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Preface

This book discusses the life cycle process of IP cores from specification to produc-
tion which includes four major steps: (1) IP modeling, (2) IP verification, (3) IP
optimization, and (4) IP protection. Moreover, the book presents most of the famous
memory cores and controller IPs and analyzes the trade-off between them. In this
book, we give an in-depth introduction to SoC buses and peripheral IPs. We explain
their features and architectures in detail. Moreover, we provide a deep introduction
to Verilog from both implementation and verification points of view. The book pres-
ents a simple methodology in building a reusable RTL verification environment
using UVM. UVM is a culmination of well-known ideas and best practices.
Moreover, it presents simple steps to verify an IP and build an efficient and smart
verification environment. A SoC case study is presented to compare traditional veri-
fication with a UVM-based verification. Bug localization is a process of identifying
specific locations or regions of source code that is buggy and needs to be modified
to repair the defect. Bug localization can significantly reduce human effort and
design cost. In this book, a novel automated coverage-based functional bug local-
ization method for complex HDL designs is proposed, which significantly reduces
debugging time. The proposed bug localization methodology takes information
from regression suite as an input and produces a ranked list of suspicious parts of
the code. We present an online RTL-level scan-chain methodology to reduce debug-
ging time and effort for emulation. Run-time modifications of the values of any of
the internal signals of the DUT during execution can be easily performed through
the proposed online scan-chain methodology. A utility tool has been developed to
help ease this process.

Heliopolis, Egypt Khaled Salah Mohamed
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Chapter 1
Introduction

Technological progress enables more and more functionality to be integrated on a
single chip. Figure 1.1 shows the most important milestones in Very-large-scale
integration (VLSI), it is all about integration. In 1937, Shannon introduces the world
to binary digital electronics. The first bipolar transistor was fabricated at Bell Labs
in 1947 [1]. In 1960, the first MOSFET which contains one transistor was fabricated
followed by the first integrated circuit (IC) which contains two transistors in 1961.
The first DRAM cell was fabricated in 1968. One of the most important VLSI mile-
stones was the fabrication of the first microprocessor which contains 100 transistors
per chip in 1971. VLSI era started in 1980 by fabricating more than 200 K transistor
per chip. FPGA was invented in 1985. System-on-chip (SoC) and intellectual prop-
erty (IP) era started in 1995 by integration of more than 100 M transistor per chip.
Recently in 2004, 3D integration era started. Table 1.1 summarizes the most impor-
tant terms in VLSI. A SoC design is a “product creation process” which starts at
identifying the end-user need and ends at delivering a product with enough func-
tional satisfaction from the end user. A typical SoC contains hardware and software
as depicted in Fig. 1.2. An example for the SoC architecture is shown in Fig. 1.3.
Benefits of using SoC are reducing overall system cost, increasing performance,
lowering power consumption, and reducing size. The advantages and disadvantages
of SoC are summarized in Table 1.2 [2].

The early predecessor of a SoC was the Single Board Computer (SBC). All
required logic was integrated on a single board (Fig. 1.4). When it became possible to
integrate more logic into ICs, memory, and some peripherals were integrated into the
microprocessor chip. The result is called “microcontroller.” A single board computer
with microcontrollers contains fewer chips and becomes cheaper. However, still addi-
tional logic and peripherals are necessary, since a microcontroller does not contain all
required peripherals for most applications (Fig. 1.5). With the availability of
programmable logic, the discrete logic ICs (costly and require board space and several
extra wires) could disappear (Fig. 1.6). The FPGAs of today include microprocessor
core, memories, and enough logic to include all kinds of peripherals (Fig. 1.7) [3].

© Springer International Publishing Switzerland 2016 1
K.S. Mohamed, IP Cores Design from Specifications to Production,
Analog Circuits and Signal Processing, DOI 10.1007/978-3-319-22035-2_1
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Fig. 1.1 The most important milestones in VLSI: it is all about integration

Table 1.1 Important terms in VLSI

What is VLSI? Integration improves the performance and reduces the cost

What is IC ? The VLSI final product

What is SoC ? It is a VLSI design style. Idea: combine several large blocks into one.

What is IP? Predesigned component can be reused in different SoC. Protected
through patents or copyrights

What is EDA tools? Tools provide the design software used to create all of the world’s

electronic systems (VLSI, IC, IP, and SoC)

To conquer the complexity of SoC, predesigned components are used (IP reuse)
[4]. Hardware IP cores have emerged as an integral part of modern SoC designs. IP
cores are predesigned and preverified complex functional blocks. Based on their
properties, IP cores can be distinguished into three types of cores: hard, firm, and
soft as depicted in Table 1.3 [5, 6], where Soft-cores are architectural modules
which are synthesizable and offer the highest degree of modification flexibility,
Firm-cores are delivered as a mixture of RTL code and a technology-dependent
netlist [7], and are synthesized with the rest of ASIC logic, and Hard-cores are mask
and technology-dependent modules. Mapping of IP cores on VLSI design flow is
shown in Fig. 1.8. IP core categories tradeoffs are summarized in Fig. 1.9.
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System
on Chip

l Hardware

Software

l Analog l Digital

l l Mixed
17 Signal

lPeripherals l Storage l (0N lApplications

AMP FPGA

LNA ADC

PS2 RAM Linux Communication

Fig. 1.2 SoC components: it contains hardware and software. Not all software fits on hardware,
we have to check the compatibility

Processors

Configurable Hardware

Peripherals

Fig. 1.3 An example of SoC architecture. Different components in single chip (same piece of Si).
Many of the components have become standard IP

Table 1.2 Advantages and disadvantages of SOC

Advantages

Disadvantages

— Lower cost per gate

— Increased system complexity

— Lower power consumption

— Increased verification requirements

— Faster circuit operation

— HW/SW co-design

— More reliable implementation

— Integration of analog & RF IPs

— Smaller physical size/area

— Greater design security
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Fig. 1.6 Single board computer with microcontroller and programmable logic
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1
Peripheral
ROM FPGA
nC
RAM Peripheral
Fig. 1.7 Towards SoC structure
Table 1.3 Classification of hardware IP
IP Representation Technology Optimization | Reuse Changes
Soft RTL (HDL) Independent Low Very high | Many
(Fabless level)
Firm | Gate level netlist | Independent Medium High Some placement
and routing
Hard | GDSII (layout) Dependent Very high low No
(Fab level)

The main differences in design between IC and IP are that, in IC number of
input/output (I/O), pins are limited, but in IP it is unlimited. Moreover, in IP we can
parameterize IP Design, i.e., design all the functionality in hardware description
language (HDL) code, but implement desired parts in the silicon (reusability). These
differences are summarized in Table 1.4.

The IC design flow is shown in Fig. 1.10. The first step in IC design is design
specification (what customer wants) then we convert the specification to behavioral
description. The behavioral description is then converted to RTL description. Then
we perform functional verification and if there are any bugs we fix it in the RTL and
then do the verification again. If the functional verification is ok, we start synthesiz-
ing the RTL code and do the gate level verification. By this, the front-end design is
done. The back-end design starts by placement and routing then post-layout verifi-
cation, we may repeat it if there are any errors until we generate the mask and send
it to the fab. After fabrication, chip testing is done.

There is a lot of SoC applications and corresponding IPs as shown in Table 1.5,
where industry segments: including mobile communication, automotive, imaging,
medical, and networking [8].
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Fig. 1.8 1P cores in a typical VLSI design flow
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Fig. 1.9 1P cores categories tradeoffs [5]
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Table 1.4 Differences 1P IC
between P and IC 10 Unlimited | Limited
Reusability/parameterization |v X
| Design Specifications | .
human translation
s | Behavioral Modeling |
: .
—{ RTL level HDL Modeling o
: | Functional Simulation |
Front-end Design 1
: [ Logic Synthesis f—
: ¥ Netlist
: I Gate-level Verification I Tools
% |

Back-end De.sign
.
| Mask Generation |
B
| Fabrication |
.
| Chip Test & Package |

Fig. 1.10 A simplified high-level overview of IC design flow. PG stands for pattern generation

The complete picture for electronic systems is described in Figs. 1.11 and 1.12.
For System with multiple SoCs, globally asynchronous locally synchronous (GALS)
interconnect concept is used to simplify its design (Fig. 1.13). GALS aims at filling
the gap between the purely synchronous and asynchronous domains [9].

IP cores life cycle process from specification to production includes four major
steps: (1) IP Modeling, (2) IP verification, (3) IP optimization, (4) IP protection.
These steps are elaborated in Fig. 1.14 [11].

IP life cycle is completed with the help of computer aided design (CAD)/
electronic design automation (EDA) tools. EDA tools provide software to be used
to create all of the world’s electronic systems (VLSI, IC, IP, and SoC). The EDA
tools play a vital rule in converting an IP specification to an IP product [10].
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Table 1.5 SOC applications Category P
and IPS examples Processors ARM
DSP MPEG4, Viterbi
1/0s PCIL, USB
Mixed signal ADC, DAC, PLL
Multimedia HDMI
Memories DRAM controller, flash memory
SoC Buses AHB
Miscellaneous | UART, Ethernet MAC

Fig. 1.11 Electronic
systems level from board
to transistors

Board/System

Layout
(Rectangles)

Anatomy of EDA Tools: CAD+TCAD. TCAD tools are used for fabrication pro-
cess, where it simulates the electrical characteristics of semiconductor devices. The
EDA tools can be categorized according to the functionality:

. Design entry (capture tools)

. Synthesis tools

. Simulation tools

. IC physical design & layout tools
. IC verification tools

. PCB design & analysis tools

AN A W=

The most famous EDA companies are SYNOPOSYS, MENTOR GRAPHICS,

and CADENCE.
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Chapter 2

IP Cores Design from Specifications
to Production: Modeling, Verification,
Optimization, and Protection

2.1 Introduction

As stated earlier in the previous chapter, plug and play IP in SoC design is the recent
trend in VLSI design (Fig. 2.1). IP cores life cycle process from specification to
production includes four major steps: (1) IP modeling, (2) IP verification, (3) IP
optimization, (4) IP protection. These steps are elaborated in Fig. 2.2. In the next
sections, we will discuss each step in detail.

2.2 1P Modeling

To model an IP, we have four design modeling methodologies as depicted in Fig. 2.3
[1-6]:

1. FPGA-based Modeling: defined by fixed functionality and connectivity of
hardware elements.
2. Processor-based Modeling: Processor running programs written using a
predefined fixed set of instructions (ISA).
. ASIC-based Modeling: Silicon-level Layout.
4. PCB-based Modeling: it uses standard ICs such as 74xx (TTL), 40xx (CMOS),
it is not VLSI, it is just discrete components.

W

The comparison between theses typical hardware options is shown in Table 2.1.
Choice of any option depends on application and requirements.

© Springer International Publishing Switzerland 2016 13
K.S. Mohamed, IP Cores Design from Specifications to Production,
Analog Circuits and Signal Processing, DOI 10.1007/978-3-319-22035-2_2
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Fig. 2.1 Plug and play

IP in SoC design

Fig. 2.2 1P core life

cycle process: includes

“plug and play”™

four major steps: IP Specs Maodeling
(1) IP modeling,
(2) IP verification,
(3) IP optimization, IP product ﬁ
(4) IP protection
Protection Verification
Optimization
Table 2.1 Comparison between different types of hardware
Processor
GPP DSP ASIC FPGA PCB
Examples pP, pC MAC, FFT - - -
Software/hardware | Software Software Hardware | Hardware Hardware
Spatial/temporal Temporal Temporal Spatial Spatial Spatial
Functionality Programmable | Programmable | Fixed Programmable | Fixed
Time-to-market High High Low High Medium
Performance Low Medium High Med-high Low
Cost Low Medium High Low Low
Power High Medium Low Low-med High
Memory bandwidth | Low Low High High Low
Companies Intel-ARM TI TSMC Xilinx- Valor
Altera-Actel
Design alternative | Digital Digital Digital Digital Digital
analog analog
RF mixed RF mixed
Languages C C - Verilog -
Assembly VHDL
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Fig. 2.3 (a) FPGA-based modeling, (b) processor-based modeling, (¢) ASIC-based modeling,
(d) PCB-based modeling

2.2.1 FPGA

FPGAs are programmable chips, compared to hard-wired chips, FPGAs can be
customized as per needs of the user by programming. This convenience, coupled
with the option of reprogramming in case of problems, makes the programmable
chips very vital choice. Other benefits include instant turnaround, low starting cost,
and low risk. FPGA means “The chip that flip-flops.” An FPGA is like an electronic
breadboard that is wired together by an automated synthesis tool. An example of a
programmable function using FPGA is shown in Fig. 2.4. A 3-input lookup table
(LUT) can implement any function of three inputs.
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Required function Truth table Programmed LUT
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Fig. 2.4 Programmable function using LUT-based FPGA [7]

Referring to Fig. 2.3a, the general architecture of FPGA is shown where, CLB:
Configurable Logic Block, I0OB: Input/Output Block, and PSM: Programmable
Switch Matrix. CLBs provide the functional elements for implementing the user’s
logic. IOBs provide the interface between the package pins and internal signal lines.
Routing channels provide paths to interconnect the inputs and outputs of the CLBs
and IOBs. An example for CLB and PSM architecture is shown in Fig. 2.5 [7-9].
The configurable block can be MUX not only LUT. MUX can implement any
function, an example for implementing NOT and XOR function is shown in Figs. 2.6
and 2.7 respectively. Also an example for building a latch is shown in Fig. 2.8.
FPGAs can be also classified according to their routing structure. The three most
common structures are island-style, hierarchical, and row-based [10]. FPGAs are
one-size fits all architectures.

FPGA is considered a top-down methodology (RTL to layout), this methodology
makes design of complex systems more simpler as it focuses on functionality, reduce
time-to-market as it shortens the design verification loop, and makes exploring dif-
ferent design options easier and cheaper for example (latency versus throughput).

As for modeling languages and the scope of using FPGA-based design, two lev-
els for IP modeling are highlighted register-transfer level (RTL) and transaction
level modeling (TLM) (Table 2.2).

RTL is the abstraction level between algorithm and logic gates. In RTL descrip-
tion, circuit is described in terms of registers (flip-flops or latches) and the data is
transferred between them using logical operations (combinational logic, if needed).
That is why the nomenclature: Register-Transfer Level (RTL). Y-chart is shown
in Fig. 2.9.

TLM is a technique for describing a system by using function calls that define a
set of transactions over a set of channels. TLM descriptions can be more abstract,
and therefore simulate more quickly than the RTL. TLM separates computation
from communication as depicted in Fig. 2.10.

Modeling at the transactional level has several advantages, not only for the IP
provider (designers and verification engineers), but also for the users, which can
evaluate the performances and the behavior of the IP very early in the design flow.
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Fig. 2.5 CLB and PSM
architecture example [7]

SRAM cell

f1 f2 13 f4

CLB:LUT

PSM: switch (SRAM)

Fig. 2.6 Building NOT
function from MUX 0

a _
Y=enatenb,
y To build not let:
> Inp =en,
1 b=1,
—— > b
en a=0.

inp

The different levels of abstraction and the different modeling languages are shown
in Fig. 2.11 and Table 2.3.

System level modeling is widely employed at early stages of system develop-
ment for simplifying design verification and architectural exploration. Raising the
abstraction level results in a faster development of prototypes and the reduction of
implementation details in system level design can increase the simulation speed
and allow a more global view of the system. During the phase of RTL development,
the system level design can serve as a reference model for RTL design and
verification.
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Fig. 2.7 Building XOR
function from MUX inp2
R .
Y=enatenb,
y To build not let:
> Inpl=en,
Inp2 Inp2=b,
—> b
en a=b.
Inpl
Fig. 2.8 Building LATCH
function from MUX D
a —
Y=en atenb,
Q To build not let:
clk =en,
b=Q,
b
en a=D.
clk
Table 2.2 RTL and TLM comparison
RTL TLM
Simulation speed ——)
Abstraction level —
RTL synthesizable Yes No
Languages Verilog, VHDL Systemverilog, SystemC

Accuracy

There are several high-level modeling languages like Systemverilog [11] and
SystemC [12]. TLM does not contain a clock signal. TLMs use function calls for
communication between different modules and events to trigger communication
actions. It allows designers to implement high-level communication protocols for
simulations up to faster than at register-transfer level (RTL). Thus encouraging the
use of virtual platforms for fast simulation prior to the availability of the RTL code.
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(Function Call)
Read (Address,Data) Write (Address,Data)

TLM —| Read H Write |—p

RTL

(Wire Wiggling)

Fig. 2.10 TLM and RTL example, where TLM does not take into consideration the details, i.e.,
higher abstraction level. TLM replaces all pin-level events with a single function call. TLM speeds
up verification

Scope of Modeling Language Level

Algorithm

. | MATLAB
Architecture

SystemC

HW/SW C/C++

Behavior

| System

Functional Verification .
VHDL Verilog

Verilog

RTL

Gates

Transistors

Fig. 2.11 Comparison between different modeling languages [4]

Table 2.3 The modeling languages comparison

MATLAB SystemC Systemverilog Verilog VHDL

Requirements Yes YES No No No
Architecture Yes Yes No No No
HW/SW No Yes No No No
Behavior No Yes Yes No Yes
Functional verification No Yes Yes No No
Testbench No Yes Yes Yes Yes
RTL No Yes Yes Yes Yes
Gates No No Yes Yes Yes

Transistors No No Yes Yes No
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Systemverilog suffers from [13]:

. It is closed source.

. It is not software domain, i.e., does not support HW/SW co-verification.
. Single core, no multi-core support.

. Incomplete support for OOP, for example there is no const class method.
. It does not support function overloading.

. No automatic garbage collector.

. DPI has a long runtime overhead.

~N N W=

SystemC suffers from:

. Single core, no multi-core support.
. No coverage support.
3. Transaction randomization is limited.

N =

There is another family of languages called scripting languages like PERL [14],
TCL [15], and Python [16]. Scripting languages are programming languages
designed to make programming tasks easier, for example to run all the test cases
automatically after every RTL change to make sure that it does not affect other test
cases. Scripting languages are dynamic high-level languages with extensive stan-
dard library which enables rapid prototyping and experimentation.

There are advances in design methods such as using IP-XACT. IP-XACT is a
standard written in an XML file format to describe hardware designs at a higher
level [17, 18]. Also, it provides a standard for component design description
exchange among heterogeneous platforms or among different designers working on
different components or in other words, it helps in IP reuse.

The XML document is written using XML editors and it contains set of tags
which represent a synthesizable hardware component such as registers and
FIFO. IP-XACT documents the attributes of an IP component such as Interfaces,
signals, parameters, memory, ports, and registers. An XML parser interprets the
document and generates RTL code as XML is just plain text. The parsing process of
an XML is relatively fast. Python is one of the languages used for parsing [19].

FPGA design flow comprises the following steps:

1. Convert specification to RTL code.

2. Synthesis the code which means converts the RTL code into generic Boolean
netlist (gates, wires, registers).

3. Do mapping: map the generic Boolean gates into target technology (LUT or
MUX CLB). The RTL can be mapped into FPGA or ASIC as depicted in Fig. 2.12.

4. Placement and routing.

5. Downloading: the file which is generated and downloaded to the FPGA is called
bitstream file.

An example for a logic block is shown in Fig. 2.13. The placement process is
described in Fig. 2.14 and the routing process is described in Fig. 2.15.
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Fig. 2.12 RTL to FPGA

or ASIC
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input only AND and OR
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Fig. 2.15 FPGA routing

2.2.2 Processor

Referring to Fig. 2.3b, the general architecture for a very simple processor is shown,
where PC: program counter, ACC: accumulator, ALU: arithmetic logic unit, IR:
instruction register. The PC holds the address of next instruction to be executed,
ACC holds the data to be processed, ALU performs operation on data, IR holds the
current instruction code being executed. The operation can be summarized in the
following steps (Fig. 2.16):

1. Instruction fetch: The value of PC is outputted on address bus, memory puts the
corresponding instruction on data bus, where it is stored in the IR.

2. Instruction decode: The stored instruction is decoded to send control signals to
ALU which increment the value of PC after pushing its value to the address bus.

3. Operand fetch: The IR provides the address of data where the memory outputs it
to ACC or ALU.

4. Execute instruction: ALU is performing the processing and store the results
in the ACC. The instruction types include: data transfer, data operation
(arithmetic, logical), and program control such as interrupts.
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Address bus

con [ ]

] Memory Step 1
ALU ACC
Data bus
Address bus

comse—[ ]

. Memory Step 2
Data bus
Address bus
PC Control | IR |
Memory Step 3
TALU ACC
Data bus
Address bus
PC=PC Control<—— IR
Memory Step 4
~_ALU ACC
Data bus

Fig. 2.16 A simple processor operation

Theses cycles are continuous and called fetch—decode—execute cycle. The pro-
cessors can be programmed using high-level language such as C or mid-level lan-
guage such as assembly [20]. Assembly is used for example in nuclear application
because it is more accurate. At the end the compiler translates this language to the
machine language which contains only ones and zeroes.

Instruction Set Architecture (ISA) describes a processor from the user’s point of
view and gives enough information to write correct programs. Examples of ISA are
Intel ISA (8086, Pentium).
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2.2.3 ASIC

Physical design converts a circuit description into a geometric description. This
description is used to manufacture a chip. Geometric shapes which correspond to
the patterns of metal, oxide, or semiconductor layers that make up the components
of the integrated circuit. It is top view of the cross-sectional device [21].

Using ASIC design methodology, it is very hard to fix bugs and it needs long time
through the fabrication process (Design, Layout, Prototype, Fabrication, and Testing).
It requires expensive tools and requires a very expensive Fab. But, it provides supe-
rior performance [22]. In ASIC, the schematics is converted to stick diagram to find
Euler path which determines the best way to put the devices in the substrate and then
the stick diagram is converted to layout (Fig. 2.17). The layout can be analog, digital,
or mixed signal. An example for a layout of a simple FET transistor is shown in
Fig. 2.18. The layout has some design rules called design rule check (DRC) [23].

Since there are different semiconductor processes (with different set of rules and
properties), the designer has to know the specifications for the one that is to be used.
This information is stored in a set of files called Technology Files. The technology
files contain information about:

* Layer definitions: Conductors, contacts, transistors.
* Design rules: minimum size, distance to objects.

* Display: Colors and patterns to use on the screen.

* Electrical properties: resistance, capacitance.

IR RN

'
=€
i

-

v Vdd * Vdd
dd |
ol short poly ~——~y
interconnect ®
—1 — \T e
GND ¥
GND
GND

Fig. 2.17 Schematics to stick diagram to layout. A stick diagram is a symbolic layout: contains
the basic topology of the circuit. It is always much faster to design layout on paper using stick
diagram first before using the layout CAD tool [21]

Fig. 2.18 Layout D
of simple FET, where
source and drain are G _|
interchangeable [21]

S

Poly crossed over Diffusion =» Field effect transistor (FET)
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Fig. 2.19 Typical PCB: computer motherboard

The process features example:

¢ p-Type substrate

e n-Well

* n+and p+diffusion implants

¢ One layer of poly (gate material)

¢ Two layers of metal for interconnection (metal 1 and metal 2)
* Contact (metal 1 to poly or metal 1 to diffusion)

¢ Via (metal 1 to metal 2)

After finishing the layout, GDS-II file is sent to the fab to be fabricated. This
stage is called “Tape out.”
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2.2.4 PCB

Standard logic ICs provides fixed function devices which can be connected together
on PCB to implement a system. Standard logic ICs has limited speed and limited
number of pins. Standard ICs such as 74xx (TTL), 40xx (CMOS). Typical PCB is
the computer motherboard as depicted in Fig. 2.19. PCBs are made of copper and
dielectric. Copper is an excellent electrical conductor and it is inexpensive material.
PCBs can be single-sided, double-sided, or multilayer boards [24].

For single-sided PCB, components are on one side and conductor pattern on the
other side. Routing is very difficult.

For double-sided PCB, conductor patterns are on both sides of the board and we
connect between the two layers through vias. Via is a hole in the PCB, filled or
plated with metal and touches the conductor pattern on both sides. Since routing is
on both sides, double-sided boards are more suitable for complex circuits than
single-sided ones. It is always better to minimize the number of vias.

For multilayer PCB, these boards have one or more conductor patterns inside the
board. Several double-sided boards are glued together with insulating layers in
between. For interlayer connections, there is blind via to connects an inner layer to
an outer layer and buried via to connects two inner layers. The layers are classified
as: Signal layers, Ground plane, and Power plane. Power planes may have special
restrictions such as wider track widths

2.3 IP Verification

Verification is a process used to demonstrate the functional correctness of a design
(no bugs). The types of bugs are summarized in Fig. 2.20. It is called bugs because
in 1942 using the computer to perform calculations, it gave the wrong results. To
find out what was going wrong, they opened the computer and looked inside
(remember, this was in the “good old days,” and an electromechanical computer was
in use). And there they found a moth stuck inside the computer, which had caused
the malfunction. The design/verification matrix is shown in Fig. 2.21.

{’

‘M Temp | Voltage ‘M Process ‘ Logic ‘M Algorithm ‘ Timing

Fig. 2.20 Types of bugs
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Fig. 2.21 Design/ Bad Verification Good Verification
verification matrix: the cost )
o Bad Design Many Bugs Exists Many Bugs Exists
of verification 4 :
Bugs Not discovered Bugs discovered
Bad Reputation at Time-to-market loss
customers
Good Design Few Bugs Exists Few Bugs Exists
Bugs Not discovered | All bugs are discovered
Bad Reputation at Customer Happy
customers

2.3.1 FPGA-Based/Processor-Based IP Verification

To verify an IP, we have two options as depicted in Figs. 2.22 and 2.23:
1. Function-based verification

(a) Simulation-based
(b) Accelerator-based
(¢) Emulation-based
(d) FPGA prototyping

2. Formal-based verification
(a) Assertion-based

IPs functional verification is a key to reduce development cost and time-to-
market. Simulation speed is a relevant issue for complex systems with multiple
operational modes and configurations since in such cases a slow simulator may
prevent the coverage of a sufficient number of test cases in the verification phase
[25]. To boost the performance of simulation, a number of platforms have recently
attracted interest as alternatives to software-based simulation: acceleration, emula-
tion, and prototyping platforms. Advantages and disadvantages of each type is sum-
marized in Table 2.4, where simulation is easy and low cost, but not fast enough for
large IP designs. FPGA prototyping are fast, but has little debugging capability.
Accelerators can improve the performance to an extent where, the DUT is mapped
into hardware and the testbench is run on the workstation, if we use real host appli-
cation SW and real OS SW to access the device is called virtual accelerators.

Emulation improves the accelerators performance, where the testbench and
DUT are mapped into hardware; it also provides efficient debugging capabilities
over the FPGA prototyping. The general architecture for the emulator is shown in
Fig. 2.24, where many FPGAs are interconnected together for large gate capacity.

There is another mode of operation for the emulator called (in-circuit emulator)
ICE, the difference between them can be interpreted by Fig. 2.23f, where in ICE
part of the model is a real hardware.
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Functional Verification
(Dynamic simulators)

(Faster speed, closer to final product)
1 Prototyping
ﬁ

Formal Verification
(Static simulators)

a Host Computer b Host Computer An Array of FPGAs
Testbench 1P Testbench
(RTL/TLM) (RTL/TLM) (TLM)
SWjSimulator SW Simulator
SIMULATION TBX-Acceleration
C An Array of FPGAs d FPGA Board
Real
Debugger
(Logic
Analyzer)
HW EMULATION FPGA prototyping
e

Real HW
(works as testbench)

Data-Cable

Runs on Emulator

i

Runs on Questa Simulation

Virtual Acceleration

In-Circuit EMULATION (ICE)

Fig. 2.23 Simulation, accelerators, emulation, FPGA prototyping platform comparison, the IP
can be a host or peripheral. (a) Simulation, (b) TBX-acceleration, (¢) HW emulation, (d) FPGA
prototyping, (e) virtual acceleration, (f) in-circuit emulation (ICE)

The formal verification complements simulation-based RTL design verification
by analyzing all possible behaviors of the design to detect any reachable error states
using assertion-based verification (ABV) methodology and languages like
SVA. This exhaustive analysis ensures that critical control blocks work correctly in
all cases and locates design errors that may be missed in simulation. Moreover, it is
a static simulator, that is why it takes less time in simulation than dynamic ones.
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Fig. 2.24 The general
architecture for the FPGA 1 FPGA 2
emulator, where Many
FPGA'’s are interconnected
together for large gate
capacity

Switch

FPGA 4 FPGA 3

Testbench

Simulator Response

Fig. 2.25 Directed testing. Instantiates design under test (DUT), applies data to DUT, monitors
the output

The verification methodologies can be classified into:

1. Directed testing (traditional verification):

To ensure that the IP core is 100 % correct in its functionality and timing.
Verification engineer sets goals and writes/generates directed tests for each item
in Test Plan (Fig. 2.25). If the design is complex enough, it is impossible to cover
all features with directed testbenches.

2. UVM:

Reduce testbench development and testing as it supports all the building blocks
required to build a test environment as depicted in Fig. 2.26, and it makes multi-
master multi-slave testing easier. High-level verification languages and environ-
ments such as Systemverilog and e, as used in UVM, may be the state-of-the-art
for writing test bench IP, but they are useless for developing models, transactors,
and testbenches to run in FPGAs for emulation and prototyping. None of these
languages are synthesizable. The component functionalities are as follows:

* Sequencer: Transaction is an instruction from the sequence to the driver
(through the sequencer) to exercise the DUT.

* Driver: UVM component that converts a stream of transactions into pin
wiggles.
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rEsT — —
Test plan Specificatio Sequences library Configuration
ENV

Scoreboard Coverage

Sequencer

Monitor

Master

Fig. 2.26 UVM environment

Fig. 2.27 Checkers
(assertions)

* Scoreboard: Gets a copy of the transaction in the monitor through the
Analysis port and use that transaction for analysis purposes.
* Monitor: UVM component that monitors the pins of the DUT.

3. Checkers (assertions):

An assertion is a statement about a specific functional characteristic or prop-
erty that is expected to hold for a design. The assertion-based methodology is
used to ensure the functionality of the IP, where it monitors the transactions on
an interface and check for any invalid operation and outputs error and/or warning
messing of bus protocol. Self-checking ensures proper DUT response (Fig. 2.27).
Assertions enhance observability coverage, making it easier to spot the source of
an error [26].

4. Negative testing (error injection):

Negative testing means “verify that the IP will produce an error report if it
sees illegal traffic.” The theory on which negative testing is based depending on
the “Assertion-based” methodology [27]. The negative testbenches generate ille-
gal traffic; the IP is supposed to recognize this traffic as illegal, and issues the
trace error messages (Fig. 2.28).
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Fig. 2.28 Negative

testing [27] Negative Testing

5.

STA

Postive Testing Boundary

-

Formal Verification
(Static simulators)

Software-driven testing:

Software-driven testing adds a range of capabilities that promise to redraw the
functional verification landscape. These include virtual host and peripheral mod-
els (called “virtual devices”) and software debug technologies enabled by
transaction-based, co-model channel technology. Virtual devices are an emerg-
ing technology, with products beginning to offer the same functionality as tradi-
tional In-Circuit (ICE) solutions, but without the need for additional cables and
additional hardware units. Generally the function of virtual device architecture is
to package a software stack running on the co-model host workstation with com-
munication protocol IP running on Veloce using a TBX co-model link. This
creates protocol solutions so customers can verify their IP at the device driver
level and verify the DUT with realistic software, which is the device driver itself
as depicted in Fig. 2.29.

. Coverage:

The main purpose of coverage is to check whether the given property
(functional coverage) or statement (code coverage) is covered during simulation/
emulation. For example, is the sequence shown in (Fig. 2.30) ever followed by
my FSM?

. Formal:

Input: HDL, post-synthesis gate-level netlist. It checks if the RTL description
and the post-synthesis gate-level netlist have the same functionality. It is a static
verification [28].

. STA: static timing analysis

Motivation: How can I ensure my design will work at the target frequency under
all circumstances?

How: By ensuring any timing path meets the timing requirements.

Why: always fastest than a simulation!
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a
Host Computer
Host OS: Linux
Guest (Virtual) Platform Emulator
1 , | Host Bus Adapter
CPU BIOS PCl(e) (Sw) Examples: PCle,
\ V USB, SATA
1[e]
Guest OS: Win7/8, Linux
| Applications | [ Drivers |
b
Protocol Sw Stack
Mass-storage Function Client Sw
System Bulk
Memory
Host Computer
Host OS: Linux
SystemC, SystemVerilog Testbench i Emulator
it \ Device Controller
Protocol Sw Stack Examples: USB,
i \ SATA, SAS

Function Client Sw

System Bulk
Memory i

Fig. 2.29 A virtual device packages a software stack running on co-model workstation with com-
munication protocol IP running on Veloce using a TBX co-model link, (a) host bus is running on
emulator, (b) device controller is running on emulator

Fig. 2.30 Property
coverage example
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Concept: Check the data are available at the right time around the clock edge
signal through static timing calculation.
Technique: Delay Calculation R, C=f(Area).

Hierarchical analysis is based on timing models for blocks

Notes: STA does not check functionality.

. Linting tools

Linting tools are widely used to check the HDL syntax before synthesizing it.
The input to the linting tool is HDL source and the output is warning and error
messages. Linting tools do not detect functional bugs. And they do not need
stimulus [29]. They targets:

* Unsynthesizable constructs.

e Unintentional latches.

e Unused declarations.

* Driven and undriven signals.

* Race conditions.

* Incorrect usage of blocking and non-blocking assignments.
* Incomplete assignments in subroutines.

* Case statement style issues.

* Out-of-range indexing.

2.3.2 ASIC-Based IP Verification

It is called physical verification and it includes [30]:

1.

Design rule checking (DRC):

DRC checks for if layout complies with foundry rules that is if the layout will
be manufacturable. Typically this will have width check, density check, spacing
checks, overlap checks, extension checks, etc.

. Electrical rule check (ERC):

Checks for no short contacts, no floating points, etc.

. Layout vs. Schematics (LVS):

LVS checks if the layout matches with the reference. In case of full-custom,
the reference is spice netlist which is verified for functionality before getting into
layout.

. Post-layout simulation:

Add the parasitics extracted to the model and resimulate it to make sure that
its functionality is still ok.
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2.3.3 PCB-Based IP Verification

After drawing the schematic of your circuit and verifying its functionality using any
circuit simulator like spice, and after implementing it on PCB, you can verify it
using these tips:

1. To perform the PCB verification test, compare the PCB with the layout. During
this stage, you might also want to test the connectivity of each traces to ensure
no broken traces by using the diode function in the multimeter especially those
with buzzer sound. This will ease the verification process as once we hear the
buzzer sound, you will know that the trace is connected from one end to another.

2. To check for shorts, look at any suspicious traces that are too close and test using
diode function in the multimeter as well. This time, if your buzzer sounds, then
you know there is an unwanted shorts [31].

2.4 IP Optimization

The optimization objective is to reduce area, delay, latency, and power and to
increase performance and speed to meet the requirement.

2.4.1 FPGA-Based IP Optimization

To optimize an FPGA-based IP, we have three directions [5]:

1. Compilation time optimization.
2. Maximum frequency optimization.
3. Following some RTL design tips.

2.4.1.1 Compilation Time Optimization

Best practice design methodology

* Do not use long loops.

* Store large data in memory not in a register.

* Reduce the use of power “**” and the division “\”, instead use log and shift right.

* Do not write long ternary statement “()? : () ?: () ?....” This very Verilog-based
designs.

* Use 2D memory instead of 1D memory as 2-D memory reduce the compile as it
is mapped directly to the memory blocks not to the logic.
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Use of the latest computer technology
Parallel (distributed) compilation, use dual or more core feature.
Place-and-route algorithm improvements

Improve the place-and-route algorithms in the CAD tool development.

2.4.1.2 Maximum Frequency Optimization

Best practice design methodology

1.

W

Make long “Assign” in a clock statement (Pipelining). This is for Verilog-based
designs. Note that removing clk cycle to improve latency is easier than inserting
one to improve pipelining.

Initialization of all uninitialized registers.

Using of linting tools such as 0-IN from Mentor Graphics.

Make the design under test (DUT) works with posedge clock or negedge clock
only, not a mix of them to avoid the half-cycle path. half-cycle path is a path
where the data is launched by a flip-flop (FF) on posedge of a clock and captured
by a FF on negedge, hence the time available is only half a cycle instead of full
cycle where both FF are working on posedge.

2.4.1.3 Follow Some RTL Design Tips

1.

2.

3.

4.

Partition a large memory into several small blocks

For example, Questa/Modelsim maximum limit is 2G addresses per memory,
so you need to divide the memory if it is higher than 2G as depicted in Fig. 2.31.
Clock gating

The concept of clock gating is shown in Fig. 2.32.
Resetting

For proper operation we must reset all the registers into the reset process.
FSM coding style

The explicit, naive style FSM is better than Mealy or Moore machines as
these machines have two distinct disadvantages (Fig. 2.33): (1) they may end
with long combinational paths as they don’t have output registers. (2) Even
worse, if the coding is not done properly latches could be introduced and there
will be mismatches between simulation and emulation. So, we strongly recom-
mend a state machine to use a naive style (Fig. 2.34). This way we will have
registers for the states and the outputs. For granted this ends up with more

Fig. 2.31 Partition a large
memory into several small 2GB

blocks

ace |:>

2GB
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Fig. 2.32 Clock gating p
D Q
always @ (posedge clk) en
if (en)
a<=d; CLK >
x
Assign clkl= clk & en; — b o
always @ (posedge clk1)
if (en) en
g<=d; CLK P
a
Outputs
. ——
Logic b Q
Inputs State Register
CLK —P
b
Logic D Q
Inputs State Register
CLK—)
Outputs

Fig. 2.33 Structures of (a) Moore type FSMs and (b) Mealy type FSMs

registers but it is much, much safer design and it makes it also run at higher
frequency as the paths between registers are shorter [2].

Encoding of FSMs including different encoding styles, the most famous one
is binary encoding. There is also gray encoding and one-hot encoding. Binary
encoding implements very less logic. Also it used minimum number of FFs.
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State Register
CLK

Inputs Logic

Outputs

CLK

Fig. 2.34 Explicit naive style FSM

Possible state values for a 4 state binary state machine (00, 01, 10, 11). Gray
encoding is especially useful when the outputs of the state bits are used
asynchronously. This kind of state coding avoids intermediate logics. For exam-
ple if a state wants to change its state from “01” to “10.” In Gray coding between
state transitions only one bit will change. Possible state values for a 4 state gray
state machine (00, 01, 11, 10).

One-hot encoding uses one flip-flop for each state. For example if there are
10 states in logic then it will use 10 flip-flops. This type of encoding is fast
because only one bit needed to check for each state. It implies complex logic and
more area inside the chip due to more number of flip-flops. FPGAs are “Flip-flop
rich,” therefore one-hot state machine encoding is often a good approach. It also
reduces hardware’s logic switching rate. Possible state values for a 4 state one-
hot state machine (0001, 0010, 0100, 1000), also an example of how to write the
one-hot encoding FSM is shown in Table 2.5.

Choice of an encoding style is depending of the requirements and performance
goals (Table 2.6). Here, one-hot Finite State Machine (FSM) encoding scheme is
being adopted for HDL model. One-hot state machines are typically faster, where
the logic complexity associated to each state gets decreased. For comparison
between binary, gray, and one-hot encoding scheme, one sample state machine
was taken with n states. Verilog code was developed using binary and one-hot
encoding scheme and then was synthesized to evaluate performance and area.
One-hot encoding is a preferred approach if the timing in the output path is critical.
Conversion from Binary Encoding to Gray Encoding is shown in Fig. 2.35 [32].

. Parameterizing

Use parameters as much as possible instead of hard-coded values, as it makes
verification easier. Parameterization means design all features in HDL code and
choose what you want to fabricate. Fixed IP versus parameterized IP is shown
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Table 2.5 One-hot encoding verilog example

case (1’bl)

state [SO]:

if in==1)

next_state [S1]=1"bl;
else

next_state [S2]=1"bl;
state [S1]:

if in==1)

next_state [SO]=1"bl;
else begin

next_state [S2]=1"bl;
state [S2]:

next_state [SO]=1"b1;

Table 2.6 Difference between different FSM encodings

Feature Binary Gray

Number #(flip flops) =log,(#states) | #(flip flops)=log,(#states)

of flip-flops Fewer Fewer

Speed Slower Slower, only one bit is
changed in state transition

Critical path Need more tracking to find | Need more tracking to find

searching critical path during STA critical path during STA

Debug easiness | Tedious to debug
Low power Higher power

Fig. 2.35 Conversion
from binary encoding to

Tedious to debug

Suitable for low-power
design because of low
signal transitions

Input binary

41

One-hot
#(flip flops) =
#(states)

Faster

Easy to find critical
path during STA

Easy to debug
Higher power

Output Gray

gray encoding

A
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b

Fig. 2.36 (a) Fixed IP versus (b) parameterized IP

Fig. 2.37 (a) Speed a
optimization, (b) area
optimization

Critical
Path Logic

Non-Critical
Path Logic

CLK —

in Fig. 2.36. The advantage of parameterization mechanisms over the use of
constants/packages is that parameterization allows the same component to be
used multiple times in a single design with different sets of parameters [33].

6. Speed and area optimization

Keep critical path logic in a separate module, optimize the critical path logic
for speed, and optimize the noncritical path logic for area (Fig. 2.37).

Dynamic Partial Reconfiguration (DPR) is also used to optimize area usage.
With DPR, it is possible to implement different circuits that are not needed at the
same time, and that do not operate simultaneously, on the same FPGA area,
resulting in considerable area savings as depicted in Fig. 2.38. This area is gener-
ally called the reconfigurable region (RR). Whenever the designer wants to
change the implemented circuit, an amount of time is needed to rewrite the con-
figuration memory at runtime and this is called the reconfiguration time [34—-36].
The subsystem that performs the reconfiguration is called the reconfiguration
manager and is generally implemented in software.
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Fig. 2.38 DPR concept, implement different circuits that are not needed at the same time, and that
do not operate simultaneously, on the same FPGA area, resulting in considerable area savings

The configuration memory of the reconfiguration region (RR) consists of
SRAM memory cells that control the content of the lookup tables and the state
of the routing switches. To implement a circuit in the RR, a configuration needs
to be generated that contains the binary values that need to be written in the RR’s
memory cells. Figure 2.39 gives an example that describes the role of configura-
tion memory [37-40].

In conventional DPR systems, a configuration bitstream is generated for every
mode by implementing it separately in the RR, where every RR memory cell
corresponds to a collection of binary values, one value for each mode. When
these binary values are the same, this collection is called a static bit. If they are
not the same, this collection is called a dynamic bit. Memory cells containing a
static bit do not need to be rewritten during runtime.

The DPR design flow methodology framework comprises a set of steps,
which are necessary to implement the proposed multi-mode memory controller’s
applications using DPR as described in Fig. 2.40.

(a) During the initial phase, the static modules and the partial reconfiguration
modules (PRM) are described in HDL language.

(b) The PRMs are synthesized to generate the corresponding netlist for each module.

(c) Perform placement and routing and generation of the full and partial recon-
figuration bitstream.

(d) Merges the full bitstream to generate a final downloadable bitstream.

(e) The final downloadable bitstream is copied onto the compact flash card and the
card is plugged into the FPGA to bring up the design on the next power cycle.

(f) To switch between the different circuits, the reconfiguration manager writes
the reconfigurable region with the appropriate bitstream configuration.
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Truth table for

Y=(@a&b)!C Programmable LUT
y SRAM cells
000 1 1 000 >
0 001 >
001 0
1 010 > y
-
010 ! 1 011 =
011 1 | 100 >
100 1 0 01 >
1 110 =]
101 0
| 1 >
110 1
111 1
1 1 1
a b ¢

Fig. 2.39 An example describes the role of configuration memory [37]

7. Power optimization

* Use gray-coding FSM.

* Use line coding to reduce transitions (8b/10b encoder): reduce a (switching
activity factor).

* Increase data bus width to reduce transfer cycles: reduce a.

2.4.2 Processor-Based IP Optimization

A. Best practice design methodology

1. Do not use long loops.
2. Split logic circuits to shorten the critical path.
3. Choose faster logic circuit architectures.

B. Use of the latest computer technology

1. Parallel (distributed) compilation, use dual or more core feature.
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Fig. 2.40 DPR design flow methodology framework. It comprises a set of steps, which are neces-

sary to implement the proposed multi-mode memory controller’s applications using DPR

2.4.3 ASIC-Based IP Optimization

1. Keep n-devices near n-devices and p-devices near p-devices [1].
2. Keep nMOS near ground and pMOS near V y.
3. Layout of large transistor: large transistors can be viewed as number of parallel
small transistors because as the gate width increases beyond certain limit, the
efficiency of the transistors decreases as poly resistance increases.

4. Metal line bending: use 45° bending not 90° as the effective area of the current

flow through 90° bending is reduced to 50 %.
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5. Put guard rings around differential pairs, n-well, and p-well.

6. If we leave the differential pairs on the edges without dummies, they will see
different surroundings and mechanical stress than the middle ones; with dum-
mies we can avoid this.

7. Use interleaving between transistors so that if a fabrication error happened in a
die, it does not affect the remaining transistors and the chip can remain working
correctly.

8. Global signals should be routed on the top and bottom of layout blocks. Local
signals should be routed through the center of layout blocks.

2.4.4 PCB-Based IP Optimization

1. Separate the digital and analog portions of the circuits (Fig. 2.41).
2. High frequency components should be placed near the connectors (Fig. 2.42).

Fig. 2.41 Separate the
digital and analog portions
of the circuits

Connector

Frequency

Fig. 2.42 High-frequency components should be placed near the connectors
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2.5 IP Protection

Without IP protection, companies can lose revenue and market share.

2.5.1 FPGA-Based/Processor-Based IP Protection

IP vendors are facing major challenges to protect hardware IPs from IP-piracy as,
unfortunately, recent trends in [P-piracy and reverse engineering efforts to produce
counterfeit ICs have raised serious concerns in the IC design community. [P-piracy
can take several forms, as illustrated by the following scenarios:

1. Achip design house buys an IP core from an IP vendor and makes an illegal copy
or “clone” of the IP. The IC design house then sells it to another chip design
house (after minor modifications) claiming the IP to be its own.

2. An untrusted fabrication house makes an illegal copy of the GDS-II database
supplied by a chip design house and then illegally sells them as hard IP.

3. An untrusted foundry manufactures and sells counterfeit copies of the IC under
a different brand name.

4. An adversary performs post-silicon reverse engineering on an IC to manufacture
its illegal clone.

These scenarios demonstrate that all parties involved in the IC design flow are
vulnerable to different forms of IP infringement which can result in loss of revenue
and market share. Hence, there is a critical need of a piracy-proof design flow that
equally benefits the IP vendor, the chip designer, as well as the system designer. A
desirable characteristic of such a secure design flow is that it should be transparent
to the end-user, i.e., it should not impose any constraint on the end-user with regard
to its usage, cost, or performance.

To secure an IP, we need to obfuscate it then encrypt the contents before sending it
to the customer. Obfuscation is a technique that transforms an application or a design
into one that is functionally equivalent to the original but is significantly more difficult
to reverse engineer. So, Obfuscation changes the name of all signals to numbers and
characters combination. The second level is to encrypt the whole files [41, 42].
Although encryption is effective, code obfuscation is an effective enhancement that
further deters code understanding for attackers [43]. Moreover, Watermarking can
be used to protect Soft-IPs [44]. It includes modules duplication or module splitting.

2.5.2 ASIC-Based IP Protection

1. Circuit camouflage: let individual logic cells appear identical at each mask
layer, when in fact subtle changes are present to differentiate logic functions.
Changes are designed so that the reverse engineer is unable to automate cell
recognition [45]. Figure 2.43 Shows an example of unprotected layout and
Fig. 2.44 shows a protected one.
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Fig. 2.43 Unprotected
standard cell layouts the
metal layers are different
and hence it is easy to
differentiate them by just
looking at the top metal
layer [45]

Fig. 2.44 Camouflaged
standard cell layouts. The
metal layers are identical
and hence it is difficult to
differentiate them by just
looking at the top metal
layer [45]

Fig. 2.45 Encapsulate the
PCB into epoxy (black
blobs)

2.5.3 PCB-Based IP Protection

1. Remove the markings from all the major ICs and mark them with in-house part
numbers.

2. Encapsulate the PCB into epoxy (black blobs) as depicted in Fig. 2.45 [46].

3. Add a few fake layers for complexity.

2.6 Summary

This chapter discusses the IP cores life cycle process from specification to produc-
tion which includes four major steps: (1) IP Modeling, (2) IP verification, (3) IP
optimization, (4) IP protection. For IP modeling, four major methodologies are
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introduced which includes: FPGA-based modeling, processor-based modeling,
ASIC-based modeling, and PCB-based modeling. For IP verification, different plat-
forms are presented and analyzed such as simulation, acceleration, emulation, and
prototyping. Moreover, different verification methodologies are introduced such as:
UVM, direct testing, negative testing, software-driven testing, and formal testing. We
presented different methods for IP optimization for the main design methodologies
to improve area, speed, and power. For IP protection, we analyzed different strategies
to perform protection not to make companies lose revenue and market share.
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Chapter 3
Analyzing the Trade-off Between Different
Memory Cores and Controllers

3.1 Introduction

With the move to multicore computing, the demand for memory bandwidth grows
with the number of cores. It is predicted that multicore computers will need 1 TBps
of memory bandwidth. However, memory device scaling is facing increasing chal-
lenges due to the limited number of read and write cycles in flash memories and
capacitor-scaling limitations for DRAM cells. Therefore, memory bottleneck is one
of the main challenges in modern VLSI design. Microprocessors communicate with
memory cores through memory controllers (Fig. 3.1). A detailed figure is shown in
Fig. 3.2 [1-6].

Modern systems have complex memory hierarchies with diverse types of volatile
and nonvolatile memories such as DRAM and flash. It is the task of the memory
controller to manage these devices. To improve this communication as a solution for
the memory bottleneck, the memory cores and memory controllers can be improved.
The most famous existing memory cores—based solutions are to increase the amount
of on-chip memory elements. However, this solution is expensive, and the most
famous existing memory controllers—based solutions are to improve the controller
architectures and scheduling algorithms.

Designing memory controllers is challenging in terms of performance, area,
power consumption, and reliability. Since DRAM and NAND Flash scaling will
be at risk as technology scales down to 20 nm, various technological innovations
will be required to fulfill technological demands [7]. To address these challenges,
different new memory cores architectures and protocols are analyzed in this
chapter.
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3.2 Memory Cores

Memory cores and most famous memory controllers are summarized in Fig. 3.3,
where memories are classified into two main categories [8]:

1. HDD: Hard disk driver (HDD) utilizes ultrasophisticated magnetic recording
and playback technologies. They are used as the primary data storage compo-
nents in notebooks, desktops, servers, and dedicated storage systems.

2. SSD: Solid-state driver (SSD) is a data storage device that uses nonvolatile
memory (ROM, EEPROM, and Flash) and volatile memory (SDRAM, DRAM)
to store data.

Comparison between HDD and SDD are shown in Table 3.1, where SSD are
showing better performance. HDD maximizes GB, not performance. In addition,
the difference is shown in Fig. 3.4. Noting that, the flash-based memories are based
on floating-gate technology as depicted in Fig. 3.5, how it works is shown in the
following steps:

1. Alarge voltage difference between the drain and the source creates a large elec-
tric field between the drain and the source.
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Fig. 3.3 Memory cores and memory interface, for example eMMC is NAND flash-based storage

chip that features eMMC interface instead of the typical NAND flash or ONFI interface

Table 3.1 Comparison
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2. The electric field converts the previously nonconductive poly-Si material to

a

conductive channel, which allows electrons to flow between the source to the

drain.

3. The electric field caused by a large gate voltage is used to bump electrons up

from the channel onto the floating gate.

4. The number of electrons on the floating gate affects the threshold voltage of the

cell (Vt). This effect is measured to determine the state of the cell.

5. The threshold voltage can be manipulated by the amount of charge put on the

floating gate of the Flash cell.
6. Placing charge on the floating gate will increase the threshold voltage of the ce
When the threshold voltage is high enough, around 4.0 V, the cell will be read

11.
as

programmed. No charge, or threshold voltage <4.0 V, will cause the cell to be

sensed as erased.
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Fig. 3.4 Hard disk drive versus solid-state drive
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Fig. 3.5 (a) Floating-gate memory cell and (b) its schematic symbol

A comparison between different memories cores is shown in Table 3.2 [9]. The
flash cell can be classified into (Fig. 3.6) [10]:

1. Multi-level cell NAND (MLC): stores four states per memory cell and enables
two bits programmed/read per memory cell.

2. Single-level cell NAND (SLC): stores two states per memory cell and enables
one bit programmed/read per memory cell.

A computer system contains a hierarchy of storage devices with different costs,
capacities, and access times. With a memory hierarchy, a faster storage device
at one level of the hierarchy acts as a staging area for a slower storage device at
the next lower level. Software that is well written takes advantage of the hierar-
chy accessing the faster storage device at a particular level more frequently than
the storage at the next level. Understanding the memory hierarchy will result in
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Fig. 3.7 An example of memory hierarchy

better performance of applications. The memory hierarchy can be summarized in
Fig. 3.7. It starts with register file, SRAM, DRAM, then main memory or hard disk.
Moreover, the comparison is shown in Table 3.3.
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Table 3.3 Memory technology comparison

Access delay Cell area (pm?) Cells/mm? (Mb)
Register <1 Cycle 0.7 1.5
SRAM 1 Cycle 0.4 2.5
DRAM 20-50 Cycle 0.04 15
Flash Read: 50 cycles 0.02 50
Write: 500 cycles
Hard disk 5% 10° Cycles 0.004 250

3.3 Why Standards?

SoC components (IPs) have an interface to the outside world consisting of a set of
pins; it is responsible for sending/receiving addresses, data, and control. Number
and functionality of pins must adhere to a specific interface standard. Standardization
is important for seamless integration of SoC IPs—helps avoid integration
mismatches [11]:

— E.g., 1—connecting IP with 32 data pins to a 16 bit data bus.
— E.g., 2—connecting IP supporting data bursts to a bus with no burst support.

It is also important because mismatches require development of “logic
wrappers” at IP interfaces.

— To ensure correct data transfers.
— Time consuming to create, reduce performance, take up area.

Interface standards define a specific data transfer protocol to decide number and
functionality of pins at IP interfaces and make it easy to connect diverse IPs quickly.
There are two categories of standards for SoC communication:

¢ Standard bus architectures

— Define interface between IPs and bus architecture.
— Define at least some specifics of bus architecture that implements data trans-
fer protocol.

¢ Socket-based bus interface standards

— Define interface between IPs and bus architecture.
— Freedom w.r.t choice and implementation of bus architecture.

Ideally, designers want one standard to interconnect all IPs. In reality, several
competing standards have emerged.

JEDEC: is an organization works as a Leading developer of standards for the solid-
state industry [12].
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3.4 Memory Controllers

There is a great variety of interfaces and protocols, which provide access to the
internal memory cores in different ways to read, write, or erase. Referring to
Fig. 3.3, examples of Flash-based Memory controllers are EMMC, OneNAND, and
ONFI. Examples of DRAM-based memory controllers are DDRx, LPDDx.

The main aim of the memory controller is to provide the most suitable interface
and protocol between the host and the memories and to efficiently handle data,
maximizing transfer speed, data integrity and information retention (conservation
of data with time). The main features are summarized in Table 3.4. If we compare
the architecture of these different controllers, we realize that their architecture is
common in many things. They mainly differ in the performance and the features.
The following section will describe the most common memory controllers.

1. eMMC
The eMMC is a managed memory capable of storing code and data. It is spe-
cifically designed for mobile devices. The eMMC is intended to offer the perfor-
mance and features required by mobile devices while maintaining low power
consumption. The eMMC device contains features that support high throughput
for large data transfers and performance for small random data more commonly
found in code usage. It also contains many security features. eMMC
communication is based on an advanced 10-signal bus. An example of eMMC
architecture is shown in Fig. 3.8 [13].
2. OneNAND
Samsung’s OneNAND meets the memory-hungry needs of next-generation
devices by providing a single-chip flash that offers the ultrahigh density of NAND
with the simplified interface neither of NOR at very attractive price points.
OneNAND can achieve up to 108 MB/s read performance to optimize application

Table 3.4 Memory controller features

Features Explanation

Topology Point to point, or multi-master/multi-slave

Physical interface (#pins) | The physical interface with other circuits

Memory organization The min unit for erase, write protection, read, write

Memory partitions Single partition or multiple

Initialization process How to start the memory controller operation? Negotiate different
speeds, voltages and single/dual data rates, booting or/not

Command sets To read, write, multiple read, multiple write, erase, write
protection, partition, secure

Responses How the card response to the host commands

Internal registers Contains the initializations and the memory features

Data rate The data can be DDR or SDR

Timing The time between commands, responses, and data

Performance Max clock

Reliability ECC or not
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3.

functionality. It is available in densities from 256 Mb to 8 GB. With OneNAND,
designers can use their existing chipset’s NOR interface to communicate directly
with the NAND flash memory, obviating the need for a separate NAND device.
In addition, OneNAND’s fast write-speed increases performance, which is
extremely difficult to attain with NOR flash alone. OneNAND’s compact size and
range of features make it the ideal choice for: Handset, digital cameras, embed-
ded solutions. An example of OneNAND architecture is shown in Fig. 3.9 [14].
DDR3

The third generation of Dual Data Rate (DDR) Synchronous DRAM memory
delivers significant performance and capacity improvements over older DDR2
memory. HP introduced DDR3 memory with the G6 and G7 ProLiant servers,
coinciding with the transition to server architectures that use distributed memory
and on-processor memory controllers. DDR3 continues to evolve in terms of
speed and memory channel capacity, and the new HP ProLiant Gen8 servers
fully support these improvements. An example of DDR3 architecture is shown
in Fig. 3.10 [15].
HMC

HMC uses 3D single packaging of 4 or 8 DRAM memory dies and one logic
die collected together using through-silicon vias (TSV) and microbumps with
smaller physical footprints. HMC exponentially is more power efficiency and
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energy savings, utilizing 70 % less energy per bit than DDR3 DRAM technology.
A single HMC can provide more than 15x the performance of DDR3 module,
which increases bandwidth. HMC reduced latency with lower queue delays and
higher bank availability. It can keep up with the advancements of CPUs and
GPUs. HMC uses standard DRAM cells but its interface is incompatible with
current DDR2 or DDR3 implementations. It has more data banks than classic
DRAM of the same size. HMC memory controller is integrated into memory
package as a separate logic die. The logic base manages multiple functions for
HMC, like all HMC I/O, mode and configuration registers and data routing and
buffering between I/O links and vault. A crossbar switch is an implementation
example to connect the vaults with I/O links. The external I/O links consist
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6.

of multiple serialized 4 or 8 links, each link with a default of 16 input lanes and
16 output lanes for full width configuration, or 8 input lanes and 8 output lanes
for half width configuration as shown in Fig. 3.11 [16].

. WidelO

WideIO mobile DRAM uses chip-level dimensional (3D) stacking with
through-silicon vias (TSV) interconnects and memory chips directly stacked
upon a system on a chip (SOC). WideIO DRAM major advantage over its prede-
cessors (such as LPDDR DRAM) is that, it offers more bandwidth at lower
power. WidelO is the first interface standard for 3D die stacks and offering a
compelling bandwidth and power benefit. WidelO is particularly suited for
applications requiring increased memory bandwidth UP to 17 GBps Such as 3D
Gaming, HD video etc. WidelO will provide the ultimate in performance, energy
efficiency and small size for smart phones, tablets, handheld gaming consoles,
and other high-performance mobile devices. Given the ever-growing hunger for
memory bandwidth and the need to reduce memory power in many applications;
WidelO is the first standard for stackable WideIO DRAMs. This standard widens
the conventional 32 bit DRAM interface to 512 bits. Memory diagram for
WidelO is shown in Fig. 3.12 [17].

ONFI

ONFI stands for Open NAND Flash Interface. Early NAND Flash devices
from different manufacturers use similar interface but an open standard did not
exist. As a result, subtle differences exist among devices from different vendors.
ONFI standard aims to provide a common standard, so different device can
be used interchangeably and sets the stage for future standard NAND Flash
development as shown in Fig. 3.13. The lack of a standard caused serious design
problems like host systems had to accommodate differences between vendors’
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devices and adapt to generational changes in parts from a single vendor. All of
this made incorporating new or updated NAND Flash components extremely
costly, often requiring extensive hardware, firmware, and/or software changes
and additional testing which slowed time to market. ONFI works to solve all
these issues by standardizing the NAND Flash interface-reducing vendor and
generational incompatibilities and accelerating the adoption of new NAND
products [18].
UFS

UFS is most advanced specification for embedded and removable flash
memory-based storage because it includes the feature set of eMMC specification
as a subset. It also references several other standard specifications by MIPI
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(M-PHY and UniPro specifications) and INCITS T10 (SBC, SPC, and SAM
specifications) organizations. The UFS interface is a universal serial communi-
cation bus, based on MIPI M-PHY standard as physical layer for optimized per-
formance and power. UFS references the INCITS T10 SAM model for ease of
adoption. The UFS Top level Architecture Consists of three main layers as shown
in Fig. 3.14. First layer is called application layer which consists of UFS com-
mand set layer (UCS) which handles normal commands, device manager which
has two jobs which are device level operations such as sleep, and power-down
management, and device-level configurations such as set of descriptors and han-
dling query request. Task manager handles command queue control. UCS estab-
lishes the method of data exchange between host and device and also provides
device management capability. Second layer is UFS transport protocol layer
(UTP) which services the higher layers and its mission is to encapsulate the
protocol into appropriate frame structure for the lower layer. Third layer is UFS
interconnect layer (UIC) [19].
8. HBM

HBM (High-Bandwidth Memory) is a new type of DRAM-based memory chip
with low power consumption, ultrawide communication lanes and a revolutionary
new stacked configuration. HBM uses 128-bit wide channels. It can stack up to
eight of them for a 1024-bit interface. The total bandwidth ranges from 128 to
256 GB/s. Each memory controller is independently timed and controlled. Future
GPUs built with HBM might reach 1 TB/s of main memory bandwidth. HBM
designed for high-performance GPU environments as it is cheaper than HMC [20].
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3.5 Comparison Between Different Memory Controllers

There are completely different memory organizations which develop different
protocols to enable the designer to pick up the most efficient and suitable one for
his application.

For Flex-OneNAND, the building block unit is 4 KB page, which has main area
and spare area. The 4 KB page is divided into eight sectors each of which is 512
bytes for main and 16 bytes for spare. ONFI has eight targets, each target has arbi-
trary multiple Logic units (LUNs). Each LUN consists of arbitrary number of
blocks. Each block consists of number of pages. Each page consists of optional
partial pages which are the smallest unit to program or read. LUN is minimum
unit to execute command and report status. Block is the smallest erasable unit.
eMMC is divided into write protect groups, each one consists of erase groups, and
each erase group has write blocks with 512 bits for each. HMC is organized into
vaults; each vault has 4 or 8 partitions according to the number of memory dies.
One partition is multiple of 16 MB banks. Each four vaults called quadrant. WidelO
consists of four memory dies which are called stack. Each die consists of four inde-
pendent channels of 128 bidirectional data bits. Each channel has four Banks, each
bank is 512 MB. The interface consists of 300 (microbump) pads per channel. UFS
is consists of eight configurable Logic Units (LU) and four well-known logical
units. LU is an externally independent addressable entity processes the commands
and performs task management functions. Each LU can be configured as boot LU
with maximum of two. The well-known logic units are: Boot which is virtual refer-
ence to the actual LU containing boot code, REPORT LUNs which provides the LU
inventory, UFS device which provides UFS device level interaction (i.e., power
management control), and RPMB supports RPMB function with its own indepen-
dent processes and memory space.

HMC and WidelO are 3D protocols. The 3D design provides 15 % performance
improvements due to eliminated pipeline stages and 15 % power saving due to elim-
inated repeaters and reduced wiring compared to 2D. The stacked security structure
complicates attempts to reverse the circuitry.

The protocols support two main types of memory cells which are flash and
DRAM. Flash memory cells have no power for storing data and hold a lot more data
than DRAM but it is slower than DRAM. For flash type, SLC and MLC are both
NAND-based nonvolatile memory technologies. MLC offers a larger capacity twice
the density of SLC, but SLC provides an enhanced level of performance in the form
of faster write speeds. The most powerful feature in Flex-OneNAND and ONFI is
the combination between SLC and MLC.

Partitioning the memory array is playing a major role in specifying the functional-
ity of each part of memory. Flex-OneNAND supports three memory partitions which
are one-time programmable partition (OTP), first block OTP, and boot partition.
eMMC is divided into two boot area partitions which are used to access and modifying
boot data, one RPMB partition to store data in an authenticated and replay protected
manner through HMAC-SHA algorithm which supports protection that requires pass-
words and keys for access, four general purpose partitions to store sensitive data or for
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other host usage models and enhanced user data area. Boot and RPMB partitions are
read only programming, but general purpose area and enhanced user data area parti-
tions are one-time programmable. In UFS, each LU can be differentiated over the
others with many types during the system integration. The memory types are default
type for regular memory characteristics, system code type for a logical unit that is
rarely updated (e.g., system files or binary code executable files, .. ., etc.), Nonpersistent
type is used for temporary information and enhanced memory type is left open in
order to accomplish different needs and vendor-specific implementations.

Flex-OneNAND supports only three simple modes. Limited-based command
mode which is used for booting operation. Register-based mode which is used for
command execution. Idle mode is used when the device is waiting for host request.
ONFI simply supports only two modes, active mode which is used for commands and
operations execution and the other is idle mode which immediately entered after
power on. eMMC cycle life time is divided into modes. First, eMMC optionally
passes through boot mode, then passes through identification mode to validate opera-
tion voltage range and access mode, identifies the device and assigns a relative device
address (RCA) on the bus and finally passes through data transfer mode executing any
commands forwarded from the CPU. eMMC supports optional interrupt mode by
specific command. Interrupt mode reduces the polling load for CPU hence the power
consumption. HMC life cycle consists of multiple modes as initialization mode to
prepare HMC for any request or data transfer, active mode where the HMC device is
preparing to execute any request and transfer any data, sleep mode where it sets each
link into lower power state by inverting its power state management pin from high to
low. Then HMC enters down mode which is lower power state than sleep mode by
disabling both serializer and deserializer circuitry and the link’s PLLs. WidelO has
five modes. First mode is idle mode in which the banks have been precharged.
Precharge is to deactivate an open row in one or all banks. Banks cannot be used again
after certain time. After precharging a bank in idle state requires an active command
before any read or write commands forwarded to the bank. Second, active mode is to
activate row of a given bank to read or write data. Power-down mode is supported for
each channel circuit except for clock (CK) and clock enable (CKE), where they are
gated off to reduce power consumption. The device enters power-down mode when
CKE is low and exits when CKE is high. In deep power-down, all channels on that
slice will exit deep power-down mode. The reset signal is used because reset signal is
per memory die not per channel. UFS Device supports seven power modes which are
controlled by the START STOP UNIT command and some attributes.

In order to minimize power consumption in a variety of operating environments,
UFS supports four basic power modes which are Active, Sleep, idle, and power-
Down. Also, it supports three transitional modes to facilitate the change from one
mode to the next. UFS can support up to 16 active configurations. Each one has its
own current profile. The host can choose from either predefined or user defined cur-
rents profiles to deliver the highest performance.

In Flex-OneNAND, after boot code is loaded, Boot buffer is always locked. For
NAND Flash array protection, device has hardware and software write protection.
Hardware write protection is implemented by executing a “Cold” or “Warm” reset.
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Software write protection is implemented by specific commands. The write protect
signal in ONFI disables Flash array program and erase operations. To allow eMMC
to protect data against erase and write; the eMMC supports three levels of write pro-
tection commands such as permanent or temporary or power-on protection applying
for the entire device or for specific segments. In WidelO, Input data mask (DM) is
the input mask signal for write data. Input data is masked when DM is sampled high.

Flex-OneNAND supports 31 registers which are utilized by the device mainly
for configuration of the device and status of the operations done by the device. In
ONFI, parameter pages are used to describe NAND capabilities. Parameter page
solves inconsistencies among devices by describing revision info, features, and
organization timing. eMMC has six different registers with different sizes. These
registers include configuration bytes and status bytes. The UFS software uses 37
registers that exist in the host side to control the device through HCI interface. HMC
has 15 registers that consist of configuration registers and status registers with the
same size of 32 bits.

Commands of these protocols indicate the major features. So in ONFI, the major-
ity of commands are optional because all NAND Flash devices are not created
equal, differences include architectural, performance, and command set, so ONFI
helps to address many of these through optional commands and optional parameter
pages. In eMMC, there are major 43 usable commands including read commands,
write commands, erase commands, sleep command, and interrupt command. HMC
uses 23 different commands concentrating on read and write commands only. The
command or request is sent in shape of packet (multiple of 128 bits) associated with
the data; the same as the response. Commands and responses are serialized and
transmitted across the lanes of links. Every command and response contains header
and tail which indicates important fields for example: address, command number,
and CRC.

To know the echo of commands, there must be a response or status register to be
checked. In Flex-OneNAND, response is checked from status registers after execu-
tion of command. ONFI Reads status and retrieves the status value for the last oper-
ation issued. In eMMC there are five responses vary from command to another by
their included fields. eMMC includes some status bits like error switch bit. HMC
has also a response packets and status register for CPU to check the situation of
HMC. For WidelO, status register read (SRR) can only be issued after power up and
initialization sequence are completed. SRR provides a method to read registers from
WidelO DRAM. But, in UFS, UTP delivers commands, data and responses as stan-
dard packets over the UniPro network. The UFS transactions will be grouped into
data structures called UFS protocol information unit (UPIU). There are UPIUs
defined for commands, responses, and data in and data out. A response UPIU con-
tains a command-specific operation status and other response information. This rep-
resents the status phase of the command.

The main comparison between the six memory controller architectures, which is
based on the most important features that microelectronics designers are interested
in, is summarized in Tables 3.5 and 3.6.
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Fig. 3.17
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3.6 New Trends in SoC Memories

SRAM/DRAM is fast but has large leakage of power and is volatile. Floating-
gate-based Flash is nonvolatile but exhibits low write speed and limited write endur-
ance. Therefore, recent research focuses on hybrid memory structures to get the
advantages of both. From the prospective of system level, 3D integration can be
employed to integrate hybrid memory components with high density, where it can
also reduce the distance between components to few micrometers instead of few
centimeters. Emerging memory technologies are making steady progress towards
product introductions, including phase-change memory (PCRAM), resistive memory
(ReRAM), and magnetic memory (MRAM). The new trends in memories are sum-
marized in Table 3.7. They provide higher density, lower latency, lower power per bit
for both read and write operation, and high read/write/erase processing speed [21].

Menmristor is built from titanium dioxide (TiO,) and platinum (Pt) as depicted in
Fig. 3.22. When the charge flows in one direction through a circuit, the resistance of
the memristor increases. The resistance decreases when the charge flows in the
opposite direction in the circuit. If the applied voltage is turned off, thus stopping
the flow of charge, the memristor remembers the last resistance that it had.
When the flow of charge is started again, the resistance of the circuit will be what it
was when it was last active. Its main advantage is that program power is low and its
main disadvantage is that platinum is expensive [22].

FeRAM replaces dielectric by ferroelectric material. Its performance is close to
DRAMs and it does not need refreshing process [23].

Memory hierarchy requires new architecture and technology due to increasing
demand of bandwidth and low power consumption. 3D Memory is an emerging
memory technology, compared to existing memory interface (Fig. 3.23), TSV-based
3D technology provides better bandwidth and less power consumption. Lower
power consumption is achieved by lower capacitance of TSV [24].

3.7 Summary

In this chapter, we present most famous memory cores and controllers and analyze
the trade-off between them. The importance of standards is discussed. A descriptive
comparison between various on-chip memory protocols is made. Comparing the
architecture of these different controllers, it is realized that their architecture is com-
mon in many things. They mainly differ in the performance and the features.
Moreover, we introduce new trends in SoC memories such as PCRAM, ReRAM,
MRAM, and 3D memory.
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Table 3.6 Comparison between the most common architecture and the most famous memory
controller protocols

Features Flex-OneNAND | ONFI
Read v 4
Write

Write protection

5
=
a

HMC | WidelO |UFS
4
v

SNISIS
SNISIS
ANANANAN

Erase v

Background operations

High-priority interrupt

Context management
Data tag mechanism

ANANENENENANENANEAN
ANANANANENANENANEN

Power off notification

Hibernate
Lock/unlock
Encryption

SIS
AN
AN

Packed operations
Command queuing v
Retry v
Partition v v
Copy-back v 4
Log
Boot v v v
Reset v v v v v
Inquiry

Power management
Sleep v v v
Power down v v v
Deep power-down v

ANANAN

Interrupt v
Auto refresh

Precharge

SIS

Partial array self-refresh
Parallel operation 4 v

Table 3.7 New trends in SoC memories

CBRAM Conductive bridge

ReRAM Resistive

PCRAM Phase change

FeRAM Ferroelectric

ST-MRAM | Spin-torque magnet

Memristor | It is called the fourth element (change of flux with charge) as depicted in Fig. 3.21




3.7 Summary

4y
de = vdt ;
Resistor ¢ Capacitor
dv = Rdi dq = Cdv
v
i): dq = idt q
A r Y
1, 'J_LI_LI—LI—
Inductor Memristor
do = Ldi v de = Mdq
Fig. 3.21 The fourth element
I D i
— ;
' w : '
Doped | Undoped TiO,
Tio, !
Fig. 3.22 Memristor structure
Wire-Bond
TSV
[ DR AM | DRAM
I Caclie | ¢
uP
I o |
3D-DRAM 2.5D/ eDRAM 2D-DRAM

Fig. 3.23 3D DRAM as compared to 2D and 2.5 D DRAM

75



76

3 Analyzing the Trade-off Between Different Memory Cores and Controllers

References

(o]

10.

11.

12.
13.
14.
15.
16.

17

23.
24.

. Akesson B, Huang P, Clermidy F, Dutoit D (2011) Memory controllers for high-performance

and real-time MPSoCs. In: Proceedings of the seventh IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, ACM, New York

. Clermidy F, Darve F, Dutoit D (2011) 3D Embedded multi-core: some perspectives. In:

Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, Grenoble

. Weis C, Wehn N, Igor L, Benini L (2011) Design space exploration for 3D-stacked DRAMs.

In: Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, Grenoble,
pp 1-6

. Min S, Nam E (2006) Current trends in flash memory technology. In: Asia and South Pacific

Conference on Design Automation (ASPDAC), IEEE, Yokohama

. Loi L, Benini L (2010) An efficient distributed memory interface for many-core platform with

3D stacked DRAM. In: Proceedings of Design, Automation Test in Europe Conference
Exhibition (DATE), Germany, pp 99-104

. Zhang T, Wang K, Feng Y, Song X (2010) A customized design of DRAM controller for on-

chip 3D DRAM stacking. In: IEEE Custom Integrated Circuits Conference (CICC), San Jose

. Jacob B (2008) Memory systems cache, DRAM, disk. Morgan Kaufmann, Burlington
. http://www.micron.com/~/media/Documents/Products/Presentation/ WinHEC_Cooke.pdf
. Zhang Y, Swanson S (2015) A study of application performance with non-volatile main mem-

ory. In: Proceedings of the 31st IEEE Conference on Massive Data Storage, IEEE
http://download.microsoft.com/download/d/f/6/df6accd5-4bf2-4984-8285-f4f23b7b1£37/
winhec2007_micron_nand_flashmemory.doc

Pasricha S, Dutt N (2008) On-chip communication architectures: system on chip intercon-
nects. Morgan Kaufmann, Burlington

https://www.jedec.org/

http://www.jedec.org/sites/default/files/docs/JESD84-B42.pdf
http://www.datasheetcatalog.org/datasheets2/12/1248447_1.pdf
http://www.jedec.org/standards-documents/docs/jesd-79-3d

Hybrid memory cube (2013) Technical Report Revision 1.0, HMC. www.hybridmemorycube.
org. Accessed January 2013

. Wide I/O single data rate, Technical Report Revision 1.0, Wide I0. Accessed December 2011
18.
19.
20.
21.
22.

www.onfi.org
http://www.jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs
https://www.jedec.org/standards-documents/docs/jesd235

Xie Y (2014) Emerging memory technologies. Springer, New York

Kavehei O, Igbal A, Kim YS, Eshraghian K, AL-Sarawi SF, Abbott D (2010) The fourth ele-
ment: characteristics, modelling, and electromagnetic theory of the memristor. Proc Roy Soc
A Math Phys Eng Sci 466:2175-2202

Lacaze P-C, Lacroix J-C (2014) Non-volatile memories. Wiley, Hoboken

Kim C, Lee H-W, Song J (2014) High-bandwidth memory interface. Springer, New York


http://www.micron.com/~/media/Documents/Products/Presentation/WinHEC_Cooke.pdf
http://download.microsoft.com/download/d/f/6/df6accd5-4bf2-4984-8285-f4f23b7b1f37/winhec2007_micron_nand_flashmemory.doc
http://download.microsoft.com/download/d/f/6/df6accd5-4bf2-4984-8285-f4f23b7b1f37/winhec2007_micron_nand_flashmemory.doc
https://www.jedec.org/
http://www.jedec.org/sites/default/files/docs/JESD84-B42.pdf
http://www.datasheetcatalog.org/datasheets2/12/1248447_1.pdf
http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://www.hybridmemorycube.org/
http://www.hybridmemorycube.org/
http://www.onfi.org/
http://www.jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs
https://www.jedec.org/standards-documents/docs/jesd235

Chapter 4
SoC Buses and Peripherals: Features
and Architectures

4.1 Introduction

Components connected on a Printed Circuit Board (PCB) or System-on-Board
(SoB) can now be integrated onto single chip, hence the development of System-on-
Chip (SoC) design as depicted in Fig. 4.1 [1]. SoC improves the bandwidth. The
leveraged internal/on-chip bandwidth versus external/off-chip bandwidth as shown
in Fig. 4.2.

SoC is not only a chip it is a system, where, SoC=Hardware + Software as
depicted in Fig. 4.3.

The SoC Hardware includes:

— Embedded processor

— ASIC Logics and analog circuitry
— Embedded memory

— Peripherals

The SoC Software includes:

— OS/RTOS (Middleware, Device Drivers)
— Applications (C/C++, assembly)

One solution to the design productivity gap is to make ASIC designs more stan-
dardized by reusing segments of previously manufactured chips. These segments
are known as “blocks,” “macros,” “cores,” or “cells.” The blocks can either be devel-
oped in-house or licensed from an IP company. Cores are the basic building blocks.
The cores are communicating with each other through buses and with the outer

world through peripherals [2-6].

© Springer International Publishing Switzerland 2016 77
K.S. Mohamed, IP Cores Design from Specifications to Production,
Analog Circuits and Signal Processing, DOI 10.1007/978-3-319-22035-2_4
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b

Processor

RTOS

Configurable Hardware Peripheral

Fig. 4.1 (a) SoB versus (b) SoC

a
- Off-Chlp bus -
——  32-bits 4

Fig. 4.2 (a) SoB bandwidth versus (b) SoC bandwidth

Processors

RTOS

Configurable Hardware Peripherals

Fig. 4.3 An example of SoC architecture

4.2 SoC Buses and Peripherals Background

The SoC consists of buses and peripherals as depicted in Fig. 4.4, where buses are
for communication between different blocks inside the chip and peripherals for
communications with outer world. Buses are the simplest and most widely used
SoC interconnection networks to connect between different IPs in the SoC [7].
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Fig. 4.4 SoC buses and

peripherals

Table 4.1 Buses terminology

MIPS BIOS

BRIDGE

Bus terminology

Explanation

Master (or initiator)

IP component that initiates a read or write data transfer

Slave (or target)

IP component that does not initiate transfers and only responds
to incoming transfer requests

Arbiter Controls access to the shared bus

Uses arbitration scheme to select master to grant access to bus
Decoder Determines which component a transfer is intended for
Bridge Connects two buses

Acts as slave on one side and master on the other

Table 4.2 Bus signals

Signal Explanation
Address Carry address of destination for which transfer is initiated
Can be shared or separate for read, write data
Data Carry information between source and destination components
Can be shared or separate for read, write data
Choice of data width critical for application performance
Control Requests and acknowledgements

Specify more information about type of data transfer

The bus is a collection of signals (wires) to which one or more IP components
(which need to communicate data with each other) are connected. Only one IP
component can transfer data on the shared bus at any given time. The most impor-
tant bus terminologies are summarized in Table 4.1. A bus typically consists of three
types of signal lines summarized in Table 4.2.
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To implement SoC buses we need standards to make it easy to connect diverse
IPs quickly, where standards important for seamless integration of SoC IPs—helps
avoid integration mismatches, where mismatches require development of “logic
wrappers” at IP interfaces to ensure correct data transfers and it consumes time to
be created, reduces performance, and takes up area.

— E.g., 1 —connecting IP with 32 data pins to a 30 bit data bus.
— E.g., 2—connecting IP supporting data bursts to a bus with no burst support.

Two categories of standards for SoC communication are existing:
1. Standard bus architectures:

* Define interface between IPs and bus architecture.
* Define at least some specifics of bus architecture that implements data trans-
fer protocol.

2. Socket-based bus interface standards:

* Define interface between IPs and bus architecture.
* Freedom w.r.t choice and implementation of bus architecture.

4.3 SoC Buses: Features and Architectures

The most famous features and architectures of SoCs are summarized in Table 4.3
and the details are below [1, 8, 9].

4.3.1 SoC Bus Topology

1. Point to point:

* Only one master connected to one slave (Fig. 4.5).

* Simple in design.

* Optimal in terms of bandwidth, latency, and power.

e If number of links increases, the area increases and faces routing problems.

2. Unilevel shared bus:
* All masters and slaves share the same bus as depicted in Fig. 4.6.
3. Hierarchical bus:

e Improves system throughput.
* Multiple ongoing transfers on different buses as depicted in Fig. 4.7.
4. Ring:
All masters and slaves are connected in a ring manner as depicted in Fig. 4.8.
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Fig. 4.5 Point to point
Masterl Slavel
Masterl Slavel Master2 Slave2
Master3 Slave3 Master4 Slave4
Fig. 4.6 Unilevel shared bus
Masterl Slavel Master3 Slave3
o]
| | =3 | l
o
| | 5 |
Bridge2
Master2 Slave2
I [
Master4 Slave4

Fig. 4.7 Hierarchical bus

5. Interconnection network (cross-bar switch):

» Every master/slave is connected to the remaining masters/slaves via point-to-
point topology as depicted in Fig. 4.9.

6. NOC (router):
* Each on-chip component connected by an intelligent switch to particular

communication wires as depicted in Fig. 4.10.
* Improvement over standard bus-based interconnections for SoC architectures

in terms of throughput and bandwidth [10].
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Masterl Slavel Master3 Slave2

Master2 Slave3 Master4 Slave4

Fig. 4.8 Ring topology

Masterl Slavel Master3 Slave2

Master2 Slave3 Master4 Slave4

Fig. 4.9 Cross-bar switch (no collision), it sends request to the required slave only

4.3.2 Arbitration (Mux/Tri-State-Based)

The arbitration is Tri-state topology (Fig. 4.11) or mux-based topology (Fig. 4.12)
to avoid collision.

The arbitration algorithms are as follows and they are summarized in Table 4.4:

1. Static priority

Masters assigned static priorities.

Higher priority master request always serviced first.
Can be preemptive or nonpreemptive.

May lead to starvation of low-priority masters.
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NoC
Ip
\
——- og—N\—F
\
Processing Processing Processing
Unit Unit Unit

N
%
o
.

Processing Processing Processing
Unit Unit Unit

Processing Processing Processing
Unit Unit Unit

Fig. 4.10 NoC (smarter), select the best path

Masterl Slavel Master2 Slave2

Buffer, Buffer Buffer Buffer,
En En En En

Fig. 4.11 Tri-state arbitration topology

2. TDMA

* Uses time division multiple access.
* Assign slots to masters based on BW requirements.
e If a master does not have anything to read/write during its time slots, this

leads to low performance.
* Choice of time slot length and number is critical.

3. LOTTERY (random)

* Randomly select master to grant bus access.
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EN
il MUX | Slavel
~—
—~—_
Master2 !
aster MUX Slave2
EN
Fig. 4.12 Mux-based arbitration topology
Table 4.4 The arbitration algorithms comparison
Scheme Description Advantages Disadvantages
Static priority | Masters assigned static priorities | Simple It may lead to starvation

TDMA

LOTTERY
(Random)

Round-robin

Token-passing

Higher priority master request
always serviced first

It can be preemptive (task can
be interrupted) or nonpreemptive
(task cannot be interrupted)

Assign slots to masters based No starvation

on BW requirements

Randomly select master
to grant bus access

Simple

Masters allowed to access
bus in a round-robin manner

TDMA but If a master does

every master
guaranteed bus

not have anything to read/write | aCCess
during its time slots the grant

moves to another master and

SO on

Each master waits for a special | Simple

token to have a control of the
bus, after finishing its operation,
it releases the token

No starvation—

of low-priority masters

If a master does not
have anything to read/
write during its time
slots, leads to low
performance

Choice of time slot
length and number is
critical

Depends on probability
Starvation

High latency for critical
data streams

Starvation
Inefficient if masters
have vastly different
data injection rates
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4. Round-robin
Tasks are usually assigned with priorities. At times it is necessary to run a
certain task that has a higher priority before another task although it is running.
Therefore, the running task is interrupted for some time and resumed later when
the priority task has finished its execution. This is called preemptive scheduling.
E.g., round-robin in nonpreemptive scheduling, a running task is executed till
completion. It cannot be interrupted. E.g., First In First Out.

* Masters allowed to access bus in a round-robin manner.

* No starvation—every master guaranteed bus access.
 Inefficient if masters have vastly different data injection rates.
» High latency for critical data streams.

5. Token-passing

» Each master wait for a special token to have a control of the bus, after finish-
ing its operation, it releases the token.

4.3.3 Transfers

1. Nonpipelined transfer

* Simplest transfer mode.

* First request for access to bus from arbiter.

* On being granted access, set address and control signals.
* Send/receive data in subsequent cycles.

Master  gyspeq —/ \ / \
Arbiter  GANT—t/ | [ N————t/ | [\—

Master ADDR /7T 7

Slave

RDATA (DA (D77

Fig. 4.13 Nonpipelined transfer [11]
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Slave Arbiter New master
signals changes drives
T1 T2 split T3 grant T4 address T5
HCLK | [ I
HGRANT v

HTrant:o] |\ nonseaY ) sea [} o [} nonsea

XX
HADDRB1m]-_mXX A XX A+d XX XX B XX
HBURST[2:0]) |
Hégﬁﬁﬂﬁ _ XX S @ XX J(conra @[
HPROTI[3:0]
HREADY _ |// \\ // \V \\
HRESP[1:0] _X:X X:X SPLIT X:X SPLIT X:XOKAY XX

Fig. 4.14 Split transfer [11]

* The operation is summarized in Fig. 4.13. It should receive data of address
Al, before sending data of address A2.
2. Split transfer

» If slaves take a long time to read/write data, it can prevent other masters from
using the bus. Split transfers improve performance by “splitting” a transaction.
Master sends read request to slave. Slave relinquishes control of bus as it pre-
pares data. Arbiter can grant bus access to another waiting master. Allows
utilizing otherwise idle cycles on the bus. When slave is ready, it requests bus
access from arbiter. On being granted access, it sends data to master (Fig. 4.14).

3. Pipelined transfer

* Overlap address and data phases.

* Only works if separate address and data buses are present.

* The operation is summarized in Fig. 4.15, It can send address A2, before
receiving data of address Al.

4. Burst transfer

e Send multiple data items, with only a single arbitration for entire
transaction.
* Master must indicate to arbiter it intends to perform burst transfer.
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Fig. 4.15 Pipelined transfer [11]
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Fig. 4.16 Burst transfer [11]
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e Saves time spent requesting for arbitration.

The operation is summarized in Fig. 4.16.

4.3.4

Timing

1. Synchronous

¢ Includes a clock in control lines.

* Fixed protocol for communication that is relative to clock.
* Involves very little logic and can run very fast.

* Require frequency converters across frequency domains.

¢ It suffers from clock skew.

* An example is shown in Fig. 4.17 [12].

2. Asynchronous

CLK
ADDR

DATA

WRITE

Fig. 4.17

Fig. 4.18

Cycle 1 Cycle 2
— Oxf{fO000 >
4 0x10

Synchronous timing [12]

ADDR Ox{fff0000
DATA 0x10
WRITE
= ;G iy T

Asynchronous timing [12]
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Fig. 4.19 Handshaking Tx

control

4.3.5

4 SoC Buses and Peripherals: Features and Architectures

Request

Handshake

A

Initiator

A 4

Target

A

Response

Not clocked (data is transmitted and received without accompanying of a
clock).

Requires a handshaking protocol.

Performance not as good as that of synchronous bus.

No need for frequency converters, but does need extra lines (pins).

Does not suffer from clock skew like the synchronous bus.

An example is shown in Fig. 4.18.

Tx Control

Tx control means: “someone is about to transmit data.”

1. Handshaking

It is based on request/response method as depicted in Fig. 4.19.

2. Preamble

4.3.6

The role of the preamble is to define a specific series of transmission criteria
that is understood to mean “someone is about to transmit data.” It is a constant
pattern.

It is a constant pattern or at beginning the bus is high, when it goes low it
means I will start communication. It is like a flag.

Example is shown in Table 4.5.

Tx Type

Table 4.5 Preamble example Start of data block pattern 1011

Start of frame pattern 0101
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Receiver
v

Receiver Receiver Receiver

Broadcast

Unicast Multicast

Receiver

Fig. 4.20 Tx types

Tx types are summarized in Fig. 4.20.
1. Point to point (unicast)

» Data is sent from one point to another point.
2. Multicast

* Data is sent from one point to all other points.
3. Broadcast

» Data sent from one or more points to a set of other points.

4.4 Bus Architecture Examples

In this section, we will discuss and define some common IC bus architectures cur-
rently in use and on the market

4.4.1 I2C Bus

12C eliminates the need for address decoders and glue logic, and it reduces space
requirements, which keeps designs simple and flexible. It also supports simple con-
structions and enables easy upgrades. [2C buses are popular in the marketplace for
low-speed peripheral devices such as radios, televisions, and personal digital assis-
tants (PDA).

12C has a physical layout of two bidirectional wires, Serial Data Line (SDA), and
Serial Clock Line (SCL), which transmit information between devices. Each device
connected to the bus has a unique address assigned to it and can operate in receive
and/or transmit mode with a designation as a master or slave. I2C offers the possi-
bility of having multiple masters; however, only one master can transmit data over
the bus at a time [13].
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MASTER MASTER SLAVE 1 SLAVE 2
2

SDA

SCL

< DIRECTION OF DATA FLOW >

Fig. 4.21 12C bus topology [13]
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i !
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Fig. 4.22 12C START and STOP conditions [13]

S i P
T | I 1 J 1 Il I L ] 1 1 | I
START ADDRESS RW ACK DATA ACK DATA ACK STOP
condition condition
MBCE04
A cc lete data transfer

Fig. 4.23 12C byte format [13]

Figure 4.21 exhibits the topology of I2C. Figure 4.22 depicts high and low states
that initiate and terminate transmissions on the bus. I2C requires each byte of data
to be eight bits in length before it is placed on the SDA line. Figure 4.23 depicts an
12C sequence.
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High-performance| | High-bandwidth
ARM processor on-chip RAM
B | | UART || Timer
High-bandwidth s A " | are
External Memory D
Interface G
E | | Keypad || PIO
DMA bus
master AHB to APB Bridge
or
ASB to APB Bridge
AMBA AHB AMBA ASB AMBA APB
Fig. 4.24 AMBA architecture [14]
Arbiter
HADDR
HADDR HWDATA Slave
Master HWDATA HRDATA #1
= HRDATA
HADDR
HADDR | ) HWDATA Slave
Master HWDATA Address and HRDATA #2
#2 AR control mux _ |
\I HADDR
HADDR ) HWDATA Slave
Master HWDATA Write data manc HRDATA ®3
#3 HRDATA Read data mux
] HADDR
HWDATA Slave
T HRDATA #4
Decoder

Fig. 4.25 AHB interconnection [14]

4.4.2 Advanced Microcontroller Bus Architecture (AMBA)

AMBA is unique in that is it has many distinctly different specifications, versions,
bus types, etc. The first is the Advanced High-Performance Bus (AHB), which is
used as the backbone for high-performance systems and supports connections
between processors, on-chip communications, and off-chip communications. The
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second type is the Advanced System Bus (ASB), which is a less complex alternative
to AHB. The third is the Advanced Peripheral Bus (APB), which is optimized for
minimal power consumption and is used for interfacing peripheral devices that do
not require high performance or high bandwidth. Figure 4.24 depicts the standard
AMBA topology [14].

Figure 4.25 shows a standard AHB interconnection for a standard bus sequence.
A typical operational scenario of AHB would involve a master requesting access to
a slave to perform a write operation. The arbiter will receive the request signal and
determine whether the requesting master device has permission to access the slave
device and whether the slave is available (i.e., not performing another operation).
Assuming the master device has the appropriate access and the slave device is free
from use, the arbiter then transfers the address and control signals to the slave device.
The control signals provide the information, direction, and width of the transfer and
indicate whether a burst transfer is required. During the transfer, the slave shows the
status using response signals (i.e., OKAY, ERROR, RETRY, and SPLIT) [15].

ASB is similar to AHB except that it cannot perform SPLIT transactions. Its bus
protocol can be used with a central multiplexor interconnection scheme. Using the
interconnection scheme, the bus master will send address and control signals to indi-
cate the desired operation to the central arbiter. The central arbiter reviews the bus
master’s address and control signals and determines whether the bus master has the
appropriate access to the desired slave device (i.e., the master may have read access,
but no write access). Data read and response signals from the multiplexor require a
central decoder, which will select the appropriate signals from the slave device.

Similar to I2C, the APB is designed for minimal power consumption and reduced
complexity. APBs interface with low power, low bandwidth, and low-performance
peripherals. The bridge interface between APB and ASB/AHB is the only bus mas-
ter for APB, but is a slave device on the high-performance ASB/AHB. An APB
slave has a simple and flexible interface. Its exact implementation details depend on
individual design requirements. Typical operations of an APB slave connected to an
ASB bus are read-and-write transfers; however, an APB slave interfacing with an
AHB performs the same operations as an APB slave connected to an ASB, but also
can perform back-to-back transfers and utilize multiplexing data bus implementa-
tions. Multiplexing supports combining read-and-write data buses into a single bus
in which read-and-write operations never occur simultaneously.

WISHBONE WISHBONE WISHBONE WISHBONE
SLAVE SLAVE MASTER MASTER
A y
A 4

Fig. 4.26 Shared bus interconnection [16]
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IP CORE IP CORE
MASTER MASTER
7'} 7'}
CROSSBAR SWITCH
h 4 h 4 h 4
IP CORE IP CORE IP CORE
SLAVE "SA° SLAVE ‘SB’ SLAVE ‘SC’

Fig. 4.27 Cross-bar switch interconnection [16]

4.4.3 Wishbone

Wishbone is a SoC bus for portable IP cores and offers perhaps the greatest flexibil-
ity in design methodology with semiconductor IP cores. Wishbone is a product of
OpenCores, which is an open-source hardware community for professionals and
hardware design enthusiasts. Similar to AMBA, the purpose of Wishbone is to ease
the integration of SoC components through design reuse. There are three common
architectures associated with Wishbone: Shared Bus (Fig. 4.26), Pipeline, and
Crossbar (Fig. 4.27) [16].

Designers will choose a shared bus interconnection when there are two or more
masters that need to be connected to one or more slaves. The master initiates a bus
cycle to a target slave, and then the target slave participates in one or more bus
cycles with the master. An arbiter determines when a master may gain access to the
shared bus. An arbiter acts like a traffic cop and dictates how shared resources can
be accessed.

A crossbar connects two or more masters so that each can access two or more
slaves. In this configuration, a master initiates an addressable bus cycle to a target
slave. An arbiter determines when each master may gain access to that slave.

The simplest topology is a pipelined topology, in which data is processed in a
sequential manner. Data flow architecture exploits parallelism, which speeds up
execution time.

4.5 Summary

In this chapter, we introduce a deep introduction for SoC buses and peripherals. We
explain in detail their features and architectures. Different SoC bus topologies are
discussed such as point to point, unilevel shared bus, hierarchical bus, ring, cross-
bar bus, NoC. The arbitration algorithms are explored. Moreover, SoC buses exam-
ples are explained in detail. We give a methodology for extraction of any SoC bus
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features from its standard. The different features include topology, arbitration, bus
width, transfers, timing, transmission control and type.
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Chapter 5
Verilog for Implementation and Verification

5.1 Introduction

Hardware Description Language (HDL) is widely used as it is easier to explore dif-
ferent design options (e.g., throughput vs. latency), reduce design time and cost
significantly, allows larger designs, can reuse design to target different technologies
as it is technology-independent language.

The HDL description can be synthesized into a gate-level description of a chosen
technology. Two popular HDLs in the IC design: VHDL which is similar to Ada/
Pascal in software programming and case insensitive, Verilog which is similar to C
language, case sensitive (CLOCK, clock, and Clock are different), a bit easier to
learn. The differences are shown in Table 5.1. Disadvantages of HDL are that quality
of synthesis varies from tool to tool and synthesis is not standard [1].

Verilog hardware language is used to simulate RTL. Verilog and C bear a lot of
similarities in both syntaxes and semantics. Of course, Verilog incorporates features
specifically designed for hardware modeling. For instance, Verilog can directly
manipulate vectors and support a larger set of bit-level operations such as concatena-
tion and reduction. Such disparities can be handled by adding new functions in C. The
most important difference, however, is that Verilog allows two types of assignments,
blocking and nonblocking, while C only has blocking assignments. A blocking
assignment has to finish before its next statement can be executed, but a nonblocking
statement allows its succeeding statements to run concurrently [2]. Figure 5.1 shows
a comparison between software and hardware from execution-time point of view
[3—10]. Verilog is hardware language not a programming language like C.

Verilog can be used for design and for verification. When trying to write Verilog
you should think hardware not software. The main difference from software is time
notation, Bit/vector data type, and parallelism.

Poorly written HDL code will either be synthesizable, functionally incorrect, or
lead to poor performance/area/power results.

© Springer International Publishing Switzerland 2016 97
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Table 5.1 Differences between VHDL and verilog

VHDL Verilog
Like ADA Like C
Verbose Concise
Harder to learn Easier to learn
Not case sensitive Case sensitive
Better in high-level behavior modeling Doesn’t have the ability to define new data types
Level of abstraction (3) Level of abstraction (4), includes switch level
Fig. 5.1 Software versus Software versus hardware
hardware [3] Algorithm
D=A-B
E=C+F
G=D/E
A B c F
~ rd Y '
load A +
load A =1 [
sub b E
store D
load C
load F G
add
store E HW-Solution
:2:: g 2 clock cycles
div
store G
SW-Solution
12 clock cycles

5.2 Verilog for Implementation

5.2.1 Introduction

A complete Verilog description consists of a module in which the interface signals
are declared and the functionality of the component is described. Verilog provides
constructs and mechanisms for describing the structure of components which may
be constructed from simpler subsystems. Verilog also provides some high-level
description language constructs (e.g., loops, conditionals) to model complex
behavior easily. Finally, the underlying timing model in Verilog supports both the
concurrency and delay observed in digital electronic systems.
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module M():;
initial
§display (“Hello world”):
endmodule

Fig. 5.2 Verilog “hello world” example. It starts with the keyword module followed by the name
of the module. The keyword “initial” marks the beginning of the operation of the component. The
keyword “endmodule” marks the end of the module

module decoder_2 to_4 (A, D)

input [1:0] 4 :
output [3:0] D :

assign D = (4 == 2'h00) ? 4'b0O001
(A == 2'b01) ? 4'b0O0O10
(4 == 2'b10) ? 4'b0O100 :
(A == 2'b11) ? 4'b1000 ;

endmodule

Fig. 5.3 Declaration example

In Verilog, a circuit is a module. Module encapsulates structural and functional
details. To model any IP using Verilog, you should follow the following steps:

1. Declare a module (Fig. 5.2 shows “hello world” example).
2. Declare the ports type (connectivity).

(a) Input
(b) Output
(c) Inout (bidirectional)

3. Declare the ports size (connectivity).

(a) Scalar (single bit) input A;

(b) Vector (multiple bits) input [0:4] A;

(c) Array input A [0:4];

(d) Memory input [7:0] A [0:7]; // multidimensional arrays are not allowed.

4. Declare the module contents.

An example for declaration is shown in Fig. 5.3.
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module

Assign Always Initial Instance

Functions/tasks
call

Concurrent
statements

Sequential
statements

7 J

Fig. 5.4 Verilog hierarchy. Putting it all together

initial begin

ROM[0] = 4’b0001; ROM[1] = 4/b0010;
ROM[2] = 4’b0011; ROM[3] = 4/b0100;
ROM[4] = 4’b0101; ROM[S] = 4/b0110;
ROM[6] = 4’b0111; ROM[7] = 4’b1000;
ROM[8] = 4’b1001; ROM[9] = 4'b1010;
ROM[10] = 4‘b1011; ROM[11] = 4’b1100;

ROM[12] = 4’b1101; ROM[13] = 4'b1110;
ROM[14] = 4’b1111; ROM[15] 4/h0001;
ROM[16] = 4’b0010; ROM[17] = 4’b0011;
ROM[18] = 4’b0100; ROM[19] = 4'b0101;
ROM[20] = 4’b0110; ROM[21] = 4'b0111;
end

Fig. 5.5 Initial block usage example

RTL description usually consists of a hierarchy of concurrently (order-
independent) running processes (e.g., always, initial blocks, and assign statements),
each with arbitrary internal behavior. At the register transfer level, circuit behaviors
are represented as a set of interacting processes running concurrently. The minimal
unit of parallel execution in Verilog is a process. The verilog hierarchy is shown in
Fig. 5.4, where it captures the main features of a complete Verilog model.

Initial block is executed only once, at the beginning of the simulation, and it is
useful for verification, for example, to initialize ROM (Fig. 5.5).
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5.2.2 Data Representation

Verilog data types are shown in Table 5.2. Verilog supports built-in data type not
user-defined data types. To define an internal signal which is not input nor output we
use “wire” for combinational circuits as depicted in Fig. 5.6 or we use “reg” for
asynchronous sequential circuits as depicted in Fig. 5.7 or for synchronous sequen-
tial circuits as depicted in Fig. 5.8. Note that if the circuit contains sequential and
combinational logic, we should separate them. Assign for combinational logic and
always for sequential logic.

Table 5.2 Verilog datatypes

Data type Description

Reg Store data

Wire Physical connection

Tril A net in verilog that pull-up the output if it is not driven

Tri0 A net in verilog that pull-down the output if it is not driven

Parameter To ease configuration. If not overwritten, they keep their default value

Localparam Like parameters, but cannot be modified hierarchically during the
instantiation

Array reg [7:0] ram [0:7];

// to reset it use for loop
for (i=0; 1<8; i++) begin ram[i] <= 0; end
Preprocessor directive | ‘define CMDO 4’0100
like a global parameter
‘define INRANGE(x) ((x)>2 && (x)<5) // parameterized macro

ifdef Used to enable or disable some features
Enum enum integer {stepl =0, step2=1, tep3=2} state;
Make debugging easy using waveforms
‘include ‘include “timing.vh”
add wodule adder_or_subtract ( &, b, op, s):
a ;—— parameter SIZE = 8B:
parameter ADD = 1’b1;
Mux —S input op:
L] input [SIZE-1:0] a,b:
b )_‘ output [SIZE-1:0] s;
SUb l wire add, sub;
assign add = a+h;
assign sub = a-b:
op assign = = (op==iDD)? add : sub:
endmodule

Fig. 5.6 Wire usage in verilog
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module muxZb if(in0, inl, sel, out):

input [1:0] in0O, inl:
) 2 input sel;
in0 ——7L—+ output [1:0] out:
2 reg [1:0] out:;
5 MU X out
H L) always @ (sel or inO or inl) bhegin
inl if (sel ==0)
out = inD;
else
T out = inl;
end
sel endmodule

Fig. 5.7 Reg usage in verilog for asynchronous sequential circuits. Always is triggered when it
has finished executing and one of the events in the sensitivity list happens. Use always @(¥*)
instead of writing the whole sensitivity list

module flip-flop (¢, din, clk, rst):
Din—— _é input din, clk, rst;
D Type output o;
Rst ——| Fiip-Flop reg o:
clk '> always @ (posedge clk or posedge rst)
begin
if (rst == 1)
= q <= 0;
] 1 else
<~ g <= din;
P\iti ol N ti 1 and
e edg egative edge end.madule

Fig. 5.8 Reg usage in verilog for synchronous sequential circuits

5.2.3 Verilog Coding Style

Verilog is one language, but it contains many coding Styles. Verilog description can
be structural or behavioral. Behavior means what does it do? (Boolean Expressions
or FSM). Structure means what is it composed of? (Blocks, gates). An example to
show the difference between the behavioral and structural implementation is
shown in Fig. 5.9.

For complex design we partition the modules into submodules as depicted in
Fig. 5.10 and use generate statement to reduce the manual coding effort (Fig. 5.11),
generate statement is written parallel to always not inside it. Another example which
is useful to show the importance of generate statement is n-stage FIR filter design.
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//Structural [/behavioral

module half addl (a, b, sum, cout): 4 A .
P - wodule half adderd(a, b, sun, cout);

3 — Ha"_MdEf I output sum, cout: input a, b
Sum = a A b wire cout._bar: Output S, cout,
b out=afppo M xor (sum, a, B s g
nand (cout_bar, a, b); assign sum =4 b;
not (cout, cout har); endwodule

endmodule

Fig. 5.9 Structural versus behavioral implementation

wodule Bl(a, b, ¢): module top (g, w, e, £):

endmodule

wodule Bz (a, b, ¢, a5 blld, w, &, b, c);
B2 h2(a, b, d, e);
endmodule B3 b3l:C, d, f];

wodule B3 (%X, v, 2):

encmodule endriodule

Fig. 5.10 Submodules example

genvar i; // Define a variable of type genvar
generatce
for (i=0; i<2; i=i+l1) // looping to generate
begin:S2P
MUX DAT (, , ,):
end
endgenerate

Fig. 5.11 Generate statement example

5.2.4 Verilog Operators and Control Constructs

Verilog HDL operators are summarized in Table 5.3.

The fundamental control constructs are shown in Fig. 5.12. If statement is used
only in always block (Fig. 5.13). Same for “case” statement (Fig. 5.14). The itera-
tion examples are shown in Fig. 5.15.

Tasks and functions are used in HDL languages. Data is passed to the task or
function, processing is done, and the result is returned to the main procedure.
Functions are very much similar to tasks, with very little difference, e.g., a function
cannot drive more than one output and, also, it cannot contain delays. The differ-
ences between tasks and functions are summarized in Table 5.4.
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Table 5.3 Verilog HDL + Binary addition

operators — Binary subtraction

& Bit-wise AND

| Bit-wise OR

A Bit-wise XOR

~ Bit-wise NOT

== Equality assign s=(op ==ADD) ?a+b : a-b;
> Greater than

< Smaller than

{} Concatenation assign s={a, b};
7 : Conditional

! logical NOT

&& Logical AND

Il Logical OR

!=Logical inequality

<< Shift left

>> Shift right

a b IF. Case C Loops: For, while, repeat, forever

Statement i

Statement i

[condition 1] [condition 2]
Statement i | |Statement i+1
[condition 1] [condition 2]
Statement i+1 |Statement i+1 |Statement i+2
Sequence Selection Iteration

Fig. 5.12 Verilog fundamental control construct

Fig. 5.13 If statement reg out;
example always @(sel or a or b)
begin
if(sel == 1’bl) out = a;
else out = b;

end
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Fig. 5.14 Case statement

always @ (sel or a or

105

b or ¢ or d)

example, if 2’b00 and begin
2°b01 are in the same state, case (sel[1:0] )
we use “,” to separate 27100 2 L
between them out <= a;
2’b01 out <= b;
2’h10 : out <= ¢
2’bll : out <= d;
endcase
end
for (count = ©; count < 128; count = count + 1)
begin
end
count = ;
while (count < 128)
begin
count = count +1;
end
count = 0i/ aivapeonty
repeat (__128 evaluated once at the
begin 7 beginning
count = count +1;
end

Fig. 5.15 Iteration statements (loops): for, while, repeat



106 5 Verilog for Implementation and Verification

Table 5.4 Differences between functions and tasks

Functions Tasks

* Can call just another function (not task) ¢ Can enable other tasks and functions

¢ Execute in 0 simulation time * May execute in nonzero simulation time

¢ No timing control statements allowed e May contain any timing control statements
* At least one input * May have arbitrary input, output, or inouts
¢ Return only a single value * Do not return any value

* Are defined in a module
* Do not contain initial or always statements
e Are called from initial or always statements or other tasks or functions

task convert; function myfunction;

input [7:0] temp_in; input a, b, ¢, d;

output [7:0] temp_out; begin

begin myfunction=((a+b) +(c—d));
temp_out=(9/5) *(temp_in+32); end

end endfunction

endtask

5.2.5 Verilog Design Issues

Race condition happens when two different processes try to write the same signal
during the same time step. To avoid it, don’t write the same signal in different pro-
cesses, unless you really know what you do (you know that the two processes will
never write the signal in the same time step) and do not make assignments to the
same signal in more than one always statement or continuous assign statement.
Also, to avoid race condition, always use nonblocking assignments (<=) for sequen-
tial circuits and blocking (=) assignments for combinational.

For clock, avoid combinational feedback clock, internally generated clocks, and
avoid mixed cock edges. For Resetting, asynchronous RST is preferred, avoid inter-
nally generated resets, and for proper operation, all the registers should be resetted into
the reset process. Non-Synthesizable Verilog Statements are described in Table 5.5.

5.2.6 Verilog Template and Reusable Code Tips

A Verilog template is suggested in Fig. 5.16. The design should start with defining
declarations, then module declarations, then parameters declarations, then inputs/
outputs declarations, then wire declarations, then registers declarations, then wire
assignments, then sequential logics, and then instances declarations.

If you want to write a Verilog reusable code, you may follow the following tips [11]:

1. Don’t write code that isn’t needed.
2. Don’t duplicate code.
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Table 5.5 Constructs not
supported in synthesis

/I define declarations

10
11
12
13
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Constructs not supported in synthesis
“Hierarchical name reference not supported”
card.resp_gen.device_reg

Time:

# 580ns

Assign on reg not allowed (but it is ok for wire)
reg [15:0] block_cnt=2

“Mixed blocking and nonblocking assignment
is not supported.”

X=1;

X<=l1;

Real datatype

Initial statement

Repeat, while, forever statements

Division and modulus operators for variables
Nonfixed size for loops

// Module declarations

// Parameters declarations

/I Inputs/Outputs declarations

/I Wire declarations

/I Register declarations

/I Wire assignment:

// Sequential logic

/I Instance

Fig. 5.16 Verilog template

3. Naming conventions: use meaningful names for modules, ports, regs, and

wires.

Try to reduce coupling.

Nk

Make your code more modular.
Comment, in detail, everything that seems like it might be confusing when you

come back to the code next time.

Make a task/function do just one thing.
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Table 5.6 The main building blocks in any digital system

Task

Arithmetic
Multiplexing
Comparison
Storage

Counter
Communication
Error detection and correction
Randomization
Encryption
Synchronization

8. Include a header mentioning.

(a) Filename
(b) Author
(c) Date

(d) Time

(e) Abstract

9. Use indentation.

Hardware examples

+, —, *, %, >>, 2’s compliment, CORDIC, ALU
Arbitration

Comparator

RAM (random access), FIFO (non random access)
Counter

Channel encoding, scrambler

ECC, CRC

LFSR

DES

Clocking

10. Before a code can been reusable, it has to be usable.

5.2.7 Main Digital System Building Blocks

The main building blocks in any digital system can be summarized in Table 5.6.
These building blocks can be used to implement or architect any IP.

5.3 Verilog for Verification

How DUV responses can be displayed and checked or monitored. Verilog simula-
tion environments provide two kinds of display of simulation results:

* Graphical (waveforms editors): suitable for small design as you can check by eye
or by using system tasks such as $display, $strobe, $monitor. These system tasks

are summarized in Table 5.7.

* Text-based: writing or reading to/from a file, suitable for large designs like video

streaming.

To check the DUT behavior, we simply drive the inputs and monitor the outputs as
depicted in Fig. 5.17. In some cases, the verification should wait a response from the
DUT before it can send the next trigger (DUT outputting status indicators to testbench).
Verilog can test both combinational (Fig. 5.18) and sequential circuits (Fig. 5.19).
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Table 5.7 Verilog system tasks

System task

Description

Display strings, expression, or values to standard output

Same as display but displays when any of the values change

Stimulus

Generator
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(DUT)

Design Under Test

$display
$monitor
$stop Suspend simulation, put in interactive mode
$finish Stop simulation altogether
top module
generation of clock
clk
testbench | stimulus DUT
program >
drive
DUTinputs, ~ Response
check g
DUT outputs

Fig. 5.17 Testbench structure

wodule half adderZ(a, b, sum, cout);

input g, b

output sum, cout;

assign cout =
assign sum =
endmodule

aéh;
a'h

module th_ha :

reg

a, b:

half_adder UO_half_adder (a,

initimal beg

end

#10
#10

#10
#10

endmodule

ToppUppo

in

0: b = 0:
1:
oz
1z
1:
a:
oz

Fig. 5.18 Verification example of half adder. # Means delay

Response Monitor

..._____________,..-"""'__-—

b, =wum,

cout)

To write testbench, it is important to have the design specifications of the DUT.
Specifications need to be understood clearly and test-plan should be done accordingly.
The test-plan documents the testbench architecture and the test scenarios in detail.

To reduce the verification time, we can call C code inside Verilog as depicted
in Fig. 5.20. Verilog PLI (Programming Language Interface) is a mechanism to
invoke C or C++ functions from Verilog code. Use these Functions in Verilog code
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(Mostly Verilog Testbench). Compile C++ to generate shared libs Based on simulator,
pass the C/C++ function details to simulator during compile process of Verilog
Code [12].

We can also call VHDL-code inside Verilog to reduce verification time, if you
have a preexisting VHDL-code (Fig. 5.21). To instantiate a VHDL module inside a
Verilog design, make sure the two files are in the same directory and that they have
been added to the project for compilation.

For Text-based verification, writing or reading to/from a file example is shown
below (Fig. 5.22):

module flip-flop (g, din, clk, rst): module th FF ;

input din, clk, rstc; Parameter clk _period =10;
output o’ flip-flop UD_tLiputlop {din, clk, rst, q):
reg q: initial begin

# clk_period rst=1'bl;
always @ (posedge clk or posedge rst) # clk period rst=0'h0:
begin # clk_period din=0'b0:

if (rsc == 1) # clk period din=0'b1;
#

q <= 0; clk_period din=0'b1;
else fdisplayi(q)
q <= din; # clk_period din=0'b0;
end end
endmodule always # clk_period clk = ~clk:
endmodule
Fig. 5.19 Verification example of flip-flop
#include <stdio.h> ';:;::::eb:;!:’—' 0O;
void hello_c () > $hello;
printf ("Hello"); #10 $finish;
3 end
endmodule
C-Code Verilog-Code
Fig. 5.20 Call C code inside verilog
LIBRARY ieee; module hello_v ();
USE ieee.std_logic_1164.ALL; initial begin
ENTITY hello_vhdl > hello_vhdl ();
ARCHITECTURE #10 $finish;
end
endmodule
VHDL-Code Verilog-Code

Fig. 5.21 Call VHDL-code inside verilog
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integer file,r:

file = $fopenr("filename”): //read

file = §$fopenw("filename"); //write

file = $fopena("filename”); //append

r $fread(file, ril6):

$fwrite (file, "MIN 1 is %d PLUS 1 is %d ", -1, 1):
$fclose(file);

$readmemh ("filename" , wvar): // preloading Mechanism
furitememh ("filename" , wvar):

Fig. 5.22 Writing or reading to/from a file example

5.4 Logic Simulators

Logic simulation is one of the most intensively studied problems in the field of
electronic design automation. Existing sequential logic simulators virtually fall into
two categories, oblivious simulation and event-driven simulation.

1. The oblivious (cycle-based) simulation takes a straightforward approach in
which all logic elements are evaluated at every simulation step, no matter they
undergo logic transitions or not [13].

2. Event-driven simulation was proposed to improve the efficiency of oblivious
simulation. An event-driven simulator only evaluates logic modules whose input
ports receive new values. Due to its higher efficiency, event-driven simulation
has become the workhorse of virtually all commercial and research logic
simulators.

From an implementation point of view, a logic simulator could be either interpre-
tive or compiled.

1. Interpretive maps the simulated circuit into an internal representation. The
response to input patterns can then be evaluated on the representation.

2. Compiled translates the circuit into machine code for direct execution. The
underlying idea is to take advantage of the similarity between logic operations
and CPU instructions.

Parallel logic simulation has attracted considerable research efforts in the past 40
years for its strong potential. An intuitive approach is to use multiple processors to
evaluate simultaneously happened events in parallel. However, it has been proved
that such parallelism is not sufficient to maintain a decent speed-up due to the fol-
lowing two reasons: (1) generally only a small percentage (e.g., ~1 %) of all circuit
elements have active events, and (2) not all elements with active events can be han-
dled simultaneously because the logic dependency actually implies a partial order-
ing in which the events have to be processed.

Many parallel simulation protocols have been proposed to extract a higher level
of inherent parallelism. Basically, these protocols can be classified into two catego-
ries, conservative and optimistic.
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RTL Logic

Simulation

1
Parallel \ l Sequential l
Conservative ] Optimistic Oblivious g;{ent- ]
l l iven

l_lﬁ

Interpretive] Compiled

Fig. 5.23 Logic simulation classifications

1. The conservative protocol enforces the causal relation during simulation in the
sense that events happened earlier are always simulated ahead of later events.

2. The optimistic protocol allows the causal relation to be temporarily violated for
higher parallelism. However, a roll-back is necessary if a later evaluation invalidates
earlier simulation results. Figure 5.23 summarizes these types of logic simulators.

Questa™ is a CPU-based sequential simulator; there is a GPU-based parallel
simulator for acceleration [14]. A GPU includes a number of multiprocessors which
communicate through a small shared memory bank. Questa platform is shown in
Fig. 5.24 and their detailed usages are shown in the next subsections [15].

5.4.1 Questa Simulation

The Questa Simulator combines high performance and capacity simulation with
unified advanced debug capabilities for the most complete native support of Verilog,
SystemVerilog, VHDL, SystemC, PSL, and UPF (power aware).

The Questa Advanced Simulator is the core simulation and debug engine of the
Questa Verification Platform; the comprehensive advanced verification platform
capable of reducing the risk of validating complex FPGA and SoC designs.

Questa spans the levels of abstraction required for complex SoC and FPGA
design and verification from TLM (Transaction Level Modeling) through RTL,
gates, and transistors and has superior support of multiple verification methodolo-
gies including Assertion-Based Verification (ABV), the Open Verification
Methodology (OVM), and the Universal Verification Methodology (UVM) to
increase testbench productivity, automation, and reusability.
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platforms

Questa Simulation

Questa Formal Verification

Questa CoverCheck

Questa CDC

Questa ADMS

Questa inFACT

Questa PowerAware
Simulation

Questa Verification IP

Questa Verification
Management

Questa CodeLink

The Questa Advanced Simulator achieves industry-leading performance and
capacity through very aggressive global compile and simulation optimization
algorithms of SystemVerilog and VHDL, improving SystemVerilog and mixed
VHDL/SystemVerilog RTL simulation performance by up to 10x.

Questa also supports very fast time-to-next simulation and effective library man-
agement while maintaining high performance with unique capabilities to preopti-
mize and define debug visibility on a block-by-block basis enabling dramatic
regression throughput improvements of up to 3x when running a large suite of tests.

To increase simulation performance for large designs with long simulation times,
Questa also has a multi-core option. Questa Multi-Core takes advantage of modern
compute systems by partitioning the design to run in parallel on multiple CPUs or
computers using either automatic or manually driven partitions.

To achieve even greater performance, Questa supports TBX; the highest perfor-
mance Transaction Level link to the Veloce platform enabling a 100x increase in
performance with debug visibility and a common testbench.
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5.4.2 Questa Formal Verification

It complements simulation-based RTL design verification. The Questa Formal
Verification tool complements simulation-based RTL design verification by ana-
lyzing all possible behaviors of the design to detect any reachable error states. This
exhaustive analysis ensures that critical control blocks work correctly in all cases
and locates design errors that may be missed in simulation.

Questa Formal Verification can be used as soon as the design is complete to
debug blocks before integration, and to find potential errors long before simulation
test environments are available. Sharing a common language front end with the
Questa Simulator and leveraging the integration with the Unified Coverage Database
(UCDB), Questa Formal Verification is the perfect tool to accelerate bug detection,
error correction, and coverage closure.

Questa Formal Verification analyzes the behavior of the design to identify all
design states that are reachable from the initial state. This analysis allows Questa
Formal Verification to explore the whole state space in a breadth-first manner, in
contrast to the depth-first approach used in simulation.

Questa Formal Verification is therefore able to discover any design errors that
can occur, without needing specific stimulus to detect the bug. This ensures that the
verified design is bug-free in all legal input scenarios. At the same time, this
approach inherently identifies unreachable coverage points, which helps accelerate
coverage closure.

Questa Formal Verification provides easy-to-use automatic checking for many
common design errors. With Questa Formal Verification, designers can easily check
out new code to look for functional issues such as floating or multiply-driven buses,
combinational loops, arithmetic errors, and initialization problems. Finding and fix-
ing these errors before integrating new code into the design avoids injecting difficult-
to-find bugs into the larger system, and accelerates downstream verification. Since
these checks are based on exact analysis of the reachable state space, the errors detected
are real errors, not the noisy results that are often generated by simple lint checkers.

Questa Formal Verification also supports general assertion-based formal verifica-
tion to ensure that the design meets its specific functional requirements. With support
for PSL, SVA, and OVL, including multiclocked assertions, Questa Formal Verification
easily verifies even very large designs with many assertions. Its multiple high-capacity
formal engines cooperate to complete verification faster. Questa Formal Verification is
integrated with the Questa Simulator for easy debug of assertion failures.

5.4.3 Questa CoverCheck

Questa CoverCheck reads code coverage results from simulation in the Unified
Coverage Database (UCDB) and then leverages AutoCheck technology to do vari-
ous useful verification tasks with regard to the coverage holes. The most obvious:
prove that the code can be safely ignored. That is, the tool might mathematically
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prove that no stimulus could ever activate the code in question. In such cases,
waivers are automatically generated to refine the code coverage results.

Secondly, the tool can also identify segments of code that, though difficult to
reach, might someday be exercised in silicon. In such cases, CoverCheck helps
point the way to testbench enhancements to better reach these parts of the design.
Finally, CoverCheck flags code coverage items that are difficult to reach by formal
techniques and haven’t been hit in simulation, and thus provides a valuable measure
of verification complexity.

Automates code coverage closure—achieve 100 % coverage with automatic
formal reachability analysis.

Improved fidelity of code coverage results —eliminate code that is never meant
to be exercised.

Mode-sensitive analysis—tune the code coverage reporting considering only
the relevant modes of operation.

Guide testbench enhancement — waveforms show how uncovered but formally
reachable coverage bins can be hit in simulation.

5.4.4 Questa CDC

It stands for Questa Clock-Domain Crossing (CDC) Verification. It Performs
clock-domain crossing verification with Questa CDC is straightforward. The CDC
compiler analyzes the RTL code, identifies all clocks and clock-domain crossings,
and offers arich, intuitive debugging environment to resolve all types of CDC issues.
Once these issues are resolved, it automatically generates a set of protocol assertions
and metastability models that are linked in to the simulation of the RTL code

Questa CDC addresses a number of critical verification issues that simply cannot
be dealt with by simulation-based verification techniques.

An RTL or gate-level simulation of a design that has multiple clock domains
does not accurately capture the timing related to the transfer of data between clock
domains. As a consequence, simulation does not accurately predict silicon behavior,
and critical bugs may escape the verification process. The Questa CDC Verification
solution solves this problem. It is also used for metastability check.

5.4.5 Questa ADMS

It is used for Complex Analog/Mixed-Signal System-on-Chip Designs. Questa
ADMS gives designers a comprehensive environment for verifying complex ana-
log/mixed-signal System-on-Chip designs. ADMS combines four high-performance
simulation engines in one efficient tool: Eldo® for general purpose analog simula-
tions, Questa® for digital simulations, ADiT™ for fast transistor-level simulations
and Eldo RF for modulated steady state simulation.
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Universally accepts IP written in any of the standard design languages for easy
migration. Builds on previous design investments through its design flow integration
with Mentor Graphics Design Architect IC and Cadence Analog Design Environment.

ADMS integrates into the Cadence Virtuoso Analog Design Environment with
the same look and feel as any simulator inside the environment, but gives designers
the advantage of ADMS analysis, commands, and options. An enhanced symbol
library providing specific Eldo devices is compatible with the Cadence library.

ADMS is the simulation engine underlying Mentor Graphics HyperLynx Analog
for functional verification of complete printed circuit boards. A single schematic
supports both PCB layout and functional analysis. HyperLynx Analog combines
with HyperLynx Signal Integrity to extract parasitic PCB trace models for compre-
hensive board-level functional analysis.

5.4.6 QuestainFACT

It is an intelligent Testbench Automation. Recently announced, intelligent
software-driven verification (“iSDV”) has been added to the Questa inFact function-
ality to automatically generate embedded C test programs for both single-core and
multi-core SoC design verification. iSDV bridges the gap between IP block and full
system level verification by applying intelligent testbench automation to hardware/
software verification at the system level. While writing directed tests in C to verify
single-core designs at the system level was challenging, today’s multi-core multi-
threaded designs has made this process virtually impossible. Questa iSDV auto-
mates this process.

Questa® inFact is the industry’s most advanced testbench automation solution.
It targets as much functionality as traditional constrained random testing, but
achieves coverage goals 10-100x faster.

5.4.7 Questa Power Aware Simulation

It verifies active power management. The Questa® Power Aware Simulator
enables design teams to verify the architecture and behavior of active power manage-
ment planned for the implementation, but starting much earlier in the design process.

Verification of active power management at the RTL stage makes it possible to
explore alternative power management approaches long before implementation
begins, to achieve the greatest power reduction at the least cost.

Verification of active power management in the post-synthesis Gate-Level netlist
stages makes it possible to ensure that synthesis and manual transformations have
correctly preserved the active power management architecture and its behavior.



5.4 Logic Simulators 117

How Questa Power Aware Simulation Works

— Given a description of power intent expressed in the industry-standard Unified
Power Format (UPF), the Questa Power Aware Simulator.

— Partitions the HDL design into power domains.

— Adds isolation, level-shifting, and retention cells.

— Integrates the power supply network into the design to power each domain

— The augmented HDL design can then be simulated with full control over the
power state of each domain, for accurate modeling of the effects of active power
management on the design’s functionality.

5.4.8 Questa Verification IP

Verification IP (VIP) improves quality and reduces schedule times by building
Mentor’s protocol and methodology expertise into a library of reusable compo-
nents that support many industry-standard interfaces. This frees up engineering
resources from having to spend time developing BFMs, verification components,
or VIP themselves, enabling them to focus on the unique and high-value aspects of
their design.

VIP integrates seamlessly into advanced verification environments, including
testbenches built using UVM, OVM, Verilog, VHDL, and SystemC. It is the
industry’s only VIP with a native SystemVerilog UVM and OVM architecture
across all protocols, ensuring maximum productivity and flexibility. Transaction-
level score boarding, analysis, and debug. Synthesizable memory models for use
with simulation acceleration and emulation.

5.4.9 Questa Verification Management

Questa’s verification management capabilities are built upon the Unified Coverage
Database (UCDB). The UCDB captures any source of coverage data generated by
verification tools and processes; Questa and ModelSim use this format natively to
store code coverage, functionality coverage, and assertion data in all supported lan-
guages. It is used for Test-plan tracking.

Projects are tracked in spreadsheets or documents created by a range of applica-
tions, from Microsoft Excel and Word to OpenOffice Calc and Write. So it’s critical
that a verification management tool be open to a range of file formats, a basic fea-
ture of Questa, which is built on the premise that a user should be able to use any
capture tool to record and manage the plan.
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5.4.10 Questa CodeLink

It is software-driven hardware verification. Questa® Codelink is the industry’s
leading software-driven hardware verification solution. It makes every verification
engineer an instant “CPU expert” by providing 100 % accurate processor views for
system level testing.

Everything is fully synchronized and easily viewed, including logic simulation
waveforms, processor states, source code, internal memory, registers, stacks, and
output. Questa Codelink then presents only the important information needed to
quickly debug software-driven tests.

As a result, companies using Questa Codelink have been able to reduce their
system level debugging time from months to days. Complex simulation failures
that used to require extensive analysis of multiple files and databases, can now be
diagnosed within one robust multi-viewing debugging environment called Questa
Codelink.

5.5 Summary

In this chapter, we introduce a deep introduction for Verilog for both implementa-
tion and verification point of view. The chapter used design examples for showing
ways in which Verilog could be used in a design for both implementation and veri-
fication. This chapter did not cover all of Verilog, but only some important topics.
Moreover, a survey on the current existing logic simulators is presented.

References

1. Mehler R (2015) Digital integrated circuit design using verilog and systemverilog. Elsevier,
Oxford

2. Williams JM (2014) Digital VLSI design with verilog. Springer, Cham

3. Dubey R (2007) Introduction to embedded system design using field programmable gate
arrays. Springer, London

4. Kilts S (2007) Advanced FPGA design architecture, implementation, and optimization. Wiley,
Hoboken

5. Chu PP (2008) FPGA prototyping by verilog examples Xilinx SpartanTM-3 version. Wiley,
Hoboken

6. Ciletti MD (2003) Advanced digital design with the verilog HDL. Prentice Hall, Upper Saddle
River

7. Ciletti IMD (2003) Starter’s guide to verilog 2001. Prentice Hall, Upper Saddle River

8. Ashenden PJ (2008) Digital design: an embedded systems approach using verilog. Morgan
Kaufmann, Burlington

9. Lilja DJ, Sapatnekar SS (2005) Designing digital computer systems with verilog. Cambridge
University Press, New York

10. Navabi Z (2005) Digital design and implementation with field programmable devices. Kluwer,

Boston



References 119

11. http://www.verilogcourseteam.com

12. http://www.asic-world.com/verilog/pli2.html

13. Yuan J, Pixley C, Aziz A (2006) Constraint-based verification. Springer, New York

14. Qian H, Deng Y (2011) Accelerating RTL simulation with GPUs. In: 2011 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), IEEE, San Jose, pp 687-693

15. http://www.mentor.com/products/fv/questa-verification-platform


http://www.verilogcourseteam.com/
http://www.asic-world.com/verilog/pli2.html
http://www.mentor.com/products/fv/questa-verification-platform

Chapter 6
New Trends in SoC Verification: UVM,

Bug Localization, Scan-C0068ain-Based
Methodology, GA-Based Test Generation

6.1 Partl: UVM

6.1.1 Introduction

Now, SystemVerilog (SV)/UVM gradually dominate the verification landscape. SV
does not support MACROS and the language alone was insufficient to enable wide-
spread adoption of the best-practice verification techniques that inspired its devel-
opment that is why we need UVM [1, 2]. UVM is a methodology for SoC functional
verification that uses TLM standard for communication between blocks and
SystemVerilog for its languages, or in other words, it uses SV for creating compo-
nents and TLM for interconnects between components.

Methodology is a systematic way of doing things with a rich set of standard rules
and guidelines. Methodology provides the necessary infrastructure to build a robust,
reliable, and complete verification environment. Methodology shrinks verification
efforts with its predefined libraries. It makes life easier by preventing the designer
from making mistakes or poor decisions. It also helps make sure that whatever you
do will mesh nicely with what others do (reusability). Methodology is basically a
set of base class library which we can use to build our testbenches.

UVM main goals are: reusability to reduce time to market and it is targeted to
verify systems from small to large concept (Fig. 6.1), speed verification: it helps the
designers to find more bugs earlier in the design process, so it provides practical and
efficient SoC verification flow by reusing IP testcase and testbench, standardization:
vendor independent, dynamic not static like traditional testing (Table 6.1),
randomization, and automation [3, 4]. UVM makes multi-master multi-slave
systems verification easier as it separates tests from testbench.

Table 6.2 summarizes the companies, simulators, and versions related to UVM
[5, 6], it is noted that UVM is supported by all major simulator vendors, which is not
the case with earlier methodologies [7]. Various IPs are connected to and controlled
through a bus, so the functional verification uses BFM (bus functional model).
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Fig. 6.1 Levels of
verification: UVM verifies System/Board
systems from small to
large concept. SoC is a \J/
collection of IPs
SoCs
IPs
Blocks
Table 6.1 Comparison between UVM and traditional testing
Traditional testing UvVM
Stimulus structure Procedural code Constrained random variable
Type Static Dynamic
Reusability Nonreusable Reusable (customization)
Scalability Nonscalable Scalable
Test redundancy None Yes
Simulation overhead None 10~40 % to solve constraints
Controllability Coarse-grained Fine-grained (smoother)
Observability lower Higher (assertion, coverage)
Maintainability Hard Easy
Table 6.2 Companies, simulators, and versions related to UVM
Companies OVM, AVM (Mentor)
UVM= URM (Cadence)
VMM (synopsys)
Simulators UVM supports all simulators {Questa, IUS, and VCS}
Releases UVM1.0 — Released

UVM= { UVM1.1(a,b,c,d) > Released
UVMI1.2 — Released

The rest of this chapter is organized as follows. In Sect. 6.1.2, SystemVerilog
features are proposed. In Sect. 6.1.3, TLM features are proposed. In Sect. 6.1.4,
UVM features are introduced. Summary is given in Sect. 6.1.5.
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6.1.2 SystemVerilog

Initially, Verilog is used for verification. But, for complex design, developing a veri-
fication environment in Verilog is tedious process and consumes a lot of time. So,
SystemVerilog is used to create verification environment which reduces effort to
develop testbench. SystemVerilog is an extensive set of enhancements to Verilog
and it is called hardware description verification language (HDVL), the important
features of it are summarized in Fig. 6.2. SystemVerilog supports constrained ran-
dom stimulus generation and coverage analysis, and object-oriented programming
(OOP) structure which contributes to transaction-level verification and providing
the reusability of verification. Object-oriented programming can greatly enhance
the reusability of testbench components [8—11]. It has C-like control constructs
such as foreach, and VHDL-like package and import features. In this section, we
discuss the main features of SV, where OOP is introduced in Sect. 6.1.2.1, easy call
of C programs (direct programming interface) is introduced in Sect. 6.1.2.2, con-
strained randomization is introduced in Sect. 6.1.2.3, functional coverage is intro-
duced in Sect. 6.1.2.4, assertion is introduced in Sect. 6.1.2.5, other constructs such
as: interface, modport, clocking, fork_join, and always are introduced in Sect. 6.1.2.6,
and new data types are introduced in Sect. 6.1.2.7.

6.1.2.1 Object-Oriented Programming

Object-oriented programming is used for code reusability (inheritance), where
object=entity (hold the data)+method (operate on the data). It is packing data and
function in one structure, moving functions inside data structure is for consistency.
Comparison between instantiation of class in SystemVerilog and instantiation of mod-
ule in Verilog is shown in Table 6.3. Moreover, comparison between procedural code
and OOP is shown in Table 6.4. The main features of OOP are summarized in Table 6.5.
The OOP in SV has some restrictions as it supports only single inheritance [11].

Cteranss >
Polymorphism

Object Oriented Programming
Constrained Random
Easy call of C programs (DPI)

New data types
(Logic, bit)

nterface+ modport +clocking
+fork_join+ always
(comb_ff latch

Assertions

Coverage

Communication Computation

Coordination

Fig. 6.2 UVM consists of TLM and SV
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Table 6.3 Comparison between instantiation of class in SystemVerilog and
instantiation of module in verilog

Instantiation of class in System Verilog Instantiation of module in Verilog

Dynamic @ run time, parameterized class Static

Table 6.4 Comparison between procedural code and OOP by example

Procedural code OOP

Struct driver { wire A,B} Struct driver{

Void init {}; wire A,B;

Void send_data {}; void init {};

Begin Void send_data {};}

Driver driver; Begin

Init (); Driver driver;

Send_data (); Driver.Init ();

end Driver.Send_data ();
end

Table 6.5 Main features of OOP

Class Defines set of properties and behavior of object, and it is a data type
Object Is an instant of the class and defined inside program/module
Inheritance “Extends” for code reusability

Encapsulation | Bind data and method together for consistency

Polymorphism | It means to have many forms. Bind data and method at run time.
“Virtual” keyword

6.1.2.2 Easy Call of C Programs (Direct Programming Interface)

In Verilog, calling C programs is called PLI and it is complicated, In SV it is called
direct programming interface (DPI) and it makes C program calls easier [11]. SV func-
tions can be called in C using export and C functions can be called in SV using import.

6.1.2.3 Constrained Randomization

Constrained random verification applies stimuli to the device under test (DUT) that
are solutions of constraints. These solutions are determined by a constraint solver.
Thereby, the generated stimulus is much more likely to hit corner cases which make
discovering unexpected bugs easier. Randomizing the stimulus also makes reaching
the verification coverage easier. We put some constraints on that stimulus in order
to generate legal or interesting scenarios. Make sure that there is no conflict or
contradict between constraints. Constraints are like control knobs. Weighted
constraints are very important to hit boundary values. In a nutshell, constrained
random should be an intelligent process. You can disable constrains using
constrain_mode (0) method.
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6.1.2.4 Functional Coverage

Functional coverage is a user-defined metric that measures how many percentages
of the verification objectives are met by the testplan [2]. Quality of verification
depends upon the quality of testplan. Actually, coverage answers the question “did
we do enough randomization?” For coverage closure, we may need to write direct
testing, enhance stimulus generator, or randomize seeds {vsim —sv_seed}.

6.1.2.5 Assertion

Assertion acts as constraints that determine and define legal and expected behavior
when blocks interact with each other [2]. Complex protocol checks are often imple-
mented using SystemVerilog Assertions. Assertions could be tool independent:
used with both static and dynamic tools. SV has two types of assertions: immediate
(clock-independent) and concurrent (clock-dependent) [9]. Assertion improves
observability and debug ability.

6.1.2.6 Other Constructs: Interface + Modport + Clocking + Fork_Join
(Any None) + Always (comb_ff_latch)

One of the problems of direct DUT signal access is that driver and monitor are
dependent on signal name of DUT, and duplicate efforts. So, using interface as a
signal-map makes it easy to add or remove wire, reduce errors which occur during
model connections, remove redundancy in wires (Fig. 6.3). Modport: for direction
which is input/output/inout. Clocking block is highly recommended usage in test-
bench to avoid race conditions. Fork-join acts like simply begin—end but inside fork-
join all statements are taken as concurrent. Classic fork-join is a “join all”” construct.
That’s if you fork two threads, then both of them need to finish for the join to end.
With join_none, one can spawn threads and continue, this is useful in launching
multiple input data streams for example.

To assist synthesis, there are some extra keywords. The always_comb, always_
latch, and always_ff keywords identify the intent of the process, so that a synthesis
tool can detect user errors [6], i.e., the synthesis compiler can tell us when we have
the wrong type of logic in our RTL models.

Test-bench DUT

Test-bench Interface DUT

Fig. 6.3 Interface versus conventional connections
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6.1.2.7 New Data Types

Bit (2-valued) and logic (4-valued) are new data types introduced by SV to allow
continuous assignments to logic variables. Using a 2-valued data type will speed up
simulation of the code. We no longer need to worry about when to declare module
ports or local signals as wire or reg. With SV, we can declare all module ports and
local signals as logic, and software tools will correctly infer nets or variables for you
[10]. SV also offers dynamic and associative array and queue.

6.1.3 TLM

Transaction-Level Modeling (TLM) provides abstraction level description for the IP
which means lack of details (Fig. 6.4). Advantages: simulation speed increases,
observation of traffic is easier, debugging on TLM level is easier than debugging on
RTL. Disadvantages: accuracy decreases. TLM separates communication from
computation and it is unidirectional put/get interface that works as a bridge to enable
UVM verifies multilanguages like SystemC. TLM is a library built on top of
SystemC which itself is a class library of C++. It encapsulates the communication
between different modules to separate communication from computation.
Translation of TLM2.0 from SystemC to SystemVerilog is needed, because it is
written at the beginning in SystemC. Connect () method using TLM analysis port is
the most famous method for TLM in UVM. We have three types for TLM commu-
nications: port, export, and analysis_port.

System Level (TLM, ESL)

RTL

Abstraction

Gate

Physical
Accuracy

Fig. 6.4 Abstraction level versus accuracy, ESL is electronic system level
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6.1.4 UVM

In this section we discuss the main features of UVM, where UVM infrastructure is
introduced in Sect. 6.1.2.1, Steps to verify an IP using UVM is introduced in
Sect. 6.1.2.2, and Drawbacks of UVM is introduced in Sect. 6.1.2.3, Opportunities
for UVM are discussed in Sect. 6.1.2.4. A case study is introduced in Sect. 6.1.2.5.

6.1.4.1 UVM Infrastructure

UVM testbench is composed of reusable verification component, which consists of
a complete set of elements for stimulating, checking, and collecting coverage infor-
mation for a specific protocol or design. These verification components are applied
to the DUT to verify it [12]. The testbench should be layered to break the problem
into manageable pieces to help in controlling the complexity.

The UVM main infrastructure, components, and all the terminology related to
UVM is introduced and summarized in Table 6.6, and the general architecture is shown
in Fig. 6.5. Master sequencer generates the data and it is sent to the DUT through the
driver. The data received by the slave are feed back to the scoreboard via collector for
comparison then here the sent and received data item are compared in the scoreboard.
The monitor samples the stimulus and responses. The configuration parameters are
used to configure these components. All these components can be reused. The driver,
monitor, and responder are called transactors/translators/adaptors.

Table 6.6 UVM infrastructure description

Component Description

Interface For communication between classes and modules

Transaction Representation of arbitrary activity in a device which has attributes
and bounded by time

Driver=BFM Apply stimulus to DUT (protocol specific). Also, Convert TLM to
RTL (pin wiggles). BFM =bus functional model
Think in the driver as a normal testbench

Monitor Monitor traffic, collect coverage, and send them to the various

analysis ports such as coverage and scoreboard
It looks like duplication of driver, but without triggering DUT wires

(passive)
Collector=receiver= Detects signal level activity, convert RTL to TLM and send it to
responder monitor

Sequencer =producer=
generator

Sequences =scenarios

Sequence item

Execution of traffic, coordinate what to do. Running different streams
without the need to change the component instantiation. It is like
arbitration logic

Generate stimulus. Protocol dependent and consists of multiple of
sequence items. It is generated from test class

Low level representation like address, data. A transaction object from
the sequencer that stimulates the driver

(continued)
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Table 6.6 (continued)

Component
Virtual interface

Sequence library
TLM port

Agent=component=
module=UVC

Agent type
Virtual sequencer

Scoreboard/checker

Functional coverage

Code coverage
Testbench
Test

Configuration

Factory

Phases

6 New Trends in SoC Verification...

Description

Inside driver to connect to RTL, like pointer to enable configuration
at runtime. It is a reference to the actual interface

Different sequences used by sequencer
To connect between sequencer and driver

Instantiate, configure subcomponents like {driver, sequencer,
monitor, collector}. Agent for TX, agent for RX

Tx, Rx, Master, Slave, Arbiter

Coordinate traffic between different UVCs, does not have a sequence
item. It is protocol independent. It starts sequences on sequencer.
Virtual sequences mean that sequences are calling other sequences
Self-checking mechanism. Check that the design is doing what we
expect. Need abstract reference model which can be MATLAB or
Python. Golden model and RTL must be developed by different
teams, errors might be in both. Compare (received, expected). It is a
TLM-based checking. It is preferred to separate protocol checking
from data checking for reusability. We can build the assertions inside
the scoreboard. Scoreboard checks that if the DUT and the reference
model have the same stimulus, they should have the same response
For completeness as it measures important behavior, covers
operation, dimension (as buffer size). Did we exercise the whole
testplan? To stress the device if not. We need to know what all the
tests have accomplished and this is done by storing the data in a
database and merging it all together. So, basically we should
implement a regression environment for functional coverage
measurement. Regressions are the continuous running of the tests
preciously defined in the testplan [13]

Illegal bins should be analyzed to check if any test case is out of the
design specifications

Did we exercise the whole code?
Contains all subcomponents, connections
Call testbench, configure traffic, and can be {directed, random
constrained, intelligent: driven random constrained to remove
redundancy}. Coverage-driven testing - >continue randomization
until coverage=100 %
To change the behavior of an already instantiated component to
provide flexibility. Such as #slaves, #masters
It provides configuration information to all parts of
TB. Configuration database is like parameters in Verilog
For class override at runtime, this helps making modifications to an
existing testbench. Create () method
Synchronization of UVM components. UVM components have
different phases that operate in a particular sequence:

Build (new ())->connect (TLM 2.0)->end of elaboration (Config)

->strt_sim->run->extract- >check- >report

*elaboration = @compile time

*on the fly=@ run time

Build and connect are functions as they consume zero time. Run is

task as it consumes some time

(continued)
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Table 6.6 (continued)

Component
Class library

Objections

UVM register layer

Verification Plan

Macros

+Plusarg =command
line processing
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Description
The UVM comes with a bunch of classes which are used to
implement the verification environment
UVM packages:
1. UVM_components (structural)
2. UVM_objects (configuration)
3. UVM._transaction (stimulus)
Any component that is busy should raise an objection to ending the
test, and then drop the objection when it is finished
For example, you can raise objection until coverage is 100 %
(get_coverage ()) and then drop the objection
Mechanism to setup and access DUT internal registers and memory. It
extends from UVM_reg. IP-XACT format is very useful for this feature.
It is a roadmap that summarizes test function points according to IP
specification (Failing to plan=planning to fail). It should be smart
testplan which effectively and efficiently tests the DUT
Macro is a construct that enables user to extend the language. Macros
implement some useful methods in classes as it can be used for
shorthand notation of complex implement. They are optional, but
recommended. The most common ones are:
‘UVM_component_utils— This macro registers the new class type.
It’s usually used when deriving new classes like a new agent, driver,
monitor, and so on
‘UVM_object_utils—This macro registers the objects like sequences
‘UVML_field_int—This macro registers a variable in the UVM factory
and implements some functions like copy (), compare (), and print ()
‘UVM_object_param_utils— This macro registers the
parameterized objects
‘UVM_component_param_utils—This macro registers the
parameterized components
‘UVML_info—This is a very useful macro to print messages
from the UVM environment during simulation time
‘UVML_fatal —This is a very useful macro to print fatal error
messages from the UVM environment during simulation time
‘UVML_error —This is a very useful macro to print error messages
from the UVM environment during simulation time
‘UVM_warning— This is a very useful macro to print warning
messages from the UVM environment during simulation time
Some of the famous UVM + plusarg are:

+UVM_TESTNAME

+UVM_VERBOSITY

+UVM_TIMEOUT

The UVM library defines a set of base classes and utilities that facilitate the
design of scalable, reusable verification environments as depicted in Fig. 6.6. The
basic building blocks for all environments are components and the transactions they
use to communicate which are called objects [7, 12, 14].
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TOP st Test library
Frest —
I Test Plan Specification Sequences library I
I ENV I
| Results I H
E
I Scoreboard Coverage I E
| Sequencer I
| Monitor I
I . |
| Driver I
| Master |
but Interface
Slave
AAssssEssARsssRssRRRRRRRRRRRRRRRRRRRS :
Fig. 6.5 UVM architecture and skeleton: the big picture
uvm_void
uvm_object
uvm_transaction uvm_report_object
- - - uvm_phase uvm_callback
uvm_configuration
uvm_sequence_item
- — uvm_component uvm_reg

uvm_sequence

uvm_driver

uvm_sequencer

uvm_monitor |uvm_scoreboard uvm_test

uvm_root

uvm_agent uvm_env

Fig. 6.6 Partial UVM class tree (UVM_pkg), we can inherit from any class
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UVM_Void

The UVM_void class is the base class for all UVM classes. It is an abstract class
with no data members or functions. It allows for generic containers of objects to be
created. It works similar to a void pointer in the C programming language.

UVM_Object

All components and transactions derive from UVM_object, which defines an inter-
face of core class-based operations: create, copy, compare, print, and record. It also
defines interfaces for instance identification (name, type name, unique id, etc.) and
the random seeding.

UVM_Component

The UVM_component class is the root base class for all UVM components.
Components are objects that exist throughout simulation. Every component is
uniquely addressable using hierarchical path name.

UVM_Transaction

The UVM._transaction is the root base class for UVM transactions. It extends
UVM_object to include timing and recording interface. Simple transactions can
derive directly from UVM_transaction.

UVM_Root

The UVM_root class is special UVM_component that serves as the top level
component for all UVM components, provides phasing control for all UVM
components, and other global services. UVM_TOP is a singleton of it.

UVM_Callback

The UVM_callback class is the base class for user-defined callback classes.
We define an application-specific callback class that extends from this class. In that,
we will define one or more virtual methods, called a callback interface that represent
the hooks available for user override.
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6.1.4.2 Steps to Verify an IP Smartly Using UVM

The steps to verify an IP smartly using UVM can be summarized as follows:

1. Understand the specification: implement the DUT.

2. Prepare verification plan: feature extraction, specifies how design will be veri-
fied, constrained random coverage driven, written in excel sheet, link it to cover-
point in coverage code written in SystemVerilog. You should expose your DUT
to stress testing.

3. Build verification environment in the following order: interface, configuration,
scoreboard, and monitors, generate sequences based on verification plan, Env
Class +simple testcase and simulate it. Debug from the generated UVM report
summary.

4. Measuring coverage progress against the testplan, run regressions, and add test-
cases for coverage holes. For closing coverage you start to run with multiple
seeds, but sometimes certain scenarios can never be covered by the randomness
and we need a directed test case.

5. Error handling and debugging: when you find a bug, before debugging it ask
yourself the following questions: Is this mistake somewhere else also? What next
bug is hidden behind this one? What should I do to prevent bugs like this? Then,
you can start debugging using waveforms, tracing, or logging. Use built-in
watchdog timer class to handle testcase hanging.

6. When all tests in the testplan have been tested and no bugs were found, then the
verification task is over.

6.1.4.3 Drawbacks of UVM

Synthesis tool for SV is limited. This is a major drawback which is restricting
designers to accept SV as a design language. Also, there are limitations for using
UVM with emulators. Moreover, UVM is very complicated, so it does not make
sense with small projects. Besides, there are challenges in using UVM at SoC Level.
Also, debugging Macros is difficult. UVM provides no links between testbenches
and code running in the embedded processors.

6.1.4.4 Opportunities for UVM

UVM methodology can be enhanced to offer a flexible framework for the virtual
prototyping of multidiscipline testbenches that supports both digital and Analog
Mixed-Signal (AMS) at the architectural level [15]. The extension of UVM for
mixed-signal verification of analog models is reported in literature [15]. Moreover,
UVM is a promising solution in verifying 3D-SoC which has many IPs and hetero-
geneous systems.
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Table 6.7 Comparison WISHBONE metric Direct testing | UVM

%e\t/vls\/zen direct testing and # Tests to reach 100 % coverage |30 120
Regression time (h) 3 0.25
Benefits - 12x faster

6.1.4.5 A Case Study: WISHBONE

A SoC case study is presented to illustrate the pros and cons of the UVM and to
compare traditional verification with UVM-based verification. WISHBONE SoC
interconnect architecture for portable IP cores are used as a case study [16]. The
results can be shown in Table 6.7, where the UVM-based approach improves the
coverage time by 12 times.

6.1.5 Summary

This chapter presents an overview on building a reusable RTL verification environ-
ment using the UVM verification methodology. UVM is a culmination of well-
known ideas and best practices. This chapter also presents a survey on the features
of UVM. It presents its pros, cons, challenges, and opportunities. Moreover, it pres-
ents simple steps to verify an IP and build an efficient and smart verification envi-
ronment. A SoC case study was presented to compare traditional verification with
UVM-based verification.

6.2 Part II: RTL Bug Localization

6.2.1 Introduction

In VLSI, design flow functional verification is a required process to ensure that the
implementation of the design is in accordance with the specification. Due to the
increasing design complexity of VLSI circuits, the cost of verification and debug-
ging has significantly increased.

According to ITRS [17], Verification process is now considered a bottleneck as
it consumes up to 60 % of the design cost.

Verification tools check the correctness of a design against its specification.
Register Transfer Level (RTL) is still the dominant description level for the hard-
ware design.

There are two types of bugs: (1) electrical bugs caused by interaction between the
design and physical effects such as cross-talk, supply noise, temperature, process varia-
tion, and signal integrity. (2) Design or functional bugs at RTL which are classified into
three major classes: logic bugs, algorithmic bugs, and timing/synchronization bugs [18].
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Fig. 6.7 There are two types of bugs: (1) electrical bugs caused by interaction between the design
and physical effects such as cross-talk, supply noise, temperature, process variation, and signal
integrity. (2) Design or functional bugs at RTL which are classified into three major classes: logic
bugs, algorithmic bugs, and timing/synchronization bugs

The logic bug is characterized by erroneous logic in combinational circuits. A logic bug
occurs because the designer formed an erroneous logic block.

The algorithmic bug covers major design bugs related to the algorithmic imple-
mentation of the design. These design bugs exhibit algorithmic deviations from the
design specification and they usually require major modifications to be fixed.

The timing bug is associated with the timing correctness of the implementation,
where a signal needed to be latched a cycle earlier or a cycle later in order to keep the
timing of signals correct in the design. These types of bugs are summarized in Fig. 6.7.

In order to keep the production costs low, it is required to detect bugs as soon as
possible. This chapter targets localization of functional errors.

While there are a lot of verification methodologies for error detection in RTL
design, there is fewer work for debugging the error which includes localization and
correction stages. Moreover, most of the related works are concentrating on gate-
level error localization [19-21], and are applied to small designs.

For gate-level bug localization, there are basically two approaches: symbolic and
simulation-based. Symbolic approaches are accurate but suffer from combinatorial
explosion, whereas simulation-based approaches, although scalable with design
size, require numerous test vectors for sufficient accuracy. A SAT-based automated
bug localization is used for gate-level [22, 23].

Other work is focusing on formal methods and failed properties which are not
suitable for large designs [24, 25].

Here, we are focusing on the RTL-level and large designs. Detecting and locating
the source of erroneous behavior in large and complex RTL design is challenging.
In this chapter, we present a novel approach for bug localization methodology to
address this challenge using information from regression suit results about failed
and passed testcases and number of statements executed by each test. The idea is
inherited from software domain [26-28]. We present a proof of concept for this idea
using Verilog-based case studies.

This chapter is organized as follows: In Sect. 6.2.2, the proposed methodology
for bug localization error is presented and discussed. Moreover, the experimental
results are analyzed. In Sect. 6.2.3, summary is given.
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6.2.2 RTL Bug Localization

In this section, proposed methodology is given in Sect. 6.2.2.1. Results are dis-
cussed in Sect. 6.2.2.2.

6.2.2.1 Proposed Methodology

Given a set of statements (S) for which an HDL design exhibits an incorrect behavior,
the objective of design debugging is to find the highly candidate statement that may
be responsible for this incorrect behavior. The failing and passing testcases are used to
find the bug location. If a statement is executed by more than two failing testcases, so
this statement is more likely to have the bug. So, run the complete regression suite
until the coverage is 100 %, then extract the needed information about the passed and
failed testcases and obtain a list of design statements executed by each test.

An example to show how our proposed method works is shown in Fig. 6.8, where
we assume that our DUT has only one bug due to only one incorrect statement and
we have ten testcases to test its behavior.

From Table 6.8, the left columns shows how each RTL statement is executed by
each testcase either it is failing or passing. An entry 1 indicates that the statement is
executed by the corresponding test case and an entry 0 means it is not executed. The
most right column shows the execution result with an entry 1 for a failed testcase
and an entry O for a passing testcase. If a statement is executed by a successful test
case, its likelihood of containing a bug is reduced.

The suspiciousness of each statement=the number of failed tests that execute
it—the number of successful tests that execute it. But, this way cannot distinguish a
statement executed by one successful and one failed test from another statement
executed by 10 successful and 10 failed tests.

So, we will use weighted probability to indicate that more successful executions
imply less likely to contain the bug. So the suspiciousness of each statement=the
number of failed tests that execute it/the number of successful tests. And we will
choose the maximum value to start with, i.e., the large rank. The proposed method-
ology for automated bug localization is shown in Fig. 6.9.

6.2.2.2 Experimental Results

Experimental results show that our method can detect errors in large designs up to
several thousand lines of RTL code in few minutes with high accuracy compared to
time consumed in hours using manual bug localization. Here, we only localize the
error not correcting it. Other experiments are done on more bugs to observe the
effectiveness of our methodology. We insert errors into some other parts of the code
for the complex RTL design then we applied our methodology to locate the error.
Table 6.9 reveals some results, where it is clear that our methodology reduces the
time needed to localize the bug significantly.
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Fig. 6.8 A case study: a
behavior Verilog code for a
part of complex design
contains a bug in s10. The
design is more than 5000
lines of RTL code

6 New Trends in SoC Verification...

/***************** oskeokok ok k3% *

* Verilog code for a part of design contains a bug *

Hokeskokok *k stk koo R R R R R R K R ok

always @ (negedge CLK or negedge RST _N)

begin
if (~RST_N) //s0
begin
rd_cnt <= 16'h0000; //sl
cnt8_1 <= 3'b000; /82
end
else if (~incr_rd_user_addr) //s3
begin
rd_cnt <= 16'h0000; //s4
cnt8_1 <= 3'b000; //s5
end
else if (incr_rd_user_addr) /136
begin

cnt8_1 <=cnt8_1+3'b001; //s7

if (BUS_WIDTH == 3'h2) //s8
begin
cnt8_1 <=3'h0; /9
rd_cnt <=rd_cnt +2; /110
end

else if (BUS_WIDTH == 3'h0) /Is11

begin
cnt8_1 <= 3'h0; //s12
rd ent<=rd cnt+1; //s13
end
end

end
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Fig. 6.9 The proposed
methodology for
automated bug localization

Stepl

Step2

Step3

Step4

Step5

Step6

Step7

6 New Trends in SoC Verification...

DUT+TESTCASES

v

Run Regression suite

Extract information about pass/fail tests

Extract information about execution of statements in
each test

Calculate failed tests per statements

Calculate passed tests per statements

Calculate Suspicious per statement

Rank generation for suspicious part of code

l

Error Localization

If the testcase fails in the regression although it passes alone, we should merge it
with the previous testcase to create only one testcase as the previous testcase does

not reset a certain variable which caused the followed testcase to fail. The effective-

ness of this methodology varies for different designs, bugs, and testcases. Here, we
assume that we have a rich and correct testcases.

6.2.3 Summary

Bug localization is a process of identifying the specific locations or regions of
source code that is buggy and needs to be modified to repair the defect. Bug local-
ization can significantly reduce human effort and design cost.
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In this chapter, a novel automated coverage-based functional bug localization
method for complex HDL designs is proposed which significantly reduces debug-
ging time. The proposed bug localization methodology takes information from
regression suite as an input and produces a ranked list of suspicious part of code.
Our methodology is a promising solution to reduce required time to localize RTL
bugs significantly.

6.3 Part III: RTL Scan-Chain

6.3.1 Introduction

Simulation-based verification scheme of large sophisticated intellectual property
(IPs) is considered a time consuming process. Mainly, there are two famous meth-
ods to help accelerate simulation process and reduce verification time: hardware
acceleration, and hardware RTL emulation. The RTL hardware accelerator solu-
tions are based on using application-specific ASICs, each contains special-
application processors and memories [29-32]. The RTL hardware emulators are
based on using FPGAs, where the design is synthesized into a gate-level netlist.
However, most hardware emulator does not provide easy debugging capability at
runtime. In this chapter, a scan-chain scheme is proposed to reduce debugging time.
Runtime changes of the values of the signals of the IP during execution-time can be
done through the proposed scan-chain methodology.

The proposed method provides internal glue-block which automatically replaces
any signal with a mux and extra input, so that at run time if we enable this method
we can replace any internal signal by a forced one.

The rest of this chapter is organized as follows. In Sect. 6.3.2, the proposed RTL-
level scan-chain methodology is presented. Summary is given in Sect. 6.3.3.

6.3.2 The Proposed RTL-Level Scan-Chain Methodology

RTL simulation provides system-on-chip (SoC) verification with full debugging
capabilities, but its disadvantages are the low-speed simulation for complicated RTL
design. By using FPGA-based RTL emulation, we can have high-speed simulation.
But, it is not easy to debug it because it has poor-capabilities visibility. Other solu-
tions provide full debug capabilities such as RTL emulators, but the offline debugging
method needs to recompile the whole design, which slows the verification process. In
this chapter, we propose an online RTL-level scan-chain-based methodology for
accelerating IP emulation debugging time at Runtime. This method provides internal
glue-block which automatically replaces any signal with a mux and extra input, so
that at runtime if we enable this method we can replace any internal signal by a forced
one. Our experiment shows that, the area overhead is neglected compared to the
gained performance benefits. The conventional emulation flow versus the proposed
scan-chain based emulation flow is shown in Figs. 6.10 and 6.11 respectively.
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a (TB+DUT)
Design
TestBench Embedded logic
Analyzer
A
Compile Synthesize Specify Traces
v 7'
Placement and Routing
Rerun test
v PLI v
SW/CPU HW Emulator
Memory Traces
b
Design Compile Emulation Waveform Tool
X
Modify HDL Debug

Fig. 6.10 Conventional emulation flow (offline debug) (a) detailed, (b) simplified [32]

To illustrate the proposed method, we assume the example shown in Fig. 6.12a,
where: out <(A+B)x C; where C is predetermined value that we want to change it
in runtime, we compile the design and run emulation. If we want to change value of
C, we have to recompile the whole design. Sometimes, it takes very large time
depending on the complexity of the design. So, here we propose to use the online
RTL-level scan-chain methodology to be able to change the value of C at run time
without recompiling the whole design which accelerates the emulation debugging
time. We will create a utility tool that instantiates glue logic and a mux with each
“reg” definition in the VERILOG file, the glue logic is a null connection which puts
the input into the output as depicted in Fig. 6.12b. So, the designer can change the
value at runtime. It will be automatically auto-generated for all the registers defined
in the design. Our experiment shows that, the area overhead is neglected compared
to the gained performance benefits.
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Fig. 6.11 Proposed emulation flow (online flow), synthesizable testbench methodology, scan-
chain methodology, (a) detailed, (b) simplified

6.3.3 Summary

An online RTL-level scan-chain methodology is proposed to reduce debugging time
and effort for emulation. Runtime modifications of the values of any of the internal
signals of the DUT during execution can be easily performed through the proposed
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c

Fig. 6.12 (a) Normal design example, (b) proposed scan-chain methodology for the design
example in (a)

online scan-chain methodology. A utility tool was developed to help ease this
process. Our experiment shows that the area overhead is neglected compared to the
gained performance benefits. But, IP design requires more compilation time.

6.4 Part IV: Automatic Test Generation Based
on Genetic Algorithms

6.4.1 Introduction

Verification is the bottleneck in the SoC life cycle. Moreover, the coverage space is
very huge. Code coverage cannot cover the functional coverage. The efficiency of the
verification is proportional to achieving the coverage goals in less simulation time.

Coverage goals ©6.1)

Thertiaion © o Tation time

The verification process problems will be considered as an optimization problem.
GA is used to solve it. Genetic Algorithms (GA) are the heuristic (experience-
based) search and time-efficient learning and optimization techniques that mimic
the process of natural evolution based on Darwinian Paradigm (Fig. 6.13). Thus
genetic algorithms implement the optimization strategies by simulating evolution of
species through natural selection. The nature to computer mapping is shown in
Table 6.10, where each cell of a living thing contains chromosomes (strings of
DNA), each chromosome contains a set of genes (blocks of DNA), and each gene
determines some aspect of the organism (like eye color). In other words, parameters
of the solution (genes) are concatenated to form a string (chromosome). In a
chromosome, each gene controls a particular characteristic of the individual.
The population evolves towards the optimal solution (Fig. 6.14). Evolution based on
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Fig. 6.13 Darwinian ]
paradigm Reproduction R i,
(Crossover, Mutation) “ Competition
)
2
Survive .
(Replacement) N Selection
Table 6.10 Thg nature to Nature Computer
computer mapping Population Set of solutions
Individual Solution to a problem
Fitness Quality of a solution
Chromosome Encoding for a solution
Gene Part of the encoding solution
Reproduction Crossover

“survival of the fittest.” Genetic algorithms are well suited for hard problems where
little is known about the underlying search space. So, it is considered a robust search
and optimization mechanism. The genetic algorithm used in this work consists of
the following steps or operations [33-38], and can be seen in Fig. 6.15:

1.

Initialization and encoding:
The GA starts with the creation of random strings, which represent each member
in the population.

. Evaluation (Fitness):

The fitness used as a measure to reflect the degree of goodness of the individual,
is calculated for each individual in the population.

. Selection

In the selection process, individuals are chosen from the current population to
enter a mating pool devoted to the creation of new individuals for the next gen-
eration such that the chance of a given individual to be selected to mate is pro-
portional to its relative fitness. This means that best individuals receive more
copies in subsequent generations so that their desirable traits may be passed onto
their offspring. This step ensures that the overall quality of the population
increases from one generation to the next.

. Crossover:

Crossover provides the means by which valuable information is shared among the
population. It combines the features of two parent individuals to form two children
individuals that may have new patterns compared to those of their parents and
plays a central role in Gas. The crossover operator takes two chromosomes and
interchanges part of their genetic information to produce two new chromosomes.

. Mutation:

Mutation is often introduced to guard against premature convergence. Generally,
over a period of several generations, the gene pool tends to become more and
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Global

Local

Fig. 6.14 GA searches the optimal solution in the entire search space. We chose random solutions
and move around it, until we reach global optimal not local one

more homogeneous. The purpose of mutation is to introduce occasional pertur-
bations to the parameters to maintain genetic diversity within the population.

6. Replacement:
After generating the offspring’s population through the application of the genetic
operators to the parents “population, the parents” population is totally replaced
by the offspring’s population. This is known as no overlapping, generational,
replacement. This completes the “life cycle” of the population.

7. Termination
The GA is terminated when some convergence criterion is met. Possible conver-
gence criteria are: the fitness of the best individual so far found exceeds a thresh-
old value; the maximum number of generations is reached. An example for the
parameter used in GA is shown in Table 6.11.

Many different test data generation methods like random test data generator have

been proposed in the literature [33-35].

In this chapter, artificial intelligence algorithms, such as genetic algorithm, are
proposed as a novel method for test generation.

6.4.2 Proposed Methodology

The verification process problems will be considered as an optimization problem.
GA is used to solve it. The methodology is as follows: generate stimulus based on
the feedback from previously generated stimulus to cover areas which were not
explored by previously applied tests. During each stimulus cycle, coverage results
are collected and sent as an input to the genetic algorithm and used as a guideline
for next stimulus. The next stimulus will be more effective compared to randomly
generated one (Fig. 6.16). The fitness function here is chosen to maximize the func-
tional coverage percentage, where:

Fitness = Functional coverage ratio (6.2)
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Fig. 6.15 Genetic
algorithm chart: A GA
typically operates
iteratively through a simple
cycle of stages: (1) creation V
of a population of strings,
(2) evaluation of each
string, (3) selection of the
best strings, and (4) genetic
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Table 6.11 Parameters used by the GA, the parameters are not fixed and may be changed
according to the situation

Name Symbol | Value (type)

Number of generations | gen 200

Population size n 50

Chromosome length m 80 bits

Crossover probability P, 0.9

Mutation probability P, 0.01

Type of selection - Normal geometric, rank-based selection, Roulette wheel
Type of crossover - Arithmetic, multipoint

Type of mutation - Nonuniform, flip

Termination method - Maximum generation, fitness >0.99

Start simulation

Coverage 100 %

Analyze Coverage

holes
Option3 Option2 Optionl
Generate GA-
based Guided Generate Stimulus Generate Stimulus
random stimulus randomly manually

]

Fig. 6.16 The proposed GA methodology to speedup coverage closure. Using genetic algorithms,
there is no test redundancy
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Fig. 6.17 The GA Coverage 100%
performance GA
Random
Manual
Time
Table 6.12 GA-based test generation results to get 100 % coverage
Method Random testing Our GA approach
# Scenarios

Design (100 % coverage) # Stimulus Runtime (s) # Stimulus Runtime (s)
#1 4 120 3 100 2
#2 16 200 4 150 2.6
#3 6 130 32 90 1

#4 12 180 35 110 1.3
#5 8 190 3.7 120 1.5
#6 10 195 3.8 124 2.1
#1 6 130 3 120 2.2
#8 18 210 4 155 2.6
#9 8 180 3.7 96 1.6
#10 14 190 35 114 1.5
#11 10 170 32 111 1.7
#12 12 215 32 144 24

Simulation results show that:

1. Coverage holes can be hit automatically with less effort and less time (Fig. 6.17).
2. Computational resources should be low.

The results for some designs are reported in Table 6.12, where it is clear that
using GA, we can reach 100 % coverage in less time with less number of stimulus.



150 6 New Trends in SoC Verification...
6.4.3 Summary

The main challenge in using constraint random testing (CRT) is that manual analy-
sis for the coverage report is needed to find the untested scenarios and modify the
testcases to achieve 100 % coverage. We need to replace the manual effort by an
automatic method or a tool that will be able to extract the coverage report, identify
the untested scenarios, add new constraints, and iterate this process until 100 %
coverage is attained. In other words, we need an automated technique to automate
the feedback from coverage report analysis to test generation process. In this chap-
ter, the implementation of this automatic feedback loop is presented. The verifica-
tion environment is created using universal verification methodology (UVM) for
reusability. The automatic feedback loop is based on artificial intelligence technique
called genetic algorithm (GA). This technique accelerates coverage-driven func-
tional verification and achieves coverage closure rapidly by covering uncovered
scenarios in the coverage report (coverage holes).
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Chapter 7
Conclusions

This book discusses the IP cores life cycle process from specification to production
which includes four major steps: (1) IP Modeling, (2) IP verification, (3) IP optimi-
zation, (4) IP protection. For IP modeling, four major methodologies are introduced
which includes: FPGA-based modeling, processor-based modeling, ASIC-based
modeling, and PCB-based modeling. For IP verification, different platforms are pre-
sented and analyzed such as simulation, acceleration, emulation, and prototyping.
Moreover, different verification methodologies are introduced such as: UVM, direct
testing, negative testing, software-driven testing, and formal testing. We presented
different methods for IP optimization for the main design methodologies to improve
area, speed, and power. For IP protection, we analyzed different strategies to
perform protection not to make companies lose revenue and market share.

In this book, we present most famous memory cores and controllers and analyze
the trade-off between them. A descriptive comparison between various on-chip
memory protocols is made. Comparing the architecture of these different control-
lers, it is realized that their architecture is common in many things. They mainly
differ in the performance and the features. Moreover, we introduce new trends in
SoC memories such as PCRAM, ReRAM, MRAM, and 3D memory.

Moreover, in this book, we introduce a deep introduction for SoC buses and
peripherals. We explain in detail their features and architectures. Moreover, SoC
buses examples are explained in detail. Different SoC bus topologies are discussed
such as point to point, unilevel shared bus, hierarchical bus, ring, cross-bar bus,
NoC. The arbitration algorithms are explored. We give a methodology for extraction
of any SoC bus features from its standard. The different features include topology,
arbitration, bus width, transfers, timing, transmission control, and type.

In this book, we introduce a deep introduction for Verilog for both implementation
and verification point of view. The chapter used design examples for showing ways
in which Verilog could be used in a design for both implementation and verification.
This chapter did not cover all of Verilog, but only some important topics. Moreover,
a survey on the current existing logic simulators is presented.
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This book presents an overview on building a reusable RTL verification environ-
ment using the UVM verification methodology. UVM is a culmination of well-
known ideas and best practices. This book also presents a survey on the features of
UVM. It presents its pros, cons, challenges, and opportunities. Moreover, it presents
simple steps to verify an IP and build an efficient and smart verification environment.
A SoC case study was presented to compare traditional verification with UVM-based
verification.

Bug localization is a process of identifying the specific locations or regions
of source code that is buggy and needs to be modified to repair the defect. Bug
localization can significantly reduce human effort and design cost.

In this book, a novel automated coverage-based functional bug localization
method for complex HDL designs is proposed which significantly reduces debug-
ging time. The proposed bug localization methodology takes information from
regression suite as an input and produces a ranked list of suspicious part of code.
Our methodology is a promising solution to reduce required time to localize bugs
significantly.

An online RTL-level scan-chain methodology is proposed to reduce debugging
time and effort for emulation. Runtime modifications of the values of any of the
internal signals of the DUT during execution can be easily performed through the
proposed online scan-chain methodology. A utility tool was developed to help ease
this process. Our experiment shows that, the area overhead is neglected compared
to the gained performance benefits. But, IP design requires more compilation time.

The main challenge in using constraint random testing (CRT) is that manual anal-
ysis for the coverage report is needed to find the untested scenarios and modify the
test cases to achieve 100 % coverage. We need to replace the manual effort by an
automatic method or a tool that will be able to extract the coverage report, identify
the untested scenarios, add new constraints, and iterate this process until 100 % cov-
erage is attained. In other words, we need an automated technique to automate the
feedback from coverage report analysis to test generation process. In this chapter,
the implementation of this automatic feedback loop is presented. The verification
environment is created using universal verification methodology (UVM) for
reusability. The automatic feedback loop is based on artificial intelligence technique
called genetic algorithm (GA). This technique accelerates coverage-driven func-
tional verification and achieves coverage closure rapidly by covering uncovered
scenarios in the coverage report (coverage holes).
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