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Preface

This small book covers three important topics that we believe every statistics
student should be familiar with: U-statistics, M,,-estimates and Resampling.
The final chapter is a quick and short introduction to the statistical software
R, primarily geared towards implementing resampling. We hasten to add that
the book is introductory. However, adequate references are provided for the
reader to explore further.

Any U-statistic (with finite variance) is the non-parametric minimum vari-
ance unbiased estimator of its expectation. Many common statistics and esti-
mators are either U-statistics or are approximately so. The systematic study
of U-statistics began with Hoeffding (1948) and comprehensive treatment of
U-statistics are available at many places including Lee (1990) and Korolyuk
and Borovskich (1993).

In Chapter 1 we cover the very basics of U-statistics. We begin with
its definition and examples. The exact finite sample distribution and other
properties of U-statistics can seldom be calculated. We cover some asymptotic
properties of U-statistics such as the central limit theorem, weak and strong
law of large numbers, law of iterated logarithm, a deviation result and, a
distribution limit theorem for a first order degenerate U-statistics. As direct
application of these, we establish the asymptotic normality of many common
estimators and the sum of weighted chi-square limit for the Cramér-von Mises
statistic. Other applications are provided in Chapter 2. In particular the idea
of linearization or the so called weak representation of a U-statistic carries
over to the next chapters.

Chapter 2 is on M-estimators and their general versions M,,-estimators,
introduced by Huber (1964) out of robustness considerations. Asymptotic
properties of these estimates have been treated under different sets of con-

ditions in several books and innumerable research articles. Establishing the

xi



xii Preface

most general results for these estimators requires sophisticated treatment us-
ing techniques from the theory of empirical processes. We strive for a simple
approach.

We impose a few very simple conditions on the model. Primary among
these is a convexity condition which is still general enough to be applicable
widely. Under these conditions, a huge class of M,,-estimators are approxi-
mate U-statistics. Hence the theory developed in Chapter 1 can be profitably
used to derive asymptotic properties, such as the central limit theorem for
M,,,-estimators by linearizing them. We present several examples to show
how the general results can be applied to specific estimators. In particular,
several multivariate estimates of location are discussed in details.

The linearization in Chapters 1 and 2 was achieved by expending consid-
erable technical effort. There still remain two noteworthy issues. First, such
a linearization may not be easily available for many estimates. Second, even
if an asymptotic normality result is established, it may not be easy to find or
estimate the asymptotic variance.

Since the inception of the bootstrap method in the early eighties, an al-
ternative to asymptotic distributional results is Resampling, This is now a
necessary item in the everyday toolkit of a statistician. It attempts to re-
place analytic derivations with the force of computations. Again, there are
several excellent monographs and books on this topic, in addition to the sur-
feit of articles on both theory and applications of Resampling.

In Chapter 3, we introduce the main ideas of resampling in an easy way
by using three benchmark examples; sample mean, sample median and ordi-
nary least squares estimates of regression parameters. In particular, we also
explain when and how resampling can produce “better” estimates than those
from traditional asymptotic normal approximations. We also present a short
overview of the most common methods of resampling.

Chapter 4 focuses on resampling estimates for the sampling distribution
and asymptotic variance of U-statistics and M,,-estimators. In particular, we
discuss the traditional Efron’s (multinomial) bootstrap and its drawbacks in
the context of U-statistics. We discuss how the generalized bootstrap arises
naturally in this context. We establish a bootstrap linearization result for U-
statistics. The generalized bootstrap with additive and multiplicative weights
are given special attention, the first due to the computational savings obtained
and the second due to its connection with Efron’s bootstrap. Finally, we also

establish a weighted U-statistics result for the generalized bootstrap M,,-
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estimates. These linearization results show the distributional consistency of
the generalized bootstrap for U-statistics and M,,-estimates.

Chapter 5 brings in an additional flavor: that of computation and practi-
cal usage of the various estimation and inferential techniques discussed. We
do not assume any knowledge about statistical softwares or computational
practices on the part of the reader, hence this chapter is suitable for a begin-
ner. We describe various aspects of the free and versatile statistical software
R, followed by a very brief illustration on how to practically use some of the
techniques presented in this book. We created a free and publicly available R
package called UStatBookABSC (Chatterjee (2016)) to accompany this book,
which also contains a dataset that we use for illustrating various R commands
and concepts.

The works of SC and AB have been partially supported respectively by the
United States National Science Foundation (NSF) under the grants # DMS-
1622483 and # DMS-1737918 and by the J.C. Bose Fellowship, Govt. of India.
We thank Monika Bhattacharjee, Gouranga Chatterjee and Deepayan Sarkar
for proof reading parts of the book, and for providing valuable comments.
We are thankful to Lindsey Dietz for obtaining and curating the data on
precipitation and temperature that we have used. We thank Rajendra Bhatia

for encouraging us to write in the TRIM series.

Arup Bose, Kolkata and Snigdhansu Chatterjee, Minneapolis
April 15, 2018



About the Authors

Arup Bose is Professor at the Statistics and Mathematics Unit, Indian Sta-
tistical Institute, Kolkata, India. He is a Fellow of the Institute of Mathemati-
cal Statistics and of all the three national science academies of India. He has
significant research contributions in the areas of statistics, probability, eco-
nomics and econometrics. He is a recipient of the Shanti Swarup Bhatnagar
Prize and the C R Rao National Award in Statistics. His current research in-
terests are in large dimensional random matrices, free probability, high dimen-
sional data, and resampling. He has authored three books: Patterned Random
Matrices, and Large Covariance and Autocovariance Matrices (with Monika
Bhattacharjee) and Random Circulant Matrices (with Koushik Saha), pub-
lished by Chapman & Hall.

Snigdhansu Chatterjee is Professor at the School of Statistics, University
of Minnesota, USA. He is also the Director of the Institute for Research
in Statistics and its Applications. His research interests are in resampling
methods, high-dimensional and big data statistical methods, small area
methods, and application of statistics in climate science, neuroscience and

social sciences. He has written over 45 research articles.

XV



®

Check for
updates

Chapter 1

Introduction to U-statistics

U statistics are a large and important class of statistics. Indeed, any U-
statistic (with finite variance) is the non-parametric minimum variance esti-
mator of its expectation #. Many common statistics and estimators are either
U-statistics or approximately so. The systematic study of U-statistics began
with Hoeffding (1948). Many of the basic properties of U-statistics are due
to him. Full length treatment of U-statistics are provided by Lee (1990) and
Korolyuk and Borovskich (1993).

Our goal in this chapter is to cover the very basics of U-statistics in a
concise and more or less self-contained way. We will start with the defini-
tion of a U-statistic and provide several examples. We will then cover some
asymptotic properties of U-statistics such as the central limit theorem, weak
and strong law of large numbers, law of iterated logarithm, and a distribution
limit theorem for a first order degenerate U-statistic. As applications of these
results, we will establish the asymptotic distribution of many common statis-
tics, including the Cramér-von Mises statistic. In the next chapter we shall
see that there is a general class of statistics, called M, estimators, which
are also approximate U-statistics. Thus the results of this chapter will be

applicable to an even wider class of statistics.

1.1 Definition and examples

Let Y7,Y5,...,Y, be Y-valued random variables. It will be clear from the
context what ) is. We shall assume throughout that they are independent
© Springer Nature Singapore Pte Ltd. 2018 and Hindustan Book Agency 2018 1
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2 Chapter 1. Introduction to U -statistics

and identically distributed (i.i.d. hereafter). Suppose h(z1,...,Z;,) is a real

valued function on Y™ which is symmetric in its arguments.

Definition 1.1: The U-statistic of order or degree m, with kernel h is defined

as:

Un(h)<n>_l S h(Yi.. Vi) (1.1)

1<i1 < <im<n

We shall often write U, for U,(h) when the function h is clear from the
context. Appropriate extension is available when h is vector valued.

Note that a U-statistic of degree m is also a U-statistic of degree (m + 1).
As a consequence, the sum of two U-statistics is again a U-statistic. In this
book, we consider the order m to be the smallest integer for which the above
definition holds.

Example 1.1(Sample mean): Let Y1,Ys,...,Y, be observations, then with

m = 1 and h(z) = x, we obtain
n
Up=n""Y Y, =Y. (1.2)
i=1

O

Example 1.2 (Sample variance): Let Y1, Ya, ..., Y, be the observations, then

with m = 2 and h(z1,22) = @ , we get

—1
n 2
U, = <2) Z (Y, —Yi,)7 /2. (1.3)
1<i1<i2<n
It is easily seen that U, is the sample variance,

(Vi-Y)* =52 (1.4)
1

U,=(n- 1)_1

n
1=

Example 1.3(Sample covariance): Suppose (X;,Y;), 1 < i < n are the

observations, and consider m = 2 and

h((xhyl)» ($27y2)) = %(551 —22) (Y1 — Y2).
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Then U, is the sample covariance of {(X;,Y;)}, given by

Up=mn-1)""> (X, - X)(V; -Y). (1.5)

i=1

Example 1.4(Kendall’s tau): Define the sign function as

-1 if <0,
sign(z) = 0 if z=0,
it z>0.

Suppose (X;,Y;), 1 <i < n are continuous bivariate observations. Kendall’s

tau, a measure of discordance, is defined by
o\ !
b, = (2> > sign((X; - X;)(Yi - Y5)). (1.6)
1<i<j<n

This is a U-statistic with h((z1,22), (y1,92)) = sign((#1 —22)(y1 —y2)). O
Example 1.5(Gini’s mean difference): A measure of income inequality is the

Gini’s mean difference given by

—1
n
n=(3) X mevi (17)
1<i<j<n

If the observations are i.i.d. N(0,0?), then we have

2

E(Un) = mff (1.8)
Thus U, is a U-statistic with h(x1,22) = |r; — 22| and is a measure of
dispersion. O

Example 1.6 (Wilcozon’s one sample rank statistic): Suppose Y;, 1 <1i < n,
are continuous observations. Let R; = Rank (]Y;|), 1 <14 <n. Wilcozon’s

one sample rank statistic is defined as
TF = Ri Iiy50) (1.9)
i=1

T+ is the sum of the ranks of all the positive observations. It can be written

as a linear combination of two U-statistics with kernels of sizes 1 and 2. To
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do this, note that for i # j,

Livirvi>0r = Livisor vy <viy + Ziv>0y Ly vi <vi)- (1.10)

Hence with probability one

Y Iaviso

1<i<j<n
= > TysoZgiat D, Tysolgvic + ) Lyso
1<i<j<n 1<i<j<n i=1
=2 > IvsoZivi<v
i=1 j=1
=Y TyvsoRi =T
=1

It is now easy to see that

T+ = (Z) Un(f) + nUn(9) (1.11)

where U, (f) and U, (g) are the U-statistics
n -1 1 n
G =(3) X S0 md U= 1Y e
1<i<j<n i=1
with kernels f(x1,22) = Ziz, 4a,>0y and g(z1) = Lz, 503 O

Example 1.7: A correlation coefficient different from the usual product mo-
ment correlation was introduced and studied in details by Bergsma (2006).
We need some preparation to define it. First suppose that Z, Z; and Z5 are

i.i.d. real valued random variables with the distribution function F'. Let
hp(z1,22) = —%E(Lzl — 2| — |21 — Zo| = |Z1 — 20| + |21 — Za]).  (1.12)
Note that if Z3, Z, are i.i.d. F, then
Ehp(Zs, Z4) = 0. (1.13)

Now let (X,Y) be a bivariate random variable with marginal distributions
Fx and Fy. Let (X1,Y1), and (X5,Y2) be i.i.d. copies of (X,Y). Then a
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“covariance” between X and Y is defined by
K(X,Y) = Ehpy (X1, X2)hpy (Y1, Y2)

and a “correlation coefficient” between them is defined by

K(X,Y)

YY) = R(X, X)r(Y,Y)

It is easy to see that if X and Y are independent then x(X,Y) = p*(X,Y) =
0. It turns out that 0 < p* < 1 for any pair of random variables (X,Y)
and p*(X,Y) = 0 if and only if X and Y are independent. In addition,
p*(X,Y) =1if and only if X and Y are linearly related. See Bergsma (2006)

for details.

Now suppose we have n observations (X;,Y;),1 <i < n from a bivariate

distribution Fx y. Based on these observations, we wish to test the hypothesis
Hy: Fxy(z,y) = Fx(z)Fy(y) forall z,y. (1.14)

Since k(X,Y) = 0 if and only if Hy is true, we can base our test on a
suitable estimate of k(X,Y’). The most reasonable estimate is given using a

U-statistic, which we describe below. Define the following quantities:

1 — 1 —
Alk:ﬁngk_XiL A2k:ﬁ;|Yk_YH> and

Bi= LYY Nl B > Y v
=1 j=1

1=1 j=1

For k,l=1,...,n, let

1 n n n
th(XkaXl):**OXk*Xl‘*7A1k* — A11+ _131)7

hﬁy (Yi, Y1) = _*(|Yk -Y|- 714% - 71421 + 732)

Then an unbiased estimator of k(X,Y) is given by

-1
n
o= (5) X e (X, 057),
1<i<j<n
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Note that k, may be negative even though k is never so. Clearly « is a
U-statistic of degree 2. O

1.2 Some finite sample properties

1.2.1 Variance

Assume that V(h(Y1,...,Y,,)) < oo where V denotes variance. To compute

V(Uy), we need to compute
COV(h(Yj,, ..., Y}, ) h(Yir, ..., Vi)

where COV denotes covariance.

Let ¢ denote the number of common indices between {i1,...,4,} and

{j1,---,Jm}. The total number of such covariance terms equals

n\ /m\/n—m

m)\c)\m-c/)’
This can be seen as follows. First, we can choose m indices {i1,...,4m} from
{1,...,n} in (7"”) ways. Then choose ¢ of those which are to be common
with {j1,...,jm} in (') ways. Now choose the rest of the (m — c) indices of
{j1,..-,jm} from the (n —m) remaining indices in (") ways.

For any ¢, 1 < ¢ < m define

6c = COV|[h(Yi,,...,Y:, ), h(Yjy, ..., Y5 )],
hc(xl,...,xc) = E[h(Yl;n-aYc»Y—chlw- ,Ym)|Y1 = .’£1,...7YC = xc].

Suppose {Y1,Ys,...}isaniid. copy of {Y7, Y5, ...} (without loss of generality
defined on the same probability space). Then clearly,

5 = COV[h(V1,..., Y., Yern, ..., Vi), h(Y1, ..., Yo, Yoia, .., V)]
= E[(Yi, o Ve Yorn, oY) h(Vis o Yo Voo, Vo)
2
~ (E[a(vi, ... Yu)])

:E{hc(Yh-~-7Yc)r - (]E[hc(Yl,---7Yc)])2
0
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Hence
V(Un)
n\ 2
_<m> cov( > b Ya), D (Vi Y5)
1<ip <<t <n 1<ii<<jm<n
(1.15)
_(n -2 i n (m) (n—m,
\m = \m/\c/\m-c ¢
-1 m
— (”> 3 (m> (” N m)éc. (1.16)
m —\c/\m—c
As a consequence, as n — 00,
m251
V(U,) = —+ O(n™?) and (1.17)
V(n'/2(U, — 0)) — m?d;. (1.18)
Example 1.8: Let h(z1,22) = % Then
Up=sp=(m-1)"> (Vi =Y,)"
i=1
It can be verified that, if 02 = V(Y7) and py = E(Y — E(Y))4, then
4
-0
5y =1 — (1.19)
5, = 14 o and
2 )
4(n—2) 2
V(U,) = 0 2. 1.2
O

1.2.2 First projection

The first projection of a U-statistic Uy, denoted by hy(+), is the conditional

expectation of h given one of the coordinates:

hi(z1) = E h(z1,Ya, ..., Ym) (1.21)
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Define the centered version of the first projection:

iLl(l'l) = hl(.’ﬂl) — 9
so that

E (Y1) = E[h(Y1,...,Yn)] =6 =0.

Let
M e -~
Rn:Un—afgghl(Yi). (1.22)

By explicit calculations it can be easily seen that the decomposition (1.22) is

an orthogonal decomposition in the following sense:
COV[hi(Y;),R,] =0 Yi=1,...,n. (1.23)
Notice that in (1.18) the leading term in V(n'/2U,,) equals m?d; where

81 = COV[h(Y1,Ya, ..., Ym), h(Y1, Yo, ..., Y;n)] (1.24)
= V(h1(Y1)). (1.25)

1.3 Law of large numbers and asymptotic nor-

mality

The notation i>, L and “% shall be used throughout the book to denote
convergence in distribution, convergence in probability and convergence al-
most surely, respectively.

From the relations (1.22), (1.23) and (1.18), we get

V(U,) = 761 + V(R,)
- %61 +0(n™2). (1.26)
This shows that

V(n'?R,) — 0 and hence n'/?R, 5o. (1.27)



Law of large numbers and asymptotic normality 9

Now we obtain two important results on U-statistics. Theorem 1.1(b) is
the Central Limit Theorem for U-statistics (UCLT). It follows by appealing
to the decomposition given in part (a) and the central limit theorem (CLT)
for the sample mean of i.i.d. observations. Theorem 1.1(a) is a weak repre-
sentation or linearization of U-statistics and follows from (1.22) and (1.27).
This is useful when we have to deal with several U-statistics simultaneously.
Then it is easy to see that the multivariate version of Theorem 1.1(b) holds.

In Theorem 1.2, using Theorem 1.1(a), we obtain the weak law of large
numbers (WLLN) for U-Statistics.

Theorem 1.1 (Hoeffding (1948)). (UCLT.) If V[h(Y1,...,Yy)] < oo, then
(a)

S hi(Y:)+ Ry where 'R, 5 0. (1.28)

(b)

n'2(U, — 0) 25 N(0,m26,) where 6y = V(hi(Y1)).

Theorem 1.2. (Weak law of large numbers (WLLN) for U-statistics.) If
Vih(Y1,...,Yn)] < oo, then

Un—GgOasn%oo.

Rate results in the weak law, when stronger moment conditions are as-
sumed, are given in Section 1.4. A much stronger result than the weak law

is actually true for U-statistics and we state it below:

Theorem 1.3 (Hoeffding (1961)). (Strong law of large numbers (SLLN) for
U-statistics.) If E[|h(Y1,...,Yn)|] < oo, then

U, — 0250 as n — .

This result can be proved by using SLLN for either reverse martingales
Berk (1966) or forward martingales Hoeffding (1961). See Lee (1990) for a
detailed proof.

The next result we present is the Law of iterated logarithms (LIL) for U-
statistics. See Lee (1990) for a proof of this result. This result will be used



10 Chapter 1. Introduction to U -statistics
in the proof of Theorem 2.5 in Chapter 2.

Theorem 1.4 (Dehling et al. (1986)). (Law of iterated logarithm (LIL) for
U-statistics.) Suppose U, is a U-statistic with kernel h such that 6; > 0 and
EUh(Yl, .. .,Ym)|2] < co. Then as n — oo,

lim sup n(Un —9)

n +/2m2d; loglogn

Example 1.9: Consider the U-statistic s2. In Example 1.8, we have calcu-
lated

=1 almost surely.

4
— g
51:H4T’

where 4 = E(Y — (EY))". Thus if p14 < 00,
nt/?(s? — o?) 2, N(0, py —ot).
Note that when p4 = o, the limit is degenerate at 0. O

Example 1.10: Suppose h(z1,x3) = x122, 02 = V(Y1) < 0o and pu = E(Y7).
Then

51 = COV(Y1Yz, V1Y)
= EY?YsYs — (EV1Y2) (EY1Y2)
= pPBY? — pt = p’V(V1) = pPo.

Hence, since m = 2,61 = p?0?, we have

-1

2 (T N 2| D 2 2

n <<2> Z Y;Y; ,u)—>N((),4,uJ).
1<i<j<n

Note that when p = 0, the limit distribution is degenerate. We shall deal

with general degenerate U-statistics in the next section. O

Example 1.11: Consider Kendall’s tau defined in Example 1.4. It is used
to test the null hypothesis that X and Y are independent. We shall derive
the asymptotic null distribution of this statistic. Let F,F; and Fy denote
the distributions of (X,Y"), X and Y, respectively. Assume that they are
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continuous. Then

hi(z,y) (1.29)
=E n((z,y), (X2,Y2))

=P[(z — X2)(y — Y2) > 0] = P[(z — X2)(y — Y2) < 0]
=P[(Xy>z,Yy > y), or (X2 <z,Yz <y)]
—P[(X2>2,Y2 <y)or (X2 <z,Ys >y
=1—2F(z,00) — 2F(c0,y) + 4 F(x,y)
= (1 —2F1(x)) (1 — 2F2(y)) + 4(F(z,y) — F1(2)F2(y)). (1.30)

Under the null hypothesis,
F(x,y) = Fi(x)Fa(y) for all z,y. (1.31)
Hence in that case,
hi(z,y) = (1 — 2F;(z)) (1 — 2F2(y)). (1.32)
To compute &1, since F; and Fy are continuous, under the null hypothesis,
U=1-2F(X;) and V =1-2Fy(Y1) (1.33)
are independent U(—1, 1) random variables. Hence
0 =V[h(X,Y)]=V({UV)
— EU2EV? = (% /11 u2du)2 =1/9.
Since m = 2, we get m?8; = 4/9. Moreover, under independence,

0 = IE[ sign (X1 — X2) (Y7 — Yz))] =0.

Hence under independence, n'/?U, N N(0,4/9). O

Example 1.12: Wilcoxon’s statistic, defined in Example 1.6 is used for test-
ing the null hypothesis that the distribution F of Y; is continuous and sym-
metric about 0. Recall the expression for 7" in (1.11). Note that E U, (f) =



12 Chapter 1. Introduction to U -statistics

P(Y; + Y, > 0) = 6 (say). Under the null hypothesis, § = 1/2. Further,
n"3212(T —n?/4) (1.34)

=n"32/12 ((Z) Un(f) +nUn(g) — n2/4>
= n"32/12nU,(g) + n'/>V3(Un(f) — 1/2) — n 2\V3BUL(f).  (1.35)

Clearly, using the weak representation (1.28),
—3/2 P
n=>'*(nU,(g)) = 0. (1.36)
Further,

V(f1) = Ccov [I{Y1+Y2>O}7 I{Y1+372>0}:|

- P[Yl FYe >0, V4T > o} —(1/2).
Note that F is continuous. Then under the null hypothesis, by symmetry,

IP’[Yl 1Y, >0, Y1+172>0} —1/3. (1.37)
As a consequence
= =4. (1.38)
Thus from the UCLT, Theorem 1.1 (since m = 2),

n2(UL(F) —1/2) 25 N(0,1/3).
Hence using (1.35), (1.36) and (1.38) we have,

n3212(TT — n2/4) 25 N(0,1).

1.4 Rate of convergence

The results of this section provide rate of convergence in the WLLN/SLLN
and the UCLT Theorem 1.1. These results will be specifically useful for
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establishing rate of convergence results for M,,-estimators later in Chapter 2.
Complete proofs of these results will not be provided here but the reader will
be directed to other sources for full proofs.

The first result supplements the SLLN for U-statistics mentioned in Sec-
tion 1.3. Parts (a) and (c¢) will also be useful in the proof of Theorem 2.4.

Theorem 1.5. (Rate of convergence in SLLN.) Let Uy (h) be a U-statistic
with kernel h. Let p = Eh(Y1,...,Y;,).

(a) (Grams and Serfling (1973)). IfE[h(Y1,...,Ym)|[" < oo for somer > 1,
then for every e > 0,

P{sup |Ui(h) — u| > e} =o(n'™"). (1.39)
k>n

(b) If Y(s) = ]E{exp[s|h(Y1,...,Ym)\” < oo for some 0 < s < 50, then for
k= [n/m], and 0 < s < sok,

E[exp(sUn(h))} < [w(s/k)} g (1.40)

(¢) (Berk (1970)). Under the same assumption as (b), for every ¢ > 0, there
exist constants 0 < 0 < 1, and C' and such that

P[sup‘Uk(h) —p| > e] < Co". (1.41)
k>n

We provide a sketch of the proof of (a). First assume that m = 1. Then
U, (h) reduces to a sample mean. In this case (a) is a direct consequence of
the following well known result. A proof of this result can be found in Petrov
(1975), Chapter 9, Theorem 2.8. We need the following lemma in order to
establish (a).

Lemma 1.1 (Brillinger (1962); Wagner (1969)). Suppose Y1,Ya, ... are i.i.d.
random variables with E|Y,,|" < oo forr > 1. Let S, = Y1+ ...+ Y, and
uw=RY,. Then for each ¢ > 0,

S,
P [sup| % — ,u‘ >el=o0(n'™"), as n— oco. (1.42)
k>n k

Proof of Theorem 1.5: Now suppose m > 1. Recall the weak decomposi-
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tion (1.28) of U-statistics and write
> hi(Yi) + Ry (1.43)

Since the result has already been established for m = 1, it is now enough to
prove that

P[sup IRy,| > e] = o(n'™"). (1.44)
k>n

Note that since R,, is the sum of two U-statistics, it is also a U-statistic.

Every U-statistic is a reverse martingale and from the well known reverse

martingale inequality (see Shorack (2000), page 247) it follows that

P[sup |Ry| > e] < 6_1E|Rn\. (1.45)
k>n

Further, R, is a degenerate U-statistic, that is, it is a U-statistic whose first
projection is zero. Hence using Theorem 2.1.3 of Korolyuk and Borovskich
(1993) (page 72), for 1 < r < 2 and Theorem 2.1.4 of Korolyuk and Borovskich
(1993) (page 73), for r > 2, it follows that

E|R,| = O(n*1=") = o(n*"). (1.46)

Using this in (1.45) verifies (1.44) and proves Theorem 1.5(a) completely.
The detailed proofs of (b) and (¢) (without the supremum) can be found
in Serfling (1980) (page 200-202). We just mention that for the special case
of m = 1, part (c) is an immediate consequence of the following lemma whose
proof is available in Durrett (1991), Lemma 9.4, Chapter 1. O

Lemma 1.2. Let Y7,Ys,... be i.i.d. random wvariables, and E[eSIYnI} < 00
for some s > 0. Let S,, =Y1+...+Y,, u=EY,. Then for each ¢ > 0 there
exists a > 0 such that

Sn
IF’H— - ,u‘ > 5} =0(e "), as n— 0. (1.47)
n
The following result is on the moderate deviation of U-statistics. We allow

the possibility that the kernel A is also changing with the sample size n. This
result will be used in the proof of Theorem 2.5 of Chapter 2.
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Theorem 1.6 (Bose (1997)). (Deviation result) Let {h,} be a sequence of
(symmetric) kernels of order m and let {Y,;,1 <1i < n} be i.i.d. real valued

random variables for each n. Let

-1
n
Un(hn) = (m> 191<Z;im§n P (Yoigs - s Yo, )- (1.48)
Further suppose that for some b, > 0, and some v, < n?’,

E hp(Yniys ooy Yoi,,) = 0,

E A (Yniys ooy Yoi, )2 <02 and

E |hn(Yniys ooy Yai, )| <b < oo for somer > 2.

Then for all large K,
P|n'/2|U, (hn)| > K, (logn)l/ﬂ < Dbn'~"2u;7 (logn)™/27t. (1.49)
Proof of Theorem 1.6: Let
T = hod(Jha] <), ot = hon = Bl s = b = b,

where {m,,} will be chosen.
Note that {h,1} and {h,2} are mean zero kernels and have the same properties

as {h,} assumed in the statement of the theorem. Further
Un(hn) = Up(hn1) + Un(fina).
Define for sufficiently large K,
an = K (logn)'/?/2 and U, (t) = Elexp{tUn(hni(Yn1,- .-, Ynm))}]-

Note that ¥, (¢) is finite for each ¢ since hy,; is bounded. Letting k = [n/m],
and using Theorem 1.5(b),

Ay =P(n2U, (hn1) > vpan)
= P(tn'"2U, (hn1)/vn > t an)
< exp(—tay) U, (n'/?t/v,,)
< exp(—tay,) [Eexp(n'/?tY/(v,k)))*, say,



16 Chapter 1. Introduction to U -statistics

where Y = h,1(Yo1, -+, Yum). Using the fact that |Y| < m,, EY = 0, and
EY? <02, we get

1/2 00 1/24\7
E exp <nk tY) < 1—|—EZY2 (T) mi—2/4!
Un = Un

1+

IN
PT‘
[\.’J
I\D
M8
/—\
H
~
[\v]
ﬂ
N——
<
\
=

< 147

provided ¢t < n~='/2kv,, /(2m,,). With such a choice of ¢,

t“n

A < exp(—tan + 7)

(1.50)

Let t = K (logn)'/?/(4(2m —1)). Then for all large n, the exponent in (1.50)

equals

K?logn nk?logn K?logn
— < - . (1.51)
82m—1) ' 16(2m —1)2k — 16(2m—1)
Thus we have shown that
P(|n'/2U, (hn1)| > Kuvn(logn)'/2/2) < n~K*/16@m-1) (1.52)

To tackle Uy, (h,2), we proceed as follows.

P(|nY 20U, (hn2)| > anvn/2) < 4v7ta;'nt?E|hne (X1, ... Xom))|
< 8U;1a;1n1/2[E|hn|T]1/T[P(|hn| > mn)}l_l/r
< 8’1),;10/,;1n1/2b1/r(m;r)l_l/rbl_l/r.

Choosing m,, = n'/?v, /(K (logn)'/?),
P(|n U, (Bn2)| > anvn/2) < 16bu " K™ 20 "2 (logn)™/?71.  (1.53)

Note that in the above proof the restrictions we have in place on m,,, K and
t (with t = K(logn)Y/?/(4(2m — 1)) < n='/?kv,, /(2m,,)) are all compatible.
The Theorem follows by using (1.52) and (1.53) and the given condition on
Up,- O
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1.5 Degenerate U-statistics

In this section, we will consider distribution limits for degenerate U-statistics.
Note that in Theorem 1.1 if 6; = V(hi(Y1)) = 0, then the limit normal
distribution is degenerate. That is, n'/2(U, — ) % 0. A natural question
to ask is if we can renormalize U,, in cases where 6; = 0 to obtain a non-

degenerate limit.

Example 1.13: Consider the U-statistic U,, = s2 from Example 1.9, which

has the kernel
(21 — xp)?

h(xl,xQ) = B)

Then as calculated earlier, 6; = i(/m — ,u%) where

2

na=EYi - )", =BV —p)”. (1.54)
Note that
pa = p3 < (Y1 — u)2 is a constant
<Y, =p+C (Cis a constant).
Then n'/2(s2 — o) 5o. O

Example 1.14: Let f be a function such that Ef(Y;) = 0 and Ef?(Y;) < oo.
Let U, be the U-statistic with kernel h(z1,22) = f(21)f(x2). Then hy(z) =
Ef(z)f(Y2) =0, and

n2U,(h) = N(0,0). (1.55)

On the other hand,

n=(3) X s

1<i<j<n
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R S0 S 10 ) A S SR o
“ () S

n—1
As a consequence, using SLLN on {f?(Y;)}, and CLT on {f(Y;)},
D, 2.2
nU, — o*(x7 — 1) (1.56)

where 02 = Ef2(Y;) and x? is a chi-square random variable with one degree

of freedom. O
Example 1.15: (continued from Example 1.13). Suppose {Y;}’s are i.i.d.,
PY;,=1)=PY;=-1)=1/2.
Then p4 = p3 = 1. Hence, as seen earlier,
1/27.2 D
n’*(s; —1) — N(0,0). (1.57)
n
However, writing Y = n~! Z Y; and noting that Y;? = 1 for all 4,
i=1
2 _ (T (Yi - V)
2=(3) X U5
1<i<j<n
1 - -
— Y2 _ Y 2
o (o)
__n o n
n—1 n-—1
Hence n — oo
2y _ " 2 Do, .2
n(s 1) = T (AT P
O

Example 1.16: Suppose f; and f5 are two functions such that
Efi(Y1) =Ef2(Y1) =0,

E(fl(yl)fg(yl)) = 0 and Eflz(Yi) = Ef%(YQ) = 1. That iS, {fl,fg} are
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“orthonormal”. Consider the U-statistic U,, with kernel

h(zy,x2) = ay fi(x1) fi1(z2) + az fo(x1) fa(22). (1.58)

Then as in Example 1.14, but now using the multivariate CLT,

nU, £> al(Wl — 1) + CLQ(WQ — 1) (159)
where W and Wy are i.i.d. x? random variables. O

To motivate further the limit result that we will state and prove shortly,
let us continue to assume d; = 0. Recalling the formula for variance given in
(1.16), now

m
m— 2
Thus if §; = 0, then the right scaling is indeed nU,. To understand further
our forthcoming result, let
Ly(F)={h:R >R, /hQ(x)dIE‘(x) < oo} and (1.60)
Ly(F xF)={h:RxR =R, //h2(x,y)dIE‘(;v)dIE‘(y) <oo}.  (1.61)
Fix h € Lo(F x F). Define the operator A : Ly(F) — Lo(F) as
Aug(@) = [ e )gWdEW). g € La(®). (162

Then there exists eigenvalues {)\;} and corresponding eigenfunctions {¢;} C
Lo(F) for the operator A. That is:

Ah¢j = )‘j(bj,vja (163)

/qs?(x)d]F(x) =1, /¢j(x)¢k(x)d]F(x) =0, Vj #k, and (1.64)

h(w,y) =Y Aid;();(y)- (1.65)
j=1
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The equality in (1.65) is in the Lo sense. That is, if Y7,Y5 are i.i.d. F' then

E[h(Y1,Ys) Z)\mk Y1)6r(Y2)]? = 0 as n — oco. (1.66)
k=1

Further
hi(z) = Eh(z,Y?)

= Z)\k(bk E(¢r(Y2)) almost surely F. (1.67)

Also note that from (1.64) and (1.66),
Eh2(Y1,Ys) ZAZ (1.68)

Now we are ready to state our first theorem on degenerate U-statistics for

m = 2. The version of this Theorem for m > 2 is given later in Theorem 1.9.

Theorem 1.7 (Gregory (1977); Serfling (1980)). (x?2-limit theorem.) Suppose
h(z,y) is a kernel such that Eh(x, Y1) = 0 a.e. x and Eh?(Y1,Y3) < co. Then

nUn =5 3 A(W, — 1) (1.69)
k=1

where {Wy} are i.i.d. x? random variables and {\,} are the (non-zero) eigen-

values of the operator Ay given in (1.62).

Proof of Theorem 1.7: The idea of the proof is really as in Example 1.16
after reducing the infinitely many eigenvalues case to the finitely many eigen-

values case. First note that
hl(l‘) = Eh(l’,yl) =0 a.e. TF. (170)

On the other hand from (1.67), we know that

mek YEp(¢n(Y1)) ae. F. (1.71)
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Since {¢} is an orthonormal system, using (1.70) we thus have
E¢r(Y1) =0 Vk. (1.72)

Also recall that (see (1.65))
z,y) =Y Medr(z)dr(y) inthe Ly(F xF) sense. (1.73)

Now

nU, = n(;l>_ Z h(Y;,Y;)

1<i<j<n

1
— Z h(Y3, Yj).

1<i#j<n

Thus it is enough to find the limit distribution of

o 2 hy)

1<17éj<n

Yo D (Yo ow(Y)): (1.74)

1<i#j<n k=1

If the sum over k were a finite sum then the rest of the proof would proceed

exactly as in Example 1.16. With this in mind, define the truncated sum

To =~ - > Zmpt o:(Y;) k> 1. (1.75)

1<i#j<n t=1

Lemma 1.3. Suppose for every k, {Tni} is any sequence of random variables
and {T,,} is another sequence of random variables, all on the same probability

space, such that
(z’)TnkgAk as n — 0o
(ii)AkgA as k — o0

(#ii) hm limsupP(|T,, — Tni| >€) =0 Ve>0.

00 n—oo

Then T, —> A.

Proof of Lemma 1.3. Let ¢x(t) = E(e*¥) denote the characteristic func-
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tion of any random variable X. It suffices to show that

o1, () = pa(t) VteR.

Now

o7, (8) — pa(t)| < o1, (t) — O1,, ()| + |01, (1) — D4, (1)]
+ |94, () — ¢a(t)]
= By + By + Bs, say.

First let n — oo. Then by (i), Bo — 0. Now let k& — oco. Then by (ii),
B3 — 0. Now we tackle the first term Bj.
Fix € > 0. It is easy to see that

Hezt (Th—Tnr) _ H

|97, () = ¢, (2)]

IN

IN

2P(|T,, — Toi| > €) + sup |e™ —1].
| <[tle

Now first let n — oo, then let & — oo and use condition (iii) to conclude that
the first term goes to zero. Now let ¢ — 0 to conclude that the second term
goes to zero. Thus B; — 0. This proves the lemma. O

Now we continue with the proof of the Theorem. We shall apply Lemma
1.3 to {7} and {T,1} defined in (1.74) and (1.75). Suppose {Wj} is a
sequence of i.i.d. x% random variables.

Let

Ak_z/\ i—1), A= Z/\ (1.76)

Note that by Kolmogorov’s three series theorem (see for example Chow and
Teicher (1997) Corollary 3, page 117), the value of the infinite series in (1.76)
is finite almost surely, and hence A is a legitimate random variable.

Also note that A, — A as k — oco. Hence, condition (ii) of Lemma 1.3

is verified. Now we claim that T}, 2, Aj.. This is because

T=— > ZM@ Y;)

1<z;£]<n t=1

k n k n
=N a) - LAY
t=1 =1 t=1 =1
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By SLLN, for every t,
*Z(ﬁt ) =5 Ep (Y1) = 1. (1.78)

By multivariate CLT, since {¢x(-)} are orthonormal,

IZ@ )t =1...k) =5 N (0,I) (1.79)

where I is the k x k identity matrix. As a consequence, using (1.77), (1.78)
and (1.79),

k k k
Tk =5 D AW =3 A= (W, — 1) (1.80)
t=1 t=1 t=1

where {W;} are ii.d. x? random variables. This verifies condition (i). To

verify condition (iii) of Lemma 1.3, consider

k
YDA AN S PP AGIACH

1<i#j<n 1<i#j<n t=1

_ (i) (;‘) Ui (1.81)

where U, is a U-statistic of degree 2 with kernel

Tn - Tnk =

SRS

gr(a,y) = h(z,y) — Z/\k(bk

Now since h is a degenerate kernel and E¢g (Y1) =0 VEk, we conclude that g
is also a degenerate kernel. Note that using (1.73)

Egi(Y1,Y2) = E[n(Y1,Y2) Zwt (Y1)¢(Y2))?

t=1
2

D Mbi(Y1)du(Ya)

t=k+1

i A2,

t=k+1
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Hence from (1.81) using formula (1.16) for variance of a U-statistic,

E(T, — Tor)” = (n — 1)2VU,

”(1 Z A2 <2 Z A2, (1.82)

t=k+1 t=k+1

Hence

1
hm limsup P(|T}, — Thi| > €) < —2 E M =0.
k+1

k—oo nooco t

This establishes condition (iii) of Lemma 1.3 and hence the Theorem is com-

pletely proved. O
Before we provide an application of Theorem 1.7, we define the following;:

Definition 1.2: For any sequence of numbers {z1,...x,}, its empirical cu-

mulative distribution function (e.c.d.f.) is defined as

1 n
== ;I{zisu- (1.83)

Example 1.17: (Cramér-von Mises statistic): Let Y1,...,Y, be ii.d. with
distribution function F. The Cramér-von Mises statistic is often used to test
the null hypothesis that F' equals a specified c.d.f. Fy. It is defined as

CV,=n / (F,,(2) — Fo(x))*dFo(z) (1.84)

where F,(+) is the e.c.d.f. of {Y7,...,Y,}. It is not hard to see that if Fy is
continuous, then under the null hypothesis, CV,, is distribution free. That is,
its distribution is independent of Fy whenever Y7,...,Y,, are i.i.d. Fy. We
shall see below that CV,, is a degenerate U-statistic. The following result
establishes the asymptotic distribution of C'V,. O

Theorem 1.8. If Fy is continuous and Y1,Ys, ..., are i.i.d. with c.d.f. Fy
then with {Wy} as i.i.d. x3 random variables,
D1 o= W
k=1

(1.85)
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Proof of Theorem 1.8: Since the distribution of CV,, is independent of
Fy, without loss of generality suppose that Fy is the c.d.f. of the uniform

distribution:
Fo(z) =2, 0<z<1 (1.86)
and hence
1
cv, = n/ (Fn(z) — )% da
0
1 1 n 2
= n/o [g ;(I{%z} - x)} dx (1.87)
1
n
=7 2 /0 (Zvico)y =) (Ty, <oy —@)da
1<i,j<n
9 1
== > / (Zyviay = 2) (Zgyy <oy — @) do
n 1<i<j<n”0
1 & ! 2
T
ni=Jo
n 2
- (2) (n) Un(f) + Un(h). (1.88)

Here U, (f) and U, (h) are U-statistics with kernels respectively,

1
flor22) = [ Tz = ) Cnacay — o)
0
1
hz1) = / (Ziorzoy — )°da
0

Note that Ty, <.} are i.i.d. Bernoulli random variables with probability of

success x. Hence by SLLN

1
Uy (h) %E/ (Tryi<a) — @) d (1.89)
0
1
:/ E(Ziy,<py — ) de (1.90)
0
! 1
= / z(1—z)dr = . (1.91)
o 6
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Moreover
1
Ef(z1,Y2) = ]E/ (Ztar<ar — 2) (Liva<ay — @)da,
0
=0.

Thus U, (f) is a degenerate U-statistic. Hence by Theorem 1.7,

nUn(f) 33 MW = 1) (1.92)
k

=1

where {W}} are i.i.d. x? variables and {\;} are the eigenvalues of the kernel

f. We now identify the values {\;}. The eigenequation is

1
/0 f(z1, 22)g(x2)dre = Ag(x1). (1.93)
Now
1
f(z1,22) = / [Z(z1 < 2)I(zs < z) — 2 (21 < 2) — 2 L(zs < 2) + 2% dz
0
= /1 [Z(z > max(z1,22) —x I(21 < x) — v Z(zz < ) + 2% dz
0
1—23 1-23 1

=1—max(x1,z9) —

2 2 3

1 2 2
=3~ max(x1, T2) + l —;—mz. (1.94)

Recall that any eigenfunction g must satisfy fol g(x)dx = 0 (see (1.72)). Hence
using (1.94), (1.93) reduces to

1 22 + 22
Ag(z1) = / (3 — max (21, z9) + 5 2) g(x2)dxsy
0

1.2 1 x1
:/ %(1'2)(1%2_/ T2g(w2)dr2 —561/ g(z2)dzs.  (1.95)
0

Ty 0

For the moment, assume that g is a continuous function. Then (1.95) implies



Degenerate U -statistics 27

that ¢ is differentiable and hence taking derivative w.r.t. xy,

N (z1) = z1g9(x) — /Oxl g(x2)dre — x19(21)

—/ g(z2)dxs.
0

Again, if g is continuous, then the right side of the above is differentiable,

and hence so is the left side. Thus we get

Ag (1) = —g(z1). (1.96)

It is well known that the general solution to this second order differential

equation is
g(x) = Cre"™ 4+ Coe™", (1.97)

The boundary conditions are

/0 g(x)dx =0 and /0 g9°(z)dx = 1. (1.98)

Since g cannot be the constant function, ¢ # 0. Since g is real, Cy = C}.
Thus

g(m) _ Cl(eita: + e—itw)
2Cy cos(tx), 0 <z <1.

Now
1
0:/ glx)de =t=nk, k=0,%£1... (1.99)
0

Further
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Now using (1.96),
—A(20))t? cos(tz) = —2C cos(tx) (1.100)

which implies M\t? =1 .

As a consequence, since t = 7k,
M2k? =1, k=+1... (1.101)

or

1

A= o

k=1,2,... (1.102)
(with possible multiplicity). But {v/2cos(mkz), k =1,2,...} is a complete
orthonormal system and hence we can conclude that the eigenvalues (with no
multiplicities) and the eigenfunctions are given by
1

{()\k = 7 9(@) = V2 cos(mha), k = 1} (1.103)
Notice that > -, Ax = 1/6 (which was first proved by Euler, see Knopp
(1923) for an early proof).
As a consequence, using (1.88), (1.91) and (1.92),

= 1 1 W
CVHQZAk(Wk—l)—kg:Z)\ka:ﬁZk—:.
k=1 k=1

O

Example 1.18: (Example 1.7 continued) Using (1.13), it is easy to see that
kn is a degenerate U-statistic. An application of Theorem 1.7 yields the
following: suppose {(X;,Y;)} are i.i.d. and moreover all the {X;,Y;} are

independent. Further suppose that their second moments are finite. Then

nKkn i) Z )\i,ujZl-J

ij=1

where {Z; ;} are i.i.d. chi-square random variables each with one degree of
freedom. The {\;} and {y;} are given by the solution of the eigenvalue

equations:
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/hpx(xl,xg)gx(xg)dFX(:rg) = Agx(z1) a.e.(Fx). (1.104)
/th(y17y2)9Y(y2)dFy(y2) =gy (y1) a.e.(Fy). (1.105)
O

We now state the asymptotic limit law for degenerate U-statistics for

general m > 2. Define the second projection ho of the kernel h as
ha(1, x2) = Ehy (21,32, Y3, ..., V).

Note that ho is a symmetric kernel of order 2.

Theorem 1.9. Suppose Y1,...,Y, are i.i.d. F and U, is a U-statistic with
kernel h of order m > 2 such that Eh(z,Ys,...,Y,) = 0 almost surely and
Eh%(Y1,Ys,...,Yy) < co. Then

nU, 25 (g‘) ;Ak(wk —1) (1.106)

where {Wy} are i.i.d. x3 random variables and {\x} are the eigenvalues of

the operator defined by

Ag(xs) = /hg(xl,xg)g(xl)dIF(xl).

We omit the proof of this Theorem, which is easy once we use Theorem 1.7
and some easily derivable properties of the second-order remainder in the

Hoeffding decomposition. For details see Lee (1990), page 83.

Before concluding, we also note that in a remarkable article, Dynkin and
Mandelbaum (1983) study the limit distribution of symmetric statistics in a
unified way. This in particular provide the limit distribution of U-statistics,
both degenerate and non-degenerate. Unfortunately, this requires ideas from
Poisson point processes and Wiener integrals, which are outside the purview
of this book.
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1.6 Exercises

1. Suppose F is the set of all cumulative distribution functions on R. Let

Y1,...,Y, beii.d. observations from some unknown F € F.
(a) Show that the e.c.d.f. F,, is a complete sufficient statistic for this
space.

(b) Show that the e.c.d.f. F,, is the nonparametric maximum likelihood

estimator of the unknown c.d.f. F.
(c) Using the above fact, show that any U-statistic (with finite vari-
ance) is the nonparametric UMVUE of its expectation.
2. Verify (1.4), (1.5) and (1.8).

3. Justify that Gini’s mean difference is a measure of inequality.

4. Show that any U-statistic of degree m is also a U-statistic of degree
(m+1).

5. Show that for the U-statistic Kendall’s tau given in Example 1.4, under
independence of X and Y,

51 =1/9, =1, and hence
22n+5) 4

_ _4 2
VUn = In(n+1) 9n +0(™).

6. Suppose U, (f) and U, (g) are two U-statistics with kernels of order my
and mgy respectively, m; < my. Generalize formula (1.16) by showing

that
-1 m
n ma\ (N —m2) ¢
COV(U,(f),Up = J
win v = () 2 (%) (G, ")
where
5g,c = (C@V(f(Xna cee 7Xim1 )a g(Xj1 [ ij2 ))
and ¢ = number of common indices between the sets {i1,...,imn, } and

{j17"'ajm2}~
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7. Using the previous exercise, show that for Wilcoxon’s TV given in Ex-

ample 1.6,

V(T") = (Z) [(n—1)(ps — p3) + p2(1 — p2) + 4(p3 — p1p2)] + np1(1 — p1)
where

p1 =P(Y1 >0), po=P(Y1+Y>2>0),
p3=P(Y1+Y2>0), pa=P(Y1+Y2>0,Y2+Y3>0).

Further, if the distribution of Y7 is symmetric about zero, then p; = 1/2,
pe =1/2, p3 =3/8, and py = 1/3. As a consequence
nn+1)(2n+1)

d VIt = .
an o1

ET* =

nin+1)
4

8. Verify (1.18 ) for the limiting variance of a U-statistic.
9. Verify (1.20) for sample variance.

10. Show that for the sample covariance U-statistics given in Example 1.3,

51 = (p22 — 0% y)/4,
6o = (p2.2 + 0%0%)/2, and hence

(n—2)o%y —oko}
n(n —1) ’

VU, =n" g o —
where

pi22 = E[(X — px)2(Y — py)?]
0% =V(X), of =V(Y),
0%y = COV(X,Y).
11. Verify the orthogonal decomposition relation (1.23).

12. Verify (1.30) for the first projection of Kendall’s tau.

13. Let Y(1) < -+ < Y{,) be the order statistics of Y1,...,Y,. Derive a

connection between the Gini’s mean difference given in Example 1.5
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
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and the L-statistic
Ln =) i (1.107)
i=1

and thereby prove an asymptotic normality result for L,,.
Formulate and prove a multivariate version of Theorem 1.1.
Show that R,, defined in (1.22) is a degenerate U-statistic.

Consider the U-statistic U,, with kernel h(z1,z2,z3) = x12923 wWhere
EY; = 0,V(Y;) = 1. Show that n3/2U,—252% — 3Z where Z ~ N(0, 1).

Let U, be the U-statistic with kernel h(xy,z2, 23, 24) = x1222324 and
EY; = 0,V(Y1) = 1. Show that n2U,—>2Z* — 622 + 3 where Z ~
N(0,1).

Verify (1.33) that U and V are independent continuous U(—1, 1) ran-

dom variables.

Show that in case of the sample variance in the degenerate case, there

is only one eigenvalue equal to —1.
Show that (1.72) holds.

Suppose Y7,...,Y, are i.i.d. from Fy which is continuous. Show that
ECV,, =1/6 for all n > 1 and its distribution does not depend on F.

Suppose Y ~ Fissuch that EY = 0, EY? = 02, EY? = 0 and EY* < co.

Consider the kernel
h(z,y) = zy + (172 - 02) (y2 — 02).

Show that U, (h) is degenerate and the Ly operator Aj has two eigen-
values and eigenfunctions. Find these and the asymptotic distribution
of nUy,(h).

Suppose Y ~ F is such that EY = EY3 = 0, and EY® < co. Consider
the kernel

h(z,y) = 2y + 2°y>.
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24.

25.

26.

27.

Show that Uy, (h) is degenerate. Find the eigenvalues and eigenfunctions

of the operator Aj. Find the asymptotic distribution of nU, (h).

Suppose Y ~ F is an R¢ valued random variable such that Y and —Y

have the same distribution. Consider the kernel
h(z,y) = |z +y| — [z —yl,

where |a|] = (2521 a?)l/2 for a = (ai,...,aq) € R% Show that U, (h)

is a degenerate U-statistic. Find the asymptotic distribution of nU,,(h)
when d = 1.

(This result is used in the proof of Theorem 2.3.) Recall the variance
formula (1.18).

(a) Show that
V[hl(Yl)} =01 <0< <O :V[h(Yl,...,Ym) .
(b) Show that

V[Un] <M.

3|3

For Bergsma’s x in Example 1.18, show that the eigenvalues and eigen-
functions when all the random variables are i.i.d. continuous uniform
(0, 1) are given by {—=, gr(u) = 2cos(mku),0 <u<1,k=1,2,...}.

To have an idea of how fast the asymptotic distribution takes hold in
the degenerate case, plot (k, Zle N/ > Ni), k=1,2,... for (a) the
Cramer-von Mises statistic (b) Bergma’s x,,, when all distributions are

continuous uniform (0, 1).
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Chapter 2

M,,-~estimators and

U-statistics

M-estimators, and their general versions M,,-estimators, were introduced by
Huber (1964) out of robustness considerations. The literature on these es-
timators is very rich and the asymptotic properties of these estimates have
been treated under different sets of conditions. To establish the most general
results for these estimators require very sophisticated treatment using tech-
niques from the theory of empirical processes. But here we strive for a simple
approach.

The goal of this chapter is to first establish a link between U-statistics and
M,,-estimators by imposing a few simple conditions, including a convexity
condition. Yet, the conditions are general enough to be applicable widely. A
huge class of M,,-estimators turn out to be approximate U-statistics. Hence
the theory of U-statistics can be used to derive asymptotic properties of M,,-
estimators. We give several examples to show how the general results can
be applied to many specific estimators. In particular, several multivariate

estimates of location are discussed in details.

2.1 Basic definitions and examples

Let f(x1,...,%m,0) be a real valued measurable function which is symmetric
in the arguments x1,...,x,,. The argument 6 is assumed to belong to R?
and x;’s belong to some measure space ).
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Definition 2.1(M,,-parameter): Let Y,...,Y,, be iid. Y-valued random

variables. Define

Q(G) :Ef(Yl,...,Ym,H). (2'1)

Let 6y be the minimizer of Q(#). Assume that 6, is unique. We consider 6y

to be the unknown parameter. It is called an M, -parameter.

The special case when m = 1 is the one that is most commonly studied
and in that case 6 is traditionally called an M -parameter.

The sample analogue @, of @ is given by

-1

n

Qn(0) = (m) | Z | F(Yi,, ..., Y, 0). (2.2)
1<i1<i2...<tm<n

In the absence of any further information on the distribution of Y;, a natural

(nonparametric) estimate of the M,,-parameter 6 is the minimizer of @, (6).

Definition 2.2(M,,-estimator): Suppose that {Y7,---,Y,} is a sequence of
i.i.d. observations. Any measurable value 6,, which minimizes @, () is called

an M, -estimator of 0.

So
Qn(0,) = inf Q,(6). (2.3)

Note that even when 6y is unique, 6,, need not be unique. By an appropriate
Selection Theorem it is often possible to choose a measurable version. We

shall see this later. We always work with such a version.

Example 2.1(Sample mean): Let f(z,0) = (z — 0)? — 22. Clearly Q(9) =
6% — 2E(X)6# which is minimized uniquely at 6y = E(X). Its unique M-
estimator is the sample mean. O

Example 2.2(U-statistics as M, -estimators): For a function h(z1,...,%m)

which is symmetric in its arguments, let
F@1 o, 0) = [0 = h(@r,. .. owm)]” = [z, m)] (2.4)

Then 6y = E h(Y3,...,Y,,) and 6, is the U-statistic with kernel h. So all
U-statistics are M,,-estimators. In particular, the sample variance is an M-

estimator. O
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Example 2.3 (Median and other quantiles): Suppose Y is a random variable

with distribution function F. For any 0 < p < 1, the pth quantile of F is
F~'(p) = inf{x : F(z) > p}. (2.5)
To see this as an M-parameter, let
fl@,0) =z = 0] —|z|-(2p—-1)0. (2.6)

Note that |f(z,8)| < 2|6] and hence Q(0) = Ef(Y, ) is finite for all € R. It
is easy to check that,

0
f(@,0) = 0[2T sy — 1] + 2/ [Ziozsy — Tioza)ds — (20— 1)0. (2.7)
0
Hence
0
Q) = 2/ F(s)ds —2pf for all 6 €R. (2.8)
0

Q(0) is minimized at F~1(p). This minimizer of Q(0) is unique if F is strictly
increasing at F=1(p). If p = 1/2, it is called the population median.

Suppose {Y1,...,Y,} is an i.i.d. sample from F. Let F,, be the e.c.d.f.
Then the sample p-th quantile, given by

F,'(p) = inf{z : F,(z) > p}, (2.9)

is a (measurable) minimiser of @, (6). Unlike the sample mean, it is not

necessarily unique. If p = 1/2, we get the sample median. O

Example 2.4 (Hodges-Lehmann measure of location): Let Y1,...,Y, be iid.

observations from F. Let G be the distribution of Y1J2ry2 . Instead of the usual

mean as a measure of location, consider the My-parameter 6y = G~1(1/2)

(assume that G is strictly increasing at 6).
The median of {#, 1 <i < j < n}, the sample measure of location,

is an Ms-estimator of y. Here m = 2 and

xr1 + T2
2

xr1 + 2o
2

f(xy,22,0) =| —0]—| | - (2.10)

O

Example 2.5(Robust measure of scale/dispersion): Usually, M-estimators
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are thought of as measures of location. However, M,,-estimators encompass
measures of both, location and scale. The variance as a measure of dispersion
is influenced by extreme observations. To address this problem, Bickel and
Lehmann (1979) considered the distribution of |Y; — ¥3| and took its median
to be a measure of dispersion. As in the previous examples, this is an M-
parameter provided the distribution of |Y; — Ys| is strictly increasing at the

median. Here m = 2 and
f(x1,290,0) =[| 21 — 22 | =0 | — [ 21 — 22 | . (2.11)

The corresponding estimate is the median of {|¥; —Yj|,1 <i < j < n} and
as before, need not be unique. O
Example 2.6(U-quantiles): The ideas of the previous two examples can be
extended to define U-quantiles of Choudhury and Serfling (1988). Suppose

that h(x1,..., 2, ) is a symmetric kernel. Define
flxr, .o @m, 0) =] h(xy, .., xm) — 0| — | h(z1, ..., 2m) | - (2.12)

Then 6y, the minimizer of E[f (Y1, ,Ym,0)], is called a U-median. It is the
unique minimiser if the distribution of h(Y7,...,Y},) is strictly increasing at
1 <ip <0 <

im < n}. Other U-quantiles can be defined in a way similar to the sample

fo. Its sample version is the median of {h(Y;,,Y:,,...,Y;
quantiles in Example 2.3. Note that just like the sample quantiles, the sample
minimizers, in general, are not unique. Multivariate U-quantiles defined by
Helmers and Huskova (1994) are also M,,-estimates. O

Now suppose we have multivariate observations. Then there are several
reasonable definitions of “median”. The reader may consult the excellent
article of Small (1990) for an introduction to the various notions of me-
dian/location for multivariate observations. We shall discuss some of these

which fit into our framework.

Example 2.7(L;-median): Suppose Y = (Y71,...,Yy) is a d > 2 dimensional

random vector with corresponding probability distribution P. Let
d ,11/2 d ,
F(x,0) = [Z(mk — 0)) } - [Z xk] ‘ (2.13)
k=1 k=1

Note that Q(0) = Ef(Y,0) is finite if E|Y| < oo, where |a is the Euclidean

norm of the vector a. It can be shown that if P does not put all its mass on



Converity 39

a hyperplane (that is, if ]P’[Z?Zl C; Y, = C] # 1 for any choice of real num-
bers (C,C4,...Cy)), then Q(6) is minimized at a unique 0y (see Kemperman
(1987)). This 6y is called the Li-median. The corresponding M-estimator
is called the sample Li-median. It is unique if {Y7,...,Yy} do not lie on a
lower dimensional hyperplane. If d = 1, the Li;-median reduces to the usual
median discussed in Example 2.3.

Later in Chapter 5 we illustrate the L;-median with a real data appli-
cation. The R package for this book, called UStatBookABSC also contains a

function to obtain the Li-median on general datasets. O

Example 2.8 (0Oja-median): This multivariate median was introduced by Oja
(1983). For any (d + 1) points x1,23,...,24:1 € RY for d > 2, the sim-

plex formed by them is the smallest convex set containing these points. Let

A(z1,...,24,24+1) denote the absolute volume of this simplex. Let
flz1,...,2q,0) = A(zq,...,2q,0) — A(z1,...,24,0). (2.14)
Suppose (Y1,...,Yy)T are d-dimensional i.i.d. random vectors with distribu-

tion function F. If E|Y;| < oo, then Q(0) = E f(Y1,...,Yqy,0) exists. It is
known that if F does not have all its mass on a lower dimensional hyperplane,
then there is a unique minimiser 6y of Q(6) (see Leén and Massé (1993)). It
is called the Oja-median. If Yi,...,Y, is an i.i.d. sample from F, then any
corresponding minimizer of @, () is the sample Oja-median. It is unique if

Y1,...,Y, do not lie on a lower dimensional hyperplane. O

2.2 Convexity

Many researchers have studied the asymptotic properties of M-estimators and
M,,-estimators. Early works on the asymptotic properties of Mj-estimators
and Ms-estimators are Huber (1967) and Maritz et al. (1977). Using condi-
tions similar to Huber (1967), Oja (1984) proved the consistency and asymp-
totic normality of M,,-estimators. His results apply to some of the estimators
that we have presented above.

We emphasize that all examples of f we have considered so far have a
common feature. They are all conver functions of . Statisticians prefer to
work with convex loss functions for various reasons. We shall make this blan-
ket assumption here. This does entail some loss of generality. But convexity

leads to a significant simplification in the study of M,,-estimators while at
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the same time, still encompassing a huge class of estimators.

Several works have assumed and exploited this convexity in similar con-
texts. Perhaps the earliest use of this convexity was by Heiler and Willers
(1988) in linear regression models. See also Hjort and Pollard (1993). For
m = 1, Haberman (1989) established the consistency and asymptotic nor-
mality of #,, and Niemiro (1992) established a Bahadur type representation
(linearization) 6,, = 6y + S, /n + R, where R, is of suitable order almost
surely and Sy, is the partial sum of a sequence of i.i.d. random variables. This
was extended by Bose (1998) to M,,-estimators. In the next sub-sections, we
shall exploit the convexity heavily and establish some large sample properties
of M,,-estimates.

Even though our setup covers a lot of interesting multivariate location
and scale estimators, we must emphasize that it does not cover several other
important estimators such as the medians of Liu (1990), Tukey (1975),
Rousseeuw (1985) and others, since the convexity condition is not satis-
fied. More general approaches in the absence of convexity are provided by
Jureckova (1977), Jureckova and Sen (1996) and Chatterjee and Bose (2005).
See also de la Pena and Giné (1999) page 279.

Now note that since f is convex in 0, it has a sub-gradient g(x, 6) (see
Rockafellar (1970), page 218). This sub-gradient has the property that for
all a, 5, z,

fla,a) + (B - a)Tg(z,a) < f(z,5). (2.15)

It can be checked that a vector v € R? is a sub-gradient of f(z,-) at a if and
only if h(z,7) > 0 (see Rockafellar (1970), page 214), where

h(z,7) = inf[f(z 8) = £(z,0) = (8= 0)T7). (216)

In the next sub-section we will show that we can always choose a measurable
version of the sub-gradient. If f is differentiable, then this sub-gradient is

simply the ordinary derivative. This sub-gradient will be crucial to us.

Example 2.9: (i) For the usual median, it can be checked that a sub-gradient

is given by

1 if 6>z
g@0) =2 0 if 9=ux (2.17)
-1 if f8<ax.



Measurability 41

(ii) For the Li-median, it can be checked that a sub-gradient is given by

0—x
——— if @

g(z,0) =1 |0—xz] ' 7o (2.18)
0 if 60=n=x.

2.3 Measurability

As Examples 2.3 and 2.6 showed, an M,,-estimator is not necessarily unique.
However, it can be shown by using the convexity assumption, that a mea-
surable minimizer can always be chosen. This can be done by the following
selection theorem and its corollary. The asymptotic results that we will
discuss later, hold for any measurable sequence of minimizers of {Q,(0)}.

At the heart of choosing a sequence of measurable minimizers is the idea
of measurable selections. This is a very interesting topic in mathematics and
there are many selection theorems in the literature. See for example Castaing
and Valadier (1977). T is said to be a multifunction if it assigns a subset T'(2)
of R? to each z. A function ¢ : Z — R? is said to be a selection of T if
o(z) € I'(z) for every z. If Z is a measurable space, then o is said to be a
measurable selection if z — o(z) is a measurable function.

We quote the following theorem from Castaing and Valadier (1977). For

its proof, see Theorem 3.6 and Proposition 3.11 in Section 3.2 there.

Theorem 2.1 (Castaing and Valadier (1977)). (Selection theorem) Let T
be a multifunction from a measurable space Z to a closed non-empty subset
of RY. Let 0 denote the empty set. If for each compact set K in RY, {z :

T(z) K # 0} is measurable, then T' admits a measurable selection.

Corollary 2.1. Let Z be a measurable space and ¢ : Z x R — R be a
function. Assume q(z,-) is continuous for every z and q(-,a) is measurable

for every a.. Then there is a measurable function a : Z — R% such that

a(z,0(2)) = inf g (2, 0),

whenever the inf is in the range of q(z,-), otherwise a(z) is taken to be some

fixed number.
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Proof of Corollary 2.1: To begin with, note that

inlf4 q(z,0) : Z — RU{—o0} (2.19)
(¢S

for any subset A of R%. Indeed, inf,.4 can be replaced by inf,cc, where C

is a countable dense subset of A, because ¢(z, ) is continuous. Let

['(2) ={B: q(z,p) = infq(z, ) }. (2:20)
We have
I'(z) #0 < iIalf q(z, ) = I;Pjnq(z, a) for some n. (2.21)

This is because the right side infimum is certainly in the range of ¢(z, ).
Thus,

Zo={z:T(z) # 0} (2.22)
is a measurable set. Define
a(z) = some constant, for all z ¢ Z (2.23)

and consider I' on Zy. Since I'(z) is always a closed subset of R?, it is
enough to observe that for each compact K,{z : T'(z) (K # 0} is equal to
{z :inf, ¢(z, ) = infuex q(2, @)} and, consequently, it is a measurable set.
The existence of a measurable selection a : Zg — R of T follows now
from Theorem 2.1. O

We now show how we can apply the above corollary to obtain a measurable
minimiser 6,, in (2.3). Suppose f(z1,...,Tm,0) is a function on Y™ x RY
which is measurable in (z1,...,2,,) and convex in 6. Note that convexity
automatically implies continuity in 6.

Suppose {Y1,...,Y,}, n > m are i.i.d. Y valued random variables. On
V" consider the function ¢(-, ) = Qn(«) and apply Corollary 2.1, to get a
random vector o, = a(Y7,...,Y,,) that satisfies (2.3). Take 6,, to be equal to
this «,,. Hence note that 0,, is measurable.

Now, having proved that there is at least one measurable 6,,, henceforth,

we always work with a measurable 6,,. The asymptotic properties of 6,, are
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intimately tied to the sub-gradient g of f. So we need to make sure the
existence of a measurable sub-gradient. This follows immediately from the

following Corollary.

Corollary 2.2. Let Z be a measurable space and f : Z x R* — R. Assume
that f(z,-) is convex for every z, and f(-, «) is measurable for every ac. Then
there is g : Z x RY — R? such that g(z,-) is a sub-gradient of f(z,-) for

every z and g(-, «) is measurable for every c.

Proof of Corollary 2.2: Fix a. Recall the criterion presented in (2.16)
for any vector to be a sub-gradient. Now, for every z,h(z,-) is a concave
and finite-valued function; hence it is continuous. For every ~, h(:,7) is
measurable, because the infimum can be taken over S in a countable dense
set, as in the preceding proof (see the arguments just before (2.20)).
Denoted by T'(z) the set of all sub-derivatives (i.e., the set of all sub-
gradients) of f(z,-) at a. Then I'(z) is a non-empty closed set. Now note
that for each compact K,{z : I'(2) N K # 0} and is measurable, for it is equal
to {z : sup,ck h(v,2) > 0}. Now we can apply the Selection Theorem 2.1 to
complete the proof. O

2.4 Strong consistency

Definition 2.3: A sequence of estimators {6,} of 6y is said to be strongly

consistent if 6,, =55 0y as n — oo.

Interestingly, all that is needed to guarantee strong consistency of an
M,,-estimator are the following minimal assumptions. They will be in force
throughout this chapter.

Q8] f(z1,...,2m,0) is measurable in (z1,...,2z,,) and convex in 6.
(IT)  Q(0) is finite for all 6.
(III) 6 exists and is unique.

Incidentally the parameter space need not always be the entire R? and
may be restricted to an appropriate convex subset. If (I) and (II) are satisfied
on such a subset, then all the results we give below remain valid if 6 is an

interior point of this subset.

Theorem 2.2. (Strong consistency) Under Assumptions I, II and III, for
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any sequence of measurable minimizers {0, } of Qn(6),
0, 500 as n — oo. (2.24)

This Theorem in particular implies that all the estimators introduced so
far in our examples are strongly consistent as soon as we make sure that the
minimal assumptions (IT)—(III) hold.

To prove the Theorem, we need the following Lemma.

Lemma 2.1. Suppose {h,} is a sequence of random convex functions on R?
which converges to a function h pointwise either almost surely or in probabil-
ity. Then this convergence is uniform on any compact set of R?, respectively

(a) almost surely, (b) in probability.

Proof of Lemma 2.1: Recall that convex functions converge pointwise ev-
erywhere if they converge pointwise on a dense set. Moreover the everywhere
convergence is uniform over compact sets. See Rockafellar (1970), Theorem
10.8 for additional details.

Let C be a countable dense set. To prove (a), it is just enough to observe
that with probability 1, convergence hy(a) — h(a) takes place for all a € C
and then apply the above criterion for convergence of convex functions.

To prove (b), consider an arbitrary sub-sequence of the sequence. For any
fixed o € C, we can select a further sub-sequence, along which h, () — h(«a)
holds almost surely. Now we can apply the Cantor diagonal method to get
hold of one single sub-sequence {h,,} which converges pointwise almost surely
on C. Now apply (a) to conclude that this sub-sequence converges almost
everywhere uniformly on compact sets. Since for any sub-sequence, we have
exhibited a further sub-sequence which converges uniformly, almost surely
on compact sets, the original sequence converges in probability uniformly on

compact sets. This completes the proof. O

Proof of Theorem 2.2: Note that by the SLLN for U-statistics, @, («) con-
verges to Q(«) for each « almost surely. By Lemma 2.1, this convergence is
uniform on any compact set almost surely.

Let B be a ball of arbitrary radius € around 6y. If 8, is not consistent, then
there is an € > 0 and a set S in the probability space such that P(S) > 0 and
for each sample point in S, there is a sub-sequence of 6, that lies outside this

ball. We assume without loss that for each point in this set, the convergence
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of @, to @ also holds. For a fixed sample point, we continue to denote such
a sequence by {n}.

Let 67 be the point of intersection of the line joining 0y and 6,, with the
ball B. Then for some sequence 0 < 7, < 1,

0 =vnbo + (1 — ) 0.
By convexity of @, and the fact that 6, is a minimizer of @,

< ’YnQn(QO) + (1 - ’Yn)Qn(QO)
= Qn(eo)

First note that the right side converges to Q(fy). Now, every 67 lies on the
compact set {6 : |0 — 0y| = e}. Hence there is a sub-sequence of {6} which
converges to, say #;. Since the convergence of @Q),, to @ is uniform on compact
sets, the left side of the above equation converges to Q(61). Hence, Q(6;1) <
Q(6p). This is a contradiction to the uniqueness of 0y since |0y — 01| = €. This

proves the Theorem. O

2.5 Weak representation, asymptotic normal-
ity
We now give an in probability representation (linearization) result for M,,-
estimators. This representation implies the asymptotic normality of M,,-
estimators.
Let g(z, 6) be a measurable sub-gradient of f. It is easy to see by using

(2.16), that under Assumption (II), the expectation of g is finite. Moreover,
the gradient vector VQ(6) of @ at 0 exists and

VQ6) = E[g(Yi, ..., Y, 0)] < co. (2.25)

Denote the matrix of second derivatives of @) at 6, whenever it exists, by

V2Q(6). So

Va0 = ((500,.)
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Let
H = V?Q() and (2.26)

—1
n
n = Yi,...,Yi ,6p). 2.2
U (m) X 200) (2.27)

<im<n

Let N be an appropriate neighborhood of 6y. We list two additional assump-

tions to derive a weak representation and asymptotic normality.

(IV)  Elg(Vi, ..., Y, 0)* <00V 0 € N.
(V) H =V2Q(f) exists and is positive definite.

The following Theorem is a consequence of the works of Haberman (1989)
and Niemiro (1992) for m = 1, and Bose (1998) for general m.

Theorem 2.3. Suppose Assumptions (I)-(V) hold. Then for any sequence

of measurable minimizers {0, },

(a) 0, —0p=—H'U, +op(n"1/?)
(b) n2(0,, — 6y) 2, N(O,m*?H*KH~') where

K= V(E(g(Yl, Yoy 00)|Ya, . ,Ym)>
is the dispersion matriz of the first projection of
g(Yl, e 7Ym7 90)

All M,,,-estimators given in Section 2.1 satisfy the conditions of Theorem
2.3 once we make reasonable assumptions on the underlying distribution.
Hence the asymptotic normality of a huge collection of estimators follows.
After we give the proof of the Theorem, we will illustrate its use through a

discussion of the appropriate assumptions required in some specific cases.
Proof of Theorem 2.3: Using (2.16), for all «, 5,

A (2.28)

f(xaa) + (B - Oé)Tg(’I',OL) < (xa
z, z, ). (2.29)

f
fla,B) + (a=B) gz, B) < f(



Weak representation, asymptotic normality 47

Hence,

(6 - a)Tg(va‘) § f(xvﬂ) - f(l‘,Oé) S (ﬂ - a)Tg(x,ﬂ) (230)

or

0< f(z,8) ~ fz,a) = (B~ ) g(z,a)
< (B—a)[g(z,B) — g(z,a)]. (2.31)

Notice that Q(0) = Ef(Y1,Y2,...,Y,,,0) is finite. Consequently, it follows
from (2.30) that Eg(Y1,Ys,...,Y:,,0) is finite for all §. Moreover, based on
(2.31), note that Eg(Y7,Ys,...,Y,,,0) serves as a subgradient of Q(6). Now,
when Q(0) is differentiable, it follows that

VQ(0) = Eg(Y1,Ya, ..., Y, 0).
For the proof of this Theorem as well for those Theorems given later,
assume without loss that 6y = 0 and Q(6p) = 0. As a consequence,

VQ(0) =Eg(Y1,Ys,..., Y, 0).

Let S = {s = (i1,42,...,im) : 1 <y <ig--- < ip <n}. Forany s € S, let
Ys =(Y;,,...,Y;, ) and
Yn,s = f(Ysan_l/za) - f(Y57 0) - n_1/2aTg(Ysa 0) (232)

Note that V,, = (;)_12865 Y,s is a U-statistic. From Exercise 25 of
Chapter 1, using (2.31), it follows that

V((:;) ZYn s) S % (Yn,s _EYn,s)]2
ses
gK%mﬁs
ﬁ t —1/2 .\ _ 2
< KB 0! {g(Vasn™20) = (Yo, 0)}]

Let Z be identically distributed as any Y;. Let

Zy = aT{g(Z,n_l/Qa) -9(Z,0)}. (2.33)
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Note that using (2.31), Z, > 0.
Further,

Zn—i—l - Zn
= a”[g(Z. (n+ 1)"2a) - 9(2,0)] — " [9(Z.0"a) - 9(2,0)

= a”[g(Z. (n+1)72a) - g(Z,n2a)|.
However, by using (2.31),
T
{(n +1)" Y20 — n_l/Qa)} [g(Z7 (n+1)"12a) — g(Z,n_l/Qa)} > 0.
Hence Z,1 — Z, < 0. That is, {Z,} is non-increasing.
Let imZ, = Z > 0. Thus E(Z,) | E(Z). Now,
EZ, =Ea" |g(Z,n""%a) — ¢(Z, 0)}
=Ealg(Z,n"1?a)
= aTVQ(nfl/Qa)
and since the second partial derivatives exist (at 0),

vVQ((n%a) = 0.

Hence EZ,, — 0. Hence Zy = 0 a.s. and as a consequence, EZ2 — 0. Noting
that E Y, s = Q(n~'/2a), it follows that for each fixed «,

n(f,b) h S (Yo — EYi.)

ses

= nQn(%) —nQn(0) —n'2a"TU, — nQ(%) (2.34)
P

0. (2.35)
On the other hand, by Assumption (V),
nQ(a/\/ﬁ) —a’Ha/2 for every a. (2.36)

Now, due to convexity, by Lemma 2.1, the convergences in (2.35) and (2.36)

are uniform on compact sets. Thus for every € > 0 and every M > 0, the
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inequality

sup |[nQn (a/\/ﬁ) —nQu(0) —aTn'?U, —aTHa/2| < ¢ (2.37)
lal<M

holds with probability at least (1 — €/2) for large n.

Define the quadratic form
B,(a) = a"n'?U, + oTHa/2. (2.38)
Its minimizer is o, = —H " 'n!/2U,, and by UCLT Theorem 1.1
o 25 N(0,m2H'KH™Y). (2.39)
The minimum value of the quadratic form is
B (an) = —n*2UTH 0 2UT /2. (2.40)
Further, n'/2U,, is bounded in probability. So we can select an M such that
P|| - H 'n'2U,| < M —1| >1—¢/2. (2.41)

The rest of the argument is on the intersection of the two events in (2.37)
and (2.41), and that has probability at least 1 — e.

Consider the convex function
An(@) = nQh, (a/\/ﬁ> — 10, (0). (2.42)
From (2.37),
Ap(a) < e—n'2UTH10Y2UT /2 = e 4+ B, (an). (2.43)

Now consider the value of A,, on the sphere {a : |a — v, | = T'e¢'/?} where

T will be chosen. Again by using (2.37), on this sphere, its value is at least
B, (a) —e. (2.44)

Comparing the two bounds in (2.43) and (2.44), and using the condition
that « lies on the sphere, it can be shown that the bound in (2.44) is always
strictly larger than the one in (2.43) once we choose T = 4[)\mm(H)]_1/2
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where \,,;n denotes the minimum eigenvalue.

On the other hand A,, has the minimizer n'/26,,. So, using the fact that
A, is convex, it follows that its minimizer satisfies |n'/26, — a,| < Te'/2.
Since this holds with probability at least (1 — €) where € is arbitrary, the
first part of the theorem is proved. The second part now follows from the

multivariate version of UCLT Theorem 1.1. O

Example 2.10(Mazimum likelihood estimator): Under suitable conditions,
the maximum likelihood estimator (m.l.e.) is weakly or strongly consistent
and asymptotically normal. See for example van der Vaart and Wellner (1996)
for sets of conditions under which this is true. If we are ready to assume that
the log-likelihood function is concave in the parameter, then these claims

follow from the above theorem. O

Example 2.11(Sample quantiles): Recall (2.8) from Example 2.3. If F is
continuous at a point 6, then Q'(6) = 2F(6) — 2p.
Further if F is differentiable at 6y with derivative f(6y), then

H=Q"(6h) =2 f(6) (>0 if f(6o)>0). (2.45)
Additionally,
9(x,0) = Lio>ay — Lio<oy — (20 — 1) = 2Z(g>0) — Zia=py — 2p.  (2.46)

Since g is bounded, Assumption (IV) is trivially satisfied. Thus all the con-
ditions (I)—(V) are satisfied.

Moreover
K =V[2L(p,>v,}] =4 V[I{v,<003] = 4p(1 — p). (2.47)
Hence if f(6p) > 0, then the sample p-th quantile 6,, = F,,!(p) satisfies
n'/2(6., — 60) = N(0, p(1 —p)(£*(60)) ). (2.48)

O

Incidentally, if the assumptions of Theorem 2.3 are not satisfied, the lim-
iting distribution of the M,,-estimate need not be normal. Smirnov (1949)
(translated in Smirnov (1952)) had studied the sample quantiles in such non-

regular situations in complete details, identifying the class of distributions
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possible. Jureckova (1983) considered general M-estimates in non-regular

situations. See also Bose and Chatterjee (2001a).

Example 2.12(U -quantiles, generalized order statistic): As in Example 2.11,

let h(xy,...,2Zm) be a symmetric kernel and let
flx1, .oy @m, 0) = |h(x1, ..., 2m) — 0] — |R(21, ..., 2m)| — (2p — 1)8.

Let Yi,...,Y, be ii.d. with distribution F. Let us use the notation K to
denote the c.d.f. of h(Y1,...,Y,,). Let 6 = K~1(p) be the (unique) p-th
quantile of K. If K is differentiable at 6y with a positive density k(6p), then
Assumption (V) holds with H = 2k(fy). The gradient vector is given by

9(2,0) = 2L (9> n(2)y — Lio=n(z)} — 2P (2.49)

This is bounded and hence (IV) holds trivially.
Let

-1
n
Ky (y) = ( > Z Lin(vi, ... Ve, )<u} (2.50)

1<i1 <+ <im<n

be the empirical distribution. The M,,-estimate is then K !(p), the pth-
quantile of K,,.
By application of Theorem 2.3,

_ _ D _ -1
w200 - 5 0) 2 V(00 (0 - a7 0) ) @5
Particular cases of this result are the following four estimates.

(i) Undvariate Hodges-Lehmann estimator of Hodges and Lehmann (1963)

where
h(Yi,.. . Ym) =m H (Y1 + -+ V). (2.52)
(ii) Dispersion estimator of Bickel and Lehmann (1979) where
B(Y,Y;) = |Y; - Y. (2.53)

(iii) Regression coefficient estimator introduced by Theil (see Hollander and
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Wolfe (1973) pages 205-206) where (X;, Y;) are bivariate i.i.d. random vari-

ables and
(X, Y3), (X;,Y5)) = (Yi —Y;)/(Xi — X;). (2.54)

(iv) The location estimate of Maritz et al. (1977) can also be treated in this
way. Let 8 be any fixed number between 0 and 1. Let

L(x1,22,0) = |Bx1 + (1 — B)ze — 0] + |fza+ (1 — Bz — 0. (2.55)

The minimizer of E [L(Y1,Y2,0) — L(Y1,Y2,0)] is a measure of location of
Y; (Maritz et al. (1977)) and its estimate is the median of 5Y; + (1 — B)Y;
i # 7 (8 = 1/2 yields the Hodges-Lehmann estimator of order 2). Conditions

similar to above guarantee asymptotic normality for this estimator. O

Example 2.13(L;-median, d > 2): The Li-median 6y was defined in Exam-
ple 2.7. If the dimension d = 1, then the L;-median coincides with the usual
median whose asymptotic normality was discussed in Example 2.11. So we
assume that d > 2. Recall that the gradient vector is
27T . £
la — x|
gz, a) = (2.56)

0 if a=u=.

Thus the sub-gradient g is a bounded function and hence Assumption (IV) is
satisfied. Moreover, g is differentiable, except when x = 6.

Assume that P(Y; = 0) = 0 for all §. Then the matrix of partial derivatives
of g is given by

1 B (0 —2)(0 — )T .
h(z,0) = T (I T ) , T #£0. (2.57)

Consider the inverse moment condition
E[|Y1 — 6o '] < o0. (2.58)
This implies

E|h(Y1,00)| < oo. (2.59)
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Recall that VQ(0) = E[g(Y1,0)]. By simple algebra, for |z| < |6],

l9(x,0) — g(,0)| < 20]/|x]. (2.60)
Similarly, for |z| > |6],
lg(x,0) — g(x,0) — h( 0)9|<5ﬂ—|—m (2.61)
g .fL‘, g x7 fL‘, — |CC|2 |£C|3 °

Using these two inequalities, and the inverse moment condition (2.58), it is

easy to check that, the matrix H exists and can be evaluated as

H = E[h(Y1,0,)]. (2.62)

O

Example 2.14(Oja-median): Recall the Oja median defined in Example 2.8.
Recall that A(zq, ..
{x1,...,24,0}. Let Y denote the d x d random matrix whose j-th column is

., 4, 0) is the absolute volume of the simplex formed by

Y; = (Y1j,...,Y4)T, 1 <j < d. That is,
Y11 Y12 e Yld
Yor Yoo ... Y
Y — 21 22 2d
Yo Ygo ... Yy

Let Y (i) be the d x d matrix obtained from Y by deleting its i-th row and
replacing it by a row of 1’s at the end. That is,

Y Yio Y14
Y51 Yoo Yoq
Yo Yi_ Yi_
Y (i) = 1,1 1,2 1d
Yiti1 Yigi2 Yit1,4
Ya Yao Yaq
1 1 1

Finally let M(0) be the (d+1)x (d+1) matrix obtained by augmenting the

column vector § = (61, ..

,04)T and a (d + 1) row vector of 1’s respectively
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to the first column and the last row of Y. That is,

Yiu Yi2 ... Yig 6
Yor Yo ... Yoq 0
M(0) =
Yoo Yo ... Yaa 04
1 1 .. 1 1

Let det(M) denote the determinant of the matrix M. It is easily seen that
f(Y1,...,Yy,0) = |det(M(0))| — |det(M(0))| = 67T — Z| — |Z| ~ (2.63)
where
T=(Ty,....Ta)" T; = (-1)""det(Y(i)) and Z = (—1)%det(Y). (2.64)
Hence @ is well defined if E |Y7| < co. Further, if g = (¢1,...,94), then
gi=T;-sign(0TT — Z), 1<i<d (2.65)

and has common features of the gradients of the sample mean (g(x) = x) as

well as of U-quantiles (g(x) = sign function), see Examples 2.12 and 2.13.

Assume that E|Y;]2 < co. This implies E|T'|?> < oo which in turn implies
E|g;|? < oo and thus Assumption (IV) is satisfied.

To guarantee Assumption (V), suppose F is the distribution function of
Yi1. First assume that F is continuous. Note that by arguments similar to

those given in Example 2.11,

Q(0) — Q(bp) = 2E [QTT Lig<orT) — 05T I{ZgagT}}
+ 2E [Z I{ZSOTT} - 7 I{ZSE’gT}] .

It easily follows that the i-th element of the gradient vector of Q(6) equals
Qi(0) = 2E[T; T(z<qrry). (2.66)

If further, F has a density, it follows that the derivative of Q;(0) with respect
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to 0; is given by
Qij(0) = 2E[T;T; f27(07T)) (2.67)

where fz7(-) denotes the conditional density of Z given T'. Thus

H= ((Qij(eo))). (2.68)

Clearly then Assumption (V) will be satisfied if we assume that, the density
of F exists and H defined above exists and is positive definite. This condition
is satisfied by many common distributions. O
Example 2.15: The pth-order Oja-median for 1 < p < 2 is defined by mini-

mizing
Q(e) =E Ap(}/la"'vydve)7AP(Y17"'aYdaO) (269)
where A is as in Example 2.8. The quantities g; and H are now given by

gi(0) = pT;|0TT — Z|P~Lsign (0'T — Z), i=1,...,d, (2.70)
H= ((hj)) —pp—1) ((E[nTjegT - Z|P—2])). (2.71)

Now it is easy to formulate conditions for the asymptotic normality of the

pth-order Oja-median. O

2.6 Rate of convergence

In the previous section, we have shown that the leading term of an M,,-
estimator is a U-statistic. Recall that in Chapter 1, we have proved some
rate of convergence results for U-statistics under additional conditions on the
kernel. Hence we take a cue from those results to demonstrate that when the
conditions of Section 2.5 are appropriately strengthened, then the results on
consistency and asymptotic normality can be sharpened considerably.

Let N be a neighborhood of §y and r > 1 and 0 < s < 1 be such that
the following assumptions hold. Further restrictions on r and s as needed are

given in the forthcoming theorems.

(VIa) E{exp(ﬂg(Yl, . .,Ym,9)|)] < oo Y6 e N and some t =t(6) > 0.
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(VIb) Elg(Y1,...,Ym,0)|" < 0oV 0 € N.

Theorem 2.4. Suppose Assumptions (I)-(V) hold.
(a) If Assumption (Vla) also holds, then for every § > 0, there exists an
a > 0 such that,

]P’[:lip |0 — 00| > 6} = O(exp(—an)). (2.72)

(b) If Assumption (VIb) also holds with some r > 1, then for every é > 0,

]P’[i;lp |0k — 00| > (5} =o(n'"") as n — oo. (2.73)

Theorem 2.4(a) implies that the rate of convergence is exponentially fast.
This in turn implies that 6,, — 6y completely. That is, for every § > 0,
> P[10, — o] > 6] < 0. (2.74)
n=1
Note that if » < 2, then Assumption (VIb) is weaker than Assumption (IV)
needed for the asymptotic normality. If » > 2, then Assumption (VIb) is
stronger than Assumption (IV) but weaker than Assumption (VIa), and still

implies complete convergence.

Incidentally, the last time that the estimator is e distance away from the
parameter is of interest as € approaches zero. See Bose and Chatterjee (2001b)

and the references there for some information on this problem.

To prove Theorem 2.4, we need a Lemma, but first a definition.

Definition 2.4: (J-triangulation.) Let A and B be sets in R?. We say that
B is a o-triangulation of Ag if every o € Ap is a convex combination, > \;f;
of points 8; € B such that |8; — a| < ¢ for all 4.

Recall that a real valued function h is said to be a Lipschitz function with

Lipschitz constant L if
h(a) ~ h(B)| < Lla— 8| forall a,B.

Lemma 2.2. Let A C Ag be conver sets in R? such that |a — B3| > 2§
whenever o € A and 5 ¢ Ag. Assume that B is a §-triangulation of Ag. If



Rate of convergence 57

h is a Lipschitz function on Ay with Lipschitz constant L, and Q) is a convex

function on Aqg then

sup |Q(B) — h(B)| < ¢ implies sup |Q(a) — h(a)| < 56L +3e.  (2.75)
BeB acA

Proof of Lemma 2.2: Consider an o € Ag and write it as a convex combi-
nation Y A\;B; with ; € B and |B8; — «| < ¢. Since Q(f;) < h(a) + 6L + &,

we have

Q(a) <> XQ(Bi) < h(a) + 0L +e. (2.76)

On the other hand, to each a € A there corresponds § € B such that |a—f| <
0 and thus a 4+ 2(8 — a) = v € Ag. From (2.76) it follows that

Qla) 22Q(8) = Q(7) > 2(h(B) — &) — (h(7) + 6L +¢)
> 2(h(a) — 0L — €) — (h(a) + 30L + ¢€)
= h(a) — 5L — 3e. (2.77)

The result now follows from (2.76) and (2.77). O

Proof of Theorem 2.4: We first prove part (b). Fix § > 0. Note that @ is
convex and hence is continuous. Further, it is also Lipschitz, with Lipschitz
constant L say, in a neighborhood of 0. Hence there exists an € > 0 such that
Q(a) > 2¢ for all |o| = 4.

Fix a. By Assumption (VIb) and Theorem 1.5,

P(sup Q@) = Q(0) = Q(a)] > €] = o(n' ™). (2.78)
k>n

Now choose € and § both positive such that 56L + 3¢ < €. Let A = {a:|a| <
6} and Ay = {a : |a] < 6+ 20}. Let B be a finite d-triangulation of Ay.

Note that such a triangulation exists. From (2.78),

P[sup sup |Qi(a) = Qu(0) = Q(a)| > ¢| =o(n'™").  (2.79)

k>n a€B

Since Q(+) is convex, using Lemma 2.2 (with h = Q) and (2.79),

P{sup sup |Qr() — Qr(0) — Q)| < 50L + 3¢ < e] =1-0o(n'""). (2.80)
k>n |a|<s
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Suppose that the event in (2.80) occurs. Using the fact that fi(a) = Qr(a) —
Q1 (0) is convex, fr(0) =0, fr(a) > € for all |a| = ¢ and Q(«) > 2¢ for all
|| = 0, we conclude that fi(a) attains its minimum on the set |a| < 4. This
proves part (b) of the Theorem.

To prove part (a), we follow the argument given in the proof of part (b)
but use Theorem 1.5(c) to obtain the required exponential rate. The rest of

the proof remains unchanged. We omit the details. O

Example 2.16 (U-quantiles and Li-median): Whenever the gradient is uni-
formly bounded, Assumption (VIa) is trivially satisfied. In particular, this
is the case for U-quantiles (Example 2.6) and the L;-median (Example 2.7),
and then Theorem 2.4(a) is applicable. O
Example 2.17(Oja-median): Recall the Oja-median defined in Example 2.8
and discussed further in Example 2.14. Note that the r-th moment of the
gradient g is finite if the 7th moment of T is finite which in turn is true if the

rth moment of Y7 is finite and then Theorem 2.4(b) is applicable. O

2.7 Strong representation theorem

We now proceed to strengthen the asymptotic normality Theorem 2.3 by im-
posing further assumptions. As before, let N be an appropriate neighborhood
of g while r > 1 and 0 < s < 1 are numbers. Suppose that as 6 — 0,

(VD) [VQ(6) — V2Q(00)(0 — 00)| = O(|0 — 6| #+)/2).

(VILL)  Elg(Yi, ..., Y, 0) = g(Y1,..., Y. 60)]> = O(10 — 6| +9)).

(IX) Elg(Y1,...,Ym,0)|" = O(1).
Theorem 2.5. Suppose Assumptions (I)-(V) and (VII)-(IX) hold for some
0<s<landr>8+4+d1+s))/(1—s). Then almost surely as n — oo,

n'2(0, — 0y) = —H 'n'2U, + O(n= )4 (log n)/?(loglog n)*+5)/4).
(2.81)

Theorem 2.5 holds for s = 1, with the interpretation that r = co and g is

bounded. This is of special interest and we state this separately.
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Theorem 2.6. Assume that g is bounded and Assumptions (I)-(V) and
(VII)-(VIII) hold with s = 1. Then almost surely as n — oo,

nt2(0, — 6y) = —H 'n'/20, + O(n"'/?(logn)'/?(loglogn)*/?).  (2.82)

The almost sure results obtained in Theorems 2.5 and 2.6 are by no means

exact. We shall discuss this issue in some details later.

To prove the Theorems, we need a Lemma. It is a refinement of Lemma 2.2

on convex functions to the gradient of convex functions.

Lemma 2.3. Let A C Ay be convex sets in R? such that |a — 8| > 2§
whenever a € A and 8 ¢ Ag. Assume that B is a 0-triangulation of Ag. Let
k be an R?* valued Lipschitz function on Ay with Lipschitz constant L. Let p

be a sub-gradient of some convex function on Ag. Then

sup |k(5) — p(B)| < € implies sup |k(a) — p(a)| < 40L + 2¢ (2.83)
BeB a€A

Proof of Lemma 2.3: Assume p(«) is a sub-gradient of the convex function
h(a). Let e € R%, |e| = 1. For each a € A, the point a + de can be written
as a convex combination > A;3; with 8; € B and |B; — a — de|] < 4. As a

consequence, |3; — a| < 2§. Now, using the definition of a subgradient,

ha+de) < STNA(B) < S M(h(@) + (B — a)Tp(8)).  (2.84)

Thus

56Tp(a)
h(a +de) — h(a) <) Ni(B; p(B:)

< Z)\ [ —a) Tk:( ) + 1B — ol [k(Bi) — k(a)]
+16: = allp(8:) — k(5:) |

< dek(a) + (28)°L + 25e.

The lemma follows easily from the above inequality. O

Proof of Theorem 2.5: Recall the notation S, s, Y, introduced at the start
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of the proof of Theorem 2.3. Define

-1
Gla) = VQla). Gul) = (1) L olriua) (2.85)
ses
and
Yo = g(Ys, %) — g(Y3,0). (2.86)
Note that
E(Yr,s) G(%x (2.87)
and
" Yo = Gn(—=) = Uy. (2.88)
(o) T
Let

I, = (loglogn)'/2.
By (VIII), for any M > 0,

sup  E|Y, .2 = O((n=21,)+). (2.89)
o <M,

By using Theorem 1.6 with v2 = C?n~(1+%)/2]1+s for some K and D,

sup P[n1/2|Gn( a )—U, G( )| > KCOn~(F9)/41(149)/2(16g n)1/2

la| <ML, vn Vvn

< Dn1—r/2C—r/an(1+s)/4l;r(1+s)/2 (10g n)r/2
= Dn' 70—/ (1og n)"/?(loglog n) "1 F)/4, (2.90)

This is the main probability inequality required to establish the Theorem.
The rest of the proof is similar to the proof of Theorem 2.4. The refinements
needed now are provided by the triangulation Lemma 2.3 and the LIL for U,
Theorem 1.4.

Assumption (VII) implies that for each M > 0,

sup |Ha— nl/ZG(&) = O(n~ )/ (loglog n)B+2)/4), (2.91)
o <ML, vn

and so the inequality (2.90), continues to hold when we replace n'/ 2G(%)
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by HO in the left side of (2.90).

Let
€n = n~ (/4 (AF9) /2160 1) 1/2, (2.92)

Consider a 6, = n~1+9)/4(logn)!/? triangulation of the ball B = {« : |a| <
MI,,+1}. We can select such a triangulation consisting of O(n?(1+5)/4) points.
From the probability inequality above it follows that

|n1/2Gn(%) —n!/2U, — Ha| < KCe, (2.93)

holds simultaneously for all « belonging to the triangulation with probability
1 — O(nd(+9)/4+1=r(1=9)/4(1og n)"/2). Now we use Lemma 2.3 to extend this

inequality to all points « in the ball. Letting K3 = KC(2|H|+ 1), we obtain

IP’[ sup n1/2|Gn(&) —U, —n"Y?Ha| > K¢, (2.94)

|| <M, Vn
_ O(nd(1+s)/4+1—r(1—s)/4(log n)7'/2). (2.95)

Since r > [8 4+ d(1+ 5)]/(1 — ), the right side is summable and hence we can

apply the Borel-Cantelli Lemma to conclude that almost surely, for large n,

sup |n1/2Gn(

" %) —n'?U, — Ha| < Kie,. (2.96)
al<Ml,

By the LIL for U-statistics given in Theorem 1.4, n'/2U,,I-! is bounded

almost surely as n — oo. Hence we can choose M so that
n'2H'U,| < Ml, — 1

almost surely for large n. Now consider the convex function n@, (nil/ 2a) —
n@Qy(0) on the sphere

S={a:|a+ H_lnl/QUn\ = Kaen}
where Ko = 2K, [inf|¢— el He]™!. Clearly using (2.96),

TG, (~H U, + Kyene) > €T HeKyep, — Kie, > K€, > 0,
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and so the radial directional derivatives of the function are positive. This

shows that the minimiser n'/26,, of the function must lie within the sphere
[n'/%0, + H 'n/?U,| < Kae, (2.97)
with probability one for large n, proving Theorem 2.5. O

Proof of Theorem 2.6: Let v,, and X, be as in the proof of Theorem 2.5.
Let U,, be the U-statistic with kernel X, —EX,,s which is now bounded since
g is bounded. By arguments similar to those given in the proof of Theorem 1.6
for the kernel h,,1,

P[|n1/2Un| > v, (log n)l/Q} < exp{—Kt(logn)'/? + t*n/k}, (2.98)

provided t < n~'/2kv,,/2m,,, where k = [n/m] and m,, is bounded by Cq

1/2 it easily follows that the right side of the above

say. Letting ¢t = K (logn)
inequality is bounded by exp(—Cn) for some c¢. The rest of the proof is same

as the proof of Theorem 2.5. O

Example 2.18 (U -quantiles): These were defined in Example 2.6. Choudhury
and Serfling (1988) proved a representation for them by using the approach of
Bahadur (1966). Such a result now follows directly from Theorem 2.6. Notice
that the sub-gradient vector given in Example 2.12 is bounded. Additionally,
suppose that

(VIII) K has a density k which is continuous around 6.
It may then be easily checked that

Elg(x,0) — g(x,00)* < 4|K(0) — K(6o)| = O(|¢ — bo]). (2.99)

Thus (VIII) holds with s = 0.
It is also easily checked (see Example 2.12) that

VQ(0) = Eg(Y1,0) = 2K(6) — 2p. (2.100)

Assume that
(VII) K(0) —K(60) — (0 — 00)k(6o) = O(|0 — 6o]2) as 6 — 6.
Then Assumption (VII) holds with s = 0.
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It is easy to check that this implies Q(6) is twice differentiable at 6 = 6,
with H = V2Q(fy) = 2k(0o). Thus, under Assumptions (VII) and (VIII),
Theorem 2.6 holds for U-quantiles. The same arguments also show that the
location measure of Maritz et al. (1977) also satisfies Theorem 2.6 under

conditions similar to above.

Example 2.19(0Oja-median): Recall the notation of Examples 2.8 and 2.14.
The i-th element of the gradient vector of f is given by g¢; = T}-sign(07T—2),
i=1,...,d.

Assumption (VIII) is satisfied if

E||Y]? Liorr<z<orry T Liorr<z<orry| = O(10 — Bl **). (2.101)

If F has a density then so does the conditional distribution of Z given T.
By conditioning on 7" and from the experience of the univariate median, it is
easy to see that Assumption (VIII) holds with s = 0 if this conditional density
is bounded uniformly in 67T for # in a neighborhood of 6y and E|T|? < co.
For the case d = 1, this is exactly Assumption (VIII)" in Example 2.3.

To guarantee Assumption (VII), recall that if F' has a density, derivative
Qi; of Q;(6) with respect to #; and the matrix H are given by

Qi;(0) = 2K {T,-ijm(oTT)} and H = ((Qij(ao))) (2.102)

where fz7(-) denotes the conditional density of Z given T'. Hence Assump-

tion (VII) will be satisfied if we assume that for each 4, as 6 — 6y,

B [[Vi{F 22 (07T) — F22(65T) — 20 6 T)(0 - 00))T} ]
= 0(|0 — | B+9)/2). (2.103)

This condition is satisfied by many common densities. The other required
Assumption (IX) is satisfied by direct moment conditions on T" or Y.
By a similar approach, it is easy to formulate conditions under which
Theorem 2.6 holds for pth-order Oja-median for 1 < p < 2.
O

Example 2.20(L;-median, mth-order Hodges-Lehmann estimate and geo-
metric quantiles in dimension d > 2): Suppose Y, Y1,Ys,... Y, are i.id. d

dimensional random variables.
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(i) (Li-median). Since results for the univariate median (and quantiles) are
very well known (see for example Bahadur (1966), Kiefer (1967)), we confine

our attention to the case d > 2.

Proposition 2.1. Suppose 0y is unique. If for some 0 < s <1,
E[|Y; — 6|~ G+9/?] < o0, (2.104)

then according as s < 1 or s = 1, the representation of Theorem 2.5 or 2.6
holds for the Li-median with U, = n~" Z?Zl(Yi —00)/|Y:— 00| and H defined

in Example 2.13 earlier.

To establish the proposition, we verify the appropriate Assumptions. Re-
call the gradient vector given in Example 2.13 which is bounded. Hence As-
sumptions (I)~(V) and (IX) are trivially satisfied. Let F be the distribution
of Y7.

To verify Assumption (VIII), without loss of generality assume that 6, = 0.
Noting that g is bounded by 1 and |g(z,0) — g(x,0)| < 2/|0|/|x|, we have

Elg(Y1,0) — (¥, 0| < 4/6] /

x| " 2dF (z dF(z
o <>+/ (2)

=] <0

< 40"+ / 2]~ 0+) dF (z)
|z|>16]

o [ el ap(a)
=] <]

< 4|91 E(ly2 |70,

The moment assumption (2.104) assures that Assumption (VIII) is satisfied
since (1 +s) < (34 s)/2. Recall the function h(x,0) and H defined in
Example 2.13. Note that under our assumptions H is positive definite. By
using arguments similar to those given in Example 2.13, it is easily seen that
for [z] < |0,

lg(z,0) — g(x,0) — h(z,0)0] < 4[6]/]x|. (2.105)

Similarly, for |z| > |6|,

lg(x,0) — g(x,0) — h(x,0)0] < 6|Z||Z. (2.106)
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Using these two inequalities, and taking expectation,
IVQ(0) —VQ(0) — HO| < I, + I, (2.107)
where

I, < 46| x| LdF (z) < 2|0|<3+S>/2/ 2|~ CF)/2qF (z)  (2.108)
jz[<|0] |z|<]6]

and using the fact that 0 < s <1,

I, < 6|9|2/ |z|~2dF(2) < 6|9\(3+s)/2/ || =G+ 2aqF (). (2.109)
|z[>16] ||>|6]

The inverse moment condition (2.104) assures that Assumption (VII) holds

with V2Q(6) = H. Thus we have verified all the conditions needed and the

proposition is proved. O

Let us investigate the nature of the inverse moment condition (2.104). If Y3
has a density f bounded on every compact subset of R? then E[|Y; —0] %] < oo
if d > 3 and E[|Y; -0~ +9)] < oo forany 0 < s < 1ifd = 2, and Theorem 2.5
is applicable. However, this boundedness or even the existence of a density
as such is not needed if d > 2. This is in marked contrast with the situation
for d = 1 where the existence of the density is required since it appears in
the leading term of the representation. For most common distributions, the
representation holds with s = 1 from dimension d > 3, and with some s < 1
for dimension d = 2. The weakest representation corresponds to s = 0 and
gives a remainder O(n~'/*(logn)'/?(loglogn)'/*) if E[|Y; — 0]73/?] < cc.

The strongest representation corresponds to s = 1 and gives a remainder
O(n='2%(logn)'/?(loglogn)*/?) if E[|Y; — 0]7?] < occ.

The moment condition (2.104) forces F to necessarily assign zero mass at
the median. Curiously, if F assigns zero mass to an entire neighborhood of
the median, then the moment condition is automatically satisfied.

Now assume that the Li-median is zero and Y is dominated in a neighbor-
hood of zero by a variable Z which has a radially symmetric density f(|z|).
Transforming to polar coordinates, the moment condition is satisfied if the
integral of g(r) = r~(+)/2+d=1 £(1) is finite. If d = 2 and f is bounded in a
neighborhood of zero, then the integral is finite for all s < 1. If f(r) = O(r=#),
(8 > 0), then the integral is finite if s < 2d — 3 — 23. In particular, if f is
bounded (8 = 0), then any s < 1 is feasible for d =2 and s = 1 for d = 3.
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(ii) (Hodges-Lehmann estimate) The above arguments also show that if the
moment condition is changed to E[jm ™ (Y1 + -+ + Y;,) — 90|_(3+S)/2] < 00,
Proposition 2.1 holds for the Hodges-Lehmann estimator with

o= (TD_ 2 gm™ (Vi +---+Y3,), 00)).  (2.110)

1<i1<i2<...<itm<n

(iii) (Geometric quantiles) For any w such that |u| < 1, the u-th geometric
quantile of Chaudhuri (1996) is defined by taking (0, x) = |z — 0| —|z| —uT0.
Note that w = 0 corresponds to the Li-median. The arguments given in the
proof of Proposition 2.1 remain valid and the representation of Theorem 2.5
or 2.6 hold for these estimates. One can also define the Hodges-Lehmann

version of these quantiles and the representations would still hold. O

2.7.1 Comments on the exact rate

The above results are quite strong even though there is scope for further
improvement from the experience of the univariate case (see Kiefer (1967)).
Unlike the case for d = 1, the boundedness or even the existence of a density
as such is not needed if d > 2. Obtaining the exact order is a delicate
and hard problem. The higher order asymptotic properties of the sample
median for d = 1 was extensively studied with suitable conditions on the
density by Bahadur (1966) and Kiefer (1967) via the fluctuations of the sample
distribution function which puts mass n~! at the sample values.

This approach has been used by several authors in other similar situations.
For example, a representation for U-quantiles was proved by Choudhury and
Serfling (1988) by studying the fluctuations of the distribution function which
puts equal mass at all the (:1) points A(Y;,,...,Y; ), 1 <3 <ip < ... <
im < n. Chaudhuri (1992) proved a representation for the Li-median and its
Hodges-Lehmann version in higher dimensions by the same approach.

We note here that the theory of empirical processes serves as a very valu-
able tool in the study of properties of estimators of the type studied in this
chapter. For instance, Arcones (1996) derived some ezact almost sure rates
for U-quantiles under certain “local variance conditions” by using empirical
processes. See also Arcones et al. (1994). In particular the asympototic nor-
mality of the Oja-median and the Li-median were obtained by this approach.

In a similar vein, Sherman (1994) derived maximal inequalities for degenerate
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U-processes of order k, k > 1. These inequalities can be used to determine the
limiting distribution of estimators that optimize criterion functions having U-
process structure. However, we did not pursue empirical process arguments
here, since that would require considerable additional technical developments.

Generally speaking, the exact rate depends on the nature of the function
f. See Arcones and Mason (1997) for some refined almost sure results in
general M-estimation problems. As an example, consider the Li-median
when d = 2. If the density of the observations exists in a neighborhood of
the median, is continuous at the median and E ¢(Y7,6) has a second order
expansion at the median, then the ezact almost sure order of the remainder
is O(n='/2(logn)'/?(loglogn)).

2.8 Exercises

1. Show that (2.8) is minimized at § = F~!(p) and is unique if F is strictly
increasing at F~!(p). Find out all the minimizers if F is not strictly

increasing at F~1(p).
2. List the properties of the various medians given in Small (1990).

3. Convince yourself of the uniqueness claim for the L;-median made in

Example 2.7.

4. Convince yourself of the uniqueness claim for the Oja-median made in

Example 2.8.

5. Show that under Assumption (II), the expectation of g is finite.
Hint: use (2.15).

6. Show that under Assumption (II), the gradient vector VQ(6) of Q at 6

exists and

VQ() =E[g(Yi,...,Yn,0)] < . (2.111)
7. Argue, how, in the proof of Theorem 2.3, we can without loss of gener-
ality, assume 6y = 0 and Q(6y) = 0.

8. Refer to (2.43) and (2.44). Show that B,(ay) — € > A,(ay,) for all
ac{a:|a—ay| = 2[Nmin(H)] 712672}
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10.

11.

12.

13.

14.

15.
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. Verify that Theorem 2.3 holds for Example 2.12(iv).

For the L; median given in Example 2.9(ii), check that the gradient
vector is indeed given by (2.56).

Show that (2.58) implies (2.59).
Verify that (2.62) holds.
Verify the calculations for the Oja median given in Example 2.14.

Formulate conditions for the asymptotic normality of the pth-order Oja-

median.

Under suitable assumptions, state and prove an asymptotic bivariate

normality theorem for the sample mean and the sample median.
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Chapter 3

Introduction to resampling

3.1 Introduction

In the previous two chapters we have seen many examples of statistical pa-
rameters and their estimates. In general suppose there is a parameter of
interest 6 and observable data Y = (Y1,...,Y,). The steps for statistical

inference can be divided into three broad issues.
(I) How do we estimate 6 from the data Y?

(I1) Given an estimator 8, of # (that is, a function of Y) how good is this

estimator?

(IIT) How do we obtain confidence sets, test hypothesis and settle other such

questions of inference about 67

Question (I) on estimating 6 from Y is fundamental to statistics and
new ideas of estimation emerge as new problems appear across the statistical
horizon. In the previous chapters we have dealt with this question for some
classes of parameters.

The next two questions are equally important. A traditional way to answer
(IT) is to report the variance or the mean squared error of 6, which are
functions of the distribution of 6,,. The answer to the last question is also
typically based on the probability distribution of én, that is, its sampling
distribution.

Most often, computation of the exact sampling distribution of 0,, or of the
exact variance of f,, are intractable problems. Only in very limited number
© Springer Nature Singapore Pte Ltd. 2018 and Hindustan Book Agency 2018 69
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of situations is it feasible to compute the exact sampling distribution or the

exact variance of an estimator.

One such situation is where the data is n i.i.d. observations Y7, ..., Y,, from
N(8,0?), and the estimator for § is the sample mean 6, = n~* 3" | V;. If o2
is known, then 6, ~ N(0,n '0?). When o2 is unknown, an Ms-estimator,

as seen in Chapter 2 is given by

n

o= (-1 (Y - 6,)%
i=1
Using considerable ingenuity, W. S. Gossett, who wrote under the pen name
Student, obtained the ezact sampling distribution of T, = n*/2(0,,— ) /& (see
Student (1908)). This distribution is now known as Student’s ¢-distribution

with (n — 1) degrees of freedom.

If the variables are not i.i.d. normal, the above result does not hold. More
importantly, it is typically impossible to find a closed form formula for the
distribution of T,,. While it is possible to obtain the sampling distribution of
many other statistics, there is no general solution. In particular, the sampling
distribution of the U-statistics and the M,,-estimates that we discussed in

Chapters 1 and 2 are completely intractable in general.

Nevertheless, asymptotic solutions are available. It is often possible to
suitably center and scale the estimator 0,,, which then converges in distribu-
tion. In Chapters 1 and 2 we have seen numerous instances of this where

convergence happens to the normal distribution.

We have also seen in Chapter 2 how asymptotic normality was established
by a weak representation result, so that the leading term of the centered
statistic is a sum of i.i.d. variables and thus the usual CLT can be applied.
This linearization was achieved by expending considerable technical effort.

There still remains two noteworthy issues.

First, such a linearization may not be easily available for many estimates

and the limit distribution need not be normal. Second, even if

A D
an (0, —0) — N(0,V)
for some V > 0 and some sequence a,, — 00, the asymptotic variance V is
unknown and may not even have a closed form expression. In many situations,

estimation of V is very hard. Example 3.2 below on the use of the sample
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median as an estimator of the population median is one such case, since the
asymptotic variance depends on the true probability density value at the
unknown true population median.

This is where resampling comes in. It attempts to replace analytic deriva-
tions with the force of computations. We will introduce some of the popular
resampling techniques and their properties in Section 3.5 below, but before
that, in Section 3.2 we set the stage with three classical examples of problems
where we may study statistical inference using the (¢) finite sample exact
distribution approach if available, (i¢) asymptotics-driven approach, and (ii7)
resampling-based approach. Our discussion on the basic ideas of resampling
are centered around these three examples. In Section 3.3 we define the notion
of consistency of resampling plans in estimating the variance and the entire
sampling distribution.

Then we introduce the quick and easy resampling technique, jackknife,
which is aimed primarily at estimating the bias and variance of a statistic.
The bootstrap is introduced in the context of estimating the sampling proper-
ties of the sample mean in Section 3.4.1. We also introduce the Singh Property
which shows in what sense and how the bootstrap can produce better esti-
mates than an asymptotics-based method. This is followed with a discussion
on resampling for the sample median in Section 3.4.3. After some discussion
on the principles and features of resampling in general in Section 3.3.2, we
present in Section 3.5 several resampling methods that have been developed
for use in linear regression. In Chapter 4 we will focus on resampling for

U-statistics and M,,-estimates.

3.2 Three standard examples

In the last two chapters we have seen that a host of estimators may be lin-
earized with a sample mean type leading term. The sample mean is the sim-
plest smooth statistic. Our first example records the asymptotic normality
of the mean and introduces the important idea of Studentization. Generally
speaking, resampling techniques work best for smooth functions of the sample
mean after an appropriate Studentization.

In Chapter 2 we dealt with M,,-estimators. One of the simplest non-
smooth M-estimator is the sample median. This is our second benchmark

example. Some resampling plans are not suited for such non-smooth situa-
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tions.

Resampling techniques prove their worth more when we have non-i.i.d.
data since calculation of properties of sampling distributions become more
complicated as we move away from the i.i.d. structure. The simplest example
of a non-i.i.d. model is the linear regression and that is our third bench-
mark example. We shall see later that there are many eminently reasonable

resampling techniques available for such non-i.i.d. models.

Example 3.1(The mean): Suppose Y;’s are i.i.d. according to some distribu-
tion F on the real line with unknown mean # and unknown variance ¢2; the
parameter of interest is 6. Consider the estimator 6, = >oi, Y:/n. Define
Zn = n/%(0, — 0), and let Ly, denote its probability distribution function.
The CLT says that

Lz, 25 N(0,0%). (3.1)

If 02 is known, this asymptotic Normal limit distribution allows us to make
(asymptotically valid) inferences about 6, for example, perform hypothesis
tests on, or obtain a confidence interval for, . We will refer to statistics like
Z,, that are centered, and scaled by constants like n!/2 that do not depend
on the data, as normalized 0,,.

If 02 is unknown, then an Ms-estimator for it is given by

e (n71)*1i(1@f§n)2.
i=1

Now instead of the normalized statistic Z,,, we may use the Studentized statis-
tic

T, =n'?, —0)/5.
Let L7, denote the probability distribution function of T,,. If F is N(6,0?),

then Lr, is the Student’s ¢-distribution with (n — 1) degrees of freedom. In
general, if F has finite positive variance, then

Ly, 25 N(0,1).

This asymptotic distribution is free of parameters, and hence is obviously
suitable for inference on 6.
The notable features here are (i) the centering, (i7) estimate of the asymp-

totic variance, (ii4) Studentization and (iv) asymptotic normality. We shall
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see later that even in this basic case, appropriate resampling techniques can
assure better accuracy than offered by the normal approximation. O
Example 3.2(The median): Suppose the data is as in Example 3.1. However,
the parameter of interest is now the median £ € R. Recall that for any

distribution F, and for any « € (0, 1), the a-th quantile of F is defined as
F~!(a) = inf R:F(z) > a}.
(c) inf {z e (z) > a}

In particular, £ = F~1(1/2), is the median of F.

Now suppose that F has a density f. Recall that F,, is the e.c.d.f. which
assigns mass n~! at each Y;,1 < i < n. Let the sample median, &, = F;;*(0.5)
be the estimator of . We have seen in Chapter 2 that if f(£) > 0, then

ni2(E, —€) — N(o, (4f2(§))_1). (3.2)

In order to use this result, an estimate of f(§) is required. Note that this
is a non-trivial problem since the density f is unknown and that forces us
to enter the realm of density estimation. This estimation also adds an extra
error when using the asymptotic normal approximation (3.2) for inference.
We shall see later that when we use an appropriate resampling technique,
this additional estimation step is completely avoided. O
Example 3.3(Simple linear regression): Suppose the data is {(Y;, x;),i =
1,...,n}, where z1,...,x, is a sequence of known constants. Consider the

simple linear regression model
Yi = p1+ Bazi + e (3.3)

We assume that the error or noise terms ey,...,e, are i.i.d. from some dis-
tribution F, with Ee; = 0, and Ve; = 02 < oo.

The random variable Y; is the i-th response, while x; is often called the
i-th covariate. In the above, we considered the case where the z;’s are non-
random, but random variables may also be used as covariates with minor
differences in technical conditions that we discuss later. The above simple
linear regression has one slope parameter #5 and the intercept parameter [,
and is a special case of the multiple linear regression, where several covariates
with their own slope parameters may be considered.

It is convenient to express the multiple regression model in a linear alge-

braic notation. We establish some convenient notations first.
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Suppose a’ denotes the transpose of the (vector or matrix) a, and let
Y = (Y1,...,Y,)T € R™ denote the vector of responses, X € R™ x R? denote
the matrix of covariates whose i-th row is the vector x; = (241, Zi2, . . ., Tip),
the regression coefficients are 8 = (81, ..., ,)T, and the noise vector is e =
(e1,...,e,)T € R™. In this notation, the multiple linear regression model is

given by

Y=XB+e. (3.4)
The simple linear regression (3.3) can be seen as a special case of (3.4), with
the choice of p =2, z;1 =1 and xjo = x; fori=1,...,n.

If F is the Normal distribution, i.c., if e; ..., e, are i.i.d. N (O7 02), then
we have the Gauss-Markov model. This is the most well-studied model for
linear regression, and exact inference is tractable in this case. For example,
if 8 = (B1,...,8,)T € RP is the primary parameter of interest, it can be
estimated by the mazimum likelihood method using the normality assumption,

and the sampling distribution of the resulting estimator can be described.

In the simple linear regression case, let

?:n_leQ, i:n_lzxi.
i=1 i=1
The mazimum likelihood estimate (m.l.e.) of B is then given by

1= }_/ - BQ'CE,
Y- DY)
Z?:l(xi —x)? .

The m.l.e. for the multiple linear regression coefficient is given by

o »
I\

B=(xTx)"'xTY. (3.5)
The exact distribution of ﬁ in the simple linear regression is given by

n n -1 ixf —i:ﬂ?i
B~N < gl ) o <n2xf — (le)2> i=1 i=1
2
N n
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For the multiple linear regression case, we have
B~ N (B2 (xTX)T).

The above exact distribution may be used for inference when o2 is known.
Even when it is not known, an exact distribution can be obtained, when we

use the estimate of o2 given in (3.6).

The exact distribution depends on the assumption that F = N(0,0?).
Even when this assumption is violated, the principle of least squared errors
yields the same estimators B as above, although the above exact distribution
is no longer valid. In this situation, we call B the least squares estimate
(Ls.e.). Of course the l.s.e. may not be optimal when F is not N(0,02), but
the issue of optimality under perfect distributional specification is moot when

the distribution is unknown, as is the case in most practical situations.

The vector of residuals from the above multiple linear regression model

fitting is defined as
r=Y - XA.

Note that the residual vector is a statistic as it depends on Y, X and B only,
and is thus a computable quantity. In particular, it is not the same as the
error e;, which is an unknown, unobservable random variable. An estimate

2

of the noise variance o~ is usually taken to be

n

ﬁz(n—p)_lzr?. (3.6)

i=1

Though the exact distribution of B given in (3.5) is intractable when F
is not Gaussian, we can establish asymptotic distribution results for B . We
describe only the case where the covariates are non-random, that is, the

matrix X is non-random.

Suppose that the errors ey, ..., e, are i.i.d. from some unknown distribu-
tion F with mean zero and finite variance o2, which is also unknown. We

assume that X is of full column rank, and that

n ! XTX - Vasn— oo (3.7)
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where V' is positive definite. Under these conditions we have that
n/2(3 - ) 25 N, (0, 02V*1). (3.8)

See for example, Freedman (1981) where (among other places) similar results
are presented and discussed. He also discussed the results for the case where

the covariates are random.

We may also obtain the CLT based approximation of the distribution L7,
of the Studentized statistic:

T, =6 (X"X)"*(8 - B), (3.9)
for which we have
L, 2 N, (0,1,). (3.10)

Variations of the technical conditions are also possible. For example, Shao

and Tu (1995) discuss the asymptotic normality of B using the conditions

-1
XTX — o0, and maxxiT(XTX) X; — 00 as n — 00,
K3

Ele; [>T < oo for some § > 0. (3.11)

Now consider another estimator 3 of B obtained by minimizing

(LAD)

Z|Yi —zi).
i=1

In the language of Chapter 1, this may be termed an M;j-estimate in a non-
i.i.d. situation. Among other places, asymptotics for this estimator may be
found in Pollard (1991).

Assume that the errors are i.i.d. from some distribution F with a median
zero, and a continuous positive density f(-) in a neighborhood of zero. Also
assume that n ™' X7X — V as n — oo where V is positive definite. Then

2£(0)(xTx)"? (B apy — B) 2 N(0,1,).

Resampling methods come to our crucial aid in such situations. Indeed we

will have a problem of plenty. Since the observables are not i.i.d., we shall see
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that there are several eminently reasonable ways of performing resampling in
this model, depending on the goal of the statistician and restrictions on the
model. Resampling methods in this simple non-i.i.d. model will serve as a
stepping stone to resampling in models that are more complicated and that

allow for dependence in the observables. O

To summarize, we need an estimate of the distribution of a normalized
or Studentized statistic, along with an estimate of the asymptotic variance
of the statistic. These in general shall depend on the parent distribution,
the sample size n and of course on the nature of the statistic. Even when
asymptotic normality has been proved, it is not so simple outside the realm
of cases like the sample mean of Example 3.1 or the l.s.e. of Example 3.3 to

handle the asymptotic variance. The case of B illustrates this point.

(LAD)

3.3 Resampling methods: the jackknife and
the bootstrap

Resampling techniques are computation oriented techniques for inference,
that often circumvent the issues related to the asymptotics discussed above.
In particular, they bypass the analytic derivations, both for asymptotic nor-
mality and for asymptotic variance. The important aspect of these tech-
niques is the repeated use of the original sample, by drawing sample-from-
the-sample, or resampling, often in novel ways. All these techniques broadly
fall under the umbrella of resampling techniques or resampling plans.

At the least, they offer approximations to the variance of a statistic. With
some resampling methods, we shall also be able to estimate “any” feature of
the distribution of a statistic, which in particular includes the variance and the
entire distribution. The added bonus is that some resample approximations,
in a technical sense to be made precise later, achieve more accuracy, than the
traditional normal approximation in a wide variety of situations. This is true
even in the simplest situation of the Studentized sample mean.

However, the applicability of any resampling scheme to a given problem
is not at all obvious. The fact that a resampling technique is feasible compu-
tationally does not of course imply that the resulting approximations would
be correct. We now define two notions of resampling consistency; the first
is applicable to estimation of the variance of a statistic and the second to

estimation of the entire sampling distribution of a statistic, T}, say.
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Definition 3.1(Variance consistency): A resampling variance estimator Vi,
is said to be consistent, for V(T,,) or for the asymptotic variance of T,, (say

v(Ty)), if, conditional on the data as n — oo,
Vo/V(T,) =1 or V,/v(T,)— 1 almost surely or in probability.

If the above convergence does not hold, we say that the estimator is variance

inconsistent.

Definition 3.2 (Distributional consistency): Suppose L, is the distribution
of a normalized statistic or an appropriately Studentized statistic. Let L, be
its resample estimate. We say that this estimate is consistent if, conditional

on the data as n — oo,
Sup!ﬁn(:c) - L, (x)’ — 0, almost surely or in probability.

If the above convergence does not hold, we say that the estimator is distri-

butionally inconsistent.

Note that the quantity supan(x) — L, (z)| defines a distance metric
between the distributions ﬁn and L,, and we will use this metric several
times in this chapter.

Clearly, conditional on the data, V,, and L, are random objects, the ran-
domness coming from the resampling scheme used to derive the estimate.
There are myriad notions of such resampling estimates. We now proceed to

introduce some of the more important and basic resampling schemes.

3.3.1 Jackknife: bias and variance estimation

It stands to reason that the problem of estimating the bias and variance of
a statistic should be simpler than that of estimating its entire distribution.
The jackknife was introduced to do precisely this. In this section, we present
the fundamentals of the jackknife procedure.

Suppose the data set is Y = (Y7,...,Y;_1,Y;,Y;11,...,Y,). Note that we
do not assume that Y; are necessarily i.i.d. Suppose the goal is to estimate the
bias and variance of an estimator T;, = T(Y) of some parameter §. Following
the initial ideas of Quenouille (1949), Tukey (1958) proposed the following
method, which he called the jackknife.
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Consider the data set Y(;) = (Y1,...,Y;_1,Yi41,...,Y,) obtained by
deleting the ¢-th data point Y; from Y. Let

T(,L) = T(Y(Z)), 1= 1,...,71.

It is implicitly assumed that the functional form of T}, is such that all the T;)’s
are well defined. Let us define 7 =n="1>" | T(i)- The jackknife estimator of
the bias ET,, — 0 is defined as

(n—1)(T —T,).
Using this, we may define the bias-reduced jackknife estimator of 8 as
T, =T, — {(n— 1)(T—Tn)} =T, — (n— 1T

=n ! Z(nTn — (n — 1)T(1))

i=1
Based on this, Tukey (1958) defined the pseudo-values as

T; =nT, — (Tl - 1)T(i)a

and conjectured that the collection of pseudo-values {T};} may be roughly
considered as independent copies of the random variable n'/2T,,. While we
now know that this conjecture is valid only in a limited number of problems,
it suggested an immediate estimator for V(T},), namely, n~! times the sample
variance of the pseudo-values. Thus, the delete-1 jackknife estimate of the

variance or the asymptotic variance of T}, is given by

n

v, :n*l(nq)*lZ(T} nlifj)2. (3.12)

i=1
An alternative expression for the same quantity is

n

U, =10y (1o - T)". (3.13)

i=1

Note that leaving aside the factor (n — 1), this may be considered to be
the variance of the empirical distribution of Ty, 1 < i < n. That is the

resampling randomness here.
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It is easily verified that if 7}, is the sample mean as in Example 3.1, then
the above estimator is the same as the traditional unbiased variance estimator

given in (1.4).

It was observed by Miller (1964) that the jackknife estimator V_ is con-
sistent when T;, is a smooth function of the observations. At the same time,

it performs poorly for non-smooth estimators such as the median.

Indeed, if T, is the sample median, V_, /v(T,,) converges in distribution to
(Y/2)? where Y is a chi-square random variable with two degrees of freedom
(see Efron (1982), Chapter 3), and so the jackknife estimator is variance

inconsistent.

Estimating the distribution of T,, is of course a more difficult problem.
Suppose the data Y7,...,Y, are i.i.d. with EY; = 6 and VY; = ¢2. Con-
sider the case when T,, = n~! Z?zl Y;, the sample mean. The empirical

distribution function of centered and scaled {T(;),i = 1,...,n}, given by

A

o1
Fi(z) =n ZI{M(%—TT»@}
=1

may be considered a potential estimator of the distribution of n!/ 2T, —
6), which we know converges to N(0,0?) using the central limit theorem.
However, Wu (1990) established that F; converges to N(0,0?) if and only if
the data, Y1,...,Y, are ii.d. N(#,0?). Hence the above delete-1 jackknife is

distributionally inconsistent.

Nevertheless, the situation can be salvaged. The delete-1 jackknife can
be extended in a straightforward way. We may delete d observations at a
time, 1 < d < n thus yielding the delete-d jackknife. It was shown by Wu
(1990) that the delete-d jackknife yields a consistent distribution estimate if
d/n remains bounded away from either zero or one and the statistic T, has

some reasonable regularity properties.

It will be seen later in Section 3.5 that the different delete-d jackknives are
special cases of a suite of resampling methods called the generalized bootstrap.
The consistency results for the various jackknives can be derived from the

properties of the generalized bootstrap.
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3.3.2 Bootstrap: bias, variance and distribution estima-

tion

Statistical thinking was revolutionized with the introduction of the bootstrap
by Efron (1979), who proposed this method in an attempt to understand the
jackknife better. Gradually it has spread roots and there are now myriad
variations of the original idea. In this section we present an overview of the
bootstrap methodology. In Section 3.4 we present details on its implementa-
tion for the sample mean and median, and then in Section 3.5 we discuss the
various ways in which the bootstrap may be applied in linear regression.
Suppose the parameter of interest is § = A(F), a functional of the unknown
distribution F from which the data Y7,...,Y, is a random sample. Let én =
A(F,,) be its estimator where F,, is the e.c.d.f., and let V(F,,) be an estimator
of the variance of §,. We are interested in estimating the distribution or

variance of the normalized or Studentized statistics
Zp =2 (A(F,) — A(F)), T, = [V(F,)] *(AF,) — A(F)).

Draw a simple random sample Yy, ..., Y, with replacement (SRSWR)
from the e.c.d.f. F,,. Let F _(z) be the e.c.d.f. based on {Y, i =1,...,n}:

n
F,,(x)=n""Y Ty, <u-
i=1
Let the bootstrap statistic corresponding to Z,, and T,, be respectively as

Zup =2 (A(F, ) = A(Fa)),

T = [V(E,)] " (A(E,,) - AF.)).

The bootstrap idea is to approximate the distribution of T,, (or Z,) by the
conditional distribution of Tp,, (or Z,,p). Conditional on the data {Y7,...,Y,},
the random component in Ty, (or Z,;) is induced only by the scheme of an
SRSWR from the data. The distribution function F,, is completely known
and hence so is the conditional distribution of Typ, (Znp). We use the notation
P., E,, V, to respectively denote probabilities, expectations and variances
of Thp (Znp) or any other statistic computed using a resample, conditional
on the given data Yi,...,Y,. Note that by SLLN, such probabilities and

moments may be approximated to arbitrary degree of accuracy by repeated
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Monte Carlo simulations.

The motivation behind this novel idea is that F,, is a close approximation
of F, and F

', relates to F,, in the same way that [F,, relates to F, so Ty, (Zns)

is a data-driven imitation of T;, (Z,,). It works when A(-) is a “nice” function
so that this closeness idea transfers to A(F, ), A(F,,) and A(F).

It is important to realize that the function F,, need not necessarily be the
empirical distribution or IF_, need not be generated the way described above—
any close approximation F,, of F, and some “empirical-from-F,” can replace
F,, and F . in the definition of T}, (Z,5). We shall see that this will result
in many different types of bootstrap, specially in dependent and/or non-i.i.d.
situations.

In practice, a resampling scheme is implemented by repeating a few steps
a (large) number of (say B) times. Note that these steps may or may not
involve a simple random sampling. For each iteration b € {1,2,..., B}, we
get a value 0, of én, and imitate the centering and scaling as earlier to get
Top (or Zyp). The e.c.d.f. of Tp1,...,T . is given by

? "nB

B

ZTnb (ﬂf) = B_l ZI{TanI}'
b=1

This is the bootstrap Monte Carlo approzimation of Lt , the distribution
function of T,,. We discuss the practical implementation of the bootstrap
Monte Carlo in Chapter 5.

Over the past three and a half decades a significant part of research on
bootstrap has concentrated on broadening the class of problems on which
bootstrap may be applied, and on establishing that by using bootstrap, better
approximations are obtainable than what are obtained using more traditional
asymptotic methods. Excellent review of the bootstrap, the jackknife and
other resampling plans are available in many references, including the books
by Efron and Tibshirani (1993); Hall (1992); Shao and Tu (1995); Davison
and Hinkley (1997). In Section 3.5 we discuss the linear regression model and
provide a first glimpse of the variety of resampling plans that are available.

Efron’s computational ideas received strong theoretical support soon after.
In Bickel and Freedman (1981) the distributional consistency of the bootstrap
was demonstrated for many statistical functionals. Further, in Singh (1981),
it was established that the bootstrap approximation is often better than the

classical asymptotic normal approximation, in a sense we make precise in
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Section 3.4.2.

Thus bootstrap was a breakthrough in two aspects:

(i) It is a computation based technique for obtaining the distribution and

other properties of a large class of statistics.

(#i) Tt often produces an estimate that is a better approximation than the

asymptotic normal approximation.

The exposition of Efron (1979) was of fundamental importance to statisti-
cians, since it elucidated how the bootstrap is a very powerful computational

tool to estimate sampling distributions in a wide array of problems.

Curiously, there have been interesting precursors of the bootstrap, and
Hall (2003) discusses some of this history. This development is tied to work
by statisticians in India, and is partially documented in Hubback (1946);
Mahalanobis (1940, 1944, 1945, 1946b,a).

3.4 Bootstrapping the mean and the median

3.4.1 Classical bootstrap for the mean

The data is Y = (Y3, ... ,Yn)T € R™ where Y7, ...,Y,, are i.i.d. distributed as
F with EY; = 6, VY; = 02. The parameter of interest is the mean #. Consider
the estimator 6, = > Y;/n. The traditional or classical Efron’s bootstrap,
often called the naive bootstrap, can be described as follows. Draw a SRSWR
Yib, ..., Y from the data. Let

Y, = (Ylb; ey an)T e R"

denote the resample vector. Note that each Y, can be any one of the original
Yy,...,Y, with a probability 1/n. So there may be repetitions in the Y}
series, and chances are high that not all of the original elements of Y will
show up in Y.

Clearly, conditional on the original data Y, the resample Y}, is random,
and if we repeat the SRSWR, we may obtain a completely different Y, re-

sample vector.
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Let us define
énb = ZYib/na and an = n1/2 (énb - én) 5
i=1

and let £z , be the distribution of Z,; given Y. This conditional distribution
is random but depends only on the sample Y. Hence it can be calculated
exactly when we consider all the n™ possible choices of the resample vector
Y. The bootstrap idea is to approximate the distribution of the normalized
Zn = n'/2(0,, — 0) by this conditional distribution. For use later on, we also
define the asymptotically pivotal random variable Z,, = n'/2(6,, — 0)/o, and

denote its exact finite sample distribution by £ .

Note that by the CLT, £z, converges to N(0,0?) and £ 7, converges to

the parameter-free distribution N(0,1) as n — oo. Further, Lz, is also

nb
the distribution of a standardized partial sum of (conditionally) i.i.d. random
variables. Hence it is not too hard to show that as n — oo, this also converges
(almost surely) to the N(0,02) distribution. One easy proof of this when the
third moment is finite follows from the Berry-Esseen bound given in the next

section. The fundamental bootstrap result is that,

sup|Lz,,(x) — Lz, ()| = 0, almost surely. (3.14)

Suppose that 2 is known. From the above result, either £z or the

b
CLT-based N(0, o2) distribution may be used as an approximation for the
unknown sampling distribution £z, for obtaining confidence intervals or con-
ducting hypothesis tests. Unfortunately, it turns out that the accuracy of the
approximation (3.14) is the same as that of the normal approximation (3.1).

Thus apparently no gain has been achieved.

In a vast number of practical problems and real data applications the

2 is unknown, and we now consider that case. In the classical

variance o
frequentist statistical approach, we may obtain a consistent estimator of o2,
say 62, and use it as a plug-in quantity for eventual inference. An unbiased

estimator of o2 is

n

62 = (-1 (Vi - 0,)%,

i=1

and in imitation of the asymptotically pivotal quantity Z, defined above, we
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now define the Studentized random variable
T, = n'/? (én - 9) /6.

This is also asymptotically pivotal, and we denote its distribution by Lr,.
Readers will easily recognize this as the t-statistic; and when Yi,... Y, are
iid. N(6,02%), we know that L7, is exactly Student’s t-distribution with

n — 1 degrees of freedom.

However, in a vast number of practical problems and real data applica-
tions, there is little reason to believe the data to be i.i.d. N(6,0%). Conse-

quently, we make use of the fact that
Lz, 25 N(0,1)

for inference. For example, a classical one-sided 1 — « confidence interval for
0 may be based on the random variable 7}, and the limit of L7, , and can thus
be

(—oo7 0, + n_l/Qéuzl_a), (3.15)
where z1_, is the (1 — a)-th quantile of the standard Normal distribution.

Instead of the standard Normal quantile, a t4r—,—1 is often used, which
makes little practical difference when n is large, yet accommodates the hope
of being ezact in case the data is i.i.d. N(6,0?). However, questions remain
about how accurate are intervals like (3.15). We will address these issues in

the next few pages.

In the bootstrap approach, we may directly estimate the variance of [
conditional on the data. A small computation yields that this bootstrap

variance estimator is n=162, where

which is the well-known non-parametric m.l.e. of ¢2. It is easy to see as
well that the bootstrap variance estimator is variance consistent according to
Definition 3.1.
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The corresponding bootstrap statistic is
T = n1/2 (énb - én) /&na

and we denote its distribution by £7,. A major discovery in the early days
of the bootstrap, which greatly contributed to the flourishing of this topic, is
that Lr,, can be a better approximation for £; compared to N (O, 1). This
in turn leads to the fact that a bootstrap-based one-sided (1 — ) confidence
interval for 6 can be orders of magnitude more accurate than (3.15). We
discuss these aspects in greater detail in Section 3.4.2.

We now briefly discuss the computation aspect of this approach. Note
that there are n™ possible values of Y. See Hall (1992), Appendix I for
details on distribution of possible repetitions of {Y;} in Y},. Hence finding
the exact conditional distribution of Z,; involves evaluating it for all these
values. This is computationally infeasible even when n is moderate, hence
a Monte Carlo scheme is regularly used. Suppose we repeat the process of
getting Yy, several times b = 1,2,..., B, and get énb and Z, for 1 < b < B.
Define the e.c.d.f. of these Z,1,..., 7, ,:

n

B
Ean(') =B7! ZI{anS'}' (316)
b=1

Note that this empirical distribution is easily computable, and it serves as an
estimate for the true bootstrap distribution of Z,;. How does it behave as
B — o? The answer is provided by the Glivenko-Cantelli lemma. Let F be
any distribution function and let F,, be the empirical distribution based on

i.i.d. observations from F. Then this lemma says that

sup |Fp(z) — F(z)| — 0 almost surely.

By an application of the Glivenko-Cantelli lemma (see Wasserman (2006),
page 14), for any fixed n,

Blim sup |Zan () — Lz, (x)] =0 almost surely.
—00

Thus, L z., can be used as an approximation to Lz ,, and consequently for

nb?

Lz, as well.

Indeed we can quantify how good this approximation is. This is based on
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a much stronger result than the Glivenko-Cantelli lemma. The Dwvoretzky-
Kiefer-Wolfowitz (DKW) inequality says that:

]P’[sup |Fn(z) —F(z)| > €| <2exp(—2ne?) for any € > 0. (3.17)

For a proof of this inequality, see Massart (1990).
Using this inequality, it can be shown that

sup|Lz, () — Lz, (x)] = Op(B~"/?), (conditional on) Y a.s. (3.18)

This quantifies how closely Ean approximates Lz ,. We may choose B as
large as it is computationally feasible or desirable. The choice of B in the

context of confidence intervals has been studied in detail in Hall (1986).

3.4.2 Consistency and Singh property

We continue our discussion on the sample mean 6, = Yo, Yi/n from Ex-
both converge to N (0, c?), while
Ly, Lr, and Lr,, all converge to the parameter-free N (0, 1) distribution. It

ample 3.1. As argued earlier, Lz, and Lz, ,
is not clear what is gained by using £z, rather than N(0,0?) as an estimate
of the distribution of Lz_, or by using Lr,, instead of N(0,1) or Lr, as an

estimate of L5 . To investigate this issue, we need to delve deeper.

Our starting point is the so-called Berry-Esseen bounds. Broadly speaking
a Berry-Esseen bound provides an upper bound for the error committed in
the normal approximation of the distribution of a statistic. We shall be
concerned with such bounds only for the normalized sample mean Z, and
the Studentized sample mean T,, defined above in Section 3.4.1.

Early versions of the Berry-Esseen bounds are available in Lyapunov
(1900, 1901); Berry (1941); Esseen (1942, 1945, 1956). The versions that
we use are by Korolev and Shevtsova (2010); Shevtsova (2014) for Z, and
Bentkus and Gotze (1996) for T, respectively. Let ®(-) denote the standard

normal distribution function.

Theorem 3.1. (a) (Esseen (1956); Shevtsova (2014)) Suppose Y1,...,Y,

are i.i.d. from some distribution F with zero mean and finite variance o®. Let
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us = E|Y1|2. Then for alln > 1 and some Cy € (0.40973,0.4756)

M3
< . .
< Cy 5 (3.19)

sup
T

P[im < ax\/ﬁ} — ®(z)
=1

(b) (Bentkus and Gétze (1996)) Suppose Yi,...,Y, are i.i.d. from a distri-
bution F with EY; =0, 0 < VY; = 0% < co. Let u3 = E|Y1[3. Define

}7 = n_l i:}/;a
i=1

n

5% = nflz (Yi 757)2, and
i=1

Il
=~

T, =Y/5.

Then there exists an absolute constant C' > 0 such that for all n > 2

<o s (3.20)

]P’{\/ET,L < x} — ®(x) i

sup
xr

1/2 times the

The main essence of Theorem 3.1 is that for Z,, or T;,, n
absolute difference between the actual sampling distribution and the Normal
distribution is upper bounded by a finite constant. Thus, in using the normal
approximation, we make an error of O(n‘l/ 2). Tt is also known, and can be

~1/2 cannot

easily verified by using i.i.d. Bernoulli variables, that the rate n
be improved in general. This puts a limit on the accuracy of the normal
approximation for normalized and Studentized mean. We note in passing that
such results have been obtained in many other, more complex and challenging,
non-i.i.d. models and for many other statistics.

Assuming that the third moment of the distribution is finite, we can apply
the Berry-Esseen bound (3.19) on Z,,;, along with that on Z,, and this implies
(3.14) mentioned earlier. However, at this point it is still not clear which is a
better approximation for £z ; N(0,1) or Lz,,?

We shall now show that there is a crucial difference between dealing with
normalized statistic and a Studentized statistic. Basically, for a normalized
statistic there is no gain in bootstrapping. However, under suitable condi-
tions, Lr,, is a better estimator for £; compared to N(0,1). This is known
as the Singh property. This property is now known to hold in many other

models and statistics but we shall restrict ourselves to only 7T,,;,. We need a
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classification of distributions to discuss this further.

Definition 3.3 (Lattice distribution): A random variable Y is said to have a

lattice distribution if for some a and some h > 0
PY =a+kh; k=0,£1,£2,...]=1.

The largest such number A is called the span of the distribution.

Most commonly studied discrete distributions, such as the Binomial and
the Poisson, are examples of lattice distributions. A distribution that does
not satisfy the above property is called a non-lattice distribution. All con-
tinuous distributions are non-lattice. For the following results, recall that
®(-) and ¢(-) denote respectively the cumulative distribution function and
the probability density function of the standard Normal distribution.

The following refinements of the Berry-Esseen theorem are needed. These
are Fdgeworth expansion results. The proofs are omitted. See Bhattacharya
and Rao (1976) for a very detailed and comprehensive development of the
theory of Edgeworth expansions. A selection of other relevant papers on this
topic include Babu and Singh (1989a,b); Kolassa and McCullagh (1990).

Let [y] denote the integer part of y. Define

g(y) =yl —y+1/2, for all y € R.

Theorem 3.2. Suppose Y; are i.i.d. with distribution F that has mean 0,
variance o% and finite third moment 3.

(a) If F is lattice with span h, then uniformly in x,

1 — 22 h
ﬁZn (-13) = (I)(l‘) + Mzggnl/xz )¢($) —+ 60’3n1/2g(n1/20h_1$)¢(l’) + 0(71_1/2).
(3.21)
(b) If F is non-lattice, then uniformly in x,
Ly (x)=2(x)+ M(b(x) +o(n~Y?). (3.22)

n 603n1/2

These bounds show that the order O(n~'/2) in the Berry-Esseen theorem
is sharp and provide additional information on the leading error term un-
der additional conditions. Note that the nature of the leading error term is

different in the lattice and non-lattice cases.
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Now, if we could obtain similar expansions for £z , then we could use
the two sets of expansions to compare the two distributions. This is a non-
trivial issue. Note that for any fixed n, the bootstrap distribution of Yiy,
being the e.c.d.f. of Y7,...,Y,, is necessarily a discrete distribution. When F’
is lattice (non-lattice), the bootstrap distribution may or may not be lattice
(respectively non-lattice). However, it should behave as a lattice (respectively
non-lattice) specially when n is large.

In an extremely remarkable work, the following result was proved by Singh
(1981). For a detailed exposition on Edgeworth expansions in the context of
bootstrap, see Bhattacharya and Qumsiyeh (1989), Hall (1992) and Bose and
Babu (1991).

Theorem 3.3 (Singh (1981)). Suppose Y; are i.i.d. with distribution F which

has mean 0, variance o® and finite third moment ps. Then

(a)

lim sup E[V;[20~3n'/2 sup |ILz (z) — L, (x)] < 2Cy, almost surely,

n—oo

where Cy is the constant from (a) of the Berry-Esseen Theorem.

(b) If F is lattice with span h, then uniformly in x, almost surely,

p3(1 — 2?) h
60'377/1/2 (ZE) + 603n1/29

L,y (v) = ®(z) + (n'26,h ™ )¢ () + o(n~1/2).

Consequently

lim sup n'/?sup Lz () — Lr,,(7)] =

almost surely.

h
V2ro?’
(c¢) If F is non-lattice, then uniformly in x, almost surely,

ps(1 — a?)

S o 0la) + o)

Lr,,(x) = ®(z) +
Consequently,

n*/% sup |L5 () — Lr,,(x)] = 0 almost surely.

Part (a) shows that the difference between Lr,, and £ has an upper
bound of order O(n~1/2), the same as the difference between £y, and the

normal approximation. Thus there may be no improvement in using L.
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Part (b) shows that when the parent distribution F is lattice, there is
no improvement in using Lr,, to approximate £z compared to the normal
approximation.

However, part (c) is most interesting. It implies that using the asymptoti-
cally pivotal Studentized statistic T,; is extremely fruitful, and the bootstrap
distribution Lr,, is a better estimator of L; compared to the N (0, 1) ap-
proximation.

This is the higher order accuracy or Singh Property. More complex for-
mulations and clever manipulations can result in even higher order terms be-
ing properly emulated by the bootstrap, see Abramovitch and Singh (1985).
Moreover, such higher order accuracy results have been proved in many other
set ups, including Studentized versions of various U-statistics. The use of
Edgeworth expansions in the context of bootstrap has been explored in de-
tails in Hall (1992), where corresponding results for many (asymptotically)
pivotal random variables of interest may be found.

The sharper approximation has direct consequence in inference. Consider
the problem of getting a one-sided (1—«) confidence interval of 6, based on the
data Y7, ...,Y, from some unknown distribution F with mean 6. We assume
that F is non-lattice, and that the variance o2 is known. We discuss only
the unbounded left-tail version, where the interval is of the form (—oo, Ry, o)
for some statistic R, . The CLT-based estimator for this is (—oo,én +
n~1/202_,). From (3.22), we can compute that this interval has a O(n~1/2)

coverage error, that is
IP’[H € (—007 0, + nA/ZUZl—a)} =l-a+t 0("71/2)

On the other hand, using Theorem 3.3(c), if ¢4, is the a-th quantile of
Ty, that is, if ]P’[Tnb < ta,b] = «, we have

l—a+0(n!) = [Zn > ta,b}

{én -0 > (nil/ZO'toéyb:|

[9 S (—oo7 én — n71/26ta,b)}.

Thus, we obtain that the bootstrap-based confidence interval (—oo,én -

n~1/26t,,) is O(n~!) accurate almost surely.

The above discussion was for the case of one-sided confidence intervals,
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when o is known. Results are also available for the case when ¢ is unknown,
and it can shown that the interval in (3.15) has a coverage error of O(n~1/?),
while the corresponding bootstrap interval has O(n~!) coverage error. Similar
results are available for two-sided intervals both when ¢ is known and when
it is unknown. The accuracy of the coverages are different from the one sided
case but the accuracy of the bootstrap intervals is still a n~'/2 factor higher
than the traditional intervals. We do not discuss the details here since several
technical tools need to be developed for that. Many such details may be found
in Hall (1992).

It can be seen from the above discussion that the existence and ready
usability of an asymptotically pivotal random variable is critically important
in obtaining the higher-order accuracy of the bootstrap estimator. Thus,
Studentization is typically a crucial step in obtaining the Singh Property.
Details on the Studentization and bootstrap-based inference with the Singh
property is given in Babu and Singh (1983, 1984, 1985); Hall (1986, 1988)

and in several other places.

3.4.3 Classical bootstrap for the median

Suppose the data at hand is Y7,...,Y,, i.i.d. F. Let ¢ denote the population
median and fn denote the sample median. In this case, Efron’s classical
bootstrap is implemented as follows. Using the SRSWR scheme, generate B
i.i.d. resamples Y, = (Y1b, .. .,an)T € R™ for b = 1,...,B. Compute the

median fnb from each of these resamples. Let

B
;=B (G- &)
b=1

be the resample variance.

Under the very mild condition that E|Y;|* < oo for some « > 0, Ghosh
et al. (1984) showed that \Y

', is consistent for the asymptotic variance of én
That is

4f2(§)§\7w — 1 almost surely.

This bootstrap can also be used to estimate the entire sampling distribu-
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tion of properly centered and scaled fn Let

A

Lalw) = B[n?(6 —€) <z,
and recall that
Lo = N(0,1/(4f2(€)))
as n — 0o. The classical bootstrap approximation of £, (-) is given by
Ln(z) = P[n1/2(fnb — &) < :E]

conditional on the data. To show that ﬁn is consistent for estimating L,,, we

use the following result:

Theorem 3.4 (Theorem 2 of Singh (1981)). IfF has a bounded second deriva-
tive in a neighborhood of the population median & and f(§) > 0, then there is

a constant Cy, such that

lim sup n'/*(log log n)'/2 sup|L,(z) — L(z)| = Cr  almost surely.

n—r oo

A similar result is of course true for any quantile between 0 and 1.

Theorem 3.4 implies

sup| L, (x) — Lp(x)| — 0 almost surely.

However, note that the accuracy of the above approximation is of the order
O(n='*(loglogn)~'/?), which is quite low. Other resampling schemes have
been studied in this context in Falk and Reiss (1989); Hall and Martin (1991);
Falk (1992). We omit the details here.

3.5 Resampling in simple linear regression

Consider the linear regression model discussed earlier in Example 3.3. We
now demonstrate how to conduct inference on 6 using resampling plans in
this model. As discussed earlier, this involves estimating the distribution
function L7, or Lz, , but we shall concentrate only on L, for brevity, where

T, is given in (3.9).
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There are several potentially applicable resampling methods in this model.
Not all of them lead to consistent estimators in all situations. In this sec-
tion, we present several resampling techniques that are in popular use. For
simplicity and clarity, we shall restrict ourselves to the simple linear regres-
sion model (3.3) for the moment. However, many of these techniques can be
adapted to more complicated models. We use the notation and definitions

from Example 3.3 discussed earlier.

3.5.1 Residual bootstrap

Let us assume that the errors are i.i.d. with mean 0 and finite variance o2.

Recall that the residuals from the simple linear regression are
ri =Y; — B1 — Po;.

Bearing in mind that under mild conditions given in Example 3.3, [‘3 — B,
either almost surely or in probability, it makes intuitive sense to treat the
residuals as approximately i.i.d. Thus in this scheme, we draw the resamples
from the residuals. This feature leads to the name residual bootstrap.

For every b € {1,...,B}, we obtain {rj,i = 1,...,n} iid. from the
e.c.d.f. of r1,...,r,. That is, they are an SRSWR from residuals, and each
;5 i any one of the original residuals rq,...,7, with probability 1/n. We
then define

}/ib231+32$i+rib, 1=1,...,n.

A slight modification of the above needs to be done for the case where the
linear regression model is fitted without the intercept term 3;. In that case,
define 7 = n='>""  r; and for every b € {1,...,B}, we obtain {r;,i =
1,...,n} as an i.i.d. sample from {r; — 7,4 = 1,...,n}. That is, they are an
SRSWR from the centered residuals. Note that when an intercept term is
present in the model, 7 = 0 almost surely and hence no centering was needed.
Then for every b =1,..., B, we obtain the bootstrap ,@b by minimizing
n
Z(Yéb - b - ﬁziﬂi)2-

i=1

Suppose 1, = Yip — Bbl - Bngi are the residuals at the b-th bootstrap step.
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We define the residual bootstrap noise variance estimator as

67 =(n—-2)" Z(Yib — B - Bzwi)2~

i=1

This is similar to the noise variance estimator 42 based on the original data.

In order to state the results for the distributional consistency of the above
procedure, we use a measure of distance between distribution functions. Sup-
pose F,, is the space of probability distribution functions on RP that have
finite -th moment, r > 1. That is,

Frp = {G:/ |2]["dG(x) < oo}
rERP

For two probability distributions H and G on R? that belong to F.,, the

Mallow’s distance is defined as

. , 1/r
pr(H,G) =T1§1{/{EHX—YII } ;

where Tx y is the collection of all possible joint distributions of (X,Y") whose
marginal distributions are H and G respectively (Mallows, 1972). In a slight

abuse of notation, we may also write the above as p,(X,Y).

Consider either the normalized residual bootstrap statistic

A

an = nl/Q(Bb - B)
or the Studentized statistic
. 1/2, 4 A
T =6, (XX)"*(B, - B).

We assume that the conditions for weak convergence of the distribution of ﬁ
to a Gaussian distribution hold. Using the Mallow’s distance as a major inter-
mediate tool, Freedman (1981) proved that as n — oo the distribution of Z,;,
conditional on the observed data, converges almost surely to N,(0, o2V,
where V' is defined in (3.7). Similarly, the distribution of T},;, conditional on
the observed data, converges almost surely to the standard Normal distribu-

tion on RP denoted by N,(0,1,). That is, as n — oo almost surely

Lz, — Npy(0,0°V™Y), and L7, — N,(0,1,).
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Coupled with the fact that the normalized and Studentized statistic that
were formed using the original estimator B converge to the same limiting
distributions (see (3.8), (3.10)), this shows that the residual bootstrap is
consistent for both T;, and Z,,. In practice, a Monte Carlo approach is taken,
and the e.c.d.f of the {Z,,,b=1,...,B} or {Typ,b=1,..., B} are used for

bootstrap inference with a choice of (large) B.

3.5.2 Paired bootstrap

Here, we consider the data {(Y;,z;),i = 1,...,n} as consisting of n pairs of
observations (Y;,x;), and we draw an SRSWR, from these data-pairs. Thus,
for every b € {1,...,B}, we obtain {(Yip,z),7 = 1,...,n}, where each
(Yip, zsp) is any one of the original sampled data (Y1,21),..., (Yn,2,) with
probability 1/n. This is a natural resampling technique to use when the
regressors {x;} are random variables.

Once the resample {(Yip, zip),4 = 1,...,n} is obtained, we use the simple

linear regression model, and obtain [3,; by minimizing

n
Z b —B1— 2%’17)2 .
i=1
This bootstrap is known as the paired bootstrap. Assume that (Y;, x;) are
i.i.d. with E||(Y;, z;)||* < oo, V(x;) € (0,00), E(e;]z;) = 0 almost surely. Let
the distribution of T, = 6;1(XTX)1/2(,81, B), conditional on the data,
be Lr,,. Freedman (1981) proved that L7,, — N,(0,1,) almost surely. This
establishes the distributional consistency of the paired bootstrap for T,.

It can actually be shown that under very standard regularity conditions,
the paired bootstrap is distributionally consistent even in many cases where
the explanatory variables are random, and when the errors are heteroscedas-
tic. It remains consistent in multiple linear regression even when p varies
with the sample size n and increases as the sample size increases. These de-
tails follow from the fact that the paired bootstrap is a special case of the
generalized bootstrap described later, for which corresponding results were es-
tablished in Chatterjee and Bose (2005). However, there are additional steps

needed before the Singh property can be claimed for this resampling scheme.

Note that the paired bootstrap can be computationally expensive, since it

involves repeated inversions of matrices. Also, the SRSWR sampling scheme
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may produce resamples where the design matrix may not be of full col-
umn rank. However, such cases happen with exponentially small probability

(Chatterjee and Bose, 2000), and may be ignored during computation.

3.5.3 Wild or external bootstrap

In this scheme, we obtain the resamples using the residuals {r;} together with
an i.i.d. draw Zqp, ..., Z,p from some known distribution G which has mean
0 and variance 1. There could be more restrictions on G, for example, we

might want its skewness to be a constant that we specify. We then define

Tip = Zibri,i = 1,...,71, and

Yib:B1+32$i+7‘ib,i:1,...,n.

We obtain Bb by minimizing

> (Yip = B — Bawi)? .
i=1
This is known as the wild or the external bootstrap. Under (3.11), Shao
and Tu (1995) established the distributional consistency of this resampling
scheme.
When random regressors are in use, Mammen (1993) established the dis-
tributional consistency for both the paired and the wild bootstrap under very

general conditions.

3.5.4 Parametric bootstrap

This resampling scheme is an alternative when F is known, except possibly
for some finite-dimensional parameter £, which can be estimated from the
available data by fn For example, in the Gauss-Markov model, F = N(0, 02),
and thus &€ = o2.

For every b € {1,..., B}, we obtain Ziy, ..., Z,p i.i.d. with distribution
F(-; &), where F(+;&,) is the distribution F with &, in place of the unknown
parameter £. For example, in the Gauss-Markov model, F(-;£,) is N(0, 55)

We then define

Yib:ﬁAl"v‘Bszi-l-Zib,i:l,...7n.
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We obtain Bb by minimizing

n
2
> (Yip — 1 — Bowi)” .
i=1
The parametric bootstrap is distributionally consistent under the regular-

ity properties listed in (3.11).

3.5.5 Generalized bootstrap

While the above schemes differed in how Yj,7 = 1,...,n are generated, no-
tice that the basic feature of obtaining estimators and their resample-based
versions by use of minimization of the sum of squared error, that is, ordinary
least squares (OLS) methodology is retained. The material below constitute
a special case of the results of Chatterjee and Bose (2005).

In generalized bootstrap (GBS in short) we dispense with generation of
Yip,i = 1,...,n altogether. For every b € {1,..., B}, we obtain Bb directly
by minimizing the weighted least squares (WLS)

Zwib (Y; — B1 — Bawi)? .

i=1
Here {Wyy,..., W, } are a set of random weights, and the properties of the
GBS are entirely controlled by the distribution of the n-dimensional vector
Wip = (Wi, ..., W,;). We discuss special cases below, several of which were
first formally listed in Praestgaard and Wellner (1993). We omit much of the
details, and just list the essential elements of the resampling methodology.
Let II,, be the n-dimensional vector all of whose elements are 1/n, thus II,, =

%ln € R™ where 1,, is the n-dimensional vector of all 1’s.

1. [Paired bootstrap] We get the paired bootstrap as a special case of
the GBS by specifying that each Wy, = (Wyy, ..., W,,p) is an i.i.d. draw
from the Multinomial(n,II,,) distribution.

2. [Bayesian bootstrap]| Suppose a, is the n-dimensional vector with all
elements equal to «, for some o > 0. We get the Bayesian bootstrap as
a special case of the GBS by specifying that each Wy, = (Wyp, ..., W)
is an i.i.d. draw from the Dirichlet(cv,) distribution. The properties of

the Bayesian bootstrap is very similar to that of the paired bootstrap,
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however, this one has a Bayesian interpretation.

3. [Moon bootstrap] (m out of n bootstrap) We get the m-out-of-n
bootstrap (which we call the moon-bootstrap) as a special case of the
GBS by specifying that each Wy, = (Wyp, ..., W,;) is an i.i.d. draw
from the Multinomial(m, II,,) distribution. Under the conditions m —
00 as n — oo but m/n — 0, the moon-bootstrap is consistent in a very
wide class of problems where most other methods fail. This is one of

the most robust resampling methods available.

For comparison with subsampling later on, let us also describe the mech-
anism by which the moon-bootstrap is generated classically. We fix a
“subsample” size m where m is (considerably) smaller than n. Then for
every b € {1,..., B}, we obtain subsamples of size m {(Yi, zsw),
i=1,...,m} by drawing an SRSWR from (Y1,21),...,(Ya,zp).

4. [The delete-d jackknife] In the context of some variance consistency
results, it was established in Chatterjee (1998), that all the jackknives

are special cases of GBS. We outline the main idea behind this below.

Let N, = {1,2,...,n} and S,, 4 = {all subsets of size d from N,,}. We
identify a typical element of S,, ¢ by S = {i1,12,...,94}. There are (Z)
elements in S, 4. Let S© =N, \ S. Let {55, S e Sn’d} be a collection
of vectors in R"™ defined by £g = (55(1),55(2), e ,gs(n)), where

£5(0) (n—d)iln ifi e S¢
) —
5 0 ifies.

Then the delete-d jackknife can be identified as a special case of the
GBS with the resampling weight vector Wy, = (Wu),Wzb, . ,Wnb)
which has the probability law

-1
P[W,, = &5] = (Z) . SESna (3.23)

5. [The deterministic weight bootstrap] This is a generalization of
the delete-d jackknife. Suppose {,} is a sequence of numbers. Consider
a random permutation of its first n elements as W,;. See Praestgaard

and Wellner (1993) for further conditions on the sequence.

6. [The double bootstrap] Suppose M,, follows a Multinomial (m, II,,)
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distribution, and conditional on M,,, suppose that each of the resam-
pling weights Wy, = (Wi, ..., W,p) is an i.i.d. draw from the Multi-
nomial (n,n~*M,) distribution. This particular resampling scheme is
often used for calibration of other resampling techniques, to ensure that

the Singh property holds.

[The Polya-Eggenberger bootstrap| This is a variant of the double
bootstrap. Suppose M,, follows a Dirichlet(a,) distribution, where
a, = al, € R™ for some « > 0. Conditional on M,,, the resampling
weights W, follow a Multinomial ((n,n~'M,)).

. [The hypergeometric bootstrap] In this procedure, we have

K\ ' (K
P[Wlb:b17"'7wnb:bn] = (nn> H(b)?

i=1 N\t

n
for integers by, ..., b, satisfying 0 < b; < K, Z b; = n.
i=1

. [Subsampling] Subsampling is related to jackknives and the moon-

bootstrap. This method, like the moon-bootstrap, is one of the most
robust inferential methods available. Essentially, if £ has a limit,
subsampling produces a consistent estimate of it. In subsampling, we
fix a “subsample” size m where m is (considerably) smaller than n. Then
for every b € {1,..., B}, we obtain subsamples of size m {(Y;p, 2p),% =
1,...,m} by drawing a simple random sample without replacement
(SRSWOR) from the original data (Y1,z1),..., (s, zn). It is crucial
that the sampling should be without replacement, otherwise we just
get the moon-bootstrap. Subsampling can be identified also with the

delete-n — m jackknife.

3.6 Exercises

1. Show that if T}, is the sample mean as in Example 3.1, then its jackknife

variance estimate is same as the traditional unbiased variance estimator

given in (1.4).

2. Show that the two expressions for the jackknife variance estimator @n s

given in (3.12) and (3.13) are identical.
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3. Show that if 7}, is the sample mean as in Example 3.1, then its naive

bootstrap variance estimate is
- 2
n=2 Z(Y; - Qn) .
i=1

4. Verify that there are n™ possible values of Y; in Efron’s bootstrap.

5. Consider Efron’s classical bootstrap using the SRSWR drawing from
the data.

(a) What is the probability that at least one of the original values
Y1,Ys5,...,Y, does not show up in the resample values Y7y, ..., Y7

(b) Compute for k = 1,...,n, the probability that exactly k of the
original values Y7, Y5, ...,Y, show up in the collection of resample

values Yip, ..., Ynp.

(¢) Comment on the cases k =1 and k = n.
6. Look up the proof of D-K-W inequality (3.17).
7. Use the D-K-W inequality to prove the Gilvenko-Cantelli Lemma.

8. Show how claim (3.18) follows from the D-K-W inequality.
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Chapter 4

Resampling U-statistics

and M-estimators

4.1 Introduction

Recall from Chapter 1 that if Y7,...,Y,, is an i.i.d. sample from some proba-
bility distribution function F, and § = Eh(Y7,Y3,...,Y,,) where A(-) is sym-

metric in its arguments, then the U-statistic,

-1
n

n = h(Yi,...,Y;

n=(r) X M)

1< <i2<...<im <n

is the usual estimator for . In order to perform hypothesis tests or to ob-
tain confidence intervals for 6, we need the exact or approximate distribution
of U,. There are no closed form exact distribution of U-statistics in gen-
eral. We established the asymptotic normality of U-statistics in Theorem 1.1
of Chapter 1. However, the asymptotic variance is typically unknown and
has to be estimated. Similarly, the M,,-estimators discussed in Chapter 2
have an asymptotic normal distribution under fairly general conditions, but
the asymptotic variance is typically parameter-dependent and has to be esti-

mated.

An alternative to using such asymptotic distributional results and esti-
mated parameters is to use resampling, which has been introduced in Chap-
ter 3. We have seen in Chapter 3 that in addition to being usable for
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estimating asymptotic variance, many resampling methods can provide di-
rect approximations to the sampling distribution of statistics of interest, and
thus circumvent the need for using asymptotic variance altogether. Such
resampling-based distribution estimators may have the very attractive Singh
property (higher order accuracy) described in Chapter 3, and thus they can
be better than CLT-based asymptotic approximations.

In this chapter, we discuss some resampling techniques that are applicable
for estimating sampling distributions and asymptotic variances of U-statistics
and M,,-estimators. We will discuss how the GBS estimators discussed in

Chapter 3 arise naturally in this context.

First in Section 4.2 we review some of the more traditional resampling
schemes as applied to U-statistics. We will see that a naive application of
Efron’s bootstrap or a jackknife technique may lead to poorly defined esti-
mates. Consequently there is a need for more careful application of resampling
schemes in this context. In Section 4.3 we present the GBS for U-statistics,
and show how some of the classical resampling methods can be treated as
special cases of the GBS. Moreover, the very general form of the GBS sug-
gests a variety of resampling weights that may be used in this context. We
discuss an additive weights resampling technique in Section 4.4, which is also
a special case of the GBS, but deserves special attention owing to the po-
tential of savings in the computational requirements. Then in Section 4.5 we
present the GBS for M,,-estimators, of which the U-statistics are a special

case.
Let U, be the generic form of any resampled version of U,,. Define
Ly, (z) = P[nl/Q (Un — 9) < x],
Ly, (x) = ]P[nl/zmT;l(Unb — Un) < x|Y1, e ,Yn},
where 7,, is some appropriate scaling.

Recall that the corresponding resampling scheme is said to be distribu-

tionally consistent if

sup|Ly, (z) — Lu,,(x)| = 0
x€eR

either in probability or almost surely as n — oc.
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4.2 Classical bootstrap for U-statistics

Recall that in Efron’s bootstrap or multinomial bootstrap the resample is
chosen using an SRSWR of size n from the e.c.d.f. When applied to the
U-statistic U, this bootstrap is implemented with the following steps: from
the data Y7,...,Y,, draw a simple random sample with replacement, say
Yib, ..., Yup. Then Efron’s bootstrap U -statistics is defined by

-1
Uy = (;) 3 hYip, .., Yi p). (4.1)

1<i1<ig < <im<n

Conditional on the data Y7,...,Y,, the distribution (or variance) of the
statistic U,, may be used to approximate the distribution (or variance) of
U,. Consistency results for Efron’s bootstrap were obtained by Bickel and
Freedman (1981) and Athreya et al. (1984) for normalized and Studentized U-
statistics respectively. As an example, we present the following result, which
is based on Bickel and Freedman (1981).

Theorem 4.1 (Bickel and Freedman (1981)). LetY1,...,Y, be i.i.d. random

variables and let

U, = (::l)l > Y. Y

1<i1 < <im<n

with m = 2. Suppose that E|h(Y1,Y2)|> < oo, Eh(Y1,Y1)]*> < oo, and
[ h(z,y)dF(y) is not a constant. Then the distribution of U,y conditional
on the data is a consistent estimator of the distribution of U, with 1, = 1,

that is, almost surely,

izg’ﬁyn () — Ly, (m)’ — 0.

Later Helmers (1991) proved the Singh property of the bootstrap approx-
imation for the distribution of a Studentized non-degenerate U-statistics of
degree 2. Suppose the kernel satisfies Eh(Y7,Y2) = 6 and the corresponding
U-statistic

n=(3) X ey

1<i<j<n
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has the Hoeffding projection
hi(Yi) = E(h(Y:,Y;) - 0]Y;)

with positive variance d;. Helmers (1991) defined

S2 = 4(n—1)(n ZZ( Zh 5 Y)) )2,

and proposed n~1S2 as a jackknife-type estimator of the variance of U,.
Define

Lr (z) = [1/25 YU, —0) < } for = € R.

For the bootstrap versions, we compute U,; and Sbe using the formula

for U,, and S2 given above but replacing Y;’s with Y;;’s. Define

=n"? zn: h(Y;,Yj),

,j=1

which is very close to U, except that the h(Y;,Y;) terms are now included in
the summation, which thus has n? terms. Consequently, #,, has the scaling

2

factor n?, comparable to the () factor that appears in the denominator of

U,. Using these, we obtain the bootstrap distributional estimator
Lr,(x)=P [1/25 (Ub—ﬁ)gx},meR.

Helmers (1991) first established a one-term Edgeworth expansion of L7, .
Then, under the additional condition that E|h(Y7,Y7)|® < oo, the Singh prop-
erty was established. We state this result below.

Theorem 4.2 (Helmers (1991)). Suppose that the distribution of the Hoeffd-
ing projection hy is non-lattice, E|h(Y1,Ys)[*T¢ < oo for some ¢ > 0, and
E[h(Y1,Y1)]? < co. Then

sup |Lq, (z) — L1, ()] = o(n"Y/?) as n — oo almost surely.

A general consistency result, regardless of the degree of degeneracy of a

U-statistic, was obtained by Arcones and Gine (1992), as long as the degree
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of degeneracy is known. In a different direction, Helmers and Huskova (1994)
considered multivariate U-quantiles and showed consistency in distribution
estimation. A number of other authors have also studied Efron’s bootstrap of
U-statistics, see references in the papers mentioned above and also the book
by Shao and Tu (1995). As with most other problems where resampling is
used, a Monte Carlo implementation may be used for numeric computations.

The performance of Efron’s bootstrap is affected by the behaviour of the
kernel. Note that in this resampling, values such as h(Y7,Y7,...,Y1) may
appear in the resample while they are absent in the original definition of U, .
This may create inconsistency of the bootstrap. An example is provided in
Bickel and Freedman (1981) and reproduced in Shao and Tu (1995), and we
sketch it below.

Example 4.1: Supposed m = 2, and define h(z, x) = exp{1/z}, and consider
the population distribution to be continuous Uniform (0, 1). Note that under
this distribution we have Eh(Y,Y) = oo. We write the kernel h(z,y) =
hi(z,y) + ho(z,y) where hi(z,y) = h(z,y)Zyzy. Let Upi and Upy be the
U-statistics corresponding to h; and hy respectively. Define U, = U, +
U,h2, and note that since the population distribution is continuous, U, =
0 almost surely. Also, note that suitably centered and scaled U, has an
asymptotic normal distribution. It can be shown that if we choose to use
Efron’s bootstrap to estimate the distribution of U,, we get an inconsistent
result, since n'/2(Upnap — Upz) £ . O

4.3 Generalized bootstrap for U-statistics

The kind of deficiency we saw for Efron’s bootstrap can be remedied by using
generalized bootstrap (GBS) instead.

We first introduce the notation for a triangular sequence of random vari-
ables, to be called the bootstrap weights in the sequel. Suppose for every
positive integer n, we consider all possible m-dimensional vectors (i1, ..., %m)
where each i; € {1,...,n}, and i;’s distinct. There are clearly (:;L) such

vectors. Corresponding to these m-dimensional vector of distinct integers,

we define the triangular sequence of random variables W,,.;, .. ;. —as bootstrap

weights. We will shortly present examples of such bootstrap weights, and later
present properties of such weight vectors when we discuss theoretical results.

For a U-statistic with kernel h(y1, ..., ym), define its generalized bootstrap
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(GBS) version as

-1
n
Unb - < ) E Wn:il ..... imh(yvil (R }/;m) (42)
m 1<ip < <im<n

Example 4.2 (Efron’s bootstrap as a special case of GBS): Suppose W,.; is
the (random) number of times the data point Y; is obtained when we im-
plement Efron’s bootstrap of drawing an SRSWR from the original data. It
can be seen that in this case, the vector W,, = (Wml, ... ,Wmn) follows a
Multinomial (n; 1/n,..., 1/n) distribution. Define

Wn:ih...,im = H Wn:ij . (43)
j=1

Consider the case of a U-statistic with kernel of order m = 1. Here, it is
easy to see that Efron’s bootstrap is simply a GBS with the choice (4.3).

For general m, Efron’s bootstrap for U-statistic (4.1) cannot be written
like the GBS (4.2). However, relation (4.3) suggests a new way of defining

the bootstrap version of a U-statistic, namely

Uy = (;) - 3 ﬁ Wi, h(Yiy, .o Vi), (4.4)

1<i1<i2<...<im<n j=1

Huskova and Janssen (1993b) established the distributional consistency of
(4.4) for U-statistics of degree m = 2. Later Huskovd and Janssen (1993a)
extended this result to degenerate U-statistics. O

It is important to realize that the resampling weights used in (4.2) are of
a very general form, and the choice of using a multiplicative form as in (4.4)
is a further special case. Instead, for example, consider the additive form of

resampling weights where
Wiy i =m0 W (4.5)
j=1

In Section 4.4 below we discuss the properties of this particular choice of re-
sampling weights in detail. We will see that using the additive form (4.5) can
lead to significant improvement in computational efficiency, without compro-
mising on the accuracy.

Recall Example 2.2 from Chapter 2, where we showed that all U-statistics
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are M,,-estimators. That is, for any kernel h(y1, ..., ym), which is symmetric
in its arguments, the corresponding U-statistic can be obtained as the unique

M,,-estimator when we use the contrast function

f(yl ay’mae) = (9 - h(y15'~'7ym)>2 - (h(y1a7ym))2

In view of this, instead of just presenting the analysis of GBS for U-statistics
given in (4.2), we present in Section 4.5 the full discussion of GBS for generic

M,,-estimators.

4.4 GBS with additive weights

Let {W,,.;, 1 < i < n, n > 1} be a triangular sequence of non-negative,
row-wise exchangeable random variables, independent of {Y7,...,Y,}. Re-
call the notation P,, E_, V, to respectively denote probabilities, expecta-
tions and variances of these resampling weights, conditional on the given
data Y7,...,Y,. We henceforth drop the first suffix in the weights W,,.; and
denote it by W;. We fix that E,W,; =1 for all ¢ =1,...,n, and write

2=V,W; and W;=r7,"(W;—1). (4.6)

Since row-wise exchangeability of W, ;’s is assumed, we may unambigu-

ously adopt the notation
Cave... = E,WEWEWS ...

Generic constants at various places will be denoted by k£ and K.

We will assume the following conditions on the weights:

E,W; = 1, (4.7)
0<k<7l<K, (4.8)
c11 = O(nil), (4.9)

c22 — 1, (4.10)

sup ¢4 < 00. (4.11)

Note that when W,, = (Wl, e ,Wn) has the Multinomial (n; 1/n,..., l/n)
distribution that links the GBS to Efron’s bootstrap, all the above conditions
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are satisfied. In fact for these weights,
2=1-1/n and ¢ =—1/(n—1). (4.12)
Define as usual, the centered first projection of h as
hi (Y1) =E[h(Y1,...,Y)|Y1] — 6,

and assume that

Er*(Y1,...,Yn) < oo, (4.13)
E|hy (Y1)|4+5 < oo, for some § > 0, (4.14)
Eh (Y1) > 0. (4.15)

Theorem 4.3. Suppose the kernel h satisfies (4.13)-(4.15) and the resampling
weights are of the form (4.5) where W,,.; satisfy (4.7)-(4.11) and also

i Wy = n.
=1
Then

sup|Ly, (x) — Lu,,(x)| = 0 almost surely as n — oo. (4.16)
z€R

The condition Y ;- | W,,.; = n and (4.8) together imply (4.9) and (4.12).
A convergence in probability version of this theorem may also be established
with more relaxed condition than (4.13)-(4.14).

To prove the theorem we need a CLT for weighted sums of row-wise ex-
changeable variables from Praestgaard and Wellner (1993). The idea behind
this result is Hajek’s classic CLT (Hajek (1961)) for sampling without replace-

ment.

Theorem 4.4 (Prastgaard and Wellner (1993)). Let {anm;} be a triangular
array of constants, and let B,,;, j=1,...,m, m >1 be a triangular array

of row-exchangeable random variables such that

m

m~! Z(amj — Ezm)z — o> 0,
j=1
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m~? j:Hll’E'%.Xm(amj dm)2 — 0,
m

m 3" (Bunj — Bm)® 5 ¢ >0,
j=1

lim lim supE(ij - BWL)QI{\BW—BMDK} =0.

—0 m—oo

Here,

am =m ! Zamj and By, =m™! ZBmJ'

j=1 j=1
Then
1 — _ = D
N > (amjBmj — amBm) — N(0,c%0?). (4.17)
j=1

Proof of Theorem 4.3: Let s = (i1,...,%mn) denote a typical multi-index.

Without any scope for confusion, Wy, = W,,.;, ;= m~! Z;nzl Wi, . Let

Wy = Tn_l(Ws - 1),
hs = h(Y; Yi.),

IERERE

m

ge=hs— > h(¥i,) -0,
j=1

()

”1/27}71 (Unb _ Un) _ nl/szlT;l Z hs (Ws - 1)

Then

=n'PN"I Y zn: hi(Y;,) (W — 1)

s j=1

+n! PN (W — 1) + 0! PN Y g (W — 1)

= T1 + T2 + T3 say.

Because of the condition ) ;" ; W,.; = n we have that (Ws — 1) =0,

so To = 0 almost surely.
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Using (4.13) and the fact that E(N~*>", 95)4 = O(n™*) (see Serfling
(1980), page 188)) and (4.9), after some algebra we have that for any ¢ > 0,

P, “Tgy > 5} = 0p(n7?).

It remains to consider Tj. For this term also, using (4.6), we have that

T = n_1/2 Z Wihy ()/;) + Tnb,

i=1

where again
P, [’rnb‘ > 5} = 0p(n_2) for any § > 0.

We now need to show that the distribution of n'/?(U,, — 6) and the boot-
strap distribution of n=/2m Y"1 | W;hy(Y;) converge to the same limiting
normal distribution. For the original U-statistic, this is the UCLT, Theo-
rem 1.1. For the bootstrap statistic, we use Theorem 4.4 to get the result.
The conditions (4.10) and (4.11) are required in order to satisfy the conditions

of Theorem 4.4. The details are left as an exercise. O

4.4.1 Computational aspects for additive weights

n

m) quantities are involved.

U-statistics are computationally lengthy, since (
Also, the computation of () may be difficult in many cases. Thus generalized
bootstrap by using (4.2) make heavy demand on computational time and
storage space requirements. We address this issue now.

Define

h

-1
n—1
. (m_1> S Y Yi Vi),
1<y -

L1 < i
A simple calculation shows that our generalized bootstrap statistic using
additive weights (4.5) is of the form

Unp =071 Wl (4.18)
=1

In order to discuss the computational advantages of using additive resam-
pling weights over other forms of resampling weights, we use two considera-

tions, the computational time requirement and the storage space requirement
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for bootstrapping. Since Monte Carlo simulations are an integral part of the
computation of bootstrap, we assume that B bootstrap iterations are carried
out under both the methods.

Theorem 4.5. (a) The time complexity of estimating the distribution of
U, using additive resampling weights and generic resampling weights in B
bootstrap iterations are respectively O(n(B + 1) +n™) and O(n™(B + 1))
respectively.

(b) The space complexity of estimating the distribution of U, using addi-
tive resampling weights and generic resampling weights are O(n) and O(n™)
respectively, in addition to the space requirement for storing the results of

each bootstrap iteration.

The remarkable fact is that while using additive weights (4.5), the time
and storage space requirements are reduced simultaneously, and for each boot-

strap step instead of requiring O(n™) time and space, the requirement is only

O(n).

Proof of Theorem 4.5: (a) Let us assume that for given (y1,...,yn) the
computation of each h(yi, ..., ym) takes H units of time. Then it can be seen
that each U,; requires (((:L__ll))

computed and stored, U, is easily computed in n steps. Thus an initial n™

)H units of time, and once all U,;’s have been

order computation is required for both the bootstrap methods.

However, once the bootstrap weights are generated (without loss we as-
sume these to be generated in O(n) time), for the additive weights case only
2n more steps are needed, whereas for the general resampling weights case

the number of steps needed are m(]) assuming all the h(Y;,,...,Y; ) are

n

m tm

stored. Thus for each bootstrap iteration the time complexities are O(n) and

O(n™) respectively for the two methods. This completes the proof of part
(a).

Part (b) is easily proved by observing that when we use additive weights

only the U,; defined in (4.18) need to be stored, whereas when we use general

resampling weights all the A(Y;,,...,Y; ) have to be stored. O

im

4.5 Generalized bootstrap for M,,-estimators

We now focus on estimating the distribution of an M,,-estimator by resam-

pling. Since an M,,-estimator is obtained by a minimisation procedure, it
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is natural to obtain its bootstrap version by a parallel minimisation which
involves random weights. This is precisely how several resampling schemes
were seen to operate in linear regression in Chapter 3.

We first establish bootstrap asymptotic representation results, following
which we obtain consistency results for the generalized bootstrap of M,,-
estimators. We recall the setup from Chapter 2.

Let Y7,...,Y,, be mi.i.d. copiesof a’ Y € Y C RP valued random variable
and let f(y,a) be a real measurable function defined for y € Y™ and a € R%,
Let

Q(O) =Ef(Y1,...,Ym;0). (4.19)
Let 6, € R? be such that
Q(0o) = min Q(a). (4.20)

We assume 6, is unique, and it is the unknown parameter, to be estimated
from the data.
Suppose that Y7,...,Y,, is an i.i.d. sample. Then the sample analog of (4.19)

1S

an)(”)l S WY Yeif).  (42D)

m . .
1<ii<..im<n

Let 6,, be any measurable selection such that
Q(én) = min Qn(a)7 (422)

which is the M,,-estimator of the parameter .
As in Chapter 2, we assume that f(y;a) is convex in a. Let g(y;a) be a

measurable subgradient of f(y;a), that is
flysa) + (b —a)"g(y;a) < f(y;b) (4.23)

holds for all a,b € R%, y € Y™. Recall the assumptions needed in Chapter 2
for the asymptotic normality of M, estimators.

(I) f(y;a) is convex with respect to a for each fixed y.

(IT) (4.19) exists and is finite for all 0, that is, Q(6) is well defined.
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(III) @y satisfying (4.20) exists and is unique.
(IV) E|g(Y1,...,Ym;a)|? < oo for all a in a neighborhood of 6.

(V) Q(a) is twice differentiable at 8y and H = V?(fy) is positive definite.

The bootstrap equivalent of 0,, is obtained by minimizing

—1
n
) Z Wn:il,iQ,...,imf(}/il ) }/iza ceey }/;m7 0) (424)

1<i1<...tpp<n

2.0 = (

m

Let {én 5} be chosen in a measurable way (such a choice is possible) satisfying

A~

Q..(6,) =minQ,,(0). (4.25)

This 6, is not unique in general.

4.5.1 Resampling representation results for m =1

In this subsection we consider the m = 1 case separately for easier under-

standing of the general case that we present later.

Theorem 4.6 (Bose and Chatterjee (2003)). Suppose Assumptions (I)-(V)
hold. Assume that resampling is performed by minimizing (4.24) with weights
that satisfy (4.7)-(4.9). Then

20, —0,) = —n"Y2HT'S, +r, where (4.26)
S, => Wig(Yi;00) and (4.27)

i=1
P, || > € =op(1) for any e>0. (4.28)

Proof of Theorem 4.6: In order to prove this theorem, we use the trian-
gulation Lemma of Niemiro (1992) which is also given in Chapter 2. Without
loss of generality, let 6y = 0 and Q(6p) = 0. Now define

X = [f(Yiin™1/20) = f(¥;;0)] = n~1/267g(;:0)  and
X, =W, X,

n
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Then we have

E, X, =X, and

Zani = nkl, (n_1/29) — Nk, (0) - n—1/29TSnb where

i=1

S, =Y Wig(¥;;0).
i=1

In order to make explicit the fact that X,,; is a function of 6, we sometimes
write X,;(6).

Fix 61,09 > 0. We first prove two facts.

(a) For any M >0

P,[ sup 7, !> X, —0THO/2| > 5] = op(1). (4.29)
llolI<M

(b) There exists M > 0 such that

PR, [||n"Y/28 || > M] > 6,] < d5. (4.30)

Proof of (4.29). Fix an M > 0. For fixed 4. > 0, get 6 > 0 and € > 0 such
that M; = M + (26)'/2 and 6, > 5M) Anax(H)S + 3¢, where Apa (H) is the
maximum eigenvalue of H. Consider the set A1 = {6 : [|0]| < M;} and let
B ={by,...,by} be a finite §-triangulation of A;. Note that with

A= {9 : H9|| < M}, L= Ml)‘max(H)7
h(0) = 0THO/2, and h'(0) = W;X,i(6),

all the conditions of Lemma 2.3 are satisfied. Now

IPB[ sSup Tn_l|Zani _QTH9/2| > 5*}
[el|<m

<P, [Has|1|1<pM Y X, —0THO/2| > 515 + 3]



Generalized bootstrap for M,,-estimators 117

<PBysupr, 'Y X, —0THO/2| > ] (4.31)
0cB
N
j=1
N
S |ZWX'ILZ | >€/2 +ZIT_1|ZXM bTHb /2]>¢/2})
N
< Z k Z X5i(bj) + ZI{Tn S X (b)) —bT Hb, /2] >¢/2} (4.32)
j=1 j=1
=op(1). (4.33)

In the above calculations (4.31) follows from the triangulation Lemma 2.2
given in Chapter 2. Observe that in (4.32) the index j runs over finitely many
points, so it is enough to show the probability rate (4.33) for each fixed b. It
has been proved by Niemiro (1992) (see page 1522) that for fixed b,

D X(b) =op(1) and  } 0 Xni(b) = bTHb/2=o0p(1).  (434)

Hence (4.33) follows by using the lower bound in (4.8). This proves (4.29).
Proof of (4.30). Note that

_ 1 -
B, (I8, 1| > M] < o= B, || Y Wig(Yis 0)|
i=1

2 B n n
< Mznm "Byl Y Wig(Vis ) +11 > g(¥i; 0)]P
i=1 i=1
an Zi0)P+ 1o ||Zg Y30l
= U say.

The constant K in the last step is obtained by using the upper bound condi-
tion in (4.8) and (4.9). Now fix any two constants €,d > 0. By choosing M
large enough, we have

[r I8,

< M] > €]

(4.35)
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by using (IV). This proves (4.30).
Fix a dp > 0. Now on the set A where both

- 1
sup 7, 1Y Xnpi — 507 HO|| < 6o, (4.36)
ol <M = 2

In"Y2HLS || < M —1 (4.37)

hold, the convex function nQ,,(n~/26) — nQ,;(0) assumes at n='/2H-1S ,

a value less than its values on the sphere
1640 2HS, || = Arudy?,

where 1 = 2)}/2 (H). The global minimiser of this function is n1/2énb. Hence

n'2r 0, = —n A T HTS A, (4.38)

Since dg is arbitrary, and because of (4.29) and (4.30), we have for any § > 0
IP)EeHIanH > 6] = OP(l)'

Now use Theorem 2.3 from Chapter 2 to get the result. This step again
uses (4.8). O

For any ¢ € R? with ||c[| = 1, let

o
3
—~
&
I

P[n'/2c" (6, — 6y) < 2] and
L. (z) =P, [r 'n'2c7 (@, —6,) <.

n B n

The following corollary establishes the consistency of the resampling tech-

nique for estimating £,,.
Corollary 4.1. (Consistency of resampling distribution estimate) Assume

the conditions of Theorem 4.6. Assume also (4.10)-(4.11). Then

L

nb

sup
z€R

() — Lp(x)] =0p(l) asn — .

Proof of Corollary 4.1: Again, without loss of generality assume, 6y = 0
and Q(fy) = 0. Let

h(Yi;0) = " H 1 g(Y;;0) and
Voo = ER?(Y3;0).
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Using Theorem 2.3 we obtain that
sup |L,(z) — N(0,Vy)| — 0. (4.39)

Also observe that given the condition on the bootstrap weights, Theorem 4.4

may be applied to obtain

sup|L, , () = N(0,Vx)| = op(l) as n — oo. (4.40)
Then (4.39) and (4.40) complete the proof. O
4.5.2 Results for general m
For convenience, let us fix the notation

S:{(’Lla7lm) 1§21<12<<’ngn}7

and a typical element of S is s = (i1,...,%4y). We use the notation |sNt| =k
to denote two typical subsets s = {i1,...,i,} and ¢ = {j1,...,Jm} of size m
from {1,...,n}, which have exactly k elements in common.

We often use the same notation s for both s = (i1,...,4,) € S and

s = {i1,...,im} C {1,...n}. Also, let N = (). Let Y, = (V]
when s = (i1,...,4p) € S. The notation 3,
t for which |s N ¢| = j holds.

The bootstrap weights W, are non-negative random variables. We assume
that for all s € S, the distribution of W, is the same with EW, = 1. Define

Yi,.)

denotes sum over all s and

IERERE

sNt|=j

& =E,(W,—1) and W, =g "(W,—-1).
Assume that E, W W, is a function of |s N¢| only, and let
c; =E, W,W, whenever [sNt|=j, for j=0,1,...,m.
We assume that the following conditions are satisfied:

K>&>k>0 (4.41)
co = o(1) (4.42)
;] =0(1), j=1,...,m. (4.43)
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Define
91(Y1;60) = E[g(Y1, ..., Ym;00)[Y1] and
n—1\""
f'i - <m _ 1) Z WSv
s11ES
where the sum runs over all s € S such that i € {i1,...,0}.

Theorem 4.7 (Bose and Chatterjee (2003)). Suppose Assumptions (I)-(V)
hold. Assume that resampling is performed by minimizing (4.24) with weights
that satisfy (4.41)-(4.43). Then

&0, —0,) = —n'?H7'S, +7r, (4.44)
= —mn~1/? Z LiH 1 g1(Yi;00) + R, (4.45)

where g1(Yi; 00) is the first projection of g(+;6p),

-1
S'n.b = (;) Zwsg(}/;790),

seS

and

P, lllrnsl| > €] = op(1) and (4.46)
P.[||Rub|| > €] = op(1)  for every e > 0. (4.47)

From (4.42) we have that the asymptotic mean of f; is 0. Let its asymp-
totic variance be v?(m). This will in general be a function of m. Then the

appropriate standardized bootstrap statistic is
nl/QgT:lv;ll (HHB - 977/)

For any ¢ € R? with ||c|| = 1, let

o
3
2

|

P[n'/2cT (6, — 6)

< z] and
L,,(x) =Py [n'2¢ o e (0, — 0,) < al.

Then we have the following Corollary. Its proof is similar to the proof of the

corresponding results in Section 4.5.1, and we omit the details.
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Corollary 4.2. Assume the conditions of Theorem 4.7. Assume also that
fn:i’s are exchangeable with sup,, E, f*, < oo and E, f2,, z:j — 1 fori#j as
n — 0o. Then

sup |L , () — L(z)] = op(1) asn — oc.
z€R

Similar to the development presented in Section 4.5.1, the representation
(4.45) will turn out to be useful for showing consistency of the generalized
bootstrap scheme, both for variance estimation as well as distributional ap-

proximation.

Proof of Theorem 4.7: The first part of this proof is similar to the proof
of Theorem 4.6. Define

Xps = f(Yain 120) — f(Y5:0) — n=1/207 g(V5;0),
X, =W.X,,, and S, =N"") g(¥s;0).

nbs

We have

nQ,,(n"%0) — nQ,, (0) — n'/267s,, — 6T HO/2
=nNT'Y X, —0"HO/2.

Then arguments similar to those used in the proof of Theorem 4.6 yields
(4.44) once it is established that for any fixed €,6 > 0,
(a) For any M > 0,

P, sup [nNT'Y X, —0THO/2| > 0] = op(1). (4.48)
[el|<m

(b) There exists M > 0 such that,
P[P, [[[n'/2S,,|| > M] > €] < 4. (4.49)

The proof of these are similar to those of (4.29) and (4.30). By carefully

following the arguments for those, we only have to show

n’N7E, (> W.Xn.)? = op(1), (4.50)

nN"E, || > weg(Ye, 0)[]> = Op(1). (4.51)
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For (4.50), we have
n’N7°E, () W.X,.)?

:n2N72icj Z anXnt

J=0 |snt|=j

=n’N"2co()_ Xpns)? +n*N~2 zm: ¢ > XneXnt.

J=1 |snt|=j

A little algebra shows that nN~!3" X, = Op(1). The first term is op(1)
from this and (4.42). For the other term, first note that the sum over j is

finite, and from (4.43), we only need to show

n2N—2 Z XnsXnt = op(1) for every fixed j=1,...,m.
[snt|=j
For this, we have

n2N—2 Z Xs Xt

|snt|=3

<N 3 (07 (g(Ye,n™1%0) — g(Ye, 0)][07 (9(Ye,n™1/%0) — g(V7,0))].

|snt|=j

Since the number of terms in 37 ;. is O(n~'N?), it is enough to show
that for any s,t € S

a” (g(Ys,n™1/20) — g(¥5,0))8" (9(Ye,n~1/20) — 9(1,0)) = 0p(1).

Observe that 67 (g(Ys,n~'/20) — g(Ys,0)) are non-negative random variables
that are non-increasing in n, and their limit is 0. This establishes the above.
Details of this argument is similar to those given in Chapter 2 following (2.33).
The proof of (4.51) is along the same lines. This proves (4.44).

In order to get the representation (4.45), we have to show
n'PNTUN  Wog(Ye,0) =mn” 2y figi(Yi,0)+ R,

where

P.[||R,,.|| > 6] = op(1) for any ¢ > 0.
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Let h(Ys,0) = g(Y5,0) — Z;ﬂ:l 91(Yi;,0). This is a kernel of a first order

degenerate U-statistic. Then we have

Weg(Ys,0) = We Y g1(Y;,,0) + W,h(Z,,0).
j=1

Also, it can be established that

DO Wi (¥i,;0) = (:1__ 11> > fig1(Yi;0).
i=1

s j=1

Also
E(IN S (¥, 0)[) 7 = O(n?). (4.52)
Now using this result and (4.43), after some algebra we obtain
B, [[In"/2N " " Woh(Z,, 0)[| > 8] = op(1),

and this yields (4.45). O

For different choices of generalized bootstrap weights, and defining W
either as in (4.4) or (4.5), the conditions (4.41)-(4.43) are satisfied. When
using (4.4), the moments of products of W;’s of various orders are involved
and conditions are difficult to check unless m is small.

A natural question is how f; and W; relate to each other. Observe that
in both the multiplicative and additive form of Wy given in (4.4) and (4.5),
the difference between W and an appropriately scaled f; (where the scaling
factor is a function of m only) is negligible in the representation (4.45). Again
the algebra is complicated in case of (4.4), and may be verified for small values
of m. There are no such difficulties with (4.5).

4.6 Exercises

k

1. Suppose wy, ... wy are exchangeable random variables such that Z w;
i=1

is a constant. Show that for every m # n, c11 = corr(wy,, wn) = — 47

irrespective of the distribution of {w;}. Hence verify (4.12).
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2. Suppose e;,1 < i < k are k-dimensional vectors where the ith position

of e; is 0 and the rest of the positions are 1. Consider the k-variate
distribution which puts mass 1/k at each of these vectors. That is,
consider the random vector w such that P(w = e;) = 1/k,1 < i < k.
Let w; be the ith coordinate of w. Show that

(i) {w;} are exchangeable, and each w; has a Bernoulli distribution.
(ii) for any n # m, Corr(wn, wm) = — 25

(iii) as k — oo, for any fixed ¢, w; has a degenerate distribution.

. Extend the setup in the previous question to the case where each pos-

sible k-dimensional vectors has d coordinates 0 and rest have 1’s.
Suppose w;, 1 < i < k has a multinomial distribution with number of
trials k£ and equal success probability 1/k for each cell. Show that

(i) {w;} are exchangeable, and each w; has a Bernoulli distribution.
(ii) for any n # m, Corr(wn, wm) = — 5.

(iii) as k — oo, for any fixed 4, the asymptotic distribution of w; is

Poisson with mean 1.

iv) as k — oo, for any fixed i j, w; and w,; are asymptotically
j

independent.

2

. Suppose X; are ii.d. with mean p and variance o“. Suppose wy, ;

are multinomial with number of trials n and equal cell probabilities
1/n. Show that as n — oo, the distribution of n='/23""" (Xjw,,; —
X;), conditional on X7,...X,,..., converges almost surely to the nor-
mal with mean zero and variance 2. Show that the distribution of

n~1/23°" (X; — p) converges to the same asymptotic limit.

. Justify how the minimiser in (4.25) can be chosen in a measurable way.

Prove the following fact used in the proof of Theorem 4.3:

IE(N—1 295)4 = O(n™).

. Prove the following fact used in the proof of Theorem 4.3:

n~12m 3" Wihi(Y;), conditionally on the data {Y7,...,Y;,...} has
an asymptotic N(0,07) distribution where 02 = Vhy(Y;).
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9. Prove (4.34) used in the proof of Theorem 4.6.
10. Show that (4.40) follows from an application of Theorem 4.4.

11. Prove Corollary 4.2.
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Chapter 5

An Introduction to R

5.1 Introduction, installation, basics

This chapter is a soft introduction to the statistical software called R. We
will discuss how to conduct elementary data analysis, use built-in programs
and packages, write and run one’s own programs, in the context of the topics
covered in this book. All softwares have some specific advantages and several
deficiencies, and R is no exception. The two main reasons we consider R as the
software of choice are that it is completely free, and that this is perhaps
the most popular software among statisticians. Because of these reasons, a
very large number of statistical algorithms and procedures have been already
developed for the R environment. We have written a software package called
UStatBookABSC to accompany this book, containing as built-in functions
the R codes for several of the procedures discussed here. We discuss this

particular R package later in this chapter.

There are many texts and online notes on R, some are introductory, while
others present the concepts from statistical and computational viewpoints at
various levels of detail. A very small sample of recent references is Dalgaard
(2008); Matloff (2011). Many more are available for free download from the

internet, or for purchase.

For any questions relating to R, generally internet searches are adequate
to elicit answers or hints on how to proceed. This software runs on all stan-

dard operating systems, and the example codes that we present below will

hTM

run on various versions of Linux, Unix, Apple Macintos and Microsoft
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Windows™ with occasional minor modifications. We have strived for sim-
plicity and transparency and most of the development below is strictly for
pedagogical purposes. Some of the displayed output is edited in a minor
way to fit on the page. We assume essentially no knowledge of programming
languages or computational software.

The homepage for R is https://www.r-project.org/. Here, there are
instructions and links for downloading and installing the software. The first
step is to download and install the base distribution. Once installation of
the base distribution is complete and successful, there ought to be an icon on
the desktop (and/or elsewhere) that looks like the English letter R, generally
accompanied with some numbers, denoting the version number, in small print
below it.

Click on the R icon, and an R workspace comes up. The major component
of this is the R console, where one can type in data, R commands, and
where the standard on-screen output of R is shown. Graphics, like histograms,
boxplots or scatter plots, show up in a different panel.

Note the short description of R that comes right at the top of the R
console. Note in particular, that the software comes without any warranty.
A second statement says that R is a project with many contributors; many
such contributors have provided macro-programs to do specific tasks in R.
Such “contributed packages” are extremely useful, and later in this chapter
we discuss how to download, install, update and use them. Note however,
that R is open source, and while there are several extremely useful and im-
portant contributed packages, there is no quality guarantee of contributed
packages. The third statement in the R console is about how to use the
help, demo, and how to quit R. Many users install and use R-based inte-
grated development environment (IDE) software applications like R Studio,
available from https://www.rstudio.com/. Such IDE are often favored by
many users, and have several convenient features.

R is comprised of the core, base package, and several additional con-
tributed packages. The base package is necessary. Once that is installed and
running, one may download and install any of the contributed packages as
and when needed. The package accompanying this book, UStatBookABSC,
is one such contributed package. The simplest way of installing a contribu-
tion package is to click on packages in the top-menubar in the R workspace.
Other options, like using the command install.packages at the R workspace

prompt, or using the command line R CMD INSTALL are also available.
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Once a package, say UStatBookABSC (Chatterjee (2016)) is installed in
one’s computer using any of the above methods, the following command may

be used to access its contents:

> library(UStatBookABSC)

Packages and core R may occasionally need to be updated, for which the
steps are mostly similar to installation. Package installation, updating and
new package creation can also be done from inside R Studio, in some ways
more easily.

As a general rule, using the R help pages is very highly recommended.
They contain a lot more information than what is given below. The way to
obtain information about any command, say the print command, is to simply

type in

> 7print

If the exact R command is not known, just searching for it in generic terms
on the internet usually elicits what is needed.

Simple computations can be done by typing in the data and commands
at the R prompt, that is the “>” symbol in the R console. However, it is not
good practice to type in lengthy commands or programs in the R console
prompt, or corresponding places in any IDE. One should write R programs
using a text editor, save them as files, and then run them. R programs are
often called R scripts.

One common way of writing such scripts or programs is by using the built-
in editor in R. In the menubar in the R workspace, clicking on the File menu
followed by the New script menu opens the editor on an empty page where
one may write a new program. To edit an existing script, the menu button
Open script may be used. In order to run a program/script, one should
click on the Source menu button. The Change dir menu button allows one

to switch working directory.
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To check the working directory, use the command getwd ().

> getwd()
[1] "/Users/ABSC/Programs"

To change the working directory we use the command setwd () ;.

> setwd("/Users/ABSC/Programs/UStatBook")
> getwd()
[1] "/Users/ABSC/Programs/UStatBook"

Sometimes, but not always, one might want to come back to a work done
earlier on an R workspace. To facilitate this, R can save a workspace at the
end of a session. Also, when starting a new R session, one may begin with
a previously saved workspace. All of these are useful, if and when we want
to return to a previous piece of work in R. It is an inconvenience, however,
when one wants to do fresh work, and does not want older variable name
assignments and other objects stored in R memory to crop up. Also, a saved
workspace often takes up considerable storage space. Memory problems are
also known to occur. These issues are not huge problems for experts, but

often inconvenience beginners.

5.1.1 Conventions and rules

Note that R is case sensitive, thus a and A are considered different. In the
rest of the chapter, note the use of upper and lowercase letters through-
out the R commands. In particular, many standard built-in R commands
like help, print, plot, sum, sqrt, mean, var, cov, cor, median are
in lowercase, while others like R CMD BATCH are in uppercase, and some like
Rscript or UStatBookABSC have both.

The symbol # in an R script denotes a comment, which is skipped by
R when executing the script. Thus, this is an extremely convenient tool to

annotate and write remarks, explanatory notes and comments in R programs.
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It is a good practice to liberally annotate and provide explanatory notes in R
programs.

As with many other computer programming languages, the command x
= y in R means the following: the value of the object y is stored in the space
that we will denote by the name x. For example, x = 5 means we are storing
the number 5 in a particular chamber of the computer’s memory, that we
will call z, and that we can recall, edit, change or use, simply by it’s name
x. Instead of just assigning a number to the name/memory-space =, we
might assign a vector, matrix, data-frame, or any other “object”. A popular
convention, sometimes assiduously followed by R programmers, is to use x <-

5 for assigning the number 5 to the address z.

5.2 The first steps of R programming

As mentioned earlier, an effective and simpler way of programming in R is to
type in the commands in a file, and then execute those commands collectively
using the Source file command on the top menubar. For example, we
may create the file UStatBookCodes.R for the computational work related to
this section, and save it in the directory /Users/ABSC/Programs/UStatBook.
This may be done either externally in a text editor, or by using the “New File”
command from the R console. In order to clear out the contents that may be
lodged in the memory of R including removal of previously used variables and

functions, one may use the command

rm (list = 1s())

as the first line of the file UStatBookCodes.R. We run this file in R by clicking

on the “Source File” command. Thus

> source("/Users/ABSC/Programs/UStatBook/UStatBookCodes.R")

executes all the commands that we save in the file UStatBookCodes.R, which

we have saved in the directory /Users/ABSC/Programs/UStatBook.
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In fact, it is not necessary to start an interactive R session for running a
script saved as a file. At the terminal (“shell” in Unix, “command prompt”

in some other systems), the command

$ R CMD BATCH UStatBookCodes.R UStatBookOutFile.txt &

will run R to execute all the commands in the file UStatBookCodes.R, and
save any resulting output to the file UStatBookOutFile.txt. The ampersand
at the end is useful for Linux, Unix and Macintosh users, whereby the pro-
cesses can be run in the background, and not be subject to either inadvertent
stopping and will not require continuous monitoring. Being able to execute
R files from the terminal is extremely useful when running large programs,
which is often the case for Statistics research. A more recent alternative to
the R CMD BATCH command is Rscript. Considerable additional flexibility is
available for advanced users, the help pages contain relevant details.

One can work with several kinds of variables in R. Each single, or scalar,
variable can be of type numeric, double, integer, logical or character.
A collection of such scalars can be gathered in a vector, or a matrix. For

example, the command

> x = vector(length = 5)

declares x to be a vector of length 5. If we type in

> print(x)

the output is

[1] FALSE FALSE FALSE FALSE FALSE




Initial steps of data analysis 133

This shows that a vector of length 5 has been created and assigned the address
z. The “*” operation between two vectors of equal length produces another

vector of same length, whose elements are the coordinatewise product. Thus,

> z = xX*y
> print(z)
[1] 1 38 -96 32

One use of the above is to get inner products, as in sum (x * y):

> InnerProduct = sum (x * y)
> print (InnerProduct)
[1] -25

Similarly, we can get the norm of any vector x as follows:

> Norm = sqrt(sum( x * x))
> print (Norm)
[1] 38.07887

The functions InnerProduct and Norm above are built in functions in the
package UStatBookABSC for users, with some additional details to handle the

case where the vectors x and y have missing values.

5.3 Initial steps of data analysis

In this section, we discuss some simple data analysis steps that ought to be
part of the initial steps of any scientific analysis. Perhaps the most important
initial step after reading in the data is to get some idea about the nature of
the variables, as with the str(D) command. Then, one may wish to obtain
some summary statistics for the one dimensional marginal distribution of
each variable, and consider two dimensional marginals to understand the

relationship between the variables.
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Figure 5.1: Histogram of rainfall amounts on rainy days in Kolkata during
the monsoon season of 2012.

5.3.1 A dataset

For illustration purposes, we shall use the data on precipitation in Kolkata,
India in 2012, during the months June to September, which corresponds ap-
proximately to the monsoon season. It consists of fifty-one rows and four
columns, where the columns are on the date of precipitation, the precipita-
tion amount in millimeters, the maximum and the minimum temperature for
that day in degree Celcius. Days in which the precipitation amount was below
0.099 millimeters are not included. Suppose for the moment this dataset is
available as a comma separated value (csv) file in our computer in the direc-
tory /Users/ABSC/Programs/UStatBook under the filename Kolkatal2.csv.

We can insert it in our R session as a data.frame called Kol _Precip as follows

> setwd("/Users/ABSC/Programs/UStatBook")
> Kol _Precip = read.csv(file = "Kolkatal2.csv")

We urge the readers to experiment with different kinds of data files, and
read the documentation corresponding to 7read.table. For example, readers
may consider reading in other kinds of text files where the values are not
separated by commas, where each row is not necessarily complete, and where

missing values are depicted in various ways, and where the data resides in a
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Density of Kolkata-2012 Rainfall
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Figure 5.2: Density plot of rainfall amounts on rainy days in Kolkata during
the monsoon season of 2012.

directory different from the one where the R code resides.

For advanced users, the function scan and various other functions in spe-
cialized packages are available for reading in more complex files. For example,
the package fmri contains the function read.NIFTI for reading £fMRI image
datasets, and the package ncdf4 has functions for reading NetCDF format
commonly used for storing climate and related datasets.

For convenience of the readers, we have included the above dataset on
precipitation in Kolkata in two formats in the package UStatBookABSC. The
first is a format which is convenient both for the reader and for R, and may

be accessed as follows:

> library(UStatBookABSC)
>data(CCU12_Precip)
>1s(CCU12_Precip)
>?7CCU12_Precip

The last command above brings up the help page for the dataset, which
also contains an executable example.

Suppose after accessing this data inside R, we wish to save a copy of it as a
comma separated value text file under the name filename Kolk12Precip.csv.

This is easily done inside R as follows
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Figure 5.3: Scatter plots of rainfall, maximum and minimum temperature
amounts on rainy days in Kolkata during the monsoon season of 2012.

> library(UStatBookABSC)
>data(CCU12_Precip)
> write.csv(CCU12_Precip, file = "Kolkl2Precip.csv",

row.names = FALSE)

As in the case of reading of files, writing of files can also be done in various

formats.
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5.3.2 Exploring the data

We consider the CCU12_Precip data from the package UStatBookABSC for
this section. Standard summary statistics, like the mean, variance, standard
deviation, median are obtained simply by typing in obvious commands. The
following easy to follow commands set are written in a file and are run from

the source:

library (UStatBookABSC)
Rainfall = CCU12_Precip$Precip;
print("Average rainfall on a rainy day

in Kolkata in 2012 monsoon is:")
print(mean(Rainfall), digits = 3);
print(paste("Variance of rainfall is", var(Rainfall)));
print(paste("and the standard deviation is",

sd(Rainfall), "while"));
print(paste("the median rainfall is",
median(Rainfall), "and"));

print("here is some summary statistics");

print (summary (Rainfall), digits = 2);

and this produces the output

> print("Average rainfall on a rainy day
in Kolkata in 2012 monsoon is:")
[1] "Average rainfall on a rainy day
in Kolkata in 2012 monsoon is:"
> print(mean(Rainfall), digits = 3);
[1] 10.7
> print(paste("Variance of rainfall is", var(Rainfall)));
[1] "Variance of rainfall is 121.999325490196"
> print(paste("and the standard deviation is",
sd(Rainfall), "while"));

[1] "and the standard deviation is
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11.0453304835209 while"
> print(paste("the median rainfall is",
median(Rainfall), "and"));

[1] "the median rainfall is 7.9 and"
> print("here is some summary statistics");
[1] "here is some summary statistics"
> print(summary(Rainfall), digits = 2);

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3 2.0 7.9 10.7 14.0 42.9

Note that digits in print command refers to the minimum number of
significant digits to print. See help manual for details and other formatting
options.

The above R commands and output demonstrate how to use some built-
in simple functions like mean, var, sd, median, summary. Note that the
median value of rainfall in millimeters seem considerably less compared to
the mean, which is also reflected in the gap between the third quartile of
the univariate empirical distribution of Rainfall. More details about the
univariate empirical distribution can be obtained using the ecdf function.

One should consider visual depictions of the data also. We run the fol-

lowing commands

hist(Rainfall);
dev.new();
plot(density(Rainfall), xlim = c(0,45),
main = "Density of Kolkata-2012 Rainfall");

and obtain the histogram and the density plot of the Rainfall data presented
respectively in Figures 5.1 and 5.2. The command dev.new() requires R to
put the second plot in a separate window. Note the additional details
supplied to the plot command for the density plot, which controls the limit
of the x-axis of the plotting region, and places the title on top of the plot.
There are many more parameters that can be set to make the graphical output

from R pretty, and readers should explore those. In fact, one great advantage
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of R as a software is its versatility in graphics. Also note that such graphical

outputs can be saved automatically in several different formats.

If we run the commands

MaxTemp = CCU12_Precip$TMax;
MinTemp = CCU12_Precip$TMin;
print ("The covariance of the max and min temperature is ");

print (cov(MaxTemp, MinTemp));

we get

> print("The covariance of the max
and min temperature is ");
[1] "The covariance of the max and min temperature is "
> print(cov(MaxTemp, MinTemp)) ;
[1] 0.5833529

which obtains the covariance between the maximum and minimum tempera-

ture on a rainy day as 0.58. We might want to test if the difference between

the maximum and minimum temperature on those days is, say, 20 degrees

Celcius, and one way of conducting such a test is by using the t.test as

follows:

> t.test(MaxTemp, MinTemp, mu = 10)
Welch Two Sample t-test

data: MaxTemp and MinTemp

t = -7.1276, df = 67.392, p-value = 8.707e-10
alternative hypothesis: true difference

in means is not equal to 10

95 percent confidence interval:

6.955590 8.287547

sample estimates:
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mean of x mean of y
33.55686 25.93529

Note that we do not recommend the above two-sample test for the present
data: the maximum and minimum temperature for a given day are very likely
related, and we have not verified that assumptions compatible with a two-
sample t.test hold. The above computation is merely for displaying the
syntax of how to conduct a two-sample test in R.

Let us now conduct a paired t-test, perhaps with the alternative hypothesis
that the true difference is less than 10 degree Celcius keeping in mind that
Kolkata is in a tropical climate region. Additionally, suppose we want a 99%

one-sided confidence interval. This is implemented as follows:

> t.test(MaxTemp, MinTemp, mu = 10, paired = TRUE,
alternative = "less", conf.level = 0.99)
Paired t-test
data: MaxTemp and MinTemp
t = -7.9962, df = 50, p-value = 8.429e-11
alternative hypothesis: true difference
in means is less than 10
99 percent confidence interval:
-Inf 8.336408
sample estimates:
mean of the differences
7.621569

Additionally, we may decide not to rely on the t.test only, and conduct

a signed-rank test.

> wilcox.test(MaxTemp, MinTemp, mu = 10, paired = TRUE,
alternative = "less", conf.int = TRUE, conf.level = 0.99)

Wilcoxon signed rank test with continuity correction
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data: MaxTemp and MinTemp
V = 82.5, p-value = 1.109e-07
alternative hypothesis: true location shift is less than 10
99 percent confidence interval:
-Inf 7.900037
sample estimates:
(pseudo)median
7.500018

The above steps of separating out the variables Rainfall, MaxTemp,
MinTemp, and then running univariate or bivariate simplistic analysis is not
recommended. In practice we should leave the data frame structure unal-
tered as far as possible. We demonstrate how to take only the three relevant
variables from the dataset, compute summary statistics, compute the 3 x 3
variance-covariance matrix, followed by a scatterplot of each variable against
the others as shown in Figure 5.3, then conduct a linear regression of the

precipitation as a function of the maximum and minimum temperatures.

> KolData = subset(CCU12_Precip, select = -Date);
> summary (KolData)
Precip TMax TMin
Min. : 0.30 Min. :26.60  Min. :23.80
1st Qu.: 2.00 1st Qu.:32.65 1st Qu.:25.25
Median : 7.90 Median :33.50 Median :25.90
Mean :10.72 Mean :33.56 Mean :25.94
3rd Qu.:14.00 3rd Qu.:34.60 3rd Qu.:26.50
Max. :42.90 Max. :38.20 Max. :27.60
> var (KolData)
Precip TMax TMin
Precip 121.999325 -12.4834510 -4.4887765
TMax  -12.483451  4.8145020 0.5833529
TMin -4.488776  0.5833529 0.8643294
> plot(KolData, pch = "x");
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> Kol.LM = 1m(Precip ~ TMax + TMin, data = KolData);
> print (summary(Kol.LM));

Call:

Im(formula = Precip ~ TMax + TMin, data = KolData)

Residuals:

Min 1Q Median 3Q Max
-22.648 -4.792 -1.078 3.646 30.336
Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 179.7416 37.0017  4.858 1.31e-05 **¥x
TMax -2.1385 0.6081 -3.517 0.000966 x*x**
TMin -3.7500 1.4352 -2.613 0.011953 *
Residual standard error: 9.041 on 48 degrees of freedom
Multiple R-squared: 0.3568,Adjusted R-squared: 0.33
F-statistic: 13.31 on 2 and 48 DF, p-value: 2.514e-05

5.3.3 Writing functions

In any programming language including R, it is important to know how to
write functions, so as to have one set of codes that may be used repeatedly
throughout the main program, to make programs more easily readable and
interpretable, and to reduce the possibility of errors in repeated computations.
All packages in R, including the package UStatBookABSC, is just a collection
of such functions, with documentation and explanations on how to use those
functions.

We illustrate how to write functions with two examples. The first shows
how to compute the Euclidean inner product of two vectors x and y, which as
we know is sum(x*y) in R notation. A simple function to do this computation

is as follows:

I.Product = function( x, y){

T = sum(x*y)
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return(T)

}

The first line says that I.Product is the name of the function, and that
its arguments are x, y. The second line computes the function, and the third
line returns to the main program the computed value of the function. Here

is how this program may be used:

A=c(1, 2, 3);

BVec = c(0, 2, -1);

I = I.Product(A, BVec);
print (I)

[11 1

Note that we deliberately used the vectors A and BVec as arguments, the
names of the arguments do not need to match how the function is written.
Also, once the function I.Product is in the system, it can be used repeat-
edly. This may not seem a big deal for a simple function like I.Product,
but in reality many functions are much more complex and elaborate, and
their codification as standalone functions helps programming greatly. Also,
even simple functions typically require checks and conditions to prevent er-
rors and use with incompatible arguments. See, for example, the code for
function InnerProduct in the UStatBookABSC package, which does the same
computation as I.Product, but has checks in place to ensure that both the
vectors used as arguments are numeric, they have the same length, and has

additional methodological steps to handle missing values in either argument.

5.3.4 Computing multivariate medians

We now give two examples on computing multivariate medians.

Example 5.1(L;-median computation): Recall the Li-median from Exam-
ple 2.7. Here, we show how to compute it, using built-in functions from

the package UStatBookABSC. The function that we will use is L1Regression,



144 Chapter 5. An Introduction to R

which is actually a function to compute multivariate median regression esti-
mators. Details about its usage in a regression context is given in Section 5.4,
here we illustrate how the same function may be used to obtain multivari-
ate medians. We would like to obtain the median of the three dimensional
random variable (Precip, TMax, TMin) from our data. This is done by
fitting the L, regression function to this vector, using only the intercept as a

covariate. The following code may be used:

>DataY = cbind(CCU12_Precip$Precip, CCU12_Precip$TMax,
CCU12_Precip$TMin) ;
>DataX = rep(l, length(CCU12_Precip$Precip));
>M.L1 = LlRegression(DataY, DataX);
> print(M.L1$BetaHat)
[,1] [,2] [,3]
[1,] 8.154253 33.52507 25.93579

O

Example 5.2(Oja-median computation): In this example, we illustrate how
to compute the Oja-median, introduced in Example 2.8. The function for
this is also built in the package UStatBookABSC. The following code obtains
the Oja-median for (Precip, TMax, TMin):

>Data.CCU = CCU12_Precipl[,-1];
>M.0ja = OjaMedian(Data.CCU);
>print(M.0ja)

Precip TMax TMin
9.36444 33.65908 26.16204

Notice that the Oja-median and the L;-median have similar, but not iden-
tical, estimates. In general, computation of Oja-median is more involved since
determinants of several matrices have to be computed for each optimization
step. O
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5.4 Multivariate median regression

Multivariate median regression
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Figure 5.4: Scatter plot of slope parameters from the multivariate response
Lq-regression fitting. The filled-in larger circle is the L;-median.

We conclude this chapter with an example of how to compute an M,,-
estimator and perform resampling for it. We consider the two-dimensional
variable (Precip, TMax) as the response variable, and TMin as the explana-
tory variable along with an intercept term. This is a generalization of Exam-
ple 2.7 presented in Chapter 2. We consider the case where the i-th observa-
tion variable Y; € R¢ with d = 2 in the present example. We assume that
the Li-median 6, € R? of Y; may be expressed as a linear transformation
of covariates x; € RP, thus 6; = BTx; for some unknown parameter matrix
B € R? x RP. This is a multivariate response version of quantile regression

(Koenker and Bassett Jr, 1978). In our data example, we have p = 2, with



146 Chapter 5. An Introduction to R

the first element of each covariate vector being 1 for the intercept term, and
the second element being the TMin observation. Thus, the parameter for
the present problem is the 2 x 2 matrix B. Note that the elements of the
response variable (Precip, TMax) are potentially physically related to each
other by the Clausius-Clapyron relation (see Dietz and Chatterjee (2014)),
and the data analysis of this section is motivated by the need to understand
the nature of this relationship conditional on the covariate TMin. We use the
function L1Regression in the package UStatBookABSC to obtain the estima-

tor B minimizing

)

U, (B)=> |Y; - B"x;
i=1

where recall that |a| = [>_ a?]'/2 is the Euclidean norm of a.

The following code implements the above task:

>DataY
>DataX

cbind (CCU12_Precip$Precip, CCU12_Precip$TMax) ;

cbind(rep(1, length(CCU12_Precip$Precip)),
CCU12_Precip$TMin)

>A2 = L1Regression(DataY, DataX)

>print (A2)

> print(A2)

$Iteration
[1] 4

$Convergence
[1] 0.0005873908

$BetaHat

[,1] [,2]
[1,] 164.803552 16.5318273
[2,] -5.866605 0.6498325

We used default choices of the tuning parameters of L1Regression, which
can be queried using ?L1Regression. In particular, the algorithm used inside

the function is iterative in nature, and if Ej is the estimate of B at iteration
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step j, we compute the relative change in norm |B;., — B;|/|B;|, where |B]|
is the Euclidean norm of the vectorized version of B, ie, when the columns
of B are stacked one below another to form a pd-length vector. We declare
convergence of the algorithm if this relative change in norm is less than e,
and we use € = 0.001 here.

The above display shows that the function Liregression has a list as the
output. The first item states that convergence occurred at the 4-th iteration
step, and that the relative change in norm at the last step was 0.0005, and

then the final B value is shown. Thus we have

B 164.803552 16.5318273
—5.866605 0.6498325 .

We also use the function WLS from the package UStatBookABSC to obtain

a least squares estimatorB of B, for which the results are displayed below:

> A3 = WLS(DataY, DataX)
> print(A3);

[,1] [,2]
[1,] 145.412968 16.0526220
[2,] -5.193363 0.6749197

Thus we have

B 145.412968 16.0526220
-\ —5.193363  0.6749197

It may be of interest to study the distribution of B[2,], the second row of
B , which contains the slope parameters for the covariate TMin for the two re-
sponse variables. We use the generalized bootstrap with multinomial weights
to get a consistent distributional approximation of 3[2, ]. The following code

implements this task:

>B = 500;
>Probabilities = rep(1l, nrow(DataY))
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>BootWeight = rmultinom(B, nrow(DataY), Probabilities);

>L1Regression.Boot = 1list();

>T2Effect = matrix( nrow = B, ncol = ncol(DataY));

>for (b in 1:B){

>Weights.Boot = diag(BootWeight[, bl);

>L1Regression.Boot[[b]] = L1iRegression(DataY, DataX,
Weights = Weights.Boot);

>T2Effect[b, ] = L1Regression.Boot[[b]]$BetaHat[2,];

>3}

In the above, we set the resampling Monte Carlo size at B = 500. The next
two steps generates the multinomial weights for which we require the package
MASS, which has been called inside UStatBookABSC anyway. The next steps
implement a loop where L1Regression is repeatedly implemented with the
resampling weights, the entire results stored in the list L1Regression.Boot
and further, just the relevant slope parameters stored also in the matrix
T2Effect.

We now present a graphical display of the above results with the code

> plot(T2Effect, xlab = "Beta.Precip", ylab = "Beta.TMax",
main = "Multivariate median regression", pch = "x")
>points (A2$BetaHat [2,1] ,A2$BetaHat [2,2], col = 2,
pch = 19, cex = 2);
>points(A3[2,1],A3[2,2], col = 3, pch = 22,
cex = 2, bg = 3);

The above code is for plotting the resampling estimates of B [2,], stored
in the matrix T2Effect. On this scatter plot, we overlay the original B[2,],
as a big filled-in circle. The commands col =2 tells R to use red color for
the point on the computer screen and in color print outs, pch = 19 tells it
to depict the point with a filled-in red circle, and cex = 2 tells it to increase

the size of the point. The output from the above code is given in Figure 5.4.
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5.5 Exercises

1. Write a R function that can implement the Bayesian bootstrap on the

L1-regression example for the Kolkata precipitation data.

2. Write a function to implement the m-out-of-n bootstrap on the Oja-
median for the Kolkata precipitation data. Discuss how can the results
from this computation may be used to obtain a confidence region for

the Oja-median.

3. Use resampling to obtain 1 — « confidence intervals for each element of

the Lp-regression slope matrix.
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