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Preface

“FPGAs” — “What?”

“Field programmable gate arrays
that are cool programmable chips.” — “I see! Programmable. Great.
I have programming skills.
So, this should be an easy task for me.”

“Well, not really,
but I can help you.”

Dear valued reader, when software engineers and hardware engineers talk about
FPGA:s, often two worlds are clashing together, each with different mindsets, skills,
and expectations. Until recently, FPGA programming was mostly a hardware engi-
neering discipline carried out by specially trained people. The design productivity of
FPGA design was rather low, and for the time a hardware engineer was fiddling out
a few flipping bits, a software engineer might have implemented his new large-scale
cloud service application running on a big data center. Please note that we wrote
“was rather low!” Like the widespread success of the processor took off with the
development of expressive languages and corresponding compilers, this is currently
happening for FPGAs. For decades, FPGA programming was carried out at very
low abstraction levels (comparable to assembly language), but during recent years
several compilers have emerged that can bring an algorithm to an FPGA at a quality
far beyond what human handcrafting would be able to do. Currently, the software
and hardware worlds are strongly converging. Software is going parallel, which has
a long tradition in hardware design and vice versa, hardware gets more and more
designed from expressive languages. This book aims at closing the gap between
these two worlds.

Instead of following a programming model that is tailored to CPUs (following
the so-called von Neumann computer architecture model), FPGA programming can
be considered rather as molding the liquid silicon [IBET10] to create a certain
desired functionality, and FPGAs allow computing without processors [Sinll].
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This gives an engineer full control over the machine itself and not only over the
program a machine runs. For example, if we want to perform DNA sequencing.
Then, let us build a reconfigurable processor which is tailored to small alphabet
string matching and achieve 395 million base pairs per second throughput [ALJ15].
Or we need fast AES encryption? Then build a custom compute accelerator on an
FPGA, and get 260 Gbps throughput [SS15]. As a reference, the fastest Intel Core
7 Extreme Edition 17-980X CPU does not even yield that memory throughput, and
this processor provides three times less AES throughput when using all 12 cores
and despite having special hardware support for AES. And if we take an i7 Extreme
Edition 975x without AES hardware support, the FPGA would be 52 times faster.
Please note that the FPGA delivers its AES throughput on one problem, while the
software solutions provide only high aggregated performance for AES on different
problems. On the same problem, the FPGA will be significantly faster. And not
only that the FPGA is much faster, it will do the job at a fraction of the power
consumption.

Does implementing AES for an FPGA sound too complicated? Well, tuning the
performance for AES on, for example, a GPU (that is optimized for floating-point
number-crunching instead of bit-level operations) is likely to be harder, will still be
slower than an FPGA implementation, and would burn at least an order of magnitude
more power. So why not getting it right in the first place? This is what this book
wants to help with.

For making this happen, this book brings together leading experts from the
industry and academia across the globe to cover:

Theoretical foundations and background on computer architectures, program-
ming models, and hardware compilation techniques (throughout the first three
chapters).

Programming languages and compilers for FPGAs from a rather practical point
of view with various case studies. This includes six state-of-the-art and emerg-
ing commercial approaches (located in Part I, beginning at page 61) as well as
three established academic compilers (located in Part IT, beginning at page 173).
This shall demonstrate that there is a large ecosystem for FPGA programming
that software engineers can choose from to find the best language and compiler
environment for virtually any given problem.

FPGA runtime environments are needed for building complex systems and for
running and managing them. This provides a higher abstraction in the system
allowing to focus more on applications while abstracting from many low-level
details of the underlying FPGA hardware (as covered in Part III, beginning at
page 225).

Ready-to-go approaches allow building a complex system on a chip (SoC) and
using pre-implemented programmable architectures on an FPGA without
any need for hardware programming (as revealed in Part IV, starting from
page 259).

With all this, we intend making reconfigurable FPGA technology more acces-
sible to software programmers and to moderate between hardware and software
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engineers. FPGA technology provides maybe the most promising answer for
improving performance and energy efficiency of computers at the end of CMOS
scaling. To make this happen, it will need hardware and software engineers working
harmonically together. Let us start with this today!

This book is written for software engineers who want to know more about FPGAs
and how to use them. Consequently, we do not assume any hardware engineering
background. In a few cases, where further background information is provided,
this book is using terms that are common in computer engineering (e.g., “flip-
flop””) and compiler construction (e.g., “scheduling”) that might not be thoroughly
introduced but that are assumed to be clear from the context for most readers.
This was done by intention as we do not want to fill the book with all possible
background information while eventually hiding the big picture, which is what are
FPGAs good for and how can they be programmed and used by software engineers.
Such sections should be seen as optional and should not be seen as essential when
reading this book. Those terms are also nicely presented on Wikipedia, if further
explanation might be needed. In addition to software engineers, this book can also
serve as a textbook in university courses on alternative programming approaches and
acceleration techniques. Finally, this book is also relevant for hardware engineers
who want to get an overview on how to enhance design productivity with latest
languages and tools.

We thank all the chapter authors for their outstanding contributions, their
feedback, and their will to compile a comprehensive textbook targeting software
engineers. We also thank Springer, especially Charles Glaser for his encouragement
to develop this book and Hemalatha Gunasekaran for her support. Furthermore, we
thank Mikel Lujén for his feedback and suggestions to improve this book. Finally,
we thank Philippa Ordnung for providing the Index. All editor’s and author’s profit
of the book sales will be donated to the United Nations Children’s Fund (UNICEF).

Manchester, UK Dirk Koch
Erlangen, Germany Frank Hannig
Erlangen, Germany Daniel Ziener
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Chapter 1
FPGA Versus Software Programming: Why,

When, and How?

Dirk Koch, Daniel Ziener, and Frank Hannig

This chapter provides background information for readers who are interested in
the philosophy and technology behind FPGAs. We present this from a software
engineer’s viewpoint without hiding the hardware specific characteristics of FPGAs.
Like it is very often not necessary to understand the internals of a CPU when
developing software or applications (as in some cases a developer does not even
know on which kind of CPU the code will be executed), this chapter should not be
seen as compulsory. However, for performance tuning (an obvious reason for using
accelerator hardware), some deeper background behind the used target technology
is typically needed.

This chapter compromises on the abstraction used for the presentation and
it provides a broader picture on FPGAs, including their compute paradigm, their
underlying technology, and how they can be used and programmed. At many places,
we have added more detailed information on FPGA technology and references to
further background information. The presentation will follow a top-down approach
and for the beginning, we can see an FPGA as a programmable chip that, depending
on the device capacity, provides thousands to a few million bit-level processing
elements (also called logic cells) that can implement any elementary logic function
(e.g., any logic gate with a hand full inputs). These tiny processing elements are laid
out regularly on the chip and a large flexible interconnection network (also called
routing fabric with in some cases millions of programmable switches and wires

D. Koch (B4)
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between these processing elements) allows to build more complex digital circuits
from those logic cells. This allows implementing any digital circuit, as long as it fits
the FPGA capacity.

1.1 Software and Hardware Programmability

Programmability allows it to adapt a device to perform different tasks using the same
physical real estate (regardless of whether it is a CPU or FPGA). This is useful
for sharing resources among different tasks and therefore for reusing resources
over time, for using the same device for various applications (and hence allowing
for lower device cost due to higher volume mass production), and for allowing
adaptations and customizations in the field (e.g., fixing bugs or installing new
applications).

1.1.1 Compute Paradigms

We all have heard about CPUs, GPUs, FPGAs and probably a couple of further
ways to perform computations. The following paragraphs will discuss the distinct
models, also known as compute paradigms, for the most popular processing options
in more detail.

Traditional von Neumann Model

The most popular compute paradigm is the von Neumann model where a processor
fetches instructions (stated by a program counter), decodes them, fetches operands,
processes them by an Arithmetic Logic Unit (ALU) and writes them to a register
file or memory. This takes (1) considerable resources (i.e. real estate) on the chip
for the instruction fetch and decode units, (2) power these units take, and (3) I/O
throughput for getting the instruction stream into the processor. This is known as
the von Neuman bottleneck that in particular arises if instructions and data transfers
to memory share the same I/O bus. This might need throttling down the machine
because instructions cannot be fetched fast enough. All modern processors follow a
Harvard architecture with separate caches for instructions and data which, however,
still has many of the shortcomings of the von Neumann model. An illustration of the
von Neumann model is given in Fig. 1.1a.

Vector Processing and SIMD

One major approach applied to many popular processors for improving the work
done per instruction was adding vector units. As shown in Fig. 1.1b, a vector unit



1 FPGA Versus Software Programming: Why, When, and How? 3

a b
instruction
stream operand stream
N N N
ST a, b, ST | |a,|a5|a;(a, b, |bg[bs|b,
ACC X, Yo ACC || x5 %, | X, | X, Ya|Ya|YilYo
ROR ks I, ROR || ks | Ky [ Ky (Ko | {1 [ [l ] 1o |
ADD a, b, ADD | |a,|a,|a,|a, b, |b,|b, | b,
MUL 1 il YTV gt A A A
LD > A0 LD >
ST ST |~
ACC 0 ACC
result stream
CPU GPU vector processing
c
1)
©
DMA X + +— E 1 DMA
8
42— 24— E
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Fig. 1.1 Compute paradigms. (a) Traditional von Neumann model with a CPU decoding an
instruction stream, fetching operands, processing them and writing results. (b) Vector processing
achieves higher throughput by processing multiple values in parallel by sharing the same
instruction stream (i.e. the same control flow). Multiple vector units can work in parallel on
different data items, which is the model deployed in GPUs. (¢) Reconfigurable datapath on
an FPGA. Instead of performing different instructions on a single ALU, a chain of dedicated
processing stages is used in a pipelined fashion. If resources and I/O throughput permit, the pipeline
might also use vector processing or multiple pipelines may process in parallel

performs multiple identical operations on a set of input operands simultaneously,
so the effort for instruction fetching and decoding is amortized on more actual
processing work. Famous examples for vector extensions are the MMX technology
introduced by Intel in their Pentium processors in 1997, followed by AMD with
3DNow! and ARM with the NEON vector extension in the ARM Cortex-A series.
Vector units are also referred to as Single Instruction Multiple Data (SIMD) units.
While vector processing is promising from an architectural point of view, it is
challenging for compilers to harness this kind of computing and much of the code
using vector units is written by hand using assembly language.
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GPU Processing

For further improving processing performance (mostly driven by video processing
for computer games), large amounts of lightweight vector processing elements have
been integrated in Graphics Processor Units (GPUs). Here, lightweight means a
simple instruction fetch and decode unit for controlling the vector units for improved
performance-per-energy levels. However, communication between cores (or with
the host machine) is done through global shared memory (i.e., each core can access
any of the on-board GPU memory). As a consequence, with many hundreds of
vector units on a single GPU, the required memory bandwidth of GPUs is enormous
and despite a significant amount of on-chip caches. High-end GPUs factor this in by
providing hundreds of gigabytes of memory throughput which takes a considerable
amount of energy. For example, according to Vermij et al. [VFHB14], about half
the energy is used by the shared memory, the L2 Cache, on-chip communication,
and by the memory controllers over a series of benchmarks running on a GPU. As
a reference, the corresponding power breakdown for a Xeon E5-2630 showed that
“around 50% of the energy goes to the three levels of cache, and another 20% to
30% is spent on the memory controllers” [VFHB14].

GPU processing can work well on data parallel problems, like most graphics
processing tasks that work on independent pixels or vertices, but problems that
require computing a global result, synchronization will be needed as described in the
following Sect. 1.1.2. For example in Fig. 1.1, the executed program is an unrolled
loop (meaning we skipped any loop control instructions) that accumulates a result
together. While we might be able to distribute the compute problem to parallel
vector units, as illustrated in Fig. 1.1b (meaning that different processing elements
compute a different part of the problem), we still have to accumulate a final result
over all used vector units (see the ACC accumulate instruction in the examples that
computes Rp = Rop + R;). Depending on the problem, the synchronization effort
can actually exceed the processing time and the GPU cores will spend more time on
synchronization spinlocking than actually on providing useful work.

FPGA Datapath

As FPGAs can implement any digital circuit, they can implement architectures that
follow the von Neuman, the vector, or the GPU model. This is in many cases a
reasonable way to use FPGAs technology to implement another programmable
architecture on top of the FPGA fabric. The FPGA will then mimic another
programmable core (e.g., a well known CPU or a specialized programmable device)
that is then programmed with rather conventional software developing techniques.
This concept is known as hardware overlays and is covered in more detail in
Chap. 15 for a systolic processor array. This is a computer architecture using small
CPU-like processing elements that typically have little local memory and a next
neighbor communication infrastructure. Note that the capacity of today’s high
density FPGAs allows easily to host several hundred 32-bit processors including



1 FPGA Versus Software Programming: Why, When, and How? 5

a suitable infrastructure (with memories, on chip networks, and I/O peripherals) on
a single device. A vector overlay is available with the MXP Matrix Processor from
VectorBlox Computing Inc. That vector processor can deliver for some applications
a 100x speedup over a baseline FPGA softcore processor and the design process is
purely carried out using software programming.

A way we can look at a processor is similar to having a universal worker who
works off a job list (its program). However, if we take this analogy and compare
it with how we perform industrial mass production, then we see that a different
approach has been proven to perform much better: the assembly belt. The way
an assembly belt production is orchestrated is to locate highly specialized and
optimized workers (or machines) along a network of conveyor belts that move the
product to produce (e.g., a car) and materials across the factory. This is exactly the
idea behind the FPGA datapath paradigm where specialized processing elements
form a processing pipeline and instead of material, data is streamed between and
through these processing elements. As shown in Fig. 1.1c, there is no instruction
stream and the original instruction sequence is decomposed in a chain of simple
arithmetic operators. Consequently, there is no need for instruction fetch or decode,
this is encoded directly into the structure of the datapath.

When arranging a factory for efficient production, this can include a very
complex arrangement of workers, machines, and conveyor belts. Similarly, mapping
certain computations onto an FPGA might need a complex arrangement of process-
ing elements (or accelerator modules) with multiple processing pipelines that might
split or join. Due to the enormous flexibility of the reconfigurable interconnection
network provided by the FPGA, we can map virtually any communication depen-
dency between processing elements (e.g., streaming, broadcast, multicast, bus-based
communication, or even networks on chip). To summarize this: with FPGAs, we
can tailor the machine to the problem, while with CPUs/GPUs we can only tailor
the implementation to the machine.

While the clock frequency of such a processing pipeline on an FPGA is rather low
with commonly only a few 100 MHz, we can start a new iteration in each operational
cycle. A CPU, in contrast, has to rush through all instructions of a loop body before
the next iteration can be started. So with longer pipelines, the speedup of a datapath
implemented on an FPGA can be enormous. For example, the Maxeler OpenSPL
compiler (which is introduced in Chap. 5) uses several of the High-Level Synthesis
(HLS) techniques that are described in more detail in Chap. 2. Starting from a Java-
like description, this compiler can automatically generate processing pipelines with
eventually over a thousand pipeline stages on a single FPGA. And the Maxeler
compiler is further able to exploit multiple chained FPGAs for implementing even
larger pipelines.

As the clock frequency of processors is not likely to increase significantly
and because the improvement in the micro architecture will probably not result
in major performance increases, we cannot expect to see substantial single core

Thttp://vectorblox.com/about-technology/applications/.
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(or thread) performance boosts in the near future. However, to fulfill demands for
more performance, parallel execution has to be applied. In the last paragraph, it was
described that parallel processing might often work well on GPUs for computing
data parallel problems by distributing the problem to many GPU cores that then
perform the same program but on different input data. This can be seen as horizontal
scaling (or horizontal parallelism), because instead of running sequentially through
a piece of code on one core, multiple cores are working side-by-side in this
model. This can, of course, be applied to FPGAs. In addition, FPGAs allow for
further vertical scaling (or vertical parallelism) where different processing elements
perform different operations (typically in a pipelined fashion). If we assume, for
example, a sequence of instructions in a loop body, it is not easy to parallelize the
loop body by executing the first half of the instructions on one CPU and the other
half of the instructions on another CPU. On an FPGA, however, this can be applied
to any extend and all the way to individual instructions, as it is the case in an FPGA
datapath. In other words, parallelizing an algorithm to FPGAs can in some cases
be much easier performed than it would be possible for a multi core processors or
GPUs. And with a rising demand for parallelizing algorithms it is more and more
worth looking into FPGA programming.

1.1.2 Flexibility and Customization

Programming is used to solve specific tasks and the target platform (e.g., a processor
or an FPGA) has to support running all tasks. We could say that virtually all
available programmable platforms are Turing complete and therefore that we are
(at least in theory) able to solve any task on virtually any programmable platform
(assuming that we are not bound by memory). However, depending on the problem
or algorithm that we want to solve, different programmable platforms are better
suited than others. This is of course the reason for the large variety of programmable
platforms. The following list states the benefits of some programmable architec-
tures:

CPUs are specifically good when dealing with control-dominant problems. This is
for example the case when some code contains many if-then-else or case
statements. A lot of operating systems, GUIs, and all sorts of complex state
machines fall into this category. Furthermore, CPUs are very adaptive and good
at executing a large variety of different tasks reasonably well. Moreover, CPUs
can change the executed program in just a couple of clock cycles (which is
typically much less than a microsecond).

GPUs perform well on data-parallel problems that can be vectorized (for using
the single instruction multiple data (SIMD) units available on the GPU thread
processing elements) and for problems that need only little control flow and
little synchronization with other threads or tasks. This holds in particular for
floating-point computations, as heavily used in graphics processing. However
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for synchronization, typically spinlocking techniques are used that can take
considerable performance and programming effort [RNPL15]

FPGAs achieve outstanding performance on stream processing problems and

whenever pipelining can be applied on large data sets. FPGAs allow for a tight
synchronized operation of data movement (including chip I/O) and processing
of various different algorithms in a daisy-chained fashion. This often greatly
reduces the need for data movement. For example, in a video processing
system, we might decompress a video stream using only on-FPGA resources
while streaming the result over to various further video acceleration modules
without ever needing off-chip communication. This not only removes possible
performance drops if we are I/O bound (e.g., if we have to occupy the memory
subsystem for storing temporary data in a CPU-based system) but also helps
in saving power. Please note that very often it takes much more power to
move operands (or any kind of data) into a processing chip than performing
computations on those operands.
Another important property of FPGAs is that they can implement any kind
of register manipulation instruction directly. For example, most cryptographic
algorithms require simple bit fiddling operations that can take a CPU tens to
hundreds of cycles for performing all the needed bit-mask and shift opera-
tions (for, lets say, a 32-bit register value). On FPGAs however, each bit is
directly accessible without any instruction and constant shift operations are
implemented by the interconnection network and shift operations do not even
take any FPGA logic resources (e.g., logic cells). In other words, FPGAs
do not follow the restrictions of a pre-defined instruction set and computer
organization. FPGAs allow us thinking in mathematical expressions and all
sorts of operations rather than in a fixed register file and a collection of
predefined instructions (as in all CPUs). For example, if we want to implement
a modulo 10 Gray-code counter, we can build this directly in logic and use a
small 4-bit register for storing the count state.

As can be seen, there is not a clear winning compute platform and depending on
the problem and requirements, one or the other is better. In practice, there is also a
human factor involved as it needs skilled people to program the different compute
platforms. While there are many software developers, there are far less GPU or
FPGA programmers, as can be observed on basically any job portal website. The
intention of this book is to tackle exactly this issue and helping in making FPGAs
accessible to software engineers.

A big difference in hardware and software programming platforms exists in the
ability to control the structure and architecture of the programming platform. If we
take a CPU or GPU, then a vendor (e.g., Intel, AMD, NVIDIA, or ARM) took
decisions on the instruction set architectures, the organization and sizes of caches,
and the capabilities of the I/O subsystem. In contrast when using FPGAs, there
is much more freedom. If we need, for example, an operation for computing the
correlation of a motion estimate vector, we can simply generate the corresponding
logic and the correlation of one or many pixels can be computed in a single cycle,
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if needed. If an algorithm requires a certain amount of on-chip memory, we can
allocate the exact corresponding number of memory blocks. For FPGAs, we are
basically only limited by the available resources, but much less by architectural
decisions of the FPGA vendor. And with devices providing millions of logic cells,
thousands of arithmetic blocks, and tens of megabytes of on-chip memory, the limit
is very low today.”

The need for flexibility can be discussed from a more system level perspective:
with the exponential rise of capacity available on a single chip, we typically want
to build more complex systems which implies the need for more heterogeneous
compute platforms. This can be observed for the various compute resources
including multicore CPUs, GPUs, and accelerators that are available in recent SoCs
(System on Chips) targeting mobile phones or tablet PCs. However, by predefining
an SoC architecture, we define its major characteristics and limit the level at which
an equipment manufacturer can differentiate the final product. FPGAs, however,
provide much more flexibility and they allow tailoring a large and complex SoC
exactly to the needs of the application. This is relevant when considering very large
chips in the future that should serve various different application domains. In this
situation, FPGAs might utilize much better the available real estate on the chip due
to their great customization abilities.

1.1.3 The Cost of Programmability

Unfortunately, programmability does not come for free. In a CPU, for example,
we might have 100 possible instructions, but we will only start one machine
instruction in each operational cycle, hence leaving probably most parts of the ALU
underutilized.

Similarly on an FPGA, we typically cannot use all available functional blocks of
the FPGA fabric in real-world applications and the routing between these blocks
is carried out by a switchable interconnection network consisting of eventually
many millions of programmable multiplexers that would not be needed when
implementing the interconnection of a non-programmable digital circuit (i.e. an
ASIC). In addition to real estate on the chip, all these switches will slow down the
circuit and draw some extra power. All this would not be needed when connecting
gates and functional blocks directly by wires, as it is the case for dedicated integrated
circuits (i.e. ASICs).

This technology gap between FPGAs and ASICs was quantified by Kuon
and Rose in [KR06]. Considering the same 90 nm fabrication process, an FPGA

2The limit is probably less what is available, but what is affordable. The high capacity flagship
devices of the two major FPGA vendors Xilinx and Altera typically cost over 10 K US$. So
the limit is often not a technological, but an economical one. However when Xilinx for example
introduced its new Series-7 FPGAs, the smallest Kintex-7 device (XC7K70T) provided at a price
tag below 100 USS$ significantly more resources than its Virtex-2 flagship (XC2V8000) a decade
ago. So in other words, what is far too expensive today might be well affordable very soon.
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consisting of logic cells (based on lookup tables and flip-flops) would be on
average 35x bigger (in terms of area) as the ASIC counterpart over a large set
of examined benchmark circuits. However, by introducing additional dedicated
functional blocks, such as multipliers and memory blocks, the gap in area can be
reduced to ~18x. For the performance it was found that FPGAs are 3—4x slower
than their ASIC counterparts and they also draw about 10x more power.

However, due to high volume mass production, more advanced processes are
commonly used that result in a lower monetary cost, better energy efficiency,
and higher performance which all can offset much of the cost related to FPGA
programmability. Furthermore, programmability removes underutilization if some
tasks are used only very seldom. Due to re-programmability, the same physical
resources can be shared and consequently resources can be better utilized as it would
be possible with dedicated circuits for each task.> On a more macroscopic level, this
shares some ideas behind cloud computing. The virtualization of servers in a cloud
data center comes at a price that pays off because it commonly allows running a
lower number of physical machines for a given load scenario.

The Impact of Technology Scaling

The probably most important driving factors in semiconductor technology today is
energy efficiency and power density. We all know about the astonishing progress
in silicon process technology which was firstly described by Moore’s law [Mo065]
that predicts an exponential growth of the transistor count on a chip (i.e. a doubling
approximately every 18 months). Even given that chips for computing cannot be
directly compared with memory chips, we can get a glimpse of what is possible
today when calculating the number of transistors in a memory card that we plug
into our phones, which can easily exceed a 100 billion transistors. However, while
the density was (and still is) growing exponentially, power consumption per area
stayed constant, which is known as Dennard scaling [DGY *74]. In other words, the
energy efficiency per logic cell was also exponentially improving. Unfortunately,

3Most available FPGAs in these days can be partially reconfigured. This allows some parts of
the FPGA to be operational (e.g., a CPU controlling and managing the system and a memory
controller) while changing some accelerator modules. Partial reconfiguration can be used for a
time-multiplexing of FPGA resources (e.g., if a problem does not fit the device). This helps for
better utilizing an FPGA (and hence allowing for using a smaller and therefore cheaper and less
power hungry device). This technique can also be used to speed-up computations. Then, instead of
providing a chain of smaller modules concurrently on the FPGA, we might use reconfiguration
to load only the module currently needed, such that we have more resources available for
each module. This can then be used for exploiting a higher level of parallelization, which in
turn can eventually speedup processing significantly. Finally, partial reconfiguration can be used
for implementing dynamically instantiating hardware modules in a system (e.g., for creating a
hardware thread at runtime). More comprehensive information on partial runtime reconfiguration
is provided in [Koc13].
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this has slowed down in recent years and the power density (i.e. power per surface)
of many chips today is way beyond the power density of the hops that we use for
cooking in our kitchens.

As the power density cannot exceed the thermal design of the chip and the
surrounding system (the power used by a chip ends up in heat), the important
question today is not only how many transistors can be squeezed on a chip, but
how many of them are allowed to be powered and operational (or at what speed)
without exceeding a given thermal budget. This phenomena is known as dark
silicon [GHSV ™ 11]. However, if we are restricted by power rather than by transistor
count on a chip, the cost of reconfigurability in terms of area is becoming a minor
issue as all the unused resources make a programmable chip kind of dark anyway.

Economical Aspects

There are economical aspects that can pay for the extra cost of programmability.
First of all, programmability allows faster time-to-market for products because
being able to quickly develop, test, modify, and produce a product allows partic-
ipating in higher profitable market windows. Programmability also allows for an
after-sales business (e.g., by providing updates) and longer operation of equipment.
The latter aspect was actually one of the major economical enablers for the
success of FPGA technology. The internet hype and with it the fast development
of technology and standards made it necessary to update network equipment in the
field. However, for this application, CPUs had been far too slow and ASICs took
too long to design and were not flexible enough. To overcome this, FPGAs had been
(and are still) the ideal platform to power major parts of the internet infrastructure.

1.2 What Are FPGASs?

FPGAs (Field Programmable Gate Arrays) are digital chips that can be programmed
for implementing arbitrary digital circuits. This means that FPGAs have first to be
programmed with a so called configuration (often called a configuration bitstream)
to set the desired behavior of the used functional elements of the FPGA. This
can be compared to processors which are able to execute arbitrary programs after
loading the corresponding machine code into some memory. Without loading any
executable code, the processor is unable to perform any useful operation. Translated
to FPGAs, an FPGA without a proper configuration does nothing. Only after the
configuration step, the FPGA is able to operate with the desired behavior encoded
into the configuration. FPGAs are an example for PLDs (Programmable Logic
Devices). FPGAs have a significant market segment in the microelectronics and,
particularly in the embedded system area. For example, FPGAs are commonly
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used in network equipment, avionics,? automotive, automation, various kinds of
test equipment, medical devices, just to name some application domains. While
currently only a tiny share of FPGAs are used for data processing in data centers,
this is likely going to change in the near future as FPGAs not only provide very high
performance, but they are also extremely energy efficient computing devices. This
holds in particular when considering big data processing. For example, Microsoft
recently demonstrated a doubling of the ranking throughput of their Bing search
engine by equipping 1632 servers with FPGA accelerators which only added an
extra 10 % in power consumption [PCC* 14]. In other words, Microsoft was able to
improve the energy efficiency by 77 % while providing faster response times due to
introducing FPGAs in their data centers.

Sometimes, FPGAs are referred to as FPGA technology. This expresses what
target technology for implementing a digital circuit is used. In other words, it allows
distinguishing if the target is an ASIC with logic gates as the building blocks or an
FPGA that provides programmable logic cells. It is quite common to implement
a digital circuit firstly on an FPGA for testing purposes before changing to ASIC
technology when targeting high volume markets.

1.3 How FPGAs Work

So far we have talked mainly about programming an FPGA and what an FPGA
is. This section will reveal its operation. Oversimplified, an FPGA consists of
multiplexers and configuration memory cells that control those multiplexers and
some wiring between them. This is illustrated in Fig. 1.2. It shows a multiplexer, the
most important building block of an FPGA> and the operation of a multiplexer.

1.3.1 Lookup Table-Based Logic Cells

By connecting configuration memory cells to the select inputs of the multiplexer,
a reconfigurable switch as part of a switch matrix is built, as shown in Fig. 1.2c.
For implementing the actual reconfigurable logic cells, we connect configuration
memory cells to the data inputs. For example, if we want to implement an AND
gate, we will set the top configuration memory cell (connected to the input 11) to 1

“In an article from EETimes it is stated that “Microsemi already has over 1000 FPGAs in every
Airbus A380” (http://www.electronics-eetimes.com/?cmp_id=7&news_id=222914228).

SDespite that FPGAs are basically made from multiplexers, it is a bit ironic that they are not very
good at implementing multiplexers using their reconfigurable logic cells. In the case we want to
implement multiplexers with many inputs, this would cost a considerable number of logic cells.
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Fig. 1.2 FPGA fabric illustration. (a) The basic building block of an FPGA is a multiplexer. (b)
Its internal operation can be compared with switches of a rail network and exactly one of the inputs
() is connected with the output (O) depending on the select input (S). (¢) (left) By connecting the
select inputs to configuration memory cells, a switchable routing network is implemented for the
interconnection between the logic cells. (¢) (right) By connecting configuration memory cells to
the multiplexer inputs, a lookup table is built that can implement any Boolean logic function for the
lookup table inputs that are connected to the select inputs. For implementing larger combinatorial
circuits, the O output can be connected to further logic cells and for storing states, a register is
provided on the output Q. The values of the configuration memory cells are written during the
configuration of the FPGA. By fitting large quantities of these basic blocks consisting of switch
matrices and logic cells on a chip and connecting them together, we can build a reconfigurable
FPGA fabric that can host any digital circuit
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and the other three cells to 0. Consequently, each logic cell provides a lookup table
that stores the result for the desired Boolean function.

A lookup table (often abbreviated as LUT) can perform any Boolean function.
The only limit is the size of the table, that is given by the number of inputs (with
k = 2 in the figure). If larger functions have to be implemented than what fits in
a single lookup table, the functions are implemented by cascading multiple logic
cells (and therefore multiple lookup tables). For example, if we want to implement
an AND gate with three instead of two inputs, then we implement the AND gate for
two inputs, as described in the previous paragraph. The output is then connected to
one input of another logic cell that again implements an AND gate. The other input
of the second AND gate is then the third input of our 3-input AND gate.

The size of lookup tables found in commercial FPGAs varies from 3 to 6 inputs
depending on the vendor and device family. Figure 1.3 gives more examples for
truth tables of Boolean functions. For a table with k inputs, it takes 2% configuration
memory cells to build the logic cell. The examples in Fig. 1.3 show that the same
logic function can be implemented by permuting inputs. This is used for simplifying
the routing step (see Sect. 1.4.2). Instead of routing to a specific LUT input, it is
sufficient to route to any input while eventually adjusting the table entries.

Usually, the lookup tables in the logic cells are combined with state flip-flops.
These flip-flops are used for storing states in FPGA-based circuits (e.g., the state of
an n-bit counter can be stored in the corresponding flip-flops of n logic cells).

function Ay A1 A A3 (Ay- A1)+ A (A A3)+ A As
A At A A
;3®+ ;E@}» ;E%» T+ L

Az Ay Aq Ap Ao Ao AT AT
0: 000O 0 0 0 0
1: 0001 0 0 0 0
2: 0010 0 0 1 0
3: 0011 0 1 1 0
4: 0100 0 1 0 0
5: 0101 0 1 0 0
6: 0110 0 1 1 0
7: 0111 0 1 1 0
8: 1000 0 0 0 1
9: 1001 0 0 0 1
A: 1010 0 0 1 1
B: 1011 0 1 1 1
cC: 1100 0 1 1 1
D: 1101 0 1 1 1
E:1110 0 1 1 1
F: 1111 1 1 1 1

Fig. 1.3 Lookup table configuration examples (partly taken from [Koc13])
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1.3.2 Configuration Memory Cells

Depending on the FPGA vendor, the configuration memory cells can be provided as
SRAM cells, which allows fast and unlimited configuration data write processes.
This is the technology used by the FPGA vendors Altera, Lattice, and Xilinx.
SRAM-based FPGAs provide the highest logic densities and best performance.
As SRAM cells are a volatile memory technology, it requires always a device
configuration when powering the device up (which can be seen as a boot phase).
The size of the configuration binary (i.e. the bitstream) can range from a few tens of
kilobytes to a few tens of megabytes. As a consequence, the configuration of a large
FPGA device can take over a second in some systems.

The FPGA vendor Microsemi provides FPGAs that are based on non-volatile
configuration memory cells (Flash or antifuse). These devices are suited for extreme
environments including space or avionics where electronic components are exposed
to higher levels of ionizing radiation (which might impact the state of configuration
memory cells of SRAM-based devices). In addition, these FPGAs are very power
efficient, start immediately, and have better options for implementing cryptographic
systems, because secrets can be stored persistent and securely on the FPGA device
itself. However, the capacity and performance is lower than that of their SRAM
counterparts.

1.3.3 Interconnection Network (Routing Fabric)

If we look at the technical parameters of an FPGA, we will find much information
about the logic cells, including capacity, features, and performance. However, with
respect to the area occupied on the FPGA die, the interconnection fabric with all
its multiplexers is actually taking more resources than the logic cells themselves
and this information is mostly hidden by the FPGA vendors. Also the performance
of a circuit mapped to an FPGA is much related to the interconnection network.
As a rule of thumb for present FPGAs, we can say that about 2/3 of the latency
of a critical path is spent on reconfigurable interconnections. Note that the allowed
clock frequency is the reciprocal of the critical path delay. This delay is the time
needed for a signal to propagate from a flip-flop output through eventually multiple
levels of logic cells and routing to a flip-flop input (this process has to be completed
before the next clock edge arrives at the flip-flops). The critical path delay is then
the slowest of all paths in a circuit mapped to an FPGA.

In practice, the multiplexers used for carrying out the switching between the
logic cells will be much bigger than the ones shown in Fig. 1.2, with multiplexers
typically providing between 10 and 30 inputs. Furthermore, the interconnection
network provides additional switches for intermediate routing (and not only for
connecting just the logic cell inputs). The FPGA vendors typically provide enough
routing resources to carry out the routing of virtually any design. However, in some
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cases, it might be needed to work with lower utilization levels such that the ratio of
routing resources per logic cells is higher which then permits routing the design.

1.3.4 Further Blocks

Today, most FPGAs provide not only logic cells, but a variety of building blocks
(also called primitives). Please note that modules that are implemented in the
FPGA fabric are often called soft-logic or soft-IPs (i.e. intellectual property cores
implemented in the FPGA user logic). Respectively, cores that are provided with the
FPGA fabric are called hardened-logic or hard-IPs.

Commonly provided hard-IPs on FPGAs include I/O blocks (e.g., for connec-
tions to high-speed transceivers which in some cases operate beyond 10 Gbit),
dedicated memory blocks, and primitives providing multipliers (or even small
ALUs). Furthermore, there could be special hardened functional blocks, like for
example a PCle connection core, DDR memory controllers, or even complete
CPUs. Using hardened CPUs on an FPGA is covered in Sect. 15.2.3 (on page 268).
The idea behind providing hardened IP blocks is their better area, performance
and power ratio, when these blocks are used (because they do not need a costly
interconnection network). However, if a certain design leaves these blocks unused,
they are basically wasted real estate (see also Sect. 1.1.3). FPGA vendors provide a
selection of such blocks in order to meet the requirements of most customers.

1.3.5 How Much Logic is Needed to Implement Certain Logic
Functions

When we develop an algorithm in software for a CPU, we are interested in its
execution time and the memory requirements. In the case of FPGAs, we are not
bound to a temporal domain only, but we have also a spatial domain, which means
that we are also interested in how much real estate a certain logic function or
algorithm will take. The implementation cost is often not easy to answer and
depends on many design factors. For example, a fully featured 32-bit processor
requires about 2000 6-input lookup tables on a modern SRAM-based FPGA.
However, there are area optimized 32-bit processors that use bit-serial processing
and such a processor can be as small as 200 lookup tables [RVS™10]. Such a
processor would easily fit a few thousand times on a recent FPGA. In bit-serial
operation, we are only computing one bit per clock cycle. Consequently, a 32-
bit bit-serial processor is at least 32x slower than its parallel counterpart when
operating at the same clock speed. This example shows that in hardware design it is
often possible to trade processing speed for real estate. Some behavioral compilers
incorporate this automatically for the developer. These tools allow specifying a
certain compute throughput and the tool will minimize resource usage, or vice versa,
it is possible to define the available resources and the tool maximizes performance.
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For integer arithmetic, the cost for addition and subtraction scales linear with the
size of the operands (in terms of bits) and is about one LUT per bit. Please note that
it is common in hardware design to use arbitrarily sized bit vectors (e.g., there is no
need to provide a 32 bit datapath when implementing only a modulo-10 counter).
Comparators scale also linear with about 0.5 LUTs per bit to compare. Multipliers
scale linear to quadratic, depending if we use sequential or full parallel operation.
However, because multipliers can be expensive, there are multiplier blocks available
on most FPGAs in these days. Division and square root is particularly expensive and
should be avoided if possible. Floating point arithmetic is possible on FPGAs, but
here addition and subtraction is more expensive due to the need for normalization
(which is a comma shift operation that is needed if the exponents of two floating
point numbers differ). However, many high-level synthesis tools support floating
point data types and can exploit various optimizations for keeping implementation
cost low. Many high level synthesis tools provide resource (and performance)
estimators to give instantaneous feedback when programming for an FPGA.

This section is not meant to be complete, but is intended to give an introduction
to how hardware can be made reprogrammable. Like with driving a car, where we
do not have to understand thermodynamics, it is not necessary to understand these
low-level aspects when programming an FPGA. The interested reader might find
useful further information in the following books: [HD07, Bob07, Koc13].

1.4 FPGA Design Flow

The FPGA design flow comprises different abstraction levels which represent the
description of an algorithm or an accelerator core over multiple transformation
steps all the way to the final configuration bitstream to be sent to the FPGA. The
design flow for FPGAs (and ASICs) can be divided into (1) a fronted phase and
(2) a backend phase. The latter phase is typically carried out automatically by CAD
tools (similar to the compilation process for a CPU). A short description about the
backend flow is given in Sect. 2.5 on page 46 and more detailed further down in this
section.

1.4.1 FPGA Front End Design Phase

Similar to the software world, there exists a wide variety of possibilities for
generating a hardware description for FPGAs. All these approaches belong to the
front end design phase and there exists a large ecosystem with languages, libraries,
and tools targeting the front end design. One of the main aims of this book is to give
a broad overview so that a software engineer can quickly narrow a search in this
ecosystem.
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Model-Driven and Domain-Specific Design

FPGAs can follow a model driven design approach which is commonly supported
with comfortable and productive GUIs. For example, MATLAB Simulink from
The MathWorks, Inc. and LabVIEW from National Instruments (see also Chap. 4)
allow the generation of FPGA designs and running those designs pretty much
entirely using a computer mouse only. These are out-of-the-box solutions targeting
measurement instruments and control systems of virtually any complexity.

FPGA vendors and third-party suppliers provide large IP core libraries for
various application domains. This will be covered in Chap. 15 for rapid SoC design
using comfortable wizards.

Traditional Programming Languages

FPGAs can be programmed in traditional programming languages or in dialects of
those. An overview of this is given in Chap. 3 along with more detailed examples in
consecutive chapters. An example of a full environment with hardware platforms
(from desktop systems to large data centers) and compilers for Java-like FPGA
programming is provided in Chap.5. The vast majority of high language design
tools are for C/C++ or its dialects, which is covered in several chapters. This
includes compilers from FPGA vendors in Chap. 6 (OpenCL from Altera Inc.) and
Chap.7 (Vivado HLS from Xilinx Inc.), as well as chapters on academic open
source tools. The LegUp tool (developed at the University of Toronto) is presented
in Chap. 10 and the ROCCC toolset (developed at The University of California,
Riverside) is covered in Chap. 11, respectively.

Source-to-Source Compilation

For improving design productivity in specific domains (e.g., linear algebra), there
exist source-to-source compilers that generate from an even higher abstraction level
(commonly) C/C++ code that will then be further compiled by tools as described in
the previous paragraph. Examples of this kind of solution are provided in Chap. 8
with the Merlin Compiler from Falcon Computing Solutions and in Chap. 12
with the HIPA® tool (developed at the Friedrich-Alexander University Erlangen-
Niirnberg).

One big advantage of approaches operating at higher abstraction levels is not
only that specifying a system is easier and can be done faster; there is also much
less test effort needed. This is because many tools provide correct-by-construction
transformations for specifications provided by the designer.

Low-Level Design

At the other end of the spectrum, there are the lower level Hardware Description
Languages (HDLs) with Verilog and VHDL being the most popular ones. These
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languages give full control over the generated hardware. However, these languages
are typically used by trained hardware design engineers and it needs a strong
hardware background to harness the full potential of this approach. A solution that
provides a higher level of abstraction (while still maintaining strong control over
the generated hardware in an easier way than traditional HDLs) comes with the
Bluespec System Verilog language and compiler, as revealed in Chap. 9.

The result of the front end design phase is a Register-transfer level (RTL)
description that is passed to the backend flow. All this is described in more detail in
the next section.

1.4.2 FPGA Backend Design Flow

The backend design flow for FPGAs and ASICs looks similar from a distance, as
illustrated in Fig. 1.4. The figure shows a general design flow for electronic designs
with FPGA and ASIC target technologies. The different abstraction levels were
introduced by Gaijski et al. in [GDWL92] and include:

RTL level The Register-Transfer Level is basically an abstraction where all state
information is stored in registers (or whatever kind of memory) and where logic
(which includes arithmetic) between the registers is used to generate or compute
new states. Consequently, the RTL level describes all memory elements (e.g.,
flip-flops, registers, or memories) and the used logic as well as the connections
between the different memory and logic elements and therefore the flow of data
through a circuit.

RTL specifications are commonly done using hardware description languages
(HDLs). Those languages provide data types, logical and arithmetic operations,

Fig. 1.4 A general design
flow for FPGA and ASIC RTL level '\'}BE e‘./g.,_/
designs with the synthesis , veriog

and implementation steps and

the different abstraction levels w

Loaic level Netlist,
ogicleve e.qg., EDIF
Implementation
Bitfiles (FPGA),
Device level Layouts (ASIC),
e.g., Mask files, ...
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hierarchies, and many programming constructs (e.g., loops) that are known from
software programming languages such as C. However, hardware is inherent
parallel and there is not a single instruction executed at a point in time, but
many modules that will work concurrently together in a system, which is well
supported by HDLs.

We could see the RTL level in analogy to a CPU, where all state information is
stored in registers (or some memory hierarchy) and where the ALU is in charge
of changing the value of registers (or memories). The abstraction level of RTL
is rather low and in an analogy to software, we could say it is comparable to an
abstraction in the range somewhere from assembly to C. However, RTL code is
still well readable and maintainable. As with assembly code, RTL code might
be generated by other compilation processes as an intermediate representation
and might not even be seen by an FPGA developer.

Logic level A synthesis tool will take the RTL description and translate it into a
netlist which is the logic abstraction level. Here, any behavioral description
from the RTL level is translated into registers and logic gates for implementing
elementary Boolean functions. The netlist is a graph where the nodes denote
registers and gates and the edges denote the connecting signals. For example, a
compare between two registers A and B (let’s say from an expression 1f A =
B then ...) will result in an XNOR gate for each bit of the two values A and
B (an XNOR is exactly 1 if both inputs are identical) and an AND gate (or a
tree of AND gates) to check if all the XNOR gates deliver 1 at the output. This
process is entirely carried out by logic compilers but can eventually be guided
(hardware engineers prefer the term “to constrain a design or implementation”)
by the user (e.g., for either generating a small cost-efficient implementation or
a high-performance implementation).

In the case of FPGAs as the synthesis target, there are specific synthesis options
to control which kind of primitive on the FPGA fabric will later be used to
implement a specific memory or piece of logic. For example, a shift register
(which is basically a chain of flip-flops) can be implemented with the flip-flops
after the lookup table function generators, with lookup table primitives that
provide memory functionality, or with a dual-ported memory surrounded with
some address counter logic. Similarly, multiplications can be done by dedicated
multiplier blocks or by generating an array of bit-level multiplier cells (for
example if we run short on multiplier blocks). In most cases, the default settings
for the synthesis tool will work fine and many higher level tools are able to
adjust the logic synthesis process automatically without bothering the designer.

Device Level The netlist from the previous level undergoes several optimization
processes and is now to be implemented by the primitives (lookup tables,
memory blocks, I/O cells, etc.) and the interconnection network of the FPGA.
In a first step, called technology mapping, the logic gates are fitted into the
lookup tables. For this process, there exist algorithms for minimizing the
number of lookup tables needed (e.g., Chortle [FRC90]). Alternatively there
are algorithms for minimizing the depth of the tree when larger Boolean circuits
have to be fitted into the given LUTs (e.g., FlowMap [CD94]). The last option
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results in fewer lookup tables to pass and consequently in lower propagation
delay and therefore in a faster possible clock frequency.

After technology mapping, the primitives will get placed on the FPGA fabric.
This is done with clustering algorithms and simulated annealing in order to
minimize congestion and the distance between connected primitives.

The placed primitives get now routed and the difficulty here is that a physical
wire of the FPGA can only be used exclusively for carrying out the linking of
one signal path. A well-known algorithm for this is called Pathfinder [ME95].
In a nutshell, this algorithm routes each path individually and increases the
cost for each wire segment according to how often it was used. Then by
iteratively restarting the routing process, popular wires get more expensive
which eventually resolves the conflict that multiple paths want to use the same
wire.

The size of the place and route problem is quite large with more than one
million primitives (i.e., logic cells, multipliers, memory blocks, etc.) and much
more than ten million wires, each with about 10-30 possible programmable
connections on recent devices. The tool time for computing all these steps
can in some cases exceed a full day for such large devices and requires a
few tens of gigabytes memory. Luckily, the process runs fully automated and
there are techniques like incremental compilation and design preservation that
allow keeping parts of the physical implementation untouched if only changes
were done in a design. This will then significantly speed up design respins.
In addition, there are tools that support a component-based design flow for
plugging fully pre-implemented modules together to a working system. One
approach for this method is known as hardware linking that works (in analogy
to software linking) by stitching together configuration bitstreams of individual
modules [KBTO08]. This allows rapidly building systems without any time
consuming logic synthesis, placement, and routing steps, but requires building
a corresponding module library (e.g., [YKL15]).

The final mapped, placed, and routed netlist is then translated into a con-
figuration bitstream that contains the settings for each primitive and switch
matrix multiplexer (i.e. the values of the configuration memory cells shown
in Fig. 1.2). More details on the low-level implementation can be found in
[BRM99, Bob07, HDO7, Koc13].

1.5 Overview

Most chapters in this book have already been introduced throughout this introduc-
tion. This introduction provides a discussion about compute paradigms and a brief
introduction to FPGA technology. This is followed in Chap. 2 by a presentation of
the theoretical background behind high-level synthesis which allows the generation

of digital circuits directly from languages such as Java or C/C++. Chapter 3 gives
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a classification of various HLS approaches and Chaps. 4—12 are devoted to specific
languages and tools including several case studies and small code examples.

Using FPGASs in a programming environment requires operating system services,
some kind of infrastructure, and methods to couple this with a software subsystem.
ReconOS (developed at the University of Paderborn) provides this functionality well
for embedded systems, as presented in Chap. 13, while the LEAP FPGA operating
system is targeting compute accelerators for x86 machines (Chap. 14).

The last two chapters are for software engineers who want to use FPGAs
without designing any hardware by themselves. Chapter 15 provides examples
on how complex systems can be built and programmed on FPGAs following a
library approach. After this, Chap. 16 shows how FPGA technology can be used
to host another programmable architecture that is directly software programmable.
The overall goal of this book is to give software engineers a better understanding
on accelerator technologies in general and FPGAs in particular. We also want to
postulate the message that FPGAs are not only a vehicle for highly skilled hardware
design engineers, but that there are alternative paths for software engineers to
harness the performance and energy efficiency of FPGAs.



Chapter 2
High-Level Synthesis

Joao M.P. Cardoso and Markus Weinhardt

2.1 Introduction

The compilation of high-level languages, such as software programming languages,
to FPGAs (Field-Programmable Logic Arrays) [BR96] is of paramount importance
to the mainstream adoption of FPGAs. An efficient compilation process will
improve designer productivity and will make the use of FPGA technology viable
for software programmers.

This chapter focuses on the compilation of computations (algorithms) targeting
FPGAs in a process known as High-Level Synthesis (HLS) for FPGAs. HLS is the
translation of algorithmic descriptions to application-specific architectures, usually
implemented as digital systems consisting of a datapath and a control unit or finite
state machine (FSM) [GDWL92, Mic94].

In this chapter, we use ANSI-C [KR88] as a widely used language for specifying
the input behavioral description (e.g., a function). Other input languages such as
Java, C++, MATLAB or even specific hardware description languages (HDLs) as
SystemC or algorithmic-level behavioral VHDL could be used in a similar manner.
As opposed to these input descriptions, the generated digital systems are described
at the register-transfer level (RTL). These RTL descriptions are then mapped to
physical hardware (ASICs or FPGAs) using backend tools, cf. Sect. 2.5.

The main difference between algorithmic and RTL specifications is the level of
detail: algorithmic descriptions only define the order in which operations are to be
performed, whereas an RTL design specifies their exact timing. Furthermore, data
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Fig. 2.1 C function of the int ged(int a, int b) { // 1
greatest common divisor while (a'!'=b) { // 2
(GCD) algorithm if (a>b) /] 3
a = a-b; // 4

else // 5

b = b-a; // 6

/* end if */ /17

} // 8

return a; /]9

} // 10

and operations are mapped to concrete hardware units (register, adders, multipliers,
etc.). The resulting design at RTL describes for each control step, which values are
transferred to which storage locations (registers). In other words, the specification
now contains details of a digital system implementation.

In summary, HLS needs to solve the following tasks:

* Scheduling: Assigning the operations to control steps, i.e., clock cycles of
synchronous hardware designs.

* Allocation: Selecting the number and type of hardware units used for imple-
menting the functionality, i.e., arithmetical operators, storage (registers and
memories) and interconnect resources (buses, multiplexers, etc.).

* Binding: Mapping of all operations to the allocated hardware units.

These tasks will be illustrated in detail in the following sections, but first
we illustrate the use of HLS with a simple example. The well-known Euclidean
algorithm computes the greatest common divisor (GCD) of two natural numbers.
Figure 2.1 shows an implementation in C.

Figure 2.2 shows a digital circuit which could be generated by HLS from the
C function in Fig. 2.1. The two D-registers at the top (with clock signal clk) store
the variables a and b. For simplicity, it is assumed that the input values for a and
b are stored in the registers by a special mechanism not shown in Fig.2.2 before
the control signal run is set to 1 (i.e., before the circuit starts executing). Then,
the entire loop body (including the evaluation of the loop control) is performed in
one clock cycle, i.e. all operations are scheduled to the same control step. In this
implementation, the function is synthesized for maximum parallelism. To achieve
this, four operators (equality tester, greater-than comparator, and two subtracters)
have to be allocated so that each operation can be bound to its own hardware unit.
The two subtracters compute the then- and else-part of the if-statement in parallel,
and the multiplexers at the bottom select the correct (i.e., new or unchanged) values
for a and b, controlled by the comparator. Finally, the equality tester disables the
registers (EN = 0) and sets the done signal to 1 as soon as a and b are equal. Then
the hardware circuit has finished its execution and the result can be read at output
a_out.



2 High-Level Synthesis 25

J\
EN EN
a b
clk |:
) \ K
run — —
Y
1 |—¥0¥ 1
'
done a_out

Fig. 2.2 Digital system computing the greatest common divisor (GCD) between two numbers

Note that in a real HLS system, the generated circuit, represented graphically in
Fig.2.2, is specified by an RTL HDL description, e.g., in VHDL. In a next stage,
these RTL descriptions are input to specific tools able to generate the control and
datapath units (in a process known as RTL and logic synthesis [Mic94]). Finally,
mapping, placement and routing is applied and the binaries to program the FPGA
resources are generated.

2.2 From Behavior to Graph Representation

This section outlines how a behavioral description, e.g., a C function, is translated
to a graph representation called control/data flow graph (CDFG) serving as
intermediate representation of a HLS tool. The following Sect. 2.3 explains how
an RTL design is synthesized from a CDFG.

2.2.1 Compiler Frontend

The frontend (i.e., the analysis phase) of a HLS system is similar to the one existent
in a traditional software compiler [ALSUO06]. In the case of C as input language, it
is nearly identical. It involves common lexical and syntactic analysis, and generates
a high-level intermediate representation (IR) such as an abstract syntax tree (AST).
This data structure is then semantically analyzed and attributed with type and other
information. Before being converted to the CDFG representation, several machine-
independent optimizations (e.g., dead-code elimination, strength reduction, and
constant propagation and folding) are applied to the AST or to a lower-level
intermediate representation. For optimal FPGA mapping, several hardware-specific
optimizations and loop transformations are applied, cf. Sect.2.4.
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2.2.2 Control Flow Graphs

The first step in generating a CDFG is the generation of a control flow graph (CFG)
of the function [ALSUO6, Sect. 8.4]. The nodes of this graph are the function’s basic
blocks, and the arcs indicate the flow of control between the basic blocks, i.e. the
execution of the program. A basic block (BB) is defined as a sequence of instructions
which have a single entry point (beginning) and which are executed to the end of
the BB without any exit or branch instructions in the middle (i.e., with a single exit
point). Branch nodes which evaluate a condition can form a separate BB. They have
two or more output arcs representing alternative execution paths of the program,
depending on the condition. The CFG’s arcs represent control dependences which
must be obeyed for correct program execution.

A CFG can be easily constructed from the AST as shown in Fig. 2.3. For loops are
usually converted to while loops. Similarly, case statements are just an extension of
if statements (conditions) with several output arcs. Note that node BBS5 (a join node)
in Fig.2.3b can be combined with subsequent nodes since it does not contain any
instructions.

The CFG for the GCD example (Fig. 2.1) is shown in Fig. 2.4. Note that all basic
blocks consist of a single instruction in this simple example. For clarity, the empty
basic block BB7/8 was maintained in Fig.2.4 though it could be further merged

a c

S1; BB1 while(c) //1
S2; S1; /2
Sn;

b d

if(c) //1 do //1
S1; //2 S1; /12

else //3 while(c); //3
S2; //4

endif //5

Fig. 2.3 Construction of control flow graphs. (a) Sequence, (b) condition, (c¢) while loop, (d) do-
while loop
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with BB2. In BB1 (function entry) the function parameters are input, and in BB9
(function return) the return value is output and the function completion is indicated.

To represent function calls, the CFGs can be extended with call nodes which
transfer control to another function’s CFG. There can be also CFG extensions to
represent parallel regions of code. It is also possible and suitable to use a top-level
graph representation showing tasks, their dependences and parallel characteristics.
Note that the compilation to FPGAs may also take advantage of the concurrent
nature of hardware and the large number of hardware resources to implement
designs taking advantage of coarse-grained parallelism (e.g., executing concurrent
tasks in parallel).

2.2.3 Data Flow Graphs

As mentioned above, the execution order of the basic blocks is determined by
the CFG. However, there is more freedom within a BB: the instructions can be
swapped or even executed in parallel as long as no data dependences prevent this.
A data dependence exists if the output of one instruction is used as input of another
instruction. This information is explicitly represented in the data flow graph (DFG)
of a BB, comparable to the DAG representation in software compilers [ALSUO6,
Sect. 8.5]. The BB’s operations are represented by the DFG’s nodes. An arc is drawn
from node i to node j if j directly uses i’s output as its input. Arcs are usually drawn
in top-down direction. If assignments use complicated terms, the DFG shows the
terms’ operator trees. The input nodes are variable reads, and the output nodes are
variable writes. Only variables live at the end of a BB, i.e., values which may be
used in subsequent BBs, need to be written. Note that aliases (arising from array or
pointer accesses or from procedure calls) hinder the construction of DFGs.

Since the GCD example only contains minimal BBs, we introduce a second
example to illustrate DFGs: the diffeq function in Fig. 2.5 [PK89] solves a specific
differential equation. Neglecting the function entry and exit, this example contains
only two BBs marked by comments in Fig. 2.5. BB1 contains the loop condition and
BB2 the loop body. Hence its CFG is equivalent to the CFG in Fig. 2.3c.

The DFGs for BB1 and BB2 are displayed in Fig.2.6.! Obviously there are no
data dependences between the multiplications 3*x, u*dx, 3*y and the addition x+dx.
Hence they can be executed in arbitrary order or in parallel. This is not true for the
remaining operations which use the results of the mentioned operations. Generally
speaking, any topological sorting of the nodes is a valid schedule for computing the
results of a DFG.

ISince addition and multiplication are commutative operations, the operand order has been
changed for some nodes to improve the graph layout.
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Fig. 2.4 CFG of the GCD
function

BB7/8

int diffeq(int x, int u, int y, int a, int dx) {
int x1, ul, yi;
while (x < a) { // BB1
x1 = x + dx; // BB2 beginning
ul = u - (3 % x) * (u *x dx) - (3 x y) x dx;
yl =y + u * dx;
x =x1; u=ul; y=yl; // BB2 end
}
return y;

}

Fig. 2.5 C function for solving the differential equation y” + 3xy’ + 3y =0

2.2.4 Control/Data Flow Graphs

Finally, the CFG of a function is combined with the DFGs of its basic blocks
to construct its CDFG. In contrast to the CFGs, branch nodes are represented by
triangles in CDFGs. Figure 2.7 shows the CDFG for function diffeq. For simplicity,
the DFGs of Fig. 2.6 are not repeated.

The CDFG contains all the input program’s information in a suitable form for the
subsequent synthesis steps.
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Fig. 2.6 Data flow graphs (DFGs) for the BBs of the diffeq function
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2.3 Basic Synthesis Tasks

As outlined in Sect.2.1, the basic synthesis tasks are scheduling, allocation and
binding. Since these tasks are all interdependent, they should be solved together for
optimal results. However, since this is not feasible in practice, they are executed one
after another which may lead to suboptimal results.

2.3.1 Scheduling

During scheduling, all operations of the input CDFG are mapped to control steps.
Each control step corresponds to a state of the circuit’s controller or FSM which
activates the states in accordance with the CFG’s control dependences and the basic
blocks’ data dependences. Scheduling can be performed individually for each DFG
or combined for the entire CDFG. For simplicity, we illustrate the effect of several
scheduling algorithms on BB2 of Fig.2.6. Figure 2.8 shows one legal schedule
requiring four control steps CSO—-CS3. It is assumed that every operator executes
in one control step.

All operations mapped to the same control step are executed in parallel, i.e.,
they exploit instruction-level parallelism (ILP). Therefore every operation requires
its own operator (functional unit). For example, CSO requires three multipliers and

Fig. 2.8 Scheduled loop ’ ‘ ’ ‘
body (BB2) of the diffeq u v
function (ASAP schedule)

3 X dx

Cso

cs1 X

CS2

CS3 ul yl x1
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one adder.” On the other hand, operations in different control steps can share the
same operator. Hence the chosen schedule has a strong impact on the unit allocation.
There is a tradeoff between the design goals of high performance (few control steps)
and small circuit area (few allocated units). A point in the design space cannot
optimize all goals together.

Figure 2.8 shows a schedule with the smallest possible number of control steps:
every operation is scheduled as soon as possible (ASAP). The algorithm is therefore
called ASAP scheduling. The same performance is achieved by an ALAP (as
late as possible) schedule as shown in Fig.2.9. However, the number and type of
the required hardware operators may be different. The ASAP schedule in Fig.2.8
requires at least three multipliers, an adder and a subtracter. In our example, the
ALAP schedule requires at least two multipliers, two adders and one subtracter
(with operator sharing).

By comparing the ASAP and ALAP schedules, it is obvious that the DFG leaves
some flexibility for some nodes. The mobility M of an operator is computed as the
difference between the numbers of the ALAP and ASAP control steps. They are
marked in Fig. 2.9 unless the value is zero.

When variables (e.g., arrays) are mapped to memory components (e.g., Block
RAMSs) the load/stores need to be scheduled and the datapath also needs to include
the hardware required to interface the memory ports to the other datapath units.

Fig. 2.9 Scheduled loop
body (BB2) of the diffeq
function (ALAP schedule)

CSO

Cs1

CS3

2The adder could also be executed by a combined adder/subtracter or by an integer ALU.
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Time-Constrained Scheduling

For many applications, e.g. real-time systems, high performance is more important
than low resource usage. Therefore, time-constrained scheduling algorithms are
used. They generate schedules with a restricted number of control steps (the
minimum being the lengths of the unrestricted ASAP and ALAP schedules) using
the smallest number of hardware units. Unfortunately, exact optimization algorithms
may lead to exponential runtimes which is not feasible for large DFGs. Therefore,
most approaches use force-directed scheduling (FDS) [Mic94], a constructive
heuristic algorithm.

For FDS, the ASAP and ALAP schedules for the given number of control steps
and the operators’ mobility are computed first. Then, for each operator type, the
estimated operator cost (EOC) is computed for each control step using probabilities.
For operators with zero mobility, the probability is one in their fixed control step
and zero in all others. For mobile operators, their probability is distributed over
their mobility range. For example, the adder computing x1 in Fig.2.9 with M = 3
could occur in all four control steps. Therefore its probability is 0.25 in all steps.
This number is also the EOC for adders in CSO since there are no other adders
which could be scheduled in this control step. However, in CS1, there could be
another adder (computing y1) with M = 2 and probability 0.33. Hence the overall
EOC for adders in CS1 is 0.58, (i.e., the sum of the individual probabilities of the
additions that can be scheduled in this control step). The maximum EOC over all
control steps is used as the estimated overall cost for this operator type. Finally,
the sum over all operator types (weighted with the operator cost, i.e., area) is the
total cost of a (partial) schedule. FDS then evaluates the impact on the total cost
for all possible assignments of all unassigned (mobile) operations. The assignment
with the highest impact is chosen and fixed. For the ASAP and ALAP schedules
in Figs. 2.8 and 2.9, this is achieved by assigning the multiplier computing 3 * y to
CS1. This also assigns the multiplier depending on its output to CS2. After that, only
additions and subtractions need to be assigned. For simplicity, we use combined
adder/subtracters for both these operations. The resulting FDS schedule is shown in
Fig.2.10. It only uses two multipliers and one adder/subtracter, less than both the
ASAP and ALAP schedules.

Resource-Constrained Scheduling

Resource-constrained scheduling algorithms optimize the number of control steps
required for a given set of operators. A frequently used algorithm is list scheduling
[Mic94]. In list scheduling, all operations which are ready for scheduling (i.e., those
with all predecessors already scheduled) are entered into a priority list and scheduled
considering the priority order. For each operation scheduled, the ready list is updated
with the possible new ready nodes. When it is not possible to schedule any of the
nodes in the list in the current control step (i.e., there is no free resource for these
operations), the scheduling proceeds with a new control step. Different priority
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Fig. 2.10 Force-directed
scheduling (FDS) for BB2 of u [yj 3 X dx

the diffeq function
CSOo >< —I—

Cs1 —Ij

CS2

CS3
ul |yl v x1

Ly L x]

criteria can be used, e.g. the operations with the lowest mobility are scheduled first.
Let us apply list scheduling for BB2 of the diffeq example. If only one multiplier
and one adder/subtracter are available, the result is the schedule shown in Fig.2.11
which requires six control steps.

Scheduling with Varying Delays

So far we assumed that all operators have the same speed, i.e., have the same
combinatorial delay. But this is not realistic. For example, a 32-bit multiplier has a
longer delay than a 32-bit adder. Since the duration of a control step (or clock cycle)
depends on the slowest operator in all steps, the adders waste much of the cycle
time in our previous examples. To improve this situation, there are two possibilities:
(a) slow operators are scheduled over several cycles (multi-cycle operators), or (b)
several fast operators are executed within one cycle (operator chaining). Figure 2.12
shows examples for these situations where an adder is about twice as fast as a
multiplier. Both methods can significantly improve the performance of a digital
design since the total execution time is the number of cycles times the duration
of a cycle.

Overall, the maximum clock frequency at which the design can operate will
be dependent of the critical path delay, i.e., the longest delay of the existing
combinatorial paths (consisting of a sequence of one or more functional units
without registers).

Obviously the scheduling algorithms introduced above need to be adapted to
exploit these methods.
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Fig. 2.11 List-based
schedule for BB2 of the diffeq
function

CSO

Cs1

CS2

CS3

Cs4

CS5

Fig. 2.12 Multi-cycle
operators (a) and operator
chaining (b)

2.3.2 Allocation and Binding

After scheduling, hardware operators are selected for the operations, and registers
for the intermediate values (allocation). The minimum number of operators is
determined by the number of operations scheduled in one control step, and the
minimum number of registers is determined by the number of values which need
to be stored across control steps. Then, the individual operations and values are
mapped to the operators and registers, respectively (binding). If an operator or
register is shared among several operations or values, respectively, the correct input
values have to be selected by multiplexers in every control step.
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Let us take the FDS schedule introduced in Fig. 2.10 as an example. The schedule
implies the allocation of two multipliers (MUL1 and MUL?2) and one simple ALU
for additions and subtractions. In Fig.2.13a, all operations bound to the same
hardware operator are drawn in one column. Additionally, five registers storing
the newly computed values for each control step are allocated. Registers can only
be reused if their values are not live anymore, i.e. not used subsequently. Note
that four registers would be sufficient, but a fifth register was chosen because
combining MUL and ALU outputs in one register would require another multiplexer
at the register input and would add delay to the circuit. On FPGAs with plenty
of flip-flops, it makes more sense to use an extra register. Figure 2.13b shows
the resulting datapath (without the controller). The hardware operators select their
respective inputs according to the current control step CS. The control step also
defines the functionality of the ALU (add or sub) and whether a new register
value is stored or not. In the figure, decoded CS signals (CSO-CS3) are used for
simplicity.

Note however, that register and operator sharing is not always the best solution.
Especially on FPGAs, the size of 2:1 multiplexers is comparable to adders or
subtracters. Therefore, additional adders may be worthwhile even if they are not
used in every cycle.

2.3.3 Controller Synthesis

Finally, the sequencing of control steps must be implemented by a control unit
(FSM) where each step corresponds to a state. In our example, CSO to CS3
are executed sequentially. As shown in Fig.2.13b, the control inputs of the
multiplexers and register must be set accordingly. The controller is implemented
by standard logic synthesis methods, cf. Sect.2.5 [Mic94]. After the last control
step, the result values (x, y and u in Fig.2.13) are available in their respective
registers.

2.4 Compiler Optimizations

The computing in space provided by FPGAs leverages the large number of hardware
resources able to execute in parallel, hardware structures dedicated to stream
processing, and the multiple on-chip memories accessed at the same time. In
order to take advantage of these resources, compilation to FPGAs [NI14] needs
to expose high-levels of fine-grained as well as coarse-grained parallelism, through
the application of architecture-driven optimizations and architecture-neutral code
transformations (e.g., loop transformations).

For achieving very efficient FPGA implementations an advanced compiler needs
to apply an extensive portfolio of optimizations [NI14]. Those optimizations include
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(a) operator and register binding; (b) resulting datapath
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target independent (but target aware) optimizations such as constant propagation,
constant folding, loop transformations (e.g., unrolling, tiling, fusion, distribution,
strip-mining) [ALSUO6], common subexpression elimination, scalar replacement,
strength reduction, code motion, and elimination of memory accesses using register
promotion. We suggest [CDW10] for more details about optimizations for compil-
ing to FPGAs.

The next sections describe the application of some of these compiler optimiza-
tions using illustrative examples.

2.4.1 Code Transformations

Code transformations are important compiler optimizations for generating highly
optimized FPGA implementations. They focus on the restructuring of code in order
to expose a more suitable specification and to increase the potential for further
compiler optimizations.

Let us consider how the optimizations mentioned above can be applied to an
example program, the small finite-impulse response (FIR) filter in Fig. 2.14a. There
are a couple of standard compiler optimizations that can be applied to this example.

a b
// x is an input array of ints
// y is an output array of ints #define cO 2
#define cO 2 #define
#define cl1 4 cl 4
#define c2 4 #define c2 4
#define c3 2 #define c3 2
#define M 256 // no. of samples #define M 256
#define N 4 // no. of coeff.s #define N 4
int c¢[N] = {cO0, c1, c2, c3}; int c¢[N] = {cO0, c1, c2, c3};
// Loop 1: // Loop 1:
for(int j=N-1; j<M; j++) { for(int j=3; j<M; j++) {
output=0; output=0;
// Loop 2: output+=c[0]*x[j-0];
for(int i=0; i<N; i++) { output+=c[1]*x[j-1];
output+=c[i]*x[j-1]; output+=c[2]*x[j-2];
} output+=c[3]*x[j-3];
y[j] = output; y[j] = output;
} }

Fig. 2.14 FIR example: (a) original code; (b) transformed code after loop unrolling
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b
a for(int j=3; j<M; j++) {
x_3=x[j];
// Loop 1: x_2=x[j-1];
for(int j=3; j<M; j++) { x_1=x[j-2];
output =cO*x[j]; x_0=x[j-3];
output+=cilx*x[j-1]; output=cO*x_3;
output+=c2*x[j-2]; output+=cl*x_2;
output+=c3*x[j-3]; output+=c2*x_1;
y[j] = output; output+=c3*x_0;
¥ y[j] = output;
}

Fig. 2.15 FIR example: (a) code after loop unrolling and constant replacement; (b) intermediate
code using scalars to store loaded values

For example, Loop 2 is a good candidate for full loop unrolling as the number
of iterations is small (4) and statically known. The result of applying full loop
unrolling to Loop 2 is presented in Fig. 2.14b. We can now see that we can apply an
algebraic simplification to j — O (resulting in j), constant propagation and algebraic
simplification to the first use of output, and constant propagation of the elements
of the ¢ array (an array of constants). Figure 2.15a shows the result of those
optimizations. Note also that the ¢ array is no more needed and it was removed and
loads to its elements were substituted by the respective constant values. At this point
we can also perform operator strength reduction in each of the multiplications by the
¢’s coefficients, as c0*x_3 is in fact 2*x_3 and this can be performed by a shift by a
constant instead of using a multiplication: x_3 << 1. This is an optimization which
is usually important for FPGA compilation as these shifts do not require hardware
components and can be fully implemented by appropriate wiring.

As we can see in Fig. 2.15b, there are three elements of x that can be reused in
every iteration of Loop I. Figure 2.16a shows a possibility to transform the code
to eliminate redundant memory accesses (loads of x, in this case) by data reuse.
Figure 2.16b does the same but moves the code responsible for loading the first
three elements to x_2, x_1, and x_0 from the first iteration of Loop I to code before
the loop.

Figure 2.16c shows a further transformation that can be helpful. It considers the
execution of the FIR example in a streaming model of computation. In this case, we
assume that the input samples of x are not stored but arrive in an input port (e.g., a
FIFO channel) and the output results are not stored in array variable y but are written
to an output port. As soon as data arrives, computations are performed, and results
are output. This type of implementation can thus achieve high throughputs (e.g., one
new output per clock cycle) which are sometimes required.

Note that transforming an application expressed in a non-streaming language
to a version exposing streaming can be very difficult. In real life examples the
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a
for(int j=3; j<M; j++) { b
x_3=x[j]; x_0=x[0];
if(j==3) { x_1=x[1];
x_2=x[j-11; x_2=x[2];
x_1=x[j-2];
x_0=x[j-3]; for(int j=3; j<M; j++) {
} x_3=x[j];
output=cO0*x_3; output=cO*x_3;
output+=cl*x_2; output+=cl*x_2;
output+=c2*x_1; output+=c2*x_1;
output+=c3*x_0; output+=c3*x_0;
x_0=x_1; x_0=x_1;
x_1=x_2; x_1=x_2;
x_2=x_3; x_2=x_3;
y[j] = output; y[j] = output;
} }
Cc

x_0= receive(PORT_A);
x_1= receive(PORT_A);
x_2= receive(PORT_A);

for(int j=3; j<M; j++) {
x_3=receive (PORT_A);
output=cO0*x_3;
output+=cl*x_2;
output+=c2*x_1;
output+=c3*x_0;
x_0=x_1;
x_1=x_2;
X_2=x_3;
send (PORT_B, output);
}

Fig. 2.16 Data reuse and streaming transformations to FIR example: (a) code with data reuse;
(b) code after code motion; (¢) code transformed to a streaming model

transformation might be too complex to be performed automatically and might have
to be done manually.
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2.4.2 Hardware-Specific Optimizations

These are optimizations more specific to hardware compilation which may be of
limited interest for a software compiler as they mainly focus on customization
optimizations. The customization comes from, e.g., specialized data types, and
bit-width narrowing. The ultimate goal is to leverage the hardware customization
provided by specific functional units, memory, and pipelining structures. For
instance, conversions from floating- to fixed-point data types can be used as fixed-
point data types enable cheaper hardware implementations than the ones for dealing
with floating-point data types. It can be also an option to use custom floating-point
data types.

A suitable customization optimization is bit-width narrowing for each variable
used in the code. In a target architecture where variables can be stored in custom
registers, e.g., the use of 3 bits instead of 8 saves hardware not only in the register to
store the values but also in the hardware components to perform operations as this
custom bit-widths can be now propagated to the operations over the data. A very
simple example is the use of 8 bits for j and 2 bits for i in the code in Fig. 2.14a.

Another very important optimization is if-conversion [GDWL92] which converts
control flow to data flow. In the case of hardware compilation, if-conversion is not
limited to the support of predicates, but may enable the execution of operations even
if they are in branches not taken due to the FPGA spatial model of computation.
Figure 2.17a presents a simple example with an if-else which can be translated to the
predicated code of Fig. 2.17b. The hardware implementation is shown in Fig. 2.17c.
We can see that both branches of the if-else and the comparison are all executed in
parallel. The correct result is then selected by a multiplexer. An interesting aspect of
this optimization is that it does not need to be controlled by the control unit (FSM).

The critical path of the generated datapath may increase the combinatorial delay,
i.e., the duration of a clock cycle. In order to reduce the critical path, some
optimizations can usually be applied. Reassociation of operations and algebraic

a b
// int f=abs(int n) // int f=abs(int n)
if (n >= 0) pl = (n >= 0);
f = n; f = n; <p1>
else f = -n; <!pil>
f = -n;

Fig. 2.17 Example to determine the absolute value of an input number: (a) C code; (b) predicated
example after if-conversion; (c) dataflow graph
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a
output=cO*x_3;
output+=cl*x_2;
output+=c2*x_1;
output+=c3*x_0;

C

t1=cO*x_3+cl*x_2;
t2=c2*x_1+c3*x_0;
output = tl1 + t2;

Fig. 2.18 Statements amenable to tree-height reduction: (a) C code; (b) dataflow graph;
(¢) C code after reassociation of operations for tree-height reduction; (d) resultant dataflow graph

properties can be used to reorganize expressions in order to reduce the number of
operations in the critical path or the number of required control steps. One example
is the use of tree-height reduction which reassociates the operations in an expression
in order to reduce the height of the tree. Figure 2.18 shows the application of tree-
height reduction to the code of Fig.2.15b responsible for the calculation of each
output value. The original code in Fig.2.18a leads to the dataflow graph illustrated
in Fig.2.18b which includes 4 levels of arithmetic operators. The reassociation
of operations presented in Fig.2.18c leads to the tree-height reduction shown in
Fig.2.18d which includes 3 levels of arithmetic operations, a reduction of 1.
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2.4.3 Software Pipelining

Software pipelining [GDWL92] is one of the traditional compiler optimizations
used to parallelize loop execution by overlapping the execution of subsequent
iterations. Software pipelining is related to the hardware techniques loop pipelining
and loop folding [Rau94]. The optimization leads to three stages of loop execution:
a prologue (“fill the pipe”), a steady state (also known as kernel), and an epilogue
(“drain the pipe”). The common goal is to reduce the number of cycles to execute
each iteration of the steady state, known as initiation interval (II), which represents
the number of cycles between the start of successive iterations. Loops with IT = 1
represent cycle execution with each loop iteration performed in a single clock cycle
and thus maximized in terms of throughput. When compiling to FPGAs, however,
a trade-off between the value of II, the maximum clock frequency, and the required
hardware resources is usually explored.

Figure 2.19 presents a simple example, the addition of two vectors, and two
variants of code transformed in order to accomplish software pipelining. If we
assume that all arithmetic and load/store operations execute in one cycle and all
hardware resources required for parallel execution are available (including three
memory ports or one distinct memory per array variable), II is equal to 2 for the
loop pipelining example described by the code in Fig. 2.19b since the multiplication
and the assignment to array C require two sequential cycles for each kernel iteration.
The code now requires 1+9%2+1 =20 clock cycles instead of 3*10 = 30 clock cycles
for the original code without software pipelining. Figure 2.19c presents the same
software pipelining optimization as Fig. 2.19b, but now using predicates to control
the prologue, steady state, and epilogue stages. In order to achieve Il = 1, we need
to move more operations to the prologue and epilogue and to have all the operations
in the loop body executing simultaneously per loop iteration. Figure 2.20 illustrates

a
for(int i=0; i<10; i++) {
C[i] = A[i] * B[il; b
} a_tmp = A[0];
b_tmp = B[0];
for(int i=0; i<9; i++) {
c C[i] = a_tmp * b_tmp;
for(int i=0; i<11; i++) { a_tmp = A[i+1];
Cli-1] = a_tmp * b_tmp; <i!=0> b_tmp = B[i+1];
a_tmp = A[i]; <it=10> by
b_tmp = B[il; <i'=10> Cl9] = a_tmp * b_tmp;
}

Fig. 2.19 Simple example to illustrate software pipelining: (a) original code; (b) code after
software pipelining with prologue and epilogue moved to outside the loop; (¢) code after software
pipelining with prologue and epilogue controlled by predicates
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Fig. 2.20 Simple example to a = A[0]; b = B[0];
illustrate software pipelining - . - . - .
with 1T = 1 ab .a *.b, a. A[?], b = B[1];
for(int i=0; i<8; i++) {
C[i]=ab; ab=a * b; a=A[i+1]; b=B[i+1];

¥
C[8] = ab, ab = a * b;
C[9] = ab;

the code that represents the application of software pipelining for II = 1. In this
case, the latency achieved equals 2+8*1+2 = 12 clock cycles. Although we illustrate
software pipelining using code transformations, an automatic implementation is not
performed at this level but works on the compiler intermediate representations (e.g.,
data dependence graph and reservation table [Muc97]) instead.

There are many algorithms for software pipelining, the most widely used one
being iterative modulo scheduling [Rau96, Rau94]. The algorithm starts by consid-
ering the minimum value of II (MII) which is the maximum value of the resource
constrained (ResMII) and the recurrence constrained (RecMII) initiation interval.
ResMII is calculated based on the resource usage required in each iteration and
RecMII represents the latencies imposed by cycles in the DDG (data dependence
graph). Then, the algorithm tries to schedule the loop (e.g., using list scheduling or
other scheduling algorithm) with MIL. If it fails, it means that the loop cannot be
scheduled using this value of the MII and the algorithm iterates by increasing the
MII value by one until a modulo schedule is obtained (i.e., a value of II that allows
the scheduling of the kernel).

Independent of the II value, the kernel always needs to perform all the operations
of the loop body. In order to avoid limitations imposed by ResMII and to be able
to execute all the operations in the same clock cycle, one needs to have as many
hardware components as the number of operations in the loop body. If there is
only 1 hardware multiplier but 2 multiplications in the body, the II needs to have
a minimum value of 2 (ResMII = 2/1). Thus, in order to avoid constraints in
terms of ResMII, 2 hardware multipliers are required. A similar thought is used for
all operations, including load and store operations. The number of memories and
memory ports are the constraints that limit the number of simultaneous load/store
operations.

The other constraint for II is the RecMII which is computed by considering
the delay of the longest loop-carried data dependence (also known as latency of
the recurrences or cycles in the DDG) divided by the dependence distance. This
represents the number of cycles which a new value requires to appear at the input of
the circuit.

We now show a possible software pipelining for the FIR example with code
shown in Fig. 2.15b. The example in Fig. 2.15b imposes 4 simultaneous accesses to
the memory storing the x array in order to achieve an II = 1. Using the direct support
of two ports provided by on-chip FPGA RAMs, the minimum II equals 2 and the
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Fig. 2.21 Dataflow graph for the loop body of the FIR example in Fig.2.16b. The dotted lines
illustrate possible pipelining stages which would imply additional registers in the outputs of the
two adders in the second stage

latency of the example is will be around 512 clock cycles, achieving a throughput
of 1 sample per two clock cycles. If we reuse data as illustrated in Fig.2.16b, the
ResMII is no more 2 as there is only one access to array variable x per iteration and
the II achieved is 1, resulting in a latency of around 256 clock cycles (a throughput
equal to 1 sample per cycle). The dataflow graph of the loop body is shown in
Fig.2.21.

Note that FPGA Block RAMs (on-chip RAMs) have two ports, but the loop body
of Fig.2.16b is reading/writing only one value per iteration and thus uses only one
port. In order to use the other port, one can add more accesses to array x and y to
the loop body. For that, we can unroll the remaining outer Loop I by a factor of 2
(see Fig.2.22). In this case we still achieve an II of 1 with a latency of about 128
(a throughput equal to 2 samples per cycle). Given the restriction on the number of
ports, the unrolling of the loop by factors higher than 2 would only contribute to
higher II values and to the use of more hardware resources. Note, however, that it
can be possible to customize on-chip memory resources to provide memories with
more ports or to use more memories and replicate the data.

The value of II and the number of pipelining stages included in the datapath
are also dependent on the required target clock frequency. Usually, a design-space
exploration needs to be performed in order to achieve the best implementation given
the input design requirements.
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Fig. 2.22 Loop unrolling by for(int j=3; j<M; j+=2) {
two, applied to the FIR x_3=x[31;
example in Fig. 2.16b - 4

output=cO0*x_3;

output+=cl*x_2;
output+=c2*x_1;
output+=c3*x_0;
x_0=x_1;
x_1=x_2;
x_2=x_3;
y[j]l = output;

x_3=x[j+1];
output=cO0*x_3;
output+=cl*x_2;
output+=c2*x_1;
output+=c3*x_0;
x_0=x_1;
x_1=x_2;
x_2=x_3;

y[j+1] = output;

2.4.4 Mapping Data Structures

The mapping of the data-structures onto the memory resources on the FPGA-
based computing platform is an important step of an FPGA compiler. That
mapping binds the data structures (e.g., array variables) used in the program
to the FIFOs and memories in the target architecture. The memory resources
include the RAMs internal to the FPGA and the RAMs externally coupled to each
FPGA.

In the previous examples we assumed the use of one on-chip memory per
array variable. However, advanced transformations can be used. They include the
partitioning and distribution of the data structures (e.g., array variables) in order
to enable concurrent memory accesses to elements of the same data structure,
especially as the target FPGAs include several on-chip memories and possibly more
than one external memory. It can also be an option to use data replication in order
to access data elements of the same data structure at the same time.
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2.5 Backend Stages

This section summarizes how an FPGA bitstream, i.e., binary data which configures
a circuit in an FPGA, is generated from a hardware design at RTL. This process
requires a number of stages (see, e.g., [CCP06, HB06]). Figure 2.23 shows a general
design flow commonly used as the backend of an HLS tool. Mature tools for the
backend stages are provided by the FPGA vendors.

The first step performs lower-level synthesis: RTL and logic synthesis generate
the circuits for the control unit, add multiplexers, assign registers, minimize
boolean functions, and implement arithmetical and logical operators. Registers are
implemented with D-type flip-flops which are available in large numbers on modern
FPGAs. The result is a netlist, i.e. a graph representation of hardware components
such as gates and connecting signals.

The next step maps the netlist to the hardware resources of the FPGA device.
A particular feature of modern FPGAs is that they do not implement boolean logic
as individual AND, OR and inverter gates, but use LEs (logic elements) or CLBs
(configurable logic blocks) which consist of small look-up tables (LUTs) which are
capable of implementing all boolean functions with a small number (4—6) of inputs.
Therefore, the boolean functions have to be mapped to these LUTs. The mapper
should also exploit special features like fast carry-chains for adders. Some complex
arithmetic operators (like multipliers) do not need to be assembled from LUTs but
are available as fixed circuits (hard macros) which should also be considered by the
mapper. Small memories can be mapped to on-chip block RAMs. They allow much
faster access than off-chip memory.

Fig. 2.23 FPGA design flow RTL-HDL
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Finally, the last step of the design flow, Placement and Routing (P&R), places
the hardware units of the mapped netlist to the FPGA components and connects
them using the configurable routing resources. Connected hardware units should be
placed close to each other so that the resulting connections are as short as possible.
This ensures short signal delays in the connections and enables a short clock cycle,
i.e., a high clock frequency for the circuit. The P&R process is very computing
intensive and may take a long time depending on the complexities of the design and
FPGA. For example, millions of gates and other hardware components have to be
placed and routed considering also the millions of FPGA hardware resources.

All the component and connection information is stored in a bitstream file. This
file is then used to program or configure an FPGA. After configuration, the FPGA
executes the functionality of the original behavioral description in hardware.

2.6 Conclusions

This chapter presented some of the main tasks performed by high-level FPGA
compilers. It is intended to help software programmers and novices in high-
level synthesis to acquire the main concepts, illustrated by several examples. But
it is neither intended to be a literature survey nor to introduce advanced and
specific optimization techniques. Instead, it prepares the reader for the following
book chapters and for reading further literature about compilation to FPGAs, we
recommend the references [CHO02, CDW10, NI114, GDWL92, Mic94, Wol96].



Chapter 3
A Quick Tour of High-Level Synthesis
Solutions for FPGAs

Frank Hannig

3.1 Introduction

In Electronic design automation (EDA), HLS denotes the systematic transformation
of a specification at a high abstraction level, e.g., a behavioral description in form
of a mathematical expression or program notation, into a structural representation at
RTL that realizes the given behavior. Traditionally, HLS involves the three major
steps of allocation, scheduling, and binding as described in Chap.2. However,
depending on the starting point, HLS might involve also analysis, parallelization,
and optimization techniques such as used in compiler design (see Sect.2.4) for
uni- and multi-processors. But, compared to parallel processor architectures, FPGA
designs offer a much higher degree of freedom to exploit both temporal parallelism
(e.g., very deep processing pipelines) and spatial parallelism (e.g., as many
operations and hardware modules as possible or as the I/O bandwidth allows can
be instantiated). In addition, thanks to the interconnect flexibility in FPGAs, these
two types of parallelism can be arbitrarily combined with each other.

HLS is not a new discipline and has over 30 years of tradition, which is also
covered by several articles. For instance, in [GB08], Rajesh Gupta and Forrest
Brewer present a retrospective of HLS. Similarly, Grant Martin and Gary Smith
provide an overview of the evolution of HLS in their general interest article “High-
Level Synthesis: Past, Present, and Future” [MS09] in the IEEE Magazine on Design
& Test of Computers. Here, Martin and Smith categorize the evolution of HLS
into three generations plus a prehistoric epoch in the 1970s with pioneering works
by Barbacci and Siewiorek [BS73, Bar76]. The first generation in the 1980s until
mid-1990s was characterized by vivid research with many seminal papers on HLS.
Raul Camposano and Wayne Wolf [CW91], Daniel Gajski et al. [GDWL92], and

F. Hannig (B<)
Friedrich-Alexander-Universitédt Erlangen-Niirnberg (FAU), Erlangen, Germany
e-mail: frank.hannig@fau.de

© Springer International Publishing Switzerland 2016 49
D. Koch et al. (eds.), FPGAs for Software Programmers,
DOI 10.1007/978-3-319-26408-0_3


mailto:frank.hannig@fau.de

50 F. Hannig

Giovanni De Micheli [Mic94] to name a few of the most active researchers and list
their textbooks that still form the basis for education and ongoing research. A survey
of HLS tools of this early decade is presented in [WC91] by Walker and Camposano.

In the second generation (mid-1990s to early 2000s), the first commercial tools,
such as Synopsys’ Behavioral Compiler came into the market. But, this generation
failed because both promises and expectations were too high. One erroneous belief
was that HLS could replace RTL synthesis. In addition, the design entry in form
of behavioral Hardware description languages (HDLs) was mainly tailored for
RTL designers, and thus difficult to access for algorithm developers and software
engineers. Finally, the obtained results had often poor quality, the synthesis process
was not comprehensible and difficult to control. From the early 2000s, the third
generation of HLS tools hit the market and there has been a lot of tool movement
between the vendors. Nowadays, each major EDA company has a matured HLS tool
in its product portfolio.

3.2 Categories and Properties

In the following, we give an overview of currently available HLS tools with an
emphasis on FPGA technology. We make a point of the fact that the discussed
tools are either commercially or as open-source software available at the point
of time when writing this book—whereby this list of tools does not claim to be
exhaustive. Furthermore, we do not aim at going into tool specifics but rather want
to classify them with respect to certain properties. As tool properties, we consider
the availability, the supported target architectures, the level of programming
abstraction and parallelization support, as well as the way of design entry.

Availability denotes whether a design framework is commercially or freely acces-
sible. That is, in the first case, the tool has to be acquired, for example in
form of a royalty bearing license. Sometimes, in case of academic design tools,
software is made available only upon request under individually agreed terms
and conditions. Whereas, the second case denotes free software, i.e., with a free
license, which is commonly referred to as open source.

Target architectures denotes the spectrum of platforms and technologies that a
development tool is aiming at. Some HLS tools are technology independent.
That is, they solely support the synthesis of a behavioral description into a
structural one that is still technology independent. Whereas, other tools target
either Application-specific integrated circuits (ASICs), FPGAs, or both of them.
Furthermore, it is important to which extent predefined building blocks and IP
components are provided and can be reused, respectively. Finally, some design
environments are tailored to support only selected FPGA boards. This has the
advantage that the entire board support infrastructure, such as communication
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and memory interfaces, is optimally matched to the design environment, and
the software engineer can focus on application development.

Type of computation differentiates whether a tool targets dataflow-dominated or
control-dominated applications.

Programming abstraction and parallelization support denotes different scales
of computing irrespective of the actual programming language used for design
entry (see next item). Although some design tools start from a High-level
programming language (HLL) such as C or Scala, they are rather a hardware
description language than an HLS approach. For instance, Chisel [BVR™12]
is a hardware construction language that is embedded into the modern Scala
programming language [OSV11], which is both a functional and object-oriented
language. Chisel itself purely describes the structure of low-level hardware
blocks that can be hierarchically composed to larger structural components. In
addition, control flow in form of conditional execution and finite state machines
can be described. Thus, we call such a level of abstraction low in Fig. 3.1, even
though the approach has a high expressiveness, that means, it is very general
and can be used for a wide range of applications. However, the programming
effort is rather high and a high Quality of results (QoR) demands also great
programming skills.

Since parallel execution is the most natural and important way of execution in
hardware, in case of modeling dataflow-dominated applications, the support for
efficiently synthesizing a behavioral description into a parallel RTL structure is
of utmost importance. One obvious way is to map the internal representation
in form of a Data flow graph (DFG) directly to multiple functional units of
appropriate type that can work concurrently (see Sect.2.2.3). The breadth
and the depth of this directed acyclic graph is a measure for the degree of

Productivity i Approaches }  Quality of Results

\ very high /
\ high /
Programming Abstraction

and
Parallelization Support

medium

4

Expressiveness

Fig. 3.1 The three measures of effectiveness for HLS approaches: Expressiveness, productivity,
and performance. Each approach makes a compromise between these measures. Domain-specific
approaches trade off expressiveness for productivity and QoR
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Instruction-level parallelism (ILP) and the pipeline depth, respectively. The
support of this type of parallelism, we call medium (see Fig.3.1).

The next level of parallelism is loop-level parallelism. Loop unrolling (see
Sect.2.4.1) is a prominent technique to increase the ILP. Another technique,
which is related to scheduling a loop program, is software pipelining. It allows
to interleave the execution of multiple loop iterations simultaneously (see
Sect. 2.4.3), and hence can further increase the pipeline depth and consequently
throughput. If an HLS framework is able to employ these types of parallelism
either automatically or user-guided, e.g., in form of program annotations or
script-based, we call this level of abstraction and parallelization support high
in the following.

Building blocks, templates, or advanced code transformations for efficient
data reuse or loop tiling techniques to further increase the degree of parallelism
may result in a very high QoR (upper right corner in the triangle of Fig.3.1).
If both QoR and productivity are important, domain-specific approaches are a
valid option. In order to achieve both goals alike, such approaches have a limited
expressiveness and are focused on a particular domain. Here, productivity is a
measure of the design effort needed to specify and design a certain application.
In case of programming languages, this can be, for instance, the number of
Lines of code (LoC).

Such programming languages are called Domain-specific languages (DSLs).
They allow domain experts to describe a problem they want to solve in a
declarative, abstract, and compact way, using concepts and terms that are
familiar to them. Because no implementation details need to be specified,
parallelization can be supported by HLS, exploiting generic parallel execution
patterns in the domain. Since all the details are derived by the HLS approach
itself, DSL programs are much more portable and scalable. Support for new
hardware features (e.g., FPGA primitives) only takes an extension of the
DSL-based synthesis approach, but not of all the DSL programs. Due to the
aforementioned advantages of DSLs, we assign them the highest abstraction
and parallelization level in Fig. 3.1 (very high). Domain-specific languages can
be mainly subdivided into two categories: Internal (embedded) and external
DSLs. Internal DSLs use the syntax of a host general-purpose programming
language and extend or restrict it by introducing new domain-specific language
elements like special data types, routines or macros. External DSLs introduce a
completely new syntax and semantics. Thus, in general, they are more flexible
and expressive than internal ones at the cost of a higher design effort. Just
like general-purpose programming languages, DSLs may be represented in a
textual or in a graphical way. Very often, however, graphical programming
languages like LabVIEW and MATLAB Simulink are DSLs in reality. Their
visual representation often is the most natural way of describing scenarios in
certain domains, and thus further eases the development process.

Design entry denotes the way how an application is specified. Common examples

include the usage of general-purpose programming languages such as C, C++-,
or SystemC. However, typically not the entire language standard is supported,
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i.e., only a restricted subset can be used. In the other direction, these languages
are often extended by certain data types specific to hardware design, or they
are augmented by entire models of computation such as dataflow models. Other
options include the usage of the aforementioned DSLs, specification languages
such as UML, or proprietary programming languages that often realize a
declarative programming paradigm.

3.3 Classification of High-Level Synthesis Tools

In Table 3.1, an overview of selected HLS tools is given, according to the before
outlined properties. In addition, each tool is briefly described in the following.

Altera SDK for OpenCL allows software programmers to write FPGA-
accelerated kernel functions in OpenCL C, an ANSI C-based language. For
more details, we refer to Chap. 6 and Altera’s website. !

Bluespec is a commercial HLS tool developed and offered by Bluespec, Inc., an
EDA company co-founded by Prof. Arvind of MIT in 2003. For design entry
Bluespec SystemVerilog (BSV) is used, which includes both (a) behavioral
modeling of complex concurrent systems by using the formal specification
concept of atomic rules and interfaces (also known as guarded atomic actions),
and (b) powerful abstraction mechanisms for describing and organizing the
structure of large and complex systems. The advantage is that parallelism and
correctness are inherently provided by such a formal specification language,
and, thus, may reduce verification time significantly. The Bluespec HLS tool
generates either Verilog RTL or executable SystemC models as output. Since
BSV is closely based on SystemVerilog, which is a combined HDL and
hardware verification language, it might be rather suited for developers with
a background in RTL design than for software engineers. For further details, we
refer to [Nik08], the introduction in Chap. 9, and Bluespec’s website.?

Catapult is an entire product family of technically matured HLS tools from
Calypto Design Systems. Initially, it was developed and introduced by Mentor
Graphics as Catapult C [Bol08] more than 10 years ago, before it was acquired
by Calypto Design Systems in 2011. Catapult supports a subset of ANSI
C++ and SystemC for design entry, from which it generates structural RTL
descriptions in Very high speed integrated circuit hardware description language
(VHDL), Verilog, or SystemC. It provides a rich set of data types in form of
C++ classes, including integers of arbitrary length, fixed-point, floating-point,
and complex data types. Further, it features testbench generation, complex SoC
interconnects, Transaction-level modeling (TLM) and Electronic system level

Thttps://www.altera.com.

Zhttp://www.bluespec.com/high-level-synthesis-tools.html.
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Table 3.1 Comparison of selected HLS framework for FPGAs

Tool Avail- Target Computa- | Abstraction & Design
Name ability Architecture | tion Type | Parallelization Entry

= = z

g 3 02 3 2| g B

E5le 5 §3|s E|.2d45%
Altera SDK/OpenCL | v/ v v | v (V)| O00Omo0O OpenCL C
Bluespec v v v v v | O000O0OmO BSV
Catapult v v v v | OOOCMOD | ANSI C++, SystemC
CHC Compiler v v v () | OO0OmOOO Standard C
C-to-Silicon v v V) v v | O00OmO00 | C, C+, SystemC
CyberWorkBench v v v v v | OO000OmO0 | ANSIC, SystemC
Cynthesizer v v v v v | OO0OOmOO SystemC
GAUT (V)| v v (v') | OOmO00o C
HDL Coder v v) v v | v (v)|DOOODED | MATLAB, Simulink
HIPAce v v v CIOCECCEM | Co+ embedded DSL
Impulse C v v v v v | OO00OmOOOd ANSIC
LabVIEW FPGA v v | v v | O0000OmO G
LegUp v v s v | OOmO000 ANSIC
MaxCompiler v v v OoOo0OmOd MaxJ, OpenSPL
Merlin Compiler v v v (V') | OOOOOmO C and C++
PARO (v) v v O0O0000O. PAULA
ROCCC v v (V)| v (v) | O0OOOCwd C
SDAccel v v v () | OO0O0OmOO OpenCL, C, C4++
SPARK (v') v (v) v | O00OmO00 ANSIC
SPIRAL v v v v v O00O000. SPL
Trident v v v (v') | OOmO0O00O C
Synphony C Comp. | v/ v v v v | OO000Omo Cand C++
Vivado HLS v v (V)| v v | D0000OmO0 | C, C++, SystemC

(ESL) flows, as well as low-power optimization. Catapult covers a wide range
of both dataflow and control-flow applications. Optimization and parallelization
has to be done user-guided by providing constraints during the synthesis, and
thus, require in-depth hardware knowledge to achieve a decent QoR. For further
details on Catapult, we refer to the overview and the step-by-step approach
provided in [Bol08] and [Fin10], respectively. Most recent advancements and
features might be directly obtained on the corresponding product web page of
Calypto Design Systems.?

3hitp://www.calypto.com.
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C-to-Hardware Compiler, also known as CHC Compiler, is an HLS tool for
FPGAs offered by Altium. The CHC Compiler uses standard C (ISO C) as
input language and produces a synthesizable hardware file in the proprietary
hardware assembly language HASM, which can be translated to hardware
description languages such as VHDL The CHC Compiler is closely tied to
Altium Designer, a development environment for Printed circuit board (PCB),
embedded software and FPGA design. The HLS tool can be mainly used in two
ways: (1) To compile an embedded program to software and selected functions
to hardware, which can still be called from the software. In this way components
of an Application-specific processor (ASP) can be created. (2) To synthesize
a hardware block that can be used as a component in the FPGA. In contrast
to above, it does not require an ASP. The transformation and optimization in
the compilation flow can be either controlled by pragmas, compiler flags, or
automatically. For further details on the C-to-Hardware Compiler, we refer to
the user manual [Alt13b] and the web page of Altium.*

C-to-Silicon is an HLS tool from Cadence, which mainly focuses on ASIC design
and partly on FPGA targets. As input design language it uses C, C++,
SystemC, and OSCI TLM 1.0, it generates Verilog code. C-to-Silicon can
tightly interact with Cadence’s ASIC design flow, the RTL Compiler. In case
of C or C++ input specifications, a SystemC wrapper is generated, which
unfortunately can be simulated only with the Cadence tool chain. Furthermore,
C-to-Silicon provides a collection of design IP such as math functions, fixed-
point and floating-point data types, as well as several IP cores for standardized
interconnects, as well as testbench generation. The entire HLS design flows has
to be controlled by user-specified constraints in form of Tcl scripts. Further C-
to-Silicon details can be accessed on the corresponding product web page from
Cadence.’

CyberWorkBench, sometimes also referred to as All-in-C, is a synthesis and
verification tool by NEC that has been developed since more than 25 years.
As input ANSI C and SystemC programs are accepted from which optimized
synthesizable RTL code in Verilog or VHLD is generated for FPGAs or
ASICs. The design flow supports both control-dominated circuits and datapath
modules. CyberWorkBench features automatic pipelining, power optimization,
and parallelism extraction. These optimization are guided by attributes in the
C code and global synthesis options. Attributes denote, for instance, function
inlining or loop optimizations such as loop merging or unrolling. Global options
include scheduling policies such as speculative scheduling, ASAP, or ALAP.
Formal design verification can be done by using assertions and properties. For
further information, we refer to [WO00, WS08] and NEC’s website.°

“http://www.altium.com.
Shttp://www.cadence.com.

Shttp://www.nec.com/en/global/prod/cwb/.
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Cynthesizer is Cadence HLS counterpart of Catapult with a similar function range.
Originally, it was developed by Forte Design Systems, which was recently
acquired by Cadence. As input language, untimed behavioral descriptions in
SystemC are used, from which a subset can be synthesized to RTL. The
Cynthesizer is very versatile, it supports testbench generation, TLM simulation,
effective IP reuse support, and low-power design. The framework is very
powerful, parallelization techniques (e.g., loop unrolling or pipelining) have
to be specified manually by directives in the code, and thus, require a deep
understanding of the RTL design in order to achieve high-performance results.
For further details on Cynthesizer, we refer to the introduction provided in
[Mer08] or directly to Cadence’s website.’

GAUT is an academic open source HLS framework, developed at Université de
Bretagne-Sud, with emphasis on digital signal processing applications. The
framework is based on the GNU Compiler Collection (GCC) and its GIMPLE
intermediate representation. Starting from a restricted C function, GAUT
extracts the potential instruction-level parallelism, and performs scheduling and
binding of operations, but also memory and communication interface synthesis,
and finally generates target-independent VHDL code. For further details on
GAUT, we refer to the overview provided in [CCBT08] or directly the project
web page.®

HDL Coder is a code generator from The MathWorks, Inc., which can generate
synthesizable HDL code from MATLAB functions and Simulink models. It
offers RTL code generation in the form of VHDL or Verilog in two variants,
target-independent and optimized back ends for both Xilinx and Altera FPGAs
and SoCs. HDL Coder can generate target-specific HDL code on the basis of
Xilinx LogiCORE IP blocks (e.g., Xilinx floating-point arithmetic functions)
and Xilinx Zynq-7000 SoC devices. Similarly, it can be seamlessly combined
with Altera’s DSP Builder and Altera SoC devices. For verification, the original
MATLAB or Simulink model can be used as a system-level testbench and
compared against an HDL simulation, using third-party RTL simulators. For
more details, we refer to MathWorks’ website.”

HIPA®¢ that has been mainly developed at the Friedrich-Alexander University
Erlangen-Niirnberg, is an open-source DSL and compiler for a wide range of
accelerator technologies, including also a design trajectory for FPGAs. For
more details, we refer to Chap. 12 and to its website.'”

Impulse C is an HLS tool offered by Impulse Accelerated Technologies, Incor-
porated. It targets both software engineers as well as FPGA designers, and
uses ANSI C as input language from which VHDL and Verilog code can be
generated. As in case of many other C-based HLS tools, Impulse C requires

http://www.cadence.com.
8hitp://hls-labsticc.univ-ubs.fr/.
http://www.mathworks.com/solutions/fpga-design/solutions.html.

10http://www.hipacc-lang.org.
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prior hardware design experience to achieve a reasonable QoR by the pragma-
based parallelization and compilation approach. Advantageous is that the tools
offers direct support for selected FPGA platforms, and can automatically
generate host/FPGA interfaces for selected FPGA boards. For more details, we
refer to Impulse’s website.!!

LabVIEW FPGA Module is a solution offered by National Instruments (NI) that
specifically targets Xilinx-based hardware platforms offered by NI. For design
entry, the LabVIEW graphical programming language G is used. For more
details, we refer to Chap. 4 and to its website.!?

LegUp is an open-source HLS tool developed at the University of Toronto. For
more details, we refer to Chap. 10 and to its website.'3

MaxCompiler is a compilation environment from Maxeler Technologies for their
corresponding FPGA-based acceleration systems. It offers an all-in-one solu-
tion for developing compute kernels, manager configurations, and host appli-
cations for Maxeler’s dataflow computing platforms. Kernels are dataflow-
dominated programs that can be described either in MaxJ, an extension of
the Java programming language, or by the recently introduced Open Spatial
Programming Language (OpenSPL). For further details, we refer to Chap.5
and to Maxeler’s website.'*

Merlin is a source-to-source compiler developed by Falcon Computing Solutions,
a startup from UCLA. For further details, we refer to Chap. 8.

SDAccel is Xilinx HLS counterpart of the OpenCL-based approach offered by
Altera. It is a complete software development environment, which allows
software engineers with little FPGA knowledge to develop and optimize
applications written in OpenCL, C, and C4++ on FPGA platforms (e.g., as
accelerator in data-centers) by completely abstracting from the underlying
hardware. Furthermore, large applications with multiple kernels are split up
and can be loaded on-demand to an FPGA by using the concept of partial
reconfiguration. For further details on SDAccel, we refer to Xilinx’ correspond-
ing web page.'”

SPARK is a for non-commercial purposes freely available HLS tool developed at
the University of California, San Diego. A very restricted subset of C is used
as input (no support for pointers, function recursion, multi-dimensional arrays,
etc.) from which structural VHDL (RTL code) is generated. In SPARK, many
compiler transformations have been re-instrumented for synthesis by incor-
porating ideas of mutual exclusive operations, resource sharing and hardware
cost models. SPARK is particularly targeted to control-intensive microprocessor

http://www.impulseaccelerated.com.
"2http://www.ni.com/labview/fpga/.
Bhttp://www.legup.org.
14http://www.maxeler.com.

Shttp://www.xilinx.com/products/design-tools/software-zone/sdaccel.html.
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functional blocks, as well as multimedia and image processing applications. A
hardware/software partitioning algorithm that distributes applications to a CPU
and an FPGA is also contained in the framework. Further information can be
obtained from the “SPARK” textbook [GGDNO4a] or the website, !¢ where also
the software can be downloaded. However, further development seems to be
stalled since 10 years.

SPIRAL is a domain-specific library generation framework mainly developed at
Carnegie Mellon University. More specifically, SPIRAL [FVM™08] considers
the domain of linear transformations, including Discrete Fourier transform
(DFT), Walsh-Hadamard transform (WHT), FIR and IIR filters, discrete cosine
and sine transforms, and discrete wavelet transform. A declarative, mathe-
matical DSL called SPL (Signal Processing Language) is used for problem
specification. Subsequently, this input is structurally optimized through rewrit-
ing and eventually translated into C and Verilog code in case of targeting
parallel processors and FPGAs, respectively. SPIRAL uses evolutionary search
methods, dynamic programming, and techniques from artificial intelligence
to learn which choice of algorithm is best. Code generators for some of
the aforementioned linear transformations are available under GNU GPL
license (commercial licenses can be obtained on request) on SPIRAL’s project
website.!’

Trident is an FPGA compiler framework for floating-point algorithms based on
LLVM. It starts from a restricted algorithm description in C, followed by
optimization and scheduling phases, and finally generates VHDL code. We refer
to [TGP07] and the corresponding SourceForge web page'® for further details
and download, respectively.

PARO is an HLS tool developed at the University of Erlangen-Niirnberg [HRDTO8].
It is capable of automatically generating highly parallel hardware accelerators
for a broad variety of compute-intensive applications with multi-dimensional
dataflow. An external DSL, called PAULA [HRTO8], is used as input
language, which is a functional programming language that is very closely
related to a mathematical problem description. PAULA allows to describe
algorithms as systems of multi-dimensional recurrence equations with affine
data dependences defined over polyhedral iteration spaces, but can handle
also runtime-dependent conditions to a limited extent. Furthermore, PAULA
offers compact language constructs for multi-dimensional reductions and
offers domain-specific augmentations for image processing [STH™ 14]. The
compilation process relies heavily on well-known compiler optimizations but
also on powerful loop transformations in the polyhedron model (e.g., loop
tiling), as well as on mixed integer programming techniques for determining
an optimal software-pipelined schedule under resource constraints. As output,
PARO generates target-independent synthesizable VHDL code, or programs for

16http://mesl.ucsd.edu/spark/download.shtml.
17http://spiral.net/hardware.html.

18http://trident.sourceforge.net.
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programmable processor arrays, such as TCPAs [HLB T 14]. Disadvantageously,
the PARO framework is only available upon request under individual terms and
conditions for selected partners.

ROCCC is an open-source HLS tool developed at the University of California,
Riverside. For more details, we refer to Chap. 11 and to its website. '

Synphony C Compiler was originally developed by Synfora, a spin-off of
HP Labs, under the name PICO Express, before Synfora was acquired by
Synopsys in 2010. The Synphony C Compiler takes C and C++ as input and
generates RTL code in VHDL or Verilog. It can closely interact with other tools
from Synopsys’ product family: The Design Compiler for RTL synthesis (ASIC
designs), Synplify for FPGA synthesis, as well as simulators and equivalence
checkers. The HLS can exploit parallelism at multiple levels including ILP,
loop-level parallelism, and task-level parallelism. For further details on PICO
and the Synphony C Compiler, we refer to [KAST02, AKO8] and Synopsys’
website,?” respectively.

Vivado High-Level Synthesis or short Vivado HLS is an HLS tool offered by
Xilinx. For more details, we refer to Chap. 7 and to the Xilinx” website.?!

As mentioned before, the above list of currently available HLS tools is without
any claim to comprehensiveness and can give only glimpses into the different
approaches and their features. For further readings, we recommend—of course—
the corresponding chapters in this book, but also the following literature (in reverse
chronological order):

* The overview article on HLS tools as per 2012, given by Meeus et al. in the
Journal of Design Automation for Embedded Systems [MVG™12].

* The survey “Compiling for Reconfigurable Computing” by Cardoso, Diniz, and
Weinhardt in the ACM Computing Surveys [CDW10].

» Springer’s book on “High-Level Synthesis: From Algorithm to Digital Cir-
cuit” [CMO8].

Yhttp://rocce.cs.ucr.edu.
Dhttp://www.synopsys.com.

2http://www.xilinx.com.
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Chapter 4
Making FPGAs Accessible with LabVIEW

Hugo A. Andrade, Stephan Ahrends, and Simon Hogg

In this chapter we present a graphical programming framework, the NI LabVIEW
software, and associated language and libraries, as well as programming techniques
and patterns that we have found useful in making FPGAs accessible to scientists
and engineers who are typically domain expert software programmers.

4.1 Introduction

Many scientists and engineers do software programming as a (significant) part of
their daily job, either setting up experiments, taking measurements, developing
prototypes, testing their designs, embedding software as part of larger systems, or
modeling and analyzing the world around them. The type of software that they
develop varies significantly with their domain or task that they are performing,
and many times is categorized as scientific programming, embedded programming,
test software development, and more recently cyber-physical systems programming,
etc. Many of these scientist and engineers are domain experts in other fields like
medicine, biology, chemistry, mechanical engineering, etc. and are not formally
trained as computer scientists or electrical engineers, but have learned software
programming well enough to be proficient in their own domain and use software
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programming to their advantage. So having to go even further to understand how to
program an FPGA is a foreign concept.

For such scientists and engineers having a programming framework that makes
their programming job easier is a welcome help. In this chapter we present
one such framework, LabVIEW (Laboratory Virtual Instrumentation Engineering
Workbench), specifically targeted to scientists and engineers, who need to program
as part of their jobs. In addition to highlighting the merits of a visual framework
and graphical programming language, we will also show the importance of intuitive
and precise access to I/0, and a rich set of library components so that reuse can be
exploited. We will also show how such framework has evolved from a programming
environment to a system-level development framework for heterogeneous targets.
Software programmers will find familiar elements in this flow, and will be eased
into more hardware centric elements as needed/beneficial for specific requirements,
in particular interfacing to real-world I/O at several levels.

The framework presents a platform-based design methodology, which supports
multiple models of computation to capture the application at the right level of
abstraction, and then helps map that application into several pre-qualified platform
targets. These heterogeneous targets range from personal computers running desk-
top operating systems, to embedded real-time processors, to micro-controllers and
FPGAs.

This chapter is subdivided into the following sections: In Sect. 4.2 we describe
the general LabVIEW framework in technical detail, including key language and
environment features and the set of libraries supported. In Sect.4.3 we show
how this environment can make development for software programmers trying to
use FPGAs much easier. Section 4.4 shows a supporting use case. Section 4.5
summarizes our conclusions.

4.2 The LabVIEW Software Development Framework

LabVIEW is a graphical application programming environment originally devel-
oped in the mid 1980s by National Instruments for the Data Acquisition (DAQ),
Test and Measurement (T&M) and the Industrial Automation (IA) markets. It is
composed of several well integrated sub-tools targeted at making the development
and prototyping of science and engineering applications that require interaction
with real-world data and signals very simple and efficient. These sub-tools can be
categorized as shown in Fig. 4.1 [Hogl5], and are described in the following sub-
sections.
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Fig. 4.1 LabVIEW subtools e
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4.2.1 G Programming Language

One of the key subtools is a compiler for the graphical programming language
called G. G is a dataflow language that due to its intuitive graphical representation
and programmatic syntax has been well accepted in the instrumentation industry,
especially by scientists and engineers who are familiar with programming concepts
but are not professional software developers and rather domain experts. Using it,
they can quickly tie together data acquisition, analysis, and logical operations and
understand how data is being modified. Though it is easy to use and flexible, it is
built on an elegant and practical model of computation.

The idea behind G was to provide an intuitive block diagram view to the domain
expert software programmer, since most scientists and engineers understood that
concept; and it became the primary syntactical element in LabVIEW. The semantics
follow homogeneous structured dynamic dataflow, which combines constructs from
imperative and functional languages [AK98], where actor nodes (operations or
functions) called Virtual instruments (VIs) operate on data as soon as it becomes
available, rather than in the sequential line-by-line manner that most textual
programming languages employ. The VIs are connected via unidirectional edges
(called “wires”) as shown on Fig.4.2. VIs are either primitives built into G or sub-
VIs written in the G language. Dataflow allows the user to not worry about memory
allocation, garbage collection, and concurrency. The focus is on data, who produces
and who consumes it, and what operation is performed on the data, rather than on
how to pass data from one place to the other, or determine when to send or receive it.

The user interface is presented through a “front panel” that provides “controls”
and “indicators” through which the user sends and receives information. The
programmatic hierarchical interface is specified through the connector pane.
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Fig. 4.2 LabVIEW block diagram

4.2.2 Hardware Support

Typically, integrating different hardware devices can be a major pain point when
automating any test, measurement, or control system. Worse yet, not integrating the
different hardware pieces leads to the hugely inefficient and error-prone process of
manually taking individual measurements and then trying to correlate, process, and
tabulate data by hand.

LabVIEW makes the process of integrating hardware much easier by using a
consistent programming approach no matter what hardware is being used. The
same initialize-configure-read/write-close pattern is repeated for a wide variety of
hardware devices, data is always returned in a format compatible with the analysis
and reporting functions, and the user is not forced to search through instrument
programming manuals to find low-level message and register-based communication
protocols unless specifically needed.

LabVIEW has freely available drivers for thousands of NI and third-party
hardware devices (e.g. scientific instruments, data acquisition devices, sensors,
cameras, motors and actuators, etc.) In the rare case that a LabVIEW driver does not
already exist, the user has tools to create his/her own, reuse a Dynamic link library
(DLL) or another driver not related to LabVIEW, or use low-level communication
mechanisms to operate hardware without a driver.
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The cross-platform nature of LabVIEW also allows the user to deploy his code
to many different computing platforms. In addition to the desktop OSs (Windows,
OS X, and Linux), LabVIEW can target embedded real-time controllers, ARM
microprocessors, and FPGAs, so the user can quickly prototype and deploy to the
most appropriate hardware platform without having to learn new tool chains.

4.2.3 Analysis and Technical Code Libraries

LabVIEW tailors the G programming language to engineering and scientific use by
incorporating hundreds of specialized functions and algorithms that are not typically
included with general-purpose programming languages.

In addition to the standard programming language constructs, LabVIEW contains
functions for:

* String, array, and waveform manipulation

* Signal processing, including filters, windowing, spectral analysis, and trans-
forms

* Mathematical analysis, including curve fitting, statistics, differential equations,
linear algebra, and interpolation

* Communication, including high-level protocols, HTTP, SMTP, FTP, TCP, UDP,
Serial, and Bluetooth

» Report generation, file I/O, and database connectivity

* Add-on packages for specialized disciplines, such as:

— Control design and simulation

Sound and vibration analysis
Machine vision and image processing
— RF and communication

All of the included functions in LabVIEW work seamlessly with the data
acquired from the supported hardware, and no special conversion or data movement
setup is needed.

4.2.4 UI Components and Reporting Tools

Every LabVIEW block diagram also has an associated front panel, which is the user
interface of the application. On the front panel generic controls and indicators such
as strings, numbers, and buttons or technical controls and indicators such as graphs,
charts, tables, thermometers, dials, and scales can be placed. These are designed
for engineering use, meaning the user can enter SI units such as 4M instead of
4,000,000, change the scale, export data to tools such as NI DIAdem and Microsoft
Excel, and they can be completely customized.
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In addition to displaying data as an application is running, LabVIEW also
contains several options for generating reports from test or acquired data. The
user can send simple reports directly to a printer or Hypertext markup language
(HTML) file, programmatically generate Microsoft Office documents, or integrate
with DIAdem for more advanced reporting. Remote front panels and Web service
support can be used to publish data over the Internet with the built-in Web server.

4.2.5 Technology Abstraction

LabVIEW quickly adopts technology advances in personal and embedded comput-
ing in such a way that the domain expert user gets the new capabilities without
having to learn new paradigms. Examples of this approach include how LabVIEW
is able to automatically generate multithreaded code for execution on multicore
processors or program FPGAs to gain the speed and reliability of custom hardware
chips without the user needing to learn the underlying details of multithreading,
or hardware description languages for FPGAs. The same applies to new OSs,
networking protocols, etc.

4.2.6 Models of Computation

When LabVIEW was first released, G was the only way to define the user
functionality. Much has changed since then. The user can now pick the most efficient
approach to solve the problem at hand. Examine the following considerations:

* Graphical data flow is the default model of computation for LabVIEW.

 Statecharts provide a higher level of abstraction for state-based (control)
applications.

» Simulation diagrams are a familiar way of modeling and analyzing dynamic
systems.

» Formula Nodes put simple mathematical formulas in line with the G code.
MathScript is math-oriented, textual programming for LabVIEW that can be
used to call .m files without the need for extra software.

e DLL calls, ActiveX/.NET communication, and the inline C node let the user
reuse existing ANSI C/C++ code and code from other programming languages.

* Component-level IP (CLIP) and IP integration nodes import FPGA intellectual
property based on VHDL or other HDLs.

* Single-cycle timed loops (SCTL) provide a synchronous-reactive model of
computation for RTL hardware design.

These flexible models of computation allow the domain expert to pick the right
abstraction for the particular problem being solved. In any given application the
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developer is likely to use more than one approach, and LabVIEW is an effective
tool to quickly integrate different models and execute them together.

4.2.7 Levels of Abstraction

LabVIEW can express functionality at several levels that enable the user to trade off
productivity or ease of use with performance of the resulting systems. It provides
several ways to accomplish similar tasks, so the user can balance simplicity and
customization on a task-by-task basis.

Express VIs offer quick and easy configuration of VIs, but are somewhat limited
in flexibility. Many of these types of VIs generate lower level G code that can be
made accessible to the user as a starting point to develop more flexible code. Third
party developers can themselves offer Express VIs to end-users.

Non-express VIs, where the Application programming interface (API) is exposed
directly, are categorized as productive (high-level) or low-level. The most common
way to program in LabVIEW is using high-level functions that strike a balance
between abstracting the unnecessary administrative tasks such as memory manage-
ment and format conversion, but keep the flexibility of being able to customize
almost every aspect of whatever task you need to accomplish. In contrast, when
one needs to be able to completely define every detail of a task, LabVIEW offers
the same low-level access as available in traditional programming languages.

VIs at all levels of abstraction are provided as part of the main libraries, examples,
additional libraries, third party libraries, and, in a growing number, by an open
community. To deal with the large number of options a comprehensive VI search
facility and hyper-linked documentation are provided in the framework.

4.3 Enabling FPGAs for Domain Expert Software
Programmers

In this section we present some framework extensions (LabVIEW FPGA Module
[Nat15b]) as well as techniques and patterns that focus on making FPGAs more
accessible to LabVIEW software programmers, in particular those that are domain
experts, focusing on protocol-aware testing, software-defined instruments, and
embedded and cyber-physical systems.



70 H.A. Andrade et al.
4.3.1 Integrated Synthesis and Implementation Tools

The Xilinx synthesis tools are integrated with LabVIEW FPGA. They are invoked
automatically on hidden generated code to create a bitfile to download and run on
the FPGA.

4.3.2 Reference Target Platform

In order to make targeting FPGAs more consistent, we defined a canonical FPGA
platform that is not limited to just a fabric, but includes an instruction processor and
attached I/0O. It is centered on the common use case of real-world I/O access, and
was specialized for an FPGA-based computing platform. We call it the LabVIEW
Reconfigurable I/O (RIO) architecture [Natl5c], as shown in Fig. 4.3.

There are three main computing engines: an externally attached or internal
instruction processort, typically running a real-time operating system, an (optional)
remote host computer, typically running a desktop operating system, and the FPGA
fabric. All of these computing engines are programmable by LabVIEW. Depending
on the application and the knowledge or experience of the programmer, parts of
the code may run on the host computer, the real-time computer or the FPGA. The
framework attempts to show a consistent programming environment, yet has not
hidden the boundaries between these components.

I/0O attached to the FPGA is viewed as part of a RIO target, and has first class
representation within the LabVIEW FPGA environment. The nodes present an
interface to the program in terms closest to the domain expert, e.g., analog input
in engineering units, as opposed to digital protocols to specific analog to digital
converters. Similarly control of the timing of the critical I/O operations is done in
high-level terms.

4.3.3 Pre-configured FPGA Bit Personalities with 1/0

As we have mentioned, access to real-world I/O is one of most important require-
ments for the type of domain experts that we are targeting. Yet, many of them do
not want to program an FPGA just to have synchronous deterministic access to
I/0. The NI Scan Engine [Natl5e] enables efficient access to coherent sets of I/O
channels attached to the FPGA, using a scan that stores data in a global memory
map and updates all values at a single rate, known as the scan period. To do this a
specialized IP is placed on the FPGA that interfaces to I/O modules connected to
the FPGA. Yet, at the same time, it allows the rest of the fabric to be available for
further FPGA computing or connecting to other types of specialized I/O that may
not only interface to the Scan Engine.
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Fig. 4.3 LabVIEW RIO architecture

4.3.4 FPGA Extensions

Whenever possible we try to make I/O functionality directly available to the instruc-
tion processor, either by using the Scan Engine or other “relaying” techniques.
This gives the programmer the most flexibility. In doing so, we make choices on
levels of API supported. For example, in the case of RIO-enabled RF instruments,
we have pre-built bit personalities onto the FPGA that allow the board to appear
as a more traditional instrument, by supporting standard APIs for that class of
instrument. Yet, domain experts want to make changes and specialize such a
software-defined instrument. Such a change in the FPGAs makes it difficult to
preserve the investment of code that has been made on the host already, which uses
the standard API; matching the original validated FPGA design as well. So a set of
side-band interfaces were defined that allow most of the matched FPGA-Host code
to continue to operate as originally intended, but allowing for extensibility. The side-
band interface includes feature or signature export from the FPGA and import on
the host, as well as communication through host-FPGA boundary.

4.3.5 Effective Use of Hardware-Software Communication

In order to be able to start with a design that has most of the code on the
instruction processor, and migrate only relevant parts to the fabric, we need to
minimize the development and run-time cost of doing so. This means that the inter-
process communication has to be independent of target and has to be efficient. The
LabVIEW RIO framework supports both queue and memory register abstractions to
communicate between tasks on the same processor or FPGA, as well as across these
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entities. If the entities are across a bus, it automatically instantiates Direct memory
access (DMA) channels and engines to support the operation.

4.3.6 Models of Computation

Different jobs require different tools. Similarly, depending on the tasks, the user
may want to code application components using different models of computation.
Just like in the general framework, multiple models of computation are available
for the FPGA. In particular, the general G structured homogeneous dataflow is
the default model of computation. The single-cycle Timed Loop sub-framework
discussed below follows a synchronous reactive model of computation consistent
with execution on clock ticks. For control applications we also offer a modal model
that follows StateCharts syntax and semantics, including hierarchical and concurrent
states. Some models of computation like continuous time (mainly for physical
subsystem modeling) are not available for implementation on FPGA yet, but are
available for co-simulation.

4.3.7 Consistent IP and Programming Model

As part of making software components portable between targets it is important to
not only have a consistent programming language, but also consistent set of libraries
across most targets. Each of these libraries is optimized and the resource utilization
is made clear, either in documentation or as part of the framework information
system.

4.3.8 Optimization
Algorithmic IP and High-Level Synthesis

Optimizing an algorithm for an FPGA can be a complex task since the concurrency
and connectivity options are fairly large. As an add-on to the LabVIEW FPGA
Module, LabVIEW FPGA IP Builder generates high-performance FPGA IP by
leveraging HLS technology. HLS generates efficient hardware designs from three
components: (1) an algorithm implemented in a high-level language such as
LabVIEW, (2) visual synthesis directives specifying the performance and resource
objectives, and (3) an FPGA target with known characteristics. It can be used
to automatically optimize FPGA VIs and easily port desktop code to the FPGA.
The user is able to quickly explore designs with rapid performance and resource
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estimates. He/she can reuse IP, unmodified, to adapt to different application
requirements.

Low-Level IP and Graphical RTL Abstraction

Sometimes in order to optimize an algorithm or to connect to detailed I/O protocols
it is necessary to describe the operations at the cycle or RTL. LabVIEW provides
the single-cycle Timed Loop model of computation in which the user, when needed,
can explicitly specify the operations that must execute in a single cycle. Within
this environment the compiler takes advantage of the fact that data needs to only
propagate between adjacent registers and removes part of the logic that would
normally ensure that the regular dataflow semantics are followed between VlIs.

4.3.9 External IP

Even if LabVIEW FPGA already provides many high level component and IP
libraries, sometimes the end-user either has legacy IP or has available to them IP
written in different programming or hardware description languages. In such a case,
it is important to be able to import that IP, and make it appear in a consistent and
native form to the LabVIEW framework. CLIP and IP integration nodes (IPIN)
are two ways to import external IP into LabVIEW FPGA. A CLIP Node executes
independently and in parallel to the IP developed in LabVIEW FPGA. In addition,
CLIP can interface directly with the FPGA clocks and I/O pins. In contrast, the
IP Integration Node is inserted into the LabVIEW FPGA block diagram and
executes as defined by the dataflow of the LabVIEW VI. As part of the LabVIEW
dataflow execution, the IP integration Node provides the ability to verify the overall
application behavior and timing using the cycle-accurate simulation tools.

4.3.10 Soft Computing Targets

FPGAs are very flexible, including the development of instruction processors on the
fabric. These processors are complete but are not the most powerful, yet the fact
that the user can dedicate a processor to a specific /O component is very useful.
Using some of the IP integration mechanisms described above, we have been able
to integrate popular soft processors such as MicroBlaze, by using the Xilinx tools
to define the processor and its I/O. The I/O then appears as connection to the rest of
the LabVIEW FPGA code for setup in accelerated computing or directly attached
to I/O. The processor can be programmed today in C, and resulting compiled code
can be overlaid onto an existing bit file without recompiling the rest of the fabric.
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4.3.11 Consistent Debugging Techniques and Simulation

In addition to consistent models of computation, libraries and patterns, it is
important to have a consistent debugging and simulation flow in between targets
as well. In the LabVIEW framework a developer can start development on the host,
and can complete all logic or algorithm development there, then move it to the real-
time processor in case they need to directly access 1/0, and eventually to LabVIEW
FPGA. Once in LabVIEW FPGA they can see a cycle accurate simulation of the
application, and only then would they need to target the actual FPGA, so that the
compilation time is minimized.

4.3.12 High-Level Language Features

Software engineering principles like object-oriented design and meta-programming
are very useful to domain experts as well, especially as their code base grows
incrementally or when they are starting on large projects to begin with. These
techniques are also available in graphical form with LabVIEW and they extend to
LabVIEW FPGA as well.

4.4 Use Case

To demonstrate some of the framework features and recommended techniques listed
in Sects. 4.2 and 4.3, we describe in this section how we developed a device that
connects to a regular pair of analog speakers and enables them to play music from
108 devices over the air. To this effect we used the LabVIEW framework and a RIO
board to develop an AirPlay-based [Wik15] Wireless Music System (WMS).!

Since we wanted this design to be available as reference for students, we selected
as a base interface board the NI myRIO embedded hardware device [Natl5d]
that introduces students to industry proven RIO technology and allows them to
quickly design real, complex engineering systems. In our case, it provides the
following platform elements needed for our implementation: (1) Wi-Fi access for
over the air music delivery; (2) a Digital to analog converter (DAC), connected to
audio quality analog output (for analog speakers); and (3) a Xilinx Zynq 7010 all-
programmable SoC, implementing the basic RIO architecture elements: a dual-core
ARM instruction processor to run the basic protocols, and high-level soft real-
time processing; a reconfigurable fabric to interface to the DAC, provide low-level
timing, and hard real-time processing.

'We kindly acknowledge the collaboration with our colleague Trung N. Tran on this project.
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There are a couple of free implementations of the AirPlay protocol [Wikl15]
for ARM processors running Linux, which we were able to leverage. The main
application is developed using the LabVIEW Real-Time Module (Figs.4.4, 4.5,
4.6), to run on a Linux-based real-time operating system, called NI Linux Real-
Time, on the instruction processor. It spawns a process running ShairPort, which
implements basic protocols and decoding for the music transmitted from iOS
devices. ShairPort was compiled from C code available online [Wik15]. To advertise
AirPlay service ShairPort searches for an installed mDNS service (binary opkg) and
connects to it directly.

The ShairPort process provides the data in lossless format to the main LabVIEW
Real-Time processing loop via UNIX pipes. The main loop implements a simple
equalizer using a 3-channel filter bank (Figs. 4.7 and 4.8), using the built-in libraries.
It then passes the data to a Host-FPGA DMA First in, first out (FIFO) queue, so that
we can implement on the FPGA the only part that really requires very precise timing,
namely the 44 kHz interface to the analog out port (Figs. 4.9 and 4.10). Notice that
as domain experts we do not need to worry about the details of the interface to
DAC, but just provide high-level data to the I/O interface. Similarly, we described
the timing as a simple loop timer that gets the specific timing requirements from the
RT processor via a run-time parameter.

The prototype is shown in Fig.4.11, with the myRIO device attached to
the speakers, streaming music from an iPhone iOS Device, which has correctly
identified the myRIO device as an AirPlay WMS. This use case shows how a
software programmer will find familiar elements in this extended LabVIEW flow,
and will be eased into more hardware centric elements as needed/beneficial for
specific requirements, in particular interfacing to real-world I/O at several levels.

4.5 Conclusions

In this chapter we have presented a graphical programming framework, LabVIEW,
in particular the LabVIEW FPGA Module, and associated language and libraries,
as well as programming techniques and patterns that we have found useful in
making FPGAs accessible to scientists and engineers who are typically domain
expert software programmers. We focused on a single RIO module as target, i.e.
one instruction processor, attached fabric and I/O, and touched briefly on some of
the challenges of networking RIO subsystems. We refer the reader to [Nat15b] and
[Natl5c] for further details on the topics covered here, additional descriptions of
related tools, as well as use and programming of networks of RIO modules, and
more advanced topics, supported by many examples and more complex customer
use cases.

Although it is beyond the scope of this chapter, we would like to point the reader
to arecent specialized version of LabVIEW, the LabVIEW Communications System
Design Suite [Natl5a]. It focuses on making FPGAs accessible to communications
system designers and algorithm engineers. It is a single, cohesive environment that
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enables those domain experts to program both the processor and FPGA, while
scaling across multiple Software-defined radio (SDR) systems so that one can define
and manage an entire prototype solution with a single design tool, and rapidly
deploy new algorithms to hardware. Furthermore, it specializes the G language
with multi-rate dataflow that is familiar to communications algorithm engineers. It
also provides specialized tools, e.g. for conversion from a floating point design to a
more efficient fixed point representation, and also specialized IP, such as application
frameworks that plug into LabVIEW Communications to provide a LTE and 802.11
software implementations.



Chapter 5
Spatial Programming with OpenSPL

Tobias Becker, Oskar Mencer, and Georgi Gaydadjiev

In this chapter we present OpenSPL, a novel programming language that enables
designers to describe their computational structures in space and benefit from par-
allelism at multiple levels. We start with our motivation why spatial programming
is currently among the most promising approaches for building future computing
systems in Sect. 5.1. In Sect. 5.2 we introduce the basic principles behind OpenSPL
and exemplify them with few simple examples targeting the first commercial
offering of a Spatial Computer system by Maxeler Technologies. We validate the
potential of Spatial Computers in Sect. 5.3 and conclude in Sect. 5.4.

5.1 The Case for Spatial Programming

With recent developments in semiconductor technology, the computing industry has
experienced a dramatic shift in paradigms. Clock frequency is no longer the driving
force behind improvements in performance. While the number of transistors keeps
increasing, we can no longer afford the power budgets' to run all of them and at
higher clock rates. Performance is now obtained through increasing amounts of
parallelism, such as multi-threaded multi-core implementations. A disadvantage of
this approach is that it still relies on the fundamentals of sequential computing, i.e.
the high-level program and the compiled machine code describes an algorithms as

'The sum of power consumption and heat dissipation.
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a sequence of elementary steps.” These steps are then carried out in a sequential
manner with all of the related limitations and challenges concerning (instruction)
parallelism. Sequential programming models are very universal and convenient,
however, inherently slow and inefficient for problems with inherent parallelism.
Many micro-architectural and architectural innovations such as out-of-order exe-
cution, VLIW, SIMD, advanced branch prediction and multi-threading have been
applied to gain additional parallelism. The fundamental limitations of sequential
processing are still present despite all of these highly sophisticated techniques.

A far more efficient approach is to describe the program as a spatial structure that
is then translated into a fundamentally parallel, highly customised implementation.
Computing in space is emerging as an attractive alternative to programming sequen-
tial computing elements, such as microprocessors. Custom accelerators utilising
parallelism have been explored for many large scale applications, but they usually
suffer from poor designer productivity due to complex design methods. However,
the novel software methods presented in this chapter give developers access to the
creation of spatial accelerators with competitive performance without requiring any
hardware design experience.

Spatial computation refers to the concept of laying out the computational
structure in as a monolithic parallel datapath where all operations are carried out
concurrently. A simple analogy for spatial computation is a factory floor with an
assembly line. A mass production problem where the same steps are performed
over and over again on each individual product, is most efficiently solved by a
production pipeline. Every station along the pipeline is customised to perform one
assemble step (data operation) and products (final results) are gradually completed
while different parts (data) arrive just in time needed. The final results are finished
products (processed data at the output) that leave the assembly line in a constant
stream and without any observable control overhead. The same principle applied to
computation results in large scale data flow structures where data is simply streamed
in at the right moment and location, avoiding large caches and complex control.

The Open Spatial Programming Language (OpenSPL) has been developed
to enable domain experts to generate such spatial computational structures for
application-specific challenges. The key innovation lies in bridging the previously
separate hardware and software domains, and providing a simple programming
model for the spatial part on the computation. With OpenSPL, developers can
now create large systems following the traditional software development life-cycle
(SDLC) principles for both ultra high throughput computing and ultra low-latency
communication while also reducing their carbon footprint by means of minimising
energy consumption, cooling and overall data center space. OpenSPL achieves
this by providing access to parallelism at all levels from algorithm, trough system
architecture down to the individual bits and hence facilitating designers in their
effort to produce the most optimal workload specific instance in space.

ZReferred to as instructions.
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5.2 OpenSPL Execution and Programming Models

OpenSPL targets machines consisting of a Spatial Computing Substrate (SCS) that
is instantiated in a specific reconfigurable hardware technology containing flexible
arithmetic units, customisable interconnect and a set of configurable memories.
To facilitate simplicity of programming, easy automation and to boost designers
productivity, OpenSPL relies on the Static Data-flow execution model. This repre-
sents a convenient high-level abstraction that system designers and scientists can
grasp and master while in addition simplifying the compilation tools. The SCS
arithmetic units are organised as a very large, deeply pipelined execution graph
involving all operations (or the maximal number that can fit on a given fabric)
constituting the targeted function laid down in the 2-dimensional (2D) space. The
different operations are placed in 2D space and interconnected in such a way that
all partial results travel the least possible distances between any two subsequent
operations. All operations at all levels (including transfers along the data paths)
operate in a globally synchronous fashion. The concept of unit clock ensures high
degree of predictability and a specific behaviour characterised with the ability to
consume and produce a single set of data elements at each clock tick once the steady
state operation is reached.> Under such conditions the overall system throughput is
bounded only by the available pin bandwidth* used to transfer data in and out of the
SCS chip. Programming in OpenSPL relies on describing spatial compute kernels
that clearly separate data- from control-flows of the targeted algorithm. Stated dif-
ferently, the designer is expected to explicitly describe the computational algorithm
as a static computation structure in 2D space while the data elements will simply
flow through. This makes the most natural SCS variables to be data streams. Data-
flow kernels mapped on the SCS are highly efficient as they do not require shared
memory, complex multi-level caches, a program counter, or branch prediction. All
the above-mentioned highly sophisticated units usually require substantial amounts
of area (and power) in modern processors, and their absence results in significant
area savings that on its turn frees more area for additional computational structures.
In addition, the implicit deep pipelining operation allows spatial kernels to operate
at clock frequencies significantly lower than modern silicon structures while still
delivering higher throughput. To summarise, an implementation performing spatial
computation can provide significantly higher performance as compared to general
purpose processors by using the same number of transistors and silicon area even
at lower clock frequencies, and all of the above with lower power consumption.
Furthermore, OpenSPL naturally supports high degree of customisation for each
SCS implementation to best support the specific algorithmic structure and the
precise numerical demands of the application at all intermediate phases and stages.

3When all, typically thousands, pipeline stages operate fully on large number of partial results.

4The aggregated metric of the number of available pins and their individual bandwidths.
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Last but not least, please note that Computing in Space is not intended to fully
replace the conventional processors based on the von Neuman program execution
principles. Quite the contrary, the SCS based accelerators will be used to offload
and speedup only the data intensive parts of the targeted applications. Traditional,
general purpose processors will be used to run the operating system and the overall
user application (ideally only its control-flow dominated parts) that fully benefit
from the SCS acceleration potential. In addition, different SCS configurations are
handled on demand and as such there will be always at least one control processor
responsible for reconfiguring the SCS part of the system and notifying completion of
its execution. Such a hybrid approach provides the designers with a flexible system
architecture that allows them to partition, balance and customise their algorithm’s
implementation in order to gain the best possible and ideally achieve the maximal
performance point of operation on the system under consideration.

To summarise, in order to build a computing system implementing the OpenSPL
basic principles as described above, the following components are required:

* Spatial (customisable) Computing Substrate constituted by:

— Reconfigurable compute (arithmetic) fabric;

— Customisable memory system (typically divided in at least two parts: Large
(off-chip) Memory and Fast (on-chip) Memory);

— Flexible IO and Networking support.

* Spatial Compiler (including SCS specific floorplanning, place and route tools);
* Operating System or runtime OS extension;

» Support for customisable Data Orchestration®;

* (optional) Domain specific languages and libraries.

Some of the important concepts described above are represented by the motivat-
ing example of a simple 3-elements moving average OpenSPL program depicted
in Fig.5.1. This figure shows the relationships between the individual OpenSPL
instructions and their implementations on the SCS surface. As it can be observed
the designer is expected to explicitly define all input and output data streams; and
that the Spatial Compiler automatically resolves dependencies among operations,
e.g., the division uses the results of the sum operation.

OpenSPL can be used to efficiently program any system that supports the
basic principles of spatial computing. Several good examples for such SCS-based
architectures are Data-Flow Engines (DFEs) from Maxeler [FPM12], Automata
Processor Engines (APEs) from Micron [DBG™14] and even any future Quantum
Processing Units (QPUs). It should be noted that different target architectures such
as the samples above would have quite different substrate characteristics used to
achieve spatial computation. Different algorithmic optimisations and techniques
will be used to improve system performance and reduce energy expenditure. The
main goal of OpenSPL is not to provide direct performance portability across these

STwo options exist: implicit support by the SCS and explicit management by the programmer.
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public class MovingAverageKernel extends Kernel {

//Data
SCsVar prev =

SCSVar result = sum/3; }————————____

fOutput
.output (“y”, result); F--

Fig. 5.1 Moving average over three data elements described in OpenSPL

different architectures (or between versions of the same platform) as this would
be unrealistic in the majority of the cases. Instead, OpenSPL aims to establish key
principles of spatial computations and to enable efficient application design for such
architectures. The language itself and its available libraries and runtime software
support have to be customised to a particular target architecture.

From the above mentioned SCS architectures DFEs deserve a special attention
since they are the only SCS platform used in commercial products to date. Current
DFE generations rely on the largest reconfigurable devices available on the market
(also known as Field Programmable Gate Arrays—FPGAs) to enable custom
implementations of the arithmetic structures as described by the OpenSPL kernels.
The OpenSPL programming language principles are applied to create DFE-specific
extensions to Java, resulting in a meta-language MaxJ that conveniently describes
kernel structure generation. To automatically translate the MaxJ kernel descriptions
to equivalent hardware description a dedicated tool named MaxCompiler is used.
MaxCompiler produces a VHDL description and a fast cycle accurate simulation
model of the kernel being compiled. The VHDL description of the kernel is
passed to the vendor place and route toolchain to produce the raw bitstream
needed to configure the DFE’s reconfigurable device. A Linux based run time
called MaxelerOS is used to manage the DFEs. The SLiC API (Simple Live CPU
Application Program Interface) ensures a glue-less, subroutine call like, integration
between the two sub-parts of the application (the code running on the CPU and the
DFE code). In most DFE based systems designers are expected to explicitly describe
all data movements in and out of each DFE in the system (all data stream directions
and their individual patterns) in a separate Java file called the Manager.

In the following we focus on how to target DFE-based spatial computers
with OpenSPL. A DFE is a spatial computing substrate that enables very high
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performance by running many computations concurrently. However, unlike conven-
tional parallel computing paradigms, DFEs do not aim to achieve high performance
by providing many cores and carrying our instructions on data in parallel. Instead,
DFEs perform computations completely without instructions by streaming data
through an application-specific data-path. In a DFE, this is realised through a con-
figurable computing substrate that consists of programmable arithmetic operators,
memories, logic and interconnect. A DFE can be configured to create a custom
data-path that is tailored to the requirements of the application. The data path inside
the DFE is also free from control flow and data can simply be streamed in from
surrounding memory.

However, some form of control functionality is usually necessary and this will
be preformed by a CPU. Figure 5.2 illustrates the structure of a DFE-based spatial
computing system consisting of a conventional CPU and a DFE. The CPU is
responsible for setting up and controlling the computation on the DFE. From the
CPU, data will be transferred to DFE memory over a PCIs or Infiniband link.
Once the data is located in DFE memory, it can be streamed through the spatial
DFE implementation with very high efficiency and performance. Accordingly, the
compute model involves splitting the application into a CPU part for control, and
OpenSPL for spatial data-flow computing. CPU programming can be performed in
any common programming language such as C or C++, while DFE programming is
done in OpenSPL. OpenSPL is based on the Java language and provides a number
of classes to express data-flow principles.

In the following we cover some of the key principles of OpenSPL. OpenSPL
is meta language that describes data-flow computing; it uses Java syntax but is
in principle different from regular Java programming (or any other imperative

1
- = -+ DFEsrunf long t
| customized DataFlow Engine - DFE | *  DFE 3 "mega accelerator

DFC* C
4 DFC
DFC
DFC
DFC
* DFC - DataFlow Core
(DFE==MAX card)

Fig. 5.2 Structure of a system with a spatial DFE accelerator and a standard CPU
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Listing 5.1 C code of a simple computation inside a loop

1 for (i = 0; i < numDataElements; i++) {
2 float x = input[i];

3 float y = x * x + 30;

4 output [1] = y;

5}

Fig. 5.3 A data-flow
implementation for the
computation inside the loop
body

30

programming paradigm). The most important conceptual principle in OpenSPL is
that we describe a fixed spatial data-flow structure that can perform computations by
simply streaming through data, and not a sequence of instructions to be preformed
by a traditional processor. The fixed nature of the data-flow implementation means
that (a) no instructions are needed, (b) complex control mechanisms of a processor
are avoided, (b) many operations can be performed concurrently in the pipeline,
and (c) the computation is performed by simply streaming in data from memory,
producing a result with every clock cycle.

To illustrate these principles we show how a simple loop computation can be
transformed into a data-flow description in OpenSPL. Listing 5.1 shows C code
that perform a simple calculation inside a loop body. The calculation is repeated
in a number of iterations over an input data set. Figure 5.3 illustrates a data-flow
implementation for the same computation. The computation inside the loop body
can be performed by a fixed data path that contains both a multiplier and an adder.
It is one of the key features of spatial computing to have several operators present
at the same time and operating concurrently, instead of using a time-shared ALU
inside a processor. Another key principle is the absence of control, instructions and
caching. The data path is fixed and the computation is performed by streaming data
from memory directly into the data path. The computation will be fast and efficient,
and its throughput will be completely predictable.
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Listing 5.2 An OpenSPL description that generates the data-flow implementation shown in
Fig.5.3

class Loop extends Kernel {

1

2 Loop () {

3 DFEVar x = io.input("x", dfeFloat(8,24));
4 DFEVar y = X * X + 30;

5 io.output ("output", y, dfeFloat(8,24));

6 }

7}

Listing 5.3 C code of a nested loop with dependency

1 for (i = 0; i < numDataElements; i++) {

2 float d = input[i];

3 float v = 2.91 - 2.0%d;

4 for (iteration = 0; iteration < 4; iteration++)
5 v=vax (2.0-d % Vv);

6 output [1] = v;

7

}

Listing 5.2 presents an OpenSPL description that can generate the data-path
shown in Fig.5.3. In OpenSPL, a data-path is called a kernel and our OpenSPL
descriptions begins by extending the kernel class (line 1). We then define a
constructor for the Loop class (line 2). The code inside the body of the program
will then generate the spatial data-flow description. It is important to remember that
OpenSPL generates compute structures and but does not execute at run time. To
create an input to the data-flow graph, we use the method io. input. This method
takes two inputs: The first is a string representing the name that will later be used to
connect the data-flow graph to memory. The second input specifies the data type for
the stream.

The C-code shown in Listing 5.3 gives an example of an example C-application
with two nested loops. We observe that the outer loop performs one iteration over
each data element, while the inner loop describes a computation with a cyclic
dependency of v from one loop iteration to another. This example can be effectively
transformed into a data-flow description as illustrated in Listing 5.4. The outer loop
is replaced by streaming inputs and outputs. The inner loop is described with using
similar for loop, however it will result in an unrolled, spatial implementation
as illustrated in Fig.5.4. Note that the inner-loop dependency is resolved by the
resulting data-path as it is acyclic, and v is reimplemented for each loop iteration,
and connected to the result from the previous iteration (in space). This results in a
long pipeline where we can simply stream into new input data d at each clock cycle,
while the data will be gradually processed as it moves through the resulting pipeline.

As demonstrated by this simple example, OpenSPL differs from traditional
imperative programming in various ways, which we shall describe in the following.
First, control and data flow are separated. Control flow is described in C and targets
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Listing 5.4 An OpenSPL implementation of a loop with dependency

class Loop extends Kernel {

1

2 Loop () {

3 DFEVar d = io.input("d", dfeFloat(8,24));

4 DFEVar two = constant.var (dfeFloat(8,24), 2.0);

5 DFEVar v = constant.var (dfeFloat(8,24), 2.91) - two = d;
6 for (int iteration = 0; iteration < 4; iteration += 1) {
7 v = vk (two - d x V);

8 }

9 io.output ("output", v, dfeFloat(8,24));

0 }

1

}

the CPU; it is used as a host program to set up the computation and copy data to
SCS memory. Data flow is described in OpenSPL, as shown in the example above.

All statements in OpenSPL describe the structure of a data-flow graph, and not
sequential computational steps. The OpenSPL statement in line 7 of Listing 5.4
results in two separate multipliers and a subtractor (see Fig.5.4). Unlike a time-
shared multiplier on a CPU, the multiplications are now performed in parallel.
Additionally, the for loop in line 6 of Listing 5.4 can be unrolled and all loop
iterations can also be implemented as separate units that operate concurrently.
Figure 5.4 illustrates a fully parallel implementation of the sample code.

The OpenSPL program is “run” only once to generate a binary configuration
file for the Spatial Computing Substrate (SCS). This SCS binary contains a spatial
implementation of the program, and it is linked with the host application in C.
The C-code can be changed or invoke various DFE binaries without re-running the
OpenSPL program. Only a change to the data-flow model requires to re-compile the
OpenSPL program (by “running” its OpenSPL description).

This above principle has important implications on how OpenSPL programs
behave. First, we clearly distinguish between variables that are evaluated at compile
time and variables that contain run-time information. Regular Java variables such
as int are evaluated only once when the program is run and result in run-time
constants. Likewise, Java loops and conditionals describe how to generate a data-
flow description and they do not make run-time decisions. For example, the for
loop in line 6 of Listing 5.4 will not be evaluated at run-time to carry out four
iterations. Instead, it will replicate the content of the loop body four times, which
can be used for an unrolled and parallel implementation as shown in Fig.5.4.
Similarly, an if statement allows us to select different computations based on
an input parameter, but no run-time switching will be performed. If various cases
of need to be selected dynamically, then separate SCS implementations would be
generated, and the switching between different cases would be performed by the
host application that handles control.

OpenSPL provides the data type DFEVar for all variables that handle run-time
data. For example, the variables d and v in Listing 5.4 handle run-time data that
is streamed through the DFE. Since OpenSPL describes the structure of a data-
flow implementation, it is not possible to evaluate run-time data of a DFEVar in a
conditional. Instead, OpenSPL uses the ternary operator to switch between two data
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Fig. 5.4 Spatial
implementation of the loop.
The inner loop is unrolled
into a data path

iteration O

iteration 1

iteration 2

iteration 3
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streams based on run-time data, resulting in a multiplexer in the data-flow graph. It
is also not possible to read a DFEVar into a variable of type int as the values of
a DFEVar will only be known at run time. However, it is possible to read a regular
Java variable of type int into a variable of type DFEVar. This will result in a run-
time constant since a variable of type int is evaluated at compile time. Another
way to declare a constant is illustrated in lines 4 and 5 of Listing 5.4. The method
constant allows to create a stream of constant values of the same data type as the
DFEVar and no type casting is necessary.

The inputs and outputs of an OpenSPL program are so-called streaming inputs
and streaming outputs. Lines 3 and 9 in Listing 5.4 show how the methods
io.input and io.output are used to describe the inputs and outputs to the
computation. The multiple operations within the OpenSPL program constitute a
so-called kernel. Typically, streaming inputs and outputs replace the outer loop of
a computation that iterates over data. Instead, we copy the input data to memory
surrounding the DFE, stream it through the DFE, and collect the results in output
memory. This happens in a fully concurrent and pipelined fashion, i.e. once a data
element has passed through the first pipeline stage of a kernel, we can stream in the
next data element, while the previous partial result moves down the pipeline.

OpenSPL supports customisable data types. Spatial implementations of compu-
tations can greatly benefit from tailoring the used data types to the requirements of
the computation. For instance, floating point data types usually require more area in
the spatial computing substrate than a fixed point representation. Likewise, smaller
floating point formats require less area than large ones. In Listing 5.4, a floating
point format with 8-bit exponent and 24-bit mantissa is used because it corresponds
to the original single precision floating point format in used in the original C-code
(Listing 5.3). As part of further optimisations, a user could attempt to reduce the
range or precision of the floating point format, or switch to fixed point.

5.3 Application Examples

In this section we present the results of three highly relevant applications after
their implementation on spatial computing substrate. The results clearly show the
competitive advantage of the approach discussed in this chapter and implemented
by Maxeler Technologies in their computing systems.

5.3.1 Seismic Modelling in the Oil and Gas Industry

Geological modelling and computation are taking an important role in the search
for oil and gas. Improving the amount of oil and gas that can be recovered from an
existing reservoir as well as discovering new reservoirs requires creating an image
of the subsurface earth. Scientist typically conduct an acoustic experiment on the
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earth’s surface and record the reflections from the different subsurface layers with
tens of thousands of sensors. The resulting datasets can be several hundred Terabytes
in size, and to compute the data, thousands of compute nodes are typically used for
weeks at a time. Hence, the computational effort is substantial and increasingly
complex geological models represent a significant high-performance computing
(HPC) challenge.

Reverse Time Migration (RTM) is an application that is frequently used in
geoscience and it can produce detailed subsurface images in complex geologies.
The concept behind RTM is relatively simple. It involves computing the forward
propagation of an acoustic wave from the source to the receivers based on an initial
known earth model. At the same time, the actual received output is propagated
backwards to the source. The forward and backward wavefields are cross-correlated
with the goal to refine the earth model (i.e. to find an earth model where the
computed propagation is coherent with the measured output). The computation
involves 4D wavefields based on the acoustic wave equation:
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To solve the wave propagation problem numerically, a finite difference stencil
operator is applied to approximate the derivatives. The computational complexity
arises from performing the cross-correlation on a 4D problem (four nested loops),
the overall problem size and the memory access patterns. An optimised streaming
architecture has been developed to map the computation to data-flow kernels on
Maxeler DFEs [LCP™ 11]. The optimisations include re-arranging the data-access
patterns to maximise throughput, running multiple parallel pipelines per chip,
using a customised number format, and optimising computation’s spatial and time
resolution.

Table 5.1 shows a comparison of RTM performance on a 1U CPU server
with two 8-core Xeon CPUs and a 1U Maxeler MPC-X system with 8xMAX3
DFEs. The Maxeler dataflow system delivers a 36 improvement in computational
performance within the same chassis form factor. The Maxeler system is also
15x more energy efficient mainly due to the lower clock rate of the dataflow
structure.

Table 5.1 Comparison of RTM performance on a CPU and DFE-node

Conventional 1U CPU-node Maxeler 1U MPC-X node
Platform 2x8 Xeon cores (Sandy bridge) | 8xMAX3 DFEs
Performance (points/s) 0.38G 13.6G
Speedup 1x 36x
Power (W) 377 900

Energy efficiency (points/Ws) | 1x 15%x
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5.3.2 Financial Analytics

The use of complex mathematical models has become a key factor in the global
financial markets, and especially derivatives rely on such models. This has led to
the development of increasingly complex derivative instruments, but the process of
valuing and managing the risk of complex portfolios has grown to a point where the
computational requirements represent a significant computational challenge. Many
banks typically operate large data-centres with thousands of CPU cores to perform
the daily calculation of value and risk. However, the power inefficiency and overall
scalability limitations of CPUs are becoming an increasingly pressing concern.

In finance, a derivative describes a contract that derives its value from an
underlying entity, such as a stock or a bond. Examples of such derivatives are stock
options where the underlying can be bought for a pre-arranged price at some time in
the future. For example, an American Option gives the owner of that option the right
but not the obligation to buy or sell stock at a fixed price at any time in the future
up to a certain point of expiry. Calculating the price for such an option is based
on stochastic models that can be solved with partial differential equations (PDEs).
However, closed form solutions often do not exist and complex numerical solvers
have to used. An American option for instance could be priced by using a 2D finite
difference approach. More complex options such as Bermudan swaptions are also
available. A Bermudan swaption is an option to enter into an interest rate swap on
any one of a number of predetermined dates. A typical approach to this problem
involves using a high-dimensional Monte Carlo model.

Another common type of derivative are credit derivatives. For example, in a credit
default swap (CDS) the risk of default in a single underlying credit is exchanged for
a regular payment. A CDS contract can be seen as a form of insurance on a bond
defaulting. Financial institutions face the challenge of having to calculate the risk
and value for hundreds of thousands of credit derivatives each day. A standard single
name CDS requires very relatively little time to calculate. However, tranched credit
derivatives on a pool of credits such as collateralised default obligations (CDOs) are
substantially more complex. It has been shown that in a Monte Carlo approach, a
single Maxeler DFE can provide a 270x speed-up over a single Xeon core when
pricing CDO tranches [WSRM12].

Maxeler provides a Financial Analytics library that covers a range of financial
valuation and risk functionalities that are frequently required in practice. Each
module realises a core analytics component, such as curve bootstrapping or Monte
Carlo path generation. To support flexible hardware/software co-processing and to
enable ease of integration with existing systems, each module is available as both
a CPU and DEFE library component. Table 5.2 provides a comparison of different
instruments priced per second for a range of instrument types supported in Risk
Analytics. As it can be seen, a single 1U MPC-X node can replace between 19
and 221 conventional CPU-based units. The power efficiency advantage due to the
data-flow nature of the implementation also ranges between one an two orders of
magnitude.
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Table 5.2 Comparison of CPU and DFE-node performance (instruments priced per second) for
various instruments

Conventional Maxeler
Instrument 1U CPU-node 1U MPC-X node Comparison
European swaptions 848,000 35,544,000 42%
American options 38,400,000 720,000,000 19%x
European options 32,000,000 7,080,000,000 221%
Bermudan swaptions 296 6,666 23x%
CDS 432,000 13,904,000 32x
CDS bootstrap 14,000 872,000 62X

5.3.3 Atmospheric Modelling

Atmospheric modelling is an essential application in weather prediction and the
study of climate change. The mesoscale atmosphere can be modelled by 3D
Euler equations, which are partial differential equations. The Euler equations
describe fluid dynamics and in the case of atmospheric modelling, they describe
a compressible flow. The core of the computation is stencil-based. Due to the size
of practical problems, the computation is very demanding and often carried out
on large supercomputers. Parallel computation of the problem requires domain
decompositioning, where the entire problem is split into smaller domains that
can be computed in parallel. A halo exchange is required to update the elements
on the domain boundary. Hence, practical implementations often face constraints
in from of memory access patterns and data communications as well as data
representation.

An efficient DFE solver for the 3D Euler equations has been developed that
achieves efficient resource allocation and data reuse [GFY 14]. The algorithm has
been implemented in a streaming model suitable for DFE implementation. The
memory access operations are orders such the data exchange is minimised, and data
elements can be reused within the kernel. Furthermore, optimised mixed precision
is used to satisfy the given relative error requirements while minimising hardware
resources. The resulting implementation maps a complex Euler kernel into a single
DFE which can perform 956 floating point operations per cycle.

The evaluation compares a CPU reference implementation against a hybrid
CPU-DFE version and an hybrid many-core version. The CPU baseline targets a
server with two 12-core Intel E5-2697 (Ivy Bridge) CPUs and uses OpenMP multi-
threading and vectorization. The hybrid many-core version (CPU-MIC) adds three
Intel Xeon Phi 60-core 5120d cards to the two baseline CPUs. The hybrid CPU-DFE
is composed of a server with two 6-core Intel ES650 CPUs and a Maxeler MPC-X
system with 8 MAX4 DFE cards each of which have 48 GB of memory. The CPU-
DFE version is 18.5 times faster and 8.3 times more power efficient than the two
12-core CPU baseline, and is 6.2 times faster and 5.2 times more power efficient
than the hybrid CPU-MIC system with three Intel Xeon Phi cards. The results are
summarised in Table 5.3.
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Table 5.3 Performance and power efficiency for CPU, CPU-MIC and CPU-DFE

Performance Power | Efficiency

(points/s) Speedup | (W) (points/Ws) | Power efficiency
CPU 24-core | 154k 1x 427 0.36k 1x
CPU-MIC 474k 3x 815 0.58k 1.6x
CPU-DFE 2.85M 18.5x 950 3k 8.3x

5.4 Conclusion

We introduced OpenSPL, a novel programming language built upon the concepts
of dataflow execution. We introduced the basic principles behind the OpenSPL
language and explained some of the most important concepts by using motivational
examples based on the first commercial offering of computer systems embracing
the principles by Maxeler Technologies. We used three commercial applications
to validate our claims that OpenSPL designers can efficiently master parallelism at
multiple levels by describing their computational structures in space. The significant
speedups reported, e.g., between 19x and 221x, are in addition accompanied by
non negligible reduction in power and energy consumption. We strongly believe
that building large scale computer systems can greatly benefit from the techniques
defined and supported by OpenSPL.



Chapter 6
OpenCL

Deshanand Singh and Peter Yiannacouras

Software programmers are unable to take advantage of the higher performance
and lower power achievable from FPGA acceleration because of the additional
hardware design skills needed to develop FPGA applications. A major component
of this skill gap is in design entry, where FPGA design requires register transfer
level (RTL) circuit descriptions instead of the sequential programming software
programmers are proficient in. C-to-gates compiler technology can alleviate much of
this complexity by automatically generating RTL implementations from sequential
C input descriptions. However these tools often suffer from two common prob-
lems: (1) they often involve adopting new programming paradigms, languages, or
semantics that are often tool-specific; and (2) they fall short of making FPGAs
accessible to software programmers since the RTL output of any C-to-gates tool
is unusable by a software developer. A hardware designer is needed to integrate the
RTL into a complete system, optimize its communication with I/Os, close timing
on it over several iterations through FPGA CAD software, and then bring up the
design in hardware. This distances the software programmer from the end system,
creating long design iterations and ambiguity with system-level functionality and
performance.

The Altera OpenCL SDK addresses both these problems, first by targeting
the OpenCL programming language which is an open standard for heterogeneous
programming already widely used for Graphics Processor Unit (GPU) program-
ming. This means software programmers can use the Altera OpenCL SDK to
effortlessly retarget their skills as well as their previously developed OpenCL
applications for FPGAs. Second, the Altera OpenCL SDK unites C-to-gates high
level synthesis technology, the OpenCL heterogeneous programming standard, and
complex FPGA CAD features to deliver a complete development-to-deployment
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solution for software programmers while requiring no FPGA-specific knowledge
nor skill, nor interaction with an FPGA designer. Moreover, the OpenCL SDK
provides standard software development tools such as in-system hardware profiling,
CPU emulation requiring no FPGA hardware, and also optimization reports, all of
which enable the software programmer to develop and optimize their design without
knowledge of the FPGA internals.

6.1 Compile and Execute via FPGA Design Automation

A software development environment for FPGAs must hide all facets of FPGA
application development including HDL design, system integration, the CAD
software, timing closure, bitstream programming, hardware installation, and even
deployment. Each of these have been automated/abstracted as described below:

Design Entry The core of the development environment is its programming
language and compiler technology. The Altera OpenCL SDK uses OpenCL as
its programming language input requiring no tool-specific language constructs or
attributes. The OpenCL description is C-based and hence very easy to use by
software programmers even without prior OpenCL knowledge (the programming
model is further described in Sect. 6.2). The Altera OpenCL SDK is a fully 1.0
conformant OpenCL implementation allowing the Altera OpenCL Compiler (aoc)
to accept OpenCL 1.0 kernel code and automatically generate a highly-pipelined
custom datapath in HDL for each kernel. It can do so using the parallelism explicitly
described by the user in OpenCL, or by inferring parallelism from single threaded
code via loop pipelining.

Partitioning the System Design Problem via BSPs A complete FPGA system
consists of some kernel computation connected to the I/O subsystem logic necessary
for that kernel to communicate to the outside world. For example the kernel requires
an I/O connection with the CPU serving as the OpenCL host, as well as off-chip
memory such as DRAM, SRAM, or stacked RAM for storage. In addition the kernel
may need to connect to external I/O such as an Ethernet or video stream. This I/O
subsystem must be pre-designed by an FPGA designer who fully understands the
I/O interfaces of the platform as well as the FPGA I/O architecture needed to support
them. This subsystem design is packaged into an OpenCL BSP (board support
package) and distributed by platform designers. This platform distribution model
decouples the aoc compiler from any specific hardware/system setup. System
designers or FPGA card manufacturers can develop and distribute BSPs alongside
their hardware systems. OpenCL application develops merely install the Altera
OpenCL SDK, the BSP, and the physical hardware without ever needing to access
the hardware design itself nor the CAD tools necessary to interact with them. Thus,
to the software programmer, the BSP is just a set of files that accompany the FPGA
hardware that was purchased.
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Post-Fit I/O Subsystem The I/O subsystem that is packaged into an OpenCL BSP
is fully preserved post-placement-and-routing in a post-fit netlist. During OpenCL
compilation, this post-fit netlist is imported without modification ensuring that every
OpenCL compile is coupled with I/O subsystem logic that is placed and routed
exactly as it was when the BSP developer verified its functionality in their own
lab. This means the nodes, wires, and timing that implement the I/O subsystem are
completely preserved.

Installation and Deployment by IT An OpenCL platform is designed to be
purchased, installed and deployed by an organization’s IT department. No FPGA-
specific knowledge or skill set is required to do this. Users can install the Altera
OpenCL SDK, acquire a physical FPGA platform, install the BSP for that platform,
and verify the setup with built in diagnostic utilities. Many platforms are already
optimized for deployment, for example the Stratix V PCle platforms requires only a
PCle connection and no additional cables. Once inserted into a PCle slot, software
programmers can compile and execute OpenCL programs without any further
physical interaction with the platform.

In-System Compile and Execute Software programmers expect a development
environment where the compiler output can be immediately and correctly executed
in hardware. The RTL output from high level synthesis tools requires several
additional steps to execute in hardware: (1) the RTL must be timing analyzed to
determine safe operating clock frequencies; (2) the physical clocks/resets must be
supplied to the design; (3) the design must be integrated with the interfaces provided
by the I/O subsystem; (4) the integrated system must be synthesized through FPGA
CAD tools; (5) the produced bitstream must be programmed onto the FPGA. All
of these steps are performed automatically by the Altera OpenCL SDK. The aoc
compiler inserts all adaptation and arbitration logic necessary to communicate with
the I/O subsystem interfaces. It will run just a single pass through the FPGA CAD
software, and in that will automatically timing analyze the design and configure the
user clock supplied by all BSPs to the maximum operating frequency the design
can run at. The OpenCL host runtime will then automatically program the FPGA
device with the produced FPGA bitstream as needed by the user’s application.
The end result of this is a push-button compile and execute flow that guarantees
timing functionality while running the user’s application at its maximum operating
frequency. In addition to behaving identically to a CPU software programming
environment, this empowers software programmers by providing them direct access
to the end-system allowing them to run and profile their applications directly on the
end-system in order to guide subsequent optimizations.

Software Productivity Tools: Emulating, Reporting, Profiling Two artifacts of
FPGA design can affect the productivity of a software programmer: (1) the long
FPGA compilation times; and (2) the custom architecture automatically generated
by aoc. The first one is mitigated by including support for CPU emulation of
OpenCL in the Altera OpenCL SDK. This allows programmers to run their OpenCL
code on their development PC, enabling them to compile, run, and repeat in minutes.
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Successful emulation of an application ensures that the OpenCL code is legal and
functional without having to endure long FPGA compiles. The second artifact
affects the performance of the system. In order to optimize the system performance,
a software programmer requires knowledge of the system bottlenecks and how those
relate to the OpenCL code. The profiler included with the Altera OpenCL SDK
analyzes the performance in hardware and annotates the user’s OpenCL source
code pointing to specific instructions where, for example, memory access patterns
are inefficient or the cache miss rate is high, etc. Programmers can use this to
reason about how restructuring the access pattern could alleviate the bottlenecks. In
addition, the aoc compiler generates at compile time a set of reports that highlight
lines of code where certain optimizations were (or could not be) applied, as well as a
breakdown of FPGA resource used by each line of the OpenCL C code. These tools
provide software programmers the means to develop and optimize the automatically
generated custom FPGA pipeline without understanding any of the internal register
transfer level interactions of the system. It also ensures software programmers never
need to utilize FPGA CAD design software.

6.2 Programming Model

OpenCL provides a heterogeneous computing model consisting of a host processor
connected to multiple acceleration devices. A user’s application is divided into two
parts: (1) the host code that executes on the host and is written in plain C using the
OpenCL host API; and (2) the device code that executes on the accelerators that is
written in OpenCL Kernel C. OpenCL Kernel C is derived from C99 and includes
several language extensions. These extensions provide the user the capability to
explicitly describe the parallelism in the code in terms of “work-items” (or threads).
In addition the user can explicitly target various levels of memory hierarchy. Data
tagged as 1ocal will be stored in memory accessible only by the work-items in a
designated “workgroup”. The Altera OpenCL compiler will typically use on-chip
distributed RAM blocks for these. Data tagged as global is accessible by the host
and all threads in the system, subject to the consistency provided by the OpenCL
memory model. OpenCL Kernel C also includes built in support for math, vector,
synchronization, and other operations. The complete OpenCL programming model
is specified by the Khronos group who distribute the full specification [Khr08].

To date the Altera OpenCL SDK is conformant to the 1.0 OpenCL specification.
However the SDK also provides its own vendor extensions to target features specific
to FPGA architecture. These extensions are listed below:
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6.2.1 Channels

FPGAs can provide fine-grained task-level parallelism by streaming data produced
by one component directly to a downstream component for immediate consumption.
The Altera channels extension allows OpenCL application developers to do this
between OpenCL kernels. In addition, channels can be used to access external I/O
such as a video or network packet stream. Channels can also be used via the new
Pipes feature in the OpenCL 2.0 specification.

6.2.2 Heterogeneous Memory

FPGA systems often make use of a variety of memory technologies simultaneously.
The main data storage is often several gigabytes of DRAM such as DDR4, while
small random access data can be stored in SRAM such as QDRII. To enable software
developers to take advantage of this the SDK allows: (1) an OpenCL platform to
provide multiple memory systems, each tagged with a string such as “QDR”; (2) the
OpenCL developer to query the BSP for a list of memory strings; (3) the developer
can tag data in their OpenCL kernel code with these strings to control which data
resides in the various memory technologies available.

6.3 Application Development Example: Gzip

As an example, we describe the OpenCL implementation of hardware data com-
pression using gzip on FPGAs motivated by its potential for use both in data
centers [Cra98] and in communication networks [Pap03, Sum08]. In both scenarios,
fast data compression is required to improve the overall system speed in the face of
slower 1/O either to disk or network. Gzip implements the DEFLATE algorithm
for compression, which consists of two parts, LZ77 compression and Huffman
encoding. In this example we describe only the LZ77 component.

6.3.1 LZ77 Compression

This compression algorithm replaces repeat occurrences of bits with a reference
to their previous occurrence [ZL77]. Consider Fig. 6.1 for instance. The algorithm
traverses the sentence serially, one character at a time in this case, and looks for
repetitions. When “ word ” is found the second time, it is replaced with a pointer to
the previous occurrence of it. This pointer consists of a marker @, match length and
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Fig. 6.1 Example of LZ77 Before . .
compression compression: 1NIS Word is the best word here.
«_ Matchoffset=17
During . .
compression: VIS word is the best word here.

—>
Match length = 6

comae - This word is the best@(s,17)here.

—>
Encoded length =3

match offset. The match length is the length of the match being replaced—in this
case it is 6 bytes including spaces. The match offset, is the distance to the previous
occurrence of the word.

In LZ77, we only replace our matched word with a pointer if it results in
compression. That means that the (marker/length/offset) must be smaller than the
word being replaced—words of length 3 bytes are therefore never replaced for
instance.

6.4 LZ77 Implementation and Optimizations

In this section we discuss implementation details and show how OpenCL code trans-
lates to hardware. The OpenCL implementation is based on a Verilog implemen-
tation by IBM [MJA13]. Additionally, we describe performance and compression
ratio optimizations that we performed.

6.4.1 System Architecture

Figure 6.2 shows the overall system architecture; the host portion of the implemen-
tation selects a byte to represent the marker and a suitable Huffman tree; it also
sends to the FPGA the Huffman tree along with the data to be compressed. The host
modifies the Huffman tree only if the “update_tree” flag is set; a new tree improves
compression quality when the new data being compressed contains a different set of
bytes.

Our implementation uses an x86 based system as the host processor connected
over PCIe Gen2 x8 to a Stratix V A7 C2 FPGA with local DDR3-1600. This
implementation is extendable to standalone FPGA systems such as the case where
data streams in and out of the FPGA through Ethernet cables. In these environments,
new generations of FPGAs with embedded hard processors [Altl3a] can easily
replace the functionality of the x86 host.
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System Architecture

Host CPU FPGA DDR3
- —
If(update_tree)
{ PCTe LZ77+Huffman
) Update Huffman Tree |«———p Kernel

Compress_on_FPGA

Fig. 6.2 OpenCL system architecture

Listing 6.1 Load 16 bytes per cycle

//shift current window

#pragma unroll

for(char 1 = 0; i1 < VEC; i++)
current_window([i] = current_window[VEC+i];

//load in new data
#pragma unroll
for(char 1 = 0; i < VEC; i++)

1
2
3
4
5
6
7
8
9 current_window[VEC+i] = input [inpos+i];

6.4.2 Shift in Data and Compute Hash

The first step is to load new data from global (DDR3) memory—the loaded data is
then stored in on-chip registers. Listing 6.1 shows the details of how this is done.
The on-chip register array “current_window” buffers data that is currently being
processed. First, we shift the second half of “current_window” into its first half,
then load VEC bytes from the global memory buffer “input”. Figure 6.3 illustrates
“current_window” before and after loading in new data. This will then allow us to
process VEC substrings each cycle, by extracting portions of the “current_window”
(each of length LEN) as shown. The parameter LEN determines the maximum
match length possible in LZ77 compression.

Next, we want to search the previous text for substrings that partially or
fully match the “current_window” substrings. Previous text is buffered in history
dictionaries in local memory (in OpenCL terminology) or FPGA block RAM
(BRAM). To lookup these dictionaries for possible matches, we use a hash
value corresponding to each of the “current_window” substrings. A very simple
hash function just uses the first byte of the substring thus guaranteeing that the
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Fig. 6.3 Shiftinginnew data 1, Shift current window
into “current_window” (VEC

=4) . S—
vielr|ly|[n]|i|c]|e
From global
n{frj|jcje

memory

2. Load new data (VEC bytes)

n|li|clelt|le|x]t

dictionaries return candidate matches that all start with the same byte. For example,
if the “current_window” substring is “nice”, hash[nice] = n (remember that each
letter is just an 8-bit ASCII number).

This simple hash function has two shortcomings: first, it creates an 8-bit value,
that means it can only index 256 addresses while the dictionary BRAMs (M20Ks on
Stratix-V FPGAs) have a depth of 1024 words. Second, it only contains information
about the first byte (out of VEC bytes) in the current substring and hence the can-
didate matches returned from the dictionaries only resemble the “current_window”
substrings in the first letter. To overcome these two shortcomings we experimented
with the hash function and found that the following function improves absolute
compression ratio by ~7 % on average compared to the aforementioned simple hash:

hashli] = (current_windowli] < 2)
xor (current_window[i + 1] < 1)
xor (current_windowl[i + 2])

xor (current_window[i + 3])

The improved hash function XOR’s the first 4 bytes of the current substring, with
the first byte shifted left by two bits, and the second byte shifted left by one bit. This
creates a 10-bit hash value that is able to index the full depth of the M20K BRAM,
and incorporates information about the first 4 bytes as well as their ordering. In
testing different hashing functions, the emulator that came with the Altera OpenCL
compiler was very useful as it allows testing the algorithm fairly quickly on the
CPU.

6.4.3 Dictionary Lookup and Update

Using the hash value computed for each substring, we lookup candidate matches in
history dictionaries. These history dictionaries buffer some of the previous text on-
chip, and are implemented as a hierarchy of BRAMs—this local memory hierarchy
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Current_window

[n[ifcleltfelx]t]
(n]ifclel

Dictionary 2

o [ifclelt]
vee cleft]e]

Dictionary 1

[n[ofu]r]

Dictionary 3 parallel
substrings _
[n[ev[e] eft]e]x]

LEN

Dictionary 4
[n[ilclk]

Fig. 6.4 Each substring looks up candidate matches in VEC dictionaries. Each dictionary returns
a candidate substring from history that resembles the current substring (VEC = 4)

is key to the high throughput of our LZ77 implementation. To look for matches
quickly, there are VEC dictionaries, each buffers some of the previous text. Using
the hash value, each substring looks for a candidate match in each of the dictionaries;
resulting in VEC candidate matches for each current substring.

The example in Fig. 6.4 shows that the word “nice” finds “nour”, “nice”, “neve”
and “nick” as candidate matches—each of those comes from a different dictionary
and they all occurred in the text before our current substring “nice”. This lookup
is repeated for the other substrings “icet”, “cete” and “etex” as described in
Listing 6.2—*“pragma unroll” on the outer loop tells the compiler to replicate the
read ports on each dictionary BRAM so that there are exactly as many read (or
write) ports on the physical BRAM to provide conflict-free accesses. In our case,
each dictionary has VEC read ports and one write port. The inner loop in Listing 6.2
specifies the width of the read ports. In this case “pragma unroll” tells the compiler
to coalesce the memory accesses into one wide access of LEN bytes per read/write
port, and the generated on-chip memory supports that width to be able to load/store
each substring in one access. In our implementation with VEC=16 and LEN=16,
this local memory topology can load 64 16-byte substrings and store 16 16-byte
substrings each cycle.

Listing 6.2 Lookup candidate matches in history dictionaries

1 //loop over VEC current window substrings
2 #pragma unroll

3 for(char i = 0; 1 < VEC; i++)

4 //load LEN bytes

5 #pragma unroll

6 for(char j = 0; j < LEN; J++)

7

{
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8 compare_window[j] [0] [i] = dict_O[hash[i]] [j];

9 compare window[j] [1] [i] = dict_1[hash[i]l] []j];
10 o

i compare_window[j] [15] [i] = dict_15[hash[i]] [j];

12

13}

The result of dictionary lookup is a set of candidate matches for each current
substring stored in an array “compare_window”—this is used in the following step
to look for matches for LZ77 compression. After dictionary lookup we update
the dictionaries with the current substrings such that each substring is stored in a
different dictionary. In Fig. 6.4 for instance, “nice” will be stored in dictionary 1,
“icet” in dictionary 2, “cete” in dictionary 3 and “etex” in dictionary 4.

6.4.4 Match Search and Reduction

In this step, each “current_window” substring is compared to its candidate matches
in “compare_window” and a match length is computed for each one as illustrated
in Fig.6.5. The “length” array in Fig.6.5 and Listing 6.3 contains the number
of matching bytes from the start of each current and compare windows. The
largest value is then chosen and stored in the “bestlength” array—there is now one
bestlength value for each “current_window” substring.

Compare windows:

[nfolufr]{n]ifefc]n]efv]e][n]i]c]k]

Current window

Comparators nnn
vy v vy

length:| 1 2 1 3
v vy
Reduction

bestlength:| 3

Fig. 6.5 Each “current_window” substring is compared to its candidate matches in ‘“com-
pare_window” and the best match length is selected (VEC=4)
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Listing 6.3 Compare each “current_window” substring to its candidate matches in “com-
pare_window” and find the length of each match

1 //loop over each comparison window
2 #pragma unroll

3 for(char i = 0; 1 < VEC; i++)

Tt

5 //loop over each current window

6 #pragma unroll

7 for(char j = 0; j < VEC; Jj++)

s

9 //compare current/comparison windows
10 #pragma unroll

1 for(char k = 0; k < LEN; k++)

2 {

13 if (current_window[j+k] == compare_ window[k] [i] []]
14 && !done[j])

15 length[j]++;

16 else

17 done[j] = 1;

18 }

19}

20 //update bestlength

21 #pragma unroll

22 for(char m = 0; m < VEC; m++)
23 if (length[m] > bestlength([m])
24 bestlength[m] = length[m];
25}

Bad Coding Style The code in Listing 6.3 consists of three nested loops; the
innermost loop does a byte-by-byte comparison to find the match length. Listing 6.4
shows functionally equivalent code that works better on a CPU but does not
translate into efficient hardware. The reason is that the while-loop bounds cannot
be determined statically so the compiler will not be able to determine how many
replicas of the comparison hardware it needs to create. The compiler issues a
warning and only one replica of the hardware is created—the loop iterations share
this hardware and execute serially on it causing a big decrease in throughput.

Listing 6.4 Typical C-code targeting CPU processors does not necessarily compile into efficient
hardware

1 //compare current/comparison windows

2 #pragma unroll

3 while (current_window[j+k]==compare_window[k] [i] [j])
4 length[j]++;

Area Optimization Listing 6.5 demonstrates a subtle area optimization. The if-
statement in Listing 6.3 gets translated by the compiler into a long vine of adders
and multiplexers as shown in Fig. 6.6. This is because we need to know both the
value of “length” and the condition of the if-statement before finding the new value
of “length”. Listing 6.5 removes this problem by using the OR-operator instead
of addition to store the match length. Since the ordering of the OR operations
doesn’t matter, the compiler can create a balanced tree to group the operations
on “length_bool” together. This reduces area for two reasons: first, it creates a
shallower pipeline depth, meaning fewer registers and FIFOs will be required to
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a Jength

cond

Fig. 6.6 The code in Listing 6.3 produces a vine of adders/multiplexers as shown in (a), while
using an OR-operator in Listing 6.5 allows the compiler to create a balanced tree of gates that uses
lower FPGA resources (b)

balance the kernel pipeline. Second, shifters and OR gates require less resources
than adders and multiplexers.

Listing 6.5 An area efficient implementation of the innermost comparison loop in match search

1 //compare current/comparison windows

2 #pragma unroll

3 for(char k = 0; k < LEN; k++)

a {

5 if (current_window[j+k] == compare_window[k] [i] [j])
6 length booll[i] [§] |= 1 << k;

7

}

The resulting “length_bool” now contains an array of ones instead of an actual
number—if “length” was 3 for instance, “length_bool” will be 0111 where the
ones indicate which bytes were equal between the current and compare window
substrings. We leverage this one-zero encoding of “length_bool” (instead of the
binary encoding of “length”) in selecting the best length which results in further
area savings. Overall, this area optimization reduces total logic utilization by ~31k
logic elements, or 5 % of the Stratix-V A7 FPGA device.

6.4.5 Match Filtering

The previous step creates a “bestlength” array of length VEC; each entry corre-
sponds to one of the “current_window” substrings. The match filtering step now
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Fig. 6.7 Bestlength array (a) before, and (b) after filtering (VEC=4)

picks a valid subset of the “bestlength” array such that it maximizes compression; it
consists of four steps:

1. Remove “bestlength” matches that are longer when encoded than the original.
In Fig. 6.7 “bestlength[1]” is removed because its LZ-encoding will consist of 3
bytes at least (for marker,length,offset).

2. Remove “bestlength” matches covered by the previous step. In Fig. 6.7 “best-
length[0]” is removed because the ‘n’ was already part of a code in the previous
loop iteration.

3. Select non-overlapping matches from the remaining ones in “bestlength”. We
implement a bin-packing heuristic for this step; the one we choose to implement
is “last-fit”; this selects the last match first (“bestlength[3]”) then removes any
“bestlength” that covers it (“bestlength[2]”).
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Fig. 6.8 Loop-carried dependencies may cause a kernel pipeline to stall thus reducing throughput.
By optimizing the loop-carried computation a high-throughput pipeline can be created. (a) Unopti-
mized loop-carried computation. (b) Execution timeline of unoptimized loop-carried computation.
(¢) Optimized loop-carried computation

4. Compute the “first_valid_position” for the next step. This depends on the “reach”
of the last used match—in the example in Fig. 6.7 the last match covers bytes 0,
1 and 2 in the following cycle so the “first_valid_position” in the following cycle
is 3 as shown.

Loop-Carried Computation A variable is loop-carried whenever it is computed
in loop iteration x and only used in the next loop iteration x 4 1. In our application,
one of the loop-carried variables is “first_valid_position”. In hardware this is
implemented as a feedback connection between a later stage in the pipeline to an
earlier stage in the pipeline as shown in Fig. 6.8a—*"“first_valid_position” is fed-
back from stage 4 to stage 2 in match filtering. If this feedback path takes more than
one cycle, this loop-carried computation causes the kernel pipeline to stall until it is
completed.

Figure 6.8b shows the kernel pipeline executing over time assuming that the
“first_valid_position” computation takes three cycles. Loop iteration 2 is stalled
in the first step until “first_valid_position” from loop iteration 1 is computed in
the fourth step; this causes pipeline bubbles as illustrated in Fig. 6.8b. This also
means that we can only start new loop iterations every three cycles—the initiation
interval (II) of the loop is 3. For any FPGA design, our target should be to optimize
this loop-carried computation such that we get an initiation interval equal to 1; this
avoids pipeline bubbles—a design with II=1 has triple the throughput of a design
with IT=3. For a stallable pipeline such as the one generated by OpenCL; the loop-
carried computations can be thought of as the critical path of the design.

In our application, the computation in Fig.6.8a resulted in II=6; the Altera
OpenCL compiler optimization report informs the user of the loop’s II and
points to the problematic variable in the user’s source code—in this case it
pointed to “first_valid_position. To optimize the computation, we take the bin-
packing heuristic that filters “bestlength” off of the critical path by moving it
after “first_valid_position” computation as shown in Fig.6.8c. This leads to an
II=1 as desired, meaning we can process a new loop iteration every cycle, instead
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of every six cycles, effectively increasing throughput six-fold. However, we now
have a design constraint on the bin-packing heuristic; it cannot alter the value of
“first_valid_position” to maintain correctness.

6.5 Results and Comparison

A complete gzip application is implemented using the LZ77 algorithm described
above, as well as the Huffman encoding. The full implementation is described in
[AHS14]. To highlights its advantages, the generated system from the Altera SDK
is compared to the following CPU, Verilog FPGA, and ASIC implementations:

+ CPU Implementations—Intel [GGF'11] demonstrated a highly optimized
implementation of DEFLATE running on a Core™ i5 650 processor at 3.20 GHz.
The results showed that a single core could sustain a data rate of 2.7 Gigabits/s
with an average compression ratio of 2.18x.

* FPGA Implementations—Hardware implementations of FPGA-based
DEFLATE algorithms have been previously studied in the literature [RBKO07,
TMK10, ESK07, MJA13]. The best known results have been reported in a
recent work by IBM researchers [MJA13]. Their implementation on a Altera
StratixV A7 FPGA is able to sustain a throughput of 3 Gigabits/s [Hof13].
Note that the IBM implementation is the highest performance hardware
implementation that has been publicly reported.

* ASIC Implementations—Several companies have created dedicated ASIC
devices [AHA14, Exal3, Inol2, San12, Int13] that address the needs of high
performance lossless compression. The AHA3642 [AHA14] provides the best
reported results: 20 Gigabits/s compression throughput while providing a 3.6x
compression ratio. Intel’s 89xx series of communication chipsets also offers
similar levels of performance [Int13].

While ASICs provide incredible efficiency, the algorithms are completely fixed
and cannot be changed after the chip is produced. Verilog FPGA implementations
are akin to assembly language for hardware. Such a design is time-consuming,
difficult to verify, and hence also difficult to modify. With the OpenCL SDK a user
can develop a high level description that is easy to modify, with similar productivity
to CPU development, while unlocking the acceleration/efficiency benefits of FPGA
technology.

Figure 6.9 compares our achieved throughput with the best known com-
mercial implementations of Gzip on FPGAs [MJA13] ASICs [AHA14], and
CPUs [GGF*11]. As the plot shows, our implementation is only about 10%
slower than the best known FPGA implementation and 10 % faster than the fastest
commercial ASIC implementation. However, note that the ASIC implementation
reports an average compression ratio of 3.6x on the Canterbury corpus [Canl5],
whereas our FPGA implementation achieves 2.43x on the same benchmark set.
This is attributed to both the expert knowledge of the industrial vendor that we are
comparing to, as well as the higher area budget available to ASICs.
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Fig. 6.9 Comparison against commercial implementations of Gzip on FPGA, ASIC and CPU

To evaluate the Altera OpenCL compiler against traditional RTL design, we
compare our OpenCL implementation of DEFLATE to the Verilog implementation
of IBM on which our design architecture is based [MJA13]. The entire gzip
application was developed in 1 man-month, although the development time of the
Verilog implementation is not known, we expect it to be substantially longer.

The OpenCL generated circuit has a performance of 2.66 GB/s running at
179 MHz. This is only 10 % slower than the 2.98 GB/s at 200 MHz achieved in
Verilog. In addition, the OpenCL logic occupies 51 % of the logic and 68 % of
the RAM on the SV A7 device. Based on the chip image in [MJA13], we expect
the Verilog implementation to occupy 45 % logic and 45 % RAM. This yields an
OpenCL overhead of 6 % logic, and 23 % RAM.

Compared to Verilog, performance only drops by 10 %, and even though area is
increased by 25 % we believe OpenCL makes a compelling alternative to hardware
design. Similarly to how standard-cell ASIC design flow is typically used instead of
full-custom layout for microelectronic circuits, we believe that hardware designers
will migrate to the use of high-level languages like OpenCL for most designs.
With OpenCL, this kernel was coded in 1 week and optimized in the following
3 weeks. The OpenCL SDK allows a programmer to develop this full application
without any hardware skills nor tools, it is near identical to writing software code. In
addition the C-like code allows for better readability, quicker algorithmic changes,
and portability across platforms over a register transfer level description. Moreover,
the emulator and profiler make OpenCL development easy to test and optimize as
described in the following sections.
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6.6 Development Environment

The Altera OpenCL SDK provides a complete set of software design tools: (1)
OpenCL emulation on a CPU; (2) reports on area and performance; (3) compile and
execute development environment; and (4) in-system profiling tools for analyzing
throughput bottlenecks and memory behaviour. Each of these are described in more
detail below.

6.6.1 Emulation Environment

The emulation environment executes complete OpenCL applications on a CPU.
Since this doesn’t involve any FPGA compilation, the turnaround time is less than
a minute. CPU emulation allows a user to validate their Altera OpenCL code while
supporting Altera specific extensions such as channels and heterogeneous memory.
Using this flow, a software programmer can quickly iterate and converge on legal
and correct OpenCL code.

6.6.2 Area and Optimization Reporting

The aoc compiler emits valuable reports describing how much of the total FPGA
area is consumed by the device, as well as which lines of code were optimized (or
why they were not). Users can use this to iterate on their design without long FPGA
compile times. Based on the area estimate, a user may opt to scale up or scale down
their design. The optimization report would also guide the user to employ code
transformations or attributes for breaking dependencies that force the aoc compiler
to be conservative and hence enable it to generate more optimized hardware.

6.6.3 Hardware Execution Environment: Compile and Execute

The differentiating feature of the Altera OpenCL SDK is the push button compile
and execute development environment which converts an OpenCL-written software
program to an FPGA programming file implementing an optimized datapath clocked
at its maximum operating frequency alongside pre-verified post-fit I/O subsystem
logic. This enables software programmers to directly execute the compiled output
in hardware allowing them to realize and optimize real end-system level metrics
such as throughput and latency. However doing so requires insight into system-level
behaviour and bottlenecks. Users can employ the hardware profiler delivered with
the Altera openCL SDK to query various components of the system-level execution.
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6.6.4 Hardware Profiling Environment

FPGA systems are typically optimized based on RTL simulation, logic analyzer
output, and deep knowledge of the cycle to cycle behaviour of each component in
the system. Software programmers need a similarly effective optimization path but
without having to learn or interact with hardware design tools. The Altera OpenCL
SDK provides an in-system profiling capability. User’s can simply pass the -g flag
to the aoc compiler and instrumentation hardware will be automatically inserted
into the design. When the design is executed in hardware, the host runtime will
automatically query the instrumentation hardware and assemble a range of insightful
measurements that characterize the current system behaviour. This is distilled and
presented to the user via the profiler GUI which annotates the user source code
highlighting bad memory access patterns, frequent stalling, high cache miss rates,
etc. In addition the GUI will present the user with a system-level timeline of kernels
that were running and memory transfers that were in-flight.

6.7 Summary

The Altera OpenCL SDK empowers software programmers by unlocking FPGA
acceleration technology with a full software-like compile-and-execute development
flow augmented with a range of productivity tools for debugging and profiling.
Programming is done in a standard C-based heterogeneous programming model
with no need for tool specific attributes or semantics. Software programmers can
go directly to in-system hardware realizations without any FPGA design knowledge
and without an FPGA designer in the loop. This truly enables FPGA use by software
programmers, enabling not only design entry, but also design iterations towards
optimizing and solving real world system level problems.
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7.1 Introduction

Recent years have seen a new generation of HLS tools, which do not only allow
to generate hardware architectures from hardware behavioral models, but perform
synthesis starting from algorithms specified in HLLs. One of the reasons for this
development is the ever growing popularity of reconfigurable logic, which aims
at providing the performance and energy efficiency of integrated circuits at a
flexibility that is very close to software. Despite FPGAs being a very attractive
hardware target for the acceleration of computations, the programming still often
requires knowledge of hardware structures and the associated Computer Aided
Design (CAD) tools for implementation. Being able to use a familiar language
for algorithm specification makes developing for an FPGA platform as target more
approachable to algorithm designers.

There has been a lively discussion going on, about whether programming
languages, such as C or C++ are suitable languages for the specification of hardware
implementations [Edw06]. Often mentioned is the fact that these languages are
intended to specify programs that are executed in a sequential manner on a micro-
processor and lack proper mechanisms to describe the behavior of parallel hardware.
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Also, arbitrary precision arithmetic, one of the key advantages of hardware, as well
as data streaming and pipelining are not supported by such languages. Moreover,
these languages feature capabilities that are difficult to realize in hardware, such as
dynamic memory allocation, recursion, and polymorphism.

A very successful approach to allow HLS from C-based languages is (a) to make
only a few restrictions to the host language and (b) provide extensions to support the
modeling of hardware features. Tools following this approach can often synthesize
almost any purpose into hardware. Since the compiler requires extensive user-
controlled guidance, detailed knowledge of the underlying hardware target is yet
essential to achieve a high quality of the synthesis results, such as high throughput,
low resource requirements, or efficient use of the target platforms resources.

One of the many commercial tools that follow this approach is Vivado HLS from
Xilinx as part of Vivado Design Suite. It is based on the acquisition of AutoESL
Design Technologies, a spin-off from UCLA whose HLS tool AutoPilot [ZFJT08]
became the basis of Vivado HLS. It allows design entry in C, C++, and SystemC
specifically for Xilinx FPGAs [Xill5¢]. The tool is aimed at synthesizing individual
functions into IP Cores in either VHDL, Verilog, or SystemC (although SystemC
support has been dropped since the most recent version). Xilinx provides libraries
for challenging problems and a partial port of the Open Source Computer Vision
(OpenCV) [PBKE12] framework to aid designers. Moreover, the tool can make use
of the extensive library of Xilinx IP cores, for example to support floating-point
arithmetic. Specific focus has been laid on interface synthesis, which in addition to
general purpose communication also supports ARM’s AXI4 standard to integrate
generated hardware modules with the FPGA fabric.

7.2 Background on Vivado HLS

Over the past decades, the FPGA community has seen the move to ever higher
abstraction levels. Each new abstraction layer aims at hiding design complexity,
which offers increased productivity at the cost of less visibility of the challenges
associated with the lower abstraction level. The current move from behavioral to
functional design specification brings the benefit of accelerating the overall design
cycle including expedited design simulation, automatic correct-by-construction
RTL creation and easy design space exploration. C-based design entry is a very
popular mechanism to create functional specifications and many engineers are
familiar with either C or C++. Most of the language constructs are supported, except
for recursion and those involving dynamic allocation of memory, which is known to
be challenging on hardware.
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Fig. 7.1 Design flow in Vivado HLS

7.2.1 The Vivado HLS Design Flow

Figure 7.1 shows an overview of the design flow in Vivado HLS. Design entry can be
made using either C, C++, or SystemC. Additionally, it is possible and recommended
to specify a functional, self-checking test bench, the design can be verified against
before the actual synthesis. Moreover, the functional test bench is used to craft the
RTL simulation for the synthesized design. RTL sources are available for use outside
of Vivado HLS after the synthesis, although it is also possible and often useful to use
the RTL export function of the tools, which can make the synthesis results available
in the Vivado IP core library, as well as generate an IP core for System Generator
or Xilinx EDK. The contained RTL simulation can be used for design validation,
however, not to find where errors might stem from. A third party external RTL
simulator can be run on the generated output of RTL synthesis in conjunction with a
custom RTL test bench. Moreover, there exists an almost one-click simulation setup.
Exporting bundles the RTL source files together with a script to import these into
a Vivado synthesis project. This script can be edited to also include a custom RTL
test bench and setup an external simulator. In Vivado it is then only a single click to
start the simulation.

High-Level Synthesis

Synthesis of a functional specification in C to an RTL description for hardware
implementation involves not only the synthesis of the specified algorithm but also
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the synthesis of an interface to the hardware module. The combination of both can
lead to a plethora of different designs. The individual steps to be taken during high-
level synthesis can be categorized into control and data path extraction, allocation
of suitable resources, binding of the elements of the control and data path to the
resources, and scheduling, as described in Chap.?2. Over the course of these steps,
design constraints and optimizations can severely influence the available design
space and thus the achieved design solution.

The first step in HLS is to extract control information from the functional
specification by expecting the control flow of the program, i.e., conditionals and
loops. Vivado HLS achieves this by extracting a control flow graph, which is then
implemented as a finite state machine in hardware. For the initial extraction, it is
sufficient to assume single cycle instructions. In further steps, the control logic
will most likely have to be adapted according to allocated resources and interfaces.
Data path extraction can be achieved rather easily by unrolling loops in the design
specification and evaluating conditionals.

Scheduling and binding are the two most essential steps during HLS. After
instructions have been bound to resources for execution, a schedule can be
determined to plan when which instruction is executed. The order might also be
reversed by first determining a schedule for execution, for example, by specifying
very strict timing constraints, and performing allocation and binding according to
the schedule. For this, Vivado HLS always requires the user to specify a basic set of
constraints, consisting of the targeted hardware platform and clock period. It is up to
the user to constrain the design further using so-called directives. Amongst others,
directives can be used to specify a certain interface, how loops are to be handled,
and which resources are to be allocated for certain instructions.

Unsupported C Language Constructs

Vivado HLS is able to synthesize a large subset of the C modeling standard.
However, there are several language constructs, that are not supported for high-
level synthesis. One requirement is that the C function must contain the entire
functionality and must not rely on any calls to system functions or the underlying
operating system. Moreover, C constructs must use a fixed, bounded size and
the implementation must be unambiguous. Therefore, Vivado HLS cannot synthe-
size any system calls, such as printf(), time(), sleep(), etc. Some of these functions
are supported to simulate the design with the functional test bench, however, they are
ignored for synthesis. As memory cannot be allocated dynamically during runtime,
all memory requirements must either be outside of the scope of the function or their
fixed bounds must be known at compile time. In general, pointer casting is only
supported for native C types. Furthermore, the C++ STL is not supported.
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Arbitrary Precision Data Types

C-based native data types are only on 8-bit boundaries. RTL on the other side can
support arbitrary lengths. HLS includes a mechanism to support arbitrary precision
data types. This is crucial for area optimization, as it is suboptimal to be forced
to use a 32-bit multiplier in a design, where a 17-bit operator would be sufficient.
HLS provides such data types for C and C++, as well as it supports the data types
of SystemC. If arbitrary precision data types are to be used in C functions outside
of Vivado, the Vivado compiler apcc must be used to compile the source code.
Although standard compilers, such as GNU Compiler Collection (gcc) can compile
the sources, the produced executable will not be able to handle the compilation
directives. These restrictions do not apply to C++, as the custom data types are
implemented as a class, which can be compiled correctly by standard compilers.
For C+ and SystemC, Vivado supports fixed-point data types and provides an
appropriate library. Arbitrary fixed-point precision can be defined by specifying the
overall word-length, the amount of bits for the integer part, as well as instructions
to control rounding behavior. In addition, HLS supports the synthesis of single and
double precision floating-point data types.

Interfaces

Interfaces for RTL designs synthesized by Vivado HLS are generated from the
arguments of the target function. The interface directive can be added to enforce
a certain interface protocol, however, supported protocols greatly depend on the
type of the argument. Vivado differentiates between C function interfaces and
block interfaces. C function interfaces define how data is passed to the synthesized
function, whereas block level interfaces apply an interface to the generated IP core,
which controls, for example, when to start execution or when the block is ready to
accept new data. Function interfaces are applied to individual function arguments,
block-level interfaces are applied to the function itself.

7.2.2 Optimization and Synthesis Guidance

Vivado HLS provides the user with several options to optimize the design in terms
of resource usage and performance. Optimizations can be categorized into function
optimization, meaning to optimize the execution of functions in relation to each
other and optimization of the elements of a function, such as loop constructs and
storage elements, for example, arrays. Optimizations are specified as directives
and can be entered either as pragmas directly in the source code or by using a
directives script file. Both options have their reasoning, as pragmas might be used
for directives which always apply, for example, loop unrolling, and directives which
might change, such as pipelining with a certain initiation interval, can be easily
grouped together in the script file.
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Performance Metrics

Vivado HLS uses two metrics to describe design performance, namely the latency
and the initiation interval. In general, latency specifies how many clock cycles it
takes to complete all of the computations of a module. If the algorithm contains
loops, the loop latency specifies the latency of a single iteration of the loop and the
Initiation Interval (II) determines after how many cycles a new iteration can be
started. If the iterations of the loop are executed in a sequential manner, meaning
that an iteration has to finish all computations before the next iteration can start, the
Initiation Interval (II) is equal to the loop latency. In this case, the total latency, or
as named in Vivado, the loop interval, lat,,, can be computed by multiplying the
iteration latency lat;; by the number n of iterations to be performed, also known as
the trip count. An additional latency must be added for entering and exiting the loop,
as well as performing tasks outside of the loop, which we account for as lat,,,. In
other words,

lattotal = (}’l . latit) + latextra-

For large values of n, the extra latency may become negligible. However, loops in
algorithms can often be parallelized in order to decrease the overall latency. In this
case the II might become significantly smaller than the iteration latency which may
decrease the overall latency significantly,

lattotal = (n : II) + latiter + latextra‘

The II can thus also be seen as a measure of throughput of the generated RTL design.
The antagonist of parallelization and throughput optimization are area constraints.
To be able to execute in parallel, operators must either be replicated or at least
pipelined. Both increase the hardware resource requirements of the generated RTL.
A brute force optimization strategy is to unroll all loops of the algorithm and provide
dedicated operators and data storage for each iteration. In consequence, this will
also demand a high amount of resources. Fortunately, HLS enables strategies to
speed up the execution of an algorithm while keeping the resource demands at a
minimum. In addition to demanding a certain clock frequency for the design, users
can specify latencies across functions, loops, and regions. Moreover the amount of
resources can be constrained and data dependencies can be relaxed, for example, by
permitting read before write.

Function Optimization

There are several possibilities to guide the synthesis of subfunctions within a
function. An optimization also known from traditional C and C++ programming is
function inlining, which copies the function code to the location where the function
is called. The concept is ideally suited for small functions and for those, which are
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shared amongst several other functions. In terms of Vivado HLS, using the inline
directive on a function puts it within the context of its encapsulating function,
thus, enabling optimization during synthesis. Another useful directive is function
instantiation, which can be used on functions with a complex control set to split
these up into smaller simple functions and instantiate these directly where they
apply. Moreover, function synthesis can be guided by constraining the minimum and
maximum number of cycles for the function latency, using the latency directive, as
well as by choosing a specific interface through the interface directive.

Array Optimizations

As memory dimensions must be fixed, arrays are the preferred structure for
data storage and may thus have great influence on area and performance. As a
consequence, there are several optimizations available that can be applied to arrays.
As arrays are typically implemented using a Dual-Port-RAMs (DPRAMs), most
directives are concerned about how the C structure is implemented in hardware. The
resource directive makes it possible to select a specific DPRAM implementation in
RTL, such as, for example, one using asynchronous read but synchronous write, or
a traditional true dual-ported implementation. Furthermore, small arrays may rather
be implemented using registers or a larger multi-dimensional array might be split up
and implemented using several DPRAMs. For these cases, the partition directive
can be applied to control the implementation. Also, the contents of an array can
be reorganized using the reshape directive. This is useful if, for example, multiple
consecutive values should be read from an array. The array can be reshaped and the
contents can be read in parallel using a larger word-width. Finally to use hardware
resources more efficiently, multiple small arrays can be mapped together into a
single DPRAM component using the map directive.

Loop and Function Optimizations for Parallelization

A crucial part of the optimization of functions is concerned about loops and
sequential function calls to exploit temporal parallelism by overlapping their
execution, also known as pipelining. Pipelining a loop nest on a specific level
requires that all lower-lever loops are completely unrolled. Unrolling a loop can be
instructed by the unroll directive and aids in exploiting instruction-level, or logical
parallelism, by generating dedicated hardware for each operation in the loop, which
results in the highest hardware requirements, but also the highest performance.
Completely unrolling is advisable only for the innermost loops of a loop nest, such
as a convolution kernel. Moreover, unrolling requires the loop bounds to be known
at compile time. Higher-level loops can be pipelined by the pipeline directive.
In contrast to unrolling, the operators will be shared across the iterations of the
loop, resulting in substantial speedup compared to sequential execution at a very
reasonable increase in hardware cost. To ideally prepare loops for optimization,
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loops should be specified perfectly instead of imperfectly. Consider the imperfectly
specified loop construct to implement a shift register in Listing 7.1. To perfectly

Listing 7.1 Shift register implementation using an imperfectly specified loop

int A[7]; // this is the shift register
int new_data; // the image data
// implement the shifting as a loop

N~ oo o s w N =

for(int i = 0; i < 6; i++){
A[i]l = Ali+1];

}

A[6] = new_data;

describe the loop, it should be rewritten as shown in Listing 7.2. Perfectly specified
loops may be optimized better than imperfectly specified loops, especially when
Vivado HLS analyzes loop-carried dependencies. However, it may also occur that
Vivado HLS determines dependencies within a loop (intra) and between loops
(inter) too conservatively and prevents the level of optimization that would actually
be possible. For these occurrences, Vivado HLS provides the dependency directive
to actively set dependencies to false if they incorrectly prevent loop optimization.
Moreover, if loop bounds are dependent on a function argument, Vivado HLS is
currently unable to determine the trip count, that is, the number of iterations of the
loop. In such cases, HLS can be informed about the maximum number of iterations
using the tripcount directive to specify a lower and an upper bound on a loop.
In addition, separate sequential loops can be merged to reduce overall latency and
improve operator sharing and nested loops can be collapsed into a single loop using
the flatten directive.

Listing 7.2 Perfectly specified loop in shift register implementation

1 for(i = 0; i < 7; i++){
2 if (i == 6)

3 A[i] = new_data;

4 else

5 A[i] = A[i+1];

6}

If a top-level function contains separate sequential loops or sequentially called
subfunctions, such as for the description of an algorithm on the application level
as a sequence of operation level steps, the loops and calls can be pipelined
and paralellized by using the dataflow directive. Dataflow creates a pipelined
architecture, thereby synthesizing each called function and executed loop into an
individual module. It also optimizes the communication between the functions and
can improve the design throughput, but it leaves the specification and generation of
storage elements between the pipelined modules to the designer.



7 Big Data and HPC Acceleration with Vivado HLS 123

Chaining Functions Using Data Streaming

As a top-level function may include several sub-functions, Vivado HLS provides
the stream class to provide streaming-based data communication. Stream objects
can be synthesized as simple registers, however, they can also be targeted towards
FIFO buffers, if they need to retain a greater number of data items. Functions
interconnected by streams are usually scheduled to execute sequentially. If concur-
rent execution is desired, the dataflow directive can be specified in the top-level
function. An essential requirement for pipelining the execution across multiple
sub functions is that for each stream, there is only a single producer and a single
consumer. Choosing the right amount of data items to buffer to avoid dead locks in
concurrent execution is the responsibility of the designer.

7.3 Case Studies

Due to high performance requirements and more and more limited energy budgets,
FPGAs are very interesting accelerators for data centers. To demonstrate how
Vivado HLS may aid designers in productive development of highly efficient accel-
erators, we present case studies for two different application domains. Section 7.3.1
will illustrate the acceleration of data base queries and can achieve speedups of
up to 140x compared to traditional, software-based solutions. Section 7.3.2 will
demonstrate the development of a multigrid solver for scientific computing.

7.3.1 Query Processing Acceleration Using Vivado HLS

About three exabytes of data is created and stored in databases each day, and
this number is doubling approximately every 40 months. Querying this enor-
mous amount of data has been a challenge and new methods have been actively
researched. In this section, we present the design of hardware accelerators to speed
up database analytics for in-memory databases.

Many previous studies, in order to have faster query processing capabilities, have
looked into accelerating database analytics in hardware: using ASICs [WLPT14],
or using FPGAs statically [CO14, PPAT 13, MTA10], or using dynamic reconfigu-
ration [KT11, BBZT14]. In this section we look into how such accelerators can be
designed using the Vivado HLS tool.

Traditional accelerator design requires writing complex RTL code that is prone
to errors and difficult to debug. HLS uses high-level software implementations of
algorithms. In this section, using Vivado HLS, we design hardware accelerators
for data filtering, aggregation, sort, merge and join operations for a Virtex 7
FPGA. We describe the design, implementation, and the tradeoffs of employing
each accelerator module. Later, we use these modules to simulate an in-memory
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Fig. 7.2 Implemented database operations

database accelerator. We present performance and area results of simulating two
TPC-H benchmarks and compare the results with a modern Database Management
System (DBMS), PostgreSQL software implementation. We demonstrate more than
two orders of magnitude speedup, which provides preliminary evidence that HLS is
a very good match to design database accelerators [MSY T 15].

Accelerator Implementation

In order to support full and complex database analytics in hardware, we have
focused on accelerating data filtering, arithmetic, logic, sorting, aggregation and
equi-join operations, as shown in Fig.7.2. All the units are designed to work at
200 MHz on a Virtex 7 XC7VX690TFFG1761-2 FPGA.

* Data Filtering, Arithmetic and Logic Operations: Database filtering opera-
tions are relational operations that test numerical or logical relations between
columns, numerical and/or boolean values. For this purpose, we have designed
a pipelined, parametrizable width, n-way compute engine that takes rows as
inputs, applies a filtering operation on the desired columns and produces an
output bitmap. This bitmap determines the selected rows for further processing
after the filtering operation. The main importance of filtering operations in a
Structured Query Language (SQL) query is to filter out unwanted data from
further processing, thus reducing the size of the input set. The most important
design choices of filtering operations is selecting the correct parallelism for
the maximum utilization of memory bandwidth. Similarly, we have designed
pipelined, parametrizable, n-way arithmetic and logical compute engines. The
arithmetic compute engine supports integer ADD, SUB, MULT and DIV oper-
ations, whereas the logical compute engine supports the logical AND, OR and
NAND operations.

» Aggregation Operations: Aggregation operations compute a single value from
a collection of values and we provide an n-way aggregator engine that supports
MAX, MIN, COUNT, SUM and AVERAGE. It takes multiple values in the form
of an array as the input and calculates a final aggregate value. We apply the binary
fan-in method which is fully pipelined at each stage. The number of pipeline
stages is dependent on the input array size such that log, arraysize stages should
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be designed. The advantage of the binary fan-in method is that Vivado HLS can
easily map equations to two-input comparators and support full pipelining.

* Sort and Merge: Ordering data is widely used in queries for data organiza-

tion and presentation. Therefore, efficient sorting is highly sought in database
analytics. For this reason, we have implemented a 64-way Bitonic sorting
network [Bat68], which is highly efficient on FPGAs, providing high throughput,
while using acceptable amounts of real estate.
A Bitonic network, which is fed with unordered data from RAM, can only par-
tially sort a large data set and is not adequate for high volumes. Therefore,
partially sorted values are written back to RAM. This first pass creates arrays
of partially sorted data and these arrays must be merged for global sorting. For
this purpose, we designed a 4-deep, 2-way merger that can output 4 values
each cycle, that is similar to the merge unit presented in [CO14]. It uses 14
comparators, and was written as a long case statement (16 possible output
combinations for a 2x4 array). The depth of four of the merger unit has allowed to
utilize the available bandwidth without consuming too much FPGA area, hence
it is possible to use multiple instances given higher bandwidth specifications.
Although larger mergers could be designed, the amount of comparisons would
superlinearly increase.

» Table Joins: A join operator is used to combine fields from two tables by using
values that are common to each. Joining two tables is a very time consuming
operation, especially when dealing with decision support systems. Table joins
account for more than 40 % of the total execution time while running TPC-H
queries [WLPT14].

We opted for implementing the merge-join algorithm because of two reasons.
First, we already have a highly-parallel sorting network which the merge-join
requires. Second, the sorting network and merge unit can be highly parallelized
through HLS. In contrast, a hash table might require managing collisions, and
other complicated circuitry which are difficult to express in HLS. Another option,
nested loop joins are more suitable for software implementations. For these
reasons, we have designed a parallel merge-join block (for equi-joins) that can
match and join a window of n X n rows on two given columns by comparing
sorted rows of database tables in parallel.

In order to perform a merge-join, we first need to sort and merge both the input
tables by using the sort and merge modules. Later the join operates on the sorted
tables. Similar to our merge unit, our join operator can join four rows from two
separate tables. Our experiments have shown that increasing the number of rows
in the merge unit presents different latencies and area consumption. In our design
a 4 x 4 join operator has a 4-cycle latency.

All the accelerators were coded from scratch using C+ for Vivado HLS. The
development process has been very rapid compared to RTL. The sorting network is
also implemented as a large network of comparators and the merge block is coded as
a long case block. Compared to RTL implementations, each C/C+ implementation
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of the accelerators have fewer lines of code. The major difference between the
full software implementation of an accelerator and its Vivado HLS version are the
directives, custom data widths and file Input/Output (I0). Vivado HLS directives
manage compiler optimizations and synthesize the hardware accordingly. Similarly,
custom data types allow fine-grained width control on variables on the synthesized
hardware.

Hardware generation in Vivado HLS is controlled through optimization
directives. For our hardware accelerators, we apply several directives. The
array_partition directive is used to partition input data into registers. This has
prevented data access bottlenecks due to DPRAMs. The inline directive is used
to remove the function hierarchy of the C+ language. All loops in the design are
unrolled using the unroll directive. The level of unrolling is calculated based on
the memory bandwidth requirements. We used the pipeline directive in order to
reduce the II to one, so that all accelerators can process data in every clock cycle.

Running Full, Complex SQL Queries

To test our engine, we ran example queries from TPC-H, a decision support
benchmark, which illustrates decision support systems that examine large volumes
of data, execute queries with a high degree of complexity, and give answers to
critical business questions [Tra08]. In this work, we’ve run TPC-H queries 6
and 14 [Tra08] which involve filtering, join and aggregation operations. These
queries present some different properties: (a) g6 can be fully run without writing
intermediate results to memory, while (b) ql4 introduces memory overheads, as
well as performing a large join operation (of size 200K x 74K). One exception to a
software run is that currently, we do not provide support for floating point numbers,
and we only use fixed point arithmetic, however using Vivado HLS, it would be
straightforward to provide floating point support. Therefore, we converted the dates
into 32-bit timestamps and the often used type of numeric(15,2) was converted
to fixed-point, similarly to [WLP*14]. In order to run full TPC-H queries, we
also needed to design some additional special units such as: multiply-accumulate,
divider, or conditional outputs.

In a typical SQL Relational DBMS (RDBMS), a query execution planner
does the job of establishing an ordered set of steps that are used to access data.
Similarly, a planner in hardware can be devised to schedule operations to modules.
The scheduling problem also affects if running multiple queries in flight can be
supported or not. In this work, we manually establish the query plan, as we describe
in the next subsection. We want to automatize this process in the future.

The input data is organized in memory in table columns. We assume that a given
index n for column a points to the same row for column b, i.e. the tuple order
is preserved across the columns. To have a realistic simulation environment, we
constrained our memory accesses to a maximum of 512-bits each cycle/channel, and
with a 16-cycle latency at 200 MHz, which matches the DDR3 specifications on our
VC-709 FPGA board (featuring 2 channels of 4 GB DDR3, up to 120 Gbits/s per
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channel). Although this does not perfectly model DRAM properties, we believe that
it can be a representative way of adding memory latency and bandwidth constraints
to our model. We used both of the available DDR3 channels, whereas more channels
can easily be converted into more performance by laying out the data columns in
parallel and thus increasing bandwidth. We also assumed that for exploiting the
maximum bandwidth, columns might be distributed into the two channels.

Depending on the query plan, we compose our accelerator modules together and
write the intermediate results into memory as needed. A unified memory model
enables our accelerator system to be customizable for each query and is capable of
expressing complex queries. Combining all modules in a long pipeline would be
another alternative design. However, it is not very clear how this design decision
would affect performing iterations, such as in a merge-sort scenario.

Experimental Results

In this work, we have used Vivado HLS and ISE version 14.1. As a basis for
comparison, we ran the same TPC-H queries on a popular DBMS, PostgreSQL 9.2
running on a 32-core Intel Xeon E5-2670 at 2.60 GHz, with 256 GB DDR3-1600,
using 4 channels and delivering up to 51.5 GB/s. We built all indexes, and ran the
benchmarks on a RAMdisk to get the best possible performance out of our server.

The SQL queries used are available in [Tra08]. Based on these queries, in
Figs. 7.3 and 7.4, we present the query plans, where a sort sign also includes inherent
merge steps. We ran TPC-H in the 1 GB scale, and used the two main tables that the
queries operate on. The lineitem table has around 6M rows and contains 16 columns
that start with a 1_, whereas the part table (starting with a p_) has 200K rows. The
numbered steps in the figures represent the execution order of the operations based
on the query plan.

Query 6: The three filter operations required were designed to work in a 5-way
Single Instruction Multiple Data (SIMD) fashion, after which the resulting bit-maps
get AND-ed. If the result is a 1, it gets multiplied-aggregated and finally outputted.
This query, compared to the DBMS run, gave the highest speedup because it fits our
computational capacity well and completes in a single step since we never need to
write any intermediate results to memory.

Query 14: In the first two steps, a 16-way filter operation reduces a 6M element
table to approximately 74K rows and writes these into memory. Later, in preparation
to the join operation, these columns are sorted on the key, 1_partkey. Later, the 200K
table is sorted on the p_partkey in step 4. Finally, these two tables get joined on the
keys and two sums are kept, one for those rows that include PROMO, and another for
all the rows. The LIKE keyword is implemented as part of the filter block with simple
comparators. Finally, we divide the two aggregated results to get the result.

Table 7.1 shows the area usage and latencies for our generated hardware for each
query. The most area consuming operations are the bitonic network due to its highly
parallel nature and join unit. Other operations are negligible in size. Vivado maps
multiplication and division operations to built-in DSP blocks. However, flip flop
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Fig. 7.3 Q6 query plan

utilization is increased when the array_partition directive is used aggressively.
Vivado HLS has been very efficient while synthesizing Query 6, it uses the least
amount of area and provides the highest speedup. Query 14 has a more complex
control logic than Query 6 because the merge and join units are not completely data
parallel, therefore the state machine has to check for the sequential cases.

Our performance results running these queries are presented in Fig.7.5. It can
be seen that our efficiency in performing n-way filtering and thus working with a
reduced set of data to be sorted/joined has paid off, as we were able to achieve
between 15—-140x of speedup, compared to the DBMS software.

Conclusions

As our results demonstrate while simulating an in-memory database accelerator, the
Vivado HLS tool can present high performance gains running complete database
queries and is a promising way to address the big data explosion. We have shown
between 15-140x speedup compared to Postgres software DBMS running selected
TPC-H queries.
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Table 7.1 Hardware usage Query 6 LUT FF DSP | Latency
for Query 6 and Query 14 5 X 64-bit between | 845 0
5 x 32-bit between 415 0
5 % 32-bit LT 195 0
5 X 64-bit Mult 19 80 18
5 X 128-bit sum 384 642 1
1 x 128-bit sum 128
Q6 Total 1967 661 80 19
Query 14 LUT FF DSP | Latency
16X 32-bit between 2704 0
32-bit merge 2613 0
32-bit bitonic64 69216 | 20491 10
3 x 200-bit comp 1284 0
2 x 128-bit agg 267 265 1
2 x 128-bit agg 267 265 1
3 X 64-bit sub-mult 192 19 48 |18
Join 32-bit 42088 | 10137 9
Q14 Total 118659 | 31187 48 |39
Virtex 7 FPGA 1433200 | 866400 | 2940 |

Fig. 7.5 Runtimes for two

queries (in ms, log scale) B 1GB-PGSQL

B 1GB-HLS

7.3.2 Multi-resolution in Scientific Computing

Multi-Resolution Analysis (MRA) is a mathematical method that is based on
working on a problem at different resolutions. A few among numerous applications
of MRA are signal detection, differential equation solving, information retrieval,
computer vision, as well as signal and image processing. The algorithms used to
solve problems in industry and scientific computing are becoming more and more
complex and must deliver enough performance to process vast amounts of data
often under rigid resource and energy constraints. Starting at full resolution (base),
for each consecutive level a more coarse-grained representation of the data set is
created, as shown in Fig.7.6. On each level, the same computational operations
can be applied, affecting a different relative region size, without modifying the
filter kernel. The recursiveness in multi-resolution methods and the high degree
of parallelism makes these an ideal target for data streaming-oriented FPGA-
acceleration.
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Level 0 (base)

Fig. 7.6 Conceptual representation of multi-resolution data

In scientific computing, MRA is applied in so-called multigrid methods [ST82],
which are a popular choice for the solution of large systems of linear equations that
may stem from the discretization of Partial Differential Equations (PDEs) [GLI1].
One of the most researched PDEs is Poisson’s equation (refer to [DLYS13]) which
is used for modeling diffusion processes, e.g., in the simulation of temperature
distributions [Fre96].

The V-cycle, one variant of a multigrid method, is shown in Algorithm 7.1. In
the pre- and post-smoothing steps, high-frequency components of the error are
damped by smoothers such as the Jacobi or the Gauss-Seidel methods [Van94].
In the algorithm, v; and v, € N denote the number of applied smoothing steps.
Low-frequency components are transformed into high-frequency components by
restricting them to a coarser level, thus making them good targets for the smoother
once more.

On the coarsest level, direct solving of the remaining linear system of equations
is possible due to its low number of unknowns. However, it is also possible to apply
a number of smoother iterations. In the case of a single unknown, one smoother
iteration corresponds to directly solving the problem.

Such multigrid algorithms are essentially stencil computations, for which the
conventional way of implementation is to allocate a continuous chunk of memory
and apply the stencils by iterating sequentially over the memory, i.e., a multigrid
algorithm is realized as a sequence of smoother, residual calculation, restriction and
prolongation stencils. Usually, these kernels are executed linearly, where application
of a new kernel starts only after completion of the previous one. As a consequence,
to improve the overall performance, kernel execution times have to be reduced.

In contrast, FPGAs offer a massively parallel hardware architecture which can
achieve the best results in combination with data streaming. The concept of imple-
menting the multigrid algorithm as a sequence of stencils can be carried over to the
FPGA architecture by converting the computational kernels into hardware modules
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Algorithm 7.1: Recursive V-cycle to solve Au;, = fj

1 if coarsest level then

2 | solve A,u;, = fj, exactly else by smoothing iterations;

3 else

4 =(k) _ e (k) AR ,

w, =8, \u Antn) s {pre-smoothing}

5 = fi — Anily, {compute residual}

6 ru = Rry ; {restrict residual}

7 ey =V (0,An, ru, vi,12) 3 {recursion}

8 ey = Pey ; {interpolate error}

9 i = + e {coarse grid correction}
10 “E,kﬂ) =Sy (ﬁg,k),Ah,ﬂ.) ; {post-smoothing}
11 end

and laying them out in parallel on the chip. The modules are then interconnected by
data streams to form a pipeline, through which data is streamed from one entity to
another. Once the pipeline is completely filled, all of the computations are carried
out concurrently, providing a continuous output flow of results from a continuous
delivery of input data.

A key concept in hardware development is to design a component once and
replicate it as often as necessary. For multigrid algorithms, we can make use of
this principle by designing one stage of the algorithm and replicate it to implement
the recursion levels. An important fact to consider is that the lower stages always
only have to process a fraction of the data of the next higher stage, e.g., a quarter in
the case of 2D. Although this could be exploited in hardware by lowering the clock
frequency of the lower stages, a much more sophisticated approach is to increase
the pipeline interval. A high performance and be achieved if the top most level
uses a pipeline interval of one, which means the architecture can accept new input
data in every clock cycle. In consequence, it also produces results in every clock
cycle, after a certain latency. To achieve this, however, a dedicated operator must be
instantiated for each operation of the algorithm, and therefore the implementation
requires a large amount of hardware resources. If the pipeline interval is increased
on the lower levels, hardware operators can be shared among the operations, which
leads to significantly lower resource requirements.

Figure 7.7 shows a structural representation of the FPGA implementation of the
multigrid solver for the PDE. Here, restriction and prolongation are the building
blocks for grid traversal, that is up- and downsampling the data sets. Downsampling
in stream processing is implemented by simply dropping samples. To avoid aliasing,
the data must be reduced in bandwidth, for example by Gaussian filtering. For
upsampling, the sampling rate is increased by a factor of two and the new samples of
value 0 between successive data elements are interpolated. As the resulting spectrum
is a two-fold periodic repetition of the input spectrum and only the frequency
components of the original signal are unique, the repetitions should be rejected by
passing the resulting sequence through a lowpass filter with subsequent upscaling.
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Fig. 7.7 Structural representation of the multigrid algorithm implementation

An alternative to using a Gaussian filter for the implementation is bilinear or bicubic
interpolation [TBUOO].

The smoother is implemented using the Jacobi over-relaxation (JOR) method
as a stencil kernel, which is basically a local operator. Local operators process
a local neighborhood, also often referred to as window, and therefore need to
access an element of the data set more than once. Thus, handling streaming data
on an FPGA requires a memory architecture to retain data for multiple accesses.
Memory resources on modern FPGAs can be broadly categorized into Block RAMs
(BRAMs) and Flip-Flops (FFs). An efficient memory architecture for streaming
data uses a combination of line buffers for storage of complete lines and memory
windows for the actual processing of local neighborhoods. A more elaborate treatise
of local operators in Vivado HLS can for example be found in [SAHT14].

In addition to the actual implementation of each stage, the figure also shows the
II for the stages, data streams, and indicates which connections require buffering
(depicted as B). Although it is possible to instantiate buffers on every stream,
there are actually only three cases where the interconnection requires buffering.
These are (a) after downsamplers (part of restrict), (b) before upsamplers (part of
prolong), (c) before nodes that combine data streams and have different path lengths.
The necessity for buffering after downsampling and before upsampling is due to
different II between the stages. The buffer requirement for combining nodes, such
as the correction step of the prolongation, becomes evident from the structure of
the accelerator. For example, the connection between restriction and prolongation
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requires a very large buffer, since prolongation must wait until data arrives after
having traversed all of the lower stages. Other interconnections in the architecture
can be set to simple registered handshake connections, which will lower the total
amount of hardware resources required for buffer implementation.

We have evaluated considering a solution to a finite differences (FD) dis-
cretization of Poisson’s equation with Dirichlet boundary conditions. We have
implemented a typical multigrid solver using a V(2, 2) cycle and a recursion depth
of 8. For smoothing, a weighted Jacobi with a pre-calculated optimal w is used.
The solution on the coarsest grid of 32 x 32 is approximated by multiple smoother
steps. For the chosen grid size of 4096 x 4096 floating point values and 8 recursion
levels, the buffers on the top four levels become very large and would overwhelm
the amount of available resources, even on very large FPGAs. A solution to allow
the fastest possible execution and keep within the maximum amount of available
resources is to offload the most challenging buffers to external DDR3 memory. A
drawback is that HLS tools, such as the here used Vivado HLS, do not support
this from within the tool, but require an FPGA support design (for example, refer
to [SSH*15]). We add input and output arguments for the streams to be externalized
to the function definition and specify their type as AXI4-Stream (AXI4S). In this
way, we obtain a high-performance interface to the FPGA fabric for each data
connection and do not need to make extensive modifications to the actual accelerator
source code. Table 7.2 shows evaluation results of the hardware synthesis from
Vivado HLS, which give a rough approximation of the resource requirements of
the design. Indeed, after externalizing the top four largest buffers for results and
Right-Hand Side (RHS), the design can be fit onto the chip. Table 7.3 lists the
Post Place and Route (PPnR) results after integrating the modified accelerator into
the described FPGA support system and shows that the multigrid solver can be
implemented on a Kintex 7 while achieving a maximum clock frequency of over
200 MHz. We have evaluated the PPnR hardware results on the Kintex 7 FPGA to
measure the performance in terms of how many clock cycles it takes it takes to
process a 4096 x 4096 grid of floating point values. In combination with the clock
frequency of the design, this yields an accurate measurement of the performance.
Contrasting to a software solution, the pipelining principle also applies here, thus,
it is not necessary to wait until the result is ready, but we can start processing a new
grid, as soon as all of the input values of the previous grid have been consumed.

Table 7.2 Vivado HLS

) N Resource | On-chip |External | Available
resource estimates for the

multigrid solver design FF 256368 | 106311 | 407600
comparing on-chip and LUT 880314 | 177379 | 203800
external buffering BRAM 11812 323 445
DSP48 442 442 840
Table 7.3 PPnR resource LUT |FFs DSPs | BRAMs | Slices | Eye (MHz)
requirements of the complete
105951 | 135442 | 460 |808 39147 |202.34

multigrid solver design
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Table 7.4 Comparison of the

Target Latency (ms) | Throughput (Vps
performance of the multigrid g y (ms) ghput (Vps)

solver on different hardware Kintex 7 | 83.1 12.3

targets Inteli7 | 223.1 4.5

Table 7.5 HLS synthesis FPGA |LUT |FFs |DSPs |BRAMS |F,.. (MHz)
estimates for implementation K

of the multigrid solver using Kintex 7 | 140 143 | 111 124 232.0
double precision arithmetic Virtex 7 | 73|29 33 53 2294

Values are given as percentage of available resource type

Data streaming also allows us to hide the communication time with a host that
supplies the input data completely, as current high-speed serial interconnects, such
as Peripheral Component Interconnect Express (PCle) and others, can achieve data
rates that exceed the throughput of the accelerator by far.

In order to compare the hardware accelerator to state-of-the-art approaches, we
have used the DSL ExaSlang [SKH™ 14] to generate highly optimized C++ code for
execution on a single machine. The evaluation was done on a single core of an
Intel i7-3770, which is clocked at 3.40 GHz and features L2 and L3 cache sizes of
1 MB, respectively 8 MB. For the CPU, AVX vectorization was enabled. Table 7.4
lists the performance results in terms of latency in milliseconds for processing a
single iteration of the V-cycle and the throughput in terms of how many iterations
of the V-cycle can be processed per second ([Vps]), on average. It is also worth
mentioning that it is irrelevant to the performance of the accelerator, whether the
input data uses only single-precision floating point or is implemented for double-
precision input data. Although the chosen mid-range Kintex 7 FPGA cannot provide
the necessary amount of logic and memory resources, switching to a larger FPGA,
such as a member of the Virtex 7 family, here an XC7VX485T, can easily solve this
issue. To underline this, we have changed the data type in the source code for HL.S
of the multigrid solver from single to double precision floating point arithmetic, for
which the estimated resource requirements are listed in Table 7.5.

Conclusions

In this case study, we have presented an approach to map descriptions of multigrid
algorithms to hardware designs for execution on FPGAs by using C-based High-
Level Synthesis. We have verified our approach by synthesizing a multigrid-based
solver for Poisson’s equation for a Kintex 7 FPGA and comparing it to an Intel
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i7 CPU. The evaluation numbers show that employing FPGAs in High-Performance
Computing (HPC) is a promising approach to increase computing power, while, at
the same, to reduce the energy footprint of clusters.

7.4 Summary

In this chapter, we have provided an overview of the internals of Vivado HLS,
as well as how its features can be used to specify hardware accelerators and
optimize the synthesis results. Due to its versatility, Vivado HLS is suitable for many
different application domains. We have shown two detailed examples in the form
of case studies, where the first has illustrated the development of database query
accelerators and the second has shown how MRA may be accelerated using HLS. In
addition to providing highly efficient solutions, we moreover want to draw attention
to the high productivity that is enabled using Vivado HLS, as for both solutions, the
required lines of code are far less than for hand-crafted RTL solutions. Despite of
all of these benefits it must also be mentioned that developing hardware accelerators
using Vivado HLS requires a high degree of familiarity with RTL design and may
still impose a steep learning curve for engineers with little to no prior FPGA design
experience.
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Chapter 8
Source-to-Source Optimization for HLS

Jason Cong, Muhuan Huang, Peichen Pan, Yuxin Wang, and Peng Zhang

This chapter describes the source code optimization techniques and automation
tools for FPGA design with high-level synthesis (HLS) design flow. HLS has lifted
the design abstraction from RTL to C/C++, but in practice extensive source code
rewriting is often required to achieve a good design using HLS—especially when
the design space is too large to determine the proper design options in advance.
In addition, this code rewriting requires not only the knowledge of hardware
microarchitecture design, but also familiarity with the coding style for the high-
level synthesis tools. Automatic source-to-source transformation techniques have
been applied in software compilation and optimization for a long time. They can
also greatly benefit the FPGA accelerator design in a high-level synthesis design
flow. In general, source-to-source optimization for FPGA will be much more
complex and challenging than that for CPU software because of the much larger
design space in microarchitecture choices combined with temporal/spatial resource
allocation. The goal of source-to-source transformation is to reduce or eliminate the
design abstraction gap between software/algorithm development and existing HLS
design flows. This will enable the fully automated FPGA design flows for software
developers, which is especially important for deploying FPGAs in data centers, so
that many software developers can efficiently use FPGAs with minimal effort for
acceleration.
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8.1 Motivations

As described in Chap. 2, high-level synthesis or behavioral synthesis can generate
the RTL description from a high-level programming language such as C/C++. The
automated algorithms are applied to determine and optimize the cycle-accurate
behavior of the instruction-level operations like multipliers/adders and fine-grained
controls such as branches and loops. These algorithms include operation scheduling,
resource allocation, and binding. There are also design directives or pragmas
provided by most of the HLS tools to give users the freedom to control and
optimize the process of these three algorithms, and the ability to perform front-end
preprocessing. However, extensive code rewriting on the programming language
level is still required to achieve a good overall hardware design. We will start with
an example FPGA design of a MPEG video decoder, as shown in Fig.8.1. The
decoder contains six submodules, and each of them can be described as a function
in C/C++. We can implement each submodule using HLS efficiently, but there are
many system-level decisions to make in order to achieve an overall good design
using the limited resources in a specified FPGA platform. The following are some
examples of system-level decisions.

* Scheduling of the submodules: How to change the execution order for paral-
lelism and data locality? How to choose pipeline versus sequential execution,
the portion of the system to pipeline, and the data granularity for the pipeline?

* Resource trade-offs between the submodules: Which design option should
be selected for each submodule (each option has different performance/area
results)? And what is the number of parallel duplications for each submodule?

* Storage allocation for data: For each array, whether to implement on-chip or off-
chip? What is the minimal size for the memories after folding, and the address
transformation for memory folding?

for (m = 0; m < N; m++){ [ 1Q ] :{ ° ]

Parser(l — B, A);
for(i=0;i<6;i++) {
1Q(A — D); IT(D — E);

}

MC(B — C);
Recon(C,E — O)
Filter(C, E — 0}

Fig. 8.1 Motivational example for system-level design
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* Access efficiency for data: What are the bank number and the partition patterns
in memory partitioning for on-chip access parallelism? How to determine
prefetching buffers and address sequence optimization of the off-chip memory
access?

These system-level decisions and optimizations will significantly impact the
system implementation result, but they are not fully automated by the state-of-
the-art HLS tools. Most of these choices are related to the low-level hardware
design knowledge. Lacking such knowledge, it is a big challenge for software
engineers to design for FPGA even with the state-of-art HLS tools. This system-
level design challenge becomes more significant when the system scale is large,
and even hardware engineers are not able to determine the best choices before
the implementation. Therefore, the design abstraction of the source-to-source
optimization is required to be higher than traditional HLS to increase the efficiency
in design space exploration.

In fact, module-level design space exploration is also nontrivial. For example,
the IDCT algorithm can be simply described as a matrix multiplication form in
Fig. 8.2a, where in and out are input and output image blocks, and c is the transform
coefficient matrix. Different microarchitectures may finally result in different design
trade-offs in the implementations of the same functionality. Figure 8.2b—d show the
simple pipelined versions with different execution orders of the for-loop iterations
in the source code. Case (b) has an iterative data dependence on the accumulation
of the partial sum c[y, x], so it cannot be fully pipelined and has less throughput

b out_t[y,x]

a
for (y=0; y<8;y++)
for (x = 0; x<8; x++)
for (t=0; t < 8; t++)
out[y,x]+=in[y,t]*c[t,x];

clt,x] out_t[y,x]
in[y,t]
e c[t,0..7] out_t[y,0..7]
infyt]

Fig. 8.2 Microarchitecture options for IDCT. (a) Original code of IDCT. (b) Single pipeline along
t. (¢) Single pipeline along x. (d) Single pipeline along y. (e) Parallel version of (c). (f) Parallel
version of (d)
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T B— ® for (t=0; t<8; t++) © for (t=0; t<8; t++)
for (x=0; x<8; x++) for (y=0; y<8;y++) for (y=0; y<8;y++)
for (t=0; t<8; t++) for (x=0; x<8; x++) for (x=0; x<8; x++) {
out[y,x]+=in[y,t]*c[t,x]; out[y,x]+=in[y,t]*c[t,x]; #pragma HLS pipeline

#pragma HLS unroll
out[y,x]+=in[y,t]*c[kt];

}
d
for (t=0; t<8; t++) € data_type out_t[8][8];
for (y=0; y<8;y++) for (t=0; t<8; t++)
for (x=0; x<8; x++) { for (y=0; y<8;y++) {
#pragma HLS pipeline data_type in_t = *in;

#pragma HLS unroll for (x=0; x<8; x++) {
#pragma HLS partition out dim=2 factor=8 #pragma HLS pipeline
#pragma HLS partition ¢ dim=2 factor=8 #pragma HLS unroll
out[y,x]+=in[y,t]*c[k t]; #pragma HLS partition out_t dim=2 factor=8
} #pragma HLS partition ¢ dim=2 factor=8
out_t[y,x]+=in_t*c[k,t];
if (t==7) *out = out_t[y,x];
}
}

Fig. 8.3 Code rewrite for the implementation of Fig. 8.2e. (a) Original code. (b) Execution order
change. (¢) Micro-architecture pragmas. (d) Memory partitioning. (e) Data reuse and interface
handling

than cases (c) and (d). But after the accumulation, case (b) does not need a SRAM
buffer to store the partial sum. Cases (c) and (d) can both achieve full pipelining
with an initial interval of one cycle. Considering that the image to be decoded is fed
in through streaming, case (d) will need an additional buffer compared to case (c)
in order to store the input data for reuse in the calculations that follow; but this also
decouples the execution of upstream modules. We can then parallelize the designs
to obtain cases (e) and (f). At the cost of the input buffer, case (f) does not need to
partition the memory of c. In general, it is hard for software engineers to explore all
these microarchitecture design options in an efficient way.

With a preselected microarchitecture such as the one in Fig.8.2e in mind,
the HLS coding is still not trivial. First, the hardware execution order can be
represented by loop transformation as in Fig. 8.3b. Then, microarchitecture intention
are conveyed to the HLS tools by inserting pragmas in the correct position of the
source code—such as the pipelining and parallelism in Fig. 8.3c. However, in typical
cases, these pragmas themselves cannot guarantee the generation of a pipelined
or parallelized hardware in HLS. For example, to enable parallel accesses on the
arrays c¢ and out from duplicated multipliers and adders, these two arrays need to be
partitioned. HLS provides pragmas to implement the array partition, but decisions
on how to partition the array must be determined by designers, e.g., the selection of
array dimensions and number of banks. If the wrong partition pragma parameters
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are specified, the parallelization or pipelining optimizations may be degraded or
disabled. Figure 8.3d shows the additional array partitioning pragma required by
loop pipeline and parallelization. Until now, we could generate the core data path
with a parallelized pipeline structure, but it is not finished. Special care is also
required for the module interface. For example, input and output are supposed to
be FIFO channels. Therefore, not only does the access reference of these ports need
to be updated into a FIFO form, but also the access order of the read and write sides
for the FIFO channel must be matched (otherwise the system may be dead-locked).
Data read from input FIFO in will be reused in the successive loop x iterations,
so reuse buffer in_t is added before loop x. From Fig. 8.3a—e, we can see that
implementing a specific microarchitecture efficiently in HLS is not a straightforward
task.

In summary, the manual rewrite of source-level C/C++ code is still extensive
when using the state-of-art HLS tools in order to fully consider system-level
design trade-offs and optimizations, module-level microarchitecture refactoring,
and efficient implementation of specific microarchitectures. Therefore, source-to-
source optimization and automation is greatly needed to alleviate the design effort
and difficulty in these areas and lessen or eliminate the roadblocks for the software
designers, allowing them to use FPGA more easily and widely.

8.2 Merlin Compiler Overview

The Merlin Compiler is a source-to-source automation tool for FPGAs developed
by Falcon Computing Solutions (FCS). It takes the C/C++ program as input and
generates the optimized C/OpenCL program that can be used to generate the
executable system by its own implementation flow, or other commercial OpenCL
implementation tools like Xilinx SDAccel and Altera OpenCL SDK. The Merlin
Compiler is dedicated to automating the code rewrite effort on all three aspects pre-
viously described, and providing an easy-to-use and efficient FPGA programming
environment for software developers.

8.2.1 Overall Design Flow

The Merlin Compiler is targeted at enabling software developers to work on
FPGAs with a fully automated compilation flow—not only with push-button
implementation but also with intelligent optimizations. Compared to the existing
FPGA design tools, it provides:

(a) Push-button compilation flow mapping of general C/C++ programs into full
executable system designs
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C/C++ with pragmas (like OpenMP)
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Fig. 8.4 Merlin Compiler overall flow

(b) Automated source-to-source code transformation for micro-architecture opti-
mizations for different granularities, including both system and module levels.

(c) Capability to map the same input code to different platforms from different
vendors with corresponding optimizations and coding styles.

(d) Integrated design environment containing system evaluation and debugging at
different design abstraction layers.

The overall design flow can be summarized as shown in Fig. 8.4. The input to
the design flow is the C/C++ program written by the software designers. A small
set of pragmas is defined by the Merlin Compiler to enable users to specify the
high-level design intention for the way they want the compiler to generate the
design in FPGA. These pragmas are similar to the OpenMP pragmas used in parallel
programming in multi-core CPUs, which are simple to understand and easy to use.
For example, a user can specify a specific for-loop to be parallelized, and then the
process of parallelizing the loop and all the hardware considerations to implement
the parallelism efficiently will be handled by the source-to-source compiler.

The HLS synthesizable code is generated by the Merlin Compiler after applying
the optimizations for the specified FPGA platforms. Then this generated code can
be fed into the OpenCL implementation flows such as Xilinx SDAccel and Altera
OpenCL SDK to generate the optimized design directly. The Merlin Compiler
also generates the necessary scripts for these implementation tools. Additionally, it
provides a built-in system backend and verification functionality to support a wider
range of hardware platforms.

Figure 8.5 shows the source-to-source optimization flow. The input source code
is first parsed by a C/C++ frontend infrastructure, and an abstract syntax tree (AST)
is generated; this provides the interface for the following program analysis and code
transformation. In the analysis stage, loop structure and array access information is
parsed and recorded; in the modeling stage, a graph-based intermediate representa-
tion is established to hide the details for coarse-grained analysis and transformation.
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Fig. 8.6 Hardware and software architecture

After multiple optimization stages, the SW/HW interface is generated and finally
wrapped into the OpenCL format.

Verification and debugging are always very crucial in a development environ-
ment. The Merlin Compiler integrates the automated verification in different design
abstraction layers. First, the optimized C program before OpenCL generation is ver-
ified with the input C program in CPU execution. OpenCL is then executed by CPU
emulation, and then RTL generated by HLS is verified via C+RTL co-simulation.
Following this, the on-board hardware execution is performed. The execution in all
these levels is invoked automatically via the testing scripts generated by the Merlin
Compiler, and the comparison benchmark is established in a uniform way.

8.2.2 Hardware and Software Architecture

HLS tools only generates the RTL for the kernel modules. To build a complete
executable system, there are several integration tasks for an OpenCL backend. These
tasks include: peripheral IP integration and interconnection, bus device address
map generation, driver generation, and OpenCL runtime for task queuing and
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scheduling. Figure 8.6 shows the hardware and software architecture for the Merlin
Compiler. The Merlin Compiler contains a built-in OpenCL backend, which enables
the portability of the designs between different FPGA device vendors. A CPU is
connected to the FPGA card memory (DDR) via PCle interface. And all kernel
logics in the FPGA are connected via on-chip bus (typically AXI bus) to the shared
on-chip and off-chip memories.

In the software architecture, a full stack of five layers is generated automatically.
The bottom layer is the Linux kernel service to talk with PCle hardware directly.
This layer is typically platform-dependent according to the PCle slot configuration
of the server and the PCle IP used in FPGA. The 10 transfer driver is the layer
that hides the platform information from OpenCL runtime. The low-level operation
sequences are wrapped into standard single or burst data/control transfer functions
with the common interfaces for different platforms. The I/O transfer driver is similar
to the hardware abstraction layer (HAL) in the Xilinx SDAccel Device Support
Archive (DSA) flow. OpenCL runtime layer mainly deals with task scheduling and
buffer management at execution time. Although the OpenCL APIs are standardized,
the implementation of the APIs is typically vendor-dependent.

The Merlin accelerator wrapper layer defines a set of function interfaces on the
top of OpenCL APIs. This layer is internally adopted in the Merlin Compiler to
wrap the detailed OpenCL APIs into pure software-interface library calls, where
all the hardware details will be fully virtualized from the designers who use this
library. In addition, it enables the common FPGA accelerators, generated once by
the Merlin Compiler, to be re-integrated and reused across many applications under
any pure software development environment easily and seamlessly. The Merlin
accelerator wrapper layer also provides the possibility and flexibility to support the
implementation backend tools not based on OpenCL. By separating the software
stack into these layers, the portability and reusability of each layer is maximized.

8.2.3 Execution Model

The Merlin Compiler takes C/C++ as the input language to specify the whole design,
and pragmas are used to pass the necessary information to the compiler to generate
efficient system design, including both software and hardware. A pragma-based
approach provides the interoperability for different C/C++ based design tools.

A simple and flexible execution model is adopted in the Merlin Compiler from
the perspective of software programmers. The Merlin Compiler has a host/acceler-
ator execution model that targets a typical CPU+FPGA platform. The main thread
starts on CPU, and the computation-intensive part is offloaded to the accelerators
in FPGA. FPGA accelerator is specified as a function call. Figure 8.7 gives an
example code. By default, this function is running in a blocking way in a single
thread execution mode, which means the CPU thread will wait for the accelerator
function to finish before continuing execution, just like a normal function call in
CPU.
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The Merlin Compiler execution model is also compatible with other popular
multithread execution environments such as OpenMP [Opel5b] and OpenACC
[Opel5a], where each acceleration function is executed in the context of one thread
in the CPU program. So in this way, the Merlin Compiler allows the flexible
dynamic task scheduling between FPGA and CPU tasks, such as parallel CPU and
FPGA execution, and parallel FPGA acceleration threads. When multiple FPGA
acceleration threads are issued in the host program, they will share the FPGA device
in different temporal intervals.

A runtime manager, as shown in Fig. 8.8, provided by the Merlin Compiler tool
chain, allows the sharing of FPGA resources among different processes or threads in
the CPU+FPGA node. The runtime manager performs a series of scheduling tasks
to make the access to FPGA accelerator transparent to the programmers, including
FPGA access authorization, FPGA access request queuing, priority management,
task distribution among multiple FPGAs, and exception handling.

The Merlin Compiler assumes the distributed memory model used for the
host/accelerator execution model. Both CPU and FPGA have their own memory
space and, when accessed by FPGA accelerators, need to be transferred back and
forth via PCle connection. The data to be transferred is determined by the arguments
of the accelerator function as shown in Fig. 8.9. There are three data transfer modes
which correspond to destinations in FPGA: kernel registers, on-chip memory and
off-chip memory. Scalar variables or expressions will be passed to the FPGA
kernel directly. For arrays, the regions being accessed by the FPGA kernel will be
transferred to off-chip memory by default, and these data will then be read back to
the FPGA chip during the execution of the kernel. Data can also be streamed to the
on-chip buffer for the kernel to use directly. A coarse-grained pipeline pragma at the
top level of the acceleration function can enable this kind of data stream from host
to FPGA kernels.

8.2.4 Programming Model

The Merlin Compiler provides a high-level abstraction of the optimizations of
the microarchitecture of the accelerators. Programmers only need to focus on
two high-level concepts in design optimization: parallelization and pipelining. By

Fig. 8.7 Defining an host() {
accelerator in host program ..
for i=0;i<...;itt)
{
#pragma ACCEL task
kernel(a, b, c, d); // a function to accelerate
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#ipragma omp parallel
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Fig. 8.8 Execution model in a multithread, multi-FPGA environment
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Fig. 8.9 Data communication between CPU and FPGA

considering the granularity of the optimizations as well, we have the four quadrants
shown in Fig. 8.10. These four quadrants are related to four well-known concepts
in software development: (1) Coarse-grained parallelism corresponds to task-level
parallelism, e.g., parallel threads running at multi-core CPU. (2) Coarse-grained
pipeline is related to dataflow streaming, where tasks are executed in parallel, driven
by the availability of input data and vacancy of output buffer. (3) Fine-grained
parallelism is similar to the concept of single-instruction-multiple-data (SIMD),
where hardware operators and data-paths are duplicated to perform the operations
of consecutive data elements. (4) Fine-grained pipeline corresponds to instruction
pipelining, a basic microarchitecture technique adopted in the design of CPUs,
where the execution of multiple instructions can be partially overlapped.

Each of the four quadrants has various microarchitecture-related details in
FPGA accelerator design. For example, in coarse-grained parallelism, distributing
tasks into parallel computation units is not trivial; and memory coalescing plays
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* Task distribution

* Channel depth resizing

Memory coalescing E i * Channel buffer minimization
Coarse-grained parallelism Coarse-grained pipeline
(Task parallelism) (Dataflow streaming)
Fine-grained parallelism Fine-grained pipeline
(SIMD) (Instruction-level parallelism)

. On-chip memory partitioning
i * Dependency removing
i * Data reuse

* Loop unrolling
*  Memory reshaping/coalescing
* Reduction optimization

Fig. 8.10 Four quadrants of optimizations

a significant role in improving the off-chip bandwidth efficiency. In the Merlin
Compiler programming model, those hardware details are hidden and abstracted
into these four quadrants, and source-to-source automation will implement the
corresponding optimizations efficiently.

The Merlin Compiler only relies on the following four simple pragmas from
users to specify their intention on the FPGA acceleration design.

#pragma ACCEL task

#pragma ACCEL pipeline

#pragma ACCEL parallel [factor=N]
#pragma ACCEL auto

The task pragma defines the function to be accelerated, which specifies the
interface between software and hardware in the design. By inserting pipeline
and parallel pragmas in the different locations of the program, the high-level
intention of the four optimization quadrants is conveyed to the Merlin Compiler.
And finally, the auto pragma allows the design be optimized in a fully automated
way, where programmers even do not need to provide the high-level pipeline
and parallel pragmas. In this case, the loop transformation will be invoked to
find a good code structure, and in the meantime, an optimized scheme to apply
pipelining/parallelization on the code structure is also explored automatically. The
position of the auto pragma in the source code determines the scope of automatic
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host_main() {

for (i=0;i<...;itt)
{
#pragma ACCEL task
kernel(a, b, ¢, d); // SW/HW interface
}
}
void kernel(int *a, int *b, int *c, int d)
{
for(i=0;i<N;itt) { // coarse-grained parallelism
#pragma ACCEL parallel factor=4
for (j =0; j < M; j++) { // task-level pipelining
#pragma ACCEL pipeline
for (k =0; k <M; k++) { // fine-grained parallel/pipeline
#pragma ACCEL pipeline_parallel factor=3
c[...] =al...]*b[...]+d+...3
}
Loopl: for (...) { ... }
Sub_func2(...);

H

Fig. 8.11 Example code for Merlin Compiler

void kernel(int *a, int *b, int *c, int d)

void kernel(int *a, int *b, int *c, int d) {
{ for(i=0;i<N;it+) |
#pragma ACCEL auto #pragma ACCEL parallel factor=4
for (i=0;i<N;it++) | for (j =0; j <M; j++) {
for (k=0; k < M; k++) { for (k=10; k < M; k++) {
for (j =0; j < M; j++) { E> #pragma ACCEL pipeline
cl...] = al...]*b[...]+d+...; ¢l...] = al...]*bl...]+d+...;
} }
Loopl: for (...) { ... } Loopl: for (...) { ... }
Sub_func2(...); Sub_func2(...);
HE LI
} }

Fig. 8.12 Fully automatic optimizations

optimization. The pipeline and parallel pragma can also be used in the
auto scope to give hints to the compiler (Figs. 8.11 and 8.12).
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8.3 System Optimization and Automation

The Merlin Compiler provides the abstraction of the four quadrants for hardware
design optimizations. This section introduces some details of the optimizations
performed in the source-to-source automation flow.

8.3.1 Fine-Grained Pipelining and Parallelization

Fine-grained source-to-source loop optimizations are applied at instruction-level
when pipeline pragmas are inserted in the innermost loop. Fine-grained pipelining
enables the pipelined execution of the instructions in the loop iteration. Initiation
interval (II) can measure the throughput of the pipeline, which is a fixed clock cycle
period required between the issues of the two consecutive loop iterations [CJLZ09].
It is highly affected by the computation resources, memory port limitation, intra-
loop iteration dependency and inter-loop iteration dependency. An example of
fine-grained loop pipelining is shown in Fig.8.13b. Fine-grained parallelization
allows simultaneous execution of the instructions in continuous loop iterations. The

a Iter b
k 5 IterO ¢.I it
ck=0 fopof  —rnocio------ nitiation
clk=1 [op1 clk=0 [opo| terl. e _2___Tinterva|
clk=2 [op2]| Iter clk=1 |op1| fop0| T
clk=3 op0 clk=2 |op2| Jop1| |opO
clk=4 opl clk=3 op2| |opl
clk=5 op2 ops
Iter;;ion number =N Iteration number =N
Resource = 3 operators Resource = 3 operators
Latency =3N Latency = N+2
clk=0 Opo Opo Opo clk=0 ODO 0p0 Opo Iter3 lterd Iter5
clk=1 lop1] |op1] [op1 clk=1 |opl||opl| [opl]| [opO||opO| [opO
clk=2 [op2| |op2| |op2 clk=2 |op2| |op2| |op2| [opl]|[opl| |opl
clk=3 op2||op2| |op2
Parallel factor=3
Iteration number = N Parallel factor=3, Iteration number = N
Resource = 9 operators Resource = 9 operators
Latency = 3% [_N)'ST Latencv = I—N}3 1+2

Fig. 8.13 Fine-grained loop pipelining and parallelization: (a) original execution sequence, (b)
pipelined sequence, (c) parallelized sequence, (d) pipelined sequence after parallelization
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number of parallelized loop iterations is defined by a user-given parallel factor. The
source-to-source transformation duplicates the computation resources to enable the
parallelized execution. An example of fine-grained loop parallelization is shown
in Fig. 8.13c. Given a parallel factor 3, three continuous loop iterations execute in
parallel.

The features of pipelining the parallelization can be combined together, which
is called fine-grained pipeline-parallelization. As shown in Fig.8.13d, the loop
iteration is first duplicated for parallelized execution, and each duplication has a
pipeline at the instruction level.

Comparing these three optimizations in Fig. 8.13b—d, the fine-grained pipeline is
more area-efficient than fine-grained parallelization, but fine-grained parallelization
can reduce more latency—especially when the parallel factor is large. When there
are enough available resources and high performance is required, fine-grained
pipeline-parallelization can be a good choice since it combines the advantages of
both optimizations.

Fine-grained pipelining and parallelization have similar requirements on data
access and computation parallelism. There are three major issues that can impact
parallelism in the innermost loop: loop-carried data dependency, memory port
limitation, and small loop trip count.

Loop-carried dependency limits the freedom of operations in scheduling. Assum-
ing that such a dependency exists between opl in iteration i and op0 in iteration
i 4+ 1 in Fig. 8.13a, all of the three kinds of fine-grained loop optimizations cannot
be applied, as iteration i + 1 must execute after iteration i.

Ideally, if memory port number is not limited, all the data elements required in an
execution of the loop iteration can be accessed in one clock cycle. However typical
block RAMs in FPGAs have a limited number of ports to feed data to the highly
parallelized execution units. Access conflict may happen when multiple accesses to
one memory bank occur simultaneously.

Even when there is no loop-carried dependency and access conflict, a small loop
trip count can reduce the benefits gained from using fine-grained pipelining/par-
allelization, and it sometimes has a negative effect on the design. If the iteration
number is N = 2, the latency of the original design in Fig.8.13b is 6 and the
latency after fine-grained pipelining is 4. There is only a 2-clock-cycle benefit from
pipelining, but it will generate a large amount of control logic, registers or even
RAM memories. A trade-off must be introduced under this circumstance.

For loop-carried data dependence, we can apply loop transformation to move
the dependence to the outer loops. For memory port limitation, automated memory
partitioning is very helpful (discussed later in this section). For a small loop trip
count, loop flatten can be applied to merge the nested loop into a flattened one.

One important technique in fine-grained pipelining and parallelization is memory
partitioning because it improves memory bandwidth by allocating the array into
several non-overlapping banks. Each bank is implemented with a separate memory
block so that simultaneous accesses to different parts of the data elements of the
same array can be realized. In the case shown in Fig. 8.14a, if the on-chip memory
has only one port, fetching all the data elements from array “a” takes five cycles in
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a
for (i=0; i <M; i++)
for (j =05 j <N; j++)
c_out[i][j] = a[i][jl+ali] [j-1]+a[i-T][j]+a[i+1][j]+a[i][j+1];

b
for (i=0;i<M; it++)
for (j =05 j <N; j++)
c_out[i][j] = a[i][jl+a[i][j-1]+a[i-1][j]+a[i+1][jl+a[i] [j+1];

Bank0 Bankl Bank2 Bank3 Bank4

Fig. 8.14 Example for memory partitioning: (a) original code (b) ideal bank mapping of data
elements for access parallelism

a loop iteration. But if the data elements can be accessed from five different banks,
as shown in Fig. 8.14b, five data elements can be accessed in only one cycle.

State-of-the-art high-level synthesis tools, such as Xilinx Vivado HLS (see
Chap. 7), provide the capability to perform memory partitioning, but this requires
users to determine the detailed parameters, such as the partitioning scheme (block
or cyclic), the target partitioning dimension of the array, and the number of banks
to use. All of these factors are hard to set for a programmer without much HLS
experience.

The source-to-source optimization flow will analyze the access pattern of the
loop iteration. The partitioning parameters are determined automatically by access
conflict analysis during compiling time. Different memory partitioning schemes
can be used, such as cyclic partitioning, block partitioning, and block-cyclic
partitioning. We depict these in Fig. 8.15b—d, respectively [WZCC12], where each
square denotes a data element in the array.

In addition to memory partitioning, other optimization strategies for performance
improvement, such as loop fusion and loop permutation, will be introduced in
Sect. 8.3.4.

8.3.2 Coarse-Grained Pipelining

When we add the pipeline pragmas at outer loops, the coarse-grained pipeline is
enabled in the source-to-source optimization flow. The hardware mechanism and
implementation details of the coarse-grained pipelines are different from those of
fine-grained pipelines.

Coarse-grained pipelining enables the pipelined execution of tasks in an outer
loop. Coarse-grained code segments (called pipeline nodes) within a common outer
loop are pipelined, which means these segments are running in parallel at the
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Fig. 8.15 Memory partitioning schemes: (a) original data, (b) cyclic partitioning, (¢) block
partitioning, (d) block-cyclic partitioning [WLC14]

same or successive iterations of the outer loop. These pipeline nodes can be for-
loops, function calls, basic blocks and several adjacent statements in the outer
loop. In contrast to the fine-grained pipeline, the latency of the code segment
is normally larger than fine-grained instruction and cannot be determined easily
during the compilation time. In some cases, special hardware is required to syn-
chronize the execution of the pipelining nodes and more complex microarchitecture
consideration is required—such as pipelining stage assignment, channel depth
balancing, and buffer size optimization. Coarse-grained pipelining can be applied in
multiple loops in a loop nest, and in this case, a hierarchical coarse-grained pipeline
is implemented.

As shown in Fig. 8.16a, the statements in the loop are packed into two tasks: taskO
receives off-chip data and taskl performs computation. The pipeline is executed
in task-level as shown in Fig.8.16b. Similar to fine-grained loop pipelining, the
throughput of the pipeline can be measured by the initiation interval. Figure 8.16c
gives an example of the hierarchical coarse-grained pipelining.

Task-level pipelining is implemented in some modern HLS tools, such as
Vivado HLS (see Chap.7). It provides a dataflow pipelining option to allow the
parallelized execution of a sequence of the tasks in a pipelined way. However, it has
many limitations when applying to the for-loops, such as the requirement of single
producer and single consumer for the channel data.

Our flow will automatically partition a set of consecutive statements into multiple
tasks according to both the intrinsic structure of the loop and the dependency graph.
An existing loop nest or a function call in the loop can be recognized as a task,
or grouped with other instructions in a task if strong feedback data dependency
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memcepy(c_buf , ¢, M*M*4)

for (k=0; k <M; k++) { Coarse-grained pipelining
#pragma ACCEL pipeline
memepy(a_buf[0], a[kl, (M*(M-1)+1)*4) } tasko Iter0
memepy(b_buf[0], b|M*k], M*4)
for (i =0; i < M; i++) k=0 [tasko| 'ter0
for (j =0; j <M; j++) { taskl k=1 [taskl| [taskO
¢_buf[i][j] += a_buf[M*i]*b_buf]j]; k=2 taskl
} k=3
memepy(e, ¢_buf, M*M*4)
a b
memcepy(c_buf , ¢, M*M*4)
for (k= 0; k < M; k++) { Coarse-grained pipelining
#pragma ACCEL pipeline StageO Stagel
memcpy(a_buf[0], a[k], (M*(M-1)+1)* 4) } task0
memepy(b_buf[0], b[M*k], M*4) task0 taskl
for (i =0; i < M; i++)
for (j =0; [ <M:j++) { _Fine-grained pipelining| taskl Double buffers:
1 #pragma ACCEL pipeline I a2, bit h.a bu} A
' ¢_bufli][j] += a_buf[M*i|*b_bufljl; | =i
,-= ) £ & bufiM74™D buflll; b_buf_in, b_buf_out
H
memepy(e, ¢_buf, M*M*4)
c d

Fig. 8.16 Example (matrix multiplication) for coarse-grained pipeline: (a) task partitioning, (b)
coarse-grained pipelining in task-level, (¢) coarse-grained pipelining with fine-grained pipelining
in a task, (d) double buffer in the data channel

exists between instructions. According to task-level dependency analysis, tasks are
scheduled into different pipeline stages. Data channels between two stages are
generated to ensure the correct data transfer.

A data channel between two adjacent pipeline stages can be implemented in two
ways: double buffer or data streaming (see Chap. 7). In double-buffer (or so-called
ping-pong buffer), the array is buffered in two RAM memories for both producer
and consumer, as shown in Fig. 8.16d. This method is used in traditional software
pipelines and ensures that the whole package of elements is transferred; however,
sometimes it is too conservative and memory-resource consuming. Our flow applies
accurate access range analysis based on the polyhedral model [PoulQ] to reduce
the buffer size. Bandwidth and storage resource are saved without transferring and
storing the unnecessary data.

An alternative way to implement the data channel is data streaming, where
the data element is directly transferred without using any double-sized RAM
resource for storage. It requires the data producing and consuming relationship to
be sequential. Compared to double buffer, although it saves the storage resources,
it cannot handle the case when a data producing and consuming relationship is
not purely sequential, or the access pattern is unpredictable during compiling time.
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Our flow will choose a manner for implementing the data channel according to the
characteristic of the data transfer pattern.

8.3.3 Coarse-Grained Parallelization

Like task-level parallelism vs. instruction-level parallelism, coarse-grained paral-
lelism has different implementation details compared to fine-grained parallelism. In
fine-grained parallelization, parallel low-level operations generally have the fixed
and small latency in terms of the number of cycles, so the synchronized execution
model is applied among all the parallel computation units. And this brings two-
fold benefits: (1) the overhead of task scheduling and dispatching is largely saved,
and (2) the synchronized data access pattern can improve the efficiency of the data
access to on-chip and off-chip memories.

However, at the coarse-grained level, in general it is not explicitly necessary
to synchronize the execution of individual computation units using HLS, because
(1) this synchronization is complex and costly to implement, especially when the
number of parallelized units is large; (2) this synchronization degrades the overall
performance because of less overall utilization of the hardware, especially when the
execution time varies among the tasks; (3) coarse-grained parallel units typically
have parallel shared (off-chip) memory accesses, and these accesses are intrinsically
asynchronous in the shared bus; (4) intended synchronization inside a kernel (such
as a coding style in CUDA and OpenCL) can be converted into an equivalent form
with separated loops in HLS code, where the separating point in HLS represents the
synchronization implicitly.

Figure 8.17 demonstrates the microarchitecture of the coarse-grained parallelism.
In this case, we assume function foo has internal for-loop and subfunction calls, so
coarse-grained parallelization is applied. Hardware units (tasks) of function foo
are duplicated into a fixed number according to the resource utilization in FPGA.
The execution of each kernel unit is driven by the iteration token from the task
dispatcher. The centralized task dispatcher deals with the execution control related
to the coarse-grained for-loop with the parallel pragmas. If for-loop does not end,
the dispatcher will check the status of the task units and find an available one that

Fig. 8.17 Coarse-grained R
parallelism Task dispatcher
void kernel(int *a, int *b, int *c) for (i=0;i<N; i++)

i

for (i=0;i <N;i++) {
#pragma ACCEL parallel factor=8
foo(a, b, ¢):

}
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is idle or has finished the previous task. Then the dispatcher sends the current loop
iteration number as a token to the available task unit, and the unit starts execution.
After the execution is finished, the task unit returns to the idle status and waits for
the next token from the dispatcher.

An efficient coarse-grained parallelization implementation requires a good par-
titioning of the tasks—making the task instances as independent as possible. The
Merlin Compiler will detect the dependency and add constraint logics in the task
dispatcher to maintain the precedence relations, which may result in low utilization.
The basic approaches to improving the parallelism include selecting the correct loop
nest and loop level to parallelize, and performing loop transformation to exploit
parallel loops. Accesses to the shared on-chip memory among the task units are
parallelized if the compiler can find a feasible memory partitioning scheme to isolate
the accesses within each task unit. Accesses to the shared off-chip memory are, in
general, directly parallelized if there is no data dependency. The access ports from
all the parallel units to AXI bus can be either in parallel or bundled into one port
according to the FPGA resource utilization and DDR bandwidth utilization.

8.3.4 Automated Optimizations in the Merlin Compiler

In addition to the four major optimizations triggered by explicit pragmas, the
Merlin Compiler also contains various implicit optimizations which are performed
implicitly along with the pragmas to help improve the results of the pipeline and
parallelization.

Off-Chip Memory Optimizations Off-chip memory bandwidth is one of the key
bottlenecks for system performance. The Merlin Compiler does not provide specific
pragmas for off-chip memory efficiency. The off-chip optimizations are triggered
by pipeline and parallel pragmas, and the implementation details are hidden from
the tool users.

Memory Burst Generation To better utilize the bandwidth of off-chip memory
bandwidth, data transfer is separated into address and data transactions as shown in

addri datal addrl datal '—>

single access

addr [ datal I datal I data2 I ]—)

burst access

o

Fig. 8.18 Simplified off-chip memory access model
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Fig.8.18. There is a latency required between these two transactions, which is the
major overhead in off-chip memory performance. Depending on the platform, the
latency can be as high as several tens of cycles. A special data transfer mode (burst
mode) allows sharing one address transaction among multiple data transactions, but
its limitation is that the addresses of the burst data must be continuous. To improve
the off-chip memory access efficiency in HLS code, the address of the array access
needs to be continuous and the burst length needs to be long enough. The Merlin
Compiler detects the possible continuous off-chip memory accesses and generates
the local buffers for the burst

Memory Coalescing is another technique for improving the utilization of the off-
chip memory bandwidth. As the kernel clock frequency is typically lower than the
DDR interface frequency, a wide memory word can be accessed in each kernel clock
cycle. Memory coalescing combines general data types (such as 32-bit integer and
64-bit double precision floating-point) into a large memory word (such as 256-bit or
512-bit), and accesses the off-chip memory using the large data bitwidth. Multiple
data with general data type can be accessed in one cycle. To enable the automated
memory coalescing, the address of the accessed data is required to be continuous as
well.

Data Reuse is a widely used technique—not just in software program optimization
and hardware design for FPGA. On-chip memory (or cache) is used to store the data
temporarily to avoid the repeated accesses from off-chip memory. In HLS, there is a
larger design space of data reuse optimization because FPGAs have thousands of on-
chip memories which can be used to generate the data reuse buffers in a customized
way. More details about data reuse automation can be found in [PZSC13, CZZ12].

Data Prefetching is also a common technique which overlaps the data transfer
with the computation in the kernel. When the computation part is running at a
certain data set, the communication part is fetching the data for the next data
set. A double-buffer is automatically inserted to enable the parallelism between
computation and communication. In source-to-source optimizations for HLS, data
prefetching is performed automatically when the coarse-grained pipeline is applied.
The data prefetching process is just an additional pipeline stage in the coarse-grained
pipeline generation.

Loop and Data Transformations Loop and data transformations are crucial
techniques in compiler optimizations for CPU and GPUs. Most of these techniques
are directly applicable to HLS for FPGA as well, such as parallelism exploiting
and data locality improvement. Due to the characteristics of FPGAs, there are
also several additional techniques dedicatedly required in the source-to-source
optimization for HLS. Loop and data transformation is triggered in the Merlin
Compiler using auto pragmas. The Merlin Compiler incorporates various loop
and data transformation techniques, and this section demonstrates some basic and
widely applicable ones with examples.
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Loop Interchange (or loop permutation) exchanges the order of loops in a loop
nest, e.g., moving an innermost for-loop to an outer position in the loop nest. The
result of the loop interchange is that the execution order of the instances of the loop
body computation is changed. In general, loop interchange is beneficial, not only
in enhancing fine-grained parallelism as in this case, but also in many different
aspects, such as improving coarse-grained parallelism, enabling burst memory
access, exploiting data reuse, reducing streaming buffer size, etc.

Loop Fusion merges two consecutive loops or loop nests into one. Loop fusion and
its inverse, transformation distribution, are very useful transformations—not only
for CPU program optimization but also for HLS. By changing the loop structure
in the imperfectly nested loops, these transformations can achieve various purposes
in the optimization, such as parallelism exploiting and data locality. In many cases,
they are also used as a preprocessing transformation to form the regular full nested
loops for other useful loop transformations such as loop interchange or loop tiling.

Loop Tiling is a very useful loop transformation which partitions the loop iteration
space into small chunks or blocks. By performing the iterations chunk by chunk,
the data locality is achieved because the data accessed in a chunk are typically
neighboring data in different array dimensions. Loop tiling is very helpful in
exploiting data reuse with a small reuse buffer. The tiling sizes are the configurable
parameters in loop tiling which need to be selected carefully for a good trade-off
between the performance improvement and resource utilization.

Data Layout Transformation changes the addresses (indices) of the data elements
stored in the array. Data layout transformation can also achieve data locality by
putting the data accessed by adjacent loop iterations in the adjacent locations in
the array. The transformation is used in CPU program optimization to improve the
cache performance. And in HLS, it can also help to reduce the on-chip buffer size
and increase memory access efficiency.

8.3.5 Design Space Exploration

Design space exploration will be triggered at the code scope where the auto
pragma is inserted. In the Merlin Compiler, the design space includes (1) the loop
and data transformation options, and (2) the pipeline and parallel pragmas and
their arguments. Exploring different design alternatives helps programmers find
the best design point that achieves the highest performance at the lowest cost.
However, manually exploring all these alternatives is very time-consuming. Thus,
it is desirable to perform such a design space exploration by source-to-source
automation at compile time.

The design space of module section and replication can be explored automati-
cally using the techniques in [CHL*12] and [CHZ14]. Based on the research, each
module has several design options with different trade-offs between performance
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Fig. 8.19 Framework for automated module selection and replication

and area utilization. And these modules can be further replicated for better
performance. The system design space exploration problem is to find a proper design
option and number of replications for each module so that the system performance
can be maximized with the given resource (Fig. 8.19).

In the Merlin Compiler, module duplication can be used to model the fine-grained
and coarse-grained parallelization, and module selection can be used to model other
design parameters such as loop transformation, and whether to apply pipelining.
The module selection and duplication algorithm is applied in different loops in
a bottom-up hierarchical way. At a certain level of loop nest, the Pareto-optimal
results of current loop implementations are used as module selection options for the
exploration at the upper loop levels.

The module selection and replication problem is formulated into a mathematical
form. When the design space is huge, the integer linear programming (ILP) usually
takes a very long time to solve the problem. Therefore, an iterative algorithm is
applied to solve the problem: in each refinement iteration, the compiler first searches
for the current system bottleneck, then, among all the possible ways to improve the
system, the one that can improve the system with minimal cost will be inserted into
the result set.

8.4 Case Study: Logistic Regression

The Merlin Compiler has been used successfully to accelerate many real-world
applications. In this section we show how the compiler can significantly accelerate
logistic regression using FPGAs.

Logistic regression [Bis06] is a method of choice for building predictive models
for many complex pattern-matching and classification problems. It is used widely in
such diverse areas as medical and social sciences. It is also one of the most popular
machine learning techniques. In its binomial form, logistic regression seeks to find a
model, represented as a vector w of weights, such that for a given input data x, where
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x is a vector of features, the following linear predictor can be used to determine if x
belongs to a class or not (p = 0 means x is in the class):

1 if wx>0
p:
0 if wx<O

What we are given is a (training) set (xo, yo0), (X1, 1), - -+, (Xa—1, Yu—1), Where y,
is the binary label for input data x, indicating whether it belongs to the class or not.
Logistic regression tries to find a w of good prediction accuracy by minimizing the
following loss/error function:

1
= 2 Oulog(h(wx) + (1 = y) log(1 — h(wx)) . where h(@) = |~ _,
t
The optimization problem is solved using gradient descent over the training set,
starting with an initial weight, iteratively adding the gradient to the current weight
until the stopping criteria are met. For a given weight w, the gradient is calculated
using the following formula:

> (h(wx) = yi) x;

Figure 8.20 shows the pseudocode to find the gradient (vector) for the multi-
class logistic regression problem, where the input data are mapped to one of several
classes:

for (c = 0; c < NUM CHUNKS; c++)
[
// Linear combination of weights and features
for (1 = 0; i < FEATURE SIZE; i++)
for (j = 0; j < CHUNK_SIZE; j++)
for (k = 0; k < LABEL SIZE; k++)
resultl[j]1[k] += wlk]l[i1*x[§]1[1i]1;
// Nonlinearization using the logistic function h()
for (j = 0; j < CHUNK_SIZE; j++)
for (k = 0; k < LABEL SIZE; k++)
result2[j]l[k] = hiresultl[j][k]):
// Differentiation with labels for residuals
for (j = 0; j < CHUNK SIZE; j+t)
for (k = 0; k < LABEL SIZE; k++)
result3[j] (k] = result2([jl(k] - v[j]l[k]:
// Linear combination of residuals and features
for (1 =0; i < FEATURE SIZE; it++)
for (j = 0; j < CHUNK SIZE; j++)
for (k = 0; k < LABEL SIZE; k++)
gradient([j] [k] += result3([j](kl*x[3][i]:

Fig. 8.20 Pseudocode for gradient calculation
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The main loop of gradient calculation consists of four loop nests, corresponding
to the four operations in the gradient formula. The four loop nests are dependent as
the output of one loop feeds to the next. The first step of the compiler is to break
the dependences so that the loop nests can be run concurrently on hardware. This is
accomplished with the coarse-grained pipelining feature that tries to isolate the loop
nests by properly inserting buffers so that different loop nests compute for different
chunks of training data.

Within each loop nest, the compiler applies multiple optimizations to improve
its latency. Taking the first loop as an example, the compiler will exploit data
parallelism by calculating resultl concurrently for all labels, namely unrolling
the k loop. In order to overcome the port limit (at most two ports for each on-chip
memory on FPGAs), the compiler will also automatically partition array resultl
along the k dimension. Next, the compiler tries to pipeline the remaining i and j
loops by overlapping the successive iterations of the parallelized loop body. The
final hardware architecture generated by the compiler is shown in Fig. 8.21.

There are a few other automatic optimizations done by the compiler for this
design, such as off-chip data access coalescing and burst inference. The optimized
design, when implemented on a mid-range Kintex7 device from Xilinx, can achieve
14x speedup over a single threaded CPU implementation for a decimal digit
recognition problem.

In another experiment, we built a classification model with 784 features and
50 labels using 60k training samples. We tried different levels of source-to-source
optimizations and observed different speedups as shown in Table 8.1. “solution1”
with 1.5% speedup, is generated with minimal optimizations; “solution2” with 37x
speedup is generated with fine-grained pipelining and parallelization; “solution3”

off-chip training data
Linear combination

!
—— L
result1[0][0]=..., result1[0][1]=..., ...
%—-— % result1[1][0]=..., result1[1][1]=..., ...

Nonlinearization
(2" loop)

]

Differentiation
(3™ loop)

==

Linear combination
(4 loop)

Fig. 8.21 Hardware architecture of gradient calculation
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Table 8.1 Performance FPGA

impacts of different CPU | Solutionl | Solution2 | Solution3
optimizations
1.0 |15 37.0 108.0

with 108 speedup is generated by enabling coarse-grained pipelining in addition
to fine-grained pipelining and parallelization.

8.5 Related Work

This section discusses work that is relevant to our source-to-source transformation
tool described in this chapter. We divide that work into six categories. The first one
discusses the source-code level transformation with HLS, while the remaining five
categories cover the source code transformation techniques on top of HLS.

Code Transformation with High-Level Synthesis (HLS) Code transformation is
used extensively as part of high-level synthesis to improve the quality of results. An
example of early work is the SPARK system [GGDNO04b], which provides a number
of source-level pre-synthesis transformations that include common sub-expression
elimination (CSE), copy propagation, dead code elimination, and loop-invariant
code motion, along with more coarse-level code restructuring transformations
such as loop unrolling, together with their HLS engine. The AutoPilot HLS tool
[ZFJ*08], which was the precursor of the widely used Vivado HLS tool from Xilinx
[CLNT11], performs a number of code transformations. These include not only
the traditional optimizations, such as constant propagation, dead code elimination,
and common subexpression elimination that avoid functional redundancy, but also
strength reductions that replace expensive operations with simpler low-cost opera-
tions, transformations such as if-conversion and tree height reduction that explicitly
expose fine-grain operator-level parallelism, and coarse-grain code restructuring by
loop transformations such as loop unrolling, loop flattening, loop fusion, etc. It also
provides a number of analysis capabilities, such as bitwidth analysis, alias analysis,
and dependence analysis that help to reduce the data widths and analyze the data
and control dependences. These transformations are either performed locally within
a function body or applied inter-procedurally across the function call hierarchy as
LLVM [LLV15] passes prior to the invoking of their HLS synthesis engine. These
optimizations in Vivado HLS are discussed in details in Sect. 7.2.2.

Loop Transformations Loop transformations have been studied over several
decades for compiler optimization on general-purpose processors (e.g., [WL91,
Fea92]). Recent work applies loop transformations for exposing more parallelisms
and/or enabling more efficient on-chip memory reuse in HLS (e.g., [CZZ12,
PZSC13]). For example, the work in [CZZ12] analytically models the on-chip buffer
size and off-chip bandwidth after affine loop transformation, loop fusion/distribution
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and code motion, and then uses a branch-and-bound based exploration together with
a knapsack-based reuse optimization to search for optimal solutions for on-chip
memory allocation of the imperfectly nested loops. The work in [PZSC13] leverages
the power and expressiveness of the polyhedral compilation model to develop a
multi-objective optimization system to guide loop transformations to consider the
trade-off of on-chip buffer usage versus off-chip communications. Both works take
the user C code as inputs and generate the transformed C code with intended
optimization for the Vivado HLS tool for synthesis to Xilinx FPGAs. Some other
loop transformation techniques are addressed in Sect. 2.4.

Memory Partitions Memory partitioning for HLS was formulated and investi-
gated systematically in [CJLZ11, CJLZ09] with the goal of enabling the maximum
throughput for pipelining. It was originally developed for one-dimensional arrays,
and later on extended to circular reuse buffers [WZCC12] and multidimensional
arrays [WLZT13]. A unified theory was proposed in [WLC14] which covers all
these cases efficiently based on the polyhedral formulation. Recent work on memory
partitioning includes the use of lattice-based partitioning [CG15] and separation-
logic based analysis [WBC14, WFY ™ 15]. The latter can support some dynamic
memory allocation, such as heaps.

Source Code Generation As the polyhedral model is more often used in the
source-level transformation for HLS, a rather unique work focused on automated
code generation developed from a polyhedral framework for the resource usage
optimization [ZLC*13]. In particular, it focuses on CLooG, a widely used generic
and scalable code generator [Bas04] for the polyhedral framework. It extensively
studied the impact of alternative loop-bound computation techniques, and ended
with significant resource savings when compared to the direct use of CL0ooG.

Inter-Module Optimization Although modern HLS tools can perform module-
level synthesis efficiently, considerable effort is needed to compose these modules
efficiently to achieve system-level optimization. A heuristic method was used
in [HWBRO09] for maximal replication of all the stateless actors (modules) for
throughput maximization; it then iteratively fuses the actors that do not affect the
throughput. A more recent work combines module selection/replication and buffer
size optimization and minimizes the area cost for both logic and memory under
the required throughput constraint [CHZ14]. In another direction, the open-source
LEAP (Latency-insensitive Environment for Application Programming) framework
[YFAE14] provides a flexible way to compose different modules in multiple FPGAs
asynchronously via coherent scratchpads. Inter-module optimization is also applied
in the other HLS tools, and the related information can be found in Sects.7.2.2
and 12.4.

Design Space Exploration (DSE) Another dimension of source- level transforma-
tion and optimization is generating various configurations to feed into a HLS system
for design space exploration. The PICO system provides a “spacewalker” to traverse
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different design point generation of efficient compute kernels for the underlying
VLIW architecture [AKO8]. Another example is the work in [SW10, SW12],
which reduces the complexity of the DSE problem by clustering, i.e., grouping the
components (array, loop, and functions) of original source code into smaller clusters
and then running the DSE for each cluster. A more recent work explores the structure
of the design space by analyzing the dependencies between loops and arrays, and
uses such knowledge to reduce the dimensions of the design space [PSKK15].

This list of related works is not meant to be comprehensive. The intention is to
highlight some of the most relevant studies as a basis for further reading.

8.6 Conclusion

The current status of high-level synthesis demonstrates the great need and oppor-
tunities for source-to-source transformation for automated compilation to FPGA.
As a pioneer contributor in this challenging area, the Merlin Compiler provides an
end-to-end compilation flow with a friendly programming environment for software
engineers. Comprehensive design automation and optimizations are performed
automatically in a source-to-source framework, and significant acceleration on
FPGA can be achieved without dealing with the hardware design details. We
expect that the Merlin Compiler will greatly facilitate the widespread deployment
of customized computing—especially in data centers with programmers who do not
have a detailed knowledge of FPGAs.
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Chapter 9
Bluespec SystemVerilog

Oriol Arcas-Abella and Nehir Sonmez

Bluespec SystemVerilog (BSV) is a rule-based language, where hardware
is described as object-oriented modules [Nik04]. Other high-level synthesis
approaches try to hide the complexity of hardware (clock cycles, data movement,
concurrency, etc.) under the appearance of a sequential and centralized execution.
Instead, BSV exposes it to the user as an intuitive high-level metaphor. However,
what it tries to hide are some of the tedious details of traditional hardware design:
synchronization signaling (ready/enable signals), poor typing systems, etc.

It is a challenging language and radically different than other hardware descrip-
tion paradigms, but once learned it can substantially improve the productivity,
reduce the errors through correctness by design, and achieve identical results to
hand-coded Verilog designs [ANS*14]. This language is a good candidate for
expert hardware designers with a background on Register-Transfer Level (RTL)
languages, such as Verilog or VHDL, for designers that have to develop critical
hardware components, or for keeping a very tight control over the performance and
the resources used.

The framework is available under a commercial license by Bluespec Inc., a Mas-
sachusetts-based spin-off from the MIT and the work by Professor Arvind.
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9.1 Guarded Atomic Rules

The computation model of BSV is based on Term-Rewriting Systems (TRS) [HAO0O].
This formalism has been successfully used to describe concurrent systems. A TRS
consists in a set of terms and a set of rewriting rules.

patys i p — expus

The rewriting rules have a pattern (pat;,s) to match terms, a condition (p) and an
expression (exp,s) to replace them with new values. Each iteration of the system,
all the rules with valid conditions that match one or more terms are executed.

A simple example of a TRS is the Euclidean Greatest Common Divisor (GCD)
algorithm:

GCD(a,b) if a>bAb#0 — GCD(a—b,b) (GCD Sub Rule)
GCD (a,b) if a<b — GCD(b,a) (GCD Swap Rule)

In this example there are two terms (a and b) and two rules (the subtraction
rule and the swapping rule). Both rules match the GCD (a, b) terms, the first one
replacing them with the new expression GCD (a — b,b) if a > b A b # 0. The
second rule swaps the terms if a < b.

In BSV, these rules are called atomic guarded rules, and the terms are the state of
the system, ie. hardware registers and memories. Each clock cycle, the rules whose
conditions are valid are executed or fired, updating the state of the hardware system.
The previous TRS example would be described as follows in BSV syntax:

Listing 9.1 BSV rules for GCD

rule gcd_subtract ( a >= b & b != 0 );
a <= a - b;
endrule

a <= b;
b <= a;
endrule

1
2
3
4
5 rule ged _swap ( a < b );
6
7
8

Similar elements to the TRS example are present in the BSV code: two rules,
with their conditions or guards, modifying the terms of the system. The syntax is
similar to Verilog, with opening and closing keywords for code blocks, and the right
arrow operator for register assignment.

The statements in the rules are applied sequentially. Software programmers will
note that the swapping rule is assigning the registers a and b simultaneously, which
is invalid in software routines. In BSV this is possible because the rules are atomic:
all the changes to the state are performed atomically, at the end of the rule. This
explains why the register a, which is updated in line 6, keeps its old value until the
end of the rule, and its old value can be read in line 7.
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9.2 Modules and Interfaces

The rules are enclosed in modules. Each module contains state elements, rules and
methods. The methods allow modules to input and output data to other modules.
Interfaces define the methods, allowing for different modules to have the same
interface, or set of methods.

This structure is based on the object oriented programming paradigm: modules
are objects, and their interfaces define the public methods that other objects can use.
The state elements are the internal state of the objects, and the rules are routines that
are fired under certain conditions. Popular software languages, such as C++ and
Java, have similar metaphors, and even hardware description languages like Verilog
and VHDL have similar structures.

The updated GCD example, within a module with methods, state elements and
an interface, would look like the following:

Listing 9.2 GCD example with interface and module definitions

interface GCD;
method Action start (int newa, int newb) ;
method int result;

endinterface

1
2
3
4
5
6 module mkGCD (GCD) ;

7 Reg# (int) a <- mkRegU;

8 Regh (int) b <- mkReg(0) ;

9

10 rule gcd_subtract ( a >= b & b != 0 );
1 a <= a - b;

12 endrule

13

14 rule gcd_swap ( a < b );

15 a <= b;

16 b <= a;

17 endrule

18

19 method Action start (int newa, int newb) if ( b == 0 );
20 a <= newa;

21 b <= newb;

22 endmethod

23

24 method int result if ( b == 0 );
25 return a;

26 endmethod

27 endmodule

The interface GCD describes two methods, one with two parameters (two integers
named newa and newb) with no returning value, and another method with no
parameters but returning an integer. The module mkGCD implements this interface.
By convention, BSV module names start with the prefix “mk”, meaning make
because they implement the interfaces.

The module contains two registers, a and b. These elements have an interface
or type (Reg# (int) ), and their functionality is implemented by a given module
(in this case, mkRegU, a register with undefined initial value, and mkReg (0), a
register with the initial value 0). The interface and module in this example, GCD and
mkGCD, will become available types and constructors for other modules exactly like
Reg and mkRegU:
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Listing 9.3 Example instantiation and use of the GCD module

GCD gcd <- mkGCD;

gcd.start (35, 7);
endrule

1
i rule calc_gcd;
"

The methods, defined by the interface, are implemented by the module. Each
method has parameters and/or a returning value. Methods that update the state of
the module are called actions, or action values if they also return a value. Methods
that do not update the state are simple methods. In this example, the start action
method updates the registers a and b. The result method, which does not update
any state elements, returns the value of the register a. Like rules, methods can have a
condition or guard. In the example it is defined right after the header of the methods,
and in both cases it is the condition b = 0 (the algorithm has finished).

9.3 Rule Scheduling and Implicit Guard Lifting

In the BSV programming paradigm, rules should be considered internally atomic
and externally sequential. The total set of rules of the hardware model should be
thought as sequentially ordered, as if every cycle only one rule was fired. That
would be extremely inefficient, losing all the parallel performance that characterizes
hardware. In practice, the compiler tries to fire all the possible rules every cycle. This
is called rule composition, and it is performed automatically.

There are three types of conditions to fire a rule: the explicit guard, the conflicts
with other rules, and the implicit guards. The explicit guard is defined by the user. In
case of potential conflict between rules, the concurrent execution of rules follows the
one rule at a time law: two rules are composable (can be fired in the same cycle) if
their conditions are valid and their parallel behavior is equivalent to their sequential
behavior. One side effect of this law is that reads are always scheduled before writes.

The third condition, the implicit rules, is caused by methods triggered inside
rules. For instance, BSV provides a rich set of First-In-First-Out (FIFO) buffers, or
queues, to communicate data between rules. Each FIFO has different capacities and
scheduling semantics, but three main methods: enqueue, read and dequeue. These
methods are guarded: for safety, it is not possible to read or dequeue an empty FIFO.
Likewise, it is not possible to enqueue to a full FIFO. If a module implements some
FIFO elements, a rule trying to enqueue or dequeue them will be affected by the
explicit guards of these methods. This is called implicit guard lifting: the guards of
the inner operations of a rule are “lifted”, or appended, to its explicit rule.

Listing 9.4 Implicit condition handling example with FIFOs
Reg# (int) input_value <- mkReg(0) ;

1
2 FIFO#(int) queue <- mkFIFO;

3 Reg# (int) output_value <- mkRegU;
4
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rule producer ( input_value > 0 );
queue.enq (input_value) ;
endrule

© N o w

9 rule consumer;

10 output_value <= queue.first();
1 queue.deq() ;

12 endrule

The rule producer has an explicit condition, input _value > 0 and the rule
producer apparently can be always fired.

EGproducgr = lnput_value >0

EG onsumer = true

However, the implicit conditions of the eng, first and deq methods are liffed
by the compiler when generating the final guard of the rules:

Gproducer = input_value >0 A —queue.full ()

Geonsumer = —queue.empty ()

This automatic management of implicit conditions allows the programmer to
abstract from tedious details, such as not trying to read data from an empty FIFO or
not reading the result of the GCD operation until the algorithm has finished.

9.4 Elaboration and Laziness

In addition to rules and state elements, modules can contain conditional, iterative
and recursive constructs. Inside rules, 1 f, case, for and while blocks allow
for conditional and iterative descriptions. These operations are unfold during
compilation and converted into hardware. For instance, the two branches of an 1 f
are unfolded into actual hardware circuits, but only one of them is active depending
on the condition. Likewise, all the iterations of a for loop are unrolled and executed
simultaneously.

The same constructs can be used outside the context of the rules. In this case, their
behavior defines not how the hardware works, but how it is constructed. Similar to
macros in C, which change the shape of the code, the BSV evaluates the module-
context constructs in a compilation stage called elaboration. For instance, a for
loop can replicate the effect of a rule.

Another characteristic of BSV is the laziness. This concept is inherited from
functional languages like Haskell, and allows to perform some operations even if
not all the type information is explicit, in a “lazy” manner. Java and C++ have
limited versions of lazy evaluation: polymorphic classes can operate with arbitrary
data types. BSV interfaces and modules can be polymorphic, but it is much more
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extended and many constructs can be defined in a lazy manner. The hash notation,
as in Bit# (32) or Vector# (32, Reg# (int) ), denotes a polymorphic type
and the inner types.

Listing 9.5 Elaboration with functional and lazy constructs

Vector# (32, Reg#(int)) vectorRegs <- replicateM(mkRegU) ;

1

2

3 function Bit#(n) incmsb(Bit(n) x) = x + x[valueOf (n)-1];
4

5 for ( Integer 1 = 0; 1 < 32; 1 =1 + 1 ) begin

6 rule inc_vector;

7 let a = incmsb (vectorRegs[i]);

8 vectorRegs[i] <= a;

9 endrule

e end

In this code there are examples of iterative elaboration and lazy evaluation. The
loop generates 32 rules that increase a vector of registers simultaneously. In addition
to loops, elaboration can be performed with conditional constructs (i.e. hardware
is generated selectively) or recursion (i.e. a module that instantiates itself). The
registers are increased using a polymorphic function, incmsb, which takes an
arbitrary-length bitstream and adds the value of its most significant bit.

9.5 Types and Typeclasses

Data types in BSV are based on primary types and data structures. Primary types
include scalar data types like booleans, integers and bit streams. As in software
languages, primary data types can be composed to form new data types. The C-like
typedef, struct, union and enum constructs can be used for that purpose.
More advanced data structures allow for field selection using pattern matching, like
tagged unions. In the following example, the primary Bool type is defined as an
enumeration with two values, and a standard IEEE double precision floating point
is defined as a structure with 3 fields:
Listing 9.6 Data type construction in BSV

1 typedef enum {True, False} Bool deriving(Bits, Eq);

2

3 typedef struct {

4 Bit# (1) sign;

5 Bit#(11) exp;
6
7

Bit#(52) mantissa;
} IEEE754_ FP deriving(Bits, Eq);

The deriving keyword specifies what typeclasses this type belongs to.
Typeclasses specify properties that their associated types must comply. For instance,
all the types that belong to the Bits fypeclass can be converted back and forth to a
bit stream, and the Eq fypeclass allows a data type to be used with the equal and not
equal operators (==, ! =). In the previous example, the Bool type can be converted



9 Bluespec System Verilog 171

to a 1-bit (Bit# (1)) value. The deriving command asks the compiler to auto-
matically generate this translation, but the user could manually implement the char-
acteristics required by the typeclasses (the conversion to bits, or the equal operator).

There are 15 standard typeclasses, among them Bits, Eq, Arith (the type must
be compatible with the typical arithmetic operations), Ord (comparison operators
like < or >), Bitwise (typical bitwise operations like and, or, or shift) or
BitExtend (the data type can be truncated or extended to match a given bit
stream). But the user can define its own typeclasses. This functionality allows the
programmer to impose characteristics to certain types. Such characteristic is useful
when working with unknown types. That is the case of polymorphic interfaces
and modules, like FIFOs, which can force the type argument to comply with
certain desired properties, such as being convertible to bits or supporting arithmetic
operations.

The required typeclasses in polymorphic modules are specified with the provisos
construct. This mechanism allows not only to specify typeclasses, but also to
perform some other advanced properties over the types.

Listing 9.7 Polymorphic interface and module with type provisos
interface GCD# (type t);

method Action start(t newa, t newb);

method t result;

endinterface

module mkGCD (GCD# (t))

® N o oA w N =

provisos (
Bits#(t, t_sz)
9 Arith#(t),
10 Add# (t_sz, unused, 32));

1 A
12 endmodule

In Verilog and VHDL, this operations are defined as generics and parameters.
In the previous example, the mkGCD module imposes several typeclasses over the
generic type t: it should be convertible to bits (resulting in a bit stream of size
t_sz), it should support arithmetic operations, and its size in bits should not be
greater than 32: using the special Add provisos, we imposed the property ¢_sz4x =
32, where x is a non-negative integer deduced by the compiler.

The language comes with a set of standard types, called the Standard Prelude
package. This library has dozens of types, from basic scalar types to FIFOs, vectors,
a finite state machine sublanguage, clock management functions or pseudo-random
number generators.

9.6 Compiling, Debugging and the Verilog Interface

The BSV compiler can generate C++ and SystemC code for simulation, and Verilog
code for hardware synthesis. This compilation process can be guided with attributes,
similar to C pragmas. These attributes are specially useful to give hints to the rule
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scheduler, for instance to give priority to a rule over another. BSV also supports
some debugging statements, inherited from SystemVerilog, like the $Sdisplay
printf-like command.

The Verilog interface is specially useful when interfacing already existing
hardware. In contrast to other languages, which can interface Verilog by default
(if the Verilog modules are adapted to the computation model), BSV supports
importing external Verilog modules through a well-defined interface. The Verilog
external ports are groped into methods. The enable and ready ports are hidden as
implicit conditions, which are taken into account when scheduling the rules.

9.7 Summary

Bluespec SystemVerilog is a rule-based language specifically targeted to hardware
design. The guarded atomic rules are intuitive metaphors for hardware, and the
language hides most of the tedious details such as the implicit conditions and
safety signaling. The functional laziness of BSV allows to fold the code in
succinct descriptions, and the advanced typing system (along with an exhaustive
standard library) raises the abstraction level and increases the productivity. The
static scheduling performed by the compiler and the strong type system guarantees
correctness by design, reducing the verification time.

It is a complex and singular language, and it may be challenging for new users.
But it provides a good balance between productivity and a very tight control over
the resulting hardware: BSV models can generate identical results, in terms of
performance and resource usage, to hand-coded Verilog designs, while keeping a
high level of abstraction [ANST14].
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Chapter 10
LegUp High-Level Synthesis

Andrew Canis, Jongsok Choi, Blair Fort, Bain Syrowik, Ruo Long Lian,
Yu Ting Chen, Hsuan Hsiao, Jeffrey Goeders, Stephen Brown,
and Jason Anderson

LegUp is a high-level synthesis (HLS) tool under active development at the
University of Toronto since 2011. The tool is on its fourth public release, is open
source and freely downloadable. LegUp has been the subject of over 15 publications
and has been downloaded by over 1500 groups from around the world. In this
section, we overview LegUp, its programming model, unique aspects of the tool
versus other HLS offerings, and conclude with a case study.

The input to LegUp is a C-language program, as well as constraints specified in
a Tcl file. LegUp is implemented as back-end passes of the open-source LLVM
compiler framework [LAO4]—the same framework used by Altera and Xilinx
for their OpenCL software development kit (SDK) and Vivado HLS products,
respectively. By default, -O3 optimizations are executed prior to HLS, including
dead-code elimination, constant propagation, loop unrolling, and others [HLC™15].
LegUp HLS then operates in one of two modes: (1) pure hardware or (2) hybrid. In
the former, the entire input program is synthesized to a hardware circuit, in Verilog
register-transfer level (RTL). In the latter, the program is synthesized to a hybrid
system comprising a processor and one or more hardware accelerators. In the hybrid
mode, a portion of the program runs in software on the processor and a portion is
executed in hardware. We elaborate on the hybrid flow further below.

The pure hardware flow of LegUp produces generic Verilog that is FPGA-vendor
agnostic. However, the performance models included in the LegUp distribution are
specifically for Altera FPGA families, and thus, better performance is to be expected
when the target platform is Altera. The hybrid flow, on the other hand, uses Altera-
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specific bus primitives to connect the processor with accelerators and thus, at present
it can only be used for Altera FPGAs.

With respect to C language support for HLS, LegUp supports pointers, structs,
loops, arrays, integer and floating point computations. Synthesis of recursive
functions is not supported, however, in the hybrid flow, such functions may run on
the processor. Likewise, LegUp requires that memory be statically allocated; there
is no automated synthesis of malloc/free.

10.1 Hybrid Flow

A unique feature of LegUp is the ability to generate hybrid systems incorporating a
general-purpose processor and one or more custom hardware accelerators. Hybrid
system generation requires no source code modification, only that the user specify
the functions to accelerate in the constraints Tc1 file. LegUp can target both MIPS
I and ARM Cortex-A9 processor architectures, and provides application profiling
for both of these architecture to help the programmer choose which function to
accelerate.

10.1.1 Hpybrid Flow Overview

The LegUp hybrid design flow is illustrated in Fig. 10.1. The designer starts with
a software implementation of the application in standard C code. At step 1, the
C program is compiled to a binary executable targeting a processor. At step 2,

int FIR(int ntaps, int sum) {
inti;

for (i=0; i < ntaps; i++) @ Processor
sum += h(i] * z[i]; =

return (sum); e
} e @
Program code

©) LegUp

Altered SW binary (calls HW accelerators)

Profiling Data:

Execution Cycles

'.::::: 0 @ High-level Power
BIRIEIE OO | e _
<> BiEIEIE Hardened program Cache Misses
it program segments to
DFPGananbﬂcu segments tarﬁi:‘rto

Fig. 10.1 Hybrid design flow with LegUp [CCAT13]
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the application runs on the processor and profiling information is collected. The
profiling data can be used to identify the critical sections of the program that can
benefit most from hardware acceleration. At step 3, the user designates which
functions should be synthesized into hardware accelerators. At step 4, LegUp’s
high-level synthesis engine is invoked to synthesize these functions into hardware
accelerators described in Verilog RTL. Next, in step 5, the C source is re-compiled
with the accelerated functions replaced by wrapper functions, which are used to
invoke the hardware accelerators. Lastly, the hybrid processor/accelerator system
executes on the FPGA in step 6.

10.1.2 MIPS Hybrid System Architecture

The MIPS I hybrid system is composed of the soft processor, an instruction cache, a
data cache, and one or more hardware accelerators. The accelerators are connected
directly to the data cache, ensuring data coherency with the processor. The system
also contains profiling hardware [AABC11] that collects data about the application
running on the processor. For each function in the program, the profiler collects the
number of instructions executed, the number of cycles due to instruction and data
stalls, and the total cycle count for the function. The user is presented with a table
showing this information, and can then decide which functions to accelerate.

10.1.3 ARM Hybrid System Architecture

Altera and Xilinx provide soft processors called Nios II and Microblaze, respec-
tively, which are implemented in the FPGA fabric. The performance of these
processors is limited and highly dependent on the FPGA family being used.
Recently, the FPGA vendors have incorporated hard processors tightly coupled with
the FPGA fabric. The current generation of low-cost SoC FPGA devices include
a hard dual-core ARM Cortex-A9 processor, while high-performance SoC FPGA
devices include a quad-core 64-bit ARM Cortex-AS53 processor.

The ARM-based hard processor system (HPS) on Altera’s SoC devices contains
the dual-core processor, a memory controller, a memory management unit, and
peripherals. Each processor has private L1 caches, and access to a shared L2 cache.
The hard processor system also allows FPGA peripherals to make cache-coherent
memory accesses.

The hard processor system also includes hardware performance monitoring units
for each processor. During compilation in step 1 of Fig. 10.1, the C program is
automatically instrumented with calls to profiling helper functions that maintain
event and cycle counts for each function. The profiling information is collected
while the application runs on the processor, and is displayed to the user once the
application has finished.
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10.1.4 Hybrid Flow Summary

The hybrid flow allows partitioning of a software program into both hardware accel-
erators and the remaining software. This is particularly beneficial for programs that
contain constructs such as recursion, system calls, and dynamic memory allocation
that cannot be synthesized into hardware; code containing these constructs can be
run on the processor.

10.2 Programming Model

LegUp, as with many HLS tools, exhibits syntactic variance in that the quality of
results produced depends on the style of the C input to the tool. A few rules of thumb
with respect to coding style are helpful to achieving a higher quality implementation.

Eliminating control flow: Loop pipelining, as described below, exploits par-
allelism by allowing loop iterations to overlap with one another during hardware
execution. LegUp HLS is only able to pipeline loops wherein the loop body is a
single basic block (i.e. it has no control flow). Avoiding if-else in the loop
body, and replacing such constructs with the C ternary operator (<conditions>
? <exprls : <expr2s>) is encouraged to allow loop pipelining to succeed.
Broadly speaking, eliminating control flow is useful as it simplifies the finite state
machine controller synthesized by LegUp.

Memory parallelism: The underlying memories in Altera and Xilinx FPGAs
are dual-ported, implying that at most two memory operators are permitted per
cycle. For memory-intensive code, this limitation may result in longer schedules
and worse performance. To mitigate this, LegUp generally locates each array in a
different memory, each of which can be accessed in parallel.'! Hence, partitioning
arrays into sub-arrays that are independently accessed in different parts of the code
may improve performance.

Strength reduction: Where possible, costly arithmetic instructions should be
replaced by lightweight, reduced precision, or logical operations. For example,
using fixed point instead of floating point will bring significant area and performance
benefits. Similarly, implementation of unsigned division with shift (where possible)
will offer better performance and area.

Unlike many HLS tools, LegUp uses no specialized datatypes, nor does it make
use of pragmas inserted in the code. The C program is unaugmented ANSI C.
Constraints are provided to LegUp through a Tc1 file. For example, the following
Tcl command is used to constrain the number of dividers in the hardware to one:

set resource constraint divide 1

'An exception to this is for cases wherein it cannot be statically determined which array is
pointed to.
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A constraints guide is available on the LegUp website, describing the dozens of
different Tc1 constraints supported by LegUp HLS.

10.3 LegUp Differentiators

Aside from the capability to automatically generate a hybrid processor/accelerator
system in a push-button manner, LegUp HLS has several features not commonly
found in HLS tools.

10.3.1 Pthreads and OpenMP Support

LegUp provides HLS support for Pthreads and OpenMP [CBA13], standard parallel
programming methodologies that software engineers are already likely familiar
with. Pthreads can be used to execute the same or different functions in parallel
by using pthread create and pthread join. With OpenMP, the user is
able to parallelize a section of code by simply using a pragma, omp parallel.
In LegUp, parallelism specified in software is automatically synthesized into
parallel hardware accelerators. Each software thread is automatically mapped into a
concurrent hardware module.

In multi-threaded programming, synchronization can be used to ensure that the
program executes correctly. To this end, LegUp provides support for two key thread
synchronization constructs, mutexes and barriers. Mutex and barrier variables in
software are replaced with hardware mutex and barrier modules, which connect to
parallel hardware modules to ensure atomicity and provide synchronization among
concurrent modules.

The use of Pthreads and OpenMP are supported both in the pure hardware
flow, as well as in the hybrid flow. In the pure hardware flow, the entire program,
both the sequential and the parallel segments of software, are synthesized to
hardware. The sequential module invokes multiple parallel modules, and retrieves
their return values (if any) when they have completed execution. In the hybrid
flow, which includes an embedded processor (soft MIPS or hard ARM) in the
system, parallel code segments are synthesized to concurrent hardware accelerators.
The remaining (sequential) portions of the program are executed in software on
the processor. The processor calls parallel accelerators and retrieves their return
values by using wrapper functions, which are automatically generated to replace
the original parallel functions in software. From software/hardware partitioning,
to compilation of software threads to hardware, to generation of the complete
system including interconnect, on-chip cache, and off-chip interface, all steps are
completely automatic in LegUp. This allows the user to easily create parallel
hardware and exploit the spatial parallelism available on an FPGA. It also enables
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Table 10.1 Pthreads/OpenMP support in LegUp

Pthreads functions Description

pthread_create(..) Invoke thread

pthread_join(..) Wait for thread to finish

pthread_exit(..) Exit from thread, can be used to return data

pthread_mutex_lock(..) Lock mutex

pthread_mutex_unlock(..) Unlock mutex

pthread_barrier_init(..) Initialize barrier

pthread_barrier_wait(..) Synchronize on barrier object

OpenMP pragmas Description

omp parallel Parallelize a section of code

omp parallel for Parallelize a for loop

omp master Parallel section executed by master thread
only

omp critical Specify a critical section

omp atomic Specify an atomic section

reduction(operation: var) Reduce a var with operation

OpenMP functions Description

omp_get_num_threads() Get number of threads

omp_get_thread_num() Get thread ID

design space exploration, where the user can simply vary the number of threads in
software, to increase/decrease parallelism in hardware with different area trade-offs.

Table 10.1 shows a list of Pthreads and OpenMP library functions which are
supported in LegUp. An input software program using any of the functions/pragmas
shown in the table can be used as is, requiring no manual code changes by the user.

10.3.2 Multi-Cycling

Multi-cycling is a well-known optimization technique in sequential circuit design,
wherein selected combinational paths are permitted to have delay larger than a
one clock period, for the purpose of raising the overall clock frequency of the
circuit. The optimization can be applied in cases when the result being computed
by a combinational sub-circuit (within a larger circuit) is not required in the
clock cycle immediately following the cycle in which the sub-circuit’s computation
commenced. Consider a circuit containing a combinational sub-circuit A with delay
15 ns, and other sub-circuits having delays less than or equal to 10 ns. If sub-circuit
A can be multi-cycled, the overall circuit can operate with a 10ns clock period;
otherwise, a 15 ns period must be used.
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From the HLS perspective, multi-cycling opportunities can be discovered in the
scheduling results, when an operation scheduled in cycle i produces an output that
is not consumed until cycle j, where j — i > 1. LegUp automatically discovers such
opportunities, avoids registering i on the next clock edge, and prints out multi-cycle
constraints for the Altera downstream tools, making them aware of the multi-cycle
paths (for proper timing analysis, and also for timing optimization).

Besides automatically identifying multi-cycle paths, LegUp incorporates the
capability to optimize schedules to create more multi-cycling opportunities, based
on profiling an application in software [HCS™15]. In this flow, an application
is first executed in software and the number of executions of each basic block
is ascertained. For infrequently executed basic blocks, their schedules are then
stretched to produce multi-cycled paths, ensuring the logic for such paths will not
reside on the overall critical path of the synthesized circuit.

10.3.3 Beta HLS Debugging

LegUp includes a debugger tool which allows a user to debug a circuit, implemented
on an FPGA, in the context of the original source code. When in-system debug
is enabled, LegUp will automatically insert debugging circuitry into the Verilog
RTL. This circuitry allows a debugger application, running on a workstation,
to connect to, control, and observe the HLS circuit. The debugger application,
shown in Fig. 10.2, is designed to look and behave like a software debugger,
and provides features such as single-stepping, breakpoints, and inspecting variable
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Fig. 10.2 Screenshot of the source-level debugger application
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values. The left pane provides the source-code, with currently executing instructions
highlighted, and the right pane contains the value of source-code variables. A Gantt
chartis included to illustrate the scheduling of the underlying LLVM IR instructions,
and the bottom pane lists the currently executing IR instructions. Presently, the
debugger tool is in “beta” and only works with the pure hardware flow of LegUp.

A key feature of the debugger is the Record and Replay mode of operation.
This allows the circuit to be run at-speed, while important signals are recorded into
memories within the FPGA. Once a breakpoint is hit, the debugger tool connects
to the FPGA, retrieves the execution trace from memory, and allows the user to
perform debugging using the recorded data. The user can step forward and back
through the recording, and inspect variables. The memories within the FPGA can
only store a portion of the entire ciruit execution; however, significant effort has
been spent on efficiently storing and compressing the execution trace to increase
the length of execution that can be captured, thus making it easier to locate the root
cause of a bug [GW14, GW15].

The debugger also features a C/RTL verification tool, which executes the C code
using gdb and simulates the Verilog RTL code using ModelSim, and reports any
discrepancies to the user [CBA14a].

10.3.4 Automated Bitwidth Minimization

Software programs utilize standard datatypes of predefined widths to represent
variables, regardless of whether or not all bits in the variable will be used. This is
acceptable for programs that are meant to be run on the processor where fixed-width
datapaths are present, but is wasteful in HLS-generated hardware designs where
datapaths can be customized to any arbitrary width. LegUp 4.0 includes a feature to
automatically minimize the width of datapaths based on compile-time information,
such as program constants and data dependencies between instructions [GA13]. The
automated bitwidth minimization feature can be turned on via a parameter in the
constraints Tc1 file.

In the automatic bitwidth minimization pass, a bitmask is associated with each
variable, denoting whether each bit in the variable is known (logic-0 or logic-1),
unknown, or a sign bit. The full width of the datapath can be shrunk to number of
unknown bits + 1 sign bit, and all other bits can be statically assigned to the correct
value. The bitmask of each variable is propagated through the control data-flow
graph (CDFG) of the program to update the bitmask of the result variable in any
instruction that uses the propagated variable as an operand. A series of forward and
backward propagations through the CDFG is performed until there are no changes
in any bitmasks, or until a specified number of iterations is reached. As an example,
assume there exists two variables of unknown 16-bit values, A and B, and consider
the C-language statement: Z = A & (B « 2). In this case, the two rightmost
bits of the intermediate result of (B « 2) are guaranteed to be logic-0, the two
rightmost bits of Z are guaranteed to be logic-0, and the two rightmost bits of A can
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safely be ignored. In addition to minimizing datapath size, the size of functional
units can also be minimized (i.e. if Z feeds into a multiplier, the two rightmost bits
of the product are guaranteed to be logic-0).

10.3.5 Loop Pipelining

Loop pipelining is a high-level synthesis scheduling technique that overlaps the
execution of loop iterations to achieve higher performance. We use this schedule to
generate a pipelined datapath in hardware for operations within the loop, increasing
parallelism and hardware utilization.

In many C applications, the majority of run time is spent executing critical loops.
Consequently, loop pipelining is crucial for generating a hardware architecture
with comparable performance to hand-designed RTL. Furthermore, complex loops
usually have resource constraints, typically caused by limited memory ports,
in combination with constraints imposed by cross-iteration dependencies. The
interaction between multiple constraints can pose a challenge for loop pipelining
scheduling algorithms, which, if not handled properly can lead to a loop pipeline
schedule that fails to achieve the best performance.

LegUp uses a novel loop pipelining scheduling algorithm with backtrack-
ing to handle complex loops with competing resource and dependency con-
straints [CBA14b]. This scheduler is based on the SDC scheduling formula-
tion [CZ06] allowing for a flexible range of user constraints. During schedul-
ing, LegUp will abandon any infeasible partial schedules and then backtrack by
attempting other possible scheduling combinations. Backtracking can lead to better
schedules than the prior greedy approach [ZL13] in cases where the priority ordering
prevents the discovery of a valid schedule in a single pass. LegUp also applies
algebraic transformations to the loop’s data dependency graph using operator
associativity to reduce the length of recurrences.

10.3.6 Multi-Pumping of DSP Units

Modern FPGAs contained hardened Digital Signal Processor (DSP) units that can be
used to realize multiply/accumulate functionality with higher speed and lower power
relative to implementing the same functionality with soft logic (look-up-tables and
flip-flops). The DSP units can typically operate very fast—in the 500+ MHz range—
which is 2x the clock speed of an average FPGA design. In LegUp, we exploit
this property by allowing the DSP units to be “multi-pumped” at 2x the system
clock frequency [CAB13]. In this flow, a single DSP unit can be used to perform 2
multiply operations in one system clock cycle, thereby mimicking the presence of
extra DSP units. This provides two benefits: (1) higher performance can be achieved
for a constrained number of DSP units, as the HLS scheduler is able to schedule
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more multiply operations across fewer cycles, and (2) fewer DSP units can be used
for a given level of performance, saving area.

10.4 Current Results

Across the releases of LegUp HLS, the quality of results produced has consistently
improved. To illustrate this, this section compares the quality of results produced
by the current version of LegUp against the first LegUp release. The comparison
uses 13 benchmarks, which include all 12 benchmarks from the CHStone high-level
synthesis benchmark suite [HTHT09] and Dhrystone [Wei84], a popular synthetic
benchmark. The target device is an Altera Cyclone II FPGA, as it was the only
device supported by LegUp 1.0. The study uses the pure hardware flow, and the
timing constraint is set to an aggressive target to achieve the highest possible clock
frequency.

Table 10.2 shows the geometric mean results for LegUp 1.0 compared to the
current 4.0 version. The area results are given in terms of number of Cyclone II LEs,
number of memory bits, and 9 x 9 multipliers, followed by performance metrics in
execution cycles, Fmax (MHz), and wall-clock time (jus). The last row presents the
ratio of the current LegUp geometric mean vs. LegUp 1.0.

The quality-of-results on all metrics are significantly improved since the first
LegUp release. On average, wall-clock time is improved by 48 %, cycle count by
38 %, FMax by 19 %, LEs by 41 %, memory bit usage by 15 %, and multipliers
by 8 %.

The majority of these improvements in circuit quality can be traced back to
the following changes: Firstly, scheduling of phi’? and branch instructions,
were handled differently such that they could be chained to other operations to
decrease the number of clock cycles. The circuit clock frequency was also improved
by removing the combinational loops that could occur in the binding step of
LegUp. Dual-port memories are now used instead of single-port memories, allowing
for greater instruction-level parallelism. In 2010, the jpeg benchmark from the
CHStone benchmark suite was updated to contain an approximately 50 % smaller

Table 10.2 LegUp 1.0 vs. current LegUp 4.0 geomean results (hardware-only
implementation)

LEs Mem bits | Multipliers | Cycles | Freq (MHz) | Time (us)

1.0 14,328 | 31,236 9.6 19,738 |73 272
Current | 8492 26,676 8.9 12,200 | 86 142
Ratio 0.59 0.85 0.92 0.62 1.19 0.52

2 An instruction in the LLVM intermediate representation which selects incoming values based on
the control flow (i.e. predecessor basic block).
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image, which sped up the benchmark. Experimentation with different clock period
constraints, which affects the scheduling of instructions, also led to greater geomean
performance across the CHStone benchmarks. Finally, data accessed by a single
function is put into localized memories inside the corresponding hardware module
as opposed to global memory. This improves performance due to increased memory
bandwidth. Also, small memories with the same data width are combined into
grouped memories to save area.

10.5 Case Study: Sobel Filter

In this section, we attempt to answer the questions: how close is LegUp-generated
hardware to hand-designed hardware? Or perhaps more importantly, can our
proposed methodology generate circuits that can meet realistic FPGA design
constraints?

To investigate these questions, we present a case study of a Sobel image filter.
This filter is typically used in edge detection, which is important for computer
vision applications. We will first describe the Sobel algorithm and present a
straight-forward C implementation. We then describe the hand-written hardware
implementation of the filter. Next, we provide an implementation using LegUp,
showing the transformations we made on the C code in order to match the
performance of the RTL implementation. For every implementation, we assumed
a 512 by 512 pixel image. We show that LegUp can produce a filter with a wall-
clock time within 2 % of the custom implementation, but with about 65 % more
circuit area. This case study illustrates the types of code transformations we must
currently apply for high-level synthesis to create a circuit of peak performance.
Some of these transformations are non-obvious to a software engineer, which we
hope will motivate future work.

10.5.1 Sobel Filter: ¢ Code vs. Hardware

The Sobel filter is performed by convolution, using a three pixel by three pixel
stencil window. This window shifts one pixel at a time from left to right across
the input image, and then shifts one pixel down and continues from the far left of
the image as shown in Fig. 10.3. At every position of the stencil, we calculate the
edge value of the middle pixel e, using the adjacent pixels labeled from a to i.
Two three by three gradient masks, Gx and Gy, are used to approximate the gradient
in both x and y directions at each pixel of the image using the eight neighbouring
pixels. The C source code for the Sobel filter is provided in Fig. 10.4. The outer two
loops ensure that we visit every pixel in the image, while ignoring image borders
(line 3). The stencil gradient calculation is performed on lines 4-11. The edge
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Fig. 10.3 Sobel stencil X X X X X X X X X X
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1 for (y = 0; y < HEIGHT; y++) {

2 for (x = 0; x < WIDTH; x++) {

3 if (not_in_bounds(x, y)) continue;

4 x_dir = 0; y_dir = 0;

5 for(xOffset = —1; xOffset <= 1; xOffset++) {

6 for(yOffset = —1; yOffset <= 1; yOffset++) {
7 pixel = input_image[y+yOffset][x+x0ffset];
8 x_dir += pixel Gx[1+xO0ffset][1+yOffset];
9 y_dir += pixel Gy[1+xOffset][1+yOffset];
10 }

11 }

12 output_image[y][x] = 255 — (bound(x_dir) + bound(y_dir));
13 }

14 }

Fig. 10.4 C code for Sobel filter

weight is calculated on line 12, where we bound the x and y directions to be from 0
to 255. Finally, we store the edge value in the output image.

A hand-coded RTL implementation of the Sobel Filter was provided by an
experienced hardware designer. The hardware design assumes that a “stream” of
image pixels are being fed into the hardware module at the rate of one pixel every
cycle. The hardware implementation stores the previous two rows of the image in
two shift registers, or line buffers. These line buffers can be efficiently implemented
in FPGA block RAMs. Using the two 512-pixel wide line buffers, the hardware can
retain the necessary neighbouring pixels for the stencil to operate, and update this
window of pixels as each new input pixel arrives every cycle.

The hardware has some additional control to wait until the line buffers are full
before the output edge data is marked as valid, and additional checks that set the
output to zero if we are on the border of the image. This hardware implementation
does not need an explicit FSM. To summarize, in steady state, this hardware pipeline
receives a new pixel every cycle and outputs an edge value every cycle, along with
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1 // line buffer shift registers

2 unsigned char prev_row[WIDTH] = {@};

3 int prev_row_index = 0;

4 unsigned char prev_prev_row[WIDTH] = {0@};
5 int prev_prev_row_index = 0;
6
7
8
9

// stencil buffer:
unsigned char stencil[3][3] = {0};

10 inline void receive_new_pixel(unsigned char pixel) {

12 // shift existing stencil to the left by one

13 stencil[@][0@] = stencil[@][1]; stencil[@][1] = stencil[@][2];
14 stencil[1][@] = stencil[1][1]; stencil[1][1] = stencil[1][2];
15 stencil[2][0] = stencil[2][1]; stencil[2][1] = stencil[2][2];
16

17 int prev_row_elem = prev_row[prev_row_index];

18

19 // grab next column (the rightmost column of the sliding stencil)
20 stencil[@][2] = prev_prev_row[prev_prev_row_index];

21 stencil[1][2] = prev_row_elem;

22 stencil[2][2] = pixel;

23

24 // shift in new pixel

25 prev_prev_row[prev_prev_row_index] = prev_row_elem;

26 prev_row[prev_row_index] = pixel;

27

28 // adjust shift register indices

29 prev_row_index++;

30 prev_prev_row_index++;

31

32 prev_row_index = (prev_row_index==WIDTH) ? @ : prev_row_index;
33 prev_prev_row_index = (prev_prev_row_index==WIDTH) ? © : prev_prev_row_index;
34}

Fig. 10.5 C code for the stencil buffer and line buffers synthesized with LegUp

an output valid bit. The first valid output pixel is after 521 clock cycles, after which
point an edge will be output on every cycle for the next 262,144 cycles (512 x 512).
The first 513 valid edge output values will be suppressed to zero because we are still
on the border of the image. Therefore, the custom RTL circuit has a total cycle count
of 262,665, which is 0.2 % worse than optimal, where optimal is finishing right after
the last pixel (after 262,144 cycles). The latency of 521 cycles is due to time spent
filling up the line buffers in the hardware before we can begin computation.

We now describe the LegUp synthesized circuit, starting from the original C code
in Fig. 10.4. By default, compiler optimizations built into LLVM will automatically
unroll the innermost 3x3 loop (lines 5-11) and constant propagate the gradient
values (lines 8-9). During constant propagation, the LLVM optimizations can detect
the zero in the middle of each gradient mask allowing us to ignore the middle
pixel during the iteration. Consequently, there are eight loads from the input image
required during each outer loop iteration (lines 1-14), one for each pixel adjacent to
the current pixel (line 7). The outer loop will iterate 262,144 (512 x 512) times. We
have nine total memory operations in the loop, eight loads (line 7) and one store (line
12). We found that LegUp schedules the unmodified code into nine clock cycles per
iteration, mainly due to the shared memory having only two ports and a latency of
two cycles. This circuit takes 2,866,207 cycles to execute.
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1 int sobel_opt(

2 unsigned char input_image[HEIGHT][WIDTH],

3 unsigned volatile char output_image[HEIGHT][WIDTH])

4 {

5 int i, errors = 0, x_offset =1, y_offset =—1, start = 0;

6 unsigned char pixel, edge_weight;

7 unsigned char input_image_ptr = (unsigned char ) input_image;

8 unsigned char output_image_ptr = (unsigned char ) output_image;
9

10 loop: for (i = @; i < (HEIGHT) (WIDTH); i++) {

11 pixel = input_image_ptr++;

12

13 receive_new_pixel(pixel);

14

15 int x_dir = @, y_dir = @, xOffset, yOffset;

16 for(yoffset =—1; yOffset <= 1; yOffset++) {

17 for(xOffset =—1; xOffset <= 1; xOffset++) {

18 x_dir += stencil[1l+yOffset][1+x0ffset] Gx [1+x0ffset][1+yOffset];
19 y_dir += stencil[1+yOffset][1+x0ffset] Gy [1+xO0ffset][1+yOffset];
20 }

21 }

22 edge_weight = 255 (bound(x_dir) + bound(y_dir));

23

24 // we only want to start calculating the value when

25 // the shift registers are full and the window is valid

26 int check = (i == 5122+2);

27 x_offset = (check) ? 1: x_offset;

28 y_offset = (check) ? 1: y_offset;

29 start = (!start) ? check : start;

30 int border = not_in_bounds(x_offset, y_offset) + !start;

31

32 output_image[y_offset][x_offset] = (border) ? @ : edge_weight;
33

34 x_offset++;

35 y_offset = (x_offset == WIDTH — 1) ? (y_offset + 1) : y_offset;
36 x_offset = (x_offset == WIDTH —1) ? —1 : x_offset;

37 }

38

39 return errors;

40 }

Fig. 10.6 Optimized C code for synthesized Sobel Filter with LegUp

10.5.2 Sobel Filter: Enhanced C Code

We can perform various transformations on the C code to improve the generated
hardware and bring its performance in line with the hand-coded hardware. The first
transformation we can make is to use a stencil and two line buffers holding the
previous two rows. The C code for this is given in Fig. 10.5, with the stencil stored
in a nine element two-dimensional array on line 8. We shift the stencil after each new
pixel arrives on lines 13—15, and shift new data into the stencil on lines 20-22. The
two line buffers are implemented on lines 25-33 using arrays: prev_prev_row
and prev_row. We have to manually keep track of an index to indicate where to
shift data into and out of the arrays, with the index rolling over to zero when reaching
the end of the array (lines 32-33). We can now calculate an edge value using only
the stencil buffer, without reading from memory eight times every loop iteration. We
also enable local memories, so that we are not constrained by the global memory
controller ports.
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Next, we need to enable loop pipelining, to overlap iterations of the outermost
loop of the algorithm. But first we must merge the two outer loops into one loop and
add a label “loop”. We also change the array accesses to use pointer dereferencing
to avoid unnecessary index calculations. Second, we must manually remove any
control flow in the loop body to allow loop pipelining because automatic if-
conversion is Beta functionality in LegUp. We do this by replacing any if statements
with the ternary operator, (<cond> ? <exprl> : <expr2>). We show the
new C code in Fig. 10.6, where the incoming pixel is read on line 11, the stencil and
line buffers are shifted on line 13, and the edge weight is calculated on lines 15-22.
We have added some new control variables, such as a check for when the stencil
has been filled (line 26), a calculation of the output image x and y indices (lines
27-28 and lines 34-36), whether the output is now valid (line 29), and an additional
check for whether we are on the image border (line 30). If we are on the border, we
output a zero, otherwise we output the edge weight (line 32). There is only one load
(line 11) and one store (line 25) in the loop body that go to the dual-ported shared
global memory controller. Therefore, we can pipeline the transformed loop with
an initiation interval of one. The circuit now finishes after 262,156 cycles, only 12
cycles worse than optimal. Although we do assume that the output image is already
initialized to zero for the very last row of the image (the bottom border). We also set
the LegUp clock period scheduling constraint as low as possible, to ensure a better
final circuit FMax.

Some of the C transformations we have just described would be unintuitive to
software developers, particularly using the line buffers and stencil to reduce memory
operations in the loop. The user would have to be familiar with the concept of a
pipeline initiation interval and the strategy of reducing memory contention in the
loop body. Also, the user would have to rewrite all control flow in the loop to use
the ternary operator.

We measured the results of the LegUp vs. hand RTL case study by targeting the
Stratix IV [Alt10b] FPGA (EP4SGX530KH40C2) on Altera’s DE4 board [Alt10a]
using Quartus II 13.1SP2 to obtain area and FMax metrics. Quartus timing
constraints were configured to optimize for the highest achievable clock frequency.
The results are summarized in Table 10.3, with the custom hardware implementation
shown in the first column side-by-side with the LegUp-synthesized results in the
second column. In the third column, we compute the ratio of the two results:
LegUp/Hand-RTL.

We found that after performing manual code transformations, LegUp produced
a circuit with a wall-clock time within 2 % of the hand-written hardware imple-
mentation. However, the synthesized circuit area was larger, consuming 64 % more
ALUTSs and 66 % more registers.

We observed a few reasons for this increase in area. First, we are using many
unnecessary additional registers due to the low LegUp clock period constraint,
which causes scheduling to not chain any operations. We needed the clock period
constraint to achieve an acceptable FMax but this indicates that our timing analysis
and estimation needs improvement. Also, the pipeline produced by LegUp is
needlessly complex and includes additional array indexing that did not exist in
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Table 10.3 Experimental results

Metric Hand-RTL LegUp LegUp/Hand-RTL
FMax (MHz) 191.46 187.13 0.98
Cycles 262,665 262,156 1.00
Time (ms) 1.37 1.40 1.02
ALUTs 495 813 1.64
Registers 382 635 1.66
Memory (bits) 6,299,616 6,299,616 1.00

the custom implementation. LegUp also generates a standard FSM when this
application does not need one. Generally, the custom hardware implementation is
very minimalistic and fits in a few short pages of Verilog (296 lines without com-
ments). In contrast, LegUp’s Verilog is 2238 lines and includes many unnecessary
operations from the LLVM intermediate representation, such as sign extensions and
memory indexing.

We expect that LegUp will perform well for hardware modules that are control-
heavy and fairly sequential. For hardware modules with pipelining, we will also
perform well, as long as the user can express the pipelining in a single C loop.
These could include video, media, and networking applications. LegUp, and all HL.S
tools, will struggle with highly optimized hardware designs with a known structure,
such as a fast Fourier transform butterfly architecture. Also, LegUp cannot generate
circuits that have exact cycle-accurate timing behaviour such as a bus controller.

10.6 Summary and Future Work

LegUp is a high-level synthesis tool that is under active development and currently
on its fourth public release. It can synthesize a C language program to a hardware
circuit, or alternately, to a hybrid system comprised of a processor and one or
more custom hardware accelerators. The unique aspects of LegUp relative to other
HLS offerings include support for the synthesis of software threads, bitwidth
optimizations, multi-cycling support, multi-pumping of DSP units, debugging, and
advanced loop pipelining.

Future work for the project includes support for streaming applications, which
are composed of feed-forward pipelined kernels interconnected by FIFO buffers.
We also are exploring synthesis of memory architectures to permit greater memory-
access parallelism in the Pthreads/OpenMP flow. Another research thrust is the high-
level synthesis of approximate circuits, honoring precision requirements specified
by the user. More about the LegUp project can be found on the project website:
http://legup.eecg.toronto.edu
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Chapter 11
ROCCC 2.0

Walid A. Najjar, Jason Villarreal, and Robert J. Halstead

Riverside optimizing compiler for configurable computing (ROCCC) was started
as a project at the University of California, Riverside in 2002. To put in a
historical context: FPGAs were much smaller, and slower, then they are today
(2015); Graphics Processing Units (GPUs) were used exclusively for graphics;
reconfigurable computing was taking shape as a research area but not yet within
the main stream of academic research, let alone in industrial production. However,
multiple research projects had already demonstrated, many times over, the clear
advantages and potentials of this nascent paradigm as an alternative that combines
the re-programmability advantages of fixed data path devices (Central Processing
Units (CPUs), DSPs and GPUs) with the high speed of custom hardware (ASICs).
Within that time frame, the nearly exclusive focus of reconfigurable computing was
on signal and image processing because of their streaming nature. Video processing
was considered a future possibility to be realized when the size (area) and bandwidth
capabilities of FPGAs got larger.

In this section we provide an overview of the ROCCC toolset, its approach to the
compilation of FPGA-based accelerators from HLL and examples. It is beyond the
scope of this section to cover every aspect of this 10 years long project.!

'The source code and documentation (including User and Developers Manuals), on ROCCC can
be found on https://github.com/nxt4hll/roccc-2.0 and http://roccc.cs.ucr.edu.
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11.1 The ROCCC Approach

From its inception, ROCCC was designed as a C to HDL compilation tool explicitly
intended for generating code accelerators rather than a general purpose High-
Level Synthesis (HLS) tool. Why this distinction? Typically, accelerators have their
semantic root in a loop nests while a general HLS tool can target any arbitrary C
code. Hence, the focus of the ROCCC compiler transformations has been on loop
nests.

The objectives of the code transformations and optimizations implemented in
ROCCC are three folds:

1. Parallelism. Code transformation techniques, such as loop unrolling and others,
can potentially extract massive parallelism from loop nests at both the iteration
and operation (instruction) levels. A major impediment to the extraction of
parallelism is the presence of memory aliases which is why ROCCC does
not support arbitrary pointer operations within loops. ROCCC supports an
expensive set if loop transformations including: unrolling, fusion, temporal sub-
expression elimination, window narrowing, systolic array generation.

The two limitations on parallelism on an FPGA are area and bandwidth.
Loop transformations can have a major and non-intuitive impact on the area
utilized by the generated circuit [BCVN10]. Loop fusion, in some instances
can actually shrink the occupied area below that of the larger of the two loops
[NBD*03]. The area limitation is strictly associated with the target device (i.e.
the FPGA itself) while the bandwidth limitations is most often determined by
the architecture of the target platform.’

2. Data Reuse. Exploiting locality in streaming data requires on-chip storage
mechanism customized for each specific loop nest. A sliding window over a
1-, 2- or 3-d array is typical in signal, image and video processing. Locally
storing fetched data for future reuse can same significant bandwidth at the cost
of higher area utilizations and possibly a lower clock cycle. However, it can
boost parallelism at practically no cost: the data for the next iteration is already
on chip.

The smart buffer [GBN04, GNBOS] is a compiler generated mechanism for
re-using fetched data for sliding windows loop nests. The structure of the buffer
is determined by the window size, array size and dimensions and the stride of
the reuse in each dimension.

3. Clock Cycle Time. Exploiting parallelism through loop transformations and
locality through data reuse has negative impacts on the clock cycle time because
of the implied longer wires. Hence the importance of pipelining and other low-
level circuit optimizations, such as tree balancing etc.

2We use the term target platform to indicate the architecture of the board around the FPGA
device(s) including memory banks, I/O ports etc.
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In the early 2000s it was clear that no first- or even second-generation HLS
tool will be able to completely abstract away the complexities of programming
FPGAs and make the process as streamlined as traditional software development.
However, in designing ROCCC we sought to make that process easier, improve it
productivity and, most of all, provide the user with easy to use tool to undertake a
design space exploration of target application on a given FPGA device and platform.
From experience, we knew how tedious and time consuming the design space
exploration process is when done manually at the HDL level. But we also had
extensive experience with the non-intuitive impact of loop transformations on the
circuit’s area and throughput as shown in [NBD103] and [BCVN10]:

ROCCC was therefore designed with the following principles:

e User in control. The ROCCC toolset is designed for a user who has some
knowledge of the digital design process and the FPGA programming tool chain
but most of all has an intimate knowledge of the application at hand as well as
the target platform. The toolset gives the user control over which transformation
to apply to each individually labeled loop within a loop nest as well as the order
of application of these transformations. Under some conditions, it would have
been possible to let the compiler automatically detect which transformations are
feasible and select an acceptable option, however the scope and implications
of unintended consequences was too large. Early on, we had realized that
the impact of loop transformations was not always intuitive to most users
[BCVN10].

* Design space exploration. As mentioned above, the ultimate objective in
the design of an accelerator is to obtain an optimal tradeoff between area,
bandwidth and an achievable clock frequency. The ROCCC user interface
relies on a GUI, rather than in code pragmas, to indicate which optimizations
should be applied to which loop. The objective being to allow the user to
generate different projects for different sets of optimizations applied to the
same unmodified source code. The GUI allows the user to specify what high-
level optimizations are to be applied (e.g. loop transformations) and modify the
default settings on low-level transformations (e.g. pipelining).

* Code reuse. The Eclipse-based ROCCC GUI supports the saving and reuse of
code structures, such as modules and systems (see Sect. 11.2), in a MySQL
database. A kernel or a whole application can be saved either as a C source,
as VHDL code or as IP core netlist and reused, by drag-and-drop, as is
in other programs. Obviously, a C source would benefit from the compiler
transformations while the VHDL or IP core forms would not.This feature gives
the user the flexibility of fully integrating the imported code into an application
or using a entity with know properties (e.g. area and clock cycle time).

* Platform independent. The platform architecture surrounding the FPGA
device(s) plays a crucial role in determining the achievable performance.
This architecture includes (1) one or more memory banks and the memory
interconnect, (2) the I/O ports to/from the board, and (3) the interface to the host
software (typically via a PCle bus). The code generated by the ROCCC toolset
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is platform independent: all the inputs and outputs to that code are buffered
(in BRAM when available). It is up to the user to determine the compiler
transformations that best fit a given platform. The ROCCC generated code can
be interfaced to the physical components on a platform either manually or by
using a wrapper customized for that platform. The ROCCC distribution includes
wrappers for the Pico Computing M501 board and the Convey Computers HC-1
and HC-2ex. The Developer Manual includes instructions on how to build a
new wrapper.

11.2 Structure of ROCCC Code and Examples

ROCCC supports two styles of C programs, which we refer to as modules
and systems. Modules represent concrete hardware implementations of purely
computational functions. Modules can be constructed using instantiations of other
modules in order to create larger components that describe a specific architecture.
System code performs repeated computation on streams of data. It consists of loops
that iterate over arrays. System code may or may not instantiate modules. System
code represents the topmost perspective and generates hardware that interfaces to
memory systems.

ROCCC is not designed to compile entire applications into hardware and has
certain general restrictions on both module and system code. Constructs that
ROCCC 2.0 does not support include: generic pointers, non-component functions,
including C-library calls, non-for loops, stream accesses other than those based on
a constant offset from loop induction variables

Module code represents a hardware building block to be used in larger appli-
cations. Modules are computational data-paths and are written as computational
functions. All inputs to modules are passed in by value and all outputs are passed
by reference. Inputs must only be read from and output ports can only be written
to inside the function. ROCCC does not support writing to an output port multiple
times inside the function. Modules can only process scalar values and cannot have
arrays as input or output variables. Internal variables may be created but are not
visible outside of the module.

System code performs computation on streams of data and produces streams of
data. Scalars may also be read as input and generated as output, but as opposed to
modules, input scalars are read once at the beginning of computation and output
scalars are only generated once at the end of computation.

Similar to module code, system code is written as a void function that takes
input and output parameters. Input scalars are passed by value, output scalars are
passed by reference, and both input and output streams are passed as pointers. The
function definition must declare inputs before outputs. Although passed as pointers,
the internal use of streams must be through array accesses.

Figure 11.1 show an example an FIR module source code (a) and the correspond-
ing data-flow graph (b) with constant weights. The system code invoking the FIR
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b A0 Al A2 A3 A4
a

// Example module code
// Input parameters must
// come before output
// parameters
void FIR(int AQ, int Al,
int A2, int A3,
int A4,
int& result)
{
const int T[5] =
£3:5: 149, 11F 2
*

result = A0 T[O] +
Al * T[1] +
AZ * T[2] +
A3 * T[3] +
Ad * T[4] ;

} result

Fig. 11.1 Example of FIR module, C code (a) and data-flow graph (b)

module is shown in Fig. 11.2 as source C code (a), its data-flow graph (b) and the
data-flow graph after inlining and full unrolling of the loop (c). Note that instead
of a black box the top level design has all of the individual operations exposed and
may perform additional optimizations on this code. The schematic of the FIR system
generated in hardware is shown in Fig. 11.3.

The high-level code transformations supported by ROCCC are summarized in
Fig. 11.4.

Systolic Array Example the ROCCC optimizations can be used for the generation
of a systolic array when compiling wavefront-style codes such as dynamic program-
ming. An example is shown in Fig. 11.5. The source code (a) would be executed on
a two dimensional systolic array (b). After the optimizations, it is compiled into a
linear systolic array (c). The occupancy of the elements of the linear array is shown
in (d). The schematic of the overall complete systolic system is shown in Fig. 11.6.

11.3 Compiled Hardware Accelerated Threads (CHAT)

The Compiled Hardware Accelerated Threads (CHAT) tool is designed to assist
developers with implementing irregular applications on FPGAs [HVN14]. CHAT is
built using the ROCCC toolset. Like ROCCC it is platform and memory independent
allowing for easy porting to emerging FPGA architectures. However, while the focus
of ROCCC is on generating highly optimized kernels for streaming applications, the
focus of CHAT is on kernels for irregular applications (Fig. 11.7).
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a
void FIRSystem(int* A, int* B)
{
int i ;
int tmp ;
for (1 = 0 ; 1 < 10; ++1i)
{
// Module instantiation
FIR(A([i], A[i+l], A[i+2],
A[i+3], A[i+4], tmp) :
= tmp ;

Bli]
}

}

B

Fig. 11.2 FIR system code and data-flow graph. (a) C code. (b) Generated hardware. (c) After
inlining

The CHAT Execution Model. By definition irregular applications have poor
spatial and temporal localities, their performance is limited by memory latency. MT-
FPGA (Multithreading on FPGAs) [HVN14] is an execution model that combines
the memory masking ability of multithreaded execution with a customized data
path. The execution model is depicted in Fig. 11.5: a ready thread executes on the
customized data-path until it performs a memory read at which point it relinquishes
execution and is moved to the waiting queue. The data-path being pipelined allows a
new ready thread, if available, to start executing every cycle. Buffering the returned
data in the order it was requested allows the decoupling of the data fetching from
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clk rst stall inputReady
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A_weclk > -
A_channel0 32 > ‘32
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A _address_clk > -
A_address_rdy «
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A_address_stall > -
\/ \j

outputReady done

Fig. 11.3 Schematic of the hardware generated code for FIR
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a

// C code for the dynamic programming of
// a query Q[0:3] on a stream S[@:N-1]

// generating a systolic array architecture —
for (1 =0 ; i< N ; ++i)
{

for (3 =0 ; <4 ; ++j)
{

SingleCell(S[i], Q[j], A[i-1][F-1],
ALi-11[3], ALi1[3-1], tmpResult) ;
A[i][j] = tmpResult ;

}

}
Q3]
C source code of systolic array example

Execution schedule with fully unrolled inner loop
and partially unrolled outer loop

step step step step step step step
1 2 3 4 5 6 7

A[0,0] || A[0,1] || A[0,2] || A[0,3] || A[1,3] || AI23] || AI3,3]

A[1,0] || A[1,1] || A,2] || A2,2] || AI3,2]

A[2,0] || A[2,1] || A[3,1]

U
I e e

A3,0]

Execution steps on the systolic array architecture

Systolic array architecture

Fig. 11.5 Systolic figure 1 and 2

the actual computation. For example, in the MT-FPGA implementation of SpMV
[HVN14], the row value from the sparse matrix and the column value from the
vector are read separately from memory but in the same order, when both values are
returned they are multiplied and added to the partial sum for that row. The process is
repeated for all the non-zero values in that row at which point the thread terminates.

The advantages of the MT-FPGA execution model, and its CHAT implemen-
tation, are: (1) Massive parallelism: the parallelism is equal to the number of
outstanding memory requests. (2) Full utilization of a customized data path: after
an initialization period, both the multiplier and adder are fully utilized by a ready
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Fig. 11.6 Schematic of the hardware generated code for the systolic array example
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thread. (3) Minimal state: the state of a thread is extremely small (for example in
SpMV it consists of the partial sum, 64 bits, and the number of products still to be
computed for that row); hence the number of pending threads, stored on a FIFO, can
be very large (several thousands).

A taxonomy of irregular applications, described in [HVN14], shows the rela-
tionship between the determinism of the number and size of each thread and the
approach to implementing their execution.

Three applications have been implemented using the MT-FPGA model on the
Convey HC-2ex: bioinformatics (short read matching) [FVLNI15], sparse linear
algebra (SpMV) [HVN14] and database (hash join operation) [HANT15]. In all
three implementations we demonstrated a much higher throughput than state of the
art high-end CPUs and GPUs (in the SpMV case). The SpMV was implemented
using CHAT and assumes a traditional compressed sparse row (CSR) storage model
but can be modified to support any other model.

The CHAT Compiler CHAT extends the ROCCC infrastructure to support irreg-
ular applications. Like ROCCC, it analyzes kernels at two levels. First high-level
analysis builds a Data Flow Graph (DFG) using the SUIF 2.0 toolset [WFW194]
and generates an intermediate representation. Next low-level analysis creates a
Control flow graph (CFG) using the LLVM compiler [LAO4, LLV15] and generates
the VHDL design.

High-level analysis reads the hardware kernel described in the C language.
However, because C was developed as a software language, not all its constructs
make sense in a hardware context; e.g. Dynamic Allocation, Recursion, pointer
arithmetic, etc. Therefore, CHAT only supports a subset of the language. For
example arrays are treated as streams of data. They occupy contiguous blocks of
memory, but they can be randomly accessed. CHAT does not currently support
pointer chasing. Rows for multi-dimensional arrays are assumed to be stored
sequentially. Constant values are stored in hardware registers. Variable values are
temporarily stored in registers, and the values are moved from queues to the data-
path and back. Branches in execution will generate multiple data-paths that are
filtered through a multiplexer.

The goal of high-level analysis is to identify the hardware components, and create
a DFG. New passes are added to the SUIF 2.0 [WFW194] compiler to achieve this
goal. We use the code in Fig. 11.8 to highlight the major steps in CHAT, but each
step may require multiple passes in SUIF. First CHAT’s high-level analysis will
identify three data streams (A, B, and C), and one registered value (length). Two
streams will be identified as input streams (A, and B) because they read values, and
one stream will be identified as an output stream (C) because it is written too. CHAT
does not support streams that both read, and write. Temporary registers are created,
called suifTmps, to direct the data-path. Finally, the CIRRF [GBC'08] is output.
An example of the C source code for a simple passthrough with its corresponding
Hi-CIRREF is shown in Fig. 11.8.

User inputs are used to further customize the Hi-CIRRF pass. Parallelism can be
increased by unrolling the for loops which will duplicate the data-paths in the DFG.



11 ROCCC 2.0 201

void passthrough (int A, int B, int C, int i;
{

for (i = @; i < length; ++ i) C[i]=B[A[i] ];

}

M woN R

CHAT init inputscalar ( length ) ; CHATInputStreams(A,B) ;

for (i =@ ; (i < length) ; i =1 + 1)

v oA W e

CHATInputFifol © (A, i , suifTmp2 , @) ; CHATDataFifol 2 (B, suifTmp2 ,
suifTmp3 , @ ) ; suifTmp4 = CHATIntToInt(suifTmp3 , 32) ;

~

CHATOutputFifol 2(C, i , suifTmp4 , @) ; CHAT ? output ? C ? scalar () ;
CHATOutputStreams (C) ;
9}

®

Fig. 11.8 C code and Hi-CIRRF examples for a simple irregular application

Doing so could cause redundant hardware. CHAT will analyze the unrolled design,
and merge components working on the same exact data.

CHAT’s low-level analysis reads the DFG from the Hi-CIRRF pass. It creates
a control flow graph (CFG), and then generates the synthesizable VHDL. Thread
management is a key consideration during this phase. Each thread must maintain its
state locally on the FPGA, but because of the FPGAs parallelism multiple threads
can be changing states in the same clock cycle. All thread data is stored on-chip in
BRAMs, which are configured as FIFOs. This can be done because CHAT assumes
all memory requests are returned in-order. However, the compiler could be extended
to support out-of-order memory requests. In this case a design would implement
CAMs instead of FIFOs.

The Lo-CIRRF compilation is implemented by a number of different passes in
the LLVM [LAO04] compiler. Here we give a high level overview of what happens,
but just as in the previous section each step may require many different passes.
First the compiler assigns each CIRRF statement into their own basic block, which
allows parallel scheduling for non-sequential operations. Elements of A must block
until they have valid data, but other elements are free to execute. Buffers are
placed throughout the data-path to limit stalling, and alleviate back-pressure. Paths
requiring memory requests will also be padded with large buffers to allow multiple
outstanding requests.

Portability is another goal for the CHAT tool: its design assume nothing about
the FPGA platform it will be implemented on. However, the compiler does create
hooks for developers to leverage for performance. They are important for complex
operations (i.e. division, or floating-point operations) where custom DSPs blocks
are often available. The compiler will generate simple FIFOs for small buffers, but
for larger buffers the compiler provides hooks to the developer. Custom IP cores can
therefore be used to improve timing, and area utilization.

Simple Irregular Applications In this section we use the CHAT tool to build two
simple irregular application examples and their implementation on a Convey HC-
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void summation(int A, int B, int C, int m, int p) {
int i, j;
for(j = 0; j < m; ++3j)
for (i 0; i < p; ++1)

1
2
3
4 -
5 C[3]1 += A[3I[B[i]];
6

¥

Fig. 11.9 Summation kernel with a 1-dimensional index stream

2ex heterogeneous machine[Con15]. They use a 1-dimensional and 2-dimensional
streams as the index respectively.

One Dimensional Indexing We implement the basic irregular application expressed
in Eq. (11.1). The actual CHAT code for this equation is shown in Fig. 11.9: array
B has a regular access pattern, which iterates from 0 to m, array A has an irregular
access pattern because it uses values from B in its index.

p
Clm] =) Alm. B[il] (11.1)

i=1

The CHAT tool will generate two input controllers (A, and B), and a single output
controller (C). It will also generate two counter components for variables i and j.
Finally the compiler will create a summation data-path. Data from the i counter will
be used for the B input controller to issue memory requests. As the results return
they will be routed to the A input controller where they are combined with the j
counter for a new memory request. The memory requests for A are routed into the
summation data-path, and once p elements have been accumulated the result is sent
to the C output controller. The output controller writes the final result to memory.

The design requires only three memory channels, and should be replicated to
utilized the Convey’s 16 memory channels. Replicating the design is done through
the compiler by unrolling a for loop. Unrolling the inner for loop increases thread
level parallelism. Each cycle a single thread issues multiple request, which go into a
summation tree. Unrolling the outer for loop increases application level parallelism.
Each cycle multiple threads are executing in parallel. However, this also means the
same B values can be used by all A controllers. The compiler identifies this, and
generate a single B input controller, and routes the value to all A input controllers.

Two Dimensional Indexing We also implement an irregular application that is
indexed by a 2-dimensional stream as shown in Fig. 11.10. CHAT will optimize
this kernel very differently than the 1-dimensional kernel. The B input controller
will provide different values for each row in A, and therefore it cannot be merged
into a single shared memory channel. Multiple B input controllers must be created
for each A input controller.

Convey HC-2ex Implementation We implement both kernels on a Convey HC-2ex,
and explain our design considerations.

The CHAT tool does no limit how many times a loop can be unrolled, but in
practice architecture limitations must be considered. The Convey HC-2ex has 16



11 ROCCC 2.0 203

void summation(int
int i, j;
for(j = 0; j < m; ++3)
0; i < p; ++1)
4=

A[JI[BL3I41];

A, int B, int C, int m, int p) {

i
cl3

1
2
3
4
5
6

¥

Fig. 11.10 Summation kernel with a 2-dimensional index stream
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Fig. 11.11 FPGA components for the 1-dimensional kernel as generated by CHAT. Notice that
the B input controller is optimized to shared its data between all A input controllers

memory channels per FPGA. Since the summation circuit is very space efficient,
our design is memory channel limited, but larger designs may be area limited. To
best utilize the memory channels we must consider how CHAT will optimize the
1-dimensional kernel. The layout of components is shown in Fig. 11.11. Each input
memory controller (A and B) continually requests data from memory (every cycle
unless stalled by a full buffer), and therefore need their own dedicated channel. The
design has a single shared B controller. Since the output is a single value per row,
the C controllers can be merged onto a single channel. Considering the HC-2ex’s
restrictions we can unroll the design 14 times. One memory channel is used by the
B controller, another channel is used for all 14 C controllers, and 14 channels are
used for the A controllers.

In the 2-dimensional kernel it is not possible to share a single B input controller.
The layout of components is shown in Fig. 11.12. All controllers for A and B still
continually request data, but now there are multiple B controllers. The C controllers
can still be merged into one memory channel. Therefore, the design can only be
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Fig. 11.12 FPGA components for the 2-dimensional kernel as generated by CHAT. Notice that
the B input controller cannot share its data between separate A input controllers

unrolled seven times for the Convey HC-2ex: seven channels are used for the B
controllers, seven channels are used for the A controllers, and two channels are used
by the merged C controllers.
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Chapter 12
HIPAC

Moritz Schmid, Oliver Reiche, Frank Hannig, and Jiirgen Teich

As today’s computer architectures are becoming more and more heterogeneous, a
plethora of options including CPUs, GPUs, DSPs, reconfigurable logic (FPGAs),
and other application-specific processors come into consideration for close-to-
sensor processing. Especially, in the domain of image processing on mobile
devices, among numerous design challenges, a very stringent energy budget is
of utmost importance, making embedded GPUs and FPGAs ideal targets for
implementation. Although there has been tremendous progress in making the
respective programming models more approachable, a deep understanding of the
algorithmic details and the hardware architecture are necessary to achieve good
results. Over the past decades, C-based HLS focusing on FPGAs has become very
sophisticated, producing designs that can rival hand-coded RTL. A drawback is that
these frameworks must be very flexible and although being able to create an efficient
hardware design from a C-based language can significantly shorten the development
time, architectural knowledge and specific coding techniques are still a must.

To ease the burden on developers, DSLs aim at combining architecture- and
domain-specific knowledge, thereby delivering performance, productivity, and
portability. HIPA®® is a publicly available framework for the automatic code
generation of image processing algorithms on GPU accelerators. Starting from
a C++ embedded DSL, HIPA® delivers tailored code variants for different target
architectures, significantly improving the programmer’s productivity. In this chapter,
we use HIPA® as foundation and extend it to be able to generate C++ code specific
to the C-based HLS framework Vivado HLS from Xilinx. The proposed design flow
is depicted in Fig. 12.1. The contributions presented in this chapter are an extension
of the work presented in [RSH™ 14] and can be summarized as follows.
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Fig. 12.1 Design flow of the C++ Embedded DSL
combination of HIPA®® and L
Vivado HLS Golden | C++ I. H I PACC ]
Reference |
- S——— Domain/
L L Gt Architecture
Knowledge
e Vivado HLS [+«—1—|
Simulation
¢ CUDA, OpenCL
v
FPGA GPUs

* We introduce FPGAs as a novel target to HIPA® in order to generate code for
C-based HLS from a DSL.

* In detail, we discuss how the framework must be modified to cope with the design
challenges of the FPGA target.

* We evaluate our approach by assessing the performance and energy requirements
of the generated FPGA designs in contrast to other hardware targets, supported
by HIPA®®,

As new contributions in this work, we present a more detailed treatise of HIPA,
including specific transformations to generate streaming pipelines for FPGA accel-
erators, and evaluate the Nvidia Tegra K1 as an additional accelerator target.

The generated target code is derived from a high-level description for image pro-
cessing algorithms. Therefore, this work uses the high-level description presented
in [MRH™ 16].

12.1 Background

Due to their high computational power in combination with excellent energy
efficiency, FPGAs have not only recently been a target for the implementation of
signal processing systems [TBO1]. In order to keep up with the high processing
rates of software-based accelerators, it is vital to exploit the massive parallelism of
the platform. An often desired, but so far unfortunately unreached goal for HLS
frameworks is to be able to generate high throughput hardware implementations
from code that was developed by software developers for sequential execution
on a microprocessor. Whereas the typically sequential software execution model
greatly benefits from the high clock frequencies of general purpose CPUs, hardware
execution must exploit parallelism contained in the program to allow lower clock
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frequencies and therefore a significant reduction in power requirement. Low and
medium level image processing algorithms are often composed of loop programs,
where the same instructions will be executed over and over again for each pixel of
the image. A simple example are edge and feature detectors in image processing
pipelines. One of the well-known edge detectors is the Laplacian operator, where
multiple neighboring pixels are accessed within a given window. We denote such
an algorithm as a local operator. In the same way as caching can significantly
reduce the effects of the memory bottleneck on CPU-based architectures, data
streaming using FIFO interfaces is a means on FPGAs to considerably reduce the
amount of cycles to fetch new pixels in comparison to reading from and writing to
DPRAM. Pipelining and overlapping of the execution of these instructions is usually
the next step to generate high performance implementations. Here, throughput
(how much data per time unit) and local latency (how many clock cycles to
complete one iteration) are contrasting design goals that also affect design speed
as well as required area and energy. For streaming pipelines in image processing,
a high throughput is often considered more important, since the local latency often
becomes negligible in comparison to the amount of pixels to process. Furthermore,
local operators, such as the Laplacian operator, often need to access a pixel
more than once. Thus, handling streaming data on an FPGA requires a memory
architecture to retain data for multiple accesses. Memory resources on modern
FPGAs can be broadly categorized into DPRAMs and FFs. An efficient memory
architecture for streaming data uses a combination of line buffers for storage of
complete image lines (DPRAMs) and memory windows for the actual processing of
local neighborhoods (implemented using FFs), as illustrated in Fig. 12.2.

load

input /\‘ output
> L J 2
(O]
= (o]
3 2 ||
o ( 2 A
£ /

local
operator

|

store

Fig. 12.2 A combination of line buffers and memory windows is typically used to process local
operators on streaming data
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12.2 The HIPA®® Framework

The Heterogeneous Image Processing Acceleration (HIPA®) framework [MHT 112,
MRHT16] consists of a DSL that is embedded into C+ and a source-to-source
compiler. Exploiting the compiler, image filter descriptions written in DSL code
can be translated into multiple target languages such as Compute Unified Device
Architecture (CUDA), Open Computing Language (OpenCL), or Renderscript as
used in Android [MRHT14]. In this work, our approach is to generate code for C-
based HLS from a high-level description.

In the following sections, we will use the Laplacian operator as a simple example
for describing image filters and briefly describe which source code transformations
are applied and how code generation is accomplished.

12.2.1 Domain-Specific Language

Embedded DSL code is written by using C++ template classes provided by the
HIPAS® framework. Therefore, DSL code is written in a similar manner as using a
framework API. In fact, those compiler-known classes are fully functional and can
be compiled by a normal C++ compiler, serving as a reference CPU implementation.
However, with the HIPA®® source-to-source compiler, code generation is involved
that targets mainly GPU accelerators.

The most essential C++ template classes for writing 2D image processing DSL
codes are: (a) an Image, which represents the data storage for pixel values; (b) an
IterationSpace defining the Region Of Interest (ROI) for operating on the output
image; (c) an Accessor defining the ROI of the input image and enabling filtering
modes (e.g., nearest neighbor, bilinear interpolation, etc.) on mismatch of input
and output region sizes; (d) a Kernel specifying the compute function executed
by multiple threads, each spawned for a single iteration space point; (e) a Domain,
which defines the iteration space of a sliding window within each kernel; and (f)
a Mask, which is a more specific version of the Domain, additionally providing
filter coefficients for that window. Image accesses within the kernel description are
accomplished by providing relative coordinates. To avoid out-of-bound accesses,
kernels can further be instructed to implement a certain boundary handling (e.g.,
clamp, mirror, repeat) by specifying an instance of class BoundaryCondition.
Template parameters of all mentioned classes are used to define the type of pixel
data that is processed (e.g., represented as integer or floating point), enforcing
kernels to be consistent and sound in terms of type conversion within the host
language’s type system.

To describe a Laplacian operator, we need to define a Mask and load the
appropriate filter coefficients, defined as constants, see Listing 12.1 (lines 6—10).
It is further necessary to create an input and output image for storing pixel data
and load initial image data into the input image (lines 11-15). The input image is
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Listing 12.1 Example code for the Laplacian operator

// input image
const int width = 512, height = 512;
uchar4 ximage = (uchar4s)read_image(width, height, "input.pgm");

// coefficients for Laplacian operator
const int coef[3][3] = { { o, 1, o0 },
{ 1, -4, 11},

{ o, 1, o1} };

© N U AW N =

10 Mask<int> mask(coef) ;

11 Image<uchar4> in(width, height) ;

12 Image<uchar4> out (width, height);

13

14 // load image data

15 in = image;

16

17 // reading from in with mirroring as boundary condition
18 BoundaryCondition<uchar4> bound(in, mask, BOUNDARY MIRROR) ;
19 Accessor<uchar4> acc(bound) ;

20

21 // output image

22 IterationSpace<uchar4> iter (out) ;

23

24 // define kernel

25 Laplacian filter(iter, acc, mask);

26

27 // execute kernel

28 filter.execute() ;

o

bound to an Accessor with enabled boundary handling mode mirroring (lines 18—
19). After defining the iteration space, the kernel can be instantiated (line 25) and
executed (line 28).

Kernels are implemented by deriving from the framework’s provided Kernel
base class, inheriting a constructor for binding the iteration space and a kernel()
method. Within that method the actual kernel code is provided, see Listing 12.2
(lines 14-20). Mask and input image are accessed using relative coordinates (line
17). Thereby, it is ensured that out-of-bound accesses are caught and handled
appropriately according to the specified boundary handling mode. To write the
output pixel value to the iteration space, the convolution result must be assigned
to the output () method (line 20).

Because the Laplacian operator is a local operator performing a standard
convolution, it is also possible to describe the kernel using the convolve() method
shown in Listing 12.3. This method takes three arguments: (a) the mask defining
window size and filter coefficients; (b) the reduction mode used to accumulate
the results of multiple iterations; and (c) a C+ lambda function describing the
computational steps that should be applied in each iteration.

Additional HIPA®® language constructs for local operators also provide more
general operations for iteration and reduction steps over local window regions.
Using a Domain, these regions do not have to be rectangular. Besides local operators,
global operators are also supported for describing reductions (min, max, or sum) of
images or an image region.
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Listing 12.2 Kernel for the Laplacian operator

class Laplacian : public Kernel<uchards> {

1

2 private:

3 Accessor<uchar4> &input;

4 Mask<int> &mask;

5

6 public:

7 Laplacian(IterationSpace<uchar4> &iter,

8 Accessor<uchar4> &input, Mask<int> &mask)
9 : Kernel(iter), input (input), mask (mask) {

10 addAccessor (&input) ;

1 }

12

13 void kernel() {

14 int4 sum = { 0, 0, 0, 0 };

15 for (int y = -1; y <= 1; ++y)

16 for (int x = -1; x <= 1; ++X)

17 sum += mask(x, y) * convert_int4 (input(x, y));
18 sum = max(sum, O);

19 sum = min(sum, 255);

20 output () = convert_uchar4 (sum) ;

21 }

2 };

Listing 12.3 Alternative convolution kernel

int4 sum = convolve(mask, HipaccSUM, [&] () -> int4 {
return mask() x convert_int4 (input (mask)) ;

1
2

3 b

4 sum = max(sum, 0);

5 sum = min(sum, 255);
6 0 =

output convert_uchar4 (sum) ;

12.2.2 Code Generation

The HIPA® compiler is based on the Clang/LLVM 3.5 compiler infrastructure.'
Utilizing the Clang front end, HIPA® parses C/C++ code and generates an internal
Abstract Syntax Tree (AST) representation. Operating on this representation,
HIPA®® will generate two kinds of code: Host code for managing kernel launches
and memory transfers, and device code containing the actual kernel description in
the specified target language (e.g., CUDA, OpenCL, Rendescript).

12.2.3 Generating Code for Vivado HLS

Considering Vivado HLS as a target for code generation involves numerous chal-
lenges to overcome. Convolution masks provided in DSL code must be translated in
a more suitable version for FPGAs and hardware accelerators. The same applies

Thttp://clang.llvm.org.
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Fig. 12.3 Transformation of a Gaussian convolution mask from floating point to integer coeffi-
cients

to DSL vector types that need to be wrapped into integer streaming buffers for
pipelining. Such a pipelined structural description has to be inferred from the linear
execution order of kernels. Hereafter, kernel implementations need appropriate
placement of Vivado HLS pragmas depending on the desired target optimization.

12.3 Transforming Masks

Mask coefficients of a convolution f, where its result remains in the same range
as the input, can be described in two ways: Either by providing floating point
coefficients, which in total yield exactly 1, or by multiplying with integer values
followed by a division step for normalizing to the original range. On GPUs, the
former is the preferred choice, as issuing integers or floating points instructions
makes no difference in terms of latency. It is even more beneficial to use floating
point coefficients, since avoiding the normalization step at the end requires less
instructions. Therefore, the DSL framework follows this approach.

On FPGAs however, the multiplication with integer coefficients and the addi-
tional normalization step reduces the impact on resource requirements. Ideally the
whole convolution can be covered by simple shift operations.

As the HIPA®® framework has been designed for GPUs and therefore follows
the former approach, it is favorable to transform given floating point coefficients to
integer values. An example for transforming a simple Gaussian mask is provided
in Fig. 12.3. For the transformation, certain constraints need to be met. The mask
size must be constant and the coefficients must be known beforehand at compile
time. Mask transformation can only be applied if the condition in Eq. (12.1) holds,
which states that every coefficient c; scaled by the normalization factor N results in
a natural number (with respect to a small error &, which can be defined as a compile
time parameter),

Ve;eC,AneNyg:N-¢c;xe=n (12.1)

where N is defined as the inverse of the smallest coefficient N = !/minec{ci}.

The transformation of every floating point coefficient c; to its integer representa-
tive x; is done by scaling each coefficient by the normalization factor and correct
rounding, defined as x; = [N -¢; + 0.5]. It can be shown, given the constraint
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defined in Eq. (12.1), that the convolution is still valid. With respect to the granted
small error e, results of both approaches are approximately equal, depicted in
Eq.(12.2).

ecXi*di
Y cirdi~ Loec (12.2)
ci€C N
As those results are not exact, they might not be suitable for every algorithm or
use case. Therefore, this feature can be controlled by a compiler switch.

12.4 Streaming Pipeline

High-level programs given in HIPA®® DSL code process image filters buffer-wise.
Each kernel reads from and writes to buffers sequentially, running one after another
with buffers serving as synchronization points (so called host barriers). Buffers can
be read and written, copied, reused, or allocated only for the purpose of storing
intermediate data.

Throughout this section, we will demonstrate our method using the Harris corner
detector [HS88], depicted in Fig. 12.4. This filter consists of a pipeline of kernels,
implemented as point operators and local operators, which are described in detail
in Sect. 12.6.2. Although, every kernel writes to its own buffer, in total only four
buffers are necessary by applying smart reuse of existing buffers containing out-
dated intermediate data.

This buffered concept is fundamentally different from streaming data through
kernels, processing a computational step as soon as all input dependencies are
available. Kernels are therefore interconnected with each other using stream objects
implementing FIFO semantics. Such a streaming concept requires a structural
description, resolving direct data dependencies unconstrained from the exact
sequential ordering of kernel executions.

We can transform the buffer-wise execution model into a structural description
suitable for streamed pipelining by analyzing the DSL host code, replacing memory
transfers by stream objects, and generating appropriate kernel code. Vivado HLS
can then be instructed to run all kernels in parallel, as shown in Fig. 12.5, which can

input

@ % output

Fig. 12.4 Sequential execution of HIPA®® kernels for the Harris corner detector implemented as
a pipeline of point operators (circles) and local operators (squares). Triangles mark buffers and
dashed lines represent host barriers between kernel executions
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deliver a significantly shorter processing time. We first introduce how the structural
description is transformed from a given host code and then give insight into device
code generation.

12.4.1 Host Code Analysis

The host code is translated into an AST representation that is traversed by HIPA.
During this traversal process, we track the use of buffer allocations, memory
transfers and kernel executions by detecting compiler-known classes. For each
kernel, the direct buffer dependencies are analyzed and fed into a dependency graph.

Given this graph, we can build up our internal representation, a simplified AST-
like structure based on a bipartite graph consisting of two vertex types: Space
representing images and process marking kernel executions. Kernel executions are
traversed in the sequential order, in which they are specified.

In the simplest case, each kernel maps to exactly one process and each
image to exactly one space. Wrapper objects for accessing image data, such as
IterationSpace and Accessor are directly translated to edges in the internal
representation, as shown in Fig. 12.6. Writes to images are transferred to the internal
representation in Static Single Assignment (SSA) manner.
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Fig. 12.7 Transforming the HIPA®® representation into the internal representation for images that
are shared among multiple kernel executions

dx [— @—* gx
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Fig. 12.8 Streaming pipeline of Vivado kernels for the Harris corner detector. Diamond shapes
represent kernels for splitting data of a single stream object into multiple stream objects

Hereby, reusing the same image multiple times will form multiple new space
vertices in the graph.

In the more complex case, where the inputs of multiple kernels depend on the
same image and the same temporal instance of intermediate data, the corresponding
image will be translated to a copy process surrounded by an additional space vertex
for each wrapper object used for reading or writing the image. An example for two
kernels reading from one image is illustrated in Fig. 12.7. This way, it is guaranteed
that streaming data later on will be copied before handing it over to the next
computation steps.

Considering the running example of the Harris corner detector, the reuse of
images in Fig. 12.4 is indicated by colors. Images of the same color are translated
into separate streaming objects for pipeline creation. Furthermore, intermediate
data distributed among multiple succeeding kernel executions (e.g., dx) can also be
found. Here, the insertion of a copy process will be applied for creating the internal
representation.

Once our internal representation has been created, we can infer the structural
description for the streaming pipeline shown in Fig. 12.8. The graph is linearized for
code generation by traversing backwards through the graph in Depth-First Search
(DFS), originating from the output spaces. Herby, parts of the graph that are not
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contributing to the output will be pruned. For code generation, every process vertex
is translated to a kernel execution and every space vertex marks the insertion of
a unique Vivado HLS stream object. The resulting code embodies the structural
description of the filter, which is written to a file serving as entry function.

Device Code Generation

For generating device code, an AST is extracted and extended from the DSL’s
kernel description. Additional nodes are added to fulfill the requirements of the
target language such as applying index calculations and ROI index shifts. Depending
on optimizations specified by compiler options, vast portions of the extracted AST
are modified and replicated. For example when enabling the use of texture or local
on-chip memory on GPUs, the appropriate language constructs must be inserted.
Further optimizations like thread-coarsening (similar to partial loop unrolling),
where multiple iterations of the same kernel are merged into a single one, are applied
by cloning the extracted AST and inserting it multiple times with slightly adjusted
memory access indices. The resulting AST is transformed back to source code by
utilizing Clang’s pretty printer and written to separate files for each kernel. These
files will be included (CUDA, Vivado HLS) or loaded (OpenCL) by the rewritten
host code file.

For Vivado HLS, we needed to introduce some additional constraints. As
described earlier, masks must be constant, not only for mask transformation, but also
for constant propagation,” which we enforce for FPGA targets. Further constraints
are that image dimensions must be known beforehand at compile time, in order to
process it by Vivado HLS synthesis right away. The resulting C++ code is based
on a highly optimized library for image processing, as proposed in [SAHT14], and
is still human-readable. Globally affecting parameters (such as image dimensions)
are defined at a single central spot, so that those parameters can be conveniently
altered for further syntheses without rerunning the HIPA®® compiler. Similar to
HIPA®®’s other targets, separate files are created for each kernel. These files will be
included by the entry function, which already embeds all executions in a structural
description, described in the previous section. Kernel optimizations applied for
device code are explained in the next section.

12.4.2 Parallelization and Design Optimization

Although the possibility to use a C-based language for design entry lowers the
hurdle for acceptance of a HLS framework, algorithms stated in such a language are
inherently sequential and must be parallelized and optimized in order to efficiently
use the FPGAs resources. As opposed to the world of HPC, where the fastest

2Replacing memory loads of constant values by inserting the numerical literals.
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processing speed is paramount, developing hardware accelerators may be subject to
several contrasting design goals. Of course, high throughput and short clock periods
are important achievements, but often it is also necessary to comply with a certain
resource budget. A central element of Vivado HLS for this task are the synthesis
directives, which allow to specify how the input design is to be parallelized and
optimized.

Placing Vivado Synthesis Directives

Synthesis directives in Vivado HLS can either be inserted in the code directly as
pragmas, or collected in a script file which is applied during synthesis. Here, we
use both approaches. Directives, which transform the sequential specification into a
typical parallel hardware structure, such as unrolling a for-loop to model a shift-
register, or which optimize hierarchical structures, for example inlining calls to
small functions, are rarely changed and are thus placed directly in the code as prag-
mas. Other directives, we frequently use for parallelization and optimization, such as
pipelining and specifying the size of FIFOs to interconnect a streaming pipeline can
be used for design space exploration and to enforce a certain optimization strategy.
Searching and altering the code to adapt these directives may become inconvenient
for large designs. Therefore, we provide these directives in a script file, so that they
can be readily changed.

Optimizing Loop Counter Variables

Software developers often tend to use the convenient int data type to specify loop
counter variables. For image processing, the image dimensions seldom require
the full range of a 32-bit two’s complement. Moreover, using more bits for a
variable than required causes undesired excessive use of resources and may degrade
the achievable maximum clock frequency, especially if the variable must often
be compared to another. In Vivado HLS, appropriate bit-widths can be explicitly
specified if the range of the variable is known during the code generation. Another
possibility is to let the synthesis tool automatically infer the required bit-width by
inserting assertions on the range of the variable, similar to the range definitions
for the integer data type in VHDL. We apply assertions to loop counter variables
in our approach, so that bit widths do not need to be explicitly adapted if image
dimensions change between code generation and synthesis. In this way, we ensure
that the design always uses an optimal binary representation for loop variables,
reduce the amount of required resources and achieve shorter critical paths for logical
operations on such variables.
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Fig. 12.9 Packing of vector types into Vivado streams. This example shows an RGBA pixel,
the channels are packed together into a single stream. Although the channels must be processed
individually, a common stream and line buffer can be used

Mapping Vector Types

Since HIPA®® was developed for GPUs, it supports numerous vector types, which
are crucial for performance on specific GPU architectures. Besides performance
concerns tackled by explicit vectorization, these types are in particular well-suited
for expressing computations on common formats of image processing in a natural
way.

To support vector types for the Vivado HLS target, basically two approaches are
available: (a) treat all vector elements separately, resulting in multiple line buffers,
multiple windows, and multiple streams for each local operator; or (b) pack all
vector elements into a single integer of the same bit-width as the whole vector,
resulting in only a single stream for each operator, depicted in Fig. 12.9. The former
approach is realized by the OpenCV implementation provided with Vivado HLS
2014.1. The latter is followed by our code generation, because this might reduce the
overall consumption of memory resources.

Existing vectorized DSL code does not need to be modified. We have imple-
mented vector types for Vivado HLS as C structures and computations are realized
by operator overloading. Reads and writes to DSL Images, which will be mapped
to stream objects, are replaced by conversion functions, either extracting the vector
types from packed stream elements or packing vector types into stream elements.
Inter-kernel computations, i.e., operations on local variables, are described as vector
operations in DSL code already and are therefore covered by overloaded operators.

Delaying Point Operators

As explained earlier, obeying causality when applying local operators to streaming
data causes an increased group delay. If point operators are used in streaming
pipelines before a local operator, the production rate of the point operator is
higher than the consumption rate of the local operator. One way to address this
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issue is to insert an appropriately sized stream buffer between the two operators.
Alternatively, a delay can be enforced on the point operator to equalize consumption
and production rates. The generated code uses the latter approach in order to save
memory resources.

12.5 Test Bench Generation

When developing architectures and FPGA layouts, it is of great importance to cover
sources of errors by testing, at best starting in early design phases. A solution
to achieve effortless testing is the automatic test bench generation from a high
abstraction level. By applying such techniques, testing is more flexible, can be
accomplished much more efficiently than on RTL, and requires less coding effort
than, for example, in VHDL. Our approach allows to write DSL code from that
HIPA®® can derive a test bench that can be used by Vivado HLS.

In order to accomplish testing, HIPA®® can utilize parts of the provided DSL host
code, which is embedded into C++ and thereby already surrounded by functioning
program code. The host code’s AST will be traversed by HIPA*® using Clang’s
Rewriter engine. For each node that is related to compiler-known classes, HIPA*
rewrites the source code location by inserting appropriate runtime calls. On FPGAs
for instance, assignments between pointers and Images will be replaced by runtime
calls for initially filling array data into Vivado stream objects. Similar replacements
are applied to all other occurrences of compiler-known classes within the input code.

The resulting rewritten host code is still very similar® to the original input and the
surrounding program code is left untouched. Therefore, if the designer has specified
testing routines in the C++ program that verifies the results computed by DSL code,
the rewritten program can serve as a test bench without further modification. The
same applies to GPU targets, which further emphasizes the consistency of our
approach to cover fundamentally different targets from one and the same code base.

12.6 Experimental Results

We evaluate our results on several different hardware target platforms. All hardware
targets are compared in terms of performance and energy efficiency. Our implemen-
tations are generated by HIPA® for each target, stemming from the exact same code
base.

3For example, image names are maintained, only given a prefix when converting to streams.
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12.6.1 Evaluation Environment

First, we briefly describe our environment by providing detailed information about
the architectures and libraries we take into account for evaluation.

Nvidia Tegra K1 is a Multi-Processor System-on-Chip (MPSoC) hosting an ARM
Cortex-A15 quad core CPU and an embedded General Purpose GPU (GPGPU)
based on Nvidia Kepler architecture. The GPU is featuring 192 scalar com-
pute cores, clocked at 960 MHz. The theoretical peak performance limits at
370 GFLOPs with doubled operation count, because of the Fused Multiply-Add
(FMA) instruction, which is counted as two operations. Besides 2 GB of DDR3
RAM, which is shared among CPU and GPU, it also contains L1 and L2 caches
and up to 48 kB of local on-chip memory. It further supports utilizing texture
memory and texture caches.

Nvidia Tesla K20 is a discrete GPGPU solely for the purpose of computing. It
contains 2496 scalar compute cores, distributed among 13 multi-processors,
each running at 705 MHz. This results in approximately 3520 GFLOPs, again
counting FMA as two instructions. Besides 5GB of GDDRS5 RAM, also
includes L1 and L2 caches as well as up to 48 kB local on-chip memory.

Xilinx Zynq 7045 is a SoC, which tightly integrates an ARM Cortex-A9 dual
core CPU and a Kintex FPGA, using an ARM AMBA interconnect. The
included FPGA can be considered a mid-range device, offering 350K logic
cells, comprised of 218,600 Lookup Tables (LUTs), 437,200 flip-flops, 2180kB
of on-chip memory, and 900 DSP slices. Furthermore, the device includes
a Gen2 hardcore PCI Express block and up to 16 high-speed serial GTX
transceivers, each capable of transmitting at 12.5 Gb/s.

12.6.2 Algorithms

For the evaluation, we consider three typical image processing algorithms: an edge
detector based on the Laplacian operator, the Harris corner detector [HS88], and the
computation of optical flow using the census transform [Ste04]. Those algorithms
are of high relevance for richer imaging applications, such as augmented reality
or driver assistance systems in the automotive sector. They all embody a high
degree of parallelism and are equally well suited for every of our considered target
architectures. Although these algorithms are well known, their implementation
details may differ significantly, thus we briefly clarify the algorithm specifics used
for our evaluation.

Laplace The Laplacian (LP) filter is based on a local operator, as already described
in Sect. 12.1. Depending on the mask variant used, either horizontal and vertical
edges or both including diagonal edges can be detected. In our results, we denote
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the first variant as LP3HV and the second as LP3D. Additionally, we evaluate a third
variant, LP5, based on a 5 x 5 window, which can also detect diagonal edges.
Harris Corner (HC3) was first introduced by [HS88]. It consists of a complex
image pipeline depicted in Fig. 12.4. After building up the horizontal and vertical
derivatives (dx, dy), the results are squared and multiplied (sx, sy, sxy), and pro-
cessed by Gaussian blurs (gx, gy, gxy). The last step (hc) computes the determinant
and trace, which is used to detect threshold exceedances.

Optical Flow (OF) issues a Gaussian blur and computes signatures for two input
images using the census transform. Therefore, for each image two kernels need
to be processed. A third kernel performs a block compare of these signatures
using a 15 x 15 window in order to extract vectors describing the optical flow.
Regarding continuing streams of images (e.g., videos), for GPU targets the first
image’s signatures can be reused. Hereby, it is only necessary to process the second
image and to reperform the block compare, resulting in the execution of 3 kernels
per iteration. Whereas on FPGAs, the signatures for both images always have to be
computed, resulting in the execution of 5 kernels per iteration. For fair comparison,
we were considering this fact when evaluating our throughput results.

For the evaluation, we have used an 8-bit integer data types and images of
size 1024 x 1024. The algorithms we synthesized in Vivado HLS with high effort
settings for scheduling and binding. PPnR resource requirements were obtained by
implementing the generated Verilog code in Vivado 2014.1. Power requirements
were assessed by performing a timing simulation on the post-route simulation
netlists and evaluation of the switching activity in Vivado (Table 12.1).

12.6.3 FPGA vs. Embedded GPU Implementation

One of the benefits of using a DSL for HLS is to have a target-independent high-
level description at hand, which can generate code for several different hardware
targets from exactly the same code base. In this section, we analyze the above
presented algorithms for heterogeneous hardware platforms, including a Tegra K1
embedded GPU (eGPU), a Zynq 7045 FPGA, and a Tesla K20 server-grade GPU
in terms of performance and energy consumption. The performance results are
summarized in Table 12.2. An efficient configuration for the GPU implementations

Table 12.1 PPnR results for the Laplacian operator and Harris corner detector implementa-
tions

I | LAT SLICE |LUT |FF BRAM |DSP |F (MHz) |P (mW)
LP3HV |1 |1050638 | 141 288|521 |2 0 [349.9 232
LP3D |1 |1050641 |226 398  |1034 |2 0 |341.1 232
LP5 1 | 1052768 |3917 |4521 |23795 |4 200 |220.1 247
HC3 1 |1063233 |9349 23331 |31102 |8 254 [239.4 498
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Table 12.2 Comparison of Tegra K1 | Zynq7045 | Tesla K20
execution times on NVldla
Tegra K1, Xilinx Zynq 7045, LP3HV | 19.08 3.00 0.10
and Nvidia Tesla K20 LP3D 22.73 3.08 0.16
LPS 3953 478 0.38
HC3 2985 438 0.91
OF 54.35 5.19 221

Time in ms for an image of size 1024 x 1024

Table 12.3 Comparison of throughput and energy consumption for the
Nvidia Tegra K1, Xilinx Zynq 7045, and Nvidia Tesla K20
Tegra K1 Zynq 7045 Tesla K20
TP (fps) | E (fpW) | TP (fps) | E (f(pW) | TP (fps) |E (fpW)
LP3HV |524 11.8 3333 1423.1 10,000.0 | 74.1

LP3D 44.0 9.9 324.7 1387.6 | 6250.0 46.3
LP5 253 5.7 209.2 846.9 2631.6 19.5
HC3 335 7.5 228.3 458.5 1098.9 8.1
OF 18.4 4.1 192.5 409.6 452.5 3.4

was found using HIPA®’s exploration feature. The Tesla K20 can exceed the
performance of the embedded Tegra GPU by a factor between approximately 25 and
200, depending on the algorithm. Execution times for both GPUs increase with the
window size and kernel complexity, clearly decelerated by the number of memory
loads. For the FPGA, the impact of larger window sizes is by far less noticeable.
We further provide a comparison of the throughput (refer to Fig. 12.10) and energy
efficiency (refer to Fig.12.11) of the platforms in and energy consumption in
Table 12.3. The power consumption of the GPUs can be estimated by considering
about 60 % of the reported peak power values (4.45W for the Nvidia Tegra* and
about 135W for the Nvidia Tesla). The FPGA provides the most energy efficient
solution.

Even though the achievable frame rate per watt decimates notably faster than the
throughput, this effect is much more distinctive on GPUs, leaving FPGAs clearly as
the architecture of choice for more complex algorithms.

We attribute the lower energy efficiency of the Tegra compared to the Tesla to
the slower DDR3 memory. Tesla’s dedicated GDDRS5 memory introduces higher
access latency, but is optimized for high throughput. Access latency can be hidden
by heavily applying simultaneous multi-threading. In particular for the Laplacian
filer, where the computational workload is rather small, the throughput bottleneck
of the DDR3 memory becomes crucial. Therefore, power efficiency of the Tegra

“4Jetson DC power analysis of the CUDA smoke particle demo, adjusted for fan and sys-
tem power consumption: http://wccftech.com/nvidia-tegra-k1-performance-power-consumption-
revealed-xiaomi-mipad-ship-32bit-64bit-denver-powered-chips/.


http://wccftech.com/nvidia-tegra-k1-performance-power-consumption-revealed-xiaomi-mipad-ship-32bit-64bit-denver-powered-chips/
http://wccftech.com/nvidia-tegra-k1-performance-power-consumption-revealed-xiaomi-mipad-ship-32bit-64bit-denver-powered-chips/
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GPU improves for more complex filters with higher computational demand, such as
the Harris corner and the optical flow.

12.7 Conclusions

In this work, we have demonstrated how the DSL-based framework HIPA® can be
used to automatically generate highly optimized code for the HLS of multiresolution
applications for implementation on FPGAs. In this way, the specification of the
design requires significantly less programming effort from the developer and
thus also poses less chances for coding errors. The presented case studies from
image processing demonstrate that the approach is applicable to a broad range
of problem scenarios. As HIPA®® also includes embedded GPGPUs as a hardware
target [MRHT 14], we have compared the proposed FPGA approach to a highly opti-
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mized GPU implementations, generated from the same code base. The assessment
exposes the benefits of using a heterogeneous framework for algorithm development
and can easily identify a suitable hardware target for efficient implementation.
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Chapter 13
ReconOS

Andreas Agne, Marco Platzner, Christian Plessl, Markus Happe,
and Enno Liibbers

In this chapter, we present an introduction to the ReconOS operating system for
reconfigurable computing. ReconOS offers a unified multi-threaded programming
model and operating system services for threads executing in software and threads
mapped to reconfigurable hardware. By supporting standard POSIX operating
system functions for both software and hardware threads, ReconOS particularly
caters to developers with a software background, because developers can use well-
known mechanisms such as semaphores, mutexes, condition variables, and message
queues for developing hybrid applications with threads running on the CPU and
FPGA concurrently. Through the semantic integration of hardware accelerators into
a standard operating system environment, ReconOS allows for rapid design space
exploration, supports a structured application development process and improves
the portability of applications between different reconfigurable computing systems.

13.1 Introduction

A growing number of applications originating in and integrating diverse fields like
pattern recognition, machine learning, large-scale data analytics, or communication
systems feature a diverse mix of control-intensive and highly parallelizable regular
data-centric operations. This heterogeneity of the composition of application com-
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ponents increasingly prohibits the exclusive use of a single acceleration technology.
Thus, in the case of fine-grained reconfigurable computing, applications are rarely
mapped exclusively to an FPGA accelerator. Instead, individual application parts
amenable to parallel execution, customization, and deep pipelining are often
implemented as custom hardware to improve performance or energy efficiency.
Other parts, especially code that is highly sequential or difficult to implement as
custom hardware, are executed in software mapped to a CPU. This decomposition of
applications into separate, communicating parts that require synchronization among
them is also widely used in pure software systems for achieving a separation of
concerns and concurrent or asynchronous processing.

In software systems the operating system standardizes these communication and
synchronization mechanisms and provides abstractions for encapsulating the unit
of execution (processes, threads), communication, and synchronization. Reconfig-
urable computing systems still lack an established operating system foundation that
covers both software and hardware parts. Instead, communication and synchroniza-
tion are usually handled in a highly system and application-specific way, which
tends to be error prone, limit the productivity of the designer, and prevent portability
of applications between different reconfigurable computing systems.

ReconOS offers an operating system, programming model and system architec-
ture, which are closely geared to each other in order to provide unified operating
system services for functions executing in software and hardware and a standardized
interface for integrating custom hardware accelerators. To this end ReconOS
leverages the multi-threading programming model which is widely used in software
development and extends the host operating system with support for hardware
threads. These extensions allow the hardware threads to interact with software
threads using the same, standardized operating system mechanisms (system calls),
for example, semaphores, mutexes, condition variables, and message queues. From
the perspective of an application it is thus completely transparent whether a thread
is executing in software or hardware.

The availability of an operating system layer providing symmetry between
software and hardware threads yields the following benefits for reconfigurable
computing systems: First, the application development process can be structured in
a step-by-step fashion with an all-in-software implementation as a starting point.
Performance-critical application parts can then be turned into hardware threads
one-by-one to explore the hardware/software design space successively. Second,
the portability of applications between different reconfigurable computing systems
is improved by using defined operating system interfaces for communication and
synchronization instead of low-level platform-specific interfaces. Finally, the unified
appearance of hardware and software threads from the application’s perspective
allows for moving functions between software and hardware during runtime,
which supports the design of adaptive computing systems that exploit partial
reconfiguration.

In this chapter we extend our previous article [AHL ' 14b] to provide a general
overview of ReconOS and to emphasize the aspects that make ReconOS particularly
appealing for developers with a software background. We would also like to point
out that ReconOS is part of a lineage of operating system approaches for FPGAs,
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which have been studied since the 1990s. In Sect. 13.9 we discuss the evolution of
operating systems for reconfigurable computing and how ReconOS relates to this
heritage.

13.2 Step-by-Step Application Development

ReconOS aims at simplifying the creation of applications for hybrid
CPU/FPGA systems with a structured, step-by-step development process, which
is more amenable to a software developer than a typical hardware-core centric
design flow. This process is typically divided into three steps, which are outlined in
Fig. 13.1:

* First, the developer prototypes the application’s functionality in multi-threaded
software using, for example, the Pthreads library on Linux. This first software-
based implementation allows for functional testing. Communication and syn-
chronization between threads is handled using the well-know operating system
functions.

* Second, the multi-threaded software is ported to the embedded CPU on the
targeted platform FPGA, e.g., a MicroBlaze running Linux. The developer can
now use profiling to identify the application’s potential for parallel execution,
i.e., those threads that could benefit from the fine-grained parallelism of a
hardware realization, and those code segments that are amenable to a coarser-
grained parallel implementation with multiple threads.

* The third step includes creating the hardware threads and the ReconOS system
architecture. At this point, ReconOS easily allows the developer to evaluate
different mappings of threads to hardware and software and to quickly assess
the overall performance on the target system.

Over the years, ReconOS has been used to implement numerous applications
on hybrid CPU/FPGA systems. These experiences have confirmed that the hybrid
multi-threading approach offered by ReconOS does indeed simplify the develop-
ment process and is accessible also to developers with very little FPGA hardware
design experience.
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Fig. 13.1 The step-by-step development process: First, the software application is prototyped on a
desktop machine. Then, it is ported to the target CPU platform. Finally, suitable threads are ported
to hardware
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13.3 Multi-Threading Programming Model

The key idea of ReconOS, which enables the previously mentioned benefits, is
extending the multi-threading programming model and supporting operating system
functions across the hardware/software interface. In multi-threaded programming
applications are partitioned into several threads that implement the computational
tasks and may be executed concurrently. In our case, threads can be either blocks of
sequential software or parallel hardware modules. For orchestrating the concurrent
execution of threads and communication between them, applications use dedicated
operating system functions with well-defined semantics and interfaces. For example,
threads can pass data using message queues or mailboxes, explicitly coordinate
execution through barriers or semaphores, or implicitly synchronize access to
shared resources by locking and unlocking mutually exclusive locks (mutexes).
These objects and their interactions are widely used in well-established APIs
for programming multi-threaded software applications, such as the POSIX APIL
One of the major advantages developers can draw from the ReconOS approach
is that these abstractions can not only be used for software threads but also
for optimized hardware implementations of data-parallel functions—the hardware
threads—without sacrificing the expressiveness and portability of the application
description.

An example for a multi-threaded software application is sketched in Listing 13.1.
The application comprises a thread that receives packets streaming in via ingress
mailbox mbox_in, processes them in a user-defined way, sends the processed
packets to egress mailbox mbox out, and updates a packet counter stored in
a shared variable protected by lock count mutex. Using standard APIs for
message passing and synchronization, the software thread accesses operating system
services in an expressive, straightforward, and portable way. As an added benefit,
such a thread description manages to clearly separate thread-specific processing
from operating system calls.

The same thread’s ReconOS hardware implementation is shown in Fig. 13.2,
partitioned into similar thread-specific logic and operating system interactions. The
thread’s data path is implemented in the thread-specific user logic and is only limited
by available FPGA resources. All requests and interactions that the hardware thread
needs to have with the operating system are captured in the OS synchronization
finite state machine and channeled to the operating system kernel through the OS
interface (OSIF). This mechanism enables seamless operating system calls from
within hardware modules. The thread developer specifies the Operating system
synchronization state machine (OSFSM) using a standard VHDL state machine
description, as shown in Listing 13.2. For accessing operating system functions
in this state machine ReconOS provides a VHDL library that wraps all operating
system calls with VHDL procedures. A particular state-machine design pattern lets
the OS-controlled signal done (line 46) temporarily, inhibit the transition of the
OSFSM to the next state, effectively allowing blocking operating system calls—
such as mutex_lock () —to suspend hardware thread operations.
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Listing 13.1 Example of a stream processing software thread using OS services [AHL1 14b]
extern mutex t xcount mutex; // mutex protecting packet counter

extern mgd_t mbox_in, // ingress packets
mbox_out; // egress packets

1

2

3

4

5 void sthread_a_entry( void scount_ptr ) {

6 data_t buf; // buffer for packet processing
7
8

while ( true ) {

1 / read(count) (MBOX_OUT, data_out) y

oo e
/ mutex_lock < data_out

(COUNT_MUTEX)

9 buf = mbox_get( mbox_ in ); // receive new packet
10 process ( buf ); // process packet
1 mbox_put ( mbox_out, buf ); // send processed packet
12 mutex_lock( count_mutex ) ; // acquire lock
13 ( (count_t) xcount_ptr )++; // update counter
14 mutex unlock( count mutex ) ; // release lock
15 }
16 }
(T T ReconOS Hardware thread - - --------------------- p
|
|
: 0S synchronization finite state machine (OSFSM) User logic (custom data path) :
: |
X transitions occur only when |
1 OS interface is ready :
X run I
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Fig. 13.2 A ReconOS hardware thread comprises the OS synchronization finite state machine and
the user logic implementing the data path

As a consequence, the OSFSM in VHDL closely mimics the sequence of
operating system calls within the equivalent software thread: it reads a packet from a
mailbox, passes it to a separate module to be processed, writes the processed packet
back to another mailbox, and increments a thread-safe counter. The description of
the actual user logic, however, may well differ from the software realization, as
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Listing 13.2 OS synchronization FSM for a stream processing hardware thread [AHL 14b]

1
2
3
4
5
6
7
8

9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48

OSFSM: process(clk, reset)
begin

if reset = ‘1’ then
state <= GET_DATA;
run <= ‘0’;

osif reset (o_osif , i_osif);
memif_ reset (o_memif, i_memif) ;
elsif rising edge(clk) then

case state is
when GET_DATA =>
mbox_get (o_osif,i osif,MB_IN,data_in,done) ;

next_state <= COMPUTE;

when COMPUTE =>

run <= ‘1’;
if ready = ’'1’ then

run <= '0’;

next_state <= PUT_DATA;
end if;

when PUT DATA =>
mbox_put (o_osif,i_osif,MB_OUT,data_out,done) ;
next_state <= LOCK;

when LOCK =>
mutex_lock(o_osif,i osif,CNT MUTEX, done) ;
next_state <= READ;

when READ =>
read(o_memif,i_memif,addr, count,done) ;
next_state <= WRITE

when WRITE =>
write(o_memif,i memif,addr,count + 1,done);
next_state <= UNLOCK;

when UNLOCK =>
mutex_unlock(o_osif,i osif, CNT_MUTEX, done) ;
next_state <= GET_DATA;

end case;

if done then state <= next state; end if;

end if;

49 end process;

this is the area where the fine-grained parallel execution of an FPGA-optimized
implementation can realize its strengths—unhindered by the necessarily sequential
execution of operating system calls.
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13.4 System-on-Chip Architecture

The ReconOS run-time system-on-chip architecture provides the structural foun-
dation to support the multi-threading programming model and its execution on
CPU/FPGA platforms. Figure 13.3 shows a conceptual overview of a typical
ReconOS system that is partitioned into three parts: (1) application software, (2) OS
kernel and (3) hardware architecture. The application’s software and the OS kernel
are usually executed on a main CPU. The operating system provides APIs, libraries,
programming model objects, device drivers, and further low-level functions such as
memory management.

The ReconOS run-time environment consists of hardware components that pro-
vide interfaces, communication channels, and other functionality such as memory
access and address translation to the hardware threads. Additionally, the run-time
system comprises software components in the form of libraries and kernel modules
that offer an interface to the hardware, the operating system, and the application’s
software threads.

Fig. 13.3 Conceptual view

of a typical ReconOS applications
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A key component for multi-threading across the hardware/software boundary
is the delegate thread. 1t is a light-weight software thread that interfaces between
the hardware thread and the operating system. When a hardware thread needs to
call an operating system function, it forwards this request through the operating
system interface (OSIF) to the associated delegate thread using platform-specific
(but application-independent) communication interfaces. The delegate thread then
calls the operating system functions on behalf of its corresponding hardware thread.
From the OS kernel’s point of view, hardware threads are completely hidden behind
their respective delegate threads. From the application programmer’s point of view,
the ReconOS run-time environment completely hides the delegate threads and other
ReconOS internals. Thus, an application programmer only needs to take care of the
application’s hardware and software threads.

This delegate mechanism together with the unified thread interfaces gives
ReconOS exceptional transparency regarding the execution mode of a thread, i.e.,
whether it runs in software or hardware. While the delegate mechanism causes
a certain overhead for executing OS calls, the resulting simplicity of switching
thread implementations between software and hardware greatly facilitates system
generation and design space exploration. Furthermore, the delegate mechanism
allows us to quickly implement any OS service for hardware threads and to easily
port the ReconOS layer to new operating systems.

A ReconOS system-on-chip architecture is typically composed of a main
CPU, several reconfigurable slots, a memory subsystem, and various peripherals.
Hardware threads are sitting in reconfigurable slots, which have been defined at
design time. The reconfigurable slots have two static interfaces, one to the operating
system (OSIF) and another to the memory subsystem (MEMIF). The ReconOS
concept is rather general and has been ported to several FPGA families, main
CPU architectures, and host operating systems (see Sect. 13.8). For the remainder
of this chapter we describe the implementation of ReconOS v3.1, which is the
most recent version of ReconOS targeting Xilinx Virtex-6 FPGAs and utilizing a
MicroBlaze/Linux environment. An example architecture with one CPU and two
reconfigurable slots is depicted in Fig. 13.4.

] Reconfigurable Slot 0 Memory
CPU ReLc_snkOS | Subsystem
" nu
Software . [ — Memory
Thread 4 Hardware Thread A — 1—-+| Arbiter
Delegate“ 2l - | MeMF
Thread A | Reconfigurable Slot 0 MMU
LS — Peripherals;
s UART
?:'W:tg ¢ 4 Hardware Thread A 4= Bus #— Ethernet,
res Master ICAP,
I ] | L I ] etc.

" Interconnect

Fig. 13.4 A ReconOS hardware architecture with a CPU and two reconfigurable hardware slots
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Fig. 13.5 A finite state machine nested within the OSFSM handles the communication between
the hardware thread and the OS (via OSIF and delegate thread). The OSIF contains two FIFOs that
connect the hardware thread with the CPU. The operating system forwards the hardware thread’s
requests to the respective delegate thread where the request is carried out

A POSIX-like library of VHDL procedures assists developers with creating
the OSFSM for a hardware thread. We have already introduced four procedures
in Listing 13.2, namely mutex_ lock/unlock () and mbox_get/put ().
Internally, these VHDL procedures contain nested finite state machines (FSMs) that
communicate with the delegate threads over the OSIF. The relationship between the
OSFSM, a nested FSM of the mutex_lock procedure and the OSIF is outlined in
Fig. 13.5.

We use a dedicated communication protocol that encodes an OS request as a
sequence of words that is written into the outgoing FIFO o _osif. The sequence
contains the identifier of the OS call and a call-specific number of parameters.
The delegate thread reads the request and calls the required OS function, i.e.
mutex_ lock (), on behalf of the hardware thread. When the mutex has been
locked, the delegate sends an acknowledgement over the thread’s incoming FIFO
i osif. Other functions such as mbox_get also send a return value back to the
hardware thread. The nested state machine and the OSFSM are synchronized via the
handshaking signal done.

Developers can conveniently access the main memory using dedicated VHDL
library of read/write procedures. These procedures encode the requests and auto-
matically transfer data between the hardware thread’s local memory and the memory
subsystem using two unidirectional FIFO queues. The memory subsystem arbitrates
and aligns the hardware threads’ memory requests. It supports single word as well as
burst accesses of arbitrary lengths. For Linux systems, it implements a fully-featured
memory management unit (MMU) that translates virtual to physical addresses.
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The MMU includes a translation lookaside buffer (TLB), which autonomously
translates addresses using the Linux kernel’s page tables [APL11].

13.5 Tool Flow

We have developed an automated tool flow that generates, if necessary, the system-
on-chip architecture design and compiles the application software for ReconOS
systems. A high-level overview of the current ReconOS tool flow (version 3.1) is
shown Fig. 13.6.

The required sources comprise the software threads, the hardware threads and
the specification of the ReconOS hardware architecture. We code software threads
in C and hardware threads in VHDL, using the ReconOS-provided VHDL libraries
for OS services and memory access. An automatic synthesis of hardware threads is
not part of the ReconOS project; developers are, however, free to use any hardware
description language or high-level synthesis tool to create hardware threads.

ReconOS extends the process for building a reconfigurable system-on-chip using
standard vendor tools. On the software side, the delegate threads and device drivers
for transparent communication with hardware threads are linked into the application
executable and kernel image, respectively. On the hardware side, components such
as the OS and memory interfaces as well as support logic for hardware threads are
integrated into the tool flow. The ReconOS System Builder scripts assemble the
base system design and integrate the hardware threads into a specified reference
design. Bus interfaces, interrupts, and I/Os are connected automatically. The build
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Fig. 13.6 Tool flow for assembling a ReconOS system on a Linux target. ReconOS-specific steps
are outlined bold
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process then creates an FPGA configuration bitstream for the reference design using
conventional synthesis and implementation tools.

During design space exploration, the developer will usually create both hardware
and software implementations for some of the threads. Switching between these
implementations is a matter of replacing a single thread instantiation statement, e.g.,
using rthread_create () instead of pthread create (). Such a decision
for software or hardware can even be taken during runtime, see Sect. 13.7.

Recently, our efforts have focused on the development of a more abstract
interface to the ReconOS build tools. We have created the ReconOS Development
Kit (RDK) that further automates the design and implementation of ReconOS based
systems. Once configured, the RDK is able to map a system consisting of hardware
and software thread to a supported platform, defined by hardware architecture,
vendor tool-flow, and host operating system. Figure 13.7 illustrates the vision behind
the RDK. Currently, we support Virtex 6 and Zynq-based FPGA boards with Linux
as the operating systems.

Reference Designs Scripts Recon0OS Runtime
| Hardware | Software Hardware Software

XUP || WL605 || Zed-

V5 Board -
ISE Linux Block SDK Library
Design ,—l
. XUP
Xilkernel ML605 ) ‘ Ecos Package
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C0S Board €0s Linux Library
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Hardware| thread_a.vhd | | thread_b.vhd |

Vendor and Open Source Tool-Chains

COnﬁg linux_ml1605.conf ecos_zyng.conf

Fig. 13.7 The ReconOS development kit (RDK) maps source descriptions of hardware and
software threads to back-end tool-chains supporting different target platforms and operating
systems
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While software threads can be debugged in-system with relative ease, for
instance by setting breakpoints or cycling though the instructions step-by-step, this
is generally not possible for hardware threads. Instead simulation is used to gain
insight into the inner workings of a hardware module in order to identify bugs
and incorrect behaviour. Simulation of hardware is usually performed in a so-
called testbench environment that supplies the necessary inputs (stimulus) to the
tested module. The RDK helps in that respect by mapping hardware threads to
simulation targets, supplying a fully functional testbench environment supporting
operating system interactions and memory accesses. This also allows for simulating
aReconOS system with software and hardware threads without requiring a hardware
synthesis and place and route process. This capability does not only improve the
ability to debug hardware threads, but also speeds up the design and verification
process by omitting the hardware implementation flow.

13.6 Case Study: Video Object Tracker

In this section we present a detailed case study to illustrate how a software developer
can use our structured, step-by-step development process for porting a monolithic
software application—a video object tracker—to an implementation for a hybrid
CPU/FPGA platform.

We initially start with an open-source software implementation of a video object
tracker [HLP11] for desktop computers. A particle filter continuously tracks the
current position and approximate outline of a selected object in a video sequence. It
is a stochastic method that tracks several estimates (particles) of the current position
and outline in parallel. The filter evaluates each particle by comparing its color
histograms with a reference histogram of the target object. It processes the video
frames sequentially and highlights the currently best particle in each frame, as can
be seen in Fig. 13.8.

The particle filter is divided into three stages. First, it samples the particles
according to a given system model (sampling stage). Second, it computes the color
histograms of all particles for the current video frame and compares them with the
reference histogram of the target object. It weights the particles according to these
comparisons, such that a particle has a high weight if its histogram is similar to
the reference histogram (importance stage). Finally, the particle filter duplicates
particles with high weights and discards particles with low weights (resampling
stage).

The particles filter is a great candidate for a ReconOS implementation. Its
implementation can be highly parallelized since the particles are independent of
each other and can therefore be processed in parallel. The first two filter stages,
sampling and importance, can also be pipelined. In the following, we describe the
transformation of a monolithic software implementation to a multi-threaded, hybrid
ReconOS implementation step-by-step.
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Fig. 13.8 Design space exploration for a video object tracker: the graphs show the execution times
per frame for different hardware/software mappings for an example video (taken from [Hes13]).
A pure software mapping is labeled with sw and hybrid hardware/software mappings with one to
four hardware threads are labeled with Aw. The index defines the number of observation (o) and
importance (i) threads in hardware [AHLT 14b]

In a first step, we rewrite the monolithic C-code into a multi-threaded imple-
mentation that can execute on a desktop computer. The C-code can be naturally
transformed into threads, where each filter stage is implemented as a software
thread. In contrast to the initial C-code, we use four stages: sampling, observation,
importance, and resampling. We have decided to introduce an additional observation
stage, which computes the color histograms of the particles. The importance stage
then only compares color histograms. Our multi-threaded video object tracker
supports to instantiate multiple threads per filter stage. We implement our threads as
POSIX threads (pthreads) under Linux and use message boxes and shared memory
for synchronization and communication between threads.

In a second step, we port our multi-threaded software implementation to our
target processor that is embedded on a Xilinx FPGA. We receive the video stream
over an Ethernet interface using a TCP/IP socket. This transformation step usually
requires only little effort. The desktop and system-on-chip platforms show many
similarities. Both run Linux as operating system and support the same application
programming interfaces (APIs).

In a third step, we profile the performance of the individual filter stages and
decide which software threads should be also implemented as hardware threads.
We identify that the particle filter spends most time to compute and compare color
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histograms. We therefore implement the observation (o) and importance (i) stages
as ReconOS hardware threads. This step requires the highest implementation effort,
because it requires the programmer to write VHDL code.

We can use ReconOS to perform a design space exploration of hardware/soft-
ware mappings by simply instantiating the appropriate number of hardware and
software threads. Figure 13.8 shows the tracking performance in time of several
mappings for a video where a soccer player moves towards the background. The
mapping Aw,,; uses four hardware threads and outperforms the other mappings
(that have fewer hardware threads) while the player is still in the foreground.
The computational demand of the filter decreases significantly when the player
moves into the background. In this case, the mapping Aw; that uses just a single
importance hardware thread shows comparable results. This simple scenario shows
that the best hardware/software mapping might depend on the current workload.
Therefore, it can be beneficial to update the mapping at runtime. ReconOS supports
dynamically adapting the hardware/software mapping by using the dynamic partial
reconfiguration feature of Xilinx FPGAs as explained in section “Dynamic Partial
Reconfiguration™.

13.7 Applications of ReconOS

Since its creation, ReconOS has been used in numerous research projects. In
the following, we briefly present selected ongoing projects to show the wide
applicability of the approach.

Dynamic Partial Reconfiguration ReconOS defines a standardized interface for
hardware threads, which simplifies exchanging them, not only at design time but
also during runtime using dynamic partial reconfiguration (DPR). DPR allows
for exploiting FPGA resources in unconventional ways, for example, by loading
hardware threads on demand, moving functionality between software and hardware,
or even multi-tasking hardware slots by time-multiplexing. ReconOS supports
DPR by dividing the architecture in a static and a dynamic part. The static part
contains the processor, the memory subsystem, OSIFs, MEMIFs, and peripherals.
The dynamic part is reserved for hardware threads, which can be reconfigured into
the hardware slots. Our DPR tool flow builds on Xilinx PlanAhead and creates the
static subsystem and the partial bitstreams for each desired hardware thread/slot
combination. Time-multiplexing of hardware slots is supported through cooperative
multi-tasking [LP09a] and preemptive hardware multi-tasking [HTK15].

Autonomous Network Architectures ReconOS has been used to implement
autonomous network architectures that continuously optimize the network protocol
stack on a per-application basis to cope with varying transmission characteris-
tics, security requirements, and compute resources availability. The developed
architecture [KBNH14] autonomously adapts itself by offloading performance-
critical, network processing tasks to hardware threads, which are loaded at runtime
using dynamic partial reconfiguration. The autonomous network architecture was
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evaluated on a distributed smart camera network that communicates over encrypted
channels [HHK14].

Self-adaptive and Self-aware Computing Systems Another line of research also
leverages the unified software/hardware interface and partial reconfiguration to
create self-adaptive and self-aware computing systems that autonomously optimize
performance goals under varying workloads. For example, we have created self-
adaptive implementations of the particle filter presented in Sect. 13.2 that start and
stop additional threads on worker CPUs and in reconfigurable hardware slots to
keep the resulting frame rate for the video object tracker within a pre-defined band.
In the EPiCS project' funded by the European Commission, we even advance
the autonomy of computing systems and enable them to optimize for diverse
goals such as performance, energy consumption and chip temperature based on
the current quality-of-service requirements, workload characteristics and system
state [AHL* 14a].

High-Performance Computing So far ReconOS has been used in embedded
systems where the CPU and the hardware cores are implemented in Xilinx platform
FPGAs. The general approach of ReconOS to provide a reconfigurable comput-
ing platform with a unified multi-threaded programming model, the associated
structured development flow, and the portability between reconfigurable computing
platforms, is equally attractive in a high-performance computing context. For exam-
ple, ReconOS is currently being evaluated for use in high-speed data acquisition and
particle physics applications.? In current work® we also are studying how ReconOS
can be ported to x86-based server systems that attach FPGA accelerator cards via
PCle.

13.8 Availability of ReconOS

ReconOS has been actively developed since its inception in 2006 at the University
of Paderborn. Since then it has gone through three major revisions and has been
ported to several operating systems and hardware platforms.

* Version I used the eCos operating system running on PowerPC CPUs embedded
in Xilinx Virtex-2 Pro and Virtex-4 FPGAs.

* Version 2 improved on the original version by providing FIFO interconnects
between hardware threads, adding support for the Linux operating system,
and offering a common virtual address space between hardware and software
threads.

Thttp://www.epics-project.eu.
Zhttp://openlab.web.cern.ch/ice-dip.
3hitp://stb901.uni-paderborn.de.
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e Version 3, which was released in early 2013, is a major overhaul that streamlines
the hardware architecture towards a more lightweight and modular design.
It brings ReconOS to the Microblaze/Linux and Microblaze/Xilkernel archi-
tectures and has been used extensively on Virtex-6 FPGAs.

e Version 3.1 supports Xilinx Zynq platforms on ARM Cortex/Linux and ARM
Cortex/Xilkernel architectures and utilizes the AXI bus in an improved archi-
tecture.

ReconOS is available as open source and follows a public development model
that encourages contributions by third parties. The source code and further informa-
tion is available at http://www.reconos.de.

13.9 Related Work on Operating Systems
for Reconfigurable Computing

In this section, we present an overview on the initial motivations for and origins of
operating systems for reconfigurable computing in the late 1990s and outline the
subsequent and recent developments in the field.

The introduction of the partially reconfigurable Xilinx XC6200 FPGA series in
the mid 1990s and, later on, the JBits software library for bitstream manipulation
inspired researchers to investigate dynamic resource management for reconfigurable
hardware. Early works, e.g., [Bre96, CCKH00, BKS00], drew an analogy between
tasks in software and so-called virtual or swappable hardware modules and studied
fundamental operations such as scheduling; placement, relocation and defragmenta-
tion; slot-based device partitioning and reconfiguration schemes; and inter-module
routing. Although these works suggested to centralize resource management in
a runtime layer for convenience, an integration with a software OS was not a
predominant design goal. The very few projects that resulted in implementations
used FIFOs or shared memory to interface reconfigurable hardware modules with
other parts of an application running in software. However, the nature of these
hardware modules was still that of a passive coprocessor, which was fed with data
from software tasks.

After the development of more sophisticated prototypes, e.g., a multimedia
appliance using multitasking in hardware [NCVT03], several researchers, e.g.,
[ANJT04, SWP04, BWHCO06], concurrently pushed the idea of treating hardware
tasks as independent execution units, equipped with similar access to operating
system functions as their software peers. Around 2004, these projects fundamen-
tally changed the concept of reconfigurable hardware operating systems since
the emerging prototypes turned hardware modules into threads or processes and
offered them a set of operating system functions for inter-task communication and
synchronization. These approaches can be considered the first operating systems
directly dedicated to reconfigurable computing.
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Soon after these first operating systems have been developed it was found
that promoting hardware tasks to peers of software threads while carrying over a
manually managed local memory architecture was too restrictive. Thus, researchers
have studied how hardware tasks can autonomously access the main memory. For
reconfigurable operating systems that build on general purpose OS such as Linux,
this meant that virtual memory had to be supported. The first approaches, e.g.,
[VPIO5, GCO7], solve this challenge by creating a transparently-managed local copy
of the main memory and modifying the host operating system to handle page misses
on the CPU. To improve the efficiency of accessing main memory, especially for
non-linear data access patterns, ReconOS has later pioneered a hardware memory
management unit [APL11] for hardware modules that translates virtual addresses
without the CPU.

Current research projects on operating systems for reconfigurable computing
differ mainly with respect to whether a hardware module is turned into a process,
a thread or a kernel module, and in the richness of OS services made available
to reconfigurable hardware. While projects such as BORPH [SBO0S] choose UNIX
processes, Hthreads [ASAT08] and ReconOS use a light-weight threading model
to represent hardware modules. More recently, SPREAD [WYZ™12] started to
integrate multi-threading and streaming paradigms, while FUSE [IS11] focuses on
a closer, more efficient kernel integration of hardware accelerators.

Finally, the LEAP operating system, which is presented in detail in Chap. 14
in this book, is built on the idea of socket-like latency-insensitive communica-
tion channels between hardware and software modules. Through these channels,
communication but also STDIO functions can be handled. Additionally, memory
buffers that can be shared among modules are provided as part of the operating
system. ReconOS provides a superset of these functions and offers additional
synchronization and inter-process communication mechanisms.

Compared to other approaches leveraging the threading model, especially
Hthreads that focuses on low-jitter hardware implementations of operating system
services, ReconOS with its unified hardware/software interfaces allows us to offer
an essentially identical and rich set of OS services to both software and hardware
threads. ReconOS does not require any change to the host OS, which leads to a
comparatively simple tool flow for building applications, to an improved portability
and interoperability through standard OS kernels, and to a step-by-step design
process starting with a fully functional software prototype on a desktop.

13.10 Summary

ReconOS is an open source operating system layer for FPGAs which is particularly
attractive for developers with a software development background. Due to the deep
semantic integration of hardware accelerators into an operating system environment
and the use of standard operating system kernels, hardware threads can access
a rich set of operating system functions. Since hardware threads and software
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threads share the same operating system interfaces they become interchangeable
from the application’s perspective. This allows ReconOS to support a step-by-
step development process in which a multi-threaded application is ported to a
hybrid hardware/software version, by porting the most profitable threads from
software to hardware one by one. In addition the ReconOS approach allows for
rapid design space exploration at design time and even migration of functions
across the hardware/software border at run-time. Our experience from our research
projects and numerous student projects conducted at our universities shows that
these features can significantly lower the entry barrier for reconfigurable computing
technology.
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Chapter 14
The LEAP FPGA Operating System

Kermin Fleming and Michael Adler

In contrast to modern software, current FPGA programming environments remain
primitive. Many of the abstractions typically available in general purpose systems:
high-level languages, abundant libraries, code portability, and automatic resource
management, do not exist for FPGAs. Creating a design for an FPGA often requires
that programmers start from bare metal, bringing up not only their application,
but significant operating infrastructure including memory controllers, I/O systems,
and debugging facilities. All of these activities require large amounts of time,
slowing the FPGA development process to the point that the relative simplicity
of software becomes very attractive. Worse, getting an application to work once
is insufficient. The lack of portability of FPGA programs between platforms
and generations means that building the next generation implementation usually
requires significant re-implementation. Although FPGAs offer attractive power and
performance relative to traditional sequential processors, they are not commonly
used in systems architecture because they are painful to program.

To address these development issues, we built the LEAP FPGA operating
system. Like a software operating environment, LEAP provides both basic device
abstractions for FPGAs and a collection of standard I/O and memory management
services. These abstraction layers shield programs from the complex details of
the underlying FPGA hardware while simultaneously providing design portability
across all FPGAs supported by LEAP.

LEAP resembles general-purpose operating systems in function. However,
because LEAP targets FPGAs, its implementation is necessarily very different.
In general-purpose systems, user programs are organized into processes and threads
that share a common execution substrate with the operating system: the processor
and its memory system. Interaction between the program and the operating system
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generally occurs by storing data in memory and then changing contexts to the
operating system by a function call. FPGAs differ from this general-purpose model
in two ways, both of which profoundly affect the organization of LEAP.

In the FPGA, user programs and the operating system share neither a common
execution substrate nor a common, global view of storage. Instead, FPGA programs
are organized as spatially distributed modules, with portions of the FPGA fabric
dedicated to each of the different functions of the program and the operating
system. To accommodate this distributed programming model, LEAP’s fundamental
abstraction is communication. To enable portable, abstract communications, LEAP
builds upon the concept of latency-insensitive design [CMSO01]. LEAP formalizes
latency-insensitive design as latency-insensitive (LI) channels, programming con-
structs that provide point-to-point, reliable communication but do not explicitly
specify the timing or the implementation of the communication. By decoupling the
semantics of communication from the physical and timing details of an implemen-
tation of data transmission, latency-insensitive channels slacken the requirements of
synchronous timing while preserving the parallelism intrinsic to hardware designs.
This timing relaxation is critical in providing operating system abstractions on
FPGAs, since the timing behavior of operating system services must necessarily
change between platform and program configurations. We will demonstrate, by
example, that latency-insensitive channels can capture most important operating
systems functionalities in FPGAs while providing a user-friendly programming
interface.

In general-purpose systems, new instructions can be introduced into a program at
any time during execution. As a result, general-purpose operating system activities
occur at program run time: context-switching is lightweight and operating system
instruction flows incur overhead only when those instructions are executed. FPGAs
are typically programmed only once per execution. While possible, including
dynamic management layers within a static FPGA program incurs fixed area and
performance overhead that lasts for the life of the FPGA program. To avoid these
penalties, most resource management decisions in LEAP, for example memory
and clock management, are made statically at compile time. This decision results
in a deeper coupling of compiler and operating system. LEAP’s static incorpo-
ration of resources resembles early software operating systems, which required
re-compilation to integrate new functionalities. A key contribution of this work is an
extensible compiler interface that permits the integration of new operating systems
services within the LEAP framework.

LEAP aims to allow developers to focus on core algorithms, while retaining the
full flexibility of FPGAs. In building platforms for FPGAs, there is much to be
learned from general-purpose operating systems. We will highlight the similarities
and differences between LEAP and traditional software operating systems and the
importance of communication to FPGA design. We will also explore the unification
of operating-systems features, many of which have been previously evaluated
individually, into a conceptual whole that has never been available, previously, for
FPGAs.
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14.1 LI Channels: The LEAP Design Philosophy

Operating systems are built on abstraction. In software, memory serves as the
primary operating system abstraction layer. Core features like virtual memory,
communication, I/O, and dynamic library linking all occur through memory. Even
communication between the user program and the operating system, in the form of
system calls, occurs through memory. Memory-as-abstraction is enabled in part by
the dynamic time-multiplexing capabilities of the processor and in part by support
for sharing within the processor memory system.

In contrast to general-purpose systems, FPGAs have no intrinsic concept of a
globally shared storage or execution infrastructure. Moreover, constructing such
an infrastructure in the FPGA as a fundamental operating system abstraction
layer is inefficient. FPGAs are comprised of small state and logic elements which
are typically dedicated to a single task and which communicate with each other
using wires.

Communication of data, as opposed to the storage of data in memory, is
fundamental to the FPGA. However the basic communication primitives provided
by the FPGA, wires, are not sufficiently abstract for an operating system. Wires
in the FPGA are synchronous, and clock edges have concrete semantic mean-
ing. Synchronous semantics present a problem for operating systems: the timing
behavior of operating system services necessarily changes depending on the user
program and the platform targeted. Although it is possible to automatically abstract
away synchronicity within an FPGA program [BTD"97], the overhead of such
abstraction is very high. Thus, communication over pure wires cannot be used as
a basic interface into the operating system. To enable FPGA operating systems, a
higher-level abstraction for communication is required.

LEAP introduces latency-insensitive channels as its primary communication
abstraction. Latency-insensitive channels have operating behaviors and interfaces
similar to the concurrent FIFO modules commonly available in hardware and
software programming libraries—a simple enqueue and a simple dequeue operation
along with some status methods, e.g. notFull and notEmpty, for use by the
user program in determining when to send and receive data. Syntactically, latency-
insensitive channels consist of named send and receive endpoint pairs [PACEQ9],
instantiated with the following syntax:

module mkA (Empty);

SEND(Bit(42)) toB = mkSend("AtoB");
endmodule
module mkB (Empty);

RECV(Bit (42)) fromA = mkRecv(™AtocB");
endmodule

Semantically, these pairs represent a reliable, in-order channel from the sender
to the receiver. Unlike library FIFOs, which have a fixed implementation within
a given library, the latency-insensitive channel denotes abstract communication
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and makes only two basic guarantees. First, the channel guarantees reliable,
FIFO delivery of messages. Second, the channel guarantees that at least one
message can be in flight at any point in time. Consequently, a latency-insensitive
channel may have dynamically-variable transport latency and arbitrary, but non-
zero, buffering. At compile time, LEAP’s compilation infrastructure (Sect. 14.5.1)
matches channel endpoints and produces physical implementations of the latency-
insensitive channels.

LEAP makes use of the flexible semantics of the latency insensitive channel
in three ways. First, LEAP leverages the abstract nature of latency insensitive
channels as a means of orchestrating communications between FPGA and CPU and
across FPGAs (Sect. 14.2). Second, LEAP relies on latency-insensitive channels to
safely decouple its services, like memory, from the user program (Sects. 14.3 and
14.4). Finally, LEAP uses latency insensitive channels to abstract physical device
interfaces, providing portability among platforms (Sect. 14.5).

14.2 LEAP Communications

When a programmer instantiates a latency-insensitive channel, he asserts that the
potentially variable timing behavior of the channel does not impact the functional
correctness of the design. Thus, the semantics of latency-insensitive channels permit
LEAP to select any channel implementation that preserves the latency-insensitive
channel semantics, e.g. reliable, FIFO message delivery. Much like the POSIX
socket interface, LEAP uses latency-insensitive channels both for communication
between hardware modules within an FPGA and for communication with other
types of programs on external platforms. At compile time, LEAP analyzes the
user program and discovers channels that terminate externally. These channels are
tied, via a synthesized communications network, to physical devices capable of
communicating externally.

In addition to managing communication between hardware and software, LEAP
leverages latency-insensitive channels to map user programs automatically across
arbitrary sets of FPGAs [FAP™ 12]. This operation is analogous to the mapping of
threads to a multi-core processor by a general purpose operating system. Mapping
an FPGA program to multiple platforms first requires a mechanism for partitioning
the program. Again, LEAP leverages latency-insensitive channels. We define a
latency-insensitive module to be a region of a program that interacts externally
only by way of latency-insensitive channels. LEAP views all user programs as
collections of latency-insensitive modules, a subdivision that can be thought of as
the FPGA equivalent of operating system process or thread management. To map a
program across FPGAs, LEAP allocates the latency-insensitive modules comprising
the program to the available FPGAs in the system based on area consumption
and communication. As in the case of FPGA-processor communications, LEAP
synthesizes a networking layer to transport messages between connected FPGAs.
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Figure 14.1b shows an example of a simple program that has been mapped to two
FPGAs. As in software operating systems, no changes are necessary in the user
program to make use of LEAP’s partitioning.

Latency-insensitive modules offer a good balance between the abstraction needed
for operating-system-level management and program expressivity. Moreover, this
balance is achieved without a significant impact to program performance or area
consumption: most latency-insensitive channels will be implemented as RTL FIFOs,
preserving the performance of hand-coded RTLs. Latency-insensitive modules are
already a common design paradigm in hardware systems, both at the system
and micro-architectural levels. For example, SoCs targeting FPGAs are generally
framed in terms of network-on-chip protocols, which are usually latency-insensitive.
Within individual hardware blocks, it is a common design practice to decouple
components with guarded FIFO interfaces. Because LEAP’s latency-insensitive
channel syntax and semantics resemble existing RTL structures, LEAP’s latency-
insensitive channel syntax can often be substituted directly into existing RTL.

Although LEAP primarily targets RTLs mapped to FPGAs with some support for
software, latency-insensitive modules admit a diversity of programming substrates
and languages. So long as the external latency-insensitive interface semantics of a
module are maintained by the programmer, modules may have any implementation
internally that programmers require. Such implementations include not only RTL,
but also arbitrary software either on an external host processor or an internal soft
processor.

14.3 LEAP Scalable FPGA Memory Hierarchies

Although we argue that abstract communication is the fundamental building block
of FPGA programs, memory is critical to many applications. FPGAs offer a rich
set of memory primitives: SRAM resources are available within the fabric, FPGA
boards include off-chip DRAM, and host virtual memory may be accessible over a
communications link. Unfortunately, these memory resources are often difficult to
use, in part because FPGA programmers are fully exposed to the low-level details
of the memory: the number of memory banks, the width of memory, timing, and the
number of beats per memory access. Memory systems in general purpose machines
are also complex, and large fractions of processor die area are consumed by memory
management: caches, memory controllers, and virtualization hardware. However,
most user programs in general purpose systems are insulated from the complexity of
the memory hierarchy through a simple, abstract load-store interface to virtualized
memory. The internal complexity of the memory hierarchy improves throughput
dramatically, but the simple interface to memory allows programmers to focus on
algorithms and enables program portability.

LEAP provides a software-like in-fabric memory abstraction for FPGA pro-
grams. LEAP’s memories have a latency-insensitive interface with three methods:
read-request, read-response, and write. A LEAP program may instantiate as many
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Fig. 14.1 Two implementations of a LEAP-based program. Dotted lines represent the logical
latency insensitive channels. These channels are inferred at compile time from the combination
of user source and platform devices. LEAP targets multiple FPGA platforms and communicates
with software by stretching channels across chip boundaries. (a) A complete LEAP program. (b)
The same program, mapped to two FPGAs
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memories as needed and these memories may have arbitrary size, even if the target
FPGA does not have sufficient physical memory to cover the entire requested mem-
ory space. Programmers instantiate LEAP memories using a simple, declarative
syntax:

module mkModuleA();
MEM_IFC(ADDR,DATA) privl = mkMem();

endmodule

module mkModuleB();
MEM_IFC(ADDR,DATA) priv2 = mkMem();

endmodule

LEAP provides two basic interfaces to memory: private and shared [YFAE14].
Each declaration of a memory resource creates a latency-insensitive interface to
memory. For shared memories, programmers declare a named coherence domain
and instantiate a LEAP coherence controller in addition to the memory interface
itself.

LEAP’s memory primitives are portable among and across FPGAs. Like the load-
store interface of general-purpose machines, LEAP’s memory interface permits
complex backing implementations. LEAP’s memory interface does not explicitly
state how many operations can be in flight, nor how quickly in-flight operations will
be retired. As was the case in communications, this ambiguity provides significant
freedom of implementation to the operating system. For example, a small memory
could be implemented as a local SRAM, while a larger memory could be backed by
a cache hierarchy and host virtual memory. LEAP leverages this freedom to build
complex, optimized memory architectures on behalf of the user, bridging the simple
user interface and complex physical hardware.

At compile time, LEAP aggregates the declared user memory interfaces into a
cache hierarchy, making use of whatever physical memory resources are provided
by the platform, as shown in Figs. 14.1 and 14.2. This hierarchy is optionally backed
by an interface to host virtual memory, as shown in Fig. 14.1, which provides the
illusion of an arbitrarily large address space. LEAP’s backing memory hierarchy
automatically multiplexes host virtual memory by explicitly assigning segments of
virtual memory to each memory region declared in the user program, preventing
independent memory regions from interfering with one another within the cache
hierarchy.

14.4 LEAP Service Libraries

One of the most attractive features of software programming is that minimal
programs, e.g. hello world, are small and easy to understand, even for a novice
programmer. Contrast the conciseness and clarity of a basic software program
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with a basic RTL program running on an FPGA. The difference is stark! The
chief distinction between the software and RTL program is not the complexity
of the binary: the software binary is comprised of tens of thousands of unique
instructions. Rather, the perceived simplicity of software arises from the availability
of good libraries, which mask system complexity through intuitive APIs and strong
composability. By combining communications and memory primitives with an
extensible compilation infrastructure, LEAP is able to provide libraries that rival
software in their scope and simplicity. Indeed, the programmer-supplied portion of
LEAP’s hello world application is only a dozen lines of code.

Although we argue that the LEAP libraries are as easy to use as software libraries,
there are some obvious differences. Software libraries consist of instruction flows
to which the user program gives control. LEAP service libraries take a distributed
approach: service libraries consist of clients and servers which interact over latency-
insensitive channels. The typical architecture of a service library, a central server
and multiple clients, is shown in Fig. 14.3. To make use of the service library,
programmers instantiate client modules in their code. Client modules provide a
latency-insensitive local interface framed in terms of request and response methods,
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interface STDIO(type data);

Void fopen_req(GLOBAL_STRING_UID nameID,
GLOBAL_STRING_UID modelD);
STDIO_FILE fopen_rsp();

Void printf(GLOBAL_STRING_UID msgID, List(data) args);
Void fprintf(STDIO_FILE file, GLOBAL_STRING_UID msgID,
List(data) args);
endinterface

Fig. 14.4 A portion of the interface to an STDIO client. LEAP supports most common STDIO
functions

as in Fig. 14.4. Pairwise, these methods resemble software function calls, but are
decoupled to enable hardware pipelining. At runtime, clients issue requests to the
controller over the network. These requests are serviced by the controller, often by
invoking a software routine using a latency-insensitive channel which terminates in
software. Direct composition with software libraries, for example, using software
to allocate physical memory or handling printing to a terminal, greatly simplifies
the FPGA-side server implementation and underscores the value of good hardware-
software communications support.

To facilitate the aggregation of library clients, LEAP provides a broadcast
communication primitive: the latency-insensitive ring. Participants in the broadcast
instantiate named ring stops. At compile time, ring stops are aggregated by name
and connected in a ring topology via latency-insensitive channels. Rings are
advantageous for service libraries because they both carry a low area overhead and
provide a convenient way to describe library implementations in which the number
of clients is unknown prior to compilation. Indeed, the overhead is so low that
LEAP’s debugger service library can instantiate debugger clients at every latency-
insensitive channel in a program, enabling programmers to monitor channel state at
runtime.

LEAP provides many basic service libraries, including assertions, statistics
collection, command line parameters, locking, and synchronization. For brevity, we
describe only Standard I/0O (STDIO) in detail.

STDIO is one of the most fundamental libraries available in C and often serves
as an introduction to software programming. LEAP’s STDIO service, part of which
is listed in Fig. 14.4, provides the functional analog of STDIO in the FPGA. Like
its software counterpart, LEAP STDIO provides a simple API which masks the
complexity of actually writing formatted data to a file.

Programmers instantiate STDIO clients and invoke methods on them. Internally,
STDIO clients marshal programmer commands into a packet format, which is then
streamed over the service ring network to an STDIO server. The server transmits
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these packets to software on an attached processor. Software then invokes the
appropriate C STDIO functions using the FPGA-supplied arguments.

One issue in Standard I/O is dealing with strings. Strings, which are logically
unbounded, are expensive to manipulate directly in the FPGA. To avoid the
area overhead of string manipulation in fabric, we borrow a tactic from C and
cast strings as pointers. At compile time, string literals are replaced by pointers,
the GLOBAL_ STRING UID. When FPGA programs manipulate strings, as in
snprintf, they do so by passing string pointers to software. Software creates
a new string and returns a pointer to the new string back to the FPGA. LEAP’s
string pointer management makes use of the SoftServices interface described in
Sect. 14.5.1 to keep track of string pointers at compile time.

14.5 LEAP Platforms

Physical devices are hardly abstract, whether they are attached to a general purpose
processor or to an FPGA. Interfacing to these devices requires a deep understanding
of device behavior, the details of which can leak back into user code if the
interface programmer is not careful. This is especially true in FPGAs, where device
timing details are often absorbed by user logic. For example, a design targeting an
FPGA with an attached SRAM may absorb and come to rely on the fixed-latency
behavior of a particular SRAM. As a result of this dependence, the design becomes
unportable.

To deal with physical devices, software operating systems utilize hardware
abstraction layers. Each device provides some basic API which is common among
all devices of that type. LEAP adopts this approach. In LEAP, classes of physical
devices each provide a uniform, abstract device interface. Rather than a call-
based API, LEAP devices provide a latency-insensitive-channel-based API, usually
framed in terms of request and response channels. Internally, any implementation
may be chosen by the driver writer, but the external driver interface is constrained
by the LEAP compilation flow to use only latency-insensitive channels.

LEAP-enabled FPGA platforms may be viewed as a collection of driver modules
for these low-level devices, in much the same way that 1inux/arch is used
to differentiate low-level interfaces to different processor architectures. For each
target platform, LEAP accepts a platform description file which includes abstract
drivers for each physical device on the platform. LEAP uses this configuration file
at compile time to instantiate those drivers required by the user program. As with
software, a platform description must be written only once per platform and may be
shared by all programs targeting the platform. To represent systems with multiple
platforms, LEAP simply bundles together descriptions of single platforms with a
description of platform interconnectivity.

Some FPGA platforms will not provide all of the resources required by all of
the LEAP services. To maintain compatibility with such platforms, LEAP provides
virtualized device implementations. These devices may rely on support from an
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external platform, either FPGA or processor, which can provide the service. In
the case of LEAP Scratchpads, if no backing memory is available on the local
FPGA, backing memory on a remote FPGA or on a remote processor may be
used instead. LEAP virtual services resemble the memory-based virtualization
layers typically found in software, such as ramdisk. LEAP’s latency-insensitive
approach directly enables platform virtualization: virtual devices are functionally
equivalent to physical devices but their timing and performance may be radically
different.

LEAP’s FPGA platform abstraction directly enables its multiple FPGA par-
titioning capabilities. Because operating system interfaces are consistent across
platforms, LEAP can map user modules to any platform irrespective of the services
and resources provided by that platform.

14.5.1 LEAP Compilation

In software, applications typically access system resources by making a request to
the operating system for an interface object. For example, fopen requests access to
a file by way of a FILE handle. From the programmer’s perspective, this interface is
very clean: a request results in a simple object, which the program then manipulates.
In this transaction, the operating system functions as an intermediary between
the program and the underlying file system resource, and the operating system’s
responsibility is to provide an efficient implementation of the accessor object on
behalf of the user program.

Resource access in LEAP is functionally analogous to software resources.
Programmers request abstract resource accessor objects, which are then supplied
by LEAP. The key difference between LEAP and software operating systems is
when accessor objects are created. Since instructions incur low overhead, resource
management decisions in general purpose systems can be made dynamically and
the operating system has the freedom to optimize its provided implementation at
runtime. Although LEAP makes FPGA resource management decisions dynam-
ically wherever prudent, dynamic management of resources in an FPGA often
requires both additional control and storage overhead. These overheads frequently
outweigh the benefit of dynamism: for point-to-point communication, a FIFO is
much cheaper to implement than a network router. Avoiding dynamism at runtime
means that resource allocation decisions must be made at compile time, resulting
in a tighter coupling of compiler and operating system than is typically found in
modern general-purpose operating systems.

Consider, as an example, the problem of allocating clocking resources in an
FPGA. On the surface, clocking seems like a trivial problem in FPGA design: the
designer instantiates a new clock primitive and ties it to the design RTL. However,
even a resource as simple as a clock benefits from abstraction. Clock primitives are
finite resources within the FPGA fabric. If a program instantiates too many clocks, it
will not fit in the FPGA, even if these clocks all have the same frequency. A second
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issue in clocking is portability. Since FPGA clocks are parameterized in terms of
ratios, including a fixed clocking primitive in the RTL immediately renders a design
unportable.

To address these issues, LEAP provides the SoftClocks service. Programs ask for
a clock at a particular frequency. Internally, the service maintains a list of previously
requested frequencies. In response to a user request for a clock, the service searches
its list for a clock of that frequency. If found, the service returns the appropriate
clock object, which may be used directly in the program. Otherwise, the service
instantiates a new clock, inserts it in the clock list, and returns the new clock. All
clocks generated by the service are derived from physical clocks provided by the
target platform. User designs are thus portable, depending only on clocks derived
from the SoftClocks service.

SoftClocks illustrates a general resource management paradigm: a resource
management service gathers information at compile time about how a resource
is used within an FPGA program, and then creates an efficient implementa-
tion of the resources required by the program. To manage general classes of
FPGA resources at compile time, LEAP defines a programmer-extensible compiler
interface, called SoftServices. LEAP uses SoftServices to manage many diverse
functionalities, including clocking, the implementation of the latency-insensitive
channels described in Sect. 14.1, and the construction of efficient scan chains for
run-time debugging.

Conceptually, SoftServices are objects that contain arbitrary, service-specific
state. Services provide two interfaces: a private compiler interface and a user
interface, by which programmers interact with the service object and request
resources. Service objects register with the LEAP compiler, and the compiler
invokes the private interface at certain points during compilation. In a typical service
implementation, the user program invokes the public service interface to request
resource access. The service builds a representation, often a list, of these requests. At
the end of program compilation, LEAP invokes a service-provided handler, which
allows the service to examine its data and produce an efficient, program-specific
service implementation.

SoftServices provide the following interface to the LEAP compilation flow:

interface SOFT_SERVICE(type service_state);
service_state initService();
Void finalizeService{service_state state);
Void handleModule(service_state state);
endinterface

Each service may maintain whatever state information it requires, as represented
by the structure service_ state. Services must provide three functions to the
compiler. initService is called at the start of compilation and finalize-
Service is called at the end of compilation. This permits a service to view
all requests for resource accessors for the entire program, thereby permitting the
construction of globally efficient management hardware. handleModule is called
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at each latency-insensitive module, allowing services to make regionally-scoped
implementation decisions.

SoftServices may make use of other SoftServices. For example, the implemen-
tation of named latency-insensitive channels interacts with the SoftClocks service
by automatically inserting channels with clock domain crossings when necessary.
To capture these inter-service dependencies, LEAP allows system programmers to
specify the order in which the private service interfaces should be invoked by the
compiler, in much the same way that init . d manages service startup in a general
purpose operating system.

LEAP’s SoftService infrastructure requires that the RTL compiler have strong
support for static elaboration. Although legacy compilers are limited in this
respect, recent hardware-oriented compilers [BVR™ 12, Blu04] provide sufficient
infrastructure for LEAP.

14.6 Related Work

Previous work on FPGA operating systems has focused on adding communications
support within existing general-purpose operating systems. BORPH [SB06] views
FPGA programs as UNIX processes that can communicate externally by means of
UNIX pipes. HThreads [ASA™108] takes a similar processor-centric approach, in
which fabric-based accelerators are treated as threads that coordinate with other
activities on a soft processor. FSMLanguage [Agr09] proposes a new domain-
specific language for finite state machines. FSMLanguage abstracts communica-
tions between hardware and software FSM components, using channel constructs
analogous to latency-insensitive channels. LEAP generalizes the concepts put
forward in these works by supporting channel-based communication between
arbitrary combinations of execution platforms, including multiple FPGAs. LEAP,
BORPH, HThreads, and FSMLanguage all provide strong compilation support for
mapping user programs to the FPGA.

In addition to communication, researchers have investigated memory abstrac-
tions for FPGAs. CoRAM [CHM11] proposes a cache interface similar to LEAP’s
memory [AFP11] interface. Whereas LEAP allows the user RTL to control the
memory interface directly, CORAM advocates control by way of control threads
programmed using a C-like language. Unlike LEAP, CoORAM does not address
communication and provides no support for shared memory within or among
FPGAs. FSMLanguage provides a basic memory abstraction, but its treatment of
memory is limited to scheduling the ports of in-fabric SRAM resources.

Both Xilinx and Altera have produced OpenCL [Khr(O8] tool flows which
simplify the coupling of a processor and FPGA. These flows allow a user to specify
a C kernel, which the tool will then implement on the FPGA. We believe OpenCL is
a good option for a class of kernel-based programs, and LEAP’s latency-insensitive
primitives can capture the kernel model of computation. However, OpenCL does
not expose the full flexibility of FPGAs. For example, the kernel model proposed
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by OpenCL does not capture any design in which a kernel makes requests back to
the host for service or in which kernels communicate with each other dynamically.
LEAP’s interfaces are intended to facilitate the expression of a more general class
of parallel programs.

14.7 Conclusion

FPGAs have great potential as platforms for many kinds of computation. However,
the difficulty of programming FPGAs hinders their adoption in general systems.
In this work, we presented the general philosophy and implementation of LEAP,
an operating system for FPGAs. Like a software operating system, LEAP reduces
the burden of programming FPGAs by providing uniform, abstract interfaces to
underlying hardware resources, automatic management of these resources, and
powerful system libraries that aid program design. LEAP achieves these goals
through formalizing the principle of latency-insensitive design and providing strong
compiler support for automating implementation decisions.

We believe that LEAP, or at least the design principles embodied in LEAP,
is applicable to a wide range of other systems. We have found LEAP partic-
ularly useful in describing programs partitioned across multiple, heterogeneous
platforms. The rise of programmable accelerators has made heterogeneous systems
increasingly attractive. Because programming heterogeneous systems fundamen-
tally requires strong communication support and because accelerator-based systems
share many characteristics with FPGAs, we see LEAP as being valuable in
programming and managing these new architectures.

LEAP is open-sourced under a BSD-style license and may be freely downloaded
at http://leap-fpga.org.


http://leap-fpga.org

Part IV
SoC and Overlays on FPGAs



Chapter 15
Systems-on-Chip on FPGAs

Jeffrey Goeders, Graham M. Holland, Lesley Shannon,
and Steven J.E. Wilton

This chapter provides an overview of SoCs on reconfigurable technology. SoCs
are customized processing systems, typically consisting of one or more processors,
memory interfaces, and I/O peripherals. FPGA vendors provide SoC design tools,
which allow for rapid development of such systems by combining together different
IP cores into a customized hardware system, capable of executing user-provided
software. Using FPGAs to implement an SoC provides software designers a fabless
methodology to create and tailor hardware systems for their specific software work-
loads. The vendor tools support a vast range of system architectures that can span
from small embedded microcontroller-like systems to multiprocessor/Network-on-
Chip architectures.

This chapter describes the advantages and limitations of designing SoCs on
reconfigurable technology, what is possible with modern FPGA vendor SoC design
tools, and the main steps in creating such systems. The SoC development tools
for FPGAs are rapidly changing. As such, this chapter intentionally does not
contain step-by-step instructions; instead, it focuses on the overarching concepts
and techniques used in the latest SoC tools.
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15.1 Challenges and Opportunities for SoC
on Reconfigurable Technology

A SoC is a complete hardware processing system, often including one or more
processors, memory controllers, and I/O interfaces. Each processor executes user-
provided software, which can perform computational tasks and manipulate the
operation of many different I/O devices. By mapping these architectures to an
FPGA, the software designer has the opportunity to create a custom system platform
while remaining fabless. Furthermore, designing and deploying their system on an
FPGA enables them to repeatedly modify the system architecture as needed. This
flexibility empowers software designers to create hardware tailored specifically to
the software workload that it will execute.

SoCs on FPGAs are typically designed as a set of hardware blocks, connected
together, as shown in Fig. 15.1. The hardware blocks, commonly referred to as IP
(intellectual property) cores, each provide a piece of functionality to the system, and
the interconnect represents wires and buses that allow the blocks to communicate.
The vendor design tools provide a library of IP cores, including processors, memory
controllers, communication ports, multimedia interfaces, and more. Users are able to
select and connect these components through a graphical interface, allowing them to
quickly create a system with the key elements they require. This design abstraction
allows users to rapidly build processing systems, ranging from simple designs with
a light-weight processor and UART, to large systems with multiple processors, fast
I/0, and multimedia capabilities.

FPGA-based SoCs offer many advantages over both custom digital hardware
circuits, and traditional x86-based processing systems. They key strengths of these
platforms are:

Rapid Fabless Design Vendor provided IP libraries allow users to create an SoC
very quickly; blocks can be added with a few mouse-clicks, and the communi-
cation interconnect is automatically handled by the design tools. In a matter of
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minutes, a complete hardware system, with processor, memory, and I/O can be
created. This reduces design time over full custom hardware designs, lowering
costs, and providing a fast time-to-market.

Flexibility FPGA-based SoCs can be made as small and simple or as large and
complex as needed. Simple designs for embedded solutions can be developed
and implemented on small, inexpensive FPGAs; or large systems with many
processors can be created, targeting high-capacity FPGAs. This flexibility
means the user only pays to deploy and power the minimum features required.
This can reduce both production and operating costs over x86-based processing
systems, while limiting non-recurring engineering costs if a redesign is needed.

Reconfigurability The reconfigurable nature of FPGAs means that the processor
systems can be altered as needed, even after deployment. If software workloads
change, the entire hardware system can be reconfigured. Designers can also
incorporate hardware accelerators—custom compute units—into the SoC on
the reconfigurable fabric of the same die, facilitating their integration. In fact,
there is also the potential to create a Reconfigurable system-on-chip (RSoC),
where the system’s underlying architecture (e.g. the hardware accelerators) are
reconfigured during the system’s operation to support additional services.

These numerous advantages are offset by a set of limitations and challenges. For
example, compared to high performance x86-based processor systems, the operating
frequency, and thus performance, may be much lower. The flexibility that FPGAs
offer comes at the cost of much lower clock speeds, and SoC designs implemented
only using an FPGA'’s reconfigurable fabric generally operate in the range of 100s
of MHz. Although some modern FPGAs offer embedded ARM processors, running
at 1-1.5 GHz, the processing performance will still be lower than modern x86-based
systems. Despite this difference in clock speeds, it is still possible to obtain high
performance SoCs on FPGAs, even beating the performance of x86-based systems,
by leveraging the opportunities for a custom platform that better leverages spatial
and temporal parallelism, through multiple processor systems and/or using hardware
acceleration [TPD15].

Another potential drawback of using an FPGA-based SoC, versus a traditional
x86 system, is the software environment. Although FPGA vendors make it easy to
generate the underlying hardware for an SoC, the native software environment is
generally “bare metal”. In other words, there is no operating system, no filesystem,
limited driver support, no TCP/IP support, and designers are often limited to
programming in C or C++. Although all of these limitations can be overcome, by
expanding the SoC, this may require greater expertise, and take significant time to
design/integrate, implement and debug within the system. Conversely, x86 systems
offer these features out of the box.

The remainder of this chapter describes the process for creating an FPGA-based
SoC, comprising both the hardware system and the accompanying software. The
hardware design is described in Sects. 15.2 and 15.3, with the former describing
the process of creating a bare-bones, processor-based SoC using both Altera and
Xilinx design tools, and the latter outlining how this basic system can be expanded
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to interface with the many peripherals that are often offered on FPGA boards.
Section 15.4 describes how to program these systems, detailing the software
development process from a basic bare-metal approach, to a full operating system.
Section 15.5 outlines the process for expanding a system to contain multiple
processors, and outlines the considerations and limitations of such an approach.

15.2 Basic Hardware System

This section describes the setup of a very basic FPGA-based SoC design, consisting
of a processor running software, a UART to provide stdin/stdout communication
with the system, and a GPIO to control LEDs.

15.2.1 Basic SoC Design

Figure 15.1 provides a conceptual diagram of a basic SoC design. The blue boxes
represent instances of IP cores, and provide the main functionality of the design.
The thin lines show single wire connections and are used to propagate signals
between blocks, such as clock and reset signals. The wider lines represent buses,
which provide communication between cores using standard bus protocols. The grey
pentagons at the far left and right of the design represent external connections off the
FPGA. They are used to connect to specific FPGA pins, which are wired to different
devices on the printed circuit board on which the FPGA is mounted. The following
describes the purpose of each IP core for the basic system shown in Fig. 15.1:

Processor At the heart of the system is a processor, which executes the software and
is (usually) responsible for managing the flow of data throughout the system.
This may be a soft processor that is implemented using reconfigurable logic on
the FPGA; or a hard processor that is embedded into the FPGA'’s silicon (see
Sect. 15.2.3).

Local Memory Connected directly to the processor is a local memory. This is an
on-chip memory, meaning it uses memory resources within the FPGA, versus
using a separate memory chip on the circuit board. This memory can be used
for storing both the program instructions and data assuming they do not require
too much memory. This option is preferential when possible as it has extremely
low memory latency, often a single clock cycle. As shown in the figure, the
instruction and data buses from the processor are connected to the memory.

Debug Module The debug module is connected to the processor and is necessary
to enable interactive debugging of the software from a connected workstation.

Clock Source This core contains a clock input, which is driven from a pin on the
FPGA, usually connected to a clock oscillator on the circuit board. The core
is responsible for propagating the clock signals to the rest of the system, and
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ensuring that they are properly synchronized throughout the system, handling
issues of clock skew and jitter.

Reset This core takes a reset input, often from a push-button on the circuit board,
and forwards it to all components in the system.

UART This core provides logic to handle a serial UART connection, which can be
used to provide stdin and stdout for the software running on the processor.
GPIO The General Purpose Input/Output (GPIO) core allows the processor to get
and set the value of external pins. In Fig. 15.1, the core is connected to LEDs

on the circuit board, allowing the processor to control the LEDs.

Bus Interconnect The processor communicates with IP cores through bus transac-
tions. In the system shown, the bus connects the master device (the processor)
to multiple slave devices (the UART, GPIO, and on-chip memory). This allows
the processor to provide data to the other IP cores, such as sending UART data,
or request information back, such as reading memory values in the on-chip
memory. This is described in greater detail in Sect. 15.2.2.

Altera and Xilinx both offer SoC design tools to target their respective FPGAs.
Although the tools differ in their visual style, they both offer similar core function-
ality. The design tools provide Graphical User Interfaces (GUIs) that allow a user
to build a system that looks very similar to Fig. 15.1; IP blocks can chosen from
vendor supplied IP libraries, and connections can be made with a few mouse clicks.

Creating the Basic System with Xilinx Vivado

This section describes creating the basic system from Fig. 15.1 using the Xilinx
Vivado tool flow (version v2015.2). This system can be quickly set up by creating a
new project, and selecting the Base MicroBlaze example project.

The created system will appear similar to Fig. 15.1, and should contain the same
IP cores. There should also be one extra core, the AXI Interconnect; this core
provides the logic for the bus transactions between the processor and slave devices
(UART and GPIO). This functionality is implied in Fig. 15.1; however, the Vivado
tools show this logic explicitly.

During project creation, the user must choose from a set of preconfigured
FPGA boards. By doing so, the external connections are automatically bound to
the appropriate pins on the FPGA, and the IP cores are configured as needed.
For example, if the Virtex-7 VC707 board is chosen then the following will
automatically be set: (1) the clock input will be connected to a 200 MHz oscillator
on the circuit board, and the clock source IP core will be configured to scale this
down to 100 MHz, (2) the reset input will be connected to a push-button on the
circuit board, and (3) the I/O pins for the UART and LEDs will automatically be
connected to appropriate pins. To use an FPGA board not in the preconfigured
list, first choose a supported board to create the system, then alter the configuration
options as appropriate.
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Once the system is created and configured, it must be synthesized before it can be
placed on the FPGA. The Generate Bitstream command in Vivado will perform the
process of translating the SoC design to an FPGA bitstream. This process can take
several hours for large, complex, SoC designs; however, for this simple example it
should take only a few minutes. Once this is complete, the Hardware Manager tool
can be used to connect to the FPGA and configure it to implement the SoC circuit.
After this is complete, the FPGA will contain a full processor system; however,
it will sit idle unless it is given software to execute, which is described later in
Sect. 15.4. If at any point the SoC design is modified in Vivado, the synthesis and
programming process will have to be repeated.

Creating the Basic System with Altera Qsys

This section describes creating the basic system using the Altera Qsys tool (version
15.0). The visual format differs slightly from Fig. 15.1; rather than a block diagram,
the IP blocks are shown in a list format, each with a sub-list of available connections.
Connections between blocks are shown in a matrix format, and connections can be
made by clicking the intersections of the wires.

Although the tool does not include a pre-configured example system, the system
shown in Fig. 15.1 can be created with a few mouse clicks. This is done by locating
the Clock Source, NIOS II Processor, On-Chip Memory, UART, and Parallel I/O
cores from the IP Catalog and adding them to a new (empty) design. After the cores
are added, the connections should be made as shown in the figure, with the following
exceptions: (1) in Qsys, the Clock Source core handles the connections for both the
clock and reset signals, and (2) the debug module is automatically contained within
the processor, and is not displayed as a separate block.

External connections are added using the Export column. In our example design,
this includes the clock input, reset input, UART interface, and LED connections. In
Qsys, these external connections are not automatically connected to the appropriate
FPGA pins. Instead, the Qsys design must be imported into the Quartus II software
in order to specify how these external connections are connected to the physical
pins on the FPGA. This requires creating a hardware description language (HDL)
wrapper around the Qsys system, and using the Quartus II software to add pin
constraints. This process does require some familiarity with the hardware design
tools, and further documentation can be found in the Quartus II handbook [Alt15c].

Performing synthesis using the Altera tools is a two-step process. First the
Generate HDL command must be issued in Qsys, which will translate the SoC high-
level description to a digital circuit description. Next, Quartus II is used to generate
an FPGA bitstream. Again, complex designs may take hours to synthesize; however,
this basic system should only take a few minutes. Once complete, the Programmer
tool is used to program the FPGA with the hardware bitstream. If the user changes
the design in Qsys, the entire synthesis process must be repeated.
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Table 15.1 Address space configurator provided by FPGA Vendor SoC tools

Device Address
Processor instruction bus
<> On-chip memory 0x4000-0x7FFF
Processor data bus
<> On-chip memory 0x4000-0x7FFF
— UART 0x0000-0x001F
— GPIO 0x8000-0x8003

15.2.2 Address Space Layout

In SoCs, the primary method for IP cores to communicate is through memory-
mapped bus transactions. An IP core that initiates these transactions is referred to as
a master on the bus, and a core that waits and responds to requests is referred to as
a slave. A master can provide data to a slave via write operations, and can retrieve
data via read operations. To facilitate this memory-mapped system, each device on
the bus must be assigned its own unique region in the memory space.

Table 15.1 provides an example of an address space configuration, similar to
the editors provided in the Vivado and Qsys tools, for the system in Fig. 15.1. The
following provides a description of this example address space, assuming Altera [P
cores are used:

On-Chip Memory This memory is a 16k on-chip memory, and thus requires a 16k
address space. As shown in the Address Map, it is assigned the range 0x4000—
O0x7FFF. If the processor performs a write to address 0x4008, the bus logic will
recognize that this request falls within the address space of the on-chip memory
and propagate the request to the on-chip memory controller, which will write
the specified value to address 0x0008 in the memory.

UART The communication interface with the UART consists of six 4-byte regis-
ters, so it is assigned a 32 byte address space (rounded up to the nearest power
of 2), located at 0x0000-0x001F. The processor accesses data received by the
UART by reading from the first register address 0x0000, and can send messages
by writing to address 0x0004. The other four registers are used for status and
configuration.

For most IP cores, this low-level communication is handled by the included
software drivers; however, for some IP cores it may be necessary to interact at the
register level (see Sect. 15.4). It does not matter where in the overall system address
space each core is located; however, the designer must make sure that (1) no IP cores
overlap in the address space, and (2) each IP core is assigned a large enough address
space to handle its functionality. Both Vivado and Qsys provide menu options to
automatically assign the addresses to the IP cores.
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15.2.3 Hard vs. Soft Processors

The previous examples of SoCs on Xilinx and Altera FPGAs both used soft
processors. A soft processor is implemented using the standard logic resources on
an FPGA. The other option is to use hard processors, which are embedded into the
silicon during fabrication of certain models of FPGAs. For example, Altera offers
an SoC variant of their FPGAs, such as the Cyclone V SoC, Arria V SoC, Arria
10 SoC, and Stratix 10 SoC, which includes a hardened ARM multicore processor.
Likewise, Xilinx offers the Zyng and Zynq Ultrascale line of FPGAs, also with a
multicore ARM processor. In both Vivado and Qsys, the hard processor is added to
the system using the IP catalog, in the same manner as a soft processor or other IP
blocks. When using a hard processor, the user must provide a boot ROM that is used
to initialize the hard processor and start up the system. This is typically connected
to the system using a flash medium, such as an SD card.

There are several trade-offs between using hard and soft processors, primarily
regarding performance vs. configurability, that is now discussed.

Performance

Soft processors are implemented using the highly reconfigurable fabric of FPGAs,
which introduces overheads versus a hardened implementation of a processor. The
operating frequency of a softcore processor depends on many factors, including
FPGA generation, model, processor configuration, and utilization of the FPGA
fabric. For the latest generation of FPGAs, the maximum operating frequency of
the soft processors provided by the Qsys and Vivado tools is in the range of
165-469 MHz [Alt15b, Xill5a]. In contrast, the ARM cores provided on the latest
FPGAs operate in the 1.0-1.5 GHz range [Xill5g, Xill5f, Alt14b]. In addition to
operating at a higher frequency, the hard processors offer architectural advantages,
providing greater performance, even when scaled to the same frequency. The soft
processors offer performance in the 0.15-1.44 DMIPs/MHz range [Xil15b, Alt15b],
while the hard ARM processors provide about 2.5 DMIPs/MHz per core [Xil15f].

Although hard processors offer superior performance, they are limited to the
quantity that are fabricated onto the chip; whereas soft processors can be continually
added to the design until there is no more room on the FPGA. This can provide
performance advantages for a soft processor system, provided that the software
workload can be sufficiently parallelized.

Configurability
The main advantage that soft processors offer is configurability. Options can

be added or removed to trade off between performance and FPGA resource
requirements. Removing options from the processor will likely lower performance.
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For example, if the processor is configured without a floating point unit, but the
user’s software includes floating point instructions, the software versions of floating
point operations will incur a significant penalty. However, it has added benefits,
such as fitting on a smaller and cheaper FPGA, requiring less power, or being able
to fit more processor instances on the same chip. Some of the configuration options
available with the Altera Nios II and Xilinx MicroBlaze processors include:

* Adding instruction and/or data caches, and changing cache sizes.

* Adding specialized computation units, including hardware multipliers and
dividers, and floating-point units.

* Adding a memory management unit (MMU), memory protection unit (MPU),
or exception handler.

* Configuring the resources allocated for debugging, including the number of
hardware breakpoints or memory watchpoints.

* Adding branch prediction, and configuring the branch prediction cache size.

The benefit of configurability is not just in the initial design phase; the reconfig-
urable nature of FPGAs allow these options to be changed even after production
roll-out. All that is required is that the FPGA be reprogrammed with the new
bitstream.

15.3 Expanding the Hardware System

This section describes how to expand the basic system from the previous section
to include additional functionality, such as memory systems, I/O interfaces, and
hardware accelerators.

15.3.1 Expanding Using IP Cores

SoC hardware designs are expanded by adding IP cores from the vendor supplied
libraries. Behind the scenes, IP cores typically consist of two parts: a hardware
description language (HDL) circuit, which implements the functionality of the core,
and a software driver that facilitates the user’s software communications with the
hardware (described in Sect. 15.4). When the hardware system is synthesized, the
HDL circuits from all IP cores are bundled together into a single large design, which
is implemented on the FPGA using the programmable fabric.

Some FPGAs may contain permanent hard logic for a processor, DDR memory
controller, PClIe interface, or other I/O interfaces; this is done to provide higher
performance for commonly-used IP cores, and to meet timing requirements that
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would be difficult to obtain using soft logic. In these cases, the IP cores are still
added to the design in the same fashion, but instead of using the FPGA fabric, the
SoC circuit will incorporate the existing hard cores on the FPGA. In many cases,
the same version of the IP core from the library will be used for both hard and soft
logic implementations; the soft logic version will automatically be used if the FPGA
lacks a specialized hard core.

The vendor provided IP library is sufficient for most designs; however, if needed,
IP cores can be obtained from other sources, such as:

* 3rd party IP cores. These can be obtained from online open-source repositories,
or purchased as licenses from other companies.

 User-created hardware accelerator IP cores generated using the HLS tools or
traditional HDL flow.

» Packaging the user-created SoC design into an IP core, for use in a hierarchical
SoC design.

Some cores provided in the vendor libraries are not available in all editions of
the design tools. For example, the lowest performance configuration of the soft
processors are available with the most basic editions of the design tools, while the
higher performance configurations require upgraded editions of the design tools.

To add an IP core to the design, first select it from the IP library, and then add
it to the layout. Next, the connections need to be made to the rest of the system.
Figure 15.2 shows the common connections that are available; note that not all cores
will have all connection types. The connections should be made as follows:

Clock and Reset Most cores contain clock and reset signals, and usually these
should all be connected to the system wide clock and reset signals. In some
cases IP cores will require a specific clock rate, which may be different from
the system clock (see Clocks in Sect. 15.3.3).

Buses Most IP cores have one or more bus connections to communicate with and
transfer data to other IP cores in the design. Most commonly, the core will
contain a memory-mapped slave bus connection that should be connected to the
master port of the processor (for Xilinx Vivado, rather than connecting directly
to the processor, the connection is made to the AXI Interconnect core, which is
in turn connected to the processor). This allows the processor to communicate
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with and control the IP core (usually through the provided software drivers).
Although memory-mapped buses are common, there are also other bus types,
such as data streaming, or first-in first-out (FIFO) style buses. For example,
when processing video content, it is common to use streaming connections to
feed video frame data from one processing IP core to the next.

Interrupt Some IP cores contain interrupt connections, which should be connected
to the processor (or interrupt IP core, if separate from the processor). These
connections allow the core to generate an interrupt request, which triggers the
processor to halt execution and run the interrupt handler routine.

External External connections are used to connected to signals outside of the SoC.
Typically these are connected to FPGA pins that are physically connected to
various devices on the board (clock oscillator, Ethernet PHY, multimedia codec
chips, etc.)

The connection types listed above, and their descriptions, are not exhaustive, nor
without exception. The user should consult the documentation for each IP core when
adding it to the system. The vendor tools make this easy, and the documentation
can usually be accessed by simply right-clicking on the IP core and selecting the
appropriate menu option.

IP Core Configuration

Most IP cores contain several configuration options. As examples, a UART core will
usually allow you to change the baud rate or error detection schemes, and on-chip
memory will allow you to configure the memory width and depth, number of ports,
latency, and more. The configuration pages for each IP core are usually opened
within the GUI when you add the IP to the design, but can also be accessed later if
modifications are desired. Again, it is best to consult the documentation for each IP
core for full details on the configuration options.

The IP core configuration options are not just on/off switches in a static circuit;
rather, changing the options will actually alter the circuit that is implemented on the
FPGA. If a feature is disabled, it will usually be removed entirely from the circuit;
thus, changes to the configuration options will often affect the number of FPGA
resources required by the IP core. For example, enabling large data and instruction
caches on the processor will consume large amounts of on-chip memory, leaving
less available for the main program memory. If trying to fit many processors on the
same FPGA, one will have to decide between having fewer processors with large
caches and specialized multiply/divide or floating-point units, versus having many
simple processors.
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15.3.2 The Memory System

In the bare-bones system from Sect. 15.2, on-chip memory resources are used for
storing the program instruction and data. On-chip memory has very low latency,
typically providing read and write operations with only one or two cycle delay.
However, FPGA on-chip memory is relatively scarce, ranging from 100s of KBs
in the smallest FPGAs, to 10s of MBs in the largest. In some cases, the memory
may not even be large enough to store the program executable, especially when
large software libraries are linked in. Even if the executable does fit, there may not
be enough remaining memory to provide a sufficiently large stack and heap for the
application.

DDR Memory

To provide a larger memory for both the program and its data, most SoCs contain an
SDRAM memory controller that can access the DDR SDRAM memory module(s)
on the FPGA board. When adding a memory controller, the user will be prompted to
provide timing information for the SDRAM chip; this information can be found in
the datasheet for the memory module. The FPGA vendor SoC tools already contain
preconfigured timing information for certain FPGA boards and memory modules,
so it is not always necessary to manually look up the information.

The SDRAM controller will also require a clock signal, running at a specific
frequency range for the type of memory module used. Some tools offer a wizard
when adding an SDRAM controller, which will also automatically add a clock
generator IP core to your design, while other tools require you to do this manually.
Refer to the documentation for the memory controller IP core for more detailed
information.

Once the SDRAM controller is added to the system, the system needs to be
modified so that the software executable is run from the newly added memory
module. This is done by configuring the software linker, as described in Sect. 15.4.
Finally, although SDRAM is the most commonly used memory type, the vendor
libraries also contain IP cores for interfacing with other types, such as SRAM and
Flash.

15.3.3 Commonly Used IP Cores

The vendor libraries offer IP cores for interfacing with a wide variety of I/O
peripherals. These vary greatly in their complexity; some can be added to the system
with a few clicks and include simple software drivers as their interface; others are
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much more complex and may require expert configuration. The IP cores also vary
greatly in software driver support, ranging from no software driver to large, complex
libraries.

Basic I/O General purpose I/O (GPIO) cores can be used to get and set values of
FPGA pins. In the basic example (Sect. 15.2), this was used to control LEDs;
however, there are many other uses, such as reading the value of switches and
push-buttons, or interacting with simple devices in an embedded environment.

Timers Timer IP cores can be added to the system to provide very high resolution
(cycle-accurate) timers, which are useful for profiling and system scheduling.

Clocks Certain IP cores may require a clock input with a specific frequency; this
is common for DDR memory controllers, audio and video interfaces, and other
I/O devices. In such a case, a Digital clock manager (DCM) or Phase-locked
loop (PLL) can be added to the system. These IP cores are able to derive a new
clock signal with a specified frequency, using the system clock as input.

Ethernet Ethernet is a commonly-used method for providing high-speed commu-
nication between the SoC and other devices. The Ethernet IP cores are designed
to support a very wide range of FPGA boards and system types and, as such, can
be quite complex with many configuration options. However, since it is a widely
used feature, one can often find online step-by-step tutorials for a specific FPGA
board. Included with these cores is software to support the full TCP/IP stack;
allowing the SoC to communicate with standard IP networks as both client and
server.

DMA DMA cores perform memory transfer operations, either within the same
memory, or between two different memories. The processor can request a DMA
operation by providing source and destination memory addresses and transfer
size, and the DMA core will carry out the memory copy operation while the
processor continues on with other tasks. This allows the processor to execute
other code in parallel with the memory operation, increasing performance.

Persistent Storage Many FPGA boards offer SATA, USB or Flash connections
that can be used to interface with persistent storage devices. It may be
straightforward to add IP cores to provide a hardware interface with such
systems; however, often the complexity lies in the software. The software
drivers may only provide primitive interfaces with the devices, leaving the
complex task of file systems and communication protocols up to the user.

Multimedia FPGA boards offer a wide range of multimedia, including audio and
video input and output through a variety of formats and connections. IP cores
are provided to interface with many of these protocols, and in many cases
basic processing (video scaling, cropping, etc.) can be performed using existing
hardware cores without any intervention from the processor. This allows
for high-performance media streaming and processing, while the processor
performs other tasks in parallel.

Hardware Accelerators Most IP cores are designed to provide interaction with
external I/0; however, another class of IP cores, hardware accelerators, use the
FPGA fabric to implement hardware circuits that can perform a task faster than
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the processor (or in parallel with it). Creating such IP cores usually requires
hardware expertise; a HDL circuit that performs the acceleration is wrapped
in logic that provides bus protocols for communication with the rest of the
SoC. However, many modern high-level synthesis (HLS) tools (see Chap. 3),
provide the ability to automatically create a hardware accelerator IP core from
a software description of an algorithm, which could then be imported into the
users SoC design.

PCIe Some FPGA boards offer PCI-Express (PCle) interfaces so that the board
can be inserted into a server system or workstation. PCle allows a high-
speed connection between the host (commonly an x86 processor) and the SoC;
however, such systems are very complex compared to the simple SoC designs
presented here.

15.4 Programming Environment

This section gives an overview of the tools available to software developers that
allow them to write applications targeting SoC platforms, both in the case of bare
metal and with the use of an operating system. Both Altera and Xilinx provide
Integrated Development Environments (IDEs) that integrate with their SoC design
tools to aid the developer in configuring a cross compilation toolchain, using
libraries and vendor supplied IP core drivers, as well as downloading their code
to the target platform and debugging.

15.4.1 Bare Metal Software

Depending on the requirements of an application, the performance overhead and
memory requirements of running an entire operating system kernel may not justify
the benefits gained. This is especially true of soft-processor-based SoCs, which trade
performance per core for configurability. In these cases, a bare metal application
development workflow may be more suitable.

In a bare metal environment, the abstractions commonly provided by an operat-
ing system, including process management, virtual address spaces, and file systems
are unavailable. As a result, the user’s programs have complete access to the
underlying physical memory of the system, without any protection mechanisms.
Since SoC platforms use memory mapped I/O, writing software to control different
I/0 hardware in the system is simply a matter of reading and writing appropriate
memory addresses that get mapped to device registers. For this reason, the languages
of choice for bare metal programming are those that support direct access to
memory, such as C and C++.

To aid software developers, both Altera and Xilinx provide software IDEs
(Altera EDS and Xilinx SDK) that integrate with their respective hardware design
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tools. While there are differences between the IDEs, both are Eclipse-based and
provide developers with tools for application development including: source code
editing, build tools based on GCC, cross-compiler configuration, organization of
applications into projects, board support package generation and customization,
device programming and debugging. Since the soft processor targets within an
SoC are highly configurable, compiler options must be correctly set to match the
hardware configurations in order to build binaries that are compatible with a given
configuration. For example, a soft processor may be configured to use a floating
point unit, in which case it will be able to execute floating point instructions. The
compiler must be passed an option to insert these floating point instructions into the
output binary. This setting of compiler options is just one example of the automation
that these vendor IDEs provide.

Board Support Package

After completing the hardware design for an FPGA-based SoC, the first step toward
developing a bare metal application is to export a hardware description file from the
hardware design tool. In the Altera flow, this is a .sopc file, and in the Xilinx flow
this is a .hdf file. While the exact semantics vary between vendors, this file generally
contains information about the hardware design relevant for software, including a
list of IP cores in the design, their configurations and address space mappings. This
hardware description file is read by the IDE and used to generate and customize a
board support package.

A board support package contains a collection of libraries and device drivers for
peripheral IP, and can be thought of as a minimal low level software layer. A board
support package also contains a header file (system.h in Altera flow, xparameters.h
in Xilinx flow), that defines constants related to the hardware system, for example
interrupt constants, IP core base addresses, etc. These values may be required as
parameters to IP driver Application Programming Interface (API) calls. Since these
values vary dependent on the system configuration, the header file is automatically
generated from the hardware description file for each system.

Both Altera and Xilinx allow a board support package to be customized after it
is first created. Examples of the customizations this enables the user incorporate
include: adding libraries, selecting which software drivers and which respective
versions are included, selecting a device to use for stdin and stdout (e.g. UART
or JTAG), and setting compiler flags. We now discuss the included libraries and
drivers in more detail.

Libraries
The board support package contains at minimum an implementation of the C

standard library, but other libraries can be included as needed. By default, the board
support package will also contain some library code for accessing basic processor
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features including caches, exceptions, and interrupts. The libraries that are available
vary between vendors, but some examples include, bare metal TCP/IP stacks and
file system libraries. More information about the available libraries for bare metal
platforms can be found in [Xill5c, Altl5a].

Drivers

The task of writing software that interacts with various IP cores in the SoC design is
simplified by the availability of drivers that exist for the majority of vendor library
IP. The API level of these drivers varies for each IP block and between vendors.
Lower level drivers typically export functions to access individual device registers
and the programmer must handle manipulating register bits to enable the desired
device functions, via masking and other means. Higher level drivers will usually
provide a more programmer-friendly API that hides the hardware register interface
from the programmer. As an example, a higher level UART driver may provide
functions to set the baud rate and modify serial settings, while a low level driver
would merely export functions to read and write the baud rate bits within a device
register.

Documentation for the Altera and Xilinx IP driver APIs can be accessed by
clicking on the IP block in Qsys and Xilinx SDK respectively.

Application Development

In order to create a new application, a new project can be created in the IDE. This
encapsulation within a project allows the IDE to handle Makefile generation and
setup paths to the various parts of the compiler toolchain. Upon application project
creation, the programmer must select a board support package that the application
will reference, as this allows application code to call into the libraries and drivers
included therein. Multiple applications may share a common board support package.
The Altera and Xilinx IDEs provide a number of sample applications varying
from simple “hello world” programs, to more complex memory and peripheral test
programs.

SoCs often contain multiple different memory regions, including local on-chip
memory, external flash memory and DDR, for example. A programmer can decide
which parts of different code sections (stack, heap, text and data, etc.) map to
which memory regions by configuring the linker with a script. This linker script
also defines the maximum sizes of the stack and heap memories.

Debugging

The Altera and Xilinx IDEs contain device programming features that allow a user
to both configure an FPGA with a bitstream and download executable code to the
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SoC conveniently from within the same interface. Additionally, these IDEs provide
debugging capability, that will likely be familiar to users of Eclipse or other software
IDEs. Software breakpoints, stepping through both C and assembly code, stack
tracing, inspecting variables and viewing memory are all fully supported.

15.4.2 Operating Systems

While developing programs that run on bare metal is sufficient for many application
domains, sometimes it is desirable to make use of the abstractions afforded by
an operating system. This is particularly true if significant code is being reused
that already targets an OS such as Linux, or makes use of standard libraries
(POSIX threads, sockets, etc.). Building an operating system to run on a specific
FPGA board/SoC platform is a more complex task than setting up a bare metal
environment. However, a number of vendor supplied and third party tools exist to
make the process of building a working kernel image for a specific FPGA board
easier and less error prone. While a complete tutorial on configuring and building
an OS image is beyond the scope of this book, we provide an overview of the steps
involved and provide references to additional resources.

Linux is the operating system of choice for use on many embedded computing
platforms. Both Altera and Xilinx have added architectural support for their soft
processors (Nios II and MicroBlaze respectively) to the mainline Linux kernel
within the last few years. However, this support is currently limited to single
processor configurations only. More details on multiprocessor SoCs are given in
Sect. 15.5.

Hardware Requirements

In order for an SoC platform to run a Linux operating system, certain IP cores
must be present in the hardware system. These required IP cores, along with some
commonly included optional cores, are described below:

Processor with MMU Since Linux provides a virtual memory system, the proces-
sor must be configured to use a memory management unit (MMU) to perform
translation of virtual memory address to physical addresses.

Timer A hardware timer is required for the OS to manage software timers.

UART A UART is needed to provide a serial console to the Linux kernel for
printing of messages and to provide the user with a command line shell.

External Memory An external memory such as DDR is required to store the OS
binary and optionally the root filesystem. As a result, this memory must be large
enough to fit these components.

Ethernet (Optional) While not required, including Ethernet in the hardware sys-
tem enables the use of the network stack within Linux. If Ethernet is present,
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the bootloader running on the SoC can be configured to download the OS image
from a development host over a local network. Since Ethernet allows for high-
speed data transfer this can save significant time during development.

Non-volatile Memory (Optional) Optionally, a non-volatile memory such as
NAND flash, or an SD card controller may be included in the hardware system.
The root filesystem can then be mounted to this memory to provide persistent
storage. If this hardware is not included, the filesystem may be mounted in
external memory.

Building and Booting an Operating System Image

The process of generating a bootable Linux operating system image for an SoC
target is similar in many aspects to generating an operating system image for any
other embedded CPU target. The main steps are outlined below:

* Setting up a toolchain

* Configuring and building a bootloader
 Configuring and building the Linux kernel
 Configuring and building a root filesystem
 Specifying a device tree

The first step is to obtain a cross-compiler toolchain for the target CPU that will
be used to compile the various components of the operating system. If the target is a
soft-processor based SoC, these can be obtained from Altera and Xilinx for the Nios
IT and MicroBlaze, respectively. Usually the easiest way to setup these toolchains
is by installing the appropriate vendor IDEs, which are also used for bare metal
application development.

U-boot is the de-facto standard bootloader for embedded targets, including
FPGA-based SoC platforms. U-boot must be configured for the appropriate target
and compiled as a bare metal application. In order to boot Linux, u-boot requires
the kernel binary, a device tree blob (i.e. a binary description of the device tree), and
aroot filesystem.

While Nios II and MicroBlaze support is present in the mainline kernel repos-
itory, both Altera and Xilinx maintain their own kernel source repositories, which
typically also include Linux device drivers for their library IP. After downloading
an appropriate kernel tree, the kernel must be then configured and compiled.

As with other embedded targets, FPGA-based SoC platforms use a device tree
data structure to specify the hardware configuration, including information about
the CPU, physical address space, interrupts, etc. This device tree must be converted
from its text format to a binary format (blob) using the device tree compiler from
the toolchain. Lastly, one must build and populate a root filesystem.

In order to boot the system, the u-boot binary must be downloaded to the target
device, and the kernel binary, device tree and root filesystem should be placed in the
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board’s external memory. This can be achieved via commands at the u-boot prompt.
Once a Linux image has been built and booted successfully, users may wish to write
the u-boot and kernel binaries, root filesystem and device tree blob to non-volatile
memory, such as a NAND Flash or an SD card, if available on the platform. This way
the system can be booted in the future without being connected to a development
host PC.

Additional Resources

Building and booting an operating system for a particular FPGA board can be
a complicated task. Fortunately there is a large amount of information available
online, usually in the form of wikis and user guides, that provide step by step
instructions on how to obtain, configure and build a Linux image for Altera
and Xilinx development boards. Additionally, there are some vendor-supplied and
third party toolkits that aim to make entire embedded Linux development process
easier. These tools include Xilinx’s PetaLinux Tools [Xill15d], Altera’s SoC EDS
suite [Alt14a], and Wind River Linux [Win15].

15.5 Multiprocessor Systems

In this section, we discuss multiprocessor systems for reconfigurable hardware. We
describe how to construct an SoC with multiple processors, including the hardware
required for interprocessor communication. We also give an overview of some of
the unique aspects of writing software for multiprocessor systems including cache
coherency and mutual exclusion.

As stated previously, the Nios II and MicroBlaze soft processors are simple
RISC processors, with limited instructions per cycle (IPC) due to their relatively
low operating frequencies because they are implemented using the logic resources
of the FPGA. To overcome this limitation, a designer can often improve overall
system performance by adding more processors to the system and dividing software
tasks among them. Using a soft processor based system has an advantage in that
the number of processors and each of their configurations can be tuned exactly
to the application task requirements they will execute. For these types of systems,
designers are limited in their choices only by the available logic resources of the
target FPGA device.

15.5.1 Building a Multiprocessor System

Creating a hardware system with multiple processors is a fairly straightforward
task in both Qsys and Vivado. Beginning with a basic single processor system, as



280 J. Goeders et al.

described in Sect. 15.2, additional processors may be added to the design from the
IP core library in the same manner as any other IP core. At a minimum, connections
must be made for each processor to valid clock and reset signals and at least one
memory. In order to save resources, common peripherals, as well as connections to
external memory are often shared between processors in a multiprocessor system.
To implement this sharing in hardware, multiple processors can connect to the
same bus interconnect, which in turn is connected to the shared peripheral/memory.
When connecting multiple processors to the same bus, the design tools are generally
capable of automatically adding the required bus arbitration logic, but this can be
dependent on the type of bus interface being used.

Users can create symmetric multiprocessor systems by configuring each proces-
sor in the system identically. Alternatively, asymmetric topologies can be created by
modifying the configurations for different processors in the system. For example, if
a user knows that only one software task will require floating point operations, only
one of the processors needs to be configured to include a hardware floating point
unit, while the remaining processors will only support integer arithmetic.

Note that these multiprocessor systems are symmetric in that they have the
same processor configuration. They would also share any off-chip memory system.
However, their on chip local memories and caches have no coherency mechanisms
that ensure that if one processor writes data to off-chip memory, the other processors
will evict the same data from their caches as invalid.

Interprocessor Communication

Processors within a multiprocessor system need to communicate for the purposes of
data sharing, synchronization and coordination of tasks. One method for achieving
this interprocessor communication is through the use of a shared memory, as
described above.

Another technique is to provide direct communication between processors with
the use of a FIFO buffer memory. Both Qsys and Vivado, include FIFO IP cores in
their libraries that may be added to a user design in the same manner as any other
IP. FIFOs are directional, and have ports for connecting to a master and slave, for
writing and reading to/from the FIFO respectively. When connecting two processors
with a FIFO, one processor will connect as a master, allowing it to write data into the
FIFO, and the other processor will connect as a slave, allowing it to read data from
the FIFO. To enable bidirectional communication between processors, two FIFOs
must be used.

Coherency and Mutual Exclusion

As suggested previously, two problems that arise when dealing with a shared
memory multiprocessor environment are memory coherency and exclusive access
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to memory. While creating a shared memory multiprocessor system for reconfig-
urable hardware is generally straightforward by following the steps in Sect. 15.5.1,
ensuring cache coherency and exclusive access to memory is not easily achieved.

Implementing hardware to enable cache coherency protocols is a complex task
that is beyond the scope of our discussion. Software developers must take this
lack of coherency into consideration when writing software, as failing to do so
so can lead to bugs that are difficult to diagnose and correct. As such, while an
individual processor’s cache maintains coherency with itself, software designers are
better off viewing these caches as scratchpads that support hardware prefetching and
writebacks to memory and use other mechanisms to maintain coherency system-
wide when there are multiple processors.

For ensuring mutual exclusion, both Qsys and Vivado contain mutex IP cores in
their libraries, that provide implementations of hardware mutexes. Such IP can be
used to ensure exclusive access to memory and other peripherals if required.

Hard Multiprocessors

Although this discussion of multiprocessors focuses largely on soft processor based
systems, as discussed in Sect. 15.2.3, both vendors also ship FPGA devices with
hardened multicore ARM processors. Specifically, Xilinx’s Zynq family of parts
and the Altera SoC FPGA part variants all include embedded ARM cores. Gener-
ally speaking these hardened multiprocessors do have cache coherency protocols
implemented in hardware as well as exclusive memory instructions.

15.5.2 Software for Multiprocessors

In the bare metal software environment, each processor in a multiprocessor system
requires its own application binary that is specifically compiled to account for
its specific processor configuration. As mentioned in Sect. 15.4.1, an application’s
referenced board support package encapsulates this processor configuration and sets
up the compiler toolchain as appropriate. For this reason, the board support package
must target a particular processor in the system. In the case of a single core system,
this defaults to the only available processor, but in a multiprocessor system it may be
necessary to use multiple board support packages, with each one targeting a different
processor. Note that if the targeted processors have identical configurations, as
would likely be the case in a symmetric multiprocessor system, then applications can
share board support packages and all compiled program binaries should be portable
between processors.

If applications targeting different processors within a system are to be located in a
shared memory, developers must ensure that the code sections do not overlap unless
this is specifically intended. This can be achieved by modifying the linker script
which specifies address ranges for each of the code sections within an application
binary. For example, each processor can use their local memory to store their
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individual instruction code and then store any shared data in the shared system
memory.

In a bare metal environment, programmers can write “multi-threaded” style code,
where applications targeting different CPUs run in parallel and synchronize and
share data through global variables. It is often necessary for a single processor
to setup these shared variables and pass references to the other processors in the
system. For such a task, interprocessor communication only through shared memory
may be insufficient and FIFOs may be required to pass memory references between
processors.

Operating Systems

Due to the lack of hardware to allow cache coherency and exclusive memory
accesses, vendor Linux support is currently not implemented for multiprocessor
systems built using either Nios II or MicroBlaze. Multiprocessor support may be
added in future versions of the Linux kernel, however, this would also necessitate a
change in the hardware IP used as well [MSF12].

Conversely, the hardened multicore ARM processors available in certain
devices, are supported in Linux, since they have exclusive memory instructions
and coherency protocols implemented in hardware.

15.6 Conclusions

This chapter provides an overview of how reconfigurable technology can be used to
create custom SoC designs. It describes how the vendor tool flows support the quick
generation of a basic hardware system through a graphical user interface. We have
outlined the varied levels of software support available, ranging from bare metal
systems to those with an operating system as well as third party support.

Currently, the main benefit of creating an FPGA-based SoC is the ability to
create a custom hardware system for a specific embedded application. Software
designers can start with a very basic system and then update and customize it as
needed to include hardware accelerators and/or multiple processors with minimal
non-recurring engineering costs. The FPGA provides a configurable substrate that
allows software designers to remain fabless, while selecting between low cost, low
power, and low performance soft processor based systems to ARM based systems,
to systems that combine both hard and soft processors.

Looking forward, there are some significant opportunities for designing SoCs
on reconfigurable technology. Although there currently is not vendor O/S support
for SMP multicore systems, with the inclusion of multicore ARM processors in
commercial products, there is an increased possibility for this extension. Even now,
it is possible to update the open source Linux kernel for these platforms for those
comfortable with editing kernel code. Another unique opportunity for FPGA-based
SoCs is to leverage the dynamic partial reconfiguration support available from both
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Altera and Xilinx. Dynamic partial reconfiguration is the ability to dynamically
reconfigure the hardware substrate while the application is running. As such, there
exists the possibility to incorporate this functionality into SoC designs on FPGAs to
create Reconfigurable SoCs (RSoCs). While the hardware infrastructure needed to
create RSoCs exists, the necessary vendor tool support still needs to be developed
to make this accessible to non-FPGA experts.



Chapter 16
FPGA Overlays

Hayden Kwok-Hay So and Cheng Liu

Developing applications that run on FPGAs is without doubt a very different
experience from writing programs in software. Not only is the hardware design
process fundamentally different from that of software development, software
programmers also often find themselves constantly battling with the much lower
design productivity in developing hardware designs.

To begin, first time FPGA designers are often put off by the steep learning curve
of the complex labyrinth of tools involved. Beyond that, instead of spending merely
seconds to compile and debug a quick-and-dirty proof-of-concept design, software
programmers soon also discover that implementing even the simplest FPGA design
can consume at least tens of minutes of their development time. As the size of their
designs increase, the run time of these implementation tools quickly increase to
hours or even days, greatly limiting the number of possible debug-edit-implement
cycles per day. Indeed, to debug, they may turn to the use of a cycle-accurate
simulator. Unfortunately, tracing the behaviors of even just a handful of signals
through tens of thousands of cycles soon becomes a slow and intractable process.

In this chapter, we explore how the concept of FPGA overlay may be able
to alleviate some of these burdens. We will look at how by using an overlay
architecture, designers are able to compile applications to FPGA hardware in
merely seconds instead of hours. We will also look at how overlays are able to help
with design portability, as well as to improve debugging capabilities of low-level
designs. Finally, we will explore the challenges and opportunities for future research
in this area.
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16.1 Overview

The concept of overlaying a virtual architecture over a physical system is not
entirely new—in networking, for example, virtual overlay networks are routinely
constructed on top of the physical infrastructure in modern systems. However, the
concept of overlaying a virtual architecture over a physical FPGA is only recently
gaining traction among researchers, but is already generating a lot of excitements
because of their potentials.

So what is an FPGA overlay exactly? Interestingly, because of the unique nature
of FPGAs as a flexible configurable hardware, drawing up a precise definition for
an FPGA overlay may not be as straightforward as it may seem. In this chapter, we
will use the following definition as a starting point.

An FPGA overlay is a virtual reconfigurable architecture that overlays on top of the physical
FPGA configurable fabric.

From this definition, we can see that an FPGA overlay is a machine architecture
that is able to carry out certain computation. Furthermore, this architecture is virtual
because the overlay may not necessarily be implemented physically in the final
design. Finally, it is reconfigurable because the overlay must be able to support
customization or be reprogrammed to support more than one application.

In other words, an FPGA overlay is a virtual layer of architecture that conceptu-
ally locates between the user application and the underlying physical FPGA similar
to that shown in Fig. 16.1. With this additional layer, user applications will no longer
be implemented onto the physical FPGA directly. Instead, the application will be

User application

Application compilation
Overlay

CGRA overlay

Overlay mappin
FPGA H v mapping

Fig. 16.1 Using an overlay to form a 2-layer approach to FPGA application development. Overlay
may be designed as a virtual FPGA, or it may implement an entirely different compute architecture
such as a coarse-grained reconfigurable array (CGRA), vector processor, multi-core processor, or
even a GPU
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targeted toward the overlay architecture regardless of what the physical FPGA may
be. A separate step will subsequently translate this overlay architecture, together
with the application that runs on it, to the physical FPGA.

The easiest way to understand how an FPGA overlay operates in practice, is to
consider building a virfual FPGA (VA) using the configurable fabric of a physical
FPGA (PA). By doing so, you now have an FPGA overlay architecture in the form
of VA overlaying on top of PA. We say that VA is essentially “virtual” because
architectural features of VA such as its muxes or I/O blocks may not necessarily
be present in PA. Yet, if the overlay is constructed correctly, any design that
was originally targeting VA may now execute unmodified on PA without knowing
its details.

However, the power of employing FPGA overlay is not limited to making virtual
FPGAs only. On the contrary, taking advantage of FPGA’s general-purpose confi-
gurable fabric, many researchers have demonstrated the benefits of overlays that
implement entirely different computing architectures such as multi-core processor
systems, coarse-grained reconfigurable arrays (CGRAS), or even general-purpose
graphic processing units (GPUs).

Now, using a multi-core processor overlay as an example, it should be apparent
how overlays are able to improve a software programmer’s design productivity.
Instead of working with unfamiliar hardware-centric tools and design methodolo-
gies, software programmers are now able to utilize FPGAs as accelerators simply
by writing programs that target a familiar architecture. In general, one benefit of
using FPGA overlay is that it is able to bridge between the often software-inclined
user and the low-level FPGA hardware fabric.

Of course, if an application can be readily accelerated on a multi-core processor
overlay implemented using FPGAs, then it is understandably begging the question:
why not simply run the design on an actual high-performance multi-core processor
instead? The answer to this question, indeed, is the key challenge that will guide the
future research on overlay designs—While an overlay offers many desirable features
to software programmers such as improved design productivity, the additional
layer on top of the physical FPGA inevitably introduces additional performance
penalty to the system. A good overlay design must therefore ensure that despite
the performance penalty introduced, the overall acceleration offered by FPGA
must remain competitive for the accelerator system to be worthwhile. Furthermore,
it must provide added value beyond a solution with a fixed general-purpose
architecture. One such added value is the ability to customize the overlay for the
particular application or group of applications concerned for sake of performance or
power-efficiency.

16.1.1 Coarse-Grained Architectures

In most cases, FPGA overlays are essentially coarse-grained architectures that
are built on top of the physical fine-grained configurable fabric. As their names
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suggest, the basic idea of a coarse-grained architecture is to reduce the configuration
granularity of an FPGA from its physical fine-grained configurable fabric such as
LUTs to one with coarser reconfiguration granularity. In some cases, such coarse-
grained blocks may refer simply to arithmetic blocks of moderate sizes such as
adders, multipliers, or digital signal processing blocks of some sort. In other cases,
such coarse-grained blocks may refer to very complex microprocessors connected
with sophisticated network-on-chip. Regardless of the implementation, the central
goal of any coarse-grained architecture remains the same: to improve power-
performance of the system by trading off design flexibility.

In addition, because of their reduced configuration flexibility, coarse-grained
architectures can also enable design methodologies that are more productive than
traditional hardware design flow. In particular, coarse-grained architectures improve
adesigner’s productivity in two important ways. First, by constraining the flexibility
of an FPGA, a coarse-grained architecture reduces the design space significantly,
which has a net effect of reducing implementation tool flow run time considerably
[LPLT11]. In addition, many coarse-grained architectures implement compute
models that are more familiar to software designers, considerably lowering the
barrier-to-entry to employ such designs. For instance, many recent overlays are
implemented as coarse-grained reconfigurable arrays (CGRAs), where computation
is carried out by a connected array of processing elements (PEs). Instead of
implementing the user application using low-level configurable logic of the FPGA,
these operations are translated into computational tasks that take place in the PEs.
To many software programmers, programming a parallel processor array, while a
daunting task in its own right, is arguably a lot more approachable than to implement
designs on the native FPGA configurable fabric. As such, it is not surprising
that many recent overlay designs are built on top of an underlying coarse-grained
reconfigurable array [KHKTO06, FVM*11, SBB06, LS12, CA13, JEM15].

16.2 Benefits of Overlays

As a virtualization layer that sits between a user application and the physical
configurable fabric, an FPGA overlay inherits many of the benefits that software
programmers have learned to expect from their CPU virtualization experience—
portability, compatibility, manageability, isolation, etc. On top of that, employing
FPGA overlays has also been demonstrated as a good way to improve a designer’s
productivity through improved compilation speed and better debugging support.
Along the same line, by carefully partitioning the complex hardware-software
design flow around an intermediate overlay layer, it is also possible to provide
separation of concerns between software and hardware engineers in the design team.
The overlay essentially acts as a bridge between the two teams, while allowing the
overall system to take advantage of the FPGA resources efficiently.
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16.2.1 Virtualization

Virtualization of FPGA resources has long been an active area of research since the
early days of reconfigurable computing. These pioneering works have demonstrated
many of the possibilities as well as challenges associated with virtualizing hardware
resources that are not designed to be time-multiplexed. A common trend among
these early works was that virtualization can be used as a mean to provide
the designers and/or tools the illusion of having infinite hardware resources.
Early works by Trimberger et al. [TCIW97], virtual wire [BTA93] and SCORE
[DMCT06], for instances, gave the users the illusion of a system with unlimited
FPGA resources through carefully structured hardware/CAD system. Others have
studied the problem of time-sharing of FPGA resources from an operating system’s
perspective as a way to provide shared accelerator resources among users/processes
[LPO9b, SBO8, FCO5].

As the concept of FPGA overlay continues to mature, the idea of virtualizing
FPGAs has taken on a new focus. As an overlay, virtualizing FPGAs allows an
additional benefit of providing a compatibility and portability layer for FPGA
designs. In the work of Zuma [BL12], for instance, virtual, embedded FPGAs were
proposed. By providing a virtual FPGA layer, the authors demonstrated that it is
possible to execute the same netlist on multiple FPGAs from competing vendors
using multiple different design tools.

16.2.2 Reduced Compilation Time

A key difference in design experience between software compilation and
implementing FPGA designs rests on the drastically different run time of the
involved tools. With modern compiler technologies, software compilation has
already become a straightforward, predictable, and most importantly, very rapid
process. Compiling even a relatively complex piece of software application rarely
takes longer than a few minutes on a reasonably fast computer. On the other
hand, implementing applications for FPGAs involves a complex labyrinth of low-
level tools that are convoluted, unpredictable, and takes a long time to complete.
Compiling even the smallest design may take tens of minutes, while spending hours
or even days on some of the largest designs are not unheard of. Unfortunately,
this 2 orders of magnitude difference in run time, together with the unpredictable
nature and the often-mystical error reporting mechanisms, are all contributing to
a very high barrier-to-entry that shies away most first time software programmers.
Technically, this much longer run time of the tools also significantly reduces the
number of possible debug-edit-implement cycles per day, causing project delays as
well as lowered productivity of the designers.

By using an overlay as intermediate compilation target, together with careful
crafting of the design process, researchers have demonstrated how such lengthy
hardware development process can be reduced significantly. For example, in the
work of Intermediate Fabric [CS10], an intermediate coarse-grained reconfigurable
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fabric was introduced as an overlay. With the overlay architecture, the average place
and route times for the tested benchmark were significantly reduced by more than
500 times.

Similarly in the work of QuickDough, a coarse-grained reconfigurable array was
used as overlay to accelerate compute intensive loop kernels. Loops are scheduled
to execute on the CGRA instead of compiling to the reconfigurable fabric. As a
result, when compared to manually generating custom hardware for the loops using
standard hardware tools, up to 3 orders of magnitude reduction in compilation time
was demonstrated.

16.2.3 Improved Debugging Capabilities

Unlike many software development frameworks where a range of debugging
facilities and methodologies are readily available, tools for debugging applica-
tions that target FPGA-based systems are still in their infancy. Traditional FPGA
design methodologies rely heavily on cycle-accurate simulations for application
development and debugging. While such simulations are invaluable to understand
the low-level operation of the FPGA, they are slow, tedious and provide only
limited information about the run-time behavior of the design. To monitor run-time
behavior of a design, users must rely on even more complex in-system emulation
facilities or even external testing hardware. Taking advantage of FPGA overlays,
researchers have demonstrated some promising results addressing the need for better
debugging tools.

For instance, in a series of work by Hung and Wilton [HW 14, HW13], an overlay
network was incorporated into FPGA design to facilitate insertion of trace buffers
after a design has been placed and routed. By carefully controlling the signal routes
to utilize only unoccupied resources in the FPGA, they have demonstrated efficient
ways to dynamically select and monitor signals during run time.

In other cases, since the overlay layer enables a virtual computing paradigm
for the application developer that is different from the underlying FPGA, they
also enable new debugging strategies that are more suitable to the designer. For
instance in MARC, debugging the user-specified OpenCL applications that run
on the generated multi-core architecture can follow traditional software debugging
methodologies instead of relying on low level FPGA tools. Not only can it greatly
increase the abstraction level, but it can also allow a debugging strategy that matches
the user’s expectation.

16.2.4 Separation of Hardware and Software Concerns

With careful planning, it is also possible to take advantage of the 2-layer design
approach offered by FPGA overlays as a natural division point between hardware
and software development efforts. Recall from Fig. 16.1 that implementing designs
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via an FPGA overlay involves two steps: user applications must first be mapped
to the overlay architecture, which is subsequently implemented to the physical
fabric in a second step. In many cases, the overlay architectures are designed so
they can efficiently support the computational model expected by the programmer.
As a result, mapping of software applications to the overlay is usually more
intuitive to software programmers than to map the same application to the physical
FPGA fabric in one step. On the other hand, mapping the overlay and the user
application to the physical fabric involves intimate knowledge about the FPGA
hardware implementation process. This task is best left to a separate hardware
team. Consequently, one benefit of having an overlay is that the hardware team may
now devote their efforts exclusively on implementing the relatively well-structured
overlay on the fabric, rather than to implement many individual applications. The
hardware team can be more focused, and can perceivably create a better, highly
optimized hardware design.

For example in the work of MARC [LPL'11], a multi-core processor-like
architecture was used as an intermediate compilation target. In this project, user
applications are expressed as OpenCL programs. To implement these applications,
they are first compiled as an application-specific multi-core processor, which is
subsequently implemented on the physical FPGA in a separate process. With this
set up, users no longer need to understand the detailed implementation of their
algorithm on FPGAs. Instead, they write essentially standard OpenCL programs,
and focuses exclusively on writing the best code for the accelerated architecture
assumed. The task to map their OpenCL code into custom core on the target overlay,
and to implement that overlay on the FPGA fabric, was left to a separate team.

In their case studies, the resulting application achieves about one third of the
speedup when compared to fully custom designs. Yet with the 2-layer approach
using OpenCL, the design effort with MARC is significantly lower when compared
to making a custom design of the same application.

16.3 Types of Overlays

Over the years, quite a few works on FPGA overlays have been developed. In this
section, we will take a quick walk through some of them and also look at various
types of FPGA overlays that have been explored in the past decade.

16.3.1 Virtual FPGAs

To begin, one of the most easiest to understand categories of overlay are virtual
FPGAs [LMVVO05, BL12, GWL11, CS10, KBL13]. They are built either virtually
or physically on top of off-the-shelf FPGA devices. These overlays have different
configuration granularity but typically feature coarser configuration granularity than
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a typical FPGA device. Similar to virtual machines running on a typical computer,
such virtual FPGA provides an additional layer that improves application portability
and compatibility. Furthermore, because of the coarser-grained configurable fabric,
implementing designs on such overlay is relatively easier than on a fine-grained
device. However, the additional layer imposes restrictions on the underlying
fabrics’ capability and usually results in moderate hardware overhead and timing
degradation.

In one of the earlier works, Lysecky et al. developed a relatively fine-grained
virtual FPGA as firm cores expressed as structural VHDL [LMVV05]. The virtual
layer provides effective portability yet incurs relatively high performance and
hardware overhead. In [GWLI11], Grant et al. proposed a time-multiplexed virtual
FPGA CAD framework MALIBU. The virtual FPGA used in MALIBU has both
fine-grain and coarse-grain processing elements integrated into each logic cluster
and can be used to reduce the compilation time significantly with moderate timing
penalty. Around the same time, Coole and Stitt also proposed another island-style
coarse-grained overlay called Intermediate Fabric [CS10]. It uses coarse-grained
operators such as adders instead of logic clusters and routes data through 8-32 bit
buses achieving both portability and fast compilation. Finally, Koch et al. developed
a fine-grained FPGA overlay in [KBL13] to implement customized instructions
on FPGAs from different vendors providing a portable application consisting of
a program binary and an overlay configuration in a completely heterogeneous
environment.

16.3.2 Coarse-Grained Reconfigurable Arrays

Another category of overlay architecture commonly employed is in the form
of coarse-grained reconfigurable arrays (CGRAs) [KHKT06, FVM ™11, SBB06,
LS12, CA13, JFM15]. The use of CGRAs provides an efficient tradeoff between
flexibility of software and performance of hardware especially for compute intensive
applications as demonstrated by numerous earlier works [TBO1, CH02].

In one of the earlier works in the area, Kissler et al. developed WPPA (weakly
programmable processor array), a VLIW architecture based parameterizable CGRA
overlay [KHKTO6]. It featured an interconnection wrapper unit for each processing
element (PE) that could be used for dynamic CGRAs topology customization.
Around the same time in [SBB06], a customized CGRA overlay called QUKU was
developed for DSP algorithms. It had a two-level configuration capability, while the
high-speed configuration was used for operator reuse within an application and low-
speed reconfiguration was used for optimization between different applications. In
[FVM ™ 11], Ferreira et al. proposed a heterogeneous CGRA overlay with a global
multi-stage interconnection on FPGA. Compiling applications onto the overlay
took only milliseconds for smaller DFGs. In [LS12], Lin and So also proposed
a soft CGRA overlay for rapid compilation. In addition, they demonstrated that
by customizing the overlay connection between PEs on a per-application basis,
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improvement in energy-efficiency could be obtained in the expense of longer tool
run time. The authors in [CA13] built a generic high speed mesh CGRA overlay
using the elastic pipeline technique to achieve the maximum throughput. It adopted
a data-driven execution flow and was suitable for smaller pipelined DFG execution.
Recently in [JFEM15], Jain et al. also proposed an overlay that is constructed around
the primitive FPGA DSP blocks to achieve high-frequency implementation and
high throughput result. Also, in [CS15], Coole and Stitt proposed to provide the
overlay with limited flexibility instead of full configurability specifically to a group
of design. With this customization, the area overhead was reduced significantly.

16.3.3 Processor-Like Overlays

A third category of overlay moves away from the traditional FPGA architectures
and instead explores using processor-like designs as an intermediate layer. The
main concern for works in this category are usually compatibility and usability of
the overlay from a user’s perspective. To provide the necessary performance, these
overlay architectures usually feature a high degree of control and provide ample of
data parallelism to make them suitable for FPGA accelerations. As an early attempt,
Yiannacouras et al. explored the use of a fine-grained scalable vector processor for
code acceleration in embedded systems [YSRO09]. Later in [SL12], Severance and
Lemieux proposed a soft vector processor named VENICE to allow easy FPGA
application development. It accepts simple C program as input and execute the
code on the highly optimized vector processor on the FPGA for performance. In
the work of MARC, Lebedev et al. explored the use of a many-core processor
template as an intermediate compilation target [LCD™ 10]. In that work, they have
demonstrated improved usability with the model while also highlighting the need for
customizing computational cores for sake of performance. To explore the integration
between processor and FPGA accelerators, a portable machine model with multiple
computing architectures called MURAC was explored in [HIS14]. Finally, a GPU-
like overlay was proposed in [KS11] that demonstrate good performance while
maintaining a compatible programming model for the users.

16.4 Case Study: QuickDough

As a case study to illustrate how an FPGA overlay works in practice, the design
and implementation of the research project QuickDough will be examined in this
section.

In short, QuickDough is a nested loop accelerator generation framework
that is able to produce hardware accelerators rapidly [LS12, LNS15]. Given a
user-designated loop for acceleration, QuickDough automatically generates and
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Fig. 16.2 QuickDough takes a user-designated loop as input and generate the corresponding
hardware accelerator system using a soft coarse-grained reconfigurable array overlay

optimizes the corresponding hardware accelerator and its associated data 1/O
facilities with the host software (Fig. 16.2).

The overall design goal of QuickDough is to enhance designer’s productivity
by greatly reducing the hardware generation time and by providing automatic
optimization of the data I/O between the host software and the accelerator. Instead
of spending hours on conventional hardware implementation tools, QuickDough is
capable of producing the targeted hardware-software system in the order of seconds.
By doing so, it provides a rapid development experience that is compatible with that
expected by most software programmers.

To achieve this compilation speed, while maintaining a reasonable accelerator
performance, QuickDough avoids the creation of custom hardware directly for each
application. Instead, the compute kernel loop bodies are scheduled to execute on
a CGRA overlay, which is selected from a library of pre-implemented hardware
library. By sidestepping the time-consuming low-level hardware implementation
tool flow, the time to implementing an accelerator in QuickDough is reduced
to essentially just the time spent on overlay selection and scheduling compute
operations on the resulting overlay. In addition, taking advantage of the overlay’s
softness and regularity, QuickDough allows users to perform tradeoff between
compilation time and performance by selecting and customizing the overlay on a per
application basis. The result is a unified design framework that seamlessly produces
the entire hardware-software infrastructure with a design experience similar to
developing conventional software.

Through these facilities and through carefully partitioning the design process,
QuickDough strives to improve design productivity of software programmers
utilizing FPGA accelerators in three aspects:

1. It automates most of the hardware accelerator generation process, requiring only
minimum input from the application designer;

2. It produces functional hardware designs at software compilation speed (order
of seconds), greatly increasing the number of debug-edit-implement cycles per
day achievable;
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3. It allows software programmers to progressively improve performance of
the generated accelerator through subsequent optimization phases, essentially
separating the functional verification and optimization process of application
development.

In the following subsections, an overview of QuickDough is presented to illus-
trate how it achieves the above goals. For details, please refer to [LS12, LNS15].

16.4.1 Generation Framework

Figure 16.3 shows an overview of the QuickDough compilation flow. The key to
rapid accelerator generation in QuickDough is to partition the complex hardware-
software compilation flow into a fast and a slow path.

The fast path of QuickDough consists of the steps necessary to generate a
functional loop accelerator, which are shown in orange for hardware and in
green for software generation in Fig. 16.3. To begin generating a loop accelerator,
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Fig. 16.3 QuickDough: FPGA loop accelerator design framework using SCGRA overlay. The
compute intensive loop kernel of an application is compiled to the SCGRA overlay based FPGA
accelerator while the rest is compiled to the host processor
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QuickDough first partially unroll the compute kernel loop and extract the loop body
into its corresponding data flow graph (DFG). Subsequently, a suitable overlay
configuration is selected from the pre-built implementation library on which the
DFG is scheduled to execute. Optionally, the user may choose to iteratively refine
the selection by feeding back scheduling performance and estimated communication
cost at each iteration. The selected pre-built overlay implementation is then updated
with the corresponding scheduling result to create the final FPGA configuration
bitstream. Finally, this updated bitstream is combined with the rest of the software
to form the final application that will be executed on the target CPU-FPGA system.

While there may seem to be a lot of steps involved in this fast path, all of them
run relatively quickly. Furthermore, the only loop in this compilation flow is the
accelerator selection process, which as explained is an optional step that can be
bypassed if the user opts for speed over quality. The result is that the run time of this
fast path can be kept within the order of tens of seconds. It allows users to perform
rapid design iterations, which is particularly important during early application
development phases.

On the other hand, the slow path of QuickDough consists of all the remaining
time-consuming steps in the flow from Fig. 16.3. These steps are responsible for
implementing the overlay in hardware, optimizing the CGRA to the user application,
and updating the overlay library as needed. Although these steps are slow, they
are not necessarily by run for every design compilation. For example, running
through the low-level FPGA implementation is a slow process, however, they are
needed only when a new overlay configuration is required. If a compatible overlay
configuration already exists in the pre-built overlay library, then the user may choose
to reuse the existing implementation during early developments to facilitate fast
design turn-around. When the user decides that she is ready to spend time optimizing
the overlay configuration, she may then instruct QuickDough to execute these slow
steps. With the slower steps, QuickDough will then be able to analyze the user
application requirement, customize the overlay accordingly, and finally generate the
FPGA configuration bitstream. Once this bitstream is stored in the overlay library,
the user will not need to go through these slow process again.

Throughout the entire application development cycle, most of the time the user
will be able to execute only the fast steps, and run through the slow steps only
occasionally. As a result, the overlay compilation speed remains orders of magnitude
better than traditional hardware design flow on average.

16.4.2 The QuickDough Overlay

Figure 16.4 shows an overview of the QuickDough overlay together with its data I/O
infrastructure. The QuickDough overlay as shown in the right hand side consists of
an array of simple processing elements (PEs) connected by a direct network. Each
PE computes and forwards data to their neighbors synchronously according to a
static schedule. This schedule is stored in the instruction ROM associated with each
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Fig. 16.4 Overview of the QuickDough generated system. Implemented on the FPGA is the
QuickDough overlay, which is an array of PEs connected with a direct network, and the
communication infrastructure with the host

PE and controls the action of each PE’s action in every cycle. Finally, each PE
contains a scratchpad data memory for run-time data that may be reused in the same
PE or be forwarded in subsequent steps.

Communication between the accelerator and the host processor is carried through
a pair of input/output buffers. Like with the rest of the PE array, accesses to these
I/0O buffers from the array also take place in lock step with the rest of the system.
The location to access in each cycle is controlled by a pair of address buffers, which
contains address information generated from the QuickDough compiler.

Figure 16.4 also shows the connection within a processing element. Each PE is
constructed surrounding an ALU, with multiplexors connecting the input/output of
the ALU to either the internal memory or the neighboring PEs. In this particular
version, the optional load/store path is also shown, which is presented only at
dedicated PE connected to the I/O buffer. Within the PE, the ALU is supported by
a multi-port data memory and an instruction memory. Three of the data memory’s
read ports are connected to the ALU as inputs, while the remaining ports are sent
to the output multiplexors for connection to neighboring PEs and the optional store
path to output buffer (OBuf) external to the PE. At the same time, this data memory
takes input from the ALU output, data arriving from neighboring PEs, as well as
from the optional loading path from the data input buffer (IBuf).

The ALU itself has a simple design that supports up to 16 fully pipelined ope-
rations. It is constructed also as a template and may be customized to support any
user-defined 3-input operations. Regardless of its function, each operation must have
a deterministic pipeline depth. With that, the QuickDough scheduler will ensure
there is never any output conflict and allow the operations to execute in parallel as
needed.

Finally, note that the overlay is designed as a soft template. Many parameters
of the overlay, including the SCGRA array size, I/O buffer size, as well as the
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operations supported by the ALU, are configurable. They can be optimized for
a particular group of application upon user’s request as part of the framework’s
customization steps.

16.4.3 Loop Accelerator Generation

As mentioned, an important goal of QuickDough is to generate high-performance
FPGA accelerator systems in software compilation speed. In this subsection, we
will walk through some of the major steps involved and explore the details on how
they help generate hardware accelerators very efficiently.

DFG Generation

The top-level inputs to QuickDough are loops that the user has designated for
acceleration. To accelerate a loop, the straightforward way is to treat each loop
iteration as an individual acceleration target and rely on the host processor for
loop control. However, it is not ideal because (1) the overhead for data and control
transfer between the host and FPGA will be too high, (2) the amount of parallelism
encapsulated in a single iteration of the loop body is likely to be too low for
acceleration, and (3) there will be no data reuse between loop iterations to amortize
the transfer overhead between the host and the FPGA.

Therefore, just like most other acceleration frameworks, QuickDough begins
the accelerator generation process by partially unrolling the input loop U times to
increase the amount of parallelism available. The body of this partially unrolled loop
subsequently forms the basic unit (BU) for acceleration in later steps. This is the
unit that is implemented on the FPGA accelerator using the SCGRA overlay. With
a single copy of BU implemented in the accelerator, the original loop is completed
by executing the accelerator N/U times, where N is the original loop bound.

Furthermore, to amortize the communication cost between the host processor and
the accelerator, input/output data are transferred in groups for G invocations of BU
as shown in Fig. 16.5. By buffering I/O and intermediate data on the accelerator, this
grouping strategy also allow reusing data between loop iterations, further enhancing
performance.

In our current implementation, the unrolling factor U is specified by the user,
while the grouping factor G is determined by the framework automatically. G is
determined based on the on-chip buffer size.

At the end of this process, the unrolled loop body BU will form the core of the
accelerator and the corresponding data flow graph (DFG) will be extracted, which
will drive the rest of the generation flow.
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Fig. 16.5 Loop execution on an SCGRA overlay based FPGA accelerator

Accelerator Selection

As an accelerator generation framework, an important task of QuickDough is
without doubt to generate the physical implementation of the accelerator on the
FPGA. With its SCGRA serving as an intermediate layer, this translates into
physically implementing the overlay on the FPGA. Unfortunately, no matter how
simple the overlay is, running through the low-level hardware implementation tools
is going to be a lengthy process, contradicting the original goal of employing the
overlay in the first place. In order to sidestep this lengthy hardware implementation
process, QuickDough instead transform it into a selection process from a library of
pre-implemented overlay.

When compared to directly implementing the overlay using standard hardware
implementation tools, this accelerator selection process is much faster. In return,
the performance of the resulting overlay configuration may not be optimal for
the given user application. Despite the suboptimal performance, the selected
overlay implementation is functionally correct and should give a good sense of
the overall hardware-software codesign process to the software programmer, which
is necessary for rapid early development. The user may subsequently opt for the
slower optimization and customization steps explained in the next subsection to
progressively improve performance.

As such, the goal of this process is to select the best and functional overlay
configuration from the pre-implemented library rapidly. While functionality is easy
to determine, QuickDough must also be able to estimate the resulting performance
swiftly for this selection process. Now, the performance of the accelerator depends
mainly on two factors: (1) computational latency, and (2) communication latency.
As the SCGRA overlay is regular and computes with a deterministic schedule, its
exact computational latency of carrying out the user DFG can readily be obtained
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from the scheduler. Of all the configurable parameters of the overlay, the SCGRA
array size is the dominant factor affecting this computational latency. On the other
hand, communication latency depends not only on the scheduling results, but also
other factors such as communication pattern, grouping factor, I/O buffer sizes, as
well as DMA transfer latency, etc. These parameters interact with each other to form
a large design space. For rapid estimation, instead of performing a full design space
exploration, QuickDough is able to rely on simple analytical model for estimating
communication latency based on the overlay SCGRA array size.

Finally, QuickDough leaves this choice of effort in finding the best accelerator
configuration to the user as three optimization effort levels:

e Level 0 (00)—No optimization. QuickDough selects a feasible accelerator
configuration with the smallest SCGRA size.

e Level 1 (01)—QuickDough estimates performances of three accelerators with
different array sizes and select the one that results in the best performance.

* Level 2 (02)—QuickDough performs an exhaustive search on all accelerators
in the library and searches for the best accelerator configuration.

Obviously, the more effort is being put into the selection process, the longer the
process will take, and the resulting performance is improved most of the time. The
choice on how much effort to pay is up to the user.

DFG Scheduling

This is the step where the DFG extracted from the unrolled loop body is scheduled
to execute on the selected SCGRA overlay. For each operation in the DFG, the
scheduler must decide the cycle and the PE in which the operation should be carried
out. The scheduler also determines the routing of data between the producing and
consuming PEs, as well as to/from the 1/O buffer.

As QuickDough tends to target DFGs with close to thousands of node, to keep
the scheduling time short, a classical list scheduling algorithm was adopted [Sch96].
A scheduling metric proposed in [LS12] that considers both load balancing and
communication cost was used in the scheduler.

At the end of this scheduling step, a schedule with operation of each PE and data
I/O buffer in every cycle is produced. This schedule essentially turns the generic
overlay implementation into the specific accelerator for the user application.

Accelerator Bitstream Generation

The final step of the accelerator generation process is to produce the instructions for
each PE and the address sequences for the I/O buffers according to the scheduler’s
result.

As a way to reduce area overhead of the overlay, both the instruction memory
of each PE as well as the I/O address buffers are implemented as read-only
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memories (ROMs) on the physical FPGA. To update the content of these memories,
the QuickDough framework must update the FPGA implementation bitstream
directly. To do that, the memory organization and placement information of the
target overlay implementation is obtained from an XDL file corresponding to the
overlay implementation [BKT11]. The resulting memory organization information
is encoded in the corresponding BMM file, which is combined with the scheduler
results to update the overlay implementation bitstream with the data2mem tool
from Xilinx [Xill1].

While it may sound complicated, the whole process is automated and consumes
only a few seconds of tools run time. The result of this process is an updated bit-
stream with all application-specific instructions embedded. This updated bitstream
is the final configuration file used to program the physical FPGA, and it concludes
the QuickDough flow.

16.4.4 Customization and Optimization

The true power of utilizing an FPGA overlay rests on the fact that the overlay is
virtual, soft, and easily customizable for the need of the application. In this part,
we will examine the various ways QuickDough enables a user to customize and
optimize the overlay to improve power-performance of the generated accelerators.
Unlike the fast generation path explained above, these customization steps are much
more time consuming. As such, these customization steps are considered part of the
slow path in QuickDough’s design philosophy, and are expected to execute only
occasionally as needed.

There are a number of reasons why a user may want to spend the time on
customization despite the slow process. To begin, the user may want to construct
a prebuilt implementation library specific to the target application domain. It is
useful as the result can be memorized in the implementation library and be reused
by all other target applications, amortizing the initial implementation effort. Once
the project development has gone through the initial debugging phase, a user may
also opt for creating a customized overlay for the particular application that needs
to be accelerated. This per-application optimization will help further improve the
performance of the accelerator but the process will undoubtedly be slower than to
simply select a prebuilt implementation. Luckily, the result of this per-application
customization can be stored in the prebuilt library such that it can be reused on
subsequent compilations.

Customization in Action
For the purpose of customization, the QuickDough overlay was designed from the

beginning to be a template from which a family of overlay instances could be
generated. The SCGRA overlay consists of a regular array of simple PEs connected
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with direct connections. Depending on the application requirements, a range of
design parameters of this overlay can then be customized, including the array
size, on-chip scratchpad data memory capacity, instruction memory capacity and
I/O buffer capacity. On top of that, as a hardware-software system generator for
loop acceleration, QuickDough may also optimize the communication between the
accelerator and the host software by varying the grouping factor, which determines
the amount of data transferred between the two in each transaction. Finally, it may
also optionally optimize the loop unrolling factor on behalf of the user depending
on the computational capability of the overlay as a function of its array size.

Obviously, a major challenge when optimizing this set of parameters is that they
tend to interact with one another in fairly complex ways. For example, increasing the
array size increases the compute capability of the array, potentially improving the
accelerator performance. However, the increased size is beneficial only if the input
DFG has enough parallelism presented to take advantage of the increased capability.
To increase the amount of available computation, QuickDough may optionally
increase the amount of loop unrolling in the user-supplied kernel. However, that
also increases the amount of data I/O required, as well as the on-chip instruction
and data buffer requirement, which in turn limits the size of the array in the first
place. A full discussion of the detailed customization and optimization process is
beyond the scope of this chapter. Yet it is worthwhile to realize the potential of
customization here.

As an illustration, Fig. 16.6 shows the results of customization on performance
and resource consumption of a QuickDough generated accelerator. In this example,
accelerators for a 49-tap FIR filter targeting the Zedboard were generated using
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SCGRA array size 3x3 2x2 3x3 4x4
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10 Buffer Depth 1k 4k 2k 8k

Fig. 16.6 Effect of overlay customization on performance and resource consumption. Example
here shows the result of an FIR filter using QuickDough with three different overlay configurations
over a base design. (a) Performance. (b) Resource consumptions. (¢) Overlay configurations
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QuickDough. Three different customized overlay configurations were generated
with details shown in Fig. 16.6c.

A few interesting observations can be made from the figures. In terms of perfor-
mance, comparing to the sub-optimal baseline configuration, the best configuration
(€3) results in more than five times improvement in performance. Furthermore,
comparing the baseline and C2 that features the same array size (3 x 3), 4.7x
improvement in performance can be achieved by optimizing the unrolling and
grouping factor in combination with the on-chip memory configuration. Inter-
estingly, considering the resource consumptions, C2 in fact consumes 31 % less
on-chip memory and the same amount of LUTs, flip-flops, and DSP blocks as the
baseline. This demonstrates how customization can result in designs with improved
performance while reducing resource consumptions.

16.4.5 Summary

Using QuickDough as a case study, we have illustrated how the use of an FPGA
overlay has enabled a very different experience for software programmers when
designing hardware-software systems. The 2-layer approach to hardware design
allows for a very rapid design experience that sharply contrasts the lengthy low-level
hardware tool flow. Furthermore, the softness of the overlay provides opportunities
for further customization and optimization as the development effort progresses.
Together, it creates for novice users a ‘“software-like” experience to designing
complex accelerator systems while maintaining considerable overall acceleration
performance promised by FPGAs.

16.5 Research Challenges and Opportunities

While the early results of using FPGA overlay are encouraging, there remains many
challenges that must be overcome before its full potential can be unleashed. In
particular, for FPGA overlays to be useful, future research must be able to address
two important challenges: reduce overhead and enhance customization.

16.5.1 Reducing Overhead

By introducing an additional architectural layer between a user application and
the physical fabric, an FPGA overlay inevitably incurs additional performance and
area overhead to the system. It is especially important when the FPGA is used
as an accelerator in a processor-based system. If the overhead is so large that the
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FPGA is no longer offering any significant performance enhancement, then software
programmers will have little incentive to devote effort into using them.

From a hardware implementation’s point of view, the additional layer must also
incur additional area overhead. Such overhead usually manifests as additional usage
of configurable fabric and on-chip memory. In some cases where spare resources are
available, the effect of such area overhead may not be apparent. In fact, as illustrated
earlier, researchers have deduced ways to make sure of such spare resources for
debugging purposes [HW13]. However, in other cases where the area of FPGA
overlay results in a reduction of resources available to implement a user’s design,
then it is likely that this area overhead will translate into performance overhead. On
a circuit level, such area overhead may also manifest as additional delays impose
on the critical path, resulting in overall performance loss. Therefore in short, area
overhead, if not well controlled, may easily translate into performance overhead.

Luckily, as mentioned in some early works, despite such overhead, the use of
an overlay may still be worthwhile from a performance perspective. For example in
[CA13], Capalija and Abdelrahman has demonstrated that by taking advantage of
the regularity of its overlay and with the help of detailed floor planning, they were
able to control the overhead while maintaining reasonable throughput performance
when compared to a simple push-button synthesis flow. The very use of overlay
allows amortization of the optimization effort in the long run as the overlay structure
may be reused many times.

16.5.2 Enhancing Customization

Another major challenge faced by overlay designers is the very notion of using
FPGA overlay in the first place: “If by overlaying a different architecture over an
FPGA may provide all sort of nice properties, then why not implement the overlay
architecture directly on silicon to enjoy all the benefits instead?”” For example, if a
GPU overlay provides good performance and good programmability, then maybe
the design should be implemented on an actual GPU instead of a GPU overlaying
on top of an FPGA.

Indeed, if the so called “overlay” in question is simply a fixed reimplementation
of another architecture on an FPGA, then the only incentive to so are probably
to provide compatibility through virtualization, or simply to save cost on silicon
implementation. In the latter case, this intermediate architecture may hardly be
called an “overlay” any more.

However, the true power of FPGA overlays is that they can be adapted to the
application through customization. As a virtual architecture, many aspects of an
overlay architecture can be customized to the target application to improve power-
performance. In [LCD™10], for example, the computational core in the multi-core
overlay may be customized to the specific targeted application. By customizing
the core to their targeted application, almost 10x improvement in the overlay
performance can be observed, bring the overlay performance to be within factor of
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3 of the reference custom FPGA design. In [LS12], the direct connection topology
among the process elements in coarse-grained reconfigurable array overlay was
customized against the input application. When compared to the best predefined
topology, the application-specific interconnect provides up to 28 % improvement in
resulting energy-delay product.

The improved results should come at no surprise: the extreme case of an overlay
customization is simply a full-custom design of the application on the target FPGA,
which is supposed to have the best possible performance if designed correctly.
What is challenging is therefore to ability to fine-tune the tradeoff among design
productivity, virtualization and performance of the resulting system. In other words,
the research question to ask in the future should therefore be: “How to improve
performance of an overlaying system through customization without significantly
sacrificing the benefits of using an overlay?” The answer to this question is going to
open up a wide field of exciting research in FPGA-based reconfigurable systems.

16.5.3 Closing Thoughts

FPGA overlay is without doubt going to be an important part of future FPGA-based
reconfigurable systems. The potential is plentiful and we anticipate that overlaying
technology will benefit all aspects of future reconfigurable systems, especially on
the important aspect of design productivity. With silicon technologies continue to
evolve, the amount of available on-chip configurable resource is going to increase.
The abundance of high-performance configurable resources on FPGA will enable a
new generation of systems that relies heavily on advanced overlay architectures for
virtualization and to improve design productivity.
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