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                  Pref ace   

 This book discusses the life cycle process of IP cores from specifi cation to produc-
tion which includes four major steps: (1) IP modeling, (2) IP verifi cation, (3) IP 
optimization, and (4) IP protection. Moreover, the book presents most of the famous 
memory cores and controller IPs and analyzes the trade-off between them. In this 
book, we give an in-depth introduction to SoC buses and peripheral IPs. We explain 
their features and architectures in detail. Moreover, we provide a deep introduction 
to Verilog from both implementation and verifi cation points of view. The book pres-
ents a simple methodology in building a reusable RTL verifi cation environment 
using UVM. UVM is a culmination of well-known ideas and best practices. 
Moreover, it presents simple steps to verify an IP and build an effi cient and smart 
verifi cation environment. A SoC case study is presented to compare traditional veri-
fi cation with a UVM-based verifi cation. Bug localization is a process of identifying 
specifi c locations or regions of source code that is buggy and needs to be modifi ed 
to repair the defect. Bug localization can signifi cantly reduce human effort and 
design cost. In this book, a novel automated coverage- based functional bug local-
ization method for complex HDL designs is proposed, which signifi cantly reduces 
debugging time. The proposed bug localization methodology takes information 
from regression suite as an input and produces a ranked list of suspicious parts of 
the code. We present an online RTL-level scan-chain methodology to reduce debug-
ging time and effort for emulation. Run-time modifi cations of the values of any of 
the internal signals of the DUT during execution can be easily performed through 
the proposed online scan-chain methodology. A utility tool has been developed to 
help ease this process.

Heliopolis, Egypt Khaled Salah Mohamed             
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    Chapter 1   
 Introduction       

           Technological progress enables more and more functionality to be integrated on a 
single chip. Figure  1.1  shows the most important milestones in Very-large-scale 
integration (VLSI), it is all about integration. In 1937, Shannon introduces the world 
to binary digital electronics. The fi rst bipolar transistor was fabricated at Bell Labs 
in 1947 [ 1 ]. In 1960, the fi rst MOSFET which contains one transistor was fabricated 
followed by the fi rst integrated circuit (IC) which contains two transistors in 1961. 
The fi rst DRAM cell was fabricated in 1968. One of the most important VLSI mile-
stones was the fabrication of the fi rst microprocessor which contains 100 transistors 
per chip in 1971. VLSI era started in 1980 by fabricating more than 200 K transistor 
per chip. FPGA was invented in 1985. System-on-chip (SoC) and intellectual prop-
erty (IP) era started in 1995 by integration of more than 100 M transistor per chip. 
Recently in 2004, 3D integration era started. Table  1.1  summarizes the most impor-
tant terms in VLSI. A SoC design is a “product creation process” which starts at 
identifying the end-user need and ends at delivering a product with enough func-
tional satisfaction from the end user. A typical SoC contains hardware and software 
as depicted in Fig.  1.2 . An example for the SoC architecture is shown in Fig.  1.3 . 
Benefi ts of using SoC are reducing overall system cost, increasing performance, 
lowering power consumption, and reducing size. The advantages and disadvantages 
of SoC are summarized in Table  1.2  [ 2 ].

       The early predecessor of a SoC was the Single Board Computer (SBC). All 
required logic was integrated on a single board (Fig.  1.4 ). When it became possible to 
integrate more logic into ICs, memory, and some peripherals were integrated into the 
microprocessor chip. The result is called “microcontroller.” A single board computer 
with microcontrollers contains fewer chips and becomes cheaper. However, still addi-
tional logic and peripherals are necessary, since a microcontroller does not contain all 
required peripherals for most applications (Fig.  1.5 ). With the availability of 
 programmable logic, the discrete logic ICs (costly and require board space and several 
extra wires) could disappear (Fig.  1.6 ). The FPGAs of today include microprocessor 
core, memories, and enough logic to include all kinds of peripherals (Fig.  1.7 ) [ 3 ].
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      To conquer the complexity of SoC, predesigned components are used (IP reuse) 
[ 4 ]. Hardware IP cores have emerged as an integral part of modern SoC designs. IP 
cores are predesigned and preverifi ed complex functional blocks. Based on their 
properties, IP cores can be distinguished into three types of cores: hard, fi rm, and 
soft as depicted in Table  1.3  [ 5 ,  6 ], where Soft-cores are architectural modules 
which are synthesizable and offer the highest degree of modifi cation fl exibility, 
Firm-cores are delivered as a mixture of RTL code and a technology-dependent 
netlist [ 7 ], and are synthesized with the rest of ASIC logic, and Hard-cores are mask 
and technology-dependent modules. Mapping of IP cores on VLSI design fl ow is 
shown in Fig.  1.8 . IP core categories tradeoffs are summarized in Fig.  1.9 .

1937
• Shannon introduces the world to binary digital electronics

1947
• First bipolar transistor

1960
• First MOSFET               (1 transistor)

1961
• First IC                           (2 transistors)

1968
• Dram cell                       (1 transistor)

1971
• First microprocessor  (100 transistor per chip)

1980
• VLSI                          (200K  transistor per chip)  FPGA in 1985

1995
• SoC era                  (100M transistor per chip) IP Concept and reuse

2004
• 3D Integration era

  Fig. 1.1    The most important milestones in VLSI: it is all about integration       

   Table 1.1    Important terms in VLSI   

 What is VLSI?  Integration improves the performance and reduces the cost 
 What is IC ?  The VLSI fi nal product 
 What is SoC ?  It is a VLSI design style. Idea: combine several large blocks into one. 
 What is IP?  Predesigned component can be reused in different SoC. Protected 

through patents or copyrights 
 What is EDA tools?  Tools provide the design software used to create all of the world’s 

electronic systems (VLSI, IC, IP, and SoC) 
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System 
on Chip 

Hardware

Analog Digital RF Mixed 
Signal Peripherals Storage

Software

OS Applications

AMP FPGA              LNA     ADC             PS2           RAM        Linux          Communication

  Fig. 1.2    SoC components: it contains hardware and software. Not all software fi ts on hardware, 
we have to check the compatibility       

Digital

RFMemory

Mixed

Analog

Processors

RTOS

Configurable Hardware Peripherals

BUS

  Fig. 1.3    An example of SoC architecture. Different components in single chip (same piece of Si). 
Many of the components have become standard IP       

   Table 1.2    Advantages and disadvantages of SOC   

 Advantages  Disadvantages 

 – Lower cost per gate  – Increased system complexity 
 – Lower power consumption  – Increased verifi cation requirements 
 – Faster circuit operation  – HW/SW co-design 
 – More reliable implementation  – Integration of analog & RF IPs 
 – Smaller physical size/area 
 – Greater design security 
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  Fig. 1.4    Single board computer       

Peripheral

Peripheral

µC

ROM Logic

Logic
RAM

  Fig. 1.5    Single board computer with microcontroller       
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Peripheral

FPGA
µC

ROM

RAM

  Fig. 1.6    Single board computer with microcontroller and programmable logic       
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     The main differences in design between IC and IP are that, in IC number of 
input/output (I/O), pins are limited, but in IP it is unlimited. Moreover, in IP we can 
parameterize IP Design, i.e., design all the functionality in hardware description 
language (HDL) code, but implement desired parts in the silicon (reusability). These 
differences are summarized in Table  1.4 .

   The IC design fl ow is shown in Fig.  1.10 . The fi rst step in IC design is design 
specifi cation (what customer wants) then we convert the specifi cation to behavioral 
description. The behavioral description is then converted to RTL description. Then 
we perform functional verifi cation and if there are any bugs we fi x it in the RTL and 
then do the verifi cation again. If the functional verifi cation is ok, we start synthesiz-
ing the RTL code and do the gate level verifi cation. By this, the front-end design is 
done. The back-end design starts by placement and routing then post- layout verifi -
cation, we may repeat it if there are any errors until we generate the mask and send 
it to the fab. After fabrication, chip testing is done.

   There is a lot of SoC applications and corresponding IPs as shown in Table  1.5 , 
where industry segments: including mobile communication, automotive, imaging, 
medical, and networking [ 8 ].

Peripheral

Peripheral

ROM

RAM

µC

FPGA

  Fig. 1.7    Towards SoC structure       

   Table 1.3    Classifi cation of hardware IP   

 IP  Representation  Technology  Optimization  Reuse  Changes 

 Soft  RTL (HDL)  Independent 
(Fabless level) 

 Low  Very high  Many 

 Firm  Gate level netlist  Independent  Medium  High  Some placement 
and routing 

 Hard  GDSII (layout)  Dependent 
(Fab level) 

 Very high  low  No 
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Synthesis

Gate Level Netlist

Placement and 
Routing

Tape-Out

RTL

Gates

Layout

PLL

Soft

Firm

Hard

Verilog-Code

  Fig. 1.8    IP cores in a typical VLSI design fl ow       

Soft 
Core

Firm
Core

Hard
Core

Performance, time to market

Flexibility
Reusability

  Fig. 1.9    IP cores categories tradeoffs [ 5 ]       
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   The complete picture for electronic systems is described in Figs.  1.11  and  1.12 . 
For System with multiple SoCs, globally asynchronous locally synchronous (GALS) 
interconnect concept is used to simplify its design (Fig.  1.13 ). GALS aims at fi lling 
the gap between the purely synchronous and asynchronous domains [ 9 ].

     IP cores life cycle process from specifi cation to production includes four major 
steps: (1) IP Modeling, (2) IP verifi cation, (3) IP optimization, (4) IP protection. 
These steps are elaborated in Fig.  1.14  [ 11 ].

   IP life cycle is completed with the help of computer aided design (CAD)/ 
electronic design automation (EDA) tools. EDA tools provide software to be used 
to create all of the world’s electronic systems (VLSI, IC, IP, and SoC). The EDA 
tools play a vital rule in converting an IP specifi cation to an IP product [ 10 ]. 

  Table 1.4    Differences 
between IP and IC  

 IP  IC 

 I/O  Unlimited  Limited 
 Reusability/parameterization  ✓  ✕ 

  Fig. 1.10    A simplifi ed high-level overview of IC design fl ow. PG stands for pattern generation       
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Anatomy of EDA Tools: CAD + TCAD. TCAD tools are used for fabrication pro-
cess, where it simulates the electrical characteristics of semiconductor devices. The 
EDA tools can be categorized according to the functionality:

    1.    Design entry (capture tools)   
   2.    Synthesis tools   
   3.    Simulation tools   
   4.    IC physical design & layout tools   
   5.    IC verifi cation tools   
   6.    PCB design & analysis tools    

  The most famous EDA companies are SYNOPOSYS, MENTOR GRAPHICS, 
and CADENCE.    

  Table 1.5    SOC applications 
and IPS examples  

 Category  IP 

 Processors  ARM 
 DSP  MPEG4, Viterbi 
 I/Os  PCI, USB 
 Mixed signal  ADC, DAC, PLL 
 Multimedia  HDMI 
 Memories  DRAM controller, fl ash memory 
 SoC Buses  AHB 
 Miscellaneous  UART, Ethernet MAC 

Layout 
(Rectangles)

Transistors

Gates

Blocks

IPs

SoCs

Board/System
  Fig. 1.11    Electronic 
systems level from board 
to transistors       
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    Chapter 2   
 IP Cores Design from Specifi cations 
to Production: Modeling, Verifi cation, 
Optimization, and Protection       

2.1               Introduction 

 As stated earlier in the previous chapter, plug and play IP in SoC design is the recent 
trend in VLSI design (Fig.  2.1 ). IP cores life cycle process from specifi cation to 
production includes four major steps: (1) IP modeling, (2) IP verifi cation, (3) IP 
optimization, (4) IP protection. These steps are elaborated in Fig.  2.2 . In the next 
sections, we will discuss each step in detail.

2.2         IP Modeling 

 To model an IP, we have four design modeling methodologies as depicted in Fig.  2.3  
[ 1 – 6 ]:

     1.    FPGA-based Modeling: defi ned by fi xed functionality and connectivity of 
 hardware elements.   

   2.    Processor-based Modeling: Processor running programs written using a 
 predefi ned fi xed set of instructions (ISA).   

   3.    ASIC-based Modeling: Silicon-level Layout.   
   4.    PCB-based Modeling: it uses standard ICs such as 74xx (TTL), 40xx (CMOS), 

it is not VLSI, it is just discrete components.    

  The comparison between theses typical hardware options is shown in Table  2.1 . 
Choice of any option depends on application and requirements.
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  Fig. 2.1    Plug and play 
IP in SoC design       

Modeling

Verification

Optimization

Protection

IP Specs

IP product

  Fig. 2.2    IP core life 
cycle process: includes 
four major steps: 
(1) IP modeling, 
(2) IP verifi cation, 
(3) IP optimization, 
(4) IP protection       

   Table 2.1    Comparison between different types of hardware   

 Processor 

 ASIC  FPGA  PCB  GPP  DSP 

 Examples  μP, μC  MAC, FFT  –  –  – 
 Software/hardware  Software  Software  Hardware  Hardware  Hardware 
 Spatial/temporal  Temporal  Temporal  Spatial  Spatial  Spatial 
 Functionality  Programmable  Programmable  Fixed  Programmable  Fixed 
 Time-to-market  High  High  Low  High  Medium 
 Performance  Low  Medium  High  Med-high  Low 
 Cost  Low  Medium  High  Low  Low 
 Power  High  Medium  Low  Low-med  High 
 Memory bandwidth  Low  Low  High  High  Low 
 Companies  Intel-ARM  TI  TSMC  Xilinx-

Altera- Actel  
 Valor 

 Design alternative  Digital  Digital  Digital 
analog 

 Digital  Digital 
analog 

 RF mixed  RF mixed 
 Languages  C  C  –  Verilog  – 

 Assembly  VHDL 

 

 

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…
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I/P O/P

Top-Down

Down-Top

IRPC

ACC

Address bus

a

c d

b

Data bus

Control

Memory
ALU

  Fig. 2.3    ( a ) FPGA-based modeling, ( b ) processor-based modeling, ( c ) ASIC-based modeling, 
( d ) PCB-based modeling       

2.2.1       FPGA 

 FPGAs are programmable chips, compared to hard-wired chips, FPGAs can be 
 customized as per needs of the user by programming. This convenience, coupled 
with the option of reprogramming in case of problems, makes the programmable 
chips very vital choice. Other benefi ts include instant turnaround, low starting cost, 
and low risk. FPGA means “The chip that fl ip-fl ops.” An FPGA is like an electronic 
breadboard that is wired together by an automated synthesis tool. An example of a 
programmable function using FPGA is shown in Fig.  2.4 . A 3-input lookup table 
(LUT) can implement any function of three inputs.
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   Referring to Fig.  2.3a , the general architecture of FPGA is shown where, CLB: 
Confi gurable Logic Block, IOB: Input/Output Block, and PSM: Programmable 
Switch Matrix. CLBs provide the functional elements for implementing the user’s 
logic. IOBs provide the interface between the package pins and internal signal lines. 
Routing channels provide paths to interconnect the inputs and outputs of the CLBs 
and IOBs. An example for CLB and PSM architecture is shown in Fig.  2.5  [ 7 – 9 ]. 
The confi gurable block can be MUX not only LUT. MUX can implement any 
 function, an example for implementing NOT and XOR function is shown in Figs.  2.6  
and  2.7  respectively. Also an example for building a latch is shown in Fig.  2.8 . 
FPGAs can be also classifi ed according to their routing structure. The three most 
common structures are island-style, hierarchical, and row-based [ 10 ]. FPGAs are 
one-size fi ts all architectures.

      FPGA is considered a top-down methodology (RTL to layout), this methodology 
makes design of complex systems more simpler as it focuses on functionality, reduce 
time-to-market as it shortens the design verifi cation loop, and makes exploring dif-
ferent design options easier and cheaper for example (latency versus throughput). 

 As for modeling languages and the scope of using FPGA-based design, two lev-
els for IP modeling are highlighted register-transfer level (RTL) and transaction 
level modeling (TLM) (Table  2.2 ).

   RTL is the abstraction level between algorithm and logic gates. In RTL descrip-
tion, circuit is described in terms of registers (fl ip-fl ops or latches) and the data is 
transferred between them using logical operations (combinational logic, if needed). 
That is why the nomenclature: Register-Transfer Level (RTL). Y-chart is shown 
in Fig.  2.9 .

   TLM is a technique for describing a system by using function calls that defi ne a 
set of transactions over a set of channels. TLM descriptions can be more abstract, 
and therefore simulate more quickly than the RTL. TLM separates computation 
from communication as depicted in Fig.  2.10 .

   Modeling at the transactional level has several advantages, not only for the IP 
provider (designers and verifi cation engineers), but also for the users, which can 
evaluate the performances and the behavior of the IP very early in the design fl ow. 
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  Fig. 2.4    Programmable function using LUT-based FPGA [ 7 ]       
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  Fig. 2.5    CLB and PSM 
architecture example [ 7 ]       

b
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0

1

inp

Y=en a+ b,

To build not let:

Inp = ,

b=1,

a=0.

a

y

  Fig. 2.6    Building NOT 
function from MUX       

The different levels of abstraction and the different modeling languages are shown 
in Fig.  2.11  and Table  2.3 .

    System level modeling is widely employed at early stages of system develop-
ment for simplifying design verifi cation and architectural exploration. Raising the 
abstraction level results in a faster development of prototypes and the reduction of 
implementation details in system level design can increase the simulation speed 
and allow a more global view of the system. During the phase of RTL development, 
the system level design can serve as a reference model for RTL design and 
verifi cation. 
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 There are several high-level modeling languages like Systemverilog [ 11 ] and 
SystemC [ 12 ]. TLM does not contain a clock signal. TLMs use function calls for 
communication between different modules and events to trigger communication 
actions. It allows designers to implement high-level communication protocols for 
simulations up to faster than at register-transfer level (RTL). Thus encouraging the 
use of virtual platforms for fast simulation prior to the availability of the RTL code. 

b
en

2

Inp2

Inp1

Y=en a+ b,

To build not let:

Inp1=en,

Inp2=b,

a= .

a

y

  Fig. 2.7    Building XOR 
function from MUX       

b
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D

clk

Y=en a+ b,

To build not let:

clk = ,

b=Q,

a=D.

a

Q

  Fig. 2.8    Building LATCH 
function from MUX       

   Table 2.2    RTL and TLM comparison   

 RTL  TLM 

 Simulation speed       
 Abstraction level       
 RTL synthesizable  Yes  No 
 Languages  Verilog, VHDL  Systemverilog, SystemC 
 Accuracy       
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  Fig. 2.10    TLM and RTL example, where TLM does not take into consideration the details, i.e., 
higher abstraction level. TLM replaces all pin-level events with a single function call. TLM speeds 
up verifi cation       

Scope of Modeling

Verilog
VHDL

System
Verilog

C/C++

MATLAB

Transistors

Algorithm

Architecture

HW/SW

Behavior

Functional Verification

RTL

Gates

Language Level

SystemC

  Fig. 2.11    Comparison between different modeling languages [ 4 ]       

   Table 2.3    The modeling languages comparison   

 MATLAB  SystemC  Systemverilog  Verilog  VHDL 

 Requirements  Yes  YES  No  No  No 
 Architecture  Yes  Yes  No  No  No 
 HW/SW  No  Yes  No  No  No 
 Behavior  No  Yes  Yes  No  Yes 
 Functional verifi cation  No  Yes  Yes  No  No 
 Testbench  No  Yes  Yes  Yes  Yes 
 RTL  No  Yes  Yes  Yes  Yes 
 Gates  No  No  Yes  Yes  Yes 
 Transistors  No  No  Yes  Yes  No 
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 Systemverilog suffers from [ 13 ]:

    1.    It is closed source.   
   2.    It is not software domain, i.e., does not support HW/SW co-verifi cation.   
   3.    Single core, no multi-core support.   
   4.    Incomplete support for OOP, for example there is no const class method.   
   5.    It does not support function overloading.   
   6.    No automatic garbage collector.   
   7.    DPI has a long runtime overhead.    

  SystemC suffers from:

    1.    Single core, no multi-core support.   
   2.    No coverage support.   
   3.    Transaction randomization is limited.     

 There is another family of languages called  scripting  languages like PERL [ 14 ], 
TCL [ 15 ], and Python [ 16 ]. Scripting languages are programming languages 
designed to make programming tasks easier, for example to run all the test cases 
automatically after every RTL change to make sure that it does not affect other test 
cases. Scripting languages are dynamic high-level languages with extensive stan-
dard library which enables rapid prototyping and experimentation. 

 There are advances in design methods such as using IP-XACT. IP-XACT is a 
standard written in an XML fi le format to describe hardware designs at a higher 
level [ 17 ,  18 ]. Also, it provides a standard for component design description 
exchange among heterogeneous platforms or among different designers working on 
different components or in other words, it helps in IP reuse. 

 The XML document is written using XML editors and it contains set of tags 
which represent a synthesizable hardware component such as registers and 
FIFO. IP-XACT documents the attributes of an IP component such as Interfaces, 
signals, parameters, memory, ports, and registers. An XML parser interprets the 
document and generates RTL code as XML is just plain text. The parsing process of 
an XML is relatively fast. Python is one of the languages used for parsing [ 19 ]. 

 FPGA design fl ow comprises the following steps:

    1.    Convert specifi cation to RTL code.   
   2.    Synthesis the code which means converts the RTL code into generic Boolean 

netlist (gates, wires, registers).   
   3.    Do mapping: map the generic Boolean gates into target technology (LUT or 

MUX CLB). The RTL can be mapped into FPGA or ASIC as depicted in Fig.  2.12 .
       4.    Placement and routing.   
   5.    Downloading: the fi le which is generated and downloaded to the FPGA is called 

bitstream fi le.     

 An example for a logic block is shown in Fig.  2.13 . The placement process is 
described in Fig.  2.14  and the routing process is described in Fig.  2.15 .
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  Fig. 2.12    RTL to FPGA 
or ASIC       
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  Fig. 2.13    Computed 
values for truth tables (two 
input only AND and OR 
gates logic network)       
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  Fig. 2.14    FPGA placing       
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2.2.2          Processor 

 Referring to Fig.  2.3b , the general architecture for a very simple processor is shown, 
where PC: program counter, ACC: accumulator, ALU: arithmetic logic unit, IR: 
instruction register. The PC holds the address of next instruction to be executed, 
ACC holds the data to be processed, ALU performs operation on data, IR holds the 
current instruction code being executed. The operation can be summarized in the 
following steps (Fig.  2.16 ):

     1.    Instruction fetch: The value of PC is outputted on address bus, memory puts the 
corresponding instruction on data bus, where it is stored in the IR.   

   2.    Instruction decode: The stored instruction is decoded to send control signals to 
ALU which increment the value of PC after pushing its value to the address bus.   

   3.    Operand fetch: The IR provides the address of data where the memory outputs it 
to ACC or ALU.   

   4.    Execute instruction: ALU is performing the processing and store the results 
in the ACC. The instruction types include: data transfer, data operation 
 (arithmetic, logical), and program control such as interrupts.    
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  Theses cycles are continuous and called fetch–decode–execute cycle. The pro-
cessors can be programmed using high-level language such as C or mid-level lan-
guage such as assembly [ 20 ]. Assembly is used for example in nuclear application 
because it is more accurate. At the end the compiler translates this language to the 
machine language which contains only ones and zeroes. 

 Instruction Set Architecture (ISA) describes a processor from the user’s point of 
view and gives enough information to write correct programs. Examples of ISA are 
Intel ISA (8086, Pentium).  

IR
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  Fig. 2.16    A simple processor operation       
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2.2.3     ASIC 

 Physical design converts a circuit description into a geometric description. This 
description is used to manufacture a chip. Geometric shapes which correspond to 
the patterns of metal, oxide, or semiconductor layers that make up the components 
of the integrated circuit. It is top view of the cross-sectional device [ 21 ]. 

 Using ASIC design methodology, it is very hard to fi x bugs and it needs long time 
through the fabrication process (Design, Layout, Prototype, Fabrication, and Testing). 
It requires expensive tools and requires a very expensive Fab. But, it provides supe-
rior performance [ 22 ]. In ASIC, the schematics is converted to stick diagram to fi nd 
Euler path which determines the best way to put the devices in the substrate and then 
the stick diagram is converted to layout (Fig.  2.17 ). The layout can be analog, digital, 
or mixed signal. An example for a layout of a simple FET transistor is shown in 
Fig.  2.18 . The layout has some design rules called design rule check (DRC) [ 23 ].

    Since there are different semiconductor processes (with different set of rules and 
properties), the designer has to know the specifi cations for the one that is to be used. 
This information is stored in a set of fi les called Technology Files. The technology 
fi les contain information about:

•    Layer defi nitions: Conductors, contacts, transistors.  
•   Design rules: minimum size, distance to objects.  
•   Display: Colors and patterns to use on the screen.  
•   Electrical properties: resistance, capacitance.    

S

S

G

Field effect transistor (FET)

D

D

G

Poly crossed over Diffusion

  Fig. 2.18    Layout 
of simple FET, where 
source and drain are 
interchangeable [ 21 ]       

  Fig. 2.17    Schematics to stick diagram to layout. A stick diagram is a symbolic layout: contains 
the basic topology of the circuit. It is always much faster to design layout on paper using stick 
diagram fi rst before using the layout CAD tool [ 21 ]       
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 The process features example:

•     p -Type substrate  
•    n -Well  
•    n  + and  p  + diffusion implants  
•   One layer of poly (gate material)  
•   Two layers of metal for interconnection (metal 1 and metal 2)  
•   Contact (metal 1 to poly or metal 1 to diffusion)  
•   Via (metal 1 to metal 2)    

 After fi nishing the layout, GDS-II fi le is sent to the fab to be fabricated. This 
stage is called “Tape out.”  

  Fig. 2.19    Typical PCB: computer motherboard       
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  Fig. 2.20    Types of bugs       

2.2.4     PCB 

 Standard logic ICs provides fi xed function devices which can be connected together 
on PCB to implement a system. Standard logic ICs has limited speed and limited 
number of pins. Standard ICs such as 74xx (TTL), 40xx (CMOS). Typical PCB is 
the computer motherboard as depicted in Fig.  2.19 . PCBs are made of copper and 
dielectric. Copper is an excellent electrical conductor and it is inexpensive material. 
PCBs can be single-sided, double-sided, or multilayer boards [ 24 ].

   For single-sided PCB, components are on one side and conductor pattern on the 
other side. Routing is very diffi cult. 

 For double-sided PCB, conductor patterns are on both sides of the board and we 
connect between the two layers through vias. Via is a hole in the PCB, fi lled or 
plated with metal and touches the conductor pattern on both sides. Since routing is 
on both sides, double-sided boards are more suitable for complex circuits than 
single- sided ones. It is always better to minimize the number of vias. 

 For multilayer PCB, these boards have one or more conductor patterns inside the 
board. Several double-sided boards are glued together with insulating layers in 
between. For interlayer connections, there is blind via to connects an inner layer to 
an outer layer and buried via to connects two inner layers. The layers are classifi ed 
as: Signal layers, Ground plane, and Power plane. Power planes may have special 
restrictions such as wider track widths   

2.3     IP Verifi cation 

 Verifi cation is a process used to demonstrate the functional correctness of a design 
(no bugs). The types of bugs are summarized in Fig.  2.20 . It is called bugs because 
in 1942 using the computer to perform calculations, it gave the wrong results. To 
fi nd out what was going wrong, they opened the computer and looked inside 
(remember, this was in the “good old days,” and an electromechanical computer was 
in use). And there they found a moth stuck inside the computer, which had caused 
the malfunction. The design/verifi cation matrix is shown in Fig.  2.21 .
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2.3.1        FPGA-Based/Processor-Based IP Verifi cation 

 To verify an IP, we have two options as depicted in Figs.  2.22  and  2.23 :

      1.    Function-based verifi cation

    (a)    Simulation-based   
   (b)    Accelerator-based   
   (c)    Emulation-based   
   (d)    FPGA prototyping       

   2.    Formal-based verifi cation

    (a)    Assertion-based        

  IPs functional verifi cation is a key to reduce development cost and time-to- 
market. Simulation speed is a relevant issue for complex systems with multiple 
operational modes and confi gurations since in such cases a slow simulator may 
prevent the coverage of a suffi cient number of test cases in the verifi cation phase 
[ 25 ]. To boost the performance of simulation, a number of platforms have recently 
attracted interest as alternatives to software-based simulation: acceleration, emula-
tion, and prototyping platforms. Advantages and disadvantages of each type is sum-
marized in Table  2.4 , where  simulation  is easy and low cost, but not fast enough for 
large IP designs.  FPGA prototyping  are fast, but has little debugging capability. 
 Accelerators  can improve the performance to an extent where, the DUT is mapped 
into hardware and the testbench is run on the workstation, if we use real host appli-
cation SW and real OS SW to access the device is called  virtual accelerators .

    Emulation improves  the accelerators performance, where the testbench and 
DUT are mapped into hardware; it also provides effi cient debugging capabilities 
over the FPGA prototyping. The general architecture for the emulator is shown in 
Fig.  2.24 , where many FPGAs are interconnected together for large gate capacity.

   There is another mode of operation for the emulator called (in-circuit emulator) 
ICE, the difference between them can be interpreted by Fig.  2.23f , where in ICE 
part of the model is a real hardware. 

Bad Design

Bad Verification

Many Bugs Exists
Bugs Not discovered

Bad Reputation at
customers

Many Bugs Exists
Bugs discovered

Time-to-market loss

Few Bugs Exists
All bugs are discovered

Customer Happy

Few Bugs Exists
Bugs Not discovered

Bad Reputation at
customers

Good Verification

Good Design

  Fig. 2.21    Design/
verifi cation matrix: the cost 
of verifi cation       
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 The  formal verifi cation  complements simulation-based RTL design verifi cation 
by analyzing all possible behaviors of the design to detect any reachable error states 
using assertion-based verifi cation (ABV) methodology and languages like 
SVA. This exhaustive analysis ensures that critical control blocks work correctly in 
all cases and locates design errors that may be missed in simulation. Moreover, it is 
a static simulator, that is why it takes less time in simulation than dynamic ones. 

Prototyping

Emulation

Acceleration

Simulation

Formal 

Functional Verification
(Dynamic simulators)

(Faster speed, closer to final product)

Formal Verification
(Static simulators)

Functional Only
Timing Only

STA

  Fig. 2.22    IP cores verifi cation options (platforms)       
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  Fig. 2.23    Simulation, accelerators, emulation, FPGA prototyping platform comparison, the IP 
can be a host or peripheral. ( a ) Simulation, ( b ) TBX-acceleration, ( c ) HW emulation, ( d ) FPGA 
prototyping, ( e ) virtual acceleration, ( f ) in-circuit emulation (ICE)       
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 The verifi cation methodologies can be classifi ed into:

    1.     Directed testing  ( traditional verifi cation ): 
 To ensure that the IP core is 100 % correct in its functionality and timing. 

Verifi cation engineer sets goals and writes/generates directed tests for each item 
in Test Plan (Fig.  2.25 ). If the design is complex enough, it is impossible to cover 
all features with directed testbenches.

       2.     UVM : 
 Reduce testbench development and testing as it supports all the building blocks 

required to build a test environment as depicted in Fig.  2.26 , and it makes multi-
master multi-slave testing easier. High-level verifi cation languages and environ-
ments such as Systemverilog and e, as used in UVM, may be the state-of- the-art 
for writing test bench IP, but they are useless for developing models, transactors, 
and testbenches to run in FPGAs for emulation and prototyping. None of these 
languages are synthesizable. The component functionalities are as follows:

•      Sequencer : Transaction is an instruction from the sequence to the driver 
(through the sequencer) to exercise the DUT.  

•    Driver : UVM component that converts a stream of transactions into pin 
wiggles.  

FPGA 1

FPGA 4

FPGA 2

FPGA 3

Switch

  Fig. 2.24    The general 
architecture for the 
emulator, where Many 
FPGA’s are interconnected 
together for large gate 
capacity       

  Fig. 2.25    Directed testing. Instantiates design under test (DUT), applies data to DUT, monitors 
the output       
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•    Scoreboard : Gets a copy of the transaction in the monitor through the 
Analysis port and use that transaction for analysis purposes.  

•    Monitor : UVM component that monitors the pins of the DUT.      

   3.     Checkers  ( assertions ): 
 An assertion is a statement about a specifi c functional characteristic or prop-

erty that is expected to hold for a design. The assertion-based methodology is 
used to ensure the functionality of the IP, where it monitors the transactions on 
an interface and check for any invalid operation and outputs error and/or warning 
messing of bus protocol. Self-checking ensures proper DUT response (Fig.  2.27 ). 
Assertions enhance observability coverage, making it easier to spot the source of 
an error [ 26 ].

       4.     Negative testing  ( error injection ): 
 Negative testing means “verify that the IP will produce an error report if it 

sees illegal traffi c.” The theory on which negative testing is based depending on 
the “Assertion-based” methodology [ 27 ]. The negative testbenches generate ille-
gal traffi c; the IP is supposed to recognize this traffi c as illegal, and issues the 
trace error messages (Fig.  2.28 ).

TOP

TEST
Test plan Specification Configuration

Results
ENV

Master

slave DUT

Sequences library

Test Test library

Coverage

Monitor

Driver

Interface

Collector

Scoreboard

Sequencer

  Fig. 2.26    UVM environment       

  Fig. 2.27    Checkers 
(assertions)       
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       5.     Software - driven testing : 
 Software-driven testing adds a range of capabilities that promise to redraw the 

functional verifi cation landscape. These include virtual host and peripheral mod-
els (called “virtual devices”) and software debug technologies enabled by 
transaction- based, co-model channel technology. Virtual devices are an emerg-
ing technology, with products beginning to offer the same functionality as tradi-
tional In-Circuit (ICE) solutions, but without the need for additional cables and 
additional hardware units. Generally the function of virtual device architecture is 
to package a software stack running on the co-model host workstation with com-
munication protocol IP running on Veloce using a TBX co-model link. This 
creates protocol solutions so customers can verify their IP at the device driver 
level and verify the DUT with realistic software, which is the device driver itself 
as depicted in Fig.  2.29 .

       6.     Coverage : 
 The main purpose of coverage is to check whether the given property 

(functional coverage) or statement (code coverage) is covered during simulation/
emulation. For example, is the sequence shown in (Fig.  2.30 ) ever followed by 
my FSM?

       7.     Formal : 
 Input: HDL, post-synthesis gate-level netlist. It checks if the RTL description 

and the post-synthesis gate-level netlist have the same functionality. It is a static 
verifi cation [ 28 ].   

   8.     STA :  static timing analysis 

    Motivation : How can I ensure my design will work at the target frequency under 
all circumstances?  

   How : By ensuring any timing path meets the timing requirements.  
   Why : always fastest than a simulation!  

  Fig. 2.28    Negative 
testing [ 27 ]       
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  Fig. 2.29    A virtual device packages a software stack running on co-model workstation with com-
munication protocol IP running on Veloce using a TBX co-model link, ( a ) host bus is running on 
emulator, ( b ) device controller is running on emulator       

  Fig. 2.30    Property 
coverage example       
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   Concept : Check the data are available at the right time around the clock edge 
signal through static timing calculation.  

   Technique : Delay Calculation  R ,  C  =  f ( Area ). 
 Hierarchical analysis is based on timing models for blocks  

   Notes : STA does not check functionality.      

   9.     Linting tools  
 Linting tools are widely used to check the HDL syntax before synthesizing it. 

The input to the linting tool is HDL source and the output is warning and error 
messages. Linting tools do not detect functional bugs. And they do not need 
stimulus [ 29 ]. They targets:

•    Unsynthesizable constructs.  
•   Unintentional latches.  
•   Unused declarations.  
•   Driven and undriven signals.  
•   Race conditions.  
•   Incorrect usage of blocking and non-blocking assignments.  
•   Incomplete assignments in subroutines.  
•   Case statement style issues.  
•   Out-of-range indexing.         

2.3.2     ASIC-Based IP Verifi cation 

 It is called physical verifi cation and it includes [ 30 ]:

    1.    Design rule checking ( DRC ): 
 DRC checks for if layout complies with foundry rules that is if the layout will 

be manufacturable. Typically this will have width check, density check, spacing 
checks, overlap checks, extension checks, etc.   

   2.    Electrical rule check ( ERC ): 
 Checks for no short contacts, no fl oating points, etc.   

   3.    Layout vs. Schematics ( LVS ): 
 LVS checks if the layout matches with the reference. In case of full-custom, 

the reference is spice netlist which is verifi ed for functionality before getting into 
layout.   

   4.    Post-layout simulation: 
 Add the parasitics extracted to the model and resimulate it to make sure that 

its functionality is still ok.    
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2.3.3       PCB-Based IP Verifi cation 

 After drawing the schematic of your circuit and verifying its functionality using any 
circuit simulator like spice, and after implementing it on PCB, you can verify it 
using these tips:

    1.    To perform the PCB verifi cation test, compare the PCB with the layout. During 
this stage, you might also want to test the connectivity of each traces to ensure 
no broken traces by using the diode function in the multimeter especially those 
with buzzer sound. This will ease the verifi cation process as once we hear the 
buzzer sound, you will know that the trace is connected from one end to another.   

   2.    To check for shorts, look at any suspicious traces that are too close and test using 
diode function in the multimeter as well. This time, if your buzzer sounds, then 
you know there is an unwanted shorts [ 31 ].       

2.4     IP Optimization 

 The optimization objective is to reduce area, delay, latency, and power and to 
increase performance and speed to meet the requirement. 

2.4.1     FPGA-Based IP Optimization 

 To optimize an FPGA-based IP, we have three directions [ 5 ]:

    1.    Compilation time optimization.   
   2.    Maximum frequency optimization.   
   3.    Following some RTL design tips.    

2.4.1.1      Compilation Time Optimization 

  Best practice design methodology 

•    Do not use long loops.  
•   Store large data in memory not in a register.  
•   Reduce the use of power “**” and the division “\”, instead use log and shift right.  
•   Do not write long ternary statement “()? : () ? : () ? … .” This very Verilog-based 

designs.  
•   Use 2D memory instead of 1D memory as 2-D memory reduce the compile as it 

is mapped directly to the memory blocks not to the logic.    

2.4  IP Optimization
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  Use of the latest computer technology 

•    Parallel (distributed) compilation, use dual or more core feature.    

  Place - and - route algorithm improvements 

•    Improve the place-and-route algorithms in the CAD tool development.     

2.4.1.2     Maximum Frequency Optimization 

  Best practice design methodology 

    1.    Make long “Assign” in a clock statement (Pipelining). This is for Verilog-based 
designs. Note that removing clk cycle to improve latency is easier than inserting 
one to improve pipelining.   

   2.    Initialization of all uninitialized registers.   
   3.    Using of linting tools such as 0-IN from Mentor Graphics.   
   4.    Make the design under test (DUT) works with posedge clock or negedge clock 

only, not a mix of them to avoid the half-cycle path. half-cycle path is a path 
where the data is launched by a fl ip-fl op (FF) on posedge of a clock and captured 
by a FF on negedge, hence the time available is only half a cycle instead of full 
cycle where both FF are working on posedge.    

2.4.1.3       Follow Some RTL Design Tips 

     1.     Partition a large memory into several small blocks  
 For example, Questa/Modelsim maximum limit is 2G addresses per memory, 

so you need to divide the memory if it is higher than 2G as depicted in Fig.  2.31 .
       2.     Clock gating  

 The concept of clock gating is shown in Fig.  2.32 .
       3.     Resetting  

 For proper operation we must reset all the registers into the reset process.   
   4.     FSM coding style  

 The explicit, naive style FSM is better than Mealy or Moore machines as 
these machines have two distinct disadvantages (Fig.  2.33 ): (1) they may end 
with long combinational paths as they don’t have output registers. (2) Even 
worse, if the coding is not done properly latches could be introduced and there 
will be mismatches between simulation and emulation. So, we strongly recom-
mend a state machine to use a naive style (Fig.  2.34 ). This way we will have 
registers for the states and the outputs. For granted this ends up with more 

4GB

2GB

2GB

  Fig. 2.31    Partition a large 
memory into several small 
blocks       
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 registers but it is much, much safer design and it makes it also run at higher 
frequency as the paths between registers are shorter [ 2 ].

    Encoding of FSMs including different encoding styles, the most famous one 
is binary encoding. There is also gray encoding and one-hot encoding. Binary 
encoding implements very less logic. Also it used minimum number of FFs. 

always @ (posedge clk)
if (en)
q<=d;

Assign clk1= clk & en;
always @ (posedge clk1)
if (en)
q<=d;

D Q

D Q

CLK

en

en
CLK

  Fig. 2.32    Clock gating       
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  Fig. 2.33    Structures of ( a ) Moore type FSMs and ( b ) Mealy type FSMs       
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Possible state values for a 4 state binary state machine (00, 01, 10, 11). Gray 
 encoding is especially useful when the outputs of the state bits are used 
 asynchronously. This kind of state coding avoids intermediate logics. For exam-
ple if a state wants to change its state from “01” to “10.” In Gray coding between 
state transitions only one bit will change. Possible state values for a 4 state gray 
state machine (00, 01, 11, 10). 

 One-hot encoding uses one fl ip-fl op for each state. For example if there are 
10 states in logic then it will use 10 fl ip-fl ops. This type of encoding is fast 
because only one bit needed to check for each state. It implies complex logic and 
more area inside the chip due to more number of fl ip-fl ops. FPGAs are “Flip-fl op 
rich,” therefore one-hot state machine encoding is often a good approach. It also 
reduces hardware’s logic switching rate. Possible state values for a 4 state one-
hot state machine (0001, 0010, 0100, 1000), also an example of how to write the 
one-hot encoding FSM is shown in Table  2.5 .

   Choice of an encoding style is depending of the requirements and performance 
goals (Table  2.6 ). Here, one-hot Finite State Machine (FSM) encoding scheme is 
being adopted for HDL model. One-hot state machines are typically faster, where 
the logic complexity associated to each state gets decreased. For comparison 
between binary, gray, and one-hot encoding scheme, one sample state machine 
was taken with  n  states. Verilog code was developed using binary and one-hot 
encoding scheme and then was synthesized to evaluate performance and area. 
One-hot encoding is a preferred approach if the timing in the output path is critical. 
Conversion from Binary Encoding to Gray Encoding is shown in Fig.  2.35  [ 32 ].

        5.     Parameterizing  
 Use parameters as much as possible instead of hard-coded values, as it makes 

verifi cation easier. Parameterization means design all features in HDL code and 
choose what you want to fabricate. Fixed IP versus parameterized IP is shown 

D Q
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Logic

State Register

Outputs

Inputs

  Fig. 2.34    Explicit naive style FSM       

 

2 IP Cores Design from Specifi cations to Production: Modeling, Verifi cation…



41

   Table 2.5    One-hot encoding verilog example   

 case (1’b1) 
 state [S0]: 
 if (in == 1) 
 next_state [S1] = 1’b1; 
 else 
 next_state [S2] = 1’b1; 
 state [S1]: 
 if (in == 1) 
 next_state [S0] = 1’b1; 
 else begin 
 next_state [S2] = 1’b1; 
 state [S2]: 
 next_state [S0] = 1’b1; 

   Table 2.6    Difference between different FSM encodings   

 Feature  Binary  Gray  One-hot 

 Number 
of fl ip-fl ops 

 #(fl ip fl ops) = log 2 (#states)  #(fl ip fl ops) = log 2 (#states)  #(fl ip fl ops) =
#(states)  Fewer  Fewer 

 Speed  Slower  Slower, only one bit is 
changed in state transition 

 Faster 

 Critical path 
searching 

 Need more tracking to fi nd 
critical path during STA 

 Need more tracking to fi nd 
critical path during STA 

 Easy to fi nd critical 
path during STA 

 Debug easiness  Tedious to debug  Tedious to debug  Easy to debug 
 Low power  Higher power  Suitable for low-power 

design because of low 
signal transitions 

 Higher power 
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  Fig. 2.35    Conversion 
from binary encoding to 
gray encoding       
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in Fig.  2.36 . The advantage of parameterization mechanisms over the use of 
constants/packages is that parameterization allows the same component to be 
used multiple times in a single design with different sets of parameters [ 33 ].

       6.     Speed and area optimization  
 Keep critical path logic in a separate module, optimize the critical path logic 

for speed, and optimize the noncritical path logic for area (Fig.  2.37 ).
   Dynamic Partial Reconfi guration (DPR) is also used to optimize area usage. 

With DPR, it is possible to implement different circuits that are not needed at the 
same time, and that do not operate simultaneously, on the same FPGA area, 
resulting in considerable area savings as depicted in Fig.  2.38 . This area is gener-
ally called the reconfi gurable region (RR). Whenever the designer wants to 
change the implemented circuit, an amount of time is needed to rewrite the con-
fi guration memory at runtime and this is called the reconfi guration time [ 34 – 36 ]. 
The subsystem that performs the reconfi guration is called the reconfi guration 
manager and is generally implemented in software.

Addr [7:0]

IP

Addr [width-1:0]

IP

Width=16

a b

  Fig. 2.36    ( a ) Fixed IP versus ( b ) parameterized IP       
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  Fig. 2.37    ( a ) Speed 
optimization, ( b ) area 
optimization       
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   The confi guration memory of the reconfi guration region (RR) consists of 
SRAM memory cells that control the content of the lookup tables and the state 
of the routing switches. To implement a circuit in the RR, a confi guration needs 
to be generated that contains the binary values that need to be written in the RR’s 
memory cells. Figure  2.39  gives an example that describes the role of confi gura-
tion memory [ 37 – 40 ].

   In conventional DPR systems, a confi guration bitstream is generated for every 
mode by implementing it separately in the RR, where every RR memory cell 
corresponds to a collection of binary values, one value for each mode. When 
these binary values are the same, this collection is called a static bit. If they are 
not the same, this collection is called a dynamic bit. Memory cells containing a 
static bit do not need to be rewritten during runtime. 

 The DPR design fl ow methodology framework comprises a set of steps, 
which are necessary to implement the proposed multi-mode memory controller’s 
applications using DPR as described in Fig.  2.40 .

     (a)    During the initial phase, the static modules and the partial reconfi guration 
modules (PRM) are described in HDL language.   

   (b)    The PRMs are synthesized to generate the corresponding netlist for each module.   
   (c)    Perform placement and routing and generation of the full and partial recon-

fi guration bitstream.   
   (d)    Merges the full bitstream to generate a fi nal downloadable bitstream.   
   (e)    The fi nal downloadable bitstream is copied onto the compact fl ash card and the 

card is plugged into the FPGA to bring up the design on the next power cycle.   
   (f)    To switch between the different circuits, the reconfi guration manager writes 

the reconfi gurable region with the appropriate bitstream confi guration.    

FPGA

  Fig. 2.38    DPR concept, implement different circuits that are not needed at the same time, and that 
do not operate simultaneously, on the same FPGA area, resulting in considerable area savings       
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      7.    Power optimization

•    Use gray-coding FSM.  
•   Use line coding to reduce transitions (8b/10b encoder): reduce α (switching 

activity factor).  
•   Increase data bus width to reduce transfer cycles: reduce α.          

2.4.2     Processor-Based IP Optimization 

     A.     Best practice design methodology 

    1.    Do not use long loops.   
   2.    Split logic circuits to shorten the critical path.   
   3.    Choose faster logic circuit architectures.    

      B.     Use of the latest computer technology 

    1.    Parallel (distributed) compilation, use dual or more core feature.    

Programmable LUT
Truth table for
Y= (a & b) ! C
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  Fig. 2.39    An example describes the role of confi guration memory [ 37 ]       
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2.4.3           ASIC-Based IP Optimization 

     1.    Keep  n -devices near  n -devices and  p -devices near  p -devices [ 1 ].   
   2.    Keep  n MOS near ground and  p MOS near V dd .   
   3.    Layout of large transistor: large transistors can be viewed as number of parallel 

small transistors because as the gate width increases beyond certain limit, the 
effi ciency of the transistors decreases as poly resistance increases.   

   4.    Metal line bending: use 45° bending not 90° as the effective area of the current 
fl ow through 90° bending is reduced to 50 %.   

Configuration
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Merge

Configuration 3Configuration 2Configuration 1

Route

Place

Technology
Mapping

Synthesis

HDL 3HDL 2HDL 1

SynthesisSynthesis

Technology
Mapping

Technology
Mapping
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RouteRoute

  Fig. 2.40    DPR design fl ow methodology framework. It comprises a set of steps, which are neces-
sary to implement the proposed multi-mode memory controller’s applications using DPR       
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   5.    Put guard rings around differential pairs,  n -well, and  p -well.   
   6.    If we leave the differential pairs on the edges without dummies, they will see 

different surroundings and mechanical stress than the middle ones; with dum-
mies we can avoid this.   

   7.    Use interleaving between transistors so that if a fabrication error happened in a 
die, it does not affect the remaining transistors and the chip can remain working 
correctly.   

   8.    Global signals should be routed on the top and bottom of layout blocks. Local 
signals should be routed through the center of layout blocks.      

2.4.4     PCB-Based IP Optimization 

     1.    Separate the digital and analog portions of the circuits (Fig.  2.41 ).
       2.    High frequency components should be placed near the connectors (Fig.  2.42 ).

Digital

Analog

  Fig. 2.41    Separate the 
digital and analog portions 
of the circuits       

Frequency

Connector

  Fig. 2.42    High-frequency components should be placed near the connectors       
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2.5             IP Protection 

 Without IP protection, companies can lose revenue and market share. 

2.5.1     FPGA-Based/Processor-Based IP Protection 

 IP vendors are facing major challenges to protect hardware IPs from IP-piracy as, 
unfortunately, recent trends in IP-piracy and reverse engineering efforts to produce 
counterfeit ICs have raised serious concerns in the IC design community. IP-piracy 
can take several forms, as illustrated by the following scenarios:

    1.    A chip design house buys an IP core from an IP vendor and makes an illegal copy 
or “clone” of the IP. The IC design house then sells it to another chip design 
house (after minor modifi cations) claiming the IP to be its own.   

   2.    An untrusted fabrication house makes an illegal copy of the GDS-II database 
supplied by a chip design house and then illegally sells them as hard IP.   

   3.    An untrusted foundry manufactures and sells counterfeit copies of the IC under 
a different brand name.   

   4.    An adversary performs post-silicon reverse engineering on an IC to manufacture 
its illegal clone.     

 These scenarios demonstrate that all parties involved in the IC design fl ow are 
vulnerable to different forms of IP infringement which can result in loss of revenue 
and market share. Hence, there is a critical need of a piracy-proof design fl ow that 
equally benefi ts the IP vendor, the chip designer, as well as the system designer. A 
desirable characteristic of such a secure design fl ow is that it should be transparent 
to the end-user, i.e., it should not impose any constraint on the end-user with regard 
to its usage, cost, or performance. 

 To secure an IP, we need to obfuscate it then encrypt the contents before sending it 
to the customer.  Obfuscation  is a technique that transforms an application or a design 
into one that is functionally equivalent to the original but is signifi cantly more diffi cult 
to reverse engineer. So, Obfuscation changes the name of all signals to numbers and 
characters combination. The second level is to encrypt the whole fi les [ 41 ,  42 ]. 
Although encryption is effective, code obfuscation is an effective enhancement that 
further deters code understanding for attackers [ 43 ]. Moreover,  Watermarking  can 
be used to protect Soft-IPs [ 44 ]. It includes modules duplication or module splitting.  

2.5.2     ASIC-Based IP Protection 

     1.     Circuit camoufl age : let individual logic cells appear identical at each mask 
layer, when in fact subtle changes are present to differentiate logic functions. 
Changes are designed so that the reverse engineer is unable to automate cell 
recognition [ 45 ]. Figure  2.43  Shows an example of unprotected layout and 
Fig.  2.44  shows a protected one.
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2.5.3             PCB-Based IP Protection 

     1.    Remove the markings from all the major ICs and mark them with in-house part 
numbers.   

   2.    Encapsulate the PCB into epoxy (black blobs) as depicted in Fig.  2.45  [ 46 ].
       3.    Add a few fake layers for complexity.       

2.6     Summary 

 This chapter discusses the IP cores life cycle process from specifi cation to produc-
tion which includes four major steps: (1) IP Modeling, (2) IP verifi cation, (3) IP 
optimization, (4) IP protection. For IP modeling, four major methodologies are 

  Fig. 2.43    Unprotected 
standard cell layouts the 
metal layers are different 
and hence it is easy to 
differentiate them by just 
looking at the top metal 
layer [ 45 ]       

  Fig. 2.44    Camoufl aged 
standard cell layouts. The 
metal layers are identical 
and hence it is diffi cult to 
differentiate them by just 
looking at the top metal 
layer [ 45 ]       

  Fig. 2.45    Encapsulate the 
PCB into epoxy ( black 
blobs )       
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introduced which includes: FPGA-based modeling, processor-based modeling, 
ASIC-based modeling, and PCB-based modeling. For IP verifi cation, different plat-
forms are presented and analyzed such as simulation, acceleration, emulation, and 
prototyping. Moreover, different verifi cation methodologies are introduced such as: 
UVM, direct testing, negative testing, software-driven testing, and formal testing. We 
presented different methods for IP optimization for the main design methodologies 
to improve area, speed, and power. For IP protection, we analyzed different strategies 
to perform protection not to make companies lose revenue and market share.     
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    Chapter 3   
 Analyzing the Trade-off Between Different 
Memory Cores and Controllers       

3.1               Introduction 

 With the move to multicore computing, the demand for memory bandwidth grows 
with the number of cores. It is predicted that multicore computers will need 1 TBps 
of memory bandwidth. However, memory device scaling is facing increasing chal-
lenges due to the limited number of read and write cycles in fl ash memories and 
capacitor-scaling limitations for DRAM cells. Therefore, memory bottleneck is one 
of the main challenges in modern VLSI design. Microprocessors communicate with 
memory cores through memory controllers (Fig.  3.1 ). A detailed fi gure is shown in 
Fig.  3.2  [ 1 – 6 ].

    Modern systems have complex memory hierarchies with diverse types of volatile 
and nonvolatile memories such as DRAM and fl ash. It is the task of the memory 
controller to manage these devices. To improve this communication as a solution for 
the memory bottleneck, the memory cores and memory controllers can be improved. 
The most famous existing memory cores–based solutions are to increase the amount 
of on-chip memory elements. However, this solution is expensive, and the most 
famous existing memory controllers–based solutions are to improve the controller 
architectures and scheduling algorithms. 

 Designing memory controllers is challenging in terms of performance, area, 
power consumption, and reliability. Since DRAM and NAND Flash scaling will 
be at risk as technology scales down to 20 nm, various technological innovations 
will be required to fulfi ll technological demands [ 7 ]. To address these challenges, 
different new memory cores architectures and protocols are analyzed in this 
chapter.  
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3.2     Memory Cores 

 Memory cores and most famous memory controllers are summarized in Fig.  3.3 , 
where memories are classifi ed into two main categories [ 8 ]:

     1.     HDD : Hard disk driver (HDD) utilizes ultrasophisticated magnetic recording 
and playback technologies. They are used as the primary data storage compo-
nents in notebooks, desktops, servers, and dedicated storage systems.   

   2.     SSD : Solid-state driver (SSD) is a data storage device that uses nonvolatile 
memory (ROM, EEPROM, and Flash) and volatile memory (SDRAM, DRAM) 
to store data.    

  Comparison between HDD and SDD are shown in Table  3.1 , where SSD are 
showing better performance. HDD maximizes GB, not performance. In addition, 
the difference is shown in Fig.  3.4 . Noting that, the fl ash-based memories are based 
on fl oating-gate technology as depicted in Fig.  3.5 , how it works is shown in the 
following steps:

       1.    A large voltage difference between the drain and the source creates a large elec-
tric fi eld between the drain and the source.   

Memory
Cores

(DRAM,Flash)

Memory Controller
(ONFI, eMMC, DDR2)

Multi-Core
SoC

  Fig. 3.1    Memory cores interfaces with microprocessors       

MEM controller

MEM Core

BRIDGE

µP CODEC

On-chip peripheral 

System bus

SoC
  Fig. 3.2    Memory 
cores interfaces with 
microprocessors through 
bridge       

 

 

3 Analyzing the Trade-off Between Different Memory Cores and Controllers



53

   2.    The electric fi eld converts the previously nonconductive poly-Si material to a 
conductive channel, which allows electrons to fl ow between the source to the 
drain.   

   3.    The electric fi eld caused by a large gate voltage is used to bump electrons up 
from the channel onto the fl oating gate.   

   4.    The number of electrons on the fl oating gate affects the threshold voltage of the 
cell (Vt). This effect is measured to determine the state of the cell.   

   5.    The threshold voltage can be manipulated by the amount of charge put on the 
fl oating gate of the Flash cell.   

   6.    Placing charge on the fl oating gate will increase the threshold voltage of the cell. 
When the threshold voltage is high enough, around 4.0 V, the cell will be read as 
programmed. No charge, or threshold voltage <4.0 V, will cause the cell to be 
sensed as erased.    

Memories

HDD SSD

Volatile

SRAM DRAM

SDRAM DDR2,3,4 LPDDR2,3

Non-
Volatile

ROM EEPROM Flash

NAND 
Flash

OneNAND eMMC ONFI USB SATA

NOR 
Flash

Memory Cores

Memory
controllers

(How to read,
write, erase)?

  Fig. 3.3    Memory cores and memory interface, for example eMMC is NAND fl ash-based storage 
chip that features eMMC interface instead of the typical NAND fl ash or ONFI interface       

  Table 3.1    Comparison 
between SSD and HDD  

 SSD  HDD 

 Capacity  ✓ 
 Performance  ✓ 
 Reliability  ✓ 
 Endurance  ✓ 
 Power  ✓ 
 Size  ✓ 
 Weight  ✓ 
 Shock  ✓ 
 Temperature  ✓ 
 Cost per bit  ✓ 
 Moving parts  ✓ 
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  A comparison between different memories cores is shown in Table  3.2  [ 9 ]. The 
fl ash cell can be classifi ed into (Fig.  3.6 ) [ 10 ]:

      1.    Multi-level cell NAND ( MLC ): stores four states per memory cell and enables 
two bits programmed/read per memory cell.   

   2.    Single-level cell NAND ( SLC ): stores two states per memory cell and enables 
one bit programmed/read per memory cell.    

  A computer system contains a hierarchy of storage devices with different costs, 
capacities, and access times. With a memory hierarchy, a faster storage device 
at one level of the hierarchy acts as a staging area for a slower storage device at 
the next lower level. Software that is well written takes advantage of the hierar-
chy accessing the faster storage device at a particular level more frequently than 
the storage at the next level. Understanding the memory hierarchy will result in 

  Fig. 3.4    Hard disk drive versus solid-state drive       

  Fig. 3.5    ( a ) Floating-gate memory cell and ( b ) its schematic symbol       
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better performance of applications. The memory hierarchy can be summarized in 
Fig.  3.7 . It starts with register fi le, SRAM, DRAM, then main memory or hard disk. 
Moreover, the comparison is shown in Table  3.3 .

  Fig. 3.6    ( a ) MLC, ( b ) SLC       

Registers

SRAM (Cache)

DRAM

HARD Disk

Faster
Larger

  Fig. 3.7    An example of memory hierarchy       
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3.3         Why Standards? 

 SoC components (IPs) have an interface to the outside world consisting of a set of 
pins; it is responsible for sending/receiving addresses, data, and control. Number 
and functionality of pins must adhere to a specifi c interface standard. Standardization 
is important for seamless  integration  of SoC IPs—helps avoid integration 
 mismatches [ 11 ]:

 –    E.g., 1—connecting IP with 32 data pins to a 16 bit data bus.  
 –   E.g., 2—connecting IP supporting data bursts to a bus with no burst support.    

 It is also important because mismatches require development of “logic 
wrappers” at IP interfaces.

 –    To ensure correct data transfers.  
 –   Time consuming to create, reduce performance, take up area.    

 Interface standards defi ne a specifi c data transfer protocol to decide number and 
functionality of pins at IP interfaces and make it easy to connect diverse IPs quickly. 

 There are two categories of standards for SoC communication:

•     Standard bus architectures 

 –    Defi ne interface between IPs and bus architecture.  
 –   Defi ne at least some specifi cs of bus architecture that implements data trans-

fer protocol.     

•    Socket-based bus interface standards 

 –    Defi ne interface between IPs and bus architecture.  
 –   Freedom w.r.t choice and implementation of bus architecture.       

 Ideally, designers want one standard to interconnect all IPs. In reality, several 
competing standards have emerged. 

  JEDEC : is an organization works as a Leading developer of standards for the solid-
state industry [ 12 ].  

   Table 3.3    Memory technology comparison   

 Access delay  Cell area (μm 2 )  Cells/mm 2  (Mb) 

 Register  <1 Cycle  0.7  1.5 
 SRAM  1 Cycle  0.4  2.5 
 DRAM  20–50 Cycle  0.04  15 
 Flash  Read: 50 cycles  0.02  50 

 Write: 500 cycles 
 Hard disk  5 × 10 6  Cycles  0.004  250 

3.3  Why Standards?
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3.4     Memory Controllers 

 There is a great variety of interfaces and protocols, which provide access to the 
internal memory cores in different ways to read, write, or erase. Referring to 
Fig.  3.3 , examples of Flash-based Memory controllers are EMMC, OneNAND, and 
ONFI. Examples of DRAM-based memory controllers are DDRx, LPDDx. 

 The main aim of the memory controller is to provide the most suitable interface 
and protocol between the host and the memories and to effi ciently handle data, 
maximizing transfer speed, data integrity and information retention (conservation 
of data with time). The main features are summarized in Table  3.4 . If we compare 
the architecture of these different controllers, we realize that their architecture is 
common in many things. They mainly differ in the performance and the features. 
The following section will describe the most common memory controllers.

     1.     eMMC  
 The eMMC is a managed memory capable of storing code and data. It is spe-

cifi cally designed for mobile devices. The eMMC is intended to offer the perfor-
mance and features required by mobile devices while maintaining low power 
consumption. The eMMC device contains features that support high throughput 
for large data transfers and performance for small random data more commonly 
found in code usage. It also contains many security features. eMMC 
 communication is based on an advanced 10-signal bus. An example of eMMC 
architecture is shown in Fig.  3.8  [ 13 ].

       2.     OneNAND  
 Samsung’s OneNAND meets the memory-hungry needs of next-generation 

devices by providing a single-chip fl ash that offers the ultrahigh density of NAND 
with the simplifi ed interface neither of NOR at very attractive price points. 
OneNAND can achieve up to 108 MB/s read performance to optimize application 

   Table 3.4    Memory controller features   

 Features  Explanation 

 Topology  Point to point, or multi-master/multi-slave 
 Physical interface (#pins)  The physical interface with other circuits 
 Memory organization  The min unit for erase, write protection, read, write 
 Memory partitions  Single partition or multiple 
 Initialization process  How to start the memory controller operation? Negotiate different 

speeds, voltages and single/dual data rates, booting or/not 
 Command sets  To read, write, multiple read, multiple write, erase, write 

protection, partition, secure 
 Responses  How the card response to the host commands 
 Internal registers  Contains the initializations and the memory features 
 Data rate  The data can be DDR or SDR 
 Timing  The time between commands, responses, and data 
 Performance  Max clock 
 Reliability  ECC or not 
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functionality. It is available in densities from 256 Mb to 8 GB. With OneNAND, 
designers can use their existing chipset’s NOR interface to communicate directly 
with the NAND fl ash memory, obviating the need for a separate NAND device. 
In addition, OneNAND’s fast write-speed increases performance, which is 
extremely diffi cult to attain with NOR fl ash alone. OneNAND’s compact size and 
range of features make it the ideal choice for: Handset, digital cameras, embed-
ded solutions. An example of OneNAND architecture is shown in Fig.  3.9  [ 14 ].

       3.     DDR3  
 The third generation of Dual Data Rate (DDR) Synchronous DRAM memory 

delivers signifi cant performance and capacity improvements over older DDR2 
memory. HP introduced DDR3 memory with the G6 and G7 ProLiant servers, 
coinciding with the transition to server architectures that use distributed memory 
and on-processor memory controllers. DDR3 continues to evolve in terms of 
speed and memory channel capacity, and the new HP ProLiant Gen8 servers 
fully support these improvements. An example of DDR3 architecture is shown 
in Fig.  3.10  [ 15 ].

       4.     HMC  
 HMC uses 3D single packaging of 4 or 8 DRAM memory dies and one logic 

die collected together using through-silicon vias (TSV) and microbumps with 
smaller physical footprints. HMC exponentially is more power effi ciency and 

  Fig. 3.8    eMMC architecture       
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energy savings, utilizing 70 % less energy per bit than DDR3 DRAM technology. 
A single HMC can provide more than 15× the performance of DDR3 module, 
which increases bandwidth. HMC reduced latency with lower queue delays and 
higher bank availability. It can keep up with the advancements of CPUs and 
GPUs. HMC uses standard DRAM cells but its interface is incompatible with 
current DDR2 or DDR3 implementations. It has more data banks than classic 
DRAM of the same size. HMC memory controller is integrated into memory 
package as a separate logic die. The logic base manages multiple functions for 
HMC, like all HMC I/O, mode and confi guration registers and data routing and 
buffering between I/O links and vault. A crossbar switch is an implementation 
example to connect the vaults with I/O links. The external I/O links consist 

  Fig. 3.9    OneNAND architecture       

  Fig. 3.10    DDR3 architecture       
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of multiple serialized 4 or 8 links, each link with a default of 16 input lanes and 
16 output lanes for full width confi guration, or 8 input lanes and 8 output lanes 
for half width confi guration as shown in Fig.  3.11  [ 16 ].

       5.     WideIO  
 WideIO mobile DRAM uses chip-level dimensional (3D) stacking with 

through-silicon vias (TSV) interconnects and memory chips directly stacked 
upon a system on a chip (SOC). WideIO DRAM major advantage over its prede-
cessors (such as LPDDR DRAM) is that, it offers more bandwidth at lower 
power. WideIO is the fi rst interface standard for 3D die stacks and offering a 
compelling bandwidth and power benefi t. WideIO is particularly suited for 
applications requiring increased memory bandwidth UP to 17 GBps Such as 3D 
Gaming, HD video etc. WideIO will provide the ultimate in performance, energy 
effi ciency and small size for smart phones, tablets, handheld gaming consoles, 
and other high-performance mobile devices. Given the ever-growing hunger for 
memory bandwidth and the need to reduce memory power in many applications; 
WideIO is the fi rst standard for stackable WideIO DRAMs. This standard  widens 
the conventional 32 bit DRAM interface to 512 bits. Memory diagram for 
WideIO is shown in Fig.  3.12  [ 17 ].

       6.     ONFI  
 ONFI stands for Open NAND Flash Interface. Early NAND Flash devices 

from different manufacturers use similar interface but an open standard did not 
exist. As a result, subtle differences exist among devices from different vendors. 
ONFI standard aims to provide a common standard, so different device can 
be used interchangeably and sets the stage for future standard NAND Flash 
development as shown in Fig.  3.13 . The lack of a standard caused serious design 
problems like host systems had to accommodate differences between vendors’ 

  Fig. 3.11    HMC architecture       

 

3.4  Memory Controllers



62

devices and adapt to generational changes in parts from a single vendor. All of 
this made incorporating new or updated NAND Flash components extremely 
costly, often requiring extensive hardware, fi rmware, and/or software changes 
and additional testing which slowed time to market. ONFI works to solve all 
these issues by standardizing the NAND Flash interface-reducing vendor and 
generational incompatibilities and accelerating the adoption of new NAND 
products [ 18 ].

       7.     UFS  
 UFS is most advanced specifi cation for embedded and removable fl ash 

memory- based storage because it includes the feature set of eMMC specifi cation 
as a subset. It also references several other standard specifi cations by MIPI 

  Fig. 3.12    WideIO architecture       

  Fig. 3.13    ONFI architecture       
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(M-PHY and UniPro specifi cations) and INCITS T10 (SBC, SPC, and SAM 
specifi cations) organizations. The UFS interface is a universal serial communi-
cation bus, based on MIPI M-PHY standard as physical layer for optimized per-
formance and power. UFS references the INCITS T10 SAM model for ease of 
adoption. The UFS Top level Architecture Consists of three main layers as shown 
in Fig.  3.14 . First layer is called application layer which consists of UFS com-
mand set layer (UCS) which handles normal commands, device manager which 
has two jobs which are device level operations such as sleep, and power-down 
management, and device-level confi gurations such as set of descriptors and han-
dling query request. Task manager handles command queue control. UCS estab-
lishes the method of data exchange between host and device and also provides 
device management capability. Second layer is UFS transport protocol layer 
(UTP) which services the higher layers and its mission is to encapsulate the 
 protocol into appropriate frame structure for the lower layer. Third layer is UFS 
interconnect layer (UIC) [ 19 ].

              8.     HBM  
 HBM (High-Bandwidth Memory) is a new type of DRAM-based memory chip 

with low power consumption, ultrawide communication lanes and a revolutionary 
new stacked confi guration. HBM uses 128-bit wide channels. It can stack up to 
eight of them for a 1024-bit interface. The total bandwidth ranges from 128 to 
256 GB/s. Each memory controller is independently timed and controlled. Future 
GPUs built with HBM might reach 1 TB/s of main memory bandwidth. HBM 
designed for high-performance GPU environments as it is cheaper than HMC [ 20 ].    

  Fig. 3.14    UFS architecture       
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3.5       Comparison Between Different Memory Controllers 

 There are completely different memory organizations which develop different 
 protocols to enable the designer to pick up the most effi cient and suitable one for 
his application. 

 For Flex-OneNAND, the building block unit is 4 KB page, which has main area 
and spare area. The 4 KB page is divided into eight sectors each of which is 512 
bytes for main and 16 bytes for spare. ONFI has eight targets, each target has arbi-
trary multiple Logic units (LUNs). Each LUN consists of arbitrary number of 
blocks. Each block consists of number of pages. Each page consists of optional 
partial pages which are the smallest unit to program or read. LUN is minimum 
unit to execute command and report status. Block is the smallest erasable unit. 
eMMC is divided into write protect groups, each one consists of erase groups, and 
each erase group has write blocks with 512 bits for each. HMC is organized into 
vaults; each vault has 4 or 8 partitions according to the number of memory dies. 
One partition is multiple of 16 MB banks. Each four vaults called quadrant. WideIO 
consists of four memory dies which are called stack. Each die consists of four inde-
pendent channels of 128 bidirectional data bits. Each channel has four Banks, each 
bank is 512 MB. The interface consists of 300 (microbump) pads per channel. UFS 
is consists of eight confi gurable Logic Units (LU) and four well-known logical 
units. LU is an externally independent addressable entity processes the commands 
and  performs task management functions. Each LU can be confi gured as boot LU 
with maximum of two. The well-known logic units are: Boot which is virtual refer-
ence to the actual LU containing boot code, REPORT LUNs which provides the LU 
inventory, UFS device which provides UFS device level interaction (i.e., power 
management control), and RPMB supports RPMB function with its own indepen-
dent processes and memory space. 

 HMC and WideIO are 3D protocols. The 3D design provides 15 % performance 
improvements due to eliminated pipeline stages and 15 % power saving due to elim-
inated repeaters and reduced wiring compared to 2D. The stacked security structure 
complicates attempts to reverse the circuitry. 

 The protocols support two main types of memory cells which are fl ash and 
DRAM. Flash memory cells have no power for storing data and hold a lot more data 
than DRAM but it is slower than DRAM. For fl ash type, SLC and MLC are both 
NAND-based nonvolatile memory technologies. MLC offers a larger capacity twice 
the density of SLC, but SLC provides an enhanced level of performance in the form 
of faster write speeds. The most powerful feature in Flex-OneNAND and ONFI is 
the combination between SLC and MLC. 

 Partitioning the memory array is playing a major role in specifying the functional-
ity of each part of memory. Flex-OneNAND supports three memory partitions which 
are one-time programmable partition (OTP), fi rst block OTP, and boot partition. 
eMMC is divided into two boot area partitions which are used to access and modifying 
boot data, one RPMB partition to store data in an authenticated and replay protected 
manner through HMAC-SHA algorithm which supports protection that requires pass-
words and keys for access, four general purpose partitions to store sensitive data or for 
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other host usage models and enhanced user data area. Boot and RPMB partitions are 
read only programming, but general purpose area and enhanced user data area parti-
tions are one-time programmable. In UFS, each LU can be differentiated over the 
others with many types during the system integration. The memory types are default 
type for regular memory characteristics, system code type for a logical unit that is 
rarely updated (e.g., system fi les or binary code executable fi les, …, etc.), Nonpersistent 
type is used for temporary information and enhanced memory type is left open in 
order to accomplish different needs and vendor-specifi c implementations. 

 Flex-OneNAND supports only three simple modes. Limited-based command 
mode which is used for booting operation. Register-based mode which is used for 
command execution. Idle mode is used when the device is waiting for host request. 
ONFI simply supports only two modes, active mode which is used for commands and 
operations execution and the other is idle mode which immediately entered after 
power on. eMMC cycle life time is divided into modes. First, eMMC optionally 
passes through boot mode, then passes through identifi cation mode to validate opera-
tion voltage range and access mode, identifi es the device and assigns a relative device 
address (RCA) on the bus and fi nally passes through data transfer mode executing any 
commands forwarded from the CPU. eMMC supports optional interrupt mode by 
specifi c command. Interrupt mode reduces the polling load for CPU hence the power 
consumption. HMC life cycle consists of multiple modes as  initialization mode to 
prepare HMC for any request or data transfer, active mode where the HMC device is 
preparing to execute any request and transfer any data, sleep mode where it sets each 
link into lower power state by inverting its power state management pin from high to 
low. Then HMC enters down mode which is lower power state than sleep mode by 
disabling both serializer and deserializer circuitry and the link’s PLLs. WideIO has 
fi ve modes. First mode is idle mode in which the banks have been precharged. 
Precharge is to deactivate an open row in one or all banks. Banks cannot be used again 
after certain time. After precharging a bank in idle state requires an active command 
before any read or write commands forwarded to the bank. Second, active mode is to 
activate row of a given bank to read or write data. Power-down mode is supported for 
each channel circuit except for clock (CK) and clock enable (CKE), where they are 
gated off to reduce power consumption. The device enters power-down mode when 
CKE is low and exits when CKE is high. In deep power-down, all channels on that 
slice will exit deep power-down mode. The reset signal is used because reset signal is 
per memory die not per channel. UFS Device supports seven power modes which are 
controlled by the START STOP UNIT command and some attributes. 

 In order to minimize power consumption in a variety of operating environments, 
UFS supports four basic power modes which are Active, Sleep, idle, and power- 
Down. Also, it supports three transitional modes to facilitate the change from one 
mode to the next. UFS can support up to 16 active confi gurations. Each one has its 
own current profi le. The host can choose from either predefi ned or user defi ned cur-
rents profi les to deliver the highest performance. 

 In Flex-OneNAND, after boot code is loaded, Boot buffer is always locked. For 
NAND Flash array protection, device has hardware and software write protection. 
Hardware write protection is implemented by executing a “Cold” or “Warm” reset. 
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Software write protection is implemented by specifi c commands. The write protect 
signal in ONFI disables Flash array program and erase operations. To allow eMMC 
to protect data against erase and write; the eMMC supports three levels of write pro-
tection commands such as permanent or temporary or power-on protection applying 
for the entire device or for specifi c segments. In WideIO, Input data mask (DM) is 
the input mask signal for write data. Input data is masked when DM is sampled high. 

 Flex-OneNAND supports 31 registers which are utilized by the device mainly 
for confi guration of the device and status of the operations done by the device. In 
ONFI, parameter pages are used to describe NAND capabilities. Parameter page 
solves inconsistencies among devices by describing revision info, features, and 
organization timing. eMMC has six different registers with different sizes. These 
registers include confi guration bytes and status bytes. The UFS software uses 37 
registers that exist in the host side to control the device through HCI interface. HMC 
has 15 registers that consist of confi guration registers and status registers with the 
same size of 32 bits. 

 Commands of these protocols indicate the major features. So in ONFI, the major-
ity of commands are optional because all NAND Flash devices are not created 
equal, differences include architectural, performance, and command set, so ONFI 
helps to address many of these through optional commands and optional parameter 
pages. In eMMC, there are major 43 usable commands including read commands, 
write commands, erase commands, sleep command, and interrupt command. HMC 
uses 23 different commands concentrating on read and write commands only. The 
command or request is sent in shape of packet (multiple of 128 bits) associated with 
the data; the same as the response. Commands and responses are serialized and 
transmitted across the lanes of links. Every command and response contains header 
and tail which indicates important fi elds for example: address, command number, 
and CRC. 

 To know the echo of commands, there must be a response or status register to be 
checked. In Flex-OneNAND, response is checked from status registers after execu-
tion of command. ONFI Reads status and retrieves the status value for the last oper-
ation issued. In eMMC there are fi ve responses vary from command to another by 
their included fi elds. eMMC includes some status bits like error switch bit. HMC 
has also a response packets and status register for CPU to check the situation of 
HMC. For WideIO, status register read (SRR) can only be issued after power up and 
initialization sequence are completed. SRR provides a method to read registers from 
WideIO DRAM. But, in UFS, UTP delivers commands, data and responses as stan-
dard packets over the UniPro network. The UFS transactions will be grouped into 
data structures called UFS protocol information unit (UPIU). There are UPIUs 
defi ned for commands, responses, and data in and data out. A response UPIU con-
tains a command-specifi c operation status and other response information. This rep-
resents the status phase of the command. 

 The main comparison between the six memory controller architectures, which is 
based on the most important features that microelectronics designers are interested 
in, is summarized in Tables  3.5  and  3.6 .
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  Fig. 3.15    Flex-OneNAND memory organization       

  Fig. 3.16    ONFI memory organization       
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  Fig. 3.17    eMMC Memory Organization       

  Fig. 3.18    UFS memory organization       
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  Fig. 3.19    HMC memory 
organization       
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  Fig. 3.20    WideIO 
memory organization       
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3.6         New Trends in SoC Memories 

 SRAM/DRAM is fast but has large leakage of power and is volatile. Floating-
gate- based Flash is nonvolatile but exhibits low write speed and limited write endur-
ance. Therefore, recent research focuses on hybrid memory structures to get the 
advantages of both. From the prospective of system level, 3D integration can be 
employed to integrate hybrid memory components with high density, where it can 
also reduce the distance between components to few micrometers instead of few 
centimeters. Emerging memory technologies are making steady progress towards 
product introductions, including phase-change memory (PCRAM), resistive memory 
(ReRAM), and magnetic memory (MRAM). The new trends in memories are sum-
marized in Table  3.7 . They provide higher density, lower latency, lower power per bit 
for both read and write operation, and high read/write/erase processing speed [ 21 ].

   Memristor is built from titanium dioxide (TiO 2 ) and platinum (Pt) as depicted in 
Fig.   3.22  . When the charge fl ows in one direction through a circuit, the resistance of 
the memristor increases. The resistance decreases when the charge fl ows in the 
opposite direction in the circuit. If the applied voltage is turned off, thus stopping 
the fl ow of charge, the memristor remembers the last resistance that it had. 
When the fl ow of charge is started again, the resistance of the circuit will be what it 
was when it was last active. Its main advantage is that program power is low and its 
main disadvantage is that platinum is expensive [ 22 ].

   FeRAM replaces dielectric by ferroelectric material. Its performance is close to 
DRAMs and it does not need refreshing process [ 23 ]. 

 Memory hierarchy requires new architecture and technology due to increasing 
demand of bandwidth and low power consumption. 3D Memory is an emerging 
memory technology, compared to existing memory interface (Fig.   3.23  ), TSV-based 
3D technology provides better bandwidth and less power consumption. Lower 
power consumption is achieved by lower capacitance of TSV [ 24 ].

3.7        Summary 

 In this chapter, we present most famous memory cores and controllers and analyze 
the trade-off between them. The importance of standards is discussed. A descriptive 
comparison between various on-chip memory protocols is made. Comparing the 
architecture of these different controllers, it is realized that their architecture is com-
mon in many things. They mainly differ in the performance and the features. 
Moreover, we introduce new trends in SoC memories such as PCRAM, ReRAM, 
MRAM, and 3D memory.     

3.7 Summary



74

   Table 3.6    Comparison between the most common architecture and the most famous memory 
controller protocols   

 Features  Flex-OneNAND  ONFI  eMMC  HMC  WideIO  UFS 

 Read  ✓  ✓  ✓  ✓  ✓  ✓ 
 Write  ✓  ✓  ✓  ✓  ✓  ✓ 
 Write protection  ✓  ✓  ✓  ✓  ✓ 
 Erase  ✓  ✓  ✓  ✓  ✓  ✓ 
 Background operations  ✓  ✓ 
 High-priority interrupt  ✓  ✓ 
 Context management  ✓  ✓  ✓ 
 Data tag mechanism  ✓  ✓ 
 Power off notifi cation  ✓  ✓ 
 Hibernate 
 Lock/unlock  ✓ 
 Encryption  ✓  ✓  ✓ 
 Packed operations  ✓ 
 Command queuing  ✓ 
 Retry  ✓ 
 Partition  ✓  ✓ 
 Copy-back  ✓  ✓ 
 Log 
 Boot  ✓  ✓  ✓  ✓ 
 Reset  ✓  ✓  ✓  ✓  ✓  ✓ 
 Inquiry  ✓ 
 Power management 
 Sleep  ✓  ✓  ✓ 
 Power down  ✓  ✓  ✓ 
 Deep power-down  ✓ 
 Interrupt  ✓ 
 Auto refresh  ✓ 
 Precharge  ✓ 
 Partial array self-refresh  ✓ 
 Parallel operation  ✓  ✓ 

   Table 3.7    New trends in SoC memories   

 CBRAM  Conductive bridge 
 ReRAM  Resistive 
 PCRAM  Phase change 
 FeRAM  Ferroelectric 
 ST-MRAM  Spin-torque magnet 
 Memristor  It is called the fourth element (change of fl ux with charge) as depicted in Fig.  3.21  

3 Analyzing the Trade-off Between Different Memory Cores and Controllers
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  Fig. 3.22    Memristor structure       
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DRAM DRAM
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  Fig. 3.23    3D DRAM as compared to 2D and 2.5 D DRAM       

  Fig. 3.21    The fourth element       
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    Chapter 4   
 SoC Buses and Peripherals: Features 
and Architectures       

4.1               Introduction 

 Components connected on a Printed Circuit Board (PCB) or System-on-Board 
(SoB) can now be integrated onto single chip, hence the development of System-on- 
Chip (SoC) design as depicted in Fig.  4.1  [ 1 ]. SoC improves the bandwidth. The 
leveraged internal/on-chip bandwidth versus external/off-chip bandwidth as shown 
in Fig.  4.2 .

    SoC is not only a chip it is a system, where,  SoC  = Hardware + Software as 
depicted in Fig.  4.3 .

   The SoC Hardware includes:

 –    Embedded processor  
 –   ASIC Logics and analog circuitry  
 –   Embedded memory  
 –   Peripherals    

 The SoC Software includes:

 –    OS/RTOS (Middleware, Device Drivers)  
 –   Applications (C/C++, assembly)    

 One solution to the design productivity gap is to make ASIC designs more stan-
dardized by reusing segments of previously manufactured chips. These segments 
are known as “blocks,” “macros,” “cores,” or “cells.” The blocks can either be devel-
oped in-house or licensed from an IP company.  Cores  are the basic building blocks. 
The cores are communicating with each other through buses and with the outer 
world through peripherals [ 2 – 6 ].  
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4.2     SoC Buses and Peripherals Background 

 The SoC consists of buses and peripherals as depicted in Fig.  4.4 , where buses are 
for communication between different blocks inside the chip and peripherals for 
communications with outer world. Buses are the simplest and most widely used 
SoC interconnection networks to connect between different IPs in the SoC [ 7 ].

Digital

RFMemory

Mixed

Analog

Processor

RTOS

Configurable Hardware Peripheral

B
U
S

PCB

a b

IC

IC

IC

  Fig. 4.1    ( a ) SoB versus ( b ) SoC       
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  Fig. 4.2    ( a ) SoB bandwidth versus ( b ) SoC bandwidth       
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  Fig. 4.3    An example of SoC architecture       
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   The bus is a collection of signals (wires) to which one or more IP components 
(which need to communicate data with each other) are connected. Only one IP 
 component can transfer data on the shared bus at any given time. The most impor-
tant bus terminologies are summarized in Table  4.1 . A bus typically consists of three 
types of signal lines summarized in Table  4.2 .

MIPS MEM BIOS

BRIDGE

CCD CODEC

On-chip peripheral 
bus

System bus

Digital Camera  Fig. 4.4    SoC buses and 
peripherals       

   Table 4.1    Buses terminology   

 Bus terminology  Explanation 

 Master (or initiator)  IP component that initiates a read or write data transfer 
 Slave (or target)  IP component that does not initiate transfers and only responds 

to incoming transfer requests 
 Arbiter  Controls access to the shared bus 

 Uses arbitration scheme to select master to grant access to bus 
 Decoder  Determines which component a transfer is intended for 
 Bridge  Connects two buses 

 Acts as slave on one side and master on the other 

   Table 4.2    Bus signals   

 Signal  Explanation 

 Address  Carry address of destination for which transfer is initiated 
 Can be shared or separate for read, write data 

 Data  Carry information between source and destination components 
 Can be shared or separate for read, write data 
 Choice of data width critical for application performance 

 Control  Requests and acknowledgements 
 Specify more information about type of data transfer 

 

4.2  SoC Buses and Peripherals Background
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    To implement SoC buses we need standards to make it easy to connect diverse 
IPs quickly, where standards important for seamless  integration  of SoC IPs—helps 
avoid integration mismatches, where mismatches require development of “logic 
wrappers” at IP interfaces to ensure correct data transfers and it consumes time to 
be created, reduces performance, and takes up area.

 –    E.g., 1—connecting IP with 32 data pins to a 30 bit data bus.  
 –   E.g., 2—connecting IP supporting data bursts to a bus with no burst support.    

 Two categories of standards for SoC communication are existing:

    1.     Standard bus architectures :

•    Defi ne interface between IPs and bus architecture.  
•   Defi ne at least some specifi cs of bus architecture that implements data trans-

fer protocol.      

   2.     Socket-based bus interface standards :

•    Defi ne interface between IPs and bus architecture.  
•   Freedom w.r.t choice and implementation of bus architecture.         

4.3     SoC Buses: Features and Architectures 

 The most famous features and architectures of SoCs are summarized in Table  4.3  
and the details are below [ 1 ,  8 ,  9 ].

4.3.1       SoC Bus Topology 

     1.     Point to point :

•    Only one master connected to one slave (Fig.  4.5 ).
•      Simple in design.  
•   Optimal in terms of bandwidth, latency, and power.  
•   If number of links increases, the area increases and faces routing problems.      

   2.     Unilevel shared bus :

•    All masters and slaves share the same bus as depicted in Fig.  4.6 .

          3.     Hierarchical bus :

•    Improves system throughput.  
•   Multiple ongoing transfers on different buses as depicted in Fig.  4.7 .

          4.     Ring : 
 All masters and slaves are connected in a ring manner as depicted in Fig.  4.8 .

4 SoC Buses and Peripherals: Features and Architectures
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       5.     Interconnection network  ( cross - bar switch ):

•    Every master/slave is connected to the remaining masters/slaves via point-to- 
point topology as depicted in Fig.  4.9 .

          6.     NOC  ( router ):

•    Each on-chip component connected by an intelligent switch to particular 
communication wires as depicted in Fig.  4.10 .

•      Improvement over standard bus-based interconnections for SoC architectures 
in terms of throughput and bandwidth [10].         

Master1 Slave1

  Fig. 4.5    Point to point       

Master1 Master2

Master3 Master4

Slave2Slave1

Slave3 Slave4

  Fig. 4.6    Unilevel shared bus       

Master1
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Master3

Master4

Slave1

Slave4

Slave3

Slave2

B
ridge1

Bridge2

  Fig. 4.7    Hierarchical bus       
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4.3.2     Arbitration (Mux/Tri-State-Based) 

 The arbitration is Tri-state topology (Fig.  4.11 ) or mux-based topology (Fig.  4.12 ) 
to avoid collision.

    The arbitration algorithms are as follows and they are summarized in Table  4.4 :

     1.     Static priority 

•    Masters assigned static priorities.  
•   Higher priority master request always serviced fi rst.  
•   Can be preemptive or nonpreemptive.  
•   May lead to starvation of low-priority masters.      

Master1

Master2

Master3

Master4

Slave1 Slave2

Slave3 Slave4

  Fig. 4.8    Ring topology       

Master1

Master2

Master3

Master4

Slave1 Slave2

Slave3 Slave4

  Fig. 4.9    Cross-bar switch (no collision), it sends request to the required slave only       
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   2.     TDMA 

•    Uses time division multiple access.  
•   Assign slots to masters based on BW requirements.  
•   If a master does not have anything to read/write during its time slots, this 

leads to low performance.  
•   Choice of time slot length and number is critical.      

   3.     LOTTERY  ( random )

•    Randomly select master to grant bus access.      

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

IP

NoC

  Fig. 4.10    NoC (smarter), select the best path       

Master1 Master2 Slave2Slave1

En
Buffer

En
Buffer

En
Buffer

En
Buffer

  Fig. 4.11    Tri-state arbitration topology       
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Master1

Master2 Slave2

Slave1

MUX

MUX

EN

EN

  Fig. 4.12    Mux-based arbitration topology       

   Table 4.4    The arbitration algorithms comparison   

 Scheme  Description  Advantages  Disadvantages 

 Static priority  Masters assigned static priorities  Simple  It may lead to starvation 
of low-priority masters  Higher priority master request 

always serviced fi rst 
 It can be preemptive (task can 
be interrupted) or nonpreemptive 
(task cannot be interrupted) 

 TDMA  Assign slots to masters based 
on BW requirements 

 No starvation  If a master does not 
have anything to read/
write during its time 
slots, leads to low 
performance 
 Choice of time slot 
length and number is 
critical 

 LOTTERY 
(Random) 

 Randomly select master 
to grant bus access 

 Simple  Depends on probability 
 Starvation 

 Round-robin  Masters allowed to access 
bus in a round-robin manner 

 No starvation—
every master 
guaranteed bus 
access 

 High latency for critical 
data streams 

 TDMA but If a master does 
not have anything to read/write 
during its time slots the grant 
moves to another master and 
so on 

 Token-passing  Each master waits for a special 
token to have a control of the 
bus, after fi nishing its operation, 
it releases the token 

 Simple  Starvation 
 Ineffi cient if masters 
have vastly different 
data injection rates 
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  Fig. 4.13    Nonpipelined transfer [ 11 ]       

   4.     Round - robin  
 Tasks are usually assigned with priorities. At times it is necessary to run a 

certain task that has a higher priority before another task although it is running. 
Therefore, the running task is interrupted for some time and resumed later when 
the priority task has fi nished its execution. This is called preemptive scheduling. 
E.g., round-robin in nonpreemptive scheduling, a running task is executed till 
completion. It cannot be interrupted. E.g., First In First Out.

•    Masters allowed to access bus in a round-robin manner.  
•   No starvation—every master guaranteed bus access.  
•   Ineffi cient if masters have vastly different data injection rates.  
•   High latency for critical data streams.      

   5.     Token - passing 

•    Each master wait for a special token to have a control of the bus, after fi nish-
ing its operation, it releases the token.       

4.3.3       Transfers 

     1.     Nonpipelined transfer 

•    Simplest transfer mode.  
•   First request for access to bus from arbiter.  
•   On being granted access, set address and control signals.  
•   Send/receive data in subsequent cycles. 
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•  The operation is summarized in Fig.  4.13 . It should receive data of address 
A1, before sending data of address A2.

          2.     Split transfer 

•    If slaves take a long time to read/write data, it can prevent other masters from 
using the bus. Split transfers improve performance by “splitting” a  transaction. 
Master sends read request to slave. Slave relinquishes control of bus as it pre-
pares data. Arbiter can grant bus access to another waiting master. Allows 
utilizing otherwise idle cycles on the bus. When slave is ready, it requests bus 
access from arbiter. On being granted access, it sends data to master (Fig.  4.14 ).

          3.     Pipelined transfer 

•    Overlap address and data phases.  
•   Only works if separate address and data buses are present.  
•   The operation is summarized in Fig.  4.15 , It can send address A2, before 

receiving data of address A1.

          4.     Burst transfer 

•    Send multiple data items, with only a single arbitration for entire 
transaction.  

•   Master must indicate to arbiter it intends to perform burst transfer.  

Slave
signals

split

NONSEQ

A A + 4

SEQ IDLE NONSEQ

B

Control (B)Control (A)

SPLIT SPLIT OKAY

HCLK

HGRANT

HTRAN[1:0]

HADDR[31:0]

HBURST[2:0]
HWRITE

HSIZE[2:0]
HPROT[3:0]

HREADY

HRESP[1:0]

T1 T2 T3 T4 T5

Arbiter
changes

grant

New master
drives

address

  Fig. 4.14    Split transfer [ 11 ]       
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  Fig. 4.15    Pipelined transfer [ 11 ]       

  Fig. 4.16    Burst transfer [ 11 ]       
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•   Saves time spent requesting for arbitration.        

 The operation is summarized in Fig.  4.16 .

4.3.4        Timing 

     1.     Synchronous 

•    Includes a clock in control lines.  
•   Fixed protocol for communication that is relative to clock.  
•   Involves very little logic and can run very fast.  
•   Require frequency converters across frequency domains.  
•   It suffers from clock skew. 
•  An example is shown in Fig.  4.17  [ 12 ].

          2.     Asynchronous 

  Fig. 4.17    Synchronous timing [ 12 ]       

  Fig. 4.18    Asynchronous timing [ 12 ]       
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•    Not clocked (data is transmitted and received without accompanying of a 
clock).  

•   Requires a handshaking protocol.  
•   Performance not as good as that of synchronous bus.  
•   No need for frequency converters, but does need extra lines (pins).  
•   Does not suffer from clock skew like the synchronous bus. 
•  An example is shown in Fig.  4.18 .

4.3.5               Tx Control 

 Tx control means: “someone is about to transmit data.”

    1.     Handshaking 

•    It is based on request/response method as depicted in Fig.  4.19 .

          2.     Preamble 

•    The role of the preamble is to defi ne a specifi c series of transmission criteria 
that is understood to mean “someone is about to transmit data.” It is a constant 
pattern.  

•   It is a constant pattern or at beginning the bus is high, when it goes low it 
means I will start communication. It is like a fl ag.  

•   Example is shown in Table  4.5 .

4.3.6               Tx Type 

Initiator Target

Response

Request

Handshake

  Fig. 4.19    Handshaking Tx 
control       

   Table 4.5    Preamble example    Start of data block pattern  1011 

 Start of frame pattern  0101 

 

4 SoC Buses and Peripherals: Features and Architectures



91

 Tx types are summarized in Fig.  4.20 .

     1.     Point to point  ( unicast )

•    Data is sent from one point to another point.      

   2.     Multicast 

•    Data is sent from one point to all other points.      

   3.     Broadcast 

•    Data sent from one or more points to a set of other points.       

4.4        Bus Architecture Examples 

 In this section, we will discuss and defi ne some common IC bus architectures cur-
rently in use and on the market 

4.4.1     I2C Bus 

 I2C eliminates the need for address decoders and glue logic, and it reduces space 
requirements, which keeps designs simple and fl exible. It also supports simple con-
structions and enables easy upgrades. I2C buses are popular in the marketplace for 
low-speed peripheral devices such as radios, televisions, and personal digital assis-
tants (PDA). 

 I2C has a physical layout of two bidirectional wires, Serial Data Line (SDA), and 
Serial Clock Line (SCL), which transmit information between devices. Each device 
connected to the bus has a unique address assigned to it and can operate in receive 
and/or transmit mode with a designation as a master or slave. I2C offers the possi-
bility of having multiple masters; however, only one master can transmit data over 
the bus at a time [ 13 ]. 

  Fig. 4.20    Tx types       
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 Figure  4.21  exhibits the topology of I2C. Figure  4.22  depicts high and low states 
that initiate and terminate transmissions on the bus. I2C requires each byte of data 
to be eight bits in length before it is placed on the SDA line. Figure  4.23  depicts an 
I2C sequence.

  Fig. 4.21    I2C bus topology [ 13 ]       

  Fig. 4.22    I2C START and STOP conditions [ 13 ]       

  Fig. 4.23    I2C byte format [ 13 ]       
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4.4.2          Advanced Microcontroller Bus Architecture (AMBA) 

 AMBA is unique in that is it has many distinctly different specifi cations, versions, 
bus types, etc. The fi rst is the Advanced High-Performance Bus (AHB), which is 
used as the backbone for high-performance systems and supports connections 
between processors, on-chip communications, and off-chip communications. The 

  Fig. 4.24    AMBA architecture [ 14 ]       

  Fig. 4.25    AHB interconnection [ 14 ]       
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second type is the Advanced System Bus (ASB), which is a less complex alternative 
to AHB. The third is the Advanced Peripheral Bus (APB), which is optimized for 
minimal power consumption and is used for interfacing peripheral devices that do 
not require high performance or high bandwidth. Figure  4.24  depicts the standard 
AMBA topology [ 14 ].

   Figure  4.25  shows a standard AHB interconnection for a standard bus sequence. 
A typical operational scenario of AHB would involve a master requesting access to 
a slave to perform a write operation. The arbiter will receive the request signal and 
determine whether the requesting master device has permission to access the slave 
device and whether the slave is available (i.e., not performing another operation). 
Assuming the master device has the appropriate access and the slave device is free 
from use, the arbiter then transfers the address and control signals to the slave device. 
The control signals provide the information, direction, and width of the transfer and 
indicate whether a burst transfer is required. During the transfer, the slave shows the 
status using response signals (i.e., OKAY, ERROR, RETRY, and SPLIT) [ 15 ].

   ASB is similar to AHB except that it cannot perform SPLIT transactions. Its bus 
protocol can be used with a central multiplexor interconnection scheme. Using the 
interconnection scheme, the bus master will send address and control signals to indi-
cate the desired operation to the central arbiter. The central arbiter reviews the bus 
master’s address and control signals and determines whether the bus master has the 
appropriate access to the desired slave device (i.e., the master may have read access, 
but no write access). Data read and response signals from the multiplexor require a 
central decoder, which will select the appropriate signals from the slave device. 

 Similar to I2C, the APB is designed for minimal power consumption and reduced 
complexity. APBs interface with low power, low bandwidth, and low-performance 
peripherals. The bridge interface between APB and ASB/AHB is the only bus mas-
ter for APB, but is a slave device on the high-performance ASB/AHB. An APB 
slave has a simple and fl exible interface. Its exact implementation details depend on 
individual design requirements. Typical operations of an APB slave connected to an 
ASB bus are read-and-write transfers; however, an APB slave interfacing with an 
AHB performs the same operations as an APB slave connected to an ASB, but also 
can perform back-to-back transfers and utilize multiplexing data bus implementa-
tions. Multiplexing supports combining read-and-write data buses into a single bus 
in which read-and-write operations never occur simultaneously.  

WISHBONE
SLAVE

WISHBONE
SLAVE

WISHBONE
MASTER

WISHBONE
MASTER

  Fig. 4.26    Shared bus interconnection [ 16 ]       
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4.4.3     Wishbone 

 Wishbone is a SoC bus for portable IP cores and offers perhaps the greatest fl exibil-
ity in design methodology with semiconductor IP cores. Wishbone is a product of 
OpenCores, which is an open-source hardware community for professionals and 
hardware design enthusiasts. Similar to AMBA, the purpose of Wishbone is to ease 
the integration of SoC components through design reuse. There are three common 
architectures associated with Wishbone: Shared Bus (Fig.  4.26 ), Pipeline, and 
Crossbar (Fig.  4.27 ) [ 16 ].

    Designers will choose a shared bus interconnection when there are two or more 
masters that need to be connected to one or more slaves. The master initiates a bus 
cycle to a target slave, and then the target slave participates in one or more bus 
cycles with the master. An arbiter determines when a master may gain access to the 
shared bus. An arbiter acts like a traffi c cop and dictates how shared resources can 
be accessed. 

 A crossbar connects two or more masters so that each can access two or more 
slaves. In this confi guration, a master initiates an addressable bus cycle to a target 
slave. An arbiter determines when each master may gain access to that slave. 

 The simplest topology is a pipelined topology, in which data is processed in a 
sequential manner. Data fl ow architecture exploits parallelism, which speeds up 
execution time.   

4.5     Summary 

 In this chapter, we introduce a deep introduction for SoC buses and peripherals. We 
explain in detail their features and architectures. Different SoC bus topologies are 
discussed such as point to point, unilevel shared bus, hierarchical bus, ring, cross- 
bar bus, NoC. The arbitration algorithms are explored. Moreover, SoC buses exam-
ples are explained in detail. We give a methodology for extraction of any SoC bus 

IP CORE
MASTER

IP CORE

SLAVE ˙SA˙
IP CORE

SLAVE ‘SB’
IP CORE

SLAVE ‘SC’

IP CORE
MASTER

CROSSBAR SWITCH

  Fig. 4.27    Cross-bar switch interconnection [ 16 ]       
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features from its standard. The different features include topology, arbitration, bus 
width, transfers, timing, transmission control and type.     
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    Chapter 5   
 Verilog for Implementation and Verifi cation       

5.1               Introduction 

 Hardware Description Language (HDL) is widely used as it is easier to explore dif-
ferent design options (e.g., throughput vs. latency), reduce design time and cost 
signifi cantly, allows larger designs, can reuse design to target different technologies 
as it is technology-independent language. 

 The HDL description can be synthesized into a gate-level description of a chosen 
technology. Two popular HDLs in the IC design: VHDL which is similar to Ada/
Pascal in software programming and case insensitive, Verilog which is similar to C 
language, case sensitive (CLOCK, clock, and Clock are different), a bit easier to 
learn. The differences are shown in Table  5.1 . Disadvantages of HDL are that  quality 
of synthesis varies from tool to tool and synthesis is not standard [ 1 ].

   Verilog hardware language is used to simulate RTL. Verilog and C bear a lot of 
similarities in both syntaxes and semantics. Of course, Verilog incorporates features 
specifi cally designed for hardware modeling. For instance, Verilog can directly 
manipulate vectors and support a larger set of bit-level operations such as concatena-
tion and reduction. Such disparities can be handled by adding new functions in C. The 
most important difference, however, is that Verilog allows two types of assignments, 
blocking and nonblocking, while C only has blocking assignments. A blocking 
assignment has to fi nish before its next statement can be executed, but a nonblocking 
statement allows its succeeding statements to run concurrently [ 2 ]. Figure  5.1  shows 
a comparison between software and hardware from execution- time point of view 
[ 3 – 10 ]. Verilog is hardware language not a programming language like C.

   Verilog can be used for design and for verifi cation. When trying to write Verilog 
you should think hardware not software. The main difference from software is time 
notation, Bit/vector data type, and parallelism. 

 Poorly written HDL code will either be synthesizable, functionally incorrect, or 
lead to poor performance/area/power results.  
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5.2     Verilog for Implementation 

5.2.1     Introduction 

 A complete Verilog description consists of a module in which the interface signals 
are declared and the functionality of the component is described. Verilog provides 
constructs and mechanisms for describing the structure of components which may 
be constructed from simpler subsystems. Verilog also provides some high-level 
description language constructs (e.g., loops, conditionals) to model complex 
 behavior easily. Finally, the underlying timing model in Verilog supports both the 
concurrency and delay observed in digital electronic systems. 

   Table 5.1    Differences between VHDL and verilog   

 VHDL  Verilog 

 Like ADA  Like C 
 Verbose  Concise 
 Harder to learn  Easier to learn 
 Not case sensitive  Case sensitive 
 Better in high-level behavior modeling  Doesn’t have the ability to defi ne new data types 
 Level of abstraction (3)  Level of abstraction (4), includes switch level 

  Fig. 5.1    Software versus 
hardware [ 3 ]       
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 In Verilog, a circuit is a module. Module encapsulates structural and functional 
details. To model any IP using Verilog, you should follow the following steps:

    1.    Declare a module (Fig.  5.2  shows “hello world” example).
       2.    Declare the ports type (connectivity).

    (a)    Input   
   (b)    Output   
   (c)    Inout (bidirectional)       

   3.    Declare the ports size (connectivity).

    (a)     Scalar  (single bit) input A;   
   (b)     Vector  (multiple bits) input [0:4] A;   
   (c)     Array  input A [0:4];   
   (d)     Memory  input [7:0] A [0:7]; // multidimensional arrays are not allowed.       

   4.    Declare the module contents.     

 An example for declaration is shown in Fig.  5.3 .

  Fig. 5.2    Verilog “hello world” example. It starts with the keyword module followed by the name 
of the module. The keyword “initial” marks the beginning of the operation of the component. The 
keyword “endmodule” marks the end of the module       

  Fig. 5.3    Declaration example       
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   RTL description usually consists of a hierarchy of concurrently (order- 
independent) running processes (e.g., always, initial blocks, and assign statements), 
each with arbitrary internal behavior. At the register transfer level, circuit behaviors 
are represented as a set of interacting processes running concurrently. The minimal 
unit of parallel execution in Verilog is a process. The verilog hierarchy is shown in 
Fig.  5.4 , where it captures the main features of a complete Verilog model.

   Initial block is executed only once, at the beginning of the simulation, and it is 
useful for verifi cation, for example, to initialize ROM (Fig.  5.5 ).

module

Assign Always

Sequential 
statements

Concurrent 
statements

Functions/tasks 
call

Initial Instance

  Fig. 5.4    Verilog hierarchy. Putting it all together       

  Fig. 5.5    Initial block usage example       
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5.2.2        Data Representation 

 Verilog data types are shown in Table  5.2 . Verilog supports built-in data type not 
user-defi ned data types. To defi ne an internal signal which is not input nor output we 
use “wire” for combinational circuits as depicted in Fig.  5.6  or we use “reg” for 
asynchronous sequential circuits as depicted in Fig.  5.7  or for synchronous sequen-
tial circuits as depicted in Fig.  5.8 . Note that if the circuit contains sequential and 
combinational logic, we should separate them. Assign for combinational logic and 
always for sequential logic.

   Table 5.2    Verilog datatypes   

 Data type  Description 

 Reg  Store data 
 Wire  Physical connection 
 Tri1  A net in verilog that pull-up the output if it is not driven 
 Tri0  A net in verilog that pull-down the output if it is not driven 
 Parameter  To ease confi guration. If not overwritten, they keep their default value 
 Localparam  Like parameters, but cannot be modifi ed hierarchically during the 

instantiation 
 Array  reg [7:0] ram [0:7]; 

 // to reset it use for loop 
 for (i = 0; i < 8; i++) begin ram[i] < = 0; end 

 Preprocessor directive  ‘defi ne CMD0 4’b0100 
 like a global parameter 
 ‘defi ne INRANGE(x) ((x) > 2 && (x) < 5) // parameterized macro 

 ifdef  Used to enable or disable some features 
 Enum  enum integer {step1 = 0, step2 = 1, tep3 = 2} state; 

 Make debugging easy using waveforms 
 ‘include  ‘include “timing.vh” 

  Fig. 5.6    Wire usage in verilog       
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5.2.3           Verilog Coding Style 

 Verilog is one language, but it contains many coding Styles. Verilog description can 
be structural or behavioral. Behavior means what does it do? (Boolean Expressions 
or FSM). Structure means what is it composed of? (Blocks, gates). An example to 
show the difference between the behavioral and structural implementation is 
shown in Fig.  5.9 .

   For complex design we partition the modules into submodules as depicted in 
Fig.  5.10  and use generate statement to reduce the manual coding effort (Fig.  5.11 ), 
generate statement is written parallel to always not inside it. Another example which 
is useful to show the importance of generate statement is n-stage FIR fi lter design.

  Fig. 5.7    Reg usage in verilog for asynchronous sequential circuits. Always is triggered when it 
has fi nished executing and one of the events in the sensitivity list happens. Use always @(*) 
instead of writing the whole sensitivity list       

  Fig. 5.8    Reg usage in verilog for synchronous sequential circuits       
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5.2.4         Verilog Operators and Control Constructs 

 Verilog HDL operators are summarized in Table  5.3 .
   The fundamental control constructs are shown in Fig.  5.12 . If statement is used 

only in always block (Fig.  5.13 ). Same for “case” statement (Fig.  5.14 ). The itera-
tion examples are shown in Fig.  5.15 .

      Tasks and functions are used in HDL languages. Data is passed to the task or 
function, processing is done, and the result is returned to the main procedure. 
Functions are very much similar to tasks, with very little difference, e.g., a function 
cannot drive more than one output and, also, it cannot contain delays. The differ-
ences between tasks and functions are summarized in Table  5.4 .

  Fig. 5.9    Structural versus behavioral implementation       

  Fig. 5.10    Submodules example       

  Fig. 5.11    Generate statement example       
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  Table 5.3    Verilog HDL 
operators  

 + Binary addition 
 − Binary subtraction 
 & Bit-wise AND 
 | Bit-wise OR 
 ̂  Bit-wise XOR 
 ~ Bit-wise NOT 
 == Equality assign s = (op == ADD) ? a + b : a−b; 
 > Greater than 
 < Smaller than 
 {} Concatenation assign s = {a, b}; 
 ? : Conditional 
 ! logical NOT 
 && Logical AND 
 || Logical OR 
 ! = Logical inequality 
 << Shift left 
 >> Shift right 

Statement  i+1

Statement  i+1

IF, Casea b c Loops: For, while, repeat, forever

Statement  i+1 Statement  i+2

Statement  i Statement  i

Statement  i

[condition 1] [condition 2]

[condition 1] [condition 2]

Sequence Selection Iteration

  Fig. 5.12    Verilog fundamental control construct       

  Fig. 5.13    If statement 
example       
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  Fig. 5.14    Case statement 
example, if 2’b00 and 
2’b01 are in the same state, 
we use “,” to separate 
between them       

  Fig. 5.15    Iteration statements (loops): for, while, repeat       
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5.2.5        Verilog Design Issues 

 Race condition happens when two different processes try to write the same signal 
during the same time step. To avoid it, don’t write the same signal in different pro-
cesses, unless you really know what you do (you know that the two processes will 
never write the signal in the same time step) and do not make assignments to the 
same signal in more than one always statement or continuous assign statement. 
Also, to avoid race condition, always use nonblocking assignments (<=) for sequen-
tial circuits and blocking (=) assignments for combinational. 

 For clock, avoid combinational feedback clock, internally generated clocks, and 
avoid mixed cock edges. For Resetting, asynchronous RST is preferred, avoid inter-
nally generated resets, and for proper operation, all the registers should be resetted into 
the reset process. Non-Synthesizable Verilog Statements are described in Table  5.5 .

5.2.6        Verilog Template and Reusable Code Tips 

 A Verilog template is suggested in Fig.  5.16 . The design should start with defi ning 
declarations, then module declarations, then parameters declarations, then inputs/
outputs declarations, then wire declarations, then registers declarations, then wire 
assignments, then sequential logics, and then instances declarations.

   If you want to write a Verilog reusable code, you may follow the following tips [ 11 ]:

    1.    Don’t write code that isn’t needed.   
   2.    Don’t duplicate code.   

   Table 5.4    Differences between functions and tasks   

 Functions  Tasks 

 • Can call just another function (not task)  • Can enable other tasks and functions 
 • Execute in 0 simulation time  • May execute in nonzero simulation time 
 • No timing control statements allowed  • May contain any timing control statements 
 • At least one input  • May have arbitrary input, output, or inouts 
 • Return only a single value  • Do not return any value 
 • Are defi ned in a module 
 • Do not contain initial or always statements 
 • Are called from initial or always statements or other tasks or functions 
 task convert; 
 input [7:0] temp_in; 
 output [7:0] temp_out; 
 begin 
 temp_out = (9/5) *(temp_in + 32); 
 end 
 endtask 

 function myfunction; 
 input a, b, c, d; 
 begin 
 myfunction = ((a + b) + (c−d)); 
 end 
 endfunction 

5 Verilog for Implementation and Verifi cation
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   3.    Naming conventions: use meaningful names for modules, ports, regs, and 
wires.   

   4.    Make a task/function do just one thing.   
   5.    Try to reduce coupling.   
   6.    Make your code more modular.   
   7.    Comment,  in detail , everything that seems like it might be confusing when you 

come back to the code next time.   

  Table 5.5    Constructs not 
supported in synthesis  

 #  Constructs not supported in synthesis 

 1  “Hierarchical name reference not supported” 
 card.resp_gen.device_reg 

 2  Time: 
 # 580ns 

 3  Assign on reg not allowed (but it is ok for wire) 
 reg [15:0] block_cnt = 2 

 8  “Mixed blocking and nonblocking assignment 
is not supported.” 
 X = 1; 
 X < =1; 

 9  Real datatype 
 10  Initial statement 
 11  Repeat, while, forever statements 
 12  Division and modulus operators for variables 
 13  Nonfi xed size for loops 

// define declarations ===========================================================

// Module declarations ==========================================================

// Parameters declarations ======================================================

// Inputs/Outputs declarations ====================================================

// Wire declarations ============================================================

// Register declarations =========================================================

// Wire assignments============================================================

// Sequential logic =============================================================

// Instances==================================================================

  Fig. 5.16    Verilog template       
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   8.    Include a header mentioning.

    (a)    Filename   
   (b)    Author   
   (c)    Date   
   (d)    Time   
   (e)    Abstract       

   9.    Use indentation.   
   10.    Before a code can been reusable, it has to be usable.    

5.2.7       Main Digital System Building Blocks 

 The main building blocks in any digital system can be summarized in Table  5.6 . 
These building blocks can be used to implement or architect any IP.

5.3         Verilog for Verifi cation 

 How DUV responses can be displayed and checked or monitored. Verilog simula-
tion environments provide two kinds of display of simulation results:

•    Graphical (waveforms editors): suitable for small design as you can check by eye 
or by using system tasks such as $display, $strobe, $monitor. These system tasks 
are summarized in Table  5.7 .

•      Text-based: writing or reading to/from a fi le, suitable for large designs like video 
streaming.    

 To check the DUT behavior, we simply drive the inputs and monitor the outputs as 
depicted in Fig.  5.17 . In some cases, the verifi cation should wait a response from the 
DUT before it can send the next trigger (DUT outputting status indicators to testbench). 
Verilog can test both combinational (Fig.  5.18 ) and sequential circuits (Fig.  5.19 ).

   Table 5.6    The main building blocks in any digital system   

 Task  Hardware examples 

 Arithmetic  +, −, *, %, >>, 2’s compliment, CORDIC, ALU 
 Multiplexing  Arbitration 
 Comparison  Comparator 
 Storage  RAM (random access), FIFO (non random access) 
 Counter  Counter 
 Communication  Channel encoding, scrambler 
 Error detection and correction  ECC, CRC 
 Randomization  LFSR 
 Encryption  DES 
 Synchronization  Clocking 
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     To write testbench, it is important to have the design specifi cations of the DUT. 
Specifi cations need to be understood clearly and test-plan should be done accordingly. 
The test-plan documents the testbench architecture and the test scenarios in detail. 

 To reduce the verifi cation time, we can call C code inside Verilog as depicted 
in Fig.  5.20 . Verilog PLI (Programming Language Interface) is a mechanism to 
invoke C or C++ functions from Verilog code. Use these Functions in Verilog code 

   Table 5.7    Verilog system tasks   

 System task  Description 

 $display  Display strings, expression, or values to standard output 
 $monitor  Same as display but displays when any of the values change 
 $stop  Suspend simulation, put in interactive mode 
 $fi nish  Stop simulation altogether 

  Fig. 5.17    Testbench structure       

  Fig. 5.18    Verifi cation example of half adder. # Means delay       
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  Fig. 5.19    Verifi cation example of fl ip-fl op       

  Fig. 5.20    Call C code inside verilog       

  Fig. 5.21    Call VHDL-code inside verilog       

(Mostly Verilog Testbench). Compile C++ to generate shared libs Based on  simulator , 
pass the C/C++ function details to simulator during compile process of Verilog 
Code [ 12 ].

   We can also call VHDL-code inside Verilog to reduce verifi cation time, if you 
have a preexisting VHDL-code (Fig.  5.21 ). To instantiate a VHDL module inside a 
Verilog design, make sure the two fi les are in the same directory and that they have 
been added to the project for compilation.

   For Text-based verifi cation, writing or reading to/from a fi le example is shown 
below (Fig.  5.22 ):
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5.4        Logic Simulators 

 Logic simulation is one of the most intensively studied problems in the fi eld of 
electronic design automation. Existing sequential logic simulators virtually fall into 
two categories, oblivious simulation and event-driven simulation.

    1.    The  oblivious  (cycle-based) simulation takes a straightforward approach in 
which all logic elements are evaluated at every simulation step, no matter they 
undergo logic transitions or not [ 13 ].   

   2.     Event - driven  simulation was proposed to improve the effi ciency of oblivious 
simulation. An event-driven simulator only evaluates logic modules whose input 
ports receive new values. Due to its higher effi ciency, event-driven simulation 
has become the workhorse of virtually all commercial and research logic 
simulators.     

 From an implementation point of view, a logic simulator could be either interpre-
tive or compiled.

    1.     Interpretive  maps the simulated circuit into an internal representation. The 
response to input patterns can then be evaluated on the representation.   

   2.     Compiled  translates the circuit into machine code for direct execution. The 
underlying idea is to take advantage of the similarity between logic operations 
and CPU instructions.     

 Parallel logic simulation has attracted considerable research efforts in the past 40 
years for its strong potential. An intuitive approach is to use multiple processors to 
evaluate simultaneously happened events in parallel. However, it has been proved 
that such parallelism is not suffi cient to maintain a decent speed-up due to the fol-
lowing two reasons: (1) generally only a small percentage (e.g., ~1 %) of all circuit 
elements have active events, and (2) not all elements with active events can be han-
dled simultaneously because the logic dependency actually implies a partial order-
ing in which the events have to be processed. 

 Many parallel simulation protocols have been proposed to extract a higher level 
of inherent parallelism. Basically, these protocols can be classifi ed into two catego-
ries, conservative and optimistic.

  Fig. 5.22    Writing or reading to/from a fi le example       
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    1.    The  conservative  protocol enforces the causal relation during simulation in the 
sense that events happened earlier are always simulated ahead of later events.   

   2.    The  optimistic  protocol allows the causal relation to be temporarily violated for 
higher parallelism. However, a roll-back is necessary if a later evaluation invalidates 
earlier simulation results. Figure  5.23  summarizes these types of logic simulators.

       Questa™ is a CPU-based sequential simulator; there is a  GPU - based  parallel 
simulator for acceleration [ 14 ]. A GPU includes a number of multiprocessors which 
communicate through a small shared memory bank. Questa platform is shown in 
Fig.  5.24  and their detailed usages are shown in the next subsections [ 15 ].

5.4.1       Questa Simulation 

 The  Questa Simulator  combines high performance and capacity simulation with 
unifi ed advanced debug capabilities for the most complete native support of Verilog, 
SystemVerilog, VHDL, SystemC, PSL, and  UPF  (power aware). 

 The Questa Advanced Simulator is the core simulation and debug engine of the 
Questa Verifi cation Platform; the comprehensive advanced verifi cation platform 
capable of reducing the risk of validating complex FPGA and SoC designs. 

 Questa spans the levels of abstraction required for complex SoC and FPGA 
design and verifi cation from TLM (Transaction Level Modeling) through RTL, 
gates, and transistors and has superior support of multiple verifi cation methodolo-
gies including Assertion-Based Verifi cation (ABV), the Open Verifi cation 
Methodology ( OVM ), and the Universal Verifi cation Methodology (UVM) to 
increase testbench productivity, automation, and reusability. 

RTL Logic 
Simulation

Parallel

Conservative Optimistic

Sequential

Oblivious Event-
driven

Interpretive Compiled

  Fig. 5.23    Logic simulation classifi cations       
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 The Questa Advanced Simulator achieves industry-leading performance and 
capacity through very aggressive global compile and  simulation optimization 
algorithms  of SystemVerilog and VHDL, improving SystemVerilog and mixed 
VHDL/SystemVerilog RTL simulation performance by up to 10×. 

 Questa also supports very fast time-to-next simulation and effective library man-
agement while maintaining high performance with unique capabilities to preopti-
mize and defi ne debug visibility on a block-by-block basis enabling dramatic 
regression throughput improvements of up to 3× when running a large suite of tests. 

 To increase simulation performance for large designs with long simulation times, 
Questa also has a multi-core option. Questa  Multi - Core  takes advantage of modern 
compute systems by partitioning the design to run in parallel on multiple CPUs or 
computers using either automatic or manually driven partitions. 

 To achieve even greater performance, Questa supports  TBX ; the highest perfor-
mance Transaction Level link to the Veloce platform enabling a 100× increase in 
performance with debug visibility and a common testbench.  

Q
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st
a

Questa Simulation

Questa Formal Verification

Questa CoverCheck

Questa CDC

Questa ADMS

Questa inFACT

Questa PowerAware
Simulation

Questa Verification IP

Questa Verification
Management

Questa CodeLink

  Fig. 5.24    Questa 
platforms       
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5.4.2     Questa Formal Verifi cation 

  It complements simulation - based RTL design verifi cation . The  Questa Formal 
Verifi cation  tool complements simulation-based RTL design verifi cation by ana-
lyzing all possible behaviors of the design to detect any reachable error states. This 
exhaustive analysis ensures that critical control blocks work correctly in all cases 
and locates design errors that may be missed in simulation. 

 Questa Formal Verifi cation can be used as soon as the design is complete to 
debug blocks before integration, and to fi nd potential errors long before simulation 
test environments are available. Sharing a common language front end with the 
Questa Simulator and leveraging the integration with the Unifi ed Coverage Database 
(UCDB), Questa Formal Verifi cation is the perfect tool to accelerate bug detection, 
error correction, and  coverage  closure. 

 Questa Formal Verifi cation analyzes the behavior of the design to identify all 
design states that are reachable from the initial state. This analysis allows Questa 
Formal Verifi cation to explore the whole state space in a breadth-fi rst manner, in 
contrast to the depth-fi rst approach used in simulation. 

 Questa Formal Verifi cation is therefore able to discover any design errors that 
can occur, without needing specifi c stimulus to detect the bug. This ensures that the 
verifi ed design is bug-free in all legal input scenarios. At the same time, this 
approach inherently identifi es unreachable coverage points, which helps accelerate 
coverage closure. 

 Questa Formal Verifi cation provides easy-to-use automatic checking for many 
common design errors. With Questa Formal Verifi cation, designers can easily check 
out new code to look for functional issues such as fl oating or  multiply - driven buses , 
combinational loops, arithmetic errors, and  initialization problems . Finding and fi x-
ing these errors before integrating new code into the design avoids injecting diffi cult-
to-fi nd bugs into the larger system, and accelerates downstream verifi cation. Since 
these checks are based on exact analysis of the reachable state space, the errors detected 
are real errors, not the noisy results that are often generated by simple  lint checkers . 

 Questa Formal Verifi cation also supports general  assertion - based formal verifi ca-
tion  to ensure that the design meets its specifi c functional requirements. With support 
for PSL, SVA, and OVL, including multiclocked assertions, Questa Formal Verifi cation 
easily verifi es even very large designs with many assertions. Its multiple high-capacity 
formal engines cooperate to complete verifi cation faster. Questa Formal Verifi cation is 
integrated with the Questa Simulator for easy debug of assertion failures.  

5.4.3     Questa CoverCheck 

  Questa CoverCheck  reads code coverage results from simulation in the Unifi ed 
Coverage Database (UCDB) and then leverages AutoCheck technology to do vari-
ous useful verifi cation tasks with regard to the coverage holes. The most obvious: 
prove that the code can be safely ignored. That is, the tool might mathematically 
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prove that no stimulus could ever activate the code in question. In such cases, 
 waivers are automatically generated to refi ne the code coverage results. 

 Secondly, the tool can also identify segments of code that, though diffi cult to 
reach, might someday be exercised in silicon. In such cases, CoverCheck helps 
point the way  to testbench enhancements  to better reach these parts of the design. 
Finally, CoverCheck fl ags code coverage items that are diffi cult to reach by formal 
techniques and haven’t been hit in simulation, and thus provides a valuable measure 
of verifi cation complexity. 

  Automates code coverage closure —achieve 100 % coverage with automatic 
formal reachability analysis. 

  Improved fi delity of code coverage results —eliminate code that is never meant 
to be exercised. 

  Mode-sensitive analysis —tune the code coverage reporting considering only 
the relevant modes of operation. 

  Guide testbench enhancement —waveforms show how uncovered but formally 
reachable coverage bins can be hit in simulation.  

5.4.4     Questa CDC 

  It stands for Questa Clock - Domain Crossing  ( CDC )  Verifi cation . It Performs 
clock-domain crossing verifi cation with Questa CDC is straightforward. The CDC 
compiler analyzes the RTL code, identifi es all clocks and clock-domain crossings, 
and offers a rich, intuitive debugging environment to resolve all types of CDC issues. 
Once these issues are resolved, it automatically generates a set of protocol assertions 
and metastability models that are linked in to the simulation of the RTL code 

 Questa CDC addresses a number of critical verifi cation issues that simply cannot 
be dealt with by simulation-based verifi cation techniques. 

 An RTL or gate-level simulation of a design that has  multiple clock domains  
does not accurately capture the timing related to the transfer of data between clock 
domains. As a consequence, simulation does not accurately predict silicon behavior, 
and critical bugs may escape the verifi cation process. The Questa CDC Verifi cation 
solution solves this problem. It is also used for metastability check.  

5.4.5     Questa ADMS 

  It is used for Complex Analog / Mixed - Signal System - on - Chip Designs. Questa 
ADMS  gives designers a comprehensive environment for verifying complex ana-
log/mixed-signal System-on-Chip designs. ADMS combines four high- performance 
simulation engines in one effi cient tool: Eldo ®  for general purpose analog simula-
tions, Questa ®  for digital simulations, ADiT™ for fast transistor-level simulations 
and Eldo RF for modulated steady state simulation. 

5.4  Logic Simulators



116

 Universally accepts IP written in any of the standard design languages for easy 
migration. Builds on previous design investments through its design fl ow integration 
with Mentor Graphics Design Architect IC and Cadence Analog Design Environment. 

 ADMS integrates into the Cadence Virtuoso Analog Design Environment with 
the same look and feel as any simulator inside the environment, but gives designers 
the advantage of ADMS analysis, commands, and options. An enhanced symbol 
library providing specifi c Eldo devices is compatible with the Cadence library. 

 ADMS is the simulation engine underlying Mentor Graphics HyperLynx Analog 
for functional verifi cation of complete printed circuit boards. A single schematic 
supports both PCB layout and functional analysis. HyperLynx Analog combines 
with HyperLynx Signal Integrity to extract parasitic PCB trace models for compre-
hensive board-level functional analysis.  

5.4.6     Questa inFACT 

  It is an intelligent Testbench Automation . Recently announced, intelligent 
software- driven verifi cation (“iSDV”) has been added to the Questa inFact function-
ality to automatically generate embedded  C test programs  for both single-core and 
multi-core SoC design verifi cation. iSDV bridges the gap between IP block and full 
system level verifi cation by applying intelligent testbench automation to hardware/
software verifi cation at the system level. While writing directed tests in C to verify 
single-core designs at the system level was challenging, today’s multi-core multi- 
threaded designs has made this process virtually impossible. Questa iSDV auto-
mates this process. 

  Questa  ®   inFact  is the industry’s most advanced testbench automation solution. 
It targets as much functionality  as traditional constrained random testing , but 
achieves coverage goals 10–100× faster.  

5.4.7     Questa Power Aware Simulation 

  It verifi es active power management . The  Questa  ®   Power Aware Simulator  
enables design teams to verify the architecture and behavior of active  power manage-
men t planned for the implementation, but starting much earlier in the design process. 

 Verifi cation of active power management at the  RTL  stage makes it possible to 
explore alternative power management approaches long before implementation 
begins, to achieve the greatest power reduction at the least cost. 

 Verifi cation of active power management in the post-synthesis  Gate - Level  netlist 
stages makes it possible to ensure that synthesis and manual transformations have 
correctly preserved the active power management architecture and its behavior.
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  How Questa Power Aware Simulation Works 

 –   Given a description of power intent expressed in the industry-standard Unifi ed 
Power Format (UPF), the Questa Power Aware Simulator.  

 –   Partitions the HDL design into power domains.  
 –   Adds isolation, level-shifting, and retention cells.  
 –   Integrates the power supply network into the design to power each domain  
 –   The augmented HDL design can then be simulated with full control over the 

power state of each domain, for accurate modeling of the effects of active power 
management on the design’s functionality.     

5.4.8     Questa Verifi cation IP 

 Verifi cation IP (VIP) improves quality and reduces schedule times by building 
Mentor’s protocol and methodology expertise into a library of reusable compo-
nents that support many industry-standard interfaces. This frees up engineering 
resources from having to spend time developing BFMs, verifi cation components, 
or VIP themselves, enabling them to focus on the unique and high-value aspects of 
their design. 

 VIP integrates seamlessly into advanced verifi cation environments,  including 
testbenches built using UVM , OVM, Verilog, VHDL, and SystemC. It is the 
industry’s only VIP with a native SystemVerilog UVM and OVM architecture 
across all protocols, ensuring maximum productivity and fl exibility. Transaction- 
level score boarding, analysis, and debug. Synthesizable memory models for use 
with simulation acceleration and emulation.  

5.4.9     Questa Verifi cation Management 

 Questa’s verifi cation management capabilities are  built upon the Unifi ed Coverage 
Database  (UCDB). The UCDB captures any source of coverage data generated by 
verifi cation tools and processes; Questa and ModelSim use this format natively to 
store code coverage, functionality coverage, and assertion data in all supported lan-
guages. It is used for Test- plan tracking . 

 Projects are tracked in spreadsheets or documents created by a range of applica-
tions, from Microsoft Excel and Word to OpenOffi ce Calc and Write. So it’s critical 
that a verifi cation management tool be open to a range of fi le formats, a basic fea-
ture of Questa, which is built on the premise that a user should be able to use any 
capture tool to record and manage the plan.  
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5.4.10     Questa CodeLink 

  It is software - driven hardware verifi cation. Questa  ®   Codelink  is the industry’s 
leading software-driven hardware verifi cation solution. It makes every verifi cation 
engineer an instant “CPU expert” by providing 100 % accurate processor views for 
system level testing. 

 Everything is fully synchronized and easily viewed, including logic simulation 
waveforms,  processor states , source code, internal memory, registers,  stacks , and 
output. Questa Codelink then presents only the important information needed to 
quickly debug software-driven tests. 

 As a result, companies using Questa Codelink have been able to  reduce their 
system level debugging time from months to days . Complex simulation failures 
that used to require extensive analysis of multiple fi les and databases, can now be 
diagnosed within one robust multi-viewing debugging environment called Questa 
Codelink.   

5.5     Summary 

 In this chapter, we introduce a deep introduction for Verilog for both implementa-
tion and verifi cation point of view. The chapter used design examples for showing 
ways in which Verilog could be used in a design for both implementation and veri-
fi cation. This chapter did not cover all of Verilog, but only some important topics. 
Moreover, a survey on the current existing logic simulators is presented.     
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Chapter 6
New Trends in SoC Verification: UVM,  
Bug Localization, Scan-C0068ain-Based 
Methodology, GA-Based Test Generation

6.1  Part I: UVM

6.1.1  Introduction

Now, SystemVerilog (SV)/UVM gradually dominate the verification landscape. SV 
does not support MACROS and the language alone was insufficient to enable wide-
spread adoption of the best-practice verification techniques that inspired its devel-
opment that is why we need UVM [1, 2]. UVM is a methodology for SoC functional 
verification that uses TLM standard for communication between blocks and 
SystemVerilog for its languages, or in other words, it uses SV for creating compo-
nents and TLM for interconnects between components.

Methodology is a systematic way of doing things with a rich set of standard rules 
and guidelines. Methodology provides the necessary infrastructure to build a robust, 
reliable, and complete verification environment. Methodology shrinks verification 
efforts with its predefined libraries. It makes life easier by preventing the designer 
from making mistakes or poor decisions. It also helps make sure that whatever you 
do will mesh nicely with what others do (reusability). Methodology is basically a 
set of base class library which we can use to build our testbenches.

UVM main goals are: reusability to reduce time to market and it is targeted to 
verify systems from small to large concept (Fig. 6.1), speed verification: it helps the 
designers to find more bugs earlier in the design process, so it provides practical and 
efficient SoC verification flow by reusing IP testcase and testbench, standardization: 
vendor independent, dynamic not static like traditional testing (Table 6.1), 
 randomization, and automation [3, 4]. UVM makes multi-master multi-slave 
 systems verification easier as it separates tests from testbench.

Table 6.2 summarizes the companies, simulators, and versions related to UVM 
[5, 6], it is noted that UVM is supported by all major simulator vendors, which is not 
the case with earlier methodologies [7]. Various IPs are connected to and controlled 
through a bus, so the functional verification uses BFM (bus functional model).
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The rest of this chapter is organized as follows. In Sect. 6.1.2, SystemVerilog 
features are proposed. In Sect. 6.1.3, TLM features are proposed. In Sect. 6.1.4, 
UVM features are introduced. Summary is given in Sect. 6.1.5.

System/Board

SoCs

IPs

Blocks

Fig. 6.1 Levels of 
verification: UVM verifies 
systems from small to 
large concept. SoC is a 
collection of IPs

Table 6.1 Comparison between UVM and traditional testing

Traditional testing UVM

Stimulus structure Procedural code Constrained random variable

Type Static Dynamic

Reusability Nonreusable Reusable (customization)

Scalability Nonscalable Scalable

Test redundancy None Yes

Simulation overhead None 10 ~ 40 % to solve constraints

Controllability Coarse-grained Fine-grained (smoother)

Observability lower Higher (assertion, coverage)

Maintainability Hard Easy

Table 6.2 Companies, simulators, and versions related to UVM

Companies

UVM = 
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Simulators UVM supports all simulators {Questa, IUS, and VCS}

Releases
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6.1.2  SystemVerilog

Initially, Verilog is used for verification. But, for complex design, developing a veri-
fication environment in Verilog is tedious process and consumes a lot of time. So, 
SystemVerilog is used to create verification environment which reduces effort to 
develop testbench. SystemVerilog is an extensive set of enhancements to Verilog 
and it is called hardware description verification language (HDVL), the important 
features of it are summarized in Fig. 6.2. SystemVerilog supports constrained ran-
dom stimulus generation and coverage analysis, and object-oriented programming 
(OOP) structure which contributes to transaction-level verification and providing 
the reusability of verification. Object-oriented programming can greatly enhance 
the reusability of testbench components [8–11]. It has C-like control constructs 
such as foreach, and VHDL-like package and import features. In this section, we 
discuss the main features of SV, where OOP is introduced in Sect. 6.1.2.1, easy call 
of C programs (direct programming interface) is introduced in Sect. 6.1.2.2, con-
strained randomization is introduced in Sect. 6.1.2.3, functional coverage is intro-
duced in Sect. 6.1.2.4, assertion is introduced in Sect. 6.1.2.5, other constructs such 
as: interface, modport, clocking, fork_join, and always are introduced in Sect. 6.1.2.6, 
and new data types are introduced in Sect. 6.1.2.7.

6.1.2.1  Object-Oriented Programming

Object-oriented programming is used for code reusability (inheritance), where 
object = entity (hold the data) + method (operate on the data). It is packing data and 
function in one structure, moving functions inside data structure is for consistency. 
Comparison between instantiation of class in SystemVerilog and instantiation of mod-
ule in Verilog is shown in Table 6.3. Moreover, comparison between procedural code 
and OOP is shown in Table 6.4. The main features of OOP are summarized in Table 6.5. 
The OOP in SV has some restrictions as it supports only single inheritance [11].

UVM

Classes Encapsulation Inheritance
Polymorphism

New data types 
(Logic, bit)

SV HDL

Constrained Random
Object Oriented Programming

Easy call of C programs (DPI) 

Assertions

Coverage

TLM

Interface+ modport +clocking
+fork_join+ always

(comb_ff_latch)

ComputationCommunication

Coordination

Fig. 6.2 UVM consists of TLM and SV
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6.1.2.2  Easy Call of C Programs (Direct Programming Interface)

In Verilog, calling C programs is called PLI and it is complicated, In SV it is called 
direct programming interface (DPI) and it makes C program calls easier [11]. SV func-
tions can be called in C using export and C functions can be called in SV using import.

6.1.2.3  Constrained Randomization

Constrained random verification applies stimuli to the device under test (DUT) that 
are solutions of constraints. These solutions are determined by a constraint solver. 
Thereby, the generated stimulus is much more likely to hit corner cases which make 
discovering unexpected bugs easier. Randomizing the stimulus also makes reaching 
the verification coverage easier. We put some constraints on that stimulus in order 
to generate legal or interesting scenarios. Make sure that there is no conflict or 
 contradict between constraints. Constraints are like control knobs. Weighted 
 constraints are very important to hit boundary values. In a nutshell, constrained 
random should be an intelligent process. You can disable constrains using 
constrain_mode (0) method.

Table 6.3 Comparison between instantiation of class in SystemVerilog and 
instantiation of module in verilog

Instantiation of class in SystemVerilog Instantiation of module in Verilog

Dynamic @ run time, parameterized class Static

Table 6.4 Comparison between procedural code and OOP by example

Procedural code OOP

Struct driver { wire A,B}
Void init {};
Void send_data {};
Begin
Driver driver;
Init ();
Send_data ();
end

Struct driver{
wire A,B;
void init {};
Void send_data {};}
Begin
Driver driver;
Driver.Init ();
Driver.Send_data ();
end

Table 6.5 Main features of OOP

Class Defines set of properties and behavior of object, and it is a data type

Object Is an instant of the class and defined inside program/module

Inheritance “Extends” for code reusability

Encapsulation Bind data and method together for consistency

Polymorphism It means to have many forms. Bind data and method at run time. 
“Virtual” keyword
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6.1.2.4  Functional Coverage

Functional coverage is a user-defined metric that measures how many percentages 
of the verification objectives are met by the testplan [2]. Quality of verification 
depends upon the quality of testplan. Actually, coverage answers the question “did 
we do enough randomization?” For coverage closure, we may need to write direct 
testing, enhance stimulus generator, or randomize seeds {vsim –sv_seed}.

6.1.2.5  Assertion

Assertion acts as constraints that determine and define legal and expected behavior 
when blocks interact with each other [2]. Complex protocol checks are often imple-
mented using SystemVerilog Assertions. Assertions could be tool independent: 
used with both static and dynamic tools. SV has two types of assertions: immediate 
(clock-independent) and concurrent (clock-dependent) [9]. Assertion improves 
observability and debug ability.

6.1.2.6  Other Constructs: Interface + Modport + Clocking + Fork_Join 
(Any None) + Always (comb_ff_latch)

One of the problems of direct DUT signal access is that driver and monitor are 
dependent on signal name of DUT, and duplicate efforts. So, using interface as a 
signal-map makes it easy to add or remove wire, reduce errors which occur during 
model connections, remove redundancy in wires (Fig. 6.3). Modport: for direction 
which is input/output/inout. Clocking block is highly recommended usage in test-
bench to avoid race conditions. Fork-join acts like simply begin–end but inside fork- 
join all statements are taken as concurrent. Classic fork-join is a “join all” construct. 
That’s if you fork two threads, then both of them need to finish for the join to end. 
With join_none, one can spawn threads and continue, this is useful in launching 
multiple input data streams for example.

To assist synthesis, there are some extra keywords. The always_comb, always_
latch, and always_ff keywords identify the intent of the process, so that a synthesis 
tool can detect user errors [6], i.e., the synthesis compiler can tell us when we have 
the wrong type of logic in our RTL models.

Test-bench DUT 

Test-bench DUT Interface

Fig. 6.3 Interface versus conventional connections
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6.1.2.7  New Data Types

Bit (2-valued) and logic (4-valued) are new data types introduced by SV to allow 
continuous assignments to logic variables. Using a 2-valued data type will speed up 
simulation of the code. We no longer need to worry about when to declare module 
ports or local signals as wire or reg. With SV, we can declare all module ports and 
local signals as logic, and software tools will correctly infer nets or variables for you 
[10]. SV also offers dynamic and associative array and queue.

6.1.3  TLM

Transaction-Level Modeling (TLM) provides abstraction level description for the IP 
which means lack of details (Fig. 6.4). Advantages: simulation speed increases, 
observation of traffic is easier, debugging on TLM level is easier than debugging on 
RTL. Disadvantages: accuracy decreases. TLM separates communication from 
computation and it is unidirectional put/get interface that works as a bridge to enable 
UVM verifies multilanguages like SystemC. TLM is a library built on top of 
SystemC which itself is a class library of C++. It encapsulates the communication 
between different modules to separate communication from computation. 
Translation of TLM2.0 from SystemC to SystemVerilog is needed, because it is 
written at the beginning in SystemC. Connect () method using TLM analysis port is 
the most famous method for TLM in UVM. We have three types for TLM commu-
nications: port, export, and analysis_port.

System Level (TLM, ESL)

RTL

Gate

Physical
Accuracy

Abstraction

Fig. 6.4 Abstraction level versus accuracy, ESL is electronic system level
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6.1.4  UVM

In this section we discuss the main features of UVM, where UVM infrastructure is 
introduced in Sect. 6.1.2.1, Steps to verify an IP using UVM is introduced in 
Sect. 6.1.2.2, and Drawbacks of UVM is introduced in Sect. 6.1.2.3, Opportunities 
for UVM are discussed in Sect. 6.1.2.4. A case study is introduced in Sect. 6.1.2.5.

6.1.4.1  UVM Infrastructure

UVM testbench is composed of reusable verification component, which consists of 
a complete set of elements for stimulating, checking, and collecting coverage infor-
mation for a specific protocol or design. These verification components are applied 
to the DUT to verify it [12]. The testbench should be layered to break the problem 
into manageable pieces to help in controlling the complexity.

The UVM main infrastructure, components, and all the terminology related to 
UVM is introduced and summarized in Table 6.6, and the general architecture is shown 
in Fig. 6.5. Master sequencer generates the data and it is sent to the DUT through the 
driver. The data received by the slave are feed back to the scoreboard via collector for 
comparison then here the sent and received data item are compared in the scoreboard. 
The monitor samples the stimulus and responses. The configuration parameters are 
used to configure these components. All these components can be reused. The driver, 
monitor, and responder are called transactors/translators/adaptors.

Table 6.6 UVM infrastructure description

Component Description

Interface For communication between classes and modules

Transaction Representation of arbitrary activity in a device which has attributes 
and bounded by time

Driver = BFM Apply stimulus to DUT (protocol specific). Also, Convert TLM to 
RTL (pin wiggles). BFM = bus functional model

Think in the driver as a normal testbench
Monitor Monitor traffic, collect coverage, and send them to the various 

analysis ports such as coverage and scoreboard

It looks like duplication of driver, but without triggering DUT wires 
(passive)

Collector = receiver = 
responder

Detects signal level activity, convert RTL to TLM and send it to 
monitor

Sequencer = producer = 
generator

Execution of traffic, coordinate what to do. Running different streams 
without the need to change the component instantiation. It is like 
arbitration logic

Sequences = scenarios Generate stimulus. Protocol dependent and consists of multiple of 
sequence items. It is generated from test class

Sequence item Low level representation like address, data. A transaction object from 
the sequencer that stimulates the driver

(continued)
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Table 6.6 (continued)

Component Description

Virtual interface Inside driver to connect to RTL, like pointer to enable configuration 
at runtime. It is a reference to the actual interface

Sequence library Different sequences used by sequencer

TLM port To connect between sequencer and driver

Agent = component = 
module = UVC

Instantiate, configure subcomponents like {driver, sequencer, 
monitor, collector}. Agent for TX, agent for RX

Agent type Tx, Rx, Master, Slave, Arbiter

Virtual sequencer Coordinate traffic between different UVCs, does not have a sequence 
item. It is protocol independent. It starts sequences on sequencer. 
Virtual sequences mean that sequences are calling other sequences

Scoreboard/checker Self-checking mechanism. Check that the design is doing what we 
expect. Need abstract reference model which can be MATLAB or 
Python. Golden model and RTL must be developed by different 
teams, errors might be in both. Compare (received, expected). It is a 
TLM-based checking. It is preferred to separate protocol checking 
from data checking for reusability. We can build the assertions inside 
the scoreboard. Scoreboard checks that if the DUT and the reference 
model have the same stimulus, they should have the same response

Functional coverage For completeness as it measures important behavior, covers 
operation, dimension (as buffer size). Did we exercise the whole 
testplan? To stress the device if not. We need to know what all the 
tests have accomplished and this is done by storing the data in a 
database and merging it all together. So, basically we should 
implement a regression environment for functional coverage 
measurement. Regressions are the continuous running of the tests 
preciously defined in the testplan [13]

Illegal bins should be analyzed to check if any test case is out of the 
design specifications

Code coverage Did we exercise the whole code?

Testbench Contains all subcomponents, connections

Test Call testbench, configure traffic, and can be {directed, random 
constrained, intelligent: driven random constrained to remove 
redundancy}. Coverage-driven testing - > continue randomization 
until coverage = 100 %

Configuration To change the behavior of an already instantiated component to 
provide flexibility. Such as #slaves, #masters

It provides configuration information to all parts of 
TB. Configuration database is like parameters in Verilog

Factory For class override at runtime, this helps making modifications to an 
existing testbench. Create () method

Phases Synchronization of UVM components. UVM components have 
different phases that operate in a particular sequence:

  Build (new ())- > connect (TLM 2.0)- > end of elaboration (Config) 
- > strt_sim- > run- > extract- > check- > report

  *elaboration = @compile time

  *on the fly = @ run time

  Build and connect are functions as they consume zero time. Run is 
task as it consumes some time

(continued)
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Table 6.6 (continued)

Component Description

Class library The UVM comes with a bunch of classes which are used to 
implement the verification environment

UVM packages:

1. UVM_components (structural)

2. UVM_objects (configuration)

3. UVM_transaction (stimulus)

Objections Any component that is busy should raise an objection to ending the 
test, and then drop the objection when it is finished

For example, you can raise objection until coverage is 100 % 
(get_coverage ( )) and then drop the objection

UVM register layer Mechanism to setup and access DUT internal registers and memory. It 
extends from UVM_reg. IP-XACT format is very useful for this feature.

Verification Plan It is a roadmap that summarizes test function points according to IP 
specification (Failing to plan = planning to fail). It should be smart 
testplan which effectively and efficiently tests the DUT

Macros Macro is a construct that enables user to extend the language. Macros 
implement some useful methods in classes as it can be used for 
shorthand notation of complex implement. They are optional, but 
recommended. The most common ones are:

‘UVM_component_utils—This macro registers the new class type. 
It’s usually used when deriving new classes like a new agent, driver, 
monitor, and so on

‘UVM_object_utils—This macro registers the objects like sequences

‘UVM_field_int—This macro registers a variable in the UVM factory 
and implements some functions like copy (), compare (), and print ()

‘UVM_object_param_utils—This macro registers the 
parameterized objects

‘UVM_component_param_utils—This macro registers the 
parameterized components

‘UVM_info—This is a very useful macro to print messages  
from the UVM environment during simulation time

‘UVM_fatal—This is a very useful macro to print fatal error 
messages from the UVM environment during simulation time

‘UVM_error—This is a very useful macro to print error messages 
from the UVM environment during simulation time

‘UVM_warning—This is a very useful macro to print warning 
messages from the UVM environment during simulation time

+Plusarg = command 
line processing

Some of the famous UVM + plusarg are:

  +UVM_TESTNAME
  +UVM_VERBOSITY
  +UVM_TIMEOUT

The UVM library defines a set of base classes and utilities that facilitate the 
design of scalable, reusable verification environments as depicted in Fig. 6.6. The 
basic building blocks for all environments are components and the transactions they 
use to communicate which are called objects [7, 12, 14].

6.1  Part I: UVM
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TOP

TEST

Test Plan Specification

Master

Slave
DUT

Configuration

Results

Scoreboard Coverage

Monitor

CollectorDriver

Interface

Sequencer

Sequences library

Test Test library

ENV

Fig. 6.5 UVM architecture and skeleton: the big picture

uvm_monitor

uvm_void

uvm_object

uvm_configuration

uvm_phaseuvm_report_objectuvm_transaction

uvm_sequence_item

uvm_sequence

uvm_component

uvm_test

uvm_env

uvm_scoreboard

uvm_agentuvm_driver

uvm_sequencer

uvm_root

uvm_callback

uvm_reg

Fig. 6.6 Partial UVM class tree (UVM_pkg), we can inherit from any class

6 New Trends in SoC Verification…



131

UVM_Void

The UVM_void class is the base class for all UVM classes. It is an abstract class 
with no data members or functions. It allows for generic containers of objects to be 
created. It works similar to a void pointer in the C programming language.

UVM_Object

All components and transactions derive from UVM_object, which defines an inter-
face of core class-based operations: create, copy, compare, print, and record. It also 
defines interfaces for instance identification (name, type name, unique id, etc.) and 
the random seeding.

UVM_Component

The UVM_component class is the root base class for all UVM components. 
Components are objects that exist throughout simulation. Every component is 
uniquely addressable using hierarchical path name.

UVM_Transaction

The UVM_transaction is the root base class for UVM transactions. It extends 
UVM_object to include timing and recording interface. Simple transactions can 
derive directly from UVM_transaction.

UVM_Root

The UVM_root class is special UVM_component that serves as the top level 
 component for all UVM components, provides phasing control for all UVM 
 components, and other global services. UVM_TOP is a singleton of it.

UVM_Callback

The UVM_callback class is the base class for user-defined callback classes. 
We define an application-specific callback class that extends from this class. In that, 
we will define one or more virtual methods, called a callback interface that represent 
the hooks available for user override.

6.1  Part I: UVM
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6.1.4.2  Steps to Verify an IP Smartly Using UVM

The steps to verify an IP smartly using UVM can be summarized as follows:

 1. Understand the specification: implement the DUT.
 2. Prepare verification plan: feature extraction, specifies how design will be veri-

fied, constrained random coverage driven, written in excel sheet, link it to cover-
point in coverage code written in SystemVerilog. You should expose your DUT 
to stress testing.

 3. Build verification environment in the following order: interface, configuration, 
scoreboard, and monitors, generate sequences based on verification plan, Env 
Class + simple testcase and simulate it. Debug from the generated UVM report 
summary.

 4. Measuring coverage progress against the testplan, run regressions, and add test-
cases for coverage holes. For closing coverage you start to run with multiple 
seeds, but sometimes certain scenarios can never be covered by the randomness 
and we need a directed test case.

 5. Error handling and debugging: when you find a bug, before debugging it ask 
yourself the following questions: Is this mistake somewhere else also? What next 
bug is hidden behind this one? What should I do to prevent bugs like this? Then, 
you can start debugging using waveforms, tracing, or logging. Use built-in 
watchdog timer class to handle testcase hanging.

 6. When all tests in the testplan have been tested and no bugs were found, then the 
verification task is over.

6.1.4.3  Drawbacks of UVM

Synthesis tool for SV is limited. This is a major drawback which is restricting 
designers to accept SV as a design language. Also, there are limitations for using 
UVM with emulators. Moreover, UVM is very complicated, so it does not make 
sense with small projects. Besides, there are challenges in using UVM at SoC Level. 
Also, debugging Macros is difficult. UVM provides no links between testbenches 
and code running in the embedded processors.

6.1.4.4  Opportunities for UVM

UVM methodology can be enhanced to offer a flexible framework for the virtual 
prototyping of multidiscipline testbenches that supports both digital and Analog 
Mixed-Signal (AMS) at the architectural level [15]. The extension of UVM for 
mixed-signal verification of analog models is reported in literature [15]. Moreover, 
UVM is a promising solution in verifying 3D-SoC which has many IPs and hetero-
geneous systems.
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6.1.4.5  A Case Study: WISHBONE

A SoC case study is presented to illustrate the pros and cons of the UVM and to 
compare traditional verification with UVM-based verification. WISHBONE SoC 
interconnect architecture for portable IP cores are used as a case study [16]. The 
results can be shown in Table 6.7, where the UVM-based approach improves the 
coverage time by 12 times.

6.1.5  Summary

This chapter presents an overview on building a reusable RTL verification environ-
ment using the UVM verification methodology. UVM is a culmination of well- 
known ideas and best practices. This chapter also presents a survey on the features 
of UVM. It presents its pros, cons, challenges, and opportunities. Moreover, it pres-
ents simple steps to verify an IP and build an efficient and smart verification envi-
ronment. A SoC case study was presented to compare traditional verification with 
UVM-based verification.

6.2  Part II: RTL Bug Localization

6.2.1  Introduction

In VLSI, design flow functional verification is a required process to ensure that the 
implementation of the design is in accordance with the specification. Due to the 
increasing design complexity of VLSI circuits, the cost of verification and debug-
ging has significantly increased.

According to ITRS [17], Verification process is now considered a bottleneck as 
it consumes up to 60 % of the design cost.

Verification tools check the correctness of a design against its specification. 
Register Transfer Level (RTL) is still the dominant description level for the hard-
ware design.

There are two types of bugs: (1) electrical bugs caused by interaction between the 
design and physical effects such as cross-talk, supply noise, temperature, process varia-
tion, and signal integrity. (2) Design or functional bugs at RTL which are classified into 
three major classes: logic bugs, algorithmic bugs, and timing/synchronization bugs [18]. 

Table 6.7 Comparison 
between direct testing and 
UVM

WISHBONE metric Direct testing UVM

# Tests to reach 100 % coverage 30 120

Regression time (h) 3 0.25

Benefits – 12× faster

6.2  Part II: RTL Bug Localization
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The logic bug is characterized by erroneous logic in combinational circuits. A logic bug 
occurs because the designer formed an erroneous logic block.

The algorithmic bug covers major design bugs related to the algorithmic imple-
mentation of the design. These design bugs exhibit algorithmic deviations from the 
design specification and they usually require major modifications to be fixed.

The timing bug is associated with the timing correctness of the implementation, 
where a signal needed to be latched a cycle earlier or a cycle later in order to keep the 
timing of signals correct in the design. These types of bugs are summarized in Fig. 6.7.

In order to keep the production costs low, it is required to detect bugs as soon as 
possible. This chapter targets localization of functional errors.

While there are a lot of verification methodologies for error detection in RTL 
design, there is fewer work for debugging the error which includes localization and 
correction stages. Moreover, most of the related works are concentrating on gate- 
level error localization [19–21], and are applied to small designs.

For gate-level bug localization, there are basically two approaches: symbolic and 
simulation-based. Symbolic approaches are accurate but suffer from combinatorial 
explosion, whereas simulation-based approaches, although scalable with design 
size, require numerous test vectors for sufficient accuracy. A SAT-based automated 
bug localization is used for gate-level [22, 23].

Other work is focusing on formal methods and failed properties which are not 
suitable for large designs [24, 25].

Here, we are focusing on the RTL-level and large designs. Detecting and locating 
the source of erroneous behavior in large and complex RTL design is challenging. 
In this chapter, we present a novel approach for bug localization methodology to 
address this challenge using information from regression suit results about failed 
and passed testcases and number of statements executed by each test. The idea is 
inherited from software domain [26–28]. We present a proof of concept for this idea 
using Verilog-based case studies.

This chapter is organized as follows: In Sect. 6.2.2, the proposed methodology 
for bug localization error is presented and discussed. Moreover, the experimental 
results are analyzed. In Sect. 6.2.3, summary is given.

Bugs

Electrical

Temp Voltage Process

Functional

Logic Algorithm Timing

Fig. 6.7 There are two types of bugs: (1) electrical bugs caused by interaction between the design 
and physical effects such as cross-talk, supply noise, temperature, process variation, and signal 
integrity. (2) Design or functional bugs at RTL which are classified into three major classes: logic 
bugs, algorithmic bugs, and timing/synchronization bugs

6 New Trends in SoC Verification…



135

6.2.2  RTL Bug Localization

In this section, proposed methodology is given in Sect. 6.2.2.1. Results are dis-
cussed in Sect. 6.2.2.2.

6.2.2.1  Proposed Methodology

Given a set of statements (S) for which an HDL design exhibits an incorrect behavior, 
the objective of design debugging is to find the highly candidate statement that may 
be responsible for this incorrect behavior. The failing and passing testcases are used to 
find the bug location. If a statement is executed by more than two failing testcases, so 
this statement is more likely to have the bug. So, run the complete regression suite 
until the coverage is 100 %, then extract the needed information about the passed and 
failed testcases and obtain a list of design statements executed by each test.

An example to show how our proposed method works is shown in Fig. 6.8, where 
we assume that our DUT has only one bug due to only one incorrect statement and 
we have ten testcases to test its behavior.

From Table 6.8, the left columns shows how each RTL statement is executed by 
each testcase either it is failing or passing. An entry 1 indicates that the statement is 
executed by the corresponding test case and an entry 0 means it is not executed. The 
most right column shows the execution result with an entry 1 for a failed testcase 
and an entry 0 for a passing testcase. If a statement is executed by a successful test 
case, its likelihood of containing a bug is reduced.

The suspiciousness of each statement = the number of failed tests that execute 
it—the number of successful tests that execute it. But, this way cannot distinguish a 
statement executed by one successful and one failed test from another statement 
executed by 10 successful and 10 failed tests.

So, we will use weighted probability to indicate that more successful executions 
imply less likely to contain the bug. So the suspiciousness of each statement = the 
number of failed tests that execute it/the number of successful tests. And we will 
choose the maximum value to start with, i.e., the large rank. The proposed method-
ology for automated bug localization is shown in Fig. 6.9.

6.2.2.2  Experimental Results

Experimental results show that our method can detect errors in large designs up to 
several thousand lines of RTL code in few minutes with high accuracy compared to 
time consumed in hours using manual bug localization. Here, we only localize the 
error not correcting it. Other experiments are done on more bugs to observe the 
effectiveness of our methodology. We insert errors into some other parts of the code 
for the complex RTL design then we applied our methodology to locate the error. 
Table 6.9 reveals some results, where it is clear that our methodology reduces the 
time needed to localize the bug significantly.

6.2  Part II: RTL Bug Localization
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/*****************************************************

* Verilog code for a part of design contains a bug *

****************************************************/

always @ (negedge CLK or negedge RST_N)

begin

if (~RST_N)                                     //s0

begin

rd_cnt <= 16'h0000;                   //s1

cnt8_1 <= 3'b000;                       //s2

end

else if (~incr_rd_user_addr)            //s3

begin

rd_cnt <= 16'h0000;                   //s4

cnt8_1 <= 3'b000;                      //s5

end

else if (incr_rd_user_addr)              //s6

begin

cnt8_1 <= cnt8_1 + 3'b001;   //s7

if (BUS_WIDTH == 3'h2)               //s8

begin

cnt8_1 <= 3'h0;                            //s9

rd_cnt <= rd_cnt + 2;                   //s10

end

else if (BUS_WIDTH == 3'h0)        //s11

begin

cnt8_1 <= 3'h0;                    //s12

rd_cnt <= rd_cnt + 1;        //s13

end

end

end

Fig. 6.8 A case study: a 
behavior Verilog code for a 
part of complex design 
contains a bug in s10. The 
design is more than 5000 
lines of RTL code
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If the testcase fails in the regression although it passes alone, we should merge it 
with the previous testcase to create only one testcase as the previous testcase does 
not reset a certain variable which caused the followed testcase to fail. The effective-
ness of this methodology varies for different designs, bugs, and testcases. Here, we 
assume that we have a rich and correct testcases.

6.2.3  Summary

Bug localization is a process of identifying the specific locations or regions of 
source code that is buggy and needs to be modified to repair the defect. Bug local-
ization can significantly reduce human effort and design cost.

Rank generation for suspicious part of code

Extract information about pass/fail tests 

Extract information about execution of statements in
each test

Calculate failed tests per statements

Calculate passed tests per statements

Calculate Suspicious per statement

Run Regression suiteStep1

Step2

Step3

Step4

Step5

Step6

Step7

DUT+TESTCASES

Error Localization

Fig. 6.9 The proposed 
methodology for 
automated bug localization
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In this chapter, a novel automated coverage-based functional bug localization 
method for complex HDL designs is proposed which significantly reduces debug-
ging time. The proposed bug localization methodology takes information from 
regression suite as an input and produces a ranked list of suspicious part of code. 
Our methodology is a promising solution to reduce required time to localize RTL 
bugs significantly.

6.3  Part III: RTL Scan-Chain

6.3.1  Introduction

Simulation-based verification scheme of large sophisticated intellectual property 
(IPs) is considered a time consuming process. Mainly, there are two famous meth-
ods to help accelerate simulation process and reduce verification time: hardware 
acceleration, and hardware RTL emulation. The RTL hardware accelerator solu-
tions are based on using application-specific ASICs, each contains special- 
application processors and memories [29–32]. The RTL hardware emulators are 
based on using FPGAs, where the design is synthesized into a gate-level netlist. 
However, most hardware emulator does not provide easy debugging capability at 
runtime. In this chapter, a scan-chain scheme is proposed to reduce debugging time. 
Runtime changes of the values of the signals of the IP during execution-time can be 
done through the proposed scan-chain methodology.

The proposed method provides internal glue-block which automatically replaces 
any signal with a mux and extra input, so that at run time if we enable this method 
we can replace any internal signal by a forced one.

The rest of this chapter is organized as follows. In Sect. 6.3.2, the proposed RTL- 
level scan-chain methodology is presented. Summary is given in Sect. 6.3.3.

6.3.2  The Proposed RTL-Level Scan-Chain Methodology

RTL simulation provides system-on-chip (SoC) verification with full debugging 
capabilities, but its disadvantages are the low-speed simulation for complicated RTL 
design. By using FPGA-based RTL emulation, we can have high-speed simulation. 
But, it is not easy to debug it because it has poor-capabilities visibility. Other solu-
tions provide full debug capabilities such as RTL emulators, but the offline debugging 
method needs to recompile the whole design, which slows the verification process. In 
this chapter, we propose an online RTL-level scan-chain-based methodology for 
accelerating IP emulation debugging time at Runtime. This method provides internal 
glue-block which automatically replaces any signal with a mux and extra input, so 
that at runtime if we enable this method we can replace any internal signal by a forced 
one. Our experiment shows that, the area overhead is neglected compared to the 
gained performance benefits. The conventional emulation flow versus the proposed 
scan-chain based emulation flow is shown in Figs. 6.10 and 6.11 respectively.

Part III: RTL Scan-Chain
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To illustrate the proposed method, we assume the example shown in Fig. 6.12a, 
where: out ≤ (A + B) × C; where C is predetermined value that we want to change it 
in runtime, we compile the design and run emulation. If we want to change value of 
C, we have to recompile the whole design. Sometimes, it takes very large time 
depending on the complexity of the design. So, here we propose to use the online 
RTL-level scan-chain methodology to be able to change the value of C at run time 
without recompiling the whole design which accelerates the emulation debugging 
time. We will create a utility tool that instantiates glue logic and a mux with each 
“reg” definition in the VERILOG file, the glue logic is a null connection which puts 
the input into the output as depicted in Fig. 6.12b. So, the designer can change the 
value at runtime. It will be automatically auto-generated for all the registers defined 
in the design. Our experiment shows that, the area overhead is neglected compared 
to the gained performance benefits.

(TB+DUT)

TestBench

a

b

DUT
Embedded logic

Analyzer

Synthesize

Placement and Routing

Compile

SW/CPU

PLI

HW Emulator

Memory Traces

Waveform Tool

Debug

TracesEmulation

Modify HDL

CompileDesign

Specify Traces

Rerun  test

Design

Fig. 6.10 Conventional emulation flow (offline debug) (a) detailed, (b) simplified [32]
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6.3.3  Summary

An online RTL-level scan-chain methodology is proposed to reduce debugging time 
and effort for emulation. Runtime modifications of the values of any of the internal 
signals of the DUT during execution can be easily performed through the proposed 
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SW/CPU
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Memory

Embedded 
logic 
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+
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Emulation TracesCompile

b

a

Fig. 6.11 Proposed emulation flow (online flow), synthesizable testbench methodology, scan-
chain methodology, (a) detailed, (b) simplified

Part III: RTL Scan-Chain



144

online scan-chain methodology. A utility tool was developed to help ease this 
 process. Our experiment shows that the area overhead is neglected compared to the 
gained performance benefits. But, IP design requires more compilation time.

6.4  Part IV: Automatic Test Generation Based  
on Genetic Algorithms

6.4.1  Introduction

Verification is the bottleneck in the SoC life cycle. Moreover, the coverage space is 
very huge. Code coverage cannot cover the functional coverage. The efficiency of the 
verification is proportional to achieving the coverage goals in less simulation time.

 

hverification

Coverage goals

Simulation time
µ

 

(6.1)

The verification process problems will be considered as an optimization problem. 
GA is used to solve it. Genetic Algorithms (GA) are the heuristic (experience- 
based) search and time-efficient learning and optimization techniques that mimic 
the process of natural evolution based on Darwinian Paradigm (Fig. 6.13). Thus 
genetic algorithms implement the optimization strategies by simulating evolution of 
species through natural selection. The nature to computer mapping is shown in 
Table 6.10, where each cell of a living thing contains chromosomes (strings of 
DNA), each chromosome contains a set of genes (blocks of DNA), and each gene 
determines some aspect of the organism (like eye color). In other words, parameters 
of the solution (genes) are concatenated to form a string (chromosome). In a 
 chromosome, each gene controls a particular characteristic of the individual. 
The population evolves towards the optimal solution (Fig. 6.14). Evolution based on 

+
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Fig. 6.12 (a) Normal design example, (b) proposed scan-chain methodology for the design 
 example in (a)
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“survival of the fittest.” Genetic algorithms are well suited for hard problems where 
little is known about the underlying search space. So, it is considered a robust search 
and optimization mechanism. The genetic algorithm used in this work consists of 
the following steps or operations [33–38], and can be seen in Fig. 6.15:

 1. Initialization and encoding:
The GA starts with the creation of random strings, which represent each member 
in the population.

 2. Evaluation (Fitness):
The fitness used as a measure to reflect the degree of goodness of the individual, 
is calculated for each individual in the population.

 3. Selection
In the selection process, individuals are chosen from the current population to 
enter a mating pool devoted to the creation of new individuals for the next gen-
eration such that the chance of a given individual to be selected to mate is pro-
portional to its relative fitness. This means that best individuals receive more 
copies in subsequent generations so that their desirable traits may be passed onto 
their offspring. This step ensures that the overall quality of the population 
increases from one generation to the next.

 4. Crossover:
Crossover provides the means by which valuable information is shared among the 
population. It combines the features of two parent individuals to form two children 
individuals that may have new patterns compared to those of their parents and 
plays a central role in Gas. The crossover operator takes two chromosomes and 
interchanges part of their genetic information to produce two new chromosomes.

 5. Mutation:
Mutation is often introduced to guard against premature convergence. Generally, 
over a period of several generations, the gene pool tends to become more and 

Reproduction
(Crossover, Mutation) Competition

SelectionSurvive
(Replacement)

Fig. 6.13 Darwinian 
paradigm

Table 6.10 The nature to 
computer mapping

Nature Computer

Population Set of solutions

Individual Solution to a problem

Fitness Quality of a solution

Chromosome Encoding for a solution

Gene Part of the encoding solution

Reproduction Crossover
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more homogeneous. The purpose of mutation is to introduce occasional pertur-
bations to the parameters to maintain genetic diversity within the population.

 6. Replacement:
After generating the offspring’s population through the application of the genetic 
operators to the parents “population, the parents” population is totally replaced 
by the offspring’s population. This is known as no overlapping, generational, 
replacement. This completes the “life cycle” of the population.

 7. Termination
The GA is terminated when some convergence criterion is met. Possible conver-
gence criteria are: the fitness of the best individual so far found exceeds a thresh-
old value; the maximum number of generations is reached. An example for the 
parameter used in GA is shown in Table 6.11.

Many different test data generation methods like random test data generator have 
been proposed in the literature [33–35].
In this chapter, artificial intelligence algorithms, such as genetic algorithm, are 

proposed as a novel method for test generation.

6.4.2  Proposed Methodology

The verification process problems will be considered as an optimization problem. 
GA is used to solve it. The methodology is as follows: generate stimulus based on 
the feedback from previously generated stimulus to cover areas which were not 
explored by previously applied tests. During each stimulus cycle, coverage results 
are collected and sent as an input to the genetic algorithm and used as a guideline 
for next stimulus. The next stimulus will be more effective compared to randomly 
generated one (Fig. 6.16). The fitness function here is chosen to maximize the func-
tional coverage percentage, where:

 
Fitness Functional coverage ratio=

 (6.2)

Global

Local

Fig. 6.14 GA searches the optimal solution in the entire search space. We chose random solutions 
and move around it, until we reach global optimal not local one
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Fig. 6.15 Genetic 
algorithm chart: A GA 
typically operates 
iteratively through a simple 
cycle of stages: (1) creation 
of a population of strings, 
(2) evaluation of each 
string, (3) selection of the 
best strings, and (4) genetic 
manipulation to create a 
new population of strings. 
The fitness function is 
problem-dependent. The 
used encoding is binary 
encoding
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Table 6.11 Parameters used by the GA, the parameters are not fixed and may be changed 
according to the situation

Name Symbol Value (type)

Number of generations gen 200

Population size n 50

Chromosome length m 80 bits

Crossover probability Pc 0.9

Mutation probability Pm 0.01

Type of selection – Normal geometric, rank-based selection, Roulette wheel

Type of crossover – Arithmetic, multipoint

Type of mutation – Nonuniform, flip

Termination method – Maximum generation, fitness >0.99

Start simulation

Coverage 100 %

Analyze Coverage
holes

Generate Stimulus
manually

Generate Stimulus
randomly

Generate GA-
based Guided

random stimulus

End

N

Option1Option2Option3

Fig. 6.16 The proposed GA methodology to speedup coverage closure. Using genetic algorithms, 
there is no test redundancy
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Simulation results show that:

 1. Coverage holes can be hit automatically with less effort and less time (Fig. 6.17).
 2. Computational resources should be low.

The results for some designs are reported in Table 6.12, where it is clear that 
using GA, we can reach 100 % coverage in less time with less number of stimulus.

Coverage 100%

Manual

Time

GA

Random

Fig. 6.17 The GA 
performance

Table 6.12 GA-based test generation results to get 100 % coverage

Method Random testing Our GA approach

Design
# Scenarios  
(100 % coverage) # Stimulus Runtime (s) # Stimulus Runtime (s)

#1 4 120 3 100 2

#2 16 200 4 150 2.6

#3 6 130 3.2 90 1

#4 12 180 3.5 110 1.3

#5 8 190 3.7 120 1.5

#6 10 195 3.8 124 2.1

#7 6 130 3 120 2.2

#8 18 210 4 155 2.6

#9 8 180 3.7 96 1.6

#10 14 190 3.5 114 1.5

#11 10 170 3.2 111 1.7

#12 12 215 3.2 144 2.4

Part IV: Automatic Test Generation Based on Genetic Algorithms 
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6.4.3  Summary

The main challenge in using constraint random testing (CRT) is that manual analy-
sis for the coverage report is needed to find the untested scenarios and modify the 
testcases to achieve 100 % coverage. We need to replace the manual effort by an 
automatic method or a tool that will be able to extract the coverage report, identify 
the untested scenarios, add new constraints, and iterate this process until 100 % 
coverage is attained. In other words, we need an automated technique to automate 
the feedback from coverage report analysis to test generation process. In this chap-
ter, the implementation of this automatic feedback loop is presented. The verifica-
tion environment is created using universal verification methodology (UVM) for 
reusability. The automatic feedback loop is based on artificial intelligence technique 
called genetic algorithm (GA). This technique accelerates coverage-driven func-
tional verification and achieves coverage closure rapidly by covering uncovered 
scenarios in the coverage report (coverage holes).
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    Chapter 7   
 Conclusions       

          This book discusses the IP cores life cycle process from specifi cation to production 
which includes four major steps: (1) IP Modeling, (2) IP verifi cation, (3) IP optimi-
zation, (4) IP protection. For IP modeling, four major methodologies are introduced 
which includes: FPGA-based modeling, processor-based modeling, ASIC-based 
modeling, and PCB-based modeling. For IP verifi cation, different platforms are pre-
sented and analyzed such as simulation, acceleration, emulation, and prototyping. 
Moreover, different verifi cation methodologies are introduced such as: UVM, direct 
testing, negative testing, software-driven testing, and formal testing. We presented 
different methods for IP optimization for the main design methodologies to improve 
area, speed, and power. For IP protection, we analyzed different strategies to 
perform protection not to make companies lose revenue and market share. 

 In this book, we present most famous memory cores and controllers and analyze 
the trade-off between them. A descriptive comparison between various on-chip 
memory protocols is made. Comparing the architecture of these different control-
lers, it is realized that their architecture is common in many things. They mainly 
differ in the performance and the features. Moreover, we introduce new trends in 
SoC memories such as PCRAM, ReRAM, MRAM, and 3D memory. 

 Moreover, in this book, we introduce a deep introduction for SoC buses and 
peripherals. We explain in detail their features and architectures. Moreover, SoC 
buses examples are explained in detail. Different SoC bus topologies are discussed 
such as point to point, unilevel shared bus, hierarchical bus, ring, cross-bar bus, 
NoC. The arbitration algorithms are explored. We give a methodology for extraction 
of any SoC bus features from its standard. The different features include topology, 
arbitration, bus width, transfers, timing, transmission control, and type. 

 In this book, we introduce a deep introduction for Verilog for both implementation 
and verifi cation point of view. The chapter used design examples for showing ways 
in which Verilog could be used in a design for both implementation and verifi cation. 
This chapter did not cover all of Verilog, but only some important topics. Moreover, 
a survey on the current existing logic simulators is presented. 
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 This book presents an overview on building a reusable RTL verifi cation environ-
ment using the UVM verifi cation methodology. UVM is a culmination of well- 
known ideas and best practices. This book also presents a survey on the features of 
UVM. It presents its pros, cons, challenges, and opportunities. Moreover, it presents 
simple steps to verify an IP and build an effi cient and smart verifi cation environment. 
A SoC case study was presented to compare traditional verifi cation with UVM-based 
verifi cation. 

 Bug localization is a process of identifying the specifi c locations or regions 
of source code that is buggy and needs to be modifi ed to repair the defect. Bug 
localization can signifi cantly reduce human effort and design cost. 

 In this book, a novel automated coverage-based functional bug localization 
method for complex HDL designs is proposed which signifi cantly reduces debug-
ging time. The proposed bug localization methodology takes information from 
regression suite as an input and produces a ranked list of suspicious part of code. 
Our methodology is a promising solution to reduce required time to localize bugs 
signifi cantly. 

 An online RTL-level scan-chain methodology is proposed to reduce debugging 
time and effort for emulation. Runtime modifi cations of the values of any of the 
internal signals of the DUT during execution can be easily performed through the 
proposed online scan-chain methodology. A utility tool was developed to help ease 
this process. Our experiment shows that, the area overhead is neglected compared 
to the gained performance benefi ts. But, IP design requires more compilation time. 

 The main challenge in using constraint random testing (CRT) is that manual anal-
ysis for the coverage report is needed to fi nd the untested scenarios and modify the 
test cases to achieve 100 % coverage. We need to replace the manual effort by an 
automatic method or a tool that will be able to extract the coverage report, identify 
the untested scenarios, add new constraints, and iterate this process until 100 % cov-
erage is attained. In other words, we need an automated technique to automate the 
feedback from coverage report analysis to test generation process. In this chapter, 
the implementation of this automatic feedback loop is presented. The verifi cation 
environment is created using universal verifi cation methodology (UVM) for 
 reusability. The automatic feedback loop is based on artifi cial intelligence technique 
called genetic algorithm (GA). This technique accelerates coverage-driven func-
tional verifi cation and achieves coverage closure rapidly by covering uncovered 
 scenarios in the coverage report (coverage holes).   

7 Conclusions
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