
Hans-Leo Ross

Functional
Safety for
Road Vehicles
New Challenges and Solutions for
E-mobility and Automated Driving

Functional Safety for Road Vehicles

Hans-Leo Ross

Functional Safety for Road
Vehicles
New Challenges and Solutions for E-mobility
and Automated Driving

123

Hans-Leo Ross
Lorsch
Germany

ISBN 978-3-319-33360-1 ISBN 978-3-319-33361-8 (eBook)
DOI 10.1007/978-3-319-33361-8

Library of Congress Control Number: 2016944354

Translation from the German language edition: Funktionale Sicherheit im Automobil: ISO 26262,
Systemengineering auf Basis eines Sicherheitslebenszyklus und bewährten Managementsystemen by
Hans-Leo Ross, © Carl Hanser Verlag GmbH & Co. KG. All Rights Reserved.
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword of the Author

The German automobile industry took notice of the topic as IEC 61508 got pub-
lished as DIN EN 61508 (VDE 0803) “Functional safety-related electric/electronic/
programmable electronic systems” in 2001. Official correspondence between the
VDA and the VDTÜVs led to the foundation of AK16 in FAKRA (Facharbeitskreis
Automobil—German expert group from vehicle manufacturers and equipment
suppliers), a group I became part of when I joined Continental Teves in 2004. In the
same year, the first structures for the later ISO 26262 were designed and contact
was established to further automobile standardization committees in other countries.
Especially with France, concrete parameters for the standard were developed. The
first meeting of the standardization group of ISO/TC22/SC03/WG16 took place
from October 31 to November 2, 2015 in Berlin. The biggest delegate groups were
from France and Germany besides representatives from other countries such as
Japan, the USA, Sweden, Great Britain et cetera. Up to this point, ISO 26262 was
still called ‘FAKRA-Norm’ (FAKRA-Standard). SafeTronic 2005 (Safety Event
from Hanser-Verlag) already addressed the first ideas for future automobile stan-
dards and the presentations held included ‘Best Practices’ and methods. Until today,
SafeTronic supported the development of ISO 26262, which got published as
“International Standard” in November 2011. This book tries to compile all the
background information that has been collected over the years. Moreover, it aims to
give a better understanding of safety architecture as a basis for the development of
safety-related products.

v

Preface

The following book is the result of over 20 years of professional experience in the
field of functional safety. When I started my career after graduating as an engineer
in 1992, plant engineering and construction was highly influenced by catastrophic
events such as ‘Bhopal’ and ‘Seveso’. The first set of rules and regulation which led
later to IEC 61508 and ISO 26262 that addressed the issue of functional safety was
the VDI/VDE guideline 2180 “Sicherung von Anlagen der Verfahrenstechnik;
Safeguarding of industrial process plants by means of process control engineering”
from 1966. However, it only covered the mere process of how to establish a safe
environment in such facilities. In 1984 the differentiation between operational
safety and safety equipment as well as monitoring and safeguarding equipment
were added to the guideline. Thereafter, DIN VDE 31000—“General guide for
designing of technical equipment to satisfy safety requirements” got published,
which elaborated on the correlation between risk, safety and danger and introduced
tolerable risk. At this time machinery standards, which prohibited the use of
micro-controller for safety applications, were still common. However, an estab-
lished market for safety-related control systems already existed. Different rules and
standards defined the base of requirements for examinations, certifications and
design of such systems. Those requirements were scaled in requirement classes
(AK 1-8) according to DIN V 19250, independently from application or technology
and explained a qualitative risk assessment procedure with the help of a risk graph.

In 1990 DIN V VDE 0801 “Principles for computers in safety-related systems”
was released and in its revision of 1994 terms such as ‘well-proven design prin-
ciples’ and the usage of ‘consideration item’ were added. By then, ‘redundancy’
was the only known answer to the various risk and requirement classes. However,
various measuring principles were already used in measurement and control system
engineering in order to detect hazardous situations early.

The technical rules for steam or the regulations for pressure vessels already
required the redundant measurement of steam and temperature due to safety issues.
Even the German Water Ecology Act mentioned the filling quantity limit from
tanks according to regulations as well as the independent overfill safety device as a

vii

safety measure. A lot of those safety principals emerged from the safety standards
of plant operators and even served as a foundation for official permits or releases.
Even before in the early sixties DGAC (Direction General de L´Aviation Civil in
France), CAA (Civil Aviation Authority) in Great Britain or FAA (Federal Aviation
Administration) in USA and the military and space industry defined regulations
about “Functional Safety”, but those were not in the focus of the development of
standards like IEC 61508 and ISO 26262. Due to today’s discussion about ‘au-
tonomous’ or ‘automated’ driving, those standards become more and more in the
focus of the automotive industry. Especially topics such as safety-in-use,
fail-operational, security, operational safety are becoming important for future
revisions of ISO 26262.

In 1998, at the time I started my job as a sales manager of safety-related control
systems, discussions over the early drafts of IEC 61508 took place, especially in
countries such as England, the Netherlands and Norway. The scalable redundancy
was a known concept so the discussion focused on the distinction between
redundancy for safety and availability. Micro-controllers were coupled according to
the lockstep principle and could change the program sequence or control logistics
during runtime of a plant. Programming software was available, which allowed
configuring the safety logic within a defined runtime environment.

The publication of IEC 61508 introduced a lifecycle approach for safety sys-
tems. Additionally, it formulated a process approach for product development and
the relations to quality management systems were formulated.

During my graduate studies at the Faculty of Business and Economy at the
University of Basel, I was able to hear a lecture of Prof. Dr. Walter Masing, who
had a huge impact on quality management systems in Germany. The introduction of
implemented diagnostics for the safety of functions and the electric carrier systems
of these functions, respectively, broadened the view of safety architecture. In 1998,
I introduced the first passive electronic system in Birmingham, which until SIL 4
was certified according to IEC 61508. I witnessed when the first certificate for a
single-channel control system got signed after SafeTronic in 1999, which took
place in the facilities of TÜV-Süd. This system was completely developed
according to IEC 61508.

During VDMA-events (Verein Deutscher Machinen und Anlagenbauer; German
machinery and plant engineering association) I reported on my experiences with
IEC 61508 regarding plant engineering and its influence on the development of
safety-related control systems. In these days, the machinery engineering industry
was still heavily influenced by relay technology. Nobody wanted to believe that
software-based safety technology would change the industry so drastically and in
such a short time by providing new solutions and change existing systems. In 2001
I became the head of product management; the main task was to find new appli-
cations for new safety systems. Another main topic was ‘safe network technology’,
which was so far based on serial link data busses. The challenge was to realize
distributed and decentralized safety systems based on dynamic, or situation-, or
condition-dependent safety algorithm. The only possible solution turned out to be
‘Ethernet’. It was important to make the existing computer or data technology for

viii Preface

safety technology easily manageable. In Norway, in the context of diploma theses,
safety control systems got distributed, which exchanged safety-relevant data within
the data network of the Norwegian mineral oil association “Statoil”. The experi-
ences with the data transfer over satellites between oil platforms and plants ashore
or between Norway and Germany as well as various solutions to the pipeline
monitoring via radio systems proved that the safety technical data systems were
also able to be realized based on Ethernet.

Hans-Leo Ross

Preface ix

Acknowledgments

The plentiful discussions with experts of international standardizations, colleagues,
within the working groups, universities and presentations as well as the insights of
diploma theses and public funding projects have contributed to this book. I would
like to thank all the people involved for their shared passion for functional safety.
Besides all the experts I especially want to thank my wife, who showed a lot of
understanding and gave me the freedom and space to write this book.

xi

Contents

1 Introduction . 1
1.1 Definitions and Translations from the ISO 26262 2
1.2 Error Terms of the ISO 26262 . 5
References . 6

2 Why Functional Safety in Road Vehicles?. 7
2.1 Risk, Safety and Functional Safety in Automobiles 7
2.2 Quality Management System. 13

2.2.1 Quality Management Systems from the Viewpoint
of ISO 26262 . 17

2.3 Advanced Quality Planning . 18
2.4 Process Models . 20

2.4.1 V-Models. 21
2.4.2 Waterfall Model . 30
2.4.3 Spiral Model . 31

2.5 Automotive and Safety Lifecycles . 33
2.5.1 Safety Lifecycles for the Development

of Automotive Products . 35
2.5.2 Safety-Lifecycles According to ISO 26262 36
2.5.3 Security-Versus Safety Lifecycles 38

References . 38

3 System Engineering . 41
3.1 Historic and Philosophic Background. 41
3.2 Reliability Engineering. 43

3.2.1 Foundation/Basis of Reliability . 45
3.2.2 Reliability and Safety . 49

3.3 Architecture Development . 51
3.3.1 Stakeholder of Architectures . 53
3.3.2 Views of Architecture . 56
3.3.3 Horizontal Level of Abstraction 58

3.4 Requirements and Architecture Development 66

xiii

http://dx.doi.org/10.1007/978-3-319-33361-8_1
http://dx.doi.org/10.1007/978-3-319-33361-8_1
http://dx.doi.org/10.1007/978-3-319-33361-8_1#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_1#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_1#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_1#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_1#Bib1
http://dx.doi.org/10.1007/978-3-319-33361-8_2
http://dx.doi.org/10.1007/978-3-319-33361-8_2
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec4
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec4
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec5
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec5
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec6
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec6
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec7
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec7
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec8
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec8
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec9
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec9
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec10
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec10
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec10
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec11
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec11
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec12
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Sec12
http://dx.doi.org/10.1007/978-3-319-33361-8_2#Bib1
http://dx.doi.org/10.1007/978-3-319-33361-8_3
http://dx.doi.org/10.1007/978-3-319-33361-8_3
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec4
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec4
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec5
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec5
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec6
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec6
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec7
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec7
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec8
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec8
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec9
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec9

3.5 Requirements and Design Specification 68
References . 74

4 System Engineering for Development of Requirements
and Architecture . 75
4.1 Function Analysis . 78
4.2 Hazard and Risk Analysis. 80

4.2.1 Hazard Analysis and Risk Assessment according
to ISO 26262 . 81

4.2.2 Safety Goals. 90
4.3 Safety Concepts . 93

4.3.1 The Functional Safety Concept . 96
4.3.2 Technical Safety Concept . 106
4.3.3 Microcontroller Safety Concept. 110

4.4 System Analyses . 114
4.4.1 Methods for the System Analysis 115
4.4.2 Safety Analysis According to ISO 26262 119
4.4.3 Safety and Security Error Propagation 177

4.5 Verification During Development . 177
4.6 Product Development at System Level . 179
4.7 Product Development at Component Level 183

4.7.1 Mechanical Development . 186
4.7.2 Electronic Development . 187
4.7.3 Software Development . 192

References . 199

5 System Engineering in the Product Development. 201
5.1 Product Realization . 201

5.1.1 Product Design for Development. 202
5.1.2 Mechanics . 202
5.1.3 Electronics . 204
5.1.4 Software . 204

5.2 Functional Safety and Timing Constraints. 206
5.2.1 Safety Aspects of Fault-Reaction-Time-Interval 206
5.2.2 Safety Aspects and Real-Time Systems 207
5.2.3 Timing and Determinism . 209
5.2.4 Scheduling Aspects in Relation to Control-Flow

and Data-Flow Monitoring . 211
5.2.5 Safe Processing Environment . 214

6 System Integration. 217
6.1 Verifications and Tests . 218

6.1.1 Basic Principles for Verifications and Tests 225
6.1.2 Verification based on Safety Analyses 228
6.1.3 Verification of Diverse Objectives such as Safety

and Security . 232

xiv Contents

http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec10
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Sec10
http://dx.doi.org/10.1007/978-3-319-33361-8_3#Bib1
http://dx.doi.org/10.1007/978-3-319-33361-8_4
http://dx.doi.org/10.1007/978-3-319-33361-8_4
http://dx.doi.org/10.1007/978-3-319-33361-8_4
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec4
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec4
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec5
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec5
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec6
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec6
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec7
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec7
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec8
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec8
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec9
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec9
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec10
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec10
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec11
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec11
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec22
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec22
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec23
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec23
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec24
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec24
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec25
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec25
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec26
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec26
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec27
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec27
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec28
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Sec28
http://dx.doi.org/10.1007/978-3-319-33361-8_4#Bib1
http://dx.doi.org/10.1007/978-3-319-33361-8_5
http://dx.doi.org/10.1007/978-3-319-33361-8_5
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec4
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec4
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec5
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec5
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec6
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec6
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec7
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec7
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec8
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec8
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec9
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec9
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec10
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec10
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec10
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec11
http://dx.doi.org/10.1007/978-3-319-33361-8_5#Sec11
http://dx.doi.org/10.1007/978-3-319-33361-8_6
http://dx.doi.org/10.1007/978-3-319-33361-8_6
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec4
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec4
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec4

6.1.4 Test Methods . 233
6.1.5 Integration of Technical Elements 234

6.2 Safety Validation. 236
6.3 Model Based Development . 239

6.3.1 Models for Functional Safety . 241
6.3.2 Foundation for Models. 244
6.3.3 Model Based Safety Analysis . 245

6.4 Approvals/Releases . 246
6.4.1 Process Releases . 247
6.4.2 Release for Series Production . 248
6.4.3 Production Part Approval Process (PPAP) 249

References . 251

7 Confirmation of Functional Safety . 253
7.1 Confirmation Reviews . 257
7.2 Functional Safety Audits . 261
7.3 Assessment of Functional Safety . 262
7.4 Safety Case . 263
References . 265

Index . 267

Contents xv

http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec5
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec5
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec6
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec6
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec7
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec7
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec8
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec8
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec9
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec9
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec10
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec10
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec11
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec11
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec12
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec12
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec13
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec13
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec14
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec14
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec15
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Sec15
http://dx.doi.org/10.1007/978-3-319-33361-8_6#Bib1
http://dx.doi.org/10.1007/978-3-319-33361-8_7
http://dx.doi.org/10.1007/978-3-319-33361-8_7
http://dx.doi.org/10.1007/978-3-319-33361-8_7#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_7#Sec1
http://dx.doi.org/10.1007/978-3-319-33361-8_7#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_7#Sec2
http://dx.doi.org/10.1007/978-3-319-33361-8_7#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_7#Sec3
http://dx.doi.org/10.1007/978-3-319-33361-8_7#Sec4
http://dx.doi.org/10.1007/978-3-319-33361-8_7#Sec4
http://dx.doi.org/10.1007/978-3-319-33361-8_7#Bib1

Chapter 1
Introduction

ISO 26262 [1] changes vehicle development in a way, nobody would have expected
10 years ago, when functional safety became a relevant topic in the automobile
industry. During the early 21st century the first German (VDA) working group
already started dealing with functional safety and when the first international
working groups got founded in 2005 everybody was looking for a lean standard for
product safety. In the following 10 years before the final publication of the ISO
26262, those working groups compiled 10 parts with about 1000 requirements.
Even though a lot of pertinent knowledge, methodologies and approaches have
been discussed throughout the years, only a fracture of it has been incorporated in
ISO 26262. Some information has only been added as footnotes, some disappeared
completely until the final release of the standard.

In order to translate ISO 26262 there are currently various standardization
projects in progress in different countries worldwide. The aim is to translate ISO
26262, provide further guidelines and develop additional methodologies for func-
tional safety based on ISO 26262.

ISO 26262 is not intended to serve as a guideline it simply provides require-
ments for activities and methods, which should be taken into account in the
respective functional safety activities. There is no description included as to how
the requirements are supposed to be met. The underlying assumption is that such a
state-of-the-art safety standard is considered to be a current up-to-date knowhow
and will only be valid within a certain period of time. Recommendations on which
designs are considered to be safe or which methodologies are adequate for certain
activities are only valid and satisfactory until new or better methods are found.
Also, safety design and methodology should be continuously improved and never
limited to safety standards. There is an enormous need for guidelines and this book
aims to provide further insights and background information on the respective topic
but it does not offer guidelines on the correct application of ISO 26262. It focuses
on methods and methodologies but none of those mentioned could fulfill the
requirements of ISO 26262. Standards can only be fulfilled in the context of
developing a real product in a given environment.

© Springer International Publishing Switzerland 2016
H.-L. Ross, Functional Safety for Road Vehicles,
DOI 10.1007/978-3-319-33361-8_1

1

Requirements, hints and notes in ISO 26262 are often described in a very
complex way. The choice of words is a compromise experts who developed those
safety standards had to agree upon. This is why all translations in this book may
already be seen as interpretations, which could be interpreted or translated in other
ways in the light of a different context. The strong recommendation to all readers is
to reference to the text of ISO 26262 when trying to interpret and apply those
standards in the field.

1.1 Definitions and Translations from the ISO 26262

ISO 26262 was only written in English. Even the usually common translation to
French was not implemented due to the different use and interpretation of certain
terms. This is why ISO 26262 is one of the only standards for which the original
English text is also used in France. Asian countries are the only countries that have
published a translation in their native language, a necessary requirement consid-
ering that the average developer in Japan would face difficulties in reading,
understanding and interpreting the English language. After Japanese, Korean and
Chinese translations followed afterwards during last years. For example, there is
only one word in Japanese for verification, analysis, investigation and validation,
thus the English text could have caused too many interpretation issues. Japanese
translators assured that the content would not be falsified.

Finding the right and accurate words proved to be difficult even for the trans-
lation to the German language. Terms such as verification, analysis and validation
were used in accordance with ISO 26262. However, some terms from the ISO
26262 glossary, highlighted in the blue boxes found throughout the book are
citations from ISO 26262, but all explanations before or after are interpretations
from the understanding of the author. Free interpretations, opinions or even rec-
ommendations of the author are written in the standard font chosen throughout the
book; direct quotes are written in italics.

Throughout this book, the terminology “assessment of functional safety” is used
to refer to the activity involved in “Functional Safety Assessment” as described in
ISO 26262. In considering this concept of “assessment,” it should be noted that
“examination” is the basis for assessment and results in “judgment” of a property of
the vehicle system or element.

ISO2626, Part 1, Clause 1.4:

1.4 (Assessment)
Examination of a property of a vehicle system (1.69) or element (1.32)
Note: A certain degree of independence (1.61) of a certain party or parties
who perform an assessment should be ensured for each assessment.

2 1 Introduction

The English word ‘assessment’ is translated as the German word used for
‘judgment’ and examination is seen as the basis for an assessment. The term
“Assessment of Functional Safety” is used regarding the activity “Functional Safety
Assessment” described in ISO 26262.

ISO2626, Part 1, Clause 1.6:

1.6 ASIL (Automotive Safety Integrity Level)
One of four levels to specify the item’s (1.69) or element’s (1.32) necessary
requirements of ISO 26262 and safety measures (1.110) to apply for avoiding
an unreasonable residual risk (1.97), with D representing the most stringent
and A the least stringent level.

For ‘Automotive Safety Integrity Level’, this book only uses the abbreviation
ASIL.

ISO 26262 already provides a description of the elements of a vehicle system in
part 10. An ‘element’ could be a system, a subsystem (logical or technical element
and thus also a functional group), a component, a hardware device or a SW unit.

Part 1 of ISO 26262 is described under 1.69 Vehicle System (item) as follows:
ISO2626, Part 1, Clause 1.69:

1.69 (vehicle system, item)
system (1.129) or array of systems to implement a function at the vehicle
level, to which ISO 26262 is applied.

The word ‘item’ in English is often considered as ‘vehicle system’ in the context
of this book, if it refers to the concrete word ‘item’ as used in ISO 26262 the word
“ITEM” is used.

Historically, the German term for “Betrachtungseinheit” could be translated as
“unit or item under consideration”. The English word ‘item’ and its definition as a
system better applies to the idea of a vehicle system. Whenever this is relevant in
the text, the term ‘item’ is added in brackets. The term ‘array of systems’ will be
questioned in Chap. 4 of this book. A systematic hierarchical structured systems
and associated subsystems are required in the technical parts from ISO 26262.

1.1 Definitions and Translations from the ISO 26262 3

http://dx.doi.org/10.1007/978-3-319-33361-8_4

Figure 3 (here Fig. 1.1) from part 10 can be described as follows according to
this definition:

ISO2626, Part 10, Fig. 3:

1. A system (1.129) or more systems, which realize one (or more) function(s)
on the vehicle level for which ISO 26262 can be used.

2. A system may implement one or more functions, but also one function can
be implemented in several systems.

3. A vehicle system is comprised of one or more systems, where one system
is composed of at least one sensor, a processing unit and an actuator. ISO
26262 draws the conclusion that a system should have at least three
elements but it could be possible for example that an actuator is integrated
in the processing unit.

4. A system can be divided into any subsystems but according to ISO 26262
the systems have to be hierarchically structured. In regards to systems,
which together should realize functions with a higher ASIL, a clear
hierarchical structure of systems has to be defined due to multiple fault
control.

5. A system (or subsystem) is comprised of one or more components.
6. Components consist of (electrical) hardware components (hardware parts)

or of SW units.

Terms such as module, SW-files et cetera are not defined in ISO 26262.
In regards to embedded semiconductors the term ‘Sub-Parts’ is used. Sub-Parts
are logical functional elements, which implement specific functions and safety
mechanisms within an integrated semiconductor.

Item
(Vehicle System)

Function

System

Component

HW Module
SW Unit

1

2 3

4

5

6

Fig. 1.1 Elements of a
vehicle system (Source ISO
26262, Part 10, Fig. 3)

4 1 Introduction

1.2 Error Terms of the ISO 26262

ISO 26262 specifies terms in Volume 1 as follows:
ISO2626, Part 1, Clause 1.36, 39, 42:

1:36 (error)
discrepancy between a computed, observed or measured value or condition,
and the true, specified, or theoretically correct value or condition
NOTE 1 An error can arise as a result of unforeseen operating conditions or
due to a fault (1.42) within the system (1.129), subsystem or component
(1.15) being considered.
NOTE 2 A fault can manifest itself as an error within the considered element
(1.32) and the error can cause a failure (1.39) ultimately.

1:39 (failure)
termination of the ability of an element (1.32), to perform a function as
required
NOTE Incorrect specification is a source of failure.

1:42 (fault)
abnormal condition that can cause an element (1.32) or an item (1.69) to fail
NOTE 1 Permanent, intermittent and transient faults (1.134) (especially
soft-errors) are considered.
NOTE 2 An intermittent fault occurs time and time again—and disappears.
These faults can happen when a component (1.15) is on the verge of breaking
down or, for example, due to a glitch in a switch. Some systematic faults
(1.131) (e.g. timing marginalities) could lead to intermittent faults.

The following assumptions were made due to different usages of the terms
“Fault”, “failure” and “error” in their context:

• Fault: Deviation, anomaly, defect, defect, non-conformity
• Error: mistake, fault or error
• Failure: Failure or malfunction.

The relationships of these three terms and also their model of error propagation
are described in Sect. 4.4.2. Here only needs to be noted that the term “error” in
German more generally and is thus used in this book primarily as a collective term
for all three terms. If error purely regarded as “error”, this is explained in the
context.

In the safety analysis the following aspects can be distinguished:

• Single point fault (or single failure) and
• Multiple-point faults.

1.2 Error Terms of the ISO 26262 5

http://dx.doi.org/10.1007/978-3-319-33361-8_4

If a single fault or a deviation of an observable behavior or property alone leads
to a failure of a system, this is referred to as a single point fault. Perform only a
combination of several faults, deviations to unintentional changes, observable
behavior or changed properties; this is regarded as a multiple-point faults. At least
combinations of minimum two faults are necessary to propagate to a multiple-point
failure. In ISO 26262 this naming is not based on a system’s behavior, but on a
safety goal. For example single point faults are considered only if a single fault
leads to a violation of the safety goal within the specified Item, boundary or the
specified environment or specified space. Faults which lead only to failure outside
the “Item” are not considered as a single point fault, unless the “Item Definition”
not changed due to systematic failures.

References

1. [ISO 26262]. ISO 26262 (2011): Road vehicles – Functional safety. International Organization
for Standardization, Geneva, Switzerland.

2

3

3

4

5

6 1 Introduction

Chapter 2
Why Functional Safety in Road Vehicles?

It took a while until functional safety started to play a significant role in the
automotive industry in comparison to other industries. Customers, producers and
dealers networks demanded more functionality and complexity of the products and
market. One of the major reasons was that mechanical engineers primarily domi-
nated the entire automobile engineering industry. The same industry developed the
safety mechanism in the related field, without relying on electronics or even soft-
ware. Therefore, these safety mechanisms were first and foremost based on a robust
design as well as hydraulic or pneumatic safety mechanisms. With the increased
amount of automation and electrification of essential vehicle functions and the
desire to make these systems applicable for higher speeds and dynamics, electri-
fication was the only way to go. Also the earlier concepts steer-by-wire and
brake-by-wire, right up until today’s autonomous or highly automated driving
systems, make the usage of software based safety mechanisms unavoidable. If you
look at one of today’s common mid-range cars such as the ‘Volkswagen Golf’, you
will find about 40 control units, which are still mainly networked by a CAN-Bus. It
is “State-of-Science and Technology” that no complex vehicle systems could be
realized without a systems approach. One of the main challenges of ISO 26262 [1]
was that various methods, methodology, principles, best practices had been
established but there was no consistent system development approach.

The main task in the development of ISO 26262 was to agree upon one basic
understanding of system engineering. Therefore, it is not a surprise that the word
‘system engineering’ appears quite often in the introduction.

2.1 Risk, Safety and Functional Safety in Automobiles

In general, risk is described as a possible event with a negative impact. The Greek
origin of the word risk had been also used for hazard or danger. In regards to
product safety it is referred to as the cross product of probability of occurrence and

© Springer International Publishing Switzerland 2016
H.-L. Ross, Functional Safety for Road Vehicles,
DOI 10.1007/978-3-319-33361-8_2

7

hazard/danger. There are different opinions on the term and definition of risk in the
economic literature. Definitions vary from ‘danger of a variance of error’ to the
mathematical definition ‘risk = probability × severity’.

The general definition is as follows: The probability of damage or loss as
consequence of a distinct behavior or events; this refers to hazardous/dangerous
situations in which unfavorable consequences may occur but do not necessarily
have to.

On the one hand, risk can be traced back etymologically to ‘riza’ (Greek = root,
basis); see also ‘risc’ (Arabic = destiny). On the other hand, risk can be referred to
‘ris(i)co’ (Italian); “The cliff, which has to be circumnavigated”. ‘Safety’ derives
from Latin and could be translated as ‘free from worry’ (se cura = without worry).
Today, the topic of safety is viewed in various different contexts for example, in
regards to economic safety, environmental safety, admittance and access security
but also in terms of work safety, plant and machinery safety and vehicle safety. The
term safety varies significantly from just only functional safety.

In relation to technical systems or products, safety is described as the freedom of
unacceptable risks. ‘Damage’ is generally seen as harm or impairment of people as
well as the environment.

There are various distinctions of hazard:

• Chemical reactions of substances, materials etc. lead to fire, explosions, injuries,
health impairments, poisoning, environmental damage etc.

• Toxic substances lead to poisoning (also carbon monoxide), injuries (conse-
quence of for example degassing of batteries, error reactions of the driver or
mistakes of the auto repair shop staff), other damages etc.

• High currents and especially high voltages lead to damages (in particular per-
sonal protection).

• Radiations (nuclear, but also radiations like alpha particle semiconductor).
• Thermic (damages due to overheating, singe, fire, smoke etc.).
• Kinetics (deformation, movement, accelerated mass can lead to injuries).

The potential reasons for hazard cannot be easily defined, since chemical reac-
tions can also lead to poisoning and overheating, to fire and thus also to smoke
intoxication. Similar correlations appear in high currents or excessive voltages.
High voltages lead to burns when touching but can also cause fires. Overvoltage is
often seen as a non-functional risk or hazard. This is why most of the standards
encounter such hazards with design constraints. A contact safety device or touch
guard on a safety plug connector is a typical example. This leads us to the following
point of view and distinction of functional safety.

Functional safety is generally described as the correct technical reaction of a
technical system in a defined environment, with a given defined stimulation as an
input of the technical system. ISO 26262 defines functional safety as absence of
unreasonable risk due to hazards caused by malfunctioning behavior of E/E systems.
Also, the error or failure reactions of mechanic or hydraulic safety components are

8 2 Why Functional Safety in Road Vehicles?

controlled by electronic safety mechanisms in mechatronic systems. This distinction
will be discussed later in reference to ISO 26262 (Fig. 2.1).

Functional safeguarding with hydraulic systems has always been used for
automobiles. A typical example would be the dual-circuit braking system or the
hydraulic steering system. Electronic and software based functional safety mech-
anisms were introduced as for example the ABS (Anti-Wheel-Blocking-System) for
brake systems 30 years ago. Prior to that the necessary safety was only established
by sufficient robust system and safe component characteristics (meaning through
design).

The following definitions of risk, hazard/danger and integrity have been added to
DIN EN 61508-1:2002–11:

Citation from IEC 61508 [2], Part 5, A5:
A.5 Risk and Safety Integrity

It is important that the distinction between risk and safety integrity be fully
appreciated. Risk is a measure of the probability and consequence of a specified
hazardous event occurring. This can be evaluated for different situations [EUC
risk, risk required to meet the tolerable risk, actual risk (see Fig. A.1)]. The
tolerable risk is determined on a societal basis and involves consideration of
societal and political factors. Safety integrity applies solely to the E/E/PE safety-
related systems, other technology safety related-systems and external risk reduction
facilities and is a measure of the likelihood of those systems/facilities satisfactorily
achieving the necessary risk reduction in respect of the specified safety functions.
Once the tolerable risk has been set, and the necessary risk reduction estimated, the
safety integrity requirements for the safety-related systems can be allocated. (see
7.4, 7.5 and 7.6 of IEC 61508-1) (Fig. 2.2).

Furthermore, IEC 61508 shows the following figure to explain coherences
(Fig. 2.3):

Safety Mechanism in
- Electronics and
- Software

Implemented
Safety Mechanisms

Implemented
Features

Fig. 2.1 Functional safety—safety design, control of forces and energies

2.1 Risk, Safety and Functional Safety in Automobiles 9

ISO 26262 defines the relation of risk, danger and safety integrity differently.
The term safety integrity is not directly used in ISO 26262. In particular the term
EUC (Equipment under Control) is not used at all. EUC could be explained as
“device or system, which should be controlled by means of functional safety
measures”. Under certain limiting conditions ISO 26262 admits to develop a
desired vehicle function that is safety-related on its own. In this case, the system
does not receive safety through EUC itself. Technically, according to IEC 61508,
EUC and the safety functions have to cause an error at the same time in order to
create a hazardous situation. If for example a hydraulic braking system was the

Fig. 2.2 Risk reduction according to IEC 61508 (Source IEC 61508-1:2011)

Fig. 2.3 Risk- and safety integrity according to IED 61508 (Source IEC 61508-1:2011)

10 2 Why Functional Safety in Road Vehicles?

EUC, which in its function can be monitored by an EE-system, errors of the
hydraulic systems could be avoided by the EE-system. The automobile industry
relies here on other technology and engineering of the electronic safety system will
be considered as a fail-safe-system.

As mentioned previously, ISO 26262 defines functional safety as freedom of
unacceptable risks based on hazards, which are caused by malfunctional behavior of
E/E-systems. However, interactions of systems with E/E-functions are included as
well and therefore also mechatronic systems. Whether pure mechanical systems
really show not any interactions with E/E is doubtful. Furthermore, the introduction
chapter of ISO 26262, which describes the scope of the norm, excludes hazards such
as electric shock, fire, smoke, heat, radiation, poisoning, inflammation, (chemical)
reactions, corrosion, release of energy or comparable hazards, as long as the failure
was not caused by electrical components. Such hazards are caused more by the
battery as well as the poisonous electrolytes in the capacitors. Whether a motor
winding is an electrical device or a mechanical component is also questionable.

In general, it will be difficult to assign the ASIL with non-functional hazards.
Such components have so far been construed sturdily in order to avoid any danger.
In the context of the hazard and risk analysis it is difficult to allocate a specific ASIL
to a weakness in design or construction.

ISO 26262 also excludes functional performances. Therefore, safety-in-use or
functional inadequacy means functions, which already lead to a hazard, even if they
functioning correctly are generally excluded in advance.

All explain the correlation of risk and damage as follows:

ISO 26262, part 3, appendix B1:

For this analytical approach a risk (R) can be described as a function (F),
with the frequency of occurrence (f) of a hazardous event, the ability of the
avoidance of specific harm or damage through timely reactions of the per-
sons involved (controllability: C), and the potential severity (S) of the
resulting harm or damage:

R ¼ Fðf ; C; SÞ

The frequency of occurrence f is, in turn, influenced by several factors.
One factor to consider is how frequently and for how long individuals find
themselves in a situation where the aforementioned hazardous event can
occur. In ISO 26262 this is simplified to be a measure of the probability of the
driving scenario taking place in which the hazardous event can occur
(Exposure: E). Another factor is the failure rate of the item that could lead to
the hazardous event (Failure rate: λ). The failure rate is characterized by

2.1 Risk, Safety and Functional Safety in Automobiles 11

hazardous hardware random failures and systematic faults that remained in
the system:

f ¼ E � C

Hazard analysis and risk assessment is concerned with setting require-
ments for the item such that unreasonable risk is avoided.

ISO 26262 mentions normative methods that describe a systematic derivation of
the potential risk, which may originate from the investigated of the considered Item
(vehicle system), based on a hazard analysis and risk assessment. Hazard or risk
analyses are not normatively defined in other safety standards. Either the require-
ments for these methods are listed or the method itself is exemplarily described
(Fig. 2.4).

The reduction of risk cannot be achieved with the activities and methods
mentioned in ISO 26262 if a function is not suitable, inadequate suitable, inade-
quate or falsely indicated for certain safety related functions. This represents a
special challenge, considering that ISO 26262 does not directly addresses a EUC
(Equipment under Control, e.g. a system, machinery or vehicle, which should be
controlled safety-related systems) or the distinction between safety functions of
designated safety requirements for on-demand (low demand) or continuous mode
(high demand) safety systems. How is it possible to find out whether or not reac-
tions of a vehicle system or certain measurements are sufficient, tolerable or
safety-related appropriate?

Fig. 2.4 Distinction of hazards, based on correctly functioning systems (Reference unpublished
research project [7])

12 2 Why Functional Safety in Road Vehicles?

2.2 Quality Management System

Prof. Dr. rer. nat. Dr. oec. h. c. Dr.-Ing. E. h. Walter Masing, is also called the father
of quality management systems, at least in Germany. His standard reference
“Masing Handbook Quality Management” had a substantial influence on the
standardization and interpretation of quality management systems.

A lot of methods and principles of management systems are explained already in
ISO 9000. However, in 2005, statistics and trial methods became less relevant as
the process approach became more and more important.

In the automotive industry an addition to ISO 9001 exists, called ISO TS 16949
[3]. It describes additions especially to the product development and production,
which developed into standards in this industry. Today, in order for a distributor to
be able to supply automotive manufacturers, the certification of ISO TS 16949 is an
essential basic. Manufacturers from Asia still refer to different standards, based on
historical reasons. Especially in Japan, quality requirements focus more on the
ideals of the six-sigma-philosophy (for example DFSS, Design for Six Sigma). In
particular the static analysis and trial methods mentioned in Masing’s book, in
DSFF as well as in functional safety are often based on comparable principles.
ISO TS 16949 asks in the following chapters for essential basics for functional
safety according to ISO 26262:

ISO TS 16949, 4.2.3.1: Engineering specifications

The organization shall have a process to assure the timely review, distribution
and implementation of all customer engineering standards/specifications and
changes based on customer-required schedule. Timely review should be as soon as
possible, and shall not exceed two working weeks.

The organization shall maintain a record of the date on which each change is
implemented in production. Implementation shall include updated documents.

NOTE A change in these standards/specifications requires an updated record of
customer production part approval when these specifications are referenced on the
design record or if they affect documents of production part approval process, such
as control plan, FMEAs, etc.

Here, the norm refers to document and change management, application of
necessary norms and standards, methods, output/work results and the regulation of
responsibility (clearance), which is mentioned in ISO 26262 as QM-methods.

ISO TS 16949, 5.6.1.1 Quality management system performance

These reviews shall include all requirements of the quality management system
and its performance trends as an essential part of the continual improvement
process.

Part of the management review shall be the monitoring of quality objectives, and
the regular reporting and evaluation of the cost of poor quality (see 8.4.1 and
8.5.1).

2.2 Quality Management System 13

These results shall be recorded to provide, as a minimum, evidence of the
achievement of

• the quality objectives specified in the business plan, and
• customer satisfaction with product supplied.

This explains the fact that product development as well as the satisfaction of the
products delivered has to be documented and proven. If it concerns safety related
features this may affect the customer substantially.

ISO TS 16949, 5.6.2: Review input
ISO 9001:2000, Quality management systems—Requirements

5.6.2 Review input
The input to management review shall include information on

a) results of audits,
b) customer feedback,
c) process performance and product conformity,
d) status of preventive and corrective actions,
e) follow-up actions from previous management reviews,
f) changes that could affect the quality management system, and
g) recommendations for improvement.

This list can also be seen as a “safety culture” in infrastructure requirements and
essential for functional safety.

ISO TS 16949, 5.6.2.1: Review input

Input to management review shall include an analysis of actual and potential
field-failures and their impact on quality, safety or the environment.

This chapter refers directly to the essential field observations, which are also
required by the government in the context of product liability laws. It also directly
refers to safety defects.

ISO TS 16949, 5.6.3: Review output
ISO 9001:2000, Quality management systems—Requirements

5.6.3 Review output
The output from the management review shall include any decisions and actions

related to

a) improvement of the effectiveness of the quality management system and its
processes,
b) improvement of product related to customer requirements, and
c) resource needs.

There are further additions mentioned to this topic in particular in ISO 26262.

14 2 Why Functional Safety in Road Vehicles?

ISO TS 16949, 6: Resource management

6.1 Provision of resources
ISO 9001:2000, Quality management systems—Requirements 6 Resource

management 6.1 Provision of resources The organization shall determine and
provide the resources needed (a) to implement and maintain the quality management
system and continually improve its effectiveness, and (b) to enhance customer
satisfaction by meeting customer requirements.

6.2 Human resources
6.2.1 General
ISO 9001:2000, Quality management systems—Requirements 6.2 Human

resources 6.2.1 General
Personnel performing work affecting product quality shall be competent on the

basis of appropriate education, training, skills and experience.
Sections 6.1 and 6.2 show, that also in the development stage essential

requirements of people, their qualifications and the organization of product creation
are well defined according to quality management systems.

ISO TS 16949, 7.3.1.1: Multidisciplinary approach

The organization shall use a multidisciplinary approach to prepare for product
realization, including

• development/finalization and monitoring of special characteristics,
• development and review of FMEAs, including actions to reduce potential risks,

and
• development and review of control plans.

NOTE A multidisciplinary approach typically includes the organization’s
design, manufacturing, engineering, quality, production and other appropriate
personnel.

This cross-functional approach of ISO TS 16949 defines the basis for a neces-
sary safety culture as the foundation of functional safety and address directly
FMEAs as a mayor quality analysis method.

ISO TS 16949, 7.3.2.3: Special characteristics

The organization shall identify special characteristics [see 7.3.3 d] and

• include all special characteristics in the control plan,
• comply with customer-specified definitions and symbols, and
• identify process control documents including drawings, FMEAs, control plans,

and operator instructions with the customer’s special characteristic symbol or
the organization’s equivalent symbol or notation to include those process steps
that affect special characteristics.

NOTE Special characteristics can include product characteristics and process
parameters.

2.2 Quality Management System 15

http://dx.doi.org/10.1007/978-3-319-33361-8_6
http://dx.doi.org/10.1007/978-3-319-33361-8_6

This chapter defines the way safety requirements were handled previously in the
automobile industry. In particular “special characteristics” are still used for a
safety-related design parameter of mechanic parts. The paragraph also defines the
basics for the production of safety related components.

ISO TS 16949, 7.3.3.1: Product design output—Supplemental

The product design output shall be expressed in terms that can be verified and
validated against product design input requirements. The product design output
shall include

• Design FMEA, reliability results,
• product special characteristics and specifications,
• product error-proofing, as appropriate,
• product definition including drawings or mathematically based data,
• product design reviews results, and
• diagnostic guidelines where applicable.

This is a list of the output of product development, which had to be extended in
ISO 26262 for the relevant safety related work-products and components. This
output would for example be part of the safety case in a safety related product
development.

ISO TS 16949, 7.3.3.2: Manufacturing process design output

The manufacturing process design output shall be expressed in terms that can be
verified against manufacturing process design input requirements and validated.
The manufacturing process design output shall include

• specifications and drawings,
• manufacturing process flow chart/layout,
• manufacturing process FMEAs,
• control plan (see 7.5.1.1),
• work instructions,
• process approval acceptance criteria,
• data for quality, reliability, maintainability and measurability,
• results of error-proofing activities, as appropriate, and
• methods of rapid detection and feedback of product/manufacturing process

nonconformities.

This list adds to the necessary output/work-products during production. ISO
26262 rarely mentions any further requirements since this area is well regulated by
quality management systems.

ISO TS 16949, 7.5.1.1: Control plan

The organization shall

16 2 Why Functional Safety in Road Vehicles?

• develop control plans (see annex A) at the system, subsystem, component and/or
material level for the product supplied, including those for processes producing
bulk materials as well as parts, and

• have a control plan for pre-launch and production that takes into account the
design FMEA and manufacturing process FMEA outputs. The control plan
shall

• list the controls used for the manufacturing process control,
• include methods for monitoring of control exercised over special characteristics

(see 7.3.2.3) defined by both the customer and the organization,
• include the customer-required information, if any, and
• initiate the specified reaction plan (see 8.2.3.1) when the process becomes

unstable or not statistically capable. Control plans shall be reviewed and
updated when any change occurs affecting product, manufacturing process,
measurement, logistics, supply sources or FMEA (see 7.1.4).

NOTE Customer approval may be required after review or update of the control
plan.

ISO TS16949 describes the requirements of production control regarding the
precedent development and required analyses, for example FMEAs, in detail.
Analyses for product development are required—even if these products can be
developed according to quality management systems but without any safety
requirements.

2.2.1 Quality Management Systems from the Viewpoint
of ISO 26262

Quality management is not mentioned very consistent in ISO 26262. The
requirements set are the fundamentals, which enable any functional safety method
to be applied in the automotive industry. Content wise, the appendix of part 2 ISO
26262 raises many interesting topics covering safety culture. ISO 26262 shortly
summarizes the fundamental requirements as follows:

ISO 26262 Part 2, Clause 5.3.2:

5.3.2 Further supporting information
5.3.2.1 The following information can be considered:

– existing evidence of a quality management system complying with a
quality standard, such as ISO/TS 16949, ISO 9001, or equivalent.

2.2 Quality Management System 17

ISO 26262 Part 2, Clause 5.4.4:

Quality Management during the Safety Lifecycle
The organizations involved in the execution of the safety lifecycle shall have
an operational quality management system complying with a quality stan-
dard, such as ISO/TS 16949, ISO 9001, or equivalent.

This means, a well-organized, well-established and well-applied quality man-
agement system is the basis of functional safety. ISO TS 16949 is required of all
vehicle manufacturers worldwide. Quality management systems without this can be
disregarded. ISO 26262 also mentions several work-products where safety aspects,
enhancements, or improvements need to be added to already consider
work-products defined by the quality management system.

In further additions ISO TS 16949 provides the following definition for quality:

ISO TS 16949, addition:

Quality is defined as “the sum of characteristics of an entity regarding its
suitability to fulfill defined and predetermined requirements”. The term “entity” is
here very vague. It is defined as follows: “Something that can be described and
observed individually.” Thus quality refers to characteristics and features of a
finished product. In general it is assumed that these characteristics remain for a
certain time after the production. Often this time period equals the warranty period.
As long as it is stated in the specifications that the existing characteristics and
features after the production should remain through the defined usage period,
reliability is a part of quality.

This definition clearly asks for the concept of lifecycles as a requirement, hence
quality features such as safety should be self-evident.

2.3 Advanced Quality Planning

ISO TS 16949 can be interpreted differently for the individual cases of application.
This is why automobile manufacturers have since defined standards in order to
guarantee quality in product development. Later, the American manufacturers such
as Ford, GM or Chrysler met at AIAG to define joint requirements for quality
management. In Germany, similar standards and requirements were developed
under the umbrella of VDA. The aim was to define processes for the development
as well as planned advanced product quality improvement measures, APQP (ad-
vanced product quality planning according to AIAG).

VDA and AIAG published a series of documents, which are considered to be the
foundation for VDA- or AIAG members. Those various volumes of these documents
are often mandatorily referenced in the contract documents for supplier.

18 2 Why Functional Safety in Road Vehicles?

Unfortunately, these documents are not highly consistent. For example, both orga-
nizations describe different FMEA methods (or several FMEA methods), which are
considered to be a basis of ISO 26262. In addition, these organizations also devel-
oped milestones or maturity level concepts, which were primarily used for the
synchronization of automotive manufacturers and supplier (Fig. 2.5).

AIAG defined APQP with 5 “milestones”:

• The first phase “Concept, initiation, approval” is a mere planning phase
• In the second phase, before the program approval, the planning as well as the

product and process development should have a certain maturity. The feasibility
of the product is then verified as part of the program approval.

• The third phase focuses on the development of the first prototypes, the verifi-
cation (often prototype tests) and the product and production process validation.
At this point, the product design should be almost finalized.

• In the fourth phase the first series-development (close-to-series-production,
pilot) products are produced. Those products should already be produced with
the series-production tools.

• The product launch initiates the series production. This requires the develop-
ment of supply chains and the production needs to be able to guarantee a
sufficient quantity and quality.

After the product launch an assessment of the product development and
appropriate corrective actions are expected. All activities are continuously

Fig. 2.5 Advanced product quality planning (Reference APQP AIAG [9] 4th Edition)

2.3 Advanced Quality Planning 19

monitored and necessary corrective actions need to be implemented when field
findings arise.

Within this topic VDA published the following volumes:

• VDA QMS Volume 1
Documentation and Archiving—Code of practice for the documentation and
archiving of quality requirements and quality records/3rd edition 2008
Guidelines for documentation and archiving of quality requirements and records
(especially for critical features).

• VDA QMS Volume 2
Quality Assurance for Supplies Production process and product approval PPA,
5th revised edition, November 2012
Choice of suppliers, quality assurance and agreements, production process and
product approval, choice of ingredients (A new edition will be published soon)

• VDA QMS Volume 3, part 1
Ensuring reliability of car manufacturers—Reliability Management/3rd edition
2000

• VDA QMS Volume 3 part 2
Ensuring reliability of car manufacturers and suppliers—Reliability
Management Methods and Utilities/3rd edition 2000, currently 2004

• VDA QMS Volume 4 Chapter Product and Process FMEA [4]
2nd edition December 2006, updated in June 2012, (The chapter is already
included in Volume 4)

These volumes are continuously updated and include new topics such as maturity
level of products and processes, standardized requirement specifications etc.

2.4 Process Models

Procedure or process models have a long history. The following list shows the
origin of such products, especially software-intensive products.

1. First attempt to develop clearly understandable programs (1968)
Dijkstra suggests “structured programming” (Avoidance of GOTO-instructions).

2. Development of software engineering principles (1968–1974)
Theoretical basics (principles) are developed that represent the foundation of
structured development of programs: structured programming, step-by-step
refining, secrecy concepts, program modularization, software lifecycles, entity
relationship model, and software ergonomics

3. Development of phase-specific software engineering methods (1972–1975)
Implementation of software engineering concepts in draft methods: HIPO,
Jackson, Constantine method, first version of small talk

20 2 Why Functional Safety in Road Vehicles?

4. Development of phase-specific tools (1975–1985):
Application of SE-methods with mechanic support (e.g. Program inversion,
batch tools)

5. Development of phase-comprehensive (integrated) software engineering meth-
ods (since 1980)
The results of one phase of the software lifecycle should be automatically passed
on to the next phase: integrated methods

6. Development of phase-comprehensive (integrated) tools (since 1980)
Application of databases as automatic interfaces between the individual phases
of a software lifecycle. Interactive program cue through CAS-tools (computer
aided software design)

7. Definition of different, competing and object oriented methods (since 1990)
Various object oriented analyses and design methods were developed simulta-
neously. (Booch, Jacobson, Rumbaugh, Shlaer/Mellor, Coad/Yourdon et al.)
These methods were implemented with CASE tools (computer aided software
engineering)

8. Integration of OO-methods for UML-unified modeling language (since 1995)
Jacobson, Booch and Rumbaugh joint to develop UML. UML aims to eliminate
the previous weaknesses of OO-methods and create an internationally valid and
uniform standard. UML 1.0 passed 1997.

9. UML 2.0
UML 2.0 was published in 2004 after UML 1.0 was upgraded to version 1.5.
This version includes adapted up to date language elements for new technolo-
gies and removed redundancies and inconsistencies in language definitions.
Source: Online list without sources

History shows, that these approaches are merely based on experience. Over time,
restrictions in the programming process have led to formalized description formats.
Later, the description of these “best practices” as formalized activities lead to the
development of process models as reference models or, as the example of UML
shows, formalized description language. Certain principles such as, requirements
are only accepted if they can be implemented and if tests show that they can be
implemented correctly, influenced this strategic approach.

2.4.1 V-Models

The following figure shows the development of process models and process
improvement models such as CMM or SPICE. ISO 9001 and ISO 12207 can be
seen as a basis for these models. ISO 12207 is mentioned in the bibliography of ISO
26262. However, the relation between ISO 12207 and ISO 26262 is not explained.

Surprisingly, for a long time the principles of the process approach for product
development have not been strongly developed in Asia. ISO 12207 is the foundation
of process assessment models (PAM) based on CMM or SPICE. The practice of

2.4 Process Models 21

relating those process assessment models with the safeguarding of software features
was developed later.

The crucial question is ‘does such a generic process actually represent more than
what the SPICE-definitions describes?’ Here the V-model is mentioned as a ref-
erence model. So if requirements of the development activities are described, is it
useful to structure them according to such a reference model? (Fig. 2.6).

The V-model XT, in its version 1.2, describes the V only for the development of
individual products (Fig. 2.7).

Fig. 2.6 History of procedure models based on V-models based (Source Flecsim)

client

contractor

project
contracted

project
approved

project
advertised

requirements
agreed

project
defined

acceptance project
awarded

project
closed

change plan
agreed

project
approved

project
contracted

offer
submitted

project
defined

change plan
agreed

system
specified

system
draft

Detail design
closed

System elements
realized

system
integrated

delivery

acceptance project
closed

tender
submission

Decision points

contract offer

Fig. 2.7 Interface V-model customer—supplier according to V-model XT (Source V-model XT
1.2 [8])

22 2 Why Functional Safety in Road Vehicles?

The V-model XT first describes the customer—supplier relationship. This phase
determines the product scope and the fundamental requirements and is comparable
to part 8, Chap. 5 (Interfaces of the distributed development). Here the author refers
to the interface agreement (DIA, Development Interface Agreement) between
development partners. Those agreements should determine who is responsible for
the various product development packages (or product elements) and who performs
which activity (who does what).

SPICE (Software Process Improvement and Capability Determination) is often
associated with ISO 26262 and is mainly based on two norms, ISO 12207 and ISO
15504.

ISO 12207 “Processes in software lifecycles” offers a process reference model
with the following categories:

• customer-supplier processes,
• development processes,
• supportive processes,
• management processes,
• organization processes.

Part 6 of ISO 26262 mentions ISO 12207 in the bibliography appendix but there
is no reference or explanation as to what relation those norms have with each other.

However, 40 processes are described, these are seen as a foundation for SW
based product development and ISO 15504 derived a process assessment model
(PAM) from this description.

ISO 15504 consists of the following parts:

ISO 15504-1: Concepts and vocabulary
Terms and general conception
ISO 15504-2: Implementation of assessments

• requirements for a process reference model
• requirements for PAM
• definitions of a framework to measure process capability levels
• requirements for an assessment process framework

ISO 15504-3: Guideline for the assessment implementation
Guideline for the implementation of a ISO 15504-2 conform assessment:

• Assessment framework for process capability levels
• PRM and PAM
• Selection and usage of assessment tools
• competence of assessors
• examination of compliance

ISO 15504-4: Guidelines for the usage of assessment results

• Selection of PRM
• Setting target capability

2.4 Process Models 23

http://dx.doi.org/10.1007/978-3-319-33361-8_5

• definition of assessment inputs
• Steps to process improvement
• Steps to the determination of ability levels
• Comparability of assessment outputs

ISO 15504-5: Exemplary process assessment model (PAM)
Exemplary PAM, which fulfills all requirements of ISO 15504-2, and infor-

mation on assessment indicators
ISO 15504-6: Exemplary PAM ISO 15228

• Structure of PAM
• Process performance indicators
• Process ability indicators

ISO 15504-7: Guidelines for the determination of the maturity level of an
organization

CMMI and SPICE always differed in their assessments. SPICE always assesses
individual processes but was unable to measure the maturity level of an organi-
zation like CMMI does. CMMI combines certain processes and therefor derives a
maturity level for organizations.

With ISO 15504-7 also SPICE supports maturity levels for organizations.
ISO 15504-8: Exemplary process assessment model (PAM) for ISO 20000
Exemplary PAM for the IT service management
ISO 15504-9: Process profile goals
Part 9 is a technical specification (TS) which describes process profiles.
ISO 15504-10: Safety Extensions
Aspects of safety
AutoSIG used ISO 15504 as a basis for Automotive SPICE®. Part 2 and 5 were

used for PAM and PRM. Automotive SPICE® is an adaption of parts of ISO 15504
to automotive applications.

Further lifecycle approaches for the SW development:

• ISO/IEC/IEEE 16326 Systems and software engineering—Lifecycle processes
—Project management (2009)

• SAE J2640, General Automotive Embedded Software Design Requirements
(April 2006)

• IEEE STD829, Standard for Software and System Test Documentation (2008)
• ISO/IEC 9126 Software engineering—Product quality (2001)
• ISO/IEC 15288 Systems engineering—System lifecycle processes (2002)
• ISO/IEC 26514 Systems and software engineering—Requirements for designers

and developers of user documentation (2008)

All these norms influenced the development of ISO 26262. However, none of
these norms from the list above is in a normative relationship with ISO 26262.

However, the norms of the ISO/IEC 25000 [5] were highly influential. They
were developed simultaneously to ISO 26262 and since 2005 have replaced
ISO/IEC 9126.

24 2 Why Functional Safety in Road Vehicles?

The basic norm is called:
ISO/IEC 25000 Software engineering—Software Product Quality Requirements

and Evaluation (SQuaRE)
This series includes quality criteria and the ISO organization asks other norm

developing working groups to use these as guidelines.
The following examples show a comparison of the definitions of ISO/IEC 25000

and ISO 26262:

Functionality:

The capability of the software product to provide functions, which meet stated
and implied needs when the software is used under specified conditions.

Generally does not contradict with ISO 26262

Functional appropriateness:

Degree to which the functions facilitate the accomplishment of specified tasks
and objectives. EXAMPLE An user is only presented with the necessary steps to
complete a task, excluding any unnecessary steps.

NOTE Functional appropriateness corresponds to suitability for the task in ISO
9241-110.

The term is not used in ISO 26262, but does not mean any contradiction.

Functional correctness:

Degree to which a product or system provides the correct results with the needed
degree of precision.

Considered as part of verification measures, but not addressed as such in ISO
26262.

Interoperability:

Degree to which two or more systems, products or components can exchange
information and use the information that has been exchanged

NOTE Based on ISO/IEC/IEEE 24765.
The focus in ISO 26262 lies more on the flawed cooperation of elements and

systems.
The term is not used in ISO 26262, but does not mean any contradiction.

Security:

Degree to which a product or system protects information and data so that
persons or other products or systems have the degree of data access appropriate to
their types and levels of authorization.

NOTE 1: As well as data stored in or by a product or system, security also applies
to data in transmission.
NOTE 2: Survivability (the degree to which a product or system continues to fulfill
its mission by providing essential services in a timely manner in spite of the
presence of attacks) is covered by recoverability (4.2.5.4).

2.4 Process Models 25

NOTE 3: Immunity (the degree to which a product or system is resistant to attack)
is covered by integrity (4.2.6.2).
NOTE 4: Security contributes to trust (4.1.3.2).

The term is not yet addressed, but it is a big topic for future revisions of ISO
26262.

Authenticity:

Degree to which the identity of a subject or resource can be proved to be the one
claimed

NOTE Adapted from ISO/IEC 13335-1:2004.
The term is not used in ISO 26262, but does not mean any contradiction.

Reliability:

Degree to which a system, product or component performs specified functions
under specified conditions for a specified period of time

NOTE 1: Adapted from ISO/IEC/IEEE 24765.
NOTE 2: Wear does not occur in software. Limitations in reliability are due to
faults in requirements, design and implementation, or due to contextual changes.
NOTE 3: Dependability characteristics include availability and its inherent or
external influencing factors, such as availability, reliability (including fault toler-
ance and recoverability), security (including confidentiality and integrity), main-
tainability, durability, and maintenance support.

The term is not used in ISO 26262, but does not mean any contradiction. But this
book will address more the relation between safety and reliability.

• Maturity: Degree to which a system, product or component meets needs for
reliability under normal operation

NOTE: The concept of maturity can also be applied to other quality charac-
teristics to indicate the degree to which they meet required needs under normal
operation.

The term is not used in ISO 26262, but does not mean any contradiction.

• Fault tolerance: Degree to which a system, product or component operates as
intended despite the presence of hardware or software faults

NOTE Adapted from ISO/IEC/IEEE 24765.
Reliability is used in a comparable context but also for software and hardware.
The term is not used in ISO 26262, but does not mean any contradiction.

Recoverability:

Degree to which, in the event of an interruption or a failure, a product or system
can recover the data directly affected and re-establish the desired state of the
system.

26 2 Why Functional Safety in Road Vehicles?

NOTE: Following a failure, a computer system will sometimes be down for a
period of time, the length of which is determined by its recoverability.

The term is not used in ISO 26262, but does not mean any contradiction.

Compliance:

Extend to which the software fulfills reliability norms and agreements
ISO 26262 compares and refers compliance especially to safety.

Usability:

Degree to which a product or system can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context of
use

NOTE 1: Adapted from ISO 9241-210.
NOTE 2: Usability can either be specified or measured as a product quality
characteristic in terms of its sub characteristics, or specified or measured directly
by measures that are a subset of quality in use.

The usability of for example components describes the qualification of compo-
nents in safety applications.

Efficiency:

Resources expended in relation to the accuracy and completeness with which
users achieve goals [ISO 9241-11]

NOTE: Relevant resources can include time to complete the task (human
resources), materials, or the financial cost of usage.

Efficiency is especially reference to the efficiency of safety mechanism in ISO
26262.

• Time behavior: Degree to which the response and processing times and
throughput rates of a product or system, when performing its functions, meet
requirements

Real-time aspects are not directly addressed, but safe tolerance time interval or
any other time related requirements define constraints for safety-related functions.

• Resource utilization: Degree to which the amounts and types of resources used
by a product or system, when performing its functions meet requirements

NOTE: Human resources are included as part of efficiency (4.1.2).
Resource usage of microcontroller is a major topic in safety engineering, but not

addressed in detail in ISO 26262.

Maintainability:

Degree of effectiveness and efficiency with which a product or system can be
modified by the intended maintainers

2.4 Process Models 27

NOTE 1: Modifications can include corrections, improvements or adaptation of the
software to changes in environment, and in requirements and functional specifi-
cations. Modifications include those carried out by specialized support staff, and
those carried out by business or operational staff, or end users.
NOTE 2: Maintainability includes installation of updates and upgrades.
NOTE 3: Maintainability can be interpreted as either an inherent capability of the
product or system to facilitate maintenance activities

ISO 262626 does not make a focus on maintainability a for example railway
safety standards, but the relation between safety and maintenance is addressed.

• Analyzability: Degree of effectiveness and efficiency with which it is possible to
assess the impact on a product or system of an intended change to one or more
of its parts, or to diagnose a product for deficiencies or causes of failures, or to
identify parts to be modified

NOTE: Implementation can include providing mechanisms for the product or
system to analyze its own faults and provide reports prior to a failure or other
event.

The term is not directly addressed, but safety analyses are key activities for
element examinations of the product under development.

• Modifiability: Degree to which a product or system can be effectively and
efficiently modified without introducing defects or degrading existing product
quality

NOTE 1: Implementation includes coding, designing, documenting and verify-
ing changes.
NOTE 2: Modularity (4.2.7.1) and analyzability (4.2.7.3) can influence
modifiability.
NOTE 3: Modifiability is a combination of changeability and stability.

The term is not used in ISO 26262, but does not mean any contradiction.
Especially changeability is seen more specifically in the context of a supportive
process (Change management).

• Stability: Probability of the occurrence of unexpected impacts or changes.

The term is not used in ISO 26262, but does not mean any contradiction

• Testability: Degree of effectiveness and efficiency with which test criteria can be
established for a system, product or component and tests can be performed to
determine whether those criteria have been met.

NOTE: Adapted from ISO/IEC/IEEE 24765.
It is considered in the same context by using tests a verification measure.

• Compliance: Extend to which the software fulfills norms and agreements in
reference to changeability.

28 2 Why Functional Safety in Road Vehicles?

Confirmation Measure require, questioning or examine compliance to ISO
26262.

Portability:

Degree of effectiveness and efficiency with which a system, product or compo-
nent can be transferred from one hardware, software or other operational or usage
environment to another

NOTE 1: Adapted from ISO/IEC/IEEE 24765.
NOTE 2: Portability can be interpreted as either an inherent capability of the
product or system to facilitate porting activities, or the quality in use experienced
for the goal of porting the product or system.

The term is not used in ISO 26262, but does not mean any contradiction

• Adaptability: Degree to which a product or system can effectively and efficiently
be adapted for different or evolving hardware, software or other operational or
usage environments

NOTE 1: Adaptability includes the scalability of internal capacity (e.g. screen
fields, tables, transaction volumes, report formats, etc.).

NOTE 2: Adaptations include those carried out by specialized support staff, and
those carried out by business or operational staff, or end users.

NOTE 3: If the system is to be adapted by the end user, adaptability corresponds
to suitability for individualization as defined in ISO 9241-110.

The term is not used in ISO 26262, but does not mean any contradiction

• Install ability: Degree of effectiveness and efficiency with which a product or
system can be successfully installed and/or uninstalled in a specified
environment

NOTE: If the product or system is to be installed by an end user, install ability
can affect the resulting functional appropriateness and operability.

The term is not used in ISO 26262, but does not mean any contradiction

• Co-existence: Degree to which a product can perform its required functions
efficiently while sharing a common environment and resources with other
products, without detrimental impact on any other product

Co-existence of function and especially software with different ASIL within
common elements addresses the ability of co-existence of the different elements in
common resources and its different ASIL.

• Replace ability: degree to which a product can replace another specified soft-
ware product for the same purpose in the same environment

NOTE 1: Replace ability of a new version of a software product is important to
the user when upgrading.

2.4 Process Models 29

NOTE 2: Replace ability can include attributes of both install ability and
adaptability. The concept has been introduced as a sub characteristic of its own
because of its importance.
NOTE 3: Replace ability will reduce lock-in risk: so that other software
products can be used in place of the present

The term is not used in ISO 26262, but does not mean any contradiction
Those ideas and terms are illustrated in ISO 26262 in a different or similar

context. For example coexistence of software of different criticality (different ASIL)
doesn’t see a risk if functions are similar but if these functions can influence each
other negatively. Furthermore, it is important to mention that ISO 26262 uses and
defines the terms validate, verify, analyze, audit, assessment and review in context
of functional safety for road vehicles differently. These examples also show that
requirements, terms or definitions within ISO 26262, depending from which
activity or context they are used, can lead to different interpretations or meanings.

Furthermore, there are two basis process models, which need to be considered in
order to observe the valid variance of processes in the development according to
ISO 26262.

2.4.2 Waterfall Model

The waterfall model is a process model often found in the development of tools
(Fig. 2.8).

This model has no specific source of origin. This is why there are so many
different descriptions and interpretations as to how this model can be applied. The
waterfall in general describes a higher level of abstraction than most V-models.

Initialization

Analysis

Drafting

Realization

Introduction

Using

Fig. 2.8 Waterfall model [6] (Source Wikipedia)

30 2 Why Functional Safety in Road Vehicles?

Furthermore, to better picture the process one can imagine that the waterfall
model transforms into a V-cycle for the design and implementation phase.
Compared to waterfall models, V-based process models describe vaster parts of
lifecycles. All other process models describe the initialization phase as a linear
starting point that defines the interests (stakeholders, see chapter “Stakeholders of
an architecture”) or sources of requirements (compare to SPICE: “Requirement
Elicitation”) for a system.

The introduction and application right up until the product definition or the
contract document and the requirement specification are often described as a linear
path in process models. Iterations are not further evaluated in later phases. In
addition, iterations of the planning and defining activities between the customer and
the service provider are not necessarily included in the development activities.

This shows that most of the process models are derived from the IT world.
A derivation of the waterfall model for the automobile industry would certainly
resemble parts of the safety lifecycle of ISO 26262 or the various APQP standards.

2.4.3 Spiral Model

More often, the V-model is also discussed in regards to automotive industry.
However, the traditional process model in this sector seems to be the spiral model.

As mentioned in the chapter ‘Advanced Quality Planning’, sample phases
mainly determine the development activities in the automobile industry. The fol-
lowing figure shows the sequential process and the respective iterations in a spiral
shape (Fig. 2.9):

A sample

B sample

C sample

D sample

prototype specification

prototype built

experiments / tests

change and / or improve

prototype accepted?
yes

no

requirement analysis conceptual design /
development

design verification
process / product

verification / validation

Fig. 2.9 Spiral model for a prototype- or sample-cycle approach as basis for many automotive
maturity models

2.4 Process Models 31

Today, traditional sample names such as A-, B-, C- and D-sample are only
referenced in certain company standards (e.g. in Daimler’s). In the APQP standards
from AIAG or VDA all samples refer back to the initial sample. The sample groups
for different customers are mostly aligned with the requirements of the vehicle
development.

Phases of the Spiral: Prototypes

The dream of every process developer is that specification actually represents the
beginning of product development. In reality, it is more an idea, which has to be
built up for series production. For classic mechanics it is a trial sample that has to be
complemented with essential functions or electrified for new systems. Therefore,
there is often only one specification, which is defined on a higher level of
abstraction in the first iterations.

Previously, in the early stage of automobile engineering, the A-sample could be
made out of wood since the main focus at the beginning was the production
potential of the inside of the vehicle. Today, in modern systems, the first step can
already focus on the entire outer interface, so that the CAN-communication can
already be adjusted to the target vehicle in the first sample delivery.

Construction of Prototypes

Since samples have to be delivered to the customers, they have to be produced in
the first place. Certainly, this requires a lot of manual work in the first iterations. In
the following iterations the degree of automation increases continuously. Then, the
D-Sample—often comparable to the first sample/initial sample—has to be produced
in the series production facility.

Experimenting—Trial/Acceptance

Moving forward, the sample has to be tested according to the given require-
ments. The sample will be tested in the first iterations First under laboratory con-
ditions, and then later based on with the customer requirements, and in further
stages often already in the vehicle environment in order to explore the dynamic
behavior as well as the interaction of all components.

All parties involved in the process hope to be able to figure out all necessary
requirements in the first shot and that the sample returns with a positive test result.
In the real world, the prototype is an essential input factor for the requirement
analysis. Besides simulation, this method has also been adopted in ISO 26262.

Changes, Modifications or Enhancements

Here the specifications are now changed and the new specifications introduce a
new development cycle.

With DRBFM (Design Review Based on Failure Mode) Toyota was very early
to develop a stable method, which introduces new iterations. Whether a specifi-
cation is complete or still error-prone is difficult to examine (freely adapted from
Popper: verification is positive until I can find a counterproof). Change

32 2 Why Functional Safety in Road Vehicles?

management based of specifications can only be effective if it is known whether the
specification is correct and clearly and distinctively valid for the product. Pessimists
would say that this is impossible. This is why DRBFM describes a comparison
based on features. In a multidisciplinary team, features are compared to functional
dependencies (architecture). The positive and negative influence on a product is
analyzed and assessed in a design review before proposals for modifications are
accepted. This method is very useful for modern architectural developments.

The result of DRBFM is only adopted for the specification after the effects
analysis and is then accepted as a modification for the product.

These aspects also influenced change management processes and requirements
in ISO 26262.

2.5 Automotive and Safety Lifecycles

IEC 61508 was probably the first standard that described a safety lifecycle. The
vastly simultaneously developed ISO/IEC 12207 also described a software lifecycle.
It was discovered in the mid 90s that the requirements of a product could influence
its design over the entire usage period. Unfortunately, it was also known that certain
mistakes in all phases could lead to danger and people could get injured while
dealing with certain products. ISO/IEC 12207 shows that there is a demand for the
monitoring of specific error patterns of products throughout all phases of the product
lifecycle. Those error patterns present further challenges for the design of a product.

The APQP standards also consider early development phases. The terms of the
System-FMEA as well as later design or concept-FMEA are included in the norms.
Product maintenance and the management of replacement parts have been con-
sidered by the APQP norms for quite a while. Also the idea of document archiving
throughout the lifecycle has been addressed by the norms at a very early stage. The
demand arose from the topic of product liability.

In IEC 61508 the lifecycle was used to define phases from the product idea up to
the end of the product life, in which individual safety activities can be implemented.
This lifecycle already represented the foundation to fully describe the actual
requirements of a product.

Safety considerations of a product idea are already of particular importance and
not only because of safety related reasons but also and most importantly economic
aspects. History has shown that bad ideas sometimes can turn out to be successful.
Unfortunately, bad ideas have often been pursued only because of the fear of failure
and the potential hazards occurred when the possibility to prevent them no longer
existed. A production stop can often cost a company more than the compensation
of damages that the product might cause when used. This covers one main aspect of
product liability, which has previously been addressed by the legislatures of the
19th century. For example, §823 of German civil law requests to avoid hazards
of products as far as science and engineering will allow it. Also, the retailer or
distributor of goods is liable for damages occurred.

2.4 Process Models 33

Let’s get back to the product and safety lifecycle. A function can cause a hazard
even if it operates as intended. This is mainly referred to as safety-in-use. As
mentioned in earlier chapter (safety, risk etc.) this is not addressed in ISO 26262.
However, the hope is to find something throughout the course of product devel-
opment that can manage the risk. Otherwise, the respective functions are limited as
much as possible in order to eliminate risk.

ISO 26262 can only help to control hazards based on a malfunction of the
product. Experienced engineers might be able to find safety mechanisms for dan-
gerous functions. If those mechanisms are not found the product has no chance to
establish itself on the market. It can be a real challenge to sufficiently declare such
defects/faults/errors as unlikely for complex products that are produced in high
quantities. Formally, the quantification of those systematic errors are not required
by ISO 26262. The characteristics of such complex products, their potential errors
as well as the potential variance of their usage are hard to determine. The product
might still be able to enter the market but once the first hazard arises the only option
is to withdraw it from sales and recall the entire vehicle. It has previously occurred
that some manufacturers have had to buy back vehicles. This is why one of the first
steps in order to get to the field of application of ISO 2626 is to prove the safety of
use/usage safety of the product. In order to avoid potential liability issues, it is
useful to clearly document all safety issues to prevent safety-in-use being ques-
tioned after certain changes are made during the following development. Generally,
the nature of an engineer is not to scrap an idea after the first failure but to adapt and
modify it accordingly.

In order to take a brief look at the end of the product lifecycle, let’s discuss
certain aspects of the product lifecycle itself. In regard to hazards, the public
discussion on mobile phones would be a good example.

Of course, a lot of qualitative electrical waste is produced due to the fast and
short lifecycles of electronic products. This wouldn’t be questionable from a safety
perspective if the components themselves were not so expensive and were not
environmentally damaging materials, such as lead. This is why the government
implemented clear procedure rules. Now it may be far-fetched to say that the toxic
electrolytes in capacitors may also eventually cause environmental damage or that
the burst of an electrolyte capacitor is a malfunction of an E/E element.

But the question here is whether or not ISO 26262 is helpful in this regard. In
fact, there is a potential for hazards that have to be considered in the production and
development of products, to prevent issues with product liability. In cases such as
these, it is important to consider the possible end of a sub product. In general, cars
are used beyond their actual warranty. Cars that are over 25 years old can possibly
become classic/vintage cars and more popular than a car with the latest engineering
technology. Luckily, cars made 25 years ago used far fewer electronics. However,
this will now change from year to year. It is particularly important to consider the
maintenance of the car, particularly those components and systems that are subject
to wear and tear.

Opel once advertised with a lifelong warranty, meaning 15 years and
160,000 km (99,419.3908 miles)—a campaign that was quickly abolished. We also

34 2 Why Functional Safety in Road Vehicles?

learned that NASA bought Intel’s 8086 microcontrollers via eBay in order to be
able to maintain old systems. It is increasingly difficult nowadays to maintain
program parts written in FORTRAN. Such dated systems are practically impossible
to re-lay with systems such as WINDOWS and other advancing computer systems.
Going forward, we will see that a prognosis for an electrical component beyond the
failure mode of more than 10 years is extremely difficult. Nowadays, in the field of
utility, vehicles lifespans of over 20 years are projected. Intermittent errors have
already been detected in an 8086 but it is highly questionable whether actual
measures in the integration have been undertaken.

To assure maintenance according to safety aspects will become a real challenge
for the automobile industry.

2.5.1 Safety Lifecycles for the Development of Automotive
Products

ISO 26262 describes safety lifecycles in part 2, Chap. 5 “Overall Safety
Management”. Here, the idea is to inter-relate safety lifecycles, product lifecycles
and the “Management of Functional Safety”. The aim of the management of
functional safety according to ISO 26262 is to define the responsibility of acting
individuals, departments and organizations that are responsible for each individual
phase of the safety lifecycle. This applies to necessary activities, functional safety
for products, and the vehicle system—or as referred to in the norm—the ITEM, as
well as measures must be taken in order to confirm that the products are developed
according to ISO 26262 guidelines.

Moreover, other activities have to be described that are necessary and important
beyond the safety lifecycle in order to show a respective and appropriate infras-
tructure in order to apply the product lifecycle. Very important here is an applied
and utilized quality management system and safety culture to ensure that each
individual employee, right up to the top management regard safety with the
required diligence and respect in order to implement and apply the necessary
measures appropriately. Further crucial premises are the systematic learning process
from previous mistakes, competence management and continuous improvement
such as qualification and training programs in order to apply a safety lifecycle.

ISO 26262 generally assumes that products are developed within a project
structure. Here there is a chance that divisions or organizations develop products
according to a general interpretation or implementation of a product lifecycle
(“Project independent tailoring of the safety-lifecycle”). This means a process scope
is developed, that represents a valid derivation of ISO 26262 but can also be
optimized in regards to infrastructure and product aspects.

Alternatively, each product development can be directly derived from the scope
of ISO 26262 as for example as project safety plans. Especially in product devel-
opment and production it can be favorable to define many activities—customer
and/or product alike. This can be of advantage in machinery utilization or in the

2.5 Automotive and Safety Lifecycles 35

http://dx.doi.org/10.1007/978-3-319-33361-8_5

scope of product development. Internal processes can be coordinated and aligned
appropriately to qualified development tools and different versions for various
customers can be offered with little effort. Also, the reuse of established processes,
safety components or products can have a positive effect on the safety of all products.

2.5.2 Safety-Lifecycles According to ISO 26262

The safety-lifecycle of ISO 26262 summarizes the most important safety activities
in the conceptual phase, the series production and the series production release.
A central management task is the planning, coordination and proof of these
activities throughout all phases of the lifecycle. Volumes 3, 4 and 7 describe the
activities of the conceptual phase, the series production and those according to SOP
thoroughly (Fig. 2.10).

This safety-lifecycle directly refers to the respective chapter in ISO 26262. The
management of functional safety according to part 2 of the norm includes all further
activities from part 3 (Concept Phase) to part 7, Chap. 6 (Operation, service
(maintenance and repair), and decommissioning)

The safety-lifecycle is divided into 3 phases:

• Concept
• Product development
• After production release/approval

Hazard analysis
and risk assessment3-7

Functional safety
concept3-8

Operation, service
and

decommissioning
7-6

Production7-5

Production
planning7-5Operation

planning7-6

4 Product development:
system level

HW
level

5 SW
level

6

Safety validation4-9

Controllability
Allocation

to other
technologies

External
measures

In the case of a
modification, back to
the appropriate
lifecycle phase

C
o

n
ce

p
t

p
h

as
e

P
ro

d
u

ct
 d

ev
el

o
p

m
en

t
A

ft
er

 t
h

e
re

le
as

e
fo

r
p

ro
d

u
ct

io
n

Item definition3-5

Initiation of the
safety lifecycle3-6

Management of functional safety2-5 to 2-7

Functional safety
assessment4- 10

Release
for production4- 11

Fig. 2.10 Safety-lifecycle according to ISO 26262 (Source ISO 26262, part 2)

36 2 Why Functional Safety in Road Vehicles?

http://dx.doi.org/10.1007/978-3-319-33361-8_6

Please note that the technical safety concept is associated with the product
development. Next to the 3 parts of product development of systems, EE-hardware
and software, and the chapters about production development and plant engineering
(part 7) are described. Those are activities that are considered besides the devel-
opment V-cycles. Furthermore, some activities are mentioned that are not directly
addressed by the norm but often necessary for the product development.

External Measures
These are measures that are not influenced by the observation unit, which are
described in the system definitions. External risk reduction includes for example the
behavior of road users or characteristics of the road itself. This is also described in
the system definitions. External risk reduction is seen as profitable within the scope
of the hazard and risk analysis. The proof of efficiency of external risk reduction is
not included in this norm.

Controllability
Controllability, the underlying concept of the hazard and risk analysis, should be
proven within the phase of product development. If it does not relate to the distinct
controllability of individuals exposed to hazard, then it is covered in part 3 of ISO
26262. This part overlaps with the content of safety-in-use, since the question
whether functions are defined in a way that they are not dangerous when func-
tioning properly is also relevant.

Association to measures of other technologies
These are technologies that are not covered in the scope of this norm, for example,
mechanics and hydraulics. They are addressed when associated to safety functions.
Also, the proof of efficiency or effectiveness and even the application of these
measures are not part of this norm.

In the scope of the functional safety management the norm requires certain
activities for the safety-lifecycle:

• Sufficient information has to be documented to the E/E-system for each phase of
the safety-lifecycle, this is necessary for the effective fulfillment of the following
phases and verification activities.

• Management of functional safety has a duty to ensure the execution and doc-
umentation of phases and activities of the entire lifecycle and to provide a
corporate culture that promotes functional safety.

From the point of view of functional safety it is not about the fulfillment of the
requirements that are derived from any process models. The safety-lifecycle has to
be derived correctly and sufficiently. It is important for project planning and the
planning of safety activities that the safety concepts are implemented in a way that
sufficiently ensures safety goals.

2.5 Automotive and Safety Lifecycles 37

2.5.3 Security-Versus Safety Lifecycles

For meaningful safety-related product development not any quality characteristics
could apply their own process. Therefor also even if there are other means of
analysis or methods for verification or validation necessary, it is a matter of tai-
loring of the product lie-cycle to apply activities to as necessary for all
non-functional requirements also such as security. Similar to challenges with the
safety lifecycle for safety-related active safety functions and other passive safety
functions the tailoring and even the entry into the safety lifecycle is different. The
intended safety function for an active safety function should be made safe by
adequate measures during the Item Definition, and for typical passive safety
functions it should be done during entire safety lifecycle.

Mayor security threads are categorized as follow:

– Availability
Assures access to data and infrastructure

– Integrity
Identification of manipulation of data on controller or communications

– Confidentiality
No unauthorized information access

A particular security topic is theft-protection, since this provides many depen-
dent functions to Functional Safety.

Furthermore, all “Integrity” related issues are very often also causes for
“Functional Safety” impacts.

References

1. [ISO 26262]. ISO 26262 (2011): Road vehicles – Functional safety. International Organization
for Standardization, Geneva, Switzerland.

17

18

11

2. [IEC 61508]. IEC 61508 (2010): Functional safety of electrical/electronic/programmable
electronic safety-related systems. International Electrotechnical Commission, Geneva,
Switzerland.

9

3. [ISO TS 16949]. ISO/TS 16949 (2009): Systems. Particular Requirements for Application of
ISO 9001:2008 for Series- or Spare parts Production in Automobile industry; VDA, 3rd English
edition 2009.

38 2 Why Functional Safety in Road Vehicles?

13

13

14

14

14

15

15

15

16

16

16

4. [VDA FMEA] VDA (2008), Volume 4 Chapter, Product and Process FMEA,
QMC, Berlin 20

5. [ISO/IEC 25000]: ISO/IEC 25001:2007, Software engineering—Software product
Quality Requirements and Evaluation (SQuaRE) — Planning and management 25

6. [waterfall model]: Figure 2.8: Waterfall Model (Source: Wikipedia) 30
7. [unpublished research project], for further information available
8. [V-model XT 1.2], V-Modell® XT, Version 1.2.1.1, IABG, 2008
9. [APQP AIAG], APQP AIAG 4th Edition, Automotive Industry Action Group,

APQP, 2006

References 39

Chapter 3
System Engineering

The chapter tries to give answers on:

– What is system engineering?
– What is the relation to system safety engineering?
– How does it differ from the requirements of the automotive industry in other

domains?
– What does it have to do with Functional Safety?
– What is the necessary impact on organizations?

General process models often fail to answer the questions, how to enter the V-,
the spiral- or the waterfall-process model. Which aspects need to be considered so
that activities within a V-cycle can be planned and intermediate targets defined or
maturity of quality factors could be considered? The aim is to show a general
approach or procedures that can be considered in each phase of the product
development or represent the foundation for development activities in general.

3.1 Historic and Philosophic Background

A skeptical mind state is nothing new to human nature. Dating as far back as
Socrates people were often cynical about things they saw and heard, leading to
some scholars conclusions at times being questioned.

When did questioning technical coherences start?—In Greece 600 before Christ?
Did it start in Egypt and the inhabitants of Mesopotamia just didn’t document it?—
It remains undecided. However, since written documents have existed, people have
tried to describe certain phenomena and draw their conclusions from it. Ionic
philosophers, as for example Pythagoras, did this in a very mathematical way. He
certainly did not imagine that his formula would one day be used to energize an
engine in order to bring blind power and active power in relationship.

© Springer International Publishing Switzerland 2016
H.-L. Ross, Functional Safety for Road Vehicles,
DOI 10.1007/978-3-319-33361-8_3

41

It is said that in the school of Elea, Parmenides taught that you can observe
things but you cannot draw arbitrary conclusions from it. He questioned whether
the observed allows for conclusions to be drawn even before Socrates. Up until
today, 2600 years later, we struggle with the question whether the reason for a
negative test result is a wrong test hypothesis or the test wasn’t appropriate in order
to make a qualified statement if requirements were implemented correctly and
sufficiently. Democritus tried to define the term ‘atom’ as the smallest element or
building block of everything that exists but Nils Bohr discovered that there were
even smaller elements than atoms.

Albert Einstein was not the only one who showed that there are various forms of
interactions and that we need different models in order to describe the observed.
Aristotle knew: “The whole is more than the sum of its parts.” Not only the
elements and their characteristics determine how the elements react to each other, it
is also important what environment the elements interact. Today we know that the
stability of a screw and a dowel is different in a plasterboard wall than a brick wall.
The stability also depends on the design of the walls. Despite observing and
drawing conclusions, Aristotle also raised the topic of induction. The fact that the
entire mathematical induction is now described as a deductive method shows that
words are subject to change throughout the years. This isn’t the only example where
mankind had to re-learn something from scratch that had already been discovered
thousands of years ago. In the beginning of the 13th century, Roger Bacon
described methods for an electric engine while studying magnetism. The idea of a
“continuously moving wheel” leads to the realization that a “perpetuum mobile”
does not exist. Werner von Siemens apparently did not know the work of Roger
Bacon.

In more recent times, Karl Raimund Popper described our dilemma nowadays
saying that it is not possible to verify something—only to falsify specific charac-
teristics. Here the example of the swan is often mentioned: Mankind always
believed that only white swans exist until the discovery of black swans in Australia.
How do we deal with that? The word ‘verifying’ comes from the two Latin words
“veritas” (truth) and “facere” (to do). They say “In vino veritas”—“In wine (there)
is truth”, but what truth, one can only try to guess the next day after consuming too
much of it. Apparently, different people use the word verifying in different ways.
Popper left numerous clues for falsification. According to him, if a result is neg-
ative, we are unable to question the entire statement or hypothesis. However, he
encourages us to use this test result to derive new insights, which give clues as to
what needs to be changed in order to make the test result positive. Even if all test
results are positive, we still haven’t fulfilled all requirements yet. The lesson we
learn here is that we should analyze negative test results in order to find ways to
improve the product. This leads us to the conception that the basic principle of
proof of safety in today’s safety standards can be seen as follows:

If all devisable mistakes/errors/faults of a system are brought under control, the system is
regarded to be safe.

42 3 System Engineering

This perception can be problematic for new developments or if new technologies
replace traditional ones for established and proven vehicle systems. This pertains to
the entire “By wire” systems but particularly for remotely controlled systems,
which so far have been operated solely by the driver. The guideline here is:
“Equivalent Level of Safety”, which means that for example new electronic systems
need to be as safe as the conventional hydraulic system.

If an established and proven system is implemented according to comparable
principles, it is sufficient to show the compliance of safety principles. New products
in a new technology require a systematic proof of safety. These new principles and
guidelines are, besides the norms, mainly included in all international, worldwide
and industry wide standards.

This was a small digression into philosophy but it is also important to refer to
certain engineers, physicists and mathematicians in this chapter.

George Boole (1815–1864) is considered to be the inventor of Boolean algebra.
The rules were generally known before his time but he was the one to formulate them
in his book “An investigation of the law of thoughts” as “logical algebra”. Augustus
DeMorgan formulated the DeMorgan’s law, which influences the deductive analy-
sis. ISO 26262 [6] also includes the quantitative safety analysis besides the quali-
tative inductive and deductive analysis. Here it is necessary to also mention the
names of people who developed the essential basics of safety engineering.

Before (or during) SecondWorldWar, Robert Lusser formulated his “Conformity
of reliability chains” and Erich Pieruschka amended the quantification. Those two
gentlemen probably knew Russian Kolmogorov or at least the German version of his
book in 1933 “Foundations of the Theory of Probability”. The Axiom of Kolmogorov
says: “The probability of a combination of a countable sequence of disjoint events
equals the sum of the probabilities of each individual event” in a slightly shortened
version. The beta error derives from the Kolmogorow-Smirnow test. Beta errors or
beta factors are used in safety engineering to describe dependencies.

Furthermore, it is important to mention Andrei Andrejewitsch Markow, whose
models where not only essential for the speech recognition but who also taught us
how to quantify transitions of different conditions.

This historical digression should show that we are not reinventing the wheel with
functional safety but that we aim to describe and analyze technical systems. For this
purpose we use historically proven and established methods of safety engineering
and refine and enhance them.

3.2 Reliability Engineering

The first researches in reliability engineering in connectionwith today’smathematical
term started at the beginning of the industrial age. A complete study of the lifespan of a
roller bearing was documented as part of a technical railway development. The law of
Robert Lusser describes a chain of elements, where the total reliability occurs from the
product of the individual reliabilities. This describes the foundation for reliability of

3.1 Historic and Philosophic Background 43

all technical systems. Basically, this law says that: “The chain is as strong as its
weakest link”. Also safety related functions or safety mechanisms can only work as
well as the individual parts of which they consist of. This is why the partition and
structuration of mechanisms of action is the essential task of a failure or safety
analysis. It is important to analyze the identification of the demand of additional
mechanisms and the intensity with which they influence the system. This analysis
shows the appropriate measures to make the system more reliable, less susceptible to
maintenance and reach a higher level of safety and availability in order to strengthen
the chain in its weakest parts. Destructive tests, in which a stimulus is implemented or
injected in the product, exist and they change the analysis of the product as well as the
purpose of the analysis. However, the analysis itself does not change the product, only
themeasures, which are added or develop a new behavior or changes in characteristics
through a modification (for example in the context of a process of change) in the
product, are the aim of an analysis.

Until about 1930 the activities in the field of reliability were mainly limited to
mechanical systems. The focus of the efforts for electrical systems was to ensure
electric energy sources, which means to raise the availability of such. Parallel
electrical gearshifts from transformers and transfer units, meaning the insertion of
redundancies, were a substantial progress in the electrical reliability.

New concepts also developed in the field of aeronautics/aviation that considered
reliability engineering. For example, observing the failure mode of various aero
structures through the determination and evaluation of statistical data. Especially
the insertion of redundancies helped to maintain functionality. Also, technical
availability and the possible measures to increase it were developed systematically.
The largely qualitative signal chain analysis became then also quantifiable through
statistic considerations developed by the team of mathematician Erich Peruschka.
He defined the following principles:

R1, R2, … Rn are survival probabilities of the individual chain links.
Since all links of are required for a chain to function and the survival probability

of each individual link is independent of each other, the survival probability of the
entire chain as the product of its individual probabilities is calculated according to
the rules of the probability theory as follows:

Total survival probability of the chain: Rg = R1 � R2 � … � Rn
Consequently, the reliability of individual components of a system exceeds

considerably the reliability of the total system. A new and predominantly techni-
cally oriented discipline: The reliability engineering. This discipline addresses the
measurement, prediction, maintenance and optimization of the reliability of tech-
nical systems. Reliability engineering boomed in the ‘50s in the United States
through the growing complexity of electronic systems, particularly in the military.
The analysis of failures and their cause as well as the reparation of defect com-
ponents became increasingly time, money and resource consuming. Hence why the
US Defense Department founded the Advisory Group on Reliability of Electronic
Equipment (AGREE) in 1952.

Researches showed that the maintenance costs for electric systems were twice as
high as the procurement costs. This led to the insight, which reliability engineering

44 3 System Engineering

has to be an integral part of development and construction. AGREE insisted that
new systems and components have to be extensively tested under extremely harsh
conditions (temperature, voltages, vibrations etc.) in order to discover and correct
blind spots (weaknesses) in the construction. Furthermore, it was recommended to
calculate the mean time between failures (MTBF) and its confidence interval. Also,
it must be proven that the mean time between failures is above the required value.
Reliability engineering was also adopted for electrical components and from
thereon within the next 20 years practically for all other technical domains.

The necessity to control reliability of technical products is nowadays extremely
important because of the increasingly competitive environment and the consequent
market pressure, which is no longer only controllable through price. The rapidly
growing technological progress leads to shorter product cycles. The time pressure
does not allow for extensive practical testing before the product launch. The rising
cost pressure requires inexpensive development and manufacturing techniques,
which must not influence the quality of reliability of the product. All these factors
increase the risks of product development. Reliability engineering provides methods
for risk limitation in conception, development and production of technical products.

Reliability is one aspect of technical uncertainty. The reliability method
addresses the prediction, measurement, optimization and maintenance of the reli-
ability of technical systems. This requires the application of statistical and proba-
bility theoretical methods. Probability is the only to predict whether or not a product
can continue to function for a specific period of time.

Reliability is technically seen a quality factor. Very important in this context is
the necessity to explicitly define the desired function of a product and thus its
functionality. Reliability on the other hand, is only quantitatively describable if
connected and referred to, through time. Reliability engineering helps to make
observations and statements of the behavior of a system during its utilization period.
However, the reliability of a technical product does not solely rely on the utilization
period. The usage frequency and intensity as well as the environment in which the
system is used also have an important influence on reliability. Consequently the
environment and the usage profile also play a major role in reliability.

3.2.1 Foundation/Basis of Reliability

Reliability is generally described as the expected function fulfillment throughout a
defined time period. The mean time between failures (MTBF) is the classical
measure for the reliability of components (for example devices, assemblies,
equipment, facilities). Here we differentiate between reparable and non-reparable
components. The mean time to failure (MTTF) is defined for non-reparable com-
ponents; if needs be, the mean time between failure (MTBF) can be referred back to
through various maintenance models. The mean time to failure, MTTF, determines
the statistical expectation period of a failure. According to IEC 60050 MTTF is
defined as follows: “The expectation of the time to failure”. For a lifespan allocation

3.2 Reliability Engineering 45

with a constant failure rate (mostly similar to an exponential distribution) the
reciprocal of MTTF is the failure rate (R). In FIT (Failure in Time) the failure rate is
stated as the entity “failure per 10E-9 h” and it is also a measure for the failure
probability of electrical components in safety engineering.

MTTF ¼ 1=R

Typically for the automobile industry is an average statistical life expectation of
15 years with an annually driving performance of 300 h. If one failure in the life
span of a vehicle occurred out of one million components, the failure rate would be:

MTTF at continuous demand of an action throughout a lifespan:
MTTF = 15 years × 1 Million components/1 failure = 15,000,000 years MTTF at
an effect of an action solely during travel time of a lifespan:

MTTF ¼ 15� 300 h� 1million components=1 failure ¼ 1; 500; 000; 000 h

Failure rate as reciprocal of MTTF in FIT:

R ¼ 1=1:5h � 10E� 9 ¼ 0:67 FIT:

A continuous demand in action would lead to a different value for the failure rate
because the time span for the effect in action is considerably bigger. The lesson here
is that not even the failure rate represents a distinctive and definite value for a
component.

The type of operation and the operational environment have to be taken into
account for the determination of values. Whether the repair time is added into the
models depends heavily on the operating conditions. The automobile industry
usually uses the expected lifespan, which can sometimes be extremely challenging.
A cable harness in a car is usually listed as 6000 Fit, which means it is always the
weakest link of the chain. We often tend to search for the potential for optimization
of a chain at this place. In a quantitative observation of functions, this high error rate
for the weak link would dominate all other errors in a signal chain so that the
quantification would not show the desired effects at this point. A lot of effort is put
into the improvement of cable routing and connections. Very frequently errors arise
in the cable harness due to heterogeneous usage, the fitting style in vehicles or
improper maintenance. This is why such connections are often only shown as mere
formal with a FIT in the observation of safety applications. This is frequently
recommended by most of the manuals for reliability. In reality there is no constant
error rate throughout the entire lifespan because a continuous and steady effect of an
action hardly exists. A conservative design can often prevent components being
used beyond their elastic limits. A statistically spread aging behavior is no longer
reasonable if these limits are often exceeded. No material has a constant aging curve
and also a material diversification, depending on the effect of actions this leads to
differences in the aging behavior.

46 3 System Engineering

This fact led to the definition of the bathtub curve, which is often used as a
reference model in statistics. It facilitates the observation and its extent and suffi-
ciently offsets variances especially for electric components (Fig. 3.1).

The bathtub curve shows three areas over time. The early failure phase describes
the time frame in which the failure behavior is not sufficiently developed through
unknown influences, environment parameters, correct materials and bias points.
This should be investigated for the development of components within the context
of the design verification so that phase 2, the usage phase, can be entered at the
beginning of series production. The usage phase should be designed in a way that
the failure rate only starts after the expiration of the statistical life expectation of the
components. In reality the failure rate is placed below the bathtub curve, as far as
necessary so that an age induced increase can be seen and a sufficient robustness
level ensures that the statistical life expectation is achieved. ISO 26262 does not
mention any requirements, for example in order to prevent early failure behavior.

So called ‘Pi-factors’ are used in order to try to standardize and adjust or correct
environmental conditions. Typically, Pi-factors orientate themselves at the
Arrhenius equation.

k ¼ A � e�EA
R�T

A pre exponential factor or frequency factor
EA activation energy (entity: J mol−1)
R = 8314 J K−1 mol−1 universal gas constant
T absolute (thermo dynamic) temperature (entity: K)
k reaction speed constant

The following formula is used if a temperature dependency for A exists:

k ¼ B � Tn � e�EA
R�T

However, particularly for electric components proven handbook data are used as
reference, since the bathtub curve and the material dependency in such formulas

fa
ilu

re
ra

te

time

decreasing
failure rate

constant
failure rate

increasing
failure rate

observed failure rate

early
failure

late failure
aging effectsconstant (random) failure

Fig. 3.1 Bathtub curve (demography example)

3.2 Reliability Engineering 47

already represent a strong abstraction of the measurable result of technical systems.
One of the most common handbooks for reliability of electric components is the
Siemens norm SN 29500 [2]. This norm describes a simple approach to manage
correction and was later added to DIN EN 61709 [1].

The temperature dependent acceleration factor πT for 2 failure mechanisms (e.g.
for discrete semiconductor devices, IC’s, optoelectronic components…) are stated
in DIN EN 61709 or SN 29500 as follows:

pT ¼ A� EXPðEa1 � ZÞþ ð1� AÞ � EXPðEa2 � ZÞ
A� EXPðEa1 � ZrefÞþ ð1� AÞ � EXPðEa2 � ZrefÞ

If A = 1 and Ea2 = 0 the above mentioned relation can be referred back to the
basic model for failure mechanisms (e.g. for resistors, capacitors, inductance)
described in Sect. 3.3.

pU ¼ EXP C1 � UC2 � UC2
ref

� �� �

oder
pU ¼ EXP C3� ðU=UratÞC2 � ðUref=UratÞC2

h in o

Stress factors or voltage/tension dependencies πU according to DIN EN
61709/SN 29500,

or

pI ¼ EXP C4� ðI=IratÞC5 � ðIref=IratÞC5
h in o

Stress factors for electricity dependencies πI according to DIN EN 61709/SN
29500.

Besides the environmental factors, the kind of failure distribution and how it can
be statistically described for the various different technical elements, also play an
important role.

The most popular distribution is the normal distribution or Gaussian distribution.
The Gaussian bell curve used to be printed on 10 German Mark bills (Fig. 3.2).

normal distributionFig. 3.2 Normal distribution
or Gaussian bell curve

48 3 System Engineering

Production engineering often considers the value of 6 Sigma (six sigma).
6 Sigma considers 3.4 defects per one million failure possibilities, a failure prob-
ability of 0.00034 %, an absence of failure of 99.99966 % within a reference period
or also a short-term process capability of Cpk = 2 or long-term of Cpk = 1.5.
Countable values, based on natural numbers of electric components, are often called
Chi-Square distributions and binominal distributions, logarithmic or Weibull dis-
tributions are also often considered for failure probability.

In the automobile industry, AEC (Q) 100 is used for complex components. It is a
standard for the qualification of electric components. Simple components as
resistors or capacitors are not covered in this standard. Since these simple com-
ponents would often push all statistic boundaries through their variety of elements,
such statistic observations are often insufficient for safety engineering. The risk for
such simple components is that harmful components can be delivered to the pro-
duction undetected. This is why the eligibility and whether the components are
actually sufficiently dimensioned for their case of application are tested in the
context of the qualification of the entire electric assembly group. The value for
failure rates is taken from the reliability handbooks. However, for the correct
qualification including the proof of lifetime efficiency of the entire electronic
assembly group it is assumed that the simple components is within the constant
phase of failure rates of the bathtub curve.

3.2.2 Reliability and Safety

Reliability is generally described as a component characteristic as opposed to
safety, which is seen as a system characteristic. Principally the rule is that reliability
is only considered as a component characteristic if the environmental conditions are
clearly defined. The question is whether the same challenges regarding reliability
for components in complex dynamic systems apply to safety.

First of all the question arises if a component environment is entirely specifiable.
For many, especially solely mechanical components, we can assume normative and
always consistent environmental conditions. But if we observe reliability over time,
we find influential factors that are hard to specify or often only known as a result of
negative experiences. This applies for material compatibility for the materials
cupper or zinc or stainless steel and salt environment, which can turn into a galvanic
element at a certain concentration. As a consequence it could lead to corrosion and
other chemical reactions.

Furthermore we know that shock, strokes or friction, at varying strengths, sur-
face character and material combinations can lead to more or less material deteri-
oration and even cracks in the material. Also the intensity or impulse with which
components interact plays a big role in the lifetime reliability. Some materials
consider a blow or stroke of certain strength (and also a specific amount per time
unit) as an elastic blow so that it does not cause significant aging effects (meaning
the material or its structure remains unchanged). There are also certain changes in

3.2 Reliability Engineering 49

the interaction of materials involved. This can depend on dirt, humidity or other
chemical substances. A significant example is that the comparison of a strength that
hydraulically influences a component is often considered to be a soft impulse
because the hydraulic liquid itself absorbs shock and the build-up of pressure in
hydraulic is often softer. If the strength is of mere mechanic nature, maybe even
based on an electromotive strength, the impulse for the components can be con-
siderably harder. This can have a crucial influence on the firmness requirements up
to the lifetime reliability. There are different connecting starting points for func-
tional safety, where these two topics overlap, for example all external or outside
intersections and the component intersections.

The definition of a vehicle system (ITEM definition, ISO 26262, part 3, chap-
ter 5) already specifies external measures, environmental conditions, behavior with
external vehicle systems, operating conditions, dynamic behavior etc. This means
that essential influential factors of reliability and safety have to already be con-
sidered for the goals for functionality and the technical intersections of the vehicle.
Such parameters should be inputs for the hazard and risk analysis. In this regard, we
will find different results in the observation of potential malfunctions, which can
lead to danger, especially for the parameters S (degree of severity) and C
(Controllability through the driver (or other people involved)). An example would
be the predetermined breaking point of the transmission, which should prevent a
blockade of wheels. Blocking transmission could lead to a blockage of the entire
powertrain. Of course, such a break-off must not happen for an appropriate load and
has to be guaranteed throughout the entire usage period and lifespan. The switching
time of modern transmissions become shorter and shorter in order to minimize
energy losses and to achieve better speedup results. Because of that gears are shifted
harder, which means that the impulse and the energy used is much higher. As a
result, the predetermined breaking point of the transmission can no longer be
interpreted over the lifespan and we are forced to introduce E/E-measures against
the blockade of the power train.

This measure can quickly lead to a high ASIL because rear axles are responsible
for stabilized driving of the vehicle.

The aim of system development is mainly to describe the design in a neutral
way, so that the reliability first and foremost becomes relevant in the design of the
components. Software design often discusses reliability but ISO 26262 does not
formulate concrete requirements for systematic methods in order to determine the
reliability of software. However, for mechanic components the same statements
apply as those formulated for the vehicle system and its integration into the vehicle.

For the electronic we often find very tight intersections, particularly because the
evaluation of the hardware architectural metrics (ISO 26262, part 5, chapter 8) as
well as the evaluation of safety goal violations due to random hardware failures
(ISO 26262, part 5, chapter 9) are based on the failure probability of electric
components or occurrence probability of random hardware errors. Section 4.4.2.5
covers such quantitative safety analyses in detail. Often, chapter 7 part 5 of ISO
26262 is overlooked, which covers the correct dimensioning and verification of

50 3 System Engineering

http://dx.doi.org/10.1007/978-3-319-33361-8_4

EE-hardware design according to safety requirements. It also derives the respective
electronic design and safety requirements from the safety and system design.

Of course, a resistor has certain reliability in a normative environment—but does
the basis of reliability handbook data really reflect the actual environment of com-
ponents? If implemented safety mechanisms are not considered, mere reliability
prognoses can be made for the individual components in the context of the design
verification. These values also represent basis of the respective quantitative metrics
of functional safety. Another aspect is most likely the probability with which a
specific error repeats itself in the design. For a mere functional observation there are
often no clues for such dependencies. However, if we consider the realization, the
size, the electric resistor, distances on the printed circuit board, diameter of the
conductor line or connector pins, materials and material compatibility, thermos
conductivity etc. can have an essential influence on the reliability and eventually also
on the safety of products. The dimensioning of electronics becomes an important
safety measure if we look at dangerous heat developments up until fire as a potential
error function or the electronic that needs to be realized. For the most part this leads
to design boundaries for the total product. This means that the safety margin will
have a significant influence on the possible performance of the final product.

3.3 Architecture Development

Architecture is often seen as the spine of each product. ISO 26262, part 1, chap-
ter 1.3 describes architecture as the representation of a vehicle system, of functions,
systems or elements, which are identifiable through components, their distinctions,
intersections and allocation to electric hardware and software. The functional con-
cept (ISO 26262, part 1, chapter 1.50) is mentioned as the basis for the definition of
vehicle systems. According to the glossary the functional concept is compiled from
specifications of intended functions and their interactions in order to achieve the
desired behavior. Therefore, it is evident that architecture needs to fulfill two
requirements. It provides the product structure and its intersections as well as the
foundation for the description of the technical behavior. Each component or element
and their intersections ask for certain requirements. The intended behavior as well as
the behavior in case of a failure has to be specified. This forces us to plan and define
all levels of abstraction, perspectives, intersections as well as their desired technical
behavior in advance. Originally, the term safety architecture is defined as a further
term of architecture in ISO 26262. However, no clear distinction from product
architecture could be agreed upon. Particularly the intersections and interfaces of the
product must be defined consistently for the safety relevant parts as well as all other
parts of the product. Furthermore, some argue that in this matter architecture is
actually referred to as safety architecture. However, this term would not comply with
the functional concept idea since it would give the impression that all parts and
characteristics that are important for the realization of a safety related product are
automatically safety relevant themselves. Generally this needs to be avoided. Safety

3.2 Reliability Engineering 51

mechanisms and safety relevant functions should be easy and clearly defined even if
the functions and their interactions become extremely complex.

Figure 3.3 shows how such a structure can be planned but also how require-
ments from the definition of the vehicle system strongly influence all elements of
the architecture. If for example the intended function is a non-safety relevant
function (QM) and implemented in the same technical element (e.g. microcon-
troller) each characteristic of the microcontroller can also influence safety relevant
functions. This is why older safety norms mention that all functions in a micro-
controller need to be implemented in accordance to the highest safety integrity level
(in this case ASIL). This was possible to be achieved for systems with only one
safety goal through separate microcontrollers. However, it was extremely difficult
for systems with multiple safety goals, various levels of safety integrity or ASILs
and different safety conditions. This is why it is important to analyze the entire
product architecture and the respective integration environment as a whole. ISO
26262 also includes and allows the possibility that one vehicle system can consist
out of several systems. If in this case the intersections of the individual systems are
not well matched and aligned they will have to be adjusted in the integration
process. Otherwise, there will be no systematic alignment of intersections.
Therefore, if they are not planned beforehand, architecture and the various systems
will define their own intersections. It would be sheer coincidence if they would
match the respective systems or the intersections of the vehicle, into which each
system has to be integrated.

In regards to the vehicle, an electric system includes the physical identification
of sensors and the actuator providing the vehicle reaction. ISO 26262 considers this
as a function or functionality of an electrical system. The same applies for the
software—it can be described as a component of a microcontroller or alternatively,

Intend functions
- Requirements (+ parameter)
- beabsichtiges behavior
- Architecture assumptions
- Design limitations
- Accruals (interfaces)

G & RA Safety goal (ASIL)

Intended features (QM)

Safety Mechanisms
- Safety requirements (ASIL)

- Requirements (QM)

Logical elements

Logical elements

Technical elements

Technical elements

Sufficient independence
Absence of reaction

Fig. 3.3 Example for requirement management; Separation of intended functions (QM) and
safety mechanisms (ASIL)

52 3 System Engineering

the functional behavior including the microcontroller can be described as a system
function and the software or multiple software components and the microcontroller
as two or more components of which the system is composed from. The com-
mitment to one definition implies that by definition excluded solutions, if mistak-
enly implemented, can cause new technical risks. If no interrupts are used in a
microcontroller there are no risks that they can cause an error. An old (VW) Beetle
had no electric apart from the transistor radio and therefore no safety related risks
based on failures of electric components.

3.3.1 Stakeholder of Architectures

What is the purpose and aim of architecture and what people, groups or (in order to
stick to process descriptions) what role does architecture need to have? What is the
difference between a stakeholder of a system or a product? Generally speaking we
should say ‘stakeholder of the product’ but in this case we limit it to architecture.

Figure 3.4 shows the driving forces of architecture, meaning that all these
aspects can influence the requirements for a product. Here it is important to identify
the driving forces of a product development and in a negative sense, the risks for a
product, at a very early stage—especially when considering the cost factor.
However, almost all driving forces can have analogical influences and risks for
various developments.

Development requires money for the development resources, tools, laboratory
equipment, production goods etc. Even big and popular inventors in the automobile
industry such as Benz, Diesel, Otto etc. were familiar with this issue. Money is the
reason why we define certain characteristics very strictly and search for cheap and

Standards

Our enemy is complexity, and it's our goal to kill it.
January Baan

Performance

Maintenance

Capacity

Availability

Safety

Fault Tolerance

FunctionalityCost Compatibility

Legislations

Platforms
Fish trapResilienceProduction

EthicResources

Quality

Schedule

Qualification

Safety

Markets

Behavior of User

Fig. 3.4 Driving forces of technical architectures (Source IBM)

3.3 Architecture Development 53

simple solutions and why some development processes are discontinued. It forces
us to create highly sensitive cost-benefit calculations before we start to the product
development process. Nowadays even single characteristics are analyzed by their
value and we examine which characteristics are a basic need for which target group
and which only an excitement factor. We could now look at examples for the
driving forces but this would probably only lead us to the following conclusion:
Depending on the market and the requirements of the driving architecture forces
there will be product characteristics and features which represent a basic need for
the acceptance of the product and others which cause so much excitement that they
lead the product to success in many different ways. In reverse, each need that is not
fulfilled can imply a risk.

This is why the architecture of product development is never developed solely
based on safety requirements but also on other driving forces.

This means that the elements, from which a system is composed, are not defined
only according to mere safety related aspects.

Of course, as already mentioned, money is an important factor. However, the
availability of materials (e.g. rare earth material) production capacities, know-how,
experience, transportation routes, supply chains etc. will also play an important role
in how elements are defined and what position they will have within a system.

ISO 26262 only covers mere electric and electronic elements as well as software
elements. However, a capacitor and a resistor alone will not be able to discover a
low pass function. The elements of other technologies mentioned in the norm also
play an important role. At least for the analysis of failure dependencies (Analysis of
Dependent Failure or the better known aspect, the Common Cause Analysis) we see
that connectors/plugs, printed circuit boards and housing can have a great influence
on safety. Housing still represents a challenge for the project management in the
automobile industry. In addition to the fact that they have to be ordered at the
beginning of the project development process because it belongs to the so-called
long-leading components (components which need to be ordered early in a
development project, any change lead to an extraordinary extension of the devel-
opment time) and thus defines the installation room for the control devices, but also
because the arrangement of printed circuit boards and plugs need to then be defined
prior. —What does this have to do with safety?

The metric of ISO 26262 only mentions random HW-faults. Some people say
that the conductor paths, joints, cables and plugs can also have random HW-faults.
However, we will see that this is not the main issue. Mostly it is the systematic
failures, meaning the potential design errors that are most challenging. Plugs and
conductor paths need to have a certain diameter in order to carry specific currents.
The distances are also very important. Particularly for voltages beyond 60 volts; we
will need to consider completely new safety aspects. ISO 26262 does not require
de-rating (conservative construction, meaning operational characteristic are con-
siderably below the nominal values of the components) as IEC 61508 does (70 %)
but the characteristics need to be robustly dimensioned throughout the entire life
time. This eventually determines the plug distances, pin size, conductor path dis-
tances, thickness etc. through the interpretation of safety mechanisms. In some

54 3 System Engineering

cases this can cause a shortage of space in the housing. In reality this also leads us
to the next issue—there is no current without dissipating heat (except from
superconductivity). Each electric component creates heat, which has to be directed
outside. The thermos conductivity of the housing plays an important role here.
Overheating is a major cause for fire in control units. This is explicitly mentioned in
ISO 26262 since this could be a failure function of the electronic.

The topic of heat plays another major role in a other typical long-leading
component, the microcontroller. The higher we clock a microcontroller the hotter it
gets. The amount of operations per time unit also influences the heating. This means
a microcontroller that runs at its limits gets extremely warm. If we are able to
redirect the heat we can push these limits but if other components are aligned too
closely, we risk a heat buildup.

This shows that there are many factors that can influence the characteristics of a
product. Besides the complexity of the dependencies from the example mentioned
above, we see that other factors can also be extremely influential. Housing or a
microcontroller does not get exchanged without a substantial reason during the
development of a product.

Therefore, we have a great dependency on project management and architecture.
The book “Engineering a Safer World” by Nancy Leweson mentions a sug-

gestion that describes the structure for various views of architecture and the allo-
cation of requirements. All coherences are described with the term “Intent
Specification” (Fig. 3.5).

The central statement is based on the idea that the product structure, the orga-
nizational structure that the product should create as well as the management
structure need to be well matched. In order for the respective organizational units to

Fig. 3.5 Multi-dimensional structure of specification (Source Figure 10.1, Nancy G. Leweson [3]
Engineering a Safer World)

3.3 Architecture Development 55

work with each other it is necessary that this structure also representative of the
foundation for the specification.

Therefore, product architecture becomes the most important element for the
foundation of the product structure.

As a consequence, the first step of project planning is to create a project structure
tree, which considers the following aspects:

• Product, organization and project interfaces need to be well-matched. The more
interfaces there are for the three interface dimensions, the more complex the
product development.

• Product, organization and project interfaces need to be defined and controlled
through a hierarchical arrangement. Each interface needs to be defined and
managed in an higher hierarchical level.

• The product structure and the horizontal and vertical interfaces create the basis
for the specification of the elements of the architecture and their behavior or the
dependencies among them.

The cube structure of Nancy G. Leveson is no longer discussed in this book.
Only the product technical viewpoint is further considered. The organizational
structure or the viewpoint of customers or suppliers—those are considered in the
product planning, project planning and determination of organizational interfaces.
However, these aspects form the basis for the planning of safety activities in the
project safety plan as a derivation of the safety lifecycle (compare to ISO 26262,
part 2, chapter 6.4.3, “Planning and coordination of the safety activities”).

3.3.2 Views of Architecture

Since there are different stakeholders of architecture there also need to be different
abstractions of the description for each individual stakeholder. Ideally, we could
abstract certain information from the total description model according to the profile
of stakeholders. In order to completely implement this we would need to have a
standardized version of stakeholders and their often varying interests and besides
that also a basis data model, which would be able to conceptually include the entire
world and its coherences.

Nobody has time to wait for this to happen. Even such genius data management
and information systems such as Google, Wikipedia etc. would be stretched to their
limits.

Anybody who has ever tried to build a house knows a construction drawing. The
aim of this construction drawing is of course to show the later owner how the house
will look once it is finished. Often, particularly for houses that are built by a
building contractor, there are also construction specifications, but the average
person is unable to read this without the help of an attorney.

56 3 System Engineering

The construction drawing often shows a front, back and various side views and
vertical sections in order to see the arrangement of the different stories as well as
horizontal sections to see the arrangement of doors, for example. However, the
drawing always shows us the same house. Our expectation is that the different
views are consistent and that we can see the entrance door in the front view on the
same place in the house as we would expect to see it from the horizontal view.

Nevertheless, different stakeholders of architectural company need to be iden-
tified and all of them of course only want to see the view of the architecture that
interests them. Therefore, if we send the carpenter the plan for the inside doors he
will be interested in knowing the height of the floor fill but not the allocation of
door lintels and how much iron was used for which ultimate load. Actually, here we
would need to consider the perspective of the finance controller and the project
manager since the resources used already determine the safety sufficiency.

Towards the end of the ‘60s, Phillipe Kruchten described his four views, which
lead to the following (here compared to UML) 4 + 1 views:

• The logical view describes the functionality of a system for the end user. Logical
elements are used in order to show different dependencies of elements. Class
diagrams, communication diagrams and sequence diagrams can be used as
UML-diagram.

• The development view or implementation view describes the system from the
viewpoint of the developer. Component diagrams or package diagrams can be
used as UML-diagrams.

• The process view (behavior or functional view) describes the dynamic aspect of
systems as well as the behavior of elements at their intersections to each other
and in a defined environment. Relations could be any kind of communication
(technical but also man-machine communication etc.) time behavior as well as
allocation and structure aspects such as parallelism, distribution, integration,
performance and scalability. Activity, sequence or timing diagrams can be used
as UML-diagrams.

• The physical view or the deployment view describes the system from the point
of view of the deployment or rather the manager of deployment. It should
include the allocation of components, modules or electric components and
elements that have to be obtained and deployed for the communication among
each other (as for example cables, bus, plugs…). Distribution diagrams can be
used as UML-diagrams

• The scenario view describes the planned cases of application, possible config-
urations and behavior versions. This can be the basis for the planned behavior of
elements among each other. The architecture verification later forms the foun-
dation for integration tests. Use-Case diagrams can be used as UML-diagrams.

In the context of the funding project “Safe”, views and perspectives for the
automobile industry were derived from definitions of the project SPES2020 (see
Fig. 3.6).

3.3 Architecture Development 57

The individual perspectives can be described as follows:

• The operator perspective describes the behavior interfaces between humans and
technical systems and their elements.

• The functional perspective represents the observable technical behavior.
• The version perspective describes the dependencies or differences of various

characteristics or implementations from the viewpoint of the respective stake-
holder of the system or its elements. In this case a stakeholder can also be a
system or an element.

• The logical perspective uses logical elements to illustrate interfaces or behavior
on such interfaces.

• The technical perspective uses technical elements to illustrate structures and
interfaces or behavior on such interfaces.

• The geometric perspective shows the position of a system or its elements in a
certain context or environment.

• The safety perspective shows the safety relevant aspects of an architecture.

3.3.3 Horizontal Level of Abstraction

Abstraction is often paraphrased as the omission of individual component and the
transfer to something more general and simple. Depth is considered to be the
horizontal level of abstraction in which we practically look into a car. The idiom
“To miss the forest for the trees” can be used as an appropriate description of the
challenges for the development of vehicle functions.

System function
blocks

Components
(Other technologies)

Support the Requirements
Development

Support of Architecture and Design

HW components

SW Components

Operator
Perspective

Functional
Perspective

Logical
Perspective

Technical
Perspective

Geometric
perspective

in hydraulics

Cable routing,
layout etc.

Variants
Perspective

Distribution
into partitions

Functional safety
concept

Technical Safety
Concept

ISO26262
view

System Features

SW Features

HW-Features

System
behavior

S
ys

te
m

Support of the Safety

SW functional
blocks

Software Design

HW function blocks Hardware Design

C
om

po
ne

nt

System function
blocks

System Design

Assignment to
computer

function units

PCB layout

Hydraulic
design

Environmental
perspective

System
environment

Components
environment

Position in
vehicle

System function
blocks

HW function blocks

SW functional
blocks

Vehicle
behavior

HW behavior

SW behavior

Driver

Workshop,
maintenance

Workshop,
maintenance

Environmental
profile of the
components

Condition

for the

Program
sequence

System Safety
Mechanisms

HW Safety
Mechanisms

HW Safety
Mechanisms

Workshop,
maintenance

Flashing

Fig. 3.6 Perspectives of architecture (Source Funding project “Safe”)

58 3 System Engineering

When describing the behavior of a vehicle there are dependencies that can be
broken down all the way into the individual lines of a software code, the resistor or
joints of components on the printed circuit board. If those dependencies are not
recognized we have to ask what other elements are needed.

Consequently, in vehicle and aircraft engineering we speak about the airplane
level, the system level and the components level. If this were a developed
requirement for the structure the development of vehicle functions would most
definitely be a lot easier. Officially, these levels are not mentioned in ISO 26262 but
the norm helps to better understand when would be a good time to take such levels
in considerations (Fig. 3.7).

Here we can see that the environment for a vehicle and an airplane has an
essential influence on the development of a system. The degrees of variance for the
vehicle alone are a lot less for the steering system than for an airplane. However,
even for a vehicle the degrees of variance are very different. A motorcycle will fall
easily while a car won’t, unless we refer to an elk test. This comparison shows that
certain events have a design related probability of occurrence. On the system level,
which shows the interaction of the components, also mechanic, electronic and
software components are applied but based on different requirements and envi-
ronmental parameters they will lead to extremely different system designs.

If we consider the components level we will find a similar situation for electric
hardware and software. In this case the differences will mainly show in the
architecture.

Architectural patterns show that the functions in airplanes, approach automobile
architecture more and more frequently. So far comparing systems and voter (for
example a 2 of 3 selective system) were mainly deployed on the system level and

Component level

Vehicle level

System level

Airplane plane

Fig. 3.7 Comparison analogy vehicle level/airplane level to system/components level

3.3 Architecture Development 59

implied by for example, three independent components (also called device redun-
dancy) which then implement safety functions through an independent majority
voter system or passive logic elements like relays, diodes, switches etc.

For approximately 20 years the automobile industry knows the EGAS-concept.
(E-GAS or E-Throttle) It implements redundant software levels, which then pri-
oritize safety functions as needed, send signals through enabled pathways to a safe
state or an intelligent watchdog switches-off the entire computer. In regard to
aircraft manufacturing we refer to a command-monitoring-system. The common-
ality of these concepts is that the target functionality should function independently
from the monitoring function. The design aim of such a monitoring function is to
realize it in a way that in case of its failure no harm occurs through the product.
Such principles of redundancies have developed over time and are described in ISO
26262 as ASIL-decomposition. Here these comparisons or voting can be deployed
as completely independent or sufficiently freedom from interference software
functions. In order to achieve such independencies and/or absence of interference
from system or hardware measures are still necessary but the aim is to avoid
components or control device redundancies. Semiconductor manufacturers that
provide respective built-in-self-test (BIST), diagnosis, memory partitioning or
redundancies (diverse I/O-periphery or multiple-core-devices) on a basis chip,
support this development. The comparison with the aircraft industry shows no clear
boundary and on what parameters do we need to allocate the horizontal cuts within
the architecture.

Regarding system integration ISO 26262 mentions three (horizontal) integration
levels. In part 4, chapter 8 the following targets are determined:

ISO 26262, Part 4, Clause 8.1.1:

8.1.1 The integration and testing phase comprises three phases and two
primary goals as described below: The first phase is the integration of the
hardware and software of each element that the item comprises. The second
phase is the integration of the elements that comprise an item to form a
complete system. The third phase is the integration of the item with other
systems within a vehicle and with the vehicle itself.

This results leads to three horizontal integration levels:

• Integration of the vehicle system (items) in the vehicle

– vehicle interfaces

• Integration of the components to a defined system

– component interface

• Integration of electronic hardware and embedded software

– hardware-software interface (HSI)

60 3 System Engineering

Since the interface to these levels of course have an influence on the architecture
and the necessary requirements for these levels, these levels also need to be con-
sidered in the system requirements development. This means the architecture needs
to be planned accordingly so that these horizontal interfaces already exist.
Figure 3.8 shows these three levels embedded between the component level and the
vehicle level.

System level 1 orientates itself on the interface of an item (vehicle system). In
this case many decisions and definitions are already made that can have an essential
influence on the later component deployment. All requirement covered in ISO
26262 part 3, chapter 4 “Item Definition” can be important for the components.

According to the Ford-FMEA-handbook [5] there are four kinds of interfaces.
Here they are shown and described with examples (Fig. 3.9).

The following factors can be seen:
Physical interface

• geometric data, which describes the space in the vehicle in which the compo-
nents need to be integrated

• environmental conditions such as vibrations, temperature, dirt
• physical values or limitations such as force, torque, turn rate, positioning angle,

transmission ratio, and their tolerances
• electric values such as voltages, currents, EMC, data interfaces
• kind or type of data (physical, electrical etc.)
• data formats, data contents, signal level
• data intersection, bus or communication systems (CAN, Flexray, Ethernet)
• Network or bus topology (star, ring, node, gateway)

Component level

Vehicle level

System Level 1 vehicle interface

System Level 2 component interfaces

System Level 3 hardware software interface

Airplane plane

Fig. 3.8 Multiple system level between component and vehicle level

3.3 Architecture Development 61

Energy interfaces

• type/kind of energy, such as electric, kinetic energy or pressure or vacuum
• energy transfer such as voltage levels, short circuit currents, safety deployment
• energy amounts such as capacity of batteries or capacitors
• kind of energy provision such as via cable, induction or

Material transfer (interface)

• fuel delivery, lubricants etc.
• material compatibility such as hard/soft materials, type of oil, chemical com-

patibility (salt, sulfur with iron etc.)
• mass shifting, loading conditions

These interfaces can also show time dependencies. It is important to lead the
information to the brakes that the vehicle should stop but it also has to be ensured
that the actuator is provided with sufficient energy. For the hydraulic brakes this is
mainly ensured by the brake pressure. For example electric power supply can, at a
specific load, no longer provide sufficient energy or the fuse trips at a certain
threshold.

At system level 2 descriptions of the intersections can vary, also the time
requirements often become more detailed and thus mostly shorter. An example in
steering shows this hierarchical cascading. A steering system is able to tolerate an
error at a certain pulse width and energy for about 20 ms. If the impulse lasts longer
the driver won’t be able to control the vehicle any longer and might drive into the
oncoming traffic. This means the safety tolerance for such a system is approxi-
mately 20 ms. If we break this down to the control unit this time can be reduced to
below 5 ms. So from connector pin to connector pin, the control unit needs to

Vehicle

external
logical element

Logical element

external
logical element

internal
logical element (s)

external
logical element

external
logical element

internal
logical element

internal
logical element

internal
logical element

internal
logical element

internal
logical element

internal
logical element

P E

I M

P E

I M

P E

I M

P E

I M

P E

I M

P E
I M

P E
I MP E

I M

P E

I M

P: physically E: Energy
I: Information M: Material

Fig. 3.9 Multi-dimensional boundary and interface analysis (Source Derived from
Ford-FMEA-Handbook)

62 3 System Engineering

initiate a safety related correct reaction within below 5 ms. In order to ensure the
same even at system level 3 for the hardware-software interface a microcontroller
needs to initiate a software function below a millisecond, which can present an
adequate reaction at the pin of the microcontroller.

On system level 2 these interfaces can be described as follows:
Physical Interfaces

• geometric data in the housing such as the attachment of plugs, printed circuit
boards…

• environmental conditions such as vibration, temperature, dirt (this data can vary
since sensors, control units or actuators can be implemented in different places
or be protected by the housing of pollution or humidity, reduce vibrations,
dissipating heat)

• physical values or limitations such as force, torque, turn-rate, transmission ratio
and their tolerances (these values can again be broken down or allocated to
different elements of the system)

• electric values such as voltages, currents, EMC, data interfaces (see above—
physical values)

Information interfaces

• type of information (information here often more specified)
• data formats, data contents, signal level (itemization of information)
• data intersection, bus or communication systems (CAN, Flexray, Ethernet), now

the physical specification of the communication interfaces is required so that
internal and external communication partners can communicate with each other

• Network or bus topology (Star, Ring, Node, Gateway), here these elements are
specified in detail

Energy interface/intersection

• type of energy, such as electric, kinetic energy or pressure or vacuum
• energy transfer such as voltage levels, short circuit currents, safety design

characteristics deployment
• energy amounts such as capacity of batteries, capacitors etc.
• type of energy provision such as via cable or induction

These interfaces are now broken down into the individual external and internal
components and detailed as needed.

Material transfer (interfaces)

• fuel delivery, lubricants
• material compatibility such as hard/soft materials, transmission or hydraulic type

of oil, chemical compatibility (salt, sulfur with iron etc.)
• mass shifting, loading conditions

These interfaces are now as well broken down into the individual external and
internal components and detailed as needed

3.3 Architecture Development 63

Often, in system level 3, new information appears which derive from the speci-
fication of the microcontroller. But again, also here, all four interface-categories are
either more or less relevant. Material transfer will be less relevant for the micro-
controller and more important for the material interfaces. Here we can find con-
tacting issues because of wrong materials up to drift or sporadically effects due to
corrosion.

Components Level
To define mere mechanic components in various abstraction levels could be in some
cases reasonable but generally, complex mechanic components are already
described on system level. Also the interfaces can be allocated to any given system
interface. A sheer hydraulic steering will therefore more likely be integrated in
system level 1 and parts such as printed circuit boards, plugs etc. probably in the
components level.

In the case of software it often occurs that multiple software components exist,
which are then integrated into the entire embedded software in a microcontroller.
Formally seen, multiple functional groups that are integrated into a microcontroller
can be integrated as system elements. However, because the hardware-software
interface imposes a lot of requirements on the software that need to be imple-
mented, the interface is becoming increasingly complex (Fig. 3.10).

Time analyses for such integrations can only be analyzed through alternative
views since the runtime environment, time-management or partitioning,
clock-frequency etc. of the computer need to be considered for each software

Component level

Architecture level

Software design level

Fig. 3.10 Software architectural layers similar to Autosar

64 3 System Engineering

element. Here we have the so-called ‘software architecture level’, which forms the
level between the software design and the software component. Just like in SPICE
the term software unit is seen as the smallest entity of software. Therefore,
instructions are no longer considered to be an entity. In the C-programming lan-
guage, which is often used in the automobile industry, the C-file would represent
such a level of abstraction for a software unit. Furthermore, in the software
development two different levels are differentiated the basis software and the
application software. Interfaces that provide a defined data structure during runtime,
a so-called runtime environment (RTE), as we understood from AutoSar, show a
separation between basic and application software.

However, in the electronic field we still mainly start with mechanics. First of all
we have the housing, plugs, connectors, printed circuit boards, air ventilators and
cooling devices. These already specify some parameters and design restrictions for
the deployment. Since the housing also has to be ordered at an early stage of the
project development, the entire electronic deployment will depend on it. Formally
this is considered to be the abstraction level of the electronic architecture. Therefore
those design dependencies should be known but not specified as an independent
abstraction level. However, these mechanical components can be reasonable sep-
arations for various electronic components: several electronic components on dif-
ferent printed circuit boards, separation of control and power electronics, different
voltage levels or also technical separations of safety-relevant electronic and
non-safety-relevant electronic.

For software however we reasonably separate, if varying software components
are integrated in different microcontrollers. For electronics we also often need to
find other ways to separate components, functional groups and components. This is
why in electronics there are three abstraction levels known as components level,
functional group level and components level. Semiconductors such as microcon-
trollers, ASICs, FPGAs or other hybrids are often integrated as functional groups
even if they count as components (Fig. 3.11).

Component level

Function group level

Components Level
C61C61

R63

Fig. 3.11 Horizontal layer of abstraction in electronic hardware

3.3 Architecture Development 65

Software: Basic Software—Application Software
Also for basic software or in AutoSar abstraction levels are addressed but in this
case we don’t mean horizontal abstraction levels but functional (perspectival)
abstraction levels (e.g. hardware abstraction or microcontroller abstraction layer
(MCAL)). Nevertheless, the interface between application software and micro-
controller still play an important role in the definition of the abstraction level. In
early revisions of ISO 26262 the hardware software interface (HSI) was imple-
mented in part 5 (Product development at the hardware level) and 6 (Product
development at the software level) and only after the CD version of ISO 26262 it
moved into part 4 (Product development at the system level). What is special about
this is that the microcontroller as a hardware element, similar to the electronics
housing, predetermines essential design characteristics for the software. In order for
these two components to interact properly, those characteristics and their potential
flaws as well as the functions and their potential failure functions need to be
considered. This obviously goes for all component interfaces. In the case of HSI we
find a lot of relevant interface parameters. This means, that it is not only about the
correct functions of the so-called low-level drivers, which provide information on
microcontrollers to the software, the operating system, peripheral (DMA, I/O, bus
etc.), internal communication, logic unit, memory or function libraries, which are
provided by the computer, but also the systematic protection of potential failure or
malfunction at this interface.

3.4 Requirements and Architecture Development

The architecture should also display the structure of requirements. With the help of
the horizontal abstraction levels described the upper and lower interfaces are pre-
determined for the details, which the architecture should illustrate. By determining
the logical and technical elements, further interfaces within the horizontal
abstraction level are displayed. In a system, logical and technical elements are
defined, which have the task of carrying or also implementing the required func-
tions. The logical or technical elements have to be clearly specified so that a correct
behavior can be expected for safety relevant systems (Fig. 3.12).

The following characteristic or features should be seen as requirements:

• The environment, in which the element should be embedded, has to be specified
in a way that all influential factors, which can influence the behavior of the

Element
input

valid operation modes,
configurations

environment

output

inner relation

Fig. 3.12 Types of
specification items for
complete element
specification

66 3 System Engineering

element, are defined. What factors need to be considered are the result of an
interface analysis (in terms of a boundary analysis).

• The permitted ways of use, modes of operation (as for example initialization,
monitoring, on-demand, stand-by, regular operation) or configurations (e.g. only
for analog data processing, calls with certain parameters (e.g. for software
components), clocked or triggered processes or functions) have to be specified
as well as the kind of way how information are allocated to the element.

• The input information should be specified so that it can be determined where
they are generated in which format they are transmitted and in what range the
information is valid.

• The output information should be specified in a way that it is defined where they
are to be addressed, in which format they have to be provided and in what range
the information is valid.

• The internal relations should define all input and output conditions in the
specified environmental conditions under the permitted mode of operation or
configuration. If memory effects in the elements can change the internal rela-
tions, they also have to be defined through the specification. Memory effects
within the elements leads to changes in the input and output relations, which
have to be defined.

Besides the functional characteristics the following characteristics will have an
influence on the electric, electronic and mechanic hardware elements:

• Geometric, form, volume, mass, structure, surface, labeling, color etc.
• Material properties (material compatibility, chemical reactivity)
• Behavior and reaction towards physical influences such as temperature, elec-

tricity, voltages, stress behavior (vibration, EMC, certain behaviors referring
physical stress)

• Aging effects (statistical aging behavior (Weibull-binominal-, chi-distribution))
• Maintenance requirements, logistic
• Time aspects

But also technical software elements have technical characteristics such as

• Size of the compiled code
• Branches, memory consumption, quantity (number of instructions, variables,

addresses, jumps, calls, interrupts)
• Realized program flow, task allocation, scheduler strategy, etc.

Commercial, ideational or emotional aspects are not further regarded here since
they should not consider to be related to safety. How these technical values are to be
defined and specified is generally also the result of an analysis.

We can assume that a technical element has specific characteristics; otherwise it
couldn’t fulfill the intended characteristic or function. Therefore, it is only logical
that if those characteristics are no longer given or consistent, functional limits arise
(Fig. 3.13).

3.4 Requirements and Architecture Development 67

Templates should be designed for all these requirement aspects so that
requirements are displayed in a clear format. This avoids wrong interpretations and
ensures the consistencies with the architecture. Specification in natural language
doesn’t mean that all lists of characteristics need to be formulated in verbal sen-
tences. Semi-formal methods are better suited particularly for technical behavior
and are clearer and less unmistakable than well-formulated sentences. In a
well-structured architecture a lot of requirements are automatically derived from the
architecture because of such templates. Or the essential content can be formulated
in advance through the definition of keywords so that only parameters or certain
characteristics need to be added. All signal flows or data flow aspects need to be
consistent with the architecture, meaning that if these requirements are automati-
cally derived from the architecture, a good level of consistency can be expected.

3.5 Requirements and Design Specification

All requirements for “Requirement Management” refer to the specification of
requirements in ISO 26262, Part 8, clause 6 (Specification and Management of
Safety Requirements). Requirements for Design Specifications could hardly be
found in norms and standards at all. Most likely, the only requirement on Design
Specifications in this case is that the content needs to be understood. The challenge
is to find a healthy mix between requirements and design and specify it correctly
and sufficiently (Fig. 3.14).

The example with the image of the Mona Lisa shows that a mere statement of
requirement can become pretty extensive. The recipient of this statement of
requirement will have a hard time creating this image with the given information.
A good mix of requirements and clearly stated design characteristics, which are also
illustrated respectively, can be helpful.

For a mechanic design it would not be suggested to specify a M6 screw with
requirements specifications. Furthermore, one would not voluntarily write
requirements specifications for a resistance with 100 Ω and a tolerance of 1 %.
Now the question is if this is so obvious for electronics and mechanics, how do we
define the limit for a system or software? The example of Mona Lisa shows clearly
that requirements specifications alone are not enough. Now how do we structure
specifications and to whom do we assign them? The specification of a vehicle

when?
under what condition?

may

should

shall

the element
element name

can

whom?
offer the possibility

be able

object + supplements
of object

process word

Fig. 3.13 Requirement template (Source Based on Chris Rupp [4], Requirement Engineering and
Management)

68 3 System Engineering

system is generally not assigned to the driver but should be directed to the tech-
nician. This means for a system developer timing diagrams, spreadsheets, sequence
diagrams etc. should be significant information. To specify these requirements one
more time in natural language is inefficient and unnecessary. The clear description
of technical behavior is often also easier to explain with models. Basically, the
picture of the Mona Lisa is nothing else but a model, which completes the
requirements. The system design chapter of part 4, chapter 7 requires a system
design specification for systems and for the software in part 6, chapter 8, a software
design specification but no requirements specifications.

ISO 26262, Part 8, chapter 6.2.1–6.2.4:

6.2.1 Safety requirements constitute all requirements aimed at achieving and
ensuring the required ASILs.
6.2.2 During the safety lifecycle, safety requirements are specified and
detailed in a hierarchical structure. The structure and dependencies of safety
requirements used in ISO 26262 are illustrated in Figure 2. The safety
requirements are allocated or distributed among the elements.
6.2.3 The management of safety requirements includes managing require-
ments, obtaining agreement on the requirements, obtaining commitments
from those implementing the requirements, and maintaining traceability.
6.2.4 In order to support the management of safety requirements, the use of
suitable requirements management tools is recommended.

Objectiv: Realize a picture of a woman
1. The picture should be on a canvas
2. The picture needs to be painted in oil paint
3. The image has a wooden frame
4. The picture depicts a woman from

4.1 The woman wearing a black headscarf
4.2 The cloth is RAL 000 with natural-looking shades
4.3

Requirements Specification

Objective: Copy the image of the Mona Lisa by Leonardo Da Vinci
1. The picture should see the original confusingly similar.
2. Color and detail to the frame can be taken from this image.
3. The original basis of the Louvre in Paris should be.

Design Specification

Requirements Specification

Fig. 3.14 Requirement specification and design specification

3.5 Requirements and Design Specification 69

The following Fig. 3.15 is an excerpt of the safety lifecycle and shows how
activities, requirements and work results leave the conception phase and enter the
development phase.

ISO 26262, Part 8, Chapter 6:
6.4.2.3 Safety requirements shall be allocated to an item or an element
The following Fig. 3.16 clarifies the requirements for requirements and the way

engineers (requirement engineering) should manage them.
There are now requirements in the common safety or development standards that

also characteristics of design elements need to be specified as requirements.
However, in all architecture chapters requirements play an important and central

Fig. 3.15 Structure of requirements (Source ISO 26262, part 8, Fig. 2)

70 3 System Engineering

role. But if a software unit and an electronic component do not need to be com-
pletely specified with requirements, how can we assure everything will be com-
plete? The target is to find a level that defines all behavior sufficiently and unique.
This level needs to be planned and clearly described in a requirement and archi-
tecture strategy (requirement and architecture strategies are also work-products
addressed within the base practices from SPICE).

Technical products or parts of it such as their characteristics, limitations, con-
straints, range of use, area of application, behavior etc. should always be specified
with a reasonable mix of requirements, architecture and design requirements.
Products are never described by their errors or risks. Nevertheless, it can be nec-
essary to document them for the end-user (package information, manuals etc.).

Functional Architecture and Verification
A function is generally seen a mathematical/arithmetic expression or
relation/coherence.

fðxÞ :¼ ay + bx

This is a typical mathematic function. For systemic functions there are the
following illustrations for the following functions: (Fig. 3.17).

All 3 illustrations represent the same relation; however, there are only different
ways to present the information that function 1 is composed of 3 partial functions.
Function 1 represents the sequential chain of 3 partial functions. These sheer
functional perspectives allow no identification of interfaces of the system or ele-
ment boundary. Only a simple and limited description of the behavior of technical

Specification and management requirements

-Hierarschich structured
-Comprehensible
-Completely
-Consistent with its environments

Safety requirements 1
-Clearly
-Understandable
-Nuclear
- Internally consistent
-Feasible
-Checkable

Safety requirements 2
-Clearly
-Understandable
-Nuclear
-Internally consistent
-Feasible
-Checkable

Fig. 3.16 Relationship
between management of
safety requirements and
requirements (Source Based
on ISO 26262, part 8, Fig. 3)

3.5 Requirements and Design Specification 71

systems is possible. Also the mathematical transfer function describes an expected
result based on defined inputs (Fig. 3.18).

The mathematical transfer function already considers inputs and outputs.
Therefore, interfaces are already available here. Also in modeling tools like
Matlab-Simulink-Model the input and output relations are foundations for the
interfaces of the architecture.

If requirements of one element are derived from an inner structure, new
requirements for interfaces emerge (Fig. 3.19).

&

Function 1

F
unction 1.1

F
unction 1.2

F
unction 1.3

Function 1.1 Function 1.2 Function 1.3

Function 1

as tree
as a line graph

f(x) := ay+bx
Function1 := Function1.1 v Function1.2 v Function1.3

as mathematical function as Boolean equation

Fig. 3.17 Function decomposition as mathematical or Boolean function, tree or line diagram

Fig. 3.18 Mathematical transfer function

I

E2

E1
E3

E4

A1 To

F1 F2

Fig. 3.19 Deriving
requirements and allocation to
functions or on logical,
functional, or technical
elements

72 3 System Engineering

Allocations of functions, partial functions and their requirements (so called
functional requirements) on a logical element are the main activity for the devel-
opment of the functional safety concept besides the verification of such require-
ments. Without such allocations verification is impossible. The logical elements E1
to E4 should implement function 1 and 2. The allocation could lead to the following
result:

Logical elements have limitations and identifiable interfaces but also the func-
tions obtain interfaces and limitations through the allocation of the logical elements.

In this structure and with the information and correlations given, requirements
can be verified. The following verifications of requirements would be possible:

Have all requirements been derived?
Were the requirements classified in a way that it is clear whether they are
requirements for an input signal, output signal, a relationship within an element, a
relationship between two elements, a function between two elements, the envi-
ronment of elements or design requirements or limitations?

Similar approach as in Fig. 3.20, requirements could be derived only from a
higher element or are there other higher elements outside of the system boundaries
that can influence the requirements?

Is the internal structure of the derived elements described sufficiently?
These questions build the foundation for the verification of the functional safety
concept. In each individual level, in which requirements can be verified, a similar
approach can be used for the requirement verification. The figure above shows that
if functions or the elements, which those functions should realize, do not have
common interfaces, the number of interfaces will explode exponentially. If also a
situation related failure analysis had to be made on the basis of such heterogenic
positive descriptions and perhaps correlations had to be described through several
horizontal abstraction levels, completeness, transparently, comprehensibility, con-
sistence and correctness would no longer be given. Such an amount of interfaces
would not be analyzable and therefore no longer controllable.

I

E2

E1

E3

E4

A1 To

F1

F2

Fig. 3.20 Allocation of
functional requirements,
functional elements or
function groups on elements

3.5 Requirements and Design Specification 73

References

1. [DIN EN 61709]. Electric components - Reliability - Reference conditions for failure rates and
stress models for conversion (IEC 61709:2011); German version EN 61709:2011

2. [SN 29500]. 1999, Siemens Standard SN 29500: Ausfallraten Bauelemente
3. [Nancy G. Leweson]. N.G. Leveson, Engineering A Safer World: Systems Thinking Applied to

Safety, MIT Press, Cambridge, MA, 2011.
4. [Chris Rupp]. Chris Rupp & Die SOPHISTen: Requirements-Engineering und -Management:

Professionelle, iterative Anforderungsanalyse für die Praxis. 5. Auflage. Hanser, 2009
5. [Ford-FMEA]. Ford-FMEA-Handbook, Ford Motor Company, 2008
6. [ISO 26262]. Road vehicles – Functional safety. International Organization for Standardization,

Geneva, Switzerland.

60

69

70

74 3 System Engineering

Chapter 4
System Engineering for Development
of Requirements and Architecture

The ascending branch of the V-model has not always been intensively and
systematically implemented in the development process of vehicle components.
Crucial indicators for the automobile industry are methods such as statistical design
of experiments (DoE) or an intensive validation. The descending area of the
V-model has often been neglected. Writing specifications is not strength of auto-
mobile manufacturers.

As we have previously seen in the architectural views and abstraction levels of
architecture, horizontal and vertical interfaces and also other differing views are
structuring criteria. This applies particularly to the development of requirements. If
we determine functional, technical and logical elements we also need to describe
and specify them. If such elements are combined in order to function together as
desired and create an intended function, they have to show compatible interfaces
that are specified sufficiently. ISO 26262 [1] covers the “specification of interfaces”
but does not clearly illustrate the respective requirements. However, the correlation
between the work results such as requirement specifications in part 10, are shown
based on information flows. In this case only the general abstraction levels system
and components are covered and also the differing views on how a system can be
described are not covered.

Figures 4.1 and 4.2 are published in DIS (Draft International Standard, previous
version of the norm) of ISO 26262 part 10 (Figs. 7 and 8). Figure 4.1 was designed
for the electronic hardware. It shows the horizontal and vertical interactions and
information flows. In the requirements and design phase the direction of the arrow
for the vertical axis points from top to bottom. In the integration and test phase it is
the other way round. This illustration does not include any iteration in the safety
lifecycle, which can become necessary because of model phases, change require-
ments or verification or validation measures.

For the software development one more level is illustrated (Fig. 4.2). It shows an
architecture level and a level, which is assigned to the software unit or the design of
the software unit.

© Springer International Publishing Switzerland 2016
H.-L. Ross, Functional Safety for Road Vehicles,
DOI 10.1007/978-3-319-33361-8_4

75

In the final version the arrows and the keys are changed according to Fig. 4.3.
The essential input for the definition of the vehicle system (ITEM) is the functional
concept. Since ISO 26262 does not cover the hazards, which result from a correct
functioning system, the functional concept itself is required to completely describe
the free from danger of intended function and its structure. This won’t be possible
at an early stage of the product development. Therefore, we are forced to see all
activities as continuous iterations for which the obtained insights have to be proven

Design PhasesDesign PhasesRequirements PhasesRequirements Phases

3-8
Functional

safety
requirements

4-6
Technical

safety
requirements

3-7
Safety
goals

3-8
Functional
safety
concept

4-6/7
Technical
safety
concept

Requirements, design and test flowRequirements / design interaction

5-6
HW safety

requirements

3-8, 4-6
System
safety
requirements

Test PhasesTest Phases

5-10
Hardware
integration

test

4-8
System

integration
test

4-9
System
safety

validation

System design V 0.1

System design V 0.2

System design V 1.0

3-8
Preliminary
architectural
assumptions

4-7
System
design

5-7
Hardware

design

3-5
Item

definition

Fig. 4.1 Data flow in system and hardware product development (Source ISO DIS 26262)

Design PhasesDesign PhasesRequirements PhasesRequirements Phases

3-8
Functional

safety
requirements

4-6
Technical

safety
requirements

3-7
Safety
goals

3-7
Functional
safety
concept

4-6/7
Technical
safety
concept

Requirements, design and test flowRequirements / design interaction

6-6
Software
safety
requirements

6-6 SW safety
requirements

at architectural
level

6-6
SW safety

requirements
at unit level

3-8, 4 -6
System
safety
requirements

Test PhasesTest Phases

6-9
Software unit

test

6-10
Software

integration
test

4-8
System

integration
test

4-9
System
safety

validation

System design V 0.1

System design V 0.2

System design V 1.0

3-8
Preliminary
architectural
assumptions

4-7
System
design

6-8
Software unit

design

6-7
Software

architectural
design

3-5
Item

definition

Fig. 4.2 Data flow in system and software product development (Source ISO DIS 26262)

76 4 System Engineering for Development …

based on the present output and results again and again. For the horizontal
abstraction level such as the vehicle level, system level, components level, structure
in silicon or other complex components or elements a similar, a deductive devel-
opment process should be chosen in order to develop detail structures and the
respective requirements. All levels contain logical, technical and/or functional
elements, which interact with each other. Functions develop through an—according
to specifications—correct interaction of elements. Those functions can often then
are inductively verified, meaning back up the descending V-model branch. If in the
process of the verification, safety requirements, which are already verified in the
upper level, are confirmed and proven to be fulfilled, the verification serves as a
sufficient argument for functional safety. This means, that on any given level the
same principles of safety engineering can be applied and a higher consistency of
development work can be achieved. The fact that on each level the sufficient control
of errors is essential for functional safety does not mean that all errors in each level
need to be controlled separately.

Since ASIL C, ISO 26262 also requires the control of multiple-point failures.
For complex systems with various independent safety goals a systematic failure
control can no longer be implemented. Therefore, safety goals which require two
safety mechanisms need to be implemented in different horizontal levels. Through
the implementation of barriers single point faults become multiple-point failures.
Therefore, a single point fault in a sub system is often only a multiple-point failure
in the overall context if failure propagation could be avoided to a higher level above
the sub system. If multiple system elements fail at the same time, multiple-point
failures occur. Also in this context the classification of failure is not required. It
depends on the system definitions, particularly on the selection of system elements.
The selection is usually made in a way that the biggest system elements possible are

Design PhasesDesign PhasesRequirements PhasesRequirements Phases

3-8
Functional

safety
requirements

4-6
Technical

safety
requirements

3-7
Safety
goals

3-8
Functional
safety
concept

4-6/7
Technical
safety
concept

Requirements and design flowRequirements, design and test interaction

6-6
Software
safety
requirements

6-6 SW safety
requirements

at architectural
level

6-6
SW safety

requirements
at unit level

3-8, 4-6
System
safety
requirements

Test PhasesTest Phases

6-8
Software unit

design

4-7
System
design

6-7
Software

architectural
design

6-11
Software

safety
verification

6-10
Software

integration
testing

3-8
External

measures
and other

technologies

3-8
Preliminary
architectural
assumptions

3-5
Item

definition

6-9
Software unit

testing

4-8
System

integration
testing

4-9
System
safety

validation

4-8
Vehicle

integration
testing

Fig. 4.3 Data flow in system and software product development (Source ISO 26262, Part 10)

4 System Engineering for Development … 77

selected (since the complexity of the total system can be described with the lowest
effort).

Furthermore, each system element should show as low as possible error modes
(ideally in a degraded safe state). It is a challenge to define system components in a
way that they show a low amount of possible error modes. However, the acceptable
system degradations have to be clearly specified. This fact will be used in a higher
ASIL as the basis for architecture development. Without barriers, which limit the
number of possible error modes, such a system is no longer analyzable and the
variance and the possible error propagations will no longer be controllable.

4.1 Function Analysis

A function analysis should start with function decomposition where we can see how
a function is broken down from a higher abstraction level into a lower one.
Figure 4.4 shows that three functions are illustrated on one system element. Level 2
shows that the functions are composed of different sub functions and also of more
than just one entrance or exit. Function 1 could be a normal brake function with two
activations (foot- and handbrakes) as well as two actuators (front wheel and
rear-wheel brake), function 2 could be a brake activation through a sensor (for
example the radar of ACC) and function 3 would be a parking brake, which is
accessed by the same operational unit (foot- and handbrakes). According to that the
sub functions in the blue circle would be jointly used by different functions.

Therefore, the foot- and handbrakes (see Figs. 4.5 and 4.6) as well as the front
wheel and rear-wheel brake are only deployed once. If now also the foot pedal
affects the parking brake, we can see that the function for both actuator have to
generate different signals, or the function logic behind it has to interpret those
signals differently.

function11 function15 function13

function16

function14
function12

function21 function25 function23

function26

function31 function35 function33

function34
function32

function31 function15 function13

function16

function14
function32

function21
function23

function33

function34 function35

function11

function12
function25

function26

Function1

Function2

Function3

Requirement
Input Requirement

Output

Requirement
Function

Requirement
environment

Function 1 Function 2 Function 3

Fig. 4.4 Function decomposition

78 4 System Engineering for Development …

The common element now has to fulfill all requirements of all functions that are
allocated to this element. This can be the maximum requirements as well as
conflicting requirements. In case of the latter, two exists have to be implemented
that can be activated according to the respective requirement. Those further exists
differentiate themselves in the necessary details, so that the respective requirements
can be implemented correctly.

Such decomposition and the consolidation in the system integration (allocation
of multiple functions to one element and the development of new common func-
tions) will have to be necessary in all system levels since only limited resources can
be provided in the systems. Here we speak of a top down analysis, which later

function11 function15function13

function16

function14
function12

function21 function25function23

function26

function31 function35function33

function34
function32

function13

function14

function21
function23

function33

function34 function35

function11
function31

function12
function32

function15
function25

function16
function26

Function1

Function2

Function3

Requirement
Input Requirement

Output

Requirement
Function

Requirement
environments

Function 1 Function 2 Function 3

Fig. 4.5 Architectural foundation

Function1

Function2

Function3

function11 function15 function13

function16

function14
function12

function21 function25 function23

function26

function31 function35 function33

function34
function32

function13

function14

function21
function23

function33

function34 function35

function11
function31

function12
function32

function15
function25

function16
function26

Requirement
Input Requirement

Output

Requirement
Function

Requirement
environments

Function 1 Function 2 Function 3

Fig. 4.6 Function decomposition and merging of functions on common functional elements

4.1 Function Analysis 79

serves as a basis for the analysis of function dependencies. In order to provide a
sufficient independency of target functions and a designated safety mechanism,
such an analysis is inevitable.

4.2 Hazard and Risk Analysis

Officially in ISO 26262 this method is called hazard analysis and risk assessment,
because ASIL, which have to be assigned to safety goals, should be a measure of the
necessary activities that need to be taken in order to achieve the required risk
reduction. Current risk is only marginally assessed and the aim is to examine possible
situation and potential malfunctions of a vehicle system or the ITEM that can lead to a
hazard. It is obviously possible to imply from the hazard and possible malfunction to
the risk, but a risk assessment itself is not necessary for the application of the method.

Risk conditions in ISO DIS 26262 (see Fig. 4.7) were described similarly. This
model is not complete, since parked cars can also burn down, for example, because

Correctly functioning
vehicle in use

3

4

Correctly functioning
vehicle not in use

1

2

Reduced Control
5

Accident
Severity S

6

3

4

Properly functioning
vehicle

Not in use.

1

2

5

6

Start driving

Properly functioning
vehicle in use.End of the ride

Error occurs Repair

Not properly functioning
vehicle

Not in use.

Not properly functioning
vehicle (present danger)

in use.

Error occurs

End of the ride

Start driving (one
cycle)

controllable in hazardous driving
situation

Reduced manageability

not
controllable

potential damage,
accident

Fig. 4.7 Risk conditions as basis for the hazard and risk analysis (Source ISO DIS 26262)

80 4 System Engineering for Development …

of a malfunction of electronic components. Nevertheless, it is obvious that the
number of hazards occurring from malfunctions during parking is limited.
Furthermore, it is assumed that also, the dangerous situation must be present
hand-in-hand with the malfunction in order to cause a hazard. If a function fails in a
dangerous situation and cannot be controlled by the driver, (or somebody else
endangered) an accident is likely to occur.

In other industries comparable analyses are often called “Preliminary Hazard
(Risk) Analysis, (PRA)”. In this context, after all analyses and verifications, the
result is again illustrated through the risks of the hazard and risk analysis during the
following architecture and design measures. If the illustration or the transparency of
safety goals is not given, the risk analysis has to be adapted. Therefore, the analysis
is never completed. The process iterations are important safety measures.

4.2.1 Hazard Analysis and Risk Assessment according
to ISO 26262

ISO 26262, Part 3, Clause 7:

7 Hazard analysis and risk assessment
7.1. Objectives
7.1.1 The objective of the hazard analysis and risk assessment is to identify
and to categorise the hazards that malfunctions in the item can trigger and to
formulate the safety goals related to the prevention or mitigation of the
hazardous events, in order to avoid unreasonable risk.

7.2. General
7.2.1 Hazard analysis, risk assessment and Automotive Safety Integrity Level
(ASIL) determination are used to determine the safety goals for the item such
that an unreasonable risk is avoided. For this, the item is evaluated with
regard to its functional safety. Safety goals and their assigned ASIL are
determined by a systematic evaluation of hazardous events. The ASIL is
determined by considering the estimate of the impact factors, that is, severity,
probability of exposure and controllability. It is based on the item’s func-
tional behaviour; therefore, the detailed design of the item does not neces-
sarily need to be known.

ISO 26262 provides alternative approaches to enter the hazard and risk analysis:

• start with the product idea and intended functions and see the ITEM or vehicle
system as a complete new development—or

• start with an impact analysis based on a previously developed product.

4.2 Hazard and Risk Analysis 81

A systematic distinction for the vehicle system (item), which also has to be
examined in the context of a system boundary analysis, is necessary for both
approaches. Generally, this is required beforehand as part of the definition of the
considered vehicle system. However, if the vehicle system is already partially
existent, the technical characteristics and their behavior need to be balanced with
the new vehicle system characteristics and their behavior and the new functional
structure should be defined. In real life there aren’t really any new vehicle systems
in the automotive industry. Even functions such as ACC, brake assistant or park
assistant and new automated functions are enhancements or just electrifications or
remote-control systems of existing vehicle systems.

If now a new function (see Fig. 4.8 the green ellipse “internal logical element”)
is based on an existing system, the analysis of the existing system could be a
challenge, due to missing specifications and unknown considered architecture it
becomes quite complex.

A function that can influence a brake system and steering under certain cir-
cumstances has to examine the impact of the function on these two systems in each
driving situation and in each operating situation because eventually the steering or
the brake could act as an actuator for the new function. Based on that fact new
potential malfunctions can occur, which should be examined by hazard and risk
analysis? The previously implemented safety mechanisms of the system must not
be restricted, override or invalidated by the new functions. This is why clear and
complete information of the previously implemented safety mechanisms and their
operating principle is necessary.

Safety goals are defined on vehicle level for the considered system or ITEM.
However, various vehicle systems could influence the direction or movement of the
vehicle.

Vehicle

external
logical element

System boundary Logical element

external
logical element

internal
logical element (s)

external
logical element

external
logical element

internal
logical element

internal
logical element

internal
logical element

internal
logical element

internal
logical element

internal
logical element

P E

I M

P E

I M

P E

I M

P E

I M

P E

I M

P E
I M

P E
I M P E

I M

P E

I M

P: physically E: Energy
I: Information M: Material

Fig. 4.8 System boundary analysis similar to Ford FMEA-handbook

82 4 System Engineering for Development …

Often common information is used in order to implement the different func-
tionalities (e.g. speed or longitudinal movement in Fig. 4.9). This should make
transparent that safety goals (and the designated ITEM) could be defined on dif-
ferent horizontal levels.

First, the relevant characteristics of the functions and the resulting potential
malfunctions of the vehicle system should be identified. Therefore, the respective
functions of the new function and the previous existing functions need to be
structured and segmented.

This already creates a functional hierarchy in which malfunctions in the lower
hierarchy influence functions in higher hierarchical levels. But also within the same
horizontal level could influence each other. For example, a wrong information
about the transmission ratio (2nd instead or 3rd gear in a manual gear system) could
lead to failure in the motor management which uses the information to calculate the
torque at the wheels. Another example would be a wrong sensor information lead to
a wrong result for the data processing.

This means in general that there is a connected field of functions and mal-
functions, which have to be considered in the hazard and risk analysis. In a further
step the malfunctions together with the operating states and driving situations are
expressed in a matrix.

The spreadsheet (Fig. 4.10) only shows an excerpt of the combinations, which
can occur from functions and their malfunctions in specific driving situations and
operating conditions. However, this figure shows an example of how complex and
extensive such analyses can become if functions with various characteristics of
functions have to be considered that can lead to hazards in certain combinations.

System
1

Motor-
management

Independent vehicle systems influence the vehicle's longitudinal axis

Safety goal
1 2 3 ...

System
2

Transmission

System
3

Brake

Gray zone for the vehicle system definition
according to ISO 26262

Speed

Safety goal
1 2 3 ...

Safety goal
1 2 3 ...

Safety goal
1 2 ...

Fig. 4.9 Function levels for the definition of safety goals and the grey zone

4.2 Hazard and Risk Analysis 83

Driving situation, operating conditions and potential malfunctions do not have only
functional relations, also timing means an issue. ISO 26262 mentions two basic
relations related to time (see example Fig. 4.11):

• Frequency mode: A malfunction occurs and then the vehicle gets into a dan-
gerous driving situation

• Duration mode: The malfunction occurs when the vehicle is in a relevant
operating condition or dangerous driving situation

Function Malfunction Operational state Driving situation Risk scenario Hazard /
Hazardous
Situation

higher accelerationSpeed up
than expected

from the state Cornering Driving into oncoming
traffic

Accident with
oncoming traffic

while Gearshift Wet road Getriebeschaden
leads to
Achsblockierer

Accident with
infrastructure and
oncoming traffic

while ACC regulation Construction trip Drivers traveling
steering wheel for
effect

Accident with
infrastructure

with trailer Column drive Trailer destabilization Collision

lower acceleration
than expected

from the state Cornering No threat -

while Gearshift Wet road Engine stalls Collision

while ACC regulation Construction trip No threat -

with trailer Column drive No threat -

Fig. 4.10 Driving situation and operating state matrix

Definition
1. Operation state is almost present
2. Fault occurs

Definition
1. Fault is almost present
2. Situation occurs

Situation

Fault

Hazardous
overlap

Frequency Duration

Time

for duration:
Driving on unlighted roads at night, headlights on
Sudden loss of headlights during driving

Examples

Fig. 4.11 Frequency and Permanent relation between failure functions, operating conditions and
driving situations

84 4 System Engineering for Development …

Another possible combination is that an operating state calls a function which
already has a malfunction, due to that malfunction in the a dangerous driving
situation occurs. Also, these kinds of combinations and other combination have to
be considered if relevant but they are not mentioned in ISO 26262.

This means that the probability of occurrence for a dangerous event is formed by
the overlap of the dangerous driving situation, operating state and potential mal-
function. Only the situational context is considered. Furthermore, it is important
how intense the malfunction influences the vehicle in different situations and
conditions. This primary affects the severity of dangerous impacts. If the stability
corridor (e.g. over-under-steering or yawing of the vehicle) of the vehicle is out of
its limits or an energy pulse (e.g. kinetic energy due a functional shock (sudden
blocking effect in power steering leads to lateral impacts) affected an destabiliza-
tion, implemented safety mechanisms are not able to control those effects after their
occurrence. As a consequence such effects have to be avoided by design, so that
they could not occur at all or mitigated by means of preventive detection or control
algorithm etc.

ISO 26262 scales the severity of harm according to the potential injuries of
passengers or other people in the area of danger. This means that the intensity or
also the characteristic of malfunctions is correlates with the severity of damages.
The intensity or other characteristics of malfunctions also influences other factors
for the hazard and risk analyses; the controllability of dangerous situations. The
term “controllability” was chosen because in this context in an automobile this
mainly refers to the driver. However ISO 26262 also considers other people, which
could be able to prevent a dangerous situation, for example pedestrians who can
still move out of the way of a vehicle that approaches them (Fig. 4.12).

Potential damage caused by the operation of the
vehicle or additional functions (S = extent of
damage)

Probability of
hazardous situation
-E = probability.

(Situation x risk)

Abwendbarkeit of dangerous events
- C =Controllability
- Measures of other technology
- External measures
- Driver warning, if regulated by law

Requirements of ISO 26262:
- Organization
- Qualification
- technically

- Implemented Safety mechanisms
- Safe design

ASIL A

ASIL D

Tolerable risk
State of the art

Risk area

E4

E1
C3

C0

S3S0

Fig. 4.12 Area of risk and tolerable risk (Source Various different publications)

4.2 Hazard and Risk Analysis 85

The maximum risk is classified via the extent of damages, the severity of potential
harm (S = severity)). The probability of occurrence [E = Exposure (regarding
dangerous operational situations)] and controllability (C = Controllability by driver,
or estimation of the probability that the person at risk is able to remove themselves,
or to be removed by others from the hazardous situation) reduce the risk. The gap
towards the tolerable risk needs to be covered with the respective safety measures. If
safety mechanisms based on electric and/or electronic systems (E/E) are imple-
mented for such measures, these are assigned with an ASIL. A reduction of the
ASILs for EE-functions could also be achieved with measures of other technologies
(e.g. a hydraulic safety mechanism).

Classes of severity (S = Severity):
A risk assessment for safety relevant functions focuses on possible injuries to

people. In order to be able to compare the ultimate risks the description of the
damages need to have a certain categorization. This is why we classify the severity
into three different categories:

S1 > light and moderate injuries
S2 > severe/serious injuries possibly life-threatening, survival is likely
S3 > life-threatening injuries (survival uncertain) or deadly injuries

In this case it doesn’t matter whether those injuries occur to the driver, any of the
passengers or other traffic participants such as bicyclists, pedestrians or passengers
of other vehicles.

If the analyses of the potential damages clearly reveal that only material damage
and no personal damage occurred it wouldn’t be classified as safety relevant function.
It would be classified as severity class S0 and no further risk assessment is needed.
ISO 26262 those not define further requirements for such a function, such com-
mercial risks must be controlled by means of other measures or standards (Fig. 4.13).

Class S0 S1 S2 S3

Description No injuries light and moderate injuries Severe injuries, possibly life-
threatening, survival probable

Life-threatening injuries (survival
uncertain) or fatal injuries

Reference for single injuries
(from AIS scale)

AIS 0 and less than 10% probability of
AIS 1-6
Damage that cannot be classified
safety-related

more than 10% probability of
AIS 1-6 (and not S2 or S3)

more than 10% probability of
AIS 3-6 (and not S3)

more than 10% probability of
AIS 5-6

Informative examples - Bumps with roadside infrastructure
 -Pushing over roadside post, fence,
etc.
- Light collision
- Light grazing damage
- Damage entering/exiting parking
space
- Leaving the road without collision or
rollover

Side impact with a narrow
stationary object, e.g. crashing
into a tree (impact to passenger
cell)

very low speed low speed medium speed

Side collision with a passenger
car (e.g. intrudes upon
passenger compartment) with

very low speed low speed medium speed

Rear/front collision with another
passenger car

very low speed low speed medium speed

Other collisions Collision with minimal vehicle
overlap (10-20%)

Front collision (e.g., rear-ending
another vehicle, semi-truck,
etc.)

without passenger
compartment deformation

with passenger compartment
deformation

Pedestrian/bicycle accident while turning (city intersection
and streets)

(e.g., 2-lane road)

Fig. 4.13 Example from ISO 26262, part 3, appendix B, classification of the severity factor
(Source ISO 26262)

86 4 System Engineering for Development …

Classes of probability of exposure regarding operational situations
(E = Exposure)

The driving or operating situation of vehicles covers from every day parking to
every day driving in the city or the highway all the way to extreme situations, which
ask for a constellation of different environment parameters and therefore also rarely
occur. Common driving or operating situations are usually characterized by the
amount of their total operating time; rare events are better expressed by their
frequency.

The assessment unit E should help to categorize the various duration or fre-
quencies. The following categories are considered for ‘E’:

E0 > Probability of exposure regarding operational situation is not credible
E1 > Probability of exposure regarding operational situation is very small
E2 > Probability of exposure regarding operational situation is small
E3 > Probability of exposure regarding operational situation is medium
E4 > Probability of exposure regarding operational situation is high

ISO 26262 provides in part 3, appendix B further examples for the duration and
frequency

(see also Fig. 4.11 of this book):
ISO 26262, Part 3, appendix B:

Table B.2—Classes of probability of exposure regarding duration in oper-
ational situations
Table B.3—Classes of probability of exposure regarding frequency in
operational situations

A typical example for the duration: A car drives by night between 1 and 10 % of
its lifetime on an unlit street (Fig. 4.14).

A typical example for frequency: The average driver overtakes at least once a
month.

Until today there are a lot of other publications for these categories. In order to
follow the current state of the art a continuous research is required. In the course of
the years a lot of evaluation and assessment will converge but also the driving
behavior may change.

The probability of exposure (E) is a factor used for the ASIL ascertainment. Just
like the factor controllability those two factors reduce the severity impact (S). This
only applies for functions, which are part of the observed vehicle system (ITEM).
The first analysis is necessary in order to identify possible malfunctions of the
vehicle system related to the intended function. In order to do this the a functional
concept based on new functions and the existing functions need to be structured or
an hierarchical architecture need to be developed as part of the “ITEM Definition”,
which is inherent precondition for correct Hazard Analysis and Risk Assessment.

4.2 Hazard and Risk Analysis 87

E2

Description
Very low
probability

High probability

<1%

Road layout

Country road
 intersection

Highway
entrance ramp

Highway
 exit ramp

Slippery leaves
on road

Roof rack
attached

Vehicle being
refuelled

On hoist

Driving in
reverse

 (city street)

Visibility

Parking (with
trailer attached)

Lane change

(city street)

Unlighted roads at night

Stopping at traffic light

(city street)

Lane change (highway)

Overtaking
Executing a turn

(steering)

Parking

(parking lot)Maneuver

Driving downhill with engine off

(mountain pass)
Heavy traffic (stop and go) Accelerating

In repair garage (on roller rig)

Vehicle

stationary
state

Vehicle during jump start Trailer
attached

Vehicle on
a hill

(hill hold)

Decelerating

Nearby
elements

Lost cargo or obstacle
 in lane of travel

(highway)
In car wash In tunnel

Traffic Congestion

Road surface

Snow and
ice on road Wet road

Country Road

Secondary Road

Definition
Duration (% of average operating time)

Not specified 1%-10% >10%

Informative
Examples

Class
Temporal Exposure

E1 E3 E4

Low probability Medium probability

Mountain pass
 with unsecured

 steep slope

One-way street

(city street)
Highway

In repair
garage(during

diagnosis
or repair)

Parking (with
sleeping person

 in vehicle)

Nearing end of
congestion
(highway)

Driving in
reverse

(from parking
spot)

Fig. 4.14 ISO 26262, Part 3, Tables B.2 and B.3

88 4 System Engineering for Development …

Class

E1 E2 E3

Description Very low probability Low probability Medium probability

Occur less often than
once a year for the
great majority of

drivers

Occur a few times a
year for the great
majority of drivers

Occur once a `month
or more often for an

average driver

Road layout
Mountain pass with

unsecured steep
slope

Road surface
Snow and ice on

road
Wet road

In tunnel

In car wash

Traffic Congestion

Stopped, requiring
engine restart

(at railway crossing)

Vehicle on

a hill (hill hold)

Vehicle during jump
start

Evasive manoeuvre,
deviating from
desired path

Overtaking
Starting from

standstill

Shifting transmission
gears

Accelerating

Braking

Executing a turn

(steering)

Using indicators

Manoeuvring vehicle
into parking position

Driving in reverse

Vehicle being towed Roof rack attached

Maneuver

Informative
Examples

Nearby elements

Vehicle
stationary state

Trailer attached
Vehicle being

refuelled

Frequency Exposure

E4

High probability

Definition

Frequency of Situation

Occur during almost every drive on average

Fig. 4.14 (continued)

4.2 Hazard and Risk Analysis 89

As a result, a functional hierarchy develops in which malfunctions of the lower
hierarchy influence the upper functional hierarchy. Similarly, within one horizontal
functional level there are reciprocal influences. This is why a hierarchical function
structuring is recommended before a hazard and risk analysis, in order to be able to
describe potential malfunctions. Any changes of the functional architecture, their
implemented environment and of course their characteristics, could lead to new or
other malfunctions and consequently change the result of the Hazard Analysis and
Risk Assessment. This is a further indication why in many industries the word
“preliminary” is attributed to this analysis or mentioned in its name.

The functional concept shall consist of clearly use-cases and shall be unique and
as atomic as possible, so that no functional dependencies are already part of the
ITEM Definition. If so Hazard Analysis and Risk Assessment becomes very
complex and the result are overlapping within the safety goals.

4.2.2 Safety Goals

According to ISO 26262 safety goals are a result of hazard and risk analysis and
seen as safety requirements of the highest level. ISO 26262 indicates that a single
safety goal can refer to different dangers and several safety goals could refer to a
single danger. It is reasonable to describe safety goals as follows: “Avoid mal-
functions (optional enhancement: in “hazardous situations”, or—in “operating
conditions”); the potential danger, harm or hazardous event is not mentioned. This
is not always the best terminology particularly for non-functional risks, which
results from insufficient robustness or robust design or inadequate design of elec-
trical components. For example fire due to high electric current is not referable to a
malfunction but to an inadequate or insufficient robust design. Fire in a vehicle is
undoubting a dangerous situation. In many industry sectors voltage levels higher
than 60 V are seen relevant for touch protection. In today’s electro mobility risks
deriving from over-voltage get more and more an ASIL assigned, so that functional
safety mechanism are considered to protect over-voltage risk. In these cases for
example potential causes the non-functional hazard like higher voltage, or heat are
considered as malfunctions, which have to be controlled through respective safety
mechanisms.

When the driving lights fail it is not necessary to name the potential danger for
the formulation of the safety goal. However, it is important to differentiate if, for
example, only one or both front lights fail. A malfunction, such as unintended
braking of the vehicle wouldn’t be considered for a light control system since such
a system couldn’t credibly cause such a malfunction. In the context of hazard and
risk analysis the possible reaction of the driver to the failure of the light would
eventually be analyzed. In this case it could be a conceivable scenario that the
driver in a certain situation, out of panic, uses the brakes excessively. However, we
would not try to infer a safety mechanism for the light control system from this
scenario.

90 4 System Engineering for Development …

Malfunctions can occur in different environments, various driving situations and
different performance or the impulse characteristic can have a varying influence on
the driver, which can lead to more or less severe dangers. The parameters or
assumptions used to define the safety goal have to be clearly specified.

Safety Goals are defined on the vehicle level (ITEM) according to ISO 26262. In
this context there is no guideline to how complex or at which horizontal abstraction
level is described. A safety goal can be formulated as follows: “Avoid an inad-
missible pressure build-up of the brake pressure on one wheel”, “Avoid an inad-
missible torque build-up on one wheel” or “Avoid a defective blockade of one
wheel”. Basically, all three formulations could be correct. However, if we use such
differing description levels for a vehicle system or multiple vehicle systems that
have to be integrated into a vehicle, it could start to become confusing, since the
interfaces will not match one another (compare also to Fig. 4.9).

Safety goals often describe mutual effects of possible malfunctions. A defective,
far too high motor torque leads at a certain value, intensity or duration to a dan-
gerous and for the driver, uncontrollable self-acceleration of the vehicle.
A defective far too low motor torque could lead to an uncontrollable delay up until
self-braking. This is why the safest function is usually a corridor, which is chosen
by design limitations and/or the controllability through the driver (see Fig. 4.15).

If we consider the function “reduce vehicle speed”, unintentionally or uncon-
trollable behavior for the driver due to malfunctions could happen. In order to fully
comprehend the safety goal it is important to know how much and when which
torques characteristics are considered to be correct. Furthermore, it has to be clear
that after the requirement for braking, the function must have faded within a certain
period of time; otherwise residual torques could again lead further endangerments.
This means that the space of the correct function needs to be specified precisely;
otherwise the dangerous range could not even be determined.

+ F

Accidental
positive effect
"More than .."

-F

Corridor
straight drive

Moments
Torque pulses,
Power ...

Design limitation,
Limits the Fahrerbeherrschbarkeit

Derived from
Safety Objective 1

Safety
corridor

Accidental
negative effect
"Less than .."

Derived from
Safety Objective 1

Fig. 4.15 Safety corridor of two opposing safety goals, which are derived from different
characteristics of malfunctions

4.2 Hazard and Risk Analysis 91

The alternatively a performance reduction or design limitation of the intended
function change the safe corridor so that other thresholds could be tolerated. This
could lead to unwanted compromises. For example; an ESC (Electronic Stability
Control), which could not generate sufficient steering effect for the vehicle, could
not stabilize the vehicle in case of a specific speed, vehicle weight or load etc.
Besides the design limitation also the ability to control of malfunctions by adequate
safety mechanism is a criterion. If a permitted driving situation or an operating
condition is not distinguishable from a malfunction by the system, the intended
function will need to be limited if no improved safety mechanism could be chosen.
This means, that if we cannot differentiate a malfunction like drift of the yaw rate
sensor from the actual yawing of the vehicle by an ESC system, no safety relevant
adequate intervention could be initiated.

The brake system has to be designed in a way so that the vehicle cannot brake
more or less than the respective driving situation, road surface, the current vehicle
load condition etc. allows for a stabile control, the vehicle have to keep on track
also in case of braking. A brake system brakes on all 4 wheels, consequently the
design of brake requires a balanced braking for each of these 4 wheels. Since
through the installation of the brake system itself, through aging effects, asymmetry
in the weight displacement of vehicles, different road conditions, different road crib,
time-delay in the data transmission in brake systems etc. as well as the current
driving situation (e.g. fast carving) asymmetries of the brake force can be required
or develop mistakenly. A correct specification of the permissible range of brake
torque per wheel considering all possible operating modes, driving situations and
possible error conditions of the vehicle could lead to extensive analysis, verifica-
tions and validations and means a development process by its own. Also legal
requirements such as UN ECE (United Nations Economic Commission for Europe)
R13 or FMVSS 135 (Federal Motor Vehicle Safety Standards) addressing design
criterion for brake systems.

Excluding all failure combinations, which could cause such asymmetric break-
ing, would be even more difficult. Therefore, the easier way to prevent a violation
of such safety goals could be to specify a safe longitudinal dynamics manager
(controls the permitted or specified acceleration and deceleration) and a lateral
dynamics manager (keeps the vehicle on track. Such control functions would
prevent system errors from propagating to malfunctions which have the potential to
violate safety goals.

The example shows that already the formulation of the safety goals could be
essential for the deriving safety concept. A reasonable consolidation or synthesis of
safety goals can reduce also the complexity of the safety concept.

The European type approval standard ECE R13 for brake systems requires for
the design of brake systems, that the brake should be able to control the torque and
performance of the driving engine.

With introduction of the electrification of brake systems and the consideration of
electrical or electronic based safety mechanism, the requirement had been can-
celled. Especially electronic reduction of motor torque in case of brake pedal action

92 4 System Engineering for Development …

by the driver was a mayor safety mechanism to compensate the design requirement
by means of implementation of safety mechanisms.

Although ISO 26262 does not address “Functional Performance”, ISO 262626
requires to control the intended performance in a way that possible malfunction
could be sufficiently controlled by adequate safety mechanism. If those could not be
safeguarded a reduction of performance is the only safe solution.

4.3 Safety Concepts

Safety concepts are first and foremost the planning basis for the safety measures,
which are the safety mechanisms to be implemented within the safety-related
product and the activities to be done additionally to the normal development
activities. Basically, it is a hypothesis that the implemented safety concept suffi-
ciently safeguards safety goals. There are multiple foundations for safety concepts.
Generally, the question is: Which target needs to be achieved with a safety concept.
IEC 61508, 1998, in their first edition considered the achievement of a safe
de-energized state in their safety goal. Formal, respective safety goals were only
mentioned for the varying applications. In the beginning, in machinery engineering,
only the safest de-energized state had been considered. In the oil and gas industry
two typical concepts developed: TMR (Triple Modular Redundant) based on a
voting (decision by majority 2 of 3) and the redundant systems based on com-
parison. The redundant systems were often configured to improve availability rather
than maximal safety. The abrupt and uncontrolled shutting down of a refinery is
indeed a more dangerous condition than a faulty state of a single process valve. In
this context concepts existed from early on that use a high availability in basic
electronics (often a programmable logic controller) in order to react safe and keep
the system under control in any critical situation. The EGAS (E-Throttle from
German VDA) concept has already been developed years ago, a basic concept for
motor vehicles, which was able to control simple clear safety goals (not only the
self-acceleration for which it was actually designed). Autosar primarily focused on
making the application software compatible for different systems. The topic func-
tional safety was only systematically considered after the publication of ISO 26262.
Within the first versions of Autosar, the safety mechanisms are mainly reduced to
the control of sequences, diagnostic handling and some principles for separation or
structuring as part of the architecture.

The VDA safety concept (EGAS) which over the years has also been exported to
the US and Japan, used to be the basic safety concept in the automotive industry
before the publication of ISO 26262. The EGAS principle was used for varying
applications. Even electric steering systems are safeguarded through a safety con-
cept, which has been derived from EGAS. This concept here only briefly mentioned
since there are a variety of different implementations for mere motor control sys-
tems. The EGAS concept is based on three levels, whereas level one carries the
main function (for example the engine control), level two the functions control or

4.2 Hazard and Risk Analysis 93

monitoring level and level three the independent switch off level for level two as
well as for hardware failure control.

Since this concept is based on a single microcontroller with single cores, an
intelligent watchdog had been added to level three, which represents an indepen-
dent shut-down path through a specific question-answer game. In the first patent it
was an additional microcontroller which could even perform a limited function in
case of failure of the main microcontroller. All official publication did only describe
the only safety goal of prevention of self-acceleration. There was just one safety
goal within a safety tolerance time interval far higher than the time constraints or
performance limits of the microcontroller. The unintentional turning off of the
combustion engine as a high-available safety goal had never been formulated as
such. However, in engine management systems certain mechanisms are imple-
mented, which should prevent unintended switch-off of the motor (Fig. 4.16).

Which general targets could be formulated for a safety concept. ISO 26262
clearly defined that the functional and technical safety concept should be defined
derived from the ITEM Definition, a system on vehicle level and the resulting safety
goals from the Hazard and Risk Analysis.

Even if the product consists of a pure software package the development should
never start only with the functional and the performance customer requirements.
The requirements that derived from the boundary, of the software, for example the
system design, the considered software architecture, programming guidelines and
the necessary integration strategy will majorly influence the software design. Also
other standards like the V-Modell XT for example describes a sequential devel-
opment phase before entering the V-model, themselves.

ISO 26262 also doesn’t mention how a safety concept for a sensor can be
developed. If that doesn’t work, how could be have safety related programmable
control systems (e.g. PLC, programmable logic controller) been developed? For a
sensor it is often very easy: it is all about capturing the measured information and
provides it correct, unaltered, directly at the product interface. In this case the
detected and communicated error is seen as a safe state. The challenge is often to
correctly measure the intended physical effect and converting it in an electrical
equivalent. If even the measuring principle is not adequate to measure the intended
physical information, even the entire system could become questionable. A pressure
sensor, which tectorial membrane does no longer move upon pressure because the

Safety

SecurityAvailability

Safety

SecurityAvailability

Timing

Performance

Fig. 4.16 New tension due to highly automated driving

94 4 System Engineering for Development …

measurement line is blocked or the membrane is indurated, is not going to be able to
capture a dangerous pressure increase despite the correct electronic path. ISO 26262
does not cover performance, since its measures or requirements could not provide
any solutions. Often it is possible to meet certain safety requirements through the
multiple evaluations of signals, plausibilisation or also different criteria (pulse form,
cosine—sinus comparison) or through homogeneous as well as divers redundan-
cies. Even for Programmable control systems, like PLCs multiple safety goals or
mechanism which reacted in different directions are challenging. ISO 26262 is
applicable for high-available systems but there are hardly any examples, hinds,
guidelines for the design or their realization. This is mainly because most vehicles
depend on single power-supply with no redundancy, and therefore all systems need
to reach a safe state in case of power-failure or a failure within the deferent systems
themselves. For airplanes it is clear that they would drop from the sky without
energy. Airplanes do have gliding capabilities but they are not always sufficient for
a safe landing.

What about a car that runs out of energy while driving? At the start of auto-
mobile history we relied upon on the muscle power of the driver. Later, hydraulic
storages or vacuum storages were used to support braking and do not overwhelm
the driver. It is challenging to stop a car weighing two tons, driving 75 mph
(approx. 120 kph), with sheer muscle power. It also requires a certain amount of
power and concentration to steer a car without steering assistance. So far there a lot
of traditional support mechanisms in vehicle engineering that don’t rely on elec-
tronic energy and make car driving safer. In the future of electro mobility, we will
also focus on availability, besides the aim of safe autonomous or automated driving,
in order to realize such systems. What are the generic requirements and challenges
of such a safety concept for future vehicle technologies? The safety goal won’t be
reached by simply switching off the energy. Furthermore, there will be very
heterogeneous safety goals, so that being dependent on the driving situation and
operating conditions we will have to switch to active of passive electronic actuators.
The functions, which need to be safeguarded, will switch into different safe oper-
ating or driving conditions, once above and once below a safe corridor, depending
on various influencing factors; either or, actively (with energy) or passively
(without energy), a safe state needs to be achieved anyway. The problem is that we
will never be able to switch to hart and fixed values, since production tolerances
always require a certain tolerance margin for mass production of cars. This means
that the switch off point for most dynamic safety functions needs to be learned so
that the technical empirical values can be securely saved and they are clearly
distinguishable from known technical errors or malfunctions. It goes without saying
that the data consistency needs to be saved throughout the entire lifecycle of the
vehicle. Basically, such safety concepts are based on correct and timely deter-
ministic data processing without mutually negative influence.

In general, there is no such thing as a safe element; an element is just like
evolution has formed it. Whether we look in the periodic system of elements or in
the universe, we will not find an element that is by nature qualified according to ISO
26262 (or for any safety applications). Even those that we can find will be qualified

4.3 Safety Concepts 95

or developed for a specific case of application, which by pure chance happens to be
possibly applicable for the given case. Often, design decisions and also risks are not
sufficiently documented, since they weren’t relevant for the actual and original case
of application. For example, the developer might not have known the latest
state-of-the art developing principles and did not pay attention to the newest
requirements and challenges, especially at a former time. It is even less possible to
analyze influence factors of an unknown case of application than of one that is only
partially familiar. As more we know from the development history, of the inner
structure, the considered environment and the intended use of a product, as easier it
is to use it also for a safety application.

4.3.1 The Functional Safety Concept

ISO 26262, Part3:

8.1 Objectives
8.1.1 The objective of the functional safety concept is to derive the functional
safety requirements, from the safety goals, and to allocate them to the pre-
liminary architectural elements of the item, or to external measures.

8.2. General
8.2.1 To comply with the safety goals, the functional safety concept contains
safety measures, including the safety mechanisms, to be implemented in the
item’s architectural elements and specified in the functional safety
requirements.
8.2.2. The functional safety concept addresses:

• fault detection and failure mitigation;
• transitioning to a safe state;
• fault tolerance mechanisms, where a fault does not lead directly to the

violation of the safety goal(s) and which maintains the item in a safe state
(with or without degradation);

• fault detection and driver warning in order to reduce the risk exposure
time to an acceptable interval (e.g. engine malfunction indicator lamp,
ABS fault warning lamp); and

• arbitration logic to select the most appropriate control request from
multiple requests generated simultaneously by different functions.

For this section, ISO 26262 assumes that the vehicle architecture is already
existent, since the safety requirements of the functional safety concept have to be
implemented in the existing entire vehicle architecture. The functional safety
concept used to have the basic intent to describe the necessary safety requirements,

96 4 System Engineering for Development …

independently from their intended technical realization. It used to be obvious to
allocate the requirements on functional elements. In the chapter of architecture
views it is recommended to define the issuance relationship of varying elements
through functional descriptions. We call such elements also logical elements. Of
course also the interactions of elements among each other are functionally descri-
bed. Also, the design limitations outside of the defined vehicle system have to be
considered as well the geometric arrangement in the vehicle. The limitations, which
result from the technical realizations of the new vehicle system, do not have to be
considered in that step. That doesn’t mean that it is forbidden to do so but tech-
nically it is not necessary according to the process. If it were already decided for a
project, which microcontroller has to be implemented, it would be helpful to
consider the microcontroller safety concept as well as the concept for basic software
(including safeguarding coverage of the hardware-software-interface, HSI).

This means that it is first verified whether the intended concept is the right one
for the realization before the system requirements for the electronic or software
components are developed. Furthermore, there should also be a test concept, which
can also show the correct implementation of the functional safety concept.
According to the process we would continue but there are already findings which
indicate unacceptable design limitations for the technical safety concept necessary
changes need to be considered. In order to reduce safety issues that the guilty plea is
documented for the product liability case for the opposing surveyor or lawyer. To
reduce performance is often as inconceivable as a loss of quality or higher pro-
duction costs. Therefore, the design limits are pushed to the technical limits, since
ISO 26262 does not dictate any principle derating measures. Whether a micro-
controller, which is run at the temperature limit or with the maximum clock fre-
quency, actually fulfills the quality requirement of the series deviation is
questionable. The situation becomes debatable, when it is known that the electric
components often produce unknown technical failures at the design limits, which
are not shown in any database and thus not quantifiable. For example, over and
under voltage situations, which are not excludable throughout the lifetime of
today’s vehicles, can in this case lead to extremely critical failure combinations.
The problem is that the failure behavior is only known from individual failure
observations but those failures are not systematically replicable. This is why, also in
the functional safety concept, design limitations should be maximally pushed to a
limit of 70 % (i.e. the stack capacity should be even lower, in case it is permissible
to outsource safety relevant data to the stack), so that there still are sufficient
resources available in the realization process for the necessary safeguarding of
failure modes, which result from the analysis (for example D-FMEA or quantitative
safety analysis) for the realization details.

We use again a engine management as an example, which has to fulfill four
safety goals. Some may now wonder: Why so complicated? When until now each
engine management system only knew one safety goal? But nowadays it is a
legitimate question whether those old wisdoms are still applicable regarding
supercharged high pressure turbo engines. Since an engine management system can
only formally provide so many or so little torque along the longitudinal axle of the

4.3 Safety Concepts 97

vehicle, two safety goals would be sufficient for the vehicle level. In this case we do
not assume a functional safeguarding of the thermal dangers or even fire hazard.
However, there may be safety concepts that also protect the overheating of an
engine or the ignition of inflammable fuel with the means of functional safety. Also,
the realized safety mechanisms themselves can violate the given safety goals.

Those are the safeguarding of a mechatronic system (compare to EUC
(Equipment under Control) of IEC 61508) such as a combustion engine (including
for example carburetor, compressor, and turbocharger) or a fuel supply system.
Considering an engine management system together with the powertrain, also a
correct torque can turn out to be dangerous combined with the wrong turn rate or
the motor. Therefore we can see that it is a question of the definition of the vehicle
system and how the safety goals and the thereof derived safety requirements are
divided and allocated to the elements. The knowledge that the engine torque and
engine turn rate are not independent helps to plan the safety mechanisms and
activity measures and test them in context of the verification on their effectiveness.

The processes described in this chapter should not act as a model for a functional
safety concept but rather as support for considering the right aspects for the design.

Therefore we consider the following four safety goals:

• SG1: Avoid a dangerous unintended increase of the engine torque for a longer
time period than t1 (ASIL C, the limit represents an array of curves, which are
dependent on speed)

• SG2: Avoid a dangerous unintended decrease of the engine torque for a longer
time period than t2 (ASIL C, the limit is a value dependent on the vehicle, which
leads to a blockade of the drive axle)

• SG3: Avoid a dangerous unintended increase of the engine speed for a longer
time period than t3 (ASIL B, the limit is a value, which leads to a
self-acceleration that is not controllable by the driver)

• SG4: Avoid a dangerous unintended decrease of the engine speed for a longer
time period than t4 (ASIL A, the limit is a value, which leads to a failing of the
propulsion engine that is not controllable by the driver)

The limits described are variable parameter. There are for sure a lot of vehicles
for which a failure of the engine management will never exceed those limits. This is
why engine management systems have so far not always considered those safety
goals. Also, in this context the aim isn’t to define the functional safety concept for
an engine management system but to consider requirements and aspects, which can
practically cause challenges. The function definition or the functional concepts were
derived from the definition of the vehicle system, including the correct performance
results for the engine torque and engine revolution. Those are the foundation for the
construction of the powertrain. Regarding this, we often see adjustments and
variations for those results since for the realization there are always new design
limits to consider.

Furthermore, the values always depend on the operation environment, driving
situation etc. A hot engine could behave completely different than a cold engine in

98 4 System Engineering for Development …

certain area. For some vehicles it was already discovered that an engine accelerates
better at nominal operating temperature. Those are examples for safety relevant
design limitations. The system can only function correctly within certain limits.
Outside these limits, safety mechanisms can sometimes be completely ineffective or
not operate in a timely manner.

Nowadays, high pressure is used for modern turbochargers. This pressure can
sometimes increase sharply. Pressure gradients can go beyond the design limits in
the short term (i.e. pulsation). An implemented pressure regulator could possibly be
too slow to effectively limit the gradient. The functional concept raises the fol-
lowing functional requirement: Based on the accelerator pedal position and con-
sidering the current engine torque and its number of revolutions (turn rate) the
throttle position and the injection pressure have to be identified in a way that the
vehicle decelerate or accelerates as desired. The accelerator pedal movement rep-
resents the driver’s intention.

The norm indicates that the structure should be hierarchically divided. For the four
safety goals this means that the architecture of the functional concepts and safety
mechanisms needs to be supplemented and transferred to a hierarchical structure.

The following figures shows how to plan a functional safety concept including
the break-down of the requirements of the intended functions and from all safety
mechanisms, so that the intended function doesn’t need to be allocated to any safety
requirements (Fig. 4.17).

The architecture of the intended function could be extended by the needed safety
mechanisms and the related functional safety requirements, as required by ISO
26262. Every logical and every technical element, for which a safety requirement
has been assigned, also won’t be independent with its other functions. Therefore, the

Intend functions
- Requirements (+ parameter)
- intended behavior
- Architecture assumptions
- Design limitations
- Accruals (interfaces)
- environments

H &
RA

Logical elements

Technical elements

Safety Goal (ASIL)

Intended functions

Requirements (QM)

Logical elements

Technical elements

Safety Mechanisms

Requirements (ASIL)

Sufficient
independence /
Absence of
interferance

Functional
Safety
Concept

Technical
Safety
Concept

Fig. 4.17 Structuration of a safety concept, including the division of functions with different
ASIL and functions without allocated safety requirements (QM)

4.3 Safety Concepts 99

functional and technical dependencies have to be analyzed separately for each ele-
ment with regards to all safety requirements or any safety goal. This leads imme-
diately to a high heterogenic dependency so that the effort to analyze such a system
grows beyond measure and evidence of safety can no longer be provided. Therefore,
the task for our engine management system is to describe the intended function and
hierarchically allocate the foundation for these functions as functional architecture.
Basically, the intended function will be similar for a combustion engine and an
electric motor. It is a matter of accelerating the vehicle or slowing it down according
to the requirements that the driver sets with the acceleration pedal. Other func-
tionalities of a motor management such as a torque increase, in order to compensate
sudden torque surges of the air conditioning compressor, or the traction control
support, to better accelerate in turns or pull off on gravel are disregarded in this case.
Nevertheless we need to consider the transmission, since the driver sets further
requirements for the vehicle through the gear selection, as to which number of
revolutions (rotational speed) and torque needs to be implemented. In the following
example we assume that the transmission can digitally provide the chosen gear and
we read in the acceleration pedal position as analog signal. Therefore, our system
consists of the following functional groups (logical elements from Fig. 4.18):

• Logic processing
• Driver’s requests detection (G, provides an analog equivalent of the accelerator

pedal position)
• Motion sensor (S, provides impulses as equivalent of the vehicle speed)
• Engine speed sensor (R, provides as sinus/cosinus the engine revolution at the

crank shaft)
• Transmission ration (TR, digitally provides the gear ratio)
• Safe pressure regulator (P, valve including pressure read back)
• Throttle valve engine (T, including current read back)

Logic processingS

R

T
R

T
Driving

Current
Read back

NC

P dP

Fs

P

G
n

Fig. 4.18 Block diagram engine management system including the driver request

100 4 System Engineering for Development …

The block diagram in Fig. 4.18 already shows technical information, how logical
elements can be implemented and which signals and signal types need to be
exchanged between the logical elements. These assumptions should also be already
documented, since in the interpretation it is already excluded or suggested that
interdependencies don’t exists or won’t be considered at a later point in time. Thus
the pressure regulator for a modern combustion engine is for sure not a simple
magnetic valve, which works spring-loaded (it is probably determined through the
set timing and injected with constant pressure).

We also assume that the engine fulfills a function through the throttle valve and
the injection pressure, without paying attention to the camshaft or the valve
injection times and that we read back a respective equivalent through the engine
torque sensor.

The correct throttle valve position results from the following function:

T ¼ fðG; S;R;TRÞ

The corresponding parameters are shown as assumptions of the functions.
The following possible malfunctions need to be considered:

• Incorrect acceleration demand from the acceleration pedal would lead to an
incorrectly higher throttle valve opening and/or to higher injection pressures.

• Incorrect delayed demand from the acceleration pedal (for example throttling
back) would lead to a closing of the throttle valve or to a reduction of the
injection pressure.

• Incorrect speed (Incorrect high speed could mean that MMS opens the throttle
valve too far, since for high speed the trigger on the acceleration pedal would be
correct for the required acceleration. Incorrect low speed could mean that the
MMS injects with higher pressure, since for low speed the trigger on the
acceleration pedal would be correct for the required acceleration):

• incorrectly measured values of the number of engine revolutions/engine speed
would, similar to the incorrect speed, cause corresponding incorrect control of
the throttle valve or incorrect injection pressures.

• incorrect transmission ratio would also lead to possible malfunctions such as an
incorrect speed.

This means if we break down the intended functions into partial functions, we will
always get to the same causal malfunction through the functional failure of the partial
function. As a result, the data flows into the system have to be monitored in a certain
tolerance band. The respective ASIL of the upper and lower tolerance bands strongly
depends on the design parameters of the realization of the vehicle and the vehicle
systems considered in their context. As a possible result, failures of this partial
function can, with varying probabilities, lead to possible violations of the considered
safety goals. If the probability of the reproduction of a failure is already excluded
through the functional definition or sufficiently unlikely, no measurements are taken

4.3 Safety Concepts 101

in the functional safety concept at this point. Allocations on same technical elements
in lower levels or at the realization can through an insufficiently robust design lead to
a probability increase and those failures have to be considered in the safety analysis
once again. If this horizontal process chain can be continuously analyzed and
safeguarded until its function on the actuator, error propagation upwards to the safety
goal could be avoided. This leads to an important rule for the analysis of error
propagation: only errors that intendent affects the actuator (in some safety standards
also called “final element”) have the potential to violate safety goal (Fig. 4.19).

The red arrows indicate that all parameter of functions could be incorrectly
higher or lower. If the parameter drifts over time or oscillate or are sporadically
wrong this could be considered in a more detailed analysis, after the first design
steps and detailing of the functional behavior.

The question is, how to get to the ASIL for the corresponding partial functions
and therefore over the allocation to the ASIL of the derived safety requirements?

ISO 26262 defines an iteration loop in this context so the functional safety
concept will be improved as long as necessary to achieve a positive verification.
Verifications are like a “repeat until loop”, unless the result is sufficient; it is typical
process iteration. The verification criterion are correctness, consistency and com-
pleteness and sufficient traceability have been achieved through the vehicle system
definition, the safety goals, the derived functional safety requirements and their
allocation to elements of the architecture. This causes us to develop a hypothesis as
functional safety concept, which should ensure that the safeguarding of all relevant
safety goals. This hypothesis is based on assumptions and experiences or also on a
certain systematic. It is not possible to determine the correctness in a certain hor-
izontal abstraction level independent from the upper level. Since the safety goals
represent the safety requirements on the highest vehicle level and functional safety
requirements should be derived from those, breaking down the logical architecture
is an effective method in order to get good results.

The functional concept may be based on the block diagram. All signals are read
in with ASIL B and use the dependencies of the system function groups (logical
elements) for plausibility checks to implement the decomposition or safety mech-
anisms. To control the throttle valve and the pressure injection we use current read

Throttle
position

Accelerator pedal position (IS)

Injection pressure
Speed (IS)

Engine speed (IS)

Transition ratio (IS)

Vehicle acceleration
(Engine stalling)
(Steering control)

Engine speed
(generate)

Engine torque
(generate)

Fig. 4.19 Example for functional analysis, and possible error modes for any sub-function

102 4 System Engineering for Development …

back paths. It would also be possible to turn this into an ASIL decomposition,
because it could be seen as a redundant implementation of a functional safety
requirement. However, this would lead to further requirements, which would make
the analysis far too complex. Through the current read back paths it is possible to
reach a DCSPF of 99 % of all possible failures in the function blocks, for the
opening of the throttle valve as well as the pressure injection. Whether the intended
torques and accelerations in the realization can actually reach this diagnostic cov-
erage is questionable for a mere functional consideration of the quality of the
diagnostic coverage. This is also valid for the latent fault metrics (LFM). Since we
have ASIL C as highest safety goal, the architecture metrics could be achievable
through the current read back. The logic processing would also have to be reach a
(Diagnostic Coverage for Single point faults) DCSPF of 97 % and a (Diagnostic
Coverage for Multiple-point faults) DCMPF of 80 % regarding random hardware
failures. This is absolutely achievable with a single core (microcontroller with only
one processor core) if the safety mechanisms can be implemented redundantly
under consideration of sufficient independence of these redundancies. Theoretically,
now also all input signals and output signal circles as well as processing units can
be analyzed and all error modes with a DC of 97 % could be controlled. Besides the
architecture metrics, PMHF (Probabilistic Metric for random Hardware Failure)
could be reached if for the basic fit rates microcontroller and components are used,
which values for a conservative (as for example operating temperature below 85 °C
and low junction temperature) design are derived from the usual handbook data.
However, the aim is to develop safety architecture with various options for the
implementation.

The reliability block diagram (Fig. 4.20) shows that we can also read back the
number of engine revolutions, which as a physical quantity that could in case of an
error possibly violate 2 different safety goals. With this measure we are able to
directly compare the set point and the actual value for a safety system. Since the
number of engine revolution depends on the injection pressure and the throttle
valve, certain failures are certainly also detected for the incorrect torque status (an
overly high torque leads to a steeper increase in the number of revolutions as
expected). The conclusion would be, depending on the interpretation of the derived
functions, that with the help of the functional architecture (logical elements) each
safety goal would be safeguarded on the acceleration pedal through convincing
information, with the exception of the correct reading of the driver’s intention. The
question is whether the driver is able to control possible arising unexpected

G

S

R
?

R

T
R

T T
o engine torque

P S
p engine speed

Fig. 4.20 Draft of a new
reliability bock diagram for an
engine management system

4.3 Safety Concepts 103

behavior or malfunctions and their performances. The answers to these questions
will probably only be found in the context of the validation and therefore it should
be defined as validation criteria. This is why for the constellation the acceleration
pedal position will be conservatively chosen as ASIL C, according to the highest
safety goals in current definition of the safety goals. For the overall safety tolerance
time interval 150 ms are assumed. This is derived from the approximated reaction
of the system components to the noticeable vehicle reaction. For the verification of
the functional safety concept we can design a fault tree or a simplified FMEA.

In the positive view, the fault tree (see Fig. 4.21) looks very clearly arranged. If
we want to know whether an incorrect, overly high speed leads to “too much
pressure” or “too little pressure” we have to go through all vehicle situation and all
logical combinations with all parameters in order to say which of these combina-
tions could be possibly dangerous. This will be strongly influenced through the
following realization. Because in basic development, multiple technical realizations
and also multiple vehicles are often seen as an aim for the integration, the following
solutions are used to mostly cover all possible options (Fig. 4.22).

Engine speed
(Generate)

Engine torque
(Yaw rate)

Throttle
position

Injection pressure

Accelerator pedal position (is)

Translation (IS)

Corridor monitoring ASIL B

Corridor monitoring ASIL C
Speed (IS)

Engine speed (IS)

Fig. 4.22 ASIL allocation in the functional safety concept (red arrows indicate possible
malfunctions)

 &

G S R T
R

 &

G S R T
R

T
o

 &

T P

 &

G S R T
R

 &

G S R T
R

S
p

 &

T P

engine torque engine speedFig. 4.21 FTA separated for
engine speed and torque

104 4 System Engineering for Development …

Since, starting with ASIL B, it is necessary to implemented safety mechanisms
additionally to the functional concept, all safety requirements will be allocated to
these safety mechanisms, which need to be defined additionally to existing func-
tional requirements. It had not been considered that a safety related function could
be itself designed according to its ASIL requirements, because later during
implementation it will be difficult, that a function could control itself. The principle
that the intended function should be controlled by an adequate safety mechanism is
always safer for the realization. According to the aim of the functional safety
concept now one corridor monitoring will be added for all signal flows in the
functional architecture. In this context, the input signals are monitored in ASIL B
and the acceleration pedal position in ASIL C. All internal calculations and status
tables are logically monitored through an ASIL C corridor. Since no safety
requirement has been allocated to the intended function, the “processing element
the microcontroller)” has two different safety levels.

The intended function (in QM) and the monitoring function (in ASIL C) require
two sufficiently independent software implementations for example two partitions
in a microcontroller. The realization paths to the ASIL B sensor signals (including
the sensor itself) can be realized in ASIL B. In anticipation of the technical real-
ization the calculation for the set position of the pressure regulator and the throttle
valve will also be separated. This could lead to a reduction of ASILs or at this point
decomposition could already be included. However, the advantages and disad-
vantages should be questioned with regards to the application effort.

The verification of the functional safety concept should be supported by a draft
FMEA (see Fig. 4.23) or as illustrated by a positive fault tree. A hierarchically
structured FMEA would be able to support the verification very well according to
the VDA approach.

In the next phase the requirements and the associated architectures and results
will be passed on to the technical safety concept. In the first iterations there won’t
be any complete verification for sure. Therefore, the outstanding issues of the
verification will also have to be passed on so that it is clear in the technical safety
concept, which information are actually positively verifiable and which aren’t. It is
another process iteration.

Integration phasesVerification PhaseDesign phasesArchitecture phasesRequirement phases Analysis phases

3-7
Safety Goals

3-5
Vehicle
System

Definition

Interface
analysis /H&RA

Design
assumptions,

limitations

4-9
System
Safety

Validation

Function goals
Requirements

3-8
Functional

safety
requirements

Architecture
assumptions

3-8.4.5
Verification

3-8.4.4
Validation

criteria

3-8.4.3
Allocation

3-8
Functional

safety concept

Design
FMEA

Fig. 4.23 Information flow during functional safety concept (FSC)

4.3 Safety Concepts 105

4.3.2 Technical Safety Concept

ISO 26262, Part 4, Clause 6:

Specification of the technical safety requirements
6.1 Objectives
6.1.1 The first objective of this subphase is to specify the technical safety
requirements. The technical safety requirements specification refines the
functional safety concept, considering both the functional concept and the
preliminary architectural assumptions (see ISO 26262-3).
6.1.2 The second objective is to verify through analysis that the technical
safety requirements comply with the functional safety requirements

6.2 General
6.2.1 Within the overall development lifecycle, the technical safety require-
ments are the technical requirements necessary to implement the functional
safety concept, with the intention being to detail the item-level functional
safety requirements into the system-level technical safety requirements.

NOTE Regarding the avoidance of latent faults, requirements elicitation can
be performed after a first iteration of the system design subphase.

The basic requirement says that the system design should be derived from the
functional safety concept, whereby the architecture should still play a central role.
In effect, this causes the various functions of the functional safety concept and their
requirements to be again allocated to common elements. This is often the case for
microcontroller.

Of course for the realization of a control system (compare to Fig. 4.24) we
would need parts such as housing, a plug connector, a power supply (external
periphery like the battery etc.) as well as internal components such as a printed
circuit board (PCB), internal power supply and voltage distribution (internal
periphery). Now we need to decide how we consider the control unit.

Do we consider a control unit including the housing and the cables or do we assort
this at the first allocation? Furthermore it would be useful to consider the intended
function separately from a separate software component for the intended functions
and software for safety corridor monitoring. Even if we need 2 independent software
elements, we have to trace the separation down into all software elements down to the
software unit. This is the only way to get two independent software elements. The
challenge is to identify commonly used resources and find a solution, which avoids
the mutual influence of both software elements or makes their coexistence also in
case of errors controllable. The example considers the following technical elements:

• Acceleration pedal sensor (P und W) consisted of two measuring devices. Once
device measures the pressure on the acceleration pedal and the second device
measures the acceleration pedal angle. The pressure will be transferred as a

106 4 System Engineering for Development …

16 bit digital data word. The redundant information should provide an ASIL C
on the pins of the microcontroller within 10 ms.

• The speed (V) is provided as a 16 bit data word (based on impulses, converted
through an external system) including the bus protection through a defined bus
communication. Data should be provided at the bus interface every 10 ms.

• The number of engine revolutions (D) is transferred as a sinus and cosinus
signal. This is an equivalent of the number of engine revolutions.

• The Transmission ratio (TR) is provided as a 16 bit data word (by an external
system) including the bus communication protection through a defined bus
communication. Current data should be provided at the bus interface every
10 ms.

• The throttle valve (T) consists of a magnetic coil and current read back.
A measuring shunt of the throttle valve at the control unit should cause a
measurable change in current at the control unit input pin for the current within
50 ms.

• The injection pressure (P) is initiated at the injection valve through the voltage
pulse. Within 20 ms a voltage pulse at the control unit pin should fully open the
valve or close it through a decline of the impulse of longer than 10 ms the valve
should close. The opening can be controlled through different pulse break times.
The pressure is transferred as constant current as analog signal.

• The controller block consists of internal and external peripheral elements as well
as the necessary sensor and actuator adoptions and a microcontroller, which
sufficiently independently provides two partitions for QM and one for ASIL C.
The P2P (Pin to Pin) reaction time should be less than 50 ms.

All shown and listed parameters and variables including the redundancies and
current read back function will be considered as separate technical elements and
characteristics and would have to be specified with all interfaces.

NC

P

W

V

D

‹

Control
SA

SA

SA

SA

SA

Microcontrollers

DKA

DA

P dP

Fs

T
R SA

U

I

n

Corridor monitoring
ASIL C

Intended
Function

external peripherals

Internal
Periphery

SA

P

Fig. 4.24 Allocation of the ASIL attributes of the safety requirements to technical elements

4.3 Safety Concepts 107

Functional and technical requirements are not different by its nature, the allo-
cation within the architecture characterize them as such. Figure 4.25 shows that if
the logical and technical perspectives are separated, the common usage of element 3
(E3) becomes transparent. We can describe functional correlations from technical as
well as logical elements and we can also functionally describe the internal corre-
lations or a technical element. This is why it is important to determine a specific
description level for the technical system architecture and specify the implemented
element and their interfaces. As a result the safety requirements are derived from the
functional safety concept to the elements and the interfaces of the technical
architecture, whereas the system interfaces do not necessarily have to be described
by technical elements.

In the first process iterations of the development the technical elements are not
necessarily considered. Therefore, the system elements will be described as logical
elements and later more and more detailed to the technical elements, by considering
the technical interfaces. It might be strange that an architecture specification
actually does not start with technical information. This is why it will be a mere
design decision whether an element will be part of function group F1 or F2 or
considered as separate element. Therefore, architecture decision will depend on
project-, product- and application-related constraints. If the components, from
which the system is compiled, are developed by multiple different, cross-functional
or external development teams, the interfaces should be defined according to the
development teams, which are involved in the creation of the system. If product-,
organizational- or project-specific interfaces are harmonized, the development will
become very complex and have to be coordinated with additional effort addition-
ally. Ultimately, this means that the technical safety requirements often refer to
logical elements. In the system design the allocation to a technical elements or
component only happens in further process iterations.

The interfaces become multi-dimensional; a functional, logical or technical view
to an interface will provide different information about the interface. Until now, we
only had to consider functional interfaces. Now, the interfaces of technical elements
(see Fig. 4.26) overlap and raise new challenges or cannot implement the required
characteristic by themselves but possibly together with other elements.

SZ

E2

E1

E3

E4

A1 To

SZ

E2

E1
E3

E4

A1 To

F1 F2

Error <= to high
to low

Fig. 4.25 Differentiation of functional and technical requirements

108 4 System Engineering for Development …

A sensor requires, among other things, housing, a power supply and wiring. In
order to read in the signal a control unit is required, which can detect the wired
signal and electrically process it so that it can be read by a microcontroller. The
method to derive the technical level from the functional description and specify it
according to its technical requirements is not new. The literature provides this
analysis for example under the name “FAST” (Functional Analysis System
Technique) or also as publication of VDIs (VDI, Association of German Engineers;
i.e. VDI 2803 “Functional Analysis”). Those heterogenic interfaces can no longer
be understood with such simple examples. Therefore, it is important to broadly
reduce and decouple those dependencies. In the first iterations of the architecture
analysis we will only be able to limit it to the functional dependencies. This is why
the component will only be described with logical elements in the specifications for
the components supplier. The responsibility of the technical specification will be
passed on to the component supplier. This is a common interface between customer
and supplier. The customer provides a “functional” requirement specification, and
the supplier confirms it by his performance specification (How the supplier intents
to fulfil the customer requirements).

Basically, across all industries the so-called “IPO” principle is used for all
software based systems (Fig. 4.27).

“IPO” stands for Input, Processing and Output.
Since the sensor signals and actuator control are usually implemented in

extremely different ways, a signal adjustment is necessary. This signal adjustment
normally happens in the basic software (BSW). The interface between basic
software and the application software (ASW) is often called a “real time envi-
ronment (RTE)”; during runtime, this interface provides the signals, data or
information channels for processing of the required software functions. In appli-
cations with a different ASILs there could be a need separate RTE for each ASIL. If
the hardware software interface (HSI) is included in the basic software, it is possible
to reduce the amount of interfaces within the software. However, in this case we
would already receive two software components: The basic software and the
application software (the processing of software functions which provide the user
stake). Especially for the components with different ASILs the software compo-
nents should be planned accordingly. It would be recommended that the different
software components are integrated as system elements.

SZ

E2

E1

E3

E4

A1 To

Component 1

Component 2

Fig. 4.26 Technical
interfaces of logical and
technical elements

4.3 Safety Concepts 109

4.3.3 Microcontroller Safety Concept

ISO 26262 does not require a safety concept even inside a component. But in order
to assure a consistent development along the v-model it would be recommended.
The microcontroller safety concept provides clear limitations for the implementa-
tion of different applications. Depending on the application, different safety con-
cepts will be considered. The following aspects should therefore be already
analyzed related to the characteristics of the microcontroller.

• one or multiple safety goals applicable
• event dependent safety mechanism, which are also variable based on driving

situation, tolerances and systems or operating modes
• only one safety time fault tolerance interval, many time constraints, or

time-critical performance requirements
• are safety- and non-safety relevant functions considered to be implemented
• are there performance requirements to be implemented as non-safety relevant

functions
• is software architecture provided or are there only complexity of the partial

network descriptions available (the function, which needs to be realized)
• should be legacy code or software code from foreign source be integrated
• amount of necessary partitions in order to be able to realize components with

different ASIL and/or ASIL decompositions

In this context we often find a lot of indications and requirements from the
definition of the vehicle system and the partial networks descriptions, which need to
be realized that can exclude certain microcontroller safety concepts or at least make
them appear ineffective.

SystemSystem level

A1 S1

A2

B C1

C2

A1

S2 A2

A1 S1

A2

B

C1

C2

A1

S2 A2

I

BSW

O P

RTE

Component level

Fig. 4.27 The “IPO” principle derived from a system abstraction

110 4 System Engineering for Development …

The “IPO” principle could be also used for the software architecture in the
microcontroller. “IPO” stands for input, processing and output. Based on this
concept we now look at some basic principles for computer based safety concepts
and the following fundamental questions for the microcontroller:

• How could input data provided safety conform for the application software?
• How could the functions process correct according to given safety requirements?
• How could an actuator correct controlled according to given safety requirements?
• How could the interfaces between input, processing and output be correctly

safeguarded according to given safety requirements?

If we approach this according to processes, we will wonder which infrastructure
is required for a safe data processing. This means that we have to create an envi-
ronment, which enables us to discuss the four questions above. The environment
means the architecture, design and adequate configuration of the microcontroller.
Figure 4.28 of the simplified microcontroller shows the essential functional ele-
ments in a microcontroller.

The interaction as well as the functions of each element can of course be very
different. However, we already have two essential groups for the safety applica-
tions. Those are functional groups, which are essential in order to put the computer
into operation or initialize it. These functional groups often contribute only indi-
rectly to the implementation of the main function. This is why they will often only
be able to harm the safety function indirectly.

At the main function the signal chain from and to the pins (e.g. via port registers)
as well as the ALU (Arithmetic Logic Unit) are involved. Different buffer or
memory sections, such as the cache, are used differently in order to save data
provisionally and also for the entire computing time. Generally, the program is filed
in a permanent memory storage or electrically chargeable storage (flash) and then

B
us

A
OA
I

D
IF

Internal Bus

ADC

F
la

sh

R
A

M

Controller

E
P

R
O

M

ALU

register

stack-
pointer

program
counter

instruction
register

Instruction
decoder

status
register

B
OB
I

Port

D
OD
I

PortControllerController

Timer

Watchdog
Trigger

Interrupt
Unit

Quartz

Counter MUX

Fig. 4.28 Illustration or a simplified microcontroller

4.3 Safety Concepts 111

provided for the different functions in the dynamic storages or RAM (Random
Access Memory) during computation. All register memory is used in order to
reserve space for data or provide certain standardized information (status flags in
flag register etc.). Counters, quartz, trigger, interrupt unit, multiplexer etc. are used
depending on the programming style, compiler settings etc. in order to prepare data
or control or monitor the program sequence. If those functional elements are used
differently, they can also cause different failures. The more elements are used, the
more error causes and data are buffered, the higher the risk that the data is falsified
or processed at the wrong moment in time. Often an area approach is considered
(area of total memory divided by average of used memory) for the quantification of
memory errors. Even though the memory takes up large area of the silicon, the
failure influence of the respective memory depends first and foremost on how often
data is read in or out of the memory and in which form the correct functioning of
the function is actually dependent on the data. That means errors by writing and
reading of data are not depending on memory size, they are systematic errors which
could not be quantified. This is why we are largely forced to control the program
sequence and the data paths. The attempt to protect each individual function could
lead to a positive result. However it won’t necessarily be safer than a safeguarding
of the entire computing function.

To safeguard each individual functional element of the computer would lead to
many additional interfaces to be controlled. The number of interfaces of functional
elements and considering that one functional element could, depending on the
configuration, realize different functions lead to an increased number of functional
variants. Since also each function shows different error modes, we will need a huge
amount of safety mechanisms. Basically, this analysis will be useful, if the
microcontroller manufacturer uses it and suggests appropriate safety mechanisms or
safe configurations. Nowadays all big microcontroller manufacturers in the auto-
motive market have such computers, for which the safety mechanisms are already
built-in (e.g. built-in self-test) into the silicon. The manufacturer supplies respective
software packages and a manual that explains how the microcontroller should be
configured for the different safety applications and the respective ASIL. The
question is, is this really necessary? For an ASIL D application with multiple safety
goals, for which the details of the function are not yet known, it is always easier to
start with a “safe” computer as a basis than to develop a computer safety concept
yourself. Also some will argue to use two independent computers for ASIL D. But
is this possible if an ASIL D safety function has to be discovered in a short safety
time interval with big amount of vehicle functions and heterogeneous component
tolerances in closed loop control? Such control functions on two asymmetric
independent computers will be difficult to synchronize. In this case there are dif-
ferent data sets for the controller for each driving situation, each measurement and
each possible position of the actuators. This data has to be synchronically processed
in both computers in a certain time interval. This is why we will continue to see so
called lockstep core architectures for chassis control systems more often. Lockstep
computing means, for which two controllers cores processing the same software
code and their result will be compared. Until ASIL C the VDA safety concept

112 4 System Engineering for Development …

(EGAS) used to be a good solution to safeguard vehicle functions. The involvement
of sensor signals and the actuator control have often not been sufficiently consid-
ered. Separation of the 3 different levels is realized in many different ways over the
years the approach has been implemented.

Based on a simplified functional model for the computer, with consideration to
the two different functions, which need to be safeguarded, we will now illustrate a
safety concept applicable until ASIL C. Since for an ASIL C function we already
have to corroborate in the software, before we control an ASIL C action, a certain
redundancy of the sensors needs to be present. Generally, it is possible to say that a
single analog signal cannot be safeguarded more than up to ASIL B. For the
actuator control often a current read back path ensures that we can verify the
information for the control through the microcontroller.

For this simple example (Fig. 4.29) the analog signal would be provided for the
logic solver through the analog digital converter (ADC). From the Logic Solver the
control informationwill be provided for the output by digital (usually amore bit binary
output) to a transistor and the transistor opens a valve. According to this description
only a few functional elements are directly involved in such a safety function.

In early microcontroller such as an Z80, even a multiplication function had
already been buffered in RAM or these multiplications already stand for multiple
arithmetic operations we can see that the real functional elements for a single
heterogeneous operations are not possible to be determined. How the different core
(or even from ALU) operations are used by different compiler settings, and what
memory areas are used, is normally unknown. The approach, which many interpret
from IEC 61508, suggests simply protecting all functional elements with the DC for
the corresponding integrity level. This would be safer than to do nothing but it is
certainly not efficient and not sufficient. In this case probably half of the computing
power is used for the protection and safety mechanisms and the intended control
function will be realized at the limit of its runtime. Therefore, for simple safety
systems, it won’t be useful to protection all functions of the microcontroller with the

B
us

A
OA
I

D
IF

Internal Bus

ADC

F
la

sh

R
A

M
Controller

E
P

R
O

M

ALU

register

stack-
pointer

program
counter

instruction
register

Instruction
decoder

status
register

B
OB
I

Port

D
OD
I

PortControllerController

Timer

Watchdog
Trigger

Interrupt
Unit

Quartz

Counter MUX

Fig. 4.29 Signal chains considered in a microcontroller

4.3 Safety Concepts 113

highest ASIL. It is also significantly more problematic to ensure that the SW
configuration uses the microcontroller functional element actually in the intended
way. Usually we reach the limits of today’s microcontrollers, for a complete suf-
ficient safeguarding the resources are not sufficient. The performance is greatly
restricted and it will no longer be possible to ensure that all safety mechanisms
actually work efficiently within the safety time requirements (respecting
time-constraints); especially since it is not predictable, which error modes of the
different functional elements actually cause the safety relevant effect. Often a
stuck-at is well protected but data falsifications, masquerades (data in correct
protocol frames or data formats but factually incorrect), incorrect addressing, dif-
ferent data order or wrong buffering are only detectable by computer specialists but
often critical for the application.

When the application should be ready and it is realized that certain errors can be
injected and that they are not controllable or transferable into a safe condition
within the safety time requirements, compromises have to be made, a bigger
computer has to be chosen or often at the costs of the performance, the safety
functions need to be prioritized.

Nowadays, more and more small microcontrollers are implemented in sensors,
which are then used for the filtering of data, the linearization or digitalization.

Also in this context a detailed analysis of the target function and the required
safety measurements is necessary in order to avoid an overall generalized safe-
guarding. Almost all error modes could be the possible cause of failure for safety
relevant effects. To safeguard the computer just like programmable logic control
(PLCs) would not be appropriate. This is why a safety concept isn’t only useful in
regards to the vehicle systems but also for function or system elements, which later
have to be integrated in the vehicle system.

4.4 System Analyses

System analyses represent methods of the system theory. Depending on the
abstraction comparable methods can be applied to any systems. Even in order to
investigate sociological dependencies, decompositions are used in order to describe
characteristics of groups of people, to analyze or to classify.

The subject of the analysis is often a model or a restricted image of reality.
This means that the system has to first be described at a certain abstraction level

within the considered context and the expected behavioral patterns.
Generally, we also speak of deductive and inductive analyses, whereby the

general induction infers from the details to the commonalities and the deduction
aims to explain the details from the commonalities through certain premises or
general conclusions. In order to take those terms in the context of a technical system
analysis, we have to get back to speaking about a horizontal abstraction level in the
system structure.

114 4 System Engineering for Development …

In the context of ISO 26262 we start with the general abstraction level (higher
abstraction level), which often describes a system at the vehicle level. The
deductive safety analysis now has the task to verify, based on a safety concept and
the determined safety goals, a hypothesis, which identifies characteristics (posi-
tively seen) or malfunctions (or their causes) that can negatively influence the safety
goals or higher level safety requirements. Furthermore, appropriate measures are
required that could prevent, mitigate, avoid or reduce these influences. The
inductive safety analysis is based on characteristics or their potential fault causes. In
this context it is investigated whether these potential failures could violate safety
goals at the described correlations or ways of propagations in the system.

4.4.1 Methods for the System Analysis

Historically, NASA is often mentioned, which described FMEA (“Failure Mode
and Effects Analysis”) methodology first for the failure analysis for the project
Apollo in 1963.

In 1977 Ford introduced an alternative, the fault tree analysis as well as dynamic
event trees, to the automobile industry. In Germany this alternative was described in
DIN 25 448. NASA adopted it shortly after and it was soon also introduced to other
industries.

However, failure analyses have been carried out long before that. The first failure
analyses were based on methods brought to the US from German scientists after the
Second World War but also in other industries some methods developed and
became standards. This chapter will also cover reliability block diagrams (which
can be certainly directly derived from Lusser’s law) as well as HAZOP (hazard and
operability) analysis, which has its roots in the chemical industry as well as the oil
and gas industry.

FMEA (Failure Mode and Effect Analysis)

The classical Design-FMEA considers mechanical components and its aim was
the adequate design and resulting characteristics. From an exploded view of a
component the detail characteristics had been evaluated and the consequences of
certain deviation from nominal or defined tolerance had been analyzed (Fig. 4.30).

The automobile associations like VDA and AIAG have described the essential
methods in this context. Standards had been improved in other industries based on
their requirements. FMEA is according to ISO 26262 an inductive method for the
safety analysis. However, all FMEA methods in the automobile industry are widely
based on the sequence of failure cause, failure and failure effect. The kind of
measures to improve the product or avoid, mitigate errors, or their propagation had
been defined and applied differently in the standards. The evaluation factors of
failures are called as follows:

4.4 System Analyses 115

• Severity of damages (S)
• Probability of the error occurring (O)
• Probability of the error detection (D)

The severity-class of a FMEA is generally determined by the failure effect. This
severity (S) is defined differently than the severity of a hazard and risk analysis.
Generally, it can be said that the severity of the hazard and risk analysis refers to
human impacts or harm (and environment damages in other standards). The
severity-class in a FMEA refers more to the vehicle itself. This is why the vehicle is
often used as the root element of a VDA-FMEA. In a hazard and risk analysis also
the driving and operating conditions are considered, which would lead to very
heterogenic structures for a FMEA. This doesn’t mean that it couldn’t be applied for
simple systems. The probability of the class for faults occurrence (O) and the class
of detection of faults (E) are generally based on the assessment of the failure cause.
Those three factors build the risk priority number (RPN). The two factors S and
O (SxO) are often combined to the so-called criticality. However, it is often useful
in the different FMEA methods, to assess the factors separately. The probability of
error propagation is often not considered in the classical FMEAs.

VDA already developed a hierarchical concept 20 years ago, which requires 5
steps for the analysis.

The typical failure analysis itself only happens in the third step. Steps 1 and 2 are
analyses and information, which are needed in FMEA in order to present the object
of analysis or are other analysis by themselves. Steps 1–3 could be seen as the
illustration of a deductive analysis, since functions and structures are broken down
or decomposed (Fig. 4.31).

Fault Tree Analysis (FTA)

The fault tree analysis is a key method for the development and analysis safety
relevant systems in almost all industries and also for nuclear power plants or the
aerospace sector. With the help of the fault tree analysis it can be examined, in
which combination, by using Boolean logic, relevant elements could fail and cause

Function
- malfunction / failure,
error mode

failure effect (top-failure, consequence, risk, threat, harm etc.)

failure cause / fault

Measures - prevention
- avoidance, control
- detection,
- mitigation (of causes for failure)
- reduction (of the probability of failure effects)

failure effect:
Consequence of a product failure

failure mode:
Product failure

failure cause:
Causes for product failure

Quality Performance Safety Reliability Maintainability Availability Security

Violations of Objectives

external failure/ error cause / intrusion

Fig. 4.30 Basic principle of (inductive) failure analysis

116 4 System Engineering for Development …

undesired states or events, like a failure of an engine. The aim of the fault tree
analysis is to determine the minimal amount of events, which can cause such a top
event and therefore to detect specific weaknesses and also unintended states in the
system.

The historical background of the fault tree analysis comes from the military
sector. At the beginning of the 1960s this technology was first used by the U.S. Air
Force and then spread to other areas of the aerospace as well as the nuclear energy
sector.

Efforts are made to illustrate and analysis more and more comprehensive and
complex systems as fault trees. Fault trees are based on Boolean logic, which can be
investigated on minimal cutsets with various algorithms with different targets.
Special forms of the cutset-analysis are Quine-McCluskey for the minimization of
the Boolean logic, the MOCUS algorithm, and the algorithm of Rauzy on binary
decision diagrams, the algorithm of Madre and Coudert with Meta products, and the
search strategy CAMP DEUSTO. Those algorithms are based on the different data
structures and procedures for the determination of minimal cuts.

The Boolean algebra and graphic fault trees generally build the foundation for
such analyses. The fault tree analysis is seen in ISO 26262 as deductive analysis,
whereas this cannot be said for the higher analyses of the cut-sets. These analyses
are also not necessary for the requirement or architecture development at the
descending branch of the V-model; they would more support the analyses of ISO
26262, part 5, Chap. 9. This is the ascending branch of the electronic V model
considers already a first realization of the product. The here required analysis and
the related metric like (PMHF, Probabilistic metric of random hardware failure)
targets to identify error propagations based on failure rates for random hardware
faults and their potential to violate given safety goals.

Reduce risk with
further measures
Quantify modified
stage

Architecture Analysis

1. Step
Structure Analysis

Work-out and
structure the relevant
elements
Define hierarchy
(level of abstraction)
Define interfaces

2. Step
Function Analysis

Analyze and
decompose function
Allocate function to
structure elements
Analyze functional
dependability

3. Step
Fault Analysis

Analyze fault mode per
function (FTA inside of
system element)
Analyze cause and
effect based on
functional and technical
dependability
Connect single failure
effects to the failure net

4. Step
Measure Analysis

Identify necessary
avoidance or detection
measures
Agree measures to
assure correct design
Define measure with
effectiveness in field.
Quantify measures

5. Step
Optimization

Risk Analysis and Measures

Deductive Analyse Inductive Analyse Process iteration

Fig. 4.31 FMEA in 5 steps (Source similar to VDA 4)

4.4 System Analyses 117

Reliability Block Diagrams (RBD)

Reliability block diagrams are, similar as the fault tree analysis, are considered in
ISO 26262 as example for deductive analysis. The blocks can be logically put into
relations through Boolean algebra. If the blocks are quantified, the relations can also
be described mathematically, whereas such descriptions are used as a foundation for
formal description models. The simplest quantitative method is a simple summing
up of the failure rates of the individual components of a function. The method is
also called “Part Count Method”, which simply based on an addition of failure rates
of electric parts.

Event tree analysis (ETA)

ETA also evolved differently in the automobile industry in the context of
company standards. In most cases the aim is to complement driving situations in the
system FMEA, which however, can very quickly lead to a very complex illustra-
tion. In order to assess certain top failure in different driving situations, ETA can be
a useful illustration. In this case there is often an overlap with the hazard and risk
analysis. In the old DIN 25419 the illustration of ETA was described first and
foremost but not in kind of way, which for example it is possible to infer a certain
dangerous event from a specific failure behavior. The newer DIN EN 62502 (VDE
0050-3): 2011 responds more to the methodology. However, it describes a different
methodology than typical automotive standards considers.. In this new standard
also the combination to FTA and the reliability block diagram is also described. The
representation method is also different than the symbol description in DIN 25419.
An essential point, which DIN EN 62502 (VDE 0050-3): 2011 addresses is the
determination of an analysis area. With this illustration (see Fig. 4.32) we can see
that the relation of failure, operating situation and driving situation for electronic
products could easily become very complex.

Markov analysis

The Markov analysis is primarily used to assess the transition from one condi-
tion to another. The formula for the safety architectures in the informative part 6 of
IEC 61508 was derived from such models. Those formulas are gladly used for the
EE safety architectures. However, the basic principles and assumptions, under
which the models were designed and the formulas derived, are often not known or
not applicable for the realized automotive architectures. Often only one failure at
the time is assumed, therefore ageing affects, error combinations, dependent,
transient or latent failures are not derivable from this formula. For approximations
or as help for the quantification these formulas are applicable if corresponding
further analyses are applied.

HAZOP (Hazard and operability studies or analysis)

HAZOP is a qualitative analysis of the hazard potential of failure conditions or
malfunctions of individual technical elements. In interdisciplinary teams, i.e.
architect, system analyst or tester, the target function (also the design appropriate

118 4 System Engineering for Development …

functionality) is inferred from the detailed description of the analyzed object as well
as the possible failure functions or failure behavior and measurements from a
structured questioning of the target function.

Similar questions (see Fig. 4.33), just like those for HAZOP, are also considered
in the fault tree analysis in order to find causes of known failure.

SAE had founded a working group and published a standard concerning
detailing of the HA&RA according ISO 26262. Considerations for ISO 26262,
ASIL Hazard Classification, SAE J2980 [5] Prop Draft F2011ff. In this standard the
key or guide words from other industry HAZOP had been derived to automotive
applications (Fig. 4.34).

This standards provides further very important background information, which
help to perform Hazard and Risk Analysis for automotive applications.

4.4.2 Safety Analysis According to ISO 26262

Safety analysis is the term with which ISO 26262 describes methods such as FMEA
and FTA. Neither in this book nor in ISO 26262, was the intention never to define
these methods anew. ISO 26262 mentions in part 9, Chap. 8 the different methods
and lists general requirements in the context of ISO 26262 for these methods. In the
individual development of items, system or components the safety analyses are
invoked in the respective context, based on the specific requirements for this
method.

Top Failure 1

For Example:
Unintended braking

Ff2Fs1 Ff1Fs2 Ff1Fs1 A-value: resulting from calculation,
However, taking into account
allowable transitions from
various driving situations

Fu1

Bz1

Fu2

Bz2

Top Failure 2

For Example:
Destabilize

FMEA

ETA

Fu: single fault (cause)
FF: failure effect
Fs: driving situation
Bz: Operating status

Fig. 4.32 Combination of Event Tree Analysis (ETA) and Failure Mode and Effect Analysis
(FMEA)

4.4 System Analyses 119

In part 9 there is only one indication for the differentiation of the deductive and
inductive safety analysis. The inductive safety analysis is described as “bottom-up”
approach. It is considered that known causes of failure and their unknown failure
effect are examined. ISO 26262 mentions Failure-Mode-and-Effect-Analysis

Guidewords Importance Aspect

NO, NOT, NOT negation
the goal function

no part of the goal function is performed,
but it also happens nothing

MORE quantitative growth Physical size: weight, speed
temporal aspects: too late, too early
Covers: too late, too short, too high, too low
Feature: Material, dynamic, thermal conductivity
Dynamics: heating, pressure build, move, rotate

LESS quantitative decrease

AS WELL ... AS qualitative growth Function object is achieved, side effects occur as
- Dynamic effects: heat resistance increase capacity reduction, overshoot
- Tangible effects: contamination, wear,

Corrosion, fire Contact

PARTIALLY qualitative decline Partial feature
- Performance is not reached
- Vibrations (signal always breaks)
- Information or incomplete signal
- Sub-functions or sub-elements without function

REVERSAL Negation of
goal function

Direction, sign, action principles

DIFFERENT TO Operating states Ignition cycle, sequences, state machines,

Memory organization in the microcontroller,

Generation of data fields

Fig. 4.33 HAZOP—key words, meanings and aspects

Source: SAE, J2980 Revised Proposed Draft F 2011

Fig. 4.34 HAZOP—guide words adapted to automotive applications

120 4 System Engineering for Development …

(FMEA), Event-Tree-Analysis (ETA) and the Markov (modelling) analysis as
examples for inductive methods.

The deductive safety analysis is accordingly describes as “top-down” approach,
which examines the unknown causes of failure from known failure effects. ISO
26262 lists Fault-Tree-Analysis (FTA) and Reliability-Block-Diagrams (RBD) as
examples for deductive methods.

Generally, it is only possible to conduct a functional analysis as a top down
approach since the function of a certain hardware element needs to be known first
before the cause of failure can be derived. On the other hand, for the failure
observation of sheer technical (realized) elements, such as components or structural
elements, the failure of elements and also random hardware failures can be inferred
from the characteristics of the elements. The failure effects can then be referred to as
inductive analysis. However, as a result only the inductive analysis truly addresses
the effects of random hardware failure. By a deductive approach only requirements
for random hardware-failure could be elaborated so that required failure rates and
related diagnostics could be specified. By adequate verifications and tests the ful-
fillment of given metric requirements could be shown. This will widely indicate a
mix of inductive and deductive analysis, whereas the lower level is designed
inductively and in the upper level the technical malfunctional behaviour is
described functionally, so that the consistency (see Figs. 4.35 and 4.36 analysis
phase) could be assured.

A second topic of inductive and deductive safety analysis, we also differentiate
between qualitative and quantitative safety analysis. The quantitative safety analysis
should also consider the frequency of failures, but for both the fault modes and
effecting errors need to be analyzed. Generally, the norm says of course that the
quantitative safety analysis is used to fulfill the quantitative metrics from part 5,
Chaps. 8 and 9.

Requirement phases Integration phasesDesign phases

3-7
Safety Goals

3-5
Vehicle
System

Definition

Analysis phases

Interface
analysis / H&RA Design

assumptions,
limitations

4-9
System
Safety

Validation

Function goals
Requirements

3-8
Functional

safety
requirements

4-6
Technical

Safety
requirements

4-8
Integration-

tests

Architecture phases

Architecture
assumption

s

Verification Phase

3-8.4.5
Verification

4-8
Verification

3-8.4.4
Validation

criteria

3-8.4.3
Allocation

3-8
Functional

safety concept

4-6
Technical

Safety concept

4-7.1 / 2
System

architecture

4-7.3 / 4
System Safety

analysis

4-7.6 / 7
System
design

5-6
EE Hardware

Safety
requirements

5-7.4.4
Verification

5
EE Hardware

Safety concept

5-8
EE hardware
architecture

5-7 / 8/9
EE Hardware

Safety analysis

5-7.4.1 / 2
EE HW
design

5-10
EE HW

Integration-
tests

Fig. 4.35 Information flow in system and electronic hardware development

4.4 System Analyses 121

The following qualitative safety analysis methods are listed:
ISO 26262, Part 9, clause 8:

8.2.2 Safety analyses are performed at the appropriate level of abstraction
during the concept and product development phases. Quantitative analysis
methods predict the frequency of failures while qualitative analysis methods
identify failures but do not predict the frequency of failures. Both types of
analysis methods depend upon knowledge of the relevant fault types and fault
models.

8.2.3 Qualitative analysis methods include:

– qualitative FMEA at system, design or process level;
– qualitative FTA;
– HAZOP;
– qualitative ETA.

NOTE 1 The qualitative analysis methods listed above can be applied to
software where no more appropriate software-specific analysis methods exist.

8.2.4 Quantitative safety analyses complement qualitative safety analyses.
They are used to verify a hardware design against defined targets for the
evaluation of the hardware architectural metrics and the evaluation of safety
goal violations due to random hardware failures (see ISO 26262-5).
Quantitative safety analyses require additional knowledge of the quantitative
failure rates of the hardware elements.

Requirement phases Integration phasesDesign phases

3-7
Safety Goals

3-5
Vehicle
System

Definition

Analysis phases

Interface
analysis / H&RA

Design
assumptions,

limitations

4-9
System
Safety

Validation

Function goals
Requirements

3-8
Functional

safety
requirements

4-6
Technical

Safety
requirements

4-8
Integration-

tests

Architecture phases

Architecture
assumptions

Verification Phase

3-8.4.5
Verification

4-8
Verification

3-8.4.4
Validation

criteria

3-8.4.3
Allocation

3-8
Functional

safety concept

4-6
Technical

Safety concept

4-7.1 / 2
System

architecture

4-7.3 / 4
System Safety

analysis

4-7.6 / 7
System
design

6-6
Software Safety

requirements

6-8
Verification

6
Software Safety

concept

6-7
Software

architecture

6-8
Software
design

6-9 / 10
Software

integration +
Tests

6-8.4.2 / 3/4
Unit software
requirements

6-9
Software

unit testing

6-7
Software

architecture
analysis

Design
FMEA

Fig. 4.36 Information flow in system and software development

122 4 System Engineering for Development …

8.2.5 Quantitative analysis methods include:

– quantitative FMEA;
– quantitative FTA;
– quantitative ETA;
– Markov models;
– reliability block diagrams.

NOTE 2 The quantitative analysis methods only address random hardware
failures. These analysis methods are not applied to systematic failures in ISO
26262.

The note 2 refers already to the problem with random hardware faults and
systematic failures. The cause of an error in a system is never only related to
random hardware faults, the cause for a random hardware fault is often already a
systematic fault such as wrong selection of the part, wrong estimation of envi-
ronmental impacts, production errors etc. That means all quantitative methods rely
on systematic analysis, where the quantification could only consider as an indica-
tion or as a metric for comparison or balancing of the architecture or design. In
other standards those approaches are considered also as semi-quantitative analysis.
Furthermore, the question is if these methods are only the kind of representation of
the result of the analysis rather than the indication for the analysis itself.

The way how the methods are applied based more on the context of the process
how parts 4 (system) and 5 (electronic hardware) of ISO 26262 considers the
application of the methods. The descriptions in the previous figures (Figs. 4.35 and
4.36) show the information flow for a system and the electronic hardware as well as
for a system and the software. In this context we can see how ISO 26262 invokes
the safety analysis and where the results will be applied. This illustration is not
showing a complete information flow; a complete illustration can only be shown in
regards to a specific product development and its realizations. Depending on the
maturity level, for example in a B- or C-sample cycle of the development, very
different iterations of the information flow have to be considered mainly because of
modifications and changes of the product.

Basically, the inductive and deductive safety analyses are invoked in the
architecture related chapters of ISO 26262, in which the inductive analysis is often
demanded for all ASIL requirements and the deductive analysis only for ASIL C
and D safety requirements.

In the system development, deductive and inductive safety analyses are invoked
in order to investigate the demand for safety measures to avoid systematic errors or
faults. Furthermore, there are requirements to use quantitative metrics from part 5 as
criteria for safety measures, which are effective during the vehicle operation, which
mainly means implemented safety mechanism to control systematic errors or faults.
These safety mechanisms and their efficiency could only measures by using the
reference to metrics for random hardware failure. Therefore, for ASIL D each a

4.4 System Analyses 123

deductive and inductive safety analysis needs to be performed and one of these
safety analyses has to be at least quantified in order to assess the system architecture
(architectural metrics) and to investigate the probability of the violation of the given
safety goals (PMHF, Probabilistic Metric for random Hardware Failure) or the
second method based on limitations of failure classes (see ISO 26262, Part 5 clause
9.4.3 (Evaluation of each cause of safety goal violation).

In the electronic hardware development the inductive and deductive analyses
invoked in part 5, Chap. 7.4.3, safety analyses. The norm requires in this context
especially the qualitative analysis of the cause-effect relationship. Further, the error
causes and effectiveness of the safety mechanisms have to be proven for the
avoidance of single- and multiple-point faults. In addition to that the correct design
of the electric components or their sufficient robustness is required in the following
Chap. 7.4.4 as part of the verification of hardware design. In this context there is
also a back reference mentioned to the previous Chap. 7.4.3, since this is generally
supported through a Design-FMEA in the automobile industry. This means that
traditionally we choose a classical risk based approach, whereas ISO 26262 addi-
tionally requires a complete verification with regards to all relevant electronic
requirements.

In other words, if there isn’t a sufficient independency between parts or function
groups within hardware components, which aren’t a part of the realization for the
considered function group or considered element of the safety relevant functions,
have to be considered for the design verification as well. It seems to be a similar
analysis as later required as “Analyses of Dependent Failure”, but the requirement
is relevant for all ASIL.

Software architecture analysis
ISO 26262, Part 6, Clause 7.1:

7.1 Objectives
7.1.1 The first objective of this sub-phase is to develop a software architec-
tural design that realizes the software safety requirements
7.1.2 The second objective of this sub-phase is to verify the software archi-
tectural design

7.2 General
7.2.1 The software architectural design represents all software components
and their interactions in a hierarchical structure. Static aspects, such as
interfaces and data paths between all software components, as well as
dynamic aspects, such as process sequences and timing behaviour are
described.

NOTE The software architectural design is not necessarily limited to one
microcontroller or ECU, and is related to the technical safety concept and
system design. The software architecture for each microcontroller is also
addressed by this chapter.

124 4 System Engineering for Development …

7.2.2 In order to develop a software architectural design both software safety
requirements as well as all non-safety-related requirements are implemented.
Hence in this sub-phase safety-related and non-safety-related requirements
are handled within one development process.
7.2.3 The software architectural design provides the means to implement the
software safety requirements and to manage the complexity of the software
development.

The Tables 4 and 5 of the chapter provide following recommendations for safety
mechanism, which are classified for different ASIL.

ISO 26262, Part 6, clause 7:

7.4.14 To specify the necessary software safety mechanisms at the software
architectural level, based on the results of the safety analysis in accordance
with 7.4.13, mechanisms for error detection as listed in Table 4 shall be
applied.

Table 4 provides the following depending on the ASIL classification:
Table 4: Mechanisms for error detection at the software architectural level:

– Range checks of input and output data (all ASIL)
– Plausibility check (++ for ASIL D)
– Detection of data errors (for all ASIL)
– External monitoring facility (++ASIL D, +B and C)
– Control flow monitoring (++ASIL C and D, + for B)
– Diverse software design (++ASIL D, + for C)

ISO 26262, Part 6, clause 7:

7.4.15 This subclause applies to ASIL (A), (B), C and D, in accordance with
4.3: to specify the necessary software safety mechanisms at the software
architectural level, based on the results of the safety analysis in accordance
with 7.4.13, mechanisms for error handling as listed in Table 5 shall be
applied.

NOTE 1 When not directly required by technical safety requirements allo-
cated to software, the use of software safety mechanisms is reviewed at the
system level to analyse the potential impact on the system behaviour.

NOTE 2 The analysis at software architectural level of possible hazards due
to hardware is described in ISO 26262 5.

4.4 System Analyses 125

Table 5 provides the following depending on the ASIL classification:
Table 5: Mechanisms for error handling at the software architectural level:

– Static recovery mechanism (for all ASIL)
– Graceful degradation (++ASIL C and D, +A and B)
– Independent parallel redundancy (++ASIL D, a for C)
– Correcting codes for data (for all ASIL)

The rules for the usage of such tables are given in Chap. 4 of all parts from ISO
26262. The rule says that any table has an introducing requirement; only this
requirement is a requirement to be fulfilled to claim compliance to the standard. In
this case the measures or hints in the table give recommendations, but the need of
implementation in this case derives from the software architectural analysis. The
aim of the software architecture analysis should be to show, which measures are
necessary according to ISO 26262. The verification of the architecture should then
indicate their effectiveness and correctness or ability to control the error modes. In
this context it is important that the focus lies on the safety analysis of the software
architecture and not on an analysis, which is applied for SW-Units. In practice this
means that the analysis doesn’t consider the internal structures, calls and realiza-
tions within for example a C-file. Furthermore, it is also assumed that this software
safety mechanism is implemented in the architecture level and therefore it should
also control the dedicated error modes on this level of the architecture.

If we consider these recommendations we often end up with separate C files,
which realize the desired functionalities and others that realize the safety mecha-
nisms. By using partitioning (separation of functions and functions monitoring by
safety mechanisms), which can also already be implemented in the system archi-
tecture level, the complexity can be strongly reduced. A mix of safety relevant
functions and non-safety relevant functions at the software design level, which is
inside of a SW unit, is actually not considered in ISO 26262. The SW-Unit would
have to be developed according to the highest ASIL. This could then lead to an
issue with ASIL D, since at this point redundancies or an implementation of
diversity software is recommended.

4.4.2.1 Failure/Error Propagation

ISO 26262 considers an error propagation, which is defined through the three terms
“Fault, Error, Failure”.

In a FMEA (compare Fig. 4.37) fault can be assigned to the cause of failure, an
error to a failure type and failure to failure effect. If we distinguish the causative
level, failure level and failure effect level also as different horizontal abstraction
levels, we easily fulfill the requirements of ISO 26262, part 9, Chap. 8. In this part
it is required that the safety analyses are oriented at the architecture, just like the
FMEAs.

126 4 System Engineering for Development …

The figure shows the correlations with the FMEA, whereas the term of the
function is already considered differently. The failure effect in the FMEA is often
seen outside of the scope, for example for a system the impact for the vehicle.

In doing so, the system itself realizes with its components functions, which then
in combination or through the interaction with other systems or components in the
vehicle performs the vehicle functions. A brake system is always dependent on the
wheels of a vehicle; without a correct functioning of the wheels a brake cannot
function correctly. This is why the functions according VDA FMEA are allocated
to each error class (also type of failure). This means there is one function for each
error class. Generally, the failure level is seen as the level in which a product
(system, component, and element or object to be analyzed) is specified. Therefore,
it is also possible in this context to test against the requirements, which have to be
founded through the implemented functions.

The diagram in Fig. 4.38 shows that the probability of the error propagation
strongly depends on the design of the signals, distances, dimensioning and envi-
ronmental influence factors. Whether corrosion leads to failure dependability on the
various influencing factors and the fact that high currents could also clean contacts,
consequently it could prevent corrosion at contacts, but man should not rely on it
always. Corrosion can also lead to extensive contact resistance and thus to a
temperature increase or even to a fire in the control unit. Whether low current,
which operates the windshield wipers, can actually control a throttle valve or maybe
prevent its closing is questionable but generally such effects cannot be excluded, if
not EMC requirements is fulfilled for all elements within a vehicle. The example
(see Fig. 4.38) also shows that depending on the position of the observer, the
respective levels of the failure classes can be described differently. As a reference
point we can always use the specification, since in context of its verification the aim
is to show that the own specification is correct, meaning all observed, measurable or
calculable requirements are implemented correctly at the product boundary level.
Through negative tests (for example injection of faults) correct behavior can be
tested in a failure situation or a stress test can test the design limitations or its

Function
-potential malfunction / errors
 (failure mode)

failure effect

error cause (faults)
(failure cause)

Measures - in order to avoid,
 - to detect
 - to reduce
 - to control

the error or its cause

or reducing the likelihood
the error propagation

external error influences

Fig. 4.37 Error propagation in a 3 step FMEA approach

4.4 System Analyses 127

robustness. This means if mathematical proof can be provided that the signal to
noise ratio for the windshield wiper control meets the EMC requirements and
therefore no unauthorized interference occurs in the neighbor signals or electric
devices. The examples in the error propagation in Fig. 4.38 won’t be seen as real
cases since the calculations are based on wring assumptions.

The cause of failure has a strong influence on the failure characteristic and it is
often not easy to recognize the reason. However, if it is possible to limit the cause,
further possible measures can be found, which make it possible to control the
failure. These analyses refer more to the classical Design-FMEA, which questions
whether the characteristics of the analyzed object meets the non-functional
requirements e.g., quality. This method is used to answer questions in the
mechanical sector such as: “Is a M6 screw suitable to safeguard the construction?”
or in the electronics sector whether a 100 ohm resistor is the right choice.

FMEA is primarily used to find the right and necessary (risk based approach)
tests for the design verification.

The classical Design-FMEA focuses more on problem oriented correlations
(compare Fig. 4.39) than architecture analysis and different horizontal layer of
abstractions.

Often, it is based on the Japanese method “5 Why”, which says that the cause of
the failure needs to be detected after asking “why” at least five times. If we assume a
defect, then this defect doesn’t necessarily need to have a negative impact on safety.
However, such a defect could of course, depending on the perspective of the user,
lead to a limitation in the applicability. Small noises can cause a car buyer to
withdraw from the purchase. Furthermore, permanent failure can lead to a different
error pattern than sporadically occurring errors or drifts, which can cause a critical
failure behavior through a certain transient. The nature of the cause of failure can go

Vehicle System

Component

Failure Error Fault

Failure Error Fault

Systematic
software errors

Systematic
hardware error

Random
HW error

Systematic
software errors

Systematic
hardware error

Random
HW error

EMC influence the
Windshield wiper control
on motor control

Oxidation on contact

No signal conditioning

Intermettierende impulses
with throttle control

Sporadic signal interruption

Sporadic impulses

Incorrect operation

At times, no control

Incorrect operation

Unintentional actuation of the
throttle

Disturbing impulses and not
sufficient control of the
throttle valve

Throttle is driven intermittently
or with insufficient signal level

Car accelerates when wiper
is switched on

Car drives jerky

Car takes acceleration to not
always.

Uncontrollable self accelerator,
the vehicle is no longer
controllable.

Uncomfortable driving

Failure of the vehicle,
vehicle failure

Fig. 4.38 Examples of an error propagation through multiple levels (Source Inspired by ISO
26262, part 10)

128 4 System Engineering for Development …

back to an unknown or incorrectly judged physical influence but an influence can be
also incorrectly assessed by an (human) error. It is even more difficult if the designer
(person deciding on detailed product properties) or the reasons for the design
decisions are unknown. It is true that the detailed design decision is often transparent
at a higher abstraction level but most of the time, which influences through the
decision are considered to be uncritical and which are relevant are not communi-
cated. The same applies for design decisions of other vehicle systems or design
influencing activities in the production of components. Particularly for e-mobility we
can see that the user behavior of the vehicles is often simply unpredictable. Which
function or which components are active over which period of time, with which
intensity and how the ageing effects affect the components is often hard to foresee.
Due to the low amount of comparable systems in the field, any field-effect could
have different causes. This shows that the failure correlations are difficult to assess,
because we do not know what kind of stress happened during the use of the com-
ponent. If we look at the requirements in ISO 26262, part 5, Chap. 9, which say that
the failure correlations that lead to a violation of a safety goal have to be quantita-
tively assessed, we can imagine that this will be extremely challenging. PMHF
(Probabilistic Metric of random Hardware Failure) in part 5, Chap. 9 consider only
the random hardware failure, but the decision, on how these random hardware
failures can actually effect the safety goal is widely determined through the above
described influence factors. This is why the results from the quantifications for the
architecture metrics should be developed very conservative. Failure combinations
are quantitatively widely determined through the probability of the common cause or
common mode effects. If it refers to an independent failure, the probability will most
likely go towards infinite and if we look at dependent failure, the degree of
dependence will determine it (basis principle of Kolmogorov’s axiom).

However, the degree of dependency should, according to ISO 26262, not be
quantified since there are no generally known methods or principles, with which
these dependencies can be quantified.

Basically, errors can be avoided, the probability of occurrence can be reduced or
also the error propagation (see Fig. 4.40) can be avoided or their probability

Error Cause

Type of error temporal aspects of error

no adverse
effect

Cause of the fault

adverse effect permanently sporadically Rising, Falling

Nature System
boundary

Initial phase

physically
Writeable

human error Within outside Development Use phaseProduction

Fig. 4.39 Alternative correlations of a cause-and-effect relationship

4.4 System Analyses 129

reduced. Avoiding or reducing the failure probability happens through the suffi-
ciently robust design and the avoidance or reduction of error propagation through
the architecture. For the error propagation we distinguish between the error prop-
agation on one level into the higher abstraction levels, for example from the
components through the system to the safety or security goal or the error propa-
gation within a horizontal level (Figs. 4.41 and 4.42). The error propagation
principles is not only applicable to typical dependability issues like safety and
reliability it could also applied for security by using the approach as shown in
Fig. 4.42.

The error propagation within a horizontal level can affect the following relations:

• from one element to another element (for example between transmitter and
receiver),

• from one input to another output (if an input of a transistor is wrong also relating
outputs could be wrong, even in case of correct processing),

• through incorrect data entry of configuration data or operation modes incorrect
output values can occur despite correct processing.

Failure Cause
(Fault)

Failure
(Error)

Failure Effect
(Failure)

Avoid fault, errors
(by design)

Avoid the
Error propagation

Fig. 4.40 Error propagation in relation to failure effect and causes

Source: Deep Medhi.
Proceedings of 7th International
Workshop on the Design of
Reliable Communication
Networks (DRCN 2009),
Washington, DC, October 2009

Figure 3. A dependability and security tree

Dependability
And Security

Threats

Attributes

Means

Faults / Attacks

Errors

Failure

Accidents

Availability

Confidentially

Integrity

performance

Reliability

Survivability

Safety

Maintainability

Fault / Intrusion Prevention

Fault / Intrusion Tolerance

Fault / Intrusion Removal

Fault / Intrusion Forecasting

Error Control
Principles

Fig. 4.41 Dependability and security models (Source Deep Medhi [3])

130 4 System Engineering for Development …

• through inadmissible environmental conditions incorrect output values can arise
(microcontroller produce wrong random output reactions at the output in case of
overheating or increased EMC).

Furthermore it is important for the error propagation in a higher abstraction level
how errors can, for example occur in different operating situations. In this context
the fault tree analyses considers different type of cut-sets.

Birnbaum or Fussel-Vesely importances describe how errors and situations are
related and how high the overlay is for failure combinations. In this context the
following aspects are to be mentioned:

• Is the situation or operating condition already existent when the failure occurs
(for example during close loop control) or do we get into an operating condition
or situation and the failure is already existent (for example a switch off channel
does not work in a case of failure)?

• Failures occur sporadically and other failures are only dangerous at a certain
moment in time when a intermediate error occurs.

• Failures are only dangerous in certain situations or operating conditions but also
cannot be controlled in all situations and operating conditions.

These dependencies of failures and the possibilities of the error propagation have
to be analyzed so that if needed, appropriate measurements can be taken.

4.4.2.2 Error Propagation in the Horizontal and in the Vertical

Considering the horizontal levels and different perspectives we can also speak of an
error propagation in the horizontal levels (see Fig. 4.42) and of an error propagation

Element
Input

Valid modes,
Configurations

environments

Output

internal relationship

- No
- Wrong

CI

CI
CO

CO

CC,

CE,

- No
- Wrong

- No
- Wrong

- No
- Wrong

- No
- Wrong

CIR - No
- Wrong

- No
- Wrong

Element
Input

Valid modes,
Configurations

environments

Output

internal relationship

- No
- Wrong

CI

CI
CO

CO

CC,

CE,

- No
- Wrong

- No
- Wrong

- No
- Wrong

- No
- Wrong

CIR - No
- Wrong

- No
- Wrong

Element
Input

Valid modes,
Configurations

environments

Output

internal relationship

- No
- Wrong

CI

CI
CO

CO

CC,

CE,

- No
- Wrong

- No
- Wrong

- No
- Wrong

- No
- Wrong

CIR - No
- Wrong

- No
- Wrong

Higher level of abstraction

Lower level of abstraction

Fig. 4.42 2 level of horizontal abstraction including potential error causes

4.4 System Analyses 131

upwards to the safety goal. Through the inheritance of requirements and the hori-
zontal structure, natural systematic failures are also propagated downwards (for
example from the system to the component). This is primarily accompanied by a
functional analysis and leads in context of the failure analysis relatively quick to an
infinite complexity. Overheating and the consequences in a microcontroller are not
possible to forecast, it is just a probabilistic distribution. In many safety standards
the horizontal propagation of errors are related to safety integrity measures, which
are also considered as safety barriers.

The possible error propagation in the horizontal level can also only be limited
conditionally, since each systematic failure at the specification can for example be a
potential source of error. In order to achieve something like more
error-safeguarding appropriate barriers are needed in the horizontal levels, which
can prevent further error propagation. IEC 61508 proposed in its first edition not to
mix safety-related and non-safety-related software or software of different integrity
levels in one microcontroller.

Other safety standards require that even separate control units are used, since
especially the environmental conditions can also influence the electronic functions
and with separate control units it can be assumed that the functions in different
control units are not dangerously influenced by environmental influences at the
same time in the same way. It is mainly if fail-operational or fault-tolerant functions
are to be considered, but also extensive heat or EMC could lead by common mode
effects to unexpected behavior even if safety mechanisms are correctly
implemented.

ISO 26262 allows different ASIL for software in one microcontroller, and also
having legacy software, software which have not been developed according a
safety-standard or software from foreign sources in a sufficient separated environ-
ment. But except, to perform an adequate “Analysis of dependent failure” the
standards provide no guidance. How to design fault-tolerant or even fail-operational
architectures and designs and how to deal with such horizontal barriers are not
considered in ISO 26262.

Therefore, the question is how to make sure, for example, that the software in a
microcontroller does not get negatively influenced by the surrounding hardware or
the functions, which need to be added in later design phases? In order to reach
sufficient safety all the way to the highest safety integrity levels, it is common
practice nowadays to integrate redundant controller-core in lockstep mode. Even if
the redundant electronic components are used also in power supplies, overall on
printed circuit boards and in common wiring harnesses, this independency can be
reasoned through a sufficiently robust design. However, if we are looking at a
highly available safety requirement, the requirement for an independent energy
supply, which ensures that in the case of malfunctions can still be implemented, is
inevitable. Through the analysis of dependent failure (especially the common cause
and common mode analysis) it is possible to point out on the hardware side that the
chosen components are sufficiently robust in the specified environment so that the
hardware has no negative influence on the redundantly implemented safety func-
tions. This means that all single faults, which through the environment can

132 4 System Engineering for Development …

negatively influence the correct function, are designed so fault-tolerant that this
influence can be ruled out. If it is possible to rule out certain failure through a
sufficiently robust design of the system to the requirements, which arise for the
environment and the design limitations, only the error propagation will be relevant
through the functions within the horizontal level. (Example: A sensor delivers the
wrong value at the input and therefore the microcontroller calculates correctly an
incorrect value at the output).

For functional recursions, such as for example close-loop-control, this analysis
can already lead to a random complexity.

A close-loop-controller could be considered by standard functional elements (see
Fig. 4.43). The control feedback could be influenced by any of the elements of the
entire close-loop-controller. The correct function of the controller cannot be mon-
itored by a comparison of the input and output conditions. Errors at and between the
input and output, at the permitted configurations as well as the defined environment,
can lead to errors in the reference variable, the control deviation, the manipulated
variable, the disturbance variables, the control variable and the feedback and
consequently to failure of the close-loop-controller (Fig. 4.44).

Close Loop Control

Controller System under Control

correcting variable
u(t) control variable

y(t)

disturbance
value
d(t)

Feedback

control
deviation
e(t)command

value
w(t)

Fig. 4.43 Typical closed-loop controller

Higher level of abstraction

Lower level of abstraction

Return feedback

Fig. 4.44 Failure possibilities in a typical control system with return feedback e.g. close loop
control

4.4 System Analyses 133

For a safe close-loop-controller there are more than just one requirement or more
than one permitted operation mode, input condition, possible erroneous environ-
mental influence factor, in many cases it is an array of modes and possible
parameter. Safeguarding by a monitoring or by functional redundancy lead to the
same complexity or heterogeneous implementation, than the close-loop-control
itself. If the monitoring or the functional redundancy based on the same principles
the same systematic errors lead to dependent failure and consequently the
systematic-errors could not be controlled and consequently not avoided.

At the current read back of a valve current (see Fig. 4.45) stuck-at effects can
already lead to higher complexity in the analysis. If the current to the valve is seen
digitally, we will see whether the current, which is provided, is sufficient in order to
open the valve. In this case we need to look at the physical environment of the valve
and the corresponding spring force, which plays a role as counterforce for the
electric design of the coil. Typical ageing effects, such as decreasing spring force,
pressure or temperature dependent influences or sluggishness through the build-up
of dirt can be compensated through sufficient tolerance limits. However, valve
controls are often realized in a way that after the high current to move the valve a
reduced current level are switched, that is sufficient to keep the valve open, but
normally is insufficient to overcome the inertial torque for opening the valve. This
has benefits for the energy or heat design of the valve and the control electronic and
faster opening times can be possibly achieved. This could be relevant if the valves
should open very fast, but also if the valve has to operate against a back-pressure,
which lead to a high inertial force for the valve. The challenge is that there is no
current fixed threshold for the set point, current temperature, aging effects or dirt at
all involved parts could change the driving current for safe opening of the valve.
The opening impulse has to be so high and so long that the valve opens safely.

Higher level of abstraction

Lower level of abstraction

Open valve

Read back current

comparison
Actuator feedback by current

Read back current

Open valve

Trigger valve

NCNC

P dP

FsI

Fig. 4.45 Valve actuation with current monitoring

134 4 System Engineering for Development …

Often we can see at the current or voltage profile (through the induction effect at the
moving of the valve piston through the magnetic field of the coils) whether the
valve opened. Then we can switch to the smaller holding current. However, the
activation current can also be so high that currents are induced, which are too high
and thus cable shielding, EMC safety measurements or other signal carrying ele-
ments are negatively influenced. If the valve for example closes undetected through
vibrations the holding current still indicates an open valve, that the valve had been
closed due to unexpected intensive vibration could not be detected. Furthermore,
the question is whether a read back of the current can happen so quickly that the
resolution of the input filter at an ADC of a microcontroller even permits such
controlling strategy. With an analysis at an upper level of abstraction the entire
failure analysis cannot be performed, since all these detail dependencies have to
first be transparent in realization; all parts and their tolerances and the real aging
effects in the real environment could be considered. If higher current-read-back or
voltage monitoring provides a unique criterion could only conferment if the design
verification is completed.

If such close-loop-controller or monitoring are implemented in a microcon-
troller, all internal failure of the microcontroller could lead to similar error impacts.
Especially the memory effects, which can lead to a signal bouncing or to be stuck-at
in certain conditions, are only analyzable at a very detailed level.

An alternative would be that these possible failures within the horizontal level
are already intercepted in the level above so that in the case of failure, error
propagations upwards to the safety goal could be avoided.

This can lead to a higher fault tolerance design, since entire error chains (errors
in signal chains), which are implemented by means of higher level monitoring,
could minor signal drifts or other short-time effects could compensated in the lower
level signal chain itself (drifts too high in the coil could due to higher current
compensated by inverse heat effects etc.). The higher level safety mechanism
monitors only the resulting effect and only if the control-loop could not compensate
itself, the monitoring should degrade the system.

Self-compensating control-loops in the lower (implementation) level provides
stabile control conditions, so that higher level monitoring only detects a critical
error degradation that could lead to violation of safety goals. In case of a
well-design control loop it means only if the self-compensation mechanism fails
itself. The specification for such monitoring further depends on the safety goals and
the possible error modes, which can occur in the lower levels.

Error propagation in the verticals is often seen from the lower level in an upper
level. However, systematic errors, for example from the determination of the safety
goals, the differentiation of safety requirements to the components and electronic
components or software units, are also errors, which can spread vertically.
Specification errors are systematic errors, if a higher level safety requirement is
wrong and a lower level safety requirement derives from a wrong higher level
safety requirement, also vertical error propagation have to be considered. Without a
verification of requirements through all level of abstraction down to the realization
and sometimes down to production, errors could remain undetected until the

4.4 System Analyses 135

integration tests in the descending branch of the v-cycle. If the integration tests
systematically derives from the requirements in the descending branch of the
V-cycle, than only intensive validations could detect the systematic errors.

4.4.2.3 Inductive Safety Analysis

The inductive safety analysis is described as a bottom-up method. It investigates
unknown failure effects starting with known failure causes. Today the FMEA is the
basic analysis method at all. It has been developed for almost twenty years in
different ways. The classical form sheet analysis (blank table form analysis) can be
called a truly inductive safety analysis, whereas the cause in this context is often
also determined deductively. This means that potentially unknown causes are
examined. All new FMEA methods start with the function, a task or characteristics
of the basic parts and search for potential causes, which could lead to malfunction,
wrong tasks or to deviations of required characteristics of the basic parts. The next
step is the determination of error propagations so that the failure effect can be
determined.

In ISO 26262 three types of FMEA are addressed, the System-, Design- and
Process-FMEA. Depending on the standard the terms are referenced from the
methods to differentiate the level of abstraction, the area of use or the methodology
itself. In the new AIAG standards therefore mention the Design-FMEA at the
system level and the Design-FMEA at the components level. For the verification of
the functional safety concept we are still missing the safety analysis, which should
give the answer, what safety mechanism controls what error modes. In this context
the different company standards often refer to a Draft-FMEA or a Concept-FMEA
at a very early design phase or during drafting the architecture. This is a method,
which could usefully support the verification of the functional safety concept.
The VDA standard describes generally a Product-FMEA that depending on the
product focus or causes, failure of error level, is variably determined; the basic
range based on the scope of the product In this case different set of measures are
considered. It is distinguished between measures during development and during
customer operation. Newer versions consider also a Mechatronic-FMEA, which
considers more electronic hardware and specific analysis approaches. The
Process-FMEA describes the analysis in the production process, whereas the
Process-FMEA is often intertwined with the Design-FMEA. A malfunction (often
the error level) could have its cause in the design (errors due to failure in the
development) or in the production (errors due to failure in the production). In the
sense of ISO 26262 the design of a product is practically examined through the
Design-FMEA and corresponding measures are agreed upon in the development,
which should reduce, mitigate or avoid the occurrence of failure or reduce, mitigate
or avoid error propagations.

All requirements of ISO 26262 from part 5, Chap. 7 could be covered through
the Design-FMEA, if the step of the function to the failure cause would be accepted
as deductive analysis. The question now is if it is possible with a Design-FMEA to

136 4 System Engineering for Development …

differentiation between the error or fault classification after single faults, multiple
faults and safe faults. Single faults will be easily identifiable in the Design-FMEA
because in this case error propagations could be identified into higher abstraction
levels up to the safety goal. If a fault mode has the potential to propagate direct to a
failure which could violate a safety goal, we call it a ‘single-point fault’. If a safety
mechanism for this single-point fault exists, depending on the coverage of the fault
mode the uncontrolled average called a ‘residual fault’. If the fault leads to a safe
failure or if a safe state could be achieved for a fault, without the potential to violate
a safety goal, the fault can be identified as “safe fault”. If there are no functional
dependencies to safety relevant functions for a fault or an effect, which leads to the
violation of a safety goals even in combination with other possible errors, such
faults can be classified as non-safety relevant faults, unless the analysis of the
dependent faults indicates again certain influences. For the multiple faults the norm
points out further classifications such as the perception of the driver, those could
also be technically detectable or latent, which means they could only violate safety
goals if other malfunctions are present. A generic failure combination for
multi-point-faults is already given. If a fault occurs in the function, even if it is a
single fault, which could violate a safety goal and at the same time an implemented
safety mechanism which has the task to control the fault could also have mal-
functions, we have to consider already such failure combination, already as
multiple-point-faults. Multiple-point-faults, which occur through the way of the
realization, are often only identifiable by tests or simulations. Therefore, it is true
that a fault tree analysis as a deductive analysis is a way to illustrate multiple-faults
in their dependencies but in the context of a mere top down analysis failure
combinations can only be derived by analysis functional dependencies also in case
of faults or errors. Due to the rapid increasing number of possible failure combi-
nations, only simulation could give answers to the possible or relevant failure
combinations which lead to multiple-point-failure. Especially dependencies from
systematic failure among themselves or systematic failure in combination with
random hardware failure can only be derived through simulation and experience or
by logical dependencies. Failure simulations, prototype tests with fault-injections
and so on are possible “measures during the development” in the context of
Design-FMEAs.

For the Product-FMEA according to the VDA-standard only different type of
measures are distinguished, such as measure during development or during cus-
tomer operation. Typical Design-FMEAs and specially the term System-FMEAs
are not directly addressed. Due to the scope the Product-FMEA could be applied on
vehicle, system, component, and in case of e.g. semi-conductors on sub-component
(or part) level. How the structure and how the scope of an FMEA could be tailored
based mainly on the complexity and on the product boundary (Fig. 4.46).

In the classical table based Form-Sheet-FMEA, it could be recognized, that we
not performing a pure inductive or bottom-up analysis. We basic principle is to
evaluate on a given function certain failure and in the following steps to identify
failure causes and failure effects.

4.4 System Analyses 137

If we arrange FMEA hierarchically beyond the classical sequence based on
cause of failure, type of failure, failure effect, multiple system levels could be
considered. In that different hierarchical system levels, error propagations could be
avoided within the different level for example in the implementation, the compo-
nent and system design, but also on vehicle level, for example between different
ITEMs or vehicle systems (Fig. 4.47).

In general FMEA addresses only single-point failure. But also multi-point faults
could be examined. This could be considered by the hierarchical structure so that
the given safety architecture safeguards in a higher level the lower level mal-
functions, errors, faults or failure could not lead to violations of safety goals. We
have to consider than the lower level failure as multi-point faults, since the higher
level mechanism could fail and then the lower level failure could lead to a safety
goal violation. It is recommended, that malfunctions of the higher level safety
mechanism could only lead to safe states like de-energizing, enabling of elements,
resetting etc. If not the failure of the additionally implemented safety mechanism in
the higher level become single-point failure. It means additional critical safety
function would be implemented. In this case a further analysis needs to show that
between the two functions no failure combinations lead to the violation of safety
goals, which is required by ISO 26262 for ASIL C and D as an “Analysis of

Fig. 4.46 Classical FMEA method (Source VDA FMEA 1996 [4])

Fig. 4.47 FMEA for multiple system levels for control of multiple-point faults. (Translated
Source: Marcus Abele [2], Modeling and assessment of highly reliable energy and vehicle electric
system architecture for safety relevant consumers in vehicles, 2008)

138 4 System Engineering for Development …

Dependent Failure”. These functional dependencies is an additional analysis, but
also the usage of common resources on implementation level like microcontroller
and on system level like common energy sources (battery, power supply etc.) have
to be considered.

4.4.2.4 Deductive Safety Analysis

The deductive safety analysis is described as a top-down-approach. It examines
unknown causes of failure starting with known failure effects. The old norm for the
“Event Tree-Analysis”, DIN 25424, did define the symbols which had to be used
also as logical or Boolean elements for the Fault-Tree-Analysis. But for the analysis
themselves, many different methodology had been developed.. Reliability block
diagrams describe the logical dependencies in block diagrams and those block
diagrams and their interfaces get analyzed. The result could even be represented in
equations which uses Boolean algebra.

The quantifiable result in FTAs is often calculated as probability for the
unavailability but it can also be considered and calculated positively as probability
of availability.

The deductive analysis is in ISO 26262 required in additions to the inductive
analysis for ASIL C and D elements. The aim in this case is to have a second
independent analysis method, which analyzes the product independently from
top-down and bottom-up. Therefore, the combination of the inductive analysis in
one step with the deductive analysis is not well accepted. An automatic transfor-
mation of one analysis result into another illustration is also not expedient for
safety. Therefore an alternative approach based on Reliability Block Diagrams
could be considered.

The aim of the deductive analysis is primarily to detect possible failure before
design decisions are made. Therefor the deductive analysis should be parallel
during the developing and detailing of requirements, e.g. on the descending branch
of the V-cycle.

The inductive analysis would consequently be the verification to see whether a
design decision etc. is for example sufficient, appropriate, or adequate. This means
that in the first iterations of the deductive analysis only information are available,
which is derived from requirements, constraints etc. from higher abstraction levels.
These could also be environmental conditions, systems or operation modes and
architecture or design decisions or assumptions. This deductive analysis is required
for ASIL C and D in the product development on system level (Part 4 of ISO
26262) and on hardware level (Part 5 of ISO 26262).

Since systems can be divided, structured or broken down hierarchically in
subsystems, this analysis also needs to be applied in the respective sub-system or
sub-components levels. If the systems and components are not hierarchical struc-
tured, the analysis themselves, as well their representation, become very complex.
For error propagation an appropriate representation is often impossible, so that
traceability could not be assured and never proper verified.

4.4 System Analyses 139

Basically, for reliability block diagrams we also assume a systematical breaking
down or decomposition of function blocks through the different abstraction levels.
In the first iteration and on vehicle and system level logical function blocks are
used, which are analyzed through the levels based on their functional dependencies.
In the different levels signal chains could be extracted, which represent a continuous
functional correlation and the required information-, or data-flow in the system.
This could be applied for the intended function, but also the relation and the effects
and influences of the evaluated safety mechanisms could be considered (Fig. 4.48).

At the lower realization level the basic electronic parts could be identified or
even function groups inside semi-conductors. How deep the analysis have to be
considers, dependents mainly on what level the lowest safety mechanism effects the
relevant intended functions of the product.

The realization (see Fig. 4.49) at the lower level is portrayed in the following
simplified circuit diagram.

This circuit diagram is transferred “inductively” in a logic chain (Fig. 4.50).
This logic chain can now be analyzed, whereas the aim of the analysis needs to

be derived from the context or through the architecture up to safety goals. In this
case, we would achieve a de-energized Safe-State for the coil B6 for the following
single failure effects:

• high-resistance failure of the coil B6
• high-resistance failure of the resistor B2
• high-resistance failure of the redundant resistors B1 and B3
• high-resistance failure of the redundant transistors B4 and B5

System

Component level

Vehicle level

System level

I

Implementation level

S II III
VI

V
A

Vehicle System

A B C

Component

F1 F2 F3 F4

Function Group

B1 B2 B3 B4 B5 B6

Fig. 4.48 Break-down of reliability block diagrams

140 4 System Engineering for Development …

If the derived safety requirement would now be the avoidance of an unintended
switch on of the inductivity B6, certain failure modes could dangerously impact the
functional groups in different intensities. All further low-resistance failures of the
electric components would be seen as multiple-point faults. The following argu-
mentation shows how important the correct design of the electric components can
be even for such a simple circuit. Depending on the design, different failure modes
can lead to single or multiple-point-faults.

R1 and R3 would be designed in a way that the transistors cannot both simul-
taneously be connected in case of a single-point-fault. Drifts on specific values of
R2 can cause T1 and T2 to incorrectly switching. Also, a low-resistance fault of T1
could lead to an incorrect activation of the inductivity L1. With that the dangerous
single-point faults are identified. In this context the safe faults as well as single- and
multiple-point faults would be identified. With this design the low-resistance failure

B1

B3

B2

B4

B5

B6

Fig. 4.49 Break-down of
reliability block diagrams

R2

I1

R1

T2

R3

T1

B2

B1

B3

B4

B5
B6

Fig. 4.50 Break-down of
reliability block diagrams
(typical driver design based
on discrete HW parts)

4.4 System Analyses 141

of T1 would still be a single-point fault despite the redundancy of the transistors.
Wrong designed electronic in this case is a systematic error, the question is if a
redesign of components for a higher ASIL would be the solution, or even a change
of the general architecture, should be considered. The question of quantification
would be only the second question.

The quantification of the reliability block diagrams is described precisely in the
literature. There are mathematical approaches and the possibility to illustrate the
result through Boolean algebra. The following basic elements are able to illustrate
possible safety principals in the different structures. The mathematical derivations
are described assuming a simple repairable system (Fig. 4.51).

The failure rate λ and µ are derived from the reciprocal of the MTTF (mean time
to failure) or from the MTTR (mean time to restore). The index “g” means in this
context “total”, “t0” means starting from the t = 0 (time 0).

Therefore the basic functions are quantified as follows (Figs. 4.52, 4.53, 4.54
and 4.55).

Reliability block diagrams can be very well derived from the architecture and
their functional correlations. Since it is relatively easy to transfer the function and its
safety relevant characteristics through a simple mathematical correlation into the
probability of default, the question is whether a negation even makes sense at the
system level, at which the failures from systematic failures primarily show effect.
What is the added value generated by a negation? Isn’t it more important to check the
identification of information and data flows through all the elements as well as the
functional failure modes, which can dangerously impact the functions? Furthermore,
we will be able to identify functional dependencies, since we can easily apply
error-injection methods in the data nets or signal chains. It is not only possible to
identify error propagations in vertical direction e.g. to the safety goals but also
critical cascades, which lead to dependent failure within the horizontal levels, like
faults in sensors that lead to wrong calculations in the microcontroller etc.

Identification of cascading failure addresses ISO 26262 as part of the Analysis of
Dependent Failure, but even it is only required for ASIL C and D, cascading failure
could also lead in ASIL A and ASIL B applications to violations of safety goals.

downup

Fig. 4.51 Simple
quantitative model for a
repairable system

142 4 System Engineering for Development …

Therefore we have the possibility to use the block diagrams for the functional
dependency analysis. The dependencies through the technical realization are again
to be considered by deductive analysis.

The analysis of the failure types is very essential (error or failure modes, possible
error behavior of characteristics of elements etc.). ISO 26262 mentions indications in
the correlating appendices of parts 5 (attachment D) and 6 (attachment D) for the
safety mechanisms, which need to be implemented. For a deductive analysis we can
only determine the possible failure modes from the function, the characteristics of the
function (parameter) as well as their relation to the environment. Error modes like no
function, an incorrect function; a function too lowor too high or drifts can be evaluated
in the context of their Diagnostic Coverage for electronic parts (DC). Furthermore,
sporadic (intermittent or transient) failure, oscillations or other dynamic failure are
derived from the specified intended functions and their characteristics. How and in
what way these errors propagate, depends on environmental conditions. Thus, in a

E1

Fig. 4.52 Probability of faults of a single element

E1 En

Fig. 4.53 Probability of fault of serial elements

E1

E2

1oo2

Fig. 4.54 Probability of fault of parallel elements

E1

E2

1oo2 1oo1 +

E3

Fig. 4.55 Probability of faults of element combinations

4.4 System Analyses 143

cold environment a failure can have a different impact than in a hot environment, for
example when electric components are used at their specification limits. Therefore, a
robust design is required in ISO 26262 or in other safety norms a so-called ‘derating’
(distance to the maximum or nominal design of electric components).

At least during the verification of the technical safety concept the result of the
inductive and deductive analysis need to be merged. Which technical failures
propagate further upwards to the safety goals in what way, how likely, and with
which intensity, is then shown in the overall safety assessment, when all verifica-
tion, integration and validation results are available.

However, the deductive analysis does not start at the point at which ISO 26262
first required it but already in the requirement analysis. Each Chap. 6 of the parts 4,
5 and 6 requires a verification of the requirements. Additionally, part 8 of Chap. 6
requires that the safety requirements are specified in natural language and in formal
or semi-formal notations. Whereas according to the glossary of ISO 26262 the
formal notation is a syntactically and semantically complete notation and the
semi-formal notation is only a syntactically complete notation.

Semantic typically deals with the relations between signs and their meaning and
the correlated statement; syntax defines the rules. Similar to a language, we can
build sentences with the amount of provided symbols (words). The rules for the
building of valid sentences from these symbols (=“grammar rules”) define the rules
for the syntax. If for example we allocate a value to a variable or we use an
inductive loop we need to respect the “grammar rules”.

A wrong syntax leads to error messages for example during compiling of soft-
ware. The meaning of valid sentences of a programming language is called semantic.
It is all about the question what sign sequences cause in a computer: “2 + 4=7” is in
the language of math syntactically correct but semantically incorrect. As a result the
semi-formal method could provide despite the correct description wrong content
results. At the first glance it is not clear why the formal notation isn’t the preferred
method. If a formal method is called upon a wrong context, it will provide wrong
results for the wrong context also semantically and syntactically complete.
Therefore, ISO 26262 mentions the semi-formal notation only as a possibility next to
the natural language to formulate requirements. The sufficient completeness and
correctness is determined by verification according to ISO 26262.

If we use the semi-formal notation to describe requirements, it is useful to also
use this for the same basis of the model description. Because ISO 26262 requires a
verification after each step, systematic failure could be avoided and the consistency
of the work steps and therefore also the work results would be supported. Since the
model is also used as test reference according to ISO 26262, the model matures
alongside the development process, if the product model continuously validated
versus the increasing maturity of the development samples or prototypes. A model
is often based on logical elements or function groups. They describe the structure,
functional correlations of the elements or their technical behavior accordingly.
Therefore, the architecture, the safety analysis and the model should widely have a
common basis or refereeing to the safety relevant characteristics at least, they
should be consistent.

144 4 System Engineering for Development …

4.4.2.5 Quantitative Safety Analysis

There are two chapters in ISO 26262, Part 5, which cover the topic quantified safety
analyses. The main referenced based on reliability analysis and failure rates for
electrical parts, which addresses only random hardware faults. Therefore, the
interpretation of the bathtub curve, the sufficient trust, or confidence in the used data
and the significance of the determined results are always a question of how the
analyses have been performed with which aim. Both metrics of ISO 26262 have
different objectives. Part 5, Chap. 8 describes the following objective:

ISO 26262, Part 5, clause 8:

8.1 Objectives
8.1.1 The objective of this clause is to evaluate the hardware architecture of
the item against the requirements for fault handling as represented by the
hardware architectural metrics.

Although Part 5 addresses product development on hardware level this clause
addresses the architecture of the entire Item, which means at least a complete
vehicle system. It reduces also not only to the safety architecture, it references to the
hardware architecture. By reading the “Objective” the question arises, what is the
hardware architecture on system level? The answer gets another view if we look at
the second part of the objective, which requires considering the defined architecture
metrics to evaluate the architecture. The target of the architectural metrics seems to
be that weak-points in the architecture should be controlled by adequate safety
mechanism. Both the failure rate based fault mode and the percentage-based safety
or control mechanism (DC for Diagnostic Coverage) and their efficiency should be
defined in a quantitative measurable transparent metric.

ISO 26262, Part 5, Clause 8.2:

8.2 General
8.2.1 This clause describes two hardware architectural metrics for the
evaluation of the effectiveness of the architecture of the item to cope with
random hardware failures.
8.2.2 These metrics and associated target values apply to the whole hardware
of the item and are complementary to the evaluation of safety goal violations
due to random hardware failures described in Clause 9.
8.2.3 The random hardware failures addressed by these metrics are limited to
some of the item’s safety-related electrical and electronic hardware parts,
namely those that can significantly contribute to the violation or the
achievement of the safety goal, and to the single-point, residual and latent
faults of those parts. For electromechanical hardware parts, only the elec-
trical failure modes and failure rates are considered.

4.4 System Analyses 145

NOTE Hardware elements whose faults are multiple-point faults with a
higher order than two can be omitted from the calculations unless they can be
shown to be relevant in the technical safety concept.

8.2.4 The hardware architectural metrics can be applied iteratively during
the hardware architectural design and the hardware detailed design
8.2.5 The hardware architectural metrics are dependent upon the whole
hardware of the item. Compliance with the target figures prescribed for the
hardware architectural metrics is achieved for each safety goal in which the
item is involved.
8.2.6 These hardware architectural metrics are defined to achieve the fol-
lowing objectives:

– be objectively assessable: metrics are verifiable and precise enough to
differentiate between different architectures;

– support evaluation of the final design (the precise calculations are done
with the detailed hardware design);

– make available ASIL dependent pass/fail criteria for the hardware
architecture;

– reveal whether or not the coverage by the safety mechanisms, to prevent
risk from single-point or residual faults in the hardware architecture, is
sufficient (single-point fault metric);

– reveal whether or not the coverage by the safety mechanisms, to prevent
risk from latent faults in the hardware architecture, is sufficient (latent-
fault metric);

– address single-point faults, residual faults and latent faults;
– ensure robustness concerning uncertainty of hardware failures rates;
– be limited to safety-related elements; and
– support usage on different elements levels, e.g. target values can be

assigned to suppliers’ hardware elements.

EXAMPLE To facilitate distributed developments, target values can be
assigned to microcontrollers or ECUs.

Clause 8.2.2 considered to be complementary to the examination, which are
required in Chap. 9. The main differences are not directly evident in the norm itself.

The Objective for the second clause is as follow:
ISO 26262, Part 5, Clause 9:

The objective of the requirements in this clause is to make available criteria
that can be used in a rationale that the residual risk of a safety goal violation,
due to random hardware failures of the item, is sufficiently low.

NOTE “Sufficiently low” means “comparable to residual risks on items
already in use”. Also the metric from clause 9 addresses the whole Item,

146 4 System Engineering for Development …

which is again a whole vehicle system. Here is the focus not on the archi-
tecture of the system; the focus is more on a rational of the residual risk
related to each safety goal.

The general requirement that derive from the objective addresses mainly the 2
possible methods to fulfil the requirements from clause 9.

Also these two methods are based on random hardware failure; they are defined
in the Annex C of Part 5.

ISO 26262, part 5, appendix C:

The failure rate k of each safety-related hardware element can therefore be
split up as follows (assuming all failures are independent and follow the
exponential distribution):

a) failure rate associated with hardware element single-point faults: kSPF;
b) failure rate associated with hardware element residual faults: kRF;
c) failure rate associated with hardware element multiple-point faults: kMPF;
d) failure rate associated with hardware element perceived or detected
multiple-point faults: kMPF DP;
e) failure rate associated with hardware element latent faults: kMPF L;
f) failure rate associated with hardware element safe faults: kS

then k ¼ kSPF þ kRF þ kMPF þ kS and kMPF ¼ kMPF DP þ kMPF L.

ISO 26262 presents in part 5, appendix C, Figs. C.2 and C.3, these correlations as
pie chart (see Fig. 4.56) as well as mathematical formulas. The metrics are mentioned
first in part 4 of ISO 26262 in Chap. 6 under the heading ‘Avoidance of Latent
Failure’ (part 4, 6.4.4). In this context the requirement 6.4.4.3c demands the quan-
titative budgets for the top failure metrics. This demand is widely repeated in the
requirement 7.4.4.3. The requirement 7.4.4.4 describes in such detail that for both
metrics in part 5, Chap. 8 (Architecture Metrics) and part 9 (Top Failure Metrics),
target values for the failure rates and diagnosis coverage should be specified.

Chapter 7, part 4 addresses the system design, the technical safety concept and
their verification, which should be derived from the functional and technical safety
requirements. Therefore, in requirement 7.4.3.1 the inductive (for all ASILs) and
deductive (for the higher ASILs) safety analysis is required. In this context of
product development on system level it is primarily a matter of the analysis of
systematic failure. In one indication (note 1) it says that a quantitative analysis can
support the results.

Consequently, no quantification is required in part 4, in order to analyze the
system design. Only the planning of the targets for the metrics is required.
Especially if we have to consider that “dependent failure” could be seriously impact

4.4 System Analyses 147

the correct functioning of the system, and leading to failure which could violate
safety goals. In this context we detect for functional failures based on common
causes or failure cascades that the essential resulting weaknesses in the design and
in the realization. The challenge is to structure the failure analysis also in a way that
the different dependencies of the components and the system environment can be
considered or excluded; we have to define constraints and criterion for “sufficient
independence” or “sufficient freedom from interference”. In this case we will have
no option but to actively define and specify separations mechanisms for the system
architecture. This applies not only for the software, for example for the planning of
a partitioning; there are also plenty of dependencies in the hardware, which cannot
be considered in their full impact. For electronic hardware geometric distances,
insolation etc. for parts, wiring, and harness and layout rules for the printed circuit
board could be considered as solutions.

IEC 61508 published several models for the quantification of the dependency
factor (Beta factor). However, it could not be included in ISO 26262, since it
questioned the general validity of such quantification. The question is how to safely
ensure a sufficient partitioning of the dependency especially of the functions and the
signal line for the hardware, how could possible impacts be quantified? For the
quantification according to ISO 26262 the single faults and the credible and

Fig. 4.56 Pie charts (Baumkuchen-Diagram) for the failure classification (Source ISO 26262,
Annex C)

148 4 System Engineering for Development …

possible failure combinations need to be excluded in any case. In the hardware
design this is only possible by sufficient robust and fault tolerant design.

Consequently it is important to make sure that by developing the safety archi-
tecture separations should be considered and adequate barriers are specified so that
also for all sub-elements quantitative budgets could be specified. It is generally
known that failure can propagate according to all dependencies in the positive
means along all functions, but in case of faults in complete other dependencies. In
part 9, Chap. 7 (Analysis of Dependent Failure), the following list of possible
impacts is provided by ISO 26262. In the following chapters of the book the list
will be considered for higher level ASILs, but most of the criterion should be
already considered by the general design of electronic hardware, even for QM
functions.

4.4.2.6 Architecture Metrics

Target of the “Architecture Metrics” is making the safety architecture assessable
and comparable.

The “Single-Point Fault Metric (SPFM)” is defined as follows:
ISO 26262, Part 5, Annex C:

C.2 Single-point fault metric
This metric reflects the robustness of the item to single-point and residual
faults either by coverage from safety mechanisms or by design (primarily safe
faults). A high single-point fault metric implies that the proportion of single-
point faults and residual faults in the hardware of the item is low.
C.2.1 This requirement applies to ASIL (B), C, and D of the safety goal. The
definition given by the following equation shall be used when calculating the
single-point fault metric:

Single-Point Fault metric ¼ 1�

P

safety�relatedHWelements
kSPF þ kRFð Þ

P

safety�relatedHWelements
k

¼

P

safety�relatedHW elements
kMPF þkSð Þ

P

safety�relatedHWelements
k

where
P

safety related HW elements
kx is the sum of kx of the safety-related hardware

elements of the item to be considered for the metrics (Elements whose failures
do not have the potential to contribute significantly to the violation of the
safety goal are excluded from the calculations).

4.4 System Analyses 149

In order to qualify elements or components or by evaluation a DC by means of
Monte-Carlo-Simulations, the following formula could be considered:

ISO 26262, Part 5, Annex C:

The failure rate assigned to residual faults can be determined using the
diagnostic coverage of safety mechanisms that avoid single-point faults of the
hardware element. The following equation gives a conservative estimation of
the failure rate associated with the residual faults:

DCwith respect to residual faults : Diagnostic Coverage as a percentage

DCwith respect to residual faults ¼ 1� kRF estimated

k

� �
� 100

kRF � kRF estimated ¼ k � 1� DCwith respect to residual faults

100

� �

The “Latent-Fault-Metric (LFM)” is defined as follows:
ISO 26262, Part 5, Annex C:

C.3 Latent-fault metric
This metric reflects the robustness of the item to latent faults either by cov-
erage of faults in safety mechanisms or by the driver recognizing that the fault
exists before the violation of the safety goal, or by design (primarily safe
faults). A high latent-fault metric implies that the proportion of latent faults in
the hardware is low.
C3.1 This requirement applies to ASIL (B), (C), and D of the safety goal. The
definition given by the following equation shall be used when calculating the
latent-fault metric:

Latent Fault metric ¼ 1�
P

safety�relatedHWelements kMPFLatentð Þ
P

safety�relatedHWelements k� kSPF � kRFð Þ

¼
P

safety�relatedHWelements kMPFperceived or detected þ kS
� �

P
safety�relatedHWelements k� kSPF � kRFð Þ

where
P

safety�relatedHWelements kx is the sum of kx of the safety-related hard-
ware elements of the item to be considered for the metrics (Elements whose
failures will not have the potential to contribute significantly to the violation
of the safety goal are excluded from the calculations).

150 4 System Engineering for Development …

In order to determine DC the formula could be consider as follow:

The failure rate assigned to latent faults can be determined using the diag-
nostic coverage of safety mechanisms that avoid latent faults of the hardware
element. The following equation gives a conservative estimation of the failure
rate associated with latent faults:

DCwith respect to latent faults : Diagnostic Coverage as a percentage

DCwith respect to latent faults ¼ 1� kMPFL estimated

k

� �
� 100

kMPFL � kMPFL estimated ¼ k � 1� DCwith respect to latent faults

100

� �

NOTE 2 For this purpose, Annex D can be used as a starting point for
diagnostic coverage (DC) with the claimed DC supported by a proper
rationale.
NOTE 3 If the above estimations are considered too conservative, then a
detailed analysis of the failure modes of the hardware element can classify
each failure mode into one of the fault classes (single-point faults, residual
faults, latent, detected or perceived multiple-point faults or safe faults) with
respect to the specified safety goal and determine the failure rates apportioned
to the failure modes. Annex B describes a flow diagram that can be used to
make the fault classification.

These architecture metrics are based on reliability data of elements and bring
them in relation to the implemented control mechanism, which are the implemented
safety mechanism. Random hardware failures of the electronic components are used
as a basis for the data.

In general the architectural metrics could be considered as a process metric. The
following activities are necessary to fulfill the metric requirements:

• Identification of all elements or electrical parts involved in the safety-related
function (identification of non safety-relevant elements also called don’t care
elements or parts in other standards).

• Identification of the safety-related signal chain (Safety-related information or
data flow e.g. to the microcontroller (Logic Solver) and the actuator and vis
verse).

• Identification of elements or parts which are relevant for the functions related to
the specific safety goals.

• Identification within the boundary analyzed before all “safe” elements or parts,
that mean, elements that could fail however, could not violate safety goals even
in combination at least in second order (Multiple-Point-Faults).

4.4 System Analyses 151

• For all residual elements or parts, which have somehow the potential to violate
given safety goals, it should be identified, if their fault-modes could propagate
direct to a safety goal violation, than these fault-modes have to be considered as
single-point faults, if only indirect or by order higher than 2 they are
multiple-point fault.

• Identification of already implemented redundancies or monitoring, which could
be considered as a safety mechanism.

• Identification or evaluation of all required safety mechanism and their effec-
tiveness by using tables in Part 5, Annex D or by other methods like
Monte-Carlo-Simulations etc.

• Optimizations, unless the targets for the metrics are fulfilled.
• Specification of all implemented (or to be implemented) safety mechanism

based on the analysis.
• Development of a test concept to show sufficient effectiveness of all safety

mechanism.

Through the quantification the failure probabilities and the effectiveness of each
safety mechanisms become comparable and an assessable. It is not clearly stated in
ISO 26262 at which level the lower limits for the assessment need to be set or the
process chains should run. An element is referenced for the metrics, which means it
is not general necessary to trace down on electrical part level. Since ASIL B is in
brackets, a higher element level could be considered, such as functional blocks and
the main arguments for the metrics derived from the architecture and safety
mechanism like current read-back from the actuator etc. The basis data can be used
from known table out of data manuals like reliability hand-books etc., field data or
by expert judgment. However, in Chap. 8 we do not find a reference to part 5,
appendix F, since the precise quantification would not be expedient in this case.

The focus for the data evaluation for the architectural metrics is defined as
follow:

ISO 26262, Part 5, clause 8.4.7:

8.4.7 This requirement applies to ASIL (B), C, and D of the safety goal. For
each safety goal, the whole hardware of the item shall comply with one of the
following alternatives:

a) to meet the target “single-point fault metric” value, as described in 8.4.5, or
b) to meet the appropriate targets prescribed at the hardware element level
which are sufficient to comply with the single-point fault metric’s target value
assigned to the whole hardware of the item, given in requirement 8.4.5, with
the rationale for compliance with these targets at the hardware element level.

NOTE 1 If an item contains different kinds of hardware elements with sig-
nificantly different failure rate levels, the risk exists that compliance with the
hardware architectural metrics only focus on the kind of hardware elements
with the highest magnitude of failure rates. (One example where this can

152 4 System Engineering for Development …

occur is for the single-point fault metric for which compliance can be
achieved by considering the failure rates for failures of wires/fuses/
connectors, while disregarding the failure rates of hardware parts with
significantly lower failure rates). The prescription of appropriate metric
target values for each kind of hardware helps to avoid this side effect.

NOTE 2 The transient faults are considered when shown to be relevant due,
for instance, to the technology used. They can be addressed either by spec-
ifying and verifying a dedicated target “single-point fault metric” value to
them (as explained in NOTE 1) or by a qualitative rationale based on the
verification of the effectiveness of the internal safety mechanisms imple-
mented to cover these transient faults.

NOTE 3 If the target is not met, the rationale for how the safety goal is
achieved will be assessed as given in 4.1.

NOTE 4 Some or all of the applicable safety goals can be considered together
for the determination of the single-point fault metric; but in this case the
metric’s target to be considered is that of the safety goal with the highest
ASIL.

Note 1 provides the target for the data on consistency rather than precision of the
quantified data.

The most important result of a quantified analysis is more the average and related
fault-modes which is “undetected” rather than looking at the result of the metric
calculation and the result themselves. Therefore, a distribution of the failure modes
of the electronic components in detail is not even that important. This is why it
makes no sense to really use other failure distributions for the architecture metrics
than those Alexandre Birolini published in his book. For a failure average of an
electronic component of less than 10 % an assessor will possibly become skeptical
and could check, which influence a higher value could have on the result. Of
course, for example short-circuit-proof capacitors exist, but in this case we could
also bring credible arguments. The effectiveness of the safety mechanism based on
analogies to tables in part 5, appendix D. Diagnosis coverage (DC) significant less
than 90 % will not be questions at all, because if there is any safety mechanism at
least half of the fault-mode (50 %) could be always covered. But if a safety
mechanism could cover within the entire specification space all the fault-modes
with 99 % or even more, could not be easily shown. It is useful to verify the
effectiveness of all diagnoses (DCs) by appropriate fault-injection tests.

The target value for the architecture assessment could also be derived from a
comparable design. However, it is questionable, if all information are available
from the comparable design, and if the relevant environment and all the relevant
functions, and technical impacts are really the same. Even the additional overhead

4.4 System Analyses 153

needed to prove that these 2 designs and architectures are really the same or
sufficient equivalent, could mean an enormous effort.

ISO 26262 only recommends the architecture metrics for ASIL B and requires
the latent failure metric only for ASIL D functions. If the quantitative approach
from IEC 61508, often called FMEDA(forms mainly in MS-Excel and based on
part-count method with the fault-distribution as described by Alexandre Birolini,
see also ISO 26262, Part 5, Annex E), is recommended or a more deductive
approach should be applied could depend on the application. A deductive approach
could provide also insights related to systematic faults and non-functional failure,
by a pure part-could approach, this could be questioned.

Normatively are only the fulfillment of requirements and the normative results of
the metrics required. In order to support a verification of the electronic design an
inductive quantitative analysis, which considers the error propagation to the safety
goal would be recommended, but would it be the target of the architectural metrics
or more for the metrics required in Part 5, clause 9 of ISO 262626? The causes of
failure can be determined deductively at the electronic components in a functional
electronic group; such groups could be considered as electronic elements. Through
the qualitative failure propagation of the relevant failures to the highest malfunc-
tions (malfunctions that could violate safety goals), quantifications could be
assessed and classified through a calculations or a Monte-Carlo simulation.
Consequently, it would not be considered a pure inductive or deductive analysis. It
could be a deductive analysis from functional error modes of electronic or func-
tional groups up to safety goals, and for the critical elements an inductive analysis
related to all faults modes of relevant hardware parts. This has the advantage that in
the consideration also the functional electronic groups are tested according to their
sufficient robust design for example accompanied by a Design-FMEA and therefore
the stress factors (e.g. pi factors) for the failure rates are could be tested as part of
the design verification process, so that the requirements from part 5, Chap. 7 are
widely fulfilled. Without a sufficiently robust design, which is required in Chap. 7,
safety architecture also isn’t sufficiently robust itself. Furthermore, there are
advantages to see that the tables in appendix D and the suggestions for the quan-
tifications of the diagnosis coverage also cover systematic errors in the electronic
components and their environment.

If a resistor is safe-guarded against open circuits, the printed circuit board, the
junctions and the solder joint of the resistor are also safeguarded against possible
open circuits. Especially safety mechanisms, which work at higher levels, for
example on system level, could control also systematic faults in entire signal chains
(e.g. from sensor to the software interface in a microcontroller. Safety mechanism
on higher system level could lead also to higher availability and/or better failure
tolerance. Such an implemented safety mechanism could only react to on critical
failure behavior of electronic components any non-critical error could be tolerated
or the threshold of the diagnosis could be adjusted exactly to the critical level.

If an ASIL A (ASIL A(D)) function is part of an ASIL-Decomposition of
ASIL D function, the signal chain also for the implementation in ASIL A have to be
quantified. If all possible failures of an ASIL B function have a safety mechanism

154 4 System Engineering for Development …

with diagnosis coverages higher than 90 %, it can also be argued that through the
percentage of safe failure the target goals of more than 90 % can also be achieved
without a quantification of the detailed fault modes of the hardware parts. Often also
the architecture metrics are used as an abort criterion, since part 4 requires con-
sidering corresponding safety mechanisms for all possible systematic failures. In
case of using current or voltage read-back for safety-relevant actuator functions and
functional redundancy for sensing of safety-relevant effects, to prevent systematic
failure, also the random hardware faults are sufficiently covered at least by a SPFM
of better than 90 %, which is sufficient for ASIL B.

If safety mechanisms against all possible systematic failures would be imple-
mented at the system level, all random failures in the E/E hardware are also cov-
ered. By adequate verifications and integration according ISO 26262 any further
design error in the components could be identified.

Main analysis for the architectural metrics is to make the safety relevant signal
chains transparent and add adequate safety mechanism in case of weaknesses.
Inspired by Robert Lusser, the signal chains are a chain of elements and the weakest
parts should be enforced by means of safety mechanism. A typical safety mecha-
nism consist of a part that can detect, malfunctions such as fault, errors or failure
and a part that could control the malfunctions. It should be able to degrade the
system to a safe state or switch to dissimilar redundant functions, which are
identified as error free during runtime. Therefore, the entire signal chains and its
elements (chain links) need to be identified. The quantification after Erich
Pieruschka is primarily used to make the strengths of the chain links comparable.
What is important: The safety relevant function is first subject of the analysis. The
correct functioning of the safety relevant function has to be assured. If this is
provided by adequate measures such as implemented safety mechanism and control
measures, this forms architecture to safety architecture.

The quality of the detection and the level of control of fault or error modes are
quantified as diagnosis coverage (DC). With help of this quantification the entire
safety architecture could be quantified so that the degree of safety, effectiveness
related to safety becomes comparable, measurable and assessable.

The identified weak chain links of the safety architecture are then the essential
input for top failure metrics. The weak links now need to be assessed based on the
realized design, which should be task of the following metric.

4.4.2.7 Top Failure Metrics (Probabilistic Metric for Random
Hardware Failure, PMHF)

ISO 26262 describes two alternative methods to assess the influence of failures in
the design or realization in relation to the safety goals. The first method considers a
quantitative evaluation of the probability that random hardware faults violate a
specific safety goal. Alternatively it is assumed that in a safe design and its correct
realization, about one hundred single-point or residual faults could be identified,

4.4 System Analyses 155

which have the potential to violate a specific safety goal. This is why per
single-point, residual or possible failure combination 1 % of the target values is
determined for each single or remaining fault in the safety-relevant system. This is
an interesting approach for a component development, for which the system inte-
gration is unknown. It generally leads to very conservative analyses. If the cutsets at
the higher system levels are analyzed in more detail, the errors propagate with far
less probability to the safety goal. However, the method could be an interesting
approach, since the metric requires also a very reliable system. This method banks
on the fact that the occurrence of faults can be avoided or its probability drastically
reduces.

The top failure metrics officially called PMHF (Probabilistic Metric for random
Hardware Failures) in ISO 26262. It represents a comparable metric such as PFH
(Probabilistic Failure per Hour) of IEC 61508. The top failure metrics of ISO 26262
focuses on failure probabilities, with which a safety goal could be violated, whereas
PFH according to IEC 61508 is all about the probability of a danger through the
system. Both target values of the metrics are specified in failure per hour (failure in
time, FIT = 10E−9 h). Also in this case we assume an exponential distribution of
the basis failure rate. The key difference between PFH and PMHF is that the PMHF
is per safety goal and PFH for a safety-related system. The PFH considers mainly
the probability that the system reaches in case of failure a de-energized safe state.

According to ISO 26262 there are three different alternatives for the quantitative
goals.

ISO 26262, Part 5, Clause 9.4.2.1:

9.4.2.1 This requirement applies to ASIL (B), C, and D of the safety goal.
Quantitative target values for the maximum probability of the violation of
each safety goal due to random hardware failures as required in ISO 26262-
4:—, 7.4.4.3 shall be defined using one of the sources (a), (b) or (c) of
reference target values as outlined below.

NOTE 1 These quantitative target values derived from sources (a), (b), or
(c) do not have any absolute significance and are only useful to compare a
new design with existing ones. They are intended to make available design
guidance as de-scribed in 9.1 and to make available evidence that the design
complies with the safety goals.

a) Derived from Table 6, or
b) Derived from field data from similar well-trusted design principles, or
c) Derived from quantitative analysis techniques applied to similar well-
trusted design principles using failure rates in accordance with 8.4.3.

NOTE 2 Two similar designs have similar functionalities and similar safety
goals with the same assigned ASIL.

156 4 System Engineering for Development …

Since ISO 26262 is still new in the automotive industry, it will currently be
difficult to get the derivation of the target value from field data or statistical cal-
culation methods. ASIL C and D systems haven’t been around and unchanged for
long with the same operating conditions. It would be very ambitious to come up
with any statistical hypothesis to the quantification without such a field experience.
This is why in practice often only the Table 6 is considered (Fig. 4.57).

Since this metric follows in the standard one clause later than the architecture
metrics, the focus is more on the realized design and not on the architecture. This is
why it is questionable whether the same values for the random hardware failures as
for the architecture metrics can be used. If the EE hardware of an ITEM really has
100 minimal cutsets or one hundred single-point or residual faults, controlled single
faults (remaining fault percentage) or credible error combinations with an order
higher than 2, it will be very hard work for the design to prove it. The identification
of all safety-relevant first-order cutsets at least is formally given by the architecture
metrics and the analysis of the dependent failures. Quantification is often difficult,
since the realization for example relies for all environmental impact on the
robustness of the design, rather than on random hardware faults. Systematic errors
in semiconductors, electromagnetic immunity (EMI) or their electromagnetic
compatibility (EMC) heat dependent errors could also lead to violation of safety
goals, but the quantification and their relation to random hardware errors are not
quantifiable, since the relation depends on to many factors. In many cases only
sufficient robustness, conservative design and expert judgement e.g. by analogies to
similar cases could provide safety arguments. Complementary statistical stress tests
lead only to results, if the number of influencing stresses is limited.

The second alternative method considers being very conservative, but it does not
support to identify impacts of systematic errors on the error propagation. Therefor
the method could not provide further safety arguments. Some of the safety-relevant
failure could be identified by the Analysis of Dependent Failure, but the analysis
and the metric don´t any systematic approach about the probability of error prop-
agation and possible or probable potential to violate safety goals. System with
multiple safety goals, for which the error propagation to the safety goal is already
very heterogeneous, due to overlapping of failure modes between safety goals such
structure lead even to more combinations so that only qualitative arguments could
be provided.

ASIL
Random hardware failure target values

D < 10-8 h-1

C < 10-7 h-1

B < 10-7 h-1

NOTE These quantitative target values described in this table can be
tailored as given in 4.1 to fit specific uses of the item (for instance if the item
is able to violate the safety goal for durations longer than the typical use of a
passenger car).

Fig. 4.57 Target values for top failure metrics (Source ISO 26262 part 5, Table 6)

4.4 System Analyses 157

The minimal cutsets for systems are not only on E-hardware level, they are more
on system level. The probability of the error propagation on system level is rather
determined by the systematic error influences than the quantitative probability of
the occurrence of random hardware failure. This analysis is often also called sen-
sitivity analysis or importance analysis (Fussell-Vesely importance, Birnbaum
importance etc.). Through the analysis and definition of the relative influence of
individual basis events at the default probability of a top event, quantification is also
possible. Whether the result of such an analysis of the importance is actually
represented in the form of a tree or more clearly arranged in form of spreadsheets,
should result from the concrete analysis. In this analysis we don’t determine the
position in the hierarchy, which should already be considered through the archi-
tecture metrics. Furthermore, in Chap. 9 we no longer discuss whether we analyze
inductively or deductively. At this point the focus lies on the assessment of the cuts
in the system. Caution should be exercised in this context for the failure combi-
nations of systematic and random hardware failure. Especially design related failure
such as signal cross talking; EMC or heat influences essentially change the
importance and therefore the probability to propagate to safety goals. These
influences are often very difficult to quantify. For an analysis of dependent failure
ISO 26262 doesn’t explicitly require such an analysis for the lower ASIL as well as
for the cutsets where no functional redundancies occur.

The architecture metrics are primarily used to assess the architecture. Top failure
metrics rely on the realized design—the final product. Therefore, there are essential
more in depth requirements for the accuracy of the failure rates. Their influence
factors and the relation of the results are often based on different data sources.

ISO 26262, suggests in part 5, appendix F the following recalculation for the
different data sources for the top failure rate and causes of failure:

ISO 26262, Part 5, Annex F:

Therefore, in the calculations, different failure rates sources can be used for
different hardware parts of the item. Let Ta, Tb, and Tc be the three possible
sources for the definition of the target values for the PMHF and Fa, Fb, and
Fc be the three possible sources for the estimation of a hardware part failure
rate. Let pFi!Fj be the scaling factor between sources Fi and Fj. This factor
can be used to scale a hardware part failure rate based on Fi to a failure rate
based on Fj.

pFi!Fj can be defined as pFi!Fj ¼ kk:Fj=kk:Fi

Where

kk:Fj is the failure rate for a hardware part using Fj as the source for the failure
rate; and
kk:Fi is the failure rate for the same hardware part using Fj as the source for
the failure rate.

158 4 System Engineering for Development …

In this case, knowing the corresponding scaling factor enables the scaling of a
similar hardware part failure rate based on Fi to a failure rate based on Fj:

kl;Fj ¼ pFi!Fj � kl;Fi:

The following chart provides an overview and the relation of the different Pi
factors.

ISO 26262, Part 5, Annex F:

Table F.1 shows the possible combinations of target values and failure rates
NOTE 1 The targets of Table 6 are based on calculations using handbook
data and under the assumption that handbook data are very pessimistic.
NOTE 2 If the source of data for the target and for the hardware part failure
rate are similar, then no scaling is necessary.
Table 1 Possible combinations of sources of target values and failure rates to produce
consistent failure rates for use in calculations

Data source for Target Value

Table 6
9.4.2.1 a

Field data
9.4.2.1 b

Quantitative
analysis
9.4.2.1 c

Data source for
failure rates of
hardware parts

Std.
Database
8.4.3 a

kk;Fa (1) kk;Fb ¼ pFa!Fb � kk;Fa (2)

Statistics
8.4.3 b

kk;Fa ¼ pFb!Fa � kk;Fb kk;Fb (2)

Expert
judgment
8.4.3 c

kk;Fa ¼ pFc!Fa � kk;Fc kk;Fb ¼ pFc!Fb � kk;Fc (2)

(1) For some types of hardware parts, different handbooks can give different estimates of the failure rate
of the same type of hardware part. Therefore the scaling factor can be used to scale the failure rates of a
hardware part using different handbooks
(2) To have a consistent approach, failure rates have the same origin as the failure rates used in the
calculation of the target value

The table considers target values on vehicle level also in relation with data for
hardware parts. Getting target value for a new function from field data would be
very questionable and as all ready discussed of comparable systems and their
quantification are really available is also very doubtful. Therefor it seems to be very
probable to use the data from Table 6. ISO 26262 provides 2 examples for the
recalculation:

4.4 System Analyses 159

ISO 26262, Part 5, Annex F, Example 1:

EXAMPLE 1 Evidence can be made available that 10�8=h with a 99 % level
of confidence is similar to 10�9=h with a 70 % level of confidence. Therefore
failure rates based on a recognized industry source considered with a 99 %
level of confidence can be scaled to failure rates based on statistics with a

70 % level of confidence using the scaling factor pFa!Fb ¼ 10�9=h
10�8=h ¼ 1

10 or the

other way round.NOTE 3 Based on experience, a 99 % level of confidence
can be considered for failure rates based on recognized industry sources as
referred to in 8.4.3.

ISO 26262, Part 5, Annex F, Example 2:

EXAMPLE 2 From a previous design, calculated failure rates from a data
handbook and warranty data have been obtained. We know that

khandbook=kwarranty ¼ pFb!Fa ¼ 10:

where

khandbook is the calculated failure rates from a data handbook,
kwarranty is the calculated failure rates from warranty data and
pFb!Fa is the resulting scaling factor.

If in a new design, we use the handbook data to determine the failure rates
except for one hardware part (hardware part 1) for which we have only
warranty data, then we can determine the handbook scaled data for this
hardware part, k1;handbook ¼ pFb!Fa � k1;warranty.

Where

k1;handbook is the failure rate of the hardware part 1 using handbook data and
k1;warranty is the failure rate of the hardware part 1 using warranty data.

For instance, if k1;warranty ¼ 9� 10�9=h, then k1;handbook can be calculated
as 9� 10�9 � 10 ¼ 9� 10�8=h.

Using this k1;handbook, a consistent evaluation of the violation of the safety
goal due to random hardware failures can be done.

160 4 System Engineering for Development …

For practical use, these examples propose for the top failure value data from
Table 6 and data from field observation could be scaled by a factor 10 with data from
handbooks. Especially for the real stress which effected the hardware parts from field
observation is not anymore traceable, as a consequence the factor 10 seems to be
sufficient conservative estimation for the data in relation to handbook data which
give guidelines how to deal with stress factors for heat, voltage, current etc.

4.4.2.8 Failure Metrics for Sensors or other Components

All metrics are based on an item, which are at least a vehicle system and the
respective safety goals. How a single sensor or another components could be
quantified, which could be also integrated in many different ways, is not really
considered in ISO 26262. The question arises, what are the target values and what
are the typical stress figures for base failure rate? For the architecture metrics a
single channel system based on ASIL D components a DCSPF of 99 % has to be
achieved. Whether this value can be achieved only with measures within the
component limits or also with external measures is a difficult question.

Measures or implemented safety mechanisms cost money, resources and
development time, which are always difficult to be aware of, if it is not planned
ahead of the development of an entire system. It is even more difficult if such
components are run in ASIL decomposition. In this case there may be three parties
involved, which have to come to an agreement for the failure control, the redundant
parts and most likely a common element such as voter, comparator or similar.

Two diverse sensors and a separate electronic control unit would be an
often-realized ASIL decomposition. However, it is not all about distributing the
measures to the elements involved, but it is necessary to figure out, which measures
or safety mechanism are even necessary against which failures. In order to do so,
we would need the failure analysis of both sensor signal chains and details of the
possible failure effects at the interfaces of the elements. If the safety mechanisms
should be implemented in the electronic control unit, the specification of the failure
effects of the redundant sensor signal chain builds the foundation of those safety
mechanisms. The main safety effect based on the fact that it is unlikely that a certain
failure effect occurs simultaneously in the redundantly implemented signal chain. If
the errors in the signal chain do not occur at the same time a comparator could
detect unequal information as an output of the signal chain. To quantify and specify
such failure effects and a deterministic prognosis for example in which operating or
driving situation they occur could be challenging. Without detailed behavior of the
failure effects it cannot be evaluated whether the failure can be safely and reliably
detected by the comparator. The advantage of such an approach is that the com-
parator can be set in a way that it actually only switches off when the occurring
failure would otherwise propagate to a safety goal.

4.4 System Analyses 161

If an ASIL decomposition (see Fig. 4. 58) would consist of these two sensor
chains (S1 and S2) as well as the electronic control unit (ECU), all errors (MFxx,
malfunction) would need to be sufficiently controlled according to ASIL.

The architecture metrics (single-point fault metrics (SPFM) and latent failure
metric (LFM)) would result from the safety architecture and would be a mathe-
matical function of the failure rates (MFxx) and the implemented safety mecha-
nisms (DCxx).

The top failure metric (PMHF) has to be budgeted and distributed in different
ways. In this context a budget of 1 Fit per sensor is often given per safety
requirement at the sensor interface. The 1 Fit results from 10 % of the overall
proportion of an item in case of ASIL D, which is budgeted for the sensor. Often, it
is also indicated that there cannot be any single faults, which are more than 1 % of
the target values for the overall target value of the item. This would be 1 % for an
ASIL D safety goal of 10 Fit, thus 0,1 Fit. The source of these target values results
from the second alternative metrics in Chap. 9 of part 5 of ISO 26262. This can lead
to low target valued for redundancies and therefore to a very conservative quan-
tification. However, since it often occurs that within the specified application space
not all comparators are set on 99 % detection or certain failure conditions can’t
even be covered, the fit rates are still conservative even for such applications. The
quantitative analysis of ASIL-decomposition can only be performed by a system
integrator, since the effectiveness of the safety mechanisms and the error propa-
gation to the safety goal can only be analyzed and made transparent by a top view
from a higher architectural level, which at least consists of the redundant signal
chains and the comparator.

ECU

S2

=

MF31
MF32

MF33

E4 E5

MF12
MF13

MF14
MF15

MF16
MF11

E2 E3 E1

S1MF1
MF2

MF3MF4
MF5MF6MF7

MF8MF9

SPFM: = f (λλ MFxx . DCxx)

Fig. 4.58 Errors in redundant signal chains for a sensor inside and outside of the boundary

162 4 System Engineering for Development …

4.4.2.9 Analysis of Dependent Failures (ADF)

ISO 26262 defines common cause, common mode and cascading as dependent
failure. Dependent failure are defined as follow:

ISO 26262, Part 1, Clause 1.22:

1.22 dependent failures
failures (1.39) whose probability of simultaneous or successive occurrence
cannot be expressed as the simple product of the unconditional probabilities
of each of them

NOTE 1 Dependent failures A and B can be characterized when

PAB 6¼ PA � PB

where:
PAB is the probability of the simultaneous occurrence of failure A and

failure B;
PA is the probability of the occurrence of failure A;
PB is the probability of the occurrence of failure B

NOTE 2 Dependent failures include common cause failures (1.14) and cas-
cading failures (1.13).

This definition of dependability is also called the Kolmogorov’s zero-one law. It
is one of the laws of large numbers, since according to the definition only two cases
exist, either there are dependencies or there aren’t. Since we already learned that a
complete independency could rarely be achieved, ISO 26262 speaks of a sufficient
independency. Failures of common causes or failure dependencies between func-
tions, which can affect through different mechanisms, are often no longer analyz-
able with the classical methods. In this case we can often only rely on experience.
For functional dependencies we can systematically analyze a lot of things from the
functional chains and their derivation in the different horizontal abstraction levels.
A barrier, independent if it is a functional or technical barrier, or whatever tech-
nology it is, could be only assessed for its sufficiency or effectiveness, in the
specific context and for possible failure effects (Fig. 5.59).

There are 2 definition or 2 types defined in ISO 26262.
ISO 26262, Part 1, Clause 1.13:

1.13 cascading failure
failure (1.39) of an element (1.32) of an item (1.69) causing another element
or elements of the same item to fail

NOTE Cascading failures are dependent failures (1.22) that are not common
cause failures (1.14) (see Fig. 2, Failure A).

4.4 System Analyses 163

The cascading failure is a failure, which consequently causes further failures.
A cascading failure is no failure of common cause. If one of the two cascading
failure is a single fault, also the other dependent failure would be a single fault
depending on the operating direction (Fig. 5.60).

ISO 26262, Part 1, Clause 1.14:

1.14 common cause failure (CCF) failure (1.39) of two or more elements
(1.32) of an item (1.69) resulting from a single specific event or root cause

NOTE Common cause failures are dependent failures (1.22) that are not
cascading failures (1.13) (see Fig. 3).

A common cause failure (CCF) causes a failure in two or more elements that can
be traced back to a cause or to a single event. A special form is the common mode
failure (CMF). This failure is often traced back to the same elements, which cause
the same failure behavior for a single event in both redundancy paths. This could
also be the case of two different elements that for example drift in the same failure
direction in case of overheating. Therefore, the redundancy would be neither
reactionless nor sufficiently independent for i.e. decomposition (Fig. 5.61).

According to ISO 26262, part 9, Chap. 7, the target of the analysis of dependent
failure (ADF) is to identify individual events or causes, which could lead to failure,
override safety mechanism or undesired safety relevant behavior-. Following the
requirements for analysis of dependent failure described in ISO 26262 would

Dependent Failure

Common Cause
Failure

Common
Mode
Failure

Cascading
Failure

Fig. 4.59 Classes of dependent failure

Fig. 4.60 Illustration of a failure cascade (Source ISO 26262, part 1)

164 4 System Engineering for Development …

identify many safety-critical cascades, or systematic failure which could lead to a
violation of safety goals. For example an electrolytic capacitor, which is integrated
in the gate path of a transistor for EMC reasons, can at age-related loss of capacity
negatively influence this transistor so that it will be controlled with overly high
voltage transients or a current, which is too low. As a result, the transistor can
contrary to its typical failure behavior, lead to a short circuit in the drain source
path. The short circuit could cause a malfunction, which then could violate safety
goals. In this case even the loss of capacity in the capacitor would be a single fault,
but there wouldn’t be any defined requirement that the two elements need to be
independent or free from interferences.. Simulations based on PSPICE (see Chap. 6
of this book) can support failure analysis regarding failure cascades as well as
failure reactions for any electronic functions. PSPICE or similar simulation tools
could simulate all electronic components with their characteristics also under var-
ious conditions. This means that all design related, dependent failure need to be
investigated on such cascades. Often, the detection of cascades is only possible
through many years of sometimes even painful experience.

ISO 26262 addresses the following objectives for the analysis of dependent
failure:

ISO 26262, Part 9, Clause 7.1.1:

7.1.1 The analysis of dependent failures aims to identify the single events or
single causes that could bypass or invalidate a required independence or
freedom from interference between given elements and violate a safety
requirement or a safety goal.

The norm recommends investigating the following architecture structures:
ISO 26262, Part 9, Clause 7.1.2:

7.1.2 The analysis of dependent failures considers architectural features such
as:

– similar and dissimilar redundant elements;

Fig. 4.61 Illustration of a common cause failure (Source ISO 26262, part 1)

4.4 System Analyses 165

– different functions implemented with identical software or hardware
elements;

– functions and their respective safety mechanisms;
– partitions of functions or software elements;
– physical distance between hardware elements, with or without barrier;
– common external resources.

According to the definitions in part 1 of ISO 26262, sufficient independency can
be achieved through the absence of cascading failure and of common cause failure.
For freedom of interference only the absence of cascading failure needs to be
shown. This is an interesting indication in the norm, but it contradicts with the
following requirement:

ISO26262, Part 4, Clause 7.4.2.4

7.4.2.4 Internal and external interfaces of safety-related elements shall be
defined, in order to avoid other elements having adverse safety-related effects
on the safety-related elements.

This addresses elements in general and does not somehow restrict as in the list
directly related to the analysis of dependent failure. It could be that it asks for the
definition of internal and external interfaces of safety relevant elements in order to
avoid adverse safety relevant effects on other safety relevant elements. However,
without an analysis, this requirement cannot be met. This requirement can be found
in part 4, which addresses the system development. However, there is no limitation
for which elements this requirement should be applied. Positively seen, this
requirement refers to previous example with the capacitor and transistor, since
electronic components are also elements according to ISO 26262. On the other
hand, this would mean that all electronic components, even the smallest software
units, would need to be checked for troublesome, harming influences of other
elements. The intended function and their safety mechanism need dependencies in
case of failure of the intended function, but if the safety mechanism negatively
affects the intended function, the safety mechanism weakens the system. But this is
again a matter of design and realization, therefore a general question, why is the
analysis of dependent failure only required for ASIL C and ASIL D functions or
elements?

166 4 System Engineering for Development …

ISO 26262 defines the following requirements, to provide some indication, how
to identify dependent failure:

ISO 26262, Part 9, Clause 7.44:

7.4.4 This evaluation shall consider the following topics as applicable

a) random hardware failures;

EXAMPLE 1 Failures of common blocks such as clock, test logic and
internal voltage regulators in large scale integrated circuits (microcon-
trollers, ASICs, etc.).

b) development faults;

EXAMPLE 2 Requirement faults, design faults, implementation faults,
faults resulting from the use of new technologies and faults introduced when
making modifications.

c) manufacturing faults;

EXAMPLE 3 Faults related to processes, procedures and training; faults
in control plans and in monitoring special characteristics; faults related to
software flashing and end-of-line programming.

d) installation faults;

EXAMPLE 4 Faults related to wiring harness routing; faults related to the
inter-changeability of parts; failures of adjacent items or elements.

e) repair faults;

EXAMPLE 5 Faults related to processes, procedures and training; faults
related to trouble shooting; faults related to the inter-changeability of parts
and faults due to backward incompatibility.

f) environmental factors;

EXAMPLE 6 Temperature, vibration, pressure, humidity/condensation,
pollution, corrosion, contamination, EMC.

g) failures of common external resources; and

EXAMPLE 7 Power supply, input data, inter-system data bus and
communication.

h) stress due to specific situations.

EXAMPLE 8 Wear, ageing.
NOTE 1 The evaluation of the potential dependent failures plausibility can

be supported by appropriate checklists, e.g. checklists based on field expe-
rience. The checklists provide the analysts with representative examples of
root causes and coupling factors such as: same design, same process, same

4.4 System Analyses 167

component, same interface, proximity. IEC61508 provides information that
can be used as a basis to establish such check-lists.

NOTE 2 This evaluation can also be supported by the adherence to
process guidelines which are intended to prevent the introduction of root
causes and coupling factors that could lead to dependent failures.

ISO 26262 recommends in this context the query based on check lists, since
experience widely only indicates to such failures and their effects. ISO 26262 also
refers to IEC 61508, but these lists cannot be fully considered since those lists could
also not be seen as complete. A more severe issue is that such list based on
experiences. In case of different environmental conditions the different impacts
could not be evaluated and there is no requirement, what are the assumptions for
their validity.

Also ISO 26262 defines some concerns about the ability to void dependent
failure:

ISO 26262, Part 9, Clause 7.4.7:

7.4.7 Measures for the resolution of plausible dependent failures shall
include the measures for preventing their root causes, or for controlling their
effects, or for reducing the coupling factors.
EXAMPLE Diversity is a measure that can be used to prevent, reduce or
detect common cause failures.

In this case an in depth knowledge of functional dependencies and safety
mechanisms of the elements is necessary for the realization. Furthermore, ISO
26262 also indicates that a fault tree analysis or a FMEA could also provide
information on dependent failures. If the inner structure is unknown, dependencies
can be proven with the Kolmogorov-Smirnov test. With the help of random samples
it can be tested, if two random variables have the same distribution or if a random
variable follows a previously adopted probability distribution. The random numbers
could be systematic failure simulations. This plays an important role in medical
technology or biology, but when we see discrete circuits, it will be essentially faster
to find indications through the realization on why dependencies of failures occur. If
systems have already multiple dependent functions or in case of using complex
semiconductors or even microcontrollers such tests will be also useful, but the
number of necessary test cases could lead to exorbitantly combinations. In this case,
certain parameter such as overvoltage, EMC etc. can be injected and according to
the reaction statements turned into possible dependencies. According to ISO 26262
the Beta-factor should not be quantified, unless the failure dependencies are based
on random hardware failures, which are single- or multipoint-faults. The mayor
effect on dependency and specially the criterion for “sufficiency” based on sys-
tematic faults and their average of random hardware faults are quite small.

168 4 System Engineering for Development …

Furthermore, the dependencies are often relying on operating temperature and other
environmental noise factors, so that just a factor becomes easily a huge array of
data.

Identification of common resources and especially dependencies due to noise
factors such as temperature or other stresses are only determine by tests based on
the final realized product. The following figure (see Fig. 4. 62) shows that if in the
lower levels, in particular for the realization, common functions, resources, energy
sources or physically close realization elements are used, no indications will be
found to that in the higher levels of the architecture. The needed information, do not
derive from the functions in higher level, so that deductive analysis approaches
would fail. This also applies for the software, which is processed in the same task,
by the same logical processing unit or core, as well as for two electronic compo-
nents, which could lead to the same failure behavior due to noises such as heat. For
example if the reference signal increases in the same way like the measured signal
due to heat, the comparison remains “true”. Therefore, such simple comparisons
will not be a useful measure in this case. For most realizations it can be excluded
that information on two different electronic components is incorrectly changed at
the same time, so that both they provide the same incorrect value. Consequently the
probability of error propagation does not based on random hardware failure, it
based more on the fact that the common case effects in the same direction at the
same time-interval. By reducing the time-interval, the probability could be lowered
(Figs. 4.63 and 4.64).

Function1

Function2

Function3

function11 function15 function13

function16

function14
function12

function21 function25 function23

function26

function31 function35 function33

function34
function32

function13

function14

function21
function23

function33

function34 function35

function11
function31

function12
function32

function15
function25

function16
function26

Requirement
Input Requirement

Output

Requirement
Function

Requirement
environments

Function 1 Function 2 Function 3

Fig. 4.62 Dependency in the lower abstraction levels by allocating derived functions on common
elements

4.4 System Analyses 169

4.4.2.10 Safety Analysis in the Safety Lifecycle

In the development of the functional concept according to ISO 26262 at the defi-
nition of the vehicle system (ITEM) the first analyses (see Fig. 4.65 analysis
phases) are already required, since they help to describe a risk-free intended
function. But the Item definition is the only work-product without verification.

This means that we are looking for a method for the analysis of functional and
operational safety. The normal operation condition for the standard road vehicles
and also the basic functions are well established. Also the road traffic regulations
and the considered coexistence of people with vehicles are world-wide established.
They are in small details different, but mayor cornerstones are harmonized such as
the “Vienna Convention” which defines for example, that the driver is responsible
to control his vehicle. Due to today’s discussion about “automated driving” or

Hazard

Safety Goals
failure effectsM

alfunction
M

alfunction
M

alfunction

M
alfunction

M
alfunction

M
alfunction

F
eatures

F
eatures

F
eatures

critical functional effects

F
eatures

F
eatures

F
eatures

Driving situation Driving situation Driving situation

 & & & & avoidance of critical effects in
relevant situations

safety-in-use
error-free product leads to hazardous events.

Fig. 4.63 Event tree for positive and negative effects

E/E ITEM
S
S

A

malfunctions

S

A

sensing element

actuating element
2004d

E/E ITEM
S

S

A 1002d

E/E
1002d A

Sufficient independance for the
entire safety-related intended function.
Safety Case:
faults in signal chain could not occur at the same time.

Single 2oo4d architecture similar to architecture from IEC 61508, Part 6 (Ed.2011)

Double independent implemented 1oo2d architecture similar to architecture from IEC 61508, Part 6 (Ed.2011)

In airplane industry such an architecture called also Dual-Dual Architecture

Fig. 4.64 Independent redundant architecture for safety-related intended function

170 4 System Engineering for Development …

even “autonomous driving” also other main emphases have to be considered. ISO
26262 had excluded functional performance but how could a safety case argue to
safely brake a driving car within the defined limits? The following topics have to be
considered:

– Functional inadequacy
– Safety-in-use

Consequently fail-operational systems need to be considered.
Safety-in-use considers that the intended function since it operates or behaves

correct doesn’t lead to any harm. The classical failure analyses cannot be consid-
ered for this analysis. Therefore, we rely on the positive analyses. In this case,
particularly the behaviors of the intended functions, within its typical environment
have to be analyzed as a positive approach. Generally, in this context we would see
the classical event tree analysis (ETA). Based on deductively determined mal-
functions and, in opposite to the general Hazard&Risk Analysis according to ISO
26262, effects of intended functions, within relevant critical driving situations.

As a consequence we need a detailed analysis also of the intended functions
similar to the malfunctions as part of the Hazard Analysis and Risk Assessment.
Different to the malfunctions which are assessed by the parameter S, E and C, the
critical characteristics of the intended function need to be iteratively modified
unless they could be considered as sufficient risk-free or safe. In case of a verifi-
cation of the Item Definition, the safe intended function could be analyzed and
confirmed. If the intended function itself is safety related like “Steering” and
“braking”, legal requirements like ECE R13 (or FMVSS 135) or R79 (or FMVSS
203, 204) give binding requirements for their homologation. Especially in ECE R13
requirements for the entire brake system (it is the ITEM) and its degree of

Requirement phases Integration phasesDesign phases

3-7
Safety Goals

3-5
Vehicle
System

Definition

Analysis phases

Interface
analysis /

ETA, H&RA

Design
assumptions,

limitations

4-9
System
Safety

Validation

Function goals
Requirements

3-8
Functional

safety
requirements

4-6
Technical

Safety
requirements

4-8
Integration-

tests

Architecture phases

Architecture
assumptions

Verification Phase

3-8.4.5
Verification

4-8
Verification

3-8.4.4
Validation

criteria

3-8.4.3
Allocation

3-8
Functional

safety
concept

4-6
Technical

Safety
concept

4-7.1 / 2
System

architecture

4-7.3 / 4
System Safety

analysis

4-7.6 / 7
System
design

5-6
EE Hardware

Safety
requirements

5-7.4.4
Verification

5
EE Hardware

Safety
concept

5-8
EE hardware
architecture

5-7 / 8/9
EE Hardware

Safety
analysis

5-7.4.1 / 2
EE HW
design

5-10
EE HW

Integration-
tests

Design
FMEA

Fig. 4.65 Phases of safety analyses in the safety-lifecycle for product development on system and
hardware level

4.4 System Analyses 171

redundancy is defined. Up-to-now those homologation standards are not released
for highly automated driving functions, remote controlled vehicles or even auton-
omous driving vehicles. But consequently if the intended function is safety related
and a safety case in line with ISO 26262 should be considered the entire intended
function must be analyzed of course including they elements of other technology
like wheels, steering column etc. The failure modes, malfunctions and malfunc-
tional behavior also of all actuators and also sensors have to be controlled by an
adequate safety mechanism. Consequently a completely independent (or even more
independent than in case of an ASIL decomposition) redundant system have to be
installed.

If the redundant systems have to fulfill the same performance requirements,
depends on various impacts and the risk analysis which have to be performed,
which considers the risk in such a degraded mode. Many of today´s accepted
limp-home-modes could be accepted and would lead to acceptable behaviour of the
degraded function. In order to define and analyze the boundary of the ITEM also
the boundary analysis as described in the Ford FMEA handbook could be con-
sidered. On the Item or vehicle level the intended function could be defined as an
“Ideal Function” in the context of P-Diagrams.

This event tree analysis or the improved Hazard Analysis needs to be continu-
ously checked throughout the entire product development, since all new malfunc-
tions, all changes of the environmental conditions as well as changes of the
functions and the design, can lead to new effects in certain driving situations (see
Chap. 4.2.1, Preliminary Hazard (Risk) Analysis, PRA). Even if these forms of the
event tree analysis allow considering hazards from the correct behavior of the
vehicle system, it will not be a sufficient method to show the safety-in-use of a
system.

A benefit of this systematical analysis is that it shows a direct transition to the
system safety analyses (e.g. RBD, FTA, FMEA). For the verification of the func-
tional safety concept (requirement of ISO 26262, part 3-8.4.5) a more in depth fault
tree analysis, reliability block diagram or a draft System-FMEA based on mal-
function should follow. In the draft System-FMEA all potential malfunctions of the
logical elements, the effects of the considered logical elements on each other and
the deviating environmental influences (from a boundary analysis) could be
investigated regarding their potential to violate safety goals. Regarding malfunc-
tions in this case we could argue with a completeness of the safety goal coverage
based on top-failure of Fault-Trees or the top-failure from FMEAs. Correct and
sufficient specification of the functional safety requirements and their verification
can occur through a deductive positive analysis. The analysis can be applied all the
way to the lowest level (software or hardware design) and the corresponding
malfunctions are complemented in the respective levels. The safety analyses should
be planned in a way that they are comprehensible and consistent systematically
through all levels from the safety goals to the lowest relevant failure causes in the
hardware or software realization (compare Fig. 4.65). If all questions are suffi-
ciently and completely answered, the analysis of the technical safety concept can
follow. The deductive analysis (requirement of ISO 26262, part 4-7.4.3 for ASIL C

172 4 System Engineering for Development …

and D recommended for ASIL B) thus supports the verification of the technical
safety requirements (requirement of ISO 26262, part 4-6.4.6) regarding systematical
failure and their allocation on technical elements, which build the basis for the
system design. The following aspects can be evaluated:

• Are the technical safety mechanisms completely derived from the functional
safety mechanisms?

• Have all possible malfunctions of the technical elements and malfunctions from
the effect of the technical elements among each other been considered?

• Have all functional dependencies regarding functions, malfunctions and failure
behavior as well as technical dependencies (for example common resources,
energy, technical elements, which need to support multiple functions) been
considered?

• Are all safety mechanisms completely described by technical elements?
(Complete description of safety mechanisms regarding a horizontal abstraction
level including all technical interfaces)

• Are the technical elements regarding inputs, outputs, the relationship between
input and output, environmental conditions, permissible environmental condi-
tions, variants and configurations completely described?

• Is the error propagation through the failure simulations (failure injections)
comprehensible?

• Are the validation criteria described suitable to show the fulfillment of the safety
goals?

If all questions are sufficiently and completely answered, the system design can
be seen as completely and sufficiently specified. As a result, the system would need
to be capable of sufficiently implementing the necessary safety mechanisms. The
technical safety analysis (requirement of ISO 26262, part 4-7.4.3) should be con-
sidered as inductive analysis based on the characteristics of the technical elements
in their integration environment (vehicle environment). As a recommendation, all
requirements for the logical, functional and technical elements would need to be
analyzed deductively. For this case the positive analysis would be completely
sufficient. The aim of the deductive analysis is to identify the necessary charac-
teristics but not to verify their values (or parameters). The “special characteristics”
are also determined in the FMEA methods (because also these methods are not seen
as sheer inductive analysis by FMEA) according to VDA or AIAG. ISO 26262 also
addresses the “safety related special characteristics” for production related safety
activities or safety requirements of the mechanical (or other technologies) elements.
To develop a plug-connector for an ASIL B signal according to an ASIL, will not
be sufficient information for a developer. The characteristic would need to be
clearly stated as safety characteristics and sufficiently failure tolerant, reliably and
robustly designed. Generally, in the automotive FMEA standards the “special
characteristics” or other product or process characteristics are identified in the lower
level of the Design-FMEA. Process characteristics are characteristics that need to be
safeguarded though the production processed. Product characteristics are

4.4 System Analyses 173

characteristics that are secured through constructions but need to be checked in the
production. These product or process characteristics are handed over to the
Process-FMEA (and thus to the production control plan). As a result, it can be made
sure that the required characteristic is covered against constructive failures and
production failures or sufficiently robustly designed.

For the deductive analysis only potential failures should be considered that are
identified through those (important) characteristics, which they can negatively
influence for the realization or implementation of safety relevant functions. This
also applies for the functional limitations, which result from the functional design
and design limitations through a higher abstraction level or the integration envi-
ronment. Constraints which also have to be broken down from the Item Definition
down to even the structure of semiconductors could be formulated similar to
requirements. The verification of technical characteristics and their error propaga-
tion can only be performed through an inductive analysis. Verifications of con-
straints are more difficult to be verified, since only know negative impact could be
assumed. This means that in the deductive analysis characteristics and constraints
are questioned, which are necessary in order to implement the function in the
investigated system (the considered logical and technical elements in their required
functional behavior) as intended. These characteristics thus have the character of a
requirement. For the inductive analysis we start with all technical elements and thus
the characteristics, which are necessary in order for the system to carry the function,
are confirmed. The other characteristics and those that result from the behavior of
technical elements among each other must no influence further characteristics in a
way that they are unable to discover the required function.

In the positive analysis all characteristics, which are important for the realization
of the function (or the safety mechanism) its dependency to other functions and its
derivation through multiple horizontal levels can be determined.

The negative perspective, simply converted according to DeMorgan’s law, leads
to highly complex, logical correlations. The 3 positively illustrated sub functions
together build the main function. However, at the negation the failure of a partial
function can lead to the failure of the main function, as well as all combinations of
possible failures and failure behavior. For the planning of the degradation concepts,
only the failure of the function needs to be considered, since the degradation cannot
only evacuate individual failure. This is especially important, if we speak about
highly available safety systems. In this context the aim is to retain the function in a
reduced extent. However, the error propagation can’t even be assessed without the
technical realization. Vibrations and oscillations can only arise, if they are evoked
by, for example, inductivities and capacities and if there is sufficient energy to
significantly disrupt such a system. The same applies to drifts of signals: drifts
upwards need energy. If this energy isn’t available it also can’t lead to a drift of
signals. Energy can be derived for a signal through the realization (e.g.
cross-talking), which can even lead to drifts into the negative, which maybe hasn’t
even been considered. ISO 26262 does not address which method for analysis or
verifications has to be applied but other industries see an accompanying deductive
analysis during development of requirements as the most target oriented approach.

174 4 System Engineering for Development …

A hierarchical functional decomposition could be applied similar to a positive
“Fault Tree Analysis”, if be applying with the lowest function “DeMorgan’s law”, a
complete set of malfunction for the lowest malfunction could be evaluated. If these
malfunctions would be analyzed from the bottom to the top (potential violations of
safety goals) verification for completeness could be demonstrated. This bottom-up
approach could be done by means of an FMEA, so that additional safety mecha-
nism could be defined as measures of the FMEA (Fig. 4.67).

The same correlations can be found for the development of components. In the
software it is useful to analyze deductively and functionally even during the
development of requirements and therefore determine the key characteristics of the
elements, which are necessary for the correct implementation of the function. After
software design is finished an inductive analysis should follow. It should proof
whether all systematic failure, which still remain in the software, are covered by
sufficient measures.

A different approach is used for the electronic development. However, also in
this case, it is still useful to deductively determine the characteristics, which are
necessary for the realization of the function. A lot of FMEA standards have also
recommended the same. Generally, this will happen in the context of a

&

Function 1 (C1, C2, ...)

F
unction 1.1

F
unction 1.2

F
unction 1.3

Function 1.1
(C11, C12, ..)

Function 1.2
(C21, C22, ..)

Function 1.3
(C31, C32 ..)

Function 1 (C1, C2,
..)

Cx = Characteristic the Function
C (F1) = C (F1.1) v C (F2.2) v C (F3.1)

Functional decomposition based on views typical for SysML-tools

Mathematical view of decomposed functions

Tree-view typical
representation in
fault-tree analysis
(FTA)

Fig. 4.66 Positive function analysis or decomposition; Illustration of a functional dependency as
a tree, a line diagram or a logical/mathematical view

>
1

Failure from
Function 1

E
rror

1.1

Error C1.1

Failure from
Function 1

E
rror

1.2
E

rror
1.3

Error C1.2
Error C1.3

&

Error C2.1

Error C2.2
Error C1.3

&

&

Failure C2

Failure C1

Malfunction (C1, C2 ...)

Tree view
Logical line diagram

Fig. 4.67 Negation of the functional analysis of Fig. 4.66

4.4 System Analyses 175

Design-FMEA, whereas these key characteristics will be determined in the middle
failure level and causes from design or in the production will be examined. If we
want to remain within the classical three ‘cause of failure – type of failure – failure
effect sequence’ one level is often missed. Therefore, the key characteristic is often
also defined on the cause level. In this case, the Process-FMEA would start below
the causative level of the Design-FMEA. The Design-FMEA mainly meets the
requirements of ISO 26262, part 5, Chap. 7 but for the identification of single
faults, multiple faults and safe failure a consideration as System-FMEA on com-
ponent level is also necessary. The implemented safety mechanisms are then the
measures in use (or during operation). The architecture metrics, required in ISO
26262, part 5, Chap. 8, then use the quantification of the failure modes and the
efficiency of the safety mechanisms (diagnosis coverage against single faults or
latent faults) as standard for the assessment of the safety architecture.

The cut-set analysis, required in ISO 26262, part 5, Chap. 9 for the development
of PMHF (probability of the harm of the safety aim through random hardware
failure) can only be performed based on the realized design. At this point infor-
mation is received of the architecture metrics and the analysis of dependent failure
(ADF). Already for double failure we can question whether they are even able to
cause a quantifiable violation of safety goals. If it is about an independent random
hardware failure, the influence to safety goals is calculated by the multiplication of
both failure rates (Fit values), which results in very small values. If both failures are
not independent (which is very often the case for automobile electronics), the
degree of dependency (see Kolmogorov’s axiom) determines the probability that
those two failures occur together and have the potential to violate safety goals. This
would comply with the quantification of the beta factor. If the dependency refers to
technical electronic elements, ISO 26262 requires designing it in a way that the
degree of coupling-effects is sufficiently low. The failure proportion of this elec-
tronic element would be included as a single-point fault in the metrics. However,
since there are often design related and thus systematic dependencies, which are
often causally based on very complex combinations (cut-sets) of influence factors,
ISO 26262 doesn’t require the quantification of the Beta factor but only an iden-
tification of the influence factors and respective measures in order to control these
dependencies. The failure rates for the architecture metrics are allocated to different
requirements in ISO 26262 than the failure rates for PMHF. For the architecture
metrics the focus lies on the balance of data among each other so that we cannot
justify the coverage of essential functional elements (or functions) with malfunc-
tions, faults, errors, failure, safe failures or diagnosed failures. In order to quantify
faults modes from the failure rate of electrical elements we simply use failure rates
from data manuals and assume a generic failure distribution (for example Birolini).
For PMHF the focus lies on the failure propagation and the necessary influence
factors. In this case it is also required to determine the failure rates, which are based
on the realization as well assess the influence at the cut-sets.

176 4 System Engineering for Development …

4.4.3 Safety and Security Error Propagation

Safety and Reliability follows similar principles for the failure analysis. Especially
dependent failure and their analysis did show that the typical sequences of fault,
error, failure or failure cause, failure mode and failure effect are not always
applicable. Similar challenges are affecting security analysis. Measures to control
the different security threads like Integrity, Confidentiality and Availability show
different relations to their possible effects and effectiveness.

Deep Medhi provided a key-note where he presents a common “Dependability
and security model”

The possible threats (mainly security) had been defined on a level of faults, so
that further propagations lead to errors, failure and accidents. Unauthorized access
to data and also unavailability had to be considered also as an accident in this case.

Safety is defined as “Attributes” as well as also availability, confidentiality,
integrity, performance, reliability, survivability, and maintenance. Similar consid-
erations are in railway standards with “RAMS”-Approach (Reliability, Availability,
Maintainability, Safety) and shows also similar ideas like (Fig. 4.28. Basic principle
of FMEA) the chapter about error propagation principles. Possible measures, called
means, are also similar to possible measures in an FMEA (see also Fig. 4.41):

– Fault/Intrusion prevention
– Fault/Intrusion tolerance
– Fault/Intrusion removal
– Fault/Intrusion forcasting

This shows that similar analysis approaches for safety and security could be
applied, but that there no one2one-relation to be expected.

Security analyses are as similar to safety analysis as reliability analysis. By
considering the such well-tried analysis principles, all kind of threats, critical
impacts or any other unwanted event to systems or products could be examined.

4.5 Verification During Development

During the development of the product ISO 26262 asks frequently for verifications.
Most likely always, if a development activity relies on the input of a former
development step. In the descending branch of the V-model verifications are always
required at interfaces of horizontal abstractions.

In this context, the verification is seen as the completion of a higher level activity
and the lower level activities usually begins with a requirement analysis. ISO 26262
considers also tests especially in the lower horizontal abstraction levels, particularly
during component design as verifications. However, methodical, the method for the
correct derivation from a higher level would need to be a validation. What is
important though is that this verification regarding correctness, completeness and

4.4 System Analyses 177

consistency is based on the same consistent verification method. Most likely allo-
cations are done before the verification, which means that requirements are allocated
to the underlying levels elements. In this case the relationship between those two
levels needs to be analyzed. The verification does not initiate process iteration only if
the results of verifications are flawlessly positive. Depending on how deviations are
assessed during a verification and what measures are initiated for the repetition of the
verification, we need to go back to the corresponding previously activity. These
could be the requirements, architecture, design or also the test case specifications
within a horizontal level as well as a jump back into another horizontal level (for
example from a component into a system, or even on vehicle level, so that safety
goals could be affected by changes). The first activity during verification of
requirements should be a requirement analysis. Therefore the question is: Are the
requirements of the lower level derived from the requirements of the upper level or
from constraints, architecture or design of the higher level? As already described in
the introduction of Chap. 4, ISO 26262, part 10 (Figs. 7 and 8, see also Chap. 4,
Figs. 4.1 and 4.2) renounced the maturity level description (system design V1.0
etc.). The figure originally wanted to portray the information that through the dif-
ferent levels, the design always includes more and more detailed information and
especially the relevant design characteristics become more and more plausible
during any iteration. However, those should be tested or verified before they are
passed on to a further user of this information. This shows that there are different
ways to develop work results. Basically, we distinguish between a requirement
specification and a design specification. However, there are different manifestations
and definitions as to how both specification types can be structured. At this point, the
requirement specifications should provide the general conditions, which are neces-
sary as foundation for the design. The design specification describes the imple-
mented characteristics, which can be measured by the product. A requirement
specification defines “How it should be” and the design specification defines the
“how it is designed”. We now also reach the performance limits of a process models.

Does the verification really only happen during the development of the
requirements? Is the development of requirements completed before the realization?
Obviously not! When the result is validated and all requirements are correctly
implemented at the product, there are always new aspects that can occur in the
usage phase, which haven’t been sufficiently considered.

Also in this case, constant iteration loops occur and because of today’s short
innovation cycle, products are often only mature after years of their usage and each
change also becomes a risk for other characteristics. This of course is not acceptable
when it comes to the safety characteristics of a product. It is true that an inexpe-
rienced development team often doesn’t know the influence factors, but an expe-
rienced team can also make incorrect assumption. Unfortunately, there are certain
amounts of risk even in the approach itself. If requirements are systematically
developed and properly derived according processes, the known influence factors
will also be incorporated. If experienced people perform these analyses, some
aspects will also be included in the analysis, which go beyond the requirements and
the experience of the designer. At the verification certain levels of experience can

178 4 System Engineering for Development …

also be incorporated through the test planer. Also through the individual analysis or
verification methods systematically complementary influence factors are consid-
ered. However, it is hard to say or maybe even impossible to assume that all
influence factors will be considered or even all application scenarios and relevant
conditions. If we now have a test case for each requirement (according to the
process model derived e.g. from SPICE), which shows that the requirement is
implemented correctly, there will certainly be doubts regarding the significance of
the tests. How many tests are necessary, will depend on a variety of factors, and
even on the diligence, with which the requirement analysis has been performed at
the beginning of the processing of the abstraction level. Requirement and design
specifications should formally be stored in a way that there is actually only one
parameter in the requirement but through the further derivation of the design
information essentially more parameters are developed. Otherwise, the lower levels
cannot be sufficiently supplied with information. The most concise example occurs
at the hardware software interface. The design of the microcontroller provides the
essential software requirements, not the requirements from the upper levels.
Therefore, ISO 26262 requires the verification of all SW requirements but it is not
possible to directly derive them from the system requirements, which are allocated
to the software. All basic structures of the microcontroller have to be included in the
requirements of the hardware software interface (HSI), which is often unable to
fulfill the relevant system requirements for the software components. However, this
is a very concise example, but definitely not an unusual exception.

Besides the safety analyses and tests, more and more verifications are necessary
for the determinations of the safety maturity for the product under development. At
each organizational interfaces and all horizontal interfaces as well as the in between
elements, all characteristics should be verified at the end of the development. In
general verification could show the fulfillment of requirements, from a methodol-
ogy point of view you only get answer if the targets or goals are fulfilled could be
only shown by validation. The activity to validate the correctness of requirements,
by evaluating higher level requirements or constraints to their correct derivation to
lower level requirements called ISO 26262 “verification”.

4.6 Product Development at System Level

From a Marketing point of view, products are means that can satisfy a need of a
customer and thus generate a benefit. This benefit can be materialistic or unmate-
rialistic, but also functional or non-functional. The core of the product will for
example be a technical benefit and additional benefits are perceived by the cus-
tomers themselves (this could be for example quality characteristics—how beau-
tiful, impressive etc.). Furthermore, the user of a technical system will also face
burdens, for example, a product needs energy or dissipates heat in order to fulfill its
purpose. Therefore, it is impossible to only look hierarchically from the top to the
bottom. We now have to deal with the characteristics of components, with which

4.5 Verification During Development 179

we want to compose the system, and check, which characteristics and requirements
comply with the functional concept and the further stakeholder requirements as well
as the technical safety concept and which additional characteristics create a positive
benefit (especially regarding the performance requirements) and which are an
unintended negative burden.

Basically, there is always a certain discussion regarding the border between
architecture and design. There are advantages and disadvantages for one or the
other opinion, but it is more difficult for the product development if this isn’t
defined at all. This is why the following principles and analogies are used.

Architecture determines the structure and therefore the interfaces of the con-
sidered elements. Elements can be functional, logical or technical elements, which
behavior among each other results in the desired functionality. A system is a limited
amount of functional, logical or technical elements, which realize desired functions
or functionalities through their interactions. A system should be also limited
through the horizontal abstraction level where characteristics and also the technical
behavior are specified. The characteristics and the described technical behavior can
be specified in natural language as well as through semi-formal and formal nota-
tions. A model is therefore mostly a description of specifiable characteristics and
behavior of elements under consideration of architecture. Design is also an illus-
tration of technical characteristics of different perspectives. The following analogy
is developed from these specifications for the horizontal level:

• System design is therefore the illustration of technical characteristics and
components, from which the system is composed. The system design specifi-
cation describes the characteristics, which result from the interfaces of com-
ponents. The components can also be made of functional, logical or technical
elements and have characteristics that result from the interfaces of these ele-
ments. These elements need to be specified as well.

This would in general be done within the component specification. Technical
components consist of mechanical, electrical or software elements, whereas the
combination and the selection, which elements belong to which component, rep-
resent a design decision. A component is therefore a subsystem of the system,
which forms the differentiated characteristics from the interaction with other
components.

• Mechanical design is therefore the illustration of technical characteristic of
mechanical elements (components), of which a mechanical system is comprised.
The mechanic design specifications describe characteristics, which result from
the interaction of mechanical elements. The mechanical elements can consist of
logical or technical elements and have characteristics, which result from the
interaction of these elements. These mechanical elements need to be specified as
well. This would in general be done within the component specification.
Mechanical components consist of mechanical elements, whereas the combi-
nation and the selection, which elements belong to the component, represent a
design decision (Fig. 4.68).

180 4 System Engineering for Development …

• Electronic design is therefore the illustration of technical characteristic of
electronic elements (components, electronic parts), of which an electronic sys-
tem is comprised. The electronic design specifications describe characteristics,
which result from the interaction of electronic elements. The electronic elements
can consist of functional, logical or technical elements and have characteristics,
which result from the interaction of these elements. These mechanical elements
need to be specified as well. This would in general be done within the com-
ponent specification. Electronic components consist of electronic elements
(parts are the smallest elements for discreet electronic, for semiconductor
sub-parts are defined as logical or functional units to sufficiently describe the
behavior and the relevant characteristics), whereas the combination and the
selection, which elements belong to the component, represent a design decision
(Fig. 4.69).

• Software design is therefore the illustration of technical characteristic of software
elements (elements realized in software), of which a software system is comprised
(only software based system). The software component specifications describe
characteristics, which result from interfaces of software elements. The software
elements can consist of functional, logical or technical elements and have char-
acteristics, which result from the interfaces of these elements. These software
elements need to be specified as well. This is often called a software design

Requirement phases Integration phasesDesign phasesAnalysis phases

4-6
Technical

Safety
requirements

4-8
Integration-

tests

Architecture phases Verification Phase

4-8
Verification

4-6
Technical

Safety
concept

4-7.1 / 2
System

architecture

4-7.3 / 4
System

Safety Analysis

Safety Analysis

4-7.6 / 7
System
design

5-6
EE Hardware

Safety
requirements

5-7.4.4
Verification

5
EE Hardware

Safety
concept

5-8
EE hardware
architecture

5-7 / 8/9
EE Hardware

5-7.4.1 / 2
EE HW
design

5-10
EE HW

Integration-
tests

Fig. 4.68 Information flow in the system and EE hardware development derived from technical
safety concept (TSC)

Requirement phases Integration phasesDesign phasesAnalysis phases

4-6
Technical

Safety
requirements

4-8
Integration-

tests

Architecture phases Verification Phase

4-8
Verification

4-6
Technical

Safety concept

4-7.1 / 2
System

architecture

4-7.3 / 4
System Safety

analysis

4-7.6 / 7
System
design

6-6
Software Safety

requirements

6-8
Verification

6
Software Safety

concept

6-7
Software

architecture

6-8
Software
design

6-9 / 10
Software

integration +
Tests

6-8.4.2 / 3/4
Unit software
requirements

6-9
Software

unit testing

6-7
Software

architectural
analysis

Fig. 4.69 Information flow in the system and software development derived from technical safety
concept (TSC)

4.6 Product Development at System Level 181

specification. Software components consist of software elements (SW-units are
the smallest considered elements), whereas the combination and the selection,
which elements belong to the component, represent a design decision.

The verification reveals how good the specified characteristics of the respective
designs are. Therefore, each design decision should be verified so that the specified
characteristics and therefore the implemented requirements can be described as cor-
rect. Traceability is a result of proper verifications, if the arguments for completeness,
correctness and consistency are transparent, sufficient traceability would be in any
case available. A general verification for correctness can only be performed through
falsification, especially if constraints are contradicting performance requirements.

In the deductive safety analysis all possible variances and consequently the
entire specifiable space should be analyzed. In the inductive safety analysis the
specified elements are considered at the respective horizontal abstraction level and
the possible error influences or impacts are evaluated. As a result a systematic
falsification of the specified space could lead to completeness regarding possible
error behavior. Influences and combinations, which the developer cannot imagine
or not systematically evaluate, are also not verifiable. The characteristics of the
product should be ensured at the end of such horizontal development activities after
their verification.

Interfaces of elements are always given by the nature of electronic systems. Those
interfaces must be specified in order to assure, that systems could realize the intended
functions. A mere software component only exists because it is defined like that. The
low level driver (e.g. MCAL; microcontroller abstraction layer), which read the
information from the microcontroller hardware and provide the data interface to
further software components, these software elements built the hardware-software-
interface (HSI). Mere electronic parts could not be considered without their interfaces
to mechanical elements, such as PCB, connectors etc. This means, no matter at what
horizontal abstraction level electronic are considered, there will always be
mechanical intersections. Even the bonding (connection between the silicon and the
pin) in a microcontroller or ASIC primarily depends on the production process,
which creates the mechanical connection. The example of the hardware software
interface shows how deep we have to go into the details of the components in order to
ensure sufficient coverage and sufficient unique level of specification.

All electronic components need energy (often a power supply); if this energy
isn’t provided, it will be one of the first reasons why the function fails. However,
this does not yet define that the power supply should inherit the safety requirement.
If a safety relevant component unrestrictedly reaches the assigned safe-state in case
of a power failure, we can assume a safe failure. Whether this condition can also be
reached in a combination with other errors and we thus have to assume double
faults, is not yet said. Furthermore, there are plenty of semiconductors, which only
work correctly in a certain voltage range. In this case we also need to check,
whether this voltage range has to be safeguarded by adequate safety mechanisms.
All those questions can only be answered by the deductive safety analysis and thus
also up until which periphery element the safety attributes (i.e. ASIL) will be

182 4 System Engineering for Development …

inherited. In combination with hydraulic there will also only be one function given
at the system level, if there is a certain hydraulic inlet pressure at a valve. If this
isn’t the case, the hydraulic might not fulfill a possible safety relevant function after
the control of the valve. The iterations cannot even be made transparent in the
illustration of the information flow. The sensor will be seen as logical element in the
first iteration and further partial elements (power supply, holder, housing, wiring,
and also the counterpart at the control unit, which reads in the sensor information)
will be successively complemented until a design decision has been made. Then it
has to be tested, whether the technical element actually meets all requirements,
which should be confirmed by the tests as part of the verification.

The inductive safety analysis will show whether further characteristics can lead
to failures, which can influence or violate certain safety requirements or safety
goals. Besides the functional behavior, interfaces will be enriched with technical
information (geometry, material characteristics, temperature characteristics, stress
behavior (robustness)). Consequently, a logical element will successively turn into a
technical element in the course of a design phase. The design characteristics doc-
umented in the illustrations (layouts, figures, sketches etc.), parts lists and design
specifications will be further confirmed with each verification and iteration until a
clear element remains, which is sufficient for the application. From the process
point of view the V-model will be turned upside down in the last design phases. The
design decisions in the lower levels need to be verified and analyzed one more time,
so that the tests can be performed based on secured and correct specifications for the
integration in the upper horizontal levels. Since in the design we often specify a
conservative assumption for the application, small changes will not have a massive
influence on the upper design specifications. Generally, it is important to allow for
sufficiently robust interfaces in an early design phase so that in the case of changes
the dependency and the influence on other elements can be limited. This is also
important when different variants are planned for the products. In this case, inter-
faces need to be planned for the variable elements, which can decouple the
dependencies and influences to the other elements.

4.7 Product Development at Component Level

In order to meet the requirements of a hierarchical design we will need to pursue a
system development approach also within the component. Since at the realization
we also have to consider intersections between software, electronic and mechanics,
and related tools this approach should also be continued just like at the system level.
Generally, also in this context we will describe technical elements as logical ele-
ments until the last design decision. A microcontroller will never be fully described
as technical element, since the functions of the individual transistors in silicon are
more defined through a probability distribution than actually through technical
functionalities, as we can imagine for the interaction of a bolt and nut. Almost
all technical behaviors are described through more or less solidified models.

4.6 Product Development at System Level 183

In mechanics, there are Newton’s laws; in electronic we rely on Ohm’s law until we
have to use Maxwell’s equation for high frequencies as a different description basis.

As a result, parallel to the derivation of the requirements for a system element to
a logical element, a deductive analysis is performed, which tests how the system
element changes its characteristics and behavior to its environment, if the defined
characteristics are not fulfilled (compare Fig. 4.70). In the second step these logical
elements are mapped on technical elements and thus design decisions are made.
Those design decision and its possible faults will now be questioned and tested
through the inductive analysis (from known characteristics of the design elements
to possible error propagations etc.), if the influences or effects, which are deter-
mined through the analysis, are confirmed as sufficient robust (or any other quality
target) or changes lead to design iterations unless no unwanted effects and the
required assurance of characteristics could be accepted. Since now technical ele-
ments (which can be broken) are considered, the individual characteristics and the
behavior can now be assessed through analyses, simulations, calculations and tests
(which are the typical measures of a Design-FMEA).

If we now transfer logical elements to technical elements (compare Fig. 4.71),
we realize that without finding a 1 to 1 allocation the number of interfaces could rise
exponentially.

All technical interfaces

• between environment and technical elements
• between technical elements and functional interfaces
• between environment and logical elements
• between logical elements
• between technical elements
• between logical and technical elements

All those interfaces need to be considered, since all characteristics and their
possible failures at these interfaces and all expected behaviors of the elements
among each other can lead to failures, inconstancies or deviations towards the

SE

E2

E1
E3

E4

A1 To

F1 F2

Error <= to high
to low

characteristics incorrectly too high or too low
Technical performance intensive, more
or less, less than defined.

Fig. 4.70 Derivation of requirements for functions and deductive failure analysis

184 4 System Engineering for Development …

overlying requirements for the system element. The tolerance that possible failures
or deviations don’t lead to a harm of the overlying requirements can be considered
as safety robustness.

Drawings, circuit board layouts, parts lists, data sheets and design specifications
describe the expected view at the realized product. In the context of product design,
characteristics of the product should be documented as part of design specifications.
The structure of the architecture for the product determines the intersections for
such considerations and lead to the structure of the design specification. For the
product liability it is important to also indicate risks of the handling or usage of
products in the product description, which is another aspect of safety than func-
tional safety.

The automobile industry uses the Design-FMEA to analyze the design and the
determining of risk of the design faults. The Design-FMEA is a risk-based
approach, which analyzes the design of the components mainly to evaluate mea-
sures during development. The same approach could be also considered on system
level, these in some standards are called a Design-FMEA on system level.

The metrics, such as the risk priority index, indicate whether the design is
assured by sufficient measures. System-FMEAs (seen as methodology) analyze
mainly the architecture and consequently primarily the interfaces. This is why the
Design-FMEA often goes to deeper level of abstraction.

Ford´s FMEA handbook also requires a Design-FMEA on system level, in order
to ensure that the components interfaces are designed correctly. Aircraft standards
require similar approaches; also the Product-FMEA according to the VDA standard
could provide a similar interpretation. Managing of failure interfaces can often be
challenging, since often multiple suppliers need to be coordinated under the
directions of OEM. ISO 26262 requires incorporating the coordination as safety
activity in the development interface agreement (DIA).

The Design-FMEA is used to identify product and process characteristics, which
need to be communicated at the interface to the plant. They are called “special

SE

E2

E1

E3

E4

A1 To

Component 1

Component 2

Technical Interfaces
- Environment and technical elements
- between technical elements
Functional Interfaces
- Environment and logical elements
- between logic elements
- between technical elements
- between logical and technical elements

Fig. 4.71 Vertical functional decomposition and technical interfaces and their potential
malfunctions

4.7 Product Development at Component Level 185

characteristics” if they are legally relevant, safety relevant or economically of
importance. The effective measures to control such “special characteristics” should
be defined, so that they can be proven in a product liability case. In this case they
also have to be documented and should be archived or recorded years longer than
the estimated product live.

Such a system engineering approach should be the basis for the development of
each software intensive product. Product development and system; what is the
relationship between those two terms? A system is often considered to include
engineering and functions. Generally, it includes elements, which are combined in a
specific way so that the desired functions can be implemented. If we look at the
elements and the components, of which the system and thus the product are
comprised of, with the same principles in mind, we can also reach the consistency
in the technical behavior and the relation to the characteristics of the components
independently from the technology they are based on. In aerospace standards and
information technology the technical behavior, in particular the information flows
between the components or other elements, is called ‘processes’. This is an
important aspect for the system safety and the correct functioning of products
besides the structured hierarchical classification and the design limitations.
A product is more of the object of a contract, where functionality, characteristics
and design properties are defined or specified.

4.7.1 Mechanical Development

ISO 26262 does not explicitly address mechanics. Most of the sheer mechanical
products were clearly defined through drawings, thus specifications cannot be found
for all mechanical products. The data archives in SAP are referenced to the design
drawings and further documentation such as specifications are attached to these
drawings. Mass production products such as caliper for brakes have a product data
sheet and these are considered as sufficient complete for integration. A list of
“Special Characteristics” is also referenced to these drawings. However, in corre-
lation with electronics, we cannot completely neglect mechanics.

Plugs, housings and circuit boards are mechanical elements. It is intensively
discussed where the border between the electric and mechanical element lies in a
valve or engine; for the coil and windings we can see the tendency to call them
electric components. For a mechatronic system we will not have a choice but to
consider a system development approach, since the interfaces of a lot of different
technical elements will need to be coordinated. For a mere hydraulic or pneumatic
system the correct interaction or the technical behavior of the elements plays a
major role. A function cannot be defined through the characteristics of the elements
alone. The required characteristics of the function will only be effectively achieved,
if the elements are optimized with their characteristics according to their require-
ment. Mechanical elements can fail, just as well as electronic elements, because of
random hardware and systematic failures. However, it is not recommended to

186 4 System Engineering for Development …

consider these random hardware failures referring to the metrics of ISO 26262. It is
true that pure mechanical systems can be electronically monitored but the known
databases are still too different in order to come to correct mechatronic functions or
comparable failure rates.

A classical brake booster can be planned as logical element in a brake system. It
is also possible to break down possible requirements to valves, springs or other
logical elements according to the specified integration environment, without con-
sidering these elements as technical elements. A spring in a mechanical model can
be described purely through the spring constant and statements can be made on the
sufficient spring typical parameter. However, if we have to make statements con-
cerning the use, aging behavior, stress or elasticity of the spring, we would need to
consider the spring as a technical element. It could be questioned, if it is necessary
to have specifications in natural language and data sheets for the entire components
or partial elements, in order to ensure the safe function, such as ISO 26262 requires
for electronic elements and components. The influences of a spring to a brake
booster need of course geometrical consistency of the data for correct functioning,
but the influence to elements of other technical elements especially to software
could be only described on a functional way.

Especially for hydraulic and pneumatic functions there are standardized
descriptions or specifications, which provide significantly more and more precise
information than a requirement in natural language. Nevertheless, the mechanical
components will be analyzed regarding systematical failure in order to question the
sufficient design (for example by means of a Design-FMEA) and also to analyze the
interfaces and their correct behavior in the customer’s environment in the context of
for example of a System-FMEA. Of course, the derivation of the requirements and
design decisions can be supported with deductive analyses. Particularly the selec-
tion of suitable partial components can be supported with a deductive analysis.
Generally, functional correlations will be easier to analyze and illustrate than
software intense components. The details are easier to observe by experiments (e.g.
DoE, Design of Experiments) or other test methodologies, and automotive industry
is very experienced in the verification of mechanical components.

4.7.2 Electronic Development

It is not necessarily the traditional way to use a system development approach for
the development of electronic components. In this context, the digital bus cable is
seen as electronic connection and the power supply cables and their plugs etc. as
electric connections. Since the discussion, whether something is electric or elec-
tronic, does not cause any changes in the requirements or benefit the safety, we
generally use the term “electronics” as umbrella term. This should not be mistaken
with the distinction of electric safety and functional safety, since also failures of
electronic components can lead to hazards, which are associated with electric
safety. This applies especially for power electronics in the voltage range of over

4.7 Product Development at Component Level 187

60 V. For higher voltage than 60 V DC or 25 V AC, legal requirements have to be
considered due to touch protection. However, for the description of the require-
ments for electronics ISO 26262 still chose a V-model as reference model. The
question for the horizontal abstraction level is now: Where does the electronic
development start and where does the system development end?

The hardware—software—interface (HSI) requires already a very detailed
level of abstraction and at this level it will be difficult to have complete signal
chains for the entire ITEM functions or other functions on vehicle level. The HSI is
a typical example where we could not have complete system engineering on one
horizontal level of abstraction. In case of interface like the HSI, the functions and
also the safety mechanism affect the system on such deep level of abstraction, the
that also analysis need to be done more detailed as for example on a sensor interface
with discrete electronic parts. Furthermore, the question is also if a 100 ohm resistor
needs to be specified in natural language in order to ensure the necessary functional
safety or if data sheets are sufficient. Resistors as measuring-shunt or as
pull-up-resistors require different way of consideration during safety engineering. In
this context, requirements for discrete electronic components will not be considered
as safety relevant elements and a safety relevant function will only be realizable
only through the correct interaction with other corresponding electronic parts or
components. This is why it has to be carefully tested, if a functional requirement for
electronics is not already sufficient as a safety requirement. If a RC element should
work as filter or even more specific as low-pass filter with safety-related charac-
teristics, the filter function or the required low-pass performance and the necessary
time constant (T) needs to be specified as safety requirement or as safety-relevant
function but not the data of the resistor or the capacitor.

In the first iteration the system requirements, design limitations, architectural
assumptions and other constraints should be derived to functional or logical ele-
ments of the electronic. Architecture assumptions for the electronic, which are in
line with the system limits (see Fig. 4.72) are the basis for this break-down. Base on
new insights of other impacts specification of the elements gets more and more
mature in further iterations. During those iterations and their verifications, the
functional requirements and also the requirements for mechanical devices such as
plugs, housing, circuit board, and fuses etc. have to become sufficient consistent.

The circuit board concept often based on previously developed products, internal
power supply concepts are most likely a carry-over from other designs.
Furthermore, we will need to think about the conductor path management for higher
voltages and currents. Since housings need to be chosen very early, analyses such
as thermal balance, power load (permissible short-circuit currents etc.), space
requirements (housing volume, size and distance for example between pins, con-
ductor paths, mechanical support (plug, printed circuit boards)) or energy balance
need to be performed. The resulting specifications then cause most of the design
limitations, which need to be considered for the design of the electronic
components.

For the electronic design we need to define electronic components (see
Fig. 4.73), which should be able to be broken down within the limits of the

188 4 System Engineering for Development …

NC

P

W

V

D

T
r

Control
SA

SA

SA

SA

SA

Microcontrollers

DKA

DA

P dP

Fs

T
SA

U

I

n

Corridor monitoring
ASIL C

Intended
Function

external peripherals

Internal
Periphery

SA

P

Control

SA

SA

SA

SA

SA

Microcontrollers

DKA

DA

SA
Corridor monitoring ASIL C

Intended
Function

Connector, housing, fuses, circuit board

Internal
Voltage
supply

SA

Fig. 4.72 Element based break-down of system elements and allocated requirements to electronic
hardware

NC

P

W

V

D

‹

Control
SA

SA

SA

SA

SA

Microcontrollers

DKA

DA

P dP

Fs

T
SA

U

I
n

Corridor monitoring
ASIL C

Intended
Function

external peripherals

Internal
Periphery

SA

P

Control

SA

SA

SA

SA

SA

Microcontrollers

DKA

DA

SA
Corridor monitoring ASIL C

Intended
Function

Connector, housing, fuses, circuit board

Internal
Voltage
supply

SA

C61

R62

R63 I61
R64

C61

R61

R62

R63

T61

I61
R64

C62
R66

E / E total 100 Fit
λRF <= 10E-09 / h
λMPF <= X 10E-7 / h
λLat <= X 10E-7 / h
λSafe <= X 10E-7 / h

Quantification of
E/E element

Fig. 4.73 Element based break-down of system elements and allocated requirements to electronic
hardware down to realization on E/E part level

4.7 Product Development at Component Level 189

functional elements, so that electronics parts and their characteristics could be
identified. The recommended realization shows that two functional elements are
allocated at one circuit group. The motor winding (I61) is not seen physically in the
control unit but in the engine, but as an electric component needs to fulfill
requirements for the electronics. This is a simplified circuit group; the realization
will probably be different for safety electronics. As long as this circuit group (see
Fig. 4.74) functions correctly, the read back capacity through R64 needs to be able
to measure the current in the coil (I61) within certain limits. However, if the
capacitor (C61) fails, it is not directly possible to differentiate whether it is actually
a fault in the capacitor or a fault of the coil. The example shows though that a
separation of logical elements for the realization needs to be planned or considered
for the later safety analyses or analyses of dependent failure.

As an architectural decision there are two different possibilities for the planned
realization idea. We could consider these circuit groups as ASIL decompositions,
since errors, which lead to safety relevant failure of the coil can be controlled in two
different ways. We could control the current to the coil directly and reach the safe
state by switching current off or we read the current back and react in case of a
deviation between send and received current. Alternatively, we could see the
control at the functional path and consider the power read back as measure. In both
cases, a single fault will not lead to a violation of a safety goal. However, we will be
able to identify the capacitor C61 in this analysis of dependent failure as a potential
single-point fault (SPF). The coil could also be seen as a single-point fault (SPF).
Since a redundant implementation of C61 cannot be recognized, the coil will not be
part of an ASIL decomposition. However, it will be possible to infer from the
current through the transistor to the current in the coil. For this solution two
requirements are considered.

x.1 For a positive voltage control of the driver stage the coil needs to generate a
magnetic field, which safely opens the valve.

C61R63 I61C61R63

Control

SA

SA

SA

SA

SA

Microcontrollers

DKA

DA

SA
Corridor monitoring ASIL C

Intended
Function

Connector, housing, fuses, circuit board

Internal
Voltage
supply

SA R61

R62 T61

C62
R66

I61

C61R63
R64

Fig. 4.74 Defining of E/E hardware functional groups derived from system decomposition

190 4 System Engineering for Development …

x.2 The current in the valve coil needs to be read back in microcontroller through
the driver stage as analog value.

What is the benefit of or which improvement for safety do we get in this example
by further breaking down the requirement in natural language? For the design, some
calculations would ensure that adequate capacitors, resistors and transistors could
be chosen. However, those components would be correctly chosen simply by the
derivation of the requirements. In principle, “trial and error” determines an useful
combination, which enables us to power-optimized get to a suitable realization
according to the life span requirements.

We could get requirements, architecture (i.e. behavior, structure), constraints,
analysis results (failure descriptions, failure assessment (severity-rating in FMEA))
and design (drawings, geometry guidelines) from the system development (see
Fig. 4.75). According to the example the requirements, which are now allocated to
the EE components, will be mapped to the system architecture. This means that the
system architecture already provides the structure for the requirements, which now
need to be broken down within the electronics components. This can already imply
the first iteration but through an accompanied safety analysis it would be ensured
that the malfunctions and their structures are consistently maintained. Based on the
architecture analysis we can already make solidified statements whether the
architecture derivations are consistent, complete and so also transparent. With this
result we can now verify the requirements, meaning, we can test, whether there are
sufficient requirements for all inputs of elements (information and configuration
inputs), for all outputs and for all permissible input–output relations. The next step
is to derive the design from the system. At this point requirements, architecture and
analysis results should be available. At this point it is especially important that
confirmed information, assumptions and unconfirmed or non-secured information
are communicated to the designer so that they can assess their design-decision or
what options are possible for variants. Besides these horizontal information,
designer also receive information from the system (design limitations, geometry),
which indicate limits, within which design decisions need to be made. With the
derived design decisions we can now move on to the verification. In this context, all
horizontal information is questioned, whereas especially the results of the analyses
should be confirmed, for example through test. The following verification methods
could be considered:

Positive tests (requirement based tests): Since through the analysis the com-
pleteness of the requirement specification referring the derived structure can already
be confirmed, in the verification we can now test the correct implementation of the

Request Phase Integration phaseDesign PhaseAnalysis phaseArchitecture phase Verification Phase

5-6
EE Hardware

Safety
Requirements

5-7.4.4
Verification

5
EE Hardware

Safety Concept

5-8
EE hardware
architecture

5-7 / 8/9
EE Hardware

Safety Analysis

5-7.4.1 / 2
EE HW
Design

5-10
EE HW

integration
tests

Fig. 4.75 Information flow and phases of activities in product development on hardware level

4.7 Product Development at Component Level 191

requirement in the design. Since all relevant parameter, which result from the
technical elements and the permissible interactions, are known in the design
specification, we can now also confirm the correct implementation under consid-
eration of the design guidelines. The Design-FMEA is recommended in almost all
quality standards for the design verification. In this context we question the design
characteristics in their combination with and against their environment. In the
automobile industry we refer to this as design verification (fulfillment of require-
ments) or design validation (fulfillment of requirements derived from upper levels
(also customer or higher level requirements)). Validation is also often seen, that the
question should be answered, if the requirement are correct. Fulfill the requirements
their higher level demands, they are somehow correct. Often only the abbreviation
“DV” is used for both Design Verification and Design Validation.

In addition to that there is also “PV” (product verification, product valida-
tion), which should confirm that the lifespan requirements are met also for the
tolerances of the production of supplied components. Design-FMEA formally
questioned which error sequences occur if a characteristic is deviate from the
specified range. How such faults propagate into the upper levels up-to a possible
violation of safety goals can be assessed from the analyses and the architectures of
the higher levels.

Negative tests (failure injections, limit tests, tolerance chain tests, stress tests
(including EMC)) mainly show the robustness of components. The failure injection
shows the correct function of the safety mechanisms, the correct assumption of the
error propagation, the sufficient robustness, the behavior at inadmissible configu-
rations and the compliance of functional and technical limitations.

This allocation to negative and positive tests should be seen as absolute, espe-
cially EMC specialists will also test the adherence to permitted values for a correct
design and tolerance chains will also be positively assessed through given budgets.
If a test is planed with the actually used technical elements or whether a calculation
will be performed based on models, is a decision of the verification planning (test
planning). If the verification is logically reasoned through models or calculations,
expensive test setups can be avoided. In this case often a combination is chosen,
since without tests it cannot be shown that the models or the calculations actually
match the requirements for the realization. Tests to confirm the correctness of
models general could be finding in literature as “model validation”.

4.7.3 Software Development

For software development a V-model approach (see Fig. 4.76) is very common. But
do we really simply break down requirements or aren’t in this case also other
considerations necessary, which result from the interaction of environmental con-
ditions and the system in which context the software is used?

192 4 System Engineering for Development …

Tools such as the compiler, test tools, editors and the chosen programming
language (including limitations for its use) will be framework conditions, which
also influence the software development process.

The requirements for the software components are not directly derived from the
functional derivations of the safety requirements, allocated from the system, but
primarily from the software architecture draft, which result from all requirements
and constraints, not only functional requirements.

Functional limitations and design limitations need to be derived from the
environmental conditions and the design decisions of the upper abstraction levels.
All these non-functional requirements mostly come from the draft architecture
rather than the derivations of the requirements, which then need to be analyzed and
verified referring to the requirements. This is why, in contrast to ISO 26262, the
requirement and architecture development will in this context also be considered as
software safety concept (see Fig. 4.76). For the software and microcontrollers, the
following questions will be even more sensible: What is the difference between
functional elements and technical elements? Do we describe ALU (arithmetic
logical unit) of the microcontroller as functional or technical element? Probably
almost all elements of the microcontroller are described as logical elements and we
only need to discuss the degree of details of the elements and which characteristics
actually need to be specified and described. This also applies for all elements and
the software itself, since these elements are only describable through their func-
tional behavior. If we consider a software unit as realized, we then consider it as a
technical unit. It is true that ISO 26262 provides the hardware design specifications
and method guidelines (from external sources) as further supportive information for
the specification of software safety requirements (ISO 26262, part 6, Chap. 6.3.2)
but only in ISO 26262, part 6, Chap. 7.4.5, in the software architecture design, we
then find indications, which need to be considered for the static and dynamic
aspects of the architecture. However, in this context there will be no sequential
process, since we would need an architecture draft in order to even be able to derive
software safety requirements. Also referring to the illustration of ISO 26262, part 4,
figure B1 we can see the many influence factors, which only derive from the HSI
(hardware–software interface) (Fig. 4.77).

Requirement phases Integration phasesDesign phasesAnalysis phases

4-6
Technical

Safety
requirements

4-8
Integration-

tests

Architecture phases Verification Phase

4-8
Verification

4-6
Technical

Safety
concept

4-7.1 / 2
System

architecture

4-7.3 / 4
System Safety

analysis

4-7.6 / 7
System
design

6-6
Software

Safetyrequirem
ents

6-8
Verification

6
Software Safety

concept

6-7
Software

architecture

6-8
Software
design

6-9 / 10
Software

integration +
Tests

6-8.4.2 / 3/4
Unit software
requirements

6-9
Software

unit testing

6-7
Software

architecture
analysis

Fig. 4.76 Information flow and phases of activities in product development on software level and
scope for software safety concept (SSC)

4.7 Product Development at Component Level 193

This means that besides the computer influences, coding guidelines, tools also
the architecture decisions from the basic software are added, which need to be
considered for the development of software safety requirements.

The challenge for the SW architecture analysis is to standardize the influence of
the microcontroller to the SW architecture.

A standardized environment needs to be created for the application software,
which cannot be influenced by technical impacts of the microcontroller. If we try to
analyze all actually possible error influences of the microcontroller on the software
with the SW architecture analysis, we will mainly need to test each characteristic of
the microcontroller. This has a direct influence when we change a microcontroller
but maybe also if the manufacturer of the microcontroller changes production
technique or uses different materials. If the use of the software is intended for
different computers, the development aim for the basic software should be to create
a unique environment for the application software so that the user software cannot
be safety-critically changed (Fig. 4.78).

However, this means that we will need very detailed information on the
microcontroller, since we want to increase the performance through new computer
architecture. Therefore, ‘no influence’ cannot be a development aim, but the safety
mechanisms used in the application software need to be continuously effective even
for the changed environment.

Fig. 4.77 Normative influence to the hardware software interface (HSI) (Source ISO 26262, part 4)

194 4 System Engineering for Development …

Basically there are the following errors, which can effect from the controller to
the application software:

• Information could be false. Additionally, information is generated by mistake.
• Information could not be available in time (‘stuck at’, based on SW functions

such as scheduling/program flow and on failures in the hardware of the
microcontroller).

All other possible failure impacts by the microcontroller to the application
software need to already be controlled by the basic software. However, it is a
question of preferred software architecture, where the error types are safeguarded. It
would be possible that the errors are controlled in the basic software. Especially
data correction, control mechanism or implemented safety mechanism versus sys-
tematic errors from the peripheral, sensors and also from the microcontroller itself
effectively implemented in the basic software would simplify the application
software and related safety mechanism, If possibly the application software needs
only safety mechanism against their own systematic faults or safety mechanism
which are implemented in software but control the systematic failure on system
level could simplify the needed architecture and related dataflow tremendously.
Since safety goals are often also subjects to change, the safety mechanisms against
systematic failures on system level should be implemented in an independent area.

In order to comply with the Autosar standard, the all data for the RTE
(Real-time-environment) need as qualifier at the virtual function bus for any signal a
safety qualifier or a diagnostic key. Typical to the Autosar the hardware (HAL) and
microcontroller (MCAL) abstraction layer could be considered. An additional
system- or sensor abstraction layer could be introduced, so that the application
software already gets physical data according to the functional system design, so
that the input data and the functions in the application become traceable and more

Real Time Environment

User
Information

Integrity
Information

Fig. 4.78 Example: data flow at the hardware–software interface (HSI)

4.7 Product Development at Component Level 195

transparent. Especially software safety mechanism in the application software and
also their degradations could so easier map to system level.

In order to fulfill this aim, the integrity information (see Fig. 4.79) needs to be
available for all of the application software in addition to all application relevant
information. This integrity information provides corresponding information about
degree of correctness and up to the validity of the information for the application
software. How much in depth this diagnosis information is provided depends on the
highest ASIL. For the information flow to the actuator the internal diagnoses need
to be provided within the application software so that the safety relevant function at
the actuator could be initiated (Fig. 4.80).

The outputs (or even the output register and so the pins) of the microcontroller
could be controlled by monitoring functions, so that safety relevant functions allow
only actions in case timely and correct data output,

The necessary diagnoses to activate certain information at the actuator are based
on the integrity information. The diagnoses of the SW elements, which generated
the output information, belong with the internal safety mechanisms, through to the
integrity information, which transfer the information to the actuator. This integrity
information should be processed independently from the application information.
This can happen for the application data, diagnosis data and safety mechanisms by
electronic signatures, pattern or encryption. Coded processing is not necessary in
general even in case of ASIL D, the degree of asymmetry between intended
function in the application software and in the safety software have to be assured.

For the application software it is sufficient to define the data formats for the
application software. The hardware–software-interface (HSI) allocated to the basic
software. Therefore, the software architecture analysis is limited to possible sys-
tematic failures, which are only reduced to the possible systematic failure of the
application software. If in a sufficiently independent horizontal abstraction layer

Real Time Environment

User
Information

Integrity
Information

 &

Fig. 4.79 Safety-related dataflow of safety software in addition to application software

196 4 System Engineering for Development …

Real Time Environment

User
Information

Integrity
Information

 &

L2 L1

SM1..n

Lx logical function

SM1..n Additional safety mechanism
in the application software

Fig. 4.81 SW-architecture: example: data flow at the hardware–software-interface (HSI) and
interface via RTE

Fig. 4.80 SW-architecture based on Autosar principles with 3 (multi)-layer safety architecture

4.7 Product Development at Component Level 197

(such as for EGAS already at the system level) corresponding redundant function
monitoring and diagnoses are introduced, that control systematic failure could
derive from independence constraints on system level. If it is useful in the indi-
vidual case, especially for the availability of the system or such architecture could
lead to higher fault tolerance, depends on other factors.

Generally, there are even further sources of risk within software’s, which cannot
be covered by this approach. Routines can be called within software’s, which
operate outside of the covered hardware areas and can cause runtime errors and data
falsification. Consequently the degree of independence is difficult to determine.

The operating functions may be up to the core codes of the processing unit, or
resulting compiler settings or functions have to be specified sufficient independent
as part of coding guidelines. If for example, a cache is not sufficiently controlled, it
shouldn’t be used for the safety relevant functions. In case of adequate safety
mechanism in the basic software, in microcontroller specific software segments or
even in the hardware, such implementations could reduce the effort for the appli-
cation software. The coverage tests, which are required in the software design level
in ISO 26262, wouldn’t prevent or reveal such potential risks. We could only test
known failure scenarios by integration tests and adequate fault injections.

This is why we would need to continue to implement function monitoring
(compare Fig. 4.81) for the higher ASIL also through the safety relevant software
functions. In this case there are multiple approaches, for which the function mon-
itoring is actually effective. The function monitoring can safeguard the following
three functional groups:

• the software functions of the application software
• the application software and the basic software
• the entire embedded software and the data interfaces to the microcontroller

It will be difficult to use mixed architecture in a distributed development, since at
this point it comes to an explosion of interfaces for the function development and
the failure analysis.

If the interfaces are determined in a way that the entire hardware is safely
controlled below the RTE and the application data and their integrity identification
is provided at the RTE for the application software, a distinct interface occurs.

If the basic software and eventually also the hardware integrity measures are
safeguarded by function monitoring, the system can become more fault tolerant, but
the safety analysis becomes highly complex. To really illustrate a double failure
control to an ASIL D function will be extremely difficult, maybe even impossible to
the enormous number of error combinations. If there are multiple safety goals,
which require a failure reaction in different directions (a value too high or too low
violates different safety goals), planning degradation will no longer be possible.
Since switching-off will only be possible in the case of faults, the benefit of fault
tolerances will limit the reliability of the system. Balancing of safety, availability,
reliability with performance could become a huge challenge for a software architect.
The designer of the software could most likely only limit or avoid the worst-cases.

198 4 System Engineering for Development …

References

1. ISO 26262 (2011): Road vehicles – Functional safety. International Organization for
Standardization, Geneva, Switzerland.

2. Marcus Abele, Modeling and assessment of highly reliable energy and vehicle electric system
architecture for safety relevant consumers in vehicles, 2008.

3. Deep Medhi. Proceedings of 7th International Workshop on the Design of Reliable
Communication Networks (DRCN 2009), Washington, DC, October 2009.

4. VDA (1996), Volume 4 FMEA, Frankfurt.
5. SAE J2980, Considerations for ISO 26262, ASIL Hazard Classification, Prop Draft F: 2011ff.

81

87

94

104

120

123

123

123

143

144

155

147

147

151

154

156

158

158

161

162

162

163

163

164

165

166

155

References 199

Chapter 5
System Engineering in the Product
Development

The general approach of all system engineering standards is the realization of
products based on their specification. In the context of a V-model it is the bottom of
the V; quasi the end of the descending branch and the beginning of the ascending
branch. The elements to be realized are technical elements of hardware or software.
For hardware either electronic or mechanical a production process is necessary, for
software mainly the tool-chain built also a kind of realization or production process
to effectively build the software. If previous analyzes and verifications were all
successful, correct and sufficient, the integrated elements should work as specified
and all observable characteristics should meet the required expectations with
respect to performance, all other quality factors and intended functionalities should
be achieved. When to perform safety activities and what kind of safety activities are
needed results from these requirements, which had been developed during the
descending branch of the V-cycle. The realization of components or products
should be considered as the bottom of the V-model and any integration from the
smallest part or unit should follow the requirements addressed to the ascending
branch of the V-cycle.

5.1 Product Realization

A design description is not yet a realized product. Placing components on printed
circuit boards, linking together different mechanical components, generating, real-
izing or integrating various software elements or integrating or linking together
components based on different technologies; all these activities will influence the
correct technical behavior and functionality of the product. Especially the realiza-
tion and integration of elements or components of different technologies are only
partially addressed in ISO 26262. Most safety standards do not even impose any
requirements on the product realization itself. Also, how realization should be
performed based on specification is often left to free interpretation. Referring to the

© Springer International Publishing Switzerland 2016
H.-L. Ross, Functional Safety for Road Vehicles,
DOI 10.1007/978-3-319-33361-8_5

201

verification of the design, ISO 26262 requires that the product or the component,
among other things, be completely and consistently specified. This can be achieved
through requirements, architecture (block diagrams, behavior diagrams, models
etc.) or design documents (design specifications, parts lists, drawings etc.).

5.1.1 Product Design for Development

Nowadays, almost all development standards assume that a product is developed
based on specifications. However, given that, it is important to ensure that speci-
fications consist of at least two work products, namely the requirement and design
specification. In the classical mechanical development, the construction drawing
came at the end of the development process. After several tests (verification) and
the completion of the production facilities it received its approval for production. If
we assume that the design developed based on the requirements and was also
verified and validated, we can still use this classical approach for software based
systems or products. The process up until the development can be described as
descending branch of one or more V models or through spirals (model cycle in the
automobile industry) or waterfall models, which are used as basis for the product,
project or process maturity assessment. If the product or process isn’t completely,
consistently and transparently implemented all the way through to the product
development, systematical failures in the product will occur. How such project or
process failure will influence the characteristics of a product can generally not be
assessed or predicted. This is why the ascending branch of the V model is used in
ISO 26262 to get to a product assessment through systematic integration and further
tests for the validation and verification. The development of hardware components,
no matter whether they are mechanical, hydraulic, electrical or electronic compo-
nents, strongly depends in the production resources and their maturity referring to
serial production. The software will more likely be developed in a laboratory
environment. In analogy to hardware products or components, the development of
software elements and their fulfillment of non-functional requirements such as
security, quality and reliability etc. could be considered as a so-called software
factory. The necessary activities to ensure correct software elements are basically
very similar.

5.1.2 Mechanics

The characteristics (features, capabilities, properties) were identified in the context
of the requirement development. Technical elements can now be developed through
standard parts (screws, nuts, plugs etc.) or mechanical parts, intended for the
application. In any case, it is important to secure identified important characteristics

202 5 System Engineering in the Product Development

within the complete specified environment. This means that the thread can be seen
as relevant for the bolt and the nut but other characteristics will be also important.
The lack of a certain tool such as a matching wrench for the screw can be relevant
in regards to safety.

However, if the tightening torque for the screw is identified as an important
characteristic, the choice of tools or the monitoring of the work with the tool may
become a safety activity. The production (for example the development of the link
through screwing in the screw) needs to be monitored primarily to show that the
requirements are developable (often for the first prototypes) and also correctly
implemented. “Special characteristics” are often determined for safety relevant
characteristics of the top products. Those are often tested in the serial production for
each individual product and the test results are filed in data archives.

Traditionally we will find four sample phases in the classical development of the
automobile industry. The following aims are considered for mechanical parts for
these samples:

• A-sample: shows the geometry (form), fit and function fulfillment
• B-sample: ensures the functionality and endurance on the test bench and for the

prototype
• C-sample: ensure the functionality, endurance, compatibility and integration

ability in the target application (engine, vehicle)
• D-sample: (initial sample) released sample for serial production

Generally development processes are also described in phases, which are ori-
ented on historical sample phases.

The A-sample (concept phase) is often already considered in very early phases of
the development and shall be provided along with the offer of the supplier.

The B-sample (design phase) is often the sample with which the design is
verified and validated (DV). This means that all characteristics should already be
secured. As a result, all requirements should be verified and available and the
architecture and the design also need to be analyzed and verified. Production
concepts should be detailed enough, that Process-FMEAs and safety-related
activities during production can be identified. All safety features or safety mecha-
nisms and related characteristics shall be correctly implemented, tested and verified.

The C-sample (industrialization phase) should be able to be implemented and
compatible in the target environment, for example, tolerances of supplier parts or
accepted tolerances of product parts. Resulting tolerance or tolerance-chains from
the production of assembled parts should be secured within specified limits.
Therefore, it is often required that the C-samples are already produced on series
development machines or at least by using tools for series production.

For new products, the production machines and related tooling need not be
aligned according to the target production process. If not, the machine interfaces
and the entire production chain could not be qualified. The production process
interfaces lead to further no acceptable product tolerances. The necessary
machinery and process capability could not be shown.

5.1 Product Realization 203

D-samples (ready for series production phase), should be produced in a qualified
series production process including all machines and test facilities as defined in the
control plan and during PPAP (Production Part Approval Process). During
“Run-at-Rate” a defined number of samples should be produced so that the quality
characteristics and the performance of the production process can be assured also
during series development conditions. The produced sample is then seen as the basis
for the customer (e.g. the vehicle manufacturer) for the release for serial production.

Consequently, all product characteristics identified as safety-related have to
already be assured during the B-sample phase. In today’s development cycles it is
nearly impossible to identify all safety related characteristics for electronic and
software elements. However, requirements and characteristics for electronics and
software can be deriving from the characteristics of mechanical components. This
approach is also highly recommended for mechanical parts of electronic and
electrical elements, such as connectors, housing, printed circuit boards etc. the
approach is highly recommended.

5.1.3 Electronics

Basically, the electronics is developed much in the same way as mechanics, based
on design documents and also produced within different sample iterations, which
makes the description of the sample phases comparable. As already described for
mechanics, a lot of design parameters for electronics depend on mechanical parts
such as the printed circuit board, plugs or housing. This means that theses toler-
ances or tolerable discrepancies are the basis for the design of the electronics.
Especially for geometric characteristics there are a lot of characteristics to be
considered.

The housing has to be constructed in a way that it fits in the vehicle, provides
protection against humidity and dirt ensures that cables can be fixed, fulfills the
EMC requirements and allows the arising heat dissipates. It is now possible for the
development of the electronics to illustrate a specific separation to mechanics. This
is why testing the samples and serial parts will be one of the essential safety
activities.

5.1.4 Software

In opposite to hardware, software is not produced in a facility but adapted within
the development. Where software development starts is interpreted differently in
various standards. ISO 26262 assumes that the SW unit is the smallest element

204 5 System Engineering in the Product Development

in the architecture and that for example the C-file represents the smallest unit for the
code generator or compiler. The binary code could after linking transferred (fla-
shed) into the (flash) memory for (of) the microcontroller. Random failures can
occur in this process so that the implemented code does not correspond to the
source code.

There are many requirements for safe compilers, but the entire logistics of
sw-code linking and any configuration required for compiler, flashing etc. could
lead to undetectable systematic errors. Furthermore, for model based software
development, a binary code is often already generated through a code generator in a
software module, which consists of several SW units. At this point the question
arises how SW units interact and whether the intersections between the SW units
may be negatively influenced through the computer environment (Fig. 5.1).

Not only the code-generation or the compiling and flash processes could lead to
systematic errors but also the integration of libraries (headers, static and dynamic
libraries) could be a source or cause of systematic errors.

The tools that support these activities are not always qualified to sufficiently
prevent possible errors. The realization for a tool qualification was the main
motivation for part 8, Chap. 12 “SW-Tool Qualification” of ISO 26262. Later it had
been identified that almost all tools could affect the safety of software-based
products. The main idea of a V-model process could also support those tool
influences during the software development. If we go all the way down to the SW
units and completely test those corresponding SW units through the coverage test, a
negative tool influence can be excluded.

In case of a systematic integration processes negative tool influences can be
identified during integration or at least during the verification of the integration.
With this approach even negative hidden systematic hardware impacts, e.g. from
functional units of the microcontroller, can be identified. Through analyzing pos-
itive and negative results from integration tests, it is even possible to trace the cause
of errors to tool influences or other systematic errors, which can only be controlled
by implemented mechanisms.

Header

Source Files

Object files
0101 1011
1011 1101

Static
libraries Dynamic

Libraries

Compile

Left

Run /
Loading

Program

Libraries
Header

Microcontroller
s

Fig. 5.1 Principle of tool chain for C-coding

5.1 Product Realization 205

In practice, there are some gaps on the hardware level because of, for example,
incorrect handling of tools or insufficient test possibilities.

For ASIL C and D software, ISO 26262, part 6, Table 4 requires additionally
implemented plausibility checks and control flow monitoring; in case of ASIL D
also diversity (ASIL D) in software as well as data and control flow analyses are
required (see part 6, Table 6). Especially Table 4 requires implemented safety
mechanism (e.g. redundancy), which should assure compensation of such sys-
tematic errors during software development. Even if safety mechanisms show
sufficient effectiveness on the software architecture and design level, they should be
verified after the realization and implementation.

Implemented code could influenced by systematic faults not only during design
and compilation, it could be affected by any activity related to the logistic or
handling of the embedded software.

5.2 Functional Safety and Timing Constraints

5.2.1 Safety Aspects of Fault-Reaction-Time-Interval

Automotive safety systems consider real-time aspects as “real-time constraint”, for
example operational deadlines from event to system response. Similar to require-
ments deriving from an ASIL-Decomposition such as sufficient freedom of inter-
ference or independence, system requirements give no guidance on how to design,
or implement timing constraints. During the verification, especially during stress
tests, fault-injections, over-limit or worst-case testing such constraints could be
analyzed and potential violations identified. For example real-time programs must
guarantee response within strict time constraints, often referred to as “deadlines”.

The following aspects could be considered in safety-related automotive systems
to be processed within a defined time-interval:

– Typical fail-safe systems require a shut down or a de-energized state after a
safety-relevant fault occurs

– Calculations, functions, embedded simulations or processes must terminate so
that further actions can be initiated. In case of correct data not being provided
within the defined time-interval, the system could fail.

– Close loop control and control data (e.g. influence of death-time) could lead to
wrong timing behavior resulting in control interventions being too slow, too fast
or delayed etc.

– Data must be compared when filtered, in the case of wrong timing for the filter
(e.g. safety-relevant events) safety relevant effects could occur such as an
overshoot or noise.

– In the case of comparing 2 drivers data sets (e.g. signals from a sensor), the data
could have different run times (age of the signal) referring to the measurement

206 5 System Engineering in the Product Development

and processing of the data (yaw rate needs 200 ms to the processor and the
steering angle could be provided each 10 ms, so that the driver already changed
the driving direction).

– Communication systems should provide data. Without a safe time-stamp, which
considers the individual age of the data, or in case of a sequence and event
recording or detection, the first event could not be determined.

– Data interfaces such as a virtual function bus should be continuously up-dated,
in case of differing age of data in a common runtime-environment; the data
cannot be used for further safety-relevant actions or commands etc.

Some of the functions listed are not always typical safety-related functions. Also,
in case of a precise control or just for data or event-synchronizations,
time-constraints must be considered. Especially in embedded systems several
time-constraints could be required in different contexts within a single
micro-controller and multi-tasking principles must be applied. In case of multi-core
applications, such requirements are relevant at least in order to manage common
resources, such as peripheral elements, packaging, power-supply etc.

5.2.2 Safety Aspects and Real-Time Systems

Real-time is not always an aspect of short time intervals; sometimes such an interval
allows seconds or even minutes. For example, switching-on the vehicle light during
the start of vehicle will be a matter of seconds. The driver should realize when the
light switches on, and the correct functioning light should be available before
starting or driving. Even in a case of switching it on during driving, a delayed
reaction for a few seconds would not lead to a safety-relevant impact because in
most areas of the world it does not get dark that quickly in the evening. The acts of
switching-off and switching-on lights are safety-related, but the time from the
demand to the illumination requires only about 1 s. An exception could be
‘high-beam’; it should be changed to driving light within less than 1 s, to avoid
glaring of on-coming-traffic.

Very often we can find the following definition of real time systems:
“A system is considered to be a real-time-system, if the correctness of an

operation depends not only on the logical correctness; it addresses also the time in
which it is performed.”

Vehicle real time systems in the context of functional safety could be classified
by the consequence of missing a deadline:

• Hard—missing a deadline is a total system failure. In case of a safety-related
real time system, missing a deadline leads to a violation of a safety goal.
Electronic steering and brake systems of vehicles could be considered within
this category.

5.2 Functional Safety and Timing Constraints 207

• Firm—missing a deadline is tolerable, may degrade the system quality or per-
formance but does not lead to the violation of relevant safety requirements.
A motor management system could be considered as a typical example.

• Soft—deadlines are specified for the system but the tolerances for the deadlines
are so high that safety impacts or even violations of safety requirements or goals
could not be credibly argued. A light system of a vehicle could be an example,
because in general drivers themselves can control missing deadlines.

It could not be considered, that chassis systems considered as hard real-time,
power-train systems as firm real-time and interior system are soft real time systems.
ISO 26262 defines the fault-tolerant-time-interval as the basic criterion to specify
safety-related timing-specific requirements. This interval defines a period of time,
within faults should be controlled by the system (see also Chap. 3 of this book).
The consequences of a missing deadline can only be evaluated by the consequences
of the fault-error propagation; in the latter, consequences of the possible hazard due
to resulting malfunctions.

The example with the light system shows that also very often the average time of
fulfilling a deadline and the distance to the worst case time could be seen as a
criterion for a soft or hard real-time system. The time-distance shows how probable
or frequent the potential is to miss a given deadline (Figs. 5.2 and 5.3).

If a real-time deadline is allocated to a safety-related function the deadlines must
be met, regardless of the system load. This heavily impacts the software architec-
ture, design, realization, and implementation.

The following effects can be considered to distinguish between hard, firm, and
soft real-time applications:

– Consequences of breaking deadlines
– Relation of average and worst-case execution time
– Tolerance time interval leading to failure of the system.

All 3 effects could lead to different design criteria for the implementation of
software.

Fig. 5.2 Hard versus soft real time systems in the context of average execution time and
worst-case execution time related to a given deadline

208 5 System Engineering in the Product Development

http://dx.doi.org/10.1007/978-3-319-33361-8_3

5.2.3 Timing and Determinism

In real-time-systems determinism is one of the key-features for the design. A system
or a communication could be call deterministic if the maximum response time could
be predicted. It means that no effect whether systematic errors nor random hardware
faults or other effects could violate these maximum response time, data refresh time
or other periodic effects. The periodicity, data refresh time or response time does
not mean in case a short time, but similar to the relation between average execution
time to worst-case execution time for hard real-time-systems, the predictability is
the key criterion. It could be predictably fast or predictably slow. Serial data
communication allows very often deterministic behavior. For example standard
Ethernet is not real-time capable, because it is not deterministic. The lack deter-
minism based in the fact that the traditional Carrier Sense Multiple Access/Collision
Detection (CSMA/CD) principle detects collisions, but they are not avoided. Due to
point-to-point communications, full duplex transmission with switched Ethernet
could reduce significantly the probability of collisions. Repeating of data trans-
missions could also improve the availability. Systems which relay on a safe
availability of the communication need independent redundant implemented com-
munication lines. If Ethernet is design redundantly a logical ring structure could
improve the safe availability of communication for such communication systems.

Determinism of Ethernet is well discussed, but also determinism of algorithms
sensors or other elements in a system could be required. Typical examples are; a
sensor has to provide each 5 ms a new set of data, a simulation model in an
embedded system shall provide each 50 ms up-dated values, a position sensor in
brushless motor shall continuously provide in a fixed time frame the motor position.

A steering angle of a vehicle could be always transmitted only in case of
changes. During parking of a car or even during straight forward driving no data
must be transmitted. Using a steering angle sensor in a safety related system could

Malfunction,
damage

reaction time

“Hart” or “immediate“ transient

Hard real-time

Malfunction,
damage

reaction time

“Soft” or “flat“ transient

Soft real-time

Fig. 5.3 Hard versus soft
real time aspects from typical
PC-Applications

5.2 Functional Safety and Timing Constraints 209

lead to real-time requirements and necessary deterministic behavior of control
algorithms and communication systems. If a driver steering intervention could not
be detected or just too late, a safety-relevant effect or failure could be considered.
Therefor it today’s systems implements a deterministic periodic transmission of the
steering angle to chassis systems like power steering or electronic brake systems.
By exciding of the maximum specified transmission time the value from the sensor
shall be inhibited or a redundant model or a virtual sensor could provide correct
data within the maximum time interval.

Isochronous data communication systems like Flexray operate on a precisely
periodic basis, for example on a time interval of 1 ms. Bus cycle jitter is very low
and generally far below the nominal 1 ms. Caution, bit transmission jitter is a
different effect. Bit transmission jitter or cyclic transmission jitter could lead to
different functional effects, therefore jitter effects should be considered as different
characteristics of fault or error modes.

Synchronized communication and control algorithm are coordinated in a way
that input data are taken, then communicated, control output computed, then
communicated, and lastly actuated.

Many communication systems are “free-running”. Mechanisms like time mon-
itors, message counter provide sufficient evidence that soft deadlines wouldn’t
violated. In case of hard real-time systems the impact of exceeding a deadline could
only lead to a failure of the system. In case of chassis systems a brake demand, a
steering intervention or a curve of the road would not detected by the system within
a required time-interval, which could lead to a violation of a safety goal or even
worst to an accident.

The synchronization of communication systems can be made in different ways.
The following principles could be considered:

• By one time slot method, the synchronization can be derived from the cyclical
log. The synchronization based on sending a synchronization signal which is
cyclically received and evaluated by all network participants. To ensure a best
possible synchronization, it is required that the signal in a fixed time interval
with minimal timing variances will be sent and received.

• Due to increase of temporal precision and synchronicity especially Ethernet
systems based on the principle of distributed clocks (see also IEC 61588,
Precision Time Protocol (PTP)), which are synchronized with each other via
appropriate telegrams. Distributed clocks provide an accurate time base that is
independent of maturities and fluctuations on the communication medium. Since
this time base but can make sure no determinism for data transmission, the
messages always with enough lead time must be transferred so that they become
the synchronization time to processing available. Real-time Ethernet distributed
clocks are used protocols to reduce the jitter occurring in the cyclic transmission.
The communication system is not deterministic, but data transmission could be
controlled in a way that sender and receiver have a deterministic data exchange.

210 5 System Engineering in the Product Development

What principles are safer, more accurate or higher available based on the
application, amount if data, size and complexity of communication systems etc.,
both principles should be analyzed by means of a scenario analysis, including
relevant safety analysis.

5.2.4 Scheduling Aspects in Relation to Control-Flow
and Data-Flow Monitoring

Real-time embedded system should be designed in a way, that the real-time
aspects are covered as precise as necessary, and performance and timely responses
should be achieved as good as possible.

This principles lead to a conflict by using microcontroller resources. Usage of
available resources form the microcontroller have to be planned and adequate
principles like periodization etc. have to be implemented.

There are 2 general principles how to manage resources:

• Non-preemptive: processor or peripheral elements resources are assigned for
functions or processes etc. and they release it for other processes or functions by
their own mechanism. The resources could not be used by other processes or
functions unless they are released by the assigned element.

• Preemptive: Resource could be taken away and be used by other processes or
functions and return after their execution.

The operating system could make 2 types of decision related to resources:

• Assignment: “what processes or functions get what resources” The challenge is,
resources are not easily pre-emptible.

• Scheduling: “how long are processes or functions assigned to resources”. When
more resources are requested than can be granted immediately, in which order
should they be serviced? How could one processor share to many processes;
memory, ports, DMA usage etc. The challenge is, making resources
pre-emptible.

Hard real-time-system, especially if no timely response lead to a violation of
safety goals with higher ASIL, the system should base on a high (or fixed) prior-
itized round-robin-principle.

Mix-criticality Application in hard real-time systems
New vehicle control units need solutions for different ASIL within a single

control unit. If one of the safety-related functions even requires time-constraints, the
assurance of sufficient independence is difficult to demonstrate. There are two
principles which allow different ASILs in one microcontroller:

– Multi-tasking
– Multi-core

5.2 Functional Safety and Timing Constraints 211

Multi-tasking generally based on single core or single core lockstep controllers.
Most approaches with single core lockstep have only the advantage, that random
hardware faults of the core functions need no additional software safety mechanism,
even for ASIL D. But single core lockstep could not avoid systematic faults or
errors in the embedded software. On both cores of the single core lockstep operates
the same identical software. Due to the need of separation of, or at least sufficient
independence of software safety mechanism and the intended function of the sys-
tem a separation on task level becomes necessary.

Running different tasks on a single core requires sharing of resources. For higher
level ASIL, the dependent failure analysis becomes endless complex; even what
resources are used depends on compiler settings and programming style. Even very
good software coding guidelines have to be questioned in case of new instruction
sets of the microcontroller core. Changing of compiler or even microcontroller
could have a tremendous safety impact.

The following example considers a safety task which needs to be repeated each
1 ms. The millisecond is necessary to synchronize I/O-Data, especially data with no
time-stamp, and to trigger the watchdog, or any other degradation mechanism in the
system. 3 basic functions are considered which run on a microcontroller with only
these tasks for 3, 5 and 7 ms (net task time). The pure addition of the run time leads
to 15 ms. In case of an interrupt each millisecond for the higher level safety task,
the processing time double to 30 ms (Fig. 5.4).

Since the task itself does not have any time-constraints, such solutions are
acceptable.

Typical active safety functions such as for chassis control, where for example
typical loops for the application software are required, higher scheduling applica-
tions are required. If the safety task requires a higher level ASIL and the application
a lower level ASIL or even only QM (e.g. legacy code), timing constraints violate

Fig. 5.4 Scheduling diagram for mixed criticality based on multi-tasking solutions

212 5 System Engineering in the Product Development

with context switch between the tasks with different ASIL. Depending on the
complexity of the application function and the ability of the microcontroller and
operating system, such context switches lead enormous time exposure for the time.
There are interrupt routines which run in an order of magnitude of nanoseconds, but
the lowest time for the context switch is in an order of microseconds. That leads to
very limited time slots for the application tasks.

In today’s multicore solution, the microcontrollers offer an assignment of the
safety function to one core and using the second core for the lower ASIL appli-
cation function. Since even here the lockstep solution offers no measures versus
systematic faults or errors, a sufficient independent monitoring layer is needed also
on the safety core (Fig. 5.5).

By using multi-cores impacts due to dependent faults or errors are a challenge,
since the kind of microcontroller, the compiler and the operating system could
decide on which common resources are used within the microcontroller (core
functions uses different resources). Changing of microcontroller, operating system
and/or the compiler (or just settings) are nearly impossible and if necessary highly
safety critical.

In order to avoid interferences between the data exchange of peripheral elements
and with common memory resources a dual- port-RAM or message passing prin-
ciples could be used, which would be monitored by the higher level ASIL core.
Such a RAM-interface would be handled like a communication interface. Any other
external peripheral elements shall be controlled by the higher level ASIL core.

Fig. 5.5 Asynchronous multi-core controller with mixed criticality applications

5.2 Functional Safety and Timing Constraints 213

5.2.5 Safe Processing Environment

A safe runtime-environment is for safety-related applications need safety-qualifier
to show if the relevant data provide the sufficient safety integrity for a safe
user-application.

In case of any safety-related absolute or frequent time constraints, at least a
safety-related time monitor needs to be implemented. This time monitor could be
used to trigger a watchdog so that the system could be degraded in a safe state by a
controller shut-down. If a shut-down of the controller isn’t the safe state, for
example in fail-operational systems such degradations don’t provide any safe
reactions.

In case of soft real-time safety requirements such a monitor could change
periodization for the scheduler, so that safety-critical tasks get processed. In case of
deterministic up-date of e.g. sensor data at the run-time environment information
could be used to identify delayed information. In this case the application could
provide adequate safety-related function, so that the given safety-requirements
would not be violated.

In case of hard real-time safety requirements timing must be controlled. In many
applications, it is a matter of the safety architecture, if the lower time interval
always requires hard reactions of the controller. Even if the controlled deterministic
timing for fail-operational functions lead in case of errors to violation of safety
goals, a shut-down of the microcontroller doesn’t provide any safe reaction to the
system. In this case the operation of the microcontroller is the only possible
solution. In airplane applications TMR-systems (Triple-Modular Redundancy) are
compulsory. Those systems mainly do not react on diagnostics and comparisons;
they are mainly based on a 2 out of 3 (2oo3) majority voting principles. If 2 of the 3
results are equal, they provide the input for the actuator or any other final element.
To assure continuous operations, the systems do continue they operation, even in
case of detected faults. So that the as defect identified element could run in a
recovery mode (reset of a controller) and after recovery all 3 elements could
continue to control the safety critical actuator. The challenge is that such a 2oo3
system is well synchronized. In case of time delays the voter gets too much unequal
results, which usual does not lead to a shut-down but in degreased performance of
the system.

Consequently a safe hard real-time environment, need the nominal input infor-
mation (e.g. from sensors) and a qualifier providing integrity information about the
input signal and in addition a second qualifier that provides the timing information.
Such a qualifier could provide information that the signal is within the required
time-interval, but also about their synchronization such as delayed or too early. In
case of safety-related control of vehicle direction, even the time-stamp from the
detecting sensor (the origin of the electrical signal) could be provided.

Such principles could also run on task level, so that 3 dissimilar tasks provide
adequate safety-related control information and by 2oo3 voting the actuator (or any
output) provides the control information. In a single microcontroller application,

214 5 System Engineering in the Product Development

such software-based voting does not provide a solution against entire controller
impacts such as lightning flashes which immediately kills the system. But what
level of hardware redundancy is necessary for a system, is a matter of the system
analysis of the entire item (the vehicle system within its road traffic environment),
rather than a question of the software or microcontroller architecture.

5.2 Functional Safety and Timing Constraints 215

Chapter 6
System Integration

Integration starts with the smallest elements and ends with the validation of the
development targets. Electronic hardware could be considered to be ready after the
placing of the components or parts on the printed circuit board and assembly of
mechanical hardware such as connectors, housing, cooling devices, and harness etc.
Software integration also starts with the smallest units according to the make files
and liking until the entire embedded software could be integrated and flashed into
the microcontroller. After the hardware-software-integration the further compo-
nents, sub-system or system elements will be integrated according to the hierar-
chical structure as they had been specified in the descending branch of the V-cycle,
so that the acceding branch of the V-cycle matches in the horizontal layer of
abstraction. After their realization or the integration in lower level of abstraction,
the individual technical elements should fit with their interfaces. If the interfaces
don’t fit, the specification of the interfaces or other systematic error leads to these
mismatches. The error have to be corrected according to the change management
process, so that in a further integration step the interfaces become consistent. Since,
the different activities in the realization and integration of underlying layers of the
product or of components may not be adequately safeguarded, a lot of safety
characteristics cannot be really verified and approved until the integration of the
elements. In theory we should not get any new information at this point, since any
characteristics and performance data, which are required from the interaction of the
elements, have already been subject to the safety analysis and verification in the
different horizontal levels. Since the elements have already been tested in the
different sample phases, the changes, which are not considered in the previous
sample phases, are usually the biggest risk. According to ISO 26262 [1] there are at
least the following three system integration levels for a complete software based
systems:

• Vehicle integration
• Components integration (System integration)
• Integration of software into hardware

© Springer International Publishing Switzerland 2016
H.-L. Ross, Functional Safety for Road Vehicles,
DOI 10.1007/978-3-319-33361-8_6

217

The entire embedded software usually will also not be integrated in a single step
approach. A multistep integration strategy would be usually considered. The fol-
lowing software elements (groups of elements, components) need to be considered
for the integration:

• low level driver (MCAL, microcontroller abstraction layer)
• operating system
• scheduler (program sequence, controlling, monitoring, data flow monitoring)
• run time environment
• application software
• software components with different ASIL
• degradation matrix
• hardware or system abstraction layer
• communication interface, busses
• error memory
• diagnosis or event memory
• safety mechanism to control systematic faults in system, hardware and software

How and in what order these elements should be integrated rather depends
mostly on organizational interfaces or availability of the elements than the technical
aspects. Integration should be accompanied by continues verifications and adequate
tests to confirm the fulfilment of the given requirements for the relevant horizontal
level of abstraction.

6.1 Verifications and Tests

The target of verifications are to provide evidence about correctness, consistency as
well as completeness and therefore the transparency of requirements and their
traceability to functions, characteristics of functional, logical and technical elements
becomes adequate for the various stakeholder of the product. If these criteria for all
functional safety aspect are sufficiently fulfilled, we could provide a sufficient basis
for the safety validation. Verifications should not only be done during the inte-
gration (ascending branch in the V model) but also play a major role during the
product development (or during the requirements development in the descending
branch of the V model). Whenever a work result should be used as the basis for
further architecture decisions, a previous verification is recommended; otherwise
the following work results are only as useful as the underlying requirements.

ISO 26262, Part 4, Chap. 5

5 General
5.2.1 The necessary activities during the development of a system are given

in Fig. 2. After the initiation of product development and the
specification of the technical safety requirements, the system design

218 6 System Integration

http://dx.doi.org/10.1007/978-3-319-33361-8_5

is performed. During system design the system architecture is
established, the technical safety requirements are allocated to hard-
ware and software, and, if applicable, on other technologies. In
addition, the technical safety requirements are refined and require-
ments arising from the system architecture are added, including the
hardware software interface (HSI). Depending on the complexity of
the architecture the requirements for subsystems can be derived
iteratively. After their development, the hardware and software
elements are integrated and tested to form an item that is then
integrated into a vehicle. Once integrated at the vehicle level, safety
validation is performed to provide evidence of functional safety with
respect to the safety goals

Figures 2 and 3 show how integration levels could be planned by adequate
hierarchical structure in the requirement development phase of the descending
branch of the V-cycle.

ISO 26262, Part 4, Fig. 2—Reference phase model for the development of a
safety-related item

Figure from ISO 26262: Reference phase model for the development of a safety-related item
(Source: ISO 26262, Part 4, Fig. 2)

6.1 Verifications and Tests 219

ISO 26262, Part 4, Fig. 3—Example of a product development at the system
level

The Fig. 3 shows, that integrations are depending on the defined horizontal
layer, but also within a horizontal layer elements like different software components
should be integrated in a multistep approach. Method like continuous integration
need at least a higher degree of planning activities and tooling to control the
integration steps becomes essential.

The most common verification method is testing. Test methods have different
aims and are hence grouped differently. Consequently there are tests, which support
the development of requirements. The tests during the development of requirements
derive mainly from analysis (like FMEAs) or other verifications.

ISO 26262, Part 4, Clause 7:

7.4.3.7 This requirement applies to ASILs (A), (B), (C), and (D), in
accordance with 4.3: In order to avoid failures resulting from high
complexity, the architectural design shall exhibit the following
properties by use of the principles in Table 2:

a) modularity; and
b) adequate level of granularity; and
c) simplicity

Figure from ISO 26262: Example of a product development at the system level (Source: ISO
26262, Part 4, Fig. 3)

220 6 System Integration

Table 2—Properties of modular system design

In Table 2 line 6 “Testability during the development and operations” for
ASIL C and D continuously testability is required. During operation of the product
built-in self-tests are considered, but also during the operation of prototyping and
sample testing.

Surprisingly testability during development and bevor sample delivery to OEMS
or higher TIERs are normally required by the given quality standards. The table
should be interpreted, that for ASIL C and D applications a proper hierarchical and
modular design is compulsory and adequate integration with adequate tests of
horizontal and vertical interfaces are strongly required.

For the verification of the system design ISO 26262 requires the following:
ISO 26262, Part 4, Clause 7.4.8.1:

7.4.8.1 The system design shall be verified for compliance and complete-
ness with regard to the technical safety concept using the
verification methods listed in Table 3

Figure: ISO 26262, Part 4, Table 3—System design verification

Properties ASIL

A B C D

1 Hierarchical design + + ++ ++

2 Precisely defined interfaces + + + +

3 Avoidance of unnecessary complexity of hardware components and software
components

+ + + +

4 Avoidance of unnecessary complexity of interfaces + + + +

5 Maintainability during service + + + +

6 Testability during development and operation + + ++ ++

Figure from ISO 26262: Table 2—Properties of modular system design (Source: ISO 26262, Part 4,
Table 2)

Methods
ASIL

A B C D

1a System design inspectiona + ++ ++ ++

1b System design walkthrougha ++ + o o

2a Simulationb + + ++ ++

2b System prototyping and vehicle testsb + + ++ ++

3 System design analysesc see Table 1

a Methods 1a and 1b serve as check of complete and correct implementation of the technical safety requirements.

b Methods 2a and 2b can be used advantageously as a fault injection technique.

c For conducting safety analyses, see ISO 26262-9: —, Clause 8 (Safety analyses).

Figure from ISO 26262: Table 3—System design verification (Source: ISO 26262, Part 4,
Table 3)

6.1 Verifications and Tests 221

NOTE Anomalies and incompleteness identified between the system
design, regarding the technical safety concept, will be reported in
accordance with ISO 26262–2:—, Clause 5.4.2 (Safety culture)

The note refers to part 2, here verifications are a mayor input for the
“Confirmation Reviews” which is important input for the confirmation of the
functional safety of the entire “ITEM”.

The tables require many activities which are already required by quality stan-
dards like APQP, SPICE etc. consequently ISO 26262 expects the activities to be
done, but not necessarily with the stringency of the context of a safety standard like
ISO 26262. Especially

Similarly to the system we can find “Methods for the verification of software
architecture design” in part 6, Table 6 in which requirements are stated similar to
part 4 and additionally the control and data flow analyses. Table 3 (hardware
verification) in part 5 shows the analogue requirements for the electronic hardware.
This example shows that the analogy, which confirms, that ISO 26262 also during
component development like software and hardware development considers a
system development process.

In the Chap. 7 we will see that the entire verification needs to be planned so that
under these requirements we can see a certain multiplications in the norm.

There are a lot of tables for the integration tests, which should support the test
planning phase in the context of the integration into the respective horizontal levels.

The following tables are mentioned in part 4:

• Table 4—Methods for the test case development for integration tests
• Table 5—Correct implementation of technical safety requirement at the

hardware-software level
• Table 6—Correct functional performance, accuracy and time behavior of safety

mechanisms at the hardware-software level
• Table 7—Consistent and correct implementation of internal and external

intersections at the hardware-software level
• Table 8—Efficiency of the diagnostic coverage of safety mechanisms at the

hardware-software level
• Table 9—Level of robustness at the hardware-software level

Tables 10–14 show the methods for the requirements at the system level and
Tables 15–19 at the vehicle level. Referring to the respective horizontal levels, the
requirements and methods are supported by examples and references and differ
from one another in detail.

For part 5 ‘Hardware’ (Tables 10–12) and part 6 ‘Software’ (Tables 9–16) there
are also comparable tables. These also refer to the special features for the software
and hardware development besides the adjustment of the respective horizontal
levels. For their software a data and control flow analysis (for ASIL C and D
required) is recommended in the tables. These analyses are not necessarily methods

222 6 System Integration

http://dx.doi.org/10.1007/978-3-319-33361-8_7

referring to the typical verification aims (complete, correct and consistent) they are
rather comparable to the parallel to the architecture development required safety
analysis.

Generally the methods in the tables can be grouped as follows:

• Methods for test case development
• Methods for tests to confirm correct implementation of the respective

requirements
• Methods for tests of the performance, tolerances and timing behavior
• Methods for tests of the internal and external interfaces
• Methods for tests of the effectiveness of quality measures (e.g. assurance of

design characteristics) and error control mechanism (e.g. safety mechanism)
• Methods for the robustness tests
• Methods for element specific analyses and tests

Tests are often distinguished between elements (components-, modules-, units,
etc.) or integration tests. Most of the methods even the name give relevant
information.

Typical element tests do questioning the input and output relation, the behavior
in different environmental conditions or in case of different configurations.

Integration tests are always related to the interaction of the elements to be
integrated in their specified environment and operating or application condition.

The verification will be iteratively called in the development cycle of ISO 26262
and change only in the level of abstraction in its scope, but the basic activities and
the principles of methods remain similar. ISO 26262 describe the process iterations
and the application in the different level of abstraction as follow:

ISO 26262, Part 8, Clause 9:

9.2 General
9.2.1 Verification is applicable to the following phases of the safety lifecycle

– the concept phase, here verification ensures that the concept is correct,
complete and consistent with respect to the boundary conditions of the
item, and that the defined boundary conditions themselves are correct,
complete and consistent, so that the concept can be realised.

– the product development phase, here verification is conducted in different
forms:

– in the design phases, verification is the evaluation of the work products,
such as requirement specification, architectural design, models, or soft-
ware code, thus ensuring that they comply with previously established
requirements for correctness, completeness and consistency. Evaluation
can be performed by review, simulation or analysis techniques. The
evaluation is planned, specified, executed and documented in a systematic
manner.

6.1 Verifications and Tests 223

NOTE 1 Design phases are ISO 26262–4, Clause 7 (System design), ISO
26262–5, Clause 7 (Hardware design), ISO 26262–6, Clause 7
(Software architectural design) and ISO 26262–6, Clause 8
(Software unit design and implementation)

– in the test phases, verification is the evaluation of the work products
within a test environment to ensure that they comply with their require-
ments. The tests are planned, specified, executed, evaluated and docu-
mented in a systematic manner.

– the production and operation phase, here verification ensures that:
– the safety requirements are appropriately realised in the production

process, user manuals and repair and maintenance instructions; and
– the safety-related properties of the item are met by the application of

control measures within the production process.

NOTE 2 This is a generic verification process that is instantiated by phases
of the safety lifecycle in ISO 26262–3:—, ISO 262624:—, ISO
26262–5:—, ISO 26262–6:— and ISO 26262–7:—. Safety vali-
dation is not addressed by this process. See ISO 26262–4:—,
Clause 9 (Safety validation), for further details

A systematic integration can only lead to success if already verified elements are
integrated. Since this cannot always be the case, the integration will always happen
iteratively when the verification results are available. Therefore, the recursion
strategy for the tests should not only be referred to the components or element tests
but the integration needs to be at least planned in the next higher level (Figure 6.1).

Requirement phases Integration phasesDesign phases

3-7
Safety Goals

3-5
Vehicle
System

Definition

Analysis phases

Interface
analysis / H&RA

Design
assumptions,

limitations

4-9
System
Safety

Validation

Function goals
Requirements

3-8
Functional

safety
requirements

4-6
Technical

Safety
requirements

4-8
Integration-

tests

Architecture phases

Architecture
assumptions

Verification Phase

3-8.4.5
Verification

4-8
Verification

3-8.4.4
Validation

criteria

3-8.4.3
Allocation

3-8
Functional

safety concept

4-6
Technical

Safety concept

4-7.1 / 2
System

architecture

4-7.3 / 4
System

Safety Analysis

4-7.6 / 7
System
design

6-6
Software Safety

requirements

6-8
Verification

6
Software Safety

concept

6-7
Software

architecture

6-8
Software
design

6-9 / 10
Software

integration +
Tests

6-8.4.2 / 3/4
Unit software
requirements

6-9
Software

unit testing

6-7
Software

architecture
analysis

Design
FMEA

Fig. 6.1 Verifications between design and integration phase

224 6 System Integration

6.1.1 Basic Principles for Verifications and Tests

Any verification shall be planned. ISO 26262 requires at least verifications after any
phase of the development cycle. The information flow in the figure above shows
how it fits into a typical hierarchical design.

ISO 26262, Part 8, Clause 9:

9.4.1 Verification planning
9.4.2.1 The verification planning shall be carried out for each phase and

subphase of the safety lifecycle and shall address the following

a) the content of the work products to be verified
b) the methods used for verification,

NOTE 1 Methods for verification include review, walk-through, inspection,
model-checking, simulation, engineering analyses, demonstration,
and testing. Typically verification applies a combination of these
and other methods

c) the pass and fail criteria for the verification,
d) the verification environment, if applicable,

EXAMPLE A verification environment can be a test or simulation
environment

e) the tools used for verification, if applicable,
f) the actions to be taken if anomalies are detected, and
g the regression strategy.

NOTE 3 A regression strategy specifies how verification is repeated after
changes have been made to the item or element. Verification can
be repeated fully or partially and can include other items or
elements that might affect the results of the verification

9.4.1.2 The planning of verification should consider the following

a) the adequacy of the verification methods to be applied,
b) the complexity of the work product to be verified,
c) prior experiences related to the verification of the subject material, and

NOTE This includes service history as well as the degree to which a proven
in use argument has been achieved

d) the degree of maturity of the technologies used, or the risks associated with
the use of these technologies.

6.1 Verifications and Tests 225

After planning of the verification the activities of the verification shall be
specified. There 3 methods considered, but only testing is detailed. ISO 26262
defines the following requirements:

ISO 26262, Part 8, Clause 9:

9.4.2 Verification specification
9.4.2.1 The verification specification shall select and specify the methods to

be used for the verification, and shall include

a) review or analysis checklists; or
b) simulation scenarios; or
c) test cases, test data and test objects.

9.4.2.2 For testing, the specification of each test case shall include the
following

a) a unique identification,
b) the reference to the version of the associated work product to be verified,
c) the preconditions and configurations,

NOTE 1 If a complete verification of the possible configurations of a work
product (e.g. variants of a system) is not feasible, a reasonable
subset is selected (e.g. minimum or maximum functionality
configurations of a system)

d) the environmental conditions, if appropriate,

NOTE 2 Environmental conditions relate to the physical properties (e.g.
temperature) of the surroundings in which the test is conducted or
is simulated as part of the test

e) the input data, their time sequence and their values, and
f) the expected behaviour which includes output data, acceptable ranges of
output values, time behaviour and tolerance behaviour

NOTE 3 When specifying the expected behaviour, it might be necessary to
specify the initial output data in order to detect changes

NOTE 4 To avoid the redundant specification and storage of preconditions,
configurations and environmental conditions used for various test
cases, the use of an unambiguous reference to such data is
recommended

The requirements show, that basis for most test activities based on verifications.
About reviewing and check-lists no further details are mentioned. Even about
simulation scenarios no further requirements are defined. At least for verifications
based on simulations similar requirements as for testing should be considered. The

226 6 System Integration

intent of ISO 26262 is not to become another test standard, but during the devel-
opment of test scenario and test cases a lot of methodology could be considered
from other standards.

Also ISO 26262 sees 3 methods of grouping, but it is more considered that these
groups should be applied within the same level of abstraction and depending on
organizational interfaces. ISO 26262 defines the following requirements:

ISO 26262, Part 8, Clause 9:

9.4.2.3 For testing, test cases shall be grouped according to the test
methods to be applied. For each test method, in addition to the test
cases, the following shall be specified:

a) the test environment,
b) the logical and temporal dependencies, and
c) the resources.

All verifications have to be performed as planned but also with a dedicated result
and during the execution of tests a target oriented approach is defined. After ver-
ification a certain evaluation (which is more or less a verification of the verification)
is also required. ISO 26262 defines the following requirements:

ISO 26262, Part 8, Clause 9:

9.4.3 Verification execution and evaluation
9.4.3.1 The verification shall be executed as planned in accordance with

9.4.1 and specified in accordance with 9.4.2
9.4.3.2 The evaluation of the verification results shall contain the following

information

d) the unique identification of the verified work product,
e) the reference to the verification plan and verification specification,
f) the configuration of the verification environment and verification tools
used, and the calibration data used during the evaluation, if applicable,
g) the level of compliance of the verification results with the expected results,
h) an unambiguous statement of whether the verification passed or failed; if
the verification failed the statement shall include the rationale for failure and
suggestions for changes in the verified work product, and

NOTE The verification is evaluated according to the criteria for completion
and termination of the verification (see 9.4.1.1 c) and to the expected
verification results

i) the reasons for any verification steps not executed.

6.1 Verifications and Tests 227

All tool settings and also the verification environment have to be recorded as part
of the verification measures. These requirements are not only valid for testing,
especially if simulations are applied for verifications, the records of this information
are very important to trace the result.

Even more important is the trace for the requirement (g), the level of compliance.
This requirement is a hidden requirement for the confirmation review in Part 2 of
ISO 26262. Questioned could even be, if the assessment about the degree of
compliant is not more a topic for a “Functional Safety Assessment”. The last
requirement (h) leads to the result and the consequences of the entire verification
activity. The decision must be taken if by the defined change management process
iteration should be considered or if the result is sufficient to accept it, which is at the
end also a typical assessment topic.

These requirements from ISO 26262 address planning, execution and assessment
of the verification. It facilitates the verification if these requirements are already
considered for the entire process of verification and testing as the mayor method for
the process step of verification. If ISO 26262 is already considered as a process,
verifications are very often required, especially in case of distributed development
and in case of many system levels. Questioned could be, if by defining a separate
verification process, the efforts could be reduced and synergies found.

6.1.2 Verification based on Safety Analyses

Safety analyses are principally only special methods for the verification. Especially
the different FMEA methods support the verification of systems, components or any
other element type.

A System-FMEA primarily supports the verification of the architecture, func-
tions and indirect also requirements and their allocations on functions as well as
logical or technical elements. A Design-FMEA questions the correct design or also
the realization of elements. In this case we often start with design drafts and in the
later iterations the developments will be integrated more and more and the element
characteristics maturity increases with any iteration. Therefore, the Design-FMEA
primarily supports the design verification and is completed usually by a design
review (especially the so-called Toyota FMEA, DRBFM—Design Review Based
on Failure Modes focuses on design reviews by experts). A Process-FMEA gen-
erally analyzes the production process. However, technically it would be possible to
analyze any random process with this method. We can find indications for that in
Chap. 7 of this book (Process analysis for functional safety).

Each FMEA standard includes the additional requirement that the result of an
FMEA needs to be checked again in regards to the target of the analysis. A final
review of the FMEA is formally part of each FMEA method.

The following verifications can be supported by safety analyses:

228 6 System Integration

http://dx.doi.org/10.1007/978-3-319-33361-8_7

Completeness of the relevant safety goals
Safety goals are primarily formulated as follows: “Avoid that a possible mal-

function violates a safety goal”. All possible malfunctions could be systematically
analyzed if they have the potential to violate safety goals. All functions on the
vehicle system level of the ITEM could be analyzed for potential malfunctions. The
malfunction could be considered as failure or errors. The negation of the safety
goals could be considered as top-failure of the FMEA so that they could be handled
as possible failure effects. If the technical errors from the Technical Safety Concept
are considered as failure causes, and malfunctions, errors or failure in the
Functional Safety Concept as failure type a typical 3 level FMEA could be con-
sidered. The FMEA could demonstrate completeness for

– The Technical and Functional Safety Concept
– considered malfunctions with the potential to violate safety goals

and means a mayor input for the verification of Functional and Technical Safety
Concept.

Completeness of functional specification of safety mechanism or any other
safety-related function

This analysis is based on the function net of the VDA-FMEA. In animated
SYSML-tools the function net of the VDA-FMEA could be even used more
effectively. The relevant functions need to be decomposed and allocated to structure
elements in the structure net of the VDA-FMEA. The structure net could be any
decomposition of the architecture based on technical, functional or logical blocks.
The functional decomposition should be performed only on a defined horizontal
level of abstraction.

It is very similar to the function decomposition in a System-FMEA. It can be
performed at components level for hard- and software, and on any system level.
This analysis is even recommended within semiconductor structures. The basic
principle of the analysis is the identification of signal chains, which has previously
been described by Robert Lusser over 80 years ago. In addition, another method
called “FAST, Functional Analysis System Technique” exists, which describes this
derivation of functions at a lower element structure and their inductive analyzing
approach.

Completeness of higher level requirements to lower level requirements
based on functional decomposition.

For these analyses we consider the pure functions without any allocation to
elements. Maybe this analysis could be performed before the previous described
analysis, but if it could be done independently no systematic errors lead to common
failure. An already verified function in a higher horizontal level of abstraction have
to be completely derived to a lower level (e.g. from vehicle level to system level or
from higher system level to lower or component levels). In a VDA-FMEA we could
again test through the function net, whether the functions in the lower level (e.g.
components in SW or HW) are completely displayed at the system level (if you
could show all signal chains of the system level, completeness of the specification

6.1 Verifications and Tests 229

of Hardware-Software-Interface (HSI) could be analyzed). This analysis also sup-
ports the analysis of dependent failures, since the dependencies in lower levels are
displayed into context with reference to the dependency in the upper levels. This
cannot only be analyzed for functional dependencies; also physical dependencies
(for example temperature influences, EMC) or energy dependencies can be ana-
lyzed that way. Signal chains are data-flows, but energy, temperature etc. are also
physical flows, which could be verified by even physical laws such as law of
conservation of energy or Kirchhoff’s law for voltage or current etc. The function
decomposition could be done top-down (in this case it is more a positive fault-tree
analysis (FTA)) or from bottom-up and it could be considered more as an inductive
analysis. Using SysML with the appropriate animation or test algorithms more
detailed and automated analysis could be done with more detailed results in
comparison to a VDA-FMEA. These algorithms can also be used for systematic
function decomposition and its transparency modeled in the style of the method
“SAFT, Structured Analysis Design Technique”.

Consistency test of interfaces (Product decomposition)
The VDA-FMEA describes the interfaces for the considered product structure by

the structure net. The function net represents the functional interfaces between the
elements of the structure net. A VDA-FMEA could structure by different element
types, so that the structure could base on a functional, logical or a technical
decomposition. That leads to the consequence, that for all 3 structures different
FMEAs become necessary, because these are 3 different analysis. Virtual interfaces
such as the RTE (run-time environment) could be considered as logical interfaces,
so that also errors of hypervisor, priority management and scheduling functions in
software could be analyzed. By comparing of resulting of the functional structures
we can analyze their dependencies and their consistency over the different archi-
tectural views also by distinguishing of different levels of horizontal abstractions. If
interfaces or dependencies in the system differ from those on lower level e.g. the
components level, the inconsistencies need to be solved. It would be recommended
to use SysML-tools for such different views and level of abstractions, so that
automated checker could analyze the inconsistency. By using typical FMEA tem-
plates or even pure FMEA-tools, the manual review becomes rather complex.

Completeness of the failure possibilities considered
Even for a deductive analysis completeness analysis all error impacts is an

important argument. Of course, each possible error, fault or malfunction found will
help to improve the quality of a product, but for safety, completeness is required.
This is why the failure analysis in the VDA-FMEA is at step three after the product
and function decomposition. This means that for each function of a structure ele-
ment the possible malfunctions need to be identified. For verification of the
safety-relevant requirements it is important to first analyze, whether the possible
malfunction, which can lead to a malfunctional behavior, have been completely
identified. For a mere functional analysis stating that data flow, signals or infor-
mation just could have 2 error states:

230 6 System Integration

– no function or
– incorrect function

Based on the fact on a basic level completeness of an analysis could be argued.
In the more in-depth analyses we can analysis whether the following malfunctions
functions have been considered for the completeness argument:

• no function
• unexpected function (crosstalk of other systems)
• systematically falsified function or information (i.e. signal drift)
• sporadically or unexpected incorrect function or information
• module or element has not been implemented, addressed or considered
• continuously operation as specified for functions or elements such as interrup-

tion free operation, no oscillation, intermediate errors, random or sporadic faults
etc.

• incorrect time behavior

Those are also typical questions for deductive methods such as HAZOP or the
fault tree analysis (FTA). The malfunctions (or error modes) also show in the tables
of ISO 26262, part 5, Appendix D, which represent the foundation for the diag-
nostic coverage. Which of those error modes are relevant depends on the require-
ments and their context which are imposed on the functions. This is why at this
in-depth level not only the architecture is analyzed but also the design and the
realization. Therefore, such analyses are often on lower component level and per-
formed by means of a Design-FMEA and define the basis for the design verification
and validation (DV).

Completeness of the considered single-point faults
This is the classical domain of the FMEA. At this point all possible malfunctions

of a respective level are evaluated whether they can propagate to a given safety goal
or if they are a possible cause of a failure effect, that violates safety goals. Here a
classical FMEA could claim completeness related to the considered scope of
analysis.

Complete consideration of dual-point-faults
Multiple-point faults always build high permutations referring to its influence

factors. This is why even for simple systems the multiple-point failure analysis is
considerable a challenge. However, if safety mechanisms design as safety-barriers,
which should prevent fault propagation and their penetration through barriers, the
analysis of the individual barriers become single-point fault analysis. Consequently
the entire safety concept has to be designed based on multi-level safety barriers. So
that a fault in a safety-related system could be systematically hindered propagating
in horizontal and vertical direction. Consequently for ASIL C and D systems at
least dual-barrier safety architecture becomes compulsory. Any possible fault need
to break at least 2 safety-barriers in a safety-related system before they have the
potential to violate considered safety goals. Consequently, it is more an architec-
tural design approach to develop adequate safety architecture with such

6.1 Verifications and Tests 231

safety-barriers than a matter of analysis or verifications. The analysis should
identify the gaps and the verification should show completeness, correctness and
consistency of the safety-architecture and providing the confidence of the effec-
tiveness of the applied safety measures.

Correctness of the safety goal
Safety goals could only verified against the intended function, for the intended

use and possible malfunction in the intended environment. In order to verify or
assess the correctness of safety goals the inputs have to be verified. Based on
incomplete, incorrect or even inconsistent input not resulting activity could be lead
to proper correct output. By performing the Hazard & Risk-Analysis also any
possible hazard and the relation to driving situations and possible operating modes
and possible transients have to be evaluated. Considering the result of the Hazard &
Risk Analysis and the assessed safety goal and its ASIL based on complete input as
a deductive approach, an inductive verification could lead to a correctness state-
ment. In the arguments before the possible malfunctions of were not used for
verification. A typical event tree analysis (ETA) could show the relation between
malfunctions, functions and relevant driving, systems or operating modes in the
intended environment, so that the correctness of safety goals could be evaluated by
the answer to the question, if all possible malfunctions are sufficiently controlled in
case of fulfilling the safety goals.

6.1.3 Verification of Diverse Objectives such as Safety
and Security

Design, architecture of a product or even the requirements should be consistent for
any characteristics or features during different steps of the development cycle.
Completeness and correctness are in general basics to assess consistency. If the
design, the architecture or requirements are incorrect or incomplete, any corrected
or added characteristics could violate the consistency requirements.

Questionable is, if completeness or correctness verification could be done for
could be done in one step for diverse objective like safety and security.
Consequently both have to be complete and correct before their common consis-
tency could be verified. If safety and security mechanism block each other the
implementations of the mechanism make whether neither safe nor secure; maybe
with some compromises but that violates very often objectives like performance,
availability or other characteristics.

The following table 6.1 could be an example for a joined concept development
process.

232 6 System Integration

6.1.4 Test Methods

The objective of part 4, chapter 8, ‘Integration and Test’ have previously been
discussed in the planning of the architecture. 3 Integration phases are considered in
ISO 26262.

ISO 26262, Part 4, Clause 8:

8.1 Objectives
8.1.1 The integration and testing phase comprises three phases and two

primary goals as described below: The first phase is the integration of
the hardware and software of each element that the item comprises.
The second phase is the integration of the elements that comprise an
item to form a complete system. The third phase is the integration of
the item with other systems within a vehicle and with the vehicle itself

8.1.2 The first objective of the integration process is to test compliance with
each safety requirement in accordance with its specification and ASIL
classification

8.1.3 The second objective is to verify that the “System design” covering the
safety requirements (see Clause 7 (System design)) are correctly
implemented by the entire item

Table 6.1 Verification of Safety and Security

Process step Activities for Safety Activities for Security Common Activity
tool qualification according to ISO 26262 analysis security impacts agreement of measures
Security in development environment respect and planning of safety activities

based on the security constraints for
development and production

development of a security concept for
development and production

check the adequacy of the
measures

Item Definition analysis of system boundaries authorization concept

Hazard Analysis & Risk Assessment risk identification and ASIL threats identification

Functional Safety Concept safety measures and allocation measures definition

Verification of FSC verify of measures verify of measures evaluating the ability of coexistence
of both sets of measures

System specification / Architecture define requirements, architecture, behaviour
and internal interfaces

requirements, implementation concept allocating security mechanisms on
product architecture

analysis inductive / deductive effectiveness analysis Analysis - error behaviour of all
functions and mechanisms

System - Design define system, parameters, requirements for
components

derivation and allocation of security
mechanisms

Verify the coexistence capability of
both set of measures

Verification of components requirements verify feasibility, completeness, correctness,
consistency of standards for component

verify feasibility, completeness,
correctness, consistency of requirements
for components

analyse consistency of both sets of
requirements.

Component specification / Architecture define requirements, architecture, behaviour
and internal interfaces

requirements, implementation concept allocating of security mechanisms
to component architecture

Analysis of component inductive / deductive effectiveness analysis analysis - error behaviour of all
functions and mechanisms

Components - Design component design, parameters, requirements
for components

derivation and allocation of security
mechanisms

verify the coexistence capability of
both set of measures

Verification of the components prior to
implementation / deployment / realisation

verify feasibility, completeness, correctness,
consistency of requirements before
implementation

verify feasibility, completeness,
correctness, consistency of requirements
for implementation

analyse consistency of both sets of
requirements.

implementation / deployment / realisation implement as specified implement as specified verify the specification-compliant
implementation

Integration / Test tests according to specification tests according to specification tests of ability of coexistence and
effectiveness of both sets of
mechanisms.

6.1 Verifications and Tests 233

As a consequence, three horizontal system levels have to be developed, in which
elements are integrated hierarchically up until the vehicle integration. The following
two objectives are directed to methods how to integrate in the dedicated horizontal
level of abstraction.

Requirements based testing is the first objective for any level of integration. The
tests should show the correct implementation of the given requirements related to
the product but also relevant by the given standards, particularly here ISO 26262.

Since a system according to ISO 26262 needs to be a hierarchically structured,
the following two basic test types have to be considered:

• element test
• integration or interface tests

In the acceding branch of the V-cycle the objective is not anymore the verifi-
cation of requirements, now the realized product have to be verified. Here are not
anymore architectural interfaces relevant for the integration; here the real product
interfaces are relevant. Of course all architectural interfaces shall be still transparent
to the elements of the realized product, but in some cases not all interfaces could be
animated to verify the entire specification space. So only a repetition of the tests
during requirement development is not sufficient.

ISO 26262 requires in part 4 on system level, but the principles of integration are
also applicable for element integration within components or even during devel-
opment of semiconductors even inside such hybrid devices.

ISO 26262 recommends or requires the requirement development or at the least
for its verification, to test the planning or testability of the correct implementation
through the realization of the requirements. This means that if a requirement is
developed, a concept is needed beforehand showing how the correct implementa-
tion of the requirement can be proven for the product developed. If the test planning
had started at a later time in the development, we could probably systematically
cause a change in the developed requirements. Key words such as “Design2Test”,
DoE (Design of Experiment), requirement based test management or risk based
testing describe possible test methods.

6.1.5 Integration of Technical Elements

The different levels of the integration are used for the verification of the interfaces
of the relevant elements. The typical verification criteria for the interfaces build the
foundation for the applied methodology. The objective of such tests are whether the
interfaces have been developed completely, consistently, correct and if sufficiently
transparence is given for the safety case.

In real systems or products systems do not consist just of 1 software and 1
hardware component. Elements of other technology are mixed with electronic, such
as connectors, printed-circuit-board, harness etc. Also inside the microcontroller the

234 6 System Integration

hardware-software-interface exists not in single blocks. Nearly any function in
software in any control cycle passes interfaces of different technology by any
software instruction. The challenge is to find a proper and traceable integration
strategy, so that the intended functions and their performance could be confirmed
and the safety verification leads to positive results. If the tension between perfor-
mance, availability and safety leads to endless process iterations due to negative
results of the verification, real safety cases could not be assessed. In case of
fail-operational systems during any integration cycle the availability of the intended
function in any integration level need to be verified, so that dependent failure do not
lead failure of the intended function. Furthermore the integration strategy should
respect also the given security requirements. If the entire non-functional require-
ments are not harmonized during integration any verification will fail.

Beside hardware, software and other technology also other elements need to be
considered during integration. In ISO 26262 we can find 3 categories of elements,
which impose different requirements to their integration.

Safety elements developed out of the context of specific item or vehicle system
(SEooc, Safety Element out of Context)

In this category we can almost find all elements and components, which are
integrated into a vehicle. Microcontroller, software components and even entire
vehicle systems such as electronic brake systems are not developed for a certain
vehicle with certain driving dynamics data, they are developed based on experi-
ences or market analysis. Because of that, a lot of interfaces (even electric inter-
faces) are standardized and even those standard interfaces are not always derived
from typical automotive applications. Consequently the architecture could not
developed as a top-down approach, specific interfaces have to be considered as
constraints. As more unique the interfaces could be design, as wider is their range of
application. Microcontroller, communication systems such as CAN-Bus, connec-
tors nearly any hardware will provide constraints for the system design. In order to
find a modular design and a wide range of use for such SEooCs, assumptions of
higher level requirements have to be developed so that those elements could later be
successfully integrated into a specific vehicle. From the top-level, even safety goals
and the possible ASIL have to be assumed, so that a hierarchical design could be
assured to the lower levels down to the realization.

During the integration of the SEooC all assumption have to be mapped to given
requirements and constraints of the target vehicle, so that the results of the SEooC
development could become valid also for the safety case of the target item.

Qualified components
ISO 26262 addresses the qualification of software and hardware elements in part

8 respectively separate. Both elements have the same challenges. It have to be
assumed that elements to be qualified have not been developed according to ISO
26262. Since ISO 26262 is still pretty new, there are not that many components,
which are developed according to this norm. Therefore, before its publication of

6.1 Verifications and Tests 235

course other standards or norms have been used instead. If a component has been
developed according to a different safety standard, we can generally assume that
there is an certain level of safety documentation. However, whether the failure
propagation of this component in a vehicle system is the same as in an airplane or in
a stationary power plant and whether the time behavior is sufficient in combination
with other safety mechanisms, can become challenging questions. Especially the
required multiple-point failure control for ASIL C and higher becomes challenging.
Since hardware components are physically describable, ISO 26262 also allows such
a qualification for new components. ISO 26262 elements are not made of a specific
substance or material. Any basic element need somehow qualified in order to be
suitable for a safety-related application. Arguments for their trustful functions and
adequate evidence need to be provided.

It is not the aim of the automobile industry to one day develop resistors
according to ISO 26262. However, this is not the case for software elements; in this
case the norm suggests that this type of qualification should not be used for new
developments. Doesn’t the software often behave different in a different micro-
controller? Are core operations for the different code instructions so unique? Could
compiler settings from one controller to another controller lead to the same safe
functioning? Even Autosar could not assure a sufficient safe and consistent envi-
ronment for a safety-related application software.

Proven elements, proven in use (PIU)
This is one of the most difficult topics of safety engineering. First of all, a lot of

experienced developers say that there have not been any previous safety risks by
using proven elements in vehicles. Why is a system now no longer “safe” only
because such a norm has been published? The risk has already been described
before with qualified elements; we do not know whether the case of application, the
integration environment and the error propagation happening at the interfaces are
actually that identical. According to ISO 26262, PIU is a “Black-Box-Approach”,
meaning we do not know the entire inner structure and behavior of the elements or
the candidate to be reused. Safety should be assessed purely according to the
characteristics of the outer boundary. The norm does not support this since it
requires that the performance and the frequencies of errors need to be quantified
based on field experiences. This quantification however should be based on a
comparable case of application in a comparable environment. Since microcon-
trollers especially change constantly, this signifies an enormous challenge for
software elements.

6.2 Safety Validation

Validation need to be considered different in the context of safety validation or any
other validation activity. Furthermore safety validation in ISO 26262 is a specific
activity and the discussed topic for verification to see validation as a methodology.
Validation in general is often described as the confirmation of targets. A certain

236 6 System Integration

general validity is required and man could say: “Validation is the proof that targets
are reached reproducibly”.

ISO 26262 sees safety validation on vehicle level, but safety validation is not
considered as a single activity. Safety validation should accompanied the whole
safety process until the end of the development phase.

ISO 26262, Part 3, Clause 8:

8.4.4 Validation criteria
8.4.4.1 The acceptance criteria for safety validation of the item shall be

specified based on the functional safety requirements
NOTE For further requirements on detailing the criteria and a list of

characteristics to be validated see ISO 26262–4: 6.4.6.2 and ISO
26262–4: 9.4.3.2

The note gives clear hind that the safety manager has to plan further intermediate
validation activities during planning the activities (Part 4, Clause 6.4.6.2) for pro-
duct development on system level. Of course a similar validation steps meaningful
during component development, but those are not explicitly required by the stan-
dard. Those intermediate validations are typical characteristics of today’s agile
development approaches, but they also are inherent part of a spiral process or
automotive typical APQP activities.

However, in contrast to verification, validation still has kind of a blurry character
since targets are often not as precisely formulated as requirements, which are
generally verified according to ISO 26262. In the automobile industry we can often
find the following definition: “The customer requirements are validated, but the
requirements for example in the product and technical specifications are often
verified.” Whereby the product specification is seen as the formulated wish of the
customer and can once again be validated.

The following aspects are associated with the term validation:

• Latin: validus; strong, effective, healthy
• Validity: weight of a statement, investigation, theory or premise
• Validation is a method of communication with dementia patients
• Validation: Proof that a process, a system and/or the production of a active

substance reproducibly fulfills the requirements in practical use
• Validation for a semiconductor says that it can be produced according to the

specifications
• Validation: external proof of large-scale projects and theirs sustainability reports
• Validation in computer science is the proof that a system meets the requirements

in practice
• Validator: A method or program, which should confirm the verification with

respect to a standard
• Validation or testing of the validity of statistical values or their plausibility
• Method validation proves that an analytical method is suitable for its purpose

6.2 Safety Validation 237

• Validation often describes a statistical proof
• Validation of educational attainment
• Model validation should show that the system developed through the imple-

mentation of a model reflects reality sufficiently precisely

The addressed interpretations above also show all aspects, which play a role for
functional safety. However, through the multifaceted nature of the term it is difficult
to find a definition of the general term ‘validation’. Therefore, this term has a rather
restricted meaning in ISO 26262. All other validation aspects are paraphrased with
verification or analysis.

In part 4, Chap. 9 the safety validation activity is described as follows:
ISO 26262, Part 4, Clause 9:

9.1 Objectives
9.11 The first objective is to provide evidence of compliance with the safety

goals and that the functional safety concepts are appropriate for the
functional safety of the item

9.1.2 The second objective is to provide evidence that the safety goals are
correct, complete and fully achieved at the vehicle level

Two objectives are defined for safety validation; the first is the evidence that the
safety goals are considered adequately in the context of the functional safety
concept and the defined item. The second objective asks for the evidence that the
safety goals themselves are correct and achieved on vehicle level. The hope of any
safety validation is, to proof that the vehicle is safe as such, but ISO 26262 could
provide support on the evidence of functional safety for E/E-Systems. The
safety-live-cycle in ISO 26262, part 2 shows, that external measures and also
measures of other technology have to be considered during safety validation. In
“9.2 General” the relation to other activities are detailed.

ISO 26262, Part 4, Clause 9.2:

9.2 General
9.2.1 The purpose of the preceding verification activities (e.g. design

verification, safety analyses, hardware, software, and item integration
and testing) is to provide evidence that the results of each particular
activity comply with the specified requirements

9.2.2 The validation of the integrated item in representative vehicle(s) aims
to provide evidence of appropriateness for the intended use and aims
to confirm the adequacy of the safety measures for a class or set of
vehicles. Safety validation does cover assurance, that the safety goals
are sufficient and have been achieved, based on examination and tests

238 6 System Integration

The clause 9.2 defines more specifically how ISO 26262 sees the relation to
verification and integration measures.

For example, examining whether a goal has been achieved, this includes the
validation of the safety goals in ISO 26262. A test a for example, if the SW fits into
the microcontroller would be a verification after integration. Methodically you
checked but against the requirements of the higher level through the intermediate
step, whether they were consistent, correct and completely achieved. A second step
would be whether the goal of a safe integration of hardware and software has been
achieved.

Thus it is also in the second interpretation, the request itself is really what is
required, according to ISO 26262 in deriving the functional safety concept for
technical safety concept through to the component requirements. Here ISO 26262
calls the activity also verification of requirements.

The mayor goals for validation based on underlying verifications such as:

– The goals are achieved
– The demands were the right
– The requirements were implemented correctly and adequately.

If this leads to a consistency and completeness of reasoning, creating a sufficient
transparency should be no problem. If the activities and the methods used exten-
sively documented, so that an auditor could confirm the adequateness of the
activities and an assessor should be able to confirm the achievement of functional
safety.

This means that all verifications are receipt confirmations that all relevant
requirements and specifications are correctly implemented for a certain system on
vehicle level for a specific vehicle or vehicle class. The safety validation should
provide the final argument for functional safety on vehicle level.

6.3 Model Based Development

Model based developed is a heavily discussed topic in automotive industry. Most
frequently this term means the automated code generation. However, simulations
and automated checker functions instead of manual reviews are used more and
more in context of functional safety especially for verification activities. Since for
the verification we need to state the subject of the verification in an abstracted form,
it is recommended, to let a model develop and mature alongside the product
development. Whether the aim is to really create a complete model, which reflects
the entire product in its integration environment, or the models should be adjusted
for their purpose or even developed independently, depends on various factors. It is
important however, that the models, which are used in development, are also
considered in the context of project planning. The question is: “Which parts of the
necessary activities can be automated and what purpose does the model serve?”.

6.2 Safety Validation 239

At the vehicle level (compare information flow with figures in previous chapters)
a model would be highly useful since all assumptions can already be validated at
the model in the design phase.

In the initial phase of the development it is very clear that models are used in
order to better understand requirements or dynamic behavior can be described in the
first process iterations. On the descending branch of the V-model, models are often
abstractions of the corresponding product before its realization with which it can be
proven whether the products can be integrated sufficiently in the ascending branch
of the V-model. These models focus on describing the development in a way that
the behavior corresponds with the product developed in an abstracted environment.
Besides the failure analysis these models are often used as a basis for test benches
(e.g. HIL, Hardware in the Loop), in order to develop automated tests. The real-
ization model is often not derived from the requirement model but developed
independently. The benefit is that the tester does not need to be involved in the
requirement development and thus unbiased testing can be ensured. However,
speaking on the verification or the validation of the models or their consistency, we
can see that the significance of such models is limited. Furthermore, the verification
of the requirements will be difficult referring to the correct implementation for
inconsistent models. The benefits of such independently developed and validated
models are the insights at the consistency check. At this point of course the
respective systematic failure will be apparent. A parallel development and maturing
of the model and the systematic verification or validation of the model against
requirements as well as the previously developed and determined characteristics of
the final product would be advisable. This of course can only apply for reduced
abstractions. A complete modeling of electronic or even of the microcontroller used
is possible nowadays but still very complex (Fig. 6.2 and 6.3).

The model has to achieve the intended target maturity until the development of
individual components. This means that the model should comply with the relevant
requirements by 100 %, which means complete. The integration of the components,
which are planned according to the model and which correctness can be argued
with the help of models, reaches its complete maturity with the finale validation.
These requirements however can only apply if no change in the requirements is
allowed during the development. However, based on the architecture, influences of
changes can be explained. The model is going to support the influence analysis,
especially for the technical behavior and the dynamic effects.

Integration phasesVerification PhaseDesign phasesArchitecture phasesRequirement phases Analysis phases

3-7
Safety Goals

3-5
Vehicle
System

Definition

Interface
analysis / H&RA

Design
assumptions,

limitations

4-9
System
Safety

Validation

Function goals
Requirements

3-8
Functional

safety
requirements

Architecture
assumptions

3-8.4.5
Verification

3-8.4.4
Validation

criteria

3-8.4.3
Allocation

3-8
Functional

safety concept

Design
FMEA

Fig. 6.2 Information flow on vehicle level engineering

240 6 System Integration

6.3.1 Models for Functional Safety

Vehicle model: Such a model can show the behavior of a vehicle in the context of
driving situations. It can also illustrate the vehicle reaction based on possible
malfunctions of systems on vehicle level, which needs to be integrated. Such
models support the analysis and verification of the item including considerations of
boundary condition, limitations as well as the requirement analysis for the intended
functions. Especially if the intended function itself becomes safety-related, the
necessary analysis to verify them within its intended range of use and environment
could be performed, before any function is integrated in a vehicle. Such a model
can support the hazard and risk analysis and also provide essential information for
their verification. For the model it doesn’t matter if the effect of malfunctions or
mere functional effects are verified. This model could provide arguments for
completeness for the verification of the functional safety concept. The derivation of
functional safety requirements from the safety goals against the safety architecture
at this horizontal vehicle level and thus the allocation can be verified. On a func-
tional level it is possible to simulate how certain functional safety mechanisms react
on possible malfunctions of the system within the vehicle environment. Through
respective timely simulations it is also possible to show the intensity of malfunc-
tions during different failure tolerance time intervals, so that the failure tolerance
time intervals can be analyzed and defined. These models can generally also sup-
port and provide arguments for the integration of the vehicle system and its veri-
fication and validation.

System models on vehicle level: This model would illustrate the behavior of the
considered system on vehicle level but cannot uniquely show the behavior and the
effects of the vehicle system or the vehicle reaction in the traffic environment. This
is why the model would be suitable to verify the relevant malfunctions of the hazard

Integration phasesRequirement phases Design phases

3-7
Safety Goals

3-5
Vehicle
System

Definition

Analysis phases

Interface
analysis / H&RA Design

assumptions,
limitations

4-9
System
Safety

Validation

Function goals
Requirements

3-8
Functional

safety
requirements

4-6
Technical

Safety
requirements

4-8
Integration-

tests

Architecture phases

Architecture
assumptions

Verification Phase

3-8.4.5
Verification

4-8
Verification

3-8.4.4
Validation

criteria

3-8.4.3
Allocation

3-8
Functional

safety concept

4-6
Technical

Safety concept

4-7.1 / 2
System

architecture

4-7.3 / 4
System Safety

analysis

4-7.6 / 7
System
design

5-6
EE Hardware

Safety
requirements

5-7.4.4
Verification

5
EE Hardware

Safety concept

5-8
EE hardware
architecture

5-7 / 8/9
EE Hardware

Safety
analysis

5-7.4.1 / 2
EE HW
design

5-10
EE HW

Integration-
tests

Fig. 6.3 Model maturity compared to maturity of the product developed

6.3 Model Based Development 241

and risk analysis. It would not be capable of verifying or even validating the safety
goals. The vehicle system limits can be analyzed and verified, so that the vehicle
system model provides an important verifiable input for the hazard and risk
analysis.

A system model on vehicle level could also support the integration of the item
and the verification.

For the safety validation this model could only be used limitedly since the
correctness of the safety goals could be questioned in the context that they cover all
relevant malfunctions. With today’s modeling tools system models can be trans-
ferred very well into a vehicle model.

System model: The focuses of a system model are the interfaces to the com-
ponents. A system model can describe the different horizontal levels, this is why the
levels at which the models is abstracted, should be defined clearly (Fig. 6.4).

The system model can describe the vehicle interfaces and the aspects described
under the vehicle system models would be valid. The components interfaces could
be defined the same way so that the behavior of the components and their functions
or functionalities can be described, analyzed, or verified. Furthermore, a model of
the microcontroller could be used in order to describe, analyze or verify the
hardware–software-interface and the behavior of the software within the micro-
controller (environment). Nowadays even in the silicon models are widely used to
describe the functionalities of semiconductors and validate those against the dif-
ferent realized samples. This means that a system approach is used in order to
display the inner behavior of the silicon. ADL (architecture description languages)
are widely used for that purpose.

Specifications, analyses and their verification and validation (validation as test
against customer requirements) can be reasoned on the model level. For the failure

Component level

Vehicle level

System Level 1
Vehicle interface
System Level 2
Component Interface
System Level 3
Hardware-Software Interface

Airplane plane

Fig. 6.4 Horizontal system level and type of interfaces

242 6 System Integration

analysis of the model the same approach can be used as for the other hardware
systems. The level of the desired functionality and its failures should be seen as the
error type level. The causative level should be the level at which the measurable or
observable anomalies of developed samples and typical systematic failures are
describable. In this context it is primarily important that the model and the
development mature continuously so that the model can also be respectively vali-
dated with each characteristic relevant for the product to be developed. Principally
according to ISO 26262 the model validation is also a verification but in this case
we will do without this for the semiconductor industry untypical term. A good
model is sufficiently valid (suitable) and reproducible as a reference for the tech-
nical description in order to reason the analyses and verifications of the model.

Basically all models in safety technology are “System models”. The entire ISO
26262 is based on a structure in which software and hardware components are also
described through a systemic approach. Therefore, a combination of system ele-
ments is chosen that facilitates the implementation of the intended functionality.

Electronic Models: Electronic modeling is a fairly old discipline. Up until today
SPICE (Simulation Program with Integrated Circuit Emphasis) is used as a foun-
dation. SPICE (PSPICE is the PC version of SPICE) was developed in 1973
originally at the Electrical Engineering and Computer Sciences (EECS) department
of the University of California in Berkeley. A comparable and even older algorithm
is CANCER (Computer Analysis of Nonlinear Circuits Excluding Radiation).
These algorithms were continuously improved and are even used nowadays as a
basis for the description of electronic including semiconductors. Known
system-modeling tools have integrated the SPICE algorithms. The term SPICE has
nothing to do with the process assessment method, at which for examples
Automotive-SPICE is based on today. It is only an example that electricians and
software specialist do not have a systematic communication. Such SPICE algo-
rithms can basically be embedded in each system environment so that the system
and software intersection can also be described. SPICE algorithms can simulate the
temperature, voltage and electricity behavior as well as mechanical influences on
the behavior of electric components to each other. The models become especially
significant since there are corresponding model libraries for all electric components,
which also show the behavior of components in their integration environment.

Therefore, even antenna effects can be simulated through EMC malfunctions or
drifts on transistors, which they themselves are not measurable with oscilloscopes.
For EMC in our day’s Maxwell equations are integrated in the tools. Furthermore,
also heat behavior and its propagation within components and controlling units can
be simulated. Especially for the analysis of dependent failure such a simulation can
provide useful results. Since the error propagation can be simulated based on
different effects, it is possible to detect failure cascades. In this case there is the
possibility to reduce the causes of failure cascades or the propagation of failure
cascades with adequate measures. By applying Kolmogorov-Smirnov or applying
of algorithm based on those test method tests all kind of dependability could be
simulated and analyzed. This means that the basic principles of system engineering
including the error propagation are also applicable for these electronic models at the

6.3 Model Based Development 243

electronic and semiconductor level. If the reliability method, the principles of
statistical failure distributions as well as the environment or integration profile are
included in modeling (for example the Arrhenius approach), even quantitative
safety analyses or importance analyses (Cut-Set analyses) can be illustrated in the
model.

6.3.2 Foundation for Models

The foundation for models actually goes back to the questions of Parmenides
(Greek philosopher), who pointed out 2500 years ago that not everything can be
explained the way how it is observed. The moment influence parameters are
included or left out, the observed behavior can change. Therefore, it can be shown
that the form of abstraction of the model can be an essential basis for the signifi-
cance referring to the development or the reality of the model (Fig. 6.5).

The P-diagram was previously discussed in the above-illustrated form in the
1950s. The diagram is based on the idea of energy transfer. The input value is seen
as the 100 % ideal function. If 100 % of the input value could be transferred to
100 % of the output value, it would be an ideal system.

This does not exist in reality. The principle of thermodynamic says that a 100 %
transformation is not possible; there is no such thing as a “Perpetuum mobile”. This
means we check which influences from the environment at the closed system cause
which discrepancies at the output. Through this 100 % rule the reference to the
requirements (has the model behavior been specified 100 %) as well as the
development (is the observable behavior of the development 100 % explainable in
the model) can be reasoned, so that it is possible to make statements referring to the
level of abstraction and the model maturity. This was for example described in the
Ford-FMEA handbook including the evaluation of interferences (robustness
matrix). This P-diagram is used as basis for all meta-models, which can also
describe the failure behavior of systems. This means that all descriptions and also
behavior models show such a structure or a comparable one. Through the 100 %
comparison we can reason completeness, so that an essential aim of the verification
can be met. Those parameters of the P-diagram however need to consistently go
through the entire model. If the model did not result from comparable (consistent)
met models, consistency and completeness statements cannot be derived from the

system
intentional
input behavior and its
characteristics

system response

disturbance
(noise) effects

environment influences
(Interference, "Noises")

error conditions

Fig. 6.5 P-Diagram
(Parameter-Diagram) and its
typical Parameter

244 6 System Integration

model. Since both verification aims are the basis for safety technical correctness,
also a safety technical correctness cannot be derived from the model without a
consistent meta-model. All parameters of the product referring to requirements,
design characteristics, architecture and the development itself, including all mea-
sures for the product as well as secondary the verification and validation, need to
relate to the P-diagram and be technically consistently saved and archived.
Otherwise change-management, configuration management and module manage-
ment or baselining is only partially possible for safety technical systems. If each
product, no matter at which horizontal abstraction level, is described through such
P-diagrams, also the systematic approach is consistent in each horizontal level so
that the system engineering principles can also be applied on software and hardware
levels.

6.3.3 Model Based Safety Analysis

Since classic deductive and inductive analyses procedures such as FMEA or fault
tree analyses (FTA) can only limitedly reflect the requirements or the development,
model based safety analyses are important methods for the fulfillment of ISO 26262
requirements.

Of course it is only possible to analyze automatically, which has been automated
or implemented into the model. Just like the idea of P-diagrams show, analyses and
verifications are only as good as their foundations, which are available for the
analysis or verification. The benefit of model-based analyses is that the processes
could be automated and results can be supplied automated to further analyses and
becomes repeatable.

An essential benefit of the model-based analysis is that with today’s computers it
is also possible to formalize illustrate the dynamic behavior as well as its safety
technically analyzes. Especially the behavior in the case of failure or errors as well
as in the transition from a static condition to different other states, which happens in
different driving, systems or operation modes, needs to be considered. Failure
behavior at such transitions of system conditions often lead to dangerous effects
today’s highly dynamic systems, which for example can no longer be controlled by
the driver. Even effects, which at the transitions of system modes in the individual
driving situations can cause danger, cannot be completely and systematically
described or analyzed with the classic analysis methods. For a valid model we can
configure the condition transitions with different parameters and model automated
through a whole modeling range at each horizontal abstraction level (i.e. in the
microcontroller, at the components level or at dedicated system levels). The
observations of the output conditions and variations such as the failure reaction, as
described in the P-diagram, allow systematic evaluations.

Therefore, failure combinations and even combinations of dynamic and static
failures can be displayed. Thus for example a parameter principle of different drifts

6.3 Model Based Development 245

of a capacitor at the input of a transistor can demonstrate changed switching
characteristics regarding different parameter fields. This example for a failure
cascade can show a dual-point fault or even a single-point faults, which without
such a simulation could only be illustrated with difficult and tedious tests and
calculations. This shows that the simulation offers far more transparency for the
analysis of dependent failure as well as multiple fault analysis. This example from
electronics is of course also applicable for mechanics or software components as
well as the system level. At the system level such failure combinations are hard to
describe in connection with EMC influences. In this context a simulation can
provide essential support. Whether the classic safety analysis method is now
applied to the requirement model, the development model or the development itself
should depend on the verifications and validations strategy.

However, the model-based safety analysis should first be seen as addition for the
classic analysis methods. It would be worth considering seeing the model-based
safety analysis preferably as deductive analysis and the classic FMEA further on as
inductive analysis. Therefore, the systematic approach of consistent system engi-
neering can again be applied from the vehicle level all the way down to the silicon
structures and the software development.

6.4 Approvals/Releases

Releases are already addressed in ISO 9000 and therefore also in ISO TS 16949.
From ISO 9001:2008, Chap. 7.3.3 “Development Results”:
The development results need to have a form, which is suitable for the verifi-

cation against the development inputs and be approved before the release.
Also the term “Product approval” is used in different ways. This means that

certain activities such as products need a release. ISO 9001 does not specify how
such a release should take place. It is again the task of the respective management
system to define the way in which such a release should be managed and what the
subject of the particular release is.

Documented releases require from the decision making people that they are
aware of the correctness and appropriateness of the relevant activities and the
achieved characteristics and that they confirm that those have been fulfilled. This
requires that the commissioned people have the sufficient competence for dedicated
release. Negligently or grossly negligent performed releases can lead to damages or
danger, which can cause the legislator or the insurance to get involved and become
active. What legal consequences such decisions can have for the company or even
for an individual person should not be discussed here. We should only bring
attention to the further regulations and laws; especially, if we speak of releases of a
clearly characterized safety activity or a safety relevant product.

246 6 System Integration

http://dx.doi.org/10.1007/978-3-319-33361-8_7

6.4.1 Process Releases

In many APQP standards the product is released before the process. This is based
on the assumption that when the product meets the requirements and targets, the
process cannot have been completely wrong. If the process is released first, it is
probably a production process release, which is then the prerequisite for a pro-
duction of the product in line with the market requirements. Furthermore, it is
assumed that if the process went well, the product will also prove to be of a certain
quality. This in particular can lead to tremendous misconceptions.

This is why VDA suggests a process, product and project release (Fig. 6.6).
This figure shows that the respective maturity level dependency for multilevel

supply chains.
Here we can see the work results and milestones for supply chains and the

projects and products, which support this supply chain.
This milestone or maturity concept and its process protection are primarily used

for the early detection of project risks, whereas safety issues of the product are one
of such (Fig. 6.7).

The figure shows typical risk in the various phases and gives examples to
minimize the risk for the product.

Fig. 6.6 Supplier Management—Specifiying the critical path source: VDA publication “maturity
level assurance for new parts”, 2nd edition, 2009

6.4 Approvals/Releases 247

6.4.2 Release for Series Production

According to all APQP or PPAP standards, the release for series production is also
given to suppliers, through the vehicle manufacturer or the person responsible in the
superimposing hierarchy of the supply chain. However, in all standards the vehicle
manufacturer reserved the right to prove the correctness of the production and the
product even for sub-suppliers of suppliers.

ISO 26262 define requirements for product release in part 4.
ISO 26262, Part 4, Clause 11:

11 Release for production
11.1 Objectives
11.1.1 The objective of this clause is to specify the release for production

criteria at the completion of the item development. The release for
production confirms that the item complies with the requirements for
functional safety at the vehicle level

11.2 General
11.2.1 The release for production confirms that the item is ready for

series-production and operation
11.2.2 The evidence of compliance with the prerequisites for serial

production is provided by

Fig. 6.7 VDA maturity model [3], maturity-hedge for new parts (Source VDA maturity for new
parts)

248 6 System Integration

– The completion of the verification and validation during the development
at the hardware, software, system, item and vehicle level; and

– The successful overall assessment of functional safety.

11.2.3 This release documentation, forms a basis for the production of the
components, systems or vehicles, and is signed by the person
responsible of the release

Particularly the last requirement stating that such a release needs to be signed by
people is very common in the automobile industry. However, a product liability
lawyer would not unreservedly recommend signing such a release.

6.4.3 Production Part Approval Process (PPAP)

One of the mayor processes for the acceptance of the product by OEMs and higher
Tiers is the PPAP)

PPAP is a process defined in various APQP standards but also derived by nearly
any vehicle manufacturer or higher Tier.

This process defines how the acceptance from on higher organization in the
supply chain should be handled, so that at the end of the process a “release for
series production” could be agreed (Fig. 6.8).

Fig. 6.8 PPAP Flow [2], (Source AIAG 4th. Edition)

6.4 Approvals/Releases 249

There are 5 PPAP Levels which mainly lays down, what the customer expects
when from his supplier. The supplier have to provide a warranty letter the PSW
(product submission warrant), which is a declaration, that the delivered sample
fulfils all agreed requirements, including safety requirements of course (Fig. 6.9).

Depending on the PPAP level the following work-products are expected
(Fig. 6.10).

Fig. 6.9 PPAP Submission Levels (Source AIAG 4th. Edition)

Requirement Level 1 Level 2 Level 3 Level 4 Level 5
1.Design Record
2.Engineering Change Documents, if any
3.Customer Engineering approval, if required
4.Design FMEA
5.Process Flow Diagrams
6.Process FMEA
7.Control Plan
8.Measurement System Analysis studies
9.Dimensional Results
10.Material, Performance Test Results
11.Initial Process Studies
12.Qualified Laboratory Documentation
13.Appearance Approval Report (AAR), if applicable
14.Sample Product
15.Master Sample
16.Checking Aids
17.Records of Compliance With Customer Specific Requirements
18.Part Submission Warrant
19.Bulk Material Checklist

S * R
S * R
S * R
S * R
S * R
S * R
S * R
S * R
S * R
S * R
S * R
S * R
S * R
S * R
R * R
R * R

R
R R S * R

R S
R S
R R
R R
R R
R R
R R
R R
R S
R S
R R
R S
S S
R S
R R
R R

S S S S
S S S S R

 S = The organization shall submit to the customer and retain a copy of records or documentation items at appropriate
locations
 R = The organization shall retain at appropriate locations and make available to the customer upon request
 * = The organization shall retain at the appropriate location and submit to the customer upon request

Fig. 6.10 Work-products as required by PPAP level (Source AIAG 4th. Edition)

250 6 System Integration

The PPAP is strongly relying on production planning. The production sample is
also one of the delivered work-products. The main engineering work-product is the
Design-FMEA.

Many automotive companies expect beside the list of safety-related character-
istics the entire safety case of the product as one of the additional required
work-products, if the product is defined a safety-related product. Many companies
require a safety case according to ISO 26262, so that all work-products have to be
added to the list of work-products from the PPAP by the agreed work-products for a
safety case according ISO 26262.

References

1. [ISO 26262]. ISO 26262 (2011): Road vehicles—Functional safety. International Organization
for Standardization, Geneva, Switzerland.

217

218

218

219

221

223

224

225

226

231

235

246

236

236

2. [PPAP AIAG]. PPAP Production Part Approval Process AIAG 4th Edition, Automotive
Industry Action Group, PPAP, 2006

3. [VDA maturity model]. Supplier Management—Specifiying the critical path, VDA publication
“maturity level assurance for new parts”, 2nd edition, 2009

6.4 Approvals/Releases 251

Chapter 7
Confirmation of Functional Safety

Especially due to legal requirements, especially liability requires confirmation and a
certain level of approval for the product under development are “State of the Art”.
In order to assure also for these confirmation sufficient or adequate transparence and
traceability reports of the confirmations measures are required.

ISO 26262 [1] considers during concept and development phase 2 objectives.
ISO 26262, Part 2, Clause 6:

6 Safety management during the concept phase and the product development
6.1 Objectives
6.1.1 The first objective of this clause is to define the safety management roles
and responsibilities, regarding the concept phase and the development
phases in the safety lifecycle (see Figs. 1 and 2).
6.1.2 The second objective of this clause is to define the requirements for the
safety management during the concept phase and the development phases,
including the planning and coordination of the safety activities, the pro-
gression of the safety lifecycle, the creation of the safety case, and the exe-
cution of the confirmation measures.

The safety-lifecycle has been discussed detailed in the previous chapter of this
book. For the second objective some further views based on the system engineering
ideas have to be more detailed evaluated more detailed.

ISO 26262 provides three measures, which are necessary for the confirmation of
functional safety for a product or an item

© Springer International Publishing Switzerland 2016
H.-L. Ross, Functional Safety for Road Vehicles,
DOI 10.1007/978-3-319-33361-8_7

253

ISO 26262, Part 2, Clause 6:

6.2 General
6.2.1 Safety management includes the responsibility to ensure that the con-
firmation measures are performed. Depending on the applicable ASIL, some
confirmation measures require independence regarding resources, manage-
ment and release authority (see 6.4.7).
6.2.2 Confirmation measures include confirmation reviews, functional safety
audits and functional safety assessments:

– the confirmation reviews are intended to check the compliance of selected
work products (see Table 1) to the corresponding requirements of ISO
26262;

– a functional safety audit evaluates the implementation of the processes
required for the functional safety activities;

– a functional safety assessment evaluates the functional safety achieved by
the item.

ISO 26262 uses the term “evaluate” in connection with the functional safety
audit and assessment and “check” for the confirmation reviews. The assessment
character for the functional safety audits could come from checking whether the
safety activities have been implemented as planned on the basis of the functional
safety concept.

The standard requires principally one Functional Safety Assessment, if func-
tional safety has been achieved for an entire item on vehicle level in accordance
with the given safety goals. Partial assessing of elements (systems, which do not
build an item on vehicle level, components or electronic components, e.g. micro-
controller) could also be performed within their system boundaries with regards to
functional safety. However, the appropriateness or complete fulfillment of safety
goals cannot be assessed for a specific vehicle.

Especially in distributed developments partial assessments are necessary,
because the integrator on vehicle level is not able all necessary aspects of functional
safety for complex products, such as software based multifunctional automotive
systems.

Therefor ISO 26262 recommends a development accompanying Functional
Safety Assessment and only the final evaluation of the product after integration,
safety validation and other confirmation measures called a Functional Safety
Assessment.

254 7 Confirmation of Functional Safety

ISO 26262, Part 2, Clause 6:

6.2.3 In addition to the confirmation measures, verification reviews are
performed. These reviews, which are required in other parts of ISO 26262,
are intended to verify that the associated work products fulfil the project
requirements, and the technical requirements with respect to use cases and
failure modes
6.2.4 Table 1 lists the required confirmation measures. Annex D lists the
reviews concerning verification and refers to the applicable parts of ISO
26262
6.2.5 Safety management includes the responsibility for the description and
justification of any tailored safety activity (see 6.4.5).

Verifications during conception and product development are required as a
mayor input for all confirmation measures. In ISO 26262, Part 2, annex D some
proposals for planning and execution of verifications and other confirmation
measures are shown.

For the confirmation measures, the standard provides some further detailed
requirements.

ISO 26262, Part 2, Clause 6.4.7:

6.4.7 Confirmation measures: types, independency and authority
6.4.7.1 The confirmation measures specified in Table 1 shall be performed, in
accordance with the required level of independency, Table 2, 6.4.3.5 i), 6.4.8
and 6.4.9
NOTE 1 The confirmation reviews are performed for those work products
that are specified in Table 1 and required by the safety plan.
NOTE 2 A confirmation review includes the checking of correctness with
respect to formality, contents, adequacy and completeness regarding the
requirements of ISO 26262.
NOTE 3 Table 1 includes the confirmation measures. An overview of the
verification reviews is given in Annex D.
NOTE 4 A report that is a result of a confirmation measure includes the name
and revision number of the work products or process documents analysed
[see ISO 26262-8:—, 10.4.5 (documentation)].
NOTE 5 If the item changes subsequent to the completion of confirmation
reviews or functional safety assessments, then these will be repeated or
supplemented [see ISO 26262-8:—, 8.4.5.2 (change management)].
NOTE 6 The aim of each confirmation measure is given in Annex C.
NOTE 7 Confirmation measures such as confirmation reviews and functional
safety audits can be merged and combined with the functional safety
assessment to support the handling of comparable variants of an item.

7 Confirmation of Functional Safety 255

The three confirmation measures are further specified in Table 2 (Fig. 7.2).
ISO 26262 provides in Table 2 the mayor corner points of the 3 confirmation

measures. In a footnote it indicates that the review and audit report can be included
in the assessment report.

The tables (Fig. 7.1) also give an indication what level or degree of indepen-
dence is required for what confirmation measure. The concern is, that people from

Confirmation measures

Degree of independency Scope

applies to ASIL

A B C D

Confirmation review of the hazard analysis and risk
assessment of the item (see ISO 26262-3:—, Clause 5,
ISO 26262-3:—, Clause 7 and if applicable,
ISO 26262-8:—, Clause 5)

-independence with regard to the developers of the item,
project management and the authors of the work product

I3

The scope of this review shall
include the correctness of the
determined
- ASILs, and
- QM ratings
of the identified hazards for the
item, and a review of the
safety goals

Confirmation review of the safety plan (see 6.5.1)
- independence with regard to the developers of the item,
project management and the authors of the work product

- I1 I2 I3
Applies to the highest ASIL
among the safety goals of the
item

Confirmation review of the item integration and testing
plan (see ISO 26262-4)
-independence with regard to the developers of the item,
project management and the authors of the work product

I0 I1 I2 I2
Applies to the highest ASIL
among the safety goals of the
item

Confirmation review of the validation plan (see
ISO 26262-4)
-independence with regard to the developers of the item,
project management and the authors of the work product

I0 I1 I2 I2
Applies to the highest ASIL
among the safety goals of the
item

Confirmation review of the safety analyses (see
ISO 26262-9:—, Clause 8)
-independence with regard to the developers of the item,
project management and the authors of the work
products

I1 I1 I2 I3
Applies to the highest ASIL
among the safety goals of the
item

Confirmation review of the software tool qualification
reporta (see ISO 26262-8:—, Clause 11)
-independence with regard to the persons performing the
qualification of the software tool

- I0 I1 I1
Applies to the highest ASIL of
the requirements that can be
violated by the use of the tool.

Confirmation review of the proven in use arguments
(analysis, data and credit), of the candidates. See
ISO 26262-8:—, Clause 14.
-independence with regard to the author of the argument

I0 I1 I2 I3

Applies to the ASIL of the
safety goal or requirement
related to the considered
behaviour, or function, of the
candidate

Confirmation review of the completeness of the safety
case (see 6.5.3)
- independence with regard to the authors of the safety
case

I0 I1 I2 I3
Applies to the highest ASIL
among the safety goals of the
item

Functional safety audit in accordance with 6.4.8
- independence with regard to the developers of the item
and project management

- I0 I2 I3
Applies to the highest ASIL
among the safety goals of the
item

Functional safety assessment in accordance with 6.4.9
-independence with regard to the developers of the item
and project management

- I0 I2 I3
Applies to the highest ASIL
among the safety goals of the
item

The notations: -, I0, I1, I2 and I3 are defined as:

-: no requirement and no recommendation for or against regarding this confirmation measure;

I0: the confirmation measure should be performed; however, if the confirmation measure is performed, it shall be performed by a
different person;

I1: the confirmation measure shall be performed, by a different person;

I2: the confirmation measure shall be performed, by a person from a different team, i.e. not reporting to the same direct superior;

I3: the confirmation measure shall be performed, by a person from a different department or organization, i.e. independent from the
department responsible for the considered work product(s) regarding management, resources and release authority.
a a software tool development is outside the item's safety lifecycle whereas the qualification of such a tool is an activity of the
safety lifecycle

Fig. 7.1 Table 1: confirmation activities and their level of independency (Source ISO 26262, part 2,
Table 1)

256 7 Confirmation of Functional Safety

their direct superior or other people in the hierarchy could be influenced to neglect
important safety activities, or others violating an adequate result according to given
safety requirements.

Generally, it will never be possible to describe, which safety activities are
suitable for which risks; in any case it was not the aim of ISO 26262 to provide
standardized concrete safety measures for certain failure scenarios. This is why it
will also not be possible to say, which confirmation measures are necessary, ade-
quate or suitable for which safety activities. The confirmation measures need to be
planned based on the safety concept.

7.1 Confirmation Reviews

“Confirmation Review” is only mentioned in the tables of part 2. Apart from these
tables there are no requirements for this kind of confirmation measure. But the
objective of Confirmation Reviews is to build the bridge between other verifications
as required or become necessary due to given requirements from the standard. The
tables show that the key task should ensure the consistency and compliance of the
norm according to ISO 26262 as well as that it is also a matter of standard com-
pliance and work results and its documentation in defined work-products. However,
most of the results also have to undergo verification according to ISO 26262, part 8,
clause 9, which should show the consistency, correctness and completeness of
essential work results. Essential however would be consistency checks of all work
results, just like it is required later for the Safety Case. The tables label the con-
firmation reviews for the important work results:

• Hazard Analysis and Risk Assessment
• Project safety plan
• Vehicle system integration and test plans
• Validation plan
• Safety analyses
• Tool qualification
• Argumentation of “Proven-in-Use” (PIU)
• Completeness of the safety proof

Why the definition of the item, the functional safety concept, the component
integration and their tests, the safety validation and the qualifications of hardware
and software components do not undergo a confirmation review is unclear.
However, some of these work results need to be verified.

Since the Confirmation Reviews are placed between the verifications and the
Assessment of Functional Safety, it would be advisable to combine these activities as
well as possible. The necessary independency has already been achieved for the
verifications through a different person, all content, which requires specific qualified
personnel, should be included through verifications. The insufficient independencies

7 Confirmation of Functional Safety 257

as required by the standard especially for higher ASIL could be complementary
examined through the Confirmation Reviews. If a technically sufficient examination
of consistency, completeness, transparency and correctness could be established
through a useful combination of Confirmation Reviews and verifications, we could
provide essential input for the Functional Safety Assessment by a multistage
approach. It would be recommended to define such multi-stage approach along the
maturity model of the given APQP standard. Because the maturity and specially the
way what are the purpose of specific sample deliveries relies on implementation of
safetymeasures in the process, safetymechanism in the sample and their verifications.

If Confirmation Review during all relevant steps during the activities according
the safety lifecycle are planned, the final Functional Safety Assessment would be a
respectively supplementing examination. It would complement the Safety Case by
the safety validation and the assessment of the appropriateness of safety goals and
their fulfillment for the confirmation of functional safety of the vehicle.

Verification of safety activities
ISO 26262 does not address many of requirements for the alignment of safety

activities (processes) to the product development in general. Also, the Confirmation
Measures in the standard are not described precisely so the verification of the safety
activities, which can result from the interleaving of safety activities, has never been
described. Only in ISO 26262, Part 8, clause 11 (Confidence in the use of software
tools) some indications can be found that the process, which ISO 26262 is based on,
should be safe by itself. Since the norm never described this process, the chains will
unfortunately be destroyed in project planning. Therefor verifications of safety
activities shouldn’t be neglect.

Figure 7.3 as a sketch of the process structure in ISO 26262 runs through the
entire requirements of the standard. It could be complemented with the problem
solving and change process, the configurations and documentations management as
well as the module management process. Basically, the verification is needed on all
horizontal development layers. Above we can see the example for the
system-components interface. However, the verification has to also take place
between the functional and technical safety concept as well as the horizontal
architecture interfaces in the components. Generally, each input and output of a
safety activity should be verified. For multiple horizontal system levels the verifi-
cation is called after each interface. The benefit is that the work results once again
become input for the next phases after the verification, which ensures the confi-
dence and resulting safety for the input and the predeceasing activities (Fig. 7.3).

This means that for example if the system architecture is verified including the
allocated requirements and later in a further verification the system design is verified
based on the previous requirements and architecture, an iteration cycle becomes
transparent. This means, we prove the input of all activities against the developed
output of the previous activities. The verification however, occurs parallel, so that
requirements, architecture and design are continuously tested against the output of
requirements, architecture and design of the previous phase. Therefore, each process
error has to be revealed in the verification through the comparison of the output
presented to the respective input. A basic requirement, not only for safety

258 7 Confirmation of Functional Safety

requirements, says that the output needs to be reproducibly generated based on the
defined input. Since any verification needs to also determine the consistency,
completeness and correctness, process failures can be detected through this test for
the requirement, architecture and design development. If those process failures have
not been considered for the verification planning, the statement that the process of

Component Development
System Requirement-
specification

System Architecture

System Design

Analysis Verification Verification
planning

Integration
Verification

Validation

Fig. 7.3 Process verification model similar to ISO 26262

Aspect Review for confirmation Audit of Functional Safety Assessment Functional safety

The evaluation Work result Implementation of the
processes that are required for
functional safety.

Defined vehicle system, ISO
26262-3: 2011, Chapter 5

Result Review Report (a) Audit report (a) in accordance
with ISO, Part 2, 6.4.8

Assessment Report ISO, Part 2,
6.4.9

Responsibility of the person
performs the action

Evaluating the conformity of the
results to the relevant
requirements of ISO 26262

Assessment carried out
required Processes

Evaluate the achieved
functional safety. Creating a
recommendation for
acceptance, conditional
acceptance or rejection in
accordance with ISO, part 2-
6.4.9.6

Time during the safety lifecycle After the completion of the
relevant Safety activities ..
Completion Before the
production release.

During implementation of the
required processes.

Progressive during
development or in a block.
Completion Before the
production release.

Scope and level of detail According to the Safety plan Carrying out the processes
according to the defined
activities, as referenced or
specified in the safety plan.

The work results in accordance
with the Safety plan, the
required processes performed
and the reviews of the Safety
measures taken, which can be
evaluated during the
development of the vehicle
system.

(A) This Reports in Assessment Report functional safety are introduced.

Fig. 7.2 Table 2: confirmation measures and their characterization (Source inspired by ISO
26262, part 2, Table 2)

7.1 Confirmation Reviews 259

ISO 26262 is safe itself is untenable. Originally these aspects used to be described in
the functional safety reviews. Unfortunately, after renaming it to ‘confirmation
reviews’ in the later final forms, a lot of these aspects were lost. Since systematic
failures, which are caused by process errors, tool impact errors or also human errors,
can lead to inconsistencies, they should be detectable in well-planned verifications.
Since the idea of the development processes derive from the production processes,
we can also find good examples for the process verification. In production engi-
neering such process verification is called a locking concept. It shows that even for
an incorrect input, the production process is capable of detecting such failures
through production monitoring. Also in this case the product is not changed through
the verification. The change happens, for example, through follow-up treatment or
because defective parts are sorted out. Technically, we can say that verifications and
analyses (as special forms of verifications) are the essential initiators of change
processes. The newly treated part however needs to once again go through the
verification before it can be further processed. Production engineering says that the
earlier an inconsistency is detected the cheaper is the follow-up treatment. This
measure can also be very well applied for the development processes. ISO 26262
includes a chapter in part 8, which covers the tool qualification. However, as of late
not many tools exist, which are appropriately qualified or if qualified used this
method. Verifications should be planned accordingly.

If activities, which are supported by the tools, can emphasize safety relevant
product influences verifications should lead to inconsistencies. Simply consider-
ing’s, principals and many methods are based on process verifications even
Process- and System-FMEAs are very similar. Considering a System-FMEA in a
way that systematic failure can influence the function of a product, measures have
to be taken against it. Possible malfunction (which are mainly systematic errors) in
the Process-FMEA are controlled by measures during the production process,
which is mainly the aim of a Control Plan. Analogical to that, the System-FMEA
evaluates systematic errors during development process and determines adequate
implemented safety mechanism.

If in fact, each possible systematic failure that can influence the failure behavior
or important characteristics of the product and needs to be compensated with safety
measures such as implemented safety mechanism. ISO 26262 did not distinguish
between verifications of work-products and the process. The first verification,
which should be strongly recommended, is the test of the intended functions, which
are the basis for the item, the system on vehicle level. This verification indicates
whether the functions can lead to hazards even if they functioning correctly. In this
context we speak about the safety-of-use. Consequently, the Item Definition should
be verified. If it turns out to be incorrect undetected inconsistency in the hazard and
risk analysis should be expected.

It is important, that the planning of the analyses and verifications considers this
and also effectively plans appropriate process locking similar to the production
process also for the development process. This is especially evident for the planning
of dissimilar or divers functions for example for an ASIL decomposition. If one
algorithm is developed in Australia and one in Scandinavia it does not indicate

260 7 Confirmation of Functional Safety

whether the same systematic failures have been produced. However, if clearly
different development targets are planned as process instructions, which cover the
same safety goal, systematic failures can be detected by the safety technical
inconsistencies. In this context for example one algorithm could be calculated with
real numbers and the other with integer values or one function could be integrated
through multiplication and the other addition like a Laplace transformation. There is
also the possibility that in the product development, asymmetric conceptions can be
planned for the test concepts, which then lead to the desired inconsistencies. Also,
through failure injections or sample tests through multiple series, process failure
tolerances can be tested for products, just like with the process capabilities for the
production systems. Such dissimilar approaches need to be planned in a way that
the system could only work, if the system is safe, any potential error would lead to a
detected inconsistency which could be detected by an implemented safety mech-
anism. Of course such principles could be also implemented by fail-operational
systems, but it requires an implementation of fully redundant signal chains and in
case of inconsistencies a degraded function has to be still able to perform the
safety-related intended function of the ITEM.

7.2 Functional Safety Audits

In this context the relation to CMMi appraisal and SPICE Assessment are often
discussed, whereby the target of functional safety is not a matter of determining
process improvement potential. The appropriateness of safety activities for their
environment is seen as confirmation review, according to part 2, Table 2 (see
Fig. 7.2). Whether the safety activities are appropriate related to given safety goals,
is subject of the Assessment of Functional Safety. This also means that in order to
tailor the safety lifecycle to the stipulated safety concept no SPICE assessor is
needed but rather a safety expert. This does not mean that certain safety aspects
cannot, should not or may not, be reasoned through the process. But the target of
Functional Safety Audit is an evaluation of activities in line with the standard and
adequate to realize the Functional Safety Concept. The degree of compliance to a
given v-model is not important for functional safety. This is more often the case for
the adjustment of activities because of certain tools or for streamlined processes for
the application or development of variants of a useful approach. However, in order
to do so a safety process (also defined in safety manuals, safety configuration
handbooks or process manuals) should be accordingly planned in the concept
phase. In order to plan such a process or the sequence of necessary safety activities,
a safety specialist who often called a safety manager is required.

The safety process needs to be developed based on the item, the safety goals and
the safety concept, since otherwise is it not possible to retrieve the necessary
work-products for the safety case out of different activities. A project safety plan
does not only describe the objectives of activities but also of the individual methods
to be applied and intermediate targets such as the product or safety maturity in

7.1 Confirmation Reviews 261

relation to the final product. For example, a fault tree analysis can be used for the
identification of cut-sets, for the development of safety architecture or the identi-
fication of dependent failure. Even for the same product, fault trees analysis
(FTA) can look very different, depending on which objectives and requirements of
ISO 26262 should be met. This type of process analysis is based on a lot of
individual activities, which have been derived from ISO/IEC12207 and became
later process or process assessment models for SPICE or CMMi. The strategy or the
objectives of planning of safety activities is to develop a sequence of activities that
lead to a safety case based in a functional safety concept and given safety goals.

7.3 Assessment of Functional Safety

The Functional Safety Assessment is described in part 2 as part of Confirmation
Measures and in part 4 of ISO 26262 at the end of system development after the
safety validation and before the release for serial production for the product to be
developed. Primarily object of the Functional Safety Assessment is the assessment
of the Safety Case according to the requirements in part 2 of ISO 26262. The
requirements of how the Functional Safety Assessment should be performed are
given in part 4 of ISO 26262.

Part 4, clause 10 mentions the following objectives and requirements for the
Assessment of Functional Safety:

ISO 26262, Part 4, clause 10:

10 Functional safety assessment
10.1 Objectives
The objective of the requirements in this clause is to assess the functional
safety that is achieved by the item.
10.2 General
The organisational entity with responsibility for functional safety (e.g. the
vehicle manufacturer or the supplier, if the latter is responsible for functional
safety) initiates an assessment of functional safety.
10.3 Inputs to this clause
10.3.1 Prerequisites
The following information shall be available:

– safety case in accordance with ISO 26262-2: —, 6.5.3;
– safety plan (refined) in accordance with 5.5.2, ISO 26262-5: -, 5.5.2 and

ISO 26262-6:-, 5.5.2;
– confirmation review reports in accordance with ISO-26262-2: —, 6.5.4;
– audit report if available in accordance with ISO-26262-2: —, 6.5.4; and
– functional safety assessment plan (refined) in accordance with 5.5.4.

262 7 Confirmation of Functional Safety

Surprisingly the standard does not require the product itself as an input for the
activity, which does not mean that the Functional Safety Assessment could be
simply reduced to a document check. A couple of further requirements, which result
from the verification and validation activities and their requirements, disagree. Also
the required assessment plan in Chap. 5.5.5, which results from the single
requirement that the Assessment of Function Safety needs to be planned at the
beginning of system development, indicates that the entire product development
process needs to be assessed so that proven evidence for the Functional Safety
Assessment could be provided.

Furthermore, the Safety Case is an essential input for the assessment and thus the
safety validation is also already considered as an essential input for the assessment.

ISO 26262, Part 4, clause 10.4:

10.4 Requirements and recommendation
10.4.1 This requirement applies to ASILs (B), C, and D, in accordance with
4.3: For each step of the safety lifecycle in ISO 26262-2: —, Fig. 2, the
specific topics to be addressed by the functional safety assessment shall be
identified.
10.4.2 This requirement applies to ASILs (B), C, and D, in accordance with
4.3: The functional safety assessment shall be conducted in accordance with
ISO 26262-2: —, Clause 6.4.9 (Functional safety assessment).

Basically, those two requirements say that the entire safety lifecycle needs to be
considered for the Functional Safety Assessment. This explicitly includes that the
correct planning of safety activities (tailoring of safety lifecycles) influences the
assessment. Furthermore, a direct assessment of function safety is only recom-
mended for ASIL B and required for ASIL C and D. This is only the view of the
norm and also only based on the requirements, which the standard general requires
for Functional Safety Assessments. Since the safety validation and the necessary
verifications need to be conducted for all ASIL in any case, it is only advisable to
find a useful solution within the relevant organization. An assessment of safety
relevant products however still needs to be performed because of product liability
reasons. But the assessment needs to be not in line with the standard. Which
adjustments are necessary in the individual case can only be determined by the
respective organization.

7.4 Safety Case

The target of the safety case is to provide arguments for the safety of the item, or the
system on vehicle level. According to ISO 26262 the given requirements from the
standard address only the functional safety of the EE-system. Other technology or

7.3 Assessment of Functional Safety 263

http://dx.doi.org/10.1007/978-3-319-33361-8_5

external measures are also addressed, but impacts from outside of the boundary or
malfunctions affected by external systems or even realized in other technology are
not direct addressed. Especially touch protection (electrical safety), chemical or
toxically effects due substances are not addressed. Especially for people protection
as required in the machinery directives, no information could be found in ISO
26262. This means that safety case according ISO 26262 is only a matter of safety
technical correct functions and their deterministic behavior in case of failure
(Fig. 7.4).

ISO 26262 requires mainly the compiled work-products derived from the safety
activities during concept and development phase as planned based of the safety
goals and the defined safety concept. Those should provide sufficient evidence for
the functional safety of the item.

The safety case based on the safety argumentation of the following aspects:

• Are the scope and work-products of the individual safety activities consistent?
• Were the failure and safety analyses sufficiently and correctly performed?
• Were relevant adequate safety measures implemented for the imaginable

malfunctions?
• Verification of all relevant work results
• Validation of safety goals (are they correct, sufficient and fully achieved)
• Assessment of all activities and work-products included in the safety case

The chapter for the Safety Case has been intentionally placed at the end of this
book since the reproducible evidence of functional safety for an Item represents the
aim of ISO 26262. Safety Validation and Functional Safety Assessment provide
mayor arguments for the Safety Case although the entire Safety Case is object of the
Functional Safety Assessment. The safety concepts of today’s vehicle systems are

assumptio
ns

Requirement phases Integration phasesDesign phases

3-7
Safety Goals

3-5
Vehicle
System

Definition

Analysis phases

Interface
analysis / H&RA

Design
assumptions,

limitations

4-9
System
Safety

Validation

Function goals
Requirements

3-8
Functional

safety
requirements

4-6
Technical

Safety
requirements

4-8
Integration-

tests

Architecture phases

Architecture

Verification Phase

3-8.4.5
Verification

4-8
Verification

3-8.4.4
Validation

criteria

3-8.4.3
Allocation

3-8
Functional

safety
concept

4-6
Technical

Safety
concept

4-7.1 / 2
System

architecture

4-7.3 / 4
System Safety

analysis

4-7.6 / 7
System
design

6-6
Software Safety

requirements

6-8
Verification

6
Software Safety

concept

6-7
Software

architecture

6-8
Software
design

6-9 / 10
Software

integration +
Tests

6-8.4.2 / 3/4
Unit software
requirements

6-9
Software

unit testing

6-7
Software

architecture
analysis

Design
FMEA

Fig. 7.4 Safety Case as argument for the “Confirmation of Functional” Safety based on the
validated Safety Goals and verified work-products as planned based on the Safety Concept

264 7 Confirmation of Functional Safety

simply too different to describe a static process. As previously mentioned at the
beginning, it has never been the aim of ISO 26262 to be a guideline for the safe
development of vehicles. The aim has always been to provide indications in the
form of requirements, which need to be considered for the safe development of
vehicles. It remains unclear whether meeting all the requirements, results in creating
a functionally safe system—everyone who has read this book should draw their
own conclusion.

References

1. [ISO 26262]. ISO 26262 (2011): Road vehicles – Functional safety. International Organization
for Standardization, Geneva, Switzerland.

251

252

253

253

260

261

7.4 Safety Case 265

Index

A
Advance Product Quality Planning (APQP),

18, 31, 33
Analysis of dependent failure (ADF), 132, 158,

164, 166, 176, 190
Anti Blocking System (ABS), 96
Arbitration, 96
ASIL decomposition, 103, 110, 161, 190
Assessment, 2, 254, 256, 258, 262–264
Automotive Safety Integrity Level

(ASIL), 3, 4
Automotive Safety-Lifecycle, 33
Automotive SPICE®, 24
Autosar, 93, 195

C
Cascading failure, 142, 164, 166
Confirmation measures, 254, 256, 258, 262
Confirmation Review(s), 254, 255, 257, 260,

261
Context switch, 213
Controllability, 81, 85, 91

D
Dangerous situation, 81, 85, 90
Degradation, 78, 96, 135, 174, 196
Degree of Independence, 256
Dependent failures, 157, 165, 168
Design-FMEA (D-FMEA), 97, 115, 128, 136,

137, 154, 173, 184, 185, 192
Destabilization, 85
Detected fault, 96, 116
Development interface agreement (DIA), 185
Diagnostic coverage, 103, 143, 150
Driving situation, 82, 83, 92, 95, 110, 112, 118,

161, 171, 172
Duration mode, 84

E
EGAS, 93, 198
Electrical and/or Electronic system (E/E

system), 86
Electrical safety, 264
Electronic Stability Control (ESC), 92
Embedded software, 212
Equipment under Control, 98
Error, 77, 92, 95, 102, 112, 114, 117, 121, 124,

126, 130, 133, 135, 137, 142, 155, 161,
177, 182, 192, 198

Ethernet, 209, 210
Event Tree Analysis (ETA), 118, 121, 171
Exposure, 81, 87
External measures, 96, 161

F
Failure Mode and Effect Analysis (FMEA),

115, 118, 124, 127, 136, 138, 175
Failure rate(s), 49, 117, 122, 145, 151, 158,

176, 187
Fault Tree Analysis (FTA), 116, 121, 139
Federal Motor Vehicle Safety Standards

(FMVSS) 135, 92, 171
Freedom from interference, 148, 165
Frequency mode, 84
Functional hierarchy, 83, 90
Functional Safety, 8, 11, 15, 17, 18, 30, 37
Functional Safety Assessment, 254, 255, 258,

262, 263
Functional Safety Audits, 261
Function analysis, 78
Function Decomposition, 78

H
Hardware architectural metrics, 122, 152
Harm, 8, 11

© Springer International Publishing Switzerland 2016
H.-L. Ross, Functional Safety for Road Vehicles,
DOI 10.1007/978-3-319-33361-8

267

Hazard, 7, 8, 11, 33, 34, 37
Hazard analysis and risk assessment, 80, 81,

87, 171
Highly automated driving, 172
Homogeneous redundancy, 95
Horizontal view, 57

I
Independent failures, 77, 129
Inheritance, 132
Injuries, 85
Integration, 217, 218, 220, 222, 223, 233, 234,

236, 240, 243
Intended functionality, 76, 81, 92, 99, 105,

140, 143, 166, 171, 196
Item, 76, 81, 82, 87, 91, 96, 146

L
Latent fault, 103, 146, 150, 176
Latent-fault metric (LFM), 146, 150

M
Malfunction, 80, 81, 83, 84, 87, 90, 95, 101,

115, 132, 136, 172, 173, 176, 191
Malfunctional behaviour, 121
Management of functional safety, 35–37
Model-based development, 239
Multiple-point failure, 77
Multiple-point fault, 103, 141, 151, 152

N
Non-preemptive, 211

O
Operating conditions, 83, 90, 116, 131, 157
Operating environment, 87, 98
Operating system (OS), 211, 213
Operation mode, 130, 134, 139

P
P-Diagram, 244, 245
Perceived fault, 147, 151
Perspective of an architecture, 51, 58
Plausibilisation, 95
Preemptive, 211
Preliminary architectural assumptions, 106
Probabilistic Metric for random Hardware

Failures (PMHF), 156, 162, 176
Probability of occurrence, 85, 86, 129
Process-FMEA (P-FMEA), 136, 176
Process Verification, 260
Product-FMEA, 136, 137, 185

Production Part Approval Process (PPAP),
248, 250

Programmable logic controller (PLC), 94, 114

Q
Quality Management, 13, 14, 17, 18, 35

R
Random hardware failure, 103, 121, 123, 129,

151, 157, 167–169, 176, 187
Real-time, 206, 208, 209, 211, 214
Real-time embedded system, 211
Release for Production, 248
Reliability, 43–45, 49, 50
Reliability Block Diagram (RBD), 103, 115,

118, 123, 139, 142, 172
Residual fault, 137, 149, 151, 157
Risk, 7–9, 12, 15, 30, 34

S
Safe fault, 137, 149, 151
Safe state, 78, 94, 96, 137, 155, 156, 190
Safety, 8, 9, 12, 16, 26, 33, 34, 36, 37
Safety Case, 253, 257, 258, 261–264
Safety corridor, 106
Safety culture, 14, 15, 17, 35
Safety-engineering, 43, 46, 49
Safety goal, 77, 81, 82, 90, 91, 93, 95, 96, 98,

99, 102, 104, 115, 130, 135, 138, 144, 146,
148, 151, 154, 157, 161, 176, 195

Safety-in-Use, 171, 172
Safety-lifecycle, 35–37
Safety mechanism, 77, 80, 82, 90, 92, 93, 103,

114, 126, 137, 145, 151, 152, 154, 161,
166, 173, 182, 195, 198

Safety of the intended Functionality, 99, 140,
166, 171

Safety-related special characteristic, 188
Safety validation, 218, 236, 238, 242
Scheduler, 214
Security, 25, 38, 177
Severity, 85, 86, 116
Severity of harm, 85
Single-point failure, 138
Single-point fault, 137, 141, 146, 150, 176, 190
Single-point fault metric (SPFM), 146, 149,

152, 162
Spiral Model, 31
System, 49, 50, 52, 53, 57, 59, 60, 62, 66, 68,

71
Systematic failure, 77, 123, 132, 137, 144, 147,

155, 175, 186, 195

268 Index

Systematic fault, 123, 154, 168, 195
System boundary analysis, 82
System-FMEA (S-FMEA), 137, 172, 185, 187

T
Technical safety concept (TSC), 94, 97, 106,

124, 144, 146, 147, 172, 180
Threat, 177
Tolerable risk, 86
Touch protection, 90, 188
Traffic participants, 86
Transient fault, 152

U
United Nations Economic Commission for

Europe (UN ECE), 92

V
Verification, 217, 218, 220, 222–229, 232, 234,

239, 240, 242, 245, 248
Vertical view, 57
View of architecture, 56
V-Model, 22, 23, 31

W
Waterfall-model, 30

Index 269

	Foreword of the Author
	Preface
	Acknowledgments
	Contents
	1 Introduction
	1.1 Definitions and Translations from the ISO 26262
	1.2 Error Terms of the ISO 26262
	References

	2 Why Functional Safety in Road Vehicles?
	2.1 Risk, Safety and Functional Safety in Automobiles
	2.2 Quality Management System
	2.2.1 Quality Management Systems from the Viewpoint of ISO 26262

	2.3 Advanced Quality Planning
	2.4 Process Models
	2.4.1 V-Models
	2.4.2 Waterfall Model
	2.4.3 Spiral Model

	2.5 Automotive and Safety Lifecycles
	2.5.1 Safety Lifecycles for the Development of Automotive Products
	2.5.2 Safety-Lifecycles According to ISO 26262
	2.5.3 Security-Versus Safety Lifecycles

	References

	3 System Engineering
	3.1 Historic and Philosophic Background
	3.2 Reliability Engineering
	3.2.1 Foundation/Basis of Reliability
	3.2.2 Reliability and Safety

	3.3 Architecture Development
	3.3.1 Stakeholder of Architectures
	3.3.2 Views of Architecture
	3.3.3 Horizontal Level of Abstraction

	3.4 Requirements and Architecture Development
	3.5 Requirements and Design Specification
	References

	4 System Engineering for Development of Requirements and Architecture
	4.1 Function Analysis
	4.2 Hazard and Risk Analysis
	4.2.1 Hazard Analysis and Risk Assessment according to ISO 26262
	4.2.2 Safety Goals

	4.3 Safety Concepts
	4.3.1 The Functional Safety Concept
	4.3.2 Technical Safety Concept
	4.3.3 Microcontroller Safety Concept

	4.4 System Analyses
	4.4.1 Methods for the System Analysis
	4.4.2 Safety Analysis According to ISO 26262
	4.4.2.1 Failure/Error Propagation
	4.4.2.2 Error Propagation in the Horizontal and in the Vertical
	4.4.2.3 Inductive Safety Analysis
	4.4.2.4 Deductive Safety Analysis
	4.4.2.5 Quantitative Safety Analysis
	4.4.2.6 Architecture Metrics
	4.4.2.7 Top Failure Metrics (Probabilistic Metric for Random Hardware Failure, PMHF)
	4.4.2.8 Failure Metrics for Sensors or other Components
	4.4.2.9 Analysis of Dependent Failures (ADF)
	4.4.2.10 Safety Analysis in the Safety Lifecycle

	4.4.3 Safety and Security Error Propagation

	4.5 Verification During Development
	4.6 Product Development at System Level
	4.7 Product Development at Component Level
	4.7.1 Mechanical Development
	4.7.2 Electronic Development
	4.7.3 Software Development

	References

	5 System Engineering in the Product Development
	5.1 Product Realization
	5.1.1 Product Design for Development
	5.1.2 Mechanics
	5.1.3 Electronics
	5.1.4 Software

	5.2 Functional Safety and Timing Constraints
	5.2.1 Safety Aspects of Fault-Reaction-Time-Interval
	5.2.2 Safety Aspects and Real-Time Systems
	5.2.3 Timing and Determinism
	5.2.4 Scheduling Aspects in Relation to Control-Flow and Data-Flow Monitoring
	5.2.5 Safe Processing Environment

	6 System Integration
	6.1 Verifications and Tests
	6.1.1 Basic Principles for Verifications and Tests
	6.1.2 Verification based on Safety Analyses
	6.1.3 Verification of Diverse Objectives such as Safety and Security
	6.1.4 Test Methods
	6.1.5 Integration of Technical Elements

	6.2 Safety Validation
	6.3 Model Based Development
	6.3.1 Models for Functional Safety
	6.3.2 Foundation for Models
	6.3.3 Model Based Safety Analysis

	6.4 Approvals/Releases
	6.4.1 Process Releases
	6.4.2 Release for Series Production
	6.4.3 Production Part Approval Process (PPAP)

	References

	7 Confirmation of Functional Safety
	7.1 Confirmation Reviews
	7.2 Functional Safety Audits
	7.3 Assessment of Functional Safety
	7.4 Safety Case
	References

	Index

