
Lecture Notes in Electrical Engineering 361

Frank Oppenheimer
Julio Luis Medina Pasaje
 Editors

Languages, Design
Methods, and
Tools for Electronic
System Design
Selected Contributions from FDL 2014

Lecture Notes in Electrical Engineering

Volume 361

Board of Series editors

Leopoldo Angrisani, Napoli, Italy
Marco Arteaga, Coyoacán, México
Samarjit Chakraborty, München, Germany
Jiming Chen, Hangzhou, P.R. China
Tan Kay Chen, Singapore, Singapore
Rüdiger Dillmann, Karlsruhe, Germany
Haibin Duan, Beijing, China
Gianluigi Ferrari, Parma, Italy
Manuel Ferre, Madrid, Spain
Sandra Hirche, München, Germany
Faryar Jabbari, Irvine, CA, USA
Janusz Kacprzyk, Warsaw, Poland
Alaa Khamis, New Cairo City, Egypt
Torsten Kroeger, Stanford, CA, USA
Tan Cher Ming, Singapore, Singapore
Wolfgang Minker, Ulm, Germany
Pradeep Misra, Dayton, OH, USA
Sebastian Möller, Berlin, Germany
Subhas Mukhopadyay, Palmerston, New Zealand
Cun-Zheng Ning, Tempe, AZ, USA
Toyoaki Nishida, Kyoto, Japan
Bijaya Ketan Panigrahi, New Delhi, India
Federica Pascucci, Roma, Italy
Tariq Samad, Minneapolis, MN, USA
Gan Woon Seng, Singapore, Singapore
Germano Veiga, Porto, Portugal
Haitao Wu, Beijing, China
Junjie James Zhang, Charlotte, NC, USA

About this Series

“Lecture Notes in Electrical Engineering (LNEE)” is a book series which reports
the latest research and developments in Electrical Engineering, namely:

� Communication, Networks, and Information Theory
� Computer Engineering
� Signal, Image, Speech and Information Processing
� Circuits and Systems
� Bioengineering

LNEE publishes authored monographs and contributed volumes which present cut-
ting edge research information as well as new perspectives on classical fields, while
maintaining Springer’s high standards of academic excellence. Also considered
for publication are lecture materials, proceedings, and other related materials of
exceptionally high quality and interest. The subject matter should be original and
timely, reporting the latest research and developments in all areas of electrical
engineering.
The audience for the books in LNEE consists of advanced level students,
researchers, and industry professionals working at the forefront of their fields.
Much like Springer’s other Lecture Notes series, LNEE will be distributed through
Springer’s print and electronic publishing channels.

More information about this series at http://www.springer.com/series/7818

http://www.springer.com/series/7818

Frank Oppenheimer • Julio Luis Medina Pasaje
Editors

Languages, Design Methods,
and Tools for Electronic
System Design
Selected Contributions from FDL 2014

123

Editors
Frank Oppenheimer
Transportation Division
OFFIS e.V., Oldenburg, Germany

Julio Luis Medina Pasaje
Universidad de Cantabria
Santander, Spain

ISSN 1876-1100 ISSN 1876-1119 (electronic)
Lecture Notes in Electrical Engineering
ISBN 978-3-319-24455-6 ISBN 978-3-319-24457-0 (eBook)
DOI 10.1007/978-3-319-24457-0

Library of Congress Control Number: 2015957253

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com

Contents

Part I Formal Models and Verification and Predictability

1 Automatic Refinement Checking for Formal System Models 3
Julia Seiter, Robert Wille, Ulrich Kühne, and Rolf Drechsler

2 Towards Simulation Based Evaluation of Safety Goal
Violations in Automotive Systems . 23
Oezlem Karaca, Jerome Kirscher, Linus Maurer,
and Georg Pelz

3 Hybrid Dynamic Data Race Detection in SystemC . 41
Alper Sen and Onder Kalaci

Part II Languages for Requirements

4 Semi-formal Representation of Requirements for
Automotive Solutions Using SysML . 57
Liana Muşat, Markus Hübl, Andi Buzo, Georg Pelz,
Susanne Kandl, and Peter Puschner

5 A New Property Language for the Specification of
Hardware-Dependent Embedded System Software . 83
Binghao Bao, Carlos Villarraga, Bernard Schmidt,
Dominik Stoffel, and Wolfgang Kunz

6 Exploiting Electronic Design Automation for Checking
Legal Regulations: A Vision . 101
Oliver Keszocze and Robert Wille

Part III Parallel Architectures

7 Synthesizing Code for GPGPUs from Abstract Formal Models 115
Gabriel Hjort Blindell, Christian Menne, and Ingo Sander

v

vi Contents

8 A Framework for Distributed, Loosely-Synchronized
Simulation of Complex SystemC/TLM Models . 135
Christian Sauer, Hans-Martin Bluethgen, and Hans-Peter Loeb

Part IV Modelling and Verification of Power Properties

9 Towards Satisfaction Checking of Power Contracts in Uppaal 157
Gregor Nitsche, Kim Grüttner, and Wolfgang Nebel

10 SystemC AMS Power Electronic Modelling with Ideal
Instantaneous Switches . 181
Leandro Gil and Martin Radetzki

Part I
Formal Models and Verification

and Predictability

Chapter 1
Automatic Refinement Checking for Formal
System Models

Julia Seiter, Robert Wille, Ulrich Kühne, and Rolf Drechsler

Abstract For the design of complex systems, formal modelling languages such as
UML or SysML find significant attention. The typical model-driven design flow
assumes thereby an initial (abstract) model which is iteratively refined to a more
precise description. During this process, new errors and inconsistencies might be
introduced. In this chapter, we propose an automatic method for verifying the
consistency of refinements in UML or SysML. For this purpose, a theoretical
foundation is considered from which the corresponding proof obligations are
determined. Afterwards, they are encoded as an instance of satisfiability modulo
theories (SMT) and solved using proper solving engines. The practical use of the
proposed method is demonstrated and compared to a previously proposed approach.

1.1 Introduction

Due to the increasing complexity of today’s systems and, caused by this, the steady
strive of designers and researchers towards higher levels of abstractions, modelling
languages such as the unified modeling language (UML) [28] or the Systems
Modeling Language (SysML) [33] together with textual constraints, e.g., provided
by the object constraint language (OCL) [32] received significant attention in
computer-aided design. They allow for a formal specification of a system prior to
the implementation. Such an initial blueprint can be iteratively refined to a final
model to be implemented. The actual implementation is then carried out manually,
by using automatic code generation, or a mix of both.

An advantage of using formal descriptions like UML or SysML is that the initial
system models can already be subject to (automatic) correctness and plausibility

J. Seiter (�) • U. Kühne
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
e-mail: jseiter@informatik.uni-bremen.de; ulrichk@informatik.uni-bremen.de

R. Wille • R. Drechsler
Institute of Computer Science, University of Bremen and Cyber-Physical Systems,
DFKI GmbH, 28359 Bremen, Germany
e-mail: rwille@informatik.uni-bremen.de; drechsle@informatik.uni-bremen.de

© Springer International Publishing Switzerland 2016
F. Oppenheimer, J.L. Medina Pasaje (eds.), Languages, Design Methods, and Tools
for Electronic System Design, Lecture Notes in Electrical Engineering 361,
DOI 10.1007/978-3-319-24457-0_1

3

mailto:jseiter@informatik.uni-bremen.de
mailto:ulrichk@informatik.uni-bremen.de
mailto:rwille@informatik.uni-bremen.de
mailto:drechsle@informatik.uni-bremen.de

4 J. Seiter et al.

checks. By this, inconsistencies and/or errors in the specification can be detected
even before a single line of code has been written. For this purpose, several
approaches have been introduced [3, 11, 12, 30, 31]. They tackle verification
questions such as “Does the conjunction of all constraints still allow the instantiation
of a legal system state?” or “Is it possible to reach certain bad states, good states,
or deadlocks?”. These verification tasks are typically categorized in terms such as
consistency, reachability, or independence [17].

However, these verification techniques are usually carried out on a single model
and, hence, are not sufficient for the typical model-driven design flow in which an
abstract model is generated first and iteratively refined to a more precise description.
Indeed, they enable the detection of errors and inconsistencies in one iteration,
but they need to be re-applied in the succeeding iteration even for minor changes.
Instead, it is desirable to check whether a refined model is still consistent to the
original abstract model. In this way, verification results from abstract models will
also be valid for later refined models.

For the creation of software systems, such a refinement process has already been
established. Here, frameworks such as the B-method [1], Event-B [2], and Z [34]
exist. These methods rely on a rigorous modelling using first-order logic. Exten-
sions, e.g., of Event-B to the UML-like UML-B or translations of UML to B
models, are available in [5, 29], respectively. But since the proof obligations
for a correct refinement in these frameworks are undecidable in general, usually
manual or interactive proofs must be conducted—a time-consuming process which
additionally requires a thorough mathematical background.

Hence, automatic proof techniques are desired. For this purpose, existing solu-
tions proposed in the context of hardware verification and the design and modelling
of reactive systems may be applied. Here, the relation of an implementation and
its specification (comparable to a refined and an abstract system) is traditionally
described by simulation relations on finite state systems (see, e.g., [7, 16, 21, 23]).
There exist algorithms for computing such relations [10, 25]. However, since these
algorithms operate on explicit state graphs, they do require the consideration of
all possible system states and operation calls—infeasible for larger designs. A
similar difficulty occurs when attempting to automatize the verification process
proposed by the B-method. In [20], an extension to the tool ProB has been proposed
which automatically solves all proof obligations created in the refinement process.
However, according to their evaluation, the run-time for the verification grows
exponentially.

As a consequence, an alternative solution is proposed in this chapter which
exploits the recent accomplishments in the domain of model-based verification
(i.e. approaches like [3, 11, 12, 30, 31]) using a symbolic state representation. Based
on a theoretical foundation of refinement, we can prove the preservation of safety
properties from an abstract model to a more detailed model. In contrast to the
existing approaches like in [24], this also includes non-atomic refinements, where
an abstract operation is replaced by a sequence of refined operations. By this, the
consistency of a refined model against an original (abstract) model can be checked
automatically.

1 Automatic Refinement Checking for Formal System Models 5

The remainder of the chapter is structured as follows. The chapter starts with
a brief review on models and their notation in Sect. 1.2. Section 1.3 describes
the addressed problem which, afterwards, is formalized in Sect. 1.4. The proposed
solution is introduced in Sect. 1.5 and its usefulness is demonstrated in Sect. 1.6
where it is applied to several examples and compared to the results from [20]. The
chapter is concluded in Sect. 1.8.

1.2 Models and Their Notation

Modelling languages provide a description of a system to be realized, i.e. proper
description means to formally define the structure and the behaviour of a system.
At the same time, implementation details which are not of interest in the early
design/specification state remain hidden. In the following, we briefly review the
respective description by means of UML and OCL. The approaches proposed in this
chapter can be applied to similar modelling languages (e.g. such as SysML) as well.

Definition 1. A model is a tuple m D .C; R/ composed of a set of classes C and a
set of associations R. A class c D .A; O; I/ 2 C of a model m is a tuple composed
of attributes A, operations O, and invariants I. An n-ary association r 2 R of a
model m is a tuple r D .rends; rmult/ with association ends rends 2 Cn for a given set
of classes C and multiplicities rmult 2 .IN0 � IN/n that is defined as a range with a
lower bound and an upper bound.

Example 1. Figure 1.1a shows a model composed of the class Phone which itself
is composed of the attributes A D fcreditg, the operations O D fchargeg, and the
invariant I D fi1g.

Invariants in the model describe additional constraints which have to be satisfied
by each instantiation of the model. For this purpose, textual descriptions provided
in OCL can be applied. OCL also allows the specification of the behaviour of
operations.

Phone
a

c

credit: Integer

charge()

context Phone::charge()
post: credit > credit@pre

inv i1:
credit >= 0

b
p:Phone
credit = 15

p:Phone
credit = 27

Fig. 1.1 Example of a model and its instantiation. (a) Given model; (b) State �0; (c) State �1

6 J. Seiter et al.

Definition 2. OCL expressions ˆ are textual constraints over a set of variables V �
A � R composed of the attributes A of the respective classes, but also further
(auxiliary) variables. An OCL condition ' 2 ˆ is defined as a function ' W V ! IB.
They can be applied to specify the invariants of a class as well as the pre- and
post-condition of an operation, i.e. I � ˆ. An operation o 2 O is defined as a
tuple o D .�;�/ with pre-condition � 2 ˆ and post-condition � 2 ˆ, respectively.
The valid initial assignments of a class are described by a predicate init 2 ˆ.

Example 2. In the model from Fig. 1.1a, the invariant i1 states that credit always has
to be greater or equal to 0. The post-condition of the operation charge ensures that
after invoking the operation, credit is increased.

Any instance of a model is called a system state and is visualized by an object
diagram.

Definition 3. Object diagrams represent precise system states in a model. A system
state is denoted by � and is composed of objects, i.e. instantiations of classes. The
attributes of the objects are derived from the classes and assigned precise values.
Associations are instantiated as precise links between objects.

In order to evaluate a model, it is crucial to particularly consider whether system
states are valid or sequences of system states represent valid behaviour. This requires
the evaluation of the given OCL expressions.

Definition 4. For a system state � and an OCL expression ', the evaluation of '

in � is denoted by '.�/. A system state � for a model m D .C; R/ is called valid
iff it satisfies all invariants of m, i.e. iff

V
c2C Ic.�/. An operation call is valid iff

it transforms a system state �t satisfying the pre-condition to a succeeding system
state �tC1 satisfying the post-condition,1 i.e. iff �.�t/ and �.�t; �tC1/. A sequence
of system states is called valid, if all operation calls are valid.

Example 3. Figures 1.1b and c show two valid system states (in terms of object
diagrams) for the model from Fig. 1.1a. This is a valid sequence of system states
which can be created by calling the operation charge.

1.3 Refinement of Models

Using the description means reviewed in the previous section allows for a formal
specification of a system to be implemented. By this, precise blueprints are available
already in the early stages of the design. A rough initial model is thereby created

1The post-condition is a binary predicate, since it can also depend on the source state, which is
expressed using @pre in OCL.

1 Automatic Refinement Checking for Formal System Models 7

first which covers the most important core functionality. Afterwards, a refinement
process is conducted in which a more precise model of the respective components
and operations is created. This refinement process may include

• the addition of new components and relations (i.e. classes and their associations),
• the extension of classes by new attributes,
• the extension of the behavioural description (i.e. the addition of new operations

as well as pre- and post-conditions and the strengthening of existing pre- and
post-conditions), and

• the extension of the constraints (i.e. the addition of new and the strengthening of
existing invariants).

Example 4. Consider the model from Fig. 1.2a representing a simple phone appli-
cation. It consists of a phone with a credit which can be charged by a corresponding
operation. A possible refinement of this model is depicted in Fig. 1.2b. Here, the
post-condition of the operation charge has been rendered more precise, i.e. a
parameter defining the amount of credits to be charged has been added.

Remark. Up to this point, we do not consider the refinement of associations and
operation parameters. This includes the type of association and the multiplicities
of the associations ends. However, this is not due to a technical limitation of
our approach which can easily be extended to further description means. Here,
we decided to focus on the refinement of attributes and operations, considering
in particular non-atomic refinement, as these are the most important modelling
elements in formal system specifications. Other kinds of refinement, e.g. for
operation parameters, can be conducted analogously.

In the following, we denote the abstract model by ma and the refined model by mr.
A refinement is described by a refinement relation defined as follows:

Definition 5. A refinement relation is a pair Ref D .Ref†; Ref�/ with

• Ref† describing the refinement of the states, i.e. Ref�1
† is a function mapping a

refined state � r to its corresponding abstract state �a, and
• Ref� describing the refinement of operations, i.e. Ref� is a function mapping an

abstract operation oa to a sequence or
1 � or

2 � � � � � or
k 2 .Or/C of refined operations.

Example 5. The refinement from the model in Fig. 1.2a to the model in Fig. 1.2b
is described by the relation Ref=.Ref†; Ref�/. That is, each state � r in the

Phonea b
credit: Integer
charge()

context Phone::charge()
post: credit > credit@pre

RPhone
credit: Integer
charge(cr: Integer)

context RPhone::charge(cr: Integer)
post: credit = credit@pre + cr

Fig. 1.2 Refinement step. (a) Abstract model; (b) Refined model

8 J. Seiter et al.

refined model (composed of objects from class RPhone) has one corresponding
state Ref�1

† .� r/ D �a in the abstract model (composed of objects from class Phone)
such that RPhone.credit = Phone.credit. Furthermore, the operation Phone::charge()
is refined so that Ref�.Phone::charge()/ D RPhone::charge(cr), i.e. a corresponding
operation with an additional parameter.

Adding details step by step—like in the above example—is common practice
in model-driven design using UML or SysML. Nevertheless, during this manual
process, new errors might be introduced, leading to a refined model that is not
consistent with the abstract model any more. In fact, the refinement sketched above
contains a serious flaw.

Example 6. The refined model in Fig. 1.2b allows for a behaviour that is not
specified by the abstract model. It is possible to assign a value equal to or less than
0 to the parameter cr, so that after calling the operation charge, the value of credit
does not change at all or even decreases. This contradicts the behaviour described
in the abstract model which only allows for a strict increase of that attribute. As a
possible repair of this inconsistency, the precondition pre: cr > 0 could be added to
the operation RPhone::charge(cr).

In order to identify and fix inconsistencies of the refinement, designers have to
intensely check the refined model against the abstract original—often a complicated
and cumbersome task which results in a manual and time-consuming procedure.
In the worst case, all components, constraints, and possible executions have to be
inspected. While this might be feasible for the simple model discussed above, it
becomes highly inefficient for larger models. Hence, in the remainder of this chapter
we consider the question “How to automatically check whether a refined model mr

is consistent with respect to the originally given abstract model ma?”

1.4 Theoretical Foundation

This section formalizes the problem sketched above. For this purpose, we exploit
the theoretical foundation of Kripke structures and their concepts of simulation
relations. We show how these concepts can be applied for the refinement of system
models provided e.g. in UML or SysML. This provides the basis for the proposed
solution which is described afterwards in Sect. 1.5.

Since we are considering models mostly in the context of software and hardware
systems, we assume bounded data types and a bounded number of instances in the
following.2 Based on these assumptions, the behaviour of a model can be described
as a finite state machine, e.g. a Kripke structure.

2This restriction is common in many approaches (e.g. [3, 11, 12, 30, 31]) and also justified by the
fact that, eventually, the implemented system will be realized by bounded physical devices anyway.

1 Automatic Refinement Checking for Formal System Models 9

Definition 6. A Kripke structure is a tuple K D .S; S0; AP;L ; !/ with a finite set
of states S, initial states S0 � S, a set of atomic propositions AP, a labelling function
L W S ! 2jAPj, and a (left-total) transition relation !� S � S.

Using this formalism, we can define the behaviour of a UML or SysML model
and its operations as follows:

Definition 7. A model m D .C; R/ induces a Kripke structure Km D
.S; S0;AP;L ; !/ with

• S being the set of all valid system states of m D .C; R/,
• S0 being the set of initial states defined by the predicate init (cf. Definition 2),

i.e. S0 D f� 2 S j init.�/g,
• ! being the transition relation including the identity (i.e. � ! �) as well as

all transitions caused by executing operations o D .�;�/ 2 O of the model
(i.e. �1 ! �2 with �.�1/ and �.�1; �2/), and

• AP and L are defined s.t. L can be used to retrieve the values of the attributes
of � in the usual bit-vector encoding.

We will write �1

o! �2 to make clear that an operation o transforms a state �1 to a
state �2.

With this formalization, we can make use of known results for finite and reactive
systems. To describe refinements in this domain, simulation relations are usually
applied for this purpose (see, e.g., [7, 10, 16, 21, 23, 25]). In this chapter, we adapt
this concept for the considered formal models. This leads to the following definition
of a simulation relation.

Definition 8. Let A D .SA ; SA 0; APA ;LA ; !A / be a Kripke structure of an
abstract model and R D .SR; SR0; APR;LR; !R/ be a Kripke structure of a
refined model with APR � APA . Then, a relation H � SR � SA is a simulation
relation iff

1. all initial states in the refined model have a corresponding initial state in the
abstract model, i.e. 8s0 2 SR09s00 2 SA 0 with H.s0; s00/,

2. all states in the refined model are constrained by at least the same propositions
as their corresponding abstract state, i.e. 8s; s0 W H.s; s0/) LR.s/ \ APA D
LA .s0/, and

3. all possible transitions in the refined model have a corresponding transition in
the abstract model leading to a corresponding succeeding state, i.e. 8s; s0 W
H.s; s0/) s !R t) 9t0 2 SA s.t. s0 !A t0 and H.t; t0/.

We say that R is simulated by A (written as R � A /, if there exists a simulation
relation.

Example 7. As an illustration of the above definition, Fig. 1.3a shows the general
scheme of a transition between states from a refined model (denoted by s and t)
and a corresponding transition in an abstract model (from s0 to t0). The simulation
relation H is indicated by dashed lines. Figure 1.3b on the right shows an example

10 J. Seiter et al.

s′ t′

s t

H H

{p}

{ }

{p,q}

{q} { }
�

a b

Fig. 1.3 Simulation relation. (a) Correspondence of states; (b) Example for simulation

for two Kripke structures. The abstract model is the one on the left-hand side and
simulates the refined model on the right-hand side. Initial states are marked by a
double outline. While all corresponding states agree on the atomic proposition p,
the refined model has an additional proposition q. It can easily be checked that for
each refined transition, there is a corresponding abstract one.

The simulation relation ensures that a refined model is consistent to an abstract
system, i.e. whatever the refined system does must be allowed by the abstract
system. Besides that, there might be more behaviour allowed in the abstract system
than implemented. If we have R � A , then the traces of R are contained in those
of A . This also means that globally valid properties of A carry over to R, as,
for example, the non-reachability of bad states. Hence, by proving that the applied
refinement Ref (cf. Definition 5) satisfies the properties of a simulation relation H,
the consistency of a refined model can be verified.

However, determining a simulation relation requires a strict step-wise correspon-
dence between the transition in the refined model and in the abstract one. But
refinements of UML or SysML models often include the replacement of a single
abstract operation by a sequence of refined operations (also known as non-atomic
refinement [6]). In order to formalize this, we need a more flexible relation. This is
provided by the notion of divergence-blind stuttering simulation (dbs-simulation).

Definition 9. Given two Kripke structures R and A with APR � APA , a relation
H � SR � SA is a divergence blind stuttering simulation (dbs-simulation) iff

1. 8s0 2 SR09s00 2 SA 0 with H.s0; s00/,
2. 8s; s0 W H.s; s0/) LR.s/ \ APA D LA .s0/, and
3. each possible transition in the refined model corresponds to a sequence of 0 or

more abstract transitions, i.e. 8s; s0 W H.s; s0/ and s !R t, then there exist
t00; t01 : : : t0n (n 	 0) such that s0 D t00 and 8i < n W t0i !A t0iC1 ^ H.s; t0i/ and
H.s0; t0n/.

We say that R is dbs-simulated by A , written as R �dbs A , if there exists a
dbs-simulation.

Compared to the original simulation relation, this definition is less precise with
respect to the duration of specific operations. But, it still guarantees that the
functional behaviour of the refined model is consistent with the behaviour of the

1 Automatic Refinement Checking for Formal System Models 11

s′ = t′0 t′1 t′n−1 t′n

s t

H H

(n ≥ 1)

s′ = t0

s t

H H
(n = 0)

a b

{p}
{p}

{ }

{p,q}

{q} { }

�dbs

Fig. 1.4 dbs—simulation relation. (a) Correspondence of states; (b) Example for dbs-simulation

abstract model—even in the absence of a (step-wise) one-to-one correspondence of
the transitions. In particular, if the properties of the dbs-simulation are satisfied, a
bad state unreachable in A is also unreachable in R.

Example 8. In Fig. 1.4, the dbs-simulation relation is illustrated. The general
scheme of corresponding states and transitions is shown in Fig. 1.4a. In Fig. 1.4b,
the abstract model on the left-hand side dbs-simulates the refined model on the
right-hand side. Note that the transition from the initial state of the refined model
is a stuttering transition, since it corresponds to an empty sequence of transitions in
the abstract model.

The above definitions provide the formal foundation for consistency checks
of refinements. By referring to dbs-simulation, we can preserve safety properties
from an abstract model to a refined model. Hence, by proving that the actually
applied refinement Ref (c.f. Definition 5) indeed satisfies the properties of a dbs-
simulation H (cf. Definition 9), the consistency of the refinement is shown. In the
next section, we describe how the refinement for UML or SysML models can
efficiently be checked.

1.5 Proposed Solution

In this section, we present the proposed solution to automatically check the refine-
ment of the model ma to the model mr. As outlined above, we particularly require
that the applied refinement Ref satisfies the properties of a dbs-simulation H.
For this purpose, all (valid) system states as well as all possible operation calls
in those states need to be considered. Naive schemes, e.g., relying on enumer-
ating all possible scenarios are clearly infeasible for this purpose. Hence, we
propose an approach that maps the problem to an instance of satisfiability modulo
theories (SMT) and, afterwards, exploits the efficiency of corresponding solving
techniques (such as [9]).

12 J. Seiter et al.

To this end, we represent arbitrary system states and transitions for the abstract
model ma as well as the refined model mr together with their invariants and the
refinement relation Ref in terms of bit-vectors and bit-vector constraints. In the
same way, the verification objectives proving that the applied refinement Ref indeed
ensures dbs-simulation are encoded and checked automatically. In the following,
the resulting verification objectives are briefly sketched. Then, we illustrate how to
encode these in SMT.

1.5.1 Verification Objectives

As motivated in Sect. 1.3, we are interested in the relation between abstract
operations and their possibly non-atomic refinements. These operation refinements
are given as operation sequences according to Definition 5. By this, the refinement
check is reduced to the question of whether there is a sequence of operation
calls in the refined model that corresponds to a single call in the abstract model
(according to the given refinement relation), but violates the requirements of the
abstract operation. Unsatisfiability of such an instance shows that no such sequence
exists and, hence, the refinement is correct. Otherwise, a counterexample showing
the inconsistency is provided.

Based on this intuitive notion of refinement, we derive three verification objec-
tives that prove the correspondence of an abstract operation and its refined oper-
ations and are sufficient to prove dbs-simulation. By this, the preservation of
safety properties is guaranteed and the refinement is proven consistent. The three
objectives read as follows:

1. Check whether all initial states in the refined model indeed correspond to the
respective initial states in the abstract model, i.e.

8� r
0 W init.� r

0/) init.Ref�1
† .� r

0//:

This check is illustrated in Fig. 1.5a.
2. For each step or

j of the refined operation which transforms a refined state � r
1 ,

check whether this step does not lead to a succeeding state or
2 which is

inconsistent to its corresponding abstract states. In fact, the succeeding state � r
2

either has to correspond to the unchanged abstract state or to its abstract state
which results after applying the corresponding abstract operation oa, i.e. for each
step or

j

8�a; � r
1; � r

2 WRef†.�a; � r
1/ ^ � r

1

or
j! � r

2

) �
Ref�1

† .� r
2/ D �a _ .�oa.�a/ ^ �oa.�a; Ref�1

† .� r
2///

�

1 Automatic Refinement Checking for Formal System Models 13

σa
0

σ r
0

RefΣ

a

c

b
σa

1

σ r
1 σ r

2or
1

RefΣ RefΣ ∨
σa

1 σa
2

σ r
1 σ r

2

oa

or
1

RefΣ RefΣ

ςa
1 σa

2

σ r
1 σ r

2 σ r
j σ r

kσ r
k−1σ r

j+1

oa

or
1 or

j or
k−1

RefΣ RefΣ

Fig. 1.5 Verification objectives. (a) Initialization; (b) Single step correspondence; (c) Chaining of
refined steps

is checked. This check is illustrated in Fig. 1.5b. These two objectives are already
sufficient to prove dbs-simulation. Nevertheless, a third objective is additionally
checked.

3. Check whether the joint effect of the refined operation sequence adheres exactly
to the specification of the abstract operation. That is, for each operation oa and
its refinement or

1 : : : or
k

8�a
1 ; � r

1; � r
2 : : : � r

kC1 WRef†.�a
1 ; � r

1/ ^ � r
1

or
1! � r

2 : : : � r
k

or
k! � r

kC1

) �
�oa.�a

1 / ^ �oa.�a
1 ; Ref�1

† .� r
kC1//

�

is checked. This check is illustrated in Fig. 1.5c. This check particularly considers
the common UML or SysML refinement which often refines a single abstract
operation into a sequence of refined operations.

Together, these three objectives represent the verification tasks to be solved by
the respective solving engine. Next, we illustrate how they are encoded as an SMT
instance.

1.5.2 Basic Encoding

In order to represent arbitrary system states and transitions in an SMT instance, we
use an encoding similar to the ones previously presented, e.g., in [3, 11, 12, 30]
and particularly in [31]. Here, systems states (basically defined by the values of
their attributes) and links are represented by corresponding bit-vector variables.
Invariants are represented by corresponding SMT constraints. By this, it is ensured

14 J. Seiter et al.

that the solving engine only considers systems states � composed of objects
satisfying all invariants of the underlying class, i.e. Ic.�/.

In order to encode transitions caused by operation calls, bit vectors !i 2 B
dld.jOj/e

are created for each step i in the refined model. Depending on the assignment to !,
the respective pre-conditions and post-conditions have to be enforced. This can be
realized by a constraint

!i D enc.o/) �o.� r
i / ^ �o.� r

i ; � r
iC1/;

where enc.o/ represents a unique binary representation of the operation o, i.e. a
number from 0 to jOrj with enc.id/ D 0. Furthermore, to ensure that only legal
values can be assigned to a vector !, we use a constraint !
 jOrj.

We further introduce auxiliary predicates that reflect the relationship between
an abstract operation and its refined steps. For this purpose, the operation refine-
ment Ref� is utilized:

stepi.o
a; or

j / , Ref�.oa/ D o1 � o2 : : : ok ^ oi D oj

step.oa; or
j / ,

jRef�.oa/j_

iD1

stepi.o
a; or

j /:

Here, stepi.o
a; or

j / evaluates to true iff the refined operation or
j is the ith step in the

refinement of oa, while step.oa; or
j / reflects that or

j occurs in any position in the
refinement of oa.

In order to encode the chaining of the refined operation steps according to the
scheme in Fig. 1.5c, we define the predicate chain:

chain.oa/ ,
l̂

iD1

�
stepi.o

a; or
i / ^ !i D enc.or

i / _ i > jRef�.oa/j ^ !i D enc.id/
�
:

In the above formula, in order to cover all abstract operations in one instance, the
refined operation sequences are brought to the same maximal length l by filling up
the sequence with the identity function for operations where jRef�.o/j < l. We
thereby make use of the maximum number of steps according to Ref�, i.e. l D
maxfjRef�.oa/j j oa 2 Oag. Next, the above “ingredients” are put together in order
to encode the verification objectives of a refinement.

1.5.3 Encoding the Verification Objectives

While the encodings from above ensure a proper representation of the models, sys-
tem states, and execution of operations in an SMT instance, finally the verification
objectives from Sect. 1.5.1 are encoded. In order to prove (1), we encode its negation

1 Automatic Refinement Checking for Formal System Models 15

and check for unsatisfiability, i.e.

9� r
0; �a

0 W Ref†.�a
0 ; � r

0/ ^ init.� r
0/ ^ : init.�a

0 /: (1.1)

To check (2), we try to determine a refined operation call that cannot be matched
with one of the schemes in Fig. 1.5b. Hence, instead of encoding (2) for each
individual refined operation, we let the solving engine choose a refined step that
violates the requirements, i.e.

9�a
1 ; �a

2 ; � r
1; � r

2; oa; or WRef†.�a
1 ; � r

1/ ^ !1 D enc.or/

^ step.oa; or/ ^ Ref†.�a
2 ; � r

2/

^ : �
�a

1 D �a
2 _ �oa.�a

1 / ^ �oa.�a
1 ; �a

2 /
�

: (1.2)

That is, we check that, given a pair of corresponding states and an operation call
in the refined state, whether it is possible that the reached refined state neither
corresponds to the original abstract state nor does it satisfy the specification of
the abstract operation. In case this instance is unsatisfiable, objective (2) has been
proven.

Finally, for (3) we need to check whether we can determine an instantiated
sequence of refined operation calls, such that their joint effect does not adhere to
the specification of the respective abstract operation. For this purpose, we use the
chain predicate as defined in the previous section to construct the unrolled operation
sequence, i.e.

9�a
1 ; �a

2 ; � r
1 : : : � r

lC1; oa; or
1 : : : or

l WRef†.�a
1 ; � r

1/ ^ chain.oa/ ^ Ref†.�a
1 ; � r

lC1/

^ : �
�oa.�a

1 / ^ �oa.�a
1 ; �a

lC1/
�

: (1.3)

That is, we are searching for a chain of l C 1 refined states and connected by l
operation calls such that there are no corresponding abstract states which satisfy the
pre- and post-conditions of the respective abstract operation. Unsatisfiability proves
that no such chain exists and, hence, objective (3) holds.

1.6 Evaluation

The approach presented in this chapter has been implemented in Java, using the
SMT solver Boolector [9] as underlying solving engine. In order to evaluate the
applicability and scalability of our approach, we have applied it to two systems
based on examples presented in [1]. For the sake of comparison, these examples
have additionally been verified using the previously proposed B method following
a manual as well as an automatic scheme [20].

The first example describes an access control system (AC) which is employed
to grant access to a building when presented with an authorized ID by a user.
Two refinement steps have been modelled, a correct and an erroneous one, which
are depicted in Fig. 1.6 together with the abstract model. All types of refinement

16 J. Seiter et al.

Person
card_id: Integer
sit: Building
pass(b: Building)

Building
a

b

c

auth: Sequence(Integer)

context Person::pass(b: Building)
pre: self.sit <> b
pre: b.auth->includes(self.card_id)
post: self.sit = b

RPerson
card_id: Integer
sit: RBuilding
valid: RBuilding

pass(b: RBuilding)

RBuilding
auth: Sequence(Integer)
check(id: Integer)

context RPerson::pass(b: RBuilding)
pre: self.sit <> b
pre: self.valid = b
post: self.sit = b
post: self.valid <> b

context RBuilding::check(p: RPerson)
pre: self.auth->includes(p.card_id)
post: p.valid = self

RRPerson
card_id: Integer
sit: RRBuilding
valid: RRBuilding
enter(b: RRBuilding)
leave(b: RRBuilding)

RRBuilding
auth: Sequence(Integer)
log: Sequence(RRPerson)
check(p: RRPerson)

context RRPerson::enter(b: RRBuilding)
pre: self.sit <> b
pre: self.valid = b
pre: b.log->excludes(self)
post: b.log->includes(self)

context RRPerson::leave(b: RRBuilding)
pre: self.sit = b
pre: b.log->includes(self)
post: self.sit <> b
post: self.valid <> b

context RRBuilding::check(p: RRPerson)
pre: self.auth->includes(p.card_id)
post: p.valid = b

Fig. 1.6 Access control system. (a) Abstract model; (b) First refinement; (c) Second refinement

presented in this chapter have been applied to this model, i.e. attribute refinement as
well as atomic and non-atomic operation refinement.

Table 1.1 provides the sizes of the three models (denoted by AC0, AC1, and
AC2), i.e. the number of classes, attributes, operations, and OCL constraints are
listed. As can be seen, the abstract model (AC0) and the two refined models
(AC1, AC2) are relatively small regarding the number of UML elements. Only the
number of OCL constraints increases slightly as the added and refined operations
are extended.

In order to compare our work to the traditional B approach, we re-modelled
this example in B and verified the refinement manually, using the event-B tool

1 Automatic Refinement Checking for Formal System Models 17

Table 1.1 Size of examples Model #Classes #Attributes #Operations #Constraints

AC0 2 3 1 3

AC1 2 4 2 6

AC2 2 5 3 10

MPC0 2 2 4 12

MPC1 2 6 12 40

MPC2 2 8 16 52

MPC3 2 8 16 60

Rodin. The first refinement step led to a total of 14 proof obligations that had to
be discharged. While five of them could be proven fully automatically and some
further proofs needed only minor effort, the remaining ones required rather complex
interactions like manually entered hypotheses or case splitting. Furthermore, the
event-B model required additional invariants. This became particularly crucial for
the second refinement which, due to the non-atomic nature of the refinement
conducted here, could not be modelled in a straight-forward fashion in event-B.

In contrast, both steps could be automatically verified in negligible time by the
approach proposed in this chapter. The non-atomic refinement did not lead to an
increased run-time in this case.

The second example is a mechanical press controller (MPC), which has also been
used to evaluate the automatic verification approach in [20] with the tool ProB. It
describes a mechanical press with a motor, a clutch, and a door which interact in
such a way as to guarantee a safe use. As in [20], we have modelled the first three
refinement steps in UML and verified them with the proposed SMT-based approach.
Here, the refinement contains the introduction of new attributes and constraints as
well as atomic operation refinement. All three refinement steps have been proven to
be correct.

Again, the size of the abstract model and its refinements is shown in Table 1.1
(denoted by MPC0, MPC1, MPC2, and MPC3). In contrast to the first example,
the amount of attributes and operations as well as the number of OCL constraints
increases. Especially the growing number of operations is important, since, for the
SMT-based approach, each of these operations has to be verified according to the
criteria presented earlier.

Table 1.2 shows the run-times of our experiments compared to those of ProB.
The first two columns indicate which models have been verified against each other.
The third and fourth columns contain the run-times of ProB without and with XSB
Prolog taken from [20]. In [20], the ProB tool has already been compared to an
automatic refinement verification approach based on CSP (namely [18]) which was
clearly outperformed by ProB.

Again, the proposed approach proved the correctness of all three refinement steps
in negligible time whereas the run-time of ProB was much larger. Also, with and
without XSB Prolog, ProB’s run-time increased drastically with every step in the

18 J. Seiter et al.

Table 1.2 Experimental results

Run-time
Abstract Refined ProB (s) ProB+XSB (s) SMT-based (s)

AC0 AC1 - - < 0.01

AC1 AC2 - - < 0.01

MPC0 MPC1 6:28 2:85 < 0.01

MPC1 MPC2 70:57 26:66 < 0.01

MPC2 MPC3 333:85 136:12 < 0.01

refinement process. A similar development has not been observed for the SMT-
based method so far.

These experiments confirm that our approach is robust in such a way that it
is applicable to various types of models and refinements. Neither errors in the
refinement process nor the type of operation refinement—atomic or non-atomic—
have a significant influence on the run-time.

1.7 Discussion: Extraction of a Refinement Relation

While the approach presented in Sect. 1.5 serves very well to prove the consistency
of a given refinement relation, it may not always be applicable. In order to
verify a refinement step, a refinement relation is necessary; otherwise, none of the
verification objectives can be checked. However, such a relation may not be present
in case that several designers are involved in the modelling process or the refinement
process has not been documented.

In this case, methods to extract a refinement relation from the given models are
required. The goal of such an extraction is not to obtain any arbitrary relation, but
a correct relation based on the criteria presented in Sect. 1.5.1. In the following, we
will discuss some related approaches from the literature before sketching some ideas
how such an extraction could be realized in the setting of this chapter.

1.7.1 Existing Approaches

In the past, different approaches to retrieve traceability or refinement information
have been proposed. Several works focus on information retrieval techniques
[4, 19, 22]. Here, the basic idea is to identify textual similarities which may refer to
the same concepts. Some of these works focus on relations between different levels
of abstraction, e.g. between code and documentation. However, since information
retrieval relies on textual similarities, re-naming model elements is a huge problem
which might well occur during refinement. Egyed presents a structural analysis

1 Automatic Refinement Checking for Formal System Models 19

to determine traceability links in [15]. He uses abstraction rules to map classes,
attributes, and association. This method works on UML only without considering
OCL constraints specifying the operations’ behaviour. Briand et al. discuss the use
of information gathered by monitoring the designer’s modifications as a means to
retrieve traceability links in [8]. Like in the approaches mentioned so far, the model’s
behaviour is not considered in particular.

The authors of [14] propose an adaptation of the algorithm from [26] by
Robinson. They apply Robinson’s approach to Z refinements and encode it in a
model checker. Another extension of the same algorithm can be found in [27],
relying on the same mechanism. A relation R containing all potential mappings is
step-wise reduced by incorrect mappings until either a correct relation is determined
or the all mappings have been removed. Although these approaches do in fact
consider the specified behaviour, depending on the variation of the algorithm, the
whole system has to be simulated. Since in the beginning R contains all pairs of
states, the method does not scale to larger systems.

1.7.2 SMT-Based Relation Extraction

The related approaches discussed above are either of heuristic nature—and therefore
incomplete—or they try to solve the problem in an exact way. In the latter case,
representing the refinement relation explicitly is infeasible for larger models. Since
the encoding of the refinement verification in SMT has proven very successful in
terms of scalability, the question is if this approach could also be used to extract a
correct refinement relation.

To understand the complexity of the problem, it is useful to view it in the context
of automatic synthesis. Verifying a model wrt. some specification is conceptually
easier than synthesizing a model which satisfies this specification. In our case, this
is reflected in the complexity of the SMT encoding needed to solve the respective
problem. The verification of a given refinement relation can be encoded in a purely
existentially quantified formula, that checks or falsifies the existence of some pairs
of states which violate the refinement relation. Intuitively, the extraction of a correct
relation demands one quantifier more: Does there exist some relation such that for
all pairs of states it verifies the refinement of our models? Thus, the problem cannot
be solved in a complete manner using a quantifier-free SMT encoding.

While there are some solvers that support quantified formulae—such as
Z3 [13]—the run-time and memory foot-print increase significantly with each
additional quantifier alternation. Alternatively, a two-stage approach can be used
that relies solely on quantifier-free encodings:

1. Find some pair of states and a relation which proves their refinement
2. Check if the found relation is a correct refinement relation
3. If yes, we are done. Otherwise continue with step 1

20 J. Seiter et al.

In the sketched algorithm, possible relations are enumerated by the underlying
solver until a correct refinement is found. The verification in step 2 has already
been solved in this chapter. The algorithm terminates in case of success or if no
more relation can be found in step 1. In the latter case, we can be sure that the two
models do not represent a correct refinement.

The effectiveness of the sketched approach critically depends on the first step. In
the worst case, the algorithm will enumerate a huge number of incorrect relations
that will be rejected by the second step. Additional constraints can help to reduce
the number of iterations, but will in the same time increase the complexity of the
first step. As a promising direction, sequence diagrams—representing test cases of
the refined model—can be used to narrow down the set of candidate relations. If
a correct refinement exists, it must also be applicable on a feasible run of the two
models. This approach is subject to ongoing and future research.

1.8 Conclusions

In this chapter, we proposed an automatic approach which proves refinements of
UML or SysML class diagrams. By this, we are considering the typical model-
driven design flow which usually assumes an initial (abstract) model that is
iteratively refined to a more precise representation. Based on a theoretical founda-
tion, we introduced an SMT encoding checking whether the respective refinement
relation represents a dbs-simulation and, hence, preserves (safety) properties from
the abstract model to the refined model. We compared our approach to the tool ProB,
which performs automatic refinement verification on B models. An experimental
evaluation has shown that the SMT-based technique can verify refinements much
faster and scales better than the B-based method.

For future work, we plan to extend our approach in order to support more
modelling elements such as refinement of associations or parameters.

Acknowledgements This work was supported by the Graduate School SyDe (funded by the
German Excellence Initiative within the University of Bremen’s institutional strategy), the German
Federal Ministry of Education and Research (BMBF) within the project SPECifIC under grant no.
01IW13001, as well as the German Research Foundation (DFG) within the Reinhart Koselleck
project under grant no. DR 287/23-1 and a research project under grant no. WI 3401/5-1.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University Press,
New York (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn. Cambridge
University Press, New York (2010)

1 Automatic Refinement Checking for Formal System Models 21

3. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging model
transformation. In: International Conference on Model Driven Engineering Languages and
Systems, pp. 436–450. Springer, New York (2007)

4. Antoniol, G., Canfora, G., Casazza, G., Lucia, A.D., Merlo, E.: Recovering traceability links
between code and documentation. IEEE Trans. Softw. Eng. 28, 970–983 (2002)

5. Ben Ammar, B., Bhiri, M.T., Souquières, J.: Incremental development of UML specifications
using operation refinements. Innov. Syst. Softw. Eng. 4(3), 259–266 (2008). doi:10.1007/
s11334-008-0056-1

6. Boiten, E.A.: Introducing extra operations in refinement. In: Formal Aspects of Computing,
Springer London, pp. 1–13. Springer, London (2012)

7. Braunstein, C., Encrenaz, E.: CTL-property transformations along an incremental design
process. Int. J. Softw. Tools Technol. Transfer 9(1), 77–88 (2006). doi:10.1007/
s10009-006-0007-9

8. Briand, L.C., Labiche, Y., Yue, T.: Automated traceability analysis for uml model refinements.
Inf. Softw. Technol. 51, 512–527 (2009)

9. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and arrays. In:
Tools and Algorithms for Construction and Analysis of Systems, pp. 174–177. Springer, Berlin
(2009)

10. Bulychev, P., Konnov, I.V., Zakharov, V.A.: Computing (bi)simulation relations preserving
CTL�

X for ordinary and fair kripke structures. In: Mathematical Methods and Algorithms,
vol. 12, pp. 59–76. Institute for System Programming, Russian Academy of Science (2006)

11. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using constraint
programming. In: IEEE International Conference on Software Testing Verification and
Validation Workshop, pp. 73–80 (2008)

12. Cadoli, M., Calvanese, D., Giacomo, G.D., Mancini, T.: Finite Model Reasoning on UML
Class Diagrams Via Constraint Programming. In: R. Basili, M.T. Pazienza (eds.) AI*IA.
Lecture Notes in Computer Science, vol. 4733, pp. 36–47. Springer, Berlin (2007)

13. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proceedings of the Theory and Prac-
tice of Software, 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’08/ETAPS’08, pp. 337–340. Springer, Berlin/Heidelberg
(2008). URL http://dl.acm.org/citation.cfm?id=1792734.1792766

14. Derrick, J., Smith, G.: Using model checking to automatically find retrieve relations. Electron.
Notes Theor. Comput. Sci. 201, 155–175 (2008)

15. Egyed, A.: Consistent adaptation and evolution of class diagrams during refinement. In:
Fundamental Approaches to Software Engineering (2004)

16. Glabbeek, R.: The linear time - branching time spectrum. In: J. Baeten, J. Klop (eds.) CON-
CUR ’90 Theories of Concurrency: Unification and Extension. Lecture Notes in Computer
Science, vol. 458, pp. 278–297. Springer, Berlin/Heidelberg (1990)

17. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, independence and consequences in
UML and OCL models. In: Tests and Proofs, pp. 90–104. Springer, Berlin (2009)

18. Goldsmith, M., Roscoe, B., Armstrong, P.: Failures-Divergence Refinement - FDR2 User
Manual (2005)

19. Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via information
retrieval. In: IEEE International Requirements Engineering Conference (2003)

20. Leuschel, M., Butler, M.: Automatic Refinement Checking for B. In: International Conference
on Formal Engineering Methods (2005)

21. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S., Probst, D.: Property preserving
abstractions for the verification of concurrent systems. Form. Method. Syst. Des. 6(1), 11–44
(1995)

22. Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., Karlsson, J.: A feasibility study
of automated natural language requirements analysis in market-driven development. Requir.
Eng. 7, 20–33 (2002)

23. Nejati, S., Gurfinkel, A., Chechik, M.: Stuttering abstraction for model checking. In: Software
Engineering and Formal Methods, pp. 311–320. Springer, Berlin (2005)

http://dl.acm.org/citation.cfm?id=1792734.1792766

22 J. Seiter et al.

24. Pons, C., Garcia, D.: Practical verification strategy for refinement conditions in UML models.
In: Advanced Software Engineering: Expanding the Frontiers of Software Technology. IFIP
International Federation for Information Processing, vol. 219, pp. 47–61. Springer, Berlin
(2006)

25. Ranzato, F., Tapparo, F.: Computing stuttering simulations. In: Concurrency Theory (CON-
CUR). Lecture Notes in Computer Science, vol. 5710, pp. 542–556. Springer, Berlin (2009)

26. Robinson, N.J.: Finding abstraction relations for data refinement. Technical Report, Software
Verification Research Center, The University of Queensland (2003)

27. Robinson, N.J.: Incremental derivation of abstraction relations for data refinement. In: Formal
Methods and Software Engineering. IEEE Computer Society, Los Alamitos (2003)

28. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language reference manual.
Addison-Wesley Longman, Essex (1999)

29. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML. ACM Trans.
Softw. Eng. Methodol. 15(1), 92–122 (2006)

30. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying UML/OCL models
using Boolean satisfiability. In: Design, Automation and Test in Europe, pp. 1341–1344. IEEE
Computer Society, New York (2010)

31. Soeken, M., Wille, R., Drechsler, R.: Verifying dynamic aspects of UML models. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–6 (2011)

32. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with UML.
Addison-Wesley Longman, Boston, MA (1999)

33. Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design. Morgan
Kaufmann, San Francisco, CA (2008)

34. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-Hall, Upper
Saddle River, NJ (1996)

Chapter 2
Towards Simulation Based Evaluation of Safety
Goal Violations in Automotive Systems

Oezlem Karaca, Jerome Kirscher, Linus Maurer, and Georg Pelz

Abstract With the advent of the ISO 26262 it became crucial to prove that
electrical and electronic products delivered into safety-related automotive applica-
tions are adequately safe. For this purpose safety goal violations due to random
hardware faults need to be evaluated. In order to gain evident results for argumen-
tation within the evaluation, a fault injection based approach is utilised. Potential
risk scenarios are initiated by injection of analogue and digital faults into the
heterogeneous behavioural model which comprises the safety-related hardware. For
fault injection in heterogeneous models, we propose analogue saboteurs, designed
in VHDL-AMS, by which amongst electrical or mechanical, diverse energy domain
analogue hardware faults may be injected. For demonstration of this approach, a
hardware model, comprising lithium-ion battery cells with a cell balancing and
monitoring module and safety-related circuitry is used.

2.1 Introduction

The functional safety standard for road vehicles ISO 26262 addresses the possi-
ble hazards caused by failures of electrical and/or electronic (e/e) safety-related
systems. In the concept phase (part 3) of the safety life-cycle (part 3–7) [23,
26], possible hazards are identified and subsequently safety goals and safety
requirements are formulated. Thereby, safety goals (SGs) are top-level negative
requirements assigned to the target hardware element (e.g. battery cells). One of
the objectives of the subsequent system design phase (part 4–6) is to verify the
effectiveness of the implemented safety mechanisms (measures for avoidance of
random hardware failures during operation, e.g. watchdog, redundancy implemen-
tation by secondary sensor path) and whether the hardware design complies with

O. Karaca (�) • J. Kirscher • G. Pelz
Infineon Technologies AG, Neubiberg, Germany
e-mail: oezlem.karaca@infineon.com; jerome.kirscher@infineon.com

L. Maurer
Bundeswehr University Munich, Neubiberg, Germany

© Springer International Publishing Switzerland 2016
F. Oppenheimer, J.L. Medina Pasaje (eds.), Languages, Design Methods, and Tools
for Electronic System Design, Lecture Notes in Electrical Engineering 361,
DOI 10.1007/978-3-319-24457-0_2

23

mailto:oezlem.karaca@infineon.com
mailto:jerome.kirscher@infineon.com

24 O. Karaca et al.

the safety requirements. The standard focuses within the clause 5–9 on evaluation
of safety goal violations due to random hardware element faults, in order to evaluate
the risk of possible hazards caused by these failures [23]. Recently, there have
been a number of investigations on safety analysis in formal model-based manner
[2, 10, 11, 15, 21]. Analogue systems with additional fault models cause increasing
complexity of the formal model. Therefore, the formal model-based method is only
suited for safety analysis of analogue system models that are not highly complex,
e.g. in the early phases of the design. To address this issue, there are several
proposals for analogue fault injection and simulation. Analogue fault modelling
and injection depends mostly on the abstraction level of the nominal model and
means a trade-off between simulation results’ accuracy and simulation speed, which
has been an unchanged challenge since early investigations [25]. In the past years,
numerous investigations have been conducted on modelling and injection of hard
faults (opens, shorts), soft faults [single event transients (SET)] and fabrication
induced faults (statistical parametric variations). The most common techniques
proposed to model these faults are by parametric implementation (faults caused by
fabrication induced dispersions), by mutations, by saboteurs and their combinations
[1, 4, 12–14, 17, 20, 28, 29]. Fault injection by mutations needs initial manual
manipulation of the nominal model of a component, however saboteurs may act
at the signal interfaces of the hardware (HW) component. In opposite to the discrete
digital failure modes (e.g. stuck-at, single event upset, bit-flip), in the analogue
domain so far no broadly exercised fault models were established which is due to a
greater variety of fault manifestations as a failure mode (continuous signal values)
and greater simulation expenses [18]. Therefore different approaches have been
proposed in order to enhance efficiency of fault simulations. Earlier, investigations
such as [6, 18] proposed inductive fault analysis for analogue faults to reduce the
fault list for simulation, where faults which are unlikely to occur are eliminated
from the fault list. Other hierarchical approaches focus on fault sensitivities [24]
and clustering of critical faults in order to eliminate redundant fault simulations
and to reduce simulation time by injecting clustered faults into models of higher
levels of abstraction [9, 19, 27]. Recently, behavioural modelling is proposed in
fault simulation approaches due to their significantly lower simulation expenses
[1, 17, 20, 28, 29].

This work is proposed to contribute to safety analysis in terms of quantifi-
cation of cause–consequence relationships between random hardware element
failures and safety goal violations within specified items. In order to quantify this
cause–consequence relationship, faults are injected to the nominal, i.e. fault-free,
behavioural model comprising of the equipment under control (EUC) and the safety-
related element of interest and subsequent fault simulation and evaluation.

As shown in Fig. 2.1, the item model may comprise amongst elements which can
be modelled by digital signals, elements which need to be modelled by analogue
signals, e.g. electrical, thermal, mechanical, etc. In this work, this is addressed
by heterogeneous behavioural models and injection of multiple energy domain
analogue faults. The fault models are in principle of the type saboteurs, by which
hard and soft hardware faults may be injected.

2 Towards Simulation Based Evaluation of Safety Goal Violations: : : 25

Infra-
structure

Charger
AC/DC

HV
Auxiliaries

DC/DC
LV

Battery

DC/DC Inverter
Motor/

Generator

Translator

Drive Control

12V board net

Battery
Management

HV
Battery

Fig. 2.1 Hardware elements of an electrical drive train

In later stages of the hardware development phase, models of, for instance,
analogue, and mixed-signal integrated circuits may already represent very complex
systems and fault injection in such systems may be an intricate task, not only due to
rising fault simulation expenses but additionally, due to manual fault modelling and
injection expenses. In this work this is addressed by

1. fault injection to the analog-mixed-signal VHDL-AMS behavioural model of the
hardware design,

2. injection of component faults derived from a quantitative inductive failure
analysis, in order to reduce redundant fault simulations,

3. generic fault models, where each instance of a fault model can adapt the desired
fault mode by generic configuration, and

4. automatic fault injection by an executable design automation script for fault
implementation in the Cadence Virtuoso design environment and subsequent
fault activation, i.e. fault injection, in a simulation automation platform [22].

In the second section of this work, the motivation for this approach is clarified.
The third section states the proposed fault injection technique. In the fourth section,
a case study is presented where the previously described fault injection technique
is applied to. The case study comprises a heterogeneous model of an automotive
battery management system (BMS) module including twelve lithium-ion cells.
Finally, in the last section we sum up the results and experience from the case study
and give an outlook for future work.

2.2 Motivation

At the beginning of the safety life-cycle, items are defined which implement certain
functions at the vehicle level (e.g. electric drive train) (clause 3–5). An item is a set
of HW elements, relating at least a sensor, controller and actuator with each other.

26 O. Karaca et al.

The item addressed in this work is the electric drive train, see Fig. 2.1. In particular
the BMS and the battery cells are considered. In this context, respective to the
BMS, safety goals are assigned to the HV battery. In this work, a heterogeneous
behavioural analogue fault injection method is investigated for the evaluation of
safety goal violations due to random hardware element failures. This is used for
assessing the effectiveness of implemented safety mechanisms (SMs) when high
safety levels are required.

The automotive safety integrity level (ASIL), graded from A to D in order of
increasing stringency, is associated with the item and states the safety goal which
needs to be achieved by the item, see [23, 26]. Criteria, for the achievement of
safety goals, are the single-point and multiple-point fault metrics, as well as the
overall residual failure in time (FIT) rate, which need to be evaluated for each
safety-relevant item. It is then mapped to an ASIL by comparing the results of
the evaluation of the criteria with the target values for the required ASIL for the
respective application.

Random hardware element fault classification states the preceding task to
mapping an item to ASIL. By the classification, likely hardware element faults are
differentiated with respect to their potential to cause hazard [23], assuming that all
faults are independent and follow the exponential distribution

F.x/ D
Z x

�1
f�.t/dt D 1 � e��x; (2.1)

for x 	 0 and F.x/ D 0 for x < 0. The rate parameter � is the failure rate:

• Single-point fault (SPF): potential to directly violate an SG; no SM implemented
in the HW element.

• Residual fault (RF): potential to directly violate an SG; at least one SM
implemented in the HW element but does not prevent this fault from violating
an SG.

• Multi-point fault, Detected (MPF,D): potential to directly violate SG when no SM
implemented or to indirectly violate an SG in combination with an independent
fault; detected by SM and has no potential to singly violate the SG.

• Multi-point fault, Perceived (MPF,P): potential to directly violate SG when
no SM implemented or to indirectly violate an SG in combination with an
independent fault; perceived by the driver and has no potential to singly violate
the SG.

• Multi-point fault, Latent (MPF,L): potential to directly violate SG when no SM
implemented or to indirectly violate an SG in combination with an independent
fault; neither detected by SM nor perceived by the driver and has no potential to
singly violate the SG.

• Safe fault (SF): no potential to violate directly an SG; in most cases, MPF of
order n > 2 can be neglected due to their little occurrence probabilities, however
faults with very high failure rates or poor diagnostic coverages are exceptions.

2 Towards Simulation Based Evaluation of Safety Goal Violations: : : 27

The failure rate � of each safety-related hardware element is then the sum of the
failure rates of classified faults [23]

� D �SPF C �RF C �MPF C �SF: (2.2)

According to the standard, each failure rate and in particular the total failure rates
of residual faults and latent faults need to be determined based on estimated values
of diagnostic coverage KDC;RF and KDC;MPF;L of safety mechanisms against single-
point and multiple-point faults with respect to safety goal violations, see Eqs. (2.3)
and (2.4), respectively [23].

�RF
 �RF;est D � �
�

1 � KDC;RF

100

�

(2.3)

�MPF;L
 �MPF;L;est D � �
�

1 � KDC;MPF;L

100

�

: (2.4)

Based on this classification of random hardware element faults, hardware archi-
tectural metrics for single-point/residual faults and latent multiple-point faults are
calculated which are needed for mapping the application to ASIL, see Annex C
of part 5 in [23]. The metrics state the robustness of the hardware against random
hardware faults with respect to safety mechanisms and design measures in order to
prevent these faults. For this reason, these metrics are decisive for the assessment
of functional safety of the application. Nevertheless, in order to assess functional
safety, methods based on estimations are not sufficient for applications with safety
goals aimed to achieve ASIL C or D. Here, methods for the evaluation of diagnostic
coverage with respect to the elements’ types are proposed, by which faults or failure
modes for certain elements are analysed for derivation of diagnostic coverage.
Additionally, dealing with analogue and mixed-signal circuit designs and respective
models with analogue continuous signals and continuous fault propagation to failure
modes in the presence of random hardware element faults, safety goal violations are
difficult to evaluate by pure estimation and formal model-based approaches. Even if
this is possible in some cases, still profound evidence is needed for argumentation
in the safety assessment. In this context, it is necessary to perform analogue and
mixed-signal fault simulations in order to gain evidence for evaluation of safety
goal violations.

2.3 Fault Injection by Analogue Saboteurs

The generic fault models described in this section are of type saboteurs and
are designed to inject analogue hard faults like open-circuit or short-circuit and
soft faults like transient faults or offset faults. Within each hardware element,
components state certain functions (e.g. A/D conversion) and interact with other

28 O. Karaca et al.

components or elements via interface signals. Each component failure mode is the
effect of probable faults within the component, causing deviations of the interface
signals from correct operation values (errors). Injection of faults in accordance with
component failure modes does require knowledge of the component’s internal error
propagation in order to derive accurate failure modes and as a consequence accurate
fault models to begin with fault injection in the first place. One approach is to
apply stand-alone component fault simulations where faults are injected inside the
components architecture, subsequently simulated stand-alone in an adequate test-
bench and derived again to the component’s interface signals. Eventually, this can
be done for a reasonable choice of architectural levels within each component. An
alternative approach is to utilise component failure modes which were previously
determined within an inductive analysis, like failure mode and effect analysis
(FMEA), and to inject faults in accordance with these failure modes.

In order to gain evidence for the evaluation of safety goal violations, component
failure modes, derived from an FMEA, were injected into the behavioural model
used in the case study. However, when dealing with multiple energy domain systems
in certain items, the proposed fault modelling technique may also be applied to
failure modes of actuating or sensing elements of the item. Although the failure
rates of non e/e systems are not included within the standard in terms of hardware
architectural metric calculation, the integrity of e/e safety-related systems in the
presence of associated, e.g. mechanical failure modes, needs to be analysed and
included in the hardware architectural metric calculation. In this section basic
considerations for multiple energy domain generic analogue fault model design and
implementation in VHDL-AMS are discussed. Additionally, a method for automatic
fault injection is topic of investigation which is based on the scripting language
SKILL in the Cadence Virtuoso Design environment.

2.3.1 Diverse Energy Domain Saboteurs

A behavioural model representing an item in automotive applications may comprise
elements of diverse energy domains, see, for instance, Fig. 2.1. Amongst digital
signals, e/e elements can be typically modelled by analogue electrical signals, with
respect to the duality of voltage and current. However, particularly when including
models of actuator and sensor elements, further analogue signals of other energy
domains such as mechanical (translational/rotational), magnetic and thermal are
involved. Other energy domain analogue faults can be implemented in accordance
with component failure modes into the model in the same fashion as electrical failure
modes. For this purpose the elementary analogies of diverse conservative energy
systems [5] are utilised, with regard to modelling, for instance, actuating/sensing
elements, in accordance with Kirchhoff’s circuit laws. In contrast to digital fault
modelling techniques, in the analogue domain, a hard or soft fault inside an analogue
component will not propagate to a discrete component failure mode (like stuck-at 1).
The manner in which the fault will manifest itself in a failure mode is determined
by continuous disturbances of the signal attributes amplitude, phase and frequency.
This circumstance marks the challenge in analogue fault injection by saboteurs.

2 Towards Simulation Based Evaluation of Safety Goal Violations: : : 29

In this work, the fault models are generic adjustable and comprise fault modes
which are limited to open-circuit, short-circuit and SET/offset. An open-circuit
fault can be used, for instance, in the electrical domain to model a stuck-at high
or low failure mode of a comparator by injecting the open-circuit fault either to
the component’s low-input or high-input, respectively. In the mechanical domain
the open-circuit fault model may be used, for instance, to inject load transmission
failure due to mechanical overload. The open-circuit fault model may also be used,
for instance, to model an overheating failure due to a defect of heat transfer paste of
a cooling element. Further examples for fault, error and failure relation in different
energy domains are shown in Table 2.1, see [16] for extended table (including effort
aspect temperature T and flow aspect P in thermal domain as well as effort aspect
displacement s or velocity v and flow aspect force F in translational mechanical
domain). In this work, we focus on analogue fault injection into the behavioural
model by generic fault models of the type saboteur.

Table 2.1 Comparison of typical examples of fault, error and failure relation in electrical and
rotational mechanical which may be represented by the fault modes of the generic saboteurs in a
model

Energy domains Electrical Rotational mechanical

Effort aspects Voltage u Angle ',

Angular velocity ˛

Flow aspects Current i Torque M

Fault modes Examples of hardware fault, error and failure mode relationship

Open-circuit Fault: el. isolated ADC input Fault: motor torque shaft break

Error: (non-)inv. voltage Error: no load transfer

Failure: stuck-at H/L Failure: idle running motor

Explanation: failure during load transfer from point A to B in the presence

of effort aspects fu; s=v; '=˛; TgA�B ¤ 0 resulting in flow aspects

fi; F; M; PgA�B very low to zero

Short-circuit Fault: bridged ADC input Fault: radial load applied to torque shaft

Error: writes wrong output Error: load distribution

Failure: reads const. input 0V Failure: overloading of motor

Explanation: failure during load transfer from point A to B with additional

undesired coupling to point C in the presence of effort aspects

fu; s=v; '=˛; TgA=B�C resulting in flow aspects fi; F; M; PgA=B�C ¤ 0

Single event Fault: EMI to ADC pin(s) Fault: impact applied to torque shaft

transient (SET), Error: writes wrong output Error: load distribution

offset Failure: oscillation Failure: load transfer oscillates

Explanation: failure during load transfer from point A to B where effort

aspects fu; s=v; '=˛; TgA�B or flow aspects fi; F; M; PgA=B�C experience a

transient disturbance

30 O. Karaca et al.

2.3.2 Design of Generic Saboteurs and Injection
into Nominal Model

The analogue saboteurs are designed in VHDL-AMS and used in the Cadence
Virtuoso Schematic Editor environment. Faults are injected into the schematic
design/model by manipulation of the net-list. Additionally, we aim to simplify the
fault injection procedure by modelling saboteurs with generic attributes. This means
that a generic saboteur located at a certain component pin may optionally adapt
different faults, that is fault modes, including fault-free mode.

2.3.2.1 Effect-Based Analogue Saboteur Design

A fault in an analogue circuit may generally be experienced by failure of a
signal, with respect to its duality regarding effort and flow aspects. We propose
to manipulate effort aspects and flow aspects in order to implement a fault. This
can be enabled by designing the fault model based on digitally controlled analogue
switches. Figure 2.2 shows the basic structure and respective behaviour in semi-
formal notation:

• flownet D 0:0; flowshort D 0:0I if mode D open
• effortnet D f ./; flowshort D 0:0I if mode D trans:=offset
• effortnet D 0:0; effortshort D 0:0I if mode D short
• effortnet D 0:0; flowshort D 0:0I else .nominal/

The saboteur’s implementation into the desired net-list is performed by intercon-
necting terminals pi, po to the analogue signal of interest and connecting terminal
pshort to the desired short-circuit signal.

Digitally controlled analogue switches may also be modelled by simply imple-
menting equations based on

effort D damping � flow;

where the damping value is either very high or very low, depending on the fault
mode. In spite of the need to determine these values, during fault simulation,
exceptions can occur. Depending on the abstraction of the components which are

effortnet

terminal pi

terminal po

terminal pshort

flownet flowshort

effortshort

Fig. 2.2 Basic structure of generic saboteur involving effort and flow aspects for diverse energy
domains

2 Towards Simulation Based Evaluation of Safety Goal Violations: : : 31

connected to the fault models, the simulation with open-circuit fault will perform
as expected, instead pi and po are always shorted, causing effortnet to be zero. This
happens in cases where component signals have no flow aspects defined but only
the effort aspects, e.g. when an A/D-converter model measures analogue voltage
signal, the respective terminals may be sufficiently modelled without flow aspect.
With the implementation method used in this work we aim to address this issue in
fault injection into abstract models.

2.3.2.2 Implementation in VHDL-AMS

Transferring the fault mode configuration directly to VHDL-AMS code will most
likely cause convergence issues during simulation time. This is due to discontinu-
ities in the effort and flow aspects arising from the assumption of ideal digitally
controlled analogue switches. Convergence issues are avoided by modifying the
saboteur’s structure by applying measures in order to deal with the discontinuities
arising from the switching states [3]. Other energy domain generic saboteurs are
modelled in the very same fashion by defining terminals, effort and flow aspects
respective to their nature.

The generic saboteur is controlled by its real-valued generics. First parameter
determines the fault mode. We approximate transient faults by using the ramp
function as proposed in [17]. Timing of any fault mode is also controlled by
parameters, setting the fault injection time and duration. To inject non-transient
faults, the parameter, setting the end of injection duration, has to be set to a
value beyond simulation time. Terminal pgnd is used to measure the voltage at pi

referenced to ground in order to inject an open-circuit fault by setting potential at
terminal pi and po equal. Nominal behaviour is implemented by shorting latter two
terminals.

2.3.2.3 Fault Injection into Nominal Model and Automation

Depending on the complexity of the item model, it can be troublesome to inject
faults manually. We aim to overcome this by fault injection automation and in
particular to explore the feasibility of fault injection automation with the generic
saboteurs proposed in this work. For this intention, the modularity of the saboteurs
is a convenient feature that is used in the automation procedure, due to the fact
that they are implemented basically by interconnecting them with the respective
signals/nets of respective component instances.

For automatic implementation of saboteurs into the item model, a design automa-
tion script in SKILL language is written which is executable within the Cadence
Virtuoso environment. The design automation procedure requires three parameters,
defining directory paths of the initial test-bench (mixed HDL and spice), of the
fault model library and injection directive are passed to the main procedure. First
the initial test-bench, comprising the selected components, is duplicated. Then the

32 O. Karaca et al.

Fig. 2.3 Concept of fault
injection automation Initial

test-bench
Fault model

library
Injection
directive

Design automation
- initial test-bench
- instantiate and connect fault models
- assign design variables for generic
configuration of fault models
- initialise fault models for nominal
behaviour (in-active)

New test-bench incl.
in-active fault models

Requisites for fault
activation & simulation

Output of procedure

Procedure for automatic fault injection

Prerequisites for fault injection

test-bench duplicate is used for the fault injection procedure. When all fault models
are implemented to the net-list, the test-bench comprises the nominal behavioural
model which is extended by generic saboteurs. Per default, no fault is activated, i.e.
all faults are in-active. This test-bench with in-active faults is replicated and faults
are activated or deactivated for each single fault and multiple-point fault simulation.
Figure 2.3 illustrates the concept of the fault injection procedure.

2.4 Case Study: Automotive BMS and EUC

The previously described fault injection technique is applied to a schematic test-
bench which comprises the behavioural model of a lithium-ion (Li-ion) battery
management integrated circuit (IC) module, including Li-ion cell models, see
Fig. 2.4. The circuit monitors temperatures and voltages for twelve Li-ion cells
and balances charge across the cells using active balancing or passive balancing
[7, 8]. Additionally, constant current battery charging can be simulated. The main
analogue and mixed-signal functions of the IC are covered by 12 individual parallel
13-bit �-˙ converters for primary voltage measurement and a 10-bit successive
approximation register (SAR) converter for secondary voltage measurement. The
primary voltage measurement is used for precise voltage reading for cell balancing
and the secondary voltage measurement is used for fast cell over-voltage and under-
voltage detection. In this context the primary converter is the safety-related hardware
element and the secondary converter is its safety mechanism, dedicated to the
prevention of safety goal violations due to over-voltage or under-voltage and acts
in case of a failure of the primary converter, in order to prevent subsequent potential
hazard.

2 Towards Simulation Based Evaluation of Safety Goal Violations: : : 33

13-bit delta-sigma

A/D converter

HV

LV

Ref
dig_o

cell 12

13-bit delta-sigma

A/D converter

HV

LV

Ref
dig_o

cell 11

13-bit delta-sigma

A/D converter

HV

LV

Ref
dig_o

cell 2

13-bit delta-sigma

A/D converter

HV

LV

Ref
dig_o

cell 1

GND

SAR
MUX

10-bit SAR
A/D converter

Ref 2 over_v,
under_v

battery
charging
source

Fig. 2.4 Simplified extract of the nominal schematic test-bench of the behavioural model of the
battery management element, including battery cell models

From the safety analysis perspective it is of interest to monitor the Li-ion battery
cells, in the presence of hardware faults in the IC. In the case study, the cell voltages
are monitored and faults are injected by generic saboteurs. Some stringent safety
goals for the Li-ion cells whose potential for being violated can be evaluated by
simulation are

• SG1: avoid over-discharge of any battery cell,
• SG2: avoid overcharge of any battery cell,
• SG3: avoid cell short-circuit.

34 O. Karaca et al.

By simulation, evidence for violation can be evaluated by monitoring the cell
voltages and currents [26]. If the monitored values exceed or fall below the defined
safety requirements, respectively, a potentially hazardous random hardware element
fault is identified.

2.4.1 Test-Bench Set-Up

The test-bench is set up for constant current charging operation, with 12
parametrised Li-ion cells with different state of charges (SOCs). Charging high
energy Li-ion cells takes hours in real life. However, in the simulation, by scaling the
cell capacity to a lower value and adjusting other test-bench parameters respectively,
simulation time is reduced without influence on the results accuracy.

In the case study the cells are charged with a 10A constant current and varying
SOC initialisation. The charging stops when the �-˙ converter reads the end-
of-charge voltage value at any cell. In parallel the SAR converter checks the
cell voltages and disconnects the cells from the charging source, in case of a
malfunctioning �-˙ converter, by disabling the safety relay which is in series
connected to the battery. The test-bench switches to idle state after the charging
process.

2.4.2 Selected Simulation Results for SPF and Discussion

The fault simulation covers 88 single-point analogue and digital faults at selected
electronic/electrical components of the safety-related battery management IC
respective to the 10th, 11th and 12th cell. Furthermore, SPF, which do not violate
any SG are analysed by dual-point fault injection. Each simulation was set to 10s
simulation time. The total time required for each transient analysis depended on the
injected fault and the simulations took between 10s and 60s. The nominal simulation
with in-active faults did not mentionable slow down the transient analysis.

Table 2.2 provides information regarding the test-bench set-up, the fault injection
reference, taken from an FMEA source and the proposed fault injection for realising
the component failure modes. Due to the fact that the battery management IC
comprises a safety mechanism stated by the SAR converter, all SPFs which lead to
a safety goal violation can be classified RFs. Specific to this case-study, the residual
fault amount can be quantified by the sum of the failure rates of all faults causing an
SG violation. Faults which lead to a failure (i.e. any deviation of the component’s
performance from nominal) but no SG violation are considered for further MPF
analysis because of a potential perceived fault (MPF,P) disclosure, in combination
with another independent fault. Faults which lead to no failure and hence to no
SG violation (not perceived, nor detected) need further MPF analysis because of a
potential latent fault (MPF,L) disclosure, in combination with another independent
fault.

2 Towards Simulation Based Evaluation of Safety Goal Violations: : : 35

Table 2.2 Test-bench set-up, components considered for fault injection based on FMEA
reference

Test-bench set-up

SGs respective to 12 Li-ion battery cells; monitoring of all cell’s voltage

Safety-related HW Li-ion battery management IC module

Operating mode 10A constant current charging

Operating cond. Nominal ambient conditions; SOCs with variable initialisation

Fault injection reference (from FMEA source) Fault injection

Component Component failure mode�! effect description Fault mode

�-˙ Stuck-at high�! only non inverted differential signal el. open-circuit

converter Stuck-at low�! only inverted differential signal el. open-circuit

(one component Drift (high/low)�! wrong diff. voltage el. across disturb.

for each cell) DC-fault�! short between HV and LV part el. interconn.

Transient spike p/m�! differential voltage oscillating el. across disturb.

SAR converter Output stuck-at 1�! stuck-at max. output value dig. stuck-at 1

(one component Output stuck-at 0�! stuck-at min. output value dig. stuck-at 0

for each cell) Switching point wrong�! 10 % deviation el. across disturb.

Stuck-at high�! only non inverted differential signal el. open-circuit

Stuck-at low�! only inverted differential signal el. open-circuit

Drift (high/low)�! wrong diff. voltage dig. bit-flip

DC-fault�! short between HV and LV part el. interconn.

Transient spike p/m�! differential voltage oscillating el. across disturb.

5 V supply Input to output short�! chip over-voltage/destruction el. interconn.

regulator Input to output open�! no supply for chip el. open-circuit

Output too high/low�! supply over/under-voltage el. across disturb.

Output oscillates�! modulated supply voltage el. across disturb.

Reference Input to output short�! reference voltage on supply level el. interconn.

voltage Input to output open�! no supply for �-˙ converter el. open-circuit

(one for all Output too high/low�! wrong �-˙ output el. across disturb.

�-˙ converters) Output oscillates�! wrong �-˙ output el. across disturb.

Figures 2.5, 2.6, and 2.7 show simulation results for selected component failure
modes:

• output stuck-at 0 of SAR converter of 11th cell (fault 42)
• output stuck-at 0 of SAR converter of 12th cell (fault 61)
• DC fault (short) of �-˙ converter of 12th cell (fault 74)
• fault 42 and output stuck-at 0 of SAR converter of 12th cell (fault 44) (dual-point

fault injection)

In Fig. 2.5 fault injection results respective to equal SOCD50 % initialisation of
the cells are drawn. Injection of fault 42 is not perceived from the cell voltages
behaviour and nor is it detected by any other safety mechanism. Safety mechanism
respective to 12th cell deactivates the charging process by a single pulse of digital

36 O. Karaca et al.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
fault_42

simulation time / s

V
ce

lls
, u

v o,
 o

v o

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

V
ce

lls
, u

v o,
 o

v o

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

V
ce

lls
, u

v o,
 o

v o

ov_o12_voltage

0 2 4 6 8 10

fault_61

simulation time / s

ov_o11_voltage

+ multiply detected

0 2 4 6 8 10

lower than uv

fault_74

simulation time / s

uv_o12_voltage

Vcell_12
Vcell_11
Vcell_10
Vcell_9
Vcell_8
Vcell_7
Vcell_6
Vcell_5
Vcell_4
Vcell_3
Vcell_2
Vcell_1
crit. over volt.
crit. under volt.

Fig. 2.5 Simulation results for SPF injection. All cells are initialised to equal SOC=50 %. Cell
voltages, critical over- and under-voltages are drawn together with the digital over-voltage ovo and
under-voltage uvo detection. The charging process begins at 1:6s and ends when maximum voltage
at any cell is reached

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
fault_42

higher than ov

simulation time / s

V
ce

lls
, u

v o,
 o

v o

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

V
ce

lls
, u

v o,
 o

v o

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
V

ce
lls

, u
v o,

 o
v o

ov_o12_voltage

2 4 6 8 10

fault_61

simulation time / s

ov_o11_voltage

2 4 6 8 10

fault_74

simulation time / s

ov_o11_voltage

+ multiply detected

Vcell_12
Vcell_11
Vcell_10
Vcell_9
Vcell_8
Vcell_7
Vcell_6
Vcell_5
Vcell_4
Vcell_3
Vcell_2
Vcell_1
crit. over volt.
crit. under volt.

Fig. 2.6 Simulation results for SPF injection. 11th Cell initialised to SOCD80 % and all other
cells initialised to SOCD40 %. Cell voltages, critical over- and under-voltages are drawn together
with the digital over-voltage ovo and under-voltage uvo detection. The charging process begins at
1:6s and ends when maximum voltage at any cell is reached

ovo when the maximum voltage at 12th cell is reached. In this context, fault 42 is
latent and can be classified an SF when we can exclude its potential for contribution
to an MPF,L with another independent fault. Injection of fault 61 is perceived and
(multiply) detected by another safety mechanism which writes a constant positive
over-voltage ovo signal. The safety mechanism enforces the charging process to
stop and prevents the fault from violating SG2. In this context, fault 61 is perceived
and detected and can be classified an SF when we can exclude its potential for
contribution to an MPF,P or MPF,D with another independent fault. Injection of
fault 74 is perceived and detected by the safety mechanism which writes a constant
positive under-voltage uvo signal. Nevertheless, fault 74 violates SG1 and must be
classified an RF.

In Fig. 2.6 fault injection results respective to 11th cell SOCD80 % and all other
cells SOCD40 % initialisation are drawn. Same as in Fig. 2.5, injection of fault
42 is not detected by any other safety mechanism. However, contrary to Fig. 2.5,

2 Towards Simulation Based Evaluation of Safety Goal Violations: : : 37

0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
fault_42

simulation time / s

V
ce

lls
, u

v o
, o

v o

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

V
ce

lls
, u

v o
, o

v o

ov_o12_voltage

0 5 10

dual−point fault_42+fault_44

higher than ov

simulation time / s

ov_o10_voltage

Vcell_12

Vcell_11

Vcell_10

Vcell_9

Vcell_8

Vcell_7

Vcell_6

Vcell_5

Vcell_4

Vcell_3

Vcell_2

Vcell_1

crit. over volt.

crit. under volt.

Fig. 2.7 Comparison of single-point and dual-point fault injection. 11th Cell initialised to
SOCD60 % and all other cells initialised to SOCD50 %. Cell voltages, critical over- and under-
voltages are drawn together with the digital over-voltage ovo and under-voltage uvo detection. The
charging process begins at 1:6 s and ends when maximum voltage at any cell is reached

fault 42 does violate SG2 and hence must be classified an RF. Same as in Fig. 2.5,
injection of fault 61 is perceived and detected by another safety mechanism.
Therefore, further analysis to exclude MPF,P or MPF,D potential is required. Same
as in Fig. 2.5, injection of fault 74 is detected by the safety mechanism. However,
contrary to Fig. 2.5, fault 74 does not violate any SG. Similar results are perceived
for all three faults when the cell SOCs differ significantly among themselves.

2.4.3 Selected Simulation Results for Dual-Point
Faults and Discussion

Latency of fault 42, as shown in Figs. 2.5 and 2.7, requires further analysis of
its MPF,L potential, together with another independent fault. For this purpose
dual-point fault injection is performed. Figure 2.7 shows that fault 42 does violate
together with fault 44 SG2. In this context we can derive a differentiated classifica-
tion of fault 42:

• RF for cell SOCs which significantly differ among themselves (by a ratio x W 1

with x 	 2)
• MPF,L for similar cell SOCs and in combination with fault 44.

From the single-point and dual-point fault simulation results it can be concluded
that the effect of random hardware faults can depend on other independent factors

38 O. Karaca et al.

outside the electronics, like the SOCs of the battery cells. As presented in this
case-study, this requires a more differentiated evaluation procedure which includes
such factors.

2.5 Conclusion and Outlook

To comply with the safety requirements in automotive applications in accordance
with the ISO 26262, and in particular when achievement of ASIL C or D is aimed, a
method for evident argumentation within the evaluation of safety goal violations
due to random hardware failures in electrical and electronic systems is needed.
In this work, a simulation-based method is presented, in which automated diverse
conservative energy domain analogue and digital fault injection to a heterogeneous
behavioural model is applied. The simulation results are used within the random
hardware fault classification procedure, which can be used for subsequent quantifi-
cation of the diagnostic coverage and hence evaluation of the effectiveness of the
safety mechanisms.

The presented work comprises a constitutive approach and can be used for
further investigations of simulation-based single-point/residual and multiple-point
analogue fault injection in order to support evaluation of safety goal violations
due to random hardware faults, in accordance with the ISO 26262. Furthermore,
it allows a differentiated argumentation in the context of random hardware fault
classification, by accounting for additional factors which contribute to the failure
severity. Further investigation is needed in order to support plausibility analyses
for multiple-point faults and elaboration of diagnostic coverage of safety mecha-
nisms. In the simulations stated in this work, nominal operation conditions, e.g.
ambient temperature, were assumed. Additionally, the test-bench was configured
for the charging process. However, operation conditions and operation modes may
contribute to the exposure and severity of the safety goal violations due to random
hardware faults and need therefore further investigation.

Acknowledgements This research project SafeBatt is supported by the German Government,
Federal Ministry of Education and Research under the grant number 03X4631A.

References

1. Ahmadian, S.M., Miremadi, S.G.: Fault injection in mixed-signal environment Using behav-
ioral fault modeling in Verilog-A. In: IEEE International Behavioral Modeling and Simulation
Convergence, BMAS, pp. 69–74 (2010)

2. Aljazzar, H., Fischer, M., Grunske, L., Kuntz, M., Leitner, F., Leue, S.: Safety analysis
of an airbag system using probabilistic FMEA and probabilistic counter examples. In: 6th
International Conference on the Quantitative Evaluation of Systems, QEST, pp. 299–308
(2009)

3. Ashenden, P.J., Peterson, G.D., Teegarden, D.A.: The System Designer’s Guide to
VHDL-AMS - Analog, Mixed-Signal, and Mixed-Technology Modeling. Morgan Kaufmann,
San Francisco (2003)

2 Towards Simulation Based Evaluation of Safety Goal Violations: : : 39

4. Bounceur, A., Mir, S., Rolindez, L., Simeu, E.: CAT platform for analog and mixed-signal test
evaluation and optimization. In: IFIP International Conference on Very Large Scale Integration,
pp. 320–325 (2006)

5. Christen, E., Bakalar, K.: VHDL-AMS - A hardware description language for analog and
mixed-signal applications. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 46(10),
1263–1272 (October 1999)

6. Corsi, F., Morandi, C.: Inductive fault analysis revisited. In: IEE Proceedings-G on Circuits,
Devices and Systems, pp. 253–263 (1991)

7. Daowd, M., Omar, N., van den Bossche, P., van Mierlo, J.: Passive and active battery balancing
comparison based on MATLAB simulation. In: Proceedings of the IEEE Vehicle Power and
Propulsion Conference (VPPC), pp. 1–7 (2011)

8. Einhorn, M., Roessler, W., Fleig, J.: Improved performance of serially connected Li-Ion
batteries with active cell balancing in electric vehicles. IEEE Trans. Veh. Technol. 60, 2448–
2457 (2011)

9. Farooq, M.U., Xia, L., Azmadi, F.: A critical survey on automated model generation techniques
for high level modeling and high level fault modeling. In: National Postgraduate Conference,
NPC, pp. 1–4 (2011)

10. Gudemann, M., Ortmeier, F.: Probabilistic model-based safety analysis. In: 8th Workshop on
Quantitative Aspects of Programming Languages, EPTCS, pp. 114–128 (2010)

11. Grunske, L., Colvin, R., Winter, K.: Probabilistic model-checking support for FMEA. In:
4th International Conference on the Quantitative Evaluation of Systems, QEST, pp. 119–128
(2007)

12. Harvey, R.J.A., Richardson, A.M.D., Bruls, E.M.J.G., Baker, K.: Analog fault simulation
based on layout dependent fault models. In: Proceedings in International Test Conference, pp.
641–649 (1994)

13. Hopsch, F.: Variation-aware fault modeling. 19th IEEE Asian Test Symposium, ATS, pp. 87–93
(2010)

14. Joonsung, P., Madhavapeddiz, S., Paglieri, A., Barrz, C., Abraham, J.A.: Defect-based analog
fault coverage analysis using mixed-mode fault simulation. In: 15th IEEE International Mixed-
Signals, Sensors, and Systems Test Workshop, IMS3TW, pp. 1–6 (2009)

15. Joshi, A., Heimdahl, M.P.E.: Behavioral fault modeling for model-based safety analysis. In:
10th IEEE High Assurance Systems Engineering Symposium, HASE, pp. 199–208 (2007)

16. Karaca, O., Kirscher, J., Maurer, L., Pelz, G.: Towards simulation based evaluation
of safety goal violations in automotive systems. In: 2014 Forum on Specification
and Design Languages (FDL). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
7119346&isnumber=7119333

17. Leveugle, R., Ammari, A.: Early SEU fault injection in digital, analog and mixed signal
circuits: a global flow. In: Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, DATE, pp. 590–595 (2004)

18. Milne, A., Taylor, D., Talbot, A.D.: Generation of optimised fault lists for simulation of analog
circuits and test programs. In: IEEE Proceedings on Circuites Devices Systems, pp. 355–360
(1999)

19. Nagi, N., Abraham, J.A.: Hierarchical fault modeling for analog and mixed-signal circuits.
In: 10th IEEE Design, Test and Application: ASICs and Systems-on-a-Chip, VLSI Test
Symposium, pp. 96–101 (1992)

20. Perkins, A.J., Zwolinksi, M., Chalk, C.D., Wilkins, B.R.: Fault modelling and simulation using
VHDL-AMS. In: 16th Analog Integrated Circuits and Signal Processing, pp. 141–155. Kluwer,
Dordrecht (1998)

21. Pintard, L., Fabre, J.-C., Kanoun, K., Leeman, M., Roy, M.: Fault injection in the automotive
standard ISO 26262: an initial approach. In: 14th European Workshop on Dependable
Computing, EWDC, pp. 126–133 (2013)

22. Pirker-Fruhauf, A., Kunze, M.: A novel methodology to combine and speed-up the verification
process of simulation and measurement of integrated circuits. In: IEEE AUTOTESTCON,
pp. 259–262 (2008)

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7119346&isnumber=7119333
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7119346&isnumber=7119333

40 O. Karaca et al.

23. Road Vehicles - Functional Safety. International Organisation for Standardisation, ISO 26262,
1st edn. (2011)

24. Singh, M., Koren, I.: Fault-sensitivity analysis and reliability enhancement of analog-to-digital
converters. IEEE Trans. Very Large Scale Integr. VLSI Syst. 11(5), 839–852 (October 2003)

25. Spinks, S.J., Bell, I.M.: “Analogue fault simulation,” in Mixed Mode Modelling and Simu-
lation, In: IEE Colloquium on, pp. 9/1–9/5. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&
arnumber=383641&isnumber=8687 (1994)

26. Taylor, W., Krithivasan, G., Nelson, J.J.: System safety and ISO 26262 compliance for
automotive lithium-ion batteries. In: IEEE Symposium on Product Compliance Engineering,
ISPCE, pp. 1–6 (2012)

27. Voorakaranam, R., Chakrabarti, S., Hou, J., Gomes, A., Cherubal, S., Chatterjee, A.: Hierar-
chical specification-driven analog fault modeling for efficient fault simulation and diagnosis.
In: Proceedings on the 1997 International Test Conference, TEST, pp. 903–912 (1997)

28. Wilson, P.R., Kilic, Y., Ross, J.N., Zwolinski, M., Brown, A.D.: Behavioural modelling of
operational amplifier faults using VHDL-AMS. In: Proceedings on Design, Automation and
Test in Europe Conference and Exhibition (2002)

29. Zwolinski, M., Brown, A.D.: Behavioural modelling of analog faults in VHDL-AMS - a case
study. In: Proceedings of the 2004 International Symposium on Circuits and Systems, ISCAS,
pp. 632–635 (2004)

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=383641&isnumber=8687
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=383641&isnumber=8687

Chapter 3
Hybrid Dynamic Data Race Detection
in SystemC

Alper Sen and Onder Kalaci

Abstract Data races are one of the most common problems in concurrent
programs. As SystemC standard allows nondeterministic scheduling of processes,
this leads to many concurrency problems. Data races are the most commonly
encountered concurrency problems and they need to be detected for improving
SoC design quality. Different executions of the same concurrent program may lead
to unexpected results due to race conditions. We develop a hybrid dynamic data
race detection algorithm for SystemC/TLM designs that adopts the well-studied
dynamic race detection algorithms; lockset and happens-before. We develop a
segment-based technique where a segment is defined as a set of consecutive memory
accesses by a single thread. Experiments show that our solution has fewer false
positives than lockset and fewer false negatives than happens-before algorithms.
Our implementation uses dynamic binary instrumentation allowing us to work on
designs for which source codes may not be available such as pre-compiled IPs.

3.1 Introduction

SystemC is one of the most commonly used system level design languages. It is a
concurrent language that allows the execution of multiple processes. The language
standard allows nondeterministic scheduling of a process from the list of processes
that are available for execution. Similar to other concurrent and multithreaded
languages/libraries such as Java or Pthreads, designs in SystemC suffer from
concurrency related errors. These errors include race conditions, deadlocks, and
livelocks. In this paper we focus on detecting race conditions.

A data race is said to occur when more than one thread accesses a shared
resource, at least one of those accesses is a write and there is no appropriate

A. Sen (�) • O. Kalaci
Department of Computer Engineering, Bogazici University, 34342 Istanbul, Turkey
e-mail: alper.sen@boun.edu.tr; onder.kalaci@boun.edu.tr

© Springer International Publishing Switzerland 2016
F. Oppenheimer, J.L. Medina Pasaje (eds.), Languages, Design Methods, and Tools
for Electronic System Design, Lecture Notes in Electrical Engineering 361,
DOI 10.1007/978-3-319-24457-0_3

41

mailto:alper.sen@boun.edu.tr
mailto:onder.kalaci@boun.edu.tr

42 A. Sen and O. Kalaci

synchronization between this two accesses (such as locks). In a multithreaded
program, not all data races result in abnormal program behavior. Sometimes they
are present for performance reasons. However, in most cases they lead to unexpected
and wrong behaviors. Data races are difficult to detect because they may not happen
in consecutive executions of a program even if the same inputs and initial state are
given.

We demonstrate a race condition in Fig. 3.1 adapted from [1]. In this example,
the guard process prevents pressure from reaching PMAX. However, since SystemC
kernel allows nondeterministic choice between guard and increment processes, it
is possible for increment thread to be executed when pressure D PMAX, hence
exceeding the PMAX limit. This condition can be detected by finding the data race
on the shared variable pressure.

Note that the SystemC standard [11] specifies a strict order on the execution
of the processes as follows: “The order in which process instances are selected
from the set of runnable processes is implementation-defined. However, if a specific
version of a specific implementation runs a specific application using a specific
input data set, the order of process execution shall not vary from run to run.”
However, during early design phases the application goes through several changes.

1 #define PMAX 7
2 #include <systemc . h>
3
4 SCMODULE(mod) {
5 public :
6 int pre s su r e ;
7
8 void guard () {
9 while (true)

10
11

i f (p r e s su r e==PMAX) pre s su r e=(PMAX 1);

p r e s su r e ++;

12 wait (1 , SC NS) ;
13 }
14 }
15
16 void increment ()
17
18
19

while (true)

20
21

}

22

}

23
24

SCCTOR(mod) {

25

SCTHREAD(increment) ;

26
27

SCTHREAD(guard) ;

28

}

29

} ;

30
31
32

int sc main (int argc , char∗ argv []) {

33

sc start () ;
return 0 ;

}

<< ”G: ” << pre s su r e << endl ;cout wait(1 , SC NS) ;

p r e s su r e = 0 ;

mod m(”mod”) ;

<< ”G: ” << pre s su r e << endl ;cout

Fig. 3.1 SystemC Data Race Example 1 [1]

3 Hybrid Dynamic Data Race Detection in SystemC 43

For example, when the location of processes for the shown example is changed, the
order of process execution can change. Also, if the designer uses another SystemC
simulator or uses a parallel SystemC simulator, which is gaining popularity in the
literature, then the order of process execution can change. Hence, the designer
should investigate this nondeterministic behavior of the application to prevent
concurrency problems.

The literature on race detection in concurrent and distributed programs is vast.
The approaches can be summarized as static and dynamic. Static approaches [4, 18]
can investigate all execution paths of a program but they are limited in terms of their
scalability and must be conservative. Most race detection work focuses on dynamic
techniques, which use the execution trace of programs rather than the whole
program itself therefore can be applied to real-life designs. There are mainly three
dynamic approaches for data race detection, lockset based [22], happens-before
based [5, 21], and hybrid [20, 24]. Lockset based algorithms are the fastest, they do
not generate false negatives (detector does not produce a warning although there is a
race in the program) but they suffer from many false positives (detector produces a
warning although there is no race in the program), which is not desirable. Happens-
before based algorithms are the slowest, they do not generate false positives but
they suffer from false negatives. Hybrid algorithms take the best of both approaches.
They are slower than lockset based algorithms but faster than happens-before based
algorithms. Similarly, the number of false positives is very small.

There are few works on race detection for SystemC and they are mainly based
on static analysis. The tool Scoot [1] has been used to speed up simulations by
synthesizing an optimized SystemC scheduler that performs partial-order reduction
using information obtained from race analysis. In [17], the authors present a static
data race detector that uses gcc plugin as a frontend. Similarly, a static race detector
is given in [2] for ESL designs exploiting the dependency among atomic regions in
SystemC simulations. This approach suffers from the lack of pointer analysis that
leads to false positives.

There are also more general static and dynamic verification approaches for
SystemC. Static approaches use model checking and symbolic simulation [3, 14].
However, they are limited in terms of scalability to real designs. Dynamic verifica-
tion works such as [6, 12, 23] work on the execution trace of the design, they can
check correctness of assertions and have better scalability yet lower coverage. In
[10], the authors provide the means for the local application of simulation Directed
for Exhaustive Simulation (DEC) of schedulings for those parts of the specification
where partial-order reduction techniques cannot be applied.

Our goal is to develop a hybrid data race detector for SystemC. Our hybrid
solution includes optimizations that do not exist in earlier hybrid approaches
[20, 24]. For this purpose, we track causality information in the program to
determine concurrent accesses to shared resources. We use a “dynamic binary
instrumentation” tool, PIN [15], which does not need the source code of the
program, in order to track causality.

44 A. Sen and O. Kalaci

3.2 Background

In this section, we describe background on SystemC, vector clocks, and dynamic
data race detectors.

3.2.1 Background on SystemC and Vector Clocks

The SystemC scheduler nondeterministically schedules ready-to-run processes and
has an asynchronous interleaving semantics where scheduling of processes is non-
deterministic. Scheduling of processes occurs at specific locations such as the wait
function, or the end of a thread, but not inside the atomic wait-to-wait blocks.
The non-deterministic thread scheduling may result in a discrepancy between
the simulation and synthesis models. Although scheduling can be restricted with
constructs such as explicit events for the lower-level models, for high-level models
such as TLM, designers often want the nondeterminism to model nondeterministic
choices implicit in the design. The SystemC scheduler is not preemptive; that is,
a process runs without interruption until it explicitly gives control back with a
wait statement. In [7], the authors show that a nonpreemptive scheduler introduces
implicit atomic sections (a wait-to-wait block in a process). Common synchroniza-
tion objects in SystemC are sc_event and sc_mutex. Synchronization operations
such as sc_event:notify./, sc_event:wait./, sc_mutex:lock./, sc_mutex:unlock./ are
executed on these objects.

A partial-order relation, named Lamport’s happens-before relation, has com-
monly been used to track causality in concurrent systems [13]. Lamport’s “happens-
before” relation (!) is defined as the smallest transitive relation satisfying the
following properties: (a) if actions e and f are generated by the same process, and
e occurred before f in real time, then e ! f , and (b) if actions e and f correspond
to the send and receive, respectively, of the same message, then e ! f . Two actions
e and f are “concurrent” iff e 6! f and f 6! e.

Vector clocks are used to track the happens-before relation [16] during program
execution. That is, e ! f iff vce < vcf . Hence, they can be used to determine
whether two actions are concurrent. A vector clock, vc, is a vector of integers
where the size of the vector is determined by the number of processes. Initially,
for a process j, vcjŒi� D 0, for i ¤ j, and vcjŒj� D 1. In this work, we assign a
vector clock to every process. The vector clock is updated after synchronization
operations. A process includes a copy of its vector clock in every outgoing message.
On receiving a message, it updates its vector clock by taking a component-wise
maximum with the vector clock included in the message. Note that happens-before
relation has been used in the context of SystemC [6, 9, 12, 23].

3 Hybrid Dynamic Data Race Detection in SystemC 45

3.2.2 Background on Dynamic Race Detectors

There are mainly two types of dynamic race detectors; lockset based detector (LBD)
and happens-before based detectors (HBD), which we describe below.

3.2.2.1 Lockset Based Detector (LBD)

Locks are commonly used in concurrent programs for properly synchronizing
accesses to shared variables. For example, in SystemC there is an sc_mutex class that
can be used for locks. A LBD checks that if two threads access a shared variable then
they must hold a common lock. Otherwise, the access is not properly synchronized
and can lead to a race condition. Eraser [22] is the most well-known LBD.

In the LBD algorithm, every thread and every memory address is associated
with a lockset variable, which is a set of locks. A thread lockset keeps the set of
locks held by the thread and is updated with lock/unlock operations on the lock.
A memory address lockset keeps the intersection of locksets of threads that accessed
the memory address so far. If any memory address lockset becomes empty, then a
race condition warning is given.

Lockset based detectors can be implemented easily and efficiently. However, the
disadvantage of these detectors is that they produce many false positives. False
positives are disappointing because the programmers waste time examining the
outputs of the race detector in race-free situations. The main source of false positives
in LBD can be explained as follows. The programmer codes in such a way that
there is no common lock held while accessing a shared variable. However, there is
an implicit “happens-before” relation in the programmer’s mind while coding the
accesses. To be more precise, the coder is absolutely sure that one access is going
to happen-before the other due to other synchronization operations, hence no race
condition can occur. The LBD is unaware of the implicit “happens-before” relation
in the coders mind and produces false positives. We show an example of a false
positive in the next section.

3.2.2.2 Happens-Before Based Detector (HBD)

This detector checks that if two threads access a shared variable then the accesses
are ordered according to the Lamport’s happens-before relation described above.
Otherwise, the accesses are concurrent and can lead to a race condition. FastTrack
and DJIT+ [5] are the most well-known HBDs.

In HBD algorithm, every thread, every memory address, and every
synchronization object (sc_mutex or sc_event) is associated with a vector clock.
A thread increases its own component of the vector clock upon releasing a lock,
sc_mutex:unlock./, or notifying an event, sc_event:notify./. When a thread releases
a lock then the vector clock of the lock is updated with the thread’s vector clock.

46 A. Sen and O. Kalaci

When a thread acquires a lock then the vector clock of the thread acquiring the
lock is updated with the maximum of the thread’s and the lock’s vector clocks.
This enables the creation of a “happens-before” relation between the two threads
due to the release and acquire operations on the lock. Similarly, a “happens-before”
relation is created between the threads due to a notify and wait operation on the
same SystemC event.

Note that the ‘happens-before” relation is generated dynamically during the
execution of the model and is tracked by the vector clocks. For example, a
happens-before relation is established from any type of notification, say e:notify./

or e:notify.SC_ZERO_TIME/ to a wait event wait.e/ only if during the execution
the thread executing wait.e/ is released by the thread executing the notification on
event e.

In order to detect race condition on shared memory addresses, for every memory
address there is a read and a write vector clock that keeps the vector clock of the last
read and write to the address by the thread that accesses the address. We say that a
read from a memory address by a thread is race-free provided the read happens after
the last write of each thread. This captures read-write type races as there are no read-
read races. A write to a memory address by a thread is race-free provided that the
write happens after all previous accesses to that variable. This captures write-read
or write-write type races.

The advantage of HBD is that it does not produce false positives for the given
execution. Whenever a happens-before based race detector produces a warning,
there is a thread schedule where two accesses may happen concurrently. The
disadvantage of these detectors is that they may miss real races that can occur in
an alternative schedule, that is, they generate false negatives. This is because the
causality information is dynamically generated only for the observed execution but
not for other possible executions. We show an example of a false negative in the
next section.

We further specialize the traditional HBD algorithm for SystemC, in that, a race
condition is detected when the concurrent access to the shared variable occur in the
same delta cycle, as different cycles in SystemC are causally ordered.

Implementing the happens-before relations is not efficient because keeping a
vector clock for every thread and every memory address is costly. Furthermore
for every memory access such as read or write, there is also a costly vector clock
comparison. We next describe our optimized hybrid data race detection solution
with low overhead for SystemC programs.

3.3 Our Hybrid Dynamic Race Detection Algorithm

Our hybrid dynamic race detector (Hybrid) is a combination of LBD and HBD
algorithms. It consists of two phases, where in Phase 1, a HBD algorithm is run
to keep track of concurrent accesses to memory addresses. The difference from
the above HBD algorithm is that no happens-before relation is generated for lock

3 Hybrid Dynamic Data Race Detection in SystemC 47

operations, since locks are handled in Phase 2. If a concurrent access is found
in Phase 1, then in Phase 2, an LBD algorithm is run to check whether these
accesses are protected by a common lock. The most well-known Hybrid detectors
for multithreaded programs are [20, 24].

Our algorithm uses the concept of segments whereby it can treat all memory
accesses of a thread that hold the same set of locks and that have the same vector
clock uniformly leading to efficient implementations. A segment [24] is defined
as a set of consecutive memory accesses by a single thread. No function calls
or synchronization operations are allowed inside the segments but only memory
read/write operations, if they exist. Segments of a thread follow a sequential order.
When one segment seg terminates, the next segment nseg starts. A synchronization
operation, such as lock./=unlock./ and notify./=wait./, terminates a segment seg
and starts a new segment nseg. These synchronization operations do not belong to
the segment. We observed that when there are few synchronization operations in the
application, segments can consist of many lines of source code, making it harder to
pinpoint the exact location of a detected race, if the race belongs to that segment.
Hence, in order to limit the size of segments, we assume that function calls and
returns also start and terminate segments.

A segment belongs to one and only one thread and is associated with a vector
clock (which is the vector clock of the thread that it belongs to) and a lockset (set
of locks held by the thread at the start of that segment). Furthermore, every memory
address is associated with a read-segment set and a write-segment set denoting
respective operations on that address in different segments of different threads.

With segments, we do not keep a separate vector clock (as in HBD) and a separate
lockset (as in LBD) for each memory address, the number of which is much higher
than the number of segments. Instead, we keep a separate vector clock and a separate
lockset for each segment. Similarly, lockset and vector clock comparisons are done
in the granularity of segments. These allow us to obtain performance benefits over
traditional lockset and happens-before base race detector algorithms.

Our hybrid algorithm is a dynamic race detector that is run during the execution
of the given program. In order to implement the algorithm we use a dynamic binary
instrumentation tool, PIN [15]. PIN does not require the source code hence can
be used on binaries and precompiled IPs. We do not need the debug information
in binaries, although the presence of it helps to improve the debugging of data
races. Specifically, we instrument memory accesses (read/write operations) and
synchronization operations in the given SystemC binary program. During the
execution of the instrumented binary program, our algorithm creates and updates
segments, read and write segment sets, read and write locksets as well as the
corresponding vector clocks.

48 A. Sen and O. Kalaci

3.3.1 Algorithm Details

When the instrumented program executes memory access operation E for a shared
memory address A, the hybrid race detector runs as shown in Algorithm 3.1. This
algorithm has a happens-before based detector phase (Phase 1) and a lockset-based
detector phase (Phase 2). The goal is to check whether concurrent accesses on a
shared memory address A use common locks or not. If there is no common lock,
then a race condition is reported. In our case, the locksets are generated for segments
instead of memory addresses. Specifically, in Phase 1 (lines 3–8), we remove all
segments that have a happens-before relation to the segment S of memory address
A from the read or write segment sets and add S to the corresponding segment
set. Hence, the first phase of the algorithm makes sure that the elements of any
read-segment set or any write-segment set are pairwise concurrent with each other.
This is important because, in Phase 2, comparing locksets of segments that are not
concurrent, hence that cannot lead to a race condition, is a waste of resources.

Algorithm 3.1 Hybrid dynamic race detection algorithm (Hybrid)
Input: SystemC binary program P, segment S in thread T , memory address A
Output: race conditions in P

//
// ——-Phase 1: happens-before phase

1: let rseg, wseg be read-segment set and write-segment set of memory address A,
respectively;

2: let E be a memory access operation on address A in segment S;
3: if E is read then
4: remove all segments that happens-before S from rseg;
5: add S to rseg;
6: else if E is write then
7: remove all segments that happens-before S from rseg and wseg;
8: add S to wseg;
9: end if

//
// ——-Phase 2: lockset phase

10: for all segment wi 2 wseg do
11: for all segment wj 2 wseg do
12: if write-locksets of wi, wj do not have a common lock then
13: if wi and wj occurred in the same delta cycle then
14: report RACE CONDITION;
15: end if
16: end if
17: end for
18: for all segment rj 2 rseg do
19: if write-lockset of wi and read-lockset rj do not have a common lock then
20: if wi and rj occurred in the same delta cycle then
21: report RACE CONDITION;
22: end if
23: end if
24: end for
25: end for

3 Hybrid Dynamic Data Race Detection in SystemC 49

It can be seen from Algorithm that read and write accesses update segment sets
differently. On write accesses, both writer and reader segment sets are updated,
whereas, on read accesses, only reader segment set is updated. The reason is as
follows, on write accesses, it is safe to remove any of the read accesses from rseg.
Remember that, rseg consists of concurrent segments where A is read. Since there
is no read-read type of data race, removing any segment from rseg does not lead
to missing any races. On the contrary, on read accesses it is not safe to remove
any segment from wseg. The reason is that, it may lead to missing a write-write
data race because the removed segment might have a potential race with one of the
prospective segments in the same set. The outcome of this is that all segments within
any segment set is concurrent with each other. However, not all segments in rseg are
concurrent with all segments in wseg, which is handled while checking race among
wseg and rseg.

Then, in Phase 2 (lines 10–21), we check whether for the memory address A
there can be two concurrent write operations (write-write) or a concurrent write and
a read operation (write-read). In both cases we report a race condition warning.

We also implemented several optimizations in our hybrid detector some of which
we briefly discuss in this paper. In the first optimization, we observe that maintaining
a limited vector clock history cache for the previously calculated vector clock
comparisons increase the performance of data race detection. This is motivated by
the fact that multiple memory accesses can belong to the same segment and since
all these memory accesses have the same vector clock as the segment that they
belong to, there may be an excessive number of comparison operations between
the same vector clocks. In the second optimization, we define a limit that identifies
the maximum number of segments that can be utilized by our approach. This is
because discarding segments that are further away from each other can increase
the performance as many of the distant segments are unrelated in terms of race
detection. In the third optimization, we adopt an approach that detects data races at
a rate equal to a user given sampling rate. This approach can make our solution to
be applicable in industrially deployed software.

3.3.2 Data Race Detection Examples

We demonstrate our race detection algorithm on two simple SystemC programs. In
Fig. 3.2, assuming that during the execution of the program threads are executed in
the order (t2, t1, t2), a happens-before relation is constructed from the notify in t2 to
the wait in t1. Our hybrid race detector and the happens-before based detector both
correctly return no race on variable a, however the lockset based algorithm wrongly
returns a race (false positive) on variable a as there is no common lock protecting a.

Similarly, assuming (t1, t2) execution sequence in Fig. 3.3, a happens-before
relation is constructed from the unlock in t1 to the lock in t2, returning no race
condition on x. However, in an alternative execution of threads (t2, t1), there is
a race on x. Our hybrid detector and the lockset detector correctly predict this

50 A. Sen and O. Kalaci

1 #include <systemc . h>
2
3 SCMODULE(prog1) {
4
5 sc event e , f ; int a ;
6
7 void t1 () {
8 a = 2 ;
9 e . notify () ;

10 }
11
12 void t2 () {
13 wait (e) ;
14 a = 1 ;
15 }
16
17 SCCTOR(prog1) {
18 SCTHREAD(t1) ;
19 SCTHREAD(t2) ;
20 }
21 } ;
22
23
24 int sc main (int argc , char∗ argv []) {
25 prog1 t (”prog1”) ;
26 sc start () ;
27 return 0 ;
28 }

Fig. 3.2 SystemC Data Race Example 2

race condition from an execution with no races, however the happens-before based
detector does not (false negative). Note that one can also come up with an example
where the happens-before based detector correctly detects the race, whereas the
hybrid detector and the lockset detector do not. In summary, races found by a
happens-before or a hybrid detector are a subset of a lockset detector, whereas no
such relationship can be said between a happens-before and a hybrid detector.

3.4 Experimental Results

To the best of our knowledge, there is no publicly available race detector for
SystemC, hence we implemented all three mentioned detectors using the same
framework for a fair comparison. We performed experiments on SystemC and
TLM designs from the Accelera distribution as well as an industrial framework.
The industrial framework is used for architectural exploration, RTL development,
constrained random verification, and early software development. It includes a
complete set of BFM and monitor components for several bus protocols including
proprietary TLM compliant bus protocols. We used three designs (denoted by ind1,
ind2, and ind3) from the framework.

Table 3.1 shows the lines of code (LoC) and the number of potential data races
returned by three detectors Hybrid, LBD, and HBD, respectively. The experimental

3 Hybrid Dynamic Data Race Detection in SystemC 51

Fig. 3.3 SystemC Data Race Example 3

Table 3.1 The number of
potential data races detected
by Hybrid, Lockset (LBD),
and Happens-before (HBD)
Race Detectors

SystemC Design LoC Hybrid LBD HBD

fir 916 9 13 4

pkt_switch 1045 15 51 8

reset_signal_is 132 12 17 5

rsa 539 0 0 0

lt-specialized_signals 7344 8 39 1

simple_perf 265 3 3 1

simple_fifo 166 1 1 1

at_1_phase 2350 0 0 0

pipe 627 0 0 0

lt-scx_barrier 161 1 1 1

ind1 37;863 30 50 11

ind2 37;950 14 20 12

ind3 37;768 15 51 12

results confirm that the number of reported races is highest with LBD (since it can
return false positives) and lowest with HBD (since it can return false negatives).
As expected, our hybrid detector combines the best of these two detectors and
returns races that cannot be found by the HBD. The slowdowns are 56x, 107x,

52 A. Sen and O. Kalaci

and 125x for LBD, Hybrid, and HBD, respectively, which is similar to the results
obtained with race detectors in the literature. A reason for the slowdowns is that
the overhead of dynamic binary instrumentation is high, which we want to further
investigate in the future.

A close examination of data races in the case of industrial designs show that
most of the reported races are benign, but there still exist harmful races resulting
in corruption of the memory contents, for example in ind1 design. We observe that
several SystemC designs are free from data races (rsa, at_1_phase, pipe), which is
probably because these designs have been extensively verified. Also, the number
of potential data races is higher when the designs are larger as in the case for the
industrial designs.

We also performed preliminary experiments using our optimizations. For opti-
mization 1, the execution time decreases 5 % when the history cache size is 1
and the maximum gain is 7 % for a history cache size of 50. For optimization 2,
the execution time decreases 24 % when only 4 % of segments (compared to the
original number of segments) is kept, yet the number of races remains the same. For
optimization 3, the total number of reported races and execution time converge to
the sampling rate for almost all applications, which is what we expected to achieve.

3.5 Conclusions and Future Works

We developed a hybrid dynamic race detection algorithm for SystemC/TLM designs
with fewer false positives than lockset and fewer false negatives than happens-before
algorithms. Our implementation uses dynamic binary instrumentation allowing us
to work on designs for which source codes may not be available such as pre-
compiled IPs. We implemented optimizations to improve the performance of our
hybrid algorithm.

In the future, we plan to expand our experimental works with details of our
optimizations as well as investigate approaches to reduce slowdowns. Also, the
relationship of our approach to correct-by-construct methodologies for SystemC
such as [8, 19] will be investigated.

Acknowledgements This research was supported in part by Bogazici University Research Fund
7223 and the Turkish Academy of Sciences.

References

1. Blanc, N., Kroening, D.: Race analysis for systemc using model checking. ACM Trans. Des.
Autom. Electron. Syst. 15(3), 21:1–21:32 (2010)

2. Chen, W., Han, X., Domer, R.: May-happen-in-parallel analysis based on segment graphs for
safe esl models. In: Proceedings of Design, Automation and Test in Europe Conference and
Exhibition (DATE) (2014)

3 Hybrid Dynamic Data Race Detection in SystemC 53

3. Cimatti, A., Narasamdya, I., Roveri, M.: Software model checking systemc. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 32(5), 774–787 (2013)

4. Flanagan, C., Freund, S.N.: Type-based race detection for java. In: Proceedings of the ACM
SIGPLAN 2000 Conference on Programming Language Design and Implementation (2000)

5. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection. In: Pro-
ceedings of the Conference on Programming Language Design and Implementation (2009)

6. Helmstetter, C., Maraninchi, F., Maillet-Contoz, L.: Full simulation coverage for systemC
transaction-level models of systems-on-a-chip. Form. Methods Syst. Des. 35(2), 152–189
(2009)

7. Helmstetter, C., Ponsini, O.: A comparison of two systemC/TLM semantics for formal
verification. In: Proceedings of the International Conference on Formal Methods and Models
for Co-Design (MEMOCODE) (2008)

8. Herrera, F., Ugarte, I.: Concurrent specification of embedded systems: an insight into the
flexibility vs correctness trade-off. In: Tanaka, D.K. (ed.) Embedded Systems - Theory and
Design Methodology. InTech (2012)

9. Herrera, F., Villar, E.: A framework for heterogeneous specification and design of electronic
embedded systems in systemc. ACM Trans. Des. Autom. Electron. Syst. 12(3), 22:1–22:31
(2008)

10. Herrera, F., Villar, E.: Local application of simulation directed for exhaustive coverage of
schedulings of systemc specifications. In: Proceedings of Forum on Specification Design
Languages (FDL) (2009)

11. IEEE Standard for Standard SystemC Language Reference Manual. IEEE Std 1666–2011
(Revision of IEEE Std 1666–2005) pp. 1–638 (2012)

12. Kundu, S., Ganai, M., Gupta, R.: Partial order reduction for scalable testing of systemC TLM
designs. In: Proceedings of the 45th Annual Design Automation Conference, pp. 936–941
(2008)

13. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21(7), 558–565 (1978)

14. Le, H.M., Grosse, D., Herdt, V., Drechsler, R.: Verifying systemc using an intermediate
verification language and symbolic simulation. In: Proceedings of the 50th Annual Design
Automation Conference (2013)

15. Luk, C.K., Cohn, R.S., Muth, R., Patil, H., Klauser, A., Lowney, P.G., Wallace, S., Reddi,
V.J., Hazelwood, K.M.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Proceedings of Programming Language Design and Implementation
(2005)

16. Mattern, F.: Virtual time and global states of distributed systems. In: Proceedings of
the Workshop on Distributed Algorithms (WDAG) (1989)

17. Moiseev, M., Glukhikh, M., Zakharov, A., Richter, H.: A static analysis approach to data race
detection in systemc designs. In: Proceedings of International Symposium on Design and
Diagnostics of Electronic Circuits Systems (DDECS) (2013)

18. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding and
reproducing heisenbugs in concurrent programs. In: Proceedings of the 8th USENIX
Conference on Operating systems Design and Implementation (2008)

19. Niaki, S.H.A., Sander, I.: An automated parallel simulation flow for heterogeneous embedded
systems. In: Proceedings of Design, Automation Test in Europe Conference Exhibition (DATE)
(2013)

20. O’Callahan, R., Choi, J.D.: Hybrid dynamic data race detection. In: Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (2003)

21. Pozniansky, E., Schuster, A.: Multirace: efficient on-the-fly data race detection in multithreaded
c++ programs: Research articles. Concurr. Comput. Pract. Exper. 19(3), 327–340 (2007)

54 A. Sen and O. Kalaci

22. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dynamic data
race detector for multi-threaded programs. In: Proceedings of the 16th ACM Symposium on
Operating System Principles (1997)

23. Sen, A.: Concurrency-oriented verification and coverage of system-level designs. ACM Trans.
Des. Autom. Electron. Syst. 16(4), 37:1–37:25 (2011)

24. Serebryany, K., Iskhodzhanov, T.: Threadsanitizer: data race detection in practice. In: Proceed-
ings of the Workshop on Binary Instrumentation and Applications (2009)

Part II
Languages for Requirements

Chapter 4
Semi-formal Representation of Requirements
for Automotive Solutions Using SysML

Liana Muşat, Markus Hübl, Andi Buzo, Georg Pelz, Susanne Kandl,
and Peter Puschner

Abstract As system complexities are growing with increasing numbers of
requirements, the difficulties to manage, process and verify natural language
requirements and to keep quality are also increasing. In safety-related applications,
as in the automotive domain, this necessity is more pronounced because of the
regulations and standards imposed by authorities. Semi-formal representation of
requirements is an approach that helps making them more understandable and
rigorous.

This chapter deals with semi-formal representation using SysML of two auto-
motive analogue-mixed signal systems, an electronic power switch and an airbag
safety circuit. We use diagram-based modelling in order to represent requirements,
structure and behaviour, enabling the linking different elements that define the
composition and the functionalities of the desired product. We focus on the
particular behaviour of such devices and the continuous quantities related to them
with emphasis on the two real scenarios.

L. Muşat (�)
Automotive Power, Infineon Technologies AG, Villach, Austria

Institute of Computer Engineering,Vienna University of Technology, Vienna, Austria
e-mail: Liana.Musat@infineon.com

M. Hübl
Automotive Power, Infineon Technologies AG, Villach, Austria
e-mail: Markus.Huebl@infineon.com

A. Buzo
Methodology development - Automotive, Infineon Technologies Romania&Co SCS,
Bucharest, Romania
e-mail: Andi.Buzo@infineon.com

G. Pelz
Methodology development - Automotive, Infineon Technologies AG, Neubiberg, Germany
e-mail: Georg.Pelz@infineon.com

S. Kandl • P. Puschner
Institute of Computer Engineering, Vienna University of Technology, Wien, Austria
e-mail: susanne@vmars.tuwien.ac.at; peter@vmars.tuwien.ac.at

© Springer International Publishing Switzerland 2016
F. Oppenheimer, J.L. Medina Pasaje (eds.), Languages, Design Methods, and Tools
for Electronic System Design, Lecture Notes in Electrical Engineering 361,
DOI 10.1007/978-3-319-24457-0_4

57

mailto:Liana.Musat@infineon.com
mailto:Markus.Huebl@infineon.com
mailto:Andi.Buzo@infineon.com
mailto:Georg.Pelz@infineon.com
mailto:susanne@vmars.tuwien.ac.at
mailto:peter@vmars.tuwien.ac.at

58 L. Muşat et al.

4.1 Introduction

Over the last decades the number of electrical and electronic (E/E) systems in a
car has grown substantially and the trend will be maintained for the next years
to satisfy the demand of the market and users for increased automatic control.
In parallel, the development complexity and the integration difficulty of E/E
systems have also increased due to the high number of requirements that define
the automotive sub-systems. Within this context, the automotive community is
facing several challenges. First, the management of requirements, i.e. documenting,
analysing and tracing of requirements, has become very difficult. Second, there is no
explicit association between the description of the requirements in natural language
provided by stakeholders and their implementation.

The direct implementation of natural language requirements could raise misun-
derstanding and misinterpretation which could lead to problems in a later phase of
the development project which is considerably more costly than at the beginning.
Typical problems are omission of the required features, over-specification or
implementation of redundant features caused by a misunderstanding or a lack of
completeness and consistency of requirements.

Third, most typical E/E automotive implementations contain elements from the
analogue-mixed signal (AMS) domain. While it is relatively straight forward to
describe local functionality with natural language, it appears to be more difficult
to structure and describe functional relations between various internal and external
components. In many existing specification interdependencies between separate
blocks are often spread across the document.

In addition, the newly released ISO 26262 standard provides regulations for
the development process of automotive systems in order to handle safety-related
requirements systematically. The main objective of the standard is to increase the
safety by reducing risk of malfunctions that would cause harm to people. This
is managed by addressing the whole product lifecycle that supports tailoring of
the necessary activities during the lifecycle phases (management, development,
production, operation, service and decommission).

Nevertheless, the mentioned challenges can be tackled by more robust require-
ments through additional formality. The degree of the formalization is debatable
though. Fully formalized requirements assure a full definition of the component
or the system, becoming objectives for implementation as well as for automatic
verification. On the other hand, a formal representation is very complex and requires
a deep knowledge of domain, language and tools. Hence the number of developers
is restricted to a few experts which are able to deal with the formal requirements.

Semi-formal representation is a reasonable trade-off for adding formality to the
requirements without losing the simplicity of the representation. Moreover, it can
make the formulation and the presentation of the requirements more intuitive.

One example of standardized semi-formal graphical languages is the System
Modelling Language (SysML) [1]. It was developed by the International Council on
Systems Engineering’s (INCOSE [2]) Model-Driven Systems Design workgroup.

4 Semi-formal Representation of Requirements for Automotive Solutions. . . 59

It is dedicated to systems engineering applications (including both hardware and
software). SysML is based on the software modelling language UML (Unified
Modelling Language), extending the capabilities of UML for the system domain,
and excluding specific software parts. The systems’ architecture, its behaviour,
the requirements and the relationships between all elements of these aspects can
be described in SysML. Although semi-formal representations of requirements
and SysML in particular are widely used in the software domain, there are fewer
attempts in utilizing these for hardware systems or mixed signal components. One
explanation for that could be that hardware manufacturers inherited the tradition
to describe the specification mainly in natural language and the higher difficulty in
representing such systems, especially when it comes to the AMS domain, as most
authors for semi-formal modelling in literature make full abstraction of the analogue
functionality.

In this work, we present the advantages of a model-based representation of two
AMS components from an automotive application. We use SysML to organize the
requirements, to specify the interaction of the components with the environment and
other components. This study also shows a description of the high-level structure
and the behaviour of the components in SysML. The emphasis is put on illustrating
the safety mechanisms while there is the possibility for further extension to all
requirements. We demonstrate that AMS functionalities and quantities can be
successfully modelled with SysML and that such modelling helps in overcoming
the above-mentioned issues.

4.2 Related Work

Semi-formal languages are characterized by a well-defined syntax but without
unambiguous and precise semantics. They are a good compromise between full
formal representations, which can be simulated in a deterministic way, and natural
language representations which are vague and tend to be widely misinterpreted in
the engineering field due to the diverse backgrounds and experiences among the
members of a development team.

Formal methods are mathematics, logic or algebra-based languages used for
specification and verification, with well-defined syntax, semantics and rules. They
are most popular in the software field. The weaknesses of formal methods are the
limits of computational models, the high initial cost for initial implementation and
most importantly the usability [3, 4].

On the other hand, natural language description represents the easiest way to
capture and communicate the requirements. Nevertheless, with this advantage come
many disadvantages for expressing requirements: lack of clarity, amalgamation,
confusion and over-flexibility (the same requirement can be expressed in completely
different ways).

60 L. Muşat et al.

Semi-formal methods try to inherent advantage from both approaches. They are
well-structured and user-friendly; most include graphical notations, others are solely
textual based like the Object Constraints Language [5].

One of the widest used and best known semi-formal notations is UML, a
standardized general-purpose modelling language in the field of software systems
engineering [6]. UML is an object modelling language, and thus it cannot cover all
aspects of E/E system development. Architecture Analysis and Design Language
(AADL) is another standardized modelling language used for model-based engi-
neering for embedded software system architectures. AADL is a textual modelling
language with graphical elements, which addresses application software runtime
architecture but excludes the operational environment for the system view [7, 8].

Based on UML, SysML and AADL, an architecture description language
specific for automotive embedded systems—EAST-ADL—has been developed and
enhanced by several European research projects [9].

Another extension of the UML profile for model-driven development of real time
and embedded applications is MARTE (Modelling and Analysis of Real-Time and
Embedded systems) [10].

An extended review of several modelling languages including AADL, UML,
SysML and MARTE has been conducted by Evensen and Weiss [11]. The criteria
for the evaluation in the context of real-time software system applications are
scope, formalism and architectural coverage. A comparison summary reveals the
limitations of each language. AADL represents an abstraction of real-time operating
system components without support for behaviour modelling. UML has no strict
formalism and due to the support of a large number of diagrams, a consistent,
semantically correct specification is practically hard to maintain. MARTE has a
very complex meta-model and it suffers also from the support of large number
of diagrams like UML. SysML is primarily targeted for the system engineering
domain.

Other semi-formal languages are being developed in various research activities
but none of them is widely spread or well-supported by tool vendors. From these
only URML—Unified Requirements Modelling Language—is worth mentioning.
The most interesting characteristic of URML is the traceability of requirements from
different domains—functional requirements, possible threats and hazards or product
features [12].

SysML attempts to overcome several of the limitations of the mentioned
languages. It represents a visual modelling language that supports specification,
analysis, design, verification and validation of a broad range of systems.

SysML, based on a subset of UML, was adapted for system engineering applica-
tions, extending UML’s capabilities supporting continuous quantities modelling by
using parametric diagrams to define performance and quantitative constraints.

This brought the advantage that this kind of representation streamlines commu-
nication between heterogeneous teams during the development of the system, as
well as the communication to the stakeholders. The requirements are graphically
modelled, explicitly representing the mapping and the relationships with each other.

4 Semi-formal Representation of Requirements for Automotive Solutions. . . 61

Additionally the system decomposition can be considered in the initial phase of the
development activities already.

Although the majority of literature is pointing out the application in software
systems, SysML can be used to define models of different domains. Hierarchical
modelling of a system and allocating the requirements to the structural and
functional elements is one of the most common ways of modelling in SysML
[14, 15]. These models are further used as a starting point for Hazard Analysis and
FMEA [13]. Other works show the interaction of SysML with Matlab/Simulink for
simulations [16]. Moreover SysML can be a base for code generation for System C
and C/CCC [17–19]. Further research shows how SysML is transformed or mapped
for formal verification [25, 26].

Also, SysML is widely used to support the requirements engineering process due
to its specific diagram and relationships for requirements [24, 27–30].

In this research work, we go beyond the state-of-the-art by modelling the
requirements for a smart automotive power switch and an airbag IC component
from the AMS domain. The analogue effects are not abstracted, but instead they are
detailed by the means of activity and state machines diagrams. Then, this behaviour
is linked to the requirement and the structural elements. We illustrate these by giving
modelling examples of the functionalities for the targeted applications.

4.3 Application To Be Modelled

The methodology was applied on two safety-relevant systems: a protected high-
side switch as part of the electric control unit (ECU) that controls the ABS braking
system and an IC part of the ECU of the airbag system.

4.3.1 Protected High-Side Switch Description

The hardware device whose requirements we have chosen to model with SysML is a
field-effect transistor (MOSFET) equipped with protection and diagnostic functions.
It is meant to work as the driver that activates the valve in an anti-lock braking
system (ABS), hence the motivation for the presence of protection and diagnostic
functions. It represents a typical safety-relevant automotive application which is
very sensitive to safety issues. This is why the requirements for this device contain
an additional set of explicit safety requirements beside the usual set of requirements.
This leads to an increase of the complexity where the semi-formal representation
becomes convenient. The following paragraphs give a short overview of the E/E
system and its protection and diagnostic functions.

Integrated MOSFETs are widely used for various automotive switching applica-
tions, as high-side and low-side switches. High-side switches are power switches
that can switch high currents into grounded loads safely. Further high-side switches

62 L. Muşat et al.

Fig. 4.1 Block diagram of a protected MOSFET [20]

are common in automotive applications due to less wiring and thus reduced system
cost. Another advantage of a high-side configuration is the protection of the load
due to the disconnection of the supply voltage in OFF state as well as the protected
wiring harness [21].

Due to the high demand for safety in the automotive field, high-side switches are
designed with built-in protections and diagnostic features. These protection features
safeguard that the transistor will not be damaged if one or more of the operating
conditions are violated or not fulfilled anymore.

An example of a block diagram for a two-channel smart high-side switch with
integrated safety features is illustrated in Fig. 4.1. A large setof available protection
and diagnostic features are integrated into a smart high-side switch: electrostatic
discharge (ESD) protection, over-voltage and under-voltage protection, reverse
battery protection, thermal shutdown protection, over-current protection, short
circuit protection, loss of ground or supply voltage protection. These features
guarantee that the transistor will not be destroyed or damaged in case one or more
of the operating condition requirements are not fulfilled. For example, an over-
voltage protection becomes active if the supply voltage is higher than the maximum
operating condition and ensures that the high-side switch is not damaged in case
of a load dump transient or other high voltage disturbances. In a comparable way,

4 Semi-formal Representation of Requirements for Automotive Solutions. . . 63

the under-voltage protection is activated when the supply voltage drops below the
operating range. In this case the load is protected by turning off the switch to avoid
unpredictable behaviour. Another safety feature is the reverse battery protection,
when the supply voltage and ground connections are reversed—which keeps the
integrated circuit (IC) and the load safe even when the polarity of the battery is
reversed. A current limitation feature is also implemented in order to protect the
IC and the load from a short-to-ground failure. The temperature monitoring logic
turns off the switch in case of an over-temperature event. The shutdown logic works
with a hysteresis to prevent the oscillations of the switching caused by various
protections features. The protection techniques are not identical for all devices and
differ from model to model and from development organization to development
organization [22].

Typical automotive applications for high-side switches are:

• Resistive loads: LEDs, window heating, seat adjustments, auxiliary heating;
• Inductive loads: wipers, ABS and EBS (Electronic Braking System) valves,

relays, fan motor and
• Capacitive loads: incandescent lighting and xenon lights [21].

In this application, the high-side switch is part of an ECU, together with a
microcontroller (�C), which acts as the master. Some protection functions are fully
integrated into the high-side switch, others work only in conjunction with external
electronic components. Thus the ECU level has to be taken into consideration for
handling protection requirements and functionality of the high-side switch.

The diagnostic function provides feedback to the microcontroller for normal as
well as faulty behaviour. The feedback is provided as a current on a sense pin, which
is proportional to the respective value on the load.

During faulty conditions the current provided by the diagnostic pin has a well-
defined value or a defined range for both ON and OFF states of the transistors as well
as for normal functionality and for different fault cases. In ON state, a diagnostic
signal can indicate an over-temperature problem, an overload, a partial load loss or
an open load. In OFF state it is important to signalize an open load or a short circuit
to battery, in order to detect a fault as quickly as possible [22].

The integrated protection functions avoid a destruction of the device as well as
provide protection of the connected load, while the diagnostic functions provide
information to the �C about the state of the system, e.g. to support protection on
the next level and to inform the driver in abnormal conditions. This makes the
chosen example system an important asset for safety-related applications, e.g. for
controlling an ABS application.

The ABS represents an automotive safety-relevant system used in the braking
system of a car. The ECU communicates with the wheel speed sensors and based
on data received, the �C controls the valves from the braking system through
the high-side switch, preventing the vehicle wheels from locking up and avoiding
uncontrolled skidding in critical situations [23]. Valves control represents a vital
safety mechanism. A failure in the system, such as when the valve is always
closed, the correct braking functionality is affected. An open valve could lead to an

64 L. Muşat et al.

unavailability of the ABS system. Both faulty situations are detected by the system
and signalized to the operator of the car. A faulty mechanism can lead to accidents
and a loss of life or severe injuries. The protection functions of the high-side switch
in the ECU system shall prevent any fault behaviour for the valve control. The
diagnostic functions shall report this in order to permit the system to take the correct
decision in case of a faulty mechanism [31].

4.3.1.1 Modelling in SysML

Requirements Modelling

The development of complex safety systems requires focus on requirements man-
agement from their definition at the beginning of the process until the verification
and proof of implementation. The requirements are first described in natural lan-
guage. This makes them susceptible to incompleteness, inconsistency or ambiguity.
Using semi-formal modelling improves the quality of the requirements and of the
development process by identifying the issues in the natural description at an earlier
phase.

An important feature of SysML is the diagram extension for requirements. This
diagram is used to specify the requirements hierarchically and their derivations as
well as their relations to other model elements. One of the first steps in product or
system definition is the elicitation of requirements.

This step is important for the implementation as well as for verification and
validation process. The correct understanding of requirements is the key for the
success of the design and the final product.

In SysML, the text-based requirements can be represented graphically in a
diagram. This allows the requirements to be expressed hierarchically and linked
to requirements or model elements by using different relationships (derive, satisfy,
trace, verify, copy or refine). The final list of requirements is often composed
of multiple internal and external sources of information. The SysML modelling
capabilities offer the possibility to organize stakeholder requirements hierarchically
and to group them depending on their specific type or need. These requirements can
be refined to internal technical safety requirements (TSRs) by adding any necessary
details further. An example of requirement organization in SysML is depicted in
Fig. 4.2. It shows only a part of the requirements hierarchy. The continuous lines
with crossed end represent a “nesting” relation, i.e. hierarchy relation. The dotted
arrows represent the refined relation which exists between the linked requirements.
The functional safety requirements (FSRs) from the client are represented in the
second row, while on the third row there are represented the internal requirements—
built based on the client requirements but enhanced by previous experience and
knowledge about implementation. The requirement FSR01, for example—“An open
load detection shall be implemented in the electronic control unit”. is refined by two
internal TSRs: SR_023 “The protected power switch shall provide for an open load
detection in ON mode”. and SR_024 “The protected power switch shall provide for

4 Semi-formal Representation of Requirements for Automotive Solutions. . . 65

Fig. 4.2 Requirements organization

an open load detection in OFF mode”. Every FSR is related to a safety goal, which
“Harm through a wire-break between power driver and load shall be avoided”. for
the example above. This could be modelled and organized in the same way. On the
other hand, the internal TSRs can be further refined into a lower abstraction level
with implementation details. SR_023 comprises three internal requirements:

• “If the load current Iload is smaller than 100 uA in ON condition, open load shall
be detected”.

• “Iload shall be measured through the sense current Isense at the sense pin of the
power switch, which is a factor of 100 smaller than the load current Iload”. and

• “Isense itself shall be measured over the shunt resistance Rshunt using the ADC3
of the microcontroller”.

The examples above show that a high-level requirement demands the collabo-
ration of various parts of the ECU and cannot be mapped to a single component.
For example, the second internal requirement needs to be split further to become
atomic and to be allocated to a component. One part of it “factor 100” is allocated
to the power switch, while the other part describes the role of the sense pin, which is
allocated to the power switch. It informs the user what the sense pin is supposed to
do. A requirement must be split further into sub-requirements as long as it cannot be
assigned to a single component (or a single function). In contrast, the third internal
requirement is clear and it is allocated to the �C and not to the power switch.

66 L. Muşat et al.

As mentioned, one benefit of modelling the requirements using SysML is
the structural and hierarchical organization. This can be easily done directly in
SysML or in collaboration with a requirements management tool. It turned out
to be especially significant when dealing with a big number of requirements. The
graphical representation can be the optimal assistance in the communication with
stakeholders, as it gives a clear overview of the requirements. At the same time,
refining and linking the external with internal requirements is very beneficial in
case of a change request from either side. This creates an easy way to identify
which elements are related to the changed or deleted requirements. Additionally,
the impact of the modification can be quickly evaluated and the responsible or the
related persons are easily identified. Another important advantage of the SysML
representation is the possibility to link the requirements with the structural and
behavioural models. It offers the possibility to verify that all requirements are
covered by the implementation and verification. Due to these aspects, SysML
represents a very essential aspect for safety-related requirements, as it provides
the proof that the requirements are proposed for implementation and are object to
verification—as demanded by the ISO 26262 standard for FSR. Documents and
pictures can be attached to the requirement diagrams for implementation proofing,
providing a clearer understanding of the requirements depending on the tools
capabilities.

Structure Definition

The structure of a system or component can be expressed using SysML block
definition diagrams (BDDs) and internal block diagrams (IBDs). The BDD is used
to represent the structure using blocks and the interaction between elements or
with the environment. The IBD complements the aspects conveyed on BDD, by
specifying the internal structure of a single block, including the connections and
interfaces between the internal parts.

Figure 4.3 depicts the ECU structure with emphasis on the interaction between
the �C and the protected high-side switch. The interfaces are the control input and
the diagnostic feedback. The outputs of the high-side switch are used to control the
respective load, i.e. the valves used for ABS. In order to achieve a clear overview of
the system the battery connections as well as the ground connections are important
to be depicted. This model embodies the basic view for introducing the external
protection functions, for example, the output protection of the load. The same
representation can be provided for all pins and the connections of the switch. Every
block diagram can be further refined to an IBD. This provides a transformation from
a black box view into a white box view by providing information about the internal
structure of the components.

An example of the protected switch is illustrated in Fig. 4.4—it represents a
SysML model of the overview depicted in Fig. 4.1. The difference between the two
representations is that in SysML the blocks from a diagram are linked to blocks
from other diagrams such as the requirements that define them, the system diagrams

4 Semi-formal Representation of Requirements for Automotive Solutions. . . 67

Fig. 4.3 ECU overview

that contain them and the activity or state machine diagrams that describe their
characteristics.

The abstraction level used in the BDDs and IBDs is relative and strongly depends
on the device being modelled as well as on the people that share this information.
Our example, the BDD shown in Fig. 4.3, is addressed to people who do not
have strong knowledge, or are not interested in electrical details. It demonstrates
the interaction with the exterior devices and includes components that are very
sensitive or can play a crucial role in safety-related scenarios. For example, the
ground (GND) is specified because it is object to explicit requirements about losing
the ground connection or having a short towards it. Instead, Fig. 4.4 provides details
about the components of the devices that fulfil different functions specified in the
requirements. If requirements raise the necessity to further detail a given component
of the high-side switch (e.g. ESD protection block), another IBD will be developed.
This IDB will contain the necessary details and it will be linked to the parent

68 L. Muşat et al.

Fig. 4.4 Internal block diagram of the high-side switch

diagram. Hence, a hierarchy of structure diagrams is constructed which allows a
fast navigation through different levels of abstraction. Such flexible abstraction level
representations have another great advantage: it gives the possibility to hide or show
details depending on the confidentiality or the competence that readers have.

In the first stages of a project it is vital to have an overview about the application
structure for the high-side switch. Further, the component can be refined using an
IBD. The internal representation can be constructed inheriting detailed description
of the relevant components, for example, the safety-related elements.

The interaction with the environment and the hierarchical connection, where the
component can be represented as a black box as well as with necessary details, prove
flexibility and represents a benefit using SysML modelling.

The model remains understandable at each level, by containing only the amount
of detail relevant or desired. At the same time all requirements can be linked to
the modelled structural elements. In case of a change at the requirement level,
the impacted elements are easy to identify. If there are changes later in the design
phase, it is fast to identify whether the requirements attached are still fulfilled and
implemented.

Behavioural Modelling

Modelling safety protections and diagnostic functions can be achieved by using
state machines and activity diagrams. AMS functionality modelling using SysML
assumes a clear understanding of the behaviour from a high level of abstraction,
which can be further implemented and verified. This means that any uncertainty
about the behaviour of the device is solved in advance. If any uncertainty still exists
during modelling this will be put in evidence by the modeller and solved by the

4 Semi-formal Representation of Requirements for Automotive Solutions. . . 69

stm [Activity] Temperature limitation [Temperature limitation]

Initial
Transistor OFF

Transistor ON

T<T_max-delta_hys

OFF_Overtemperature

[Yes]
/IS = IS(Fault)

[Yes]
/IS = IS(Fault)

[No]

[No]

delta T >
deltaT_max

T > T_max

[.]

[Vin > Vin_th]
/IS = IS_typ

[Vin<Vin_th]

Fig. 4.5 Temperature limitation

interested parts. Therefore, while trying to make the behaviour easy to understand by
modelling it, an implicit verification step is performed. With an easy-to-understand
model misunderstandings and misinterpretations are easier and faster to find and
to correct. There are two approaches used to describe these functionalities. The
first one is to model each function separately while the second one models all the
functions in the same diagram in order to catch all the aspects related to interactions
that may occur among functions.

The description of a single function using state machines consists in modelling
an AMS function with states and transitions. For each transition, it is specified the
condition of the transition and the diagnostic information—a predefined value for
the fault signal. The value of the diagnostic signal is maintained until the mechanism
jumps to another state.

Figure 4.5 shows a SysML model of the over-temperature protection func-
tion. The behaviour of the transistor is modelled by three states: ON, OFF and
OFF_Overtemperature. ON means that the switch is closed and the current flows
through the load, while OFF means that the switch is open and the load current is
zero. During the ON state the temperature is sensed and compared to a predefined
threshold. In case that the temperature rises above a predefined threshold, the
protection function reports this to the logic which commands the transition to the
OFF_Overtemperature state for the transistor. The same behaviour occurs even

70 L. Muşat et al.

stm [Package] Overview [Protection and diagnostic functions]

OFF

OFF

ON

ON

V_OUT > V_Bat
/IS=IS(fault)

V_OUT<V_Bat

V_OUT<V_Bat

T<T_max-delta_hys

IL<IL_typ

Inverse current

Overtemperature

/Temperature increase

Current limitation

T>T_max
/IS=IS(fault)

T>T_max
/IS=undefined

V_OUT>V_BAT
/IS<IS_open_load

IL>IL_typ
/IS=IS(fault)

Fig. 4.6 Protection functions

when there is a fast increase in temperature, i.e. when the temperature change
(deltaT) within a given interval of time is greater than a threshold (deltaT_max).
At the same time the feedback current IS signalizes the faulty case to the uC. The
thermal shutdown protects the high-side switch by turning the device completely off.
In order to keep the IC from oscillating in and out of the thermal shutdown mode, the
hysteresis logic is modelled. In this situation the chip goes back to OFF mode when
the temperature value is below the min hysteresis value (delta_hys). A transition
back to ON mode is done from OFF mode for the normal voltage conditions (when
the input voltage is above the defined threshold to switch from OFF to ON).

The second approach for representing the behaviour is to include all the
protection and diagnostic functions into one diagram in order to show how these
functions interact and affect each other’s behaviour. Figure 4.6 shows an example
of three faulty situations and their effect—protection and diagnostic. A fault in the
system can happen in both ON and OFF mode. A current limitation can lead to an
increase of the temperature and this can lead to thermal shutdown.

Both behavioural models described and illustrated above represent only a small
example of the entire behaviour. The complexity of the system, leads also to
complex diagrams, where the level of details can be chosen depending on the
purpose of the model as well on the target and intention of the person that makes
the model.

Every element from the behavioural models (Figs. 4.5 and 4.6), as well as from
the structural description (Fig. 4.4) represents a data structure with well-defined
properties, like name, author, status, version, complexity, etc. One of the most
important properties is represented by the related links, where the relationships
between elements are specified. When an element is linked to its requirement, this
relation will be available in the properties, containing all the information required:

4 Semi-formal Representation of Requirements for Automotive Solutions. . . 71

name of the linked element, element stereotype (e.g. requirement) and connection
type (e.g. realization).

A description of all the functionalities together shows how complex the
behaviour of the whole device can become. It is relevant to show how the functions
work independently as well as how they interact with each other and influence
other functions. Compared to natural language description, problems such as an
undefined state or transition become visible using state machine or activity diagram
representations.

4.3.2 Airbag System

The second use case is also from the automotive domain and it highlights the
methodology for the semi-formal modelling approach. An airbag system comprises
sensors, actuators and an ECU. The ECU communicates with all sensors and
actuators related to the system. Sensors not only include crash detection devices
like pressure or acceleration sensors, but also buckle switches and seat occupancy
detection; actuators include squibs for airbags as well as safety belt pretensioners.

The ECU receives information about possible crash situations from the sensors
and based on internal decision, activates the actuators in case of a crash. The
information received by the ECU is available from different types of sensors, like
G-force sensors, pressure sensors as well as sensors indicating on which seats
persons are present in the vehicle. This information can be either digital or analogue
depending on sensor technologies and is transmitted to the ECU. When a crash is
sensed, the control unit sends an electrical signal to the corresponding actuators,
also known as squibs which will then deploy the airbags.

The main part of the system responsible for the interpretation of the sensors
signals and decisions in case of a crash is the ECU. It comprises a microcontroller
including the software running on it responsible for the decisional factor in case
of a crash, various sensor interfaces, squib drivers, an independent safing engine
evaluating sensor data, as well as many other components. For this chapter we
assume that all sensor interfaces, squib drivers, and other support functions are
integrated into a single component named Airbag IC.

The airbag IC receives the information from the sensors, which is translated to
digital signals and communicated to the microcontroller via a Serial Peripherical
Interface (SPI) interface. The microcontroller evaluates the received data, and
triggers airbag deployment in case a crash is detected based on the received
information. As a safety measure, the safing engine also evaluates the sensor data to
check for a potential crash independently.

The airbag IC receives the deployment request from the microcontroller, con-
firmed by the safing engine and releases the squibs for airbags as well as for seatbelt
pretensioners.

The combination and interaction of the hardware elements, both analogue and
digital, inside of the airbag IC or the safing engine as well as its communication

72 L. Muşat et al.

with the microcontroller on the ECU and with the sensors and actuators outside
of the ECU as well as the safety relevance of the entire application considerably
increases the complexity in all development phases of the product.

As for the protected high-side switch, the requirements specification for the
airbag IC and the safing engine includes and highlights the safety requirements,
mapped to diagnostic functions and bidirectional confirmation or rejection of crash
detection between the microcontroller and the safing engine.

4.3.2.1 Modelling in SysML

Requirements Modelling

The requirement specification documents have been defined at the level of the airbag
IC as well as at the level of the internal sub-systems. Due to the high complexity of
the whole system we have selected a sub-system for analysis and modelling, namely
the safing engine, motivated by its safety relevance.

The first step is the organization of the natural language requirements in models,
depending on their types and relationships. Figure 4.7 depicts the top-level hierarchy
of the requirements, classified in different categories: FSRs, normal operation
requirements, implementation requirements, requirements coming from standards,
chip package requirements and application information. The requirements are
further split into sub-categories in order to ease for implementation, verification,
validation and back-tracing from the results.

Organizing requirements into packages that correspond to various categories
and stakeholders provides consistency with the specification document where the
requirements are defined in natural language; it facilitates the configuration change
management processes and offers support in organizing the further verification of
requirements.

The FSRs include three general categories: the TSRs, the safety requirements
related to architecture (for both software and hardware) and the safety-relevant
use cases. The set of safety requirements presents all “requirements for the safety
instrumented functions that have to be performed by the safety instrumented
systems” (definition according to the standard IEC 61511). For example, we can
consider an analog to digital converter (ADC) as a safety-critical architectural
element. In order to fulfil this safety requirement, one possibility is to implement
a second ADC as a redundancy mechanism, in order to mask any faulty behaviour
of the converter. Another example for a safety architectural element is a supply
voltage regulator for a digital logic circuit. A fail of the regulator may affect the
computational logic. As a safety measure, under- and over-voltage mechanisms
need to be implemented so that they will detect a fluctuation of the supply voltage
and prevent the circuit from being damaged. The under- and over-voltage detection
mechanisms should be supplied by different sources in order not to be affected by
the same problem as the supply voltage regulator.

4 Semi-formal Representation of Requirements for Automotive Solutions. . . 73

pkg [Package] RequirementsBreakdown [RequirementsBreakdown]

Requirements

Functional safety

TSRs

Architecture (HW and SW)

Normal operation

Implementation requirements

Standards and contracts

Chip package

Application (informative)

Safety relevant use cases

Electrical parameters

Interfaces

Architecture

Functionality

Fig. 4.7 Requirements breakdown for the Airbag Safing Engine

Another brake down of requirements is done for normal operation, based on
application needs and specifics such as mandatory electrical parameters, infor-
mation for the interfaces to the outside environment, architectural and functional
requirements. The electrical parameters are usually listed in a table, with the
minimum, typical and maximum values that the product needs to fulfil under
certain defined operating conditions (e.g. for a given temperature range). A lot of
electrical parameters are related to the safety and can be traced to the related safety
requirements. As presented in the example above, the limit values for the under- and
over-voltage will be specified in the table for parametric requirements.

Interface requirements shall include all the information necessary for the inter-
action with the outside world, i.e. what are the inputs and outputs, which types
of inputs they are and what kind of information is communicated through these
interfaces. For example, for the definition of a SPI communication, there are specific

74 L. Muşat et al.

inputs and outputs well defined in the SPI standard and detailed depending on the
application.

The architecture requirements represent a high-level view of the targeted
structure—usually centred on the functionality—and will differ from the real
implementation.

The functionality requirements describe all the needs for the behaviour of the
system. They include, for example, operating modes (like unpowered, normal
operation, safe mode, sleep mode, etc.), combinatorial and sequential behaviour
(illustrated sometimes by waveforms drawings) or configuration options.

The requirements database can also include design and manufacturing require-
ments, compiled as implementation requirements, which are important for develop-
ment and production of the device.

Information and requirements for the IC package must also be added, as well as
requirements from standards that need to be fulfilled by the product. For example,
EMC (Electro-Magnetic Compatibility) standards usually provide information for
dedicated measurements during verification.

We suggest adding information about the use of the targeted product as applica-
tion notes in a separate container. Unlike to other requirements, the notes are only
informative but support a human reader in understanding the normative require-
ments and their motivation. Although tracing or verification of information catego-
rized as Application (informative) is not needed, it’s recommended to use a common
requirements database to ease use and maintenance of all information. Application
notes may help to do verification setups properly and—although not an explicit
target of requirements modelling here—support the validation of requirements.
Trace links between normative requirements and informative notes may be helpful.

The SysML package structure is used to create a requirements portioning model,
which is useful for identifying a complete set of requirements, an essential part
in the requirements definition. Each specification package contains the text-based
requirements for that category. Relationships between requirements from different
packages can be defined, for example by explicitly linking requirements from a
safety standard (e.g. ISO26262) to the FSRs. The package is organized using a
containment relationship, the representation allowing a compact way to view the
hierarchical decomposition.

The requirements are compiled from different sources owned by different
stakeholders. The structural decomposition of requirements categories is done using
BDD, while the requirements for each category are defined using requirements
diagrams.

Figure 4.8 depicts an example of requirements for functionalities that are
suggested to be implemented as a state machine. The safing engine is required to
work in four different modes: startup mode, diagnostic mode, normal mode and safe
mode. The behaviour of each mode as well as the transitions between the modes are
described in natural language. Startup represents a safe state where the configuration
for the safing engine is done. In diagnostic mode checks of the entire functionality
of the safing engine are performed to ensure proper functionality. The normal mode
represents the normal working mode, where background checking is still performed.

4 Semi-formal Representation of Requirements for Automotive Solutions. . . 75

req [Package] Operating modes requirements [Operating modes requirem...

«requirement»
There shall be four operating
modes for the safing engine:
Startup, Diagnostic, Normal

and Safe mode.

«requirement»
Changing the operating mode
requires a sequence of three

commands in a row.

«requirement»
The safe state requires a

power down to change back
to the initialization state.

«requirement»
The safe state requires to be

entered when a safety
mechanism detects an error.

«refine»

«trace» «trace»

Fig. 4.8 Safing engine requirements example

If a fault is detected at any state, the safing engine will change to the safe mode,
which can be exited only by a power down and power up back to the initialization.

There are three relationships types that are used to show how one requirement
is related to another: nesting, derive and copy. And there are three types of
relationships that can be used to connect a requirement to any type of model element,
not only another requirement. These are satisfy, refine and trace relationships. In
the context above we use the refine and trace relationships to show the relations
between the requirements. These various types of relationships highlight explicitly
the connections between different parts of a model as a way to maintain the
consistency of the model. If a requirement is not traced to a model element for
structure or behaviour, it should be checked weather the requirement is necessary
or weather the model element is not yet available. Capturing the traceability within
a SysML model enables the possibility to perform a downstream impact analysis.
A behavioural or structural model can be easily identified when it depends on a
requirement that has changed over time, an advantage of reducing the time and
costs when implementing changes in a design over the system development cycle.

76 L. Muşat et al.

Structure Definition

Once the requirements are available in the modelling environment, the second step
is the construction of the structural view of the system using BDDs and IBDs
based on the natural language requirements. The main purpose is to reflect only
the information described in natural language, without crossing the border towards
design or implementation. For this there are three views taken into consideration:
the context of the system—the application and interaction with the environment,
the system with its inputs and outputs—analogue and digital pins, and the internal
description—based on the desired level of detail described in the natural language
requirements.

Figure 4.9 depicts the main ECU blocks embedded in the application context
for the safing engine. The microcontroller as well as the safing engine receive
information from the sensors via the sensor interface module, as well the
information if the seat is occupied and if the seat occupant has the seat belt buckled
or not. In case the microcontroller detects a crash based on the sensor data received
and the safing engine confirms the crash, it will send a fire command to the squib
drivers. When the safing engine detects a crash situation—also based on the sensor
data received—and gets a confirmation from the microcontroller, it will enable the
power supply for the squib drivers. Only when both entities detect a crash and
confirm this situation to each other the airbag will be deployed during the time
indicated by the requirements.

The model shows a high-level representation of the structure based on the
requirements. When further refining the architecture, blocks as well as interfaces
between blocks may change, e.g. to improve implementation efficiency by using
blocks and interfaces as shared resources or to split blocks and interfaces as safety
mechanisms.

bdd [Package] Placement in system [Placement in system]

«block»

Fire command

SPI Confirmation
Confirmation

:Sensor
«block»

Sensor: Interface
module

«block»
:Safing engine «block»

:Power switch

«block»
:Buckle switch

«block»
Buckle switch:

Interface module

«block»
:Seat occupation

«block»
Seat occupancy:
Interface module

«block»
:Microcontroller

«block»
:Squib driver

«block»
:Squib

Fig. 4.9 Safing engine system interaction

4 Semi-formal Representation of Requirements for Automotive Solutions. . . 77

The safing engine is further modelled based on the structural requirements using
IBDs while the structure elements are linked to their requirements.

The main components of the safing engine are depicted as blocks. In order to
depict the interconnections and communication flow between the blocks, depen-
dency relationships are used. The diagram shows how sensor data passes through
processing blocks to perform computations for crash detection. The blocks are
further hierarchically decomposed as far as necessary to provide proper targets for
explicit linking to requirements.

The majority of the blocks are defined in component libraries and then instanti-
ated in the structural model view. The main aim of this representation is to provide
a clear and simple view of the safing engine interactions with outside elements and
the type of interactions and further to describe the decomposition and the relations
between the internal components.

Behavioural Description

The requirements listed in section A represent a short example of the functional
requirements of the operating modes of the safing engine. The functionality
expressed by the requirements is modelled using a state diagram. It comprises four
modes: initialization mode, diagnostic mode, normal mode and safe mode. The four
modes can be modelled using state blocks in a state diagram (as in the example
illustrated in Fig. 4.10) and further used as a state machine element in the next
higher level of the model hierarchy.

The power up of the device has been represented by as an entry point item.
When the device is powered up, it enters automatically in the initialization state.
A transition from initialization mode to diagnostic mode will be performed only by
receiving three specific commands in a row, which are described separately. The
same applies for the change from the diagnostic mode to normal mode. The safe
mode will be reached as a result of a fault detection in any of the other modes or
when a specific unlock sequence for entering the safe mode is received from the
microcontroller. The natural language requirement states that the safe mode can
be exited only by a power down of the system. In fact any state can be exit by a
power down, but the specific description of these requirements for the safe mode is
intended as a verification requirement explicitly described.

The main issue detected when modelling the requirements using the state dia-
gram, was the incompleteness of natural language description of the transitions from
one state to another by a specific sequence of three commands—the requirement
“Changing the operating mode requires a sequence of three commands in a row”.
The order of the commands as well as specifying which commands are needed is
described separately in the requirements for the communications.

It was not specified in natural language requirements how to react in case of
wrong commands or wrong command sequence. Without a specification for these
cases it is unclear whether the system shall keep the current state or enter safe mode.

78 L. Muşat et al.

stm [Package] State machine [State machine]

Power up

Startup mode

Specific key
unlock
sequence

Specific key unlock
sequence

Fault detected,
Specific key
unlock sequence

Fault detected,
Specific key
unlock sequence

Fault detected,
Specific key unlock
sequence

Diagnostic
mode

Normal mode

Safe mode

Fig. 4.10 Safing engine state machine functionality

Natural language requirement descriptions are commonly complemented by
drawings reflecting structure or behaviour. Typical examples for AMS designs are
block diagrams, state diagrams, truth tables, waveform diagrams and even transistor
level circuit illustrations. For most of these drawings we recommend to use SysML
to benefit from the standardized syntax and semantics. Only those illustrations
that have no direct representation in SysML and cannot be translated to SysML
without losing significance and clarity should be left in their original form. But they
still should be captured by the modelling environment to allow consistent linking
between requirements and other SysML objects.

4 Semi-formal Representation of Requirements for Automotive Solutions. . . 79

4.4 Conclusions

The diagram-based representation of the requirements allows a better organization,
processing and classification of the requirements compared to classical repre-
sentations like natural language text. By exploiting the SysML capabilities the
requirements can be linked to each other according to the relation that exists between
two requirements. Moreover the requirements can be linked to structure elements
of the device and behaviour models. Such links facilitate the impact analysis of
the requirements and guide changes that can occur in different phases of the
development.

The diagrams used for modelling the structure of the overall system and
the internal structure of components permit a flexible level of abstraction. This
flexibility allows hiding or revealing details depending on complexity of the device,
the knowledge and expertise of the involved people and the level of information
confidentiality.

These features were illustrated by modelling two AMS hardware components: a
protected power switch and a safety-relevant module of an airbag system—a safing
engine related to the decision to fire squibs for the airbag deployment.

For both SysML use-case examples—the protected power switch and the safing
engine—the behaviours of the protection functions and the entire activity, respec-
tively, were modelled by using state machines. State machines offer the possibility
to reflect the specifications of events that trigger a given functionality and the
actions that are taken once the trigger conditions are fulfilled. All types of diagrams
(behavioural, structural and requirements) were linked to each other in order to
ensure the integrity of the requirements set, as illustrated in the sections before.

By creating a semi-formal model ambiguities are recognized easier and avoided
compared to natural language. The explicit allocation of requirements to blocks
or sub-systems encourage or even require to perform a basic feasibility check and
hence improve the quality of the specification.

Another possible usage of this model is to connect it to concept and design
models which can be simulated and verified. The link between representations as
well as requirements needs to be maintained. Furthermore, by using SysML it is
possible to specify explicitly test cases that are not deduced from other requirements
and link them to different parts in the model that will be refined further and used for
verification, especially to ensure that safety requirements are fulfilled.

Acknowledgments The research leading to these results has received funding from the ARTEMIS
Joint Undertaking under grant agreement Nr. 295311 and the Austrian Research Promotion Agency
FFG under the program “Forschung, Innovation und Technologie für Informationstechnologien
(FIT-IT)”.

80 L. Muşat et al.

References

1. OMG System Modeling Languages. http://www.omgsysml.org/. 13 Feb 2014 (01 May 2015)
2. International Council of Systems Engineering. http://www.incose.org/. 02 Apr 2014 (01 May

2015)
3. Collins, M.: Dependable Embedded Systems, Topic: “Formal Methods.” Carnegie Mellon

University (1998). https://www.ece.cmu.edu/~koopman/des_s99/formal_methods/
4. Broadfoot, G.H.: ASD case notes: Costs and benefits of applying formal methods to industrial

control software. In: FM 2005: Formal Methods. LNCS, vol. 3582, pp. 548–551. Springer
(2005)

5. Eltahir, S., Musa, M.: On practicality of using integrated semi-formal modeling tools.
In: The International Arab Conference on Information Technology, 2008

6. Unified Modeling Language (UML). http://www.uml.org/. 14 Feb 2014 (01 May 2015)
7. Feiler, P.H., Gluch, D.O.: Model-Based Engineering with AADL: An Introduction to the SAE

Architecture Analysis & Design Language. Addison-Wesley Professional (2012)
8. Architecture Analysis & Design Language (AADL). http://www.aadl.info/aadl/currentsite/

(2012) (01 May 2015)
9. EAST-ADL. http://www.east-adl.info/ (2014) (05 May 2014)

10. Modeling and Analysis of Real-time and Embedded systems (MARTE). http://www.omg.org/
omgmarte/Tutorial.htm (2008) (01 May 2015)

11. Evensen, K.D., Weiss, K.A.: A comparison and evaluation of real-time software systems
modeling languages. Presented at the Aerospace Conference, Georgia, Atlanta, 2010

12. Helming, J., Koegel, M., Schneider, M., Haeger, M., Kaminski, C., Bruegge, B., Berenbach,
B.: Towards a unified requirements modeling language. In: Fifth International Workshop on
Requirements Engineering Visualization (REV), 2010, pp. 53–57

13. Kaiser, B., Klaas, V., Schulz, S., Herbst, C., Lascych, P.: Integrating system modelling with
safety activities. In: SAFECOMP Proceedings, 2010

14. Adedjouma M., Dubois, H., Maaziz, K., Terrier, F.: A model-driven requirement engineering
process compliant with automotive domain standards. In: Model Driven Tool and Process
Integration, 2010

15. Sontos, M.d., Vrancken, J.: Model-driven user requirements specification using SysML. J.
Software 3, 57–68 (2008)

16. Wang, B., Baras, J.S.: Model-based design framework for wireless sensor networks using
SysML, Simulink and Modelica. https://www.src.org/library/publication/p061828/. 28 Oct
2011

17. Mueller, W., He Da, Mischkalla, F., Wegele, A., Whiston, P., Peñil, P., Villar, E., Mitas,
N., Kritharidis, D., Azcarate, F., Carballeda, M.: The SATURN approach to SysML-Based
HW/SW Codesign. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2010,
pp. 506–511

18. Mischkalla, F., He Da, Mueller, W.: Code generation for QEMU/SystemC Cosimulation from
Cosimulation from SysML. Presented at the MeCoES Workshop, 2012

19. Waseem, R.: Accelerating High-Level SysML and SystemC SoC Designs. http://www.design-
reuse.com/articles/17562/high-level-sysml-systemc-soc-designs.html (01.06.2015)

20. Infineon Technologies AG: Product_Brief: BTT6050-2EKA
(Truck device) PROFET™C 24V. http://www.infineon.com/dgdl?folderId=
db3a30431400ef68011421b54e2e0564&fileId=db3a30433784a0400137984c3a63271b&
intc=0120035 (01.06.2015)

21. Infineon Technologies AG: Introduction to PROFET™. http://www.
infineon.com/dgdl/Introduction+to+PROFET%E2%84%A2.pdf?folderId=
db3a30431400ef68011421b54e2e0564&fileId=db3a304332ae7b090132b527d9173083
(01.06.2015)

22. Infineon Technologies AG: Protected high side drivers. In: Bridging Theory into Practice –
Fundamentals of Power Semiconductors for Automotive Applications, 2nd edn. pp. 125–149.
Infineon Technologies AG, Munich (2008)

http://www.omgsysml.org/
http://www.incose.org/
https://www.ece.cmu.edu/~koopman/des_s99/formal_methods/
http://www.uml.org/
http://www.aadl.info/aadl/currentsite/
http://www.east-adl.info/
http://www.omg.org/omgmarte/Tutorial.htm
http://www.omg.org/omgmarte/Tutorial.htm
https://www.src.org/library/publication/p061828/
http://www.design-reuse.com/articles/17562/high-level-sysml-systemc-soc-designs.html
http://www.design-reuse.com/articles/17562/high-level-sysml-systemc-soc-designs.html
http://www.infineon.com/dgdl?folderId=db3a30431400ef68011421b54e2e0564&fileId=db3a30433784a0400137984c3a63271b&intc=0120035
http://www.infineon.com/dgdl?folderId=db3a30431400ef68011421b54e2e0564&fileId=db3a30433784a0400137984c3a63271b&intc=0120035
http://www.infineon.com/dgdl?folderId=db3a30431400ef68011421b54e2e0564&fileId=db3a30433784a0400137984c3a63271b&intc=0120035
http://www.infineon.com/dgdl/Introduction+to+PROFET%E2%84%A2.pdf?folderId=db3a30431400ef68011421b54e2e0564&fileId=db3a304332ae7b090132b527d9173083
http://www.infineon.com/dgdl/Introduction+to+PROFET%E2%84%A2.pdf?folderId=db3a30431400ef68011421b54e2e0564&fileId=db3a304332ae7b090132b527d9173083
http://www.infineon.com/dgdl/Introduction+to+PROFET%E2%84%A2.pdf?folderId=db3a30431400ef68011421b54e2e0564&fileId=db3a304332ae7b090132b527d9173083

4 Semi-formal Representation of Requirements for Automotive Solutions. . . 81

23. Burton, D., Delaney, A., Newstead, S., Logan, D., Fildes, B.: Effectiveness of ABS and vehicle
stability control systems. RACV Research Report (April, 2004). http://www.monash.edu.au/
miri/research/reports/other/racv-abs-braking-system-effectiveness.pdf (24 Apr 2014)

24. Petin, J.-F., Evrot, D., Morel, G., Lamy, P.: Combining SysML and formal models for safety
requirements verification. In: International Conference on software & Systems Engineering
and their Application, 2010

25. Bryans, J., Payne, R., Holt, J., Perry, S.: Semi-formal and formal interface specification for
system of systems architecture. In: IEEE International Systems Conference (SysCon), 2013,
pp. 612–619

26. Jarraya, Y., Soeanu, A., Debbabi, M., Hassaine, F.: 10-Automatic verification and performance
analysis of time-constrained SysML activity diagrams. In: IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems, 2007, pp. 515–522

27. Gnaho, C., Semmak, F., Belkaid, Y., Laleau, R.: Goal-based requirements engineering in
topcased environment. Presented at the TopCased Days, Paris, France, 2011. http://gforge.
enseeiht.fr/docman/view.php/52/4276/A1-LACL.pdf (05.05.2014)

28. Hove, D., Goknil, A., Kurtev, I., Berg, K., Goede, K.: Change impact analysis for SysML
requirements models based on semantics of trace relations. Presented at the ECMDA
Traceability Workshop, Enschede, Netherlands, 2009

29. Favaro, J., Koning, H.-P., Schreiner, R., Olive, X.: Next generation requirements engineering.
http://www.intecs.it/PDF/NextGenRE_INCOSE_FINAL_2012.pdf (01.06.2015)

30. Bachhuber, A.: Requirements engineering in the product life cycle of continental automotive.
Presented at the RFConf, Munich, German, 2013. http://www.hood-group.com/fileadmin/
project/reconf/VortraegePDF/mm3_bachhuber_requirements_engineering_in_the_product_
life_cycle_of_continental_automotive.pdf (01.06.2015)

31. Infineon Technologies AG: Smart high side switch. http://www.infineon.com/profet
(01.06.2015)

http://www.monash.edu.au/miri/research/reports/other/racv-abs-braking-system-effectiveness.pdf
http://www.monash.edu.au/miri/research/reports/other/racv-abs-braking-system-effectiveness.pdf
http://gforge.enseeiht.fr/docman/view.php/52/4276/A1-LACL.pdf
http://gforge.enseeiht.fr/docman/view.php/52/4276/A1-LACL.pdf
http://www.intecs.it/PDF/NextGenRE_INCOSE_FINAL_2012.pdf
http://www.hood-group.com/fileadmin/project/reconf/VortraegePDF/mm3_bachhuber_requirements_engineering_in_the_product_life_cycle_of_continental_automotive.pdf
http://www.hood-group.com/fileadmin/project/reconf/VortraegePDF/mm3_bachhuber_requirements_engineering_in_the_product_life_cycle_of_continental_automotive.pdf
http://www.hood-group.com/fileadmin/project/reconf/VortraegePDF/mm3_bachhuber_requirements_engineering_in_the_product_life_cycle_of_continental_automotive.pdf
http://www.infineon.com/profet

Chapter 5
A New Property Language for the Specification
of Hardware-Dependent Embedded System
Software

Binghao Bao, Carlos Villarraga, Bernard Schmidt, Dominik Stoffel,
and Wolfgang Kunz

Abstract This work introduces a new property language for describing the
behaviour of low-level hardware-dependent software. The design of the language is
motivated by the industrial success of property languages for hardware verification
by simulation and formal techniques. The new language is constructed to concisely
capture the timed behaviour of the interactions between software and hardware
by means of sequences. In this chapter we present how the proposed verification
language can be used to perform formal verification based on a computational
model called program netlist. We show how the sequence model of the language
is synthesised and combined with the program netlist so that a unified formula
for a decision procedure, e.g., a SAT solver, can be constructed. Furthermore, a
method for coverage analysis of property sets is introduced. The coverage criterion
we propose determines whether or not the property set completely describes the
input/output functional behaviour of a program. The work presents a case study
showing how to use the proposed property language in order to specify an industrial
implementation of a LIN (Local Interconnect Network) bus driver.

5.1 Introduction

Besides continuous advances in methods and algorithms for formal property
checking of hardware designs, also the languages for formulating properties have
played an important role for the adoption of formal verification techniques in
industry in the last years. For instance, SystemVerilog Assertions (SVA) [15] and
Property Specification Language (PSL) [1] allow to concisely specify the behaviour
of the hardware, which is typically described at register transfer level (RTL).

B. Bao • C. Villarraga (�) • B. Schmidt • D. Stoffel • W. Kunz
University of Kaiserslautern, Kaiserlautern, Germany
e-mail: bao@eit.uni-kl.de; villarraga@eit.uni-kl.de; schmidt@eit.uni-kl.de; stoffel@eit.uni-kl.de;
kunz@eit.uni-kl.de

© Springer International Publishing Switzerland 2016
F. Oppenheimer, J.L. Medina Pasaje (eds.), Languages, Design Methods, and Tools
for Electronic System Design, Lecture Notes in Electrical Engineering 361,
DOI 10.1007/978-3-319-24457-0_5

83

mailto:bao@eit.uni-kl.de
mailto:villarraga@eit.uni-kl.de
mailto:schmidt@eit.uni-kl.de
mailto:stoffel@eit.uni-kl.de
mailto:kunz@eit.uni-kl.de

84 B. Bao et al.

While being founded in a strictly defined mathematical framework, these property
languages include various syntactic enhancements offering a natural and easy way to
capture temporal behaviours of the design. Current commercial technology allows
for checking assertions using simulation or formal verification engines.

On the other side, for the case of embedded software (SW) there is an increasing
necessity of integrating formal verification also to the verification flows used in
industry. In this work we focus on the verification of hardware-dependent software
which is the part of the software in an embedded system that interacts directly with
the surrounding hardware (HW). There are a number of reasons why we focus
on this kind of software. Hardware-dependent software is a critical component
in embedded systems since all other software layers (e.g., the operating system,
application software, etc.) are built on top of it. Additionally, hardware-dependent
software in embedded systems performs control-intensive tasks with complex
interactions with the hardware and with other software layers, making development
error prone and systems difficult to test. Because of the reactive behaviour of
HW/SW interaction, specification languages and validation methods as they have
been developed for application-level software are in many cases not suitable. This
work proposes a new property language facilitating the specification of hardware-
dependent software behaviour in embedded systems. Similar to property languages
used for hardware, this new language allows to capture the reactive behaviour of the
hardware-dependent software by using sequences describing series of input/output
operations performed by the software at its interfaces.

The property language proposed here can be employed for simulation or
verification purposes. However, in this work we present particularly how this
language can be used in conjunction with a computational model called program
netlist [14] in order to perform formal property checking. A program netlist is a
combinational Boolean model representing compactly all possible execution paths
of a software program. It is built using hardware models of the machine instructions
executed in the program, and is therefore suitable for representing hardware-
dependent software. For generating a program netlist, path-oriented techniques
related to symbolic execution [5] are used. The actual flow of program control
is modelled by additional logic added to the program netlist that enhances the
efficiency of SAT reasoning on program segments and entire paths.

Unlike methods based on symbolic execution in which properties are proven by
traversing explicitly the possible execution paths of a given program, in this work,
we adopt the approach of [14] which employs a SAT solver in order to perform
this traversal. A SAT proof benefits from the control logic in the program netlist
by being able to focus on the execution paths being important for the particular
problem instance and to prune at once entire execution paths that are not relevant.
The effectiveness of this approach has been shown in [14].

In order to use a SAT solver for path traversal it is necessary to create a combined
model containing the logic for the property and the program netlist such that the SAT
solver has “the global view on the verification problem” (instead of having only the
view of the problem for individual execution paths). For the global view, a model
of the input/output sequences of the software is synthesised and integrated to the
model.

5 A New Property Language for the Specification of Hardware-Dependent. . . 85

Since formal verification examines every possible input scenario, the usual
coverage criteria evaluating the quality of test cases for software are not suitable
for formal property checking. In case of software property checking, verification
engineers face the same problem as engineers in hardware verification: “Does
my property set cover every aspect of the design?” A number of methods for
coverage analysis attempting to prove that a property set is “complete” have been
successfully applied to hardware designs [4, 6, 9, 11]. In these approaches a set
of safety properties is called a complete specification or simply complete if it
uniquely describes the behaviour of a design. More precisely, these methods prove
the completeness of a property set by means of checking to what extent the property
set uniquely specifies the input and output behaviour of a hardware design. Based
on these results, in this work we develop a method for proving the completeness
of software properties specified in the software property language presented in
this chapter. Such a completeness check is of particular importance for software
property sets because a complete set of properties can, at least in principle, fully
replace classical software tests. A typical source of error when writing software
is that the programmer simply forgets to treat certain input sequences in his
program, causing undefined behaviour when these inputs occur at runtime. Also, a
verification engineer may forget to specify tests (or, in our case, properties) for such
missing input sequences so that the bug can escape verification. The completeness
check presented in this work removes such verification gaps. Because of similarity
between hardware and low-level software, our method for proving the completeness
of software property sets checks whether every input/output sequence is specified
by a property in the set. The checking algorithm leverages the property language
presented in this chapter, which allows for referring to the interfaces of the software
program in order to describe its reactive and sequential behaviour.

As of today, there are a number of different approaches for formalising properties
of embedded software. Run-time assertions are being used widely for testing [16]
and formal verification [7, 19], of embedded software. For example, high-level pro-
gramming languages like C provide the assert() statement for specifying predicates
over the values of program variables. The main use of run-time assertions is to
describe properties that are valid locally. More specifically, this kind of property is
evaluated only when a program run reaches the location where the involved assert()
statement has been placed. While run-time assertions have the advantage that the
user is not required to learn a new language in order to specify properties, their
main limitation is in what can be expressed. For the case of application software or
for simple transformational code run-time assertions may be sufficient; however,
for hardware-dependent software it is necessary to be able to describe reactive
behaviour, relating to the inputs, outputs and states of the software and hardware
at different points in time. For specifying temporal behaviour, temporal logics such
as CTL and LTL [8, 12] can be used. There exist verification tools such as [10, 13]
that accept temporal formulas directly as PSL. However, although CTL and LTL are
powerful in formulating temporal relationships, they are hard to understand and use
in practice.

86 B. Bao et al.

Other tools such as [2, 3], in a similar way, employ automata in order to temporal
specify properties. The use of automata can be convenient in many cases since
they are easier to understand by a designer or verification engineer than temporal
formulas in CTL or LTL. However, except for simple cases, the process of modelling
a property using an automaton is cumbersome and error prone.

Different to the approaches mentioned previously, in this work we present a
new verification language for hardware-dependent embedded software that allows to
specify the temporal behaviour of interactions between software and hardware. The
proposed language is intuitive and easy to use for the verification engineer. It allows
to refer to the interfaces of the software and to describe explicitly the sequences of
input/output operations at these interfaces. It adopts many syntactic elements from
the C language, which makes learning the new language easy for software engineers.
To the best of our knowledge, this is the first work on a property language for
hardware-dependent embedded software with the characteristics mentioned above.

The remainder of the chapter is organised as follows. Section 5.2 reviews the
computational model used in this work. The software PSL is described in Sect. 5.3,
and it is applied to specifying properties for a LIN driver implemented in software,
as presented in Sect. 5.5. In addition, a method for evaluating the completeness of
property sets is described in Sect. 5.4. A conclusion and outline of future work are
given in Sect. 5.6.

5.2 Low-Level Software Model

In this work we show how the language to be presented in Sect. 5.3 can be used
together with a model for hardware-dependent low-level software in embedded
systems, called program netlist, in order to perform formal property checking. We
first review basic characteristics of the program netlist. A complete description of
this model and its generation can be found in [14].

A program netlist is a combinational circuit that compactly represents the
software that is executed on the underlying hardware. In order to generate a program
netlist, the control flow graph (CFG) is extracted from a low-level description of
the software program, like assembly or machine code. Every node in the CFG
represents an instruction of the program and the associated program state (PS).
The PS includes the contents of data memory associated with the variables used in
the program, and the architecture state (AS), defining the state of the processor’s
registers that are visible to the programmer. An edge between two CFG nodes
indicates a possible execution from one instruction to another one. An additional
Boolean signal called active is attached to PS in order to model the control flow of
the program. This signal is propagated alongside the nodes in the program netlist
and helps the SAT solver to efficiently explore the possible execution paths of the
program. The active signal, when set to 1, indicates that a given node (instruction)
belongs to the active execution path. In the case that a node has more than one
successor (e.g., nodes related to jump/branch instructions), exactly one branch is
active at any time.

5 A New Property Language for the Specification of Hardware-Dependent. . . 87

Fig. 5.1 Generating the
program netlist (PN)

a

b

c

ed

f

a

c

b

e

b

c

e

b

c

d

f

a

b

f

c

e

b

c

e

b

c

d

PN

EXG

CFG

The CFG is fully unrolled into an execution graph (EXG). An EXG is a directed
acyclic graph containing all possible execution paths of the program. An execution
path always begins at a start state of the program and ends at an end state. The CFG
is unrolled by unwinding the loops of the program. Figure 5.1 illustrates an example
of unrolling. In order to reduce the complexity of the model, only branches that
are part of at least one possible execution path are processed. A SAT solver can be
used to identify such branches. Unrolling ends when all active branches have been
processed and the end of the program has been reached. In addition, in order to
minimise the size of the model, nodes belonging to identical program locations are
merged. In this manner an EXG is obtained in which a single node may be shared
by different execution paths. Merging is only allowed if it does not insert loops in
the EXG.

A program netlist is then obtained from the EXG by replacing every node by its
corresponding instruction cell. An instruction cell is a piece of combinational logic
circuitry describing the functional behaviour of an ISA instruction according to the
specific CPU architecture at hand. Consecutive instruction cells are connected by
buses representing the program state.

A kind of instruction that is especially relevant to this work are load/store
instructions which are used to communicate with the program’s environment, e.g.,
the hardware periphery or other software layers. Instruction cells corresponding
to such kind of instructions are equipped with additional input and output ports
as shown in Fig. 5.2. These ports are called pdata, ploc and pact and represent
respectively, the data value, the accessed location and the active flag indicating
the activeness of the related instruction cell. Depending on whether the instruction
cell reads or writes, pdata is an input or output signal. These three signals of an
instruction cell constitute an access port for I/O memory locations.

88 B. Bao et al.

Fig. 5.2 Instruction cell with
ports for accessing the
environment

PS

PS’

Instruction
logic

pdata

ploc

pact

I/O Instruction cell program
’s environm

ent

In the sequel, we use the term program location to indicate a memory location
storing an instruction, and the term memory location to indicate an address
corresponding to a location of the hardware periphery or a memory variable.

In the program netlist, instructions that access data memory require additional
constraints so that the behaviour of the data memory is also modelled [18]. There-
fore, for each instruction cell that reads from data memory there is a multiplexer
structure that selects the last valid value written to the memory location being read
by the instruction. In the case that a program depends on external events, e.g.,
by means of shared variables/channels, additional access ports of the respective
instruction cell are left open or unconstrained as shown in Fig. 5.2. These access
ports serve as the interfaces of the program, as will be further explained in the next
section.

5.3 Software Property Language

This chapter presents how the interaction between hardware and software can
be described in terms of I/O sequences and how the model of the sequences can be
synthesised and combined with the underlying model of the software in order to
perform formal property checking. As explained earlier, this is necessary in order
to capture the reactive behaviour exhibited by hardware-dependent software. An
additional advantage is that a model of the sequences allows to map the elements of
the language to the elements of the underlying software model in a straightforward
way. Subsequently, we show how a property language can be developed in terms
of such sequences. The current working name for this language is RSPL (Reactive
Software Property Language).

In the following, we introduce the main syntactic elements of RSPL. Since
the programming language C is widely used for embedded software, our property
language adopts many operators and syntax elements from C. For example, RSPL
inherits from C the standard arithmetic, Boolean and comparison operators.

5 A New Property Language for the Specification of Hardware-Dependent. . . 89

Fig. 5.3 Read/write attributes

5.3.1 Interfaces of a Hardware-Dependent Program

A property language for hardware-dependent software needs to provide a means for
referring to the interfaces of a given program. In contrast to hardware description
languages, software programs in high-level languages such as C do not explicitly
capture their interfaces in a separate entity. For hardware-dependent software the
elements of the interface correspond a set of addresses identifying, for example,
registers inside hardware peripherals or shared memory locations used for com-
munication with the operating system or with the application code. In view of the
program netlist, such interface elements are modelled by means of access ports
belonging to input/output instruction cells as explained in Sect. 5.2. In RSPL each
of these addresses is assigned a name. In case of compiled machine code these
names can be automatically obtained from the symbol table. Otherwise variable
names can be defined manually by the user to enhance readability of the verification
code. In order to distinguish the action of reading a variable (as input) from the
action of writing a variable (as output), two variable attributes are introduced to
the property language, namely read and write, as depicted in Fig. 5.3. This is the
basis for referring to all input/output operations. Note that an address can be read
and written several times. How this can be handled by the property language and
how the verification engineer can refer to the different read and write instances is
described below in Sect. 5.3.2.

There are also cases in which it is necessary to refer to the programmer-visible
registers, for example when separately verifying a subroutine of a software driver.
In such cases the content of a register can be expressed using the following syntax.

$hName of registeri’ start
$hName of registeri’end

The attributes “start” and “end” indicate the start and the end of the program,
respectively.

5.3.2 Sequences of Variables

The sequence is the key concept of our language; it is inspired by sequences in
hardware property languages like SVA [15]. A sequence in SVA is constructed using
the delay operator # which specifies the relative clock cycles (delay) between two
events. However, we cannot directly import the semantics of sequences from SVA,
since a sequence in SVA is defined over cycles which are relative to a global time
reference such as a hardware clock. Models used for software (and in particular
the program netlist) are not accurate with respect to hardware clock cycles, but

90 B. Bao et al.

Fig. 5.4 Element accessor

rather instruction-accurate. Therefore, sequences are defined relative to the ordering
of instruction executions. As illustrated in Fig. 5.4 we provide users with a way
to define the individual elements of a sequence. Several such elements may be
combined using Boolean operators in order to form sequences. We call the symbol
the element accessor for sequences and the natural number n represents the n-
th element of a sequence. Since not every instruction accesses the interface of the
program, the element n is the n-th occurrence of the associated interface variable
along an execution path of a program (as opposed to the n-th instruction along
that path). A software tool evaluating properties written in our language needs
to map the elements of a sequence to the respective access ports in the program
netlist. Because of the merging mechanism used to generate a program netlist, an
input/output instruction cell can belong to several different execution paths. In other
words, along an execution path an access port might be the i-th sequence element
of a variable, whereas along another path, it may correspond to the j-th (j ¤ i)
sequence element of the same variable.

In the following we present an algorithm to map elements of sequences to
the corresponding access ports in the program netlist. This algorithm is the basis
for building the property logic for a SAT-based proof engine. To simplify the
presentation, in the sequel, we only consider the memory locations of input/output
variables, not their symbol names, since this relationship can be established easily
through the symbol table. We use the term memory location to refer to both, an input
or output variable as defined in Sect. 5.3.1, if the use is clear from the context.

The first step in the algorithm is a topological sorting of the nodes in the
execution graph. We assign every node a unique index m, with m 2 N, so that
along every execution path the (instruction) node indexed with i is executed earlier
than the node indexed with j, if i < j. In the sequel, we refer to a node by its index in
the topological order. Each memory location Lock is associated with a set of nodes
accessing this location, i.e., W D fi1; i2; : : : ; ijWjg with ij < ijC1 and 1
 j < jWj.
The access port APij for a node ij is composed of pdataij , pactij , and plocij D Lock,
corresponding to the signal names in Fig. 5.2.

Given a memory location Lock, to map the n-th element (1
 n
 jWj) of
Lock’s sequence to an access port APij , the challenging task is to find the index ij of
the node related to this element. The function comp_index(n), depicted in pseudo-
code notation in Algorithm 2, performs this task. It is generated for every memory
location Lock. Function port_mapping() of Algorithm 3 is based on comp_index().
It connects the n-th element of the sequence to an access port in the program netlist.

The formulation of function comp_index() is based on the fact that at any time
exactly one execution path of a program is active. An active path is characterised
by the nodes in the program netlist whose active flags are asserted. In summary,

5 A New Property Language for the Specification of Hardware-Dependent. . . 91

Algorithm 2 Compute index of the node associated with n-th sequence element
1: function COMP_INDEX(n)
2: if n D 1 then
3: if pacti1 D true then
4: return i1
5: else if pacti2 D true then
6: return i2
7: . . .

8: else if pactijWj
D true then

9: return ijWj

10: else
11: return 0

12: end if
13: else
14: if pactin D true^ compindex.n� 1/ < in then
15: return in
16: else if pactinC1

D true^ compindex.n� 1/ < inC1 then
17: return inC1

18: . . .

19: else if pactijWj
D true^ compindex.n� 1/ < ijWj then

20: return ijWj

21: else
22: return 0

23: end if
24: end if
25: end function

Algorithm 3 Map sequence to access port
1: function PORT_MAPPING(n)
2: if compindex.n/ D i1 then
3: return pdatai1
4: else if compindex.n/ D i2 then
5: return pdatai2
6: . . .

7: else if compindex.n/ D ijWj then
8: return pdataijWj

9: else
10: return UNDEFINED
11: end if
12: end function

comp_index() works as follows: To determine the n-th element of a sequence along
any execution path, we first check the active flag of the node with index in, this is
the very first node that could be the n-th element of a sequence. We also examine
whether the .n � 1/-th element along that path exists already, by checking whether
the index of the node associated with .n � 1/-th element is smaller than the index of
the current node. If both conditions are met, then the n-th element of the sequence is

92 B. Bao et al.

known to exist and the respective index can be returned. Otherwise we move on to
the next candidate until a node related to the element we search is found or does not
exist. With the comp_index function we can test whether an element of a sequence
exists on a given path (by testing whether the result of comp_index is zero). The
function is also used for verifying the execution order (cf. Sect. 5.3.3) of sequence
elements that are related to different memory locations (variables).

With the ability of obtaining the index ij of the node related to the n-th element
of a sequence, it is straightforward to map the n-th element of the sequence to the
access port APij . Function port_mapping depicted in Algorithm 3 performs this task.

In the remainder of this paper, for simplicity, we use the term variable for both,
an element of an input/output sequence, or the state of a register at the start node/end
node of the program.

5.3.3 Execution Order

Besides being able to relate software accesses to the same location at different points
in time, in many cases it is also important to specify a temporal order of accesses
to different memory locations. For instance, in order to issue a new transaction,
a peripheral device may require that its driver first write the configuration/data
register of the device at memory location Loc1, and then set the start flag at memory
location Loc2; not maintaining this order could result in undefined behaviour of
the device. Obviously, the property specification “Loc_1’write#1 == Config_Data &&
Loc_2’write#1 == Start” is insufficient for this requirement, since this statement does
not define which of the two accesses, “Loc_1’write#1” and “Loc_2’write#1” is to be
executed first by the software driver.

In RSPL, temporal ordering of accesses to different locations can be specified
using the execution order section in a property. A user may specify an execution
order between an input and an output, two inputs related to two different memory
locations and two outputs related to two different memory locations. Checking
the execution order is implemented by comparing the results of the functions
comp_index for the respective sequence elements. Taking the example from above, if
the returned value of the function comp_index for “Loc_1’write#1” is smaller than the
returned value of this function for “Loc_2’write#1”, then “Loc_1’write#1” is executed
first. The syntax definition and an example of an execution_order specification are
given in Fig. 5.5.

5.3.4 Safety and Liveness Properties

So far, we introduced the basic concepts and building blocks of the property
language. In this section, we will present how to use them to build a property, and
we will discuss what kinds of properties we can specify.

5 A New Property Language for the Specification of Hardware-Dependent. . . 93

Fig. 5.5 Execution order

Fig. 5.6 Safety- /liveness-property

A property begins with the keyword property, followed by a valid identifier.
The general structure of the property body follows an assumption/guarantee style.
The body consists of two optional sections, execution_order and assume, and one
mandatory section, prove. The assume part specifies the circumstances under which
the assertion as specified in the execution_order and prove parts is to be checked.
If we denote the assumption part by a predicate a, the prove part by c and the
execution order part by o. Then a property p is translated to a Boolean formula
p WD a ! .c ^ o/.

Given a property p, we can instruct the property checker to check it as a safety
property or as a liveness property. As illustrated in Fig. 5.6, a safety property is
indicated by the keyword “always”, and a liveness property is indicated by the
keyword “eventually” .

94 B. Bao et al.

The semantic of “safety/liveness” is defined by evaluating the execution paths
of a program. In contrast to Kripke models used in LTL or CTL model checking,
the program netlist contains a finite number of paths of finite length. This greatly
simplifies the evaluation of safety and liveness properties. A safety property
“always p” means that on every execution path (from a start state to an end state of
the program), the property p holds. This is similar to the LTL property G p, however,
applied to a finite-length path. A liveness property “eventually p” means that there
exists at least one execution path on which the property p holds. This is similar
to the meaning of the CTL property EGp. It is straightforward to check the safety
property using a SAT solver. In order to check a liveness property, we check the
safety property “always :p”. In case this property holds, we may conclude that the
corresponding liveness property fails.

5.3.5 Syntax Extensions

With the language elements presented so far, we are able to capture the reactive
behaviour of the software programs considered by our technique. We now present
a number of extensions to the syntax that do not increase expressiveness but make
property notation easier and more compact.

In the following, a variable var represents either an input (with attribute read) or
an output (with attribute write). The symbol ‰ represents an arbitrary comparison
operator, and expr represents any valid expression at either side of a comparison
operator. The accessors depicted in Fig. 5.7 can be used to access a range of
sequence elements related to a variable var. Every element is compared with the
expression expr; if all comparison operations evaluate to true, then the result of this
statement is true, otherwise it evaluates to false.

The dual case is handled by the accessor depicted in Fig. 5.8: it evaluates to true
if the comparison operations return true at least N times in sequence.

Fig. 5.7 Access a range of elements (universal)

Fig. 5.8 Access a range of elements (existential)

5 A New Property Language for the Specification of Hardware-Dependent. . . 95

The function exists tests whether a sequence element exists on an execution
path. In a safety property exists (var#1) checks whether var#1 exists for every
execution path, whereas in a liveness property it checks whether this element can be
generated/consumed at least once during the execution of the program. This function
can also be used to check whether the assume part of a property always evaluates to
false due to non-existing sequence elements. Again, a SAT-based property checker
can implement these checks using comp_index().

5.4 Completeness of Property Sets

The completeness of a set of properties for a hardware design can be proven by
using design-independent approaches such as [4, 6]. Our approach strongly relates
to [4], which is explained in more detail in Sect. III-D of [17]. This method proves
that two models of a design satisfying a set of properties fpig are sequentially
equivalent in terms of input/output sequences. What input and output values are
considered and at what time points (clock cycles) is specified by the user in
terms of so-called determination conditions. For example, a “data” signal needs
to be uniquely determined by the design whenever a corresponding “valid” signal
is asserted. A complete property set fulfils this determination condition if every
property specifies the expected “data” value at the time points when the “valid”
signal becomes asserted. Note that a property set can be checked for completeness
independently of any design implementation for which this set of properties holds,
because only relationships between signal names in the properties are checked. This
idea can also be transferred to software properties written in RSPL and results in the
following definition for completeness of a set of properties:

Definition 5.1. A set of RSPL properties is called complete, iff

1. there exists a property with a matching assume part for every possible input
sequence applied to the program, and

2. every property uniquely specifies every output sequence produced by the pro-
gram under the input sequences specified in the assume part.

Testing the two conditions of Definition 5.1 can be directly implemented in two
checks called Determination Test and Case Split Test.

5.4.1 Determination Test

Unlike hardware that generates output sequences for every time point (clock
cycle), the low-level software may produce output sequences of varying length,
depending on the input sequences applied to the program. For instance, depending
on configuration data given by the program’s environment, a software driver may

96 B. Bao et al.

perform burst write operations with 2 or 4 beats of data transfer, causing sequences
with 2 or 4 elements, respectively. If we use design-independent methods, the
completeness checker needs to know how many elements of sequences should
every property at least specify. Denoting these values for every output in every
property is tedious and error-prone. Therefore, for checking completeness of RSPL
property sets, we give up on the design independence of a completeness criterion.
Instead, we make use of the software model to determine how long the checked
sequences are on each program execution.

In order to ensure that every output signal is uniquely determined by the
property set, we perform two steps. First, we ensure that every property describes
every element of all output sequences that are produced under all matching input
sequences specified in the assumption part of the property. We solve this problem
with the help of the design under verification, M, and the comp_index function. For
simplicity, in the following we assume that the properties are written in a causal
form, expressed as an implication between a cause (property assumption) and an
effect (property commitment). This causal form is given if the input sequences are
specified in the assume part of the property and the expected output behaviour is
specified in the prove and execution_order parts. Given a property p WD a !
.c ^ o/, by syntactic analysis, we can identify the maximum sequence length k
of any output sequence specified in the property. Then we check whether k is the
maximum element generated by the software model M under the assumption a.
For this purpose, we resort to the comp_index(k+1) function with respect to the
assumption a: If this function returns a non-zero value, it means that the program
can output a sequence with at least kC1 elements. The property under consideration
does not specify this output sequence element, hence, we have detected a verification
gap. Similarly, if a property does not at all mention some output produced by the
program, we can detect this by checking for non-zero return of comp_index(1) for
that output. A list of all possible outputs of a program can be easily obtained when
synthesising the model of the program.

Once we have certified that every property describes every possible element of
all output sequences, we check whether these output sequences are determined
uniquely, i.e., whether, along any execution path, the property specifies exactly
one value for every element of the output sequence. This can be done for every
property independently of the software model. Let p be a property containing a set of
signals fvig (composed of a set of inputs fxj W j 2 N; j
 mg and a set of outputs fon W
n 2 N; n
 lg) and corresponding sequence elements fvkvi

i W kvi 2 N¤0; kvi
 tvig.
We create a copy p0 of p by considering a copied set fv0ig of the variables appearing
in the property and imposing the property on the copied variable set. The property p
determines the outputs fong uniquely, iff the following formula is a tautology

.p ^ p0 ^
m̂

jD0

txj^

kxjD1

.x
kxj

j D x0j
kxj // !

l̂

nD0

ton̂

konD1

.o
kon
n D o0n

kon /

5 A New Property Language for the Specification of Hardware-Dependent. . . 97

5.4.2 Case Split Test

The case split test checks whether the property set covers every possible input
sequence. Given a set of properties pi with their respective assumption parts ai,
the case split test is conducted by proving that the formula

W
i ai is a tautology.

5.4.3 Completeness Criterion

Theorem 5.1. If and only if a set of RSPL properties fpig passes both the Determi-
nation Test and the Case Split Test, then the property set is complete according to
Definition 5.1.

Proof. The theorem is true by Definition 5.1 because the Case Split Test checks
for fulfilment of condition 1 of Definition 5.1 and the Determination Test checks for
fulfilment of condition 2. ut

5.5 Case Study

The property language developed in this work has been successfully applied to
specifying properties for an industrial software driver for a LIN master node. The
software was developed by Infineon Technology AG. Note that the focus of the
work is on the challenges of specifying complete sets of properties for this type of
software, not on the proving techniques. The properties shown in this case study
have already been proven earlier [14], based on a manual construction of checker
automata which were added to a program netlist model of the software. In this work
we present the formulation of these properties in RSPL.

The hardware peripheral controlled by the software driver is a UART (Universal
Asynchronous Receiver/Transmitter), connected to the physical LIN bus lines.
A LIN bus is composed of one master node and several slave nodes. Data is
transmitted on the LIN bus in so-called frames. A frame is composed of several
fields: a header, up to 8 bytes of data, and a checksum. The master node is
responsible for sending the header field which is composed of a break field
indicating the start of new frame, a sync byte field used for synchronisation, and
an identifier (ID) field. Slave nodes evaluate the identifier field and, if there is a
match, then the corresponding slave node either sends or receives data. The LIN
driver code under consideration implements a master node. It supports six fixed-
valued IDs. It can send or receive 2, 4 or 8 bytes of data for each of the six IDs. Data
is communicated with the application software through shared memory locations
that serve as the interface of the LIN driver.

We now consider a first property in Fig. 5.9 specifying the transmission of a
frame, according to the protocol specification for the LIN bus. For reasons of space,

98 B. Bao et al.

Fig. 5.9 LIN_TX_Frame_2_Bytes

we show only the case for data length of 2 bytes. Furthermore, for readability, we use
the names of variables and constants instead of their memory addresses. Variables
data1 and data2 store the payload data provided by the application software. The
s_id are shared variables storing the ID that needs to be transferred to the slave task.
The symbol uart refers to the Tx/Rx buffer of the UART.

In the following, the prefix “C_” indicates a constant value. C_ID0 identifies a
2-byte transmission. CHECKSUM abstracts the “checksum” computation.

We also need to define an execution_order section in the property in order to
specify that the data must be available before it is transmitted.

Note that a program that does not support C_ID0 at all may nevertheless fulfil the
property in Fig. 5.9. We therefore need to check the liveness property in Fig. 5.10 in
order to make sure that at some point in time a C_ID = frame is indeed sent to the
UART.

Figure 5.11 shows the use of the exists function in a property that checks whether
the driver is capable of transmitting 8-byte data frames.

Obviously, the safety property in Fig. 5.9 does not completely specify the entire
program. It specifies only the case that the LIN master transmits 2 bytes of data
to a slave. The case split test presented in Sect. 5.4 identifies the missing cases by
checking whether there exists a corresponding property for every value of s_id.

5 A New Property Language for the Specification of Hardware-Dependent. . . 99

Fig. 5.10 LIN liveness

Fig. 5.11 LIN liveness 2

The comments section of this property shows an example of a failing determi-
nation test for a sequence element, where this statement states that the value of
“uart’write#4” could be either 0 or 1. Thus, the value of this variable is not unique:
Suppose that “uart’write#4” is a Boolean variable, then the expression in the
statement evaluates to true. Hence, the property proves nothing about this variable.

5.6 Conclusion

In this chapter we presented the concept and the basic framework of a software
property language for reactive low-level embedded software. The language is based
on a computational model for this type of software, called program netlist. The
language allows to easily express the I/O behaviour of the software by using
temporal sequences. Furthermore, properties can be synthesised and combined with
the program netlist into a single model allowing to perform formal verification.
Taking advantage of the temporal description we defined a completeness criterion
for a set of properties. We showed how to use the elements of the language to
formally and completely specify a LIN master node.

The future development of the proposed property language will include exten-
sions in order to support compositional verification for cases where the overall
verification of a program needs to be partitioned to improve scalability. Additionally,
the concept of functions or macros will be introduced for structuring and re-using
verification code.

100 B. Bao et al.

References

1. Accellera Organization Inc. Property Specification Language - Reference Manual, Version 1.1.
http://www.eda.org/vfv/docs/PSL-v1.1.pdf, June 2004

2. Ball, T., Rajamani, S.K.: Slic: A specification language for interface checking (of c). Technical
Report MSR-TR-2001-21, Microsoft Research, Jan (2002)

3. Beyer, D., Chlipala, A., Henzinger, T., Jhala, R., Majumdar, R.: The blast query language
for software verification. In: Giacobazzi, R. (ed.) Static Analysis. Lecture Notes in Computer
Science, vol. 3148, pp. 2–18. Springer, Berlin (2004)

4. Bormann, J., Busch, H.: Verfahren zur Bestimmung der Güte einer Menge von Eigenschaften
(Method for determining the quality of a set of properties). European Patent Application,
Publication Number EP1764715, 09 (2005)

5. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later. Commun.
ACM 56(2), 82–90 (2013)

6. Claessen, K.: A coverage analysis for safety property lists. In: Proceedings of International
Conference on Formal Methods in Computer-Aided Design (FMCAD), pp. 139–145. IEEE
Computer Society, Washington, DC, (2007)

7. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ansi c programs. In: Tools and
Algorithms for the Construction and Analysis of Systems, pp. 168–176. Springer, Berlin (2004)

8. Clarke, E.M., Emerson, E.: Synthesis of synchronization skeletons for branching time temporal
logic. In: Logics of Programs. Lecture Notes in Computer Science, vol. 131. Springer, Berlin
(1981)

9. Haedicke, F., Große, D., Drechsler, R.: A guiding coverage metric for formal verification. In:
DATE, pp. 617–622, 2012

10. Holzmann, G.J.: The SPIN model checker. IEEE Trans. Softw. Eng. 23, 279–295 (1997)
11. Katz, S., Grumberg, O., Geist, D.: “have i written enough properties?” - a method of

comparison between specification and implementation. In: Proceedings of Advanced Research
Working Conference on Correct Hardware Design and Verification Methods (CHARME), pp.
280–297. Springer, London (1999)

12. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes – The Automata-
Theoretic Approach. Princeton University Press, Princeton, NJ (1994)

13. Schlich, B.: Model checking of software for microcontrollers. ACM Trans. Embed. Comput.
Syst. 9(4), 36:1–36:27 (2010)

14. Schmidt, B., Villarraga, C., Fehmel, T., Bormann, J., Wedler, M., Nguyen, M., Stoffel, D.,
Kunz, W.: A new formal verification approach for hardware-dependent embedded system
software. IPSJ Trans. Syst. LSI Des. Methodol. 6, 135–145 (2013)

15. Spear, C.: SystemVerilog for Verification: A Guide to Learning the Testbench Language
Features. Springer, Berlin (2008)

16. The MathWorks, Inc. USA: Polyspace - Static Analysis Tools (2014). http://www.mathworks.
com/products/polyspace/ (2014)

17. Urdahl, J., Stoffel, D., Kunz, W.: Path predicate abstraction for sound system-level models of
rt-level circuit designs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(2), 291–304
(2014)

18. Villarraga, C., Schmidt, B., Bartsch, C., Bormann, J., Stoffel, D., Kunz, W.: An equivalence
checker for hardware-dependent software. In: 11. ACM-IEEE International Conference on
Formal Methods and Models for Codesign, pp. 119–128 (2013)

19. Yang, F.Z., Ganai, M., Gupta, A., Shlyakhter, I., Ashar, P.: FSoft software verification platform.
In: Proceedings of International Conference Computer Aided Verification (CAV), pp. 301–306.
Springer, Berlin (2005)

http://www.eda.org/vfv/docs/PSL-v1.1.pdf
http://www.mathworks.com/products/polyspace/
http://www.mathworks.com/products/polyspace/

Chapter 6
Exploiting Electronic Design Automation
for Checking Legal Regulations: A Vision

Oliver Keszocze and Robert Wille

Abstract Legal regulations are large and complex documents that require experts
such as lawyers to be understood. Working with these documents is a manual and
time- consuming task. Common use cases are to decide whether a submission is
conform with the regulations or to check whether certain corner cases are possible
in the given set of rules. We envision to address many of these problems by treating
legal regulations in the same manner as system specifications. This allows to apply
sophisticated formal methods from Electronic Design Automation (EDA). For this,
we briefly discuss the process of (semi)-automatically formalizing legal regulations.
Afterwards, we illustrate the correspondence of various problems in the considered
domain (here: regulations on scales and fees for medical doctors) with well-known
EDA problems. We sketch the application of formal methods by means of examples
and envision that in the future, the exploitation of formal methods to analyse legal
regulations will greatly help lawmakers and “end users” alike.

6.1 Introduction

In Electronic Design Automation (EDA), circuits and systems are realised based
on an initially given specification. During the design process, this specification
is implemented using proper hardware or system description languages such as
SystemC [10], System Verilog [11], or VHDL [9]. Due to the strive for higher levels
of abstraction, the application of modelling languages such as the Unified Modeling
Language (UML, [15]) or the Systems Modeling Language (SysML, [19]) found
recent interest in the design of circuits and systems.

O. Keszocze (�)
Group for Computer Architecture, University of Bremen, Germany

Cyber-Physical Systems, DFKI GmbH Bremen, Germany
e-mail: keszocze@informatik.uni-bremen.de

R. Wille
Institute for Integrated Circuits, Johannes Kepler University Linz, Austria

Cyber-Physical Systems, DFKI GmbH Bremen, Germany
e-mail: robert.wille@jku.at

© Springer International Publishing Switzerland 2016
F. Oppenheimer, J.L. Medina Pasaje (eds.), Languages, Design Methods, and Tools
for Electronic System Design, Lecture Notes in Electrical Engineering 361,
DOI 10.1007/978-3-319-24457-0_6

101

mailto:keszocze@informatik.uni-bremen.de
mailto:robert.wille@jku.at

102 O. Keszocze and R. Wille

All these developments have in common that they transform a specification,
which is usually provided in a natural language, into a formal representation. At the
same time, the resulting formal descriptions are subject to various correctness
checks for which a variety of (automatic) EDA methods have been proposed in
the past. More precisely, very powerful methods are in practical use today which
check, e.g. the equivalence of two realizations (see, e.g., [2]), prove whether certain
transitions in a system are possible (see, e.g., [1]), or generate test patterns that
identify faults in the physical realization (see, e.g., [7]). These EDA methods
became an integral part of today’s design flow and emerged to powerful tools which
can handle designs of considerable complexity.

At the same time, these methods also provide significant potential to application
areas beyond EDA. In this chapter, we investigate such an application area, namely
the consideration of legal regulations.

Legal regulations can be understood in a similar fashion as a specification for
a technical system. The only difference is that legal regulations describe rules and
requirements of a certain aspect of the daily life instead of something technical
such as a circuit or system. But this difference is just of superficial relevance for
the applied EDA methods. In fact, also legal regulations are initially provided in
natural language which can be formalized (first ideas have been already proposed,
see, e.g., [12, 17]). Based on this formal representation, checks for “correctness”,
e.g. plausibility, uniqueness, the existence of desired scenarios, and many more can
be conducted.

In this chapter, we envision and discuss possible exploitations of existing EDA
methods in order to check legal regulations. For this purpose, we briefly review
a selection of EDA methods and sketch available approaches aiming for the
formalization of legal regulations. Based on that, we discuss and illustrate how
the EDA methods available for the design of circuits and systems together with
a formal representation of legal regulations can be exploited. All considerations are
conducted using the German Regulations on Scales of Fees for Medical Doctors
(German: Gebührenordnung für Ärzte [8]) as an example.

The remainder of this chapter is organized as follows. In Sect. 6.2, we briefly
review EDA methods that are used to verify the correctness and behaviour of
circuits and systems. The reviewed solutions are based on Boolean satisfiability.
Afterwards, in Sect. 6.3, the domain of interest, legal regulations that control how
medical doctors may invoice their services, is introduced. Furthermore, the method
of extracting a formal model from natural language texts is sketched. Then, Sect. 6.4
introduces a variety of applications for EDA methods in this context and explains
them by means of examples. Finally, in Sect. 6.5, the work is concluded.

6.2 Typical Methods for Electronic Design Automation

Every year in the past decades, the design of circuits and systems grew more and
more complex. The resulting complexity eventually motivated the development
of methods for Electronic Design Automation (EDA). Moreover, search spaces

6 Exploiting Electronic Design Automation for Checking Legal Regulations 103

to be traversed became larger and larger so that, today, methods are in place
which employ dedicated search and learning strategies in order to cope with the
underlying computational complexity. Amongst many other methods, solvers for
Boolean satisfiability (so called SAT solvers; see, e.g., [5, 6]) represent one of
the most popular of these methods. In this section, we briefly review the basics
on Boolean satisfiability, their solving schemes, as well as application areas. This
provides representatives of EDA methods whose application to the domain of legal
regulations is envisioned afterwards.

6.2.1 Boolean Satisfiability and SAT Solvers

The Boolean satisfiability problem (SAT problem) is to determine an assignment ˛

to the variables of a Boolean function f such that f .˛/ evaluates to true or to prove
that no such assignment exists. Often, f is given in Conjunctive Normal Form (CNF).
A CNF consists of a conjunction of clauses. A clause is a disjunction of literals and
each literal is a propositional variable or its negation.

Example 1. Let f D .x1_x2_x3/.x1_x2/.x2_x3/. Then x1 D 1 D x2 D 1; x3 D 0 is
a satisfying assignment for f . The value of x1 ensures that the first clause becomes 1
while x2 ensures this for the second as does x3 for the third clause.

The SAT problem is one of the central NP-complete problems. In fact, it was
the first known NP-complete problem as was proven by Cook in 1971 [3]. Despite
this proven complexity, SAT algorithms are nowadays capable of handling practical
problem instances of considerable size, i.e. SAT instances which are composed
of hundreds of thousands of variables, millions of clauses, and tens of millions
of literals. Most of these SAT solvers are based on backtracking algorithms and
use three essential procedures: (1) the decision heuristic assigns values to free
variables, (2) the propagation procedure determines implications resulting from the
last assignment(s), and (3) the conflict analysis tries to resolve conflicts that occur
during the search by clever backtracking schemes. Advanced techniques such as
efficient Boolean constraint propagation [14] and conflict analysis [13] are common
in state-of-the-art SAT solvers (see, e.g., [5, 6]) and strongly contribute to their
effectiveness.

6.2.2 Applications in EDA

The efficiency as well as the clever traversal schemes of SAT solvers have found
numerous application for many computationally complex problems—including
several EDA problems. In the following, just a selection is briefly sketched:

104 O. Keszocze and R. Wille

Fig. 6.1 Miter structure
Original
Circuit

Revised
Circuit

1

i1
i2
i3

• Equivalence Checking
During the design process, the originally determined circuit is usually revised
a couple of times (e.g. for the purpose of optimization). After each revision,
it is important to prove whether or not the revised circuit is still functionally
equivalent to the original one. This problem can be addressed by formulating
the resulting equivalence checking problem by means of a so-called miter
structure [2]. Here, it is made sure that always the same input assignments
are applied to both circuits. Furthermore, XORs are added to corresponding
output pairs in order to detect possible differences. Figure 6.1 shows the resulting
structure. Then, if at least one XOR evaluates to 1 (determined by an additional
OR operation), the two circuits are not equivalent. As this obviously represents a
satisfiability problem (“Does there exist an assignment to the inputs of the circuits
such that the output of the miter structure evaluates to true?”), the resulting
SAT instance can easily be formulated. Then, all possible inputs assignments
are symbolically considered which guarantees that a possible assignment leading
to different outputs is determined when it exists.

• Reachability Analysis
Recent developments of formally specifying complete systems using description
languages allow for further automated analysis. One particular problem is to
check whether certain states of the system, desired or undesired, are reach-
able [1]. The procedure is to symbolically translate all possible transitions of
the system into a SAT formulation. Afterwards, a clause representing the state of
interest is added. If the whole SAT formulation is satisfiable, the given state is
reachable. In case of undesired behaviour, this indicates a bug in the system.

• Automatic Test Pattern Generation (ATPG)
As a final example, ATPG considers the determination of an assignment to all
primary inputs of a given circuit which, based on a given fault model, will show
a possible erroneous behaviour at the primary outputs of this circuit [7]. This
problem can also be formulated as a corresponding SAT problem (“Does an
assignment showing the erroneous behaviour exist?”). ATPG is an interesting
example, since existing EDA methods for this problem are capable of handling
circuits and systems composed of several hundreds of thousands of components.

6 Exploiting Electronic Design Automation for Checking Legal Regulations 105

6.3 Formal Representation of Legal Regulations

Usually, legal regulations are provided in natural language. But in order to exploit
EDA methods for checking them, a formal representation is required. Recently,
researchers investigated several strategies and schemes how to efficiently formalize
legal regulations (see, e.g., [12, 17]). Besides that, many software tools exist in
which legal regulations (e.g. tax code) have (manually) been incorporated in order
to support “end users” (e.g. citizens preparing their tax returns). In this section,
we discuss existing formalizations of legal regulations which, eventually, provide
possible inputs for EDA-inspired verification methods. We exemplary focus on
legal regulations from the domain of doctoral fees, namely the German Regulations
on Scales of Fees for Medical Doctors (German: Gebührenordnung für Ärzte [8],
abbreviated as GOÄ in the following).

The GOÄ specifies how doctors are supposed to generate invoices for their
services. The GOÄ eventually defines which services can be accounted and to what
extent. As an example, Fig. 6.2a shows a particular regulation from the GOÄ.1

Medical doctors, hospitals, etc., are supposed to prepare their invoices according
to these regulations.

However, before the submitted invoices are indeed paid, corresponding authori-
ties check whether the resulting invoices are in line with the regulations of the GOÄ.
Due to the large amount of regulations, this is usually performed automatically

Fig. 6.2 Considered domain and problem. (a) A GOÄ rule describing a mutual exclusion of
services (German sentence in parentheses). (b) Simplified domain of the GOÄ. (c) Resulting DSL
expression

1Note that all regulations in the GOÄ are originally provided in German. However, in order to
describe the proposed ideas, all examples have been translated.

106 O. Keszocze and R. Wille

by software tools. To this end, a formal representation of the respective GOÄ
regulations has to be available.

Thus far, this formal representation is created manually—using a Domain-
Specific Language (DSL) as well as a proper model which represents the structure
of the respective processes (i.e. the performed services and the instances in time in
which these services have been provided.2) Fig. 6.2b provides a sketch of the applied
model: All possible services that doctors may perform are grouped by different
criteria (e.g. consultations, days, or quarters) and collected in a single case. Each
case is then related to a patient. A single service may require multiple consultations
and a doctor may perform multiple services in a single consultation.

With this background, the original regulation from Fig. 6.2a can formally be
represented as shown in Fig. 6.2b. Note that this expression is not uniquely deter-
mined and may look completely different, depending on the software developer’s
preferences. With formalizations like that, software tools checking invoices can
easily be developed.

While this approach still requires significant manual effort in order to create
the respective formal descriptions, another approach formalizing the corresponding
GOÄ regulations has been proposed in [12]. Here, a (semi-) automatic method
is proposed which is composed of two steps. In the first step, the sentences are
preprocessed and grouped, while the second step uses methods from Natural
Language Processing (NLP, [4, 16]) to create the DSL expression.

In the first preprocessing step, synonyms are normalized. Given a knowledge
base (filled e.g. by an expert from the domain), words like “service” and “GOÄ
position” can be matched in order to simplify the analysis. Afterwards, the
sentences are simplified by shortening long enumerations. These enumerations
do not carry any information in the NLP step besides “an amount of services”.
Therefore, terms such as “services 12345, 23456, 34567, and 98765” are reduced
to placeholder-terms, e.g. by hash-tag-like identifiers such as “01234567.0”. These
are still understood as a number by NLP tools while not resulting in a complicated
structure that renders the further analysis impossible. Further simplifications such
as removing long descriptions of equipment are conducted as well.

After these preprocessing steps, actual natural language processing of the regula-
tions (still provided in natural language) are performed. Here, established techniques
from the domain of natural language processing such as typed dependencies [4] are
employed. Typed dependencies create a relationship between words of a sentence
and, furthermore, type them with respect to their grammatical relation. For example,
the words “the” and “service” have a determiner dependency (short: det) with
each other. All typed dependencies of a sentence eventually form a graph based
on which a translation into a formal representation can automatically be conducted

2Note that further issues such as particular doctors and their qualification as well as special
equipment are not considered in the following.

6 Exploiting Electronic Design Automation for Checking Legal Regulations 107

Fig. 6.3 Typed dependencies of the sentence shown in Fig. 6.2a

in many cases. The general idea is illustrated by means of the GOÄ rule of Fig. 6.2a.
The corresponding typed dependency graph of the original German sentence,
obtained using the tool ParZu [16], is shown in Fig. 6.3.

This analysis provides, e.g., the following information:

• The main reference, i.e. which service is of interest, is determined. This can be
obtained by analysing the subject subj of the sentence.

• Other references to services might be found by following pn-app paths in the
graph.

• A negation of the sentence is indicated by an adv path from the root note of the
sentence to the word “not”.

108 O. Keszocze and R. Wille

Fig. 6.4 Automatically generated formal notation of the sentence from Fig. 6.2a

Eventually, this enables an automatic derivations of a formal representation from
a given legal regulation. In case of the considered sentence, a formal notation
as sketched in Fig. 6.4 is created using OCL [18]. Note that other means of
formal description are possible as well. Using the techniques described in [12],
approximately 60 % of the regulations given in the GOÄ can automatically be
formalized this way. The quality of the results heavily depends on the initial
knowledge base used for determining synonyms and simplifying sentences.

6.4 Applying EDA Methods to the Formal Representation

As reviewed in the previous section, formal representations of legal regulations
already exist and are applied, e.g. in order to check the validity of invoices. Similar
application areas exist, e.g. in the domain of tax returns, applications to federal
agencies in general, etc. However, all corresponding software tools basically check
certain instances of invoices, tax returns, applications, etc., only. Exploiting the
EDA methods reviewed in Sect. 6.2, much more potential exist. In fact, as for the
design of circuits and systems, there is no guarantee that legal regulations are free of
contradictions by themselves. The following example illustrates a possible problem:

Example 2. Consider the following four (simplified) GOÄ regulations:

• “Service A is not to be billed together with service C while, at the same time, it
forces billing the service B”.

• “Service B forces billing the service C”.
• “Service C forces billing the service D”.
• “Service D forces billing the service A”.

Table 6.1a summarizes these regulations in a more compact fashion. The first
column refers to the respective services, while the remaining columns provide the
services which are mutually exclusive to them and the services which are forced to
be billed in addition to them.

6 Exploiting Electronic Design Automation for Checking Legal Regulations 109

Table 6.1 Exemplary
constraints for services

(a) Inconsistent model

Service Excludes Forces

A C B

B – C

C – D

D – A

(b) Erroneous model

Service Excludes Forces

A C B

B – C

C A,B –

D C –

(c) Example for invoice optimization

Service Costs $ Excludes

A 40 –

B 50 C

C 20 –

D 80 A,B

Obviously, this would be a set of contradictory legal regulations, since

• the billing of any service (A,B,C, or D) eventually forces the presence of all other
services while,

• at the same time, service A forbids the existence of service C

While it is simple to detect contradictions for simple regulations as shown here, it
surely becomes a crucial tasks when dozens or even hundreds of such regulations
(usually written in hard language) have to be considered.

Using EDA methods, contradictions even in large (formalized) legal regulations
could easily be detected. In fact, these methods do not care whether the corre-
sponding formal representation has been derived from a hardware specification or
a legal regulation. For them, legal regulations can be seen as a “specification” of
how certain (real world) processes may be implemented in practice. As for circuits
and systems, the goal of the methods is to detect the existence of contradictions or
unwanted descriptions. While, in the domain of legal regulations, contradictions can
not always be prevented (due to case-by-case decisions, trade-offs between certain
rights, etc.), in particular in fields such as billings, tax returns, etc., a high degree
on uniqueness is desired. In these cases, EDA methods may provide the basis for
helpful tools to detect contradictions as discussed in Example 2. More precisely:

Example 3. Consider again the four GOÄ regulations from Example 2 and assume
that corresponding formal representations (denoted by Booleans A; B; C; D) have
been derived from them. Then, EDA methods allow to symbolically consider all
possible applications scenarios and, by this, can proof, e.g. whether this set of

110 O. Keszocze and R. Wille

regulations is free of contradictions. In other words, the SAT problem “Does there
exist at least one scenario which satisfies all regulations?” can be formulated. In a
simplified form, this translates into the formulation

.A H) C ^ B/ ^ .B H) C/ ^ .C H) D/ ^ .D H) A/

for which SAT solvers can prove that no satisfying solutions exist. That is, not all
regulations can be satisfied at the same time.

In a similar fashion, many other questions concerning legal regulations can be
addressed by EDA methods. For example:

• Checking for desired/undesired interpretations of the given regulations. As an
example, consider the regulations for services A, B, and C as shown in Table 6.1b.
The intention of these regulations is to have two services excluding each other
while services A and B force the billing of certain other services. Note that service
B forces to also put service C on the invoice. Unfortunately, service C cannot be
billed together with the other two services. This basically makes it impossible for
service B to be ever billed. A formal model applied to an EDA method sketched
above could find this inconsistency and present it to the corresponding authority.
The authority then would probably decide that the intention was to have service
B be mutually exclusive with service C and, therefore, move the C entry from the
“Forces” to the “Excludes” column.

This application is similar to the reachability analysis as reviewed in Sect. 6.2.
• Fixing of certain properties. Legal regulations are usually updated on a regular

basis. Consider an update that introduces the constraint that service A must not
be invoiced together with service B. When introducing this change (which, in
real world documents, will not be as easily describable as this artificial example),
one wants to ensure that it does not change any other rules. This means that no
invoice that was legal before the update becomes invalid afterwards (while, at
the same time, preserving the intended change). For checking this, a miter-like
structure (see Sect. 6.2) can be employed. In this application, the “outputs” of
interest are the valid invoices.

• Automated optimization of invoices, i.e. determine an application of regulations
which leads to the best possible outcome for the doctor. As an example, consider
the constraints as shown in Table 6.1c (which additionally provides the costs of
a particular service). In this simple example, one can easily validate by hand that
billing service C, and D yields the biggest outcome. For larger sets of regulations,
this becomes an infeasible task for humans. A variant of this problem is to find the
maximum amount of money that can be invoiced while staying within a certain
budget.

• Automated checks whether a given invoice is consistent with the regulations. This
helps the doctor as well as the officials deciding on the invoice at hand.

• The automated generation of DSL expressions (such as shown in Fig. 6.2c),
which are used in software to check documents for validity. This does not
only significantly reduce the development costs of software applications, but it

6 Exploiting Electronic Design Automation for Checking Legal Regulations 111

also ensures that the expressions are correct by eliminating the possibility of
introducing errors in the creation/programming.

6.5 Conclusion

Formal descriptions of legal texts greatly improve the daily work for experts. This
ranges from the direct end user of these regulations (such as a doctor as seen in
the examples) to lawyers creating such texts. Applicants have the means to check
whether their documents are valid before handing them in, thereby saving a lot of
work on both sides. Decision makers such as politicians now have further means
that aid them in understanding the full impact of their regulations. This is of great
importance as it is difficult to completely anticipate the consequences of (parts of)
regulations even for experts such as lawyers. We envision that in the near future, for
most legal texts, formal descriptions will be available or work on formalizing them
is in progress.

Acknowledgements The authors would like to thank Betina Keiner, Matthias Richter, Luc-
jan Suchy, and Gottfried Antpöhler for the many fruitful discussions. This work was sup-
ported by the German Federal Ministry for Economic Affairs and Energy (BMWi) under grant
no. KF2054902MS2 and KF2013014MS2 as well as the German Research Foundation (DFG)
under grant no. WI 3401/5-1.

References

1. Abdulla, P.A., Bjesse, P., Eén, N.: Symbolic reachability analysis based on SAT solvers.
In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 411–425. Springer,
Berlin (2000)

2. Brand, D.: Verification of large synthesized designs. In: International Conference on CAD,
pp. 534–537 (1993)

3. Cook, S.A.: The complexity of theorem-proving procedures. In: Symposium on Theory of
Computing, pp. 151–158 (1971)

4. de Marneffe, M.C., MacCartney, B., Manning, C.D.: Generating typed dependency parses from
phrase structure parses. In: Conference on Language Resources and Evaluation, pp. 449–454
(2006)

5. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: Tools and Algorithms for the
Construction and Analysis of Systems, pp. 337–340 (2008)

6. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: SAT 2003, LNCS, vol. 2919,
pp. 502–518 (2004)

7. Eggersglüß, S., Drechsler, R.: Efficient data structures and methodologies for SAT-based ATPG
providing high fault coverage in industrial application. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 30(9), 1411–1415 (2011)

8. Gebührenordnung für Ärzte (GOÄ). Online available at http://www.e-bis.de/ (2014)
9. IEEE Standard VHDL Language Reference Manual Amendment 1: Procedural Language

Application Interface (2007)
10. IEEE Standard for Standard SystemC Language Reference Manual (2012)

http://www.e-bis.de/

112 O. Keszocze and R. Wille

11. IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Verification
Language (2013)

12. Keszocze, O., Keiner, B., Richter, M., Antpöhler, G., Wille, R.: (Semi-)automatic translation
of legal regulations to formal representations: expanding the horizon of EDA applications.
In: Forum on Specification & Design Languages (FDL) (2014)

13. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiabil-
ity. IEEE Trans. Comput. 48(5), 506–521 (1999)

14. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Design Automation Conference, pp. 530–535 (2001)

15. Rumbaugh, J., Jacobson, I., Booch, G. (eds.): The Unified Modeling Language Reference
Manual. Addison-Wesley Longman, Essex (1999)

16. Sennrich, R., Schneider, G., Volk, M., Warin, M.: A new hybrid dependency parser for
German. In: Proceedings of the German Society for Computational Linguistics and Language
Technology, pp. 115–124 (2009)

17. Soltana, G., Fourneret, E., Adedjouma, M., Sabetzadeh, M., Briand, L.: Using UML for
modeling procedural legal rules: approach and a study of Luxembourg’s tax law. In: Model-
Driven Engineering Languages and Systems, pp. 450–466. Springer, Berlin (2014)

18. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with UML.
Addison Wesley, New York (1999)

19. Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design. Morgan
Kaufmann, San Francisco (2007)

Part III
Parallel Architectures

Chapter 7
Synthesizing Code for GPGPUs from Abstract
Formal Models

Gabriel Hjort Blindell, Christian Menne, and Ingo Sander

Abstract Today multiple frameworks exist for elevating the task of writing
programs for GPGPUs, which are massively data-parallel execution platforms.
These are needed as writing correct and high-performing applications for GPGPUs
is notoriously difficult due to the intricacies of the underlying architecture. However,
the existing frameworks lack a formal foundation that makes them difficult to use
together with formal verification, testing, and design space exploration. We present
in this chapter a novel software synthesis tool—called f2cc—which is capable
of generating efficient GPGPU code from abstract formal models based on the
synchronous model of computation. These models can be built using high-level
modeling methodologies that hide low-level architecture details from the developer.
The correctness of the tool has been experimentally validated on models derived
from two applications. The experiments also demonstrate that the synthesized
GPGPU code yielded a 28� speedup when executed on a graphics card with 96
cores and compared against a sequential version that uses only the CPU.

7.1 Introduction

We are experiencing a seemingly never-ending improvement in computational
processing capacity. The past decades have yielded faster, denser, and more complex
chips, and the processing units are increasingly being composed into multi-core
platforms which require complicated communication and scheduling schemes. This
results in an incredible challenge that system developers need to face in managing
the growing complexity of systems. To make matters worse, low-level implemen-
tation details must be considered in order to produce, not only correct, but also
efficient systems. This problem is especially notorious for general purpose graphics
processing units (GPGPUs). GPGPUs are massively parallel execution platforms
that have emerged from the graphics card technology whose processing capacity

G. Hjort Blindell (�) • C. Menne • I. Sander
Department of Electronic Systems, School of Information and Communication Technology,
KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: ghb@kth.se; chris.f.menne@gmail.com; ingo@kth.se

© Springer International Publishing Switzerland 2016
F. Oppenheimer, J.L. Medina Pasaje (eds.), Languages, Design Methods, and Tools
for Electronic System Design, Lecture Notes in Electrical Engineering 361,
DOI 10.1007/978-3-319-24457-0_7

115

mailto:ghb@kth.se
mailto:chris.f.menne@gmail.com
mailto:ingo@kth.se

116 G. Hjort Blindell et al.

have grown to such an extent that they can be considered affordable small-scale
supercomputers. But the underlying architecture exhibits many intricacies, making
it difficult to exploit. For instance, in order to reach maximum performance it is
paramount that the GPGPUs’s registers, on-chip memories, and caches are used
efficiently, but optimizing the usage of one resource often has a negative impact on
another. Moreover, the convoluted addressing schemes required for distributing data
across the threads are mechanical, tedious, and error-prone to manage manually.
Hence, to manually write applications that are both correct and efficient when
executed on a GPGPU is an extremely challenging and error-prone task.

Although there exist several frameworks for elevating the task of GPGPU
programming, they are all based on programming methodologies that hinder the
use of automated tools for tasks such as verification, testing, and design space
exploration. To mitigate these issues we present in this chapter a novel software
synthesis tool—called f2cc1—that generates GPGPU code from applications which
are represented as abstract formal models. These models have a solid formal
foundation based on the theory of models of computation [15] and are devoid of
low-level details regarding implementation and target architecture, which raises the
level of abstraction for the system developer and enables the use of formal system
design tools. In this case we use ForSyDe for modeling the applications. Hence
f2cc promotes an application design flow that is “correct by construction” [8] by
allowing the system developer to focus on what the system is meant to do rather than
how, which lowers the development cost. Most importantly, f2cc enables system
developers to take advantage of GPGPUs without needing to have extensive and
in-depth knowledge about the underlying architecture.

The chapter makes the following contributions:

• We present a novel software synthesis tool (f2cc) that is capable of generating
GPGPU code from abstract formal models based on the synchronous model
of computation. Using a formal framework for application design enables the
potential to perform verification, testing, and design space exploration in an
automated fashion. Other advantages of the tool include:

– Modeling framework independence. f2cc provides a flexible XMLCC input
format and frontend support which can be extended to support models created
using different formal modeling methodologies.

– Adaptive and stand-alone code. The GPGPU code produced by f2cc adapts
itself to the properties of the graphics card at runtime, and does not depend on
any proprietary libraries in order to be compiled or executed.

– Flexible data type support. f2cc allows the developer to use custom-made
structs as data types in the models, thus facilitating the application design.

1Source code is available at http://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc.

http://forsyde.ict.kth.se/trac/wiki/ForSyDe/f2cc

7 Synthesizing Code for GPGPUs from Abstract Formal Models 117

• We describe the methods and algorithms devised for f2cc, including an O.n/

algorithm for finding a process schedule for synchronous models containing
feedback loops.

• We present experiments that demonstrate the correctness and efficiency of f2cc
for GPGPU code synthesized for a Mandelbrot generator and an industrial-scale
image processor. Compared against the performance of a hand-written CPU
version, the GPGPU code generated by f2cc yielded a speedup of 28� when
executed on a graphics card equipped with 96 cores.

The rest of the chapter is organized as follows. Section 7.2 briefly describes
the GPGPU platform and introduces ForSyDe, the formal modeling methodology
currently supported by f2cc. Section 7.3 explains the software synthesis process,
the techniques and methods applied, and its current limitations. Section 7.4 gives the
results from the experiments that were performed to validate the tool. Section 7.5
covers related work and discusses existing frameworks which elevate the task of
GPGPU programming. Lastly, Sect. 7.6 concludes the chapter and Sect. 7.7 lists
future work.

7.2 Background

7.2.1 GPGPUs

GPGPUs are enhanced versions of GPUs [9, 18], which are processing units
specifically designed for rendering image frames. As image rendering is generally
a parallel process where pixels can be generated independent from one another, the
GPU quickly evolved into a massively data-parallel platform. Recognizing this vast
computational resource, program developers urged the manufacturers to augment
the GPU with functionality that would allow execution of applications written in
general-purpose programming languages such as C. When adapted to GPGPUs
applications have often yielded a significant performance increase, at times reaching
orders of magnitudes in speedup [10].

A well-known family of GPGPUs is CUDA [9, 14, 17, 18], which is developed
by NVIDIA. The CUDA platform, as illustrated in Fig. 7.1, consists of clusters
of streaming multiprocessors (SMs) which are connected to a dedicated DRAM
commonly referred to as the global memory. Each SM contains 8 streaming
processors (SPs) or CUDA cores which share the same fetch/dispatch unit, register
file, and instruction cache. The SM also consists of a set of various on-chip
memories: a shared memory, sometimes denoted as scratchpad memory, which is an
application-controlled cache; a constant cache, which retains constant values; and a
texture memory, which is used to cache neighboring cells in a 2D data matrix. With
the DRAM bandwidth usually being the main performance bottleneck, these caches
are used to reduce the amount of traffic to and from the global memory.

118 G. Hjort Blindell et al.

GPGPU

DRAM DRAM DRAM DRAM

Cluster

SM

SP SP

SP SP

SP SP

SP SP

SFU

SFU

Fetch/Dispatch

Registers

Inst. cache

Constant cache

Shared
memory

SM

SP SP

SP SP

SP SP

SP SP

SFU

SFU

Fetch/Dispatch

Registers

Inst. cache

Constant cache

Shared
memory

Texture memory

Fig. 7.1 Overview of the NVIDIA CUDA platform [17, 18]

After having copied the input data to the global memory, the GPGPU is accessed
through a kernel invocation which spawns a set of threads to be executed on the
GPGPU. These threads are bundled into thread blocks, which in turn are allocated
onto the SMs. A small set of threads is then randomly selected from each thread
block for execution on the SPs. Thread-context switches are made with virtually
zero overhead, and provided that there is an abundance of threads the GPGPU can
hide long latency operations through continuous thread switching. This makes the
GPGPU a throughput-oriented architecture [9]. All thread blocks allocated to an SM
share the same register file and other resources such as caches. This means that if
a thread block uses too much of any resource, the maximum number of residential
thread blocks per SM will be reduced. Fewer thread blocks means fewer threads
to swap in and out to hide long latency operations, which in turn decreases the
performance. Since the caches are very limited—the sizes are in the order of tens of
kilobytes—meticulous care must be taken to not claim too much of any cache per
thread block, and make optimal use of the allotted slice. Hence the main challenges
of exploiting GPGPUs are as follows:

• Adapting the application to fit the data-parallel execution platform. Even
algorithms that are inherently parallel may need to be redesigned in order to
avoid performance-hampering issues such as thread divergence [14], which may
occur when the code contains branch instructions.

• Determining how to layout the input data and thread configuration. The data
needs to be packaged in such a way that it can be accessed from a thread using
its thread and thread block IDs. Thus, there should be a correlation between the
data layout and the thread configuration.

• Determining which GPGPU resources to use, and how, in order to achieve
optimal performance. The GPGPU contains several resources such as caches
and on-chip memories that can greatly boost performance. However, it is not
always clear how each can be used for a particular application, often forcing new
algorithms to be considered.

7 Synthesizing Code for GPGPUs from Abstract Formal Models 119

• Determining whether utilizing the GPGPU is beneficial. Even if all performance-
inhibiting problems related to the GPGPU itself are dealt with, it is still possible
that the code runs slower on the GPGPU than on the CPU. For example, the CPU
may be relatively more powerful than the GPGPU, or there may not be enough
computational complexity in the kernel to sufficiently amortize the GPGPU
overhead of moving data between the main RAM and the GPGPU RAM.

7.2.2 ForSyDe

ForSyDe (Formal System Design) [1, 19] is a formal design methodology for
embedded systems. It consists of a set of libraries, currently available in Haskell
and SystemC, that enable modeling of systems at a high level of abstraction where
the functionality of a system is detached from its implementation. The libraries
support several models of computation (MoCs), but in the context of this chapter
only the synchronous MoC is considered. The synchronous MoC is based on the
perfect synchrony hypothesis [3], which assumes that data propagation and process
execution take zero time (i.e., processes produce their output values immediately as
their inputs arrive). This assumption leads to a simple and elegant mathematical
model that fits nicely with a large class of data flow applications and with the
underlying mechanisms of the GPGPU platform. The synchronous MoC is also base
for the family of synchronous languages like Esterel [4] and Lustre [11], for which
mathematical methods exist for performing verification and testing. Another similar
modeling framework is StreamIt [21], where program hierarchy is modeled using
predefined structures.

Systems are modeled in ForSyDe as hierarchical concurrent process networks,
where processes communicate by means of signals (see Fig. 7.2). Processes are
created using predefined process constructors that take side effect-free functions
and values as arguments. This concept of process constructors leads to a clean
separation between communication and computation: communication and model of
computation is expressed by the process constructor; and computation is specified
by the arguments of the process constructor. For example, Fig. 7.3a shows mooreSY,
a process constructor to create a Moore finite state machine process belonging
to the synchronous MoC. As arguments, mooreSY takes two functions ns and
o and a value s: the function ns specifies the calculation of the next state; the
function o specifies the calculation of the output value; and the value s specifies
the initial state. ForSyDe process constructors can be divided into three categories

P2 P3

P4

P1 P5i o

s1

s2

s3
s4

s5

Fig. 7.2 Example of a ForSyDe model

120 G. Hjort Blindell et al.

mooreSY
(a)

(b)

(c)

+ ns o + s =

mooreSy

ns o

s

mapSY

+ f =

mapSY

f

delaySY

+ s =

delaySY

s

Process constructor Functions Values Process

Fig. 7.3 A ForSyDe process constructor takes functions and values as arguments to form a
process of a particular model of computation. Process constructors can be grouped into three
different categories: sequential (mooreSY), combinational (mapSY), and delay process constructors
(delaySY)

as illustrated in Fig. 7.3: sequential (mooreSY), combinational (mapSY), and delay
process constructors (delaySY). These categories exist in all models of computation.

This separation of concerns is exploited when writing the ForSyDe models to text
files. Using GraphML—the input format of f2cc (see Sect. 7.3.1)—the hierarchical
structure of the process network is expressed in XML, and the computation is
given as C code. Hence, the description of the structure is separated from the
description of the computation. We want to point out that other formalisms that
support the synchronous MoC, and provide a similar separation of communication
and computation as ForSyDe, can be used in conjunction with f2cc as described in
Sect. 7.3.1.

7.3 Synthesis Process

To synthesize ForSyDe process networks into a target implementation, an imple-
mentation technique obeying the ForSyDe semantics is required for (1) each process
constructor, (2) the arguments of each process constructors, (3) the process network.
However, this alone is in general not sufficient to yield an efficient implementation.
Thus f2cc also identifies optimizations that can be applied to the model.

f2cc operates by first parsing an input file containing the model and converted
into an internal model representation. Then a series of semantically preserving
optimizations are applied, and lastly the model is synthesized into code. This process
is also illustrated in Fig. 7.4. We will begin by discussing the input format, and then
proceed with examining the internals of f2cc (more details are available in [13]).

7 Synthesizing Code for GPGPUs from Abstract Formal Models 121

Parsing

Model
optimizations

Synthesis

In
pu

t fi
le

In
te

rn
al

 m
od

el
re

pr
es

en
ta

tio
n

C
od

e

Fig. 7.4 Overview of the synthesis process

i o

Fig. 7.5 Illustration of the model declared in Listing 7.1

7.3.1 Input Format

Once a model has been designed, it is passed to f2cc in the form of a GraphML file.
Similar output can be generated from ForSyDe-SystemC using introspection [1],
and converting it to GraphML is trivial. GraphML [5] is a standardized format-
based XML in which graphs can be represented in a formal manner, and allows
the process functions to be provided as data annotated to the nodes. The process
functions are defined as side effect-free C functions, meaning they must not
depend on any external state such as global variables or dynamically allocated
memory. An example of such an GraphML file is available in Listing 7.1, whose
model is illustrated in Fig. 7.5. Note that the input file contains no GPGPU-related
information, thereby completely hiding any implementation-specific details about
the target platform from the developer. Moreover, the input format does not require
data types to be specified for signals and processes which do not have a C function
as argument. Instead, the data types for these will be automatically inferred by
f2cc during synthesis (see Sect. 7.3.4). This makes for a very versatile format that
allows models to be created using any formal modeling framework, provided the
models can be converted into the expected input format and hold the same semantic
meaning. Since the format is human-readable the input files can even be written by
hand. If desired, f2cc can also be extended with additional frontends to support for
another input format.

122 G. Hjort Blindell et al.

<?xml version="1.0" encoding="UTF-8"?>
<graphml>
<graph id="test" edgedefault="directed">
<node id="in">
<data key="process_type">InPort</data>
<port name="out" />

</node>
<node id="out">
<data key="process_type">OutPort</data>
<port name="in" />

</node>

<!-- Processes -->
<node id="inc">
<data key="process_type">ParallelMapSY</data>
<data key="procfun_arg">
<![CDATA[
int func(const int arg) {

return arg+1;
}
]]>

</data>
<data key="num_processes">3</data>
<port name="in" />
<port name="out" />

</node>

<!-- Signals -->
<edge source="in" sourceport="out"

target="inc" targetport="in" />
<edge source="inc" sourceport="out"

target="out" targetport="in" />
</graph>

</graphml>

Listing 7.1 Example of an input file to f2cc

7.3.2 Model Optimizations

In order to take advantage of the parallel nature of GPGPUs, the model needs to
exhibit a certain level of data parallelism which can either be declared implicitly
or explicitly. Implicit data parallelism is declared through a network of processes,
known as a data-parallel component, while explicit data parallelism is declared via
a single processes that semantically entail the functionality of entire data-parallel
components.

There are many patterns of data parallelism. One such pattern is a data-parallel
component that accepts an input array, applies one or more functions on every
element or non-overlapping range of elements, and produces an array as output
(see Fig. 7.6a). While simple, it is an important and powerful pattern that allows
modeling of many embarrassingly parallel problems. We call this the split-map-

7 Synthesizing Code for GPGPUs from Abstract Formal Models 123

f1 . . . fn

...
...

...
...

f1 . . . fn

. . .

a b

parallelMapSY

f1 . . . fn

Fig. 7.6 The split-map-merge pattern. (a) Implicit declaration; (b) Explicit declaration

merge pattern: first, the array is split into multiple data sets, then one or more
functions are mapped onto each data set, and lastly the results are merged. We
have devised a special process constructor called parallelMapSY (see Fig. 7.6b)
for explicit declaration of this pattern (which is equivalent to StreamIt’s splitjoin
construct), and support for exploiting it for efficient execution on GPGPUs is already
available in f2cc. Our tool is also capable of combining chains of map processes into
a single map process in order to reduce the amount of function calls, which we refer
to as process coalescing.

Since discovering explicitly declared data parallelism is trivial (the data-parallel
component is contained in a single process), the challenge lies in detecting implicitly
declared data parallelism where a cluster of processes needs to be combined into
a data-parallel component. For the split-map-merge pattern, this is done using an
O.n2/ depth-first algorithm which searches for pairs of split and merge processes.
For a given pair, it then checks whether the data flow is contained between
the two processes, and whether the intermediate processes between the split and
merge processes consist of chains of map processes only. Once identified, the
implicitly declared data-parallel components are replaced by single processes of
the type which corresponds to the explicit declaration of the patterns (e.g., a data-
parallel component arranged as the split-map-merge pattern will be replaced by
a parallelMapSY process). This simplifies the later process schedule and code
generation stages as each such process will constitute a complete and separate
GPGPU kernel. It is possible to add support for exploitation of explicitly declared
patterns of data parallelism while leaving out discovery of implicit declarations. In
such instances, models containing implicit declarations will still be synthesized,
however, the data-parallel component will be executed sequentially on the CPU
instead of in parallel on the GPGPU.

7.3.3 Process Schedule Generation

As order of execution has an impact on the final output, a process schedule must
adhere to the effects of the perfect synchrony hypothesis (i.e., that process execution
and data propagation between processes take zero time). Finding such a schedule for
sequential models is straight-forward—one just needs to traverse the model along
its signals—but diverging data flows and feedback loops complicates this task.

124 G. Hjort Blindell et al.

function FINDSCHEDULE(M) returns schedule for model M
schedule empty list; queue empty queue
visitedG empty set
for each output signal S of M do

add process of S to head of queue
while queue is not empty do

visitedL empty set
P head of queue; remove head from queue
{p_schedule, ip} FINDPARTIALSCHEDULE(P, visitedG,

visitedL, queue)
if ipD “at beginning’’ then

insert p_schedule before head in schedule
else

insert p_schedule after process ip in schedule
add visitedL to visitedG

return schedule

function FINDPARTIALSCHEDULE(P, visitedG, visitedL, queue)
if P 2 visitedG then

return {empty list, P}
if P is a delay element then

add preceding process of P to end of queue
return {P, “at beginning’’}

schedule empty list
ip “at beginning’’
if P 62 visitedL then

add P to visitedL

for each preceding process O of P do
{p_schedule, new_ip} FINDPARTIALSCHEDULE(O,

visitedG, visitedL, queue)
append p_schedule to schedule
if new_ip¤ “at beginning’’ then

ip new_ip
append P to schedule

return {schedule, ip}

Listing 7.2 Process scheduling algorithm

Listing 7.2 shows the algorithm which was devised for f2cc. It is based on a
recursive depth-first search approach: starting from the model outputs, each process
Pis visited by traversing the model in the reverse data flow direction until no further
traversing is possible (if the traversal was done in the forward data flow direction,
then no schedule would be generated for models with no inputs). Partial schedules
are then built and concatenated until the entire model has been traversed, and a set
of visited processes is maintained in order to avoid redundant search and provide
termination when feedback loops (i.e., cyclic data flow) is encountered. However,
the synchronous MoC does not allow feedback loops without using a kind of delay
element, and the placement of the this element within the loop affects the final

7 Synthesizing Code for GPGPUs from Abstract Formal Models 125

Fig. 7.7 Examples of two
models with corresponding
process schedules

DP2

P1i o
SCHEDULE

D P2 P1

SCHEDULE
D P1 P2

D

i oP1

P2

schedule (as illustrated in Fig. 7.7). In this context, a delay element is a process
that for an input sequence hv1; : : : ; vni shifts the sequence in time by inserting
an initial delay value s, thus producing hs; v1; : : : ; vni (in ForSyDe this element
is implemented using the delaySY process constructor). Our scheduling algorithm
handles these situations by effectively acting as if the inbound edges to the delaySY
processes had been removed. Using data structures that can be accessed in constant
time, the algorithm finishes in O.n/ time.

7.3.4 Signal Data Type Inference

Signals are the vessels in the model through which data is propagated from
one process to another. It is therefore appropriate to retain the notion of signals
by implementing them as data containers in the synthesized code, typically as
either global or local C variables. However, the data types of the signals are not
immediately available from the formal model as they are only explicitly specified
as part of the C functions, which only appear in the map processes. Hence the
signals connected to other processes such as delay, split, and merge, the data types
have to be automatically inferred. In f2cc this is done using an algorithm that
recursively traverses the model until signal connected to a map process is found.
This information is then propagated backwards to the original signal, and hence the
data types ripple from signal-to-signal across the model as shown in Fig. 7.8. By
caching the data type found for each signal, the algorithm takes O.n/ time to find
the data types of all signals in a model. Failing to infer the data type for a signal
indicates that the model is invalid, which is also reported by f2cc.

7.3.5 GPGPU Code Generation

In Listing 7.3 we provide the CUDA code generated by f2cc using the GraphML file
given in Listing 7.1 as input. For each data-parallel component, which at this stage
will have been converted into a single-process equivalents, f2cc will generate a set of

126 G. Hjort Blindell et al.

__device__ int finc_func1(const int arg) {
return arg+1;

}

__global__ void finc_kernel(const int* in, int* out, int offset) {
unsigned int gi = (blockIdx.x * blockDim.x + threadIdx.x) + offset;
extern __shared__ int in_cached[];
if (gi < 3) { // Prevents out-of-bound threads from executing

int in_i = threadIdx.x * 1; int global_in_i = gi * 1;
in_cached[in_i + 0] = in[global_in_i + 0];
out[gi] = finc_func1(&in_cached[in_i]);

}
}

void finc_kernel_wrapper(const int* in, int* out) {
int* d_in; int* d_out; struct cudaDeviceProp prop;

// Get GPGPU device information
cudaGetDeviceProperties(&prop, 0);
int max_t_per_b = prop.maxThreadsPerBlock;
int smem_per_sm = (int) prop.sharedMemPerBlock;
int full_utc = max_t_per_b * prop.multiProcessorCount;

// Prepare device and transfer input data
cudaMalloc((void**) &d_in, 3 * sizeof(int));
cudaMalloc((void**) &d_out, 3 * sizeof(int));
cudaMemcpy((void*) d_in, (void*) in, 3 * sizeof(int),

cudaMemcpyHostToDevice);

// Execute kernel
struct KernelConfig c;
if (prop.kernelExecTimeoutEnabled) {

int num_t_left = 3; int offset = 0;
while (num_t_left > 0) {

int num_t_exec = num_t_left < full_utc ? num_t_left : full_utc;
c = calculateBestKernelConfig(num_t_exec, max_t_per_b, 1 * sizeof(int),

smem_per_sm);
finc_kernel<<<c.grid, c.threadBlock, c.sharedMemory>>>(d_in, d_out,

offset);
int num_executed_threads = c.grid.x * c.threadBlock.x;
num_t_left -= num_executed_threads;
offset += num_executed_threads;

}
}
else {

c = calculateBestKernelConfig(3, max_t_per_b, 1 * sizeof(int),
smem_per_sm);

finc_kernel<<<c.grid, c.threadBlock, c.sharedMemory>>>(d_in, d_out, 0);
}

// Transfer result back to host and clean up
cudaMemcpy((void*) out, (void*) d_out, 3 * sizeof(int),

cudaMemcpyDeviceToHost);
cudaFree((void*) d_in);
cudaFree((void*) d_out);

}

void executeModel(const int* in1, int* out1) {
// Declare and alias signal array variables with model input/output arrays
const int* vmodel_in_to_inc_in = in1;
int* vinc_out_to_model_out = out1;

// Execute processes
finc_kernel_wrapper(vmodel_in_to_inc_in, vinc_out_to_model_out);

}

Listing 7.3 CUDA code generated for the input file given in Listing 7.1. Note that the code has
been manually edited and shortened in order to fit this chapter

7 Synthesizing Code for GPGPUs from Abstract Formal Models 127

map

map

split mergei o

float fun(int a) . . .{ }

float fun(int a) . . .{ }

int[2]
int

int

float

float

float[2]

Fig. 7.8 Example of how the data types propagates along the signals

Fig. 7.9 The function stack
used by f2cc for executing
functions on the GPGPU

Data
function

Kernel

Invoker

wrapper functions (see Fig. 7.9). The C function that implements the computational
part of the data-parallel component—we will from now on call this the data
function—is wrapped by a kernel function. The kernel function is responsible for
providing the input data based on the thread block and thread IDs, managing the
shared memory, and preventing out-of-bound threads from executing. In the case of
the split-map-merge pattern, utilizing shared memory is done by first copying all
the data required by the data function from global memory to the shared memory,
and then passing the appropriate pointer to the data function. The kernel function is
then wrapped inside an invoker function, which manages memory transfers between
the CPU and GPGPU and sets up the thread configuration. The thread configuration
is decided at runtime such that the size of the thread blocks is the maximum size
supported by the graphics card (since the number of concurrent thread blocks per
SM is limited to 8 at a time, it is necessary to use as large thread blocks as possible
in order to achieve optimal performance). However, if the generated code makes use
of shared memory then the threads may require more shared memory than available,
which reduces the number of thread blocks per SM and thus inhibits performance.
To prevent this an algorithm is employed which incrementally decreases the thread
block size and calculates the amount of unused shared memory for that size. This
continues until either the amount reaches zero, or until the number of thread blocks
per SM becomes greater than 8 (upon which the configuration with the least waste

128 G. Hjort Blindell et al.

is selected). Some GPGPU execution environments may also enforce a maximum
execution time for each kernel invocation, and f2cc embeds additional code for
handling such situations when generating the invoker function.

7.3.6 Process Execution and Data Propagation

Executing the processes is straight-forward: the code simply needs to invoke the
processes’ C functions (if the process is of such type) with the appropriate parame-
ters according to the generated process schedule. Data propagation is then done via
a set of C variables—one for each signal—which are passed as parameters to the
C functions. Part of the future work will be to identify and remove redundant signal
variables, which will reduce the number of signal-to-signal copying operations and
thus increase performance. Delay element values are stored in static C variables
as these need to be retained between model invocations. For signals consisting of
multiple values, the tool builds the necessary arrays and manages the addressing
such that each process gets the correct input value.

7.3.7 Limitations

So far we have focused on supporting discovery and exploitation of the split-map-
merge pattern. Hence f2cc does not yet provide full support for all process types that
are available in ForSyDe, but the process type support as well as the recognition and
exploitation of additional patterns of data parallelism can be extended by defining
new process types, adding recognition of the new process types in the frontends,
and extending the backend to synthesize the appropriate C or GPGPU code for each
process type.

The synthesized GPGPU code also does not make full use of all available CUDA
resources. Currently only the shared memory is considered, but this is simply
because the potential resource usage is dependent on the pattern of data parallelism
being exploited. In the case of the split-map-merge pattern, there is little or no gain
in using the shared memory, or any other resource for that matter. Hence, these
resources can be put to better use when additional patterns are available.

Another significant drawback is that no cost analysis is currently performed of
whether it is actually beneficial to offload parallel computations onto the GPGPU.
This means that, depending on the performance of the GPGPU and CPU, the
generated CUDA code may run slower than if had been executed sequentially on
the CPU.

7 Synthesizing Code for GPGPUs from Abstract Formal Models 129

Problem
size

(pixels)

Execution time (s)

Pure C impl. C + GPGPU impl.

HW Syn. PC PC & SM

10,000 1.33 1.33 0.10 0.10
40,000 5.30 5.30 0.24 0.24
90,000 11.92 11.91 0.47 0.47

160,000 21.19 21.19 0.80 0.80
250,000 33.09 33.10 1.21 1.22
360,000 47.66 47.66 1.72 1.73
490,000 64.87 64.86 2.33 2.34
640,000 84.72 84.72 3.03 3.04
810,000 107.23 107.21 3.82 3.84

1,000,000 132.39 132.42 4.71 4.73

Maximum measured standard deviation: 2.53%

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p

Number of pixels (in hundreds of thousands)

Sy
n.

pu
re

C
Sy

n.
C

+
G

P
G

P
U

(P
C

)
Sy

n.
C

+
G

P
G

P
U

(P
C

&
SM

)

Problem
size

(pixel
domains)

Execution time (s)

Pure C impl. C + GPGPU impl.

HW Syn. Basic PC PC & SM

1,000,000 0.38 0.40 0.10 0.08 0.09
2,000,000 0.77 0.81 0.15 0.11 0.13
3,000,000 1.15 1.21 0.21 0.14 0.17
4,000,000 1.53 1.62 0.26 0.17 0.21
5,000,000 1.92 2.02 0.31 0.21 0.25
6,000,000 2.30 2.42 0.36 0.24 0.29
7,000,000 2.68 2.82 0.41 0.27 0.33
8,000,000 3.06 3.22 0.47 0.30 0.37
9,000,000 3.45 3.62 0.52 0.34 0.41

10,000,000 3.83 4.03 0.57 0.37 0.45

Maximum measured standard deviation: 0.86%

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p

Number of pixel domains (in millions)
Sy

n.
pu

re
C

Sy
n.

C
+

G
P
G

P
U

(B
as

ic
)

Sy
n.

C
+

G
P
G

P
U

(P
C

)
Sy

n.
C

+
G

P
G

P
U

(P
C

&
SM

)

a

b

Fig. 7.10 Experimental data. HW stands for hand-written, and “Syn.” refers to the code generated
by f2cc, where PC and SM indicates whether process coalescing or shared memory on the GPGPU
was used, respectively. (a) Test results from the Mandelbrot model; (b) Test results from the image
processing model

7.4 Experiments

To validate the correctness and efficiency of f2cc, the tool was applied on models
derived from two applications: a Mandelbrot generator, and an industrial-scale
image processor. For each model, a pure C implementation of the final code and
multiple implementations where the data-parallel components are executed on the
GPGPU were generated and evaluated (see Fig. 7.10). The output and performance
of the synthesized C code was compared with a hand-written C version which was
executed by a single thread on the CPU. The C code and GPGPU code was compiled
using g++ v.4.6.1 and nvcc release 3.2 v0.2.1221, respectively, with all optimizations
disabled. The test cases were executed on an Intel Core i7-2600 at 3.40 GHz, 16 GB
DDR3 RAM at 1333 MHz, and an NVIDIA Quadro 600 with 96 CUDA cores, 1 GB
DDR3 RAM. Each test case was run 10 times and then an arithmetic mean average
was calculated from the results.

130 G. Hjort Blindell et al.

7.4.1 Mandelbrot Tests

Generating Mandelbrot images is a task exhibiting an abundance of data parallelism.
Each pixel coordinate is converted into a corresponding coordinate within a
rectangular coordinate window in the complex plane. From the complex coordinate
an integer value is computed which determines to whether the coordinate is part of
the Mandelbrot set. In these tests, the window was bounded by .� 1

4
; � 1

4
/ and . 1

4
; 1

4
/.

Its model consists of a single data-parallel component, and when expressed using
parallelMapSY the model shrinks to a single process. The performance results of the
synthesized C and GPGPU code are given in Fig. 7.10a. We see that the synthesized
C code performs equally with the hand-written C version, and the synthesized
C + GPGPU code performs 28� better. The relatively low speedup for small input
data sizes is due to the restricted amount of computations which can be offloaded
to the GPGPU. As the input data size increases, so does the extent to which the
GPGPU overhead can be amortized. Since there is very little input data reuse and no
data sharing, using shared memory has no impact on the performance. The output of
the synthesized C code was exactly equal to that of the hand-written version, but for
the GPGPU code the integer values were slightly different for some coordinates. We
believe this discrepancy to be caused by the floating point units whose architecture
differ between the GPGPU and CPU.

7.4.2 Image Processing Tests

The second model was derived from an existing industrial-scale image processor
application provided by XaarJet AB, a company specializing in piezoelectric drop-
on-demand ink-jet printing. At its core, the model consists of a single data-parallel
component composed of 3 data-parallel segments. Using the parallelMapSY process
constructor and process coalescing, this model also shrinks to a single process. The
details of the C functions will not be covered as not to disclose any industry secrets.
The performance results are given in Fig. 7.10b. Again, the synthesized C code is
on par with the hand-written version, and the synthesized C + GPGPU code is 10�
faster. This relatively low speedup is due to lack of computational complexity in
the model, and the continued slope indicates that greater speedup is achievable
with even larger problem sizes. Furthermore, as the input data size per thread is
much greater than in the Mandelbrot model, the performance of the synthesized
GPGPU code is reduced when the shared memory is used since doing so will limit
the number of thread blocks that can simultaneously reside in an SM, which in turn
lowers performance. Like with the Mandelbrot tests, the synthesized code produces
slightly different output when executed on the GPGPU compared to the CPU. Since
floating point operations are involved, we again believe the differing architectures
of FPUs between the CPU and GPGPU to be the cause.

7 Synthesizing Code for GPGPUs from Abstract Formal Models 131

7.5 Related Work

Existing GPGPU programming frameworks can generally be divided into three
categories: declarative-based frameworks, where code to execute on the GPGPU is
marked by annotations; library-based frameworks, where the core is implemented as
programming libraries; or domain-specific languages (DSLs), where the framework
is embedded into an existing programming language.

Declarative-based frameworks include hiCUDA [12] and OpenMP-to-GPGPU
[16]. In hiCUDA parallelizable C code is annotated with pragma directives which
control dynamic memory allocation, thread configuration, work distribution per
thread over loops, and more. The hiCUDA compiler then processes the code
to generate GPGPU kernels based on the annotations. The framework therefore
relieves the developer from having to produce the data addressing schemes, handle
the CPU-GPGPU data transfers, and manage the shared memory. Consequently,
hiCUDA relies on the developer to identify and tweak the code for execution on
the GPGPU. In OpenMP-to-GPGPU the existing OpenMP pragma notations are
used to identify parallelizable code, but these miss the information about thread
blocks and shared memory. In both cases, the frameworks completely lack a formal
foundation and are thus unsuitable for automated verification and testing.

Library-based frameworks include Thrust [2] and SkePU [7], which are both
implemented in CCC and provide a set of skeletons (a skeleton is akin to the notion
of process constructors used in ForSyDe, see Sect. 7.2.2). The developer provides
the computation part to the skeletons, and the skeletons then decide the appropriate
thread configuration, memory management, and other execution-related details.
Unlike Thrust, SkePU is also capable of generating code for multi-core CPUs,
OpenCL, and single-threaded C code. But although the use of skeletons provides
a more formal base than pragmas, they are not based on a well-defined model of
computation, and can therefore not be analyzed using existing mathematical tools.
Moreover, the skeletons do not extend into the rest of the application.

Two GPGPU-oriented DSLs, both embedded in Haskell (a purely functional
programming language), include Accelerate [6] and Obsidian [20]. Accelerate also
uses the notion of skeletons by providing a collection of arrays and array operations
that can be offloaded on a GPGPU. In order to compile into an application that
can be executed on a GPGPU, Accelerate comes with a Haskell-to-CUDA compiler
which translates Accelerate-based Haskell programs into CUDA-annotated C code.
Obsidian is similar to Accelerate but instead provides a collection of combinators
that allow array functions to be converted into GPGPU kernels. Through the
combinators, the developer gains access to use of the shared memory and insertion
of synchronization barriers, but this requires the developer to know when and how
to use the combinators in order to match the underlying architecture of the GPGPU.
Moreover, neither is based on a well-defined MoC, which again inhibits automated
verification and testing.

132 G. Hjort Blindell et al.

7.6 Conclusion

In this chapter we have presented f2cc, a software synthesis tool which is capable
of synthesizing abstract formal models based on the synchronous model of com-
putation into GPGPU code. Unlike existing frameworks which elevate the task of
GPGPU programming, f2cc operates on abstract formal models which enables the
potential to apply automated tools on the applications for verification, testing, and
design space exploration. Through experimental validation, we have shown that the
tool produces correct and high-performing GPGPU code from its input models.

7.7 Future Work

Future work will primarily focus on integrating the results of Attarzadeh Niaki [1]
to achieve a completely automated flow from ForSyDe-SystemC to GPGPU code.
Another consideration is more efficient signal handling methods to eliminate redun-
dant memory transfers between execution of separate data-parallel components.

In addition, the number of recognizable and exploitable patterns of data par-
allelism that can be executed on the GPGPU will be expanded. For example, a
common pattern is reduction data parallelism, which is illustrated in Fig. 7.11.
Generating efficient implementations of reduction patterns is more difficult com-
pared to split-map-merge patterns because it requires more efficient use of the
shared memory. Moreover, a naïve implementation will also lead to so-called thread
divergence which hampers performance when executed on the GPGPU. Another
pattern of data parallelism is a variant of the split-map-merge pattern where parts
of the input data is used by multiple processes. A common instance is where the
input data is formed as a 2-dimensional array which is then divided into slices
that partially overlap one another (see Fig. 7.12). Efficient implementations of such
patterns often require use of additional resources such as constant cache and texture
memory.

Lastly, we also want to extend f2cc to make better judgement of when it is
beneficial to use the GPGPU. Initial work has been done by Ungureanu [22] to

Fig. 7.11 Reduction data
parallelism

f f f f

f f

f

i1 i2 i3 i4 i5 i6 i7 i8

o

7 Synthesizing Code for GPGPUs from Abstract Formal Models 133

Fig. 7.12 A 2-dimensional
input data set, where each
slice A1 through A9 consists
of 4� 4 elements and
partially overlaps with its
neighboring slices

A1 A2 A3

A4 A5 A6

A7 A8 A9

include the relative costs of executing a particular process on a specific target
platform, but it is still at an experimental stage where the costs are computed and
annotated by hand.

References

1. Attarzadeh Niaki, S.H., Jakobsen, M.K., Sulonen, T., Sander, I.: Formal heterogeneous system
modeling with SystemC. In: Forum on Specification and Design Languages, FDL 2012, pp.
160–167, Vienna, Austria, September 2012

2. Bell, N., Hoberock, J.: Thrust: A productivity-oriented library for cuda. In: Wen-mei, W.H.
(ed.) GPU Computing Gems, Jade edition, Chapter 26, pp. 356–371. Morgan Kaufmann, Los
Altos, CA (2011)

3. Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time systems. Proc.
IEEE 79(9), 1270–1280 (1991)

4. Berry, G., Cosserat, L.: The ESTEREL synchronous programming language and its mathe-
matical semantics. In: Brookes, S., Roscoe, A., Winskel, G. (eds.) Seminar on Concurrency.
Lecture Notes in Computer Science, vol. 197, pp. 389–448. Springer, Berlin (1985)

5. Brandes, U., Eiglsperger, M., Lerner, J.: GraphML Primer (June 2004). http://graphml.
graphdrawing.org/primer/graphml-primer.html (last visited 2014-05-19).

6. Chackravarty, M.M.T., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating haskell
array codes with multicore GPUs. In: Proceedings of the 6th Workshop on Declarative Aspects
of Multicore Programming (DAMP’11), pp. 3–14 (2011)

7. Dastgeer, U., Kessler, C.W., Thibault, S.: Flexible runtime support for efficient skeleton
programming on hybrid systems. In: Proceedings of the International Conference on Parallel
Programming (ParCo’11), Heraklion, Greece (2011)

8. Edwards, S., Lavagno, L., Lee, E.A., Sangiovanni-Vincentelli, A.: Design of embedded
systems: formal models, validation, and synthesis. Proc. IEEE 85, 366–387 (1997)

9. Garland, M., Kirk, D.B.: Understanding throughput-oriented architectures. Commun. ACM 53,
58–66 (2010)

10. Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phillips, E.,
Zhang, Y., Volkov, V.: Parallel computation experiences with cuda. IEEE Micro 28, 13–27
(2008)

11. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming
language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

12. Han, T.D., Abdelrahman, T.S.: hiCUDA: high-level GPGPU programming. IEEE Trans.
Parallel Distrib. Syst. 22, 78–90 (2011)

http://graphml.graphdrawing.org/primer/graphml-primer.html
http://graphml.graphdrawing.org/primer/graphml-primer.html

134 G. Hjort Blindell et al.

13. Hjort Blindell, G.: Synthesizing software from a ForSyDe model targeting GPGPUs. Master’s
thesis, KTH Royal Institute of Technology, School of Information and Communication,
Stockholm, Sweden (2012)

14. Kirk, D.B., Wen-mei, W.H.: Programming Massively Parallel Processors. Morgan Kaufmann,
Los Altos, CA (2010)

15. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of computation.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 17(12), 1217–1229 (1998)

16. Lee, S., Min, S.-J., Eigenmann, R.: OpenMP-to-CUDA: a compiler framework for automatic
translation and optimization. In: Proceedings of the 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’09), vol. 44, pp. 101–110 (2009)

17. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: Nvidia Tesla: a unified graphics and
computing architecture. IEEE Micro. 30, 39–55 (2010)

18. Nickolls, J., Dally, W.J.: The GPU computing era. IEEE Micro 30, 56–69 (2010)
19. Sander, I., Jantsch, A.: System modeling and transformational design refinement in ForSyDe.

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 23, 17–32 (2004)
20. Svensson, J., Claessen, K., Sheeran, M.: GPGPU kernel implementation and refinement

using obsidian. In: Proceedings of the International Conference on Computational Science
(ICCS’10), vol. 1, pp. 2065–2074 (2010)

21. Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: a language for streaming applica-
tions. In Proceedings of the 11th International Conference on Compiler Construction, CC ’02,
pp. 179–196 (2002)

22. Ungureanu, G.: Automatic software synthesis from high-level ForSyDe models targeting
massively parallel processors. Master’s thesis, KTH Royal Institute of Technology, School of
Information and Communication, Stockholm, Sweden (2013)

Chapter 8
A Framework for Distributed,
Loosely-Synchronized Simulation of Complex
SystemC/TLM Models

Christian Sauer, Hans-Martin Bluethgen, and Hans-Peter Loeb

Abstract Today’s virtual prototypes model complex many-core platforms. In
application domains such as network processing, they may comprise hundreds
of processors, which makes simulation speed the key issue due to the single-
threaded execution semantics of SystemC. We propose CoMix, the Concurrent
Model Interface, for the distributed simulation of large-scale SystemC models.
CoMix provides robust communication between simulator peers, enables their loose
synchronization, and manages the overall life cycle. It is an overlay technology
neither requiring modified simulators nor depending on a hosts’ communication
infrastructure. The CoMix framework is small (2k Lines of CCC Code) and
easily deployable. We quantify its overhead on synthetic benchmarks and observe
reasonable speedups for synthetic benchmarks as well as a large real-world example,
e.g., 3.3X and 4X for a 4-peer simulation.

8.1 Introduction

Enabled by maturing standards, the availability of platform libraries, and wider tool
support, SystemC (SC)-based simulation models are increasingly deployed early
in the design cycle of System-on-Chip (SoC) platforms. Such models facilitate
the development of embedded software for full, highly complex systems, as they
abstract irrelevant details for faster simulation while providing sufficient insights
into the interplay between software and hardware. This way, high-quality software
can be developed sooner and more concurrently to a platform’s hardware. In
addition, these models may serve as entry points into exploration, design, and
verification flows, because they capture the system intent in a functionally correct
way [2].

C. Sauer (�) • H.-M. Bluethgen • H.-P. Loeb
Cadence Design Systems, Munich, Germany
e-mail: sauerc@cadence.com

© Springer International Publishing Switzerland 2016
F. Oppenheimer, J.L. Medina Pasaje (eds.), Languages, Design Methods, and Tools
for Electronic System Design, Lecture Notes in Electrical Engineering 361,
DOI 10.1007/978-3-319-24457-0_8

135

mailto:sauerc@cadence.com

136 C. Sauer et al.

A Board – Peer Example Board

ControlSoC

Nx Core1

other

Accmem

IO

Integrated
eSW

Debugger

HW
Models

Simulator
Instances

gdb

External
Traffic Gens

TG#1

Realview

Nx CPU

Nx uEeng

TG#2

soc

Nx Core1

Mx Core2

uEmem

IOsoc

Nx Core1

Mx Core2

uEmem

IO soc

Nx Core1

Mx Core1

uEmem

IO

other

Fig. 8.1 Generalized SW development use case for a distributed simulation with heterogeneous
debug and simulation tools

Contemporary SoCs are complex many-core platforms [3]. Especially network
infrastructure, such as radio base stations or routers, may easily comprise multiple
SoCs each with 10s–100s of processor cores along with memories, interconnect
hierarchies, and various accelerator and IO modules. Models in this domain can
instantiate 10s of thousands of SC objects. Their joint simulation with instruction-
precise processor models makes the speed of the simulation a key issue. With
fixed requirements on abstraction level (e.g., programmer’s view) and modeling
techniques (TLM—transaction level modeling), other ways are needed to improve
simulation speed and to tackle the complexity of the models. Distributing the
SystemC/TLM simulation into multiple parts that run in parallel, potentially on
different simulation hosts, is a promising approach.

Yet, for the model to be widely usable, a suitable solution should support the
generalized use case as in Fig. 8.1. A hierarchical simulation model is set up to
run a multi-SoC simulation in a distributed fashion. Its parts run on different
SC simulators and comprise heterogeneous cores which are to be debugged
simultaneously with different tools, be it a core’s native tool chain, standalone 3rd-
party debuggers, or integrated multi-core debuggers. None of these tools nor the
used communication infrastructure must monopolize the execution and block other
tools and simulators from functioning. These requirements exclude prior solutions
relying on IO virtualization of dedicated SoC interfaces [1] or on changes to the SC
simulation engine [12, 15, 17].

We propose CoMix, the Concurrent Model Interface, as orchestrating infras-
tructure for the distributed simulation of large-scale SystemC models. CoMix
provides robust, asynchronous communication between peers, enables their loose
synchronization, and comprehensively manages the overall life cycle. It is a
modular, vendor-independent overlay technology supporting the full range of SC
and TLM communication primitives.

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 137

Before going into the key principles of our solution in Sect. 8.3, we overview
SystemC and TLM briefly in Sect. 8.2. Section 8.4 details the implementation of the
CoMix framework and discusses its interaction with the SystemC/TLM simulation
libraries. Section 8.5 evaluates and characterizes CoMix using a set of synthetic
benchmarks as well as a real-world virtual prototype. We compare our approach to
related work (Sect. 8.6) and conclude on its features in Sect. 8.7.

8.2 SystemC and TLM

SystemC [9] is a system modeling language and CCC class library which adds
distinct notions of hierarchy, concurrency, and simulation time to CCC. A system
is composed hierarchically from modules that communicate explicitly via ports/ex-
ports and channels. Its actual function is described within the modules as a collection
of concurrent SC processes which explicitly synchronize on events (notify/wait).
These processes are scheduled cooperatively. Execution is thread-safe as the SC
scheduler runs them sequentially within a single OS thread.

TLM [9] is a modeling library on top of SC, which provides abstractions for
the communication protocol and interfaces between SC modules. Modules may use
sockets (sets of ports and exports) to exchange transactions between initiators and
targets. Such exchange may be split into several phases or timing points, increasing
the temporal resolution of the transfer. Blocking transfers have two timing points,
while non-blocking transfers have at least four timing points. The former are
modeled as a single function call that blocks the initiator’s execution until the result
is available, while the latter enable continued execution, potentially initiating further
transactions before the first one completes (via callbacks, sequencing through the
phase diagram, cf. Fig. 8.4).

TLM also introduces the concept of temporal decoupling, allowing processes
to run ahead of the simulation time up to an upper limit, the quantum. At points of
communication, a SC process may choose to first synchronize its local time with the
global simulation time, i.e., to yield to other processes, or may continue its execution
unsynchronized, maintaining a delta time. Synchronization guarantees correctness
of an access, e.g., to a shared state. Unsynchronized continuation just accesses the
current state accepting the temporal error associated with accessing that state too
early or too late. Temporal decoupling is commonly used in the context of virtual
platform simulations where the software stack does not depend on the low-level
timing details of the hardware, which means the temporal error does not manifest
functionally. Trading off simulation speed and accuracy, the error can be controlled
by the value of the quantum, which depends on the application: A too large value
may harm the system’s function (e.g., trigger a software timeout), while a too small
value yields frequently and slows down the simulation.

138 C. Sauer et al.

8.3 CoMix Fundamentals

CoMix is a modular collaboration infrastructure which allows heterogeneous SC
simulators to concurrently execute a distributed SC/TLM model.

Partitioned SC/TLM Model As a prerequisite, a simulation model, i.e., a hier-
archy of communicating SC modules, must be cut and grouped into parts for the
individual simulators, as shown in Fig. 8.2. In the process, all connection cuts are
assigned a unique identifier (cut id). Such a partitioning does not necessarily have
to be along SC hierarchies [12, 13]. Yet, following natural boundaries of SoCs or IP
subsystems will avoid hierarchy inconsistencies and maintain accessibility for tools.
This may require a structural transformation of the original model. The result is a
collection of SC modules for each part with open ports or sockets representing a cut.
In a sequential simulation, these parts can be instantiated, connected, and simulated
together, e.g., for verification purposes (Fig. 8.2, top).

In the distributed case, the individual parts are loaded into different simulators
(Fig. 8.2, bottom). On each of the simulators a CoMix peer module is inferred and
all open ports are bound to CoMix connectors either directly (TLM sockets) or via
a channel (SC ports). Alternatively this may happen explicitly, coded as part of the
SC netlist.

Network of Peers Before the distributed simulation starts, those peers that share at
least one cut SC/TLM connection establish a direct TCP/IP link for the exchange of
messages. Peers without communication requirements are not connected and do not
synchronize.

Synchronization CoMix follows a loosely timed synchronization scheme that is
similar to the concept of temporal decoupling in TLM. Each simulator advances its
local time up to a configurable quantum, called the sync credit. Once the quantum
has been reached (i.e., available credit has been consumed), synchronization with
connected peers takes place, which means credit is granted to connected peers. The
simulation halts if and only if there is insufficient credit available. Such a scheme
preserves and exploits TLM’s temporal decoupling semantics as each simulator may
advance SC time locally at its own speed during sync intervals. As with TLM,
the temporal error between peers can be controlled by the sync interval. Credits
may be received any time, not just at the end of sync intervals. Thus, depending
on the duration of the sync interval and the load distribution between peers, the
slowest simulator can be expected to never stop its advancement of SC time, which
effectively minimizes the synchronization overhead for the overall execution time.

Communication During the decoupled execution, communication between SC
modules on different peers may take place. Such communication carries a time
stamp that can be used to synchronize with a target’s local simulation time. Recog-
nizing the need for different, application-dependent schemes, CoMix encapsulates
the handling of a connection’s synchronization requirements within the associated
pair of connectors. They may synchronize to the local time, so that a message is

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 139

Single Simulator Instance

Board A Board B

SoC

Nx Core1

other

Accmem

Control

Nx CPU

Nx uEeng

mem

I/F1 I/Fn...

SoC

Nx Core 1

Mx Core n

uEmem
...

I/F1 I/Fn...

SoC

Nx Core 1

Mx Core n

uEmem

...

I/F1 I/Fn...

SoC

Nx Core 1

Mx Core n

uEmem

...

I/F1 I/Fn...I/F1 I/Fn...

Interconnect 1

Interconnect n

... ...

I/F1 I/Fn...

SIM 2

Board B

SIM 3SIM 1

Board A

SoC

Nx Core1

other

Accmem

Control

Nx CPU

Nx uEeng

mem

I/F1 I/Fn...

SoC

Nx Core 1

Mx Core n

uEmem

...

I/F1 I/Fn...

SoC

Nx Core 1

Mx Core n

uEmem

...

I/F1 I/Fn...

SoC

Nx Core 1

Mx Core n

uEmem

...

I/F1 I/Fn...I/F1 I/Fn...

Interconnect 1

Interconnect n

...

I/F1 I/Fn...

Peer Peer Peer

Socket Communication

Fig. 8.2 A model (cf. Fig. 8.1) (top) is partitioned manually cutting SC connections, and
distributed across three peers using CoMix (bottom), which handles the communication between
cuts

not processed before its creation time, or may handle it immediately at the time
of its reception. In both cases, the order of transactions within the same stream is
maintained while independent streams may interleave differently towards the same
target.

140 C. Sauer et al.

SC Support and Simulator Interaction CoMix supports the full range of Sys-
temC communication primitives, i.e., communication via ports and channels as well
as communication via TLM sockets. A current limitation is the lack of DMI support
between sockets on different hosts. Life cycle management is controlled by the
four simulator callbacks into the CoMix Peer. Interaction towards the simulator is
required in only two cases: (1) if sync credit is lacking, the simulator is starved, and
(2) in the event of SC communication, which is received asynchronously by CoMix
and results in an async_request_update() call [9].

8.4 CoMix Framework

CoMix connects the distributed parts of a simulation, provides robust communi-
cation between peers, enables their loose synchronization, and comprehensively
manages the overall life cycle. The framework is implemented in CCC and only
relies on SC/TLM and Boost’s ASIO library.

Figure 8.3 shows the main building blocks of the framework and their interaction.
A single instance of the CoMix peer manages its enclosing simulation in the
distributed setup. It comprises a multi-socket object, an asynchronous receive queue,
and functions for message routing, life cycle management, and the synchronization
with other peers. This peer is associated with a collection of CoMix connectors that
are bound to the previously open SC ports/sockets of the model. These connectors
translate SC communication into message sequences and vice versa. The peer itself

Async Rx Queue

User
SC

Model
(Part)

CoMix Peer

TCP/IP Sock

...

Conn

Conn

Conn

Multi Socket

TCP/IP Sock

TCP/IP Sock

...

Tx Messages

Conn=L1(id)

Sock=L2(id)

Sync

Rx Messages

Life Cycle
(SC Callbacks)DiscoveryTCP/IP Sock

SC ProcessIO Process

Fig. 8.3 Components of the CoMix framework

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 141

handles messages related to synchronization and life cycle management directly.
Within the multisocket class an extra, shared OS thread is introduced which handles
most IO operations asynchronously to SystemC executed in the main thread. Only
outbound messages are sent synchronously.

8.4.1 CoMix Peer

Most of the CoMix function is encapsulated within the CoMix peer. As an SC object
this class can be integrated into a model like any other module. All peers within one
distributed simulation are identical.

During startup, peers discover each other and form a mesh as required for the
connectivity of the simulation model. For this, the peers run a discovery protocol in
which the peer started first becomes a super peer running on a specified listening
address (IP, port). Others can connect to it, authenticate, and announce their local
cut ids together with their own listening address. The super peer broadcasts this
info to all its other connections. Upon reception of such a message a peer opens
a direct and authenticated connection to the originating address, but only if they
share a cut id. Once all local cut ids are associated with their remote counterpart,
a peer’s setting is considered sane and the connection to the super peer may be
closed. Tables with remote and local cut ids are kept for routing messages locally to
the socket connection (send) or the local CoMix connector (receive), respectively.

Since the reception of a message is asynchronous in a separate OS thread, it
must be explicitly synchronized with the SystemC simulation. This is handled by
the receive queue which guards accesses with locks and asynchronously notifies the
kernel. In the event of written data a SC process is activated, which performs the
lookup and forwards the message to the appropriate connector.

The peer also handles the synchronization of SC time between simulators.
Listing 8.1 shows the pseudo code for one of the synchronization modes, the
fully starved mode. After using up its own credit (6), a peer sends credit to all
of its connected peers (7) and then starves the SC simulation completely within
the inner loop (9) until it received sufficient credits from its peers. While SC is
blocked, asynchronous reception and processing of messages must continue, hence
the asynchronous receive queue is read periodically (12).

Listing 8.1 Fully-starved synchronization scheme
1
2 void s y n c _ t h () {
3
4 whi le (! canSync (SIM_STOP)) {
5
6 w a i t (s c _ t i m e (c r e d i t _ n s , SC_NS)) ;
7 s e n d _ c r e d i t (ALL_PEERS , SYNC_CREDIT , c r e d i t _ n s) ;
8
9 whi le (! canSync (QUOTA_SYNC)) {

10 i f (canSync (SIM_STOP)) break ;
11 u s l e e p (i n t e r v a l _ u s) ;
12 nb_recvMessage () ;

142 C. Sauer et al.

13 }
14
15 c l e a r S y n c (QUOTA_SYNC) ;
16 }
17
18 s e n d _ c r e d i t (ALL_PEERS , STOP_CREDIT) ;
19 s c _ s t o p () ;
20 }

Another synchronization mode is the delta-only mode, partly shown in List-
ing 8.2. In this case, the SC simulator is not starved but continues advancing time
in delta cycles (12) while waiting for sync credit. This way transactions arriving
late may still be processed within the past quota, which can reduce the temporal
error at the initiator side. Explicit reads from the asynchronous receive queue are
not required.

Listing 8.2 Delta-only synchronization scheme
3
4 . . .
5
6 w a i t (s c _ t i m e (c r e d i t _ n s , SC_NS)) ;
7 s e n d _ c r e d i t (ALL_PEERS , SYNC_CREDIT , c r e d i t _ n s) ;
8
9 whi le (! canSync (QUOTA_SYNC)) {

10 i f (canSync (SIM_STOP)) break ;
11 u s l e e p (i n t e r v a l _ u s) ;
12 w a i t (SC_ZERO_TIME) ;
13 }
14
15 . . .

The outer loop (4) handles the synchronization at the end of the simulation.
Before a peer stops (19), it sends out stop credit to its peers (18), enabling them
to stop as well. Further life cycle management is achieved by means of SystemC’s
simulation callbacks, which are forwarded to notify peers.

8.4.2 Connectors

CoMix connectors link open TLM and SC ports of a partitioned design with the
CoMix messaging infrastructure. They are bound to their respective SystemC port
or TLM socket and associated with the CoMix peer. An extensible set of CoMix
connectors exists that can be categorized by:

1. Synchronization of inbound messages. Some connectors contain a payload event
queue for inbound messages, which naturally handles their synchronization to the
local SC time on a per connection and message type basis. For instance, scsignal
value updates or btransport calls may be synchronized; transportdbg calls do not
consume time and are not synchronized.

2. Handling of delta time. Outbound TLM connectors may synchronize a delta-
time before sending a message or just annotate it. Similarly, inbound transactors
may annotate future time as delta time on transactions instead of synchronizing
it locally.

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 143

3. SC interfaces. Connectors for the different SC port types and TLM socket types
are specialized from common bases. In some cases, standard-compliant protocol
transformations are required, e.g., for transitioning through approximately timed
communication, see Fig. 8.4.

4. Optimized return paths. Connectors are fully SC/TLM protocol compliant, which
requires signaling back the result of a (potentially erroneous and delayed)

TLM_ACCEPTED

BEGIN_REQ

TLM_ACCEPTED

END_REQ

TLM_ACCEPTED

BEGIN_RESP

TLM_ACCEPTED
or

TLM_COMPLETED

END_RESP

TLM_ACCEPTED

BEGIN_REQ

TLM_ACCEPTED

END_REQ

TLM_ACCEPTED

BEGIN_RESP

END_RESP

TLM_ACCEPTED TLM_ACCEPTED
or

TLM_COMPLETED

TLM_ACCEPTED

BEGIN_REQ

TLM_ACCEPTED

END_REQ

TLM_ACCEPTED

BEGIN_RESP

END_RESP

Initiator
a e

b f

c g

d h

Target Initiator TTSI TISI Target

TLM_UPDATED

BEGIN_REQ

(END_REQ)

TLM_ACCEPTED

BEGIN_RESP

TLM_ACCEPTED
or

TLM_COMPLETED

END_RESP

TLM_ACCEPTED

BEGIN_REQ

TLM_ACCEPTED

END_REQ

TLM_ACCEPTED

BEGIN_RESP

END_RESP

TLM_ACCEPTED TLM_ACCEPTED
or

TLM_COMPLETED

TLM_ACCEPTED

BEGIN_REQ

(END_REQ)

TLM_ACCEPTED

BEGIN_RESP

END_RESP

Initiator Target Initiator TTSI TISI Target

TLM_UPDATED

BEGIN_REQ

(BEGIN_RESP)

TLM_ACCEPTED
or

TLM_COMPLETED

END_RESP

TLM_ACCEPTED

BEGIN_REQ

TLM_ACCEPTED

BEGIN_RESP

END_RESP

TLM_ACCEPTED TLM_ACCEPTED
or

TLM_COMPLETED

TLM_ACCEPTED

BEGIN_REQ

(BEGIN_RESP)

END_RESP

Initiator Target Initiator TTSI TISI Target

TLM_UPDATED

BEGIN_REQ

(BEGIN_RESP)

TLM_ACCEPTED
or

TLM_COMPLETED

END_RESP

Initiator Target Initiator TTSI TISI Target

TLM_ACCEPTED

BEGIN_REQ

(END_RESP)

BEGIN_RESP

or
TLM_COMPLETED

TLM_UPDATED

TLM_UPDATED

BEGIN_REQ

(BEGIN_RESP)

END_RESP

TLM_ACCEPTED
or

TLM_COMPLETED

TLM_COMPLETED

BEGIN_REQ

TLM_COMPLETED

BEGIN_REQ

Initiator Target Initiator TTSI TISI Target

TLM_ACCEPTED

BEGIN_REQ

BEGIN_RESP

TLM_ACCEPTED

END_RESP

TLM_ACCEPTED

TLM_COMPLETED

BEGIN_REQ

TLM_COMPLETED

BEGIN_REQ

Initiator Target Initiator TTSI TISI Target

TLM_ACCEPTED

BEGIN_REQ

BEGIN_RESP

(END_RESP)
or

TLM_COMPLETED

TLM_UPDATED

TLM_ACCEPTED
or

TLM_COMPLETED

TLM_ACCEPTED

BEGIN_REQ

TLM_ACCEPTED

END_REQ

TLM_ACCEPTED

BEGIN_RESP

END_RESP

Initiator Target Initiator TTSI TISI Target

TLM_ACCEPTED

BEGIN_REQ

TLM_ACCEPTED

END_REQ

BEGIN_RESP

(END_RESP)
or

TLM_COMPLETED

TLM_UPDATED

TLM_ACCEPTED

BEGIN_REQ

TLM_ACCEPTED

END_REQ

BEGIN_RESP

(END_RESP)
or

TLM_COMPLETED

TLM_UPDATED

Initiator Target Initiator TTSI TISI Target

TLM_ACCEPTED

BEGIN_REQ

TLM_ACCEPTED

END_REQ

BEGIN_RESP

(END_RESP)
or

TLM_COMPLETED

TLM_UPDATED

BEGIN_REQ

BEGIN_RESP

(END_RESP)
or

TLM_COMPLETED

TLM_UPDATED

TLM_UPDATED
(END_REQ)

TLM_ACCEPTED
or

TLM_COMPLETED

BEGIN_REQ

TLM_ACCEPTED

BEGIN_RESP

END_RESP

TLM_UPDATED
(END_REQ)

Remote Communication Additional Transaction
TTSI = TLM Target Socket Interconnector TISI = TLM Initiator Socket Interconnector

Stop

Fig. 8.4 Protocol conversion by nb-transport connectors. Variants a–h show different state
transitions between initiator and target for the uncut case (left) and for the distributed case with
connectors (right)

144 C. Sauer et al.

transaction to the initiator. While this cannot be avoided for, e.g., blocking read
accesses, it may not be required in all applications. In case of writes, for instance,
optimized connectors may skip the status response and instead assert on potential
errors. This way, a blocking write call will never block its initiator.

Connectors were designed such that they can be created and configured dynamically
by a factory and configuration infrastructure [14]. This enables setting their cut ids
through a parameter interface from a suitable design description, which may also
comprise the partitioned design.

8.4.3 CoMix Multisocket

The communication between peers is based on TCP/IP sockets which are accessed
via the boost asio library. The CoMix multisocket holds a set of connections and
a TCP acceptor. It also manages the shared OS thread for the asynchronous IO
operations. Messages exchanged over socket connections are translated into boost
property trees. Using this standard format ensures that arbitrary message types with
widely differing content can be handled robustly in a generic way. At the lowest
level of the socket IO library, functions are available for easy serialization of these
data structures to character streams and vice versa.

8.4.4 Framework Characteristics

One design goal of our framework was to keep code complexity as low as possible
by using standard libraries for both stability and maintainability. Although CoMix
provides a powerful feature set, its complexity in terms of lines of code with 2k LoCs
remains fairly low, cf. Table 8.1. The SC library, for instance, has 40X as much code.
The framework is extensible and even supports, e.g., interfaces to non-SystemC
tools, such as (remote) debuggers or traffic generators, by means of specialized peers
and connectors.

Table 8.1 Code size of the
CoMix framework compared
to the SC/TLM library (as
reported by cloc)

CoMix Lines of code

Base 572

Peer 275

Connectors, btransport(), and signal 492

Connectors, nbtransport(), other 648

CoMix total 1.987

SystemC & TLM (2.3.0) 78.359

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 145

8.5 Case Study and Results

We apply the CoMix framework to the domain of packet processing and deploy
it to a complex real-world many-core platform used for software development. In
addition, we report achievable speedups and quantify the temporal error using a set
of synthetic benchmarks.

8.5.1 Setup and Measurements

CoMix was tested using an integrated regressable test bench which starts and
controls parallel execution of peers in individual shells. Peers run on different
processors. Simulations were carried out on virtual machines using 2–4 host CPUs
running CentOS as well as on a dedicated Intel-Xeon servers with four cores running
RHEL.

We measure the application’s runtime as the wall clock difference between
end- and start-of-simulation callbacks. In distributed settings, we report the overall
execution time as runtime of the slowest peer. Speedups are calculated dividing non-
distributed by distributed runtime.

The computation-to-runtime ratio is calculated as the wall clock time a system
spends between issuing transactions, divided by the overall runtime. For the
synthetic benchmarks, this, e.g., is the time a producer spends in the loop body,
outside of the (blocking) send-transaction call. As a more directly measurable
variant, we also look at the number of transactions per second (wall clock) as an
indication of the communication/computation ratio. The more computation a model
performs per transaction, the fewer transactions are handled per second. In settings
with constant total numbers of transactions, the throughput is also indicative of the
overall runtime.

As an indication for the accumulated temporal error, we measure the overall SC
time required for the execution of a particular software task (e.g., communicating
a fixed number of tokens). The overall temporal error is calculated as the relative
difference in SC time between distributed and non-distributed runs. A distributed
simulation may require extra SC simulation time because initiators are waiting (i.e.,
are blocked) for responses from targets while their SC time advances.

8.5.2 Achievable Speedup

In order to quantify the overhead of our solution, we first look at a synthetic
benchmark which combines a producer (P) and consumer (C) in one simulation
part. The producer has a token-generating process that can be adjusted in its
computational load (i.e., SC and host time consumption) per token, and issues a

146 C. Sauer et al.

Fig. 8.5 Speedups for the
synthetic benchmark
distributed to N D 2::4 peers
compared to the uncut
simulation (N D 1) N=4

N=1

N=2

N=3

Sp
ee

du
p

Comp./Runtime [%]

0

0,5

1

1,5

2

2,5

3

3,5

4

0 20 40 60 80 100

token at the end of each iteration. The consumer receive tokens and verifies their
sequence and inter arrival time without consuming SC time, it too can be adjusted
in its computational load. Connectors are fully TLM compliant, which requires back
signaling (cf. Sect. 8.4.2). Four of these parts are chained in a ring (P1-C2.P2-C3.P3-
C4.P4-C1) and distributed onto up to four simulators, resulting in a symmetric
load scenario. An additional parameter is the sync interval of the distributed parts
which is kept constant for the measurement of the speedup (cf. Fig. 8.5). For the
four simulator setting, for instance, a reasonable speedup of up to 3.2 is achieved
depending on the computation to communication ratio. As expected, the figure
confirms that no or only little speed can be gained for communication dominated
settings (0–20 %).

8.5.3 Synchronization Interval

We look at a distributed producer-consumer benchmark (P1-C2) to analyze the
sensitivity on the sync interval and report transactions/s in Fig. 8.6. Both parts have
identical, generation-rate independent background task loads that are scheduled at
1=10th of the production interval. The throughput is impacted by the sync interval.
Fine-grain synchronization limits the throughput, caused by the increased numbers
of sync messages (also shown in the diagram) saturating the communication

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 147

0

5

10

15

20

25

0

50

100

150

200

250

300

350

400

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Sy
nc

 M
es

sa
ge

s
/

Tr
an

sa
ct

io
n

 [n
]

Tr
an

sa
ct

io
ns

 /
 s

 [
n]

Sync Interval / Production Interval

Transactions/s

Syncs/Transaction

Fig. 8.6 Sensitivity of the simulation speed and throughput (transactions/s), on the sync interval
(normalized to the production interval)

channel. For sync intervals set around the generation rate, some instability can be
observed. Maximum throughput is reached for sync intervals set about 3X of the
production interval. In this case, throughput is limited by the computational load
of the background tasks, the latency of the communication channel, and by the
temporal error. Larger sync intervals moderately increase temporal error further,
leading to a slight degradation (cf. next section). For this measurement, connectors
are used which do not synchronize transactions to the local time, as explained next.

8.5.4 Temporal Error

In settings with generation-rate independent computational tasks, the temporal error
increases the overall runtime as these tasks continue to be executed, e.g., while the
initiator is waiting for a response. But the computational background load also slows
down the advancement of SC time which effectively lowers the temporal error up
to a point where there is none. In contrast, an idle system, i.e., without background
load, will always fast forward to the end of a synchronization interval, which means
a response is never received before the end of the quota, so that the temporal error
solely depends on the sync interval.

These effects can be modulated and (to some extent) compensated for by the
schemes used for peer-to-peer and per-transaction synchronization, as Fig. 8.7
shows for the P1-C2 benchmark. With symmetric background task loads for
producer and consumer (top), the temporal error has an upper bound that is relatively
independent on the per-transaction synchronization scheme of the connector, fine-
grain synchronization lowers the temporal error.

148 C. Sauer et al.

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Te
m

po
ra

l E
rr

or

Sync Interval / Production Interval

Synchronizing Connector

Connector w/o sync‘ing

0%

50%

100%

150%

200%

250%

300%

350%

400%

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Te
m

po
ra

l E
rr

or

Synchronizing Connector

Connector w/o sync‘ing

Synchronizing, w/o return path

Connector w/o sync‘ing
fully-starved-mode

Fig. 8.7 Temporal errors for a symmetric load setting (top) and with idle consumer (bottom)

In cases of asymmetric loads (bottom, here with idle consumer), the smaller sync
intervals cause the same temporal error as before. Above 1.6X, the temporal error
increases linearly with the size of the sync interval for the synchronizing connector
due to the end-of-quota effect, while the not-synchronizing connector remains at
the constant level. However, this only is the case for the delta-only simulator
synchronization, which handles late transactions still within the past quota. The
fully-starved mode leads to the same error as the syncing connector. For our write-
only setting, the temporal error is always negligible if the return path is avoided.

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 149

Table 8.2 Elaboration report
for a real packet processing
platform with four slices and
some other functions
resulting in about 5k
instantiated SC modules

SystemC primitive Slice Platform

sc_modules 1037 4745

sc_ports 1459 6680

sc_signals 916 3962

sc_semaphores 8193 32772

sc_methods 436 2094

sc_threads 892 4410

sc_events 3645 17514

tlm2_initiator_sockets 1984 9457

tlm2_target_sockets 2280 10784

2,00

2,50

3,00

3,50

4,00

4,50

0 100 200 300 400 500 600 700

Sp
ee

du
p

Fa
ct

or

Sync Period [in 1000 Processor Instructions]

Fig. 8.8 Speedup for the real-world case study over the sync ratio

8.5.5 Packet Processing Platform

In a second step we apply CoMix to a real-world packet processing platform.
The model has a considerable complexity as shown by its elaboration report in
Table 8.2. For the purpose of this book chapter, we distribute a set of four slices
into a simulation with four parts. Each of the parts comprises several 10s of binary-
translating processor models that are busy running embedded software in temporally
decoupled execution. The four parts are connected along write-only IO ports.

We vary the synchronization interval and run 10 simulations per data point
to mitigate any load deviations on the simulation hosts. Figure 8.8 shows the
speedup over the synchronization interval for the given setting expressed in
processor instructions (CPID1) and normalized to the clock frequency. Starting
with about 380k instructions, a speedup of 4X is reached for the given setting, a
computation dominated simulation setup with sparse communication and only loose
synchronization between the parts.

150 C. Sauer et al.

8.6 Related Work

PDES Synchronization Policy Parallel discrete event simulation (PDES) is
researched for several decades. SystemC is a discrete event simulator with
unpredictable communication. According to Fujimoto [7] distributed SystemC
simulation techniques can be categorized by their synchronization into conservative
and optimistic approaches. Conservative schemes [4, 5, 12, 15] require the simulator
to be aware of the minimum duration between two communication events in
order to ensure temporal correctness while optimistic schemes [10] speculate
on their future state. The former schemes impose high communication and
synchronization overhead, especially with unpredictable communication (minimum
sync period must be assumed), while the latter depend on checkpointing and
rollback mechanisms in cases of incorrect speculation.

For unpredictable communication Peeters et al. [13] propose a hybrid synchro-
nization scheme which (1) depends on write-exclusive access to shared memory for
functional consistency, (2) avoids expensive frequent synchronization by accepting
a temporal error in otherwise asynchronous communications, and (3) synchronizes
explicitly at regular system-wide intervals using a blocking double handshake
protocol. Similarly, our CoMix uses explicit synchronization intervals, but peers
may grant different sync credits to each other which are received asynchronously
and non-blocking. Sync messages must not be acknowledged explicitly. Shared
memory and write-exclusive access is not required for functional consistency. Com-
munication events from peers are received asynchronously but their processing is
scheduled by the SC scheduler maintaining the single-threaded execution semantics
of SystemC. CoMix customizable connectors support the full range of SC and TLM
interfaces.

The conservative lookahead technique in [17] requires communication to be
known ahead of time by at least on synchronization period, i.e., to be predictable.
This avoids causality issues due to communication arriving late (as long as the
return path is ignored [17]). In such a confined setting, CoMix does behave similarly
accurate and without timing error (cf. Fig. 8.7).

SystemC Kernel Modifications Most prior approaches suggest changes to a the
simulation kernel for adding communication, synchronization, or parallelization
support, e.g., [4, 6, 10, 12, 15–17]. However, this causes a severe maintenance
problem for evolving simulator versions and is not feasible in settings with het-
erogeneous, potentially commercial tools without source code access. Others avoid
kernel modifications by providing add-on libraries which interact with the simulator
only through the regular SystemC language interface [8, 13]. This interaction
depends on the synchronization scheme and might be tight, e.g., per delta cycle
as in [8], or rather loose. Our CoMix is such an overlay technology, interacting with
the simulation engine only in cases of inbound communication events or explicit
synchronization.

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 151

Peer-to-peer Protocols and Host Systems Several communication protocols are
used for passing messages between peers, including MPI [5, 13], CORBA, and
SOAP [11]. We use regular TCP/IP sockets similar to, e.g., [16] to limit the
dependency on other libraries and a leaner protocol stack. Most related approaches
use SMP machines as simulation hosts, e.g., [8, 10, 12, 15], potentially depending on
SMP properties, such as shared memories and caches [13]. Our CoMix is intended
for the use in load sharing facilities and geographically distributed settings, similar
to [16]. However, CoMix recognizes the potential for optimizations and is factored
for the support of other communication protocols.

SC/TLM Primitives and Modeling Styles Especially the kernel modifying
approaches may impose special coding styles. Mello et al. [12], for instance, depend
on approximately timed modeling semantics in their models. Others require thread
safety, at least on distribution boundaries [15]. Both, kernel modifying approaches
and overlay solutions often do not support the full spectrum of SystemC and TLM
communication primitives [13, 17] or require explicit clocks [11]. Trams et al. [16]
is limited to signal communication semantics. In [17], the partly supported TLM
communication must not consume SC time. CoMix does not impose modeling
restrictions and supports the full range of SC and TLM communication primitives
by means of connectors for dedicated port/socket types.

8.7 Conclusion

We have presented CoMix, the Concurrent Model Interface, which enables the
distributed simulation of large-scale SystemC-based virtual prototypes. CoMix
provides robust communication between peers, enables their loose synchronization,
and comprehensively manages the overall life cycle. Its modular design supports
various synchronization strategies for peers and their communication, which may
be chosen depending on a platform’s specific requirements. CoMix’ asynchronous
IO infrastructure integrates into SystemC efficiently and avoid blocking third-party
tools, such as embedded software debuggers.

For a set of synthetic, token-passing benchmarks we have shown the benefits
of CoMix to be a trade-off between local computation and communication and
the synchronization interval. The temporal error caused by the distribution can
be lowered if double-synchronized round-trips are avoided by skipping the return
path or not synchronizing it. These results were confirmed on a complex real-
world platform, where we found speedups of up to 4X in a four part simulation
for the given application. To date, CoMix is used in virtual prototypes of many-
core network processing systems comprising several hundred instruction-precise
processor models.

Acknowledgements In parts, this work has been supported by Lei Lang, Eric Frejd (Ericsson AB,
Sweden), and Linmu Cui (Cadence, Germany).

152 C. Sauer et al.

References

1. Bailey, B., Martin, G.: Virtual prototypes and mixed abstraction modeling. In: ESL Models
and their Application, pp. 173–224. Springer, Berlin (2010)

2. Bailey, B., McNamara, M., Balarin, F., Stellfox, M., Mosenson, G., Watanabe, Y.: TLM-Driven
Design and Verification Methodology. Lulu Enterprises, Raleigh, NC (2010)

3. Benini, L., Flamand, E., Fuin, D., Melpignano, D.: “P2012: Building an ecosystem for
a scalable, modular and high-efficiency embedded computing accelerator,” In: Design,
Automation & Test in Europe Conference & Exhibition (DATE 2012), pp. 983–987, 12–16
March 2012. doi:10.1109/DATE.2012.6176639. http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=6176639&isnumber=6176405 (2012)
in Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 983–987, 12–
16 (2012) doi: 10.1109/DATE.2012.6176639 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&
arnumber=6176639&isnumber=6176405

4. Combes, P., Caron, E., Desprez, F., Chopard, B., Zory, J.: Relaxing Synchronization in a
parallel systemC kernel. International Symposium on Parallel and Distributed Processing with
Applications (ISPA) (2008)

5. Cox, D.R.: RITSim: distributed systemC simulation. Master’s thesis, Rochester Institute of
Technology (2005)

6. Ezudheen, P., Chandran, P., Chandra, J., Simon, B., Ravi, D.: Parallelizing systemC kernel for
fast hardware simulation on SMP machines. In: 23rd Workshop on Principles of Advanced and
Distributed Simulation (PADS) (2009)

7. Fujimoto, R.M.: Parallel and distributed simulation. In: Proceedings of the Winter Simulation
Conference (1999)

8. Huang, K., Bacivarov, I., Hugelshofer, F., Thiele, L.: Scalably distributed systemC simulation
for embedded applications. In: International Symposium on Industrial Embedded Systems
(SIES’08) (2008)

9. IEEE SystemC Language Reference Manual. IEEE Std 1666–2011 pp. 1–638 (2012)
10. Jones, S.: Optimistic parallelisation of systemC. Technical Report, University Joseph Fourier,

MoSiG DEMIPS (2011)
11. Meftali, S., Dziri, A., Charest, L., Marquet, P., Dekeyser, J.L.: SOAP based distributed

simulation environment for system-on-chip (SoC) design. In: Forum on Specification and
Design Languages (FDL) (2005)

12. Mello, A., Maia, I., Greiner, A.; Pecheux, F.: “Parallel simulation of systemC TLM
2.0 compliant MPSoC on SMP workstations,” In: Design, Automation & Test in
Europe Conference & Exhibition (DATE 2010), pp. 606–609, 8–12 March 2010.
doi:10.1109/DATE.2010.5457136. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&
arnumber=5457136&isnumber=5456897 (2010)

13. Peeters, J., Ventroux, N., Sassolas, T., Lacassagne, L: “A systemc TLM framework for
distributed simulation of complex systems with unpredictable communication,” In: 2011
Conference on Design and Architectures for Signal and Image Processing (DASIP), pp. 1–
8, 2–4 November 2011. doi:10.1109/DASIP.2011.6136847. http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=6136847&isnumber=6136840 (2011)
in Design and Architectures for Signal and Image Processing (DASIP), 2011 Conference
on, pp. 1–8, 2–4 (2011) doi: 10.1109/DASIP.2011.6136847 http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=6136847&isnumber=6136840

14. Sauer, C., Loeb, H.P.: A lightweight infrastructure for the dynamic creation and configuration
of virtual platforms. In: 3rd Workshop on Virtual Prototyping of Parallel and Embedded
Systems (VIPES) along with Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XV) (2015)

15. Schumacher, C., Leupers, R., Petras, D., Hoffmann, A: “parSC: synchronous parallel SystemC
simulation on multi-core host architectures,” In: 2010 IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 241–246,

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6176639&isnumber=6176405
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6176639&isnumber=6176405
http://dx.doi.org/10.1109/DATE.2012.6176639
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6176639&isnumber=6176405
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6176639&isnumber=6176405
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5457136&isnumber=5456897
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5457136&isnumber=5456897
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6136847&isnumber=6136840
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6136847&isnumber=6136840
http://dx.doi.org/10.1109/DASIP.2011.6136847
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6136847&isnumber=6136840
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6136847&isnumber=6136840

8 Framework for Distributed, Loosely-Synchronized SystemC/TLM Simulations 153

24–29 October 2010. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5751508&
isnumber=5751486 (2010)

16. Trams, M.: Conservative distributed discrete event simulation with systemC using explicit
lookahead. Technical Report, www.digital-force.net (2004)

17. Weinstock, J.H., Schumacher, C., Leupers, R., Ascheid, G., Tosoratto, L: “Time-decoupled
parallel SystemC simulation,” In: Design, Automation and Test in Europe Conference and
Exhibition (DATE 2014), pp. 1–4, 24–28 March 2014. doi:10.7873/DATE.2014.204. http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6800405&isnumber=6800201 (2014)

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5751508&isnumber=5751486
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5751508&isnumber=5751486
www.digital-force.net
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6800405&isnumber=6800201
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6800405&isnumber=6800201

Part IV
Modelling and Verification of

Power Properties

Chapter 9
Towards Satisfaction Checking of Power
Contracts in Uppaal

Gregor Nitsche, Kim Grüttner, and Wolfgang Nebel

Abstract Since energy consumption is one of the most limiting factors for embed-
ded and integrated systems, today’s microelectronic design demands urgently for
power-aware methodologies for early specification, design-space exploration, and
verification of the designs’ power properties. To this end, we currently develop a
contract- and component-based design concept for power properties, called power
contractss, to provide a formal link between the bottom-up power characterization
of low-level system components and the top-down specification of the systems’
high-level power intent. In this paper, we present a first proof of concept for the
verification of the leaf-component power contracts of a hierarchical system design
w.r.t. their implementation in UPPAAL. Building on these, we can provide assured
power contracts for the hierarchical virtual integration (VI) of the leaf-components
to a compound power contract of the integrated final system and thus allow for a
sound and traceable bottom-up integration and verification methodology for power
properties.

9.1 Introduction

Energy consumption has become one of the most limiting factors for today’s embed-
ded and integrated systems. As a consequence, the microelectronic design demands
urgently for consistent methodologies which allow for an early specification, design-
space exploration, and verification of the systems’ power properties. To this end,
different approaches are developed for high-level power estimation or an automatic
synthesis, characterization, abstraction, and back-annotation of lower-level power
characteristics. Nevertheless—being strongly dependent on future design decisions
and low-level parameters, and since system and component power models can only

G. Nitsche (�) • K. Grüttner
OFFIS—Institute for Information Technology, Oldenburg, Germany
e-mail: gregor.nitsche@offis.de; kim.gruettner@offis.de

W. Nebel
Carl von Ossietzky University Oldenburg, Oldenburg, Germany
e-mail: wolfgang.nebel@uni-oldenburg.de

© Springer International Publishing Switzerland 2016
F. Oppenheimer, J.L. Medina Pasaje (eds.), Languages, Design Methods, and Tools
for Electronic System Design, Lecture Notes in Electrical Engineering 361,
DOI 10.1007/978-3-319-24457-0_9

157

mailto:gregor.nitsche@offis.de
mailto:kim.gruettner@offis.de
mailto:wolfgang.nebel@uni-oldenburg.de

158 G. Nitsche et al.

provide a constrained validity, the reliability of such power estimations is strictly
uncertain, depending heavily on the correct re-use of the power models within a
proper environment.

To address this problem of power closure, we propose a contract- and
component-based design concept, called power contracts [21], to provide a formal
link between the top-down specification of the systems’ high-level power intent
and the bottom-up power characterization of low-level system components. For that
purpose, we apply the ideas of heterogeneous rich component (HRC) [7, 8, 14, 22]
and contract based design (CBD) [5, 8, 12, 22] to enable a component-based re-use
of reliable power properties in a hierarchical design. Although we give an overview
of our complete concept of extra-functional design with power contract, this paper
will finally focus on the leaf nodes of the virtual integration process, meaning
the specification, implementation, and verification of the contracts at the lowest
abstraction level of the virtual integration process.

To introduce our extra-functional design concept with power contracts, we
first give an overview of the underlying basic concepts and outline the complete
methodology in Sect. 9.2. After that, we summarize the related work in Sect. 9.3 and
give a more detailed understanding of power contracts in Sect. 9.4. To subsequently
explain our methodology in detail, we show how we use contracts for the functional
and extra-functional specification of system components in Sect. 9.5. In Sect. 9.6
we outline how we integrate the components’ functional implementations with their
extra-functional timing and power aspects—obtained from a bottom-up timing and
power characterization—to derive an appropriate multi aspect verification model in
UPPAAL. Concluding the explanation of our concepts, we give a short draft of our
UPPAAL-based verification methodology in Sect. 9.7. As a first proof of concept we
apply our methodology to the artificial example of an advanced encryption standard
(AES) system, presented in Sect. 9.8. In Sect. 9.9 we finally summarize the results
of our investigation and give an outlook to future work.

9.2 Basic Concept

An HRC denotes a structural design element—onwards component—which is
semantically enriched with contracts, with contracts being a formal specification
over the component’s interfaces, declaring assumptions on the component’s envi-
ronment and guarantees on its externally observable behavior. Hence, the external
interaction of an HRC is solely restricted to its explicitly declared interface. On
top of that, its heterogeneity results from combining the behavioral descriptions of
different, functional and extra-functional aspects within the same HRC.

To explain the most relevant concepts of HRCs and CBD, we introduce different
identifiers according to Fig. 9.1, onwards denoting contracts by the letter C and
HRCs by the letter M, additionally indexed by i 2 N

C to refer to the ith HRC
of a decomposition of M into n sub-HRCs fM1; : : : ; Mng, also denoted as parts of
the system. Additionally, we define the interface of an HRC M as the set of its

9 Towards Satisfaction Checking of Power Contracts in Uppaal 159

Fig. 9.1 Contract-Based Design (CBD): identifiers and basic concept

directed in- and output variables x 2 �M WD fxin; xoutg, called ports. To chose only
the functional- , timing-, and power-specific subsets of M; C; �, and x, we provide
the subscripts fct, time, and pwr, corresponding to the internal, non-structural but
aspect-specific segregation of the HRC behavior according to these aspects. Finally,
we define an HRC’s interconnection network Net WD fNetasm; Netdelg by the sets of
its internal connectors, consisting of:

• the assembly connectors Netasm � xout
Mi

� xin
Mj

I i; j 2 f1; : : : ; ngI Mi; Mj 2 M which
internally link ports between different parts of the system;

• and its delegation connectors Netdel � fxout
Mi

� xout
M g [fxin

M � xin
Mi

g; i 2 f1; : : : ; ng;
Mi 2 M which link up the port of the HRC’s parts with the HRC’s external ports.

The direction of the interconnect net.xsrc; xsnk/ 2 Net is defined by position,
naming the driving source xsrc of the net in front of the reader’s sink xsnk. Addi-
tionally, we summarize multiple connections from a common source by net.xsrc; �/,
respectively multiple connections to a common sink by net.�; xsnk/ and denote open
ports by net.xsrc; 0/ or net.0; xsnk/.

The contracts C of a component M are formally defined as triples C WD .A; B; G/.
While the

• strong assumptions A delimit the component’s maximum permissible input state
space over the input variables xin of M,

• the weak assumptions B over xin perform a further division to subspaces,
• for which M assures the associated guarantees G over its output variables xout,

if and only if the individual use case satisfies the corresponding assumptions.

Hence, C is semantically interpreted as ŒŒC�� WD A ^ B) G, with A; B and
G being time bounded LTL or CTL properties, representing sets of timed traces
SA.xin/; SB.xin/ and SG.xout/ over the I/O variables xin; xout 2 �M of M. Declaring
the type of a variable x to be 	.x/ 2 fB;Z;N; : : :g and declaring the notion of time as
the discrete but infinitely increasing variable t 2 N

C
0 , a timed trace sx.t/ is a discrete

sequence of events fe.x; t0/; e.x; t1/; : : :g 2 Sx WD fx ! ŒNC0 ! 	.x/�g, mapping
the variable x to its values v.x; ti/ 2 	.x/I i 2 N

C
0 for each point of time.

160 G. Nitsche et al.

A complete property specification C of a component M is then defined as
C WD V

asp

Vnasp

iD0 Ci
asp, considering all contracts fC1

asp; : : : ; C
nasp
asp g of all aspects

asp 2 ffct; time; pwrg.
To extract a purified, port-specific expression of the effect of the assumptions,

guarantees or even complete contracts, the restriction function #X denotes the
restriction of these constraints to solely the subset X of their original variables.
Furthermore,
i and
 denote the so-called port mapping or port substitution
functions, with:
i identifies the port variables xin

i ; xout
i 2 �Mi of a part Mi with

the corresponding assembly and delegation connectors net.xin
i ; �/; net.�; xout

i / 2
Net; and
 identifies the external ports xin; xout 2 �M of the system M with the
corresponding delegation connectors net.xin; �/; net.�; xout/ 2 Net.

That way, the contracts explicitly relate the formal and possibly more abstract
behavioral specifications of a component’s bottom-up characterization with the
appropriate validity constraints, the underlying model implementations and abstrac-
tions would otherwise assume to be satisfied without verification. Hence, CBD
enables to formally check for:

• compatibility: GMsrc #xsrc
Msrc) AMsnk #xsnk
Msnk between the connected
components of a system;

• refinement: C0) C of a system M’s specification C w.r.t. its component-based
bottom-up composition by n parts fM1; : : : ; Mng, specified by their contracts Ci

and logically composed to the VI C0 WD ��Vn
iD1 Ci
i

�

 #�M

�
.

Applying the concepts of HRCs and CBD to build a consistent, power-aware
design flow, our primary goal is to formally ensure the correct re-use of bottom-up
leaf-node power models to improve power closure. Our basic idea for that design
and verification flow is outlined in Fig. 9.2, covering:

1. the structural decomposition of the initial HRC with possibly a refined partition-
ing of its initial contracts;

2. the implementation of the HRC’s parts;
3. the formal bottom-up characterization of the parts’ functional and extra-

functional behavior in terms of contracts;
4. the satisfaction checking between the parts’ contract-based bottom-up character-

ization and their specification;
5. the compatibility checking between all components’ connected ports;
6. the virtual integration to a composed top-level specification;
7. the refinement checking between the composed top level contract and those of

the initial specification.

According to our focus on the verification of a hierarchical system’s leaf-node
power contracts versus the system’s implementation in UPPAAL, in this paper we
onwards consider only the lowest steps 2–4 of Fig. 9.2 in more detail. Building on
this, we can provide assured power contracts for checking the compatibility and
refinement of the hierarchical virtual integration of the leaf-components w.r.t. the
integrated final system, allowing for a sound and traceable bottom-up integration
and verification methodology for power properties. As a first proof of concept, we

9 Towards Satisfaction Checking of Power Contracts in Uppaal 161

Fig. 9.2 Basic idea of the design steps within our power-aware design flow with power contracts

implemented our exemplary power contracts by queries and observer automata in
UPPAAL [2, 15, 24] , based on the theories of communicating timed automata (TA)
[1, 4, 9] and the timed execution traces of their variables.

9.3 Related Work

The objective of Power Closure within a consistent, power-aware design flow for
embedded and integrated systems is part of several different approaches of research,
of which the currently most related ones are: [3, 6, 10]. Nevertheless, to the authors
best knowledge, there is no work addressing power closure with combining the
contract- and component-based virtual integration design flow at the higher levels of
abstraction with the low-level implementation and characterization flow, applying a
multi aspect modeling and verification approach for formal satisfaction checking.

162 G. Nitsche et al.

Differently to the distinction of [10] between approaches for power character-
ization and modeling and approaches for the analysis and verification of power
management, the most recent approach of [6] addresses both, presenting a frame-
work for the statistical modeling and analysis of schedulability and energy efficiency
of embedded hierarchical scheduling systems running on multi-core platforms. For
that purpose, tasks are modeled as UPPAAL stop watch automata (SWA) with
additional parameters for the processor specific worst and best case execution times
and power consumption rates. That way, the approach allows for analyzing and
verifying the schedulability of tasks w.r.t. its impact on energy efficiency.

Likewise, [10] itself presents an approach addressing power and power man-
agement, as well. In detail, a multi-view system model is suggested to link the
specialized models and tools of different domains according to a UML profile, based
on MARTE and SysML. Similarly to our approach, functionality, timing impacts
of the clock and power impacts of VDD and power management are described
in different views, but differently, these views use different models and tools,
necessitating a valid transformation and synchronization to enable a combined
analysis and verification.

Similarly, in [3] the multi-view UML profile DIPLODOCUS is extended to
power and power management, focusing on CPUs, described by UML Power State
Machines (PSMs) and UML power managers. To this aim, UML state machines
are extended with power states, providing voltage, frequency and static power
information, and with power transitions, annotated with the duration and possible
power overheads of the transitions. Furthermore, the approach provides own tools
for modeling and simulation, providing also an interface for formal verification
with UPPAAL. Differently to this, we aim towards a contract and component-
based design approach, which focuses on contracts and virtual integration as far
as possible, interfacing the implementation oriented model based design (MBD)
at lower levels of abstraction only for the characterization and verification of the
leaf-nodes.

9.4 Power Contracts

To establish the formal link between the high-level power requirements of a
system—called power intent—and its low-level implementation resp. composition
of system components, we propose power contracts [21] as a CBD technique, which
allows to formally specify and verify the constraints for a correct re-use of power
models w.r.t. their application and abstraction in a compositional design.

Addressing the most relevant factors of dynamic power consumption, our current
notion of power contracts is as given in Fig. 9.3. Integrating or linking the power
contract within an HRC by the means of its HRC reference, the contracts’ con-
straints become a traceable and verifiable property description of that component.
Within their strong assumptions the different implementations of an HRC are
distinguished w.r.t. the applied technology, architecture, and power domain—each

9 Towards Satisfaction Checking of Power Contracts in Uppaal 163

Power Contract
HRC Reference

A:

B:

G:

Implementation

Functional Mode

Power Mode

Power
Consumption

Technology, Architecture, Power Domain

I/O Values

Voltage, Frequency

State Power, Power Gradient, Minimum
Power, Maximum Power, Average Power

Fig. 9.3 Content and structure of a power contract

defining an unambiguous reference to exactly: one specific design kit version of
the technology; one specific structural implementation of a design library, called
architecture; or one specific power domain definition.

The latter might partially be obtained from a component’s IEEE 1801 Unified
Power Format or Common Power Format specification [13, 23], but, as we denote
the power modes as combined voltage–frequency tuples �!pmin WD .VDD; fclk/,
additional frequency information must be provided to entirely declare the admissible
power modes of a power domain. Since technology, architecture and power domain
constraints are independent from time, it is sufficient to independently check
satisfaction or violation of those parameters before verifying the more complex,
dynamic state space of the timed I/O variables.

Subsequently, the weak assumptions of a power contract restrict the validity
of its guarantees w.r.t. to the dynamics of the input variables xin

pwr WD .xin
fct;

�!pmin/,
comprised of the functional mode, given by the functional inputs xin

fct, and the power
mode, �!pmin defined by the timed traces of the supply voltage VDD and the operating
frequency fclk.

Hence, if the chosen implementation of the HRC satisfies the strong assumptions
and if the embedding environment satisfies the weak assumptions, a power contract
provides an assured guarantee w.r.t. the HRC’s power consumption, which is
formally protected against faulty re-use. Denoting the time by t or tŒ� WD Œtl; tu�

for time intervals, t; tl; tu 2 N
C
0 I the current power contracts provide the following

specification concepts for those guarantees:

• the current state power consumption at time t:

p.xin
pwr; t/ WD 1=2 � C � N̨ .xin

fct; t/ � V2
DD.t/ � fclk.t/I

• the average power gradient at time tu resp. during tŒ�:

pgrd.xin
pwr; tŒ�/ WD 1=�t � .p.xin

pwr; tu/ � p.xin
pwr; tl//I

pgrd.xin
pwr; tu/ WD pgrd.xin

pwr; tu�1; tu/I

164 G. Nitsche et al.

• the minimum or maximum power consumption during tŒ�:

pmin.xin
pwr; tŒ�/ WD min

t2tŒ�
.p.xin

pwr; t//I

pmax.xin
pwr; tŒ�/ WD max

t2tŒ�
.p.xin

pwr; t//I

• the average power consumption during tŒ�:

pavg.xin
pwr; tŒ�/ WD 1

�t
�

tu�1X

tiDtl

p.xin
pwr; ti/ � .tiC1 � ti/:

At that, we currently consider only dynamic power consumption according to our
power characterization by average switched capacitances NCsw WD 1=2 � C � N̨ .xin

fct; t/
[19, 20], with the overall circuit’s switched capacitance C and the proportionality
factor N̨ .xin

fct; t/I 0
 N̨
 1I denoting the fractional amount of C that is switching
at time t according to the functional inputs xin

fct. This is not a general limitation of
our concept. Quite contrary, the methodology would similarly fit for static power
consumption, extending the assumptions of the power contracts to also consider the
temperature and basing the power characterization on leaking resistance.

9.5 Leaf-Node Specification with Power Contracts

As the origin of our leaf-node implementation and verification cycle—i.e., steps 2–
4 in Fig. 9.2—the CBD and VI flow ends with aspect-specific contracts as the final
top-down specification of components at its lowest levels of abstraction. To follow
the paradigms of CBD and separation of concerns we base our specifications on
solely an exterior view of the components’ ports, using the following denotational
semantics, inspired by tagged signals [16–18]:

Starting with the initially completely untimed, functional aspect of the specifica-
tion we denote each untimed trace as a function sx.i/ WD fe0.x/; e1.x/; : : : en.x/g
mapping the port x to a totally ordered sequence of i-indexed events ei.x/ D
e.x; i/ WD .vi.x/; i/, resp. to its i-th values vi.x/ D v.x; i/ 2 	.x/, using continuously
increasing indices i 2 0; 1; : : : � N

C
0 .

As the total order .i;
/ of this pure functional perspective determines only
the sequentiality among the events of a single trace but not w.r.t. the events of
different traces, pure functional specifications cannot define the causality between
events of different ports. If this most abstract notion of timing is desired within the
functional domain, a common, port-independent index i0 2 N

C
0 becomes necessary,

to define their partial order .NC0 ;
/ according to a mapping to i0. Hence, a causality
specification for the events of different ports becomes possible by constraining that
mapping from the originally i-indexed traces sx.i/ to the i0-indexed event sequence

9 Towards Satisfaction Checking of Power Contracts in Uppaal 165

sx.i0/, with sx.i0/ allowing for simultaneity of events e.x1; i01/, : : :, e.xn; i0n/, indexing
them with the same index i01 D � � � D i0n. With the ordering operators �; v a
specification of causality becomes expressible, using e.x1; i1/ � e.x2; i2/ to demand
the event e.x1; i1/ to really precede e.x2; i2/, i.e., i01 < i02; resp. e.x1; i1/ v e.x2; i2/

to also allow simultaneity, i.e., i01
 i02.
For the more detailed specification of timings, the timing view enforces this

mapping for all traces of the system, using a common notion of time t 2 R
C
0

as the additional index, simplifying to t 2 N
C
0 for discrete time and clocked

systems. Based on that, we denote the resulting timed traces as functions sx.t/ WD
fe0.x/; e1.x/; : : : en.x/g which again map a port x to a totally ordered sequence of
i-indexed events, but with ei.x/ D e.x; ti/ WD .vi.x/; ti.x// denoting its values
vi.x/ D v.x; ti/ 2 	.x/ for each evaluation point of time ti.x/. Hence, while the
previous indices i0 enable only a partial order .NC0 ;
/, i.e., .i01
 i02/ 2 0; 1,
the physical interpretation of t in the metric space .NC0 ; jti; tjj/ allows for a metric
specification of “absolute” points of time ti—that means “relative” w.r.t. the initial
point of time t0 D 0—resp. time differences ti � tj, representing state and process
durations, time ranges, and delays of events. Since these timings most often are
frequency dependent for clocked systems, our timing view extends the components
by the extra-functional frequency port fclk to allow for timing specifications, relative
to the clock cycle Tclk D 1=fclk.

To finally enable power contracts to specify the components’ power consump-
tion, we extend the components to the power aspect, adding the ports for the voltage
supply VDD and the power port p of the power consumption. Hence, based on the
incremental extension of the components’ functional aspects by timing and power,
power contracts are supposed to comprehensively specify the components’ power
behavior w.r.t. the influences from all of these aspects. A more detailed explanation
of this is given by the example in Sect. 9.8.1.

9.6 Leaf-Node Implementation in UPPAAL

Similarly to the incremental specification process, the implementation of the
components’ verification models in UPPAAL is incrementally derived from first
the functional, then the extra-functional specifications, too. This can be done
by the re-use of pre-characterized library components, which themselves provide
already verified functional and extra-functional contracts to enable bottom-up
virtual integration according to steps 4–7 of Fig. 9.2. If no fitting HRCs are available,
steps 2–4 have to be passed to derive such an implementation, which satisfies the
functional contract, and to characterize and verify its extra-functional behavior w.r.t.
to timing and power. To link these steps of the low-level design process with the
contract-based high-level design, we use the following implementation models for
the functional, timing, and power aspects.

To finally derive a complete multi aspect HRC, which is verifiable using
UPPAAL, an appropriate integration of the components’ functional, timing, and

166 G. Nitsche et al.

power consumption as a network of TAs becomes necessary. Since the separation
of concerns on the other hand demands for an independent description of these—
anyway differently obtained—extra-functional characteristics we currently use a
loosely interweaving, which methodically extends the functional model by the extra-
function information.

Initially we realize ports x 2 � (resp. their traces) via tuples .v.x/; e.x// of
a global integer variable v combined with an associated broadcast channel e. As
the indices of a trace-based specification actually describe history—i.e., memory
behavior—and as the interconnect nets are supposed to be memory-less, the indices
are no explicit part of the ports implementation. As a consequence, indices have to
be either part of the components, actually implementing real memory, or as a part of
the verification environment, observing the trace for the specific amount of values.

9.6.1 Functionality and Causality

Starting with the functional contracts a UPPAAL network of TA without clocks
can be derived, to describe a component’s functional implementation Mfct by
communicating extended finite state machines [11].

Definition 1 (Communicating Extended Finite State Machine (CEFSM)). The
CEFSM is defined as a tuple CEFSM WD .Q; q0; Edg; Var; �; E�; Act; Inv/I, with

• states q 2 Q,
• initial state q0 2 Q,
• edges edg 2 Edg � Q � Act � Q,
• local variables var 2 Var,
• port variables x 2 �,
• associated communication channels ex 2 E�,
• actions labels act 2 Act D fE‹; EŠ; "g � G � U and
• invariants inv 2 Inv W Q ! fB.Var; �/.

Actions are defined in the following:

• g 2 G W Edg ! fB.Var; �/

denotes the transitions’ guards, enabling the transition w.r.t. to the Boolean result
of the relational, arithmetic, and Boolean operation fB.Var; �/;

• u 2 U W Edg � Var � � ! 	.Var/ � 	.�/

denotes the transitions’ variable updates, assigning them new values according
to their variable type 	;

• e‹ 2 E‹ W E� ! B and eŠ 2 EŠ W E� ! B

describe a transition’s destructive read resp. write event access on the communi-
cation channels, synchronously triggering the receiving transition with executing
the sending transition; and

• " denotes the internal null action, enabling a transition for spontaneous
execution. ut

9 Towards Satisfaction Checking of Power Contracts in Uppaal 167

Alternative to the manual top-down design of a component’s functional high-
level model, the communicating extended finite state machine of its component’s
functional behavior can be obtained by the bottom-up formalization and abstraction
of an available RT or gate-level implementation, e. g. using sound abstractions [25].

To integrate untimed causality specifications we extend our notion of ports and
traces by an additional integer semaphore lck.x/, which is incremented by each
component receiving e.x/ via e.x/‹, and which blocks the event’s source component
from proceeding execution until all receivers committed the completion of their
untimed, atomic reactions on the event, decrementing lck.x/ back to null. For that,
we use ˚x to abbreviate the semaphore’s increment CClck.x/ at the receiving edges
e.x/‹ resp.
x as the semaphore’s decrement ��lck.x/ at an arbitrary transition of
that components’ implementations, which have a non-interruptable reaction on the
event.

9.6.2 Timing

The implementation of the more detailed timing aspect is obtained by extend-
ing the extended state space

S
M.Q � Var � �/ of the CEFSM network toS

M.Q � Var � �/ � clk, extending the CEFSM with clocks, called communicating
extended timed automata.

Definition 2 (Communicating Extended Timed Automata (CETA)). The CETA
is defined as a tuple CETA WD .Q; q0; Edg; Clk; Var; �; E�; Act; Inv/, which is
defined like a CEFSM, with the following extensions:

• clk 2 Clks as a metric of time t.clk/ W clk ! R
C
0 ,

• inv 2 Inv W Q ! fB.Var; �; Clks/,
• g 2 G W Edg ! fB.Var; �; Clks/ and
• u 2 U W Edg � Var � � ! 	.Var/ � 	.�/ � 0; t.clk/jClksj. ut

Hence, a system’s timing implementation becomes a network of CETA.
To interweave the functional implementation with the top-down timing specifi-

cation resp. with a bottom-up timing characterization, we first introduce a global
clock clk� as a common time reference t D t.clk�/ within the TA network plus a
necessary number of additional local clocks clkedg 2 Clks per component, to allow
for component specific perceptions of time t.clk/.

Furthermore, the discretely timed, i.e., clocked component obtain a frequency
port fclk, as an interface to receive external time step information, which locally
maybe different from other components.

On this basis, each edge edg 2 EdgCEFSM between the functional model’s
originally committed states q 2 QCEFSM—i.e., untimed states, which allow no
progress of time—is replaced by a sequence of edges edgt;1; : : : ; edgt;n 2 Edgt �
EdgCETA and timed states qt;1; : : : ; qt;n�1 2 Qt � QCETA which may be traversed
according to their guards g.edgt/ and invariants inv.qt/, allowing time to advance
within the constraints of the invariants. Hence, if the edge’s source state q is no

168 G. Nitsche et al.

subject of a timing specification, it is sufficient to just replace that state with an
equivalent timed state. Otherwise, to implement the timing constraints of the other
states, a clock clkedg 2 Clks is dedicated to that sequence, being reset by the means
of u.edgt;1/ W t.clkedg/ D 0I at the initial transition et;1 and measuring the progress
of time along the further transitions of that sequence.

Additionally, the initial transition inherits the functional guard g.edg/ and—
if not constraint by the further specifications of causality and timing—the first
updates u.edg/ of the former edge. The additional timed states qt are then annotated
with time invariants inv.qt/ 2 ft.clkedg/ ‰ N

C
0 gI ‰2 f<;
gI which delimit the

maximum progress of time, allowed for that state according to the specification of
event delays and process durations.

Similarly, complementing the invariant inv.qt;i�1/ of a source state according to
the timing specifications, the outgoing edges edgt;i of each added state qt;i�1 are
annotated by further guards t.clkedg/ ‰ N

C
0 I ‰2 f<; >;
; 	g to disable this edge

until at least the specified minimum of time has passed.
According to this, if a functional edge triggers multiple updates with different

specifications of timing, for each update an additional pair of a timed state and
an edge with this update is appropriately appended according to the sequential
update order at the original edge. At that, the affected channel synchronizations
e.x/Š of the original edges are applied to the edges edgt;i with the corresponding
writing update u.edgt;i W x ! 	.x/, writing to the corresponding port x, resp.
e.x/‹ to the first transition edgt;1 of the substituting timed transition sequence. As
the timing should refine the semaphore synchronizations of the causality-extended
functional implementation, possibly affected ˚x and
x operations of the edges can
be omitted.

Besides the manual top-down specification of timings a component’s bottom-
up timing characterization can be obtained, applying standard methods of timing
analysis, as e. g. static timing analysis (STA) and control data flow graph (CDFG)
scheduling.

9.6.3 Power

Finally, when the functional and timed aspects are interwoven, the component’s
power aspect has to be integrated. Hence, under the assumption of discretely timed
changes of the power consumption, we provide the following extensions to the
previously described networks of CETA to obtain communicating extended timed
automata with power (CETACp).

Definition 3 (Communicating Extended Timed Automata with Power).
A CETACp is a CETA with the following extensions:

• A switched capacitance variable NCsw 2 Var is added to the component’s local
variables Var.

9 Towards Satisfaction Checking of Power Contracts in Uppaal 169

• All edges of the CETA are annotated with update functions fu NCsw
g.edgt;i/ W

edgt;i ! 	. NCsw.qt;i// to relate their target—onwards denoted as power states
qps 2 Qt—with the corresponding switched capacitance.

• The components’ port interface � is extended by the supply voltage input port
VDD and the power port p, always directed as output. ut
As the power port is virtual, meaning it is no structural port of the design,

and according to its dedicated physical interpretation as the component’s power
consumption, the interconnect of power ports is implicitly defined as a delegation
connector relating a system’s power port pM with all power ports of its parts pMi .
Differently to connectors with structurally existing implementations the virtual
connector of the power ports always summarizes the current power values of all
parts’ power ports, i.e., v.pM; t/ WD P

Mi
v.pMi ; t/I whenever an update event occurs

at one of them, delivering the result to the top-level power port of the system.
Combined with the previously explained power evaluation and abstraction

functions p.xin
pwr, pgrd.xin

pwr; tŒ�/, pmin.xin
pwr; tŒ�/, pmax.xin

pwr; tŒ�/, and pavg.xin
pwr; tŒ�/ this

provides our basic framework for the implementation of the power aspect.
To achieve the previously described switched capacitance mapping we use a

bottom-up characterization by fine-granular Protocol State Machines and Power
State Machines (PrSM/PSM) [19, 20], obtained according to Fig. 9.4. That way,
the components’ dynamic power consumptions are derived by correlating their
observable communication at the functional ports xin

fct with the according power-
over-time trace p.xin

pwr; t/, obtained from, e. g. a detailed gate-level power estimation.
The resulting Protocol State Machine then represents the components’ timed
protocol implementation, relating the observable functional I/O communication to
timed events, which describe the components’ internal functional state q 2 Q,
consequently influencing its power consumption.

For simplification, we use the most detailed switched capacitance mapping,
characterizing all of a component’s timed states as power states Qps D Qt � QCETA,
assuming it as a white-box model. As white-box models, openly provide detailed
knowledge of the component’s state transition and output functions—contained
within the edges Edg � Q � Act � Q and action labels Act D fE‹; EŠ; "g � G � U—
the power characterization may become complete and time accurate, by triggering
each of the component’s internal states q by the appropriate input stimuli.

Differently, for the case of an abstract or black-box model characterization
the approach allows for arbitrary abstractions qps 2 Qps � Q of the internal
states q 2 Q, based on some correlation of the timed I/O traces xin

fct, xout
fct , with

the associated power trace p.xin
pwr; t/. To relate the I/O traces with the power

consumption, the PrSM controls a corresponding PSM, which provides the average
switched capacitances NCsw.qps/ WD 1=2 � OCsw � N̨ .qps/ according to each of the
PrSM’s power states qps, with OCsw being the implemented circuit’s total switched
capacitance and N̨ .q/ 2 RI 0
 N̨ .q/
 1 denoting its fractional switching activity
in the state q. Combined with the voltage and frequency values .VDD;est, fclk;est/, used
during the power estimation, the average switched capacitance of a power state qps

can be derived according to:

170 G. Nitsche et al.

C̄sw(qps) =
p(xin

pwr,t)

(V2
DD,est· fclk,est)

for: xin
fct = qps;

→pm = (VDD,est, fclk,est);
and: t = t(e(q, i)); q = qps;

–

Synthesis

RTL Implementation

add
mult

Functional
Implementation

out = proc(in);

Implementation

HRC

PSM

Power
Estimation

Gate-Level
Simulation

Activity
#0
0!"
1""
#10
1!"
1""

I/O Events

Gate-Level
Module

1&
=1

Test Bench

DUT

In
pu

t
V

ec
to

rs

O
ut

pu
t

C
he

ck

1010010110100101
1011101010111010
1011101010111010
1011101010111010

Stimuli

Characterisation

Gate-Level
Power Trace

PSM Construction

PrSM

Power domain
representation

xpwr
in

–
α

P(xpwr
in ,t)

P(xpwr
in ,t)

xpwr
in

–
Csw (qps)

qpsqps

Fig. 9.4 Characterization of the HRCs’ power behavior using the PrSM and PSM approach

9.7 Observer Implementation and Verification in UPPAAL

In the end, the bottom-up implementation and characterization can be checked
against the contract-based specification, to verify the satisfaction of the con-
tracts. For that purpose, the comprised multi aspect HRC is embedded within
an environment of timed automata which drive the input ports of the system.
Furthermore, the contracts of the specification are implemented as a combination
of properties which are expressed in the UPPAAL Requirements Specification
Language (UPPAAL-RSL) [2, 24] and additional observer automata, comparing all
possible traces of the implementation with the traces of the specification, returning
a sat trace, which evaluates to v.sat; t/ D 1 if the property is satisfied at the present
evaluation point t of time, resp. to v.sat; t/ D 0 if the property is violated. Hence,
to apply an observer OBSMi;asp we formally check the UPPAAL-RSL property
A�.OBSMi;asp:sat ^ Šdeadlock/.

9 Towards Satisfaction Checking of Power Contracts in Uppaal 171

C1
AES,fct (x in

AES,fct = in; xout
AES,fct = out; (in) : uint8; νν (out) : uint24;) :

A1
AES,fct : true;

B1
AES,fct : ein

3i−2 ∧ ein
3i−1 ∧ ein

3i ∧ vin
i ∈ [0,255]∧ i ∈ N

+;

G1
AES,fct : eout

i ∧ vout
i = fAES(vin

3i,v
in
3i−1,v

in
3i−2);

Fig. 9.5 AES functional specification via C1
AES; fct

9.8 Proof of Concept

For a first evaluation of power contracts, we investigated the simple AES (advanced
encryption standard) example from [21] in UPPAAL, implementing the leaf-
node HRCs according to Sect. 9.6 as a network of timed automata and using
the (UPPAAL-RSL) [2, 24] combined with additional observer automata for the
specification and verification of our contracts.

9.8.1 AES Specification

Starting with an interface definition �AES; fct D .in; out/, 	.in/ W uint8, 	.out/ W
uint24 and the functional specification C1

AES; fct, we can imagine the function of the
AES encoder according to Fig. 9.5, buffering three inputs of 8-bit and encoding them
via fAES./. As the pure functional contract C1

AES; fct does not determine the causality
between inputs and outputs, a decision for the sequential or parallel execution of
fAES./ or w.r.t. the component’s memory behavior is undetermined from this point
of view. Providing the additional causality specification forder.iin; iout/ WD ein

3iout�2 �
ein

3iout�1 � ein
3iout

� ei
out.out/ resolves this, by appropriately mapping the indices to

the common index i0.

172 G. Nitsche et al.

C1
AES,time (xin

AES,time = (xin
AES,fct, fclk); ν(fclk) : uint8;) :

A1
AES,time : fin(ti) = 1/8 fclk; ∀ti = t(ein

i) > 0;

G1
AES,time : t(eout

i)) ∈ [
t(ein

3i)+30Tclk, t(ein
3i)+50Tclk

]
;

with : fx(ti) := 1/Tx(ti); fclk := 1/Tclk;
Tx(ti) := t(ex

i)− t(ex
i−1); i = i(ex

ti);

Fig. 9.6 AES timing specification via C1
AES; time

The same ordering could be obtained from timing contracts, declaring the more
detailed timing constraints w.r.t. the common clock t. As an example, depicted in
Fig. 9.6, for the given timing specification C1

AES; time, the AES component assumes
inputs at a frequency of one eighth the clock frequency and promises to provide
the corresponding output between thirty and fifty clock cycles later. Since both,
the timing and the functional contract, demand the component to provide outputs
for each of the input triples—consequently meaning to miss no inputs—the timing
specification implicitly demands for a parallel decomposition of the fAES encoding
w.r.t. a buffering behavior for at least three to six inputs. According to this degree of
freedom, the specification defines a set of time-to-time mappings, sketched by the
grey shadings, and timing annotations in Fig. 9.6.

To finally constrain the implementation w.r.t. to its power consumption, a
power contract C1

AES; pwr as given in Fig. 9.7 could demand the system not to
exceed an average power consumption of e. g. 35 mW per encoding in power
mode �!pmin

1 D .1:0 V; 100 MHz/ resp. 60 mW per encoding in power mode�!pmin
2 D .1:1 V; 150 MHz/ and 85 mW per encoding in power mode �!pmin

3 D
.1:1 V; 200 MHz/—all under the assumption of an arbitrary but time invariant
architecture and technology.

9.8.2 AES Implementation and Characterization

Following steps 2–4 of Fig. 9.2, an implementation of the AES example can
be designed from the given top-down specifications. Bottom-up, the resulting
implementation can then be characterized w.r.t. timing and power and the results

9 Towards Satisfaction Checking of Power Contracts in Uppaal 173

C1
AES,pwr (x in

AES,pwr = (x in
AES,time,VDD, pavg);

ν ν(VDD) : uint8; (pavg) : uint30;) :

A1
AES,pwr : v(−→pm, t) ∈ {{1000,1100,2000}mV×{100,150,200}MHz} ;

B1
AES,pwr : v(−→pm, t) = (1000mV,100MHz);∀t(e

−→pm
i)) ∈ [t(eout

i−1), t(e
out
i)];

G1
AES,pwr : v(pavg, t)(xin

pwr, t(eout
i−1), t(e

out
i)) ≤ 35mW;

B2
AES,pwr : v(−→pm, t) = (1100mV,150MHz);∀t(e

−→pm
i) ∈ [t(eout

i−1), t(e
out
i)];

G2
AES,pwr : v(pavg, t)(xin

pwr, t(eout
i−1), t(e

out
i)) ≤ 60mW;

B3
AES,pwr : v(−→pm, t) = (1200mV,200MHz);∀t(e

−→pm
i) ∈ [t(eout

i−1), t(e
out
i)];

G3
AES,pwr : v(pavg, t)(xin

pwr, t(eout
i−1), t(e

out
i)) ≤ 85mW;

Fig. 9.7 AES power specification via C1
AES; pwr

can be verified versus the contracts, to provide valid contracts for the bottom-up VI
according to the steps 4–7 of Fig. 9.2.

For the example of the AES system, the initial functional high-level implemen-
tation derived from C1

AES; fct is drafted in Fig. 9.8, using fAES./ to abbreviate the
encoding function and Œh: : :i� for the guards resp. =h: : :i for the updates of the edges.

For the computation of fAES./ we assume the availability of two possible Encoder
solutions ENC1 and ENC2, providing the extra-functional properties according
to Table 9.1. Hence, we have no component, computing fAES in less then 23Tclk

and the timing specification C1
AES; time would not be satisfiable without a parallel

174 G. Nitsche et al.

AES fct = {in,out}, VarAESfct = {cnt,data},

(cnt) = {0,1,2}, νν

χ

(data) = {0, . . . ,255}3

Fig. 9.8 Initial implementation of the functional specification C1
AES; fct

Table 9.1 Timing and power
characterization of the AES
Encoder and Buffer
components’ functional
states q.

HRC q tq=Œ#Tclk� NCsw.q/=ŒpF�

BUF Idle – 80

Buffer 4 123

Send 7 109

ENC1 Idle – 10

Encode 506 106

ENC2 Idle – 10

Encode 23 234

decomposition between fAES and additional buffering. As a result, the initial
implementation in Fig. 9.8 is functionally refined as a composition of two HRCs:
Buffer (BUF) and Encoder (ENC), according to Fig. 9.9, communicating via the
delegation connector net.BUF:out; ENC:in/, which mutually identifies BUF:out
with ENC:in and vice versa, using the port substitutions
BUF and
ENC, resulting in
the equality of those traces’ values, events, and semaphores.

For a dynamic power modeling, depending on the timed functional state as
well as the timed voltage and frequency modes, all edges into a power state qps

are extended with an update function set_p. NCsw.qps//, which calculates the power
states’ current power consumption p.xin

pwr; t/ D v2.VDD; i/ �v.fclk; i/ � NCsw.qps/I based
on their characteristic switched capacitance and the current values of voltage and
frequency, writing the result to the power ports pBUF and pENC and triggering the
appropriate trace events e.pBUF; i/ or e.pENC; i/.

Finally, the resulting UPPAAL HRC, derived from interweaving the models
of function, timing, and power consumption in a combined multi aspect model
of the exemplary AES system, re-using the Encoder implementation ENC2, is
given in Fig. 9.9. Showing the complete extra-functional behavior at the bottom,
the interweaving of only the functional and the timing behavior is completely
equivalent, omitting only the update functions setp. NCsw.qps//.

9 Towards Satisfaction Checking of Power Contracts in Uppaal 175

AEShrc = {in,out, fclk,VDD, pAES},

VarAEShrc = {cnt,data,Csw,BUF,Csw,ENC},

(cnt) = {0,1,2}, (data) = {0, . . . ,255}3,

(Csw,BUF) = νν

ν ν

χ

(Csw,ENC) = N
+
0 ,ClksAEShrc = {tBUF, tENC}

Fig. 9.9 Resulting multi aspect refinement of the AES, showing the structural bottom-up compo-
sition of the HRCs BUF and ENC in the middle, their basic functional implementations at the top
and their combined multi aspect power behavior—interweaving the functional implementations
with the components’ timing and power characteristics according to Sect. 9.6 at the bottom

9.8.3 AES Verification

To validate if the multi aspect implementation holds the contracts, the contracts
are expressed by a combination of (UPPAAL-RSL) expressions and timed observer
automata. Focussing the extra-functional aspects of power contracts we omit the
functional verification to concentrate on the verification of the timing and power
behavior. For checking the timing contract C1

AES; time, two observer automata are
implemented according to Fig. 9.10: OBS1

A;time (left) to verify the assumption

176 G. Nitsche et al.

OBS = {in,out, fclk,satA,satG},ClksOBS = {tOBS, tOBS,0, tOBS,1},

VarOBS = {cnt0,cnt1, phi, pho,Tin,Tmin,Tmax},

(cnt 0) = (cnt1) = {0,1,2}, (Tin) = (Tmin) = ννννν

χ

ν ν ν ν
(Tmax) = N

+
0 ,

(phi) = (pho) = (satA) = (satG) = B

fin(){ if(cntphi < 2)cntphi = cntphi +1;
else{cntphi = 0; tOBS,phi = 0; phi =!phi; }}

fout(bool t){satG = t; tOBS,pho = 0; pho =!pho; }

Fig. 9.10 Observer TAs OBSA1
AES; time

(left) and OBSG1
AES; time

(right) to verify the assumption

A1
AES; time and the guarantee G1

AES; time of contract C1
AES; time

A1
AES; time, i.e., the frequency of the inputs; and OBS1

G;time (right) to verify the
associated guarantee G1

AES; time, i.e., the I/O delay between every third input and
its corresponding output. For simplification we onwards deviate from the original
UPPAAL syntax, using functions and pseudo code to sketch the effect of more
complex parts of the automata. First, in OBS1

G;time we use fin./ to detect and
alternately control the start of the TA’s two different clocks tOBS;0 and tOBS;1 using
the Boolean flag phi. Then, complementing fin./ w.r.t. to the allowed interleaving of
inputs and outputs, fout./ is used to set the verification result satG and to control the
end of the current clock’s verification cycle using the Boolean flag phi.

Finally, when the functional and the timing contracts are valid, the power contract
C1

AES; pwr can be verified by the observer given in Fig. 9.11. Here, to abbreviate
the use of multiple edges, we summarize the events e.pBUF; i/ and e.pENC; i/ by
the abstract event e.pwr; i/, which controls the first clock tOBS;0, responsible for
measuring the duration between any changes of the power consumption, and appro-
priately starts the second clock tOBS;1, which measures the duration of the contract’s
averaging cycle between the occurrence of the first input and the corresponding
output event. Then, to enable the clock value for arithmetic calculations, the
abstraction fget_t./ represents another part of the automaton, which converts tOBS;0

to an equivalent integer variable t0. On that base, fget_e./ computes the system’s
energy consumption during the preceding time interval t0, using the previous values
pBUF;p and pENC;p of the components’ power traces. When the averaging cycle of
C1

AES; pwr ends with the output event e.out; i/, the second clock t1 is stopped and
similarly converted to integer inside the abstract function fget_p./, where it is used

9 Towards Satisfaction Checking of Power Contracts in Uppaal 177

fret(){sat = (pOBS ≤ pavg); pBUF,p = pBUF; pENC,p = pENC; }
fget t(){ t0 = tOBS,0; tOBS,0 = 0; }
fget e(){e = e+ t0 · (pBUF,p + pENC ,p);flg0 = 1; }
fget p(){ t1 = tOBS,1; pOBS = e/t1;e = 0; tOBS,1 = 0;flg1 = 1; }

OBS = {in,out, fclk,VDD , pBUF, pENC, sat},ClksOBS = {tOBS,0, tOBS,1},

VarOBS = {t0, t1,flg0,flg1, fmin, fmax,vmin,vmax,e, pBUF,p, pENC ,p},

(flg0) = (flg1) = (sat) = B,

(t0) = (t1) = (e) = (pBUF,p) = (pENC ,p) = N
+
0

ννν

χ

ν ν ν ν ν

Fig. 9.11 Observer TA to verify the assumption A1
AES; pwr and guarantee G1

AES; pwr of the contract

C1
AES; pwr

for averaging the accumulated energy e over the interval t1 to obtain the average
power consumption pOBS D pavg; AES.xin

pwr; t1/. Finally, if the resulting average holds
the average power specification of the power contract, sat evaluates to true.

Verifying the AES example for v.�!pm/ D .1000 mV, 100 MHz) or v.�!pm/ D
.1100 mV, 150 MHz) and with the appropriate input frequency of v.fin/ D
1=8fclk the functional, timing, and power contracts are satisfied, being a valid
bottom-up formalization of the system. In contrast, driving the same system at
v.�!pm/ D .1200 mV, 200 MHz) the average power consumption exceeds 85 mW
to a maximum of 94 mW. According to the exhaustiveness of model checking the
AES for all configurations of its environment—that is especially for all specified
power modes—the invalid extra-functional re-use can be identified, enabling for
an improvement of the components’ implementations resp. for a correction of the
formal bottom-up power characterization, providing a weaker guarantee.

9.9 Conclusion

Since energy consumption has become one of the most limiting factors of today’s
embedded and integrated systems we investigate contract-based design to build a
consistent methodology for power-aware system design. Integrating the functional,
timing, and power aspects of a bottom-up component characterization, we derive
their corresponding heterogeneous component models in UPPAAL, enabling them

178 G. Nitsche et al.

for an exhaustive, formal verification between their implementation and their
corresponding, extra-functional specification, based on contracts. To transfer our
idea of power contracts into analyzable UPPAAL syntax, we use a combination
of UPPAAL-RSL expressions and additional timed observer automata. Applying
power contracts to the example of a composed AES system, we successfully
analyzed an initial proof of concept, allowing for the leaf-node verification of power
contracts in UPPAAL.

The next steps to substantiate and improve the presented methodology will now
contain a further generalization and formalization of integrating the components’
aspect specific implementations as well as of generating analyzable UPPAAL
observer from a sufficiently generic set of power contracts. Furthermore, we proceed
with investigating power contracts w.r.t. the subsequent virtual integration process.

Acknowledgements This work has been supported by the EnerSave Project, funded by the
German Federal Ministry of Research and Education (BMBF) under Grant Agreement 16BE1102
and the FP7 project CONTREX, funded by the European Commission under Grant Agreement
611146.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2) (1994). doi:
10.1016/0304-3975(94)90010-8

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Formal Methods for the
Design of Real-Time Systems. Springer, Berlin (2004)

3. Ben Abdallah, F., Apvrille, L.: Fast evaluation of power consumption of embedded systems
using DIPLODOCUS. In: 39th EUROMICRO Conference on Software Engineering and
Advanced Applications (SEAA’13) (2013). doi:10.1109/SEAA.2013.8

4. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets, Lecture Notes in Computer
Science, vol. 3098. Springer, Berlin/Heidelberg (2004)

5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B., Reinkemeier, P.,
Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.: Contracts for systems
design. Technical Report RR-8147, Research Centre Rennes—Bretagne Atlantique, Rennes
Cedex (2012)

6. Boudjadar, J., David, A., Kim, J.H., Larsen, K.G., Mikucionis, M., Nyman, U., Skou,
A.: Schedulability and energy efficiency for multi-core hierarchical scheduling systems. In:
Proceedings of the Conference on Embedded Real Time Systems and Software (ERTSS’14).
Toulouse (2014)

7. Damm, W., Dierks, H., Oehlerking, J., Pnueli, A.: Towards component based design of
hybrid systems: Safety and stability. In: Manna, Z., Peled, D.A. (eds.) Time for Verification
Essays in Memory of Amir Pnueli. Lecture Notes in Computer Science, vol. 6200. Springer,
Berlin/Heidelberg (2010)

8. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract–based compo-
nent specifications for virtual integration testing and architecture design. In: Lukasiewycz, M.,
Chakraborty, S., Milbredt, P. (eds.) Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011. Grenoble, France (2011). doi:10.1109/DATE.2011.
5763167

9 Towards Satisfaction Checking of Power Contracts in Uppaal 179

9. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O automata: a complete
specification theory for real-time systems. In: Proceedings of the 13th ACM international
conference on Hybrid systems: computation and control, HSCC ’10. New York (2010). doi:
10.1145/1755952.1755967

10. Gomez, C., DeAntoni, J., Mallet, F.: Power consumption analysis using multi-view modeling.
In: Proceedings of the 23rd International Workshop on Power and Timing Modeling, Optimiza-
tion and Simulation (PATMOS). IEEE, Karlsruhe (2013)

11. Holzmann, G.J.: Design And Validation Of Computer Protocols. Prentice Hall, New Jersey
(2007)

12. Hungar, H.: Components and contracts: a semantical foundation for compositional refinement.
In: Tagungsband MBEES: Modellbasierte Entwicklung eingebetteter Systeme 2012 (2012)

13. IEEE Computer Society, Design Automation Committee, IEEE Standards Association, Cor-
porate Advisory Group, Institute of Electrical and Electronics Engineers, IEEE-SA Standards
Board: IEEE Standard for Design and Verification of Low-Power Integrated Circuits. IEEE
Standards Association, New Jersey (2013)

14. Josko, B., Ma, Q., Metzner, A.: Designing embedded systems using heterogeneous rich
components. In: Proceedings of the INCOSE International Symposium (2008)

15. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. In: Proceedings of the 2nd
Workshop on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Lecture Notes in Computer Science, vol. 1055. Springer, Berlin (1995)

16. Lee, E.A., Sangiovanni-vincentelli, A.: The tagged signal model - a preliminary version of a
denotational framework for comparing models of computation. Technical Report UCB/ERL
M96/33, University of California, Berkeley, CA (1996)

17. Lee, E., Sangiovanni-Vincentelli, A.: A framework for comparing models of computation.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 17(12) (1998). doi:10.1109/43.
736561

18. Liu, X.: Semantic foundation of the tagged signal model. Ph.D. thesis, EECS Department,
University of California, Berkeley, (2005)

19. Lorenz, D., Grüttner, K., Bombieri, N., Guarnieri, V., Bocchio, S.: From RTL IP to functional
system-level models with extra-functional properties. In: Jerraya, A., Carloni, L.P., Chang,
N., Fummi, F. (eds.) Proceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, CODES+ISSS ’12. ACM, New York, NY
(2012). doi:10.1145/2380445.2380529

20. Lorenz, D., Hartmann, P.A., Grüttner, K., Nebel, W.: Non-invasive power simulation at
system-level with SystemC. In: Ayala, J.L., Shang, D., Yakovlev, A. (eds.) Proceedings of
the International Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS) 2012. Lecture Notes in Computer Science, vol. 7606. Springer, Newcastle upon
Tyne (2012)

21. Nitsche, G., Grüttner, K., Nebel, W.: Power contracts: a formal way towards power–closure?!
In: Proceedings of the 23rd International Workshop on Power and Timing Modeling, Optimiza-
tion and Simulation (PATMOS’13). IEEE, Karlsruhe (2013)

22. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein: contract-
based design for cyber-physical systems. Eur. J. Control 18(3) (2012). doi:10.3166/ejc.18.
217-238

23. Silicon Integration Initiative, I.S.: Si2 Common Power Format Specification™, version 2.0
edn. Silicon Integration Initiative, Inc. (Si2™) (2011)

24. UPPAAL: http://www.uppaal.org/
25. Urdahl, J., Stoffel, D., Kunz, W.: Path predicate abstraction for sound system-level models

of RT-level circuit designs. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 33(2)
(2014). doi:10.1109/TCAD.2013.2285276

http://www.uppaal.org/

Chapter 10
SystemC AMS Power Electronic Modelling
with Ideal Instantaneous Switches

Leandro Gil and Martin Radetzki

Abstract Ideal instantaneous switches are a useful behaviour abstraction technique
for modelling semiconductor components in power system development. This
behaviour abstraction allows fast and robust simulations of sophisticated power
systems. In this paper, we present a SystemC AMS extension that supports ideal
switches modelling and simulation. Using this extension, large externally and
internally controlled electrical linear networks can be integrated into system level
models for design and verification purposes. To validate our implementation, we
modelled and simulated a complex high voltage power converter for medical
applications. The results demonstrate the robustness and accuracy of our SystemC
AMS extension.

10.1 Introduction

System level design and verification of analogue and mixed-signal hardware and
software requires a hierarchical approach that uses different levels of abstraction.
SystemC is a system level design language (SLDL) what focuses on system
architecture design for large systems. It provides an open environment for consistent
and efficient modelling and simulation of complex heterogeneous systems.

Based on a set of CCC classes and methods, the structure and the behaviour
of hardware and software systems can be described from abstract specifications to
register transfer level (RTL).

Analogue circuit modelling at higher levels of abstraction is gaining importance
in facilitating high-performance system-level simulations. In order to support
complex System-on-Chip (SoC) design SystemC was extended for analogue and
mixed signal aspects. The current SystemC AMS standard includes models of
computation (MoCs) for continuous and discrete time data flow modelling as well
as conservative behaviour descriptions for electrical network modelling. These

L. Gil (�) • M. Radetzki
Embedded Systems Department, University of Stuttgart, Pfaffenwaldring 5b,
70569 Stuttgart, Germany
e-mail: leandro.gil@informatik.uni-stuttgart.de; martin.radetzki@informatik.uni-stuttgart.de

© Springer International Publishing Switzerland 2016
F. Oppenheimer, J.L. Medina Pasaje (eds.), Languages, Design Methods, and Tools
for Electronic System Design, Lecture Notes in Electrical Engineering 361,
DOI 10.1007/978-3-319-24457-0_10

181

mailto:leandro.gil@informatik.uni-stuttgart.de
mailto:martin.radetzki@informatik.uni-stuttgart.de

182 L. Gil and M. Radetzki

abstraction methodologies provide enough facilities to support system description
and simulation for a wide range of applications, especially for communication
systems.

For applications requiring large signal behaviour and switching mode operation,
such as driver stages with pulse width modulation, the existing MoCs do not achieve
the necessary accuracy [18] or simulation performance [10, 17]. To overcome these
limitations, we propose a SystemC AMS extension for power electronic modelling
that relies on ideal instantaneous switches. This extension provides primitives for
modelling internally and externally controlled switched networks and enables fast,
robust and accurate simulations.

The presented approach implements new primitives for semiconductor modelling
and reduces the size of system equations by exploiting the properties of ideal
switched electrical networks. Additionally, a set of libraries are provided for val-
idating the power circuit functionality in Simulink [8]. Electrical circuits described
using SystemC AMS syntax can then be embedded in user code and thus integrated
smoothly into Simulink models. The presented methodology does not intend to
replace specialized analogue simulators such as Simulink/PLECS or SPICE. These
programs are advantageous because they provide a set of specialized libraries and
development tools to support several applications and they are normally faster or
more accurate when systems with one large analogue part are simulated.

In Sect. 10.2, we outline previously implemented SystemC extensions supporting
electrical network modelling and investigate similar modelling approaches for
continuous time simulators. Section 10.3 introduces the modelling of switched
networks. Using a simple example, some limitations of the current SystemC AMS
standard for power electronic modelling are then illustrated in Sect. 10.4. The
proposed model of computation and its computational implementation are described
in the Sects. 10.5 and 10.6. Finally, we demonstrate the practical applicability of the
proposed extension using a sophisticated industrial example in Sect. 10.7.

10.2 Related Work

10.2.1 SystemC Extensions Supporting Electrical Networks

Al-Junaid and Kazmierski presented a SystemC extension named SEAMS using a
general-purpose analogue solver [1–3]. In order to provide modelling capabilities
for general, mixed-mode systems with digital and non-linear analogue behaviour,
a variety of abstraction levels, from system level to circuit level were proposed
in this work. The described language constructs support analogue system vari-
ables, analogue components and user defined ordinary differential and algebraic
equations. CCC classes for electrical nodes and primitive analogue components
such as resistor, capacitor, inductor, diode and various types of sources have been
implemented. An electrical circuit can be constructed by declaring system variables
of type node and analogue components. At the matrix build time, the build functions
of all components in the net list are invoked.

10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches 183

The analogue equation set formulation relies on the modified nodal analysis
(MNA). The analogue kernel invokes the build function once before simulation
start. For synchronization between SystemC ports and their corresponding values in
the analogue solver, interfacing components are provided. The SystemC kernel was
extended to invoke and synchronize the analogue solver in each simulation cycle by
applying a lock-step method. A boost power converter was chosen as example of
non-trivial analogue and digital interaction. Any numerical difficulty was reported.
In a second implementation, named SystemC-A, the handling of extremely small
and zero time steps was incorporated to deal with simulation issues.

Vachoux, Grimm and Einwich presented the core elements of SystemC AMS
in [19] and [11]. To fill the gap in heterogeneous SoC modelling and simulation,
the SystemC extension for analogue and mixed-signal systems was focused on
signal processing, RF/wireless and automotive applications. It includes features for
modelling linear dynamic continuous time systems and linear networks. In order
to support true object oriented model refinement, from abstract specifications to
detailed implementations, generalized signals and channels were defined. Using a
static dataflow scheduler (with fixed time steps in the first release) synchronization
between continuous-time and discrete event model parts was achieved. In a first
approach continuous-time descriptions were embedded into discrete-event modules
as a cluster of dataflow components.

SystemC AMS is structured using a layered approach. New continuous time
models of computation can be added utilizing the descriptive methods provided by
the user view layer. Different solver implementations are possible at the solver layer.
Finally, the synchronization layer implements a generic mechanism to interface
continuous-time solvers and discrete event parts.

To enable the modelling of analogue, non-linear parts of cyber-physical systems
at higher levels of abstraction, Uhle and Einwich proposed in [18] a new model
of computation for SystemC AMS with similar features like in VHDL-AMS
or VerilogAMS. It allows the modelling and simulation of nonlinear networks.
The proposed extension integrates smoothly into the existing SystemC AMS
language architecture.

The previous three approaches implement models of computation for a wide
range of applications. Although electrical network modelling is supported by
all theses extensions, they don’t provide the necessary accuracy or simulation
performance for the modelling of power electronic systems at high abstraction
levels. SystemC AMS allows rapid electrical network simulations, but it does not
offer primitives for the modelling of internally controlled switches. The applied
numerical integration method limits the type of circuit that can be simulated.
The proposed extension for nonlinear continuous behaviour leads to sophisticated
models and slow simulations. It restricts the practical application to small power
circuits.

In [13], Grimm et al. presented a novel approach to enable fast simulations of
analogue power drivers. The CCC behavioural models can be easily integrated
in SystemC. The underlying method utilizes pre-solved parameterized differential
equations. The dominant cycle of the network is determined using Dijkstra’s

184 L. Gil and M. Radetzki

algorithm. Because, in this approach, analogue models cannot cause discrete events,
only a single topological change is permitted at each switching instant. It is not
possible to simulate internally controlled switches such as diodes.

10.2.2 Electrical Networks with Ideal Switches

Bedrosian and Vlach presented in [6, 7] a model of computation for time domain
analysis of networks with internally controlled ideal switches. In this work the
network equations for each topology are generated with a two-graph MNA tech-
nique. In order to determine the correct topology after switching, impulsive voltages
and currents are considered at the switching instants, in conjunction with the
initial conditions. An accurate handling of voltage and current impulses at the
switching instants is carried out by splitting the circuit response into a non-impulsive
and an impulsive component. The impulsive response part is calculated using a
computational method based on inverse Laplace transformation. To find a valid
topology after switching several topological changes are allowed. This general
analysis method is suitable for any internally controlled switched network (see
Sect. 10.3). The computational approach was implemented in a circuit simulator
named SWANN.

Massarini, Reggiani and Kazimierczuk proposed a method for large-signal time-
domain analysis of switched networks based on a state variable approach in [12–14].
In their work, the network equations are represented with a reduced tableau matrix.
An efficient algorithm for the systematic formulation of state equations and output
equations for linear active networks was developed. Every switching element is
also modelled as an ideal switch. The evolution of the network is represented by
a sequence of linear circuit topologies. For each topology, the state equations are
systematically obtained through a simple interchange of columns. In order to find
the correct topology after switching, a logical representation of impulsive quantities
is introduced in the analysis. Using the presented state space description a method
to predict possibly impulsive transitions was presented. The impulse analysis is
performed only for a limited number of transitions. Switched networks consisting
of linear elements and both externally and internally controlled switches were
simulated.

Based on the previous approaches Allmeling and Hammer developed a toolbox,
PLECS, for simulation of power electronic circuits under Simulink (See [4, 5, 15,
16]). It exploits the features offered in the Simulink environment, allowing the
simulation of large systems containing both electrical circuits and sophisticated
controllers. A state-space circuit formulation is also applied in this work. The
independent mesh and node equations are, however, obtained using MNA. The
automatically generated equation system, describing the circuit, is then reduced by
elimination of dependent variables. In order to derive the state matrices for a specific
topology, the system variables are ordered into: state derivatives, output variables,
undetermined switch variables, state variables and input variables. Using Gauss

10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches 185

Jordan elimination with partial pivoting, the generic equation system is transformed
into an upper triangular matrix. The state-space equations are then embedded in
Simulink by means of user code in C. By analysing the system outputs and the
control inputs a switch manager determines the circuit topology. In addition to
the non-impulsive part of the system output, an output impulse-multiplier, which
is implicitly associated with a voltage or current impulse, is determined after
switching. In order to hit the exact switching point in time, Simulink’s zero crossing
detector is utilized.

Unfortunately, PLECS does not provide a toolbox for discrete event simulators
such as Verilog or SystemC. In order to carry out power circuit simulations in
SystemC, we exploit the generic architecture of SystemC AMS to develop a
model of computation supporting internally and externally controlled ideal switches.
A special solver enabling instantaneous switching and accurate results for discrete
time simulation is presented in this work.

10.3 Power Electronic Modelling

10.3.1 Abstraction of Power Electronic Circuits

Depending on design and verification goals, different abstraction levels are com-
monly used to model power electronic circuits:

1. Transfer function:
For controller design a mathematical description of the system in form of a
transfer function is commonly used. The electric circuit is considered as linear
causal system. It is only valid for small signal behaviour and no switching
response can be analysed (no harmonics).

2. Electrical network with ideal components:
For circuit design and controller verification tasks a time domain mathematical
description of the system is required. The electric circuit is represented using
linear components and switches. It is valid for large signal behaviour and applied
to evaluate the overall system performance. Voltage and current waveforms of
different system parts are analysed.

3. Electrical network with detailed components:
At the last design stages, a detailed mathematical model of circuit components,
including manufacturer specific characteristics, is required for the choice of
components. Parasitic effects, switching transitions and component stress are
considered during the analysis. Usually, non-linear component behaviour needs
to be considered. SystemC AMS provides MoCs to describe analogue systems as
transfer function or electrical network. Circuit specific characteristics cannot be
adequately analysed. A specialized circuit simulator such as SPICE or SABER
is required for such tasks.

186 L. Gil and M. Radetzki

10.3.2 Classes of Switched Networks

Taking into consideration the network components and topology, according to [7]
switched networks can be classified into:

1. Externally controlled switched networks:
In this type of electrical networks the state of the switches does not depend on
the network response. All switches are controlled by external signals. It leads to
“forced commutations”.

2. Internally controlled switched networks:
In this type of electrical networks one or more switches are controlled by net-
work voltages and/or currents. The switching time between different topologies
depends on the state of network components. It leads to “natural (and forced)
commutations”.

SystemC AMS does not include primitives for internally controlled switches.
They can be modelled by implementing their control logic as separated module.
Alternatively, user primitives can be developed from basic SystemC AMS classes.
Additionally, the handling of multiple simultaneous switching requires an appropri-
ated extension, as will be explained in the next chapter.

10.4 Limitations of Modelling and Simulating Power
Electronics in SystemC AMS

Power electronic circuits commonly consist of linear components and one or more
semiconductor switches. These elements are already included in the ELN primitives.
The current computational approach of this MoC provides very good results for
the applications considered in the SystemC AMS specification, namely signal
processing, RF/wireless and automotive [19].

As mentioned in [9], there are some limitations regarding the simulation of
electrical linear networks. Some networks can be described using ELN primitives
but the resulting differential equation system cannot be solved.

The Buck converter circuit shown in Fig. 10.1 wasutilized in [4, 5] to explain
ideal switching modelling. It is useful to illustrate current SystemC AMS limitations
for modelling and simulation of power electronic models. Figure 10.2 shows the
ELN code of the Buck converter circuit.

Figure 10.3 shows the ELN code of the diode. It is modelled using a resistive
switch. Additional primitives for voltage and current monitoring (Vm and Am)
are required to represent the diode characteristics. The diode control logic is
implemented using a simple discrete event module (Fig. 10.4).

When the presented model is simulated, an error message is displayed in the
system console (see Fig. 10.5). The SystemC AMS solver cannot initialize the
underlying equation system.

10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches 187

E1

S2

D3

L4 R5n2 n3
A

n5
Am6

C7 G8 V
Vm9

n4

g

u

il

vc

Fig. 10.1 Buck converter schematic

1 namespace sca_eln_mdl
2 {
3 using namespace sca_eln;
4 SC_MODULE(Circuit)
5 {
6 sc_core :: sc_in <bool> g;
7 sc_core :: sc_in <double > u;
8 sc_core :: sc_out <double > i_l;
9 sc_core :: sc_out <double > v_c;

10
11 sca_r R; sca_l L; sca_c C; sca_r G;
12 sca_de :: sca_vsource E; sca_de :: sca_isink Am; sca_de :: sca_vsink Vm;
13 sca_de :: sca_switch S; sca_de :: sca_diode D;
14
15 Circuit(sc_core :: sc_module_name name):
16 g("g"), u("u"), i_l("i_l"),
17 R("R", 0.05), L("L" ,0.1), C("C" ,0.1), G("G" ,0.1),
18 E("E" ,1), Am("Am"),Vm("Vm"),
19 S("S"), D("D"),
20 gnd("gnd"),n1("n1"),n2("n2"),n3("n3"),n4("n4"),n5("n5")
21 {
22 sc_core :: sc_time time_step = sc_core :: sc_time(1,sc_core :: SC_US);
23 E.p(n1); E.n(gnd); E.inp(u); E.set_timestep(time_step);
24 S.p(n1); S.n(n2); S.ctrl(g); S.set_timestep(time_step);
25 D.p(gnd); D.n(n2); D.set_timestep(time_step);
26 L.p(n2); L.n(n3);R.p(n3); R.n(n4);
27 Am.p(n4); Am.n(n5); Am.outp(i_l); Am.set_timestep(time_step);
28 C.p(n5); C.n(gnd); G.p(n5); G.n(gnd);
29 Vm.p(n5); Vm.n(gnd); Vm.outp(v_c); Vm.set_timestep(time_step);
30 }
31 private:
32 sca_node_ref gnd;
33 sca_node n1, n2 , n3 , n4 , n5;
34 };
35 }

Fig. 10.2 SystemC AMS ELN Buck converter implementation

In order to keep the size of resulting system matrix constant, switches are
described in SystemC AMS by a variable resistance. Very small and very large
resistance values are respectively utilized to represent the ON and OFF switch
states. This allows the exploitation of the fast and generic linear solver developed
for continuous time modelling. No solver extension is required to compute the linear
network solution after a topology change.

The circuit response usually does not change considerably if switches are
modelled in this way; however, it often leads to non-solvable equation systems.

188 L. Gil and M. Radetzki

Fig. 10.3 SystemC diode implementation

By setting the diode switch off state resistance to a smaller value (1e9), the
solvability problem can be eliminated.

The power circuit controller is also implemented using a discrete event module
as shown in Fig. 10.6. The inductor current is maintained inside a defined range by
open and closing the switch S. When the maximal inductor current is achieved, the
controller opens the switch and a new solvability error occurs during simulation,
as shown in Fig. 10.7. At the switching instant, the inductor current is interrupted
causing a voltage impulse. This turns the diode ON. Due to the very small diode
ON resistance, the resulting equation system cannot be solved. Changing diode ON
resistance to an appropriated value (1e-6), the system equations can be numerically
solved.

10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches 189

Fig. 10.4 SystemC diode control logic implementation

Fig. 10.5 SystemC AMS error message during initialization

190 L. Gil and M. Radetzki

Fig. 10.6 SystemC Buck converter controller implementation

The obtained simulation results are however not correct. As shown in Fig. 10.8,
inductor current becomes zero after switching. Thereby, the diode does not remain
turned ON and the controller closes the switch again to reach the desired inductor
current. The reason for this behaviour is that SystemC AMS solver allows only one
switching event at a given point in time. This restriction limits the type of circuits
that may be simulated using SystemC AMS. The simulations results using multiple
instantaneous switching are showed in Sect. 10.6 (Fig. 10.10).

10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches 191

Fig. 10.7 SystemC AMS error message during simulation

10

0

0.8
Capacitor voltage

0.6

0.4

0.2

0.0

0.00 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.090.02

Inductor current

vc

il

Fig. 10.8 Buck converter simulation results with SystemC AMS ELN

10.5 Modelling and Simulating Power Electronics
Using Ideal Switches

The use of ideal instantaneous switches is often an appropriate behaviour abstraction
to model power electronic semiconductors because the processes during switching
are not important when power electronic circuits are simulated for system perfor-
mance evaluation. An ideal or perfect switch has zero resistance when ON, zero
admittance when OFF, and switches between both states in zero time. Representing

192 L. Gil and M. Radetzki

switches in this way leads to more robust and faster simulations. On the other
hand, circuit state inconsistencies after topology change need to be properly handled
during simulation.

10.5.1 Computational Advantages of Ideal Switching
Modelling

1. Simple numerical integration algorithm:
The numerical integration algorithm is applied during simulation to compute the
electrical circuit behaviour after a circuit topology was defined. The method and
parameters required to solve the associated differential equations depend mainly
on current circuit characteristics. They may change after each switching event.
Using linear electrical elements, an accurate representation of power electronic
circuits is possible. Linear differential algebraic equations can be numerically
solved using very simple integration techniques such as forward and backward
Euler or the trapezoidal rule [20].

2. Short time switching process:
Because ideal switches change their state in zero time, only two integration
steps are necessary to handle the discontinuities at each switching event. The
numerical integration algorithm is applied again to compute the system state after
switching.

3. Reduced equation system:
Nodes connecting ideal switches can be contracted into a single node when
ideal switches are ON. Thus, the size of the network matrices and hence the
computation time can be reduced.

4. Less solvability problems:
Because ideal switches do not have very small or very large parameter values,
the resulting circuit equation system is normally non-stiff which leads to stable
simulations. Additional passive components (snubbers) to make the simulation
converge are rarely necessary and therefore no parameter tuning is required.

5. More accurate models:
Due to the large signal behaviour of power circuit models, avoiding addi-
tional resistances for solvability increases considerably the simulation accuracy.
Furthermore, the additional parameters of non-ideal switches must be chosen
according to the circuit being analysed. It requires a good understanding of the
circuit’s operation. Ideal switches eliminate the trade-off between accuracy and
stability.

6. Faster simulations:
Ideal switches do not affect system response. In opposite, the additional compo-
nents of non-ideal switches introduced for simulation stability may considerably
increase the simulation time, in particular, if their parameters are not properly
chosen.

10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches 193

10.5.2 Computational Requirements for Ideal
Switching Modelling

An ideal switch represents a short circuit when it is closed and an open circuit when
it is open. Depending on the resulting topology after commutation, different circuit
or state inconsistencies can be caused by:

• floating nodes
• short-circuited voltage sources
• open-circuited current sources
• short-circuited capacitors
• open-circuited inductors
• different initial conditions of circuit elements

If one or more inconsistencies are present in the circuit topology after switching,
the resulting differential and algebraic equation system cannot be numerically
solved. Using circuit analysis such network inconsistencies must then be found and
removed from the system description matrices.

Additionally, the network response may be discontinuous at the switching
instants, if inconsistencies are present. It means that voltage or current impulses
may be generated by the state change. They can be also produced by inconsistent
initial conditions [21]. Thus, impulsive currents or voltages need to be accurately
recognized and appropriately handled for determining the correct topology after
switching. Internally controlled switches may change their state if a current or
voltage impulse is applied to them. As described in the related work, there are
several methods to cope with voltage and current impulses in switched networks.

10.6 Electrical Piece-Wise-Linear Networks (EPN)

As presented in [19], the language architecture of SystemC AMS standard is defined
in an extensible way. New models of computation can be defined and seamlessly
integrated by using base classes for signals, ports and modules.

10.6.1 Syntax and Primitives

The proposed extension of SystemC AMS for modelling electrical circuits with
ideal switches follows the same syntax as the currently available MoC ELN
(Electrical Linear Networks). Thus, existing SystemC AMS models can be compiled
and simulated with only minimal code modifications.

In order to support the specific features of ideal switching modelling with
natural commutation, primitives for electrical elements were implemented using the

194 L. Gil and M. Radetzki

attributes and methods of the new solver class. We named our model of computation
“Electrical Piece-wise-linear Networks” and assigned the namespace sca_epn to the
new types and classes. All primitives are derived from the base class sca_module.

In order to utilize the built-in binding mechanism of SystemC, terminals are
instances of a type derived from sca_port and nodes are instances of a type derived
from sca_interface. Circuit elements are also interconnected by binding terminals to
nodes. Primitives for modelling externally and internally controlled ideal switches
(epn_switch and epn_diode) are provided to enable the novel language capabilities.

10.6.2 Network Equations Formulation

Similar to the current SystemC AMS implementation, we obtain circuit equations by
applying the rules of the MNA. The nodal equation set-up is carried out according
to the following expressions:

ŒYnBb � Œ Vn �DŒ Jn� (10.1)

ŒBnZb � Œ Ib �DŒ Eb� (10.2)

where Yn is the nodal admittance matrix, Zb is the branch impedance matrix, Bb is the
branch incidence matrix, Bn is the nodal loopset matrix, Jn represents the equivalent
nodal current sources, Eb represents the equivalent branch voltage sources, Vn is the
nodal voltage vector and Ib is the branch current vector.

Matrix stamps for this equation partition are formulated as described in [20]. This
leads to less equations than the current SystemC AMS implementation and is more
appropriate for power circuit simulation consisting of linear elements.

During the SystemC AMS initialization phase, the matrix_stamp function is
called for each instantiated circuit element. The previously defined matrices, Yn,
Bb, Bn and Zb, are then created and used to compute the system matrix by applying
the numerical integration algorithm as described in [20]. Linear multistep methods
(LMS) are currently provided.

The value of the system matrix coefficients depends on the state of the internally
and externally controlled switches. The resulting circuit topology is then analysed
considering the criteria specified in the previous chapter.

10.6.3 Topology Analysis of Switched Electrical Networks

To carry out an efficient topology analysis of switched electrical networks we
extended graph theory representation methods for the detection of network inconsis-
tencies. A network graph considers the network elements as terminal components.
It describes the connection between network elements, capturing the properties of

10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches 195

Fig. 10.9 Graph
representation of the Buck
converter circuit

1

0

2 3 4
42

1

5
5

6

7
8

9
3

Table 10.1 Buck converter
representation using a table

Edge 1 2 3 4 5 6 7 8 9

Type E S D L R Am C G Vm

Np 1 1 0 2 3 4 5 5 5
Nn 0 2 2 3 4 5 0 0 0
Zi 0 1 2 0 0 0 0 0 0

the network in a natural way. Network graphs can be efficiently implemented on the
computer in form of a simple table.

1. Network representation using a directed graph
For the construction of the directed graph network representation, each two-
terminal element of the network is numbered and replaced in the circuit by a
line called edge. An orientation corresponding with the assigned current flow
direction is associated with each edge in the graph. For passive elements, the
node from which the current flows is the positive terminal. For current sources,
the direction of the current is defined by its symbol. For voltage sources, the
direction of the current flow is from the positive to the negative terminal. The
vertex of the graph represents the nodes of the network. They are numbered
assigning zero to the ground. The node numbers in the graph are placed within
circles to distinguish them from the edge numbers. Figure 10.9 shows the graph
representation of the Buck converter circuit.

2. Network representation using a table
For the construction of table representing an electrical network, each two-
terminal element of the network adds a new column to the table. The edge,
the type, the positive and the negative node of the each network element are
described in the corresponding table row. For switched network analysis we add
a row containing the state variable number of switching elements.

Table 10.1 buck converter circuit. Np, Nn and Zi represent the positive
node number, the negative node number and the discrete state variable number
respectively.

In order to handle two ports elements by a single graph, the input and the output
terminals are represented as separated edges (columns in the table representation
form).

196 L. Gil and M. Radetzki

Table 10.2 Reduced Buck
converter representation using
a table

Edge 1 2 3 4-5-6 7-8-9

Type E S D L-R-Am C-G-Vm

Np 1 1 0 2 5
Nn 0 2 2 5 0
Zi 0 1 2 0 0

10.6.3.1 Topology Analysis Using a Network Graph

The graph representation of a switched electrical network can be utilized to
reduce the number of equations and predict inconsistent equations. The following
information about the network nodes and branches can be obtained:

• connected elements which can be reduced to a single element
• floating nodes and its switching dependencies
• floating network elements
• complementary network branches (i.e. diode bridge)

The following steps are carried out during the graph based topology analysis of
a switched network:

1. Group serial connected impedances (R-L-Am elements which may be represented
as single impedance or current branch).

2. Group parallel connected admittances (G-C-Vm elements which may be repre-
sented as single admittance).

3. Identify floating nodes if all switches are open.
4. Identify floating branches if all switches are open.

A floating node is a node to which only one element is connected. The current
through a branch connected to a floating node is zero. A floating branch is a branch
terminated with floating nodes. It is not possible to compute the voltage across its
nodes.

Applying the steps 1–2, a reduced circuit table is obtained (Table 10.2) for the
Buck converter circuit. The elements L, R and Am have the same current and can
be grouped into a single edge. The parallel admittance branches G-C have the same
voltage applied to its nodes and can also be grouped into a single edge. The output
voltage Vm is the same as the voltage across G-C.

If all switches are open (step 3), there two floating nodes in the circuit (node 1
and node 2). Because all circuit branches are connected to ground when all switches
are open, does not exist any floating branch which need to be eliminated from the
network equation system (step 4).

10.6.3.2 Voltage and Current Graphs Analysis

An edge in an electrical network graph simultaneously represents the current
through the element and the voltage across the network element. For some elements
of the network, one of the constitutive variables may be zero.

10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches 197

For example, the current through an ideal switch or the voltage across its terminal
is zero when it is open or closed respectively (complementary behaviour). For some
other elements, one of the constitutive variables is not necessary for the solution of
the resulting equation system and it is also not of interest, such as the current through
a voltage source and the voltage across the terminal of a current source. Using
separated graphs to represent the network voltages and currents, this redundancy
can be eliminated (see [20] for more details).

Extended current and voltage graphs can be utilized for the prediction of network
topologies producing impulses.

1. Topology analysis using the current graph (I-graph)
The current graph can be utilized to get the following information about the
switched electrical network:

• open circuited branches which may generate voltage impulses (branches
containing current sources and inductors)

• switching dependencies for such open circuited branches
• voltage impulses acting on internally controlled switches

2. Topology analysis using the voltage graph (V-graph)

The voltage graph can be utilized to get the following information about the
switched electrical network:

• short circuited elements branches which may generate current impulses (voltage
sources and capacitors)

• switching dependencies for such short circuited elements
• current impulses acting on internally controlled switches

10.6.3.3 Current Graph Topology Analysis Steps

The following steps are carried out during the current graph based topology analysis
of a switched network:

1. Collapse the nodes of the network elements that are not of interest for network
equation formulation (voltage sources E and sinks Vm).

2. Collapse the nodes of the network elements that are not of interest for impulse
analysis (only switches and branches containing inductors remain)

3. Identify open circuited branches containing current sources and inductors
(branches which generate voltage impulses).

4. Identify the switching state dependencies for branches generating voltage
impulses.

5. Identify voltage impulses acting on internally controlled switches and their
polarity.

Applying the steps 1–2, a reduced circuit table is obtained (Table 10.3) for the
Buck converter circuit. If all switches are open, the branch 4-5-6 is not closed.

198 L. Gil and M. Radetzki

Table 10.3 Reduced Buck
converter representation table
for current analysis

Edge 2 3 4-5-6

Type S D L-R-Am

Np 0 0 2
Nn 2 2 0
Zi 1 2 0

Table 10.4 Reduced Buck
converter representation table
for voltage analysis

Edge 1 2 3 4-5 7-8-9

Type E S D L-R C-G-Vm

Np 0 0 0 0 5
Nn 0 0 0 5 0
Zi 0 1 2 0 0

Using the reduced table, it is not difficult to find the states producing voltage
impulses. In this case, if the switch S (state z1) and the diode D (state z2) are
open, a voltage may impulse occur (the inductor current must be greater than zero).
Additionally, we can find out that the produced voltage impulse, when the switches
are open, is applied to the diode D with positive polarity.

10.6.3.4 Voltage Graph Topology Analysis Steps

The following steps are carried out during the voltage graph based topology analysis
of a switched network:

1. Collapse the nodes of the network elements that are not of interest (current
sources and sinks).

2. Identify short circuited voltage sources and capacitors if all switches are closed.
3. Identify the switching state dependencies for branches generating current

impulses.
4. Identify current impulses acting on internally controlled switches and their

polarity.

Applying the step 1, a reduced circuit table is obtained (Table 10.4). The voltage
through Am is zero, and its nodes can be collapsed. After collapsing all switch nodes,
the current impulses generated by short circuited voltage sources and capacitors can
be founded (step 2). In our example, the battery E is short circuited when the switch
S and the diode D are simultaneously closed (step 3). The current impulse is then
applied to the diode D and the corresponding current flow direction is determined
by the polarity of the battery (step 4).

10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches 199

10.6.4 Solver Implementation for Switches Networks

The topology analysis described in the previous section is carried out by the
solver before the simulation starts. It provides the necessary information for
the computation of the current topology equations. If circuit inconsistencies are
detected during the equation setup; the rows and columns associated with non-
valid branches and floating nodes are shifted to the outside of the resulting system
matrix. The solver variables indicating the number of system nodes and branches
are respectively modified.

The system matrix creation and analysis is repeated during circuit simulation,
when switching conditions are reached or circuit equations modified. In order
to improve simulation performance, the system matrix is factorized using LU
decomposition. Additionally, the computed topologies can be stored. The number
of stored topologies can be limited by the user.

As shown in Fig. 10.10, the solver algorithm calls a list of pre-solve methods
at the start of the integration step. They are dynamically registered by the circuit
elements and managed by the solver. This SystemC AMS functionality is utilized
by our ideal switches to read SystemC ports and update circuit topology if necessary.
If state changes are reported, the system matrix is computed again. The pre-solve
methods are called again if inconsistencies were detected. Forward and backward
substitution is applied at each integration step to obtain the system response.

After one integration step is carried out, the solver calls the post-solve methods.
The diode class exploits this mechanism to evaluate switching conditions. It sets a
solver flag if their threshold values are reached. The solver creates the system matrix
and repeats the integration step, if a natural switch condition was reported. Because
ideal diodes modify their state instantaneously, this loop needs to be executed
until no more switching conditions are detected. If during the switching process
a topology occurs twice, the system is not stable and the simulation is aborted.

10.6.5 Time Step Control

In order to keep the errors caused by the numerical integration small as well as to
synchronize continuous and discrete time parts, analogue simulators carry out step
size control during simulation. The SystemC kernel employs an entirely different
approach to control time advance. It uses events that trigger processes. The solver
time control is implemented in SystemC AMS using a spawn process.

Due to the large signal behaviour of power electronic circuits, a very short
integration step is often required to minimize numerical integration errors. This
can notably decrease the simulation performance. As shown in Fig. 10.10, a
step refinement loop was incorporated into the solver algorithm to improve the
simulation time and obtain accurate results. A solver variable controlling the loop
can be modified by the primitive pre- and post-solve methods. In a first approach this

200 L. Gil and M. Radetzki

Start solver step

Call pre-solve
methods

Forced
switching?

Update equation
system

yes

no

System
resize?no yes

Solve equation system

Call post-solve
methods

Natural
switching?

New
topology?

Stop simulationUpdate state vector

Iteration
ready?

S
te

p
 r

ef
in

em
en

t
lo

op To
p

ol
og

y
ch

an
g

e
lo

op

no

yes

no

yes

no

yes

End solver step

Call trace methods

Fig. 10.10 Solver step refinement and topology change loops

10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches 201

simulation parameter is adjusted by the user by calling a solver interface function in
the SystemC module constructor.

To split solver interface from step refinement and topology change loops, trace
methods were defined and implemented for current and voltage sinks.

10.6.6 Electrical Circuit Integration in Simulink

The control algorithm of the power system is normally implemented as Simulink
model. In order to validate the power circuit functionality in Simulink, a set of
libraries were created. They enable the smooth integration of electrical circuits,
implemented in SystemC, into Simulink models by embedding user code. The Sys-
temC module registration and port binding process is carried out by the Simulink
block frame when the model initialization function is called. During simulation
input and output signals are writing to and reading from global variables assigned
to the SystemC ports. The input and output port order follows SystemC declaration
order.

10.7 Experimental Results

10.7.1 Buck Converter Simulation

The buck converter circuit, proposed in Sect. 10.4 to illustrate the current SystemC
limitations by simulating internally controlled switched networks, was modelled and
simulated using ideal instantaneous switches. As shown in Fig. 10.11, the inductor
current does not present discontinuities.

This demonstrates that our approach enables multiple instantaneous switching.
At time 0.021 s, the switch S is open and the impulse generated by the inductor

turns the diode ON. At time 0.091 s the switch S is closed and the negative voltage
applied to the diode turn it OFF. The short circuit caused by the diode, when the
switch is closed is properly handled by our algorithm.

In Table 10.5, the execution time of this model till the switch is opened at 0.021 s
is compared for different approaches and data sampling frequency. The EPN MoC
compute 10 ms faster, when the solver step size is increased from 1 to 10 �s and
the number of step iterations set to 10. Simulink simulates faster when the model is
only loaded on memory.

202 L. Gil and M. Radetzki

10

0

Inductor current

Capacitor voltage

5

1.0

0.5

0.0
0.00 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.090.02

il

vc

Fig. 10.11 Buck converter simulation results using ideal instantaneous switches

Table 10.5 Buck converter simulation execution time

Simulation execution time
Data sampling SystemC ELN SystemC EPN Simulik/PLECS

10 �s 60 ms 40 ms j 50 ms 62 ms j 74 ms
100 �s 50 ms 40 ms j 50 ms 60 ms j 69 ms

10.7.2 High-Voltage Power Converter Simulation

In order to evaluate the practical application of the described SystemC AMS
extension for power electronic modelling, a high-voltage power converter used in
medical machines has been modelled and simulated. Figure 10.12 shows a block
diagram representation of power electronic system. Due to the large number of
switches (4 externally controlled and 16 internally controlled), the high frequency
operation (10 ns), as well as the very large output signal range (30–120 kV)
this switched electrical network provides the required complexity to validate the
proposed methodology and its software implementation.

The digital controller was implemented using discrete event modules. It operates
in three levels (ON, OFF and CONTROL) to achieve a rapid response. Many signals
are monitored to control the output voltage. As shown in Fig. 10.13, there is a strong
analogue and digital interaction.

Although circuit parameter values comprise a very large range, solvability prob-
lems were only encountered for one topology. The modelling task was considerably
simplified by using ideal diode primitives. As expected, the small integration step
leads to large simulation times. Simulation results were similar to those obtained
with PLECS by using fixed time step.

The simulation accuracy allows an adequately analysis of signal harmonics.

10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches 203

Digital Controller

H
ig

h
-V

o
ltag

e B
attery

In
verter

T
ran

sfo
rm

er

In
p
u
t Filter

O
u
tp

u
t Filter

Lo
ad

R
ectifier

Fig. 10.12 Block diagram of the high-voltage power converter

4000
Input current

Output voltage

Control voltage

Control signals

2000

−2000

−2

−4000

0

0

curr_fltr

vltg_fltr

vltg_ctrl:1

vltg_ctrl:4
vltg_ctrl:3
vltg_ctrl:2

vltg_out

2

1

0

0 1 2 3 4 5

1.0

0.5

0.0

1e4×

1e-4×

1e5×

Fig. 10.13 Power converter signals

204 L. Gil and M. Radetzki

10.8 Conclusion

In this paper we proposed an extension of SystemC AMS for modelling and
simulation of power electronic circuits. It was integrated into the existing language
architecture. Our proposed implementation hides switching control details from the
models, resulting in a simple and more efficient modelling approach of electrical
piece-wise-linear networks. Experiments show that complex internally controlled
electrical switched networks are robust and accurately simulated in SystemC. We are
encouraged by the obtained results to continue with the development of modelling
abstractions for efficient power circuit simulations in SystemC.

In the next step we will improve solver efficiency to carry out large system level
simulations. In the future, we want to investigate other network abstractions taking
advantage of circuit properties and the inherent repetitive operation mode of power
systems.

Acknowledgment The authors would like to thank Philips Research for the contribution with
power system models and the German Federal Ministry of Education and Research (BMBF) for
financial support of this work within the project POWERBLOCKC (grant number 16M3200F).

References

1. Al-Junaid, H., Kazmierski, T.: An introduction to modeling embedded analog/mixed-signal
systems using SystemC AMS extensions. In: Proceedings of the International Symposium on
Circuits and Systems (ISCAS’04), vol. 5, pp. 281–284, May 2004

2. Al-Junaid, H., Kazmierski, T.: An extension to SystemC to allow modelling of analogue and
mixed signal systems at different abstraction levels. Conference or Workshop Item (Speech),
September 2004

3. Al-Junaid, H., Kazmierski, T.: Analogue and mixed-signal extension to SystemC. In: IEE
Proceedings of Circuits, Devices and Systems, pp. 682–690, December 2005

4. Allmeling, J., Hammer, W.: PLECS – Piece-wise Linear Electrical Circuit Simulation for
Simulink. In: Proceedings of the IEEE International Conference on Power Electronics and
Drive Systems (PEDS ’99), vol. 1, pp. 355–360, July 1999

5. Allmeling, J., Hammer, W.: Simulating power electronic systems using ideal instantaneous
switches. In: Proceedings of the International Conference on Power Electronics, Intelligent
Motion, Power Quality (PCIM Europe ’04), vol. 2 pp. 585–590, May 2004

6. Bedrosian, D., Vlach, J.: Time-domain analysis of networks with internally controlled
switches. In: Proceedings of the IEEE International Symposium on Circuits and Systems, vol.
2, pp. 846–849, June 1991

7. Bedrosian, D., Vlach, J.: Time-domain analysis of networks with internally controlled
switches. IEEE Trans. Circuits Syst. 1 Fundam. Theory Appl. 39(3) (1992)

8. Bozin, A.: Electrical power systems modeling and simulation using SIMULINK. In: Proceed-
ings of the IEE Colloquium on the Use of Systems Analysis and Modelling Tools: Experiences
and Applications, pp. 10/1–10/8, March 1998

9. Einwich, K.: SystemC AMS Extensions–The Language. Tutotial, September 2010
10. Grimm, C., Meise, C., Oehler, P., Waldschmidt, K., Fey, F.: AnalogSL: A library for modeling

analog power drivers with CCC. In: Proceedings of the Forum on Specification and Design
Languages (FDL ’01), September 2001

10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches 205

11. Grimm, C., Barnasconi, M., Vachoux, A., Einwich, K.: An introduction to modeling embedded
analog/mixed-signal systems using SystemC AMS extensions. Open SystemC Initiative, June
2008

12. Massarini, A., Reggiani, U.: Computer-aided time-domain large-signal analysis with network
switches. In: Proceedings of the International Symposium on Industrial Electronics (ISIE ’96),
vol. 2, pp. 567–572, June 1996

13. Massarini, A., Kazmierczuk, M.K.: A new representation of Dirac impulses in time-domain
computer analysis of networks with ideal switches. In: Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS ’96.), vol. 1, pp. 565–568, May 1996

14. Massarini, A., Reggiani, U., Kazimierczuk, M.K.: Analysis of networks with ideal switches by
state equations. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44, 692–697 (1997)

15. Plexim GmbH: An introduction to solvers. In: Vehicle Power and Propulsion Conference
(VPPC), 2011 IEEE International, pp. 1–132, September 2011

16. Plexim GmbH: PLECS User Manual. http://www.plexim.com/files/plecsmanual.pdf
17. Reuther, C., Einwich, K.: A SystemC AMS extension for controlled modules and dynamic

step sizes. In: Proceedings of the Forum on Specification and Design Languages (FDL ’12),
pp. 90–97, September 2012

18. Uhle T., Einwich, K.: A SystemC AMS extension for the simulation of non-linear circuits.
SOC Conference (SOCC), 2010 IEEE International, pp. 193–198, September 2010

19. Vachoux, A., Grimm, C., Einwich, K.: Towards analog and mixedsignal SOC design with
systemC-AMS. In: Proceedings of the International Conference on Field-Programmable
Technology, 2004, pp. 97–102, January 2004.

20. Vlach, J., Singhal, K.: Computer Methods for Circuit Analysis and Design, 2nd edn. Van
Nostrand Reinhold, New York (1993)

21. Vlach, J., Opal, A., Wojciechowski, J.: Simulation of networks with inconsistent initial
conditions. In: Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS ’93), vol. 3, pp. 1627–1630, May 1993

http://www.plexim.com/files/plecsmanual.pdf

	Contents
	Part I Formal Models and Verification and Predictability
	1 Automatic Refinement Checking for Formal System Models
	1.1 Introduction
	1.2 Models and Their Notation
	1.3 Refinement of Models
	1.4 Theoretical Foundation
	1.5 Proposed Solution
	1.5.1 Verification Objectives
	1.5.2 Basic Encoding
	1.5.3 Encoding the Verification Objectives

	1.6 Evaluation
	1.7 Discussion: Extraction of a Refinement Relation
	1.7.1 Existing Approaches
	1.7.2 SMT-Based Relation Extraction

	1.8 Conclusions
	References

	2 Towards Simulation Based Evaluation of Safety Goal Violations in Automotive Systems
	2.1 Introduction
	2.2 Motivation
	2.3 Fault Injection by Analogue Saboteurs
	2.3.1 Diverse Energy Domain Saboteurs
	2.3.2 Design of Generic Saboteurs and Injection into Nominal Model
	2.3.2.1 Effect-Based Analogue Saboteur Design
	2.3.2.2 Implementation in VHDL-AMS
	2.3.2.3 Fault Injection into Nominal Model and Automation

	2.4 Case Study: Automotive BMS and EUC
	2.4.1 Test-Bench Set-Up
	2.4.2 Selected Simulation Results for SPF and Discussion
	2.4.3 Selected Simulation Results for Dual-Point Faults and Discussion

	2.5 Conclusion and Outlook
	References

	3 Hybrid Dynamic Data Race Detection in SystemC
	3.1 Introduction
	3.2 Background
	3.2.1 Background on SystemC and Vector Clocks
	3.2.2 Background on Dynamic Race Detectors
	3.2.2.1 Lockset Based Detector (LBD)
	3.2.2.2 Happens-Before Based Detector (HBD)

	3.3 Our Hybrid Dynamic Race Detection Algorithm
	3.3.1 Algorithm Details
	3.3.2 Data Race Detection Examples

	3.4 Experimental Results
	3.5 Conclusions and Future Works
	References

	Part II Languages for Requirements
	4 Semi-formal Representation of Requirements for Automotive Solutions Using SysML
	4.1 Introduction
	4.2 Related Work
	4.3 Application To Be Modelled
	4.3.1 Protected High-Side Switch Description
	4.3.1.1 Modelling in SysML

	4.3.2 Airbag System
	4.3.2.1 Modelling in SysML

	4.4 Conclusions
	References

	5 A New Property Language for the Specification of Hardware-Dependent Embedded System Software
	5.1 Introduction
	5.2 Low-Level Software Model
	5.3 Software Property Language
	5.3.1 Interfaces of a Hardware-Dependent Program
	5.3.2 Sequences of Variables
	5.3.3 Execution Order
	5.3.4 Safety and Liveness Properties
	5.3.5 Syntax Extensions

	5.4 Completeness of Property Sets
	5.4.1 Determination Test
	5.4.2 Case Split Test
	5.4.3 Completeness Criterion

	5.5 Case Study
	5.6 Conclusion
	References

	6 Exploiting Electronic Design Automation for Checking Legal Regulations: A Vision
	6.1 Introduction
	6.2 Typical Methods for Electronic Design Automation
	6.2.1 Boolean Satisfiability and SAT Solvers
	6.2.2 Applications in EDA

	6.3 Formal Representation of Legal Regulations
	6.4 Applying EDA Methods to the Formal Representation
	6.5 Conclusion
	References

	Part III Parallel Architectures
	7 Synthesizing Code for GPGPUs from Abstract Formal Models
	7.1 Introduction
	7.2 Background
	7.2.1 GPGPUs
	7.2.2 ForSyDe

	7.3 Synthesis Process
	7.3.1 Input Format
	7.3.2 Model Optimizations
	7.3.3 Process Schedule Generation
	7.3.4 Signal Data Type Inference
	7.3.5 GPGPU Code Generation
	7.3.6 Process Execution and Data Propagation
	7.3.7 Limitations

	7.4 Experiments
	7.4.1 Mandelbrot Tests
	7.4.2 Image Processing Tests

	7.5 Related Work
	7.6 Conclusion
	7.7 Future Work
	References

	8 A Framework for Distributed, Loosely-Synchronized Simulation of Complex SystemC/TLM Models
	8.1 Introduction
	8.2 SystemC and TLM
	8.3 CoMix Fundamentals
	8.4 CoMix Framework
	8.4.1 CoMix Peer
	8.4.2 Connectors
	8.4.3 CoMix Multisocket
	8.4.4 Framework Characteristics

	8.5 Case Study and Results
	8.5.1 Setup and Measurements
	8.5.2 Achievable Speedup
	8.5.3 Synchronization Interval
	8.5.4 Temporal Error
	8.5.5 Packet Processing Platform

	8.6 Related Work
	8.7 Conclusion
	References

	Part IV Modelling and Verification of Power Properties
	9 Towards Satisfaction Checking of Power Contracts in Uppaal
	9.1 Introduction
	9.2 Basic Concept
	9.3 Related Work
	9.4 Power Contracts
	9.5 Leaf-Node Specification with Power Contracts
	9.6 Leaf-Node Implementation in UPPAAL
	9.6.1 Functionality and Causality
	9.6.2 Timing
	9.6.3 Power

	9.7 Observer Implementation and Verification in UPPAAL
	9.8 Proof of Concept
	9.8.1 AES Specification
	9.8.2 AES Implementation and Characterization
	9.8.3 AES Verification

	9.9 Conclusion
	References

	10 SystemC AMS Power Electronic Modelling with Ideal Instantaneous Switches
	10.1 Introduction
	10.2 Related Work
	10.2.1 SystemC Extensions Supporting Electrical Networks
	10.2.2 Electrical Networks with Ideal Switches

	10.3 Power Electronic Modelling
	10.3.1 Abstraction of Power Electronic Circuits
	10.3.2 Classes of Switched Networks

	10.4 Limitations of Modelling and Simulating Power Electronics in SystemC AMS
	10.5 Modelling and Simulating Power Electronics Using Ideal Switches
	10.5.1 Computational Advantages of Ideal Switching Modelling
	10.5.2 Computational Requirements for Ideal Switching Modelling

	10.6 Electrical Piece-Wise-Linear Networks (EPN)
	10.6.1 Syntax and Primitives
	10.6.2 Network Equations Formulation
	10.6.3 Topology Analysis of Switched Electrical Networks
	10.6.3.1 Topology Analysis Using a Network Graph
	10.6.3.2 Voltage and Current Graphs Analysis
	10.6.3.3 Current Graph Topology Analysis Steps
	10.6.3.4 Voltage Graph Topology Analysis Steps

	10.6.4 Solver Implementation for Switches Networks
	10.6.5 Time Step Control
	10.6.6 Electrical Circuit Integration in Simulink

	10.7 Experimental Results
	10.7.1 Buck Converter Simulation
	10.7.2 High-Voltage Power Converter Simulation

	10.8 Conclusion
	References

