on an
assumption of risk aversion, meaning here a concave utility function for money. But
there is abundant behavioural evidence (as well as simple common sense) that many
investors think more in terms of a Friedman–Savage type utility function that is
concave downwards for losses, and convex upwards for gains.

In the face of variation both in context and in observer attitudes, a recourse is to
fall back on distribution metrics that summarise and convey as much information as
possible about the given distribution; and do so in brief, informative metrics.
Conventional metrics as the mean, the median, or every higher order moments fall
short in this respect. There is indeed no particular reason why metrics based on
linear or polynomial functions should convey anything except the most basic
indications as to location or shape. In particular, they fall short in indicating the
complexity dimension inherent in long tails.

In theory, complexity is captured by the Shannon or differential entropy of the
observed distribution, which is the expected value of the log of the density. Pretty
much any listing of the properties of distributions in common use will specify its
Shannon entropy, but more as a standalone item, with little if any further com-
mentary. However, this does not in itself tell us much about the way that entropic
complexity is distributed over the range space of the distribution. A first objective
of the present study is therefore to supplement such standard listings with more
informative metrics.

Informative, in this context, means that such metrics are derived using arguments
based on entropy. But to do that requires a further look at entropic complexity, and
just how this is generated or distributed over different regions of the range space. In
itself, Shannon entropy is certainly worth paying attention to in socioeconomic
work, for a distribution with higher value for its Shannon complexity is one with a
wider range of outcomes that can be either beneficial or on the other hand troubling.
But from a user point of view, the Shannon entropy tells us nothing about just
where the complexity arises—is it in a good zone or bad zone of the range space? A
financial risk manager will be concerned about complexity in the left-hand tail
region, of bad outcomes. A social commentator will likely be concerned about
complexity in the right-hand tail region, referring in the context to a wider range of
higher incomes or wealth.

In this respect, there is a difference between tail complexity and tail probability
as such. To say that the tail probability is 10% is a summary judgment that does not
tell us whether or not the remaining 10% decays very quickly thereafter. The
difference can be important in contexts such as financial risk management. Even if
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one sets a lower 5% limit as the tolerable probability for losses, what remains
beyond that can be either moderately uncomfortable or extremely damaging.

Partition entropy is designed to address this problem on a general level. It takes
the form of a function over the range space, which in the first instance tells the
observer just where the complexity is generated, breaking this down into that
associated with outcomes greater than or less than a given point. It is in effect a
binary outcome, but manifesting as a function over the range space.

The partition entropy function itself is of very simple form, nothing very
remarkable as such. But in addition to its inherent indicative value, it lends itself to
the derivation of metrics that do have quite general descriptive value and a wide
variety of potential applications. For the associated metrics, in particular those for
asymmetry and spread, turn out to have intuitive appeal in their own right. But the
entropic background completes the picture, in the process generating distributional
transformation of independent interest, notably left and right shifting of the subject
distribution. These can be used to generate an entire spectrum of distributional
shapes. In turn, the moments of these entropically shifted distributions are associ-
ated with a double smoothing of those of original distribution.

It is this property that generates the recently developed entropic metrics for
spread and asymmetry. Given an arbitrary value in the domain of the distribution,
one can assess its position relative to other points in the domain in terms of the
conditional expected values above and below. Taking differences allowing for sign
gives a net advantage or disadvantage function. Taking the absolute differences
gives a function for spread. And taking the expected values over all possible points
in the domain gives the entropic metrics for asymmetry and spread. In turn, these
can be expressed very simply in terms of the moments of the left and right entropic
shifts of the original distribution function. A unique feature is that a simple internal
change in sign converts the asymmetry metric to the spread measure. In this sense,
the entropic asymmetry and spread metrics are dual to one another.

An ultimate test of any proposed metric is the scope of its application. In this
respect, the entropic measures of asymmetry and spread must in themselves have
substantive meaning in their respective contexts. The present study builds on a
framework of applications in economics and social science for which this is the case.

The development sequence commences with Chap. 1, which establishes the
basic ideas of partition entropy and the relationship with classic Shannon entropy.
Computational aspects follow with specific reference to discrete distributions and
histograms. Applications include grade scaling in education and tail complexity and
market prices in finance.

Chapter 2 introduces the left and right entropic shifting of a given distribution,
interpreted in terms of their relationship with partition entropy. Extensions
encompass partial shifting and alternative formulations of the shifting algorithm.
Perspectives on mixture distributions follow, which can in turn be applied to
financial data and financial risk management. Entropic shifts can be used to provide
scalable smoothing kernels in graphical work, together with end correction pro-
cedures. A topical application is to climate change data. Dynamic representations
are applied to the outcome of opinion polling over time.
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Chapter 3 contains the core development of the double smoothing process and
consequent distributional metrics for spread and asymmetry. This extends to the
relationship with Gini’s mean absolute difference and to stochastic dominance. An
application is to the dynamic bias in executive remuneration.

Further applications flow in Chap. 4. Income distribution has been a perennial
topic of academic discussion, but never more so than in recent years, with the
explosion of incomes at the upper end of the scale contrasting with an overpopu-
lated lower end of the scale. The first part of the chapter shows how to interpret and
apply the new metrics for asymmetry and spread to this context. This is followed by
stock market performance in finance together with an application to the actuarial
science of survival and age distributions.

Chapter 5 resumes conceptual development with a deeper look at entropic
complexity and its metric implications. Supplementary measures for distributional
spread and asymmetry can be derived in terms of the effective concentration of
entropic mass, such that the given distribution is formally equivalent to bipolar
outcomes, for example, as ‘good’ or ‘bad’. One can think of this as a transformation
of the original probability measure to a new one that simplifies decision-making.
Applications continue to investment fund performance and to actuarial work.

Extension to bivariate and multivariate contexts follows in Chap. 6.
Interpretations of double smoothing in two or more dimensions are exposited,
together with the resulting entropic measures for spread and asymmetry. In turn,
this can be applied to economic welfare measures. A more substantive application
extends to financial market efficiency, via a conceptual concordance with the
ordered mean difference, which corresponds to a co-smoothing where a subject
variate is smoothed according to progressive values of a benchmark. The ordered
mean difference construction can be employed to examine the issue of whether high
profile offerings such as hedge funds add value, and if so whether this is aligned
with their advertised purpose.

Chapter 7 concludes with a broad-ranging discussion as to further perspectives.
This commences with the interpretation of partition entropy and associated metrics
in terms of risk constructs. Financial risk management, in particular, calls for
special attention to tail probabilities, with the left-hand tail of particular importance.
Discussion continues with a review of the generics of comparison, and whether all
the foregoing exposition should belong to the respective domains of ordinal versus
cardinal metric evaluations.

A further topic concerns how to handle comparisons that may involve subjectivist
probability. Information-based rescaling represents a way of reconciling decision
rules in such a framework with those based on mainstream decision theory. The
broader perspective is rounded off with the more conjectural discussion on organi-
sational complexity and its possible reconciliation with coding complexity.

Computation throughout is fairly straightforward and can be handled with gen-
eralist packages such as Microsoft Excel. An exception arises in the work in Chap. 2
on data smoothing and end correction. In this respect, the appendix contains some
source code in VBA that can be embedded as functions into an Excel environment.

Nearly, every topic studied in their respective chapters has its own associated
literature, which while informative is often very extensive. In order not to interrupt
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exposition with constant literature references, dedicated literature notes appear as
the final section in each chapter. The aim is to set its substantive content within the
general context. The literature notes are oriented to this purpose and should not be
regarded as comprehensive accounts of their respective bibliographies. In some
cases, the relevant literature is either (or both) classic or very large. In such cases,
the references are often limited to established textbooks rather than to the historical
original journal articles.

It could also be noted that there is an alternative line of thought, and accom-
panying literature, that deals with the information theory of model comparisons: of
two alternative models, which is the better fit for the given body of data? The
present study does not address issues of this kind, though there is some reference to
it in the literature notes to Chap. 1.

Finally, this book is a study in general statistical methodology. The early part of
each chapter develops themes of more or less universal applicability, with chapters
following on from each other as the underlying theory is progressively exposited.
The later sections of each chapter enlarge on illustrative application of the theory to
that point. Chapter 4 is a standalone departure from this model, dealing as it does
with applications of substantial economic or social importance. Readers with a
primary interest in the general body of statistical theory or techniques, as distinct
from this or that applied context, may find it helpful on first reading to skip this
chapter and indeed some of the more specific applications embedded in the later
part of each chapter.

As a general area, however, statistics finds many applications, even within the
embracing field of economics and social science. Specialists with a primary interest
in this or that particular discipline may find it helpful to have a guide to chapters
and sections of specific interest. Table 1 provides such a guide. Sections not listed
under their own headings are those that develop the general statistical methodology
that underpins such specialist areas.

Table 1 A reference breakdown of specialist interests

Specialist area Chapter and section

Actuarial science 4.4, 4.5

Climatology 2.4

Data analysis 2.4

Demography 4.4

Economics 3.4, 3.5, 4.1, 4.2, 7.3, 7.4

Education 1.6

Finance 1.7, 2.6, 3.6, 5.4, 6.3, 7.2

Political Science 2.5

Psychology 7.4

Management Science 7.5
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Chapter 1
Partition Entropy

1.1 Introduction

From the practical point of view, many of the statistical measures developed in this
book can be read and understood without any formal reference to entropy; they
have intuitive or contextual relevance just as they stand. However a fuller under-
standing of these and other operational outcomes derives from their origin in
entropy.

The idea of entropy, as a formalisation of information theory, has a long history
in several different contexts. That of specific relevance is the general notion of
complexity. Although embedded in more or less traditional probability, this adds a
dimension of its own. A distribution which is more diffuse or has longer tails is
inherently more complex than one of narrower focus. Complexity as a general
notion has several connotations, technically distinct although with a common theme
of unpredictability. The literature notes to this chapter summarise major interdis-
ciplinary variants. However the context in what follows is specifically with the idea
of entropic complexity. In what follows, Sect. 1.1 is an informal and elementary
exposition of the idea of entropic complexity, and how this relates to the con-
ventional Shannon (or differential) measure of total entropy.

Shannon entropy as such is a single metric; often reported among standard
distribution metrics, but with rather little idea conveyed as to just what it refers to
and how to use it. Hence Sect. 1.2 considers how to decompose the standard
entropy metric into different regions of the domain. Thus one could consider two
alternative distributions both with the same right hand tail probability at a given
confidence level, but one with a much longer tail from that point on. The difference
might be of considerable practical significance, and instances are reviewed in this
and the chapters that follow.

The notion of partition entropy represents such a decomposition, taking the form
of a function that differentiates between areas of high and low complexity. Two
distributions might have exactly the same value for Shannon entropy; but in itself
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this provides virtually no information as to how complexity is distributed along the
domain axis. The partition entropy function fills this gap. As a function, it measures
uncertainty in binary form, with its value at any given point capturing the indecision
in assigning either an outcome greater than that point (the ‘up’) or less (‘down’).
Section 1.3 elaborates in terms of complexity, making also a connection with the
principle of maximum likelihood. Complexity in terms of the ‘ups’ versus ‘downs’
is the stuff of professional success or failure for the financial investment commu-
nity, so a brief digression follows, which has its own entertainment value. A further
extension to the time series frequency domain illustrates the importance of the
complexity arising from asymmetry.

Substantive development resumes in Sect. 1.4. A further connection of some
importance is with the log odds function, often invoked as a description of how
gamblers behave in contexts such as horse racing. The odds of winning versus
losing reflect a binary outcome: ‘up’ for win or ‘down’ for lose. The partition
entropy at any point can be viewed in terms of the conditional expected log odds to
that point.

The core theory of partition entropy and associated metrics finds a natural
expression with continuous valued random variables. For expositional convenience,
much of the theoretical development is therefore exposited with distribution
functions over a continuous domain. In practice, however, many variables of
interest are defined over a discrete valued range space. The same basic ideas adapt
readily to the discrete case, but computational issues do arise, notably how to deal
with the log of zero. Section 1.5 turns to computational exigencies that result. One
solution is to treat the distribution function FðxÞ and its complement 1� FðxÞ
symmetrically, which in practice means basing the computation of the partiton
entropy function hðxÞ on the average of the two.

The last two substantive sections develop applications of the basic partition
entropy function. Section 1.6 deals with a problem often experienced (but more
rarely acknowledged) by educators, namely how to manage exam or coursework
marks when the grade distribution is seen as suboptimal. This is a practical exercise
in resolving operational uncertainty, which is of particular concern around the
pass-fail boundary – again, the decision as to an ‘up’ or ‘down’ as a desirable
outcome. The partition entropy function yields a scaling algorithm of more rele-
vance than traditional polynomial based formulas.

Section 1.7 invokes a principle earlier referred to, that long tails carry more
operational implications than just the tail probability as such. Thus in a financial
market context, an investor with a very high reservation price relative to the current
market price might well be prepared to buy a lot more of the stock, so that the
ultimate clearing price would reflect the operational weight of potential investment.
In turn, this is better captured by the partition entropy function in that region.

Section 1.8 concludes with the literature notes. Many research areas are at least
cognate to the ideas of the present chapter, some of substantive importance. For
reasons of space the literature review is of necessity a limited summary of what
amounts to a classic body of established work in applied probability and statistics.
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1.2 Information, Complexity and Entropy

In classical statistics information is commonly identified, directly or indirectly, with
variance or variance reduction. An estimator of a given parameter contains more
information than another if its sampling variance is smaller; or if bias exists, the
mean square error is less. In a multivariate context, R.A. Fisher’s information
matrix, consisting in the limiting second derivatives of the log likelihood function,
establishes a lower bound for the covariance matrix of any consistent estimator.
However, it will be a thesis of subsequent chapters that variance in itself is an
insufficient approach to problems of distributional uncertainty. While extensions in
the form of higher order moments for asymmetry and kurtosis can add further
insight, the classical moment approach rests on algebraic powers that need have no
intrinsic connection with more systematically developed notions of uncertainty and
risk. Moment based measures can indeed be useful for specific purposes, and
indeed much of what follows in later chapters can be justified on more or less
intuitive grounds with little or no reference to a formal framework in a theory of
information. But they do carry extra conviction where such a framework exists and
can be called upon.

Information in the structured form of entropy provides such a reference frame.
The parent notion originated in statistical mechanics, with nineteenth century
authors such as Ludwig Boltzmann and Willard Gibbs. The latter author, in par-
ticular, provided a formula for the entropy of a thermodynamic system as a prob-
ability weighted sum over microstates i of the corresponding log probabilitiesP

i pi ln pi. It was a form of this kind that provided the basis for the formal theory of
communication and coding developed by Claude Shannon, in the late 1940s, with
subsequent contributions by other prominent authors such as John Tukey. In turn,
this drew on the pioneering work of John Von Neumann in the theory of compu-
tation that underpinned the development of modern computers.

In this context, codes are a way of representing symbols in common use in a
form that can be recognised and acted upon by computing machines. Complexity,
and metrics that recognise complexity, are an important outcome that feature in the
present study. So for this reason a short non-technical review of coding may be
useful at this point.

The symbols in question take the form of a generalised alphabet. An example of
the latter is the ASCI code for English, which basically consists of all the symbols
on the standard laptop keyboard, 128 of them. The basic symbol set is often referred
to as a generalised alphabet. Quantum computers possibly excepted, mainstream
computers, or Von Neumann machines, operate via elementary switches, com-
monly represented as states ‘0’ or ‘1’ for ‘off’ or ‘on’, though alternatives such as
‘U’ (up) or ‘D’(down) can also be useful for interpretive purposes. A binary code is
then a mapping from the set of symbols to a set of code words, each of which is an
assemblage of 0,1 bits.

So suppose an alphabet list of just three symbols or states: S = {a, b, c}.
A suitable binary code might be of the form
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a ! 0

b ! 10

c ! 11

ð1:1Þ

A fourth symbol in such a series would require three bits, so d might be allocated
101, and so on. A larger symbol set will require longer code words. Thus the ASCI
set requires a seven bit binary code: 27 ¼ 128.

A binary code is then a mapping that takes the set of symbols in S to a set of
code words. Thus consider two messages each of length 10 symbols:

a b a a c a b b c a ! 010 0 01101010110 15 bitsð Þ ð1:2aÞ

a a a a b a a a a c ! 0 0 0 010 0 0 0 010 13bitsð Þ: ð1:2bÞ

The binary code (1) is actually a prefix code (or ‘Huffman’ code), which means
that there is is no codeword that is the initial segment of any other codeword in the
message set. In the above example the presence of contiguous two zero bits
automatically means a new symbol with meaning of ‘a’. The prefix property means
that a special delimit marker between codewords is not required. It is more eco-
nomical in form, meaning that any given message can be coded into a shorter
message.

It will further be noted that a simpler message, as in (1.2b), can be coded with a
shorter coded length. Indeed a given message can be regarded as a probability
distribution of the constituent symbols, defined on S. Some symbols recur with
greater probability than others. That is why the letter a in Scrabble is worth only 1
point; while z, being much rarer, is worth 10.

A symbol length function L allocates its associated number of bits, according to
a given scheme; thus in the above example LðaÞ ¼ 1; LðbÞ ¼ 2; LðcÞ ¼ 2.
A convenient algorithm sets the length of each symbol code x in inverse proportion
to its probability pðxÞ of occurring, either in any single message or in general usage.
In particular, for any symbol x 2 S a prefix code can always be found with

LðxÞ ¼ ½� log2 pðxÞ�; ð1:3aÞ

where the square brackets refer to the nearest integer greater than the given number.
Thus suppose the symbol a occurs with probability ½ in a given message, while
b and c occur with probabilities ¼ each. This would give LðaÞ ¼ 1; LðbÞ ¼
2; LðcÞ ¼ 2 bits. The expected code length for any given message can then be
obtained as

E½L� ¼
X
x

pðxÞLðxÞ: ð1:3bÞ
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For some purposes or circumstances, it is convenient to disregard the integral
part operator in expression (1.3a), so that (1.3b) becomes the non discretised form

E½L� ¼ �
X
x

pðxÞ log2 pðxÞ; ð1:4Þ

Expression (1.4) is the form generally quoted for discrete valued entropy. Its
interpretive value is as a reference for the complexity of any given message as the
expected number of bits required to code it. On such a role, the message set (1.2a)
would have entropy value of 1.486, compared with 0.923 with message (1.2b),
correctly capturing the eyeballing impression that the former is more complex than
the latter. Entropy, in other words, can be taken as a prima facie indicator of the
complexity of a given message.

The intuitive insights of complexity extend to random variables X on a discrete
valued domain. Symbols can be identified with values X ¼ xi in that domain and a
given realisation of values xi as a message that requires binary (0,1) type coding.
Leptokurtic (peaked density) distributions have a smaller range of higher proba-
bility values with shorter code lengths. As in example (1.2a), encoding a random
sample of values will lead to many smaller bit lengths and just a few longer, the
latter with very low probabilities that contribute little to the expected code length
for the random sample. Platykurtic densities endow more complexity to the random
sample, with a range of more frequently occurring probability values; example
(1.2b) is analogous. The difference can be seen in the case of a binomial distribution
Bðri; n; pÞ taking values ri = 1, 2,…, n with p the probability of success at each trial.
So on n ¼ 20 trials, maximum entropy of 3.208 arises with p ¼ 0:5. Setting p at 0.9
results in a negatively skewed and leptokurtic density, with entropy at the lower
value of 2.405.

Extension to random variables over a compact domain R takes the form of an
integral

j ¼ �
Z
R
f ðxÞ log2 f ðxÞdx ð1:5Þ

with f ðxÞ;FðxÞ the density and distribution functions at x. The values of these
integrals are widely reported as more or less standard properties of the respective
distribution functions, commonly cast in terms of the natural logarithms as ln f ðxÞ,
which differs from expression (1.5) only by the factor 1= lnð2Þ. The integral (1.5) is
often referred to as differential entropy, or sometimes just as Shannon entropy
where the context is undestood.

However, the extension to the continuous domain is not without problems. The
resulting integral can end up negative. The uniform distribution is often cited in this
respect with U(0, 1/2) an example. Over extended domains it may not even exist
(converge) as x ! �1. And indeed the concept of an infinite alphabet list (set of
symbols x) does not naturally correspond with the process of bit coding, since there
would have to be symbol codes of infinite length (n : 2n ¼ 1 has no solution).
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A recourse is to decompose the total differential entropy into components less
subject to such difficulties.

1.2.1 Entropic Decompositions

Shannon entropy is just a number, with no reference as to where uninformative
regions lie. The same value of j could equally result from a left or right skewed
distribution or again, from a perfectly symmetric one. In the course of the present
study several directional decompositions will prove useful. These enable a break-
down of total entropy into the comparative uncertainty associated with subregions
of the domain. Thus a positively skewed distribution can be expected to generate
more of its total uncertainty in the right hand tail, relative to the left hand tail or
medial region.

A first such directional decomposition is obtained using the entropies associated
with the conditional lower and upper distributions. Fix a given marker value X ¼ x.
Relative to this marker point, densities of the lower and upper conditionals are
given by

f ðXjX � xÞ ¼ f ðXÞ
FðxÞ ; f ðXjX[ xÞ ¼ f ðXÞ

1� FðxÞ

with values zero outside their respective conditional domains.
Each of these will have its own Shannon entropy:

jdðxÞ ¼ �
Z x

�1
ln

f ðXÞ
FðxÞ

� �
dX ¼ lnFðxÞ � E ½ln f ðXÞjX � x�: ð1:6aÞ

juðxÞ ¼ �
Z 1

x
ln

f ðXÞ
1� FðxÞ

� �
f ðXÞ

1� FðxÞ dX ¼ lnð1� FðxÞÞ � E ½ln f ðXÞjX[ x�:

ð1:6bÞ

It is then easy to show that total differential entropy divides into two parts:

k ¼ hðxÞþ ½FðxÞjdðxÞþ ð1� FðxÞÞjuðxÞ�: ð1:7Þ

where

hðxÞ ¼ �ðFðxÞ lnFðxÞþ ð1� FðxÞ lnð1� FðxÞÞ: ð1:8Þ

The conditional entropy components (1.6a, 1.6b) are explored further in
Sect. 3.2, also in Sect. 7.1. The function defined by expression (1.8) will be called
the partition entropy at value or marker point x. Its meaning and properties will be
explored in the sections that follow. Expression (1.7) indicates that Shannon
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differential entropy can be decomposed at any given marker value into the partition
entropy at that point plus the lower and upper conditional entropies weighted by
their respective conditional probabilities.

Expression (1.7) is not the only possible decomposition of total entropy. Chapter
7 utilises a decomposition into just two parts j ¼ jLðxÞþ jUðxÞ associated with the
respective upper or right hand, and lower left hand divisions of the domain. These
are referred to in that context as the lower and upper directional entropies. In the
present chapter expression (1.7), and in particular the partition entropy component
(1.8), forms the basis of ensuing discussion.

As a general note, transformations of the above kinds are often effected via
Radon-Nikodym (R-N) derivatives operating on the original distribution. The
present study contains several such contexts. The R-N derivative of one distribution

FqðxÞ with respect to F(x) as another is conventionally denoted by dFq

dF ¼ nq. If:

(i) The associated function nqðxÞ is nonnegative over its domain; and
(ii) has an expected value of unity

R
� nqðxÞdFðxÞ ¼ 1,

then the respective densities are related by

fqðxÞ ¼ nqðxÞf ðxÞ: ð1:9Þ

No general analytical expression exists connecting the respective distribution
functions Fq;F as such, but there are some`. Thus if we can write

FqðxÞ ¼ ð1þ nqðxÞÞFðxÞ;

then the densities must be related by expression (1.9) with nqðxÞ ¼ � lnFðxÞ. In
general, the R-N derivative must be specific to the given distribution F. However in
some cases the functional form of nqðxÞ can originate in another distribution
function with its parameters adjusted to ensure properties (i, ii) with respect to the
distribution function under consideration.

1.3 Partition Entropy

The simplest possible entropic content arises with a variable that takes just two
values, so that in effect its alphabet code list has dimension just 2. By transferring
primary attention to its distribution function, any random variable X can be
described in such terms. For any given value x within the domain, we can consider
two events, X� x and the complement X[ x. Correspondingly, the support space
of a given distribution function FðxÞ can be divided into subspaces LðxÞ ¼ fX :
X� xg and its complement RðxÞ ¼ fX : X[ xg. For brevity the symbol D (‘down’)
will often be used for the first event and U (‘up’) for its complement.
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On repeated drawings of X with the partition value x fixed, the resulting message
list takes the form of a random sequence of U’s and D’s with probabilities 1� FðxÞ
and FðxÞ. The entropy is then the expected alphabet length as

hðxÞ ¼ �½FðxÞ lnðFðxÞÞþ ð1� FðxÞÞ lnð1� FðxÞÞ�: ð1:10Þ

For the purposes of the present section it will be assumed that X is a continuous
valued random variable. Section 1.5 considers the discrete case.

The binary entropy quantity defined by expression (1.10) will be referred as the
partition entropy at x. It can be regarded as a measure of the information about the
value of the random variable X derived from knowing whether X� x or X[ x.
Expressed using natural logs to base 2, h2ðxÞ ¼ ð1= ln 2ÞhðxÞ. A potential notational
clash with the hazard function should be noted at this point (see end of chapter
literature review).

In terms of standard entropy theory, the partition entropy corresponds to the
mutual information between variable X and a regime indicator variable for the
partition into either L(x) or R(x). An alternative interpretation from classical
statistics arises in connection with a Probit variable, which takes just two values
(‘U’ and ‘D’), with respective probabilities pd ¼ probðD; hÞ; pu ¼ probðU; hÞ ¼
1� pd for a parameter h of interest. Over a sample sequence of independent
observations i ¼ 1; 2; . . .; n, the observed number of ‘ups’ might be nU and of
downs as nD. The sample likelihood would then be probðD; hÞndprobðU; hÞnu , with
the sample average log likelihood as nD

n ln probðD; hÞþ nU
n ln probðU; hÞ. With

suitable regularity conditions this tends almost surely to pu ln pu þ pd ln pd as
n ! 1. In the current context, pu ¼ FðxÞ; pd ¼ 1� FðxÞ for fixed partition point
x, and with parameters h understood. Referring back to definition (1.15) the value
�hðxÞ can thus be interpreted as the limiting log likelihood function of a Probit
experiment outcome.

Partition entropy is specific to the chosen value of x. Over the entire range of the
random variable it therefore takes the form of a function rather than a scalar. As
earlier noted, Shannon differential entropy h ¼ �E½lnðf ðxÞ� can be decomposed
into the partition or locational entropy h(x) at any specific point x in the domain of
X, plus the conditional differential entropies of the truncated distributions for
X� x;X[ x, weighted by their respective probabilities of occurring F(x), 1 − F(x)
An analogy is with the between-group and within-group sums of squares in the
analysis of variance.

If X is a continuous random variable over a range R, basic properties of the
partition entropy function can be summarised as follows:

(i) If R is the entire real line, limx!�1 hðxÞ ¼ 0;
(ii) h (x) has maximum value ln 2 at the median x ¼ xm of the distribution (or

value 1 if h(x) is expressed in logs to base 2);
(iii) The average value E½hðxÞ� ¼ R

R hðxÞf ðxÞdx ¼ 1
2.
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Over the collection of marker points x, the partition entropy function shares the
same skewness tendencies as the parent density function. Figure 1.1 illustrates for a
Gumbel distribution compared with a normal distribution.

The Normal is the distribution that maximises differential entropy for a given
variance. But relative to the Gumbel, the distribution of entropy uncertainty along
the x-axis is quite different, with higher code values apparent for the positively
skewed Gumbel in the right hand tail.

The general point is worth further elaboration. Figure 1.2 depicts the density
f ðxÞ and partition entropy function hðxÞ for a Gompertz distribution (actually
reversed from the usual to show a longer right hand tail). The points x = R and
x = L are equidistant from the median m.

With x = m (point M) a sequence of 10 realisations (as a‘message’) would have
equal proportions of U and D in sequences like U D U D U U D U D D.
A corresponding sequence with x set at R would still contain a significant number
of U’s; perhaps something like D D D U D D D D U D. The former is evidently a
more complex message. By way of comparison, suppose we set x = L. The cor-
responding message would be consist predominantly of U’s, with very few D’s. So
the ranking in terms of complexity would be M > R> L. The partition entropy
function h captures this insight: hðMÞ[ hðRÞ[ hðLÞ.

Technically speaking, the symbol set for a single realisation would be very
simple: U ! 1; D ! 0, with no real reference to the probability of either symbol
(U or D) in a given message. However, one could consider drawing repeated
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samples of a given size n, in effect establishing a sampling distribution. This would
result in an extended message set. Thus for a sample of size n = 3, the symbol set
would consist of the eight elements DDD, DDU, DUD, DUU, UDD, UDU, UUD,
UUU. Given probabilities of D, U, one can assign probabilities to each element of
the symbol set as pðDDD; pðDDUÞ; . . .; pðUUUÞ and using (4) the expected non
discretised code length of the message. One can show that for arbitrary sample size
n, the expected code length is n� hðxÞ.

The partition entropy function hðxÞ can be regarded as capturing complexity,
with specific reference as to how this varies along the range of the underlying
random variable. The issue to be explored in this and subsequent chapters is how
this insight can be exploited in decision making, and in metrics that facilitate the
judgements necessary to do this.

1.3.1 Complexity and the Psychology of Investment
Decisions

Preoccupations with ups and downs, and their relative distribution over ranges of
possible outcomes, are the very stuff of the psychology of investment decisions.
This is very evident in the context of recent or new company floats, in any form of
emergent technologies or new market opportunities. Indeed, there are investors with
an appetite for risk who specialise in this niche, either as principals in their own
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right or as unitholders in dedicated managed funds, of which there are now a fair
number.

To see the sort of decision process involved, suppose that the current share price
of a newly hatched company is P0. The first decision element is whether it will go
up (U) or down (D), as a very basic judgement at the current price. But the same
sort of judgement process is extended to all future prices. Thus the investor will be
trying to assess the relative probabilities of U’s and D’s at every price P�P0. Seen
from the perspective of the current price, an assessment must be made of tail
complexity from then on. Assessments of this kind are repeated at every subsequent
point in time, with a judgement call as to whether sufficient upside potential remains
to justify maintaining a long position. Long tail perceptions drive this form of
investment.

As always, investment decisions in general may or may not be well informed or
soundly based. In this respect, program trading provides chapter and verse. Program
traders in financial markets are characterised by paying more attention to stock price
patterns, as distinct from underlying fundamentals.

An early and still popular instance is Fibonacci trading. The Fibonacci numbers
refer to the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34…. where each number is the sum
of the previous two. They then have the fixed ratio property that to a reasonable
approximation each number is 1.618 times the preceding or 61.8% larger. In turn,
this property generates an entire sequence of such; for example, if we divide each
number by the number two places to the right we get 38.2%, and so on.

The starting point of Fibonacci trading is to take a recent experience of a
transition from a lower to a higher price. Then subdivide its range into intervals
based on the Fibonacci numbers. Starting with the midpoint of the low-high range
as zero, mark in the successively higher Fibonacci intervals as 14.5, 23.6, 38.2, 61.8
and 76.4% of the upper half interval. These numbers serve as markers for program
trading based on subsequent prices. Particular attention is given to the 61.8%
marker. It is claimed that this is commonly a reversal or ‘retracement’ point, and
would be so even without any reflexive contribution from Fibonacci traders. Once
the price has reached this point, sell signals are triggered and the price subsequently
declines, even if this is only local and the upward movement is eventually resumed.

Figure 1.3 depicts an idealised example that serves also to illustrates one (of the
many) potential flaws in the standard procedure, namely that it is based on an
arithmetic decomposition of the low-high interval and not on the underlying dis-
tribution of prices within that interval. The partition entropy functions of two
distributions A and B are depicted based on an identical range space. The popular
upper 61.8% sell point is marked in as the vertical line, as is the recommendation to
sell once this has been breached. This might make sense in the case of distribution
A. But for the platykurtic distribution B, one would be selling when considerable
upside complexity can still occur. There are still plenty of U’s as well as D’s.
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1.3.2 An Extension: The Frequency Domain

Finally, it is worth pointing out that contextual extensions exist by a process of
analogy. Time series analysis provides one such context. A regular zero mean
stationary time series ðytÞ with VarðyÞ ¼ r2 can be decomposed into frequency
specific components via the Cramer representation:

yt ¼
Z p

�p
eixtdyðwÞ;

where E½ dyðwÞj j2� ¼ r2gðxÞdw with gðwÞ as the spectral density of the process.
The latter gives the effective distribution of power (interpreted as variance) over the
frequency range. A more complex series is one for which this power is spread more
over the frequency axis. A process that consists of a single sinusoid would have
zero entropic complexity, in effect just a deterministic sine wave. At the other
extreme, the power spectrum for white noise, which has no autocorrelation struc-
ture, is flat.

Now there is nothing stop one from regarding the spectral density function gðwÞ
in the light of a probability density for the distribution of spectral power over the
interval ð�p; pÞ. The Shannon entropy is then an aggregate measure of the com-
plexity of the process. But as before this tells us nothing about how the spectral
power is distributed over the axis; is it higher at low frequencies (close to w ¼ 0) or
higher towards the extremes? The corresponding partition entropy function can be
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used to address issues of this kind. Likewise it can be employed in relative welfare
evaluations (e.g. in optimal control) of the effect of a proposed time series filter.

For the purposes of subsequent development, however, tangential extensions of
this kind remain as background possibilities, as do other constructions of the idea of
complexity such as those indicated in the literature notes. Thus in what follows, the
context is taken to be a more or less standard probability or frequency distribution
function, and complexity is interpreted as entropic complexity.

1.4 Partition Entropy and the Log Odds Function

In applications such as investing in dotcom company start-ups or horse racing,
losses are typically limited to the amount of the initial investment. Motivation for
the investment is the blue sky potential in the right hand tail area. Tail length, and
how one reacts to this becomes the focus. At any given point x, the remaining tail
length in the usual probability metric is 1� FðxÞ, effectively the right hand critical
probability. In the metric generated by the partition entropy entailed, it is simply the
value hðxÞ. The latter decays at a slower rate than does the critical probability.

Figure 1.4 depicts the two for a Gumbel distribution and for a normal distri-
bution with its standard deviation chosen to result in the same 10% tail probability
as that of the Gumbel. The gaps between the survival function 1� FðxÞ and the
partition entropy function are depicted as double headed arrows for the two dis-
tributions (marked as G for Gumbel and N for normal). The proportionate gap
between the two becomes wider as x increases along the right hand tail, indicating
that partition entropy decays less rapidly, and is moreover more responsive to
longer tails than is the distribution function as such. In this sense, gamblers can be
regarded as responding more to complexity than to strict probability. On this par-
ticular issue, Sect. 7.4 reviews more formal rationales in terms of subjectivist
probability and behavioural economics.

An insight that reinforces the role of entropic complexity in tail behaviour is the
relationship with the odds function. As before, for a given a marker value x, define
two subsets of the support space LðxÞ ¼ fX� xg; RðxÞ ¼ fX[ xg for corre-
sponding realisations of the random variable X. The logarithm of the odds that a
point taken at random will lie in L(x) relative to R(x) is then defined by

kðxÞ ¼ ln
FðxÞ

1� FðxÞ
� �

: ð1:11Þ

The complementary function �kðxÞ ¼ �kðxÞ refers to the odds of being in the
upper zone R(x) relative to L(x). The case where kðxÞ is a linear function of x leads
to the logistic distribution, so for this particular case the log odds function is a
straight line with the median as crossing point. The logistic density is leptokurtic,
with relatively short right hand tails. In contrast the Gumbel log odds is steeply
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rising in the left hand, rising only more slowly in the longer right hand tail.
Figure 1.5 illustrates, taking the normal and logistic distribution as comparators,
with respective parameters chosen to result in the same Shannon entropy, in this
case unity.

The log-odds function (1.11) is related to the density by
f ðxÞ ¼ k0ðxÞFðxÞð1� FðxÞ, and to total Shannon (differential) entropy by
H ¼ �E½lnðf ðxÞÞ� ¼ 2� E½lnðk0ðxÞÞ�. In terms of the partition entropy function,

h0ðxÞ ¼ �f ðxÞkðxÞ; hðxÞ ¼ �
Z x

�1
kðsÞf ðsÞds:

For any given marker value x, partition entropy can be written in terms of the
conditional expectation of the log odds function as

hðxÞ ¼ �FðxÞE½kðXÞjX � x� ¼ ð1� FðxÞÞE½kðXÞjX[ x�;

where the log odds function k(.) is that of the unconditional distribution function
F. A more complex right hand tail is one in which the log odds function decays less
rapidly, relative to the remaining tail probability as such.

1.5 Discrete Valued Random Variables and Histograms

Turning to discrete valued random variables, the partition entropy can be defined
for any given value X ¼ xi as:

hðxiÞ ¼ �½FðxiÞ lnðFðxiÞÞþ ð1� FðxiÞÞ lnð1� FðxiÞÞ�; i ¼ 1; 2; . . .;N:

In working with the function hðxÞ as a whole, the indeterminacy of lnð1� FðxÞÞ
at the terminal point xN is not in itself a problem, as the product with 1� FðxÞ
ensures their product as zero. In computing one simply sets the last element as
hNðxÞ ¼ 0.

However two further problems arise. The first is that if the density f ðxÞ is
symmetric, one would like the resulting partition entropy function hðxÞ to also be
symmetric. Given a discrete domain, this does not happen with the tabulation of
F as it stands. The latter starts from Fðx1Þ ¼ pðx1Þ, giving
hðx1Þ ¼ �½pðx1Þ ln pðx1Þþ ð1� pðx1ÞÞ lnð1� pðx1ÞÞ� 6¼ 0. However at the final
point xN we have FðxNÞ ¼ 1 and we set hðxNÞ ¼ 0. The resulting partition entropy
function would as a consequence not be symmetric. The second point is related, and
arises in symmetry based calculations that build on the resulting hðxÞ; examples are
given in the chapters that follow.

One way of resolving such problems is to realise that the formula for h is itself
symmetric in nature. It is written in terms both of the original distribution function
FðxÞ (e.g. ‘mortality’) and the complementary function UðxÞ ¼ 1� FðxÞ (e.g.
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‘survival’). A natural tabulation of the latter is to start at xN and accumulate
backwards, so that

UðxNÞ ¼ pðxNÞ;UðxN�1Þ ¼ UðxNÞþ pðxN�1Þ; . . .Uðx1Þ ¼ Uðx2Þþ pðx1Þ:

The implied forward version for F, written as FbðxÞ, is recovered as FbðxÞ ¼
1� UðxÞ leading to the equivalent forward recursion as

FbðxiÞ ¼ Fbðxi�1Þþ pðxi�1Þ; i ¼ 2; 3; . . .;N;

with Fbðx1Þ ¼ 0, compared with Fðx1Þ ¼ pðx1Þ as in the usual forward tabulation.
The final step is to combine both versions as a centred discrete tabulation

FcðxiÞ ¼ 0:5 � ðFðxiÞþFbðxiÞÞ.
This results in the sequence

Fcðx1Þ ¼ 0:5pðx1Þ;

FcðxiÞ ¼ Fcðxi�1Þþ 0:5ðpðxiÞþ pðxi�1ÞÞ:

Using this version results in Fcðx1Þ ¼ 0:5pðx1Þ and 1� FcðxNÞ ¼ 0:5 � pðxNÞ.
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Thus if the density is symmetric, it will follow that hðx1Þ ¼ hðxNÞ, and similarly
for other points in the x domain. In all cases involving discrete computation, it is
necessary to normalise so that the resulting densities sum to exactly unity.

Figure 1.6 illustrates with a binomial density with p = 0.5 and 20 trials. The
centred version hcðxÞ is symmetric and correctly centred on the median.

There are alternative ways to resolve the bidirectional problem, referring to the
need to accommodate both the forward (e.g. probability of death) and backward
(survival) accumulations. In some circumstances it may be justifiable to treat the
discrete data as a sample from a continuous distribution, derive a smoothed version
of F(x) and thence the computed h(x) in the form of a continuous function.
Demography provides a context of this kind. The applications that follow in this
and further chapters make use of both approaches, depending upon context.

1.6 Resolving Grade Uncertainty

Scoring systems occur in many contexts that involve individual assessment with an
element of subjectivity. They are most familiar in educational imperatives, where
students have to be assigned marks or grades for reporting purposes. However, less
formal contexts have also become pervasive in commercial life and social media.

Most scoring systems have some element of subjectivity. Even multiple choice
tests can have embedded elements of personal judgement as to question definition
or the most appropriate box to tick. Scoring consistency is a further general
problem. This can arise where multiple assessors are required for a given appli-
cation, or where results have to be standardised over time and over different social
or geographic contexts. Likewise, formal qualification systems generally try for
score equivalence across different subjects. Examples are the GSCE Uniform
Marking System in the UK or the Universities Admission Centre in Australia.

On a less formal level, the economic and personal consequences of a fail can be
serious and often expensive for students. Most experienced teachers have had to
face up to problems of assessment consistency, and even doubts as to their own
judgment, in situations where remarking may not be feasible or even a solution.
Many will have their own customary scaling algorithm. The adjustment across
lower to higher raw scores may be linear monotonic. More commonly it is modal,
utilising zero and 100 as benchmarks, with remaining polynomial parameters
chosen to generate a required mean and variance.

As noted, there may be administrative and related reasons to scale marks. But as
a matter of educational philosophy, the informational content of assessment scores
is important. For instance, there may be good reasons to argue against automatic
monotonicity, where the lower the score, the higher the upward adjustment. A very
low mark such as 5% has signalling value to the student that he or she is not suited
to the subject – scaling it up to 25% might send a wrong signal that repeating the
course could lead to success. Likewise, if the raw median falls well short of the pass
mark, this is providing information that the test is likely too difficult. In such cases,

1.5 Discrete Valued Random Variables and Histograms 17



the informational context of the decision to scale is implicitly being recognised. By
way of contrast, polynomial based scaling systems are linked more to an idealised
mark distribution, rather than one which imbeds information about the candidate or
the exam.

Partition entropy enables a scaling approach that explicitly recognises the
informational content of raw scores, which can concern not only the candidate
(particular raw score) but the scoring criterion or test itself. A realisation near the
median carries more informational value from knowing whether other marks are
likely to be greater than, or less than, the given value. The teacher should be
correspondingly less confident about a decision to fail such a student and to give the
benefit of the doubt. By way of contrast, an extreme mark such as 5 or 95% has
little entropic information value, though plenty of personal signalling content for
the candidate! The assessor can be confident that such students should either fail
with an E or be awarded an A+.

The informational approach therefore suggests a scaling algorithm that assigns
heavier weight to the marks that carry more information, which typically means
marks closer to the median than those further away. However, if for some reason
monotonic scaling is preferred, an informational theory approach based on entropic
shifting is also available (Chap. 2).

Let the original or raw scores on a given assessment be x1; x2; :. . .; xN . To see
how the partition entropy function hðxiÞ can be used to scale scores, let xm be the
median score, which is taken as the central reference (in place of the arithmetic
mean sometimes used). Further, let x�m be a desired or target median, and define the
shortfall as the difference:

shortfall ¼ x�m � xm:

In the basic scaling algorithm, the adjusted mark for candidate i is of the form

x�i ¼ xi þ hðxiÞ
ln 2

� �h

�shortfall ; h[ 0:

At the raw score median, hðxmÞ= ln 2 ¼ 1 so the desired median x�m is achieved.
The user defined parameter h adjusts the incidence or degree of the scaling, with
h ¼ 1 as the benchmark. Here h\1 will correspond to a more liberal treatment,
with h[ 1 as more conservative. In either case the maximum scaling effect is
achieved at the median of the raw scores; the adjustment factor determines how
rapidly this falls off away from the median.

The scaling algorithm is computationally straightforward. For the generalist user,
it can be executed using Excel worksheet functions such as Countif to establish
distribution functions directly from the alphabetical class list scores.

If it is desired that the scaling incidence is more generous short of the median,
this can be achieved with user defined parameters h0; h1 such that

18 1 Partition Entropy



hi ¼ h0 � h1 � I�ðxiÞ; 0\h1\h0;

where the unit left hand sign function I�ðxiÞ can be obtained in Excel as

I�ðxiÞ ¼ � 1
2
½signðxi � xmÞ � absðsignðxi � xmÞ�:

Criteria for choosing flexible scaling parameters are considered below.
Figure 1.7 compares scaled and unscaled Excel histograms for N = 38 student

examination marks, assembled to be representative of the decision exigencies often
met with. With a raw median mark of 45%, and a pass mark of 50%, the test has
been revealed as too tough for such students. The scaled marks have a median of 55
and a pass rate of 65.8%. However very low marks remain that way, continuing to
convey a signal to the students concerned that perhaps this subject is not for them.

1.7 Tail Complexity and Market Clearing Prices

The general theme of complexity extends to comparative complexity as between
upper and lower tails of a given distribution. A potential application is in under-
standing the clearing of market prices in financial asset trading, as in the share price
from day to day or second by second, on a stock market. Two subthemes arise: the
first concerns the actual determination of a clearing price, and the second concerns
market stability. The context in both cases is where hold, sell or buy intentions are
not uniform.

This is indeed the case in equity markets. Even the most casual perusal of
investment analyst recommendations reveals quite radical differences of opinion as
to whether a given stock is a good buy or on the other hand, a sell. There may be
relative uniformity at certain times and at others, quite fundamental differences.
Figure 1.8 illustrates with a range of analyst recommendations for JPMorgan Chase
& Co, one of the world’s major banks. A ‘buy’ zone would indicate that some
analysts think that the current price errs on the side of conservatism, while a smaller
number of analysts think quite the opposite.
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A simple model of market clearing balances up the amounts demanded (the buy
side) and the amount demanded (sell side). At any instant of time, let p be a current
quoted price, and for simplicity imagine that this is a very liquid stock, so bid-offer
gaps are ignored. For any prospective market participant, denote by xi his or her
break even (‘reservation’) price such that an order amount to buy or sell is pro-
portional to the difference xi � p, and suppose there are nðxiÞ such agents.

Specifically, the pressure from the buy side is nðxiÞðxi � pÞþ and that from the

sell side is nðxiÞðp� xiÞþ . Let f ðxiÞ ¼ nðxiÞ
N refer to a probability density of agent

breakeven prices. The market clearing price p is then given by

XN
i¼1

f ðxiÞðxi � pÞþ ¼
XN
i¼1

f ðxiÞðp� xiÞþ : ð1:12aÞ

Anticipating notation of a later chapter, let

llðpÞ ¼ EF ½xjx� p� and lrðpÞ ¼ EF ½xjx[ p�:

Then expression (1.12a) becomes

FðpÞðp� llðpÞÞ ¼ ð1� FðpÞÞðlrðpÞ � pÞ ð1:12bÞ

The solution to (1.12b) is p ¼ l, where E½xi� ¼ l is the average breakeven point
over the different agents. In this simple linear demand/supply scenario, the market
price clears to as the expected value of the respective break even points. An even
simpler model would be where each agent has the capacity to buy or sell just the
one unit of the stock. The market clearing price would then be the median p ¼ xm.

Fig. 1.8 Analyst
recommendations: JP Morgan
Chase & Co
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However, over different times and trading scenarios there is a wide range of both
intentions and capacities to either buy or sell, or on the other hand simply to hold.
And as the flow of news continues from trading period to the next, the distributions
of buy or sell intentions will change, both as to location and spread. Figure 1.9
contrasts the partition entropy functions for two alternative distributions (A, B) of
investor breakeven points, one of them with a much longer long tail in the optimist
direction. The point marked as p is a current market price. Under scenario A there is
good reason to think that the equilibrium price will autocorrect to the common
mean and median xm.

Scenario B distribution shares xm as median, so a common maximum for the
partition entropy function. But in this case the current price p has a better chance of
being an equilibrium. The market would see a flow of both sell orders (D for down)
and buy orders (U for up). At price p a broker would see very few U’s coming
through in the case of distribution A; but a mix of D’s as well as U’s in the case of
distribution B, reflecting in the case the greater entropic complexity of the right
hand tail. As earlier noted, the mean lB [ lA is a possible equilibrium clearing
price. But there is a case that such a long positive tail would also tend to suggest
that some of the more optimistic investors would put in proportionately larger buy
orders at the current price p. Thus the equilibrium price might exceed even the
mean lB. The issue of just what might result is taken up in Chap. 6, in connection
with the centre of entropy as a distribution metric.
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1.8 Literature Notes

The characterisation of exactly what is meant by complexity has taken place along
several lines in different literatures. Closest in character to the entropic approach is
Kolmogorov/Solomonoff complexity. Given a string of characters, each character
having its own allocated number of bits, one seeks the shortest possible description
of the given string in some programmable language. The length of this description
is then the total number of bits needed to code it. Kolmogorov complexity refers to
a lower bound for the total bit length among all possible programmable language.
Li and Vitanyi (1997) is a useful reference.

An alternative approach is that of Lyapunov, in the context of a time series xt.
Plotted in phase space (e.g. as xtþ 1 v: xt or as Dxt v: xt) the Lyapunov exponents
characterise the progressive volume of the phase space as reflected in the tangents,
with the object of determining whether the system converges to an attractor point.
Chaotic systems do not converge in this sense, so are considered to be more
complex. There are numerous applied studies in fields such as economics or finance
which have reference in one way or another to this line of complexity.

A less formal approach to complexity has been attempted in organisation theory,
spanning such issues as the optimum coexistence of a system’s formal structure
together with the independent or self organised actions of those who have to work
within it. However formal measures or metrics of organisational complexity have
not yet found common acceptance. Section 7.5 briefly addresses this topic.

Resuming the thread of Sect. 1.1, there are many web discussions on entropy,
though some are within the framework of thermodynamics or fluid dynamics, and
do not enter into the complexity aspect as such. Some useful texts that do are Sethna
(2006), Von Baeyer (2003), and Dugdale (1996). Applied to statistics, there are a
number of treatises and texts. Useful examples are Pinsker (1964) and Kullback
(1968).

A related topic is Kullback-Leibler information divergence. Given two alterna-
tive distributions FðxÞ; GðxÞ defined over a range * for the same apparent outcome
x, this is defined as

Z
�
gðxÞ log gðxÞ

f ðxÞdx;

or the corresponding weighted sum if x is discrete valued. This is the information
gain if G is used instead of F to model the data. In complexity terms, it is the
expected code length that would result from using G instead of the code that would
have been optimal for F, the object in both cases being to minimise the expected
code length.

Extensions to bivariate contexts are considered in Chap. 6, which includes
further relevant literature notes on entropy in general. The Wikipedia articles on
entropy, and related topics, such as information divergence and the Akaike
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information criterion for model selection, are in the main quite comprehensive and
well informed.

In economics, Georgescu-Roegen (1971) proposed to explain the course of
economic life as a progressive and irreversible transformation of ‘low entropy
natural resources’ into ‘high entropy’ economic outcomes. The usage of energy
resources is of this character, being dissipated ultimately as waste heat. Further
references to entropy in economics are in Chap. 4 in connection with income
distribution. But these do not deal explicitly with the complexity dimension, casting
discussion in terms of the conventional formula for Shannon entropy as a starting
point.

R.A. Fishers’ information matrix is formally defined by the limit in probability
(almost sure etc. as applicable) of the second derivative of the log likelihood
function. As such, its inverse gives the lower bound for the asymptotic variance of
any other consistent estimator. Any textbook of advanced statistics will have a
coverage, while Norden (1972, 1973) supplies an extensive bibliography. Its
inverse is indirectly a measure of the information content of the sampling distri-
bution of parametric estimators.

Partition entropy was introduced in Bowden (2012), under the name of loca-
tional entropy, which remains a synonym. The source contains the basic properties
of hðxÞ listed in Sect. 1.3, together with proofs.

With reference to Sect. 1.2, the range decomposition of total entropy has been
considered by Di Crescenzo and Longobardi (2002), also Asadi et al. (2005, 2006).

Fibonacci trading is exposited by many enthusiastic, but on the whole informal,
sources on the web. No formal studies have ever confirmed its empirical merit.

On the use of scaling in educational assessment, Manly (1988), Broydon (1983),
Krzanowski et al. (1985) are cognate references.

A potential notational clash is noted at this point. The notation h(x) is commonly
also used for the hazard function or survival function (the inverse is the Mills ratio)

hðxÞ ¼ f ðxÞ
1�FðxÞ, which is such that hðxÞ ¼ �d logð1�FðxÞÞ

dx .
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Chapter 2
Entropic Shifting Perspectives
and Applications

2.1 Introduction

With the passage of time or circumstance probability distributions change, and as
they do so, the allocation of entropic complexity likewise changes. The present
chapter develops a systematic way of modelling such developments. In doing so it
continues with the groundwork for the origination of the entropic metrics of later
chapters, which in themselves have value even where the underlying distributions
remain stationary.

Partition entropy provides a useful framework for distribution plasticity in its
own right. Starting from the idea of unit left and right entropic shifts (Sect. 2.1), a
calculus of partial left and right shifts, concentrators and spreaders, is developed in
Sect. 2.2.

Section 2.3 generalises to the context of distributional mixtures. The mixing
weights for such compound distributions collectively comprise a kernel function,
which is applied to a hypothesised underlying generator distribution, the latter
remaining stable as the mixing weights vary over time. The objective is then to back
out the generator, which could be identified as a long run stationary distribution.
Entropic spreading or concentration describes how distributions such as stock
market returns can end up with the long tailed property observed over longer
horizons.

Section 2.4 takes up a very common problem in applied time series analysis,
specifically its graphical presentation and interpretation. In data smoothing the need
is to filter out underlying trends from an overlay of more transitional influences and
disturbances. The partition entropy function yields a particularly convenient fil-
tering kernel, with the flexibility of ready adjustment to filter windows of differing
lengths.

An operational payoff is to the problem of end correction, where the fixed
window length has to be shortened in a systematic way as the last available data
point is approached. Density shifting, using the right entropic shift, redistributes
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kernel weight to cope with this problem in a systematic way. The topical appli-
cation is to climate change. In this case, special weight attaches to more recent
observations as supporting (or otherwise) the continuation of tends that have
become apparent with the complete kernel available with more historical
observations.

Section 2.5 turns to dynamics over time, as where preferences or social attitudes
may change quite quickly. Partial left and right shifts or their generalisations can be
a convenient way of modelling distributions of opinion as difference or differential
equations. A remarkable instance is the sea change of attitudes towards gay mar-
riage in the US.

A financial theme is continued in Sect. 2.6, which deals with risk management
constructs used in bank prudential management and insurance. The problem
addressed here is how to construct risk management limits to cope with the long
tailed property as it is generated over different horizons. Section 2.7 is the literature
review.

2.2 Left and Right Entropic Shifts

Partition entropy can be established as the difference between the values of two
distribution functions derived from the original distribution function by a process of
directed shifting. If the range space of the random variable is unidimensional then
the shifts are directed to the left and right of the original, respectively. These can be
regarded and referred to as unit shifts of the parent distribution function. Higher
dimensional range spaces are considered in Chap. 6, but the directional character is
preserved.

In all cases the new distribution functions are defined on the same range space as
the original, so the new random variable has the same domain as the random
variable from which it is derived. It is simply a change of probability measure. The
shifts are accomplished via a process that corresponds to a change of measure
accomplished via appropriately left and right oriented Radon-Nikodym derivatives,
earlier introduced in Sect. 1.2. In the present context, where the primary focus is on
specific unit shifts, the measure theoretic interpretations are not essential, but it is
useful to develop things more generally, as other types of shifts can also be con-
templated within the same framework.

Thus let P denote the original probability measure so that if B is any Borel set
(bounded and closed) in the domain, then the probability value attached to B under
the new measure is PðBÞ. Then the transformation to the new measure is accom-
plished by a function nðxÞ such that QðBÞ ¼ EP½IBn�; the transformation is often
written as n ¼ dQ

dP.
In the one dimensional and continuous case, if we start with FðxÞ to end up with

QðxÞ then nðxÞ ¼ dQ
dP ¼ dQ=dx

dP=dx, so that nðxÞ specifies the ratio of the two densities at

any given point. For this to be a valid measure shift two things are required:
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(i) nðxÞ� 0 for all x, i.e. n must be a nonnegative function; and (ii) EP½nðxÞ� ¼ 1.
The function nðxÞ is referred to as a Radon Nikodym derivative. The new density is
given by qðxÞ ¼ nðxÞpðxÞ.

In the present context, the starting point is the natural probability measure and P
is identified with an original distribution function FðxÞ. The latter is taken as
continuous; the discrete case is reserved for a later section. Two kinds of shift will
be explored, corresponding to unit left and right shifts of the original distribution
function. These are respectively defined by the R-N derivatives

nLðxÞ ¼ � lnFðxÞ
nRðxÞ ¼ � lnð1� FðxÞÞ:

Nonnegativity is apparent, while integration by parts shows that
EF ½nLðxÞ� ¼ EF ½nRðxÞ� ¼ 1. Thus nL; nR qualify as R-N derivatives for changes of
measure. Figure 2.1 depicts the left and right shift functions for the normal dis-
tribution, which is symmetric, and the Gumbel, which is skewed to the right.

The derivatives nL; nR are of independent interest. In a reliability or mortality
context, they correspond to the left and right hand hazard functions:

n0LðxÞ ¼ � f ðxÞ
FðxÞ ; n0RðxÞ ¼

f ðxÞ
1� FðxÞ
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Fig. 2.1 Shift factors for some common distributions
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Thus nRðxÞ would refer to the log of the survival function at time x.
The specific interest for present purposes arises in connection with directional

distribution shifts. Given an original density f ðxÞ, the new densities, defined on the
same range space, are given by

fLðxÞ ¼ f ðxÞnLðxÞ ¼ �f ðxÞ lnðFðxÞÞ; ð2:1aÞ

fRðxÞ ¼ f ðxÞnRðxÞ ¼ �f ðxÞ lnð1� FðxÞÞ ð2:1bÞ

The corresponding distribution functions FLðxÞ; FRðxÞ can be written in the
form

FLðxÞ ¼ FðxÞð1þ nLðxÞÞ;

ð1� FRðxÞÞ ¼ ð1� FðxÞÞð1þ nRðxÞÞ:

The right shifted version FRðxÞ is therefore homologous in form with the left
FLðxÞ, except that it is more naturally cast in terms of the ‘survival function’
complements 1� FðxÞ and 1� FRðxÞ. Explicit expressions are

FLðxÞ ¼ FðxÞð1� lnFðxÞÞ; ð2:2aÞ

FRðxÞ ¼ 1� ð1� FðxÞÞð1� lnð1� FðxÞÞÞ: ð2:2bÞ

The two distribution functions and their densities are respectively referred to as
the unit left and right shifts; partial shifts are discussed at a later point. Figure 2.2a,
b illustrate their effect for the Gumbel distribution. Figure 2.2a is the density.
A density that is already positively skewed, as in the original, becomes bunched up
to the left under L. The right shifted density assumes a less asymmetric shape. For a
symmetric density such as the normal, the left and right shifted densities are
anti-symmetric about the median, though no longer symmetric.

Figure 2.2b depicts the effects on the distribution function in the case of a unit
right shift. Vertical translation is invariant at the original median m of F; for any
distribution, FLðmÞ ¼ 1

2 ð1þ lnð2ÞÞ while FRðmÞ ¼ 1
2 ð1� lnð2ÞÞ. Horizontal

translation to points of equal cumulative probabilities requires the solution to
equations such as FLðyÞ ¼ FðxÞ and must in general be solved numerically. In
Fig. 2.2b the point x ¼ 1:0 with Fð1Þ ¼ 0:692 translates to y = 2.357 for
FRðyÞ ¼ FðxÞ.

The unit left and right shifted distribution functions FLðxÞ; FRðxÞ are directly
connected with the partition entropy function hðxÞ of Chap. 1. Inserting their
respective definitions as in expressions (2.2a, 2.2b) gives

FLðxÞ � FRðxÞ ¼ hðxÞ:
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A distribution function F exhibiting a big vertical spread between FL;FR at a
given point x has therefore a high entropic spread at that point. Or if the difference
is systematic over x, then the partition entropy function has itself a wider spread.

In terms of the respective densities,

h0ðxÞ ¼ fLðxÞ � fRðxÞ:

So the difference between the left and right shifted densities is identical to the
derivative of the partition entropy function. It follows from the density definitions
(1) that at the median m of F,

fLðmÞ ¼ fRðmÞ ¼ f ðmÞð1þ ln 2Þ:

Thus the left and right shifted densities cross at the median.
Shifts can be iterated, e.g. as FLL for further leftward translocations. Note,

however, that FLR 6¼ F, so that a leftward shift followed by a right does not restore
the original. Instead, the inversion of a given distribution F resulting from a left
shift is given by the distribution function F* that satisfies

F�
LðxÞ ¼ F � ðxÞð1� lnðF � xÞÞ ¼ FðxÞ; all x:

The formal solution to this functional equation is F � ðxÞ ¼ eW ½ð�FðxÞÞ
e þ 1�, where

Wð:Þ is the Lambert W or log product function. Similarly, F � ðxÞ ¼ 1�
eWðð1�FðxÞÞ

e þ 1Þ for the right shift inverse.

The Lambert W function has a Taylor series expansion WðxÞ ¼ P1
n¼1

ð�nÞn�1

n! xn,
but the radius of convergence (1/e) is not suited to the current context and it can in
any case be very slow. Instead, basic numerical methods such as Solver in an
Excel-VBA environment can be used if such inversions are required. It is necessary
to constrain the iteration away from values respectively F = 0 or 1 (as ln(1-F)), to
avoid the log of zero.

2.3 Shift Kernels: Concentrators and Spreaders

With the unit left and right shifts in place, a menu of partial and combined shifts
becomes available.

(a) Partial right (similarly left) shifts can be achieved with the Radon-Nikodym
derivative

nkRðxÞ ¼ ð1� kÞþ knRðxÞ; 0\k\1:
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This leads to

FkRðxÞ ¼ ð1� kÞFðxÞþ kFRðxÞ;

with a corresponding partial shift of the density.
(b) Convex combinations of the unit shifts can be employed, of the form

nhðxÞ ¼ hnLðxÞþ ð1� hÞnRðxÞ; 0\h\1:

Such combinations give rise to density and distribution functions of the form

fhðxÞ ¼ nhðxÞf ðxÞ ¼ hfLðxÞþ ð1� hÞfRðxÞ; ð2:3aÞ

FhðxÞ ¼ hFLðxÞþ ð1� hÞFRðxÞ : ð2:3bÞ

The most important special case is h = ½, which will be called the ‘centred’
shift. In this case,

ncðxÞ ¼
1
2
ðnLðxÞþ nRðxÞÞ ¼ � 1

2
lnðFðxÞð1� FðxÞÞ:

The resulting density fcðxÞ ¼ 1
2 ðfLðxÞþ fRðxÞÞ will intersect the natural density f

(x) at points where ncðxÞ ¼ 1. (It should be noted that this is not the same construct
as the centred discrete histogram of Sect. 1.5). In addition to its use in measures of
spread and asymmetry, the centred shift is related directly to partition entropy by
the censored expectations

hðxÞ ¼ 2FðxÞðE½ncðXÞjX� x� � 1Þ ¼ 2ð1� FðxÞÞð1� E½ncðXÞjX[ x�Þ:

Combinations of type (b) can be thought of as entropic spreaders, as they
increase the entropy value relative to the original, resulting in a more platykurtic
distribution. Entropic spreaders find a number of applications in the chapters that
follow. The central version, in particular, provides a useful vantage point for the
entropic measures of asymmetry in Chap. 5.

(c) The probabilities in mixture shifts can alternatively be based on the parent
distribution F(x). To accomplish this, the partition entropy function h(x) can itself
act as a Radon Nikodym derivative via nhðxÞ ¼ 2hðxÞ. The associated density and
distribution functions represent probability weighted combinations of the elemen-
tary left and right hand shifts:

fhðxÞ ¼ nhðxÞf ðxÞ ¼ 2½FðxÞfLðxÞþ ð1� FðxÞÞfRðxÞ�;

FhðxÞ ¼ FðxÞFLðxÞþ ð1� FðxÞÞFRðxÞ:

Mixtures of this general type have the effect of diminishing the entropy values
relative to the original F, resulting in a more peaked (leptokurtic) distribution; they
can be referred to as concentrators. The mixture distribution function shifts Fc and
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Fh have the same median as the parent F(x), but fcðxmÞ\f ðxmÞ\fhðxmÞ, so they
cross the parent distribution function from different directions.

Figure 2.3a depicts some spreaders and concentrators with a Nð1:05; 0:5Þ
density as the original, while Fig. 2.3b depicts the corresponding partition entropy
functions. The meaning of spreaders versus concentrators becomes evident, if we
take the area beneath the partition entropy function as an indicator of spread.
Readers familiar with the theory of stochastic dominance may note that the con-
centrator Fh is second order stochastic dominant over F, which is in turn dominant
over the spreader version Fc.

Mixtures of the preceding types (a), (b), (c) together with further variants can be
generically described in terms of a weighting function that can be referred to as a
mixing kernel. Given a specified mixing weight wðkÞ defined over the extended
unit interval �1� k� 1, define a kernel weighted distribution function as

FðxÞ ¼
Z 1

�1
wðkÞ~nðk; xÞF � ðxÞdk; ð2:4Þ

where the kernel ~nðk; xÞ is anti-symmetric in the parameter k:

~nðk; xÞ ¼ nLð�k; xÞ; k� 0

¼ nRðk; xÞ; k[ 0 :

Specifying the range of k in this way encompasses both left and right entropic
shifts. Thus for the linear partial entropic shifts

nLð�k; xÞ ¼ ð1þ kÞ � kn�LðxÞ ; k� 0; and

nRðk; xÞ ¼ ð1� kÞþ kn�RðxÞ ; k[ 0:

Combinations of this kind can be repeated as multiple left or right hand shifts.
Section 2.3 interprets distribution mixtures within a framework of this kind. An
application to risk management follows in Sect. 2.6.

Finally, multi-step shifting with unit left and right shift at each step can be
accomplished via the recursion

FL
n ðxÞ ¼ FL

n�1ðxÞð1� lnðFL
n�1ðxÞÞÞ; n ¼ 1; 2; . . .

f Ln ðxÞ ¼ �f Ln�1ðxÞ lnðFL
n�1ðxÞÞ;

with a similar recursion for the right shifts based on expression (2.2b) or the partial
shifts.

Sequential shifting can be a useful way to generate new distributional shapes.
Thus starting from a symmetric distribution like the logistic, one can generate
sequential right shifts that become more and more skewed to the right, with pro-
gressively longer right hand tails. However this is not a universal property; the right
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shifted normal densities continue to be symmetric, with a linear envelope. In
general, non trivial stationary solutions do not exist for the above recursions.
Section 2.6 is an extended discussion as an application in financial risk
management

2.3.1 Some Extensions

(a) The gamma alternative

The foregoing family does not exhaust the possible specifications for mixing
kernels. An alternative formulation is based on the gamma function, with the R-N
derivative as

naðxÞ ¼
1

Cðaþ 1Þ ð� lnðFðxÞÞa; a� 1:

The corresponding density and distribution functions are obtained as

faðxÞ ¼ naðxÞf ðxÞ; FaðxÞ ¼ 1
Cðaþ 1ÞCðnLðxÞ; aþ 1Þ;

where Cðy; aþ 1Þ is the upper incomplete gamma function. This version removes
the limitation that single stage shifts have to be within the unit interval. However, it
is computationally more demanding, as well as less intuitive in nature, and will not
be used in the applied work of the present study.

(b) Bayesian perspectives

Operational perspectives sometimes entail a process of learning about distribu-
tions. An instance arises in finance, where investors have to learn about emergent
companies, those newly listed on the stock exchange or are developing technology
that has yet to be proved. The opinions of other investors, who may include some
perhaps more in the know, are reflected in the current price pt, which thereby
acquires value as an informational signal.

In a more general context, let the current time t information set be of the form
It ¼ ðIt�1 ; ptÞ. An underlying mixing model such as expression (2.3a, 2.3b) is
thought to be involved, with fL; fR as the left and right shifted densities of an
underlying kernel specified as f � ðpÞ.

Price mediated learning about a mixing parameter such as h as in expression
(2.3a, 2.3b) might then take the form of a Bayesian update process, where wðhjItÞ
represents the probability density of the unknown parameter h. Bayesian learning
would be generated as

wðhjItÞ ¼ kf ðpjIt�1; hÞwðhjIt�1Þ;

where k ¼ R
h f ðpjIt�1; hÞwðhjIt�1Þdh.
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An optimistic scenario would be one where the mixing distribution wðhjItÞ is
perceived to the shifting towards the right.

2.4 Perspectives on Mixture Distributions

Many empirical distributions appear to differ quite markedly over shorter or longer
dated horizons. Financial data are subject to this problem. Over a longer horizon,
the longer tails of daily or monthly equity returns, i.e. leptokurtosis, is more
manifest than over shorter periods. In turn, the short horizon returns can be skewed
one way or the other. In bad times, local distributions may be skewed towards the
left (negative skew metrics), indicating a higher probability of bigger losses, while
in good times the reverse might be the case. That the longer run might be viewed as
a mixture of time-varying shorter run distributions finds explicit expression in
econometric models such as Garch-m where the mean and variance are modelled as
time dependent.

However modelled, the long versus short run horizon distinction creates prob-
lems for financial risk management. Value at Risk (VaR) seeks to limit the prob-
ability of losses by selecting portfolios that will lose more than a preassigned capital
with probability less than a critical point (commonly 1% for daily returns, 5% for
annual). But the probability is assessed using a historical distribution of portfolio
returns, raising the issue of just what the horizon should be.

A related prudential measure called Conditional Value at Risk (CVaR) does the
same thing, estimating expected capital loss given that the VaR critical point has
been violated. But in practice, practitioner back testing of risk management models
such as VaR frequently fails, in the sense that the risk limits as determined with
reference to the distribution over the past year are violated ex post more often than
budgeted.

The underlying problem can be regarded as akin to a mixture distribution sce-
nario. The resulting long horizon unconditional could be regarded as a mixture
distribution of successive short run distributions. A prior distinction to be resolved
is that between parametric mixtures, where the constituent distribution forms are the
same but the parameters change, and environments where the shorter run distri-
butions may be of quite different form. Historical data on share returns, for instance,
encompass good times and bad times, as well as more normal or ‘business as usual’
times. In bad times, local distributions may be skewed towards the left (negative
skew metrics), indicating a higher probability of bigger losses, while in good times
the reverse might be the case.

To the extent that shorter horizon distributions can exhibit changes in shape as
well as in parameters, the mixture problem becomes compounded in its tractability,
especially where relatively little is known about the precise data generation process.
Risk managers may be better advised to budget for more adverse outcomes than
suggested by the historical distribution while not exclusively relying on the
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immediate past. This would be of the nature of a minimax rule for potential loss
exposure.

The development that follows establishes a basis for decision rules of the latter
kind by utilising mixtures of non parametric entropic transformations. Such
transformations can encompass shifts to the left or right, spreading, or on the other
hand concentration. Thus in bad times, the local distributions could be regarded as
derived with reference to more normal stable times but shifted to the left; or to the
right in better times. Given an observed historical distribution, it becomes possible
to back out an originating distribution (the ‘generator’), given a hypothesised
mixture kernel.

For purposes of risk management, the mixture kernel itself embodies user priors
as to the relative frequency of normal ‘business as usual’, good, and bad times. It is
itself semi parametric in nature, the effective choice of parameters reducing to just
two, the good and bad state probabilities. As mixing kernels, both the uniform and
its entropic scale independent variant fall within this framework.

More specifically, an observed long run observed distribution F is assumed to be
generated in terms of a mixing distribution, or mixing kernel, defined over the
extended unit interval and applied to a generator F* that is to be recovered. This can
then be utilised in risk modelling to establish different scenarios; notably to a
leftward shift of the generator.

The mixing kernel itself can have a dual interpretation. A positivist view is that it
represents the user’s best judgement as to the relative frequency of different states
of the world. Facilitating the estimation problem is a result in this section indicating
that the choice can be made in terms of just two parameters. A second possible
interpretation is normative in nature: the mixing kernel represents a risk manager’s
certainty equivalents for the states of nature. The latter interpretation might be
expected to overweight the probability of bad states.

A general kernel weighted distribution function can be defined in terms of
expression (2.4) of Sect. 2, reproduced here as

FðxÞ ¼
Z 1

�1
wðkÞ~nðk; xÞF � ðxÞdk;

with the mixing weights as wðkÞ; 0\k\1. In this context, the R-N shift kernel is
given by

~nðk; xÞ ¼ nLð�k; xÞ; k� 0

¼ nRðk; xÞ; k[ 0 :

The objective in what follows will be to back out the generator function F*(x)
from (4), knowing F(x) and w(k). The inversion problem has been referred to as
such in Sect. 2.1; the present formulation is more general.

Implementations of the mixing density can be facilitated in their interpretation
by defining conditional weight functions wLðkÞ;wRðkÞ such that
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wðkÞ ¼ wLðkÞhL; k� 0; wðkÞ ¼ wLðkÞhR; k[ 0, with hL; hR interpreted as
conditional probabilities such that hL; hR � 0; hL þ hR ¼ 1. The respective con-
ditional means are

lL ¼
Z 0

�1
kwLðkÞdk� 0 and lR ¼

Z 1

0
kwRðkÞdk[ 0:

For convenience, define

/L ¼ �hLlL; /R ¼ hRlR; /0 ¼ 1� /L � /R:

These will be referred to as the ‘mixing coefficients’. In this notation, the
associated R-N derivative reduces to

nðxÞ ¼ /0 þ/Ln
�
LðxÞþ/Rn

�
RðxÞ:

This is nonnegative (because every term is so) and has unit expectation. The
associated distribution function can therefore be reduced to a three way mixture
involving the generator F* and its unit left and right entropic shifts F; F�

L; F
�
R:

FðxÞ ¼ /0F�ðxÞþ/LF
�
LðxÞþ/LF

�
RðxÞ:

If the weighting kernel wðkÞ is symmetric about zero, then hL ¼ hR ¼ 1
2 ; lR ¼

�lL ¼ l[ 0 so /L ¼ /R ¼ l
2, and F reduces to

FðxÞ ¼ ð1� lÞF � ðxÞþ lFcðxÞ;

where Fc is the simple centred shift of Sect. 2.2. The centred shift Fc is itself a
limiting case l ! 1 where all the mixing weight shifts to the ends of the range.

More usually, weighting is heavier towards the centre, though it may also be
useful for risk management purposes to assume that it is evenly distributed
throughout the range. Two weighting kernels that have proved useful in the context
of time series smoothing are as follows:

(a) The uniform kernel represents maximum ex ante ignorance, equivalently the
most informative Shannon entropy:

wunðkÞ ¼ 1
2
; WunðkÞ ¼ 1

2
ð1þ kÞ; �1� k� 1: ð2:5aÞ

For the uniform kernel, l ¼ 1
2 and the smoothed density reduces to

Fun ¼ 0:5F � þ 0:25F�
L þ 0:25F�

R: ð2:5bÞ

(b) A derived variant that emphasises more the middle ground can be obtained
by normalising the locational entropy function of the above uniform distribution to
give
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wenðkÞ ¼ ln 2� 1
2
½ð1þ kÞ lnð1þ kÞþ ð1� kÞ lnð1� kÞ�; �1\k\1; ð2:6aÞ

WenðkÞ ¼ k ln 2� 1
4
½ð1þ kÞ2 lnð1þ kÞ � ð1� kÞ2 lnð1� kÞ � 2ð1þ kÞ�

This will be referred to as the entropic uniform density. It is strictly concave
throughout its domain; the amount of weight progressively declines towards the
edges. In this case, l ¼ 1

3 ð12 þ ln 2Þ � 0:4, resulting in

FenðxÞ ¼ 0:6F � ðxÞþ 0:2F�
LðxÞþ 0:2F�

RðxÞ: ð2:6bÞ

Expressions such as (2.5b), (2.6b) could be taken as the long run historical
distributions.

In real time, the weight density wðkÞ and mixing weights u might themselves
shift to give the current time t distribution (e.g. as good or bad times). However, the
present concern is not with transition as much as the long run limiting behaviour.

Thus any given time, let /0
t ¼ ½/L;t; /0;t; /R;t� be a vector of the mixing coef-

ficients, resulting in

FtðxÞ ¼ /0;tF�ðxÞþ/L;tF
�
LðxÞþ/L;tF

�
RðxÞ:

Over a long period of time T one might have 1
T

PT
t¼1 /t !p /, uniformly in

x. The resulting average 1
T FtðxÞ will converge in distribution to the historical dis-

tribution F as in (2.5b, 2.6b). In bad times /L;t [/L, and the time t density will be
shifted to the left relative to the long run. Conversely in good times where
/R;t [/R.

In applications, the object will be to back out the implied generator F* from a
given historical distribution mixture F. Specified shifts of the generator can then be
used to examine what might happen over distributions shorter periods, especially
those that might encompass more adverse states of the world. The backing out
process itself has to be done numerically, given an assumed long run mixing
distribution, such as / ¼ 0:5; 0:25; 0:25 for the uniform mixture as in (2.5b) or
/ ¼ 0:6; 0:2; 0:2 for the entropic mixture in (2.6b). Section 2.6 provides an
illustration.

2.5 The Entropic Kernel: Data Smoothing and End
Correction

The partition entropy function hðxÞ has up to now been exposited as a function that
measures the entropic uncertainty attached to each point in the range of a random
variable. The entropic values associated with any given point could also be
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interpreted as providing information about neighbouring points, to an extent
measurable by their respective partition entropy values. If the partition entropy
function is sharply peaked, then a point x ¼ xi to the right of the median will
contain little information about points closer to the median. The very low value of
hðxiÞ resolves little of the indeterminacy associated with ups versus downs, relative
to the median, on any subsequent realisation.

Considerations of this kind arise in the smoothing of time series observations.
A subject time series is supposed to be generated by a systematic part, denoted by
yt*, with the observed series overlain by random noise et. The systematic part or
‘signal’ is assumed to be slowly evolving, so that knowing the values of yt* would
be very informative about the next value yt+1*. All that can be observed, however,
are the realised values yt. This will likely be main source of information about the
signal yt*. However Bayes theorem tells us that the next realisation yt+1 will also
contain information about yi*, containing as it does information about yt+1*.

It is this insight that forms the basis of kernel smoothing in time series analysis.
More structured procedures such as the Kalman filter address the problem as one of
filtering out the underlying signal with a recursive model of how the underlying
values are supposed to be generated. The Hodrick-Prescott filter is a variant in
which the signal is specified as an auto-regression. Both entail recursive recovery of
an estimated underlying signal, but with a specific generating structure assumed.

More informal smoothing uses local windows about a given data point. This is
commonly executed with kernel functions that attach diminishing weight to
observations indexed further from the current data point, taken as the window
centre. A related context is non parametric regression, where the index set consists
of sequential values of an independent variable, and the object is to estimate the
conditional expectation of a dependent variable. The kernel approach is less
structured than formal filter procedures. But it may be more robust to a lack of a
prior knowledge about the underlying data generation process, or an incorrect
specification of the underlying data structure.

A variety of kernel specifications are in use, with profiles often based on
common density functions, including the uniform as a kernel representation of a
fixed window unweighted moving average. The Epanechnikov kernel, which is
based on a quadratic function, is widely cited as an efficiency standard, as it
minimises the asymptotic mean integrated square error in the particular case where
the data are independently drawn from a common underlying probability distri-
bution. It will be employed as a comparison standard in the development that
follows, though it does make rather specific assumptions about the data generation
process, with noise generated as independent and identically distributed random
variables.

The Epanechnikov kernel is concave in form, while continuous kernels origi-
nating from continuous distributions, such as the Gaussian, have mixed
concave-convex profiles and points of inflexion. In more structured contexts,
optimality properties are commonly established in terms of loss functions adapted
to specific data generation structures. In data smoothing, on the other hand, the
disturbance properties are commonly unknown, and the objective may simply be to
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aid pattern comprehension (‘eyeballing’), much as in the lower order details of
wavelet analysis.

The general kernel smoothing problem can be set up in operational terms as
follows. Denote the given series of discrete time observations by yt; t ¼ 1; 2; . . .; T .
A time t-centred window of length B, where B is an odd number less than T, will be
taken to refer to the observations ytþ s; s 2 ½� B�1

2 ; B�1
2 �, interpreted as an integer

set. Thus B = 7 for daily data would span the current observation (at time t)
together with the three days before and the three days following. A span of two
weeks (14 days) before and after the current observation would constitute a 29 day
window. A fixed bandwidth weighting scheme will be defined as a set of non-
negative weights ks that are zero for observations ytþ s outside the given window.

The general discrete time smoothing formula is then of the form

y_t ¼
X1
s¼�1

ksytþ s; t 2 Bþ 1
2

; T � B� 1
2

� �
; ð2:7Þ

with the weights summing to unity: ks � 0;
P

s ks ¼ 1.
The popular Epanechnikov weights can be defined in the present context as

proportional to the function

KðsÞ ¼ 3
4

1� s
k

2
� �� �

; jsj\k; kðsÞ ¼ 0 otherwise;

where the bandwidth k is a parameter chosen by the user. Its basis is therefore a user
defined local quadratic with the peak at the current data point yt.

An alternative entropic approach to smoothing is described in what follows. This
derives the window weights ks as proportional to the partition entropy of an
underlying probability distribution. The latter as starting point can be interpreted as
a Bayesian type prior for the degree of influence of neighbouring observation points
fytþ sg on the given point yt. A convenient starting point is to assume the uniform
density as an uninformative prior. Converting to its partition entropy function then
captures a desired effect that the edge of the window contains less information than
the centre.

Given the above notation conventions, the operational discrete time entropy
kernel can be summarised in the following steps.

1. Set a nominal bandwidth (or smoothing window) length B, e.g. B = 7 or
29 days. The current data point is taken as the midpoint of the bandwidth.

2. Construct a uniform distribution over s 2 ½� Bþ 1
2 ; Bþ 1

2 � such that for interior
points,

f ðsÞ ¼ 1
Bþ 1

; FðsÞ ¼ 1
2
þ s

Bþ 1
;
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with end points Fð� Bþ 1
2 Þ ¼ 0 and FðBþ 1

2 Þ ¼ 1.

3. For each point strictly inside the assigned bandwidth, compute the partition
entropy as

hs ¼ �½F lnFþð1� FÞ lnð1� FÞ�;F ¼ FðsÞ:

Applied to the uniform distribution this gives

hs ¼ � 1
2
þ s

Bþ 1

� �
ln

1
2
þ s

Bþ 1

� �
þ 1

2
� s
Bþ 1

� �
ln

1
2
� s
Bþ 1

� �� �
:

For the notional end points of the bandwidth extension, where the logs are
undefined, set hs ¼ 0 if s ¼ � Bþ 1

2 ; Bþ 1
2 : There is zero partition entropy at such

points.

4. For interior points s 2 ½�ðB�1
2 Þ; ðB�1

2 Þ�, set ks ¼ hs=
P

s hs to ensure that the
kernel weights sum to 1.

The proposed entropic weights for s 2 ½� B�1
2 ; B�1

2 � are defined by

ks ¼ hs=
X

s
hs ; where ð2:8Þ

hs ¼ � 1
2
þ s

Bþ 1

� �
ln

1
2
þ s

Bþ 1

� �
þ 1

2
� s
Bþ 1

� �
ln

1
2
� s
Bþ 1

� �� �
:

Utilising the weights (2.8) in expression (2.7) constitutes the entropic moving
average.

With regard to the range, special attention must be paid to beginning and end
values, to avoid taking the log of zero. The procedure as suggested under point 3 is
to notionally extend the window by one unit at each end. For example, suppose the
assigned bandwidth is 7 days, meaning the index runs as −3, −2…2, 3. We
notionally extend the range to 9 days, with weights of zero assigned to the new end
points −4,4.

A scalable kernel is one that adjusts automatically with the desired window
width, so that there is no need to change parameters beyond the width decision. The
uniform based entropic kernel is a one parameter family, standardised by the chosen
bandwidth B. It is therefore scalable, automatically so once the window width is
chosen. By way of contrast, the Epanechnikov kernel scales up with its bandwidth
parameter k, but not automatically so with the desired window width, so that a
further decision must be made as to the value to set for k if one changes e.g. from a
monthly window to a yearly one. From this point of view, the entropic kernel is
more user friendly.

Apart from this, the entropic and Epanechnikov kernels are both strictly concave
in form. The entropic version allocates more weight away from the centre, reflecting
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the greater degree of uncertainty or agnosticism inherent in the entropic approach.
However, the log function implies it has greater curvature towards the edges of the
window, which are progressively penalised by more than for the quadratic
Epanechnikov kernel.

Figure 2.4 illustrates the entropic kernels in the context of commodity markets,
which are often volatile over different time scales. The daily data are of the London
Metal Exchange (LME) spot price for aluminium over a period that captures the
flight to safety via commodities that occurred at the time of the global financial
crisis and the reaction that subsequently set in with economic recovery. The 65 day
window shows that the market fall starting in 2011 was more gradual than was the
case for world equity prices; it also took hold a year or two later.

2.5.1 End Correction with Kernel Compression

An exigency that affects all time series kernels is the end or edge correction
problem. If a 100 day kernel is used, then at current time t the complete 100 day
bandwidth cannot be utilised for any observation later than t-50. This is a serious
limitation in a real time context, where specific interest may lie with what current
data are revealing about trends. Climate change data are an instance. Conclusions
about underlying global warming should certainly not be based on a current warm
year. But on the other hand, a suitably long kernel window cannot be used to draw
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Fig. 2.4 London Aluminium prices over the GFC, original and smoothed with the entropic kernel
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even provisional or preliminary conclusions as to future trends that adequately
encompass the years of the immediate past. Concerns of this kind are likewise
implicit in moving average based trading rules in financial markets.

A variety of existing techniques are used for edge (or end) correction. Some
assume a local data generation process. Others employ data reflection, assuming the
unavailable future observations that would be required to complete the current
window are the same as those of recent real time. Alternatively they might utilise
jackknifing, which amounts to a randomised version of the same thing. In practice,
a common recourse is simply to progressively shorten the length of the window.
The problem with this is that it discards earlier observations that might provide
information, and would have otherwise have been included.

Figure 2.5a illustrates, and will help in setting notational conventions. Real time
denoted as t is measured from right to left, with t ¼ T as the last available obser-
vation. Kernel time s is measured from left to right. The smoothing window is 9
periods, which means that the last complete window is centred at real time T − 4.
But if the focus is now to find a smoothed value for time T − 2, one that correctly
emphasises T − 2 as the centre, we would need observations at T + 1, T + 2,
which are unavailable. In Fig. 2.5b the kernel has been entropically shifted to the
left. It cannot completely compensate for the missing observations, but it does place
more emphasis on the new centre at time T − 2.

The process can be made systematic by allowing sequential partial shifts of the
kernel wðsÞ treating the latter as a density with distribution function WðsÞ. At each
stage k, the left shift can be weighted according to a parameter 0\lk � 1. The
corresponding kernel weight function is given by

wkðsÞ ¼ nkðsÞwk�1ðsÞ; WkðsÞ ¼ Wk�1ðsÞð1þ nkðsÞÞ;

with the partial shift parameters in the sequence

nkðsÞ ¼ ð1� lkÞþ lknðsÞ; nðsÞ ¼ � lnðWk�1ðsÞ:

In turn, this will require a criterion for choosing the shift parameter l at each
stage k. In the work that follows, lk is chosen so that the expected value of the
kernel weights, regarded as a distributed lag, corresponds to the current smoothing
point. Thus if the current focus is at the real time point T � mþ k, we require the
sequences lk to be set such that

X2m
s¼0

swkðsÞ ¼ m� k:

Figure 2.6 illustrates with a kernel window of 131 days centred at the midpoint
m = 65. The sequence of shifts is illustrated up to the first 10 leftward shifts. As the
focus approaches the terminal time T, the shifted kernels gradually change to
eventually resemble exponential distributed lags, but at a more moderate pace than
is the case for full unit shifts at each stage. However the effective width, measured
as Shannon entropy of the kernels, does narrow rapidly after a certain point; thus for
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(a)

(b)

Fig. 2.5 a Incomplete smoothing window, b Smoothing window completed via entropic shifting
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a kernel 50 periods, it narrows to just 20% of its base width after 40 compressions.
A more structured metric for window width in the form of the effective entropic
spread is considered in Chap. 5. Excel- VBA code to accomplish the complete
sequence of shifts via VBA functions is reproduced in Appendix 1.

Figure 2.7 is an application to global temperature data, namely the GHCN
monthly average sea and land surface temperature anomalies, prepared by the US
National Climatic Data Centre/National Oceanic and Atmospheric Administration.

Fig. 2.6 Progressive entropic completion for end correction
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Fig. 2.7 Application to climate change data Source: Blaesche et al. (2014)
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These are deviations from the long term average global temperature; consolidation
of northern and southern hemispheres helps to dampen purely seasonal effects. The
raw data is monthly, January 1880–October 2013. The choice m = 60 for the
entropic smoothing kernel corresponds to the commonly used 10 year moving
average, with entropic bandwidth of 64. The last complete window is then centred
at October 2008, marked in as the hatched vertical line in Fig. 2.7.

Beyond that date, end correction methods become necessary. The last available
observation was at October 2013 and with a window half width m = 60 the last
complete window is centred at October 08. At the time it was claimed by some
observers that there had been a pause in global warming, reflected in the apparent
levelling out of the smoothed series after 2005. However, when the kernel centres
are progressively extended with kernel compression after that date, the indications
from the figure suggested that warming might have been proceeding anew. As of
January 2012 the effective bandwidth is less than 75% relative to the complete
window, diminished to 50% by December 2012. Thus a tentative finding that
warming had resumed from 2012 has to be tempered with the reliability factor of
less than 75%. In the event, the resumption of warming since 2014 has since proved
the earlier indications to be correct. The ‘pause’ was only temporary.

2.6 The Social Dynamics of Opinion

It has long been a feature of social and political life that attitudes, as reflected in
opinion polls and electoral outcomes, can change rapidly within a relatively short
period of time. A striking recent example concerns U.S. attitudes to gay marriage,
where over the space of just two to three years from 2010, a clear majority against
was transformed in successive Gallup and similar polls to an almost equally clear
majority in favour (Fig. 2.8).

Primary causal influences were more or less in common with earlier instances,
even if more pronounced in context. They can include public exhortations by
influential figures such as movie stars and politicians, together with implicit or
explicit media advocacy. Or there can be a sympathetic reaction to the plight of
friends or public figures whose personal circumstances have forced a change in
views. Influences of this kind may be characterised as external or autonomous
inputs. Augmenting such inputs are social feedbacks, where knowledge of the
attitudes of peer groups influence the way that individuals will respond or vote.
Bandwagon effects are commonly cited in this respect—individuals find comfort in
the crowd.

In practice, attention is commonly focussed on a scalar outcome of public or
policy interest, such as the proportion in favour. However even if the ultimate
outcome is a scalar such as the magical 50%, causal mechanisms cannot be mod-
elled as a more or less simple dynamics of scalar metrics. To understand phe-
nomena such as political polls requires attention to the entire probability
distribution of attitudes and how this might evolve over time. In turn, modelling
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progressive poll results as distribution shifting should entail both autonomous
inputs (e.g. news items or celebrity endorsements) and reflexive impacts such as
feedback from published poll results. The dynamics of partition entropy can be
utilised to shed light on the way that opinion distributions as a whole can change
over time.

It will be convenient to adopt a model of liberal versus conservative attitudes, as
a single dimension of variation. The scale adopted is the unit interval [0,1] ranked
from conservative to liberal, with the conservative end against, and liberals for, the
given policy measure. This has the convenience of correspondence to a voting
scale, with x ¼ xc taken as a critical point for some proposed measure to succeed.
A common choice would be 50%, i.e. xc ¼ 0:5, but in other contexts, such as
effective political or financial control, it may be as little as 30%.

A first point concerns the importance of distributional spread. Figure 2.9a
depicts a high spread versus a low spread density f ðxÞ, both modelled as beta
distributions with the indicated parameters. The median is the same in both cases,
but at 38.6% is not sufficient to pass the proposed measure, which in this example
will require a simple majority: xc ¼ 50%. Figure 2.9b utilises the corresponding
distribution functions, depicted as the proportion in favour 1� F. The two distri-
butions (high spread versus low spread) have had the same shift factor applied. But
while this is now sufficient for the proposed measure to pass (point A), it is not the
case for the low spread distribution (point B).

Over time and with the flow of information, the shifting of attitudes and their
distribution is progressive. At each stage, the new distribution is obtained as an
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Fig. 2.8 Gallup poll outcomes, U.S. attitudes to gay marriage
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endogenous transformation of the previous. The drivers for the relevant shift factors
can include poll data derived from the distribution as it currently stands. Two
features motivate the use of entropic shifting in the dynamics of public opinion:

(a) With a finite attitudinal scale (here zero to unity), the shifts have maximum
impact towards the original median. Thus the middle ground can be more easily
swayed one way or the other, but hard core opinions at the extreme ends are
little affected.
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(b) Entropic shifts have more impact where the parent distribution has a higher
spread. Intuitively a lower spread indicates that opinions are more compact, and
in this sense more decidedly held overall. By way of contrast, higher spread
might imply a greater number of people who would at the outset be prepared to
favour the proposed measure, with a more substantial core of activism.

2.6.1 The Momentum of Opinion

The illustrative context will be one of repeated right hand shifting of opinions,
modelled as a sequence of right entropic shifts as in Sect. 2.2. Repeated rightward
shifting, for any given value x, generates a sequence defined in discrete time as

FtðxÞ ¼ ð1� ktÞFt�1ðxÞþ ktFR;t�1ðxÞ; t ¼ 1; 2:3:. . .: ð2:9Þ

Here FR;t�1ðxÞ is the unit right entropic shift of Ft�1ðxÞ, and kt : 0\kt � 1 is a
specified process defined on the unit interval.

Consistent with the context, it will be convenient to define the distribution
complement as ~FðxÞ ¼ 1� FðxÞ. Thus at x ¼ xc, ~FðxcÞ is the proportion that would
vote in favour of the proposed measure and a primary objective is to study how this
develops over time.

With this convention, Eq. (2.9) simplifies to the following difference equation:

D~FtðxÞ ¼ �kt~Ft�1ðxÞ ln ~Ft�1ðxÞ discrete timeð Þ; or

d
dt
ln ~FtðxÞ ¼ �kðtÞ ln ~FtðxÞ continuous timeð Þ:

Thus the distribution function at any given point x evolves according to a
logarithmic diffusion process, depending on the specification of the shift factor kt.

In a homogenous or non reflexive process, kt is an exogenous function of time.
Influences of this sort might be advocacy pronouncements from influential enter-
tainment or political personalities, media advocacy, or court rulings. In continuous
time,

lnð~FtðxÞÞ ¼ lnð~F0ðxÞÞe�
R t

0
kðsÞds

;

with the discrete time approximation

lnð~FtðxÞÞ � lnð~F0ðxÞÞPt
s¼1ð1� ksÞ:

In either case, the log vertical displacement ratio lnð~FtðxÞÞ : lnð~F0ðxÞÞ is the
same for all evaluation points x, motivating the description of case (a) as a
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homogenous shift. As an extension, the shift factor kt could itself be stochastic,
generated as a non-negative diffusion process.

In a reflexive process, the shift parameter kt is also a function of ~Ft�1ðxÞ. This
occurs where individuals are influenced by the opinions of others, in the form of
published poll results. A leading instance would be where ~Ft�1ðxcÞ has moved
closer to the critical point for the measure to be passed, e.g. as the difference
ð0:5� Ft�1ðxcÞÞþ . If people think that others are in favour, this will likely induce
personal attitude shifts in conformity—the comfort of the crowd. There may also be
acceleration effects from changes in this term, a momentum effect. The bandwagon
effect is often cited in this context. An illustrative specification with both influences
is:

zt ¼½ptð1� c1ðFt�1ðxcÞ � 0:5Þþ Þþ c2ð~Ft�1ðxcÞ � ~Ft�2ðxcÞÞ; 0Þ�þ ;
c1 [ 0; c2 [ 0;

ð2:10Þ

followed by kt ¼ 1� e�h zt .
In expression (2.10), the exogenous factor (media, celebrity advocacy etc.) is

represented by the factor pt, on a scale of zero to unity. The remaining terms
incorporate reflexive elements. The first term incorporates a negative interaction:
@kt
@c1

\0. If the current proportion in favour (~Ft ¼ 1� Ft) is well away from a

majority, the media advocacy has less impact. In specification (2.10) the effect cuts
out once a majority is reached, though this is not a necessary feature.

The second term ~Ft�1ðxcÞ � ~Ft�2ðxcÞ with @kt
@c2

[ 0 incorporates the momentum

or bandwagon effect. If the polls show increasing support, this sways existing fence
sitters in favour.

For the full reflexive case closed form solutions do not in general exist, requiring
an iterative solution. Figure 2.10 depicts the output from such a sequence. As
illustrated, the autonomous element pt is assumed to taper off quite early, with the
reflexive drivers taking over thereafter. The base reflexive element is the proportion
in favour, incorporated in expression (2.10) as the coefficient c1. However, even
where a majority is reached and this cuts out, the bandwagon effect (c2) continues
to operate, driving the outcome beyond the bare majority. A full response to the
autonomous input, represented in Fig. 2.10 as a distributed impulse, takes time to
work through the reflexive feedback loops.

The role of opinion diversity is a common thread that runs through the preceding
discussion. Higher spread indicates that society as a whole is not acting like a
collective. A very low spread may mean that opinions held more in common reflect
a more coherent prevailing social mores, with less for the feedback dynamics to
build on. As Fig. 2.9a, b suggest, the effect is felt not just at the critical margin; a
higher spread distribution generates uniformly higher opinion shifts across the
entire spectrum of attitudes. Figure 2.10 illustrates an outcome. By way of contrast,
a corresponding dynamics for the low spread distribution falls short of ever
achieving an ultimate majority—reflexive feedback has insufficient leverage. In
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predicting ultimate outcomes it might therefore assist to have opinion polls sup-
plemented with a range of attitude boxes, ranging from ‘strongly against’ to
‘strongly in favour’.

In the foregoing analysis each individual is assumed to occupy a single point
along the attitudinal scale. An alternative is to imagine that respondents may
themselves feel subjective uncertainty about just where they stand as to the strength
of their opinions. To the extent that individuals have different subjective profiles,
the aggregate then becomes a mixed distribution problem. The framework of
Sects. 2.2, 2.3 continues to apply. However, there is likely to be even more scope
for the shifting of the middle ground in response to feedback effects.

Over the years, it would seem that social information has been of increasing
importance in generating feedback effects. Formal polls are just one potential
source. The rise of online social media is another, where participants can readily
discover the opinions of their peers and be influenced by them. To be sure, sites of
this kind are usually age and culture specific. The virtue of a formal opinion poll,
one claiming to be scientific, is that it samples a more complete spectrum of ages
and social class. But there may be interactions between the two. Thus younger
people, traditionally more influenced by the opinions of their peers, might find it
easier to gauge what their own feedback response to a poll should be, by logging on
to communal discussion among their peers. If conjectures of this kind prove to be
correct, it presages even faster and more pronounced feedback shifts in public
opinion.
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2.7 Application of Mixture Theory to Value at Risk

Value at risk is a very basic form of risk metric used extensively in contexts such as
bank management and insurance. The concept itself is based on nothing more than a
one tailed lower critical point, with a pre-set allowable probability, commonly 1%
over a daily interval or 5% over a month. The idea is to make sure that the
institution’s portfolio of risky prospects does not lose capital with a downside
probability that exceeds this prudential limit. As such, value at risk is one of the
underpinnings of the widely accepted (or effectively imitated) Basle prudential
regime for bank management.

In its origins, value at risk (VaR) and related prudential risk metrics were always
supposed to refer to the portfolio risk in normal (usual) states of the world. From the
prudential of view, however, it is arguably the exposure to more stressful times that
should be the focus of attention, for such a time could well be within the frame of
the forthcoming accounting period. On the other hand, there could arise times such
as the global financial crisis, at which no reasonable portfolio allocation short of
cash could cope. Thus VaR and related risk metrics can never encompass all states
of the world. All that is required of a risk manager should be to make better
provision for more adverse short run outcomes than what can be computed from the
overall historical record.

As a statistical regularity, VaR is not without its own empirical problems. An
apparent failure of historical back testing for moving sample frames suggests that
prudentials such as value at risk could better be informed by regarding the historical
record as a mixture of shorter dated frequency functions. The development that
follows utilises the mixture framework of Sect. 2.3 to construct more flexible
decision rules as to the reference distribution for value at risk. Once a mixture
weighting pattern has been decided on, the generator distribution can be backed out
by means of the inversion process as in Sect. 2.3. The generator distribution then
offers the manager a menu of choice as to just where to set the VaR limit: over the
entire history, or with respect to the left shifted extreme as a suitably pessimistic
outcome for the coming period, even if not the absolute worst case. The discussion
that follows elaborates.

The portfolio is taken for illustrative purposes as the regimen of the S&P500 US
equity index. The raw data takes the form of daily returns spanning May 1994–May
2014, with 5218 observations. The value at risk period is taken as the one day
exposure, a common choice for dealing rooms. The frequency histogram over the
entire history is fat tailed, with a slight suggestion of a negative skew (c3 = −0.056,
or see below for entropic asymmetry). The median is at 0.00041. The historical 5%
VaR point over the complete history of one day returns is −1.83%.

With respect to the assumed mixing kernel, a very risk averse manager might
assume a uniform mixture as in (2.5a) giving more weight to the bad or good short
run elements. A somewhat less risk averse variant is the entropic uniform mixture
(2.6a). In the event, the inversion outcomes from the two alternatives are very
similar.
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The resulting generator F* corresponding to the entropic uniform mixture is
depicted in Fig. 2.11, along with the historical distribution F. The unit left shifted
generator is included in the same diagram.

The generator F* can be regarded as a benchmark distribution for normal times.
Its left shift can be regarded as an adverse state that inherits a reasonable probability
of occurring without falling into the complete disaster zone. Setting prudential
limits with respect to this distribution would yield margin of safety over the dis-
tribution for more usual times, and indeed with respect even to the entire history.

Turning to VaR and risk management, the historical lower 5% point is at
F = −0.0183; that for the generator is F* = −0.0150; and for the unit left hand
generator shift the lower 5% point is at F�

L ¼ �0:0277. A risk averse manager who
wants to play safe over shorter horizons might consider an existing portfolio that
would otherwise satisfy the historical 5% point (−0.0183) as though it should be
exposed to an adverse shorter run bad state, as indicated by the 5% point for F�

L.
The expected shortfall is the conditional expected loss given that the VaR point

has been is triggered. At their respective lower 5% points the expected losses from
then on are 0.0024 for the historical F; 0.0011 for the generator F*; and 0.0061 for
its unit left shift F�

L. The rankings are consistent with the mixing construct, namely
that the observed long(ish) tail of the historical distribution is the result of mixing
together ‘business as usual’ with distributions associated with periods of unusually
good or bad states, the latter embodied by the respective left and right shifts of the
generator. Even if the lower 5% point for F�

L was acceptable, management could
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Fig. 2.11 Normal and abnormal times for the S&P500: entropic uniform mixture
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rule that the expected shortfall of 0.0061 was not, and call for a more conservative
portfolio.

2.8 Literature Notes

With reference to Sect. 2.1, and the use of R-N derivatives, general treatments of
measure changes can be found in Shilov and Gurevich (1977) and Billingsley
(1986). Later chapters in the present work utilises further motivations and contexts
for the use of R-N derivatives and change of measure.

The left and right entropic shifts, together with basic variants and proofs of
properties, were developed in Bowden (2012).

The corresponding distribution functions have recently found application in
survival analysis, where the concern is with the residual uncertainty of lifetime,
given that age x has been reached. If �FðxÞ ¼ 1� FðxÞ is the survival function from
age x, an overall measure of survival uncertainty was proposed by Rao et al. (2004)
as cumulative residual entropy, defined as CRE ¼ � R1

0
�FðxÞ lnð�FðxÞÞdx. In pre-

sent notation this becomes
R1
0 ðFðxÞ � FRðxÞÞdx. For extensions see e.g. Di

Crescendo and Toomaj (2015), Kapodistria and Psarrakos (2012) and Tahmasebi
et al. (2017). Sections 4.3, 5.5 of the present work also have an actuarial context,
though not based on the CRE.

The Epanechnikov kernel utilised in Sect. 2.3 was developed in a multivariate
context in Epanechnikov (1969), which is a translation of an earlier Russian paper.
For its optimality conditions see e.g. Wand and Jones (1995). Different applications
to estimate the conditional expectation are discussed and utilised in a regression
context, in versions such as the kernels of Nadaraya-Watson (Nadaraya 1964;
Watson 1964), Priestley-Chao (1972) and Gasser-Muller (Gasser and Muller 1984).
The entropic kernel of Sect. 2.3 is based upon Bowden (2013).

Turning to end or edge correction, existing techniques might assume a local data
generation process of a given class e.g. local linearity Fan and Gijbels (1984);
utilise jacknifing (Rice 1984); or employ data reflection (Boneva et al. 1971;
Schuster 1985; Silverman 1986; Ghosh and Huang 1992). Jones (1993) is a unified
account of such edge correction methods with further variants, while (Wand and
Jones 1995) provide a general survey in the density estimation context. The data
generation assumptions underpinning such techniques are arguably less appropriate
for financial markets, where the preoccupation is more of the nature of filtering than
smoothing, with an emphasis on real time.

The partial shift methodology based on the entropic kernel was developed in
Blaesche et al. (2014).

For different aspects of the dynamics of social opinion and the importance of
feedback in Sect. 2.4, see e.g. Asch (1955), Bowden (1987, 1988), Bikhchandani
et al. (1992), Nadean et al. (1993), and Brewer (2014a,b).
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Value at risk is covered by most textbooks in financial institutions management.
Examples are Jorion (2003) and Saunders and Cornett (2006).
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Chapter 3
Moments, Measures and Metrics

3.1 Introduction

Metrics of one kind or another, all potentially important in practice, are the subject
of the present chapter. While their substance and usefulness can be established with
no specific connection to entropy as such, it turns out that they have a derivational
connection with the unit left and right entropic shifts. Therefore Sect. 3.1 com-
mences with a brief review of the moments of the respective left and right shifted
distributions.

Section 3.2 resumes discussion in the context of the original distribution, initi-
ating the progressive left and right conditional moving average functions for the
natural distribution. These are then related, as special cases of a general result, to
the unconditional expected values of the entropically shifted distributions.

Sections 3.3 and 3.4 consolidate this work and add further concepts and per-
spectives. Based on the conditional left and right moving average functions, spread
and asymmetry functions are introduced, with their domain as the original range
space. Taking expected values, one ends up with new spread and asymmetry
metrics for the original distribution, related in a very simple way to the first
moments of the left and right entropically shifted distributions. Indeed, a single
internal sign change converts the asymmetry metric to that for spread. In this sense
they are dual to one another.

The foregoing results turn out to be pivotal for much that follows in this and
subsequent chapters. The quest for meaning is a general agenda behind the spe-
cifics. Conventional textbook metrics are typically based on polynomial functions
such as cubic for asymmetry, and fourth order for kurtosis; with the normal dis-
tribution employed as benchmark, so a specific choice of comparator distribution.
In the case of asymmetry, there are many functions that are antisymmetric about a
designated distribution median. The cubic polynomial, with its switch from
downside concavity to upside convexity, might be well motivated for a Friedman-
Savage type utility function but not for others. Many alternative distribution metrics
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that have been proposed are specific to their particular context with little, if any,
applicability in general.

Entropic complexity does provide a general point of reference for the devel-
opment that follows in this and other chapters. But in the social science context, the
measures that result for asymmetry and spread can also be regarded as represen-
tations of how the subjects might view their own relativity to others. It is this
internal perspective, as well as the entropic complexity, that provides the required
measure of generality to the proposed metrics.

Section 3.5 pauses to consider the relationship between these metrics and Gini’s
mean absolute difference, historically used in contexts of income distributions,
together with further generic metrics.

Section 3.6 resumes the main thread of the discussion on measures. The applied
context is the socially fraught debate on what many see as excessive and unnec-
essary executive pay awards, and how pay packages of this size might arise and
become pervasive. The left and right conditional moving averages provide a useful
framework to explore the dynamics of executive remuneration. Specific interest
attaches to conditions under which the resulting evolution is upwardly unstable.

Section 3.7 explores the relationship of the entropic spread and asymmetry
functions to the topic of stochastic dominance, foreshadowing work on a similar
comparative theme in later chapter.

Section 3.8 is the literature review.

3.2 Moments for the Entropic Shifts

In terms of the framework for left and right shifting developed in Sect. 2.1, the
expected values for the unit left and right unit shifted distribution for a continuous
range space (below often denoted simply as *) and density are respectively given by

lL ¼
Z
�
xfLðxÞdx ¼ �

Z
�
xf ðxÞ lnFðxÞdx

lR ¼
Z
�
xfRðxÞdx ¼ �

Z
�
xf ðxÞ lnð1� FðxÞÞdx

Formulas of this kind extend naturally to densities with jumps, and also to a
discrete valued range space. It will be assumed in what follows that the range of the
left and right shifted distributions remains that of the parent distribution.
Convergence of the relevant integrals can also be a problem for exceptionally long
tailed densities such as the Cauchy.

It is always the case for a continuous density that lL\l\lR. There is in general
no exact analytical relationship between the left and right means lL; lR and the
parent mean l. One exception is the uniform distribution. For a uniform distribution
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defined over a finite range [0,A], l ¼ 1
2A; lL ¼ 1

4A; lR ¼ 3
4A so that the respec-

tive means partition up the interval equally.
Apart from this, it is necessary to evaluate lL; lR numerically, although this

poses little difficulty in practice. In the case of discrete distributions the centred
version FcðxÞ should be used as outlined in Sect. 1.5.

If the parent distribution is symmetric then the left and right unit shifts are
reflections of each other about the parent mean, so l� lL ¼ lR � l. Scale inde-
pendence of the parent is preserved in the left and right entropic means. Thus
suppose there are location and scale parameters a; b such that Fðx; a; bÞ ¼
Fð~x; 0; 1Þ with ~x ¼ ðx� aÞ=b. The normal, logistic and Gumbel are examples of
scalable distributions. In such cases l ¼ b~lþ a and likewise lL ¼ b~lL þ a, simi-
larly for lR ; ~lR .

An important property, much used in what follows, is that the difference lR � lL
is equal to the area, denoted d, beneath the partition entropy function hðxÞ:

lR � lL ¼
Z
�
hðxÞdx ¼ d: ð3:1Þ

The result can be proved in several ways. Perhaps the simplest is to differentiate
by parts and us the fact that h0ðxÞ ¼ fLðxÞ � fRðxÞ. A regularity condition is that the
product xhðxÞ ! 0 as x ! �1.

The property (3.1) could be taken as indicating that for high spread distributions,
for which the partition entropy function is relatively diffuse, with a higher value for
the area d, the left and right shifted densities are correspondingly far apart.

Anticipating later development, the measure d will provisionally be referred to as
the entropic spread. Thus in the case of a scalable distribution where b is commonly
regarded as a dispersion indicator, a change in the integration variable to ~x ¼
ðx� aÞ=b leads to d ¼ b ~d, so the entropic spread scales up commensurately. An
analytical solution for d is available for some distributions. For a uniform distri-
bution over the range ½0;N�, d ¼ N=2.

In other contexts a useful general relationship, which follows from the defini-
tions of fLðxÞ; fRðxÞ, is:

d ¼ covðx; kðxÞÞ;

where kðxÞ ¼ ln ð FðxÞ
1�FðxÞÞ is the log odds function that X� x versus X[ x. Thus for a

unit scale logistic distribution, the log odds function is linear, resulting in
d ¼ p2=3 � 3:289, in this case equal to the variance.

Apart from such special cases, a numerical integration of the function hðxÞ can
be used to find the entropic spread d. This can be approached from different
computational directions, but in order to ensure consistency with the primary use
purposes, it is best to commence by first tabulating the left and right unit shift
means lL; lR, then taking their difference to find d.
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3.3 The Double Smoothing Property

The double smoothing property refers to a very useful relativity property that arises
indirectly from taking logarithms of the original distribution function in the process
of deriving the unit shifted distributions and their respective parameters. The fol-
lowing result gives a general relationship between expected values based on the unit
shifts FL; FR and those based on the original distribution function F.

As before, suppose X is a random variable of interest with realisations X ¼ x. Let
g ¼ gðxÞ be a measurable function such that EF ½gðxÞ�\1. Also let /LðxÞ be the
conditional expectation function defined by /LðxÞ ¼ E½gðXÞjX� x�. Similarly, let
/RðxÞ ¼ E½gðXÞjX[ x�, the conditional expectation over values to the right of x. It
is then true that

EF ½/LðxÞ� ¼ EFL ½gðxÞ�; ð3:2aÞ

EF ½/RðxÞ� ¼ EFR ½gðxÞ�: ð3:2bÞ

An easy proof is to integrate by parts the respective right hand sides, leading to
an integration with respect to fLðxÞ; fRðxÞ.

Expressions (3.2a, 3.2b) indicate that an expectation with respect to the unit left
shifted distribution can be regarded as a second layer of progressive accumulation
with respect to the original distribution function FðxÞ. Having averaged the values
up to X ¼ x, we then take the progressive average of the results.

This can be thought of as a double smoothing process. Starting from the lower
bound of the range, the first layer is a progressive average of X values up to a
preassigned point x and the second is to average the results over all points x. Or
starting from the right hand end of the range, we first smooth the X values down to a
given value x, then take the average of all such values.

A caveat is that the function to be smoothed at each stage should not itself
depend upon the current market point x, as an additional argument to the dummy
integration variables X. In other words, the result does not automatically apply to a
function of the form gðX; xÞ.

The double smoothing property finds a number of applications in the present
study. As an instance, the expected values of the regime conditional entropies (3.6a,
3.6b) of Sect. 1.2 can be evaluated using gðxÞ ¼ ln f ðxÞ to give

E½jdðxÞ� ¼ 1� EL½ln f ðxÞ�; E½juðxÞ� ¼ 1� ER½ln f ðxÞ�:

For current purposes, however, the most important special case is gðxÞ ¼ x. Here
/ðxÞ ¼ E½XjX� x� ¼ llðxÞ, the conditional mean up to point x. The mean of the
unit left shifted distribution is then given by

60 3 Moments, Measures and Metrics



lL ¼ EFL ½x� ¼ EF ½llðxÞ�: ð3:3aÞ

It follows directly that lL\l.
A complementary development exists for the right hand or upper conditional

expectation lrðxÞ ¼ E½XjX[ x�. In this case,

lR ¼ EFR ½x� ¼ EF ½lrðxÞ�; ð3:3bÞ

with lR [ l. The upper case subscript in each case refers to the unconditional mean
of the left and right shifts; thus lL as defined in (3.3a) should be distinguished from
ll, which refers to the conditional mean function llðxÞ ¼ E½XjX� x�.

3.4 Asymmetry and Spread Functions

The local smoothing average functions llðxÞ ¼ E½XjX� x� and lrðxÞ ¼ E½XjX[ x�
are the starting point for the development that follows. Their evolution can be
expressed in recursive form as

l0lðxÞ ¼
f ðxÞ
FðxÞ ðx� llðxÞÞ; l0rðxÞ ¼

f ðxÞ
1� FðxÞ ðlrðxÞ � xÞ: ð3:4Þ

Both are increasing with x: llðxÞ is concave in form rising towards the uncon-
ditional mean l, while lrðxÞ is increasing convex, rising from l.

The proposed metric for asymmetry or skewness derives from the function

vðxÞ ¼ ðlrðxÞ � xÞ � ðx� llðxÞÞ: ð3:5aÞ

An intuitive rationale might run in terms of a penalty function for directional
departures from symmetry. Thus if the current point x lies well to the left of the
median, the weight of comparative expected values will be greater above than
below, so vðxÞ[ 0. Conversely, if x is well to the right of the median, vðxÞ\0.
Such aspects are explored more fully in what follows.

Sign apart, the function vðxÞ shares some general properties with both the cubic
penalty function / ðx� lÞ3 of the Pearson symmetry metric, and the mean absolute
deviation E½jx� lj�. Thus for any value x,

FðxÞllðxÞþ ð1� FðxÞÞlrðxÞ ¼ l:

It follows that at the distribution median, vðxmÞ ¼ 2ðl� xmÞ, so that if the
distribution is symmetric, vðxmÞ ¼ 0. A positively skewed distribution typically has
l[ xm, so
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vðxmÞ[ 0: Also

v00ðxmÞ ¼ 2f 0ðxmÞdðxmÞþ 8f 2ðxmÞvðxmÞ;

where dðxÞ ¼ lrðxÞ � lrðxÞ is a nonnegative spread function explored below. In
particular, if the density f ðxÞ is symmetric, then v00ðxmÞ ¼ 0 and vðxÞ has a point of
inflection at the common mean and median.

At the extremes, the function vðxÞ in most cases is asymptotically linear, though
for very long tails it may rise more steeply, while the scaling constant may differ as
between upper and lower regimes. The logistic case is illustrated in Fig. 3.1. Thus
the proposed penalty function shares the sigmoid property of the cubic in the
vicinity of the mean, but the linear penalty of the mean absolute deviation at the
extremes. The sign convention is chosen to ensure that the final metric gives the
same convention as to positive and negative skewness as the Pearson metric. Thus
purely as a penalty function, vðxÞ could be regarded as a hybrid between the
Pearson and the mean absolute deviation metrics.

A function dual to vðxÞ that embodies a dispersion or spread dimension can be
originated by simply changing the sign in expression (3.5a) to give

dðxÞ ¼ ðlrðxÞ � xÞþ ðx� llðxÞÞ: ð3:5bÞ

This could be viewed as an isolation or separation indicator. For any given value
of x, it averages the gap to the mean of observations above as lrðxÞ and those below

Fig. 3.1 Logistic moving average, asymmetry and spread functions
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as llðxÞ. The dispersion penalty function dðxÞ is nonnegative and convex
(d00ðxÞ[ 0). Figure 3.1 illustrates.

Making use of expression (3.4) gives

d0ðxmÞ ¼ 4f ðxmÞðl� xmÞ:

If l ¼ xm the minimum value of dðxÞ will lie at the common mean and median,
with dðlÞ ¼ 2lrðlÞ[ 0. Otherwise, the minimum will usually lie to the left of the
median for positively skewed distributions, and to the right of the median for
negative skewness.

Figure 3.1 illustrates for a logistic distribution with the common mean and
median at l ¼ 1, and scale parameter b ¼ 0:75. For the logistic distribution,

llðxÞ ¼ xþ b
FðxÞ lnð1� FðxÞÞ

so that lrðxÞ ¼ l�FðxÞllðxÞ
1�FðxÞ . The ratio lnð1�FðxÞÞ

FðxÞ approaches the value (−1) as

x ! �1. Hence the left conditional expected value llðxÞ rises from asymptotic to
the line y ¼ x� b to the value llðxÞ ! l as x ! 1. Conversely, the right hand
moving average lrðxÞ starts at the unconditional mean l and becomes asymptotic to
the line xþ b as x ! 1. The effect of a higher spread parameter b is to distance the
approach to the asymptote. Also depicted are the asymmetry and spread generators
vðxÞ; dðxÞ.

3.5 Summary Metrics for Asymmetry and Spread

Summary metrics for asymmetry and spread can be derived by taking expected
values of the respective penalty functions together with expressions (3.3a, 3.3b).
This results in two metrics:

v ¼ EF ½vðxÞ� ¼ ðlR � lÞ � ðl� lLÞ ¼ 2
1
2
ðlL þ lRÞ � l

� �
; ð3:6aÞ

d ¼ EF ½dðxÞ� ¼ ðlR � lÞþ ðl� lLÞ ¼ lR � lL: ð3:6bÞ

Expression (3.6a) in terms of the differences ðlR � lÞ versus ðl� lLÞ reinforces
the idea of asymmetry as differential displacement of the respective left and right
shifted distributions. A symmetric distribution will shift equally relative to the
common mean and median, resulting in a zero asymmetry metric. A positively
skewed distribution will shift more to the right than it does to the left, resulting in
lR � l[ l� lL and v[ 0. Expression (3.6b) for the spread adds the two positive
differences.
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Supplementary rationales can be derived by using the result that

covðx; logFðxÞÞ ¼ l� lL; covðx; logð1� FðxÞÞ ¼ l� lR:

This leads to

v ¼ covðx; logFðxÞÞþ covðx; logð1� FðxÞÞ:

Similarly,

d ¼ covðx; logFðxÞÞ � covðx; logð1� FðxÞÞ; or

d ¼ covðx; kðxÞÞ;

where kðxÞ ¼ logðFðxÞ=ð1� FðxÞÞÞ is the log odds of X� x versus X[ x.
The measure d always exists for any distribution of finite range. However the

relevant area integral may not converge for exceptionally long tailed densities with
infinite range; the Cauchy distribution is an instance.

Assuming existence, it is straightforward to show that the metric d satisfies
elementary requirements for a dispersion metric. Thus it is invariant with respect to
translation (x ! y ¼ xþ c); homogenous with respect to scale (y ¼ cx; c[ 0); and
unaffected by sign reversal (y ¼ �x).

In addition, if distribution B is a median (m) preserving spread of A (so
FBðxÞ[FAðxÞ; x\m and FBðxÞ\FAðxÞ; x[m), then dB [ dA. Adopting the
stochastic dominance point of view, if the distribution function FA is second order
dominant over FB, with the same mean, then distribution B has a greater d metric.
Section 3.7 enlarges on the stochastic dominance angle.

Similarly, the proposed asymmetry metric v obeys most, if not all, of the stan-
dard requirements for a measure of asymmetry. Thus for any symmetric density it
has value zero; it is homogenous to linear transformation of x; and if x is replaced
by xþ zðxÞ with z0ðxÞ[ 0; then the resulting v metric remains consistent in sign
with the original.

As a final observation, the sampling theory of the metrics v or d is essentially
that of the sample mean of the compound random variables gðxiÞ ¼ xi ln F̂ðxiÞ; i ¼
1; 2. . .; n with n as the sample size. In forming successive gðxiÞ, the empirical
distribution of FðxiÞ must be formed as the sample proportion less than or equal to
the given element xi. On the other hand, the classic central limit theorems assume
that the random variables gðxiÞ are independent, which is not going to be the case.
There may in addition be boundedness problems arising from the logarithm of F, so
that each element of the sample sum cannot be assumed to have a small individual
effect on the sample mean. Thus the sampling theory, including limits in probability
or the asymptotic distribution, remains to be fully investigated. In purely descriptive
contexts, such as income distribution, problems of this nature do not usually arise.
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3.6 Gini’s Mean Absolute Difference and
Welfare Variants

Gini’s mean absolute difference (MD) can be defined as the weighted absolute
metric distance between two randomly drawn observations from the same distri-
bution function. Given a discrete valued empirical frequency function f (e.g. for
incomes, or wealth),

let xi; yj denote drawings from the bivariate density defined by
/ðxi; yjÞ ¼ f ðxiÞf ðyjÞ. Then the Gini mean absolute difference is conventionally
given by

MD ¼
X

i

X
j
jxi � yjjf ðxiÞf ðyjÞ:

Several alternative formulas for the mean absolute difference exist, for compu-
tation or other purposes. An instance is

MD ¼ 4Covðx;FðxÞÞ; ð3:7Þ

where FðxÞ is the distribution function corresponding to f ðxÞ.
If l is the arithmetic mean, the value 1

2MD=l gives the familiar Gini coefficient,
widely quoted in income distribution studies as measuring the extent to which the
cumulative proportion of total income is matched by the cumulative proportion of
people. Chapter 4 is a more extended treatment of such aspects.

The Gini mean difference as such has had a long history of discovery and
rediscovery, but even in recent times remains just an alternative method for com-
puting the Gini coefficient in studies of income distribution. Part of the difficulty in
its more widespread acceptance lies with the nature of the representation, as the
expected value of all pairwise absolute differences. This makes it less than trans-
parent in pattern recognition, as to biases, one way or the other, that might con-
tribute to the interpretation of the resulting value. It also becomes difficult to relate
the MD to other measures of spread or asymmetry, or indeed to decide which of the
two contributes more to the MD.

The development that follows explores such issues by utilising the upper and
lower conditional means at any given value of the subject variable. Cast in such
terms, the MD metric belongs to a generalised mean difference family, which
includes the measures d and v for distribution spread and asymmetry. In such terms
the MD is revealed as having contributions from both spread (generalised disper-
sion) and asymmetry; so in this sense, it is not a pure measure for spread as such,
despite its formal appearance.

It will be convenient for expository purposes to assume a continuous range
space. Extension to discrete or histogram data is straightforward. It will also help to
adopt a common symbol for the subject variable (income, etc.), with values x, X in
place of x,y. The convention will then be that X is drawn first, conditional upon a
given value x, followed by variation in x. In such terms,
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MD ¼
Z
x

Z
X
jx� Xjf ðXjxÞf ðxÞdXdx: ð3:8aÞ

Now

jX � xj ¼ ðX � xÞþ � ðX � xÞ�; ð3:8bÞ

where ðX � xÞ� ¼ X � x if X\x, and zero otherwise.
Splitting up the integral (3.8a) conformably with (3.8b) results in

MD ¼ ExfEX ½ðX � xÞjX[ xÞ� � ð1� FðxÞÞþEX ½ðx� XÞjX � x� � FðxÞg:

This can now be put into a form involving the conditional mean functions
llðxÞ; lrðxÞ. Let

dGðxÞ ¼ ðlrðxÞ � xÞ � ð1� FðxÞÞþ ðx� llðxÞÞ � FðxÞ: ð3:9Þ

Then

MD ¼ E½dGðxÞ� ¼ Ex½ðlrðxÞ � xÞ � ð1� FðxÞÞþ ðx� llðxÞÞ � FðxÞ�

provides an expression for MD in progressive mean difference terms, referring to
the differential behaviour of the upper and lower conditional means.

In the present context, primary interest attaches to a comparison of MD with the
entropic spread. From the definition of dGðxÞ it follows that MD\d. Substituting
expressions for dðxÞ; vðxÞ as in Chap. 3 results in

dGðxÞ ¼ 1
2
dðxÞ � vðxÞ FðxÞ � 1

2

� �
:

Taking expected values, together with E½FðxÞ� ¼ 1=2, this can be written

MD ¼ dG ¼ 1
2
d � CovðvðxÞ;FðxÞÞ: ð3:10aÞ

Now v0ðxÞ\0 with vðxÞ ¼ 0. It follows that CovðvðxÞ;FðxÞÞ\0, and MD[ 1
2 d.

In summary, d[MD[ d=2 provides general upper and lower bounds for MD.
If vðxÞ is linear, then simple proportionality holds as between MD and d. Thus a

uniform distribution with FðxÞ ¼ x
N ; 0� x�N has vðxÞ ¼ N

2 � x with d ¼ N
2.

Making use of expression (3.10a) results in MD ¼ 2
3 d ¼ N

3. The gap between MD
and its lower bound of d=2 is equivalent to 17% of the mean income.

In general, however, the relationship between MD and the entropic d will
depend upon the asymmetry of the distribution. A positively skewed distribution
will have a heavier loading in the area of lower incomes, so the steeper changes in F
(x) in this region will interact with higher values of the asymmetry metric; the gap
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between MD and ~d ¼ d
2 will be larger. Chap. 4 contains a more extended discussion

of income distribution as such.
As an extension, comparison of expressions (3.9) and (3.5b) shows that the

functions underlying the MD and ~d ¼ d=2 metrics are of the generic form

dwðxÞ ¼ ðlrðxÞ � xÞð1� wðxÞÞþ ðx� llðxÞÞwðxÞ; 0�wðxÞ� 1;

with wðxÞ ¼ FðxÞ for the MD and wðxÞ ¼ 1
2 for the entropic spread ~d. So in each

case E½wðxÞ� ¼ 1
2.

Equivalently,

dwðxÞ ¼ 1
2
dðxÞ � vðxÞ wðxÞ � 1

2

� �
:

Taking expected values, this result is consistent with Eq. (3.10a), with FðxÞ
replaced by the weighting function wðxÞ:

dw ¼ 1
2
d � CovðvðxÞ;wðxÞÞ: ð3:10bÞ

However, the covariance involved can now be either positive or negative,
depending on the welfare weights assigned to lower versus higher values of the
envy function vðxÞ.

In this respect, the general form can be adapted to context, perhaps with wðxÞ
interpreted as a penalty function. In an investment context, the risk free rate q could
be viewed as a benchmark for funds management. If the realised return is x, a client
would view such an outcome as disadvantageous where the expected exceedance
lrðxÞ � x[ 0. This might especially be the case where FðqÞ ¼ probðx\qÞ is
appreciable. For in that event, the client experiences a double dose of regret: the
expected exceedance is high, and in any case the client could have invested in the
risk free rate. A relevant performance metric might therefore be of the form

dqðxÞ ¼ ðx� llðxÞÞð1� FðqÞÞ � ðlrðxÞ � xÞFðqÞ:

This has expected value dq ¼ ðl� lLÞ � ðlR � lLÞFðqÞ, with the second term
representing the effective penalty of being outperformed when the risk free rate is
positioned higher relative to the general distribution of returns FðxÞ.

3.7 The Economic Dynamics of Remuneration Relativities

Remuneration relativities between parties that are judged to be comparable in some
way are pervasive in the economic environment. In recent years, the particular
context of executive remuneration has received a lot of recent media attention. This
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is hardly surprising in the view of their soaring pay packages, which for large North
American corporations are now of the order of 200 times that of the median worker.
Notwithstanding a substantial economic and legal literature, it remains a puzzle as
to why otherwise undistinguished people, in many cases no more than recent
succession managers, can end up getting multimillion dollar packages. A common
defence is to claim that the package in question has been researched by specialist
pay consultants, reporting to the board’s remuneration subcommittee. Relativities,
but of the firm’s CEO with others in the same or related industries, are an important
input into their recommendations.

Whether the remuneration consultants are truly independent has itself been seen
as an issue. As the sceptic story commonly goes, the Board have appointed the
CEO and wish to have the ongoing pay recommendations support their judgement.
They may in addition supply or choose the benchmark criterion to the consultant,
which increasingly incorporate nonfinancial outcomes, such diversity targets. To
ensure a continuing relationship, the consultants in turn will err on the side of
favouring or reinforcing the Board’s judgement. The resulting ‘Lake Woebegone’
effect, where ‘all the men are above average’, has been highlighted by a number of
academic authors; the literature notes refer.

The analytic framework of the present chapter can be used to study the dynamics
of remuneration relativities. In this context, a remuneration consultant would
research how the CEO of a subject firm compares with the means of those above
and below. An adjustment is then made, with parameters that may differ from the
upward comparison to the downward. Taking the average over all such comparators
gives the mean shift of the average package value. Whether this is greater or less
than the original value depends on the skewness of otherwise of the starting dis-
tribution, as well as the relative up or down adjustment parameters. Disturbances
that originate as idiosyncratic to a given firm can spread quite rapidly via the
ensuing dynamics. Resetting the pay of succession managers is an important
consideration for aggregate remuneration stability.

In a CEO context, ‘pay’ or ‘income’ typically refers to a package of base salary
together with incentive bonuses, stock options, retirement or takeover provisions,
some or all of which may be deferred as to final vestment. To combine these as a
scalar figure (henceforth ‘income’), one can imagine an annualised present value,
utilising a real options framework for contingent outcomes, together with time
discounting to cover future lodgements.

Benchmark criteria often govern the package value for a given company, to be
taken into account by remuneration consultants. These commonly encompass asset
value, annual company earnings, number of employees, market capitalisation, and
other criteria specific to the industry. Thus if a given manager has a nominal annual
package remuneration of y (dollars, euros etc.), this may be determined in relation
to a combination w0z where the wi are the weights given to a collection of indicators
zi. The standardised value for firm i will be taken as xi ¼ yi=w0zi; in what follows,
this forms the basis for comparison by remuneration consultants for that industry.

Note that this assumes that all consultants employ the same set of evaluation
weights. If this is not the case, comparability distortions can arise. Thus suppose the
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consultant for firm A standardises against criterion w0
az, using xa ¼ y=w0

az as a
yardstick for determining nominal income ya. But firm B’s consultant, in reviewing
firm A for comparative purposes, uses different weights w0

bz, setting the standard-
ised value xa ¼ ya=w0

bz for the same nominal income ya. Effectively this would
result in two possible recommendations for the nominal income for the CEO of firm
B. A sympathetic remuneration committee might choose the remuneration con-
sultant to favour the higher outcome. In what follows, however, a consistent set of
weights w will be employed across different firms in the same industry, while
acknowledging a strategic set of attribute weights as a possible distortion.

With this proviso, let fxði; tÞg constitute the standardised set of CEO incomes at
time t for a comparator set of firms i ¼ 1; 2; . . .;N. For historical or other reasons
(see below), the standardised incomes might differ between firms at any given time.
However, it will be in the mind of CEO’s and their firm’s consultants that they may
be better or worse off relative to their peers.

A simple remedy might be to adjust according to whether CEO for firm i is
above or below the mean:

xði; tþ 1Þ ¼ xði; tÞþ kþ ½lt � xði; tÞ�þ � k�½xði; tÞ � lt�þ ; 0� kþ ; k� � 1;

ð3:11Þ

where lt ¼ 1
N

PN
i¼1 xði; tÞ is the current average standardised income. The special

case k� ¼ 0 would indicate the difficulty in getting any CEO currently above the
mean to accept a fall in remuneration. Downward inflexibility aside, simple mean
regression as in (3.11) is arguably unrealistic on more general grounds. It would
indicate that any CEO currently paid just a little less than the mean would be
completely indifferent to the existence of a range of what may be significantly
higher incomes, such as with a bimodal income distribution centred at the mean.

A more realistic approach would be to adjust on a graduated basis according to
the mass above and below any given current income. So let lrðxÞ denote the
conditional mean of standardised incomes above x, i.e. lrðxÞ ¼ E½XjX[ xÞ, and
likewise llðxÞ ¼ E½XjX � x� the conditional mean of incomes less than the given
x. The dynamic specification (3.11) would be replaced by

xði:tþ 1Þ ¼ xði; tÞþ vðxði; tÞ; kÞ; where ð3:12aÞ

vðxði; tÞ; kÞ ¼ kþ ½lrðxði; tÞÞ � xði; tÞ� � k�½xði; tÞ � llðxði; tÞÞ�:

For any given income x, the outcome is now a balance between a push up in the
direction of higher comparative incomes (the first right hand term in the expression
for vð:Þ), and a pull down towards the lower incomes (the second right hand term).
In contrast to the simple mean correction (3.11), all comparator incomes feed into
the relativity adjustment. A regularity condition v0ðxÞ[ � 1 can be added to ensure
that the result does not reverse rankings; so if x1 ¼ xþ dx, then
x1 þ vðx1Þ[ xþ vðxÞ, between any two times t; tþ dt.
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Equation (3.12a) is the relativity equation, expressing the pure comparability
effects. To this can be added equations for nominal income determination:

y � ði; tþ 1Þ ¼ xði; tþ 1Þw0ztþ 1 ð3:12bÞ

yði:tþ 1Þ ¼ yði; tÞþ l ½y � ði; tþ 1Þ � yði; tÞ� þ eði; tÞ; 0\l� 1: ð3:12cÞ

Following a reset of the income basis according to comparability, the indicated
target nominal income would be given by (3.12b). However, Eq. (3.12c) indicates
that this adjustment can itself be partial in any period. An idiosyncratic zero mean
disturbance eði; tÞ is added, which can encompass managerial performance
adjudged to be superior, the outcome of consultant insecurity with respect to that
company, or any other individual effects.

The dynamic process is ongoing. Once the nominal outcome is determined for
firm i, including the disturbance ei, this feeds into the next period’s measurement for
its comparator relativity. There is therefore a channel for nominal outcomes to feed
into outcomes based in relativities.

Relativities impact on managerial incomes indirectly via the nominal (y) effects,
as well as via comparator standardisation. But a full understanding starts with
regularity conditions under which pure comparator relativities do, or do not, lead to
stable outcomes. For this it will suffice to consider the comparative effect of the
standardised incomes x as in Eq. (3.12a). Thus if lt ¼ Ei½xði; tÞ� denotes the
average standardised income at any given time, then the stability conditions relate
to whether or not ltþ 1 ¼ lt versus ltþ 1 [ lt.

Taking expected value of both sides of (3.12a), we obtain the change in mean
standardised income between the two periods as

Dl ¼ kþ ðlR � lÞ � k�ðl� lLÞ: ð3:13Þ

Any change in mean incomes between the two periods this depends upon the
adjustment coefficients kþ ; k� and the skewness or otherwise of the initial income
distribution. In all cases, neutrality can only be achieved if k� [ 0; some accep-
tance of downward flexibility is necessary.

From expression (3.13), mean stationarity as between times t, t + 1 requires
kþ ðlR � lÞ ¼ k�ðl� lLÞ. Setting v ¼ ðlR � lÞ � ðl� lLÞ, mean stationarity
requires

kþ
k�

¼ l�lL
vþðl�lLÞ ¼

1
1þ v=ðl�lLÞ.

Now v
l�lL

	 � 1. In the context of expression (3.13) it is therefore the case that

(a) If the initial distribution is symmetric, mean neutrality is ensured only if
kþ ¼ k�;

(b) If v[ 0 (positive skewness), then mean neutrality can only be achieved if
kþ\k�;
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(c) If v\0 (negative skewness), then mean neutrality requires kþ [ k�.

The most favourable outcome for mean stability is evidently where the initial
distribution of comparator incomes is negatively skewed and where managers on
higher incomes are more relaxed about a small prospective drop in their own
incomes. Even this seems at first sight to be a tall order. However, it could occur
where their individual firm results are bad, which might make managers more
resigned to a finding of lower relativities in the next round.

It is also significant that the incomes are specific to the firm, and that individual
CEO’s come and go. Thus downward flexibility could and should occur in the
course of a managerial succession, as distinct from an outside appointment with an
established track record. An instance rose in the 2017 US Congressional hearing
into the Mylan epipen pricing debacle, where the then recent internal successor
CEO Heather Bresch characterised her $18 million package as ‘middle of the road’.
That this has evidently not been the case is one of the more disturbing features of
some recent instances, suggesting that multimillion dollar outcomes have become
institutionalised. Remuneration resets can have positive socioeconomic outcomes.

3.8 Relationship with Stochastic Dominance

Distributional comparisons are often cast in terms of stochastic dominance.
Distribution A is first order dominant over distribution B if FAðxÞ�FBðxÞ. Thus in
a financial context with x as the rate of return, investors would always prefer A to B
as an investment prospect. This would result in forcing up the price of security A
and lowering its rate of return. In such a context, first order stochastic dominance
(FSD) is understandably rare.

Second order stochastic dominance is a relationship between the cumulated
distribution values. Define

UlðxÞ ¼
Z x

�1
FðXÞdX:

A complementary function accumulates the survival function:

UrðxÞ ¼
Z 1

x
ð1� FðXÞÞdX:

For a logistic distribution UlðxÞ ¼ �b lnð1� FðxÞÞ, UrðxÞ ¼ �b lnFðxÞ.
Distribution A is second order dominant (SSD) over distribution B if and only if

UA;lðxÞ�UB;lðxÞ. An operational meaning is that risk averse investors would prefer
A to B as an investment outcome. In this context, investor risk aversion amounts to
a utility function for money (here, x) that is globally concave, which implies that
E½uðxÞ�\uðE½x�Þ. Risk neutrality would amount to equality in the latter
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relationship: investors would make decisions solely on the basis of expected out-
comes, effectively an affine linear utility function for money.

A sufficient condition for SSD is the ‘once cross over’ rule: if FAðxÞ crosses
FBðxÞ just once from beneath, then FSD does not hold but distribution A is SSD
over B. Intuitively, risk averse investors are willing to sacrifice a prospect of higher
returns in favour of better protection against losses.

A connection exists between the defining functions for SSD and the progressive
left and right conditional mean functions of the earlier sections. The left conditional
average at X ¼ x is given by

llðxÞ ¼
1

FðxÞ
Z x

�1
XdFðXÞ:

Integrating by parts results in

llðxÞ ¼ x� 1
FðxÞUlðxÞ:

Similarly, the right conditional average can be written as

lrðxÞ ¼ � 1
ð1� FðxÞÞ

Z 1

x
Xdð1� FðXÞÞ;

giving

lrðxÞ ¼ xþ 1
1� FðxÞUrðxÞ:

The two can be combined as

UlðxÞ ¼ FðxÞðx� llðxÞÞ

UðxÞ ¼ ð1� FðxÞÞðlrðxÞ � xÞ:

An alternative is to express the SSD accumulations in terms of the spread and
asymmetry functions dðxÞ; vðxÞ. This leads to

vðxÞ ¼ � 1
FðxÞUlðxÞþ 1

1� FðxÞUrðxÞ

dðxÞ ¼ 1
FðxÞUlðxÞþ 1

1� FðxÞUrðxÞ;
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with the inverse relationship as:

UlðxÞ ¼ 1
2
FðxÞðdðxÞ � vðxÞÞ

UrðxÞ ¼ 1
2
ð1� FðxÞÞðdðxÞþ vðxÞÞ:

Second order stochastic dominance criteria can therefore be cast in alternative
forms such that for every value x,

FAðxÞðx� ll;AðxÞÞ�FBðxÞðx� ll;BðxÞÞ ; ð3:14aÞ

FAðxÞðdAðxÞ � vAðxÞÞ�FBðxÞðdBðxÞ � vBðxÞÞ: ð3:14bÞ

Expression (3.14a) captures the essentially conservative nature of the SSD
concept. If the two medians coincide at x ¼ m, a necessary condition for A to be
SSD over B is that ll;AðmÞ[ ll;BðmÞ. The relationship between stochastic domi-
nance and the spread and asymmetry functions is revisited in Chap. 5.

3.9 Literature Notes

The entropic spread and asymmetry metrics and functions were developed in
Bowden (2016a, b), Bowden (2017).

A general set of conditions thought to be suitable for a dispersive ordering can be
found in Jeon et al. (2006). In such terms, the proposed entropic spread metric
d qualifies as a dispersive ordering. It could further be noted that dispersion metrics
have been proposed that are based respectively on Shannon entropy and on the
Fisher information matrix. Kostal et al. (2013) is a reference.

Turning to skewness, many measures of distribution asymmetry have been
proposed. The most basic are cast in terms of comparing the mean, median and
mode, although the third order moment features in classical statistics. On measures
of this type, the Wikipedia article on nonparametric skewness is as good a starting
point as any. Other recent measures have been proposed by Groeneveld and
Meeden (1984, 2009). Earlier, Van Zwet (1964) proposed a set of conditions rel-
evant to the ordering of skewness across different distributions. Kraemer (1998) is a
treatment in the context of income inequality. More recently, Kraemer and Dette
(2016) investigate the consistency of the envy metric v with such a set of axioms.

The Gini coefficient has had a long history of discovery and rediscovery (David
1968). Kraemer (1998) reviews the use of this and other measures in the general
context of income distribution. A further review on this topic is contained in
Sect. 4.1.
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On executive compensation, Carpenter and Yermack (1999), also Balsam
(2002), are book length accounts. The labour economics chapter by K. Murphy
(1999) is a comprehensive account, inter alia covering principles and practices of
pay setting in relation to performance. Two sceptical articles by Bebchuk and Fried
(2003, 2004) make a good read, while a more formal contribution was Frydman and
Jenter (2010).

Finally, second order stochastic dominance was linked to risk aversion and
investor decisions under risk in Rothschild and Stiglitz (1970).
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Chapter 4
Information Comparisons in Practice

4.1 Introduction

With the basic theory of the spread and asymmetry measures now in hand, a range
of applications can be explored, some of considerable topical interest in their own
right.

The first of these is income distribution. Section 4.1 outlines existing approaches
to the measurement of the nature and degree of inequality, in the process consol-
idating some of the content in Sect. 3.5. Still the best known of these is the Gini
coefficient, which refers to the concordance, or lack if it, between the progressive
proportion of people and that of their total incomes. But in principle, a given Gini
coefficient can arise either as a result of too many people on low incomes; or again,
too many people on higher incomes. By way of contrast, social commentary is more
often concerned with the difference between positive and negative skewness. The
former is regarded as more of a concern. Positive skewness means that the weight
of the distribution has been pushed to the left, which means too many people on
lower incomes accompanied by a long tail to the right of fewer people, some with
very high incomes.

Of the existing inequality metrics that seek to rectify the shortcomings of the
Gini coefficient, the more influential could be regarded as imposing observer-
calibrated welfare parameters as benchmarks for what is, or is not, excessive
inequality. The present agenda in Sect. 4.2 is not prescriptive in this sense. The
perspective is instead internal, seen as it were from the point of view of the subjects
themselves. Subjects look to incomes above theirs compared to incomes below.
Aggregating over all subjects, as a form of double smoothing, results in the dual
v and d metrics of Chap. 3. The former measures directed inequality and the latter
the spread or dispersion dimension. From there it is a simple matter to plot the one
against the other over time as a dynamic phase plane. Illustrations are included for
the US and Europe.
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Section 4.3 takes up quite a different socioeconomic tack, this time in terms of
measuring stock market performance as seen by investors. Here there is typically a
benchmark (such as the general S&P500 stock market index) and the returns on a
subject equity or portfolio are to be assessed relative to the benchmark. Existing
excess return indexes, such as the Sharpe index, do not adequately encompass the
kind of asymmetry that investors value, namely that associated with positive
skewness. Once again, the entropic v metric can be added to the basic Sharpe metric
to better reflect the potential asymmetry of investment returns.

Actuarial uncertainty is revisited in Sect. 4.4. The preoccupation here is with the
survival probability for a given population. Conditional life expectancy, which
refers to the expected survival time given the current age, can be cast into corre-
spondence with the right conditional mean function of Chap. 3. This leads to an
overall welfare measure as to the expected longevity in a given population in term
of the right hand entropic mean relative to the original mean itself. Subpopulations
can be compared in this respect e.g. males versus females.

Section 4.5 concludes with the literature notes.

4.2 Income Distribution

Income inequality has been a perennial topic of economic and social interest, but
never more so than the present, where dramatic changes have followed within just a
short span of time. Performance driven management rewards that have been seen as
excessive have attracted much public attention and are discussed in Chap. 3. But
other influences have been at least as pervasive; and arguably more important in
their implications for middle workers in particular (the ‘lumpen proletariat’, as Karl
Marx dismissively referred to them). Technological displacement for middle
management, import competition from cheaper emerging countries, free trade
agreements, adverse fallouts from public spending bubbles, commodity price
reversals, the global financial crisis, are just some of the causal influences, com-
bining as the perfect storm in their fallouts for remuneration and employment down
the line.

In the most general sense, metrics for income distribution are part of a wider
body of knowledge into social welfare functions developed and debated over many
years. But establishing a consensus as to an optimal measure for income equality
has not been easy, for theoretical work in economics has indicated that it is not in
general possible for society to ever agree on a consistent ordinal social utility
function. The outcome is that it would not be possible to establish universal
agreement among the subjects themselves as to a single best metric for income
inequality.

The empirics have therefore focused upon metrics for income inequality that
appeal in designated ways to the observer’s own preconceptions as to fairness. Still
the best known and most widely accepted metric of this kind is the Gini coefficient,
which measures the non-alignment of the accumulated percentage of income with
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the progressive numbers of the people enjoying it. The Gini coefficient has already
figured in Sect. 3.5 in connection with the mean absolute difference, but it is
necessary at the present juncture to consider its motivation and from there, its
potential shortcomings.

Figure 4.1 illustrates. Income earners in a society or specified group are first
ordered lowest to highest. Then the Lorenz curve, as it is called, graphs the
cumulative percentage of total income to the cumulative percent of people earning
it. If everybody enjoyed the same income, the outcome would be the 45° line. The
Gini coefficient G measure the extent to which this is not true, as the area between
the curve and the 45° line (for country B the shaded area) as a fraction of the area
under the 45° line itself. For a continuous distribution of incomes y, with distri-
bution function F(y), this reduces to

G ¼ 1
l

Z 1

0
FðyÞð1� FðyÞÞdy:

Alternative expressions in terms of the Gini mean difference are given in
Chap. 3. Most developed countries have their Gini coefficients in the 60–70%
range, a figure which has been gradually increasing over time.

The Gini coefficient has found a number of uses in contexts other than eco-
nomics. However, the discussion that follows is in terms of income or wealth
distribution, which was indeed the original context.

Fig. 4.1 The ambiguity of the Gini coefficient
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Although of venerable origin, dating as far back as 1912 with the work of
Corrado Gini, the Gini coefficient has a number of intrinsic problems. In Fig. 4.1,
the two countries A and B would have just the same value of G. But the social
welfare implications are quite different. In country A, people of low incomes share
proportionately less of the total income take to any given point than for country B.

In other words, the Gini index lacks direction as to the source of the inequality; it
does not properly pick up the kind of inequality that would concern most observers,
namely positive distribution skewness, meaning too many people on low incomes.
As suggested in Sect. 3.5, the Gini coefficient has more of the character of a
generalised spread metric. Of course, the spread of incomes is indeed of interest as
such. But it does need to be supplemented with considerations relating to the degree
of skewness in F.

An agenda in the latter case has been to find income asymmetry metrics that
have economic meaning, as distinct from the textbook third order moment. One
general approach is to compare distributions over time or location in terms of a user
assigned inequality aversion parameter (e). Results are commonly tabulated against
different values of e, with higher e values as a focus for social concerns about the
share of lower income groups. Implicit in this is a user chosen social welfare
function.

Metrics based on Shannon entropy metric have figured in another line of
development. It is not immediately apparent just why entropy, viewed as total
informational complexity, should correspond to any social welfare function.
However it can be shown that some of the inequality parameter approaches reduce
to a metric that in turn maps into the Shannon entropy function. But so far as
entropy in general is concerned, partition entropy might constitute a better starting
point, as it is explicitly concerned with the ‘more’ or ‘less’ dimension that is the
focus of attention.

As a general comment, such approaches on the choice of metric could be
regarded as imposing value judgements on the part of an external observer, who
would set inequality aversion parameters such as e. However it is also possible to
imagine a different thought experiment that seeks to aggregate in some meaningful
way how each subject thinks about his or her own income in comparison to that of
others. This could be referred to as an internal observer approach.

A simple way to do this is via a linear expected utility scale in which each
individual derives positive utility to the extent that his or her income exceeds the
conditional expected income below; and negative to the extent that it falls short of
the conditional expected income above. The net difference is then aggregated over
the relative number in each income band, i.e. the density of the income distribution.
A negative index means that on the average people think that others are better off
than themselves; so the proposed ‘v-index’ or metric could evoke net divergence,
disadvantage or even envy. As a supplement, the metric enables an external
observer to tell at a glance whether a higher Gini arises from spread or positive
asymmetry. This approach to inequality does indeed have an entropic reference, but
in terms of the left and right unit entropic shifts of the income distribution function.
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A more complete approach of this kind would also have to pay attention to two
further welfare aspects. One is the dispersion of the income distribution, as a
‘noticeability’ property. Wide dispersion attracts more attention to very high or very
low incomes, in this context relative to my own as an internal observer. A second is
the average or median income itself. If times are good, higher incomes in others
attract less social opprobrium. There is a correspondence here with managerial
remuneration practices. If the firm is doing well, and stockholder rewards are good,
then a hike in executive remuneration is carried, even with acclaim, at the company
AGM.

4.3 Implementation as Entropic Asymmetry and Spread
Metrics

To see just how the internal observer approach works, suppose my income is y, and
I have perfect knowledge of all the incomes both above and below mine, which for
expositional purposes are assumed to be a continuum in the interval 0� y\1.

I first look at the average income below me: E½Y jY � y� ¼ llðyÞ. Relative to this
group I am better off to the extent of the difference ðy� llðyÞÞ. Then I look at the
average income above me: lrðyÞ ¼ EF ½Y jY [ y�. Relative to this group I am worse
off according to the difference ðlrðyÞ � yÞ.

My net envy or subjective divergence is measured as the difference

vðyÞ ¼ ðlrðyÞ � yÞ � ðy� llðyÞÞ:

Over the entire distribution of incomes, the aggregate net envy or divergence is

v ¼ E½vðyÞ� ¼
Z 1

0
f ðyÞvðyÞdy:

The same sort of argument could be mounted in support of a spread measure.
With my income as y, I look to see how many people and above me, and on the
average how far. This can be proxied by the distance lrðyÞ � y. Now I look to the
left, as to how many people have incomes below mine, and on the average how
much. A proxy is y� llðyÞ. The sum of the two, or their average, can then be
treated as a proxy for my relative isolation from each side, giving rise to the
complementary function

dðyÞ ¼ ðlrðyÞ � yÞþ ðy� llðyÞÞ:

Over the entire distribution of incomes, this averages to
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d ¼ E½dðyÞ� ¼
Z 1

0
f ðyÞdðyÞdy:

As in Chap. 3 it follows that

v ¼ lL þ lR � 2l

d ¼ lL � lR;

where the means are those of the left and right entropic shifts FL; FR of the original
income distribution function F.

The two quantities v; d have been validated in Chap. 3 as metrics for distri-
bution asymmetry and spread. But in addition the metric v satisfies a number of
conditions that have been held up as necessary for any economically meaningful
inequality measure. It is scale independent: the index for a set fxg is scaled up
proportionately for fkxg with k a positive scalar. It is decomposable: the index for a
consolidated collection of countries or regions can be decomposed into the sum of
their respective index plus a further index computed from a collection of their mean
incomes. It also satisfies the ‘Robin Hood transfer principle’: if a dollar (or any sum
less than their difference) is transferred from a rich person to a poor one, the
resulting metric v is smaller.

In some contexts it is useful to normalise the inequality index by dividing by the
spread index d as the ratio v=d. This is then unit free, and in such cases complete
scale independence would apply (i.e. scale absolutely independent of k as above).
In general, however, it is desirable to present both v and d, as they offer the different
distributional perspectives earlier referred to, encompassing both directional
inequality and pure spread. Finally, it may be useful to normalise both metrics by
the mean income, in order to abstract from temporal changes in incomes as a whole,
or alternatively cross country comparisons.

Where the v-metric is more pronounced, there are welfare implications in
indicating the scale of correction required to restore symmetry. A value of 25% of
the mean income would suggest that 25% of the mean income could be redis-
tributed to households below the mean to restore net envy to zero. The criterion
does not in itself specify the pattern of any such notional redistribution, which
would have to ensure continuity around the mean; so that y = l − $1 gets very little
extra to avoid disturbing the relativity with y = l + $1. But it can serve to indicate
the scale of the redistribution required.

Figure 4.2 depicts a modified US income histogram for 2013. The range has
been truncated by omitting the highest income band. The latter is open beyond
$200,000, meaning that insufficient information is publicly available to be able to
calculate a meaningful distribution beyond this figure. But even as is, the histogram
indicates fairly pronounced positive skewness. The (truncated) mean household
income is $60,181. Gini for the truncated data is 43.01. The summary numbers
supplied by the Bureau for the complete sample indicate a Gini of 47.6, with a
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comprehensive (non truncated) mean of $72,641. The difference in the Gini coef-
ficients indicates that the truncated v-metric is going to be an underestimate.

For the publicly available sample, the entropic asymmetry and spread metrics
can be calculated as v = $6,850 which corresponds to 11.38% of the mean income,
and d = $72,154. Scaling up by the ratio of the complete to the truncated Gini
suggests a redistribution of the order of $7,581 as a first approximation once all
higher incomes are taken into account.

4.3.1 Social Welfare Aspects

The three metrics, namely v for asymmetry, d for spread, and l (or the median) for
central tendency, provide potential cues for thinking about how the average person
might react to their publication. A positive skewness indicator v will indicate that
the average person is net disadvantaged relative to those below and above on the
income scale. In turn, this will be more noticeable where the distribution has a
wider spread d. And in both cases the reaction will be moderated when all incomes
are higher. If I have enough for my daily needs and annual holiday, I am less likely
to be obsessed with what the senior public servant down the road earns.

The foregoing suggests an ordinal social welfare function, geared to the average
worker. This might be of the general form
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Fig. 4.2 Truncated US household income 2013 (Data source: US Bureau of the Census: table
HINC-01: sample of 68,000 households.)
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SW ¼ wðl; v; dÞ; ð4:1aÞ

with derivatives

/1 ¼
@w
@l

[ 0; /2 ¼
@w
@v

\0; /3 ¼ @w
@d

\0:

Thus social welfare is specified as increasing with average income, but
decreasing with asymmetry and spread.

There might also be interactions between v and d, such that @2w
@d@v\0. The latter

would indicate that people are more concerned about asymmetry when the
underlying spread is larger.

As a further aid to interpretation, suppose that w is separable between l on the
one hand, and ðv; dÞ on the other, of the general form

SW ¼ wðl;/ðv; dÞÞ: ð4:1bÞ

This would certainly be the case if the parent function (4.1a) was homogenous in
its three arguments, but it is not necessary to introduce such a restriction.

The form (4.1b) could be interpreted as saying that the average worker looks first
at the spread and asymmetry in relation to his or her own income, then modifies any
reaction if the personal income is higher or lower during any given year. For any
given income there is therefore a set of indifference curves (level surfaces) as
between spread and skewness. However, these may not be uniformly concave or
convex. For as skewness (v) becomes more positive, it requires progressively lower
dispersion to materially lessen the envy. By way of contrast, if v becomes more
negative, it might require a progressively higher spread to preserve the same social
utility. The social indifference curves relating skewness to spread might therefore be
sigmoid in shape.

4.3.2 Dynamics: The v-d Phase Plane

Over time the metrics for spread and asymmetry change, especially so if the
economy is impacted by substantial external events or structural changes. This was
the case for many European economies over an interval of time spanning the period
before, during, and after the Global Financial Crisis (GFC), with further impacts
from the fall in the price of oil. Countries were in fact differentially affected, with
some emerging much better than others.

A standout example of the latter was Norway, which weathered its own price oil
shock very well and took policy measures that amounted to a social redistribution of
incomes. Figure 4.3 for Norway illustrates with income histograms for three dif-
ferent years, 2005, 2010, 2013. The v and d metrics are listed in the insert.
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Evidently Norway’s income distribution became less asymmetric, but the spread
diminished with the transition from a positively skewed to a more symmetric
distribution.

A convenient way to portray temporal changes in the social context of incomes
is to graph the v and d metrics together in the form of a directed phase plane over
time, using the same database as for Fig. 4.3. To compensate for accompanying
changes in the average incomes, it is convenient to scale as v=l versus d=l.

Figure 4.4 illustrates for France. The adverse social impact of the GFC is
apparent, with a substantial rise in both spread and inequality in 2007-8. By 2013
this was still not fully restored to the pre GFC period. This could correspond to a
radical downward shift in the social welfare function, especially so as the average
income in fact declined over that period. By way of contrast, other European
countries fared much better over the same period, some actually diminishing their
inequality and spread metrics.

4.4 Application to Stock Market Performance

Performance metrics for equities or managed funds are established tools of the
finance industry, objects of media reporting and investor assessment. The metrics in
question are usually comparative in nature against some benchmark. For example,
the Sharpe index compares the mean of the security return against the risk free rate,
effectively the expected return on a portfolio long in the security return, short in the
risk free asset. Even short of this, however, there are some hidden assumptions in
the use of standard metrics. In the case of the Sharpe index, it is tacitly assumed that
the distribution of equity returns is symmetric. But this is not necessarily true, even
in relatively normal times. If returns are asymmetric over any given interval, then
extraordinary exposures to loss, or else opportunities for gain, can arise. In attempts
to capture such gains or losses, a number of authors have proposed incorporating a

Fig. 4.3 Norway: monthly disposable income (1 NOK * 0.12 USD) (Data source: OECD
income statistics)
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contribution from skewness, the later measured as the conventional third order
moment.

It could be argued, however, that any such diagnostic metric should be con-
textual in nature, with reference to the investor’s gain or loss, in a way that the
textbook third order moment for asymmetry cannot. Moreover, there is room for
exploration as to just what should be assumed, even tacitly, about the underlying
utility function. A case could be made that the standard concave (risk-averse) utility
function is not a comprehensive representation for investor motivation. More
appropriate might be a utility function that is concave on the downside and convex
on the upside. A form of this kind is often referred to as a Friedman-Savage utility
function, for which there is some corroborating support from more recent studies in
behavioural economics. Thus a fund manager would be averse to losses, the more
so with the prospect of employment termination if losses are heavy. On the other
hand, the same manager will be motivated by a more generous performance bonus
for progressive gains on the upside.

To incorporate the possible asymmetry of returns, one can draw on the v-metric,
or on the function v(x) that underpins it. However in an investment context, where
r refers to returns, things have to be reversed. On any given day suppose the return
is r. Now I win to the extent that this exceeds the average return below (a better
day), and I lose to the extent that it falls short of the average above (other days are

Fig. 4.4 Income distribution changes in France over the GFC (Source Bowden et al. 2018)
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better). This indicates that a more appropriate welfare function for the finance
context is the negative of the net economic disadvantage function, i.e.

wðrÞ ¼ �vðrÞ ¼ ðr � llðrÞ � ðlrðrÞ � rÞÞ;

the ‘win’ function. The function wðrÞ is concave below (but convex above) a
break-even value on the return axis. As returns r become more negative, the win
function (actually a loss in this zone) wðrÞ becomes asymptotic from above to the
45 line, and from below as r ! 1. The expected value of the win function is
therefore

w ¼ 2 l� 1
2
ðlL þ lRÞ

� �
; ð4:2Þ

where the respective means are those of returns under the original and unit shifted
distributions. The spread d, as derived from the function dðrÞ can be taken as
unchanged.

The standard Sharpe performance metric is written as

S ¼ lr � rf
r

;

where lr is the expected return, r its standard deviation and rf is a risk free rate.
Defining ~r ¼ r � rf as the excess return, with distribution function ~F, the Sharpe
ratio becomes

S ¼ E~F ½~r�
~r

¼ ~lr
~r
;

Here and elsewhere the superscript tilde refers to excess returns. Thus ~r denotes
the standard deviation of excess returns.

The proposed W-metric is an alternative to the Sharpe ratio. Because it explicitly
invokes an asymmetry consideration, the benchmark is taken as the median of
returns instead of the mean. The performance metric is defined as

W ¼ ~wþ~rm
~d

; ð4:3Þ

where ~rm is the median of the excess return distribution and the asymmetry metric ~w
is defined as in expressions (4.2) applied to the excess return. The denominator ~d of
the W metric is the nonnegative spread metric d applied to excess returns. For
standardisable distributions such as the normal, the logistic or the Gumbel, the
metrics d and the standard deviation r are proportional via the scale parameter. In
such cases there is little effective difference between using either ~d or ~r for the
denominator.
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The numerator of the metric (4.3) splits into two terms: ~rm is the median excess
return, while ~w captures the asymmetry of the excess returns distribution. Rewriting
the numerator of W results in:

~wþ~rm ¼ ðlr � rf Þþ ½~wþ rm � lr�:

Thus the W-metric and the Sharpe ratio’s numerator differ in the term
½~wþ rm � lr�.

In this context, consider the following cases:

(a) The distribution of excess returns ~r is symmetric. In this case ~w ¼ 0, rm ¼ lr,
and the numerators of the W-metric and Sharpe are identical.

(b) The distribution of excess returns is positively skewed. In this case ~w\0, and it
is likely that rm � lr\0. Together this means that W\S.

(c) The distribution of excess returns is negatively skewed. In this case, ~w[ 0, and
it is likely that rm � lr [ 0. Together this means W [ S.

Cases (b) and (c) reflect the implied Friedman-Savage investor utility basis:
investors would like a positively skewed distribution; increasing marginal utility in
the higher zone. But they might back away from a negatively skewed one; too much
weight in the low zone, the area of more negative marginal utility. The difference
between W and S is generated by the implicit underlying utility functions, and the
way that these are responsive to the distribution of returns. The Sharpe metric
S tacitly assumes a linear utility function, while the W metric is more responsive to
the mixed concave-convex Friedman-Savage type utility function.

Adaptations of the measure W can be devised for other benchmarks. Instead of
using the risk free rate, the comparator could be the market return R, so ~r ¼ r � R is
a compound return, long in the subject security and short in the market.
Alternatively, if a CAPM model is thought to apply, a generalisation of Jensen’s
alpha can be defined with the comparator return as the market, scaled by the
security’s beta.

To illustrate the new measure, daily log returns of Ford Motors Company are
employed, together with the S&P 500 index as a market proxy. Following con-
vention, the 10 year US treasury yield is employed as a proxy for the risk free rate
from 1990 to 2015, Technically, even a 10 year US bond rate is not risk free over
the unit holding period, but on the other hand can be taken as simply a returns
benchmark.

The Sharpe ratio and the W metrics are compared in Fig. 4.5. For each year, the
distribution of the daily returns is created, then apply the two measures to these
distributions. The risk free rate is utilised for a benchmark, as in the classic Sharpe
ratio. The dashed bar corresponds to W in Eq. (4.3) and the solid bar to the Sharpe
ratio. The two measures correlate with a coefficient of qS;W ¼ 0:496 which is
statistically significant at 1%. However, there are several occurrences (1990, 1991
and 2007) where not only the absolute values between the Sharpe and the
W-measure differ, but also the signs.
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4.5 Actuarial Life Expectancy

The functions and metrics for asymmetry and spread can be adapted to the exi-
gencies of actuarial science, which deals with survival and mortality rates of human
populations. The calculus of the latter provides the formal underpinning for the
assessment of premiums in the life insurance industry. Extensions exist by a process
of analogy to contexts such as equipment failure in industry, and even to biological
population assessments.

Actuarial science has its own notation to describe the probabilities of survival
that are needed in pricing life insurance and related products, which can be quite
involved. For present purposes, discussion will focus on survival probabilities,
where lx denotes the number of people who survive (live) to age x. This is con-
ventionally calibrated off an initial 100,000 births, with l0 ¼ 100;000. Survival
between age x and age x + 1 is described in terms of transitional probabilities of
death in that interval. So if px; qx ¼ 1� px denote transitional probabilities that
someone aged x will survive (px) or die (qx) in that age interval, then

lxþ 1 ¼ lxpx ¼ lxð1� qxÞ:

Tabulation takes two general forms, with variants on each:

(a) A cohort life table focuses on people born in a specific year. Thus a cohort
table for the year 1940 would start with 100,000 people born in that year and
trace their survival history since then.
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Fig. 4.5 Comparison of the W metric and the Sharpe ratio using the risk-free rate as benchmarks
Source Bowden et al. (2017)
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(b) A period life table is a snapshot at one particular point in time covering all age
groups as of that particular point. Table 4.1 illustrates for the US.

Making use of such data often entails specific assumptions about the survival or
death probabilities. Thus if I am now aged x, the probability that I will survive for
t more years and then die within the following k years is given by

lxþ t � lxþ tþ k

lx
:

However, this refers to the future, which has not yet transpired to someone born
in my year. So to obtain such survival probabilities, it is conventional to use
transitional probabilities px; pxþ 1:. . .pxþ tþ k�1 that are calibrated off the recorded
survival probabilities (or proportions) of people senior to me.

Table 4.1 US life table (period life table) 2014

Males Females

Exact
age

Death
probability

Number
of lives

Life
expectancy

Death
probability

Number
of lives

Life
expectancy

0 0.006322 100,000 76.33 0.005313 100,000 81.11

1 0.000396 99,368 75.81 0.000346 99,469 80.54

2 0.000282 99,328 74.84 0.000221 99,434 79.57

3 0.000212 99,300 73.86 0.000162 99,412 78.59

4 0.000186 99,279 72.88 0.000131 99,396 77.6

5 0.000162 99,261 71.89 0.000116 99,383 76.61

6 0.000144 99,245 70.9 0.000106 99,372 75.62

7 0.000129 99,231 69.91 0.000098 99,361 74.63

8 0.000114 99,218 68.92 0.000091 99,351 73.64

9 0.0001 99,206 67.93 0.000086 99,342 72.64

10 0.000093 99,197 66.94 0.000084 99,334 71.65

… … … … … … …

… … … … … … …

110 0.568528 3 1.2 0.539881 17 1.27

111 0.596954 1 1.13 0.572274 8 1.18

112 0.626802 1 1.05 0.606611 3 1.09

113 0.658142 0 0.98 0.643007 1 1.01

114 0.691049 0 0.92 0.681588 0 0.93

115 0.725602 0 0.86 0.722483 0 0.86

116 0.761882 0 0.79 0.761882 0 0.79

117 0.799976 0 0.74 0.799976 0 0.74

118 0.839975 0 0.68 0.839975 0 0.68

119 0.881973 0 0.63 0.881973 0 0.63

Source US OACT: https://www.ssa.gov/oact/STATS/table4c6.html
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As it stands, this can be an imperfect estimate at times when rapid advances in
public health are taking place. However, a convention of this sort is used where
necessary to complete official life tables. Thus the US cohort life table for the birth
year 1940 extends to age 119 and is calibrated of the existing recorded transition
probabilities for extreme old age, i.e. people born prior to 1940.

For present purposes it will be convenient to recast discussion so that the base
reference is effectively just one person, which in turn means that conventional
probabilities can be invoked. With this convention,

lx ¼ 1� FðxÞ;

so that FðxÞ is the probability of death by age x, with 1� FðxÞ as the probability of
survival. These are depicted for US males in Fig. 4.6, with f ðxÞ as the density
interpreted as the probability of death within each age interval x; xþ 1.

In such terms, the probability that I will survive exactly t more years (and die
within the subsequent year) is given by the ratio

ð1� Fðxþ tÞÞ � ð1� Fðxþ tþ 1ÞÞ
1� FðxÞ :

An operational version is given by

f ðxþ tÞ
1� FðxÞ : ð4:4Þ

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120
Age, x

fF, 1-F

F(x)

1-F(x)

f(x)

Fig. 4.6 Survival probabilities and complements for US males 2014
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From the perspective of my current age x, the specified survival time in
expression (4.4) is for exactly t years into the future. Weighting such terms over
different values of t into the future gives my conditional life expectancy, relative to
my current age of x. In continuous time, this would amount to

1
ð1� FðxÞ

Z N

x
Xf ðXÞdX � x;

with X � xþ t.The resulting conditional life expectancy at age x can therefore be
written as

lsðxÞ ¼ lrðxÞ � x ¼ E½XjX[ x� � x:

Figure 4.7 plots this conditional life expectancy function as a function of current
age x.

A complementary function to the conditional life expectancy can be defined as

lmðxÞ ¼ x� llðxÞ ¼
1

FðxÞ
Z x

0
tf ðx� tÞdt:

To interpret, first fix a nominal age x and consider all people who have died
before that time. The denominator refers to the number of people who have died by
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the given age x. Then look back to the time since death, indicated here by t. The
result can be termed a ‘memorial function’. It is of less practical interest, except
possibly to a monumental mason. However, in the context of the present US
example it does have some points of interest, as it is not necessarily monotonic with
nominal age x. Indeed, over low to middle age intervals the function for US males is
below that for females, though this is reversed for the higher nominal age zone, as
one would expect.

One can use the above formulations to derive a single metric that compares (in
this case) male and female longevities. From Chap. 3, lR ¼ Ex½lrðxÞ�. Averaged
over all values of x, the average life expectancy or survival time is given by

ls ¼ Ex½lrðxÞ � x� ¼ lR � l:

The right shifted mean lR can be evaluated as in Chap. 3, with reference to the
unit right shifted distribution of FRðxÞ. The result gives ls ¼ 12:149 for males and
ls ¼ 10:852 for females. At first sight this result looks paradoxical. It arises
because the average is taken with respect to the mortality density f ðxÞ, so it is in
essence a forfeiture function. The smaller figure for US females arises because they
tend to live longer with the same absolute maximum date at death. Hence heavier
weight is allocated to shorter conditional life expectancies at the longer end. The
effect is apparent in Fig. 4.8. Relative to males, the density of ages at death for
females is bunched more to the right. Chapter 5 develops more systematic com-
parative measures applicable to such contexts.
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4.6 Literature Notes

The assistance of Daniel Ullmann and Peter Posch with the material of Sect. 4.3 is
gratefully acknowledged.

There is an enormous literature in economics covering both the conceptual foun-
dations and special wrinkles in computing Gini and other proposed welfare indexes.
A general review of the whole area can be found in Jenkins and Van Kerm (2009). At
themost abstract level, Arrow (1951), Goodman andArrow (Goodman 1953) showed
that the possibility of a consensus based socialwelfare function as earlier envisaged by
Bergson (1938) and Samuelson (1947), was limited at best. Kraemer (1987) reviews
the general axiomatic basis. As an extension, Sen (1970) proposed a metric that
combines in itself both the mean income and the complement (1-G) of the Gini index.

Alternative or supplementary indexes compare distributions over time or loca-
tion in terms of a user assigned inequality aversion parameter. Formulations of
different kinds can be found in Atkinson (1970), Donaldson and Weymark (1980)
and Yitzhaki (1983), Greselin and Zitikis (2015). The Atkinson inequality aversion
coefficient is defined by

I ¼ 1� 1
l

1
n

Xn
i¼1

xi
1�e

 !1=ð1�eÞ
; 0\e\1

¼ 1� 1
l

P
n

i¼1
xi

� �1=n

; e ¼ 1

Increasing aversion to inequality corresponds to e ! 1. The Atkinson index does
satisfy a number of axioms seen as desirable for such purposes, notably the Robin
Hood transfer and subgroup decomposability (see Sect. 4.2).

Of the other indexes, Theil (1965) proposed Shannon entropy as a metric. For a
population of size N with mean income l, the Theil index is defined by

I ¼ 1
N

XN
i¼1

xi
l
ln

xi
l

� �
:

The Theil index is a point of departure for number of other contributions util-
ising Shannon entropy; thus Shorrocks (1980), also Foster et al. (1984). Finally, on
practical aspects of all the above, including sampling theory, see e.g. Deltas (2003),
Giles (2004).

The application of the v, d metrics to income distribution was first proposed in
Bowden (2016a, b).

A comprehensive discussion of the income distribution changes in Europe
that took place over the GFC can be found in Bowden et al. (2018), from which
Figs. 4.3 and 4.4 are sourced. Some quite radical differences exist as between their
respective v-d phase planes over the period, with some countries experiencing
reduced asymmetry and spread, with others going quite the opposite way.
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Turning to Sect. 4.3 on measuring stock market performance, standard measures
are typically based on the Sharpe—Lintner CAPM model of market equilibrium
(Sharpe 1964; Lintner 1965); thus Sharpe (1966). The CAPM model in the standard
version is not well supported by empirical research, but remains highly influential if
only as a starting point. Thus extensions have sought to add one or more general
factors to the equilibrium pricing model. However they do not explicitly address the
observed asymmetry of returns in many cases, even in relatively normal times (e.g.
Fama 1965; Chunhachinda et al. 1997). If returns are asymmetric over any given
interval, then extraordinary exposures to loss, or else opportunities for gain, can
arise. Kraus and Litzenberger (1976) proposed skewness as a second factor in the
traditional CAPM formula. Ang and Chua (1979) use this modification in order to
define an excess return performance measure. For other approaches incorporating
skewness, see Eling and Schuhmacher (2007), Farinelli et al. (2008).

A more extensive treatment of the empirical performance of the W metric rel-
ative to that of Sharpe, from which Fig. 4.6 is sourced, may be found in Bowden
et al. (2017).

With reference to Sect. 4.4, actuarial theory and practice evolved somewhat
independently of the general body of statistics and stochastic processes. As a result,
it can be hard for generalists to read. This is not helped by some of the notation: as an
instance, tjkqx meaning the probability that someone aged x will survive for t more
years, then die within the following k years. Further details and methodology can be
found in number of actuarial textbooks, including those sponsored by the profes-
sional actuarial societies. Examples are Bowers (1997), Hickman et al. (1997), and
Promislow (2011).
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Chapter 5
Binary Perspectives for Spread
and Asymmetry

5.1 Introduction

The spread and asymmetry metrics developed in foregoing chapters could be
regarded a parametric in nature, expressed as they are in terms of first moments. The
agenda of this chapter is a nonparametric approach that seeks a conceptual con-
densation of the partition function, with two agendas in mind. The first continues on
from previous themes of finding minimally descriptive measures for location,
asymmetry and spread. The second associated agenda seeks a more far reaching
decomposition such that the total entropic spread could be regarded as generated by
just two polar outcomes.

An early approach to non parametric metrics for spread and asymmetry invoked
the relationship between the orginal distribution function and its entropic shifts, the
latter summarised in terms of the centred shift. The relationship between the cor-
responding partition entropy functions leads to complementary upper and lower
intersection points associated with invariant distribution function values. The
metrics for spread and asymmetry could then be defined in such terms. Section 5.1
is an exposition of this approach.

A subsequent approach developed in Sect. 5.2 is more far reaching, and has been
developed with decision theoretic applications in mind. Following a well trodden
path in the theory of finance in particular, it takes the form of a reduction of the
original density to one using an equivalent probability measure with respect to
which decision making is less complex. In the more promising of these, the con-
densation takes a bipolar form, so that the original distribution is entropically
equivalent to an equally weighted combination of just two Dirac delta distributions:
e.g. the ‘bad’ and the ‘good’ states. One can then balance up the two poles in terms
of risk and reward. A consequence of this development is that the distance between
these binary outcomes, or polar points, can be used to construct spread and
asymmetry metrics that are non parametric in form.
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Section 5.3 enlarges on the idea of polar perspectives. Illustrative applications
are to income distribution (poor versus affluent) and financial investment (success
versus failure). In the investment context it would be as though the investor acts as
though there are now just the two polar outcomes, good and bad. An accompanying
indication of entropic dominance, in this case of one investment over another, leads
to a further point of contact with stochastic dominance in general.

Some applications follow. Section 5.4 revisits the issue of fund performance in
finance. A debate here has concerned whether hedge funds, which charge expensive
management fees, have in reality done better than merely investing in an exchange
traded fund (ETF) that simply tracks the general index such as the S&P500.
A surprising conclusion emerges: hedge funds in general can be regarded as more
defensive than the general market index, not at all the aggressive outperformers
commonly claimed in their publicity.

Section 5.5 revisits actuarial uncertainty. The polar entropic decomposition and
associated asymmetry metric indicates that US males as a demographic group
exhibit a longer right hand tail to their times of death than do females. More
precisely, the mortality function for females is shifted bodily to the right relative to
that for males. It is also more condensed; the polar asymmetry metric is smaller than
it is for males.

The chapter concludes with the literature review as Sect. 5.6.

5.2 A First Approach Based on Spanning

The metrics v, d as proposed in Chap. 4 are not the only measures of asymmetry
and spread that could be devised in the entropic context. In particular, since they are
technically constructed in terms of means, they could be regarded a semiparametric
in nature. It might therefore be useful to have a non parametric version, where such
a requirement is the current focus of interest.

An early suggestion was to identify points such that spanned equal values of the
partition entropy. So if hðxbÞ ¼ hðxaÞ where xa; xb were respectively above and
below the median (denoted here as m), one could use the difference xa � xb as a
spread measure and the quantity 1

2 ðxa þ xbÞ � m as a measure of asymmetry.
Because there are an infinite number of point pairs xa; xb that would satisfy such a
condition, it would become necessary to choose a particular pair that would tell us a
little more about the nature of the asymmetry.

One such point of departure is to use as a starting point the centred shift of
Chap. 2, which averages out the left and right unit entropic shifts. From the defi-
nition of the centred density, any point x* where the natural f ðxÞ and centred fcðxÞ
densities intersect must satisfy the condition
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ncðx�Þ ¼ �0:5 ln½Fðx�Þð1� Fðx�ÞÞ� ¼ 1;

with ncðxÞ as the Radon-Nikodym derivative that generates the centred shift
(Sect. 2.1). This yields two solutions xa�; xb� to Fðx�Þ ¼ 0:5ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4e�2

p
Þ with

common value for partition entropy at h� ¼ 0:441948.
Figure 5.1 illustrates with a unit scale Gumbel distribution. The two x-values

xb� ¼ �0:601; xa� ¼ 1:735 correspond to invariant probabilities of 16.138% for
the left and right hand distribution tails, invariant in the sense that they apply to any
distribution. It is of passing interest to note that they are very close to the one-sigma
tail of the standard normal distribution, which is 15.866%.

To further motivate the connections with spread and asymmetry, one could
imagine some perturbation of the original distribution function F that lengthened
the right hand tail at point A ¼ a, while leaving the left hand tail probability of point
B ¼ b unchanged. This amounts to an increase in partition entropy at B relative to
A. To preserve equality, point B must move to the right. An increased value of
a� b signals the higher spread; likewise the degree of positive asymmetry would
also rise.

The resulting metrics for spread and asymmetry do indeed satisfy some intu-
itively useful properties. Thus for any scalable distribution (standardisable in terms
of central location and scale), the spread a� b in terms of the unstandardised x will
be D ¼ b~D, and hence proportional to the scale parameter b. The approach in
general could be regarded as supplementary to classical metrics such as the
inter-quartile range.
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On other hand, metrics of this kind do ignore important information, such as the
remaining lengths of the distribution tails beyond the limit a on the upside, and of
b on the downside. Perhaps more importantly, they lack any decision theoretic
content: it is not immediately apparent just how one would use the resulting met-
rics. Measures of more substantive content are developed in what follows, that in
turn call upon the entropic asymmetry and spread metrics v and d, viewed as
descriptive measures.

5.3 Bipolarity: The Entropic Centre
and Equivalent Width

The methodology that follows establishes points of equivalent entropic concen-
tration such that the total partition entropy of the given distribution can be con-
ceived of as equivalent to a mixture of two point densities located at the respective
upper and lower width boundaries. This can have interpretive benefits as location
points for summary binary distinctions (e.g. ‘conservative’ or ‘liberal’, or ‘poor’
versus ‘affluent’). Distinctions of this kind are rarely absolute, but instead are
comparative in nature.

A starting point is to consider what happens with densities that have been
constructed in mixture distribution fashion by combining two elementary delta type
densities. An approach to the latter is depicted in Fig. 5.2. Two normal densities are
respectively centred at means l ¼ �1; 1 with identical standard deviations of
r ¼ 0:05. In the limit as r ! 0, the respective densities become Dirac delta den-
sities, with their partition entropy functions becoming a pair of vertical lines, each
preserving the maximum of ln2 at their respective medians.

Now consider what happens when two such distributions are combined as
mixture distributions with equal weightings. Figure 5.3 illustrates with such a
mixture, constructed as a combination of the two independent normal densities of
Fig. 5.2, with polar means at (-1,1) but with different standard deviations for the
components, respectively 0.05 for mixture A and 0.5 for mixture B. In other words,

fAðxÞ ¼ 1
2
nðx; 1; 0:05Þþ 1

2
nðx; �1; 0:05Þ;

fBðxÞ ¼ 1
2
nðx; 1; 0:5Þþ 1

2
nðx; �1; 0:5Þ

If the standard deviations in such mixtures are allowed to tend to zero, this
effectively generates bipolar Dirac type delta densities with all mass concentrated at
just two points. The mixture partition entropy function hðxÞ becomes asymptotically
a rectangular box, of width in the present case as w ¼ 2, and invariant height ln2. If
w is the width of the box then its area would be w ln 2. As the area underneath hðxÞ,
its entropic spread (as in Sect. 3.4) is therefore d ¼ w ln 2.
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Fig. 5.2 Delta approach densities
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Turning to the general case with an arbitrary distribution function FðxÞ, suppose
the value of the entropic spread metric is d as in Sect. 3.4, which is also equal to the
total area underneath its partition entropy function hðxÞ. An equivalent width metric
can be defined as w ¼ d= ln 2. This in turn will suffice to establish unique bounds
for an interval of that width, such that the partition entropy function takes equal
values at those bounds.

More formally, suppose FðxÞ is any continuous distribution for which the par-
tition entropy function hðxÞ is integrable over the given domain. Given the value
d as the entropic spread metric, let w ¼ d= ln 2. Then there is a unique interval
(xL; xU) with xU ¼ xL þw and FðxUÞ ¼ 1� FðxLÞ. The quantity w satisfies the
interval dimension requirement for a width metric.

This result can be proved in different ways, but a reasonably concise demon-
stration is via the mean value theorem of integral calculus. For any x\m, the
median, let h ¼ hðxÞ. Then there exists ~x[m such that hð~xÞ ¼ h. Conversely, any
number 0\h\ ln 2 corresponds to a unique width dimension WðxÞ ¼ ~x� x such
that hðxÞ ¼ h. Thus for notational brevity, set WðhÞ ¼ WðxÞ. The area underneath
the partition entropy function can then be expressed as

d ¼
Z ln 2

0
WðhÞdh ¼

Z m

�1
WðxÞh0ðxÞdx:

AsWðxÞ; hðxÞ are both continuous, then using the second mean value theorem of
integral calculus, together with hðmÞ ¼ ln 2, we must have

d ¼ Wðx�Þ
Z m

�1
h0ðxÞdx ¼ Wðx�Þ ln 2;

for some value x�\m. Setting w ¼ Wðx�Þ then from the definition of W(�), the
limits xL ¼ x�; xU ¼ x� þw will be such that xL\m, xU [m with
FðxUÞ ¼ 1� FðxLÞ.

The resulting width w is not the same as that portrayed as the distance a� b in
Fig. 5.1. It is in fact wider than the latter, indicated on that diagram as the horizontal
hatched line. Thus the two metrics, namely the entropic width and the spanning
measure of Sect. 5.1, are not equivalent.

The average or midpoint of the two extreme points xc ¼ 0:5 � ðxL þ xUÞ parti-
tions into half the effective total entropy. This point could accordingly be called the
centre of entropy of the given distribution. The degree to which it differs from the
median, as xc � m, is a measure of the degree to which uncertainty is generated
more to one side of the range than the other; in effect, a metric for entropic
asymmetry. For any symmetric distribution it is zero, so the common mean and
median is also the centre of entropy. However this need not be true for asymmetric
distributions. For the unit Gumbel distribution of Fig. 5.4, the median m ¼ 0:367
but xc ¼ 0:745, which together with the single mode indicates more entropic
uncertainty on the right hand side of the median.
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Turning to operational matters, a two stage process is involved: (a) to find d and
hence w = d/ln2; and (b) to solve for the limits xL; xU . Comments follow on both
aspects.

(a) In some cases an analytical solution is available for d. Thus for a uniform
distribution over the range ½0;N�, d ¼ N=2. A useful general relationship in

other contexts is d ¼ covðx; kðxÞÞ, where kðxÞ ¼ ln ð FðxÞ
1�FðxÞÞ is the log odds

function that X � x versus X[ x. Thus for a unit scale logistic distribution, the
log odds function is linear, resulting in d ¼ p2=3 � 3:289. If an analytical
solution is not available, a numerical integration of the function hðxÞ can be
used to find d and hence the entropic spread w.

(b) If the density f ðxÞ is symmetric, then the width interval can immediately be
established as xL ¼ m� w=2; xU ¼ mþw=2. If the density is asymmetric, a
convenient computational algorithm for xL; xU is to find the value x\m that
minimises abs ðhðxþwÞ � hðxÞÞ, then set xL ¼ x; xU ¼ xþw. This con-
verges quickly in Excel using Solver or Goalseek, provided the initial value for
the iteration is a reasonable guess.

Of the common scalable two parameter distributions, the normal distribution has
for unit scale the smallest spread (w), consistent with its differential entropy min-
imising properties among this class. The logistic has a wider entropic spread,
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reflecting the longer tail at each end. The Gumbel shows up as positively skewed
according to the entropic metric xc � m, consistent with the density shape.

The required steps can be summarised as follows:

1. Given FðxÞ find its left and right entropically shifted means lL ; lR and hence or
otherwise its entropic spread d ¼ lR � lL;

2. Calculate its width as w ¼ d= ln 2;
3. Find x ¼ xL to minimise abs½hðxþwÞ � hðxÞ�;
4. Set xU ¼ xL þw.

5.4 Polar Asymmetry and Spread Metrics

With reference to Fig. 5.4, the rectangle with base as the entropic width w and
height as ln2 can be viewed as the partition entropy function for an equally
weighted mixture of the two delta distributions respectively centred at xL; xU . In
this sense, the variation inherent in the original distribution function (here, the unit
Gumbel) can be viewed as homologous with just two polar outcomes at x ¼ xL; xU
embodying the respective Dirac binary equivalents dðx� xLÞ and dðx� xUÞ.

Thus in the social or economic domains, the two points xL; xU could be regarded
as summary polar attitudes: ‘conservative’ or ‘liberal’, or ‘poor’ versus ‘affluent’.
Such references change in their numerical magnitudes over time, much as defini-
tions of ‘poor’ are relative to those better off and not absolute in themselves. In such
terms, social aversion to an increasing spread of an income distribution might be
less if the lower point xL increased along with the upper xU ; in this sense, the gains
are more equally shared. The end points of the entropic width measurement can
therefore convey information additional to the dispersion figure.

Figure 5.5 illustrates within the context of income distribution for the US, in
this repect supplementing the income distribution discussion of Sect. 4.2. The lower
entropic limit xL � $14; 500, while the upper is given by xU � $117; 500. An
observer would certainly be inclined to characterise the former as ‘poor’ and the
latter as ‘affluent’.

Similar remarks might apply in the context of financial performance and port-
folio selection, as in funds management or equity investment. A premise would be
that the investor acts as though he or she replaces the true probability distribution of
returns with its partition entropy function as a decision basis. A first possible
justification arises from behavioural economics, according to which investors tend
to overweight small probabilities of extreme outcomes. Thus a lottery is an unfair
gamble—it has to be, to pay for the costs of running it—but the consequences of
winning are life changing. Correspondingly, the partition entropy function
overemphasises longer tails, relative to the parent distribution function. A second
possible justification arises from a more formal investor utility function of the
Friedman-Savage type, which is concave downward in the negative zone and
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convex upwards for positive outcomes. Again, this would cause investors to
overweight smaller probabilities over a longer distribution tail.

As a decision aid, one could then replace the parent partition entropy function,
with just the two polar outcomes at xL; xU . Analogies exist in the theory of
derivatives pricing, where the original probabilities are replaced by an equivalent
risk neutral measure. The investor could then act as though he or she was risk neutral
with regard to this simplified set of outcomes. The expected outcome is then just

xc ¼ 1
2
ðxL þ xUÞ:

Portfolio A would then be preferred to B if xc;A [ xc;B.
In placing more weight on a longer right hand tail, one can expect the entropic

centre to be greater than the mean for such distributions. Thus for a right handed
unit scale Gumbel as in Fig. 5.4, the mean l ¼ 0:5772 but the entropic centre is
xc ¼ 0:7450 . The two polar extremes are xL ¼ �0:8836 and xU ¼ 2:3735.

In a financial decision context, the two extremes have a supplementary role as
representative ‘bad’ and ‘good’ outcomes. If the median xm ¼ m an associated
asymmetry metric is

xc � m ¼ 1
2
ðxL þ xmÞ � m: ð5:1Þ
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A negative value for this indicates negative skewness. Possible applications also
exist to decision theory. In such terms, one could imagine an investor with current
wealth x0 condensing the entropic uncertainty into just the two representative
outcomes xL for unfavourable and xU for favourable, with equal probabilities.
A proposed investment with outcome x for wealth would be judged worthwhile if
xc [ x0. Such an investor could be considered as risk neutral with respect to the
equivalent entropic measure.

A further analogy exists with conventional stochastic dominance. Given two
distributions A and B, if both xA;L 	 xB;L and xA;U 	 xB;U then one could say that A
is entropically displaced relative to B, in the sense that uncertainty is focussed on
higher outcome values along the common range. A correspondence with conven-
tional stochastic dominance flows via the polar distribution outcomes. Given the
two polar densities dðx� xLÞ; dðx� xUÞ their equally weighted combination leads
to a distribution function ~Fðx; xL; xUÞ that has just two steps at x ¼ xL; x ¼ xU . In
such terms, entropic dominance of A over B would be equivalent to first order
stochastic dominance such that ~FA is FSD over ~FB.

5.5 Fund Performance Measures

The performance of hedge funds and other activist investment vehicles has recently
been the subject of adverse media commentary and falling investor confidence, with
a switch to index tracking exchange traded funds (ETF’s) and similar more passive
vehicles. However, a proper comparison, given the objectives of activist vehicles,
needs to take into account non standard distributional shapes, specifically those
with extended or asymmetric tails.

In this respect two considerations have been overlooked in the comparison
between activist and ETF investment vehicles. The first is the need to assess over a
time scale sufficient to encompass bad as well as good times, while the second is the
issue of just what measure should be used for the purpose. A simple historical mean
return is often used, yet is arguably inappropriate for high risk- high reward
vehicles, with their high net worth clientele better able to bear losses. A similar
objection can apply to alternatives such as the Sharpe ratio or Jensen’s alpha, if only
because hedge funds, and the assets they invest in, are often not publicly traded.
More structured alternatives for using classical third or fourth order moments for fat
or asymmetric tails have been proposed in the literature.

The illustration that follows applies the bipolar equivalent methodology of
Sect. 5.2 to a comparison of hedge fund returns with those on the S&P500 index.
Hedge funds are not in general publicly traded (although one very recent ‘fund of
funds’ that invests in hedge funds has achieved listing on a traded basis). They are
instead unit trusts, that in bad times may have a withdrawal penalty, or even a hold,
on investor withdrawal. They are intended to cater for high net worth clients, who
are judged more capable of absorbing possible losses, though in recent times the
proliferation of competing offerings has de facto lowered this investment hurdle.
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But especially given their high management fees, a central question has always
figured, namely whether such investment vehicles are really worthwhile, compared
with the much simpler alternative of investing in an exchange traded fund that
captures the returns on a general market index such as the S&P500 index.

In what follows, the monthly hedge fund return index takes the form of the
arithmetic mean of funds reporting to the Barclay hedge fund database. It should not
be construed as a single fund of funds in its own right. The data span is Jan 1997 to
Dec 2016. Figure 5.6a, b illustrate with distribution and partition entropy functions
for the Barclay HF index (FB) and the S&P500 index (FSP) monthly returns,
measured as fractions (so 0.05 = 5%). The monthly medians are quite close at
0.078 and 0.098%, respectively. The longer tails of the S&P500 are evident in the
corresponding h-functions. In this sense, the returns on the S&P500 are more
uncertain than those of the Barclay HF index, even when the extreme negative
outlier of the former (February 2009) is excluded.

In the investment context, uncertainty need not have negative connotations, as it
can generated by probability mass in the right hand tail as well as the left. It is more
a matter of balancing up one versus the other. The corresponding lower and upper
entropic concentration limits xL; xU are marked in Fig. 5.6b, together with the
respective widths wSP;wB. For the respective partition entropy diagrams, the rect-
angle with base xL; xU corresponds to the partition entropy function for the equally
weighted Dirac mixture, and its entropic area is the same as that of the parent
distribution. Table 5.1 summarises relevant measures.

The considerations implicit in Sect. 5.2 apply to the current comparison. Making
use of partition entropy in an investment context could be regarded as invoking a
behavioural model that replaces the density f ðxÞ as an object of concern with the
value of the partition entropy hðxÞ. Thus suppose the point x is on the right hand tail
of the return distribution, so a favourable value. If the distribution in question has a
long right hand tail, then even though f ðxÞ might be small at the given point, the
value of hðxÞ would be enhanced by the values still appreciably further to the right
than the given x. The same consideration applies with a longer left hand tail. In this
case the uncertainty-driven investor will mentally inflate the prospective losses,
relative to the natural distribution.

Figure 5.7 illustrates. Here the natural distribution function FðxÞ is compared
with the cumulated partition entropy function HðxÞ ¼ R x

� hðxÞdx normalised to sum
to unity as a distribution analogue. The longer left hand tail for the S&P500 inflates
the partition entropy values in this region, relative to the natural probability.

In terms of the entropic certainty equivalent approach as in Sect. 5.2, the
Barclay HF index is a clear winner, with a value of 0.76% for xc (9.12% per annum)
versus 0.08% (0.72% p.a.) for the S&P500. If the average US CPI inflation rate of
4.26% over the period is taken as benchmark, the hedge fund index outperforms on
real returns. The S&P500 is clearly more exposed to adverse events, notably the full
impact in October 2009 of the subprime crisis (later developing into the GFC).
Apparent hedge fund returns may well have been buffered at the time by non traded
or publicly listed assets in their balance sheets.
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The median return difference for the Barclay HF versus the S&P500 is in favour
of the latter, with value of 0:0078� 0:0096 ¼ �0:0018 per month. But the rela-
tivities are quite different in term of the entropic centre, at 0:0068 * 0.07% per
month in favour of the Barclay HF. The corresponding comparison difference for
the mean is 0.0017.

In general, such differences may be influenced by the numerical sensitivity to
extreme values, as well as distribution shape. The median and entropic centre are
computed in terms of the distribution function, with the entropic centre more
influenced by the differential tail behaviour on either side of any given value for the
median. The arithmetic mean is further influenced by the actual numerical values at
the extremes, especially for smaller sample sizes. So far as a predictive use is
concerned, the issue remains one of uncertainty attached to any extreme values on

Table 5.1 Key metrics for
the Barclay Hedge Fund
versus S&P500 index returns

Barclay HF S&P500

xL −0.0173 −0.0460

xU 0.0326 0.0476

F(xL) 0.0792 0.0840

F(xU) 0.9208 0.9160

xc 0.0076 0.0008

median 0.0078 0.0096

xc-median −0.0001 −0.0088

mean 0.0070 0.0053
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the return scale, whatever the precise magnitude might turn out to be. On such
grounds, the use of the entropic centre would be a better guide to the risks or
rewards to come.

It will be observed that the binary poles xL; xU for the S&P500 returns lie outside
those of the Barclay HF index. Thus entropic dominance, in the sense of Sect. 5.2,
does not exist. However, the respective lower and upper poles do indicate that the
former distribution has longer tails at each end, suggesting that the Barclay HF is
second order stochastically dominant with respect to the S&P500. A strict com-
parison of this kind does require a common mean or median, but even if the
S&P500 is translated to the right by the difference in means, Fig. 5.6a would
continue to indicate second order stochastic dominance. The problem is that the
relative downside penalty XLS&P500 � XLBHF ¼ �0:127 is not sufficiently com-
pensated by the upside gain XUS&P500 � XUBHF ¼ 0:015. This is consistent with the
relative shape of the distributions. The respective values of xc � m, where m is the
median, indicate that whereas the S&P500 is almost symmetric, the S&P500 dis-
tribution is negatively skewed. An investor with Friedman-Savage type utility
would not find the upside potential of the latter sufficient to counter the negative
downside.

In summary, the differential responsiveness of the entropic centre to tail prob-
abilities carries a potential for independent behaviour relative to classic measures of
central tendency or dispersion. Thus one could imagine a switch in the distribution
from negative to positive asymmetry that would leave the median, mean and
standard deviation as before. But a significant change in the entropic centre xc
would signal the change in shape and invoke differential Friedman-Savage type
preferences.

The point is relevant in considering the signalling content of the VIX index,
which is based on backing out the implied volatility from current options prices.
Published by the Chicago Board of Exchange, the VIX index is itself traded as an
indicator of current market uncertainty. Textbook Black-Scholes pricing models
indicate that a rise in the backed out r could well be theoretically neutral in its effect
on underlying physical stock prices, where the latter are based on the future
expected mean return. On the other hand, the Black Scholes options pricing model
does not price out of the money strike prices very well, which suggests that the
market might be very concerned about directional uncertainty. If that is the case,
then a fall in the entropic centre xc would be accompanied by a fall in the under-
lying stock price. The signalling content of the VIX for the underlying stock prices
therefore has to be considered with reference to the framework of directional
uncertainty.
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5.6 Actuarial Uncertainty Revisited

In an actuarial context, the respective partition entropy functions can be associated
with the age-specific probabilities of surviving (U) or not (D). Continuing the
discussion of Sect. 4.4, Fig. 5.8 depicts the partition entropy functions that corre-
spond to a smoothing of the US probability distributions of ages at death, or males
and females, respectively.

Also depicted are the polar entropic concentrations. For the males these are
located at xLm ¼ 52:3; xUm ¼ 93:8 years and for the females at
xLf ¼ 59:0; xUf ¼ 96:6. The respective medians are 80.7 for males and 84.3 for
females. So the respective polar entropic asymmetry metrics (5.1) are (−7.75) for
males and (−6.5) for females. Both exhibit negative skewness, but more so for
males. The latter have a more substantial left hand tail in their mortality distributions.

As the diagram suggests, the survival distribution for females is first order
stochastically dominant over that for males, with the entropic concentration for the
females shifted bodily to the right relative to that for the males. There is more
uncertainty associated with the time of death for males, with an entropic width of
41.5, compared with 37.6 for females. Indeed, the time of death density for females
resembles that for males but shifted entropically to the right. American men are
evidently less attractive candidates for life insurance!
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5.7 Literature Notes

The polar entropic framework of the present chapter was first proposed in Bowden
(2017). The general concern with tail behaviour as a motivational influence has
been reviewed in earlier chapters, as has the actuarial framework (Sect. 4.4). An
earlier proposal as to the spanning metric of Sect. 5.1 was contained in Bowden
(2012).

With respect to Sect. 5.3, more structured alternatives for fat or asymmetric tails
can take the form of CAPM extensions (e.g. Kraus and Litzenberger 1976; Bawa
and Lindenberg 1977) or as a portfolio selection criterion (Harvey and Siddique
2000; Ang et al 2006). Dittmar (2002) explicitly embeds such considerations into a
pricing kernel or stochastic discount factor approach, in this case with possibly
incomplete markets (one where arbitrages may not be possible).

The academic literature on hedge funds tends to be sceptical in nature,
addressing issues such as performance and reporting bias. Stulz (2007) is a review,
though it predates the GFC, at which time the hedge funds outperformed the general
equity index. Performance measures in general have been addressed by Liang and
Park (2010), while a number of authors consider the issue of how performance
incentives of different kinds contribute to (the substantial) mortality risk in hedge
funds.
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Chapter 6
Higher Dimensions

6.1 Introduction

Many of the parent concepts of differential entropy generalise to two or more
dimensions, with more or less natural extensions such as the entropy of the
respective conditional distributions. Likewise, the mutual information between two
random variables can be expressed in terms of the reduction in the entropy of the
one that would follow by knowing the value of the other. The literature notes of the
present chapter provide a short summary of relevant definitions and relationships.

While these concepts provide some useful background, the concern of the pre-
sent chapter is with metric comparisons, for which a specific framework is more
useful. In a single dimension, unit shifts to either left or right are unequivocal with
reference to the axis x. But in higher dimensions the directions must now be defined
with reference to a plane, such as ðx1; x2Þ in two dimensions. However, elementary
shifts can be defined with reference to each dimension separately, then combined
with weights according to the desired direction in the ðx1; x2Þ plane. The elementary
shifts themselves can be obtained with Radon-Nikodym shift factors as the logs of
the respective conditional distribution functions.

Left and right hand moments can now be defined both for marginal and con-
ditional shifted distributions. However there is additional flexibility, for one can
now consider smoothing a given variable with the benchmark set by a second. This
is referred to as co-smoothing, and is introduced in Sect. 6.1.

Section 6.2 adapts the preceding development for contexts where a more or less
natural weighting exists in the form of a welfare index or similar construct. In this
case, one can explore the resulting index changes following distributional shifts in
one or both of the constituent elements of the index.

In a bivariate or multivariate context, co-smoothing refers to the conditional
expectation of a variable taken over a progressive range of a covariate, instead of its
own. The ordered mean difference is of this generic form, exposited in Sect. 6.3. In
the context of finance, this is a construction that characterises the risk- return profile
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of a given security of return r against that of the market, denoted R, as a benchmark.
In the terms of the core development of Sect. 6.1, the difference r � R corresponds
to the first variable x1, and the benchmark return R correspond to the second,
denoted x2.

The empirical study confirms the findings of Sect. 5.4 that far from being
investments of the advertised high risk-high reward profiles, the performance of
hedge funds has on the average been defensive rather than aggressive.

The literature notes conclude.

6.2 Higher Dimensions: Directional Shifting Perspectives

In higher dimensional contexts there are two or more (depending on dimension-
ality) unit shift primary directions, which in turn can generate shifts in any desired
direction in the form of linear combinations of the primary shifts. Themes of this
sort are the subject of the present section. For expositional convenience the case of
just two dimensions is the point of departure.

Thus consider a bivariate distribution function Fðx1; x2Þ with density f ðx1; x2Þ.
For expositional brevity, the range of each variate is sometimes indicated with an
asterisk standing in for the range as e.g. ð�1;1Þ or the half axis ½0;1Þ. To avoid
an unwieldy proliferation of notation, the symbol x1 will be often be taken to
indicate either the parent random variable (hitherto X1Þ or a specific value X1 ¼ x1;
similarly for x2.

With this notation, the marginal means of each variable are given by

l1 ¼ E½x1� ¼
ZZ

�
x1f ðx1; x2Þdx1dx2; l2 ¼ E½x2� ¼

ZZ
�
x2f ðx1; x2Þdx1dx2;

with the integration taken over the entire double range of x1 ; x2. Conditional dis-
tribution functions are denoted as Fðx1jx2Þ ¼ PðX1 � x1jX2 ¼ x2Þ, with density
f ðx1jx2Þ; similarly for Fðx2jx1Þ and f ðx2jx1Þ.

The factor nL1ðx1; x2Þ ¼ � lnFðx1jx2Þ is nonnegative and has unit expected
value with respect to both the joint density f ðx1; x2Þ and the conditional density
f ðx1jx2Þ. With respect to the joint density, it amounts to a Radon-Nikodym
derivative that accomplishes a unit shifting along direction 1, i.e. the direction of the
x1 axis. The resulting density can be denoted by fL;1ðx1; x2; 1Þ, where the subscript
indicates the direction of the shifting (leftward L, along the axis for x1), and the
index argument 1 indicates that this is a unit shift.

With the above conventions,

fL;1ðx1; x2; 1Þ ¼ ð� lnFðx1jx2ÞÞf ðx1; x2Þ ¼ fLðx1jx2Þf ðx2Þ; ð6:1aÞ

where fLðx1jx2Þ refers to a unit left shift of the conditional density. The corre-
sponding distribution function can be written as
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FL1ðx1; x2; 1Þ ¼
Z x2

�
FLðx1jX2Þf ðX2ÞdX2:

The notational convention indicates that this is the result of a unit left shift along
the direction of x1.

Similarly, one can derive a unit leftward shift, but in the direction of variable x2.

fL;2ðx1; x2; 1Þ ¼ ð� lnFðx2jx1ÞÞf ðx1; x2Þ ¼ fLðx2jx1Þf ðx1Þ; ð6:1bÞ

together with the distribution function as

FL2ðx1; x2; 1Þ ¼
Z x1

�
FLðx2jX1Þf ðX1ÞdX1:

The extension to unit rightward shifts is homologous with the above. Thus for
the densities,

fR;1ðx1; x2; 1Þ ¼ � lnð1� Fðx1jx2ÞÞf ðx1; x2Þ ¼ fRðx1jx2Þf ðx2Þ; ð6:2aÞ

fR;2ðx1; x2; 1Þ ¼ � lnð1� Fðx2jx1ÞÞf ðx1; x2Þ ¼ fRðx2jx1Þf ðx1Þ; ð6:2bÞ

with corresponding expressions for the distribution functions.
Shifts can be compound, potentially in any direction relative to the x1; x2 plane.

Those of potential interest in applications are where x1; x2 shift in the same
direction, either to the left or right together, though possibly to a different extent.
The corresponding R-N derivatives are given by:

nLðx1; x2; hLÞ ¼ �ðhL lnFðx1jx2Þþ ð1� hLÞ lnFðx2jx1ÞÞ; 0� hL � 1;

nRðx1; x2; hRÞ ¼ �ðhR lnð1� Fðx1jx2ÞÞþ ð1� hRÞ lnð1� Fðx2jx1ÞÞÞ; 0� hR � 1:

In turn, these generate densities as

fL;hðx1; x2; hLÞ ¼ nLðx1; x2; hLÞf ðx1; x2Þ
¼ hL fLðx1jx2Þf ðx2Þþ ð1� hL ÞfLðx2jx1Þf ðx1Þ:

fR;hðx1; x2; hRÞ ¼ nRðx1; x2; hRÞf ðx1; x2Þ
¼ hRfRðx1jx2Þf ðx2Þþ ð1� hRÞfRðx2jx1Þf ðx1Þ

The special cases hL; hR ¼ 1 correspond to the unit shifted joint densities (6.1a,
6.1b, 6.2a, 6.2b), hence the notation of the latter.

Figure 6.1 illustrates a rightward shift of a parent bivariate normal density, with
hR ¼ 0:5. The distribution is shifted to the right, but the partial nature of the shift
distributes its mass a little wider.
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Distributional moments can be defined with respect to the shifted distributions.
Thus the marginal unit left shifted means from the parent joint density are:

l1L ¼
ZZ

�
x1fL;1ðx1; x2; 1Þdx1dx2; l2L ¼

ZZ
�
x2fL;2ðx1; x2; 1Þdx1dx2; ð6:3Þ

with corresponding conventions for the unit right shifted means l1R; l2R. The
definition extends naturally to the marginal means for the partial component shifts.
So

l1L; hL ¼
ZZ

x1nLðx1; x2; hLÞf ðx1; x2Þdx1dx2

l1R; hR ¼
ZZ

x1nRðx1; x2; hRÞf ðx1; x2Þdx1dx2:

Similarly for l1R; hR ; l2R; hR.

6.2.1 Left and Right Hand Smoothing Moments

As earlier noted, the same R-N derivatives can also be used with respect to the
conditional measures Fðx1jx2Þ; Fðx2jx1Þ to derive unit left or right shifted condi-
tional densities of the form

fLðx1jx2Þ ¼ � lnFðx1jx2Þf ðx1jx2Þ ð6:4aÞ

fLðx2jx1Þ ¼ � lnFðx2jx1Þf ðx2jx1Þ: ð6:4bÞ

Similarly for fRðx1jx2Þ,fRðx2jx1Þ in terms of the complementary R-N derivative
factors � lnð1� Fðx1jx2ÞÞ, � lnð1� Fðx2jx1ÞÞ.

Shifts of this kind are essentially those of a univariate distribution, as the
respective conditionals. In this respect they contrast with shifts defined in terms of
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Fig. 6.1 Partial right shift of a bivariate normal density
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the parent joint distribution function. Thus the conditional mean of x1, given x2, but
computed with respect to the left shifted conditional distribution with density (6.4a)
can be written as

l1Lðx2Þ ¼
Z
�
x1fLðx1jx2Þdx1: ð6:5aÞ

Likewise, the shifted conditional mean of x2, given x1, is obtained as

l2Lðx1Þ ¼
Z
�
x2fLðx2jx1Þdx2; ð6:5bÞ

with corresponding expressions for shifts to the right.
As in the univariate case, a double smoothing connotation exists. In connection

with expression (6.5a), one can write

l1ðx1jx2Þ ¼ E½X1jX1 � x1; x2�:

The progressive conditional expectation is with respect to the first variable,
while the second remains fixed throughout, essentially only incidental. Then

l1Lðx2Þ ¼ E½l1ðx1jx2Þ�;

where again, the expectation is taken with respect to x1, given x2.
Similarly for the second variable:

l2ðx2jx1Þ ¼ E½X2jx1; X2 � x2�;

leading to

l2Lðx1Þ ¼ E½l2ðx2jx1Þ�:

Carrying the smoothing one stage further, there is a connection between the
marginal means as defined in expression (6.3) and those defined with respect to the
shifted univariate conditional distributions. Combining expressions (6.5a, 6.5b)
with (6.3) results in

l1L ¼ E½l1Lðx2Þ�; l2L ¼ E½l2Lðx1Þ�:

More generally,

l1L; hL ¼ EL½x1; hL� ¼ l1 þ hLðE½l1Lðx2Þ� � l1Þ:

l1R; hR ¼ ER½x1; hR� ¼ l2 þ hRðE½l1Rðx2Þ� � l2Þ:
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A demonstration of this result uses expressions (6.5a, 6.5b) together with
f ðx1; x2Þ ¼ f ðx1jx2Þf ðx2Þ ¼ f ðx2jx1Þf ðx1Þ to show that

l1L; hL ¼ h
ZZ

x1fLðx1jx2Þf ðx2Þdx1dx2 þð1� hÞ
ZZ

x1fLðx2jx1Þf ðx1Þdx1dx2;

Corresponding expressions hold for the right shifted marginal means l1R; h and
l2R; h.

6.2.2 Co-smoothing

Smoothing, or the process of taking progressive conditional expectations, has to this
point been cast within the frame of self reflexivity, so that one smoothes a given
variable up to its current point of focus. In this process the value of the other
variable or variables, remain fixed. For example,

llðx1jx2Þ ¼ E½X1jX1 � x1; x2�;

so that X1 is being smoothed based on its own past, while X2 remains fixed at
X2 ¼ x2.

However with two (or more) variables under consideration, the facility arises of
smoothing the first variable over a designated range of the second. This can be
referred to as co-smoothing. In this framework, an expression such as E½X1jX2 � x2�
is in effect a marginal expectation with respect to variable X1, but confined to the
space where X2 is less than or equal to a given value x2.

In this case,

E½X1jX2 � x2� ¼ 1
Fðx2Þ

Z 1

�1

Z x2

�1
X1f ðX1;X2ÞdX1dX2

¼ 1
Fðx2Þ

Z x2

�1

Z 1

�1
X1f ðX1jX2Þf ðX2ÞdX1dX2:

This reduces to

E½X1jX2 � x2� ¼ 1
Fðx2Þ

Z x2

�1
l1ðX2Þf ðX2ÞdX2 : ð6:6Þ

Here l1ðX2Þ ¼ E½X1jX2� refers to the conditional expectation of the first variable
given a specified value of the second variable. Expression (6.6) then says that one
smoothes this up to a specified value X2 ¼ x2.

Smoothing algorithms of this kind find application in Finance. Section 6.3 is an
extended discussion and illustration in the context of the ordered mean difference
benchmarking of security returns.
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6.3 Index Combinations

In some applications it is useful to recombine two variables into a single index. For
instance, income and wealth constitute a natural pairing in the context of economic
distribution. If one is prepared to assign relative welfare weights, then a generalised
inequality metric can be attached to the resulting index.

Such an index could be interpreted as either a generalised income or a gener-
alised ‘economic wellbeing’ index, to indicate command over both current and
future purchasing power. Indeed, one could interpret wealth in terms of its com-
mand over future purchasing power. Similarly, income is the command over current
purchasing power, the capitalised value of which over current and future time is
equivalent to the purchasing power interpretation of wealth. Older people in
western societies may technically be income poor, but on the other hand, asset rich.
Accordingly, the weights could reflect the terms on which wealth could be trans-
ferred into current income.

Thus if x1 denotes income and x2 denotes wealth, such an index for economic
welfare might be y ¼ w1x1 þw2x2 ;w[ 0; w1 þw2 ¼ 1. In the context of income
and wealth, the component v1 would represent the income envy (as in Sect. 4.2) for
any given level of wealth, averaged over all wealth levels. Likewise, the component
v2 is the wealth envy for any given level of income, averaged over all incomes.
Measures for asymmetry (here, inequality) and for spread are then to be assigned to
the welfare index, either as the progressive conditional expectation functions
vðyÞ; dðyÞ, or as their metric averages vy; dy as in Chap. 3.

If the two variables x1; x2 are statistically independent, then the envy metric for
y reduces to the weighted sum of the two marginal envy metrics. However, for
contexts such as income and wealth the net envy for any given level of income will
likely depend upon the subject’s wealth. Richer retirees are less likely to be
bothered by the excesses of executive remuneration! So the income envy metric is
first formulated with respect to a specific level of wealth, followed by an averaging
process over both.

Such a process can be conceived of in two stages. First fix x2 and consider the
distribution of X1 conditional on X2 ¼ x2. For any given value x1 the conditional
relative is

vðx1jx2Þ ¼ lrðx1jx2Þþ llðx1jx2Þ � 2x1:

In terms of the notation of Sect. 6.1, the conditional expected value, given x2, is

E½vðx1jx2Þ� ¼ l1Rðx2Þþ l1Lðx2Þ � 2E½x1jx2�: ð6:7aÞ

6.3 Index Combinations 117



Similarly,

vðx2jx1Þ ¼ lrðx2jx1Þþ llðx2jx1Þ � 2x2

is the conditional relative for x2. Its conditional expected value, given x1, is

E½vðx2jx1Þ� ¼ l1Rðx1Þþ l1Lðx1Þ � 2E½x2jx1�: ð6:7bÞ

The proposed directional relative is the weighted average, with respect to the
joint distribution Fðx1; x2Þ:

EF ½w1vðx1jx2Þþw2vðx2jx1Þ�:

Utilising expressions (6.6) in conjunction with the double smoothing property of
Sect. 3.2, this reduces to the weighted average

vðwÞ ¼ w1v1 þw2v2;

where

v1 ¼ ðl1L þ l1RÞ � 2l1:

v2 ¼ ðl2L þ l2RÞ � 2l2:

If desired, the metrics m1 ; m2 can be normalised by dividing by the weighted sum
of the marginal means w1l1 þw2l2 and expressing the result as a percentage. Thus
with respect to Fig. 6.1, the partial rightward shift has increased an equally
weighted v from −0.70 to 1.84%.

As a final observation, it could be argued that simply averaging the income
metric over x2 constitutes an implicit applied welfare measure with respect to
wealth, but otherwise a lack of formal interaction between the two. An extension
might be to have income envy explicitly modified by societal welfare weightings of
wealth, of the form wðx2Þvðx1jx2Þ with w0ðx2Þ\0.

6.4 Co-smoothing and the Ordered Mean Difference

The process of co-smoothing, where a second variable provides the benchmark for
the first, has been introduced in Sect. 6.1. The application that follows will illustrate
the process and the uses to which the construction can be put. The specific context
is a construction for security benchmarking in Finance, referred to as the ordered
mean difference. In turn, this is an empirical procedure that attempts to put numbers
to a source of comparative gain in adding a given security to a standard benchmark.

More specifically, the equivalent margin is the name given to a constructive
relationship between two variables, one regarded as benchmark and the other as a
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prospect that may or may not add value to the given benchmark. In Finance, the
benchmark is often taken as the return on a market index such as the S&P500,
usually regarded as a standard of value or of performance returns. The problem is
then how to assess whether a given security adds value to the benchmark, perhaps
in conjunction. The resulting ordered mean difference (OMD) calculation, as the
embodiment of the equivalent margin, is first exposited on a general level, followed
by an application in context to financial returns and their benchmarking.

The OMD construction proceeds as follows. Given a set of observations
Ri; ri ; i ¼ 1; 2; . . .;N, on a benchmark R and a subject comparison variable r,
reorder and tabulate these in ascending order of the benchmark. Then take the
progressive moving averages of the differences r � R, collectively forming the
OMD schedule.

Table 6.1 continues with the hedge fund performance example of Sect. 5.4. In
column B, the benchmark has been designated as the S&P500 returns, and has first
been re-ordered by increasing values, with the index i reflecting this new order. The
comparison variable, denoted r, is the Barclay hedge fund index return and appears
in column C. Columns D and E are the differences r � R and the progressive sums
thereof, with the last column F as the progressive moving averages, indicated here
as tðPÞ for future reference.

Given a benchmark value R ¼ P, the ordered mean difference is then obtained as
the last column of Table 6.1, amounting to

OMDðPÞ ¼ tðPÞ ¼ E½r � RjR�P�: ð6:8Þ

This can be interpreted in the bivariate framework of Sect. 6.1 by setting
x1 ¼ r � R; x2 ¼ R, so x2 is the benchmark and x1 is the proposed enhancement

Table 6.1 The OMD construction

A B C D E F

Observation
number

S&P500 Barclay HF t(P)

i R r r-R Progressive
sums

Progressive moving
average

1 −0.1694 −0.0841 0.0853 0.0853 0.0853

2 −0.1458 −0.0781 0.0677 0.1530 0.0765

3 −0.1100 −0.0124 0.0976 0.2506 0.0835

4 −0.1099 −0.0146 0.0953 0.3460 0.0865

5 −0.0923 −0.0144 0.0779 0.4239 0.0848

6 −0.0908 −0.0699 0.0209 0.4448 0.0741

7 −0.0860 −0.0173 0.0687 0.5134 0.0733

8 −0.0857 −0.0014 0.0843 0.5977 0.0747

9 −0.0820 −0.0323 0.0497 0.6474 0.0719

10 −0.0817 −0.0258 0.0559 0.7033 0.0703
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difference. Then the OMD of r with respect to R amounts to the smoothed con-
ditional expectation as expression (6.6).

Approximate confidence bands can obtained by estimating a linear regression of
regression of r on R, i.e. provisionally assuming eðRÞ ¼ b0 þ b1R, to estimate the
standard deviation of the residual: r̂ ¼ STDðeÞ. One sigma confidence bands can
then be added as tðPiÞ � r=

ffiffiffiffi
ni

p
; i ¼ 1; 2; . . .;N. Figure 6.2 in the text that follows

is an illustration which should be taken in conjunction with the exposition that
follows.

6.4.1 The OMD in Context: Some Financial Decision
Theory

In the context of finance and investments, let the benchmark R take the form of the
return on a widely agreed standard of value, such as the US S&P500 index or a
world equity market index such as the MSCI-World. Also let r denote the return on
a security that may or may not add value to the benchmark R.

More specifically, suppose I have a dollar to invest, and I explore a combined
portfolio with x units of r, and (1 − x) units of the benchmark R. The proportion
x could be negative (a short position in r) as well as positive (long in r). One way to
assess just how much value that security r adds is to imagine a specific tax at rate t,
levied on it, though not on the benchmark. In this case the net return would be
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Fig. 6.2 The OMD for Barclay hedge funds index versus the S&P500
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xðr � tÞþ ð1� xÞR. Naturally this will lessen the incentive to hold security r,
provided of course that the original intention was to hold it long. One measure of its
value is to increase the tax rate t until the investor just decides not to hold it, i.e.
x ¼ 0.

Let Uð:Þ be the representative investor’s utility function for returns. For any
given tax rate t, the investor will choose the proportion x to maximise
Uðxðr � tÞþ ð1� xÞRÞ.The first order condition for this can be written as

E½ðr � R� tÞU0ðxðr � tÞþ ð1� xÞRÞ� ¼ 0:

Setting the tax rate t to just drive the holding x to zero solves as

tu ¼ Er;R½ðr � RÞU0ðRÞ�
ER½U0ðRÞ� :

The quantity tu is referred to as the equivalent margin. It is a measure of how
much the investor would have to be compensated before he or she gives up the
opportunity to invest in security r. It can be written in the form

tu ¼ Er;R½pðRÞðr � RÞ�;

with nonnegative weights pðRÞ ¼ U0ðRÞ
E½U0ðRÞ� that sum to unity. States of the world with

greater marginal utility receive more weight.
An equivalent formulation utilises the theoretical regression of r on R:

r ¼ eðRÞþ e; E½ejR� ¼ 0:

In this case,

tu ¼ ER½ðeðRÞ � RÞU0ðRÞ�
ER½u0ðRÞ� :

The value tu is referred to as the equivalent margin for security r over the
benchmark standard R.

One particular form of utility function is of special importance because it turns
out to generate the value tu for any arbitrary utility function as a linear combination
of more elementary t values. For fixed number P, and a payoff y, define

UPðyÞ ¼ �maxð0;P� yÞ; �1\y\1:

Although an artificial construct, the function UPðyÞ, for any given value of the
marker P, does qualify as a non decreasing and concave risk averse utility function
in its own right, with a further connection to finance concepts such as second order
stochastic dominance.
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The equivalent margin for such a utility function can be written as

tðPÞ ¼ 1
FðPÞ

Z P

�1
ðeðRÞ � RÞdFðRÞ;

with eðRÞ as the regression of r on R, and limP!1 tðPÞ ¼ lr � lR. The importance
of this version is that given an arbitrary risk averse utility function U, its own
equivalent margin tu can be expressed as a linear combination of the tðPÞ:

tu ¼ constþ
Z 1

�1
wðPÞtðPÞdP:

The nonnegative weights wðPÞ can be written as

wðPÞ ¼ � U00ðPÞ
E½U0ðRÞ�FðPÞ:

The weights depend on the underlying utility function as well as the distribution
of the benchmark return R. A specific interest is with the second derivative of the
underlying utility function at each marker point P. A proposed security r that has
high value for tðPÞ at a given point P, will be particularly attractive to an investor
whose own benchmark utility function has a high value wðPÞ at that point. Thus
P could index a bad state of the world for the benchmark return R. This might be
especially damaging to an investor whose utility function is characterised by high
risk aversion in that zone, measured as �U00ðPÞ. An enhancement r that adds value
as tðPÞ in that zone will be particularly attractive to such an investor.

The equivalent margin schedule tðPÞ can take any shape when plotted against
the benchmark P ¼ R. If the schedule slopes negatively from a positive starting
value, this is regarded as a defensive security relative to the market. The opposite
profile would correspond to an aggressive enhancement. One can show that if a
textbook capital market equilibrium (CAPM) exists, with R as the market index
return, all the OMD schedules, should intersect at just the same benchmark return.

6.4.2 Do Hedge Funds Really Add Value?

The OMD construction as the equivalent margin can be used to elaborate on the
discussion of Chap. 5 concerning the investment profile of hedge funds (with their
expensive management fees) versus the S&P 500 as a publicly available bench-
mark. Figure 6.2 depicts the OMD schedule for the Barclay hedge funds index
returns versus those of the S&P500. Also added are the approximate one sigma
confidence bands as tðPiÞ � r=

ffiffiffiffi
ni

p
; i ¼ 1; 2; . . .;N. These have been obtained by

estimating a linear regression eðRÞ ¼ b0 þ b1R, to estimate the standard deviation
of the residual: r̂ ¼ STDðeÞ.
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The general import of Fig. 6.2 is that the hedge funds add their particular value
in the zone where the benchmark S&P00 return is negative. Investors with a high
risk aversion would find it more useful to supplement their portfolio with a hedge
fund, or portfolio of such, whose returns mirror those of the Barclay index. In this
respect, the results reinforce the earlier findings of Sect. 5.4.

This is a paradoxical finding, for one normally thinks of hedge funds as pur-
porting to add value that in good times that exceeds that of an exchange traded fund
(ETF) whose returns that mirror those on the broad market index. A conclusion
might be that hedge funds have been much better at defensive offloading of risky
assets at the right time to do so. They have been defensive, not aggressive.

6.5 Literature Notes

The information theory of bivariate and multivariate distributions was highlighted
by authors such as Gelfand and Yaglom (1959), but also appears in standard
reference works such as Pinsker (1964). The conditional entropy of Y given X can
be written as

jyjx ¼ �
Z
y

Z
x
f ðyjxÞ ln f ðyjxÞdxdy;

with a corresponding definition for the conditional entropy of X given Y.
The mutual information of the one with the other is measured as the amount by

which specifying X reduces the uncertainty (entropy) of Y. Thus
jy � jyjx ¼ jx � jxjy ¼ jx þ jy � jx;y, from which the mutual information can be
expressed as

ZZ
y;x
f ðx; yÞ ln f ðx; yÞ

f ðyÞf ðxÞdxdy:

If Y, X are jointly normal, this reduces to � 1
2 lnð1� r2Þ; or if vector valued, to

the corresponding sum in terms of their canonical correlations. All this a useful way
of demonstrating mutual information benefits, but it does not as such address the
exigencies of comparison in a bivariate context.

Otherwise, much of the material of the present chapter is new. An exception is
the ordered mean difference framework of Sect. 6.3, which was proposed in several
earlier papers by the current author, e.g. Bowden (2000, 2005). An analysis of this
kind can also be used in finance to check whether a CAPM holds in respect to any
given security or a collection of securities at any one time. If it does, then the
respective OMD schedules, with the market return as benchmark, should all
intersect at the one point. This does not turn out to be the case, suggesting that the
CAPM model has at best only illustrative applicability to the real world. A further
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connection is with the computation of second order stochastic dominant portfolios,
which can be generated using the OMD structure.
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Chapter 7
Entropy, Risk and Comparability

7.1 Introduction

The social sciences abound in loose ends, and so it is with any theory of com-
parisons. This chapter elaborates on some of the issues that arise. These range from
the nature and scope of the probability judgements involved to the precise nature of
the preference functions that are inevitably involved.

One of the recurring themes in much of the preceding development is that tail
probabilities in themselves are not a sufficient guide to decision making. It is the
length of the tail that matters: ‘mine is a long and sad tale’, as the dormouse says to
Alice in the Lewis Carroll classic pun. In this respect, tail entropy is an important
complexity indicator. The objective of Sect. 7.1 is to propose a standardisation that
reduces the tail entropy for an arbitrary distribution to a standard based on the
logistic distribution.

The logistic in itself might be viewed as a more or less standard distribution for
financial returns, symmetric as between upwards and downwards. But it has the
further useful property that the regime entropies (tail versus the rest) are simply
proportional to their respective probabilities. Given a specified tail probability for
the subject distribution, one can then establish what the tail probability would be for
a logistic that has exactly the same tail entropy as the distribution under consid-
eration. Thus a fund manager might be perturbed to be told that a nominal 5% left
hand tail for his or her returns is equivalent to a 20% left hand probability for a
logistic with the same amount of entropy in the tail. In a prudential management
context, the effective value at risk (VaR), in terms of the potential range of out-
comes, might be lot more than the nominal 5%.

In Sect. 7.2 the same idea can be adapted to deal with the conditional value at
risk (CVaR), which refers to the expected monetary or value loss given that a value
at risk critical probability limit has been violated. A related prudential metric in the
insurance industry is the expected shortfall, which as the name suggests, refers to
the loss given that a specified critical point has been breached.
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Section 7.3 turns to rather basic sort of question that concerns the logical nature
of comparisons, for this is a book about the information theory of comparisons.
From the point of view of economic theory, the theory of comparisons makes most
sense when there exists a preference ranking of some kind between the objects of
comparison. But in referring to alternative distribution outcomes, what exactly is
meant when one says that outcome A is preferred to B; and is it possible to ascribe a
numerical value to the difference? This introduces the issue of whether any given
underlying preference function is cardinal or ordinal in nature. Section 7.3 exposits
and explores issues of this kind.

In recent years some debate has taken place about how agents really react to
uncertain outcomes. Do they follow the precepts of more or less objective proba-
bility theory; or do they adhere to a more subjectivist probability, and do so more or
less in common? Or at one remove, do human agents follow decision procedures
that meld both probabilities and preference functions into the one decision crite-
rion? A notable example is the cumulative prospect theory associated with Tversky
and Kahnemann. In Sect. 7.4 it is shown that such rules amount to the use of an
equivalent probability distribution obtained via a suitably specified
Radon-Nikodym derivative. With this substitution, decision rules based in entropic
complexity can be carried out in terms of a biased partition entropy function where
the two components, respectively involving F and 1 − F, are weighted differently.

Section 7.5 broadens the range of entropic comparisons to organisation theory,
one of the tangential areas raised in Sect. 1.8. The suggestion is advanced that
discussion of an organisation’s efficiency could be approached via its equivalent
entropic complexity. An efficient organisation is one that filters more efficiently the
incoming information complexity by the time it reaches senior management.

The chapter concludes with Sect. 7.6 as the literature review.

7.2 Tail Probabilities and Informational Measures

In many contexts of economic or social importance, specific interest lies in one of
the tails of a given distribution. A leading instance arises in financial risk man-
agement, where prudential policy for banks or insurance companies addresses the
possibility of a loss of capital beyond a pre-specified safety zone. The latter is
usually determined as less than or equal to a given marker value for capital. Value
at risk (VaR), which is concerned with the probability of loss beyond this prudential
marker value, has been introduced in Sect. 2.6. A related concept, the conditional
value at risk (CVaR), refers to the expected value of the loss given that the VaR
critical marker value has been breached. There is a natural connection here with the
left conditional expectation function of Chap. 3. Section 7.2 takes up this particular
application.

In addition, there are other contexts involving specific concerns with the risk
management of distribution tails, such as failure rates in mechanical or electrical
equipment, or mortality in medical or demographic contexts. In what follows, some
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of the groundwork is established for measuring and managing the risk associated
with long tails by making use of an information theoretic framework.

The log odds function is a good starting point, as

kðxÞ ¼ ln
FðxÞ

1� FðxÞ ð7:1Þ

With reference to a given marker value x, the event fX � xg will be denoted as
RLðxÞ or just RL where the marker value is understood; and the complementary
event fX[ xg as RUðxÞ or RU . The log odds function in the form (7.1) specifies the
log probability of an outcome in RLðxÞ—the bad or unacceptable zone—versus the
good zone. Risk management is not a cheerful business.

The derivative of the log odds function can be written in the form

k0ðxÞ ¼ f ðxÞ
FðxÞð1� FðxÞÞ :

In this form, it is analogous to a signal to noise ratio. The denominator can be
viewed in the light of fuzzy logic as the product of fuzzy membership indexes,
incorporating the degree of doubt as to which of RL;RU the next drawing of X will
belong. The numerator f ðxÞ can be interpreted as the amount of information con-
tained in the interval x; xþ dx.

The logistic distribution with distribution function Fðx; l; bÞ ¼
1=ð1þ expð� x�l

b ÞÞ is a useful benchmark. In this case the log odds function is

linear in x, with k0ðxÞ ¼ 1=b, the inverse of the scale factor b. The logistic belongs
to the extreme value family of distributions, obtained as the limiting maxima of a
collection of identically distributed random variables. This may be of relevance in
the analysis of rare events, where an extreme outcome may follow a cluster or
sequence of good or bad outcomes.

Figure 7.1 illustrates its log odds function as the negative, i.e. as �kðxÞ, along
with those for the Cauchy and Normal, both also used for financial data. The
comparisons are normalised on a Shannon entropy of 1.25. This is consistent in the
case of the normal distribution with a standard deviation of 0.7% over the 10 day
period used in the Basle guidelines for commercial bank value at risk. The Cauchy
in particular has a sharp density peak at the median, resulting in a definite point of
inflection in this zone, with a much slower decay in the tails.

The derivative of the log odds function has a useful connection with Shannon or
total entropy, the latter defined in the usual form as

j ¼ �
Z 1

�1
f ðxÞ ln f ðxÞdx ¼ �E½lnðf ðxÞÞ�:

Utilising expression (7.1) together with E½lnFðxÞ� ¼ E½lnð1� FðxÞÞ� ¼ �1, it
follows that
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j ¼ E½2� ln k0ðxÞ� ð7:2aÞ

Equivalently if one defines a function

ndðxÞ ¼
1
j
½2� ln k0ðxÞ� ð7:2bÞ

then E½ndðxÞ� ¼ 1. The function defined by expression (7.2b) will be referred to as a
scaling function. For a logistic distribution the scaling function nðxÞ � 1 i.e. has a
constant value of unity. Otherwise it can differ quite radically in form as between
distributions; thus for a Normal it has a maximum at the median, while for the
Cauchy it has a minimum there.

For some leptokurtic distributions where the density falls away rapidly towards
one or both tails, the function ndðxÞ can become negative in this region. To preserve
an interpretation as a Radon Nikodym scaling factor, it may be desirable to truncate
the distribution range to ensure that ndðxÞ� 0.

Figure 7.2 depicts directional scaling functions for three common distributions,
normalised to have the same differential entropy j. It will be apparent that the shape
varies considerably with the respective tail properties.

Given a designated marker value x, the scaling function can itself be used to
attribute Shannon entropy into upper (U) and lower contributions (L) relative to
x. The starting point is to isolate scaling functions specific to each regime as
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nd;LðxÞ ¼ E½ndðXÞjX � x� ;
nd;UðxÞ ¼ E½ndðXÞjX[ x� : ð7:3Þ

With the same marker value x, define

jLðxÞ ¼ jnLðxÞFðxÞ ;

jUðxÞ ¼ jnUðxÞð1� FðxÞÞ:

Then total Shannon entropy divides into lower and upper contributions as

j ¼ jLðxÞþ jUðxÞ

The functions jLðxÞ; jUðxÞ can be referred to as the lower and upper directional
entropies, with the basic context as Shannon entropy.

The logistic distribution continues to provide a benchmark for comparisons, for
in this case ndðxÞ ¼ 1 for all values x, meaning that nd;L ¼ nd;U ¼ 1 as well. Hence
for any given marker value, the directional entropy contributions are proportional to
the regime probabilities:

jLðxÞ ¼ jFðxÞ; jUðxÞ ¼ jð1� FðxÞÞ:

For other distributions, the directional entropies differ from the partition prob-
abilities in more intrinsic fashion as the marker value x varies. Nonetheless, the
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logistic distribution continues to have benchmark value in relation to these other
distributions.

Given a distribution function FðxÞ, the two scaling functions of expression (7.3)
can be employed as Radon Nikodym derivatives to obtain a change of measure,
leading to a transformed distribution function defined as

FqðxÞ ¼ nd;LðxÞFðxÞ; ð7:4Þ

with the complement as 1� FqðxÞ ¼ nd;UðxÞFðxÞ. A proviso is that the scaling
functions nðxÞ are nonnegative over their range, which is true of the distributions
used in the present discussion. For a parent logistic distribution the scaling func-
tions are identically unity, which means that FqðxÞ ¼ FðxÞ.

However, this is not true of more fat tailed distributions, where the general effect
is to inflate the tails of the transformed distributions. Figure 7.3 illustrates for a
parent Cauchy distribution. In a VaR context, an allowable loss probability fixed at
10%, would imply a critical marker point at x ¼ �0:855. However this pays little, if
any, attention to the possibility of much higher losses consistent with the fat tailed
property of the Cauchy distribution. Under the equivalent FqðxÞ distribution, this
would evidently inflate to a probability at the chosen VaR critical point of 22.7%,
much higher. The tail probabilities of Fq could then be used to construct a corrected
VaR for the natural distribution of gains or losses.
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Judgements of this kind can be validated by drawing on the invariance property
of the logistic distribution, for which FqðxÞ ¼ FðxÞ. Let x be a predetermined
marker value, in this context the VaR critical point. Then one can always find a
locally equivalent logistic distribution FgðxÞ by choosing its location and scale
parameters such that Fgðx; lX ; bXÞ ¼ FqðxÞ. Specifically,

bx ¼ ej�1 ; lx ¼ xþ bx lnð�kqðxÞ;

where kqðxÞ is the log odds function for the rescaled distribution function FqðxÞ.
The equivalent logistic distribution function associated with the given 10%

critical point x0:1 ¼ �0:855 is labelled as Fg in Fig. 7.3. At the given critical point
of 0.855, it shares with Fq the revised tail risk of 22.7% instead of the nominal 10%
of the original F. To arrive at a 10% probability loss, the critical point would have
to be relaxed to an effective value of �1:314.

In drawing conclusions of this kind, the logistic becomes an effective standard
for assessing the probabilities of expected gains and losses, one which at the same
time makes allowance for very long tails. In terms of the above example, prudential
managers unwilling to accept a revised critical point would have to scale back
investments that have the possibility of large adverse tail outcomes.

Finally, in the case of distributions that have shorter tails than the logistic
benchmark, the adjustment relative to the logistic would have to go the other way.
This is true for a normal distribution. Relative to its equivalent logistic benchmark,
the effective VaR point moves to the right, with the consequences of a loss
exceeding the VaR critical point viewed as less serious.

7.3 The Conditional Value at Risk

The conditional value at risk (CVaR) is an extension of VaR that has independently
surfaced in a number of different contexts. In the insurance industry it is referred to
as the expected shortfall, referring to the ability to meet larger claims stemming
from exceptional but nonetheless very adverse insured events. In the finance
industry it is employed as an additional prudential measure designed to capture and
allow for the numerical values of losses that could lead to bankruptcy, or in the case
of banks necessitate a rescue by the central bank.

Whatever the nomenclature, the idea is the same. The CVaR refers to the
expected loss given that the VaR critical point has been reached. Thus if x is a
preassigned VaR critical point, for a lower limit of outcomes x taken for exposi-
tional purposes as �1, then

CVaRðxÞ ¼ E½XjX � x� ¼ 1
FðxÞ

Z x

�1
Xf ðXÞdX:
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An alternative expression is

CVaRðxÞ ¼ x� UðxÞ
FðxÞ ;

where UðxÞ ¼ R x
�1 FðXÞdX is the further progressive accumulation of FðxÞ.

The associated quantity

x� CVarðxÞ ¼ UðxÞ=FðxÞ

is referred to in the insurance risk management literature as the ‘expected shortfall’.
It is a measure of how much the company can expect to lose once the critical point
has been triggered. In this respect, literature references to the ‘expected shortfall’
can refer to either the difference Ex½ðX � xÞ��, or else the difference x� CVarðxÞ ¼
UðxÞ=FðxÞ as above.

As a distribution function accumulator, the function UðxÞ features in the theory
of stochastic dominance. Distribution A is second order stochastic dominant over B
if UAðxÞ�UBðxÞ for all x. If the random variable x refers to returns on a security or
portfolio, this means that every risk averse investor would choose asset A in
preference to asset B. Second order stochastic dominance (SSD) is a weaker con-
dition than first order stochastic dominance (FSD), which would be FAðxÞ�FBðxÞ.

Once again, the logistic distribution provides a useful benchmark for the ex-
pected shortfall. If FðxÞ is a logistic with scale parameter b, then

CVaRðxÞ ¼ xþ b
lnð1� FðxÞÞ

FðxÞ :

Then for any arbitrary distribution, one can form the equivalent distribution
FqðxÞ as in expression (7.4) and obtain the logistic equivalent CVaR as

CVaRqðxÞ ¼ xþ ej�2 lnð1� FqðxÞÞ
FqðxÞ :

In general, however, there is less motivation to use the logistic proxy once the
actual expected values of losses that exceed the VaR marker X ¼ x are explicitly
introduced as in CVaR. A possible exception is where the left hand tail is so long
that the actual CVaR does not exist. The logistic equivalent may also be useful if a
degree of agnosticism exists as to welfare criteria, specifically as to whether
expected losses are a sufficient in themselves, as distinct from the welfare effects of
higher order conditional moments.

In terms of the notation of the present study, the conditional value at risk can be
recognised as the left conditional expectation llðxÞ, with the expected shortfall as
x� llðxÞ This is to be assessed at the designated critical point x. If the latter is
legislative in nature, as in Basle style bank capital adequacy, then it is a stand alone
provision. No matter how much upside there might be, the bank has to ensure that
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its portfolio meets such a requirement, with the designated probability. In particular,
this becomes a side constraint on the institution’s profit maximising behaviour, and
as such has its own shadow price as a binding constraint, in terms of foregone
expected profit.

A less rigorous regime might recognise the potential value of the upside,
assessed in this case as the right conditional expectation lrðxÞ. For a given critical
value the welfare function might be of a form such as

dwðxÞ ¼ wðxÞðllðxÞ � lrðxÞÞ;

with nonnegative weights
R
� wðxÞdx ¼ 1. Portfolios could be assessed by com-

paring their alternative net payoff profiles in such terms.

7.4 Cardinal Versus Ordinal Comparisons

If the substance of the present work has to do with the theory and practice of
comparisons, a consequential issue arises as to their precise extent or scope. Just
how far can one push things? If two countries are compared on their income
distributions and the one yields half the value of v, or some other measure, does this
means twice the social welfare, or merely an ordering as better or worse?

From the point of view of economic theory, the theory of comparisons makes
most sense when there exists a preference ranking of some kind between the objects
to be compared, such as consumption bundles. But the question arose early in the
economics literature as to just how far welfare comparisons could go. Historical
development took place along two major lines, summarised in what follows.

7.4.1 Utility Theory: A Short Review

The older of the two strands or welfare comparison was within the context of
consumer preference theory. The ensuing utility function was ordinal in nature. It
may not be possible to say that oranges and applies can be reduced to a common
scale of like or dislike, such that one orange is worth 1.75 apples. But it may be
possible to rank different bundles of apples and oranges, and to derive indifference
sets of combinations such that the consumer would like equally well any bundle
along such a surface. In turn, different levels of such indifference sets could be
ranked with a numerical utility number; but as a function, the latter is determined
only up to a positive monotone transform. Thus if x is a bundle, with given utility
function uðxÞ then so is WðxÞ ¼ wðuðxÞÞ, where w0ðuÞ� 0. Utility rankings of this
kind are said to be ‘ordinal’.

The (relatively) more recent line of development originated with the work of
Oscar Morgenstern and John Von Neumann in game theory. In this case the
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bundles are such that in principle it is possible to assign welfare numbers to
gambles between one bundle and another. The resulting utility function is unique up
to an affine linear transform i.e. choice of location and scale parameters. Such
‘cardinal’ utility functions underpin much of modern finance theory as well as the
theory of games.

A more or less common set of basic axioms is shared by both cardinal and
original approaches, with the two differing only in the overlay of the further
axiomatic assumptions. There is a common starting point of a set of objects or
events such as fA; B; C. . .g, with which a preference ordering � exists. An
implied indifference relationship, denoted * , is such that
A	B , A � B and B � A. As well as being transitive in nature, this is assumed
to be a complete preordering such that for any two objects or outcomes it must be
that the one is either preferred or indifferent to the other.

From here, the two strands diverge. Underpinning the cardinal approach is the
possibility of combining the events into compound events referred to as gambles.
The continuity axiom then says that if A � C � B, then there is a gamble that gives
A with probability k and B with probability 1� k, and this gamble is a compound
event that is indifferent to C. From here it follows that a utility function u must exist
that is unique up to an affine positive linear scaling: w ¼ aþ bu ;b[ 0. This is a
cardinal utility function, utilised in the theory of choice under risk. The work on the
ordered mean difference in Chap. 6 requires a utility theory of this kind, as does the
VaR and CVaR concepts of Sect. 7.2. One has to be able to rank differences in
monetary outcomes, which in turn becomes a cardinal proxy for the investor’s
utility.

The second strand of utility theory, the ordinal approach, does not attempt to
rank different outcomes with a common or universal standard of value. The
equivalent relationship takes centre stage, embodied as indifference sets. For any
given object (C, say), the space of objects is partitioned into those preferred to C
and those preferred over C. Their intersection gives those objects indifferent to C,
and it is assumed that both sets (upper and lower) contain all their boundary points.
The entire space of outcomes can then be partitioned into indifference surfaces, as
in the textbook ‘indifference curves’ of consumer economics. A utility function uðxÞ
exists that has the same value along the indifference curve containing x, and has
higher value for points along an indifference curves containing points strictly
preferred to x. In this sense indifference curves are level surfaces for the function
u. However, any positive monotone transform wðuÞ will do equally well for such a
purpose. So the given utility function u empowers only an ordinal ranking of the
underlying objects.

7.4.2 Entropic Asymmetry and Social Utility

With the above summary review as background, one can re-examine inequality
measures established in Chaps. 3 and 4, specifically the asymmetry function
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vðxÞ ¼ llðxÞþ lrðxÞ � 2l; or in the present context �vðxÞ, which is an increasing
function of income or wealth x, the ‘advantage function’. Could a function of this
type quality as a utility function and is the resulting scale cardinal or ordinal?

Discussion divides according to whether the underlying income distribution
function FðxÞ is fixed in its scope and coverage and throughout, or on the other
hand whether the comparison is intended to span a complete set of possible dis-
tributions as in inter-country comparisons. In this respect, there is a difference
between a utility of function of the form vðx : F0Þ with the distribution function
fixed, and one of the form vðx;FÞ where the distribution function F is itself an
argument.

Consider the former case, and imagine the following experiment, intended to
adapt the social justice argument of John Rawls to the current context. I know the
underlying distribution of incomes FðxÞ. But I do not yet know what income x or
wealth I will be endowed with. Consider two possible income values xa ; xb with
xa [ xb, and suppose I prefer the former to the latter. Now consider an intermediate
value such that xa � xc � xb. These may be considered as outcome events. Is there
a probability k such that I will be indifferent between getting xc or the outcome of
the gamble? If so, then it must follows that a cardinal utility function exists such
that uðxcÞ ¼ kuðxaÞþ ð1� kÞuðxbÞ. For any such individual i, the resulting utility
function is uiðxÞ. In the particular case where this is linear in x, the same choices
would be made with

uiðxÞ ¼ ai þ bix ;with bi [ 0:

A collective or social utility function could then be obtained by aggregating over
individuals i according to some given rule. Still in the spirit of the Rawls experi-
ment, each such individual could have attitudes as to how his or her income xi
(whatever it turns out to be) will compares with that of others.

One such comparison could be calibrated in terms of comparison of any given
x with llðxiÞ; lrðxiÞ, as

uiðxÞ ¼ ðx� llðxiÞÞ � ðlrðxiÞ � xÞ:

A personal utility function of this form would indeed be cardinal in nature, for if
my income shifts from x to x0 [ x, all other individuals staying the same, then my
personal welfare has increased linearly. If we now aggregate over individuals i with
the same weights as their relative frequency of incomes, a collective or social utility
would result, of the form

ucðxÞ ¼ 2x� ðlR þ lLÞ:

All the above is predicated on just the one underlying distribution of incomes.
However, a common agenda is to compare outcomes across a given set of distri-
bution functions, as in comparisons between countries. The objects to be calibrated
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and compared in such a case are now of the compound form ðx;FÞ, with the
distribution function F a member of a given set of such: = ¼ fF1;F2; . . .;FNg.

Thus suppose three objects, A ¼ ðxa;FaÞ,B ¼ ðxb;FbÞ and C ¼ ðxc;FcÞ are such
that A � C � B. Under the continuity axiom, a cardinal comparison would then
require that C be indifferent to a notional gamble with A as outcome with proba-
bility k, and B with probability 1-k.

But it is unclear just how to define such a gamble. One could imagine a two
stage process. For any given F a first stage gamble would be between
ðxa;FÞ; ðxb;FÞ; ðxc;FÞ with respective probabilities pa; pb; pc, resulting in
ðpaxa þ pbxb þ pcxc; FÞ. This could then be followed by second stage gamble over
the choices of F, the combined effect viewed as a compound gamble. But a problem
is then how to define a unique object C such that C is indifferent to A and B; there
may well be a set of such.

Ordinal utilities are a possible recourse. Thus for any given F, one might con-
sider the function vFðxÞ as an ordinal welfare outcome over different values of
income x. A given indifference curve, if it exists, would then consist of order
preserving combinations x;F such that vFðxÞ ¼ v0 for a given value v ¼ vo. The
key test would then be whether for higher or lower values of v, the indifference
curves ever cross over one another. If a complete first order (FSD) stochastic
dominance relationship exists as between F2ℑ then a proper set of indifference
curves does exist. However for most practical purposes this is an exceptional
scenario. Thus in the context of cross country comparisons it might well be that
there is one particular country that stochastically dominates all the others. But it
unlikely that this applies in sequence to the remainder.

Whether the income advantage function qualifies as either a cardinal or ordinal
social utility function therefore depends upon the scope of the implied comparison.
For most potential applications it is best treated as ordinal in nature, sufficing to
rank differences e.g. as between countries or different social groups; but not to say
that one such ever going to be worth exactly twice the other.

7.5 Information Based Rescaling in Subjectivist
Probability

The distinction between objective and subjective probability has a venerable history
in economics and statistics, originating with influential authors such as Ramsay, de
Finetti, and Savage. But while the epistemological foundations might differ, the
general supposition was that subjectivist probability was nevertheless internally
consistent in the sense of the game theoretic axioms of Von Neumann-Morgenstern.

In more recent times, however, Tversky and Kahneman have suggested that
agents do not necessarily think and act in terms of the classic rules of probability.
Their principal postulates may be summarised as: (a) Framing is important (the way
choices are presented); (b) people overestimate probabilities of rare events; and
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(c) in thinking about compound gambles, people do not recombine probabilities
correctly. In particular, their ‘cumulative prospect theory’ could be applied to
investment activity, in terms of which investors would systematically overweight
one or both of the tails, relative to the true or natural distribution. Subsequently, the
approach was utilised in the theory of finance to explain apparent empirical
anomalies in asset pricing, such as the equity premium puzzle, size and value
anomalies, or the momentum effect.

Cumulative prospect theory substitutes a ‘weighting function’ of wealth or return
outcomes for the original or natural probability distribution. The result, as it applies
to investment, is analogous to a subjective probability measure, although the
resulting decision rules do necessarily adhere to those that might be derived from
the Von Neumann-Morgenstern continuity and independence axioms. Likewise, the
classical utility function is replaced by a ‘value function’, resulting in a decision
criterion that is nevertheless analogous to expected utility. Prospect theory shares
with the more traditional subjectivist approach a basis that even where objective or
frequentist probabilities might exist, economic agents effectively map such proba-
bilities into their own more subjective measures.

The choice of transformation might itself be guided by psychological heuristics
or biases. Subjectivist authors drew on the widespread understanding and use of
fractional odds in betting in horse races and the like. The odds at which a subject is
willing to bet can be taken as a proxy for the probability that he or she has assigned
to the outcome. Taking the log of the odds ratio enables the subject to rank events in
an intuitively appealing way. However, at any given support point, two distribu-
tions might have the same tail probability but could differ in their tail length and
therefore the prospect of large gains or losses. It seems reasonable to suppose that
investors or gamblers are influenced by the odds over the entire tail area, rather than
just the odds at any particular point, and it is this perspective that provides a link to
partition entropy.

7.5.1 Formalising as a Change of Measure

The process could be formalised by supposing that outcomes such as share returns
or lottery rewards have a natural (objective) distribution F. But investors do not act
as though this is their decision basis. Instead they think and act in terms of a
subjective distribution function W (or the ‘cumulative weighting function’ in pro-
spect theory). In line with the prospect theory findings as to rare events, W might
have longer tails than F, to a degree that could differ as between the upper and
lower tails. Thus at the upper end, an investment in a dotcom IPO might turn into a
life changing outcome for the lucky investor. At the lower end, a proposed portfolio
could decimate an investor’s carefully accumulated retirement capital. In each case
the true probability might be small, but the investor reweights it to become larger,
and acts accordingly.
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The basic version of the measure transformation can be represented as

W ¼ WðFÞ; WðxÞ ¼ WðFðxÞÞ:

The function w(F) is specified as non decreasing (the monotonicity assumption)
and is normalised so that W(0) = 0, W(1) = 1. The Radon-Nikodym (R-N)
derivative, if it exists, is written as n0wðFÞ ¼ dw

dF so that dW ¼ n0wðFÞdF.
Correspondingly, let

nwðxÞ ¼ n0wðFðxÞÞ ¼ W0ðFðxÞÞ:

Then dWðxÞ ¼ nwðxÞdFðxÞ, and wðxÞ ¼ nwðxÞf ðxÞ if the densities exist.
The specifications imposed on w imply that the function n is nonnegative, and

EF ½nwðxÞ� ¼ 1. The outcome reweighting function nwðxÞ therefore plays the role of
a R-N derivative for a change in distribution from F to W, i.e. for a change from the
natural to the subjective distribution (weighting function) of the investment out-
come x. The general import is that the function rescales to a greater degree at one, or
possibly both, tails of the original, making compensating re-weightings elsewhere.
Thus if investors act as though events of rare good fortune have an inflated prob-
ability, they will act as though 1-W(F) > 1 − F for outcomes x such that F(x) is
near unity; equivalently, nwðxÞ[ [ 1 in this zone.

Operationally, one might start with the suggestion that a given nonnegative

function s(F) could serve as a possible rescaling function. Normalising as n0wðFÞ ¼
sðFÞ= R 1

0 sðFÞdF and setting nwðxÞ ¼ n0wðFðxÞÞ will assure that Ef ½nwðxÞ� ¼ 1,

providing the integral
R 1
0 sðFÞdF exists.

In cumulative prospect theory the zone of integration may be split into positive
and negative values of x to reflect distinct re-weightings of the left and right hand
tails:

wðFÞ ¼ w�ðFÞ; x� 0
wþ ð�FÞ; x[ 0; �F ¼ 1� F:

�

In this case, some adaptations are necessary with differentials of the form

nwðxÞ ¼
d
dF

w�ðFðxÞÞ; x� 0

nwðxÞ ¼ � d
dF

wþ ð1� FðxÞÞ; x[ 0:
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Thus the investor weighting function chosen by Tversky-Kahneman can be cast
as:

wðFÞ ¼
k Fc

�
ðFc� þ ð1�FÞc� Þ1=c�

;F�Fð0Þ

1 � �Fc
þ

ð�Fcþ þ ð1��FÞcþ Þ1=cþ
;�F¼1�F; F[Fð0Þ

(

where c−, c+ are positive constants.
As it stands, the resulting cumulative weighting function is not continuous at

zero, and may not even be monotonic. However, the constant k can be chosen so
that the two halves splice together with no break at F(0). For example, if
c� ¼ cþ ¼ c, then

k ¼
D

Fc
0
� lc0; where D0 ¼ ðFc

0 þð1� F0ÞcÞ1=c; l0 ¼
1� F0

F0
:

It is possible to generalise to allow for critical zones of x, where the value
function adopts a shaper curvature upwards as in a life changing lottery outcome, so
that WðxÞ ¼ WðFðxÞ; xÞ. In such terms,

nwðxÞ ¼
@W
@F

þ 1
f ðxÞ

@W
@x

:

In prospect theory discussions, the utilities of classical Von
Neumann-Morgenstern choice theory are recast as ‘value functions’, and the
‘weighting function’ replaces probabilities, to arrive at a decision criterion that
corresponds to expected utility. As earlier pointed out, however, much the same
rescaling process can apply to either. In what follows, the more familiar expected
utility framework is utilised for exposition.

The above framework can then be applied to utility comparisons and the con-
sequent decision rules. Expected utility under the natural measure is

Ef ½uðxÞ� ¼
Z1
�1

uðxÞdFðxÞ : ð7:5aÞ

Under the subjective measure it is

Ew½uðxÞ� ¼
Z1
�1

uðxÞdWðxÞ: ð7:5bÞ
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Note that expression (7.5b) could alternatively be written as

Ew½uðxÞ� ¼
Z1
�1

~uðxÞdFðxÞ; ~uðxÞ ¼ nwðxÞuðxÞ;

in other words, as a rescaling of utility instead of probability. For any given
application (choice of F, w) there may be observational equivalence between
transformed probability and transformed utility, although the equivalent utility
function will not remain invariant to different specifications of F(x).

Most subjective probability measures entail overweighting the tails of the natural
distribution. This means that the original utility function, evaluated at subjective
probabilities, is expected utility equivalent under the natural measure to a trans-
formed utility function ~uðxÞ that overemphasises extreme values of the domain,
perhaps to the point of a radical change in shape or behaviour.

7.5.2 Information Based Rescaling

The foregoing exposition can be utilised to develop an information based rescaling.
A suitable vantage point is the log odds function. Indeed, the longstanding use of
fractional odds by bookmakers implies that people are comfortable in thinking and
acting in such terms, as a matter of the psychology of gambling. In this respect, the
use of the log odds facilitates judgments involving transitivity. Thus if event A is
viewed as twice as likely to happen than B, and B three times as C, then the subject
should intuitively consider event A as 6 times more likely than C (rather than 5).

More generally, a predisposition (‘Gibrat’s law’) to think in terms of logs is
familiar from everyday life, which is why % changes in salary or wage determi-
nations mean more than dollar changes. In the present context, this could mean that
in their subjective probability rescaling, people react to the log of tail areas: ‘no-
ticeability’ is based on log F and log (1 − F). In commercial life, investors are often
preoccupied with tail length, proxied in terms of the average log odds before, or
after, the chosen point. It is possible to formalise such behaviour in terms of the log
odds function and its cumulative, the partition entropy function.

To avoid carrying negative signs in what follows, it is convenient to measure the
log odds function in the negative of the usual, as referring to the event that the
random variable X[ x versus X� x:

kðxÞ ¼ ln
1� FðxÞ
FðxÞ ; KðFÞ ¼ ln

1� F
F

:

Reflecting subjectivist perspectives, the log odds function can be generalised so
that the respective tails F, 1 − F are weighted unequally. The new distribution
function is given by

140 7 Entropy, Risk and Comparability



WhðxÞ such that Wh ¼ KhðFÞ, where
KhðFÞ ¼ ln½ðeð1� FÞÞ1�h

ðeFÞh
� ; 0\h\1; khðxÞ ¼ KhðFðxÞÞ : ð7:6Þ

The cumulative gives a biased partition entropy corresponding to Wh as

hhðxÞ ¼ �2½hFðxÞ lnðFðxÞÞþ ð1� hÞð1� FðxÞÞ lnð1� FðxÞÞ� ; 0\h\1 ;

HhðFÞ ¼ �2½hF lnFþð1� hÞð1� FÞðlnð1� FÞ� ; 0\h\1 :

The normalising factor e1�2h implicit in expression (7.6) ensures that E½khðxÞ� ¼ 0
while hhðxÞ remains positive, with limx!
1 hhðxÞ ¼ 0. The special case h ¼ 1

2 reverts
to the unbiased version.

To reverse the logic, partition entropy can provide a potential measure for
subjective over- or under-valuation of the tails, which are regions where informa-
tion is highest. A suitable rescaling to be applied at any given point incorporates the
average log odds up to that point; or reversing sign, after that point. Thus in a
lottery type situation, one could visualise the subject, in reweighting any given
point x, as weighing up the probabilities of the entire range of outcomes X � x. As
x increases, and the prospective prizes become greater, the subject becomes more
predisposed to do this. The density rescaling at any given point x is linked to the
cumulative log odds of points thereafter, and hence to the information at that point.

In turn, this is reflected in the scaling function that gives the new subjective
distribution. The rescaling functions incorporate an affine normalisation of the
inverse information functions, to ensure that Wð0Þ ¼ 0;Wð1Þ ¼ 1 and
Ef ½nwðxÞ� ¼ 1. A suitable specification to accomplish this takes the form:

n0wðF; b; hÞ ¼ 1þ bð0:5� hhðFÞÞ ; nwðx; b; hÞ ¼ nwðFðxÞ; b; hÞ :

This leads to the subjective distribution function

WðF; b; hÞ ¼ � 0:5 � bð1� hÞþ ð1þ 0:5 � bÞFþ b½hF2ðlnF � 0:5Þ
� ð1� hÞð1� FÞ2ðlnð1� FÞ � 0:5Þ�:

The parameter b > 0 can be chosen to reflect the slope or sensitivity of the
scaling function. Limits have to be placed on b to ensure that n > 0. For h = ½, the
limit is b\ 1

ln 2�0:5 ¼ 5:177399 :

Note also that n0w0ðF; b; hÞ ¼ �bKhðFÞ. As the log odds function is such that
Kh0ðFÞ\0, thismeans that the proposed rescaling function n0wðF; b; hÞ is convex inF.

Figures 7.4a, b illustrate. As a general observation, information based rescaling
weights the tail areas by more than does the Tversky-Kahneman formula, drawing
more mass away from the median area.
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7.6 Concluding Remarks: The Scope of Informative
Comparisons

The scope of the present contribution has been within the frame of comparisons
between more or less well defined frequency distributions: incomes, ages, invest-
ment returns, opinion polling, grading, and other fields of application. But as
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pointed out in Sect. 1.8, the general notion of information has a familial relationship
with that of complexity, even where this is implicit or not even well defined.

One such area is organisation theory in the management sciences. The issue in
this case has been how to characterise organisational complexity. What does it
mean, precisely, when we claim that organisation A is more complex than
organisation B?

One possible framework is to consider an organisation such as a corporation as
an ordered network of reporting, command and control. At the top is a CEO
(technically a shareholder elected Board, but let us be realistic here). Distributed
along the bottom tier are the ‘coalface’ units that have direct contact with customers
(bank tellers, sales staff and the like). Intermediary managers link the two, with their
own reporting hierarchies, the whole constituting a multistage network of command
and control.

Information flows in two directions; from the coalface upward and from com-
mand and control downward. Starting with the very bottom tier, one role of the first
layer of management, as the next tier up, as is to filter out happenings of more or
less everyday occurrence. The constructive progression from bottom to resembles
that of wavelet theory. The counter staff are charged with dealing with the very
short fluctuations, passing the result up to their supervisors as the smoothed second
wavelet, and so on from there. Senior management, and from there the Board, deal
with the wavelet of longest periodicity.

In coding terms, only the longer code lengths, representing more unusual
occurrences, would be passed upward along the chain, transformed at this level into
shorter coded messages. By the time the information flow gets to senior manage-
ment, the everyday has been filtered out. What remains takes the form of shorter
recoded messages as to just what does demand attention at their level, and in turn,
further upward reporting. In such terms, an organisation is less complex if the
information flow is so well managed that the CEO needs be preoccupied only with a
limited range of matters of systemic importance. Thus from the bottom up, this is a
story in coding terms of a reduction in information complexity. Likewise, the
command and control flow in the reverse direction should be one with minimal
required coding from the top.

Organisation A would therefore be judged as less complex than B if the expected
code length is more economical for messages flowing between the top and the
bottom layers. In theory it might possible to construct a distribution of message
code lengths among units of the organisation and draw inferences as to comparative
informational efficiency from its position and shape. A construction of this kind
would draw together the distributional comparisons and metrics of the present book
with those of organisational theory at large. However, this and related formalisa-
tions of the theory of social organisation remain an agenda for further research.
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7.7 Literature Notes

The material in Sect. 7.1 on tail probabilities and risk management is based on
Bowden (2011). Suarez and Menendez (2005) enlarge on the long tail problem for
financial returns data. Many statistics textbooks carry some coverage on the
extreme value family; an example is Johnson et al. (1994) as an authoritative
source.

For Sect. 7.3, utility functions, and the cardinal-ordinal distinction, are covered
in most textbooks of microeconomics, or in mathematical economics. However,
books on game theory sometimes have a more apposite coverage. A concise and
very readable example is Owen (1968), Chap. 6.

Turning to Sect. 7.4 on subjectivist probability and utility, this has from time to
time resurfaced in statistics, and in the economics literature as behavioural eco-
nomics. Notable contributions are Ramsay (1926), de Finetti (1937, 1970), Savage
(1954), and Tversky and Kahneman (1974, 1979, 1992). Pfanzagl (1967) is useful
for axiomatic foundations.

On fractional odds, see de Finetti (1937, 1970). Gibrat’s law (Gibrat 1931)
originally referred to growth in firm size as a rationale for the lognormal distri-
bution, with no specific reference to subjectivism, i.e. the way people assess out-
comes. Influences in the area of finance extend to the equity premium puzzle
(Benartzi and Thaler 1995); size and value anomalies (Giorgi and Hens 2006); or
the momentum effect (Grinblatt and Han 2005; Menkhoff and Schmeling 2006).

The mention of wavelets in Sect. 7.5 is intended only as an analogy, but nev-
ertheless has some points of potential development in the general context of
complexity. Daubechies (1992) remains a very readable introduction for non spe-
cialists, but there are many others.
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Appendix

Excel VBA Code for the Compressed Smoothing Kernel

The code below can be copied into the Excel Developer studio to generate the
complete smoothed series, including the end correction, as YSTAR. In the code
below the output appears as a column of the same dimension (nobs) as the input
series to the smoothed. As given in the code, the input series is read in as a range,
but it can also be entered as a named vector. Note that the matrix-vector ‘enter’
must be used in either case. The first few elements of YSTAR are just the original
elements of the input series until the first complete window is available.

The code below can also be used to output Shannon entropy, also the entropic
bandwidth as in Chap. 5. A choice of kernels is available. The default utilised below
is for the partition entropy kernel (denoted BiK). However for the function ‘kernel’
that appears in the main program code below, one can if preferred substitute the
Epanechnikov or any other kernel, in a format that is consistent with the substantive
code.

The code that follows is a based on the work of Tom Blaesche (utilised in
Blaesche et al. 2016) and has been made freely available. The present author has
made some amendments in order to ensure the code is fully consistent with the text.
In the listing that follows, continuations of some longer commands or non exe-
cutable notes are reverse indented.
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Option Explicit     ' Forces explicit declaration of all variables.

Option Base 1       ' Declares the default lower bound for array subscripts. 

_____________________

Public Function kernel(x As Integer, m As Integer) As Double 

'The code below is for the BiK kernel. If the Epanechnikov kernel is used, it should span (-m-1 

to m+1 values when edges are included) 

'kernel = (1 / (m + 1)) * (3 / 4) * (1 - ((x - m) / (m + 1)) ^ 2)

'x ranges from 0 to 2m 

Dim W As Double
Dim sum As Double

Dim n As Integer 

sum = 0

For n = 0 To 2 * m Step 1 

W = 0.5 * (1 + n) / (1 + m) 

sum = sum - (W * Log(W) + (1 - W) * Log(1 - W))

Next n

W = 0.5 * (1 + x) / (1 + m) 

kernel = -(W * Log(W) + (1 - W) * Log(1 - W)) / sum

End Function 

Public Function YSTAR (data As Range, m As Integer) As Double() 

    Const BandwidthLowerBound As Double = 0.161378  'Entropy Effective Bandwidth lower 

bound

    Const BandwidthUpperBound As Double = 0.838622  'Entropy Effective Bandwidth upper 

bound

Dim window As Integer

Dim nObs As Integer

    Dim lambda As Double 

    Dim increment As Double 

    Dim expect As Double 
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Dim temp As Double

Dim min As Integer, max As Integer

Dim i As Integer, j As Integer

    Dim n As Integer, s As Integer, t As Integer 

Dim EffectiveBandwidth() As Integer

    Dim ShannonEntropy() As Integer 

    Dim ShiftedKernel() As Double 

Dim ShiftedKernelDist() As Double 

    Dim yOut() As Double 

    window = 2 * m          ' 0 to 2m contains 2m+1 values 

    nObs = data.Rows.Count  ' Number of observations 

lambda = 0              ' Starting parameter for partial kernel shifts

increment = 0.00001     ' Increment of changing lambda in solving for best lambda according 

to expectation value 

     ReDim EffectiveBandwidth(0 To m) 

    ReDim ShannonEntropy(0 To m) 

    ReDim ShiftedKernel(0 To m, 0 To window) 

    ReDim ShiftedKernelDist(0 To m, 0 To window) 

    ReDim yOut(1 To nObs, 1) 

' Calculate Shifted Kernels for all shifts from 1 To m

    For i = 0 To m Step 1 

If (i = 0) Then

' Define Base Kernel

            For j = 0 To window Step 1 

ShiftedKernel(0, j) = kernel(j, m) 

Next j

' Calculate current expectation value

expect = 0

            For j = 0 To window Step 1 

expect = expect + j * ShiftedKernel(i, j)

Next j

Else

Do

' Shift Kernels
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                For j = 0 To window Step 1 

ShiftedKernel(i, j) = ShiftedKernel(i - 1, j) * (1 - lambda * (1 + 

Log(ShiftedKernelDist(i - 1, j))))

Next j

' Calculate Normalizing Coefficient

temp = 0

                For j = 0 To window Step 1 

temp = temp + ShiftedKernel(i, j)

Next j

' Normalize Shifted Kernel

                For j = 0 To window Step 1 

ShiftedKernel(i, j) = ShiftedKernel(i, j) / temp
Next j

' Calculate current expectation value

expect = 0

                For j = 0 To window Step 1 

expect = expect + j * ShiftedKernel(i, j)

Next j

                    ' Redefine lambda 

                lambda = lambda + increment 

                                ' Error handler 

If lambda >= 1 Then

Exit Do

                End If 

' Re-calculate shifted Kernel if numerical expectation value is not close enough to 

analytical value 

            Loop Until (expect - (m - i) < 0)

                    End If 

' Calculate Distribution Functions for base Kernel and all shifts from 1 to m 

min = 0

max = 0

        For j = 0 To window Step 1 

If (j = 0) Then

ShiftedKernelDist(i, 0) = ShiftedKernel(i, 0)
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Else

ShiftedKernelDist(i, j) = ShiftedKernelDist(i, j - 1) + ShiftedKernel(i, j)

            End If 

                        If (ShiftedKernelDist(i, j) >= BandwidthLowerBound) And (min = 0) Then 

min = j

            End If 

                        If (ShiftedKernelDist(i, j) >= BandwidthUpperBound) And (max = 0) Then 

max = j

            End If 

Next j

' Calculate Effective Bandwidth

        EffectiveBandwidth(i) = max - min

' Calculate Shannon Entropy 

ShannonEntropy(i) = 0

        For j = 0 To window Step 1 

ShannonEntropy(i) = ShannonEntropy(i) - ShiftedKernel(i, j) * 

WorksheetFunction.Ln(ShiftedKernel(i, j)) 

Next j

Next i

    For t = 1 To m Step 1 

yOut(t, 1) = data(t, 1) 

Next t

    For t = m + 1 To nObs Step 1 

If t <= nObs - m Then

s = 0

Else

s = t - (nObs - m)

        End If 

                For n = 0 To window Step 1 

            yOut(t, 1) = yOut(t, 1) + data(t - s + n - m, 1) * ShiftedKernel(s, window - n) 

Next n

Next t

YSTAR = yOut

End Function 

_________________________
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Subject Glossary

Activist fund An investment fund whose managers try to beat the market. The
opposite is a passive fund: an exchange traded fund (ETF) is a passive variety
whose portfolio weights simply mirror those of a major index such as the
S&P500

Actuarial survival function The proportion of people who survive to a given age.
Often tabulated in terms of people born in a specific year (a cohort life table), or
age groups at one particular time (a period life table)

Asymmetry metric A signed number that measures the extent to which a given
density is mirrored about its median. To be accepted as such it must satisfy a
number of qualifying conditions

Bandwagon effect Copycat or social comfort driven behaviour in attitudes or
investment behavior. Can lead to rational expectations where it is optimal to
jump on the bandwagon

Binary code A way of representing symbols in common use such that they can be
recognized and acted upon by a digital computer. Hence elements as 0, 1 for ‘on’
or ‘off’

Cardinal ordinal utility Where the subject is able to rank differences in his or her
satisfaction. The resulting utility function is unique up to a linear affine trans-
formation. As distinct from an ordinal utility function, for which any positive
monotone transformation will do

Conditional value at risk The expected value of an outcome variable, given that it
is less than an assigned prudential benchmark value

Co–smoothing A process of taking the expected value of one variable, conditional
upon values of another being less than some assigned value or benchmark
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Cumulative prospect theory A behavioural formalisation of the idea that people
do not behave according to the strict laws of probability. Proposes to substitute
the notion of a weighting function for the latter

Differential entropy The expected value of the log density, as the integral over a
continuous range of the given random variable. The version of Shannon entropy
for such a variable

Dirac delta function A spike of technically infinite height at a given value along
the range, so all the mass is concentrated at this point. As such, a technical
device used in control theory. In the case of a random variable, becomes the
Dirac delta density

Double smoothing property The overall expected value of a variable or random
function that is itself formed as a conditional expectation up to any assigned
point

End correction Techniques used in the context of kernel based time series
smoothing. Required when the time of current focus approaches the last
observation, so that the full width of the kernel is not available

Entropic asymmetry metric A measure for distribution asymmetry that is based
on the algebraic difference between the average above and the average below
any given point along the range. The expected value of such differences turns out
to be equal to the average of means of the right and left entropic shifts less than
the mean of the original distribution

Entropic spread metric As for the asymmetry metric except that the difference is
of the absolute values of the progressive conditional expectations. The result is
the difference between the means of left and right entropic shifts. The greater this
difference, the wider the spread

Equivalent width A non parametric spread measure as the distance between the
left and right entropic delta concentrators. Proportional to the area under the
partition entropy function

Expected shortfall In risk management, refers to the expected value of the dif-
ference between an accepted prudential benchmark and a prospective outcome,
conditional upon violation of the benchmark, i.e. the bad scenario

Friedman Savage utility function Is concave downwards for losses, and convex
upwards for gains. Investors are assumed to be risk averse in the loss region but
risk loving in the gain region

Gibrat’s law People think or respond more to proportional (or log) changes than to
arithmetic ones

Gini coefficient Measures the lack of concordance between the progressive pro-
portion of people and the progressive proportion of the total income they enjoy
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Gini mean absolute difference Measures the average weighted distance between
any two randomly drawn observations from the same distribution function, with
the weights provided by the density function

Internal observer A construction that averages how subjects might perceive
themselves in relation to others

Lake Woebegone (or Wobegone) effect Where everybody is better than the
average. A humorous sign off in the US radio show of Garrison Keillor

Locational entropy Synonym for partition entropy (q.v.)

Lorenz curve In income distribution, the graph of the proportion of income earned
by the progressive proportion of people. Leads to the Gini income distribution
metric

Message set An input sequence of symbols, that is to be coded into binary form

Mixture distribution Combines two or more distributions defined on the same
range, where the constituent distributions are of the same general type.
Combining a continuous distribution with a discrete one would be referred to as
a mixed distribution

Ordered mean difference A schedule that graphs the conditional expected values
of one variable against values of another benchmark variable, the latter as the
conditioning factor. See also ‘co-smoothing’

Ordinal utility function A weaker preference ordering than cardinal (q.v.).
Objects or outcomes can be preferred one to the other, but not their respective
differences (how much more preferred)

Partition entropy At any given point along its range of a random variable, is the
entropy of a binary variable that takes value 1 if values exceed the given point,
or 0 if less. The collective over all such given points, is the partition entropy
function

Rawls social justice criterion Says that the only fair social orderings should be
established by ex ante agreements based on advance ignorance of who or what
(e.g. how wealthy) I will turn out to be

Retracement point Trading recommendation that says to buy when the price has
fallen to a designated proportion off its previous peak. So the price recovers

Scalable kernel A smoothing kernel specification that adjusts automatically for
alterations in the window length

Shannon entropy The expected value of the log of the density, technically with
the binary 2 as the base for the log, but in practice usually as the natural log.
Captures the expected length of a message code
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Subjective probability Postulated existence of systematic biases in peoples’
assessment of future events. Commonly to overweight extremely favourable
outcomes, as in lotteries

Tversky-Kahneman postulates Stress the importance of the way that prospective
events are presented to a subject, also bias in recombining probabilities of
compound events, and overestimating rare outcomes

Value at risk An assigned critical point for value outcomes in the lower tail,
commonly 1 or 5%, such that the chosen portfolio should not fall short with a
greater probability, over a designated time interval
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