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Preface

The purpose of this reference and handbook is to describe and to derive the analytic
solutions of the equations of satellite motion perturbed by extraterrestrial and geopo-
tential disturbances of the second order. The equations of satellite motion perturbed
by extraterrestrial disturbances are solved by means of discretization and approx-
imated potential function as well as Gaussian equations. The equations perturbed
by geopotential disturbances are solved by symbolic mathematical operations. The
traditional problem of singularity in the solutions is solved by so-called singularity-
free orbit theory. Simplified disturbed equations of motion are proposed to simplify
the solutions. Applications of the theory for analytic orbit determination are also
discussed. Indeed, this is the first book since the satellite era, which describes sys-
tematically the orbit theory with analytical solutions, with respect to all of extrater-
restrial and geopotential disturbances of the second order, and the solutions are free
of singularity. Based on such a theory, the algorithms of orbit determination can be
renewed; deeper insight into the physics of disturbances becomes possible; the way
to a variety of new applications and refinements is opened.

My primary knowledge of the orbit theory came from my education of mathe-
matics while studying physics and theoretical mechanics (1981). My first practical
experience with orbit came from the research activity at the Technical University
(TU) Berlin on orbit corrections of the satellite altimetry data (1988-1992). The
extensive experience on orbit came from the GPS/Galileo software development for
orbit determination and geopotential mapping at the GFZ (2001-2004). The tradi-
tional adjustment model of the solar radiation used in numerical orbit determina-
tion is investigated and considered not reasonable physically; and a new adjustment
model is proposed in the user manual of the Multi-Functional GPS/Galileo software
(MFGsoft) (Xu, 2004), which is also reported in the 2nd edition of the book GPS —
Theory, Algorithms and Applications (Xu, 2007). Indeed, one of the ways to ob-
tain the solutions of the extraterrestrial disturbances of the satellite motion is found
during that investigation. However, it has not been realised until two scientists,
Dr. Xiaochun Lu and Dr. Xiaohui Li of the National Time Service Center (NTSC)
in Xi’an, came to visit and to cooperate with me at GFZ. We discussed the virtual
navigation system and tried to solve the stability problem of the 3-D positioning of
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viii Preface

the system. By considering what is significant in theory and, what is more impor-
tant than our numerical study, the idea of solving the disturbed equations of motion
was obtained, and the solutions of the extraterrestrial disturbances of the equation
of satellite motion were found. Because of the importance of the geopotential dis-
turbances, great efforts were then made to derive the related solutions. Thereafter,
alternative solutions of the extraterrestrial disturbances were found by using dif-
ferent means (besides the discretization, also approximated potential function and
Gaussian disturbed equations). To simplify the solutions, the simplified disturbed
equations were proposed. To solve the problem of singularity, the singularity-free
theory was also developed.

After publishing my book, GPS — Theory, Algorithms and Applications, in 2003,
I did not want to ever write another scientific book because this process took more
than two years extreme hard work. However, I must finish this book because some
of the scientists have contributed their lifetime to the theoretical solutions of the
geopotential disturbances of the equation of satellite motion and now the results
are here. The solutions of the extraterrestrial disturbances of the orbit motion are
of extreme importance for practice, but they are rarely investigated because they
are highly complex. From the theory, a special confusion related to the solar radia-
tion from the pure numerical orbit determination has been cleared. Many interesting
applications will follow soon. To make the process of writing easy, a small portion
of the basic contents of my GPS book is partly modified and imported or rearranged
and used.

The book includes ten chapters. After a brief introduction, the coordinate and
time systems are described in the second chapter. The third chapter is dedicated to
the Keplerian satellite orbits — the orbits of the satellite under the attraction of the
central force of the Earth.

The fourth chapter deals with perturbations of the orbit. Perturbed equations of
satellite motion are derived. Perturbation forces of the satellite motion are discussed
in detail, including the perturbations of the Earth’s gravitational field, Earth tide and
ocean tide, the sun, the moon and planets, solar radiation pressure, and atmospheric
drag, as well as coordinate perturbation.

The fifth chapter covers the analytic solution of Cyg perturbation, including the
complete formulas of the long term, and long and short periodic terms. The deriva-
tion also gives the algorithm and model of the orbit correction. The solutions of other
geopotential disturbances of higher order and degree are described in the sixth chap-
ter. As examples, solutions of disturbances of Cs0, D1 and Dy are given. General
solutions of disturbance of Dy, are derived. Symbolic operation software for deriv-
ing solutions of geopotential disturbances of any order and degrees are designed and
used.

The seventh chapter covers the solutions of extraterrestrial disturbances such
as solar radiation pressure, atmospheric drag and the disturbances of the sun, the
moon and planets. The principle and strategy that lead to the solution are described.
The solutions are derived via discretization and approximated potential function as
well as Gaussian perturbed equations of motion. Simplified disturbed equations are
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proposed and used partly. The ephemeris of the sun, the moon and planets are given
for practical use.

The eighth chapter is dedicated to numerical orbit determination, including its
principle, the algebraic solutions of the variation equations, and the numerical inte-
gration and interpolation algorithms, as well as the related derivatives.

The ninth chapter describes the principle of analytical orbit determination based
on the proposed new solutions. Real time ability and properties of the analytic orbit
solutions are discussed.

The final chapter includes algorithms that lead to singularity-free orbit theory
and the equations of motion in non-inertial frame as well as discussions concerning
the further development of the orbit theory and its applications as well as comments
on some remaining problems.

The book has been subjected to an individual review of chapters and sections and
a general review. I am grateful to reviewers Prof. Markus Rothacher of GFZ, Prof.
Dieter Lelgemann of TU Berlin, Prof. Yuanxi Yang of the Institute of Surveying and
Mapping (ISM) in Xi’an, Dr. Jianfeng Guo of Information Engineering University
(IEU) in Zhengzhou, Prof. Xuhai Yang of NTSC in Xi’an, Dr. Junping Chen of GFZ.
A grammatical check of technical English writing has been performed by Springer
Heidelberg.

I wish to sincerely thank Prof. Markus Rothacher for his support and trust during
my research activities at GFZ. Dr. Jiirgen Kusche is thanked for his encouragement
and help. Dr. Christoph Reigber is thanked for granting me special freedom of re-
search. My grateful thanks go to Dr. Xiaochun Lu and Dr. Xiaohui Li of NTSC
in Xi’an. Their visit to and cooperation at the GFZ have led to the derivations of
the key contents of this book. Dr. Jiangfeng Guo of IEU in Zhengzhou followed a
part of my derivation and checked for the correctness. Volker Grund of GFZ helped
me greatly by assisting in the application of software tools, which is another key
to the solution of geopotential disturbances. Qianxin Wang of GFZ helped to check
a part of the formula typing. Dr. Jinghui Liu of the educational department of the
Chinese Embassy in Berlin, Prof. Yuanxi Yang of ISM in Xi’an, Prof. Heping Sun
of the Institute of Geodesy and Geophysics (IGG) in Wuhan and Prof. Qin Zhang
of ChangAn University in Xi’an are thanked for their friendly support during my
scientific activities in China. The Chinese Academy of Sciences is thanked for the
Outstanding Overseas Chinese Scholars Fund, which supported greatly many valu-
able scientific activities even outside China.

During this work, many valuable discussions have been held with many scientists
and friends. My special thanks go to Dr. Luisa Bastos of the Astronomical Obser-
vatory of University Porto, Dr. Rene Forsberg of Danish National Space Center,
Prof. Jorg Reinking of Oldenburg University of Applied Sciences, Prof. Jikun Ou
and Prof. Yunbin Yuan of IGG in Wuhan, Prof. Wu Chen of Hong Kong Polytech-
nic University, Prof. Yunzhong Shen of Tongji University in Shanghai, Dr. Yanx-
iong Liu of the First Oceanic Institute in Qingdao, Prof. Jiancheng Li of Wuhan
University, Prof. Ta-Kang Yeh of the ChingYun University of Taiwan, Dr. Jiirgen
Neumeyer, Dr. Franz Barthelmes, and Dr. Svetozar Petrovic of GFZ, Dr. Uwe Meyer
of GeoZentrum Hannover, Dr. Ludger Timmen of University Hannover, Dr. Xiong
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Li of Hugro Inc. Houston, Dr. Daniela Morujao of Lisbon University, Prof. Klaus
Hehl of Technical University of Applied Sciences Berlin, etc.

I also wish to sincerely thank Angelika Svarovsky and Hartmut Pflug of GFZ for
their kind help. I am also grateful to Dr. Chris Bendall of Springer Heidelberg for
his valuable advice.

My wife Liping, son Jia and daughters Yuxi, Pan and Yan are thanked for their
constant support and understanding, as well as for their help.

October 2007 Guochang Xu
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Chapter 1
Introduction

The desire to understand the orbits of the planets has a history as long as that of
mankind. How and why the planets orbit around the sun are questions in two cate-
gories. One focuses on geometry and the other on physics. However, without know-
ing the answer to why the how may not be answered theoretically; with the exception
made by astronomical genius Kepler. After the Newton’s second law, all the three
Kepler’s laws may be derived theoretically.

Without any doubt, the milestones of the orbit theory were crossed by Nico-
laus Copernicus (1473-1543) with his heliocentric cosmology in “De revolution-
ibus orbium coelestium” (1543), Johannes Kepler (1571-1630) with his laws of
planetary motion in “Astronomia nova” (1609), Isaac Newton (1643—1727) with his
universal gravitation and laws of motion in “Principia mathematica” (1687). The
Keplerian orbit describes the satellite (or planet) motion under the attracting of the
central force of the Earth (or the sun). After the first satellite was launched in 1957,
William Kaula (1926-2000) crossed the milestones with the first order solution of
the equation of satellite motion disturbed by geopotential perturbations in “Theory
of Satellite Geodesy” (1966). Thereafter, many scientists devoted themselves to the
second order orbit solution of geopotential disturbances. The complexity of the the-
ory is such that only a few people understand the theory, and the theory, in turn,
is rarely applied in practice. Numerical orbit determination is developed directly to
meet the needs of the satellite missions and to overcome the problem caused by the
missing of analysis solutions of the equations of satellite motion.

Apparently most studies of the orbit theory are focused on the solution of the
geopotential disturbances. Therefore, there exists a blank in literature on the solution
of extraterrestrial disturbances. Meanwhile, it appears that the numerical algorithms
are very robust and are not affected much by the obvious unphysical models and by
the singularity caused by the parameterisation of the problem.

The descriptions of the Keplerian motion of the satellite under the influence of
the central force of the Earth are perfect and exact, and have mathematical beauty
(see Chap. 3). As soon as it is found that a satellite is moving in an orbital plane,
the equations of motion are re-represented in the orbital plane and the Keplerian
motion is then derived completely. Even in the case of central force field, without the
coordinate transformation step, it would be nearly impossible to derive the solution.
This indicates the extreme importance of the selection of the coordinate system.

G. Xu, Orbits, 1
(© Springer-Verlag Berlin Heidelberg 2008



2 1 Introduction

Recall the Kaula’s solution to satellite motion under the influence of the geopo-
tential field. The equations of satellite motion are represented in inertial coordinate
system according to Newton’s law. However, the geopotential function is repre-
sented in the Earth-fixed system. To transform the geopotential function from the
Earth-fixed system to the inertial one, a so-called Kaula’s function is created, which
is extremely complicated and leads to an extremely complicated solution. Some
expressions of the solution are implicit. It is very difficult even to try to get the
explicit expressions of the Cyg solutions from the Kaula’s solution. After Kaula’s
theory, studies on orbit theory are partly based on alternative variables, i.e., alterna-
tive coordinate systems.

The use of alternative coordinate systems is the first key to the solution of the
extraterrestrial disturbances of the equation of motion. The approximation of the
models of the disturbance forces is the second. Two adjustment models of the solar
radiation and atmospheric drag used in numerical orbit determination are proposed
by Xu (2004), in which the alternative coordinate systems are suggested and ap-
proximation methods to simplify the force (adjustment) models are given. The way
to the solutions of the extraterrestrial disturbances is then open; however, this was
realised first at the beginning of 2007. The solutions are then derived and given via
discretization, approximated potential function and Gaussian equations.

The extraterrestrial disturbances are the second order ones. To derive complete
solutions of the second order, the solutions of the geopotential disturbances are
searched intensively. A method to derive the solutions of geopotential disturbance
of / order and m degree is described generally and used to derive several examples.
In GNSS orbit determination, only a few lower order and degrees of the geopotential
disturbances need to be considered. Therefore, the examples given will be enough
for the analytic orbit determination of satellites at higher altitudes. The higher the or-
der and degrees of the geopotential disturbances are, the more complex the analytic
solutions will be. Therefore, the application of the complete solution of geopotential
disturbances will be a challenge for the future.

To describe a complete theory of the satellite orbit, coordinate and time systems,
the Keplerian orbit of the satellite, have to be discussed (Chaps. 2 and 3). The per-
turbation forces such as gravitational field, tide, the sun, the moon, planets, solar
radiation and atmospheric drag, etc. and the disturbed equations of the satellite mo-
tion also have to be discussed (Chap. 4). Then the solutions of Cyq disturbance and
other higher order and degree geopotential disturbances can be derived (Chaps. 5
and 6). The solution of extraterrestrial disturbances such as solar radiation pressure,
atmospheric drag and the disturbance of the sun, the moon and planets, are then
given (Chap. 7). Numerical orbit determination is dealt with (Chap. 8) before dis-
cussing the analytic orbit determination and application of the orbit theory (Chap. 9).
Singularity-free orbit theory and discussions are given in the last chapter.

This book covers satellite orbit theory in theoretical and numerical aspects, with
an emphasis on analytic solutions and applications. The analytic solutions of the
extraterrestrial disturbances and the geopoptential disturbances, the singularity-free
theory and simplified disturbed equations, are newly derived. The theory has opened
and will further open very interesting research areas concerning satellite orbits. A
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part of the contents are refined theory, obtained from extensive research on indi-
vidual problems. Because of the strong research and application background, the
theories are conformably described with complexity. A brief summary of the con-
tents is given in the Preface.

Some literature (books) is recommended for further reading: Kaula, 1966/2001;
Chobotov, 1991; Cui, 1997; Montenbruck and Gill, 2000; Xu, 2003/2007.



Chapter 2
Coordinate and Time Systems

Satellites orbit around the Earth or travel in the planet system of the sun. They are
generally observed from the Earth. To describe the orbits of the satellites (positions
and velocities), suitable coordinate and time systems have to be defined.

2.1 Geocentric Earth-Fixed Coordinate Systems

It is convenient to use the Earth-Centred Earth-Fixed (ECEF) coordinate system to
describe the location of a station on the Earth’s surface. The ECEF coordinate sys-
tem is a right-handed Cartesian system (x,y,z). Its origin and the Earth’s centre of
mass coincide, while its z-axis and the mean rotational axis of the Earth coincide; the
x-axis points to the mean Greenwich meridian, while the y-axis is directed to com-
plete a right-handed system (Fig. 2.1). In other words, the z-axis points to a mean
pole of the Earth’s rotation. Such a mean pole, defined by international convention,
is called the Conventional International Origin (CIO). The xy-plane is called the
mean equatorial plane, and the xz-plane is called the mean zero-meridian.

z
A CIO
Greenwich
Meridian
geocentre
»
mean € yatol
Fig. 2.1 Earth-Centred X
Earth-Fixed coordinates
G. Xu, Orbits, 5

(© Springer-Verlag Berlin Heidelberg 2008



6 2 Coordinate and Time Systems

The ECEF coordinate system is also known as the Conventional Terrestrial
System (CTS). The mean rotational axis and mean zero-meridian used here are
necessary. The true rotational axis of the Earth changes its direction all the time
with respect to the Earth’s body. If such a pole is used to define a coordinate sys-
tem, then the coordinates of the station would also change all the time. Because the
survey is made in our true world, it is obvious that the polar motion has to be taken
into account and will be discussed later.

The ECEF coordinate system can, of course, be represented by a spherical coor-
dinate system (r,¢,A), where r is the radius of the point (x,y,z), and ¢ and A are
the geocentric latitude and longitude, respectively (Fig. 2.2). 4 is counted eastward
from the zero-meridian. The relationship between (x,y,z) and (r, ¢, A) is obvious:

rcos g cos r=\/x+y+22,

= | rcos¢sini or tanA = y/x, (2.1)
rsing tang = z//x2 + 2.

An ellipsoidal coordinate system (¢, A, &) may also be defined on the basis of the
ECEF coordinates; however, geometrically, two additional parameters are needed
to define the shape of the ellipsoid (Fig. 2.3). ¢, A and h are geodetic latitude,
longitude and height, respectively. The ellipsoidal surface is a rotational ellipse.
The ellipsoidal system is also called the geodetic coordinate system. Geocentric
longitude and geodetic longitude are identical. The two geometric parameters could
be the semi-major radius (denoted by @) and the semi-minor radius (denoted by b)
of the rotating ellipse, or the semi-major radius and the flattening (denoted by f)
of the ellipsoid. They are equivalent sets of parameters. The relationship between
(x,y,2) and (@, A, h) is (see, e.g., Torge, 1991):

N =

X (N+h)cospcosi
y | = (N+h)cos@sini (2.2)
z (N(1—e?)+h)sing

¥4

A

P (x,y.2)

Fig. 2.2 Cartesian and
spherical coordinates X



2.1 Geocentric Earth-Fixed Coordinate Systems 7

Fig. 2.3 Ellipsoidal
coordinate system

or
tanA = =
an Py (2.3)
/22 12
_ VY —N,
cos
where
a
N=—un——. 2.4)

\/1—e2sin® @

N is the radius of curvature in the prime vertical, and e is the first eccentricity. The
geometric meaning of N is shown in Fig. 2.4. In (2.3), the ¢ and 4 have to be solved
by iteration; however, the iteration process converges quickly, since 7 << N. The
flattening and the first eccentricity are defined as

and e= ——. (2.5)

In cases where ¢ = £90° or % is very large, the iteration formulas of (2.3) could
be instable. Alternatively, using

2 2
. ae” sin
and Az=e’N sinQ = L

\/1—e2sin® @

may lead to a stably iterated result of ¢ (see Lelgemann, 2002). Az and e’N are
the lengths of OB and AB (see Fig. 2.4), respectively. The geodetic height /& can be
obtained using Az, i.e.,

xX2+y

7+ Az

ctan@ =
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Fig. 2.4 Radius of curvature
in the prime vertical

P(xy.z)

h:\/x2+y2+(z+AZ)2—N-

The two geometric parameters used in the World Geodetic System 1984 (WGS-
84) are (a = 6378137m, f = 1/298.2572236). In International Terrestrial Ref-
erence Frame 1996 (ITRF-96), the two parameters are (¢ = 6378136.49m, f =
1/298.25645). ITRF uses the International Earth Rotation Service (IERS) Con-
ventions (see McCarthy, 1996). In the PZ-90 (Parameters of the Earth Year 1990)
coordinate system of GLONASS, the two parameters are (¢ = 6378136m, f =
1/298.2578393).

The relation between the geocentric and geodetic latitude ¢ and ¢ (see (2.1) and
(2.3)) may be given by

tan@ = (1 —é > tan @. (2.6)

N+h

2.2 Coordinate System Transformations

Any Cartesian coordinate system can be transformed to another Cartesian coordi-
nate system through three successive rotations if their origins are the same and if
they are both right-handed or left-handed coordinate systems. These three rotational
matrices are

1 0 0
Ri()=10 cosoe sina |,
0 —sinx cosa
cose 0 —sino
Ry(a) = 0 1 0 , 2.7

sinoe O cos Q.

cos o sinoe 0
Ri(a)=| —sina cosa O |,
0 0 1
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where o is the rotating angle, which has a positive sign for a counter-clockwise
rotation as viewed from the positive axis to the origin. Ry, R,, and R3 are called the
rotating matrix around the x, y, and z-axis, respectively. For any rotational matrix R,
there are properties of R~!(a) = R” («) and R~ (o) = R(—); that is, the rotational
matrix is an orthogonal one, where R~! and R” are the inverse and transpose of the
matrix R.

For two Cartesian coordinate systems with different origins and different length
units, the general transformation can be given in vector (matrix) form as

Xy = Xo + URXo1d (2.8)
or
Xn X0 Xold
Yo | =1y | tUR]| Youd |,
Zn ZO ZOld

where U is the scale factor (or the ratio of the two length units), and R is a transfor-
mation matrix that can be formed by three suitably successive rotations. x, and x|q
denote the new and old coordinates, respectively; xo denotes the translation vec-
tor and is the coordinate vector of the origin of the old coordinate system in the
new one.

If rotational angle o is very small, then one has sino ~ o and cos o ~ 1. In such
a case, the rotational matrix can be simplified. If the three rotational angles a;, g,
03 in R of (2.8) are very small, then R can be written as

1 o3 —on
R=| -0 1 o , 2.9)
o —0q 1

where o, 0p, 0z are small rotating angles around the x, y and z-axis, respectively
(see, e.g., Lelgemann and Xu, 1991). Using the simplified R, the transformation
(2.8) is called the Helmert transformation.

As an example, the transformation from WGS-84 to ITRF-90 (McCarthy, 1996)
is given by:

XITRF-90 0.060 1 —0.0070// —0.0003// XWGS-84
yitrRr-90 | = [ —0.517 +u 0.0070” 1 —0.0183" YWGS-84 |
ZITRF-%0 —0.223 0.0003" 0.0183" 1 ZWGs-84

where 1 = 0.999999989, and the translation vector has the unit of meter.

The transformation between two coordinate systems can be generally represented
by (2.8), where the scale factor u = 1 (i.e., the units of length used nowadays are the
same). A formula of velocity transformation between different coordinate systems
can be obtained by differentiating (2.8) with respect to the time.
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2.3 Local Coordinate System

The local left-handed Cartesian coordinate system (x’,y’,z’) can be defined by plac-
ing the origin to the local point P (x1,y1,z1), whose z’-axis is pointed to the vertical,
x'-axis is directed to the north, and y' is pointed to the east (see Fig. 2.5). The x'y'-
plane is called the horizontal plane; the vertical is defined perpendicular to the ellip-
soid. Such a coordinate system is also called a local horizontal coordinate system.
For any point P,, whose coordinates in the global and local coordinate system are
(x2,2,22) and (¥',y',7), respectively, one has relations of

X cosAsinZ
Y | =d| sinAsinZ |, and tanA =y’ /¥ , (2.10)
4 cosZ cosZ=7/d

where A is the azimuth, Z is the zenith distance and d is the radius of the P> in the
local system. A is measured from the north clockwise; Z is the angle between the
vertical and the radius d.

The local coordinate system (x’,y’,z’) can indeed be obtained by two successive
rotations of the global coordinate system (x,y,z) by R(90° — @)R3(A) and then by
changing the x-axis to a right-handed system. In other words, the global system
has to be rotated around the z-axis with angle A, then around the y-axis with angle
90° — @, and then change the sign of the x-axis. The total transformation matrix R
is then

—sin@cosA  —sin@sinA  cos@
R= —sinA cosA 0 , (2.11)
Cos QP cos A cos@sinA  sing
and there are
Xiocal = RXglobal and Xglobal = RTXlocala (2.12)

where Xjocal and Xgiopar are the same vector represented in local and global coordi-
nate systems. (¢, A) are the geodetic latitude and longitude of the local point.

=
A
Pyx'y'z)

7> x’

N

Fig. 2.5 Astronomical
coordinate system y
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If the vertical direction is defined as the plumb line of the gravitational field at
the local point, then such a local coordinate system is called an astronomic hori-
zontal system (its x'-axis is pointed to the north, left-handed system). The plumb
line of gravity g and the vertical line of the ellipsoid at the point p are generally not
coinciding with each other; however, the difference is very small. The difference is
omitted in GPS practice.

Combining (2.10) and (2.12), the zenith angle and azimuth of a point P; (satellite)
related to the station Pj can be directly computed by using the global coordinates of

the two points by
/ /

cosZ = L and tanA = y—, (2.13)
d x
where
d= \/(Xz—x1)2+(y2—y1)2+(zz—11)2,
x' = —(x —x1)sin@cosA — (y2 —y1)sin@sinA + (z2 —z1) cos @,
y = —(xa —x1)sinA + (y2 —y1) cos A
and

7 = (xa—x1)cos@cosA + (y2 —yi)cos@sinA + (zo —z;) sin @.

2.4 Earth-Centred Inertial Coordinate System

To describe the motion of the GPS satellites, an inertial coordinate system has to
be defined. The motion of the satellites follows the Newtonian mechanics, and the
Newtonian mechanics is valid and expressed in an inertial coordinate system. For
various reasons, the Conventional Celestial Reference Frame (CRF) is suitable for
our purpose. The xy-plane of the CRF is the plane of the Earth’s equator; the coor-
dinates are celestial longitude, measured eastward along the equator from the vernal
equinox, and celestial latitude. The vernal equinox is a crossover point of the eclip-
tic and the equator. So the right-handed Earth-centred inertial (ECI) system uses the
Earth centre as the origin, CIO (Conventional International Origin) as the z-axis, and
its x-axis is directed to the equinox of J2000.0 (Julian Date of 12h 1st January 2000).
Such a coordinate system is also called equatorial coordinates of date. Because of
the motion (acceleration) of the Earth’s centre, ECI is indeed a quasi-inertial system,
and the general relativistic effects have to be taken into account in this system. The
system moves around the sun, however, without rotating with respect to the CIO.
This system is also called the Earth-centred space-fixed (ECSF) coordinate system.

An excellent figure has been given by Torge (1991) to illustrate the motion of the
Earth’s pole with respect to the ecliptic pole (see Fig. 2.6). The Earth’s flattening,
combined with the obliquity of the ecliptic, results in a slow turning of the equator
on the ecliptic due to the differential gravitational effect of the moon and the sun.
The slow circular motion with a period of about 26000 years is called precession,
and the other quicker motion with periods ranging from 14 days to 18.6 years is
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Fig. 2.6 Precession and precession
nutation .

precession

and nutation {{

3
‘0,
pole of equator
pole of ecliptic
ecliptic
equator

called nutation. Taking the precession and nutation into account, the Earth’s mean
pole (related to the mean equator) is transformed to the Earth’s true pole (related to
the true equator). The x-axis of the ECI is pointed to the vernal equinox of date.
The angle of the Earth’s rotation from the equinox of date to the Greenwich
meridian is called Greenwich Apparent Sidereal Time (GAST). Taking GAST into
account (called the Earth’s rotation), the ECI of date is transformed to the true equa-
torial coordinate system. The difference between the true equatorial system and the
ECEF system is the polar motion. So we have transformed the ECI system in a ge-
ometric way to the ECEF system. Such a transformation process can be written as

Xecer = RMRsRNRpXkgc, (2.14)

where Rp is the precession matrix, Ry is the nutation matrix, Ry is the Earth rotation
matrix, Ry is the polar motion matrix, X is the coordinate vector, and indices ECEF
and ECI denote the related coordinate systems.

Precession

The precession matrix consists of three successive rotational matrices, i.e. (see, e.g.,
Hofmann-Wellenhof et al., 1997/2001; Leick, 1995/2004; McCarthy, 1996),

Rp = R3(—2)R2(0)R3(—{)
coszcos O cos§ —sinzsin{ —coszcos Osin{ —sinzcos{ —coszsinf
= [ sinzcosOcos{ +coszsin{ —sinzcosOsin{ +coszcos{ —sinzsinf |,

sin@cos § —sin6sin cos @
(2.15)

where z, 0, { are precession parameters and

z2=12306."2181T +1.”09468T> +0."0182037°,
6 =2004."31097 —0.”42665T% — 0."041833T> (2.16)
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and
{=2306."2181T + 0.”301887% +0.01799877,

where T is the measuring time in Julian centuries (36525 days) counted from
J2000.0 (see Sect. 2.8 time systems).

Nutation

The nutation matrix consists of three successive rotational matrices, i.e. (see, e.g.,
Hofmann-Wellenhof et al., 1997/2001; Leick, 1995/2004; McCarthy, 1996)

RN =Ri(—€—Ae)R3(—Ay)R (¢)

SINAYCOsE  COSAYCOSECOSE+sing sing  cosAYcos g sin€ — sing cos €
SINAYSIng  COSAYSINE COSE —COSESINE  cOsAYSIng sin€ + cos & Cos €

( cos Ay —sinAycose —sinAysing )

1 —Aycose —Aysing
~ | Aycosg 1 —Aeg ,
Aysing Ae 1

2.17)

where € is the mean obliquity of the ecliptic angle of date, Ay and Ag¢ are nutation
angles in longitude and obliquity, & = € + Ag, and

€ = 84381.”448 — 46.”8150T — 0.”000597 +0.”0018137°3. (2.18)

The approximation is made by letting cosAy = 1 and sinAy = Ay for very
small Ay. For precise purposes, the exact rotation matrix shall be used. The nutation
parameters Ay and Ag can be computed using the International Astronomical Union
(TAU) theory or IERS theory:

106
AY = 2 i+A[T)sinf,

106
Ae = (Bi+BiT)cosf,
i=1
or

263

AY¥ =Y (A; +AiT)sin B + A cos B,
i=1
263

Ae = (Bi+BT)cos 3 + B cos 3,

i=1
where argument

B = Nyil + Nyl + N5;F + Ny;D + N5;Q,
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where [ is the mean anomaly of the moon, !’ is the mean anomaly of the sun,
F =L —Q,D is the mean elongation of the moon from the sun, € is the mean
longitude of the ascending node of the moon, and L is the mean longitude of the
moon. The formulas of [, I/, F, D, and Q, are given in Sect. 7.8. The coefficient
values of Ny;, Nai, N3i, Naiy N5, A, Bi, Al, Bl, A7, and B! can be found in, e.g.,
McCarthy (1996). The updated formulas and tables can be found in updated IERS
conventions. For convenience, the coefficients of the IAU 1980 nutation model are
given in Appendix 1.

Earth Rotation

The Earth rotation matrix can be represented as
Rs = R3(GAST), (2.19)
where GAST is Greenwich Apparent Sidereal Time and
GAST = GMST + A% cos £ +0.”00264 sin Q + 0.”000063 sin 22, (2.20)

where GMST is Greenwich Mean Sidereal Time. € is the mean longitude of the
ascending node of the moon; the second term on the right-hand side is the nutation
of the equinox. Furthermore,

GMST = GMST, + aUT],
GMSTy = 6 x 3600.”0+41 x 60.”0+ 50."54841
1+8640184."812866T) 4-0."093104T3 — 6.2 x 107°T
o = 1.002737909350795 +5.9006 x 10~ 17y — 5.9 x 1071577,
(2.21)

where GMST) is Greenwich Mean Sidereal Time at midnight on the day of interest.
a is the rate of change. UTI is the polar motion corrected Universal Time (see
Sect. 2.8). Ty is the measuring time in Julian centuries (36525 days) counted from
J2000.0 to Oh UT1 of the measuring day. By computing GMST, UT1 is used (see
Sect. 2.8).

Polar Motion

As shown in Fig. 2.7, the polar motion is defined as the angles between the pole of
date and the CIO pole. The polar motion coordinate system is defined by xy-plane
coordinates, whose x-axis is pointed to the south and is coincided to the mean Green-
wich meridian, and whose y-axis is pointed to the west. x, and y, are the angles of
the pole of date, so the rotation matrix of polar motion can be represented as



2.5 TAU 2000 Framework 15

Fig. 2.7 Polar motion CIO
y <

pole of date
A\
x
COS Xp sinxpsiny,  sinx,cosyp
Rv = Ra(—xp)Ri(—yp) = 0 cosyp —sinyp
—sinx, cosxpsinyp,  COSX,COSYp 222)
10 X '
= 0 I -y
—Xp  Yp 1

The IERS determined x;, and y, can be obtained from the home pages of IERS.

2.5 TAU 2000 Framework

At its 2000 General Assembly, the International Astronomical Union (IAU) adopted
a set of resolutions that provide a consistent framework for defining the barycentric
and geocentric celestial reference systems (Petit, 2002). The consequence of the res-
olution is that the coordinate transformation from celestial reference system (CRS,
i.e., the ECI system) to the terrestrial reference system (TRS, i.e., the ECEF system)
has the form

Xecer = RMRsRnpXECT, (2.23)

where Rnp is the precession-nutation matrix, Rg is the Earth rotation matrix, Ry
is the polar motion matrix, X is the coordinate vector, and indices ECEF and ECI
denote the related coordinate systems. The rotation matrices are functions of time 7’
which is defined (see McCarthy and Petit, 2003) by

T = (TT — 2000January 1d 12h TT) in days/36525, (2.24)
where TT is the Terrestrial Time (for details see Sect. 2.8) and

Rm = Ra(—xp)Ri (—yp)Rs(s'),
Rs = Ra(9) (2.25)
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and
Rp = R3(—$)R3(—E)Ry(d)R3(E),

where x;, and y, are the angles of the pole of date (or polar coordinates of the Celes-
tial Intermediate Pole (CIP) in TRS), and s’ is a function of Xp and yp:

s'= %/TZ (xpYp — Xpyp)dt
or approximately (see McCarthy and Capitaine, 2002)
s' = (—47uas)T, (2.26)
where T is time in Julian Century counted from J2000.0 and
¥ =2m(0.7790572732640 + 1.002737811911354487T,), (2.27)

where T, = (Julian UT1 date — 2451545.0) and UT1 = UTC + (UT1 — UTC) -
(UT1 — UTC) is published by the IERS.
E and d being such that the coordinates of the CIP in the CRS are

X =sindcosE,
Y =sindsinE, (2.28)
Z = cosd.

Equivalently Rnp can be given by

-1

1 —aX? —aXY X
Rxp = R3(—s)- | —aXY 1—aY? Y ; (2.29)
X Y l1-a(X?>+7Y?)
where
1 1 1
~ -+ -(X24+7?). (2.30)

77 +cosd 2 8
The developments of X and Y can be found on the website of the IERS Conventions

and have the following form (in mas: microarcsecond) (Capitaine, 2002)

X = —16616.99" +2004191742.88"T — 427219.05"T?
—198620.54"T3 — 46.05"T* +5.98"T>
+ %, [(as0)isin B+ (acp)icos B] (2.31)
+ Y [(as1)iTsin B + (ac,1)iT cos B]
+ Zi [(as2)iT?sin B + (ac2)iT*cos ]+,
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Y = —6950.78" —25381.99"T — 22407250.99" T
+1842.28"T% — 1113.06"T*+0.99" T3
+2 bs0)isin + (beo)icos B] (2.32)
+2 bs1)iT sin B + (be1)iT cos f]
—1—2 bs2) TZSmﬁ—i—( CZ)T cos 3]+

s in (2.29) is the accumulated rotation, between the reference epoch and the date 7',
of CEO on the true equator due to the celestial motion of CIP, and can be expressed
as

s(T) = == [X(T)Y (T) — X (To)Y (To)] + TTXYdt — (00No — 3y No),

where op and Y, are the positions of CEO at J2000.0 and the x-origin of CRS,
respectively and Nj is the ascending node at J2000.0 in the equator of CRS. In
1

above equation, terms(7") 4- 5 [X (7)Y (T')] can be expressed as (in mas):

s+ XY /2 =94.0+3808.35T — 119.9472
—72574.09T3 +27.70T* + 15.617°
+ ZiKCSaO)" sinf3 + (cc0)icos ] (2.33)
+ Y (cs1)iT sin B+ (ce,1)iT cos ]
—1—2 Cs2)i T sinfB + (cc2)i T? cosfB]+

In(2.31),(2.32) and (2.33), coefficients (a, ; )i, (ac,j)i» (bs, )i, (be,j)iand (cs, )i, (cc, )i
can be extracted from table5.2a, table5.2b and table5.2c (available at ftp://tai.bipm.
org/iers/conv2003/chapter5/). f is the combination of the fundamental arguments
of nutation theory

14
B =Y NF;. (2.34)
j=1

The first five F; are the Delaunary variables /, I, F, D, Q (given in Sect. 7.8);
the amplitudes of sines and cosines 3 can be derived from the amplitudes of the
precession and nutation series (see McCarthy and Petit, 2003); Fs to Fi3 are the
mean longitudes of the planets (Mercury to Neptune), including the Earth; Fi4 is
the general precession in longitude. They are given in radians and 7 in Julian Cen-
turies of TDB (see Sect. 2.8). The coefficients N; are functions of index i and can
be found in IERS website.

Fs = Iy = 4.402608842 +2608.7903141574T,
F; =ly, =3.176146697 + 1021.3285546211T,
Fg =g =1.753470314 4- 628.3075849991T,
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Fo = lya = 6.203480913 + 334.0612426700T,
Fio = Ly, = 0.599546497 + 52.9690962641T, (2.35)
Fiy = ls, = 0.874016757 +21.32991049607,

Fip = ly, = 5.481293872 + 7.4781598567T,
Fis = Iy, = 5.311886287 + 3.8133035638T,

Fiq = P, = 0.024381750T 4 0.0000053869172.

Using the new paradigm, the complete procedure of transforming the GCRS to the
ITRS, which is compatible with the IAU2000 precession-nutation, is based on the
expressions of (2.31), (2.32) and (2.33).

An equivalent way to realise the transformation between TRS and CRS under the
definition of IAU 2000 can be implemented in a classical way by adding IAU2000
corrections to the corresponding rotating angles. Using the transformation formula
(2.14), where the three precession rotating angles (see McCarthy and Petit, 2003)
are

7= —2.5976176" +2306.0803226" T + 1.0947790"T?
+0.0182273"T3 +0.0000470" T* — 0.0000003" T,

6 =2004.1917476"T — 0.4269353"T% — 0.0418251"T3
—0.0000601"T* — 0.0000001" 73 (2.36)

and
¢ =2.5976176" +2306.0809506" T +0.3019015" T2

+0.0179663" T — 0.0000327"T* — 0.0000002"7°.
The TAU 2000 nutation model is given by series for nutation in longitude Ay and

obliquity Ag, referred to the mean equator and equinox of date, with 7 measured in
Julian centuries from epoch J2000.0:

(Ai+A[T)cos B + (A7 + A7 T) cos B, (2.37)

Mz

Ay =

(Bi+B;T)cos B+ (B! +B;'T) cos 3,

Mz

Ag

Il
R

i

where argument 3 can be found on the IERS website. For these two formulas, rate
and bias corrections are necessary because of the new definition of the Celestial
Intermediate Pole and the Celestial and Terrestrial ephemeris Origin:

dAy = (—0.0166170 +0.0000100)" + (—0.29965 +0.00040)" T,
dAe = (—0.0068192+0.0000100)" + (—0.02524+£0.00010)" 7. (2.38)
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The Earth rotation angle (i.e. the apparent Greenwich Sidereal Time GST or
GAST) can be computed by adding a correction EO to the GMST in (2.27) (in
mas)

EO = 14506 + 4612157399.66T + 1396677.21T% —93.44T3 + 18.82T*
+Aycose+ 21‘ [(ds)isinP + (dco)icos ] (2.39)
+ Zi [(ds1)iTsinB + (de1)iTcosB]+---,

where coefficients (d ;)i,(d.,;j)i can be extracted from table5.4 (available at ftp://
tai.bipm.org/iers/conv2003/chapterS/). Ay is defined in (2.37) and € is defined in
(2.18).

Similarly, the rotation matrix of polar motion shall be represented as the first
formula of (2.25) and (2.26).

2.6 Geocentric Ecliptic Inertial Coordinate System

As discussed above, ECI uses the CIO pole in the space as the z-axis (through con-
sideration of the polar motion, nutation and precession). If the ecliptic pole is used
as the z-axis, then an ecliptic coordinate system is defined, and it may be called the
Earth Centred Ecliptic Inertial (ECEI) coordinate system. ECEI places the origin at
the mass centre of the Earth, its z-axis is directed to the ecliptic pole (or, the xy-plane
is the mean ecliptic), and its x-axis is pointed to the vernal equinox of date. The co-
ordinate transformation between the ECI and ECEI systems can be represented as

Xecer = Ri(—€) Xk, (2.40)

where € is the ecliptic angle (mean obliquity) of the ecliptic plane related to the
equatorial plane. The formula for € is given in Sect. 2.4. Usually, coordinates of the
sun and the moon, as well as planets, are given in the ECEI system.

2.7 Satellite Fixed Coordinate System

The orbit data, which describes the position of the satellite, is usually referred to the
mass centre of the satellite. However, the orbit determination is usually measured
through an instrument which is not exactly at the mass centre of the satellite. There-
fore, a satellite fixed coordinate system is necessary to be defined for describing the
position of the instrument (e.g., antenna or reflector). Such antenna centre correction
(also called mass centre correction) has to be applied to the satellite coordinates in
precise applications.
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Fig. 2.8 Satellite fixed x
coordinate system

A satellite fixed coordinate system shall be set up for describing the antenna
phase centre offset to the mass centre of the satellite. As shown in Fig. 2.8, the origin
of the frame coincides with the mass centre of the satellite, the z-axis is parallel to
the antenna pointing direction, the y-axis is parallel to the solar-panel axis, and the
x-axis is selected to complete the right-handed frame. A solar vector is a vector from
the satellite mass centre pointed to the sun. During the motion of the satellite, the
z-axis is always pointing to the Earth, and the y-axis (solar-panel axis) shall be kept
perpendicular to the solar vector. In other words, the y-axis is always perpendicular
to the plane, which is formed by the sun, the Earth and satellite. The solar-panel
can be rotated around its axis to keep the solar-panel perpendicular to the ray of the
sun for optimally collecting the solar energy. The solar angle f3 is defined as the
angle between the z-axis and the solar identity vector 7ig, (see Fig. 2.9). Denoting
the identity vector of the satellite fixed frame as (€, €y, €;), then the solar identity
vector can be represented as

fisun = (sinB, 0, cosB ). (2.41)

B is needed for computation of the solar radiation pressure in orbit determination.
Denoting 7 as the geocentric satellite vector and 7 as the geocentric solar vector
(Fig. 2.10),

the sun X
° A
figun
Fig. 2.9 The sun vector in 7 < B
satellite fixed frame - o
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Fig. 2.10 The Earth-sun- the sun
satellite vectors o

satellite

the Earth

X XSllI'l
F=|Y |, Fs=|Yum], (2.42)
Z Zsun
then in a geocentric coordinate system one has
- 7
é, = _ﬁ7 (2.43)
5 €, X Hsun
Y é, X disun]
2, =2,x¢, (2.44)
. Fs—T
Tisun = 7 7] (2.45)
S
and
cos B = figun - &;, (2.46)
or
-1 X
e=— | Y|, r=vXI+Y2+272 (2.47)
r
Z
1 XSUH - X
ﬁsun = ﬁ Youn =Y ) (248)
Zsun —Z
1 YZsun - YsunZ
é’y = T ZXSUH - ZSLlIlX (2.49)
XYSUH - XSUHY
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Table 2.1 GPS satellite antenna phase centre offset

Satellite X y z
Block I 0.2100 0.0 0.8540
Block II/TTA 0.2794 0.0 1.0259
Block IIR 0.0000 0.0 1.2053
and
1 (ZXsun - ZsunX)Z - (XYsun - XsunY)Y
gx = ﬂ (XYsun - XsunY)X - (YZsun - YsunZ)Z ) (2'50)
(YZsun - YsunZ)Y - (ZXsun - sunX)X
where
R =/ (Xaun —X)2+ (Yeun — V2 + (Zaan — Z)? 2.51)
and
§S= \/(stun - YsunZ)2 + (ZXsun - Zsunx)2 + (XYSun - XsunY)z- (252)

Suppose the satellite antenna phase centre in the satellite fixed frame is (x,y,z),
then the offset vector in the geocentric frame can be obtained by substituting (2.47),
(2.49) and (2.50) into the following formula:

d = xé,+yé, + 72, (2.53)

which may be added to the vector 7.

GPS satellite antenna phase centre offsets in the satellite fixed frame are given in
Table 2.1.

The dependence of the phase centre on the signal direction and frequencies is not
considered for the satellite here. A mis-orientation of the €) (€, too) of the satellite
with respect to the sun may cause errors in the geometrical phase centre correction.
In the Earth’s shadow (for up to 55 min), the mis-orientation becomes worse. The
geometrical mis-orientation may be modelled and estimated.

2.8 Time Systems

The three time systems used in satellite surveying are sidereal time, dynamic time
and atomic time (see, e.g., Hofmann-Wellenhof et al., 1997/2001; Leick, 1995/2004;
McCarthy, 1996; King et al., 1987).

Sidereal time is a measure of the Earth’s rotation and is defined as the hour angle
of the vernal equinox. If the measure is counted from the Greenwich meridian, the



2.8 Time Systems 23

sidereal time is called Greenwich Sidereal Time. Universal Time (UT) is the Green-
wich hour angle of the apparent sun, which is orbiting uniformly in the equatorial
plane. Because the angular velocity of the Earth’s rotation is not a constant, sidereal
time is not a uniformly-scaled time. The oscillation of UT is also partly caused by
the polar motion of the Earth. The universal time corrected for the polar motion is
denoted by UT1.

Dynamical time is a uniformly-scaled time used to describe the motion of bodies
in a gravitational field. Barycentric Dynamic Time (TDB) is applied in an inertial
coordinate system (its origin is located at the centre-of-mass (Barycentre)). Terres-
trial Dynamic Time (TDT) is used in a quasi-inertial coordinate system (such as
ECI). Because of the motion of the Earth around the sun (or say, in the sun’s grav-
itational field), TDT will have a variation with respect to TDB. However, both the
satellite and the Earth are subject to almost the same gravitational perturbations.
TDT may be used for describing the satellite motion without taking into account
the influence of the gravitational field of the sun. TDT is also called Terrestrial
Time (TT).

Atomic Time is a time system kept by atomic clocks such as International Atomic
Time (TAI). It is a uniformly-scaled time used in the ECEF coordinate system. TDT
is realised by TAI in practice with a constant offset (32.184 s). Because of the slow-
ing down of the Earth’s rotation with respect to the sun, Coordinated Universal Time
(UTC) is introduced to keep the synchronisation of TAI to the solar day (by inserting
the leap seconds). GPS Time (GPST) is also atomic time.

The relationships between different time systems are given as follows:

TAI = GPST + 19.0sec,
TAI = TDT — 32.184 sec,
TAI = UTC +nsec

UT1 =UTC+dUT1,

(2.54)

where dUT1 can be obtained by IERS, (dUT1 < 0.7s, see Zhu et al., 1996), (dUT1
is also broadcasted with the navigation data), n is the number of leap seconds of
date and is inserted into UTC on the Ist of January and 1st of July of the years. The
actual n can be found in the IERS report.

Time argument 7 (Julian centuries) is used in the formulas given in Sect. 2.4.
For convenience, T is denoted by TJD, and TJD can be computed from the civil
date (Year, Month, Day, and Hour) as follows:

ID = INT(365.25Y) + INT(30.6001 (M + 1)) + Day + Hour/24 + 1720981.5

and
TID =JD/36525, (2.55)
where
Y=Year— 1, M =Month+ 12, if Month <2,
Y = Year, M = Month, if Month > 2,
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where JD is the Julian Date, Hour is the time of UT and INT denotes the integer
part of a real number. The Julian Date counted from JD2000.0 is then JD2000 = JD-
JD2000.0, where JD2000.0 is the Julian Date of 2000 January 1st 12h and has the
value of 2451 545.0 days. One Julian century is 36 525 days.

Inversely, the civil date (Year, Month, Day and Hour) can be computed from the
Julian Date (JD) as follows:

b = INT(JD+0.5) + 1537,
b—122.1
365.25 ) ’
d = INT(365.25¢),

b—d
¢ =1INT <30.6001 > ’
Hour = JD+0.5—INT(JD+0.5),
Day = b—d — INT(30.6001e),

e
Month = —1—121NT(—)
on e 14

C:INT<

and

(2.56)

Year = ¢ — 4715 — INT (MI/IOOM) ,

where b, ¢, d, and e are auxiliary numbers.
Because the GPS standard epoch is defined as JD = 2444244.5 (1980 January 6,
Oh), GPS week and the day of week (denoted by Week and N) can be computed by

N = modulo(INT(JD + 1.5),7)

and

(2.57)

Week — INT (JD—24744244-5> 7

where N is the day of week (V = 0 for Monday, N = 1 for Tuesday, and so on).
For saving digits and counting the date from midnight instead of noon, the Mod-
ified Julian Date (MJD) is defined as

MIJD = (JD —2400000.5). (2.58)

GLONASS time (GLOT) is defined by Moscow time UTCgy, which equals UTC
plus three hours (corresponding to the offset of Moscow time to Greenwich time),
theoretically. GLOT is permanently monitored and adjusted by the GLONASS Cen-
tral Synchroniser (see Ro3bach, 2006). UTC and GLOT then have a simple relation

UTC = GLOT + 7. — 3h,
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where 7. is the system time correction with respect to UTCgy, which is broadcasted
by the GLONASS ephemeris and is less than one microsecond. Therefore there is

approximately
GPST = GLOT +m — 3h,

where m is the number of “leap seconds” between GPS and GLONASS (UTC) time
and is given in the GLONASS ephemeris. m is indeed the leap seconds since GPS
standard epoch (1980 January 6, Oh).

Galileo system time (GST) will be maintained by a number of UTC laboratory
clocks. GST and GPST are time systems of various UTC laboratories. After the
offset of GST and GPST is made available to the user, the interoperability will be
ensured.



Chapter 3
Keplerian Orbits

Satellite motion can be considered a motion of the satellite under the central force
field of the Earth and the disturbed motion caused by other perturbation forces.
Therefore, the Keplerian orbits are important in orbit theory and will be discussed
in this chapter.

3.1 Keplerian Motion

The simplified satellite orbiting is called Keplerian motion, and the problem is called
the two-bodies problem. The satellite is supposed to move in a central force field.
The equation of satellite motion is described by Newton’s second law of motion by

-

f=ma=m-¥ 3.1)

where f is the attracting force, m is the mass of the satellite, a, or alternatively, Fis
the acceleration of the motion (second order differentiation of vector 7 with respect
to the time), and according to Newton’s law

GMm7

2 )

f=- 3.2)

;
where G is the universal gravitational constant, M is the mass of the Earth, r is the
distance between the mass centre of the Earth and the mass centre of the satellite.
The equation of satellite motion is then

p

) (3.3)

\N‘-::
~ s

where (= GM) is called Earth’s gravitational constant.

Equation (3.3) of satellite motion is valid only in an inertial coordinate system,
so the ECSF coordinate system discussed in Sect. 2.4 will be used for describing
the orbit of the satellite. The vector form of the equation of motion can be rewritten
through the three components x, y and z(7 = (x,y,z)) as

G. Xu, Orbits, 27
(© Springer-Verlag Berlin Heidelberg 2008
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L
i=—3x
=5 G4
ZZ—EZ

e

Multiplying y, z to the first equation of (3.4), and x, z to the second, x, y to the third,
and then forming the differences of them, one gets

yi—23zy= Oa
xy—yk=0,
or in vector form: .
PxF=0. (3.6)

Equations (3.5) and (3.6) are equivalent to

d(yz —zy)

=0
dr ’
d(zx —xz)
——= =0 3.7
& ; (3.7)
d(xy —yx)
——= =0
dr ’
d(7 x 7)
=0. 3.8
ar (3.8)
Integrating (3.7) and (3.8) lead to
yi—zy=A4A,
zZX—xz =B, (3.9)
.X'y 7yx = C7
o A
Fx¥=h=| B |, (3.10)
C

where A, B, C are integration constants; they form the integration constant vector h.
That is

h=+\A2+B*+C2 = [Fx7. (3.11)

The constant / is two times of the area that the radius vector sweeps during a unit
time. This is indeed the Kepler’s second law. Then %/2 is called the area velocity of
the radius of the satellite.
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Multiplying x, y and z to the three equations of (3.9) and adding them together,
one has
Ax+By+Cz=0. (3.12)

That is, the satellite motion fulfils the equation of a plane, and the origin of the
coordinate system is in the plane. In other words, the satellite moves in a plane
in the central force field of the Earth. The plane is called the orbital plane of the
satellite.

The angle between the orbital plane and the equatorial plane is called inclination
of the satellite (denoted by i, see Fig. 3.1). Alternatively, the inclination i is the angle
between the vector 7 = (0,0, 1) and 7= (A,B,C),ie.,

cosi = = 3.13)

R

The orbital plane cuts the equator at two points. They are called ascending node N
and descending node (see the next section for details). Vector 5 denotes the vector
from the Earth centre pointed to the ascending point. The angle between the as-
cending node and the x-axis (vernal equinox) is called the right ascension of the
ascending node (denoted by €2 ). Thus

Zh C
-

Z

E’:Zxﬁ,
and
cosQ §-x = B
SR VA B o)
.3 A .
sinQ= 2 —

51-51 VA2 B2

Parameters i and Q uniquely define the place of the orbital plane and are therefore
called orbital plane parameters. €2, i and & are then selected as integration constants,
which have significant geometric meanings in the satellite orbits.

¥4
A
orbit plane
o » )
%) i
N

Fig. 3.1 Orbital plane
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3.2 Satellite Motion in the Orbital Plane

In the orbital plane, a two-dimensional rectangular coordinate system is given in
Fig. 3.2. The coordinates can be represented in polar coordinate r and ¥ as

p=rcost,
: (3.15)
g =rsinv.
The equation of motion in pg-coordinates is similar to (3.4) as
M
p= _73])7
L (3.16)
q= —rjq
From (3.15), one has
p=ricos —rd¥sind,
g=rsin® +rdcos®,
an " o (3.17)
p=(F=rd7)cos® — (r& +2i0%)sin 0,
G = (i —rd?)sin® + (rd + 2i9) cos 9.
Substituting (3.17) and (3.15) into (3.16), one gets
(¥ —rd?) cos ¥ — (rd 4 2i%) sin ¥ = —% cos ¥,
r (3.18)

(F—rd?)sin® + (rd +2i9) cos ¥ = —% sind.

The point from which the polar angle ¥ is measured is arbitrary. So setting ¥ as
zero, the equation of motion is then

i—rd? = —%,
o (3.19)

ro 4219 =0.

q

A

S
r
Fig. 3.2 Polar coordinates in o

the orbital plane o > r
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Multiplying r to the second equation of (3.19), it turns out to be

d(r*d)
dr

=0. (3.20)

Because ¢} is the tangential velocity, 72?} is the two times of the area velocity of
the radius of the satellite. Integrating (3.20) and comparing it with the discussion in
Sect. 3.1, one has

% =h. (3.21)

h/2 is the area velocity of the radius of the satellite.
For solving the first differential equation (3.19), the equation has to be trans-
formed into a differential equation of » with respect to variable f. Let

u= 1, (3.22)
r
then from (3.21), one gets
dd 2
— =h 3.23
dr " ( )
and
dr_drdd _d (1\, o due
d do dr dd \u dd (3.24)
& Pudd L, du '
2 Tdo?dr do?’

Substituting (3.22) and (3.24) into the first equation of (3.19), the equation of motion

is then
d*u u

and its solution is u
u=dycost+dpsin¥+ ok

where d| and d, are constants of integration. The above equation may be simplified
as

u:}%(wecos(ﬁ—w)), (3.26)
where
dy = %ecosw, dr = %esinw.
Thus the moving equation of satellite in the orbital plane is

W/

= = . .2
" 1+ecos(V — o) (3:27)
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Comparing (3.27) with a standard polar equation of conic:

_a(l-é?)

=— (3.28)
1—ecos@

orbit (3.27) is obviously a polar equation of conic section with the origin at one of the
foci. Where parameter e is the eccentricity, fore = 0,e < 1,e = 1, e > 1, the conic is
acircle, an ellipse, a parabola, and a hyperbola, respectively. For the satellite orbiting
around the Earth, generally, e < 1. Thus the satellite orbit is an ellipse, and this is
indeed the Kepler’s first law. Parameter a is the semi-major axis of the ellipse, and

h2

m =a(l—é?). (3.29)

It is obvious that parameter a has more significant geometric sense than that of 4,
so a is preferred to be used. Parameters a and e define the size and shape of the el-
lipse and are called ellipse parameters. The ellipse cuts the equator at the ascending
and descending nodes. Polar angle ¢ is counted from the apogee of the ellipse. This
can be seen by let ¢ = 0, thus r = a(1 +¢). @ has a 180 degree difference with the
angle ¥ — . Letting f = ¥ — o, where f is called the true anomaly of the satellite
counted from the perigee, then the orbit (3.27) can be written as

a(l—e?)

" T tecosf (3.30)

In the case of f = 0, i.e., the satellite is in the point of perigee, @ = ¥, ¥ is the
polar angle of the perigee counted from the p-axis. Supposing the p-axis is an axis
in the equatorial plane and is pointed to the ascending node N, then @ is the angle of
perigee counted from the ascending node (see Fig. 3.3) and is called the argument of
perigee. The argument of perigee defines the axis direction of the ellipse related to the
equatorial plane.

8§
b
a a f i
pogee perigee
P Yo
Fig. 3.3 Ellipse of the
satellite motion N

3.3 Keplerian Equation

Up to now, five integration constants have been derived. They are inclination angle i,
right ascension of ascending node €2, semi-major axis a, eccentricity e of the ellipse,
and argument of perigee w. Parameters i and Q decide the place of the orbital plane,
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Fig. 3.4 Orbital geometry z

perigee

a and e decide the size and shape of the ellipse and @ decides the direction of the
ellipse (see Fig. 3.4). To describe the satellite position in the ellipse, velocity of the
motion has to be discussed.

The period T of the satellite motion is the area of ellipse divided by area velocity:

polab__ 2mab o pnymin, 3.31)

th /ua(1—e2)

The average angular velocity n is then

ne 2T _ a3 Pul?, (3.32)

T
Equation (3.32) is the Kepler’s third law. It is obvious that it is easier to describe the
angular motion of the satellite under the average angular velocity » in the geometric
centre of the ellipse (than in the geocentre). For simplifying the problem, an angle
called the eccentric anomaly is defined (denoted by E, see Fig. 3.5). S is the vertical

y
A
—— s
’ f
E
a
(@] o » X

Fig. 3.5 Mean anomaly of
satellite
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projection of the satellite S on the circle with a radius of a (semi-major axis of
the ellipse). The distance between the geometric centre O of the ellipse and the
geocentre O is ae. Thus,

x=rcosf =acosE —ae,

(3.33)
y=rsinf = bsinE =a\/1—e?sinE,

where the second equation can be obtained by substituting the first into the standard
ellipse equation (x?/a? +y?/b* = 1) and omitting the small terms that contain e (for
the satellite, generally, e << 1), where b is the semi-minor axis of the ellipse. The
orbit equation can then be represented by variable E as

r=a(l —ecoskE). (3.34)

The relation between true and eccentric anomalies can be derived by using (3.33)
and (3.34):

i inE V1—¢2 V1 E
tanz = sin f o < +etan—. (3.35)
2 l+cosf 1+cosE 1—e Vi—e 2

If the xyz-coordinates are rotated so that the xy-plane coincides with the orbital
plane, then the area velocity formulas of (3.9) and (3.10) have only one component
along the z-axis, i.e.,

xy—yx=h=/pa(l —e?). (3.36)

From (3.33), one has
. . dE
X = fasmE—t,

d (3.37)

dE
p=ay\/1—e2cosE—.
y=a e*cos m

Substituting (3.33) and (3.37) into (3.36) and taking (3.32) into account, a relation
between E and ¢ is obtained

(1 —ecosE)dE = /fia—>/*dt = ndr. (3.38)

Suppose at the time 7, satellite is at the point perigee, i.e. E(f,) = 0, and at any
time 7, E(t) = E, then integration of (3.38) from 0 to E, namely from tptotis

E—esinE=M, (3.39)

where
M=n(t—t,). (3.40)

Equation (3.39) is the Keplerian equation. E is given as a function of M, namely ¢.
Because of (3.34), the Keplerian equation indirectly assigns r as a function of z.
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M is called the mean anomaly. M describes the satellite as orbiting the Earth with a
mean angular velocity n. #;, is called the perigee passage and is the sixth integration
constant of the equation of satellite motion in a centre-force field.

Knowing M to compute E, the Keplerian equation (3.39) may be solved itera-
tively. Because of the small e, the convergence can be achieved very quickly.

Three anomalies (true anomaly f, eccentric anomaly E and mean anomaly M) are
equivalent through the relations of (3.35) and (3.39). They are functions of time ¢
(including the perigee passage f,,), and they describe the position changes of the
satellite with the time in the ECSF coordinates.

3.4 State Vector of the Satellite

Consider the orbital right-handed coordinate system: if the xy-plane is the orbital
plane, the x-axis is pointing to the perigee, the z-axis is in the direction of vector 4,
and the origin is in the geocentre, the position vector g of the satellite is then (see
(3.33))

a(cosE —e) rcos f
g= | avl—e?sinE | = | rsinf |. (3.41)
0 0

Differentiating (3.41) with respect to time ¢ and taking (3.38) into account, the ve-
locity vector of the satellite is then

—sink na —sinf na
=1 Vv1—¢2 . — . 342
q 1 gcosE [ ocosE e+gosf m ( )

The second part of above equation can be derived from the relation between E and f.
The state vector of the satellite in the orbital coordinate system can be rotated to the
ECSF coordinate system by three successive rotations. First, a clockwise rotation
around the 3rd-axis from the perigee to the node is given by (see Fig. 3.4)

R 3 ( — (D) .
Next, a clockwise rotation around the 1st-axis with the angle of inclination i is given

by
Ri(—i).

Finally, a clockwise rotation around the 3rd-axis from the node to the vernal equinox
is given by

R3(—Q).
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So the state vector of the satellite in the ECSF coordinate system is

(1) - rt-omcir-o) (1), (343)
where
X X
r=1y], 7=V
z Z

For given six Keplerian elements (Q, i, ®, a, e, M) of fy, where My = n(ty — 1p), the
satellite state vector of time ¢ can be computed, e.g., as follows:

1. Using (3.32) to compute the mean angular velocity n;

2. Using (3.40), (3.39), (3.33) and (3.30) to compute the three anomalies M, E, f
and r;

Using (3.41) and (3.42) to compute the state vector g and g in orbital coordinates;
4. Using (3.43) to rotate state vector § and g to the ECSF coordinates.

(O8]

Keplerian elements can be given in practice at any time. For example, with #,
where only f is a function of g, other parameters are constants. In this case, the
related E and M can be computed by (3.35) and (3.39), thus 7, can be computed by
(3.40).

From (3.42), one has

2.2 2.2
’ an .5 N o a*n*(1+ecosE)
=T sin?E+ (1 g =20 TR 3.44
Y (1 —ecosE)? [sin” £+ (1 —€%) cos” ] 1 —ecosE (344)
Taking (3.32) and (3.34) into account leads to
sz,u(l—i-ecosE):yQ—r/a) :‘u(Z_l)’ (3.45)
r r roa

where 12 /2 is the kinetic energy scaled by mass, u/r is the potential energy, and
a is the semi-major axis of the ellipse. This is the total energy conservative law of
mechanics.

Rotate the vector § and ¢ in (3.41) and (3.42) by R3(—®) and denote by j and p,
ie.

p1 reos f rcos(®+ f)
p=|p | =R3(—w) | rsinf | = | rsin(o+f) (3.46)
p3 0 0
and
D1 —sin f na —sin(w+ f) —esinw na
p= 1[;? =R3(—w) e+gosf m: cos(w+f8+ecosw Vi
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The reverse problem of (3.43), i.e., for given rectangular satellite state vector

(7, ?)T to compute the Keplerian elements, can be carried out as follows. @ + f is
called argument of latitude and denoted by u.

1.
2.
3.

Al

Using the given state vector to compute the modulus r and v (r = |7, v = |F]);
Using (3.10) and (3.11) to compute vector 7 and its modulus h;

Using (3.13) and (3.14) to compute inclination i and the right ascension of as-
cending node €;

Using (3.45), (3.29) and (3.32) to compute semi-major axis a, eccentricity e and
average angular velocity n;

Rotating 7 by p = R} ({)R3(Q)7 and then using (3.46) to compute @ + f;
Rotating 7 by 7 = Ry (i)R3(Q)7 and then using (3.47) to compute @ and f;
Using (3.33), (3.39) and (3.40) to compute E, M and f,,.

To transform the GPS state vector from the ECSF coordinate system to other

coordinate systems, the formulas discussed in Chap. 2 can be used.



Chapter 4
Perturbations on the Orbits

Satellites are attracted not only by the central force of the Earth, but also by the
non-central force of the Earth, the attracting forces of the sun, the moon and planets,
and the drag force of the atmosphere. They are also affected by solar radiation pres-
sure, Earth and ocean tides, general relativity effects and coordinate perturbations.
Equations of satellite motion have to be represented by perturbed equations. In this
chapter, after discussions of the perturbed equations of motion, emphasis is given to
the attracting forces and the order estimation of the disturbances.

4.1 Perturbed Equation of Satellite Motion

The perturbed equation of motion of the satellite is described by Newton’s second
law in an inertial Cartesian coordinate system as

mi=f, 4.1)

where f is the summated force vector acting on the satellite, and 7 is the radius vec-
tor of the satellite with mass m. 7 is the acceleration. Equation (4.1) is a second-order
differential equation. For convenience, it can be written as two first-order differential
equations as follows

a7 .
— =7
dr (4.2)
dr - 1 f
dr m’
Denoting the state vector of the satellite as
= 7
X = (?> , 4.3)
equation (4.2) can be written as '
X=F, (4.4)
G. Xu, Orbits, 39
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where

F= ( f/?m) ) (4.5)

Equation (4.4) is called the state equation of the satellite motion. Integrating (4.4)
from 1y to ¢, one has

=

X (1) =X (1) + / Fdt, (4.6)

fo

where X () is the instantaneous state vector of the satellite, X (1o) is the initial state
vector at time 7o, and F is a function of the state vector X (¢ (¢) and time ¢. Denoting
the initial state vector as Xy, then the perturbed satellite orbit problem turns out to
be a problem of solving the differential state equation under the initial condition as

}E(t) B FL (4.7)
X(to) = Xop.

4.1.1 Lagrangian Perturbed Equation of Satellite Motion

If the force f includes only the conservative forces, then there is a potential function
V so that

7 IV v av>:<av v av) “s)

m_ o ( ox dy 0z or ¢ oA
where (x,y,z) and (r,,A) are Cartesian coordinates and spherical coordinates, re-

spectively. Denoting R as the disturbance potential and Vj as the potential of the
centred force fp, then

R=V -V, % = gradR. (4.9)

The perturbed equation (4.2) of satellite motion in Cartesian coordinates is then

dx |

a "

dy

E )

e,

:11; u OR (4.10)
@~ AT

dy u JdR

a - ATy

dz u  OJR
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where p is the gravitational constant of the Earth. The state vector (7,7) of the
satellite corresponds to an instantaneous Keplerian ellipse (a, ¢, ®, i, Q, M). Using
the relationships between the two sets of parameters (see Chap. 3), the perturbed
equation of motion (4.10) can be transformed into a so-called Lagrangian perturbed
equation system (see, e.g., Kaula, 1966/2001)

G _ 2 R
dt  naoM’
de 1—e2 0R  V1—¢€20R

dt ~ nale oM na’e 0w’

do V1—€20R cosi JOR
dt  na’e de na2\/1—ésini di’

G (L ok R
dt  na?v/1—eZsini o 0Q )’

@.11)

@__ 1 or
dt  na?v/1—eZsini di’
M 2 0R 1—¢*0R

n .
dr na da  nale de

On the basis of this equation system, Kaula derived the first order perturbed anal-
ysis solution (see Kaula, 1966/2001). In the case of a small e (e < 1), the orbit is
nearly circular, so that the perigee and the related Keplerian elements f and w are
not defined (this is not to be confused with the force vector f and true anomaly f).
To overcome this problem, let u = f + @, and a parameter set of (a, i, Q, £, 1, A) is
used to describe the motion of the satellite, where

& =ecosw,
1N = —esinw, 4.12)
A=M+o.

Thus, one has

dé & de dw
@ ea Ma
dn _nde ,do

& ed Sar 4.13)

ar_ M do
e dr  dr
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and

R 9R_AEmMA) R . ;IR IR IR
do IENA  do  aGnm TS =g oyt an

dR  9R  3(Em.A)  OR <§n y_émenaR

de  9(En,A) de  dEMA)\e e )  edE eodn’
oM d(EmA) oM I(EmA) T 9A

(4.14)

Substituting (4.14) into (4.11) and then substituting the 2nd, 3rd and 6th equa-
tions of (4.11) into (4.13), one has

G2 0R

dt  naodl’

dr na?2v/'1—e?sini & an  odA oQ|’

©_ 1

dt na?V/1—eZsini di’

%7\/1—8%7 cosi OR 1—e2—\/1—e28£

dt na® 9n na2/1 — e2sini 0i na2e? or’

dj__\/l—ez8£+é cosi 8£+ 1—62—\/1—e28j

dr na®> 0J¢& na’v/1—e2sini i n na’e? oA’

% 73837 cosi %71*62*\/1762 é8j+ 8£

& " nada na2v1 — e2sini di na’e? & n&r[ '
4.15)

The new variables of (4.12) do not have clear geometric meanings. An alternative
is to use the Hill variables (see, e.g., Cui, 1990).

4.1.2 Gaussian Perturbed Equation of Satellite Motion

Considering the non-conservative disturbance forces such as solar radiation and air
drag, no potential functions exist for use; therefore, the Lagrangian perturbed equa-
tion of motion cannot be directly used in such a case. The equation of motion per-
turbed by non-conservative disturbance force has to be derived.

Considering any force vector f = (fo, S f.)T in ECSF coordinate system,
one has
fe fr

f | = Rs(— QR (=i)Rs(—u) | fa |, (4.16)
fz fh
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where (f, fo, fn)T is a force vector with three orthogonal components in an orbital
plane coordinate system, the first two components are in the orbital plane, f, is the
radial force component, fy, is the force component perpendicular to f. and pointed
in the direction of satellite motion, and f;, completes a right-handed system. For
convenience, the force vector may also be represented by tangential, central compo-
nents in the orbital plane (f;, f.) as well as f}, (see Fig. 4.1). It is obvious that

fr £
Jo | =Rs(=B) | fe | (4.17)
I I
where
d a(l—e? d 1 +ecos
tanﬁ:rd—]:: lg—ecosi‘ a(l—ez)f , B esinff’ (+18)
7(1 +ecosf)2€smfdf
or
inf — l+ecosf 7
\/m (4.19)
cos = esin f

V1+2ecosf+e2

To replace the partial derivatives dR/d o by force components, the relationships
between them have to be derived, where ¢ is a symbol for all Keplerian elements.
Using the regulation of partial derivatives, one has

dR IR IF q<arﬁ az,>

90~ of 90 1 \357 56
4.20
_ N ror.  ae, 20
:R3(—Q)R1(—1)R3(—M) fOC . %er—l—r% s
In
£,
ft A
p
fu -« dr - df
r
daf
f,
Fig. 4.1 Relation of radial
and tangential forces (8]
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where €, is the radial identity vector of the satellite, the dot is the vector dot product,
and

€ 1 cosQcosu —sinQcosisinu
é=| & | =R3(—Q)Ri(—)R3(—u) [ 0 | = | sinQcosu+cosQcosisinu |,
& 0 sinisinu
N | 0Q . . . u
sinQsinisinu—=— — & =— — (cos Qsinu + sinQcosicosu) =—
Jdo do do
dé, .. i Q . . .
= | —cosQsinisinu=—+ & =— — (sinQsinu — cos Qcosicosu) =—
Jdo Jdo Jo
. P u
CcosisInu—— +SINIiCoOSuU—-—
Jdo Jdo

4.21)

Substituting (4.21) into (4.20) and simplifying it, one has

JR or 0Q Jdu . di 0Q
% fr—i—r(cosza—i— 8G)fa+r<smu80 smlcosu >fh 4.22)

For deriving the partial derivatives of r and u (= f + @) with respect to the six
Keplerian elements, the following basic relations (see Chap. 3) are used:

1— 2
:761( <) =a(l —ecosE),
1+ecosf
rcos f = a(cosE —e),
rsinf =av1—e?sinkE, (4.23)
) f 1+et E
an= = an —
2 l—e 2’

E —esinE =M,

where E is a function of (e, M), f is a function of (e, E), i.e., (e, M), r is a function
of (a,e, M), and u is a function of (®, f), i.e., (0, e, M). Thus

JE
= (g SinE, ﬂ)’
,

d(e,M) r
df  [(24ecosf . a\? 5
d(e, M) _< —e S/ (r) Vi-e )
4.24)
ﬂ— sinEa—E—@sinE— ae sin f
om ~ oM r T V1 —e2 ’
ar r
d(a,e,i,Q o) (5’ —acosf, 0,0, 0)’
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Ju Jdudf 2+ecosf .
de afae 1_e

du  Jdudf  ra\2 5
o = aram ~ () V1=
du
7&(0171'797(0) =(0,0,0,1).
Substituting (4.24) into (4.22), one has

JdR r

% - ;fh

R .

aa—e = —acosf- fr+ :Sine]; (2+ecosf) - fa,
Fh =rsinu- fy,

(4.25)

50 =icosi- fo —rsinicosu- fp,
JdR
Jo = r'th
JR  ae . a(l+ecosf)
oM~ yia T g e

Putting (4.25) into Lagrangian perturbed equations of motion (4.11), the so-
called Gaussian perturbed equations of motion are then

d 2

di;:nm[ecosf.f,+(1+ecosf)~fa],
— 2

%: T[Sinf'fr+(COSE+COSf)'fOl]v

di (l—ecosE)cosu

& pa/1-& I

dQ (1 —ecosE)sinu P (420
dr nav1—elsini

do V1-—¢2 2+4ecosf . .dQ

T ae [—cosf-fr+l+ecosfsmf-fa} —cosza,

dM 1—¢? 2e 2+ecosf .

dr = nae [_ (cosf— l+ecosf> St 1+ecosfsmflfoC '

The force components of (f., fu, fn) are used. Using (4.17), the Gaussian
perturbed equations of motion can be represented by a disturbed force vector of

(ﬁ’fcafh)'
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4.2 Perturbation Forces of Satellite Motion

Perturbation forces of satellite motion will be discussed in this section. They are the
gravitational forces of the Earth, the attracting forces of the sun, the moon and the
planets, the drag force of the atmosphere, solar radiation pressure, Earth and ocean
tides, and coordinate perturbations.

4.2.1 Perturbation of the Earth’s Gravitational Field

After a brief review of the Earth’s gravitational field, the perturbation force of the
Earth will be outlined here.

The Earth’s Gravitational Field

The complete real solution of the Laplace equation is called potential function V
of the Earth. In spherical coordinates, V can be expressed by (Moritz, 1980; Sigl,
1989):

1 S - | _ _
V= 12 57 Vimi = IZ{) ZO rlﬁle(sm @)[CymcosmA 4 Sy, sinmA], (4.27)
nu =0 m=

where r is the radius, ¢ is the latitude, and A is the longitude measured eastward
(counter-clockwise looking toward the origin from the positive end of the z-axis).
One can, of course, use the co-latitude ¥ (or polar distance) instead of the latitude
¢(sin@ = cos®}). The subscript i in the first term denotes the cosmA or sinmA
term. Py,(sing) is the so-called associated Legendre function, V;,,; denotes surface
spherical harmonics, Cy,,, S, are coefficients of the spherical functions, and

k
Pin(sin@) = cos” @ Y Ty sin' " g, (4.28)
=0
where k is the integer part of (/-m)/2, and

_ (—1)’(2[721‘)!
Imt — zlt!(l_t)!(l—m—zl)!-

(4.29)

An important property of surface spherical harmonics V,,; is that they are orthog-
onal ones. For the integration over the surface of a sphere there is (Heiskanen and
Moritz, 1967; Kaula, 1966/2001):

/VLMIVlmidG:Q if L#I or M#*m or [#i. (4.30)

sphere
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The integral of the square of V},,; for Cj,,, = 1 or S;,, = 1 is

B (I4+m)!
[ Vido = [1— ><21+1><2—50m>}4”’ @30

sphere

where the Kronecker delta &, is equal to 1 for m = 0 and 0 for m # 0.
The normalised Legendre functions can be defined and denoted by

amﬂaulx2%m}ui (4.32)

Em@)f%%@{ (I +m)!

where x = sin @ = cos ¥. Recurrence formulae can be easily derived (Wenzel, 1985):

1/2
Pusayien®) =210 | i g | (=)',

Pui(x) = By(x) 20 +3) 7%, 1> 1,
Ql+1)20+3) |'?
Itmr)(—m+1)|

(I+m)(1—m)(21+3) }1/2
I+m+1)(I—m+1)(2[—1)

B i) = Pin) [(

- P(I—l)m(x) {(

and
Po(x) =1, P(x)=+3x, P(x)=1/3(1—x2). (4.33)

Since the first term of V (i.e., [ = 0) is represented by GM/r, the fully normalised
geopotential function is taken as follows (Torge, 1989; Rapp, 1986):

V(rne,A)=

=2m=0

i z ( ) Py (sin @) [Cp cosmA +S;msmml]1 , (4.34)

where GM is the geocentric gravitational constant, Cy,,, S;,, are normalised coeffi-
cients and a is the mean equatorial radius of the Earth. The first term of V is the
potential of the central force of the Earth. The perturbation potential of the Earth is
then (denoting GM = 1)

Rgeo(r,0,1) % ;,Z ( ) P (sing) [C_'lm cosmA + Spy sinml] . (4.35
For any initial external potential of the Earth

U(r,p,A) = 1+z z ( ) Py (sing) [Clmcosml +S,msmm7L] , (4.36)
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the disturbing potential 7 is then
o anl_ . _ o
3y (7) Py (sin @)[ACy, cosmA + ASy,, sinmA] |, (4.37)
;

where C_'fyn, Sfr/n are known normalised coefficients of the disturbing potential and

Cim=ACp, —CN. Sim=ASp,, — SN 1 <L. (4.38)

Perturbation Force of the Earth’s Gravitational Field

Denoting (x',y’,’) as three orthogonal Cartesian coordinates in the ECEF system,
then the force vector is

v ARG Y
ox’ o, k) o
o — v o o) | av anea)\"
ECEF = | oy | = a(r,p,A) 9y S \dneM)aW,y,7))
Vv AV A(re,1)
oz d(rgA) o7
(4.39)
From the relation between the Cartesian and spherical coordinates
r=/x"? +y/2+z/2
x rcos o cosA | /
"| = rcospsinA |, ¢ =tan VE2 | (4.40)
e rsin@ 1 y
A =tan"' =
X
one has
cos@cosA  cos@sinA  sing
M = —%sin(pcos)t —%sinq)sinl %cos(p ) (4.41)
x? ) .
Vot —rcgwsml rcgs(pcosl 0

For differentiations of the associated Legendre function, from (4.33) one has
similar recurrence formulas:

dp()() (sin (p)
do

dP]o(Sin (p) _ \/gcosq)
(p Y

=0, (4.42)

d
df_’l 1 (sin (p) _ .
d(P = \/gsm Q,
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APy 1)(41)(sin @)
de

2013
T e P
1=\ 2ug2 =5

= —qsin QP (sin) + qCOS(p(sql)n(p)7

dpP sin _ AP (si
(”l()l’q(, ) gcospPy(sing) +gsin<p”és(;n D s,
=\20+3,

AP 4 1)m (s _ B (s APy (s

(1+131(p(51n(P) = hcos (Ple(sin(P)+hsin(delm(gsm(p) Sl C 121(P(SIU(P),

. (21+1)(20+3)

(I+m+1)(I—m+1)’
(I+m)(l—m)(21+3)
k=
(I+m+1)(I-m+1)(20-1)
and
2 = .

d“Pyo(sin @) _o 443)

do? ’
2
$holsing) _ Plgfpsm(p) —V/3sing,
dzi_)”(sin(p)
Tar —V3cos 9,
d>P i _ B (si 25 (o

(Hl)g(;)(sm(p) = —qcos Py (sing) 2qsin<de”gs(;n(p) +gcos (pid Plé((;n qo),
d?P, 1) (sing) _ dPy(sin @) d?Py(sing)

(I+1)1 I . 1l ¢ . 1\sme
— 4 gsin Py (sin@) +2gcos q)id(p +gs1n(p7d(p2 ,
1>1,
2Py (si . 5
%@1(;)) = —hsin@P,(sin@) +2hcosq0cu}lm(§2nq))

&P (sing) &Py 1)(sing)
+hsing dg? —k a7 :

The partial derivatives of the potential function with respect to the spherical
coordinates are

o

1+ ) (1+1) (€>1le(sin @) [CimcosmA + S, sinmA |
[=2m=0 r

8V__£
ar 2
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W UI dPyy(sin @)
o= S 2 (5 ) e

z z ( ) P, (sing) [fC_‘lmsinml Jrglmcosml].

CimcosmA + Sy, sinmA] ,
(4.44)

8 r

Using the transformation formula of (2.14), the perturbation force of the Earth’s
gravitational field in the ECSF system is then
Jecse = Ry 'Ry Ry Ry fecer. (4.45)

The computation process of disturbance force of the Earth’s gravitational field in
the ECSF coordinate system may be carried out by

1. using (2.14) to transform the satellite coordinates in the ECSF system to the
ECEF system;

2. using (4.40) to compute the spherical coordinates of the satellite in the ECEF

system,

using (4.39) to compute the force vector in the ECEF system;

4. using (4.45) to transform the force vector to the ECSF system.

W

4.2.2 Perturbation of the Sun and the Moon as well as Planets

The equations of motion of two point-masses M and m under their mutual action
can be given by

MrM GMmrM—m

M m

7 mM

and  mi, = GMm (4.46)

mM

where r is the length of the vector 7, index Mm means the vector is pointing from
point-mass M to m, and single index M or m means the vector is pointing to point-
mass M or m. Introducing additional point-masses m(j), j = 1,2,..., the attractions
of m(j) on M and m can be given as equations similar to (4.46), and the total attrac-
tions may be obtained by summations

—

r .
My = GMm— + GMm(j) g/lm(]) ,
Mm J Mm(j) (4.47)
5 Tt ?mm(j)
mry, = GMm + ZGm 3 .
T rmm(j)

By dividing these two equations with —M and m, respectively, then adding them
together, one has

o () Pt
Fon — Py = —G(M +ZGm 7” i) “)1 . (4.48)
j Fam(i) "3
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Letting 7 = 7, — ¥y, i.e., using the point-mass M as the origin, substituting
Foum(j) = —(Fm — Fj)) in the right side of (4.48) and omitting the mass m (mass
of satellite), one has

; FePui) Tl
Fo o ZGm st “)] . (4.49)
DI

It is obvious that the first term on the right side is the central force of the Earth;
therefore, the disturbance forces of multiple point-masses acting on the satellite are
then

(4.50)

W
\1

€
ARt
P

:—mZGm = 317
= rm<j>| n(j)

where Gm(j) are the gravitational constants of the sun and the moon as well as the
planets.

4.2.3 Earth Tide and Ocean Tide Perturbations

The tidal potential generated by the moon and the sun can be written as

or

P, (sin @) P, (sinJ;)

P
WP:ZIJJ'Zﬁ 2 (n—k)! )
Pt rj+ +2 2 TR P (sin @) Py (sin §;) coskhj

4.51)

where j is the index of the moon (j = 1) and the sun (j = 2), y; is the gravitational
constant of body j, p is the geocentric distance of the Earth’s surface (set as a,), r;
is the geocentric distance of the body j, P,(x) and P, (x) are the Legendre function
and associated Legendre function, z; is the zenith distance of the body j, 5j and
h; are the declination and local hour angle of body j, hj = H; — A, and H; is the
hour angle of j (see Fig. 4.2). The tidal deformation of the Earth caused by the tidal
potential can be considered a tidal deformation potential acting on the satellite by
Dirichlet’s theorem (Melchior, 1978; Dow, 1988):

2 oo
-~ - B n+1 p" '
V=2 Tk (7)) hicoss)

or

v gt | B (Sm @)F,(sin &)

SV = z qu 7n ; (n—k)! ,
F i) Lt +2k§1 (n—l—k)'Pnk(Sm(p) P (sin ;) coskh;
(4.52)
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Fig. 4.2 The Earth-moon
system

the moon

the Earth

where k, is the Love number, (r, ¢, A) is the spherical coordinate of the satellite in
the ECEF system, and N is the truncating number. The recurrence formulas of the
Legendre function are (see, e.g., Xu, 1992)

(n+1)Pt1(x) = 2n+ 1)xP,(x) —nPy—1 (x),
(1—x?) dngx) =nP,_1(x) —nxP,(x), (4.53)

Po(x) = 1, Pl(x) =

The disturbing force vector of the tidal potential in the ECEF coordinate system
is then

ISV ASV  I(r,,A)
ox a(re,A) X
2 |V | _| 98V dneA) | _( 98V d(neA)\'
JECEF = oy | 7| e r) ay _<8(r,(p,/l)9(x',y',z'))
a8V a8V d(r,e,A)
07 d(re.A) 97

(4.54)
where

o5V 2 N (n+1)a2+! P, (sin )P, (sinJ;)

= . — s~ _Z r n _k '
a}" Zl :u]ngz kn rn+2ri]’f+l —|—2 z En+k§ nk(Sln (p) nk(SlHS )COSkh )
P,_(sin@) — sin @P,(sin sind;
86V 22: i g2t cos‘P(( l(k) ?) 9 (sin@))F(sin)
Wi 2 ko | 42 3 8 in ) — ktan Py (si
+1rj+1 +2 kZI (n+k) ( (kH)(sm(p) an @ k(Sln(P))
Py (sin 8;) coskh;
and
vV & X gt n
Fy ‘ 2 kPn i (sin &) sinkh
B jg,llijng,z n+1rﬂ+1 kg,l % (sin @) Py (sin §;) sin

(4.55)
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Other partial derivatives in (4.54) have been given in Sect. 4.2.1. The transforma-
tion of the force vector from the ECEF to the ECSF coordinate system can be made
by (4.45).

The ocean tidal potential generated by tide element cHds can be written as

GoHds < ap
; or GoHds Z m

n=0

: P,(cosz), (4.56)

where H is the ocean tide height of the area ds, G is the gravitational constant, o is
the water density, 7' is the distance between the satellite and the water element ds, r
is the geocentric distance of the satellite, z is the zenith distance of the ds, and a, is
the radius of the Earth. Using the spherical triangle

cosz = sin @ sin @5 + cos ¢ cos Qs cos(A; — A),

where (@, Ay) is the spherical coordinate of ds and (r, @, A) is the spherical coordi-
nate of satellite in the ECEF system, (4.56) turns out to be (denoted by Q)

o g | Pa(sin@)Py(singy) + (2 — bon)
— © n —k)!
0= GoHds 3, X Y MPnk(sin Q)P (sin@g) cosk(As — 1)
Zo (40!

n=0

(4.57)

The direct ocean tide potential is then the integration of Q/ds over the ocean
(denoted by 0), including the potential of the deformation of the ocean loading.
The ocean tide potential is then

s had a P" (Sin(p)Pﬂ(Sin (P?) + (2 - 50;1)
% :#GO'H 1+k)—== n(n—k)! . _ ds,
1 : rgZ)( ) P kzo 78 +k§!Pnk(s1n Q)P (sin@s) cosk(As — 1)

(4.58)

where k), is the ocean loading Love number. Equation (4.58) does not include the
potential changing because of the loading deformation over the continents, which
may give a non-negligible contribution to the orbit motion of the satellite (see
Knudsen et al., 1999). The loading deformation generated by the ocean tide can
be represented as

(@A) = # GHu(z)ds

ocean

and
de hic de N

+ =% (h),— h.,)Py(cosz), (4.59)

u(z) = 2Msin(z/2) M =

where a. is the radius of the Earth, M is the mass of the Earth, z is the geocentric
zenith distance of the loading point (related to the computing point, see Fig. 4.3),
P,(cosz) is the Legendre function, u(z) is the radial loading displacement Green
function, h; is the loading Love number of order n, and u, is the radial loading
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Fig. 4.3 Ocean tide and r
loading

deformation. Substituting u, for H in (4.57) and integrating Q/ds over the continents
(denoted by C), the potential of the loading deformation is then

P, (sin@)P,(sin @5) + (2 — don)

5V, — ﬂc Y e !
2 : Oclt ,EZ) it szo EnJrllg Py (sin @) Py (sin @) cosk(As — A)

ds,

(4.60)

where O is the density of the mass u,.ds on the Earth’s surface. The total ocean tide
potential disturbance is the summation of (4.58) and (4.60). Similar to (4.54), the
disturbing force can be derived and transformed to the ECSF system. There are

2(8V1 +8Va)
ox
AV +6V) | (a(5v1+3v2) a(r,p,A) >T
ay' \ drer) AW.y.Z))
2(8V1 +8Va)
a7

J?ECEF = 4.61)

where

P D P, (sin@)P,(sin@s) + (2 — don)

= (p)GoH (1+ k/ n — k) ds,
ar ﬂ nz(‘) "*2 X MP,,k(sin @) Py (sin @) cosk(As — 1)
K=o (n+k)!

[ dP,(si .
6V M&(sm%)ﬂ%&n)

np o aﬂ d
= ()GoH Y (1+K,)-* ~ ds
) # n) ntl n(n—k)! dPy(sin @) . ’
0] g n=0 7 % 2 o TPnk(sm @s5)cosk(A;—A)

[(2— &)
% # > ,, al
= GoH 1+k n — ) ds,
oA 7 o ngz)( n)rn+1 2 EZJFIZ; P (sin @) By (sin @ )ksink(A; — 1) :
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B, (sin @) P, (sin @) + (2 — Son)

aS?Z#G%WZ% n (n_k)gP R 2 ds,
7 =0 szom ke (sIn @) Py (sin @) cosk(A; — A)
dpy(sinp)

28 P,(sin@y) + (2 — don)

\%) < di
- ffGow, ¥ L ~ ds
90 # elr 24 i n(n—k)! dPy(sing) .
& n=0 X RNCENST Tpnk(sm ¢s)cosk(As —4)

and
o 2 —8on)
I6Vs an | (2= don
= n —k)! . . . )
oA @Gaeurr;b | x /EO EZ n ki ] Py (sin @) Py (sin @)k sink(As — 1) ds
4.62)

4.2.4 Solar Radiation Pressure

Solar radiation pressure is sunlight-exerted force acting on the satellite’s surface.
The radiation force (see, e.g., Seeber, 1993) can be represented as

; S Fo7
2 sun
fsolar = mYPsCrrsun* T (4.63)
|r_ rsun|

where 7 is the shadow factor, P is the luminosity of the sun, C; is the surface reflec-
tivity, rsun is the geocentric distance of the sun, (S/m) is the surface to mass ratio
of the satellite, and 7 and 7, are the geocentric vectors of the satellite and the sun.
Usually, P has the value of 4.5605 x 10°Nm™! (Newton/meter), C; has values
from 1 to 2, 1 is for the complete absorption of the sunlight, and for aluminium,
C.=1.95.
The shadow factor is defined as
ASS

y=1 A, (4.64)
where Ay is the sight surface of the sun viewed from the satellite, and A is the
shadowed sight surface of the sun. The sunlight may be shadowed by the Earth and
the moon. For convenience, we will discuss both parameters that are only in the
satellite-Earth-sun system (see Fig. 4.4). It is obvious that the half sight angles of
the Earth and the moon, as well as the sun, viewed from the satellite are

. 1 Qe
O = SIn = |
|7

o = sin”! ( & ) : (4.65)
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Fig. 4.4 Satellite—Earth—sun satellite s Y, A
——————— Lids
system &= T >

the sun

the Earth

where ae, ag and ap, are semi-major radii of the Earth, sun and moon, respectively;
am = 0.272493a,, and as = 959.631/(3600 x 180) (AU). For the GPS satellite,
05 < 0.3° ot =~ 16.5° and oy, =~ s £0.03°. Furthermore, Ag = aszn and Ay, = arznn.
The angles between the centre of the Earth and the sun, as well as the centre of the

moon and the sun are
1 —F- (=T
ﬂes =cos ™! <r|7"ss—7"|> )
(?m_?) ) (?s _?)>
b)

[P =71 - [ =7

(4.66)
Pms = cos™! (

where the vectors with indices s and m are the geocentric vectors of the sun and
moon, respectively. The vector without an index is the geocentric vector of the satel-

lite, and r = | 7|. If Bes > O + 04, then the satellite is not in the shadow of the Earth
(i.e., Ags = 0). If Bes > 0 — 0, then the sun is not in view of the satellite (i.e.,
Ags = Ag). If 0fe — 0y < Bes < O + O, then the sunlight is partly shadowed by the
Earth. The formula of the shadowed surface can be derived as follows (see Fig. 4.5).
The two circles with radius ¢, and o cut each other at points p and g, line pg is
called a chord (denoted by 2a), the chord-related central angle at origin oy is denoted
by ¢, the surface area between the chord and the arc of the circle o5 on the right
side of the chord is denoted by A;. Line pg cuts OO, at point g, while O g and g0,
are denoted by b and b;. Then one has

Fig. 4.5 Shadowed surface
area
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2 2 2
_ O + :Bes — 0
2ﬁCS ’

pes_bl if blgaeu

a=ol b, b

b:
bl —Bes lf bl > %7
(b .
2cos - it b <o, (4.67)
o1 = b
2m—2cos ! (> if b > o,
O
1, .
—~¢10f —ab if b <a,
S 910,
Al =

1
§¢1a3+ab if by > 0.

Similarly, the chord-related central angle at origin o, is denoted by ¢,, while the
surface area between the chord and the arc of the circle ¢, on the left side of chord
is denoted by A,. Then one has

b 1
¢ =2cos ™! <a1e> Ay = §¢2a§ —ab; (4.68)
and
AL +A
y=1- laznz. (4.69)
S

A similar discussion can be given for the moon. If B > o4y + 0%, then the satel-
lite is not in the shadow of the moon, i.e., Ags = 0. If Pns > o4 — o, then the full
shadow has occurred, i.e., Ags = min(Ag,Am). If |otm — 0| < Bms < 0m + ¢, then the
sunlight is partially shadowed by the moon. The formula of the shadowed surface
can be similarly derived by changing the index e to m in (4.67) and (4.68). Be-
cause of the small sight angle of the moon viewed from the satellite, the shadowed
time will be very short if it happens. By GPS satellite dynamic orbit determination
(e.g., in IGS orbit determination), only the data that have the y value of O or 1 are
used.

Because of the complex shape of the satellite and the use of constant reflectivity
and homogenous luminosity of the sun, as well as the existence of indirect solar
radiation (reflected from the Earth’s surface), the model of (4.63) discussed earlier
is not accurate enough and will be used as a first order approximation. A further
model for the adjustment to fit solar radiation effects is needed.

The force vector is pointed from the sun to the satellite. The satellite fixed coor-
dinate system is introduced in Sect. 2.7 (see Sect. 2.7 for details). The solar radiation
force vector in the ECSF system is then
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2 S 12 .
Ssolar = myPCr— — S_l,m 5 Msun
m ‘rfrsun|
g 5 4.70)
7
=myP,C,— —0— (sinf - &, +cos B - &),
‘r_rsun|
where
7 é, xn F_7
&= G= o, &=8x& and fun = (471
7| |€; X Tisun] |7 — Psun|

Further formulas of (4.71) can be found in Sect.2.7. Taking the remaining er-
ror of the radiation pressure into account, the solar radiation force model can be
represented as (see Fliegel et al., 1992; Beutler et al., 1994)

= . ar a2 a3 1
Ssolar—force = Jfsolar + | @21 a2 az3 cosu | . (4.72)
asy aszp ass sinu

That is, nine parameters are used to model the solar radiation force error for every
satellite.

An alternative adjustment model of solar radiation is given by introducing a so-
called disturbance coordinate system and will be outlined in the next section (see
Xu, 2004).

Disturbance Coordinate System and Radiation Error Model

The solar radiation force vector is pointed from the sun to the satellite. If the shadow
factor is computed exactly, the luminosity of the sun is a constant, and the surface
reflectivity of the satellite is a constant, then the length of the solar force vector can
also be considered a constant, because

sun rgun 1
<

sun
< < 4.73)
(rsun+r)2 |?_?sun|2 (rsun_r)2

7

and

r r 2 r 2 2r
sun :( sun > z(ljpi...) ~lF—~1F3x107°,

(”sun:l:'")2 Fsun £ 7 Fsun Vsun

Any bias error in P, C; and (S/m) may cause a model error of o fso]ar, where o
is a parameter. So the (xf;olar can be considered a main error model of the solar
radiation. Because the ratio of the geocentric distances of the satellite and the sun
is so small, the direction and distance changes of the sun-satellite vector are neg-
ligible. With the motion of the sun, the solar radiation force vector changes its
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direction with the time in the ECSF (Earth-Centred-Space-Fixed) coordinate sys-
tem ca. 1 degree per day. Such an effect can only be considered a small drift, not a
periodical change for orbit determination. To model such an effect in the ECSF
system one needs three bias parameters in three coordinate axes and three drift
terms instead of a few periodical parameters. It is obvious that to model such an
effect in the direction of 7, just one parameter ¢ is needed. Therefore, it is very
advantageous to define a so-called disturbance coordinate system as follows: the
origin is the mass-centre of the satellite, and the three axes are defined by 7 (ra-
dial vector of the satellite), 7i (the sun-satellite identity vector) and p (the atmo-
spheric drag identity vector). These three axes are always in the main disturbance
directions of the indirect solar radiation (reflected from the Earth’s surface), di-
rect solar radiation and atmospheric drag, respectively (see Fig. 4.6). This coordi-
nate system is not a Cartesian one and the axes are not orthogonal to each other.
The parameters in individual axes are mainly used to model the related distur-
bance effects, and meanwhile to absorb the remained error of other un-modelled
effects.

In the so-called disturbance coordinate system, the solar radiation pressure error
model can be represented alternatively by (see Xu, 2004)

orbit

’ ) }
[l 1
1 1

¢ o

'Y [ ]

'Y ’

‘ 4
. Earth 4
~ L4
Fig. 4.6 Disturbance ~ v

coordinate system N m o=
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N aj bl 1
O foolar = | a2 b2 s (4.74)
as bz

where b—terms are very small.

4.2.5 Atmospheric Drag

Atmospheric drag is the disturbance force acting on the satellite’s surface caused by
the air. Air drag force can be represented as (see, e.g., Seeber, 1993; Liu and Zhao,
1979)

— l CdS N N = =

Jarag = _mi (m) o |r_ "'air| (V_ ”air) ) (4.75)
where S is the cross section (or'effect'}ve area) of the satellite, Cy is the drag factor,
m is the mass of the satellite, 7 and 7,; are the geocentric velocity vectors of the
satellite and the atmosphere, and o is the density of the atmosphere. Usually, S has
a value of 1/4 of the outer surface area of the satellite, and C4 has labour values of
2.2+ 0.2. The velocity vector of the atmosphere can be modelled by

) -y
Far=kodx?=ko| x |, (4.76)
0

where @ is the angular velocity vector of the Earth’s rotation, and @ = |®|, k is
the atmospheric rotation factor. For the lower layer of the atmosphere, k = 1, i.e.,
the lower layer of the atmosphere is considered to be rotating with the Earth. For
the higher layer, k = 1.2, because the higher ionosphere is accelerated by the Earth’s
magnetic field.

The gravity-balanced atmospheric-density model has the exponential form of
(see Liu and Zhao, 1979)

6 = 0o(1+q)exp (—E”) : 4.77)

where 0y is the atmospheric density at the reference point p, g is the daily change
factor of the density, r is the geocentric distance of the satellite, and H is the density-
height scale factor. For the spherical and rotating ellipsoidal layer atmospheric mod-
els, one has

p =ae+h; (4.78)

and

1 +tan? @

— h;: 1— 2
p (ae+ l) e 1+tan2(p_ez7

(4.79)

respectively. Where a. is the semi-major radius of the Earth, i; (i = 1,2,...) is a set
of numbers, ¢ is the geocentric latitude of the satellite, and e is the eccentricity of
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the ellipsoid. Equations (4.78) and (4.79) represent sphere with radius ae + h; and
rotating ellipsoid with semi-major axis ae + h;. Equation (4.79) can be derived from
the relation of tan ¢ and the ellipsoid equation

2 = (x> +y*)tan’ @,

x2+y2+z2

1 7162 = (ae +hi)2.

A reference of atmospheric densities can be read from Table 4.1 (see Seeber,
1993).

The density—height scale H between every two layers can be then computed from
these values. It is notable that the air density may change its value up to a factor of
10 because of the radiation of the sun. The density of the atmosphere at a defined
point reaches its maximum value at 14h local time and its minimum at 3.5h. The
most significant period of change is the daily change and is represented by the daily
changing factor as

f—1

q= cos Y, (4.80)
where f is the ratio of the maximum density and the minimum density, and y is
the angle between the satellite vector 7 and the daily maximum density direction 7,,.
The f may have the value of three and

cosy = —m_ (4.81)
7|+ [Fim]
where
r=/x2+y*+27?
X rcosd cos o | Z
v| = reosésine |, o= e |
2/ rsind Ly
’ o =tan— (4.82)
X rcosdcos(a+m/6)
Tm=|y| = rcosdsin(a+m/6) |,
b4 rsind

m

where (o, 0) are the coordinates (right ascension, latitude) of the sun in the ECSF
coordinate system.

Table 4.1 Reference of atmospheric densities

hi (km) oo(i) (gkm ™) hi (km) oo(i) (gkm ™)
100 497400 600 0.08 —0.64
200 255316 700 0.02—0.22
300 17-35 800 0.07—0.01
400 22-75 900 0.003 —0.04

500 04-2.0 1,000 0.001 -0.02
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Taking the remaining error of the atmospheric drag into account, the air drag
force model can be represented as

ﬁlirfdrag = J?drag +(1+ Q)Aﬁirag7 (4.83)

where the force error vector is denoted by A fdmgand the time variation part of
atmospheric density is considered in parameter q.

Error Model in Disturbance Coordinate System

In the atmospheric drag model (4.75), the velocity vector of the atmosphere is al-
ways perpendicular to the z—axis of the ECSF coordinates and the satellite veloc-
ity vector is always in the tangential direction of the orbit. The variation of the
term |?— ?air’ (denoted by g) is dominated by the direction changes of the veloc-
ity vectors of the satellite and the atmosphere. Any bias error in S (effective area
of the satellite), Cq (drag factor) and o (density of the atmosphere) may cause a
model error of [derag, where [l is a parameter. So the ufdrag can be considered a
main error model of the un—modelled atmospheric drag. To simplify our discussion,
we consider the velocities of the satellite and atmosphere are constants, and call
the satellite positions with max(z) and — max(z) the highest and lowest points, re-
spectively. With the satellite at the lowest point, the two velocity vectors are in the
same direction and therefore the g reaches the minimum. At the ascending node,
the two vectors have the maximum angle of inclination i and the g reaches the
maximum. Then g reaches the minimum again at the highest point and reaches
the maximum again at the descending node, and at the end reaches the minimum
at the lowest point. It is obvious that, besides the constant part, g has a domi-
nant periodical component of cos2f and sin2 f, where f is the true anomaly of the
satellite.

In the so-called disturbance coordinate system the atmospheric drag error model
can be represented alternatively by (see Xu, 2004)

ﬂ.}?;jrag =[a+bo2w)cos(2f)+cep(3w)cos(3f) +do(w)cos f] p, (4.84)

where

(k=1,2,3) (4.85)

sinkw, if coskw =0
o(ko) =

1
. L ;
o if coskw #0

where o is the angle of perigee and f is the true anomaly of the satellite; a, b, ¢
and d are model parameters to be determined. According to the simulation, a-term
and b-term are the most significant terms. The amount of d is just about 1% of the
amount of ¢, and the amount of ¢ is about 1% of that of b.
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4.2.6 Additional Perturbations

As mentioned earlier, the disturbed equation of motion of the satellite is valid only
in an inertial coordinate system, or ECSF system. Therefore, the state vector and
force vectors as well as the disturbing potential function have also to be represented
in the ECSF system. As seen earlier, for some reason, the state vector and the force
vectors as well as the disturbing potential function R, are sometimes given in the
ECEF system and then transformed to the ECSF system by (see Sect. 4.2.4)

Xgcsk = R - XecEr,
fecse = Ry fecer, (4.86)
Recse = R(R.'Xgcsp)  for  R(Xgcer),

where R; is the transformation matrix in general. Variable transformation is further
denoted by Xgcsp = R Xgcer. We have also seen that sometimes the state vectors
(of the satellite, the sun, the moon) in the ECSF system have to be transformed to
the ECEF system for use, and then the result vectors will be transformed back to
the ECSF system again. However, due to the complication of transformation R, l
quite often a simplified R;! is used (in later discussions, for example, to represent
the disturbing potential function using Keplerian elements, only the Earth rotation
is considered). Thus,

Recsk = {R(R; ' Xgcsr) — R(Ry ' Xecsr) } + R(Ry ' Xecsr), (4.87)

where the first term on the right side is the correction because of the approximation
using the second term. The transformations of (4.86) and (4.87) are exact operations,
and their differentiation with respect to time ¢ and the partial derivatives with respect
to variable XgcsF are then

dXECSF th = d)_(‘ECEF

TOBCSE TRy R, —-ECEE
ar & ECEF 1 Rt T

dfecse _ dR 2 dfecer

HfECEF"‘Rt (4.88)

dt d
IRecsE 9 [R(R, ' XgcsF) — R(Ry ' Xecsr)] N OR(R; ' Xgcsr)
JXEecsF O XECSF O XECSF

That is, the time differentiations of the state vector and force vectors cannot be
transformed directly as in (4.86). In other words, if the state vector and force vectors
are not directly given in the ECSF system, they are not allowed to be differentiated
as usual afterward. An approximated and transformed perturbing potential function
will introduce an error. The first term on the right-hand side of (4.88) signifies addi-
tional perturbations (i.e., coordinate perturbations). The order of such perturbations
can be estimated by the first term on the right-hand side. If the relationship between
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two coordinate systems changes with time or the transformation has not been made
exactly, such perturbations will occur. Recalling

—1p—1p—1p-—1
R=Ry'Ry'Rs'Ry,

and their definitions (see Chap. 2), one has

dR dR;! dRy'
= Ry 'RY'Ry =M 4 Ry 'Ry SRy
i 1 (4.89)
7]dRN 11 dR]; —1p—1p-—1
HRy — RS Ry + — RN R Ry
where
' (o 0 dRs' _ dR3(GAST)
dt . e dr ’
Xp —yp 0
dRY' dR,(—¢ dR3(A (4.90)
N _ RO b ARy e+ ) + R (—) TEAY) R (e 4 ae
ar ar dr
dR;(e+Ae
+R1(—8)R3(A‘l/)%’
dR—l dR dR,(—06 dR Z
Re_ _ )y 0)rs(e) + R0 T R e) 1 Ry o -0) T,

where all elements are defined and given in Chap. 2, (X,,y,) is the polar motion rate
of time, and

0 O 0
dR(llia) =] 0 —sina coso %X,
0 —cosa —sina
—sinx 0 —coso
dRZ(“) - 0o 0o o C(ITO‘, 4.91)
! cosoe 0 —sina !
dRs(cx) —sino cqsoc 0 dot
& = | —cosa —sina 0 -
0 0O 0

Further formulas may be easily derived.

4.2.7 Order Estimations of Perturbations

Perturbation forces that are scaled by the mass of the satellite are the accelerations.
The accelerations caused by the discussed forces have been estimated for the GPS
satellite by several authors and are summarised in Table 4.2.



4.2 Perturbation Forces of Satellite Motion

Table 4.2 Accelerations (ms~2) caused by forces (see Seeber, 1993; Kang, 1998)

Central force acceleration 0.56
Gravitational C, acceleration 5% 1073
Other gravitational acceleration 3x 1077
The moon’s central force acceleration 5x10°°
The sun’s central force acceleration 2x107°
Planets’ central force acceleration 3x 10710
The Earth’s tidal acceleration 2x107?
Ocean’s tidal acceleration 5% 10710
Solar pressure acceleration 1x1077
Atmosphere drag acceleration (Topex) 4x10°10
General relativity acceleration 3x 10710

65

If the coordinate system is used without taking precession and nutation into ac-
count, additional perturbation acceleration can reach up to 3 x 10719, Additional
acceleration of gravitational potential can reach up to 1 x 10~ (see Liu and Zhao,

1979).



Chapter 5
Solutions of C, Perturbation

Satellites are attracted not only by the central force of the Earth, but also by the
non-central force of the Earth, the attracting forces of the sun and the moon as well
as planets, and the drag force of the atmosphere, solar radiation pressure, Earth
and ocean tides, and coordinate perturbations (see Chap. 4). Equations of satellite
motion have to be represented by perturbed equations. In this chapter, Emphasis is
given to the analytic solution of the Cy( perturbation. Orbit correction is discussed
based on the solution.

5.1 C, Perturbed Equations of Motion

The geopotential term Cay is a zonal term. Compared with other geopotential terms,
Cop has a value that is at least 100 times larger. According to the order estimation
discussed in Sect. 4.2.7, Cy perturbation is one of the most significant disturb-
ing factors and is a perturbation of the first order. The analytic solution of the Ca
perturbation will give a clear insight into orbit disturbance. The related perturbing
potential is (see Section The Earth’s Gravitational Field in Chap. 4)

2
a;— - .
Ry = %Cgono(sm ®)

or b
Ry = —(3sin*@ 1), (5.1)
r

where

The variables (r, @, 1) of the geopotential disturbance function in the ECEF sys-
tem are transformed into orbital elements in the ECSF system by using the following
relations (see Fig. 5.1; see Kaula, 1966/2001):

G. Xu, Orbits, 67
(© Springer-Verlag Berlin Heidelberg 2008
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Fig. 5.1 Orbit-equator-meridian
triangle S

YL&.‘G N -

sin @ = sinisinu,

A=a-0=Q-0+(ax—Q),

cos(ax — Q) = cosu , (5.2)
cos @
sin(o— Q) = sinucosi’
cos ¢

where « is the right ascension of the satellite, u = @ + f, © is the Greenwich Side-
real Time, and other parameters are Keplerian elements. It is obvious that such a co-
ordinate transformation only takes the Earth’s rotation into account; this will cause
a coordinate perturbation (see Sect. 4.2.6). But such an effect can be neglected by
the first order solution. Substituting the first formula of (5.2) into (5.1) and taking
the triangle formula (for reducing the order) into account, one has

b (3 .,.
Ry= = Esmzz(l—coszu)—l , (5.3)
where ( 2
a(l—e
= — 4
" 1+ecosf’ (54)

where Q does not appear in the zonal disturbance. Taking into account the partial
derivatives of f with respect to (M,e) and r with respect to (a,M,e) (see Sect. 4.1),
the derivatives of R, with respect to Keplerian elements are then
ORy _ORydr _ =3, IRy _
da  dr da  a P 9Q
JdR b |3
=2 o {2 sin2i (1 —cos2u)] ,

0

)

di r3

JOR b d 3b
T(j = {3 sinzisinzuaﬂ = r—3$in2isin2u,
oR, —-3R,dr b L. u
W = , $+r73 |:3sll'l lsm2u$
3 b 2
= acoszz_Fi 3sin2isin2u7+ecosf sin f
r 3 1—e?
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and
dR, _ 3R, Jr b "
—_— Y Y3 2
— MR + = b [3sin2isin2u (a)ZM] (53)
Wi—e ] | |

Substituting these derivatives and R, into the equation of motion (4.11), one has
the Cyg perturbed equations of motion:

da  6bV1—e2 [ —e at
ditl: : ¢ {(1 ¢ iy smf{ sin 1(1—009214)—1} +—= [Sln mln2u]}
na —e
de  3b(1-&22( —e o 3
dé: ( Se) {(1 ez)a sin f [fsm i(1—cos2u)— } sm zs1n2u]}
na’e —e?) 1t
_ 223
— &a— sin®isin2u
nale 13 ’

dr " ndSe

V1-—eé? ? 2
do _3b ¢ {rA cos f {3 sin?i (1 — cos2u) — 1} a3 {sin%sinZu%c sinf]}
r —e

,nasj%ii [cos 1(17c052u)]
% = ﬁ ; sin2isin2u,
% = %23 [cosi (1 —cos2u)]
and
% =n+ 6—261—3 B sin®i (1 — cos2u) — 1}
3b(1— é2) « — cos f [3 sin?i (1 —cos2u) — 1
e +a—j [sinzisin2u2+ecozsf sinf]
r 1—e

(5.6)

5.2 Solutions of Cyy Perturbed Orbit

For convenience the right-hand side of (5.6) will be separated into three parts:

do; do; do; do;
€5 _ (29 L (%) L (%% (5.7)
dr da /, da /, d /),

or
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do; | do; do; | .
a Gjo+ < ar >w+ ( @ Gjo— Cjo |, (5.8)

where the first term (denoted by &) on the right-hand side includes all terms that
are only functions of (a,i,e), the second term includes all terms of @ (without f)
(denoted by G), and the third term includes all terms of f. They are denoted by
the sub-index of 0, @ and f, respectively. Equation (5.8) is needed for later integral
variable transformation. The second terms on the right-hand side of the above two
equations are the same. It is notable that r is a function of f. The solution of the R,
perturbed orbit is the integration of these equations between initial epoch #y and any
instantaneous epoch 7. The three terms on the right side can be integrated with the
integral variable of f, w, and M, respectively.

All terms of w are represented in the terms of sin2u and cos2u. Omitting the
terms of sin2u and cos2u in (5.6), the remaining terms of f are included in the
following functions:

(§)3’ (%)4sinf and (%)40051‘, (5.9

r

where

a l+ecosf (a)zi 140.5¢% +2ecos f+0.5¢* cos 2 f

1—e¢? r (1—e2)2 ’

(a)3 14 1.5¢%+ (3e40.75¢*) cos f + 1.5¢* cos 2 f +0.25¢> cos 3
a (1—-e2)3 ’

[ 3
(a>4 1 <1+3e2+8e4> + (4e+3e’)cos f
7 T =) 1 )
4 (1=¢?) +(3¢> +0.5¢*) cos 2 f + e cos3f + ge4cos4f
[ 1
<1 +1.5¢% + 8e4) sinf + (2e+¢€*)sin2f

3 1
+ <1.5€2 + 16e4) sin3f +0.5¢3sin4f + %e‘* sin5f

5
(2e+1.5¢%) + (1 +4.5¢2 + 8e4> cos f

a\4 1 35
(;) cosf:m +(2€—|—2€3)C052f+<1.5€2+1664)C083f , (5.10)

1
+0.5¢3 cos4f + Ee“ cosSf

and
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sin jfsinmf = —0.5[cos(j+m)f —cos(j—m)f],
cos jfcosmf = 0.5[cos(j+m)f+cos(j—m)f], (5.11)
sinjfcosmf =0.5[sin(j+m)f+sin(j—m)f].

Then the first term (equation of long term perturbation) in (5.8) is
da) _(de) _(ai\ _,
dt ), \dt /), \dt/,
d 3b 15
((;))0 ﬁ <4Sln l 3+4ezsin2i_3€2> ;
@ ( +3¢?)
dr 2na5 (1 e?)33’

dmM N % (3.2, | e
— | =n+——=\|x 1— —r
d /, 2nad \ 2 (1—e2)3

The solutions of the long term perturbation are then the integration of these equa-
tions from 7o to ¢. ¢ is the instantaneous time of interesting and f#¢ is the initial
time and is set to O for convenience. It is obvious that the long term perturbations
are then

(5.12)

d
Ac(t)o = (i’)t j=1,2,...,6. (5.13)

The integral variable transformation between ¢ and w, 2 and M can be approxi-
mated by

—1 —1 -1
dr = (dw> do, dr= (dQ> dQ and dr= (dM> dMm. (5.14)
dr 0 dr 0 dr 0

The second term (long periodic perturbation) in (5.8) exists only in sin2u and
cos2u related terms. All sin2u and cos2u terms are factorised by the following
functions:

(O (@ (@ (s (22 s
(5.15)

where
2 114 3,95
14 5e +1§e + [ Se+7.5¢ +§e cos f
a\’ 1 5 . 5
7 T ey +(5¢* +2.5¢*) cos2f + [ 2.5¢3 + — 16 cos3f

5 1
+§e4cos4f+ 1—665 cos5f
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and

| -
(2 +2.25¢% + Se4> sin f

32 1 +(3.5€+0.25e3)sin2f

(4) 2% iny = 3 (5.16)

r 1—e (1—¢€?) 2.5¢2 +16 sin3f

5 1
+§e3 sin4f+Ee4sin5f
From properties of (5.12) and
sin2u = sin2wcos2f + cos2msin2 f,

f f (5.17)

cos2u = cos2wcos2f —sin2wsin2f,

it is obvious that all w terms (without f) may be created only by multiplying sin2u
and cos2u by sin2f and cos2f in (5.15). In other words, only sin’2f and cos’2f
will lead to a constant of 0.5. Therefore, when seeking the @ terms (without f), just
sin2f and cos2f related terms in (5.15) have to be taken into account. Thus, the
second term (long periodic term perturbation) of (5.8) is:

d 3be? (2 + &>
( a) _4e(1(_|—2€)4)551n2181n2(0
na —e
3be 14 5¢% ) 5. .
sin“isin2,
< © T 4nd’(1—e2)35 e2)35
do
(dt (1 —e2)35 1_62)35 (66 + (2 — 13¢?)sin? i) cos 2,

).
).-
).-
).-

di ..
(dt ) 8na5 7 _62)3 = sin2isin2®
dQ —9be?
o . 4na5 e )3 5 COSiCOS2m

and
3b(2+ llez) 5

msin icos2m. (5.18)

(%),

The solutions of the long periodic term perturbation are then the integration of
above equations from @y to @, wy = ®(tp) and @ = w(¢). It is obvious that the
solutions of the long periodic perturbations are then

(Ac;(1)), — (Ao(t0)),, = (A0} (®))w —

(Acj(an))w, (5.19)
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i.e.
3be? (2
<dw) Znaf —1;5)25 s1n2ic0s2a),
dw 3be( 14562 ) 5.
a 0 S 1_62)355111 icos2m,
3b
(Aa)(a)))w d 1611(15(1—_62)35(66 +( *136 )sm l) SIHZ(D
0
9be?
2icos?2
( )0 Tona (1 —e )Sssm icos2m,
1
—9be?
(AQ((D))(D <dt>0 WCOS!SIH2(D
and |
do\ ' 3b(2+11e*) ., . .
(AM(®))ep = — <dt> Msm%smzw. (5.20)
0

The second term on the right side of (5.19) can be obtained by replacing the @ in
the first term by @y.
The third term of (5.8) includes all terms of f and can be denoted and represented

by
do; do; .
( dtj)f - ( d’j SonT ij) ' oD

This equation can be obtained by withdrawing (5.12) and (5.18) from (5.6). All
terms in (5.21) are periodic functions of f. They can be transformed to functions of
M by using relations (see Liu and Zhao, 1979):

1 1
sin f = sinM + esin2M + §82(9 sin3M — 7sinM) + 8e3(8 sindM — 7sin2M),

9 4
cos f =cosM +e(cos2M — 1)+ gez(cos3M—cosM) + §e3(cos4M— cos2M).
(5.22)

These two relations have precision of order O(e*). After the transformation, the
index f in (5.21) can be changed to M

dO'j de . .
i) (-6 5.23
( dt )M ( dr o GJ{D)M 62

and the short periodic disturbances of f can be obtained by

(AG; (1)) = /MA: <d§f')M <d§t4>: dM. (5.24)
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For convenience denote these results of integration by
(Acj(1))m = (Ac;(M))m — (Ac;(Mo) ) m- (5.25)

The first term on the right side can be obtained by indefinite integration of (5.24)
and will be given below. (The process of an alternative and software based deriva-
tion will be outlined in detail in the next chapter by deriving other perturbations of
geopotential disturbances). The second term on the right side can be obtained by
replacing the M in the first term by My. The constant factor in (5.23) is not taken
into account in the following solutions, for various reasons. In the application of the
following formulas, this factor should be multiplied. Define

10 10
(Ac;j(M))y = b (c.,-MJr dij(@)M+ Y AjcoskM + Y Bjy sinkM) . (5.26)
k=1 k=1

where j is the index of Keplerian elements. Then there are commonly

3\6[.161@620 2
= , b1 =2aeby, by=(1—e*)by,
0 128a5¢(1 — €2)%/2n 1S 2= (1=€")bo
by=by, by=8e(1—e*)by, bs=bs, be=—(1—e")"?by. (5.27)

For j =1, there are

Cj :0,
2 4 25 6 2 . .2
dj=—| 64+40e” +84e —|—7e e“sin2msin” i, (5.28)
784 , 81 243
Ajj=e (—64+216e2 — Te“ - 7eﬁ + (96— 324¢% +392¢* + Teé

224 193
+cos2m <16 - Tez —252¢ + 2e6>> sin’ i) ,

1072 87
Ajp = ( 96+ —— * —286¢" 29e6> + (e2 <14453662+429264+2e6>
1592 343
—(32—224e2+ 3 et + 66265+ — T >0052w> sin’i,
424 151 453
Ap=e ([ —— +536e* — ——¢* | + (&} [ 212 - 804e* + ——¢*
3 2 4
— — 2 3 ¢® ) ecos2w ) sin®i
12 ’
616 25 4 25
Apy=é ( =5 +508¢% + = 3 ) + <e4 (308—762e2 - 2e4)

— <27 — %ez + — 238 e+ 725e > é? cos2a)) sin’ i,

3 3 12
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824 6413 6413
S
Ajs e< 3+3Oe> < (412 S0 )

3 15 60

742 87 ,
Aj6=e6< 3 —|—29e> ( (371 S >

2 2
—( 6398 1414¢° %7e4> e4cos2w> sinzi7

1690 32552 14851
— ( — i 4> e’ cosZw) sin’ i

4 4 254 211
An—— 759e7+( 759 e’ ( S468 67 ez) €5C082(J)) sin? i,

) 28 21 168

12
22891 4

Aig = cos2m sm21
P

1099
eBcos2wsin?i i

220 2 796 4 405
3 4

8 6 48

235 235 5209 1625 ,
Ajg = S+ (68— (— )e%osZm) sin’1,

A/IO

21
32 — 2246 5376 +658¢° + 125 >51n2a)s1nz

4994 , 230 , 425
272—7 24 : e4+?

=16
=
= -
=
(1690 325522 3869
e
= (5
.

4\ 3. 22
3 15 15 e >e sin2wsin” i,
2908 141462 — 1315(;4) ¢*sin2wsin’ i,

3

25468 67211 ,
168

5029 1625

) & sin2wsin’ i,

) O sin2wsin’i,

e sin2@sin?i A

Jj9 =

99 o . . 0.
10 = ) e sin2wsin’?i.

For j =2, there are

CjZO7

49
dj=— (16+ 80¢” + 80e* + 2e6> ¢’ sin2sin’ i,

) sin2m 51n21

0 . ..
¢° ) esin2wsin® i

€6> e?sin2wsin’ i,

75

(5.29)

(5.30)

(5.31)
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784 , 81 243
A.,-1:e<—64+216e2—e4 e e+ <96 324e% +392¢* + == 1 e
833 , 47
+cos2@ (—16+56e2 - Teu 2e6)> sin? i) ,

1072 87
Ajp = < 96+ —~ e? —286¢* —29¢° + ( (144 —536¢” +429¢* + 236>

308 1039
+ (16— e? —856¢" — 1266) cos2a)> sin? i) ,

3
424 151 453
Ap=e [ -2 +536¢ — —¢* | + (& 212 804e + —=¢*
: 3 2 4
112862 L6259 .
—( 33 +229¢* B e )ecosZw) sin“ i,

616 25 4 25
A.,-4:e4< =5 +508¢% + — 3¢ >+<e4 (308—762e2—2e4>

2960 175
- (136 - Te2 — 4466* + 4e6> ¢* cos 2w) sin’ i,

824 6413 6413
5
(Bl ) (¢ (4= Ge)

8109 34231
— (33 - e4> & cos2w> sin?i,

5 60

142 87
Aig=e° 29¢ 371 —

2132 3232 1091
— ( — e 64) ¢* cos Za)) sin? i,

3 3 8
Aj = —%67 + (4;539 ! (31315 — 3?22760 e cos2a)> sin®i,
Ajg = 21325 8+ (225 8 (829+ %e ) e6c032w> sin’ i
jo = 2278291 e’ cos2w s1n21
Ajio=— 123985 cos2@sin’i, (5.32)

899 137
Bj = (16 60¢> 3 - e )estwsmzz

292 , 767 ¢
Bjy = (—16+ 3¢ 2 4 864¢* + — e >e2sin2wsin2i,
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112 862 1657
Bjz = ( — ——e* 42234 3e6> esin2wsin’i,

3 3
2960 11
Bjy = (1369 e —454¢* + 29 >e2sin2wsin2i,
1 714
= (338—809 2 815 e4> ¢ sin2wsin’ i,
2132 3232 3367
= ( 3 o 7 e4> ¢*sin2wsin’ i,
3115 37907 ,
= <3 168 —e )eSSin2wsin2i,
= (829—1— )e sin2@sin?i,
22891 K 5.
#="0 sin2wsin” i,
10
Bjio= ngeg sin2@sin? . (5.33)

For j = 3, there are
2

¢j = (64-+384% ~ 326" 1 18¢ ) e+ (96 — 48067 + 36¢* — 23¢° ) esin’’,
(5.34)
d;=((—48—8e* —12¢*) &
2 4,99 ¢ o
+ [ =164 104¢” +76¢ —|—7e esin“i | cos2m,
296
Ajy = é (32+ %ez +73e4> sin20
589 4 29
+ (16 —36e> — —==¢* + ==¢° ) sin2wsin’ i,
3 4
Ajp = e (32~ 17667 4 252¢* 1 58¢° ) sin20
121
o485 80 02 _g3gp4 1213 6 sin2wsin’ i,
3 12
224
Ajy = é ( —388¢” +103e ) sin2®

112 962 1606

T T + 30364 + 3e6> Sin 20) sin2 l.7
50

Ajy=¢ (136 — 5426 — 3e4) sin2o

4 4
(136—306 2 _ 4636 1625 6>esin2wsin2i,
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676 24697 377
Ajs=e ( 3 —323e¢ ) sin2w — <33 0 e 2 e4> e*sin2wsin’ i,

15 15
2132 1 12
Ajg=¢ 836 —58¢% ) sin2m — 323 8562 - 076‘4 &> sin2wsin’ i,
3 3 3 8
1221 3115 32773 ,
Aj = ®sin2w — (3 - We ) ¢*sin2msin® i

2 2
Ajs :%J sin2@ — (829 + 7485e2) € sin2msin’ i,

22891
j9=— 7829 S sin2wsini,
10
Ajlp=— 23967sin2wsin2i, (5.35)

1240 , 631 ¢

304
Bji =— 64— 152¢* + —— = ¢ +cos20 (—32+3e2+67e4> &

1565
+ (96+ 13267 — 440¢* + ——¢°
2 4 1 g e
+cos2m | 16 —40e” — 197¢ —?e sin” i,
3

+ (144 - 2086 ~ 281¢* 494 )

596 1007
+ cos2w (48 — Tez — 81764 — 266) e) Sinz i,

272
Bj= < 96+ “= ¢ + 294 74e6> e+ cos2w (32 17662 4+ 252¢* + 46e6) p

1

424 832 653 224
B,-3=(—3 Te2+ 3 >e +c s2w(3—388e2+109e4)e2

14602 1467 4\ »
((212 T ) e)e

112 62 628
+0052a)( 3 +9 e? —309¢* — 129e6>>sin2i,

4
Bj4:<—636 L2328 4 20 >e +c0s2@ <136—54262—33e4> e’

+((308 —425¢* — 117¢%) &

3064 247
+ cos2w ( 136 + T ¢* +455¢* — 6e°> e) sin®i,

824 155 , 676
B]5:<_3+ 6 ) +C 520) <3_323€2> 64

1923 , 24697 36883
+ ((412 z—o ) e"+cos2w (338+ 175962 + 6064) ez) sin’1,
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742 836
Bj6:<_ 3 — 18e >35+00520) (3—5832) &

34 2132 3185 3527
+(<371+362> & +cos2m < 3 + 3 e+ 24 e4> e3> sin’ 1,

4759 5 1221

B = 2
7 ol +— 7 ¢ Cos20
4759 3115 32773
+ ( N ¢® +cos2m <3 + ]68€2> e4> sin’ i
235 235 , 235 725 ,
By=—"5 e+ == - e’ cos2w+ <8e7+coszw< 829 e >e5> sin’1,
22891
9 = — 7 ¢® cos 2w sin” i
099
Bjig=— ——e’ cos2msin?i. (5.36)
24
For j =4, there are
= 07
= ( 3— fe - e4> ¢ sin2isin 2@, (5.37)
37
= (2 - = 4> ecos2wsin?2i,
2
:( 24116 — 63 et — 89€6> cos2wsin?2i,
14 97 103
= ( 3 Z—Fe )ecosZwsinZi7
17 271 25
= ( ? e+ 24e4> €% cos2msin2i,
16 323
= ( 9 )33 cos2wsin?2i,
209
( >e cos 2@ sin2i,
o 5
7= 112 e cos2wsin2i,
235
Ajg = —9—6e6 cos 2@ sin2i, (5.38)

19 67
Bj :( 24+ — 3 e+ — T “)esinZwsin2i7

63 23
Bj = (2— 11e% + Ze“ + 866) sin2wsin2i,



= (; 9? 1106964> esin2wsin2i,
= (27 — ﬂe2 56‘4) e sin2m sin 2,
(6 — %e ) e sin2m sin 24,
(209 29 ) e*sin2w sin 21,
7= 12121 €’ sin2@sin2i,
Bjg = %e sin2@sin2i.

For j =35, there are

= (=24 +3¢* —¢*) e* cosi,
3
dj= <6+e2+ 2e4> e200510052w
37 3
Aj = (4— ?ez e4> esin2wcosi,
63
Ap= (_4+22 2_ 7e4 — e(’) sin2wcosi,
28 97 103
Ap= (—3 + 762 — 864> esin2wcosi,
271 5 25 4\ , . .
Ajy= (17+4e +§€ >e sin2wcosi,
169 323 ,
Ajs=|—+—F ¢* ) &*sin2wcosi,
6 8
209 29
Ajp = (_6 + 4e2> &t sin2mcos i,
1221
Ajp =— 56 essin2a)cosi,
235
Ajg = —Reﬁ sin2mcos i,

Bﬂ:(<24 456 +2 ) (
1
sz=(<18 406 + 47 4) 2 4 ( —4+22¢* —

(S 1235\ 5 (28,97, 109,
Bf3_(<3 4 >e+< 372978
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(5.39)

(5.40)

(5.41)

67

— 864) ecosZw) cosi,
23

— e6> cos2w> cosi,
4

> ecosZw) cosi,
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B 77 31 , 4 271 17 2 .
BJ4_(<4 4e>e < 17+ 4e+12e)e cos2® | cosi,

287 169 323
Bjs = ( e+ <+e2> e20052w> cosi,

20 6 8

47 ¢ 209 29 5\ 4 .
6 (12 +< 6 + 4e )e cos w)cosz,

1221
1=""3¢ eSCOSchosi,
235
Bjg = — = ¢%cos2mcosi.

48

For j = 6, there are

¢j= (64 — 19267 406" — 6¢%) e +

Ajjo=—

Bj1<

2
(16—1686 +6 > et + 325 6 >c0s2w> sin’i,

37
—16 — 88¢> +44¢* — > 6>esin2icos2w,

11
16 — 164¢> +5§5 4—1— 497 )sta)smzz

2692
2692 2 +169¢* +

112 1858 ,
-t —

L 12739 5 10003
5 15
21332 + %62 — 6:;9e4> ¢ sin2wsin’i,
3115 = 21427
3 24
2265

—829+ 16€2> € sin2msin’ i,

e2> ¢* sin2wsin® A

22891
% sin2w sin® i

e’ sin2wsin? i,

24

2000 , 353
—e +7

4+ 424¢% —
64 + e 3 5

3 2

—96+288¢% — 60¢* + 9¢°
( )

1
eﬁ> esin2wsin? i,
370
—1855¢* — 3e6> sin2sin? i,
425
—1705¢* — 4e6> esin2wsin’i,

e4> % sin2wsin? i

e6) + <96 — 636¢* + 1000e* —

81

(5.42)

2

esin”i,

(5.43)

(5.44)

105
4 Zet
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1568
Bj= <96+ e? — 666¢" +28e> ((144—784e2+999e4—42e6)e

2708 1201
+ <176 Tez +191¢* + 2e6> ecosZw> sin’ i,

424 2104 823 2469 4
Bj = <_+62_ 64) + ((212— 1052¢% + —— >e2

3 3 2

112 1858 2 4 1057 ¢ 9.
—— —1861le¢™ — —— 2
+< 3 +— 3 86 T ¢ ) cos2m |sini,

4

616 262
Bjy = <_3 +694¢* — 3e4) e +((308 —1041e* + 131¢*) &

# (1364 28

824 11107 ,\ , 11107 ,\ ,
Bj5<3+306)6 +<(41220€ >€

127 40637 ,
< 338—%—% 2 06603 > 2c0s2a)) sin’i,

742
Bjs = <_3 +76€2) e+ ((371 — 114e2) &

2132 6529 2041
+ (— + — e4) & cos Zw) sin’1,

e* —1713¢* — 172366) ecosZa)) sin’1,

3 3 24

4759 4759 3115 21427
Bj7:——eé+ ( O+ <—+e2) e4c082w) sin’1,

42 28 3 24
Bjg = f% T+ <22567 + (829+ 2?2582> e 0052(1)) sin’ i,
Bjo = 2278291 e cos2w sm21
Bjio=— (2)4967 cos2@sin?i.

(5.45)

These are the solutions of the C»g perturbations on satellite orbits. Discussions

and comments will be given in the following section.

5.3 Properties of the Solutions of Cy) Perturbations

These derived solutions of Cy( perturbations are mathematically rigorous except for
the series truncation of the transformation from f to M. It is obvious that the series
of the solutions may also be truncated according to the precision requirements. The
total perturbations of the orbit disturbed by C»o can be represented as (see (5.7),

(5.19) and (5.25))
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AG]- :ch(t)0+(AGj(a)) —ch(wo))w+(A0'j(M) —AO'J'(MU))M7 JZ 1,2,... ,6.
(5.46)
Adding the Cy perturbations (5.46) to the Keplerian orbit (i.e., the satellite orbit
under the acting of the central force of the Earth), one obtains the mathematical
expressions of satellite orbit under the central force field and C»q disturbance.

The disturbances of the C»o on the different Keplerian elements are inhomoge-
neous. There are no long—term disturbances on the (a, e, i). The order ratios of the
long term disturbances on the (w, Q, M) are of (1, e, &), respectively. These in-
dicate that the disturbance on the orientation of the ellipse is stronger than that on
the orbital plane. In addition to the constant motion of M, there is a small (¢*) long
term change. All Keplerian elements are subjected to long periodic disturbances
and they can be grouped in orders with a, (w, M), e, and (i, Q). The orders of the
short periodic perturbations are dependent on the coefficients given in (5.26) and
can be grouped with a, (w, e, i, ) and M. Long and short periodic disturbances
tend to change the semi-axis of the orbits very strongly, to change the orientation
of the ellipse and motion of the satellite to a great extent, and to change the orbital
plane and shape to a lesser extent. The order ratios of the long periodic perturba-
tions of the zonal term of Cyg are (ae?, e, 1, €2, €2, 1), respectively. The order ratios
of the short periodic perturbations of zonal term Cyg are (ae, e, e, e, e, 1), respec-
tively. These are useful for considering the truncation of the short term solutions.
As it is obvious, three different truncating orders should be selected for the six se-
ries, depending on the kind of the satellite orbit (or the numbers of a, e and the
coefficients of e).

It is interesting that in the solutions for the short periodic disturbance there
exist long term and long periodic terms, respectively. The short periodic term
is related to the variable f. The transformation from f to M given in (5.22) is
not a transformation between two periodic functions. There is a small term of e
which leads to the terms represented in (5.26) by the first two terms (Note that the
transformation is just one of the reasons.) Using the relation (5.14) the dM (i.e., M)
can be transformed to dr (i.e., ). And

-1 -1
(dM> dM =dt = <dw) dw (5.47)
dr /, dr /,

can be used to transform easily the d;(@)M terms to functions of ® and the formulas
are left to interested readers.

For consistence with the solutions of other order and degree geopotential distur-
bances given in the next chapter, the complete solution (the infinite integration of the
disturbed equation of motion, to be exact) of Cy disturbance may be rewritten as

10 10
Acj = b; <c’jM+d;(co)M+ Y AjcoskM+ Y B sinkM) : (5.48)
k=1 k=1

It is obvious that this solution is the summation of the solution given in (5.12), (5.18)
and (5.26). Most coefficients are the same as that of (5.26), except the c;- and d’,,
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which can be easily obtained. The relations of the integral variable transformation

can be obtained as
de ’ de ’
) = d ) =d. 5.49
< dt )0 G ( d /, ! ( )

5.4 Orbit Correction

When the orbit errors of GPS satellites become non—negligible for special GPS ap-
plications, a process of orbit correction is the first option. Generally, orbit correction
is applied to the regional or very long baseline of GPS precise positioning. Even IGS
precise GPS orbits are not homogenously precise, because they are dependent on the
distribution of the IGS reference stations and the length and quality of the data used.
The orbit correction is an adjustment or filtering process in which, besides the sta-
tion position, the orbit errors are also modelled, determined, and corrected, based
on a known orbit.

Keplerian elements also describe the orbit geometry for instantaneous time. Orbit
errors can be considered geometric element errors of the orbit in general. Recalling
earlier discussions on the Cyg perturbed orbit solution, a general orbit model can be
written as

0j(t) = 0jc(t) + Gjo(t —19) +Ajwcos2m+ B sin2®

m(j)
+ Y [AjmcosmM + B, sinmM), (5.50)
1

m=

where 0;(1), 0j(t), Gjo are true orbit element at time 7, computed element at 7, ele-
ment rate with respect to the initial epoch g, A o, Bjw, A jm, Bjm are the coefficients
of the long and short periodic perturbations, respectively, and m(j) is the maximum
integer of index m related to the jth Keplerian element. @ and M are Keplerian ele-
ments. Generally speaking, the coefficients of A o, B, A jm, B are also functions
of w and i which can be considered in the short periodic term as constants.

For a general model, the order of the polynomial term can be raised to 2, further
terms of @ (and Q) may also be added, and m(j) is selectable. The selection of the
number of the order depends on the need and the situation of orbit errors.

In the GPS observation equations (see Xu, 2003/2007), the orbit state vector is
represented in the range or range rate functions. It depends on the use of the GPS
observables. We generally denote both the range and range rate together as p; their
partial derivatives with respect to the orbit state vector are given in Sect. 8.3 and
have the forms of

J J
P and 22, (5.51)
o7 7
where the satellite state vector is (7, 7). The relations between (7,7) and Keplerian
elements o; are discussed in Sect. 3.4. Also, the relations between o; and the
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parameters of the orbit correction model are given in (5.50). Therefore, the orbit
correction parts in the GPS observation equations are

09 97080 3p 0795, s
was Y Ty (5-52)

where ¥ and AY are the parameter vectors in model (5.50) and the parameter cor-
rection vector of the model, and G is the vector of Keplerian elements. If the initial
parameter vector is selected as zero, then ¥ = AY. It is obvious that

¥=(6j0, Ajw, Bjw, Ajm, Bjm) (5.53)
and

an
(60, Ajws Bjw, Ajm, Bjm)

= ((t—19),c082w,sin2m,cosmM,sinmM) . (5.54)

Here parameters A j,, B, represent symbolically the unknowns of all m. For the
convenience of representing the partial derivatives of the state vector with respect to
the Keplerian elements, the Keplerian element vector is reordered as

6 =(Q,i,0,a, e, M). (5.55)

This does not affect (5.54), because the right-hand side of the equation has noth-
ing to do with index j. According to the formulas in Sect. 3.4 ((3.41)—(3.43))

7 ) q
(7.) = Rs(~ Q)R (—)Rs (~ ) (g,) : (5.56)
where
a(cosE —e) rcos f
g=| avl—e?sinE | = | rsinf (5.57)
0 0
and
—sinE _ SiIlf
i=| vi—e - e 5.58
q 1 gcosE [ ocosE e—i—gosf T (5.58)
one has
J7 oR oF JR

T0Le) d@io! ™ F0ie)  d@L0)?

(5.59)

where (g, §) are position and velocity vectors of the satellite in the orbital plane
coordinate system, and
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R= R3(—Q)R1 (—i)R_g(—(}))

(5.60)
and

il e sl TG EE IR

k-0 Rk () P ),
where

i

0 —sini —cosi |,
0 cosi —sini

—sinQQ —cosQ 0
IR (—Q sin
% cosQ —sinQ 0
0 0 0
and .
IRy () —sin® —Cf)sa)O
ow = cos® —sinw 0
@ 0 0 0
For the Keplerian elements in the orbital plane (a, e, M), one has
or =R 24 and or =R 93 , (5.61)
d(a,e,M) d(a,e,M) d(a,e,M) d(a,e,M)
where
SE— —asin’E B —asinE
oG cos ¢ 1 —ecosE a 1—ecosE
— = sin2E esinE aVv'l—e?cosE
5 T s ) sin B
(a, e, M) I—efsinkavl—e (Z(IfecosE) 1—e? 1 —ecosE
0 0 0
and
nsinE nasinE(e—2cos E+ecos’ E) na(e—coskE)
. 2(1—ecoskE) (1—ecosE)3 (1—ecosE)3
aq —n\/1—e2cos E na[1+e272ecosE+sin2E(ecosE72)] —nav/1—e2sinE
8(a, e,M) 2(1—ecosE) \/@(lfecosEﬁ (1—ecosE)3
0 0

0
The partial derivative formulas given in Sect. 4.1 and the relation in (3.32) be-
tween n and a (mean angular velocity and semi—major axis of the satellite) given in
Chap. 3 are used, i.e.

ey = (o0 7)

and

n?=u/d. (5.62)



Chapter 6
Solutions of Geopotential Perturbations

The principle of the derivation of geopotential perturbations will be discussed first.
As special examples, the solutions of the Cs0, Cp1 and S»1, Cx and Sy are derived
and given. The aim is to give solutions up to 6 x 6 order and degrees, which are
necessary for orbit determination of satellites similar to that of GPS. The general
solution of the perturbations of Cy,, and Sy, is derived.

6.1 Principle of the Derivations

From the solution process of the equation of satellite motion perturbed by the geopo-
tential term C,g given in Chap. 4, one notices that the derivation is very complicated,
even if the potential function of the perturbation is relatively simple. An alternative
method is to use symbolic mathematical operation software such as Mathematica,
Maple, etc. However, the principle and strategy of the derivation have still to be
carefully created.

For simplification, geopotential disturbance function of / order and m degree can
be written as (see (4.35))

I__ _ _
I (%) Py (sin@) [CpyycosmA + Sy sinmA | . (6.1)
r\r

Let

6lm =Dy COsz,lm,

glm =Dy, Sinmllmv (6.2)

A=2A—Xm,
where
=2 =2

Dy = m’
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Elm
= 6.3
cosmiyy, Dy (6.3)

. o Slm

sinma,, = Dy,

then (6.1) is
Ry = 2 p (sin @) cos(mA) (6.4)
Im = s Im () ) .

where
by = ,ualngm~

To transform the geographic coordinates into the Keplerian variables, the following
relations are needed (see (5.2)):

sin@ = sinisinu,

A=0—0—A=(Q-0-14,)+(a—Q),

cos(a—Q) = cosu ; (6.5)
cos
sin(o— Q) = sinucosi
cos @

Because (see Wang et al., 1979)
costm) = 3, (~1)7( ;) (o)™ Fsin)¥,
j=0
m—1 . m . .
sin(my) = Y (-1)/ 2j 1 (cosy)™ 2~ (siny)¥+1, (6.6)

Jj=0

where the binomial form has the well-known expression of

m m!
<k> T kl(n—k) ©67)

Let

(6.8)
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then

cosmA = cos(mQ + my) = cosmQ.cosmy — sinmQsinmy

cosmQ <£n]> (cosu)™ %/ (sinucos i) — X
- 1)/ .
2 (=1) cos™ @

Jj=0 O m m=2j-1(; N2j+1
sinmQ <2j+ 1) (cosu) (sinucosi)

Note that in the definition of (4.28) there is a factor of cos” ¢ in expression of
Py, (sin @); therefore, let

cosmQ <Z> (cosu)™ %/ (sinucos i) —

m—1
q(Qu,i) = (-1)/ , (6.9)
i o= m il N2
=0 sinmQ (2j+ 1) (cosu)™ 2/~ (sinucosi)>/*!
Qi (%) = Pim(x) /(1 =2)"?
K
= Nim 3, Timexd "7, (6.10)
k=0
where K is the integer part of (I —m)/2, and the factors are
(I—m)!'(21+1)(2 — Som)
Nim = )
(I+m)!
(—1)k(21 —2k)
Tk = . 6.11
Ik T (T= k)N (I —m— 2k)! (6.11)
One has
o blm .
Rim = rlﬁle(x)Q(Qaual)v (6.12)
and then

IRl _ IRy Ir — —(I+1)
da  Jr da a fm>

&le _ bim &Q(QauJ)
90— 0T o0

IRy bim(—1—1)
di rit2

& . blm anm(x) @ .
5; Qm()q(,u,0) + T = = —-q(Q, u i)

9q(L2,u,i)
+ rl+1 le(-x)T7

dq(Q,u,i)

ale blm anm(-x) ox . blm
=77 7q(Qau7l)+r[ﬁle(-x)Ta

do  rtl 9x  du
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IRy blm( I— 1) bim anm(x) % du

3o = gm0 Qi)+ S S S ()
l;lfl Oim(x )W%
and
aalj‘l,}" = blm(;fz_l) ;—A;sz(x)q( )+%8Qg)’c( )gz ;A”;q(g,u,i)
+ Ijlf] Qi )@%, (6.13)
where
3ﬂQMJ):%§p4ym(bdeﬁme@mwziﬂ?mwmﬂ”;1)
9Q far) ba(m, j) cos mQ(cos u) 2~ (sinucos i) 2+
bi(m,j) = = (Z) (6.14)

b3 (m, j) (cosu)™ >/~ (sinu)>/+! 2
Iq(Qu,i) @(WCWQ@MmmeMWMMIWWJ
ou A= : M—2j-2 (i \2j+2
Jj=0 o ( bs(m. j)(cosu)™ == (sinu)~ 2j+1
sinm€ (+b6(m7j)(cos )2 (sinu)2J > (cosi)? i+
balm.s) = () n=20)(1 = B2,
balm.s) = ( 31) 21013z
. m .
bs(m, j) = — <2j+ | ) (m—2j—1)(1=8y(m-2j-1)),
. m .
be(m, j) = <2j+1)(21+1), (6.15)

9q(Q,u,i) Q u,i) —by(m, j)cosmQ (cosu)™ > (sinu)?/ (cosi)/~ ! sini
+bg(m, j) sinmQ(cosu)™ 2~ (sinu) 2+ (cos i)/ sini

(6.16)

-Zen

dQim(x) B LS I—m—2k—1
e _N,mgavvzmkx ; 6.17)

Wimk = Tk (1 — m — 2k) 8o (1 - m—24)»




6.2 Solutions of C3( Perturbation 91
X = sin@ = sinusini, (6.18)

X ..
— = cosusini,

u

x . .
— =sinucosi,

0i

sinu = sin(f 4+ @) = sin f cos @ + cos fsin @, 6.19)

cosu = cos(f + @) = cos f cos @ — sin f sin . '
These derivations lead to simplified formulae for the perturbation function and are
necessary and enough to transform the differential equations of motion into func-
tions of Keplerian variables. They are used to derive the solutions of perturbations
of geopotential function in order and degrees of 6 x 6 and are the basis for deriving
the general solution of the perturbation of / order and m degree as described at the
end of this chapter.

6.2 Solutions of C3y Perturbation

Similar to the solutions of Cyg perturbation, the indefinite integration of equations
of motion can be given as shown below. Define

12 12
(AGj(M))y = b; (ch+dj(a))M—|— Y AjicoskM + ZBjksinkM> ,  (6.20)
k=1 k=1

where j is the index of Keplerian elements. The first two terms are the long term
and long periodic term perturbations, respectively. There are

V7ua;Cso 5
- ’ b1 =2aeb ; by =(1- b ;
0 512a%e(1 —e2)!1/2n 1 = 2debo 2= (1—e)bo
For j =1, there are
=0 (6.22)

295
d;j= <1zoo+ 1800¢% + 2e4) ¢’ cos3wsin’ i
+cos® ( (480+ 1680¢* + 150¢*) €’ sini

- (600+ 2100e* + 3725e4> & sin’ i) ,
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e sin3wsin’ i

11625 500
Aﬂ:< 40— 1610€* + —— 4+9> :

+ < (7768 +1632¢% — 400e* — 13110° + 717e8) sini

2
(960 20406 + 500¢* + 22112 ;75 6 35485 >sm* z> sin o,

> esin3@sin’ i

10180 ¢ 1145

,2_<320 2160e* — 14510¢* — T

+ ( (—2304 +9088¢% — 8920e* — 19104¢° — 865e8) esini

4325
+ (2800 —11360e% + 11150¢* + 23880¢° + 4e8) esin’ i> sin o,

179665 5 20295
6 4

Ajy = (—320 —3680¢* — 10560¢* — ) sin3wsin® i

+ ( (—5088 +23640e> — 2682¢* — 7646¢ ) e~ sini
6705 , 19115
(6360 29550¢% + —— 5 et 2e6> e*sin’ i) sino,

27050e4 _ 6206066 3365
3 3 3

Ajy= (—1600+ 15840¢% — >e51n3ws1n31

+ ((—9856+40936€2+ 10696¢* — 575¢ )e sini

2875
+ (12320 —51170¢* — 13370e* + 4e6) & sin’® i> sin o,

123772 , | 75245 , 101875
3 ¢ 6 ¢ 24

Ajs = <—5080—|— e6> e sin3wsin’i

<( 17480 + 3942662 + 7954¢*) ¢* sini

98565 19885
+<21850—2 e — 92 e4>e4sin3i> sin o,
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2255
Ajs = <——1304O—%60150€2%—20880e4—%:p1e6> e sin3wsin’ i

2925
+((—%M4+BB@A%2J)?QM

14625
+»(31930-—22920e2—-8e4>e5snﬁi>sn1w,

4 (561970 959960 , 794555 ,
= 21 21 84

< ( 176574 46321 2) 6 . .
+ — +————¢e" | e sini

) e*sin3wsin® i

7 14

(441435 231605 2) ] .3.> .
+ — e |e'sin"i | sinw,

14 56

113605 49595 64535
Ajg = (- + 62 + 64

3 3 13 )es sin3@sin’ i

215 36685 1075
+ ((—14674+ 4€2> e’ sini+ ( — 16€2> e’ sin

2

598325 24215
AJQ = (18 ]2€2> €6 Sin3wsin3i

26843 o . . 134215 ¢ . 5.\ .
+ _Te SIni+ ———e°sin" 1 | sSinw,

B 51020 2401 ,\ 5 . . 3.
A]10—< 3 7 e )e sin3wsin” i

1099 o . . 5495 5 . 4\ .
+ 7Te s+ g e sin"it | sin@,

i1 = —%e8 sin3w sin
M= T 64

31-7

¢’ sin3wsin’ i

Ajip=—

5050 32875 18485
Bj1=<—40— 3 e+ 5 e+ 5 e6>ezcos3a)sin3i

+<(W%+3wm£7ﬁmé5%mé+1ﬂﬁﬁ)mm

93

) sin @,

(6.23)

13225 7515
+(%m4@m#+9mw4+2é4§>mﬁocmw,
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43270 , 9620 5 1915

Bj = <320 2160e* — 3 e 3 B e )ecosSa)sin3i

+ < (72304 +12032¢% — 19240¢* — 11376€° — 215e8) esini

1075
+ (2880 — 15040¢2 + 24050¢* + 14220¢° + 4e8> esin’ i) cos ®,

179935 o 20805
6 4

Bjs = (—320 +3680e” — 10560¢* — ) cos3msin’ i

(( 5088 +27720¢> — 17658¢" — 6296¢ )e sini

54

(6360 34650¢* + +7870e >e sin’ 1> cos @,

27050 , 62140 , 14125 4

_ 3.
3 ¢ 3 71

) ecos3mwsin’ i

Bjy = (—1600+ 15480¢% —
+ ( (—9856 +46664¢* — 1792¢* — 850¢ ) e’ sini

2125
+ (12320 —58330¢% +2240¢* + 2e6> &3 sin’ i> cos ,

123772 5, 75245 4 100625
3 ¢ 6 ¢ 24

Bjs = (—5080+ e6) e*cos3wsin’i

+ ( (—17480+46814e +3604*) ¢* sini

117035
+@ww 5 e

—4505¢e > ¢*sin’ z) cos ,
2725
Bjs = <—13040+60150e2 +20880¢* + 24e6> ¢S cos3wsin®i
197
+ < (-25544+24272e2 + 925e4> e*sini

875
+ (31930 —30340¢% — 98e4> € sin’ i) cos m,
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21 21 84

n 176574 n 79259 o2 ¢S sin;
7 14

N 441435_39629562 Ssin® ) cos o
14 56 ’

( 113605 49595 2 64535

561970 59960 794555
Bj7 = <— 0 +9 0 e+ 0 e4> e*cos3wsin’i

e4> e cos3msin’ i

T

N 1625 2\ 7ini s (30085 8125 5\ 4 s
4 e l 72 16 e e l

598325 24215
( 2 ez> e cos3wsin’i

26843 g 134215 g s N
1n —e€ SINn" 1 | COS
T ¢MMTT :

B 51020 2401 2 3.
Bjip = < 3 7 )e cos3msin’ i
1099 ¢ . . 5495 4 . 5.
+ | ———=—e€ sini+-——e’smni ) cosw,
2 8
1221305 o8 3.
Bji1 = a1 ¢ cos3wsin’ i,

2065
Bji, =— ) ¢’ cos3msin’ i.
For j =2, there are
Cj = O,

655
dj= (540—1—228062 + 2e4) ¢’ cos3wsin’ i
+cos® ( (768 — 19206 + 1728¢* + 1464¢° + 270e8) esini
2 4 6 075 3
+ | =960+ 2400e” —2160e™ — 1830e” — 76 esin’i |,

24335 ¢
Aj = <80 370¢ +3560¢* + ==

> e2sin3wsin’ i
+ ((—1728+5328e —15760¢* +231e )e sini

1155
+ (2160 — 6660e” + 19700¢* — 4e°> ¢* sin® i) sinw,

95

) cos @,

(6.24)

(6.25)
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26800 5 4015

Ajp = <—l60—|—840€2 —11060¢* — 3 e 2 e8) esin3wsin’ i

+ ( <71 152 +3648¢% — 1200e* —22188¢° — 1213e8) esini

6065 ¢
(1440 4560¢” 4 1500e* 4-27735¢° + —— 1 )esm31> sin @,

3

92900 38765
Té4 — e6> e?sin3wsin’ i

Ajy = (160— 1720e* — 1

(( 3392 + 1551262 + 46566 — 8552¢ )e sini

n (4240— 19390¢2 — 5820¢* + 10690¢ )e sin’ z> sin o,

5080e4 _ 6185066 5465
3 3 3

Ajy = <—400 +4560¢% + ) esin3@sin’i

T ((—7392+3237662+16692e — 475¢ )e sini

2375
+ (9240 — 40470 — 20865¢* + 4e6) & sin’ i) sin @,

62620e2+80500e4 28831 o
3 3 24

167824 2
—|—<<—14184+ 6758 242 296e4>e4sini

Ajs = (—2032—1— ) e*sin3wsin® i

+ (17730 — 41956¢> — 13149¢*) * sm3z> sin,

66685 A 26915
+7

Aj6:< 65204401406 + —— 2 2

e6> e sin3wsin’ i

21
+ ( <—22576 +15020e* + 3’62e4) & sini

18015
+ (28220 — 187756 — Se“) & sin® i> sin,
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50590 664190 2 1146275
- * 84

( 167056 27285 ) 6 . .
14 e sini

Aj; = e4> e*sin3wsin’® i

( 208820 136425 > 6. 3.> ‘
e®sin’ i | sinw,

176765 23330e2 n 81215
3 48

25 72195 3625 ,
+<< 14439—42)e7sini+(4+ T )e7sin3i>sinw,

267790 17615
12

—@68 sini + 13421568 sin’i ) sinw
6 24 ’

8743 1558
Ajio = <96 - 249€2> ¢’ sin3wsin’i

1099 o . . 5495 4 . 5\ .
+ —Te sml—&—Te sin” 1 | S,

B 1221305 3 3.
Ajn = 264 e’ sin3wsin’ i,

e4> e sin3wsin’ i

e2> eOsin3wsin’ i

2065
Ajp=—=, ¢’ sin3wsin’i, (6.26)

1090 9620 11740
j1—<80— 3 e+ 3 et + 3

e6> e2cos3wsin’ i
T ( (2496— 7440¢% — 2832¢* — 315¢ ) A sini

1575
+ (—3120+ 9300¢ + 3540¢* + 4e°) % sin® i> Ccos @,

3.

1 2634 21
33100 4 _ 26345 03 8 )ecos3a)sm i

3 ¢ 3 T ¢

Bj = (—16O+840e2 —~

T ( (—1 152+ 8064¢2 — 16112¢* — 11208¢° — 69568) esini

3475
+ (1440 —10080¢* +20140¢* + 14010€° + 4e8) esin® i) cos ,
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92900 92900 4 39455
3

Bjs = <160— 1720¢* — 1

€6> e2cos3wsin’ i
<( 3392 4 21000¢ — 13600¢* — 5330¢ )e sini

33 56
(4240 26250¢* +17000¢* + —— ) % sin® i> cos,

5080 4_61810 6 23005 ¢

3.
3 ¢ 3 T T2

) ecos3mwsin’ i

Bjs= (-400 +4560¢% +
+

< <f7392+ 3956862 +2400¢* — 410¢ ) Ssini

(9240 49460¢* — 3000¢* + 10225 6> ¢ sin’ i) cos ,

62620 e+ 80200 et — 2725481 e6> e*cos3wsin’ i

_|_
,5_< 2032+
209152 264
—|—<<—14184—|— 0955 e+ 6 5864>e4sini

5

13229
(17730 —52288¢% — 2e4> e*sin’ i) cos O,

66685 A 27385
2 24

2295
( <22576 +21144¢6* + 29e4> e sini

11475
28220 — 26430¢> — 8e4) & sin’ i) Cos ,

_|_
Bjs = ( 6520 +40140¢> + —— e6> e cos3msin’i
JF

Jr
( 50590 664190 , 1146275
Bj7 = - e+

4\ 4 - 3.
3 + o 8 e)ecosSa)sml

7 + 1 e’sini
3

(208820 01115 2) 6. 3.>
+ ~ s e” e smni | cosm,

(_ 167056 60223e2> 6

7
g (176765 23330 , 81215
8= 6 T

685 72195 3425 ,
+ ((—14439—1— 4e2> e’ sini+ (4 — Y ) ¢’ sin® i) cos @,

e4> e cos3wsin’i
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267790 17615
Bjo = <— o 1262> e cos3wsin’i

26843 o . . 134215 ¢ . 5.
4+ _Te SIni+ ———e"sin" 1 | cos,

o 98743 15589 ,\ - . 3.
B]10—< 3 7 e )e cos3mwsin’ i

1099 ¢ . . 5495 4 . 5.
+ ——5 e smH—Te sin’i | cos ,

1221305 4

26d &8 cos3wsin’

1 =— i

¢’ cos3wsin’

Bjin=— i (6.27)

For j = 3, there are

¢ =0, (6.28)

aQ::shl3a)((—660——18062)e6mni+—(460—%210062%—7gse4>eﬁshﬁi)
n sinw( (768 115262 + 9664 — 120e6> ez/sini
4%(77687556&9+400&k4+400&?#—MBOﬁ)smi
+>(960—%528062——1008064——1470e6——2ﬁ;5e8> gn3i>,

Ajl::cos3a)(i<—120——136Oez+—125564)e3shn

770 11960
+G03¥Mw&§eﬁgﬁo

oS @ ( (—768 425926 — 31366 — 486e6) P / sini

83
e6) esini

3705
+ (—4080+ 13140¢? — 27540¢* — 4e6> esin’® i> ,

31
+—(4608-—15048e24—27520e4+-



100 6 Solutions of Geopotential Perturbations

Ajy = cos 3w< (480 252062 - 5970¢* — 4306 ) ¢*sini

24820 , 24850 , 1915 4
+(—160+920€2+ 4y o4 ) 3)

3 e 3 e 4 Sln l
cosw<( 1152+ 4288¢> — 34326 —348e) /sml

+ (1 152 + 6726 — 14880¢* +35058¢° + 2518e8) sini

545
+ (1440 + 1680¢? +9220e* — 36315 — 94e8> sin® i) ,

2
Ajz = cos3a)< <—320+ 3200¢% — 5640¢* — 9235e6> esini

88220 121475 ¢
+<—960+6020e2+ 3 e+ > )esm31>

cos @ ( (~1696 + 6432¢* — 906¢*) & / sini
238
+ (3392 —9152¢* — 287766 + 299e6) esini
+ (—4240 +15150¢% +21900¢* — 12955e6) esin’ i) 7

Ajy = cos 3a)< (~1200+10080¢2 — 630¢* ~ 700¢° ) € sini

14620 , 61360 . 3835
+ (4006080e2+ 44 64 68) i 3')

3 e 3 e 2 sin- i1
cos @ (( 2464+ 6096¢” + 100¢*) ¢* / sini
+ (7392—23136e —39552¢* 4 100¢ )e sini
1375
+ (—9240+ 343106 4 36105¢* — 4e6) &% sin® i> ,
6087
Ajs = cos 3co< (—3048 + 173366 + 2e4> ¢ sini

70376 15191
(2032—32 22468¢* + ——— > 6>esin3i>
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1282
—|—cosw<< 3296 + 26 )es/sini

106024 201387
et — 10 e4> e3sini

4 (14184—

+ (—17730 +33716¢* + 19562¢*) & sm*l>

2055
Ajo = cos3w< <—6520+ 13490¢” + 2e4> e*sini

+ (6520 —

130540 , 65385 , 32765 ¢\ , . 3.
3 e 5 ¢ ¢ e“sin’ i

6231
+cos® ( (—2968 +348¢) e / sini+ (22576 —3890¢” — 2e4) e*sini

25065
(28220+11355e +— >e4sin3i>,

69280 29310 ,
Aj7=cos3w<<—7+ - )essini

L (50590 237010 , 290485 ,\ 5. ..
3 7 21

9518 , .
+cosw e /sini+

208820 7705
+ (— 7~ 86‘2) & sin® i> ,

16815 695
Ajg = cos3a)< < + 9e2) P sini

(167056 +3150e ) e’sini

2 2

n 176765 48305 , 27215 , 4ind;
5 ¢ ¢ TN i

212
+COS(D<—235€8/SiHi+ ( 2562) ®sini

72195 13025 ,\ ¢ . 3.
+<— VI 16e)esmz,
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267790 15
Ajo =cos3w < ni—+ ( ? + 97062> e sin’ i)
9 9
<2 843 , . 134215 , . 3,>
+cosw e'sini— ———e'sin’i |,
8743 592
Ao —Cos3a)< <9+ 962) 0 sin® i)
6 8
<1 5495 ¢ 3>
+cosw A ——e®sin” i
1221305 s
111—0053(0( 264 ),
Ajn —cos3w< 3 sin z)

1665
Bﬂ:gww<<u0+mm¥—2eﬁe%mi
11200 4
<8muwe+mme+ 3 )wﬁ)
sinw ( (768 —480¢? — 640¢* + 1818e6> e/sini

esini

26901
+ (—8832 +7320e? — 4272¢* — 266>

(%a)SHMe+6mmz+5i5 )emﬁa

szsh13a)<i(480#2520624591064433566)shu

24335 1325 4
+ (160-—920e2—-8300e4-—3e6 - ) mn3z>

+mnw<(1wz2&68+31&ﬁ+4&£é>£/mm

4-(-1152-—5088e2+-15824e4—-15570e6-3935e8)snu

15475
+(1440F3840€21362064418780e644168> gn3i>,

(6.29)



6.2 Solutions of C3( Perturbation 103

25
e6> esini

+ (960 —6020¢* — 88§20e4 — 12111566) esin’ i)

93
Bﬁzsm3w<<n0—3ﬂm8+5@m&+

12
4—sh1a)((1696——5024e2——966e4)e3/shn

2957
+(—1wz+3&m£+3ymmﬁ+2é>emm

4—Qu4o-szmk2—30@«m4+26aﬁ)emn%>,

Bﬁ¢::ﬁn3a)<(1200——10080624—63064%—74066)ezﬁni

+ (400 +6080¢% — 14220 et — 61200 e — 77495 eg) sin’ i)

4—sh1a)((2464——4632e2——44064)e4/shu
+—(—7392—%15944624—39762644—256086)ezshu

4475
+»(9240-—25320e2-3957054—2e6>e2snﬁi>,
6087
Bjs= sin3w< (3048 —17336¢* - 2e4> e’ sini
70376 16441
+(mnz+ 3 é+2ym&%24é>emﬁﬂ

8438
+ sinw( (3296 - 5e2> ¢ /sini

64696 175597
+ (—14184+ e+ e4) esini

10

4—(17730-—23384e2-18258e4)e3sn9i>,
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2055
Bjs = sin3w< (6520 —13490¢* — 2e4> e*sini

13054 1
+(_6520+ 30540 , | 65385 4 076566) e2s1n3i>

3 ¢ T ¢ 8

+sinw ( (2968 — 160¢?) ¢°/ sini + (—
19475
+ (28220 —3700¢* — 8e4> ¢* sin® i) ,

69280 29310 ,
Bj7 = sin3a)< <9 B >€5 sini

e4> e*sini

7 7

50590 237010 290485 .
+( 2, ) )

3 + 7 e X e sin 1
. 9518 - . 167056 38519 ,\ 5 . .
+sino| ——e'/sini+ | — ———¢" | e’sini
7 7 7
| (208820 218625 5\ 5 o
7 56 ’
16815 695
BjS = Sin30)< (2 — 262) 86 sini
(176765, 48305 5 27215 )\ 4o
6 6 16

+sinw<235e8/sini+( 14439 — 1415¢%) ¢ sini
n 72195 +20075 2 b sind
4 16 ’
267790 15970
— ¢ sindi
9 9
134215 , . 5.
—|—Te sin l),
1099 3 98743 5929 6 - 3.
Bjio =sin3w e’sini+ | ———— —— e’sin’ i
6 8
< 5495 3 . 3,)
+ sin @ ] —e smi ),

1221305
Bj][ = —sin3w (264 7S n l) s
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105
2065
Bjip = —sin3w < &8 sin’ i> .

(6.30)
For j =4, there are

¢;=0, 6.31)
d —cosi<cos3a)(55+15e )e sin z+cosw<<—64+96e — 8¢ —|—10e>

25
+ (80 120¢% +10e* — 2e6) esin’ i> )

340 595
Aj]COSi(SinSw( 10,T 2+9e4> 2 .2

e“sin” i
8

+sinw ( (—64—|—21662 _ 73ﬁ64 _ 8166>

2
980 4 405
80— 270e% 4+ 2= e* + % | sin?i
3 8
995 , 215 4
Ajzzcosi<sin3w (40—21062—2e4 )

1072
+sina)<(— 3 o2 2866 — 2966)6

+<12 1340 , 715 , 14

e+ —e +— 5 esin’i
3 2 4
80

o 800 9235
Aj3_COSl<SlI13CO (—3+3 2 _ 47064 — = 86)
424 151
+sinw| [ —— +536¢* — ——e* ) &

3 2
7
+<5§’0—670 + ;5 )ezsin2i>>,

105 , 175 4
Aj4:cosi<sin3a)(—100—|—84062—264 = )

616 25
+sinw| ( ——— +508¢* + —¢* ) &
3 3
770 2 125 4 3 .0,
+<3 —635¢ 12e)e sin“i | |,

e s1n2 1

sin®i

e Sll’l2 1
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4334 2029
Ajs = cosi(sin3a) ( 254 + T &2 + 8€4> e2sin?i

rsino( (-2 B0 2) 6 (1000300 g
3730 3 24 ’

1630 6745 685
Aje = COSi<SiH3(D (—3 + Tez + 8e4> esin’i

742 1855 145
+sinw ((—3 +2962) e+ (6 — 4ez> & sin® i) >7

N 17320 4885 L
Aj7 =cosi <51n3a) (—21 + 14€2> e*sin?i

+sina)( N 168 e’sin“i

Ajg = cosi(sinSw (—5605 + 69562) e sin?i

4759 5, 23795 4 o ))

8 24

+ sin @ 235 el —= 175 e’ sin%i
12 48

20915
Ajp=——5 b cosisin3wsin®i,

9
e’ cosisin3w sinzi7 (6.32)

0=

555
Bji = cosi <cos3w (10 —120e* + Se4> e*sin®i

160 4 303 ¢
3 2

2 151
+<80—50€2—(3)Oe4+ 585 >smzl>>

985 335 ¢
Bjp= cosi(cos3w (40—210e2 — 764 — E ) esin?i

+cosa)<< 64 +40e* + —

704 ,
+cosa)<( 96+ — 3 —e? 266t 40e6)e

880 , 65
+<120—3 o4+ = 5 e* 4+ 50¢8 >esin2i>>,
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. 80 800 , 4 9325 ¢\ .o,
Bj3:cosz<cos3a)<—3+3 —470e — g € |sini

reoso (L4, 12565 1614
COS 3 3 e 26’ e

530 1570 5 805 4\ oo
+<3 3 8e>esml s

105 , 185 Yy
7@ 3 E)ESIIII

616 110
+ cos @ ——— 438667+ —¢€* ) &P
3 3
770 65 275
+<3922 3 e4)e3sin2i>>,

4334 202
Bjszcosi<c0s3a)( 254—|—£ 2+()964> ¢*sin’i

Bjs= cosi<cos3w (—100+ 840e% —

3 8

©cose [[B2 4219 0\ o, (1030 4219 5\ o
3 T30 ¢ )¢ 3 24 ¢ )esm))

3 6 8

742 402 5 1855 502 5 - 2.
+cosa)(< 3 +3e>e +< 6 3e)e sin” i ,

17320 4885 ,
Bj7 = cosi(cosSw (—21 e >e4sin2i

1630 6745 685
Bjs = COSi<COS3w (— + e4) e sin?i

+cosmw | — @eG + —— 23795 6 sm2 1
42 168

i 5605 695 ,\ 5 . 5.
ngcosz<cos3co (8+24€ )e sin” i

+cosmw 235 7+ 1175 e’ sin?i
12 48

20915
o = — - e6cosicos3a)sin2i,
1099
7 e’ cosicos3msin?i.

Bjjo=—

107

(6.33)
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For j =5, there are

¢; =0, (6.34)

d; :cosz(sm3a) (55+15¢%) ¢ sml+sma)<(—64+96e2—864+10e7) e/sini

75
+ (240 —360¢? 4 30¢* — 2e6) esini> ) ,

340 595
Ajlzcosi<cos3w <IO+3 2 ‘ e4> 2sini

+cosw<(64 216e +73ﬁ 4+821€6>/Sini

1215
+ (—24o+ 810e* — 980¢* — 8e6> sin i) ) ,

5 215
Ajz—cosi<cos3a)< 40 +210€> +9g 4+666>esini

1
—|—cosa)<(96 037 &% +286¢* +29¢ )e/sini

+ (—360+ 1340¢* — #e‘* - 443‘.5(:‘6> esini> ) )

80 800 9235
Aj3:cosi<cos3w <3—3 &2 +470¢* 2e6) sini

424 5 151 4\ 5/ . .
+cosw<<3—536e +76 )e /smz
2265
+ (—530+2010e2 — 86€4> ¢ sini) > ,

105 175
Aj4:cosi<cos3w(100 840e% + —— > 4+366)esini

+Cosa)< (6165086 256‘4) ez/sini
3 3
125
+ (—77o+ 1905¢% + 4e4> € sin i) ) ,
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4334 2029
Ajs = cosi(cos3w <254— Te2 _ 864) A sini

24 41 41
—|—cosa)< (83 — 63()3e2) e4/sini—|— (—1030+ 68362> e4sini>> ,

1630 6745 685
Aje = cosi<00s3w (3 — Te2 — 8e4> e3sini

742 1855 435
—|—cosw< (3 —29€2> es/sini—&— (—2 + 462> & sini> ),

. 17320 4885 .
Aj7 =cosi (cosSa) <21 - 14e2> e*sini

+coso (7326 / sini— 23795 6 ini
COS e e Ny 36 e sini s

A:<3 (5605_69562) S sin

8 24
+cosw g 7/ sini— 175 7sini
12°¢ e ) )
20915 . -
Ajo = - .e6coszcos3cosmz7
9
j10= "7 e’ cosicos3msini, (6.35)

555
Bj = cosi(sin3a) <10 1206 + 864) e’ sini

160 303
+sinw< <—64+406e2 + Te“ — 2e6> /sini

4545
+ (240 — 1502 — 200e* + 8e6> sini) ) ,

985 , 335
Bp= cosi<sin3w (40—210e2 - 7e‘* - 12e6> esini

704
+sinw< (—96+ 3 e2—26e4—4066) e/sini

195
+ (360 —880e% + 7e“ + 150e6> esini) ) ,
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80 800 9325
Bj3 = COSi(Sin?’(D (-3 —+ 762 —47064 — 24€6> Sini

tsino (PA 126, 161 o/
3 3 e ) e e 1
2415
+ (530 — 15706 — 8e4> €% sin i) ) ,

105 185
Bjs= cosi(sinSw (—100+ 840 — 7e4 — 3e6> esini

616 110
—i—sina)( <—3 +386¢% + 3e4> 63/sini
2895 275
+ (770 T9e2 — 2e4> e sini> ) ,

4334 202
Bjs = cosi(sin3a) <—254+ ?;7362 + 08964> e’ sini

824 4219 4219
+sinw <(—3 + 3062) e4/sini+ (1030— 8e2> e4sini> ),

1630 6745 685
Bj6 = COSi(Sin?’O) (—3 —+ Tez + 864) 6‘3 sini

742 40 1855
+sinw ((—3 + 3e2) eS/sinH— (2 —50€2> e sini) ),

U 17320 4885 ,\ ¢ . .
B]7—cosz<51n3a)< T—FTe )e sini

sine [~ 276 / ni v 2795 7 gini
Sin 742 e st 36 e sini s

5605 695
Bjg = cosi(sin3a) ( + €2> e sini

8 24
+sinw 235 sini+ 175 7 sini
——€ l e 1
12 16 ’
20915 ¢ .. ..
P=""0 e’ cosisin3wsini,
1099

Bjjo=— e’ cosisin3wsini.

24

(6.36)
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For j = 6, there are
Cj= 07

555
d; = sin3w (460 —320e” — 2e4) e*sin®i
+sinw ( (—768 4 4224¢% — 4608¢* +2232¢° — 450e8) sini

1125
+ (960 —5280¢” + 5760¢* — 2790¢°® + 2e8) sin’ i) ,

2090 29120 4285
Ajl =cos3w (80— 3 e 3 et — ¢ eé)esin3i

cos @ ( (—5184 1 18000% — 12464¢* — 4605e°) esini

23025
+ <6480 —22500¢ 4 15580¢* + 4e6> esin’ i> ,

2900 , 40820 . 13175

Ajp =cos3m | —160+2680e* — et — b — 8 ) sin’i

: 3 3 12
cos® ( (1 152 — 140162 4+ 39792¢* — 8700¢° — 1919e8) sini

9595
1 (- 1440 + 17520¢% — 49740¢* + 10875¢° + 4e8> sin’ i) ,

6400 53260 26180 81695
Ajz=cos3w (— + 2+ et — 6)esin3i

3 3 ¢ 3 ¢

cos® ( (3392 —30776¢> 4 532326 + 398e6) esini

995
+ (—4240 + 384706 — 66540¢* — 2e6> esin® i) ,

125500 , 54430 o 3895
Ajs = cos3o (400 — 10480¢% + et ef— 6) sin’ i

3 6 ¢
cos® ( (7392 5455262 4381726 + 1375e6) sini

7
+ (9240 +68190¢> —47715¢* — 6%4566) % sin® i) ,

111

(6.37)
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Ajs =cos3m (2032— 3 e 3 o7

316144 62838
cosw((l4184— e+ e4) e3sini

103904 , 123292 , 283019 6) 3.
+ e + e |esini

5 5

31419
+ (—17730+ 79036¢> — 2e4) &3 sin’ i> ,

100625 , 57655
Ajo = cos3m (6520 — 67420% + e+ eﬁ) e*sin’i

24

264
cosw< (22576 — 417326 + 623e4> e*sini

13215
+ (—28220+ 52165¢% — Se“) e*sin’ i> ,

_ 50590 1473110 , 31925 ,\ 3 . 3.
AJ7—cos3w( o1 e+ o1 e)e sin” i
cos® 167056 198609 2 o5 sing
7 14
n 208820 n 993045 ,\ 5 sindi
7 56 e e L],
176765 116635 20485
Ajg =cos3m ( 6 3 2 — a3 @4) e*sin’i
7735 72195 38675
cos ( (14439 — —=¢? ) efsini+ | ——— 4+ ——¢? | ’sin’i | ,
4 4 16
267790 198125
Ajg =cos3w ( 9 2 — 918 €2> esin’i

0s 26843 e sini— 134215 e’ sin’i
6 24 ’

8743 3056
Ale =cos3w (96 - 24962) €6 Sin3i
1099 ¢ . . 5495 ¢ . 5.
cosw | ——e”sini — ——e"sin” i |,
2 8
1221
1= 726205670053(1)sin3 i

65
Ajpp = ¢S cos3msin’i, (6.38)



6.2 Solutions of C3( Perturbation
Bji =sin3w (—80 +690¢” 4+ 9700¢* + 4068566) esin’i
ﬂna)<(96OF12006212432644972966)eshn
+(—umy—wmk?+wymﬁ—4ﬁﬁsé)emﬁo,
Bﬂzgﬁw(mmd@wﬁﬁmf+mfmé uﬁﬁﬁ>mm

ﬁn(n(i(—1152—%9600@2——2008064——11592e6ﬁ—218568>shu

10925
+Omm4mw¥+ﬁmwﬁ4mwé—4egm§o,

6400 53260 26180 84035
Bj3:sin3w( - 2 — et + 6)esin3i

3 3 ¢ 3 1 ¢

sin® ( (—3392 +25288¢% — 30752¢* — 10838e6) esini

27095
+<4M0—ﬂ6m&+3&mw*+2é>emﬁﬁ,

Bﬂzmﬁw<4m+ummé— e

3 ¢ 3 12

ﬁn(u(i(—7392—k4736062——19296e4——3050e6)e2ﬁni

7625
+<924059200e2424120e4+:2e6>e#snﬁi>,

Bjs =sin3w (—2032—|—

27481 197
smw<(—mm4+ :68—-9§6ﬁ>8mm

103904 , 123292 , 284269 ¢\ ;.
3 ¢ 3 ¢ % ¢ )¢

9893
+<nrm—63mm¥+2#)e%m%>,

125500 54470 9175
4 O+ 8) sin® i

113
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100625 19375
Bjs =sin3w (—6520+ 67420e% — G et — A e6> esin’i
375
sin @ ( (—22576 +35608¢” + 264) e*sini

1875
+ (28220 —44510¢* — 8e4) e*sin’ i> ,

. 50590 1473110 , 31925 ,\ 3 . 3.
B = — —
77 sm3a)( 3 + TR T )e sin” i
snol [~ 167056 n 165671 ,\ 5 sini
7 14 ¢ )
n 208820 828355 2 S sind
7 56 ’
) 176765 116635 20485 . 3.
Bjg =sin3w (— z + 3 e+ i3 e4> e*sin’i
sin *144394‘63262 O sini+ @7@62 Osin’i ),
4 4 16
2677 19812
Bjo =sin3® (— 6 5 0, 9?8 562) e sin’i

sin @ —@67 sini + %eg sin®i
6 24 ’

98743 30569
Bj]() =sin3w (—6 + 24€2> 66 SinSi
, 1099 ¢ . . 5495 ¢ 5.
s | ————e"simi+ e’smit |,
2 8
1221305 - . . 3.
Bj]] = —W€7 S1n3a)51n31,

3

12 = ———e®sin3wsin’ . (6.39)

These are the solutions of the Cs perturbations on the satellite orbits. Discus-
sions and comments will be given in the summary section.
6.3 Solutions of D,; Perturbations

Solutions of the Dy perturbations are given below in the form of

10 10
(Acj(M)),, = b, <ch+d,- (0,QM+ Y AjcoskM + Y BjksinkM> . (6.40)
k=1 k=1
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where j is the index of Keplerian elements. There are

V15ua?D
bo = B b1 =2aeby, b= (1—¢) b,
64ade (1 —e?) n
by=—by, bs=4eby, bs=by, be=(1—c%)" b, (6.41)

For j =1, there are

¢j=0, (6.42)

224 193 — _
Aj = (—16+ Tez +252¢4 — T) esini (sin2wcos Q + cos 2w cosisinQ)

243 _
+ (796 +324¢% — 3926 — Teé) esinicosisin€,

1592 ,

343 _ _
Ajp = (32 224¢% + et + 6620 + Eeg) sini (sin2(oc0sQ—|—C0$2a)cosisin§2)

87 —

+ (—1 14 45366 — 429¢* — 7eﬁ) ¢*sinicosisinQ,
5023 6\ oo _ A
Ajy = ( 1127506 +720¢* + === B esini (sin2wcos Q-+ cos2wcosisinQ)

+ <7212+ 804e% — %e“) & sinicosisinQ,

4994 238 725 ¢ _ _
Ajy = <2727T 2y =2 3 e+ 2 —e )ezsini(sin2a)cosQ+cosZa)cosisinQ)

25 _
+ (—308 +762¢* + 75‘) ¢*sinicosisinQ,

1690 32552 14851 — —
A]-S:( s et — %0 64)e3sini(sinchosQ+cosZa)cosisinQ)

6413 —
+ <7412+ T0e2) & sinicosising,
2968 627 — —
Ajo = < —1414¢* Te“) é*sini (sin2wcosQ+cosZa)cosisinQ)

87 _
+ (—371 + ?ez) e° sinicosisin{,

25468 67211 _ _
Ajp = (T Tl 2) & sini (sin2@cos Q-+ cos 2w cosisinQ)

47 —
229 ¢’ sinicosisinQ,
5209 1625
Ajg= ( 2

= ;¢ ) Osini (sin2@cos Q + cos2wcosisinQ)

35 g . L=
— ?68 sinicosisin{2,
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22891 — =
A= - e’ sini(sinZa)cosQ+cosic052(osin£2),
1099 ¢ . ., . — . .=
Ajlo=— ¢ sini (sin20cos Q + cosicos20sinQ) , (6.43)

220 , 796 , 405
16+ =+ ——e'— —

3 3 1 €6> esini (cos2wcos§f sin2cocosisin§) ,

1576 215 — —
32 —224¢% + Te4 +658¢° + Heg) sini (cos2wcosQ — sin2wcosisinQ)

1330 — _
112 — 750e% + 720¢* + Te6) esini (cos 2w cos 2 —sin2@cosisin Q) ,

4994 5 230 4 425
+ et

ev}
~.
wn
| \ I Il I |
AAAAAAAA

Bjs=(272— ¢ 3 G e6) e?sini (cos2wcos Q — sin2wcosisinQ) ,
1690 32552 3869 — —
- e — ¢t ) e sini (cos2a) cos{2 —sin2mcosisin Q) ,
3 15 15
2968 1975 — —
Bjs = - 1414¢> — W64> é*sini (c0s2wcosQ— sin2wcosisin§2) ,
25468 67211 5\ 5 . — =
Bj; = ST 168 )e sini (cos2wcos Q —sin2wcosisinQ)
5029 1625 — _
Bjs = % Kez) ¢S sini (cos2wcos Q —sin2w cosisin Q) ,
22891 — _
Bjg = 7 ¢ sini (cosZa)cosQ — sin2wcosisinQ) ,
099 ¢ . . = o=
Bjio = 7 e®sini (COSZO)COSQ* sm2(ocosts1nQ) . (6.44)

For j =2, there are
cj=0, (6.45)

49 _ _
d;= (—80— 262) O sini (cos2wcosQ —sin2wcosisinQ),

833 _ _
Aj = (16 56¢ e4—e6> esini (sin2wcos Q + cos 2w cosisinQ)
( 96 +324¢% — 392¢* — 6)851nlC0SlSan
308
Ajp = <16+ TEZ 039 6)esmz s1n2wcosQ+cos2wCOSts1nQ)
87 6 o2
+ [ =114 +536¢* — 429¢* — 2 e’ sinicosisinQ,

112 862 6259 ¢
Aj3:<3—32 +229¢* + —= B )esmz(s1n2a)cos§2+cos2wcoszs1n£2)

+ (—212+ 804¢” — 42364) e sinicosisinQ,
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2960 5

175 _ _
Ajy = <136— — 4466 + 1 e6> &2 sini(sin2a)cosQ—l—cosZ(ucosisinQ)

25 —
+ (308 +762¢* + 26‘4) ¢*sinicosisinQ,

8109 34231 — —
Ajs = (338 — ?ez 0 e4> &3sini (sin2wcos§2+cosZa)cosisinQ)

6413 _
+ (—412—|— 2062) ¢’ sinicosisinQ,

2132 3232 1091 — —
j6:< T o2 — g e4>e4sini(sin2wcosQ+cos2wcosisinQ)

87 _
+ (—371 + 262) e®sinicosisinQ,
3115 37907 — _
Aj = <3 - 168€2> & sini (sin2wcosQ+coschosisinQ)

9 5. .=
e’ sinicosisinQ,

28

85 = 5
Ajg = (829 + 16€2> eSsini (sin2wcos Q4 cos2wcosisin Q)

5 _
— ?eg sinicosising,
22891 — _
Ajo=""3 e’ sini (sin2wcos Q + cosicos 2wsin Q) ,
1099 ¢ . _ -
Ajio= T sini (sin2@cos Q + cosicos2wsinQ) (6.46)

899 137 ¢
+ 764 e )esml (cos2wcos§2— sm2wcoszst)

1657 — —
= Te +223¢4 + 3e6> esini (cosZa)cosQ — sin2(ocosisinQ) ,

119 — _
— 4546 + 2€6> ¢*sini (cos 2@ cos 2 —sin2wcosisin Q) ,
8109 , 8714

Bjs (338 - ¢T3 e4> e’ sini (cos2wcos Q — sin2mcosisinQ)

2132 3232 3367 — —
3 3 e — 7 e4> e4sini(0052a)cos§2—sin2wcosisin£2),

3115 37907 o B
3 168 62) e sini(cosZa)cosQ—sin2a)cosisinQ)7

85 — —
829 + 16€2> €°sini (cos2mcos Q — sin2wcosisinQ) ,
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22891

9 = - ————e'sini (cos 2wcosQ —sin2w coszst)
1099 _ _
Bjio= 7 S sini (cos 2wcosQ — sin2a)cosisinQ) . (6.47)

For j = 3, there are
¢ =0, (6.48)
. = 2 .. 35 5\ 5. .
d; =sin2wcosQ | (—4 —6¢?) &’ cos l/smH— 68+ 2-¢” | ¢’ sini
+ sinﬁ( (—32+48€2 — 1264 +466) ecos’ i/ sini
4—028—4923—%%w4—19?)e$nmow)

_ 47
+cos2wsinQ (( 4-6e%) ¢ cos3l/sini+ (72—1— 2e2> essinicosi),

— 148 73
Aji =Cos2wcos§2< (16— =€ e — > 64) ezcoszi/sini

< 16+ 68¢> +223 4 3ileé> sini)

+sin2a)sinQ< < 16+ 143178 24 72364) ¢* cos® i/sini
+ (16 —52¢% — 1476 + Zseﬁ) sinicosi) ,

Ajp = cosZa)cosQ< (*164’8862 — 126¢* *2966) ecos’ i/ sini
( 80+ 308 e® 4 587¢* + 51127 >esmz>

+sm2wgn9<(m8&3+1mw4+%wﬂeam%/gm

844 865
+ (64 — Te2 —713¢* — 2€6> esinicosi) ,
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— 112 103
Ajy = cos2wcosQ< (—3 +194¢* — 2e4> é? cos? i/sini
112 1186 1297
+ <3—3 e +691e* + 36’6) Sil‘li)

— 112 103
+sin2m sinQ( (3 — 194¢% + 2e4> % cos? i/ sini

112 2903
+ (—3 +358¢2 —497¢* — 686) sinicosi),
e} 2,25 4\ 3 2./
Ajs = cos2wcosQ —68+271e —|—?e e’cos“i / sini

<136343722+79 +2i5 )esmz)

— 2
—|—sin2wsin§2<— (—68—|—27le2—|— 35€4> &3 cos? i/sini

3268 575
+<—136+ 3 > +192¢% — l266)esinicosi>7

= 338 323
Ajs = cos2wcos§2< (—3 + 2e2> e4coszi/sini

9359 4532
+<338—5e2 T e4> ezsini>

+sin2w sinQ( (3? - 35362) ¢* cos’ i/ sini
26387 13909
+ <—338+ Tez + 3064> &% sinicos i> ,
— 418
Aje coschosQ(( 3 +29¢ >e COSzl/Sil’li
21
n 324021 2 743 743 4\ S
3 3
>escos3 i/sini

2132 975
+ (- +1201€% + 8e4> e sinicosi) ,

8
— 41
+sin2w sinQ( (38 —29¢%

3

119
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— [ 1221 3115 62077
Aj7 = cos2mwcosQ <— 4 e®cos?i/sini+ < - e2> et sini)

3 168
— (1221 3115 6775
+sin2wsin£2< 1 b cos? z/smz+<—3—|—24e2> e4sinicosi),

—( 2
Ajg :cosZa)cosQ< 1325e cos?i/sini + (829—31865 2) essini)

235 215
+sin2@sinQ ( B e’ cos®i/sini+ (—829+ 48€2> e sinicosi) ,

— (22891 — (22891
Ajo = cos2mcosQ (72e6sini> —sin2®sin ( - €® sinicosi) ,

—_ 710 — (10
Ajjo = cos2mcos %9 e’ sini | —sin2@sinQ % e’ sinicosi , (6.49)
24 24
— 52 67
Bji = SinZa)cosQ< (—16—|—3 e+ — 5 e4) ezcoszi/sini

+ <16—7ze2 - Zsﬁeu 1? ) s1nz>

+cosZa)sinQ<< 16+ 122 e+ 627e4> ¢ cos® i/sini
+ <16 —56¢ — 43—95‘ +28e6> sinicosi)
+sinQ<(96+ 180¢” — 82¢ )e cos’ l/sini
+ (96 + 366> — 260¢* + 12437e6> sinicos i) ,

Bjp = sin2wcosQ< (16 — 88¢% + 1266 +2366) €cos’ i/ sini

1124 2 4 455 ¢ ..
(80 ? —565¢ ﬁe )esmz)

+cos20 sin9< (16 — 8862+ 126¢* + 23e6> ecos’i / sini
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860 , 4 131 g\ .
4——e le" — —
+ (6 3 - 69 7 ¢ esinicosi
+sinQ<(72+160e —17e )e cos’ l/sini

+ (144—280e2 —1216* +77e6) esinicosi),
— 112 1
Bjz = Sin2wcosQ< <3 —194¢* + 296e4> % cos® i/ sini

12 1186 L 4981 .\ . .
+< T‘i_ 3 697 T@ sini

— 112 109
+cos2m sinQ( (3 —194¢> + 2664) % cos’ i/ sini

112 5635
+ <—3 +358¢% —503¢* — 12€6> sinicosi)

+sinQ<(—2312+123e )e cos3z/sini
+ <212 163£6‘2 — ?e“) €% sinicos i) ,
Bjs= sin2wcosQ< (68 —271e* - ]376e4> e’ cos? i/ sini
( 136+ 34372 *—87¢t 125e6> esini>

— 17
+cos2m sinQ( (68 —271e% — 36e4> &3 cos’ i/ sini

3268 281
+(—136+ 3 &2+ 184¢* — 6e6>esinicosi>

121

+sin§<( 77+ 31e )e cos t/s1nz+(308 502¢* — 86e¢ )e smzcosz)
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— 338 323
Bjs = Siﬂz(ﬂcosQ( <3 - 2€2> ¢* cos? i/ sini

9359 17503
+ (—338 + ?ez + 60e4> e sini)

— 338 323
+cosZwsinQ< (3 — 2e2> e* cos? i/ sini

26387 27193
+ (—338 + ?ez + 6()e4> e sinicos i>

— ([ 287 3071
+sinQ (—Seécos3 i/sinH— (412— 20 e2> e4sinicosi> ,

—( (418
Bjs = sin2a)cos£2< (3 — 29ez> & cos? i/ sini

( 2132 4021 , 2135 4> ;. )
+ | — + e+ e’ | e sini

3 3 24

— 418
—l—cosZwsinQ( (3 — 29e2) e cos’ i/ sini

2132 2831
+<_3+1201e2+ 51 e4> e3sinicosi>

[ 47 13
+sinQ <—3€7COS3 i/sini+ (371 — 362) & sinicosi) ,

— (1221 3115 62077
Bj7 = sin2®cosQ (14e60052 i/sinH— (—3 + 16862) e4sini>

— (1221 3115 6775
+ cos2msin (Mef’cos3 i/sini+ (— + 2) e4sinicosi>

3 24 ¢

= (4759
in€)
+ sin < 3

— (235 385
Bjg = sin2wcos <]26‘7 cos’ i/ sini+ (829+ 1662) & sini>

e®sinicos i> ,

— (235 215
+ cos2msin (12670053 i/sinH— (—829+ 4862> & sinicosi)

— (235
+sinQ (867 sinicosi) ,

—( 22891 — (22891
Bjg = sin2®cosQ (— et sini) —cos2msinQ ( e® sinicosi) ,

_ 10 — (10
Bjip =sin2wcosQ < 239 e’ sin i> —cos2msin < 239 e’ sinicosi> . (6.50)
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For j =4, there are
cj =0, (6.51)

— 3 _
dj = cos2mwcos (—1 - 2ez> e*cosi+cosQcosi (8 —12¢% 4 3¢* —e6>

— 3,
+sin2wsin§2<( 1— 3¢ )e —|—(2+3e)e coszz)

— 37 73
Aj1=Sin2a)COSQ( —4+— 3 e+ — g 4>ecosi

— 37 73 74 73
+cos2a)sin9<<4—3ez—ge4> < 8—1—? e+ 4e4> coszi)7

_ 63 , 29
Aj =sin2wcosQ <4 —22¢* + 7e“ + 4e6> cosi

= 63 29
+cos2@sinQ ( (—4 +226% — 7e4 — 46"’)

29
+ (8 — 44¢% + 636" + 2e6> cos’ i) ,

— (28 97 103 4,
AjgzsinZa)cosQ(—e2+ )ecosz

3 2 8
— 28 97 103
20 sinQ B L
+cos2wsin (( 3+2€ 86)6

56 103 4 2
+<3—97 +— n )ecos 1)

— 271 25 4
Ajs = sin2mcos Q <17 — T e — Ee ) e cosi

L= 271 o2 25 4\ »
+cosZa)s1nQ<( 17+T +E >e

271 25
+ (3 — 762 — 6e4> % cos® i) ,

169 323
Ajs = sin2wcosQ (6 - ez> & cosi

— 169 323 169 323 ,
—‘rCOSZa)SinQ <(_6 + 882) 63 + (3 — Te ) €3C052i) ,

209 29 ,
A6—sm2a)cosQ< G ) —e )e4cosi

+cos2a)s1nQ<( 6 +4e>e +( 3 2e)e cos“1 |,
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— (1221 — 1221 1221
Ajp = sin2a)cosQ< 56 escosi> +cos2msin Q2 < =6 e+ 28650052i> ,
o — (235 ¢ . . = 2356 235 ¢ 5.
A]851n2a)cosQ< 13 e cosz> +cosZwst< 13 + — o7 e’ cos”i
(6.52)
— 38 67
Bj :cos2wcosQ< 4+ — 3 4 — A 4> ecosi

— 41
+cosQ (24 —45¢% + 2e4> ecosi

+sin2wsin9<( 4-1—338 2+687€4)6+< —73682—64764) ecoszi),

— 63 23

Bj» = cos2mcos (4— 2267 + 764 + 4e6> cosi
o) 20 1T 4\ o
+cosQ | 18 —40e +?e e~ cosi

5 63 4 23 ¢
+sin2wsin9<<4—2262+2 e )

23
+ (—8 +44¢* — 63¢* — 2e6> cos’ i> ,

— (28 97 109 4
Bj3:cos2a)cos£2(3—2 e+ — 2 )ecosz

53 123 ,\ 3 .
+cosQ( 3 1 —e )e cosi

. . — (28 972 109 4, 56 5 109 4 5.
+51n2(051n9<<3 7 + 3 e>e+< 3 +97e 1 e’ |ecosi|,

— 271 17 4
Bj4 = cos2mcosQ <17 — T e — Ee ) e cosi

— (77 1
+cosQ (4 — 3;¥e2> e*cosi

— 271 17
in20sinQ[ (17— =——e*— —e* ) é&?
-+ sIin2@ sin (( 1 126)6

271 17
< 34+7 e+ 664)ezcos2i>,

169 323 — (287
Bjs = cos2mcosQ ( G 3 ez> e®cosi+cosQ (2065 cosi)

— (/169 323 16 323
+ sin2@ sin Q <(6 — 862) e+ (—39 + 4€2> ¢ cos? i) ,



6.3 Solutions of D;; Perturbations 125

20 2 _ /47
B6—cos2wcosQ< 69 49e>e4cosi+cos§2<12e6cosi>

: =209 29 ,\ 4 209 29 5\ 4 o,
+sm2ws1n§2<(6 46)6 +< 3 +2e e'cosi|,

— (1221 — (1221 1221
Bjz :c052a)cos§2< 56 escosi) +sin2wsinQ< 56 e — TS 5c0521>
— (235 235 235
Bjg = cos2mcos (48eﬁcosi> —|—sm2a)sm£2< 5 ¢ b — o b cos? z)
(6.53)

For j =5, there are

¢ =0, (6.54)
. = 30N 4
d;j =sin2wcosQ _1_56 e cosi/sini

+sinQ (—8 + 1262 — 3¢ + e6) (cos?i/sini —sini)

— 3 3
+ cos2@sinQ ((—1 — 262) e*cos?i/sini+ (1 + 262) e4sini> ,

— 37 73
Aji = cos2mcosQ (4— ?ez— 864) ecosi/sini
— 37 73
+sin2a)sin£2< 4+ e+ 2 e4>e(cos2i/sini—sini),
63

— 29
Ajp = cos2wcos (—4+22€2 — 764 — 4€6> cosi/sini

_ 63 29
+sin2wsinQ <4 — 226 + 764 + 46‘6) (0052 i/sini—sini),

Ajz =cos2mcosQ <—238+97 2 )ecosz/smz
+sin2a)sin£2<238—97 24 ) cos®i/sini —sini)
Aj420052wcos§2< 17—&—& : )e cosi/sini
+sin2@sinQ (1 — 247‘-7162 — ?§€4> e’ (0052 i/sini— sini) ,
Aj50052wcos§2<129+3§3e2> ¢ cosi/sini
69 , 323

+sin2wsinQ ( G A 64) e (cos2 i/sini—sini),
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—( 209 29
Aj6 = cos20cos <—6+4e >e3cosi/sini

— (209 29
+sin2@sinQ (6 - 4e2> e* (cos?i/sini —sini)

— 1221
Aj7 =cos2mwcosQ (— 5 escosi/sini>

— (1221
+sin2wsinQ (56) (cos?i/sini —sini) e,

— [ 235
Ajg = cos2mwcos 2 (—4866005i/sini>

— (235
+sin2wsinQ (48) (0052 i/sini —sini) e, (6.55)

38 5

Bj :sinchosQ( -4+ — 3

67
+—= A 4) ecosi/sini

— 38 67
+cos2@sinQ ( 4+ 3 e+ 8€4> e (coszi/sinifsini)

- 41
+5inQ (—24+45e2 — 2e4> e (cos?i/sini —sini)

— 68 23
Bj =sin2wcos <4 — 226 + 764 + 4e6> cosi/sini
— 68 23
+cos2msinQ (4 — 227+ 764 + 4e6) e (cos?i/sini —sini),

— 17
+sinQ (18+4Oe2 — 4e4> ¢ (coszi/sinif sini)

— (28 97 109
Bj3 =sin20cosQ = — —e® + ——¢* ) ecosi/sini
3 2 8
—( 53 123
+ sinisinQ (3 + 4€2> e (0052 i/sini—sini)
— (28 97 109
+cos2wsinQ (3 - e+ 8e4> e (cos?i/sini —sini),
— 271 17
Bjs =sin2wcosQ | 1 — T ?— —é* ) e*cosi/sini
’ 4 12
_ 271 17
+ cos2@sin Q (17—4 = 12e4> ¢* (cos?i/sini — sini)

—( 77 31
+sinQ (4 + 4€2> ¢t (0052 i/sini—sini),
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169 323
Bjs = sm2wcosQ< 69 g ez> ¢’ cosi/sini

16 323
+cos2wsinQ ( 69 A ez) e (0052 i/sini— sini)
—( 287
+sinQ (—2065) (cos?i/sini —sini),

209 29 ,

B]5—s1n2a)cos£2( c ¢ >e4cosi/sini

— (209 29
+cos2@sinQ (6 - 4e2> e* (cos?i/sini —sini)

—( 47
+sinQ (—1266) (0052 i/sini—sini),

— (1221
Bj; = sin2a)cosQ< 33 65) cosi/sini
— (1221
+cos2@sinQ (56 5) (cos?i/sini —sini)
— (235
Bjg = sin2wcosQ <48e6> cosi/sini
— (235
+cos2@sinQ (4866) (cos2 i/sini —sini). (6.56)
For j = 6, there are
cj =0, (6.57)
_ _ 37 5\ 5. .
dj =sin2mcos Q2 44—7e e’sini
+4m§(—%+wmﬁ—6m*+%ﬂemggm
L= 37 5\ 5 ...
~+cos2@sin 44—78 e’ cosisini,

595 1197 ¢
Aj = —16+164¢* — 3 iyl o )sml (cos2mwcos Q —sin2wsinQcosi),

2696 1571 — —
176 + =——¢* — 169¢* Te6) sini (cos2mcos Q — sin2sinQcosi) ,

370 ¢ _ _
5 - + 1855¢ +5¢ )sini(coschosQ—sin2a)sin§2cosi),
4696 2

425 — _
136 — +1705¢* + 7(36) esini (cos2a)cos§2 — sin2a)sichosi) ,

12 1 _ _
338 — ﬂ 24 %e“) ¢*sini (cos2a)cos§2 —sin2msin{cos i) ,

-
we=(0
(112 1858 2
v
o=
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2132 2 4 _ _
3 —65 9€2+6 0 ¢t >eﬁsini((:05260005(2—sin20z)sin§2(:osi)7

3
3115 21427
) e*sini cos 2wcosQ —sin2® stcosz)
&

sini (cos2mcos Q — sin2wsinQcosi) ,

9 _ _
e7) sini (cos2mcos Q — sin2wsinQcosi) , (6.58)

625 525 _ _
16 — 168¢> +T 4—&—7(3 ) (sin2a)cos§2+ cos2a)sin§2czosi) sini

_ 1
sinQ (96 — 6366 4 1000e* — ?é) cosisini,

Ajp= ( > ) sini (cos2wcos Q — sin2wsinQcosi) ,
+

1201 — —
¢ +191e4+ﬁe6)e(sin2a)cos£2+ cos2msinQcosi) sini
+st(144 784¢> +999¢* — 42¢ )ecosisim',

112 1858 1057 — —
Bj3:(—7+ 3 2 —1861¢* — T66> (sin2wcos§2+cos2wsichosi)sini

— 2469
+sinQ (212— 10526 + Te4> cosisini,
4696 173 — _
By = ( 1364+ —— e —1713¢* 7e6) e (sin20cos Q+ cos2wsinQcosi) sini

+sinQ (308 — 1041¢> + 131e )e cosisini,
12739 2 40637 4
e

5 60

Bjs = (—338 + ) ¢* (sin20cos Q + cos2wsinQcosi) sini

— 11107
+sinQ (412— Tez) ¢* cosisini,

2132 6529 2041 — =
6= (— 3 + 3 e — 7 e4> & (sin2wcos§2+ cosZcosichosi)sini

+st(371—114e )e cosisini,
3115 21427

B = (_T + 762> e* (sin20cos Q + cos2wsinQcosi) sini

e6) cosisini,

2265 ,
16

— (4759
+sinQ (
Bjs = ( 829+ —— ) e’ (sin2wcosQ + cos20sinQcosi) sini

— (235
+ sin Q2 (?e7> cosisini,
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22891 — —
Bjy = (— 7 e()> (sinchosQ—l— Cos2wsin§2cosi) sini,

1099 — _
Bjio = (— A e7> (sin2a)cos§2+ cos2a)sichosi) sini. (6.59)

These are the solutions of the Dy perturbations on the satellite orbits. Discus-
sions and comments will be given in the summary section.

6.4 Solutions of D, Perturbations

Solutions of the Dy, perturbations are given below in the form of

10 10
(Acj(M)),, =b; (ch+dj (0, QM+ AjcoskM+ Y Bj sinkM> , (6.60)
k=1 k=1

where j is the index of Keplerian elements. Then there are

V15uaD
by = e bi=—2acby, by=—(1-¢)by,
128a¢(1—€2)"'"n
bs=by, by=8eby, bs=—by, bg=—(1—¢*)"b,. (6.61)

For j =1, there are
dj = cos20sin2Q (—16 — 168¢* —25¢*) ¢* cosii
— 2
+sin20cos2Q (—8 —84e? — ;e“) et (1+cos?i), (6.62)

_ 224 193
Aji = cos2mcos2Q (16— Tez —252¢* + 266) e (1+cos?i)

_ 44
+sin2@sin2Q (—32 + 7862 +504e* — 193e6> ecosi

_ 243
+c0s2Q (—96 +324¢% —392¢* — 4e°> esin’i,

592

— 1 4
Ajy = cos2mc0s2Q (—32+224e2 — ——*—662¢° - 312368) (1+cos?i)

_ 3184 343
+sin2wsin2Q (64 — 448¢% + ?e“ +1324¢° + 6e8> cosi

_ 7
+c0s2Q <144 + 53667 —429¢* — 82e6> e*sin’i,
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— 5023
Aj3 = cos2wcos2Q (—112+750e2—720e4 ) (14 cos?i)
— 5023
+sin2wsin2Q (224 — 1500¢” + 1440¢" — ]266) ecosi

+c0s2Q <—212 +804¢” — 4i3e4) & sin’i,

— 4994 238 725
Aj4:cos2wcos2£2( 2724 ——e e — 3 e4—12e6> e* (1+cos?i)
— 9988 476 725
+ sin 2@ sin 22 (544 — ?ez + Te‘l + 666) e cosi

— 25
4+ cos2Q (—308 +762¢> + 264) e*sin?i,

— 1690 32552 14851
Aj50052w0052Q< 39 + 5 o2 — 0 e4)e3(1+coszi)

3380 65104 , 1485 4\ 5
3 15 ¢ T30 ¢ )¢

+sin2wsin2Q (

— 41
+¢0s2Q —412+Qe2 € sin’i,
20
—( 2968 627 ,
Aj6:cos2a)0082£2(—3+1414 +5 >e4(1+cos2i)

936

627
+sin2wsin2Q ( —2828¢% — 4e4> e*cosi

— 87
+ c0s2Q (371 + 2e2) O sin?i,

— [ 25468 67211
Aj7—0052a)cos2§2( 2) > 1+cos z

21 168

— (50936 67211 — (4759
+sin2wsin2Q [ ——— — ———¢? ) ¢° cosi + c0s2Q e’ ) sin® i
21 28
5209 1625
Ajg = cos2mcos2Q (_6 + 48ez> e® (1 +cos?i)
— (5209 1625 — [ 235
+ sin2® sin2€2 (3 — 24e2> &0 cosi+cos2Q (—8e8> sin®i,

— [ 22891 22891
Ajo = cos 2w cos2Q (—729e7) (1 +cos l) +sin2wsin2Q < 369 7) cosi,
10 — (10
Ajio = cos2wcos2Q (;{9 ) (1 + cos? i) +sin2wsin2Q ( ]929968) cosi.

(6.63)
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— 440 1592 405
Bji = cos2msin2Q < 32+ T &2 + ?64 — 2e6> ecosi

— 220 796 405 4
+sin2m cos2Q <16+382+ze4 e > (1+Cos t)

— 3152 215
Bj» = cos2msin2Q (64-44&;2 + o5 131660+ = e8> cosi
— 1576 215
+ sin2m cos 2Q2 <32 —2246% + Te4 +658¢5 + 1268) (1 + cos? i) ,
2660 4
Bj3 = cos2®sin2Q (224 —1500e? 4 1440¢* + —— 3 ) ecosi

— 1330
+ sin2@ cos 202 <112—75062 +720e* + 366) e (1 + cos? i) ,

88 460 425
Bj4 =cos2w sin2Q <544 — % 24 764 + 36‘6) e cosi

4994 2 42
+sin2wcos2Q <272— % 24 %e“ + 65e6) * (1+cos?i),
3380 65104 7738
3 2 e4> & cosi

5 ¢ 15

Bjs = cos2®sin2Q (

— (1690 32552 3869
—|—sin2wcos2£2< T e — 75 64)63(14-00821')7

5936 1975
Bjc = cos2m sin2Q (3 —2828¢% — 1264) e cosi

68 1975
+sin2wcos2Q < 93 —1414¢* — 2464> o (1 1 cos? i) ’
— = 7211
Bj7 = cos2sin2Q (5029136 — 6 1 2> e cosi

, (25468 67211 ,)\ s ).
2 2Q 1
+sin2wcos < TR >e (1+cos’i),

— (5209 1625
Bjg = cos2msin2Q (3_2462> S cosi

5209 1625
+sm2a)c052£2< S 13 ez) e (1+cos?i),

22891 22891
369 e7> cosi+ sm2a)cosZQ< 729 7) (l—l—cos z)

Bjg = cos2msin 2Q <

— (1099 — (1099
Bj1o = cos2wsin2Q (12€8> cosi+ sin2mcos2Q (2468> (1 + cos® i) .

(6.64)
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For j =2, there are
dj = cos20sin2Q (—160 — 49¢?) ¢° cosii
+ sin2mcos2Q (—80— 29e2> e® (1+cos?i), (6.65)

— 833 47
Aj1 = c0s2wcos2Q (—16—i—56e2 - 764 + 2e6) e (1+cos?i)

_ 1666
+sin2@sin2Q (32 — 122+ ——¢

4 4766) ecosi
_ 243
+c0s2Q (—96 +324¢% —392¢% — 4e6> esin’i,

— 308
Ajp = cos2mcos2Q (16— Tez

1039
—856¢* — ———€° | &* (1+cos?i)
12
_ 616 103
+sin2@sin2Q (32+ Te2 +17126* + 69e6> e cosi

_ 87
+c0s2Q (—144 +536¢% —429¢* — 2e°> e’ sin’ i,

112 862 6259
Aj3 = c0os2mc082Q | ——= + ——e* —229¢* — (l—l—cos i)
3 3 12
+sin2wsin2Q (2§4 — léﬁ 2 145864 + 62;9 6) ecosi

_ 453
+c0s2Q (—212+ 804¢% — 4e4> e sin’i,

— 2960
Ajy = cos2wcos2Q (—136+ &

175
+ 446" — 4e6) e (1+cos?i)
— 5920 175
+ sin2@ sin 2 (272 — Tez —892¢% + ze6> e cosi

_ 25
+ c0s2Q <—308 +762¢ + 2e4) é*sin?i,

_ 1 4231
A/5_0052w0052§2( 338—|—85£ 2+3603€4> & (1+cos2i)
+sin2wsin2Q (67 — 165ﬂ€2 — 343203164> e cosi

_ 6413
+ 0820 (-412 + 20e2> & sin’i,
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— 2132 3232 1091
Aj6:00520)COS2Q<— 3 + 3 ez—i— 89 4> (1+COS l)

— (4264 464 1091
+sin2wsin2£2< 6 —6 64 2 0 64) 4

e”— e’ cosi
3 4

— 87
+ c0s2Q (—371 + zez) eOsin?i,

3115 37907 ,\ 5 2.
Aj7 = cos2wcos2Q (—3—1— 63 )e (1+cos”i)
— (6230 37907 — [ 4759
+ sin2® sin2€2 (3 — 8462) & cosi+cos2Q (— o3 e7) sin’i,

Ajg = cos2wcos2Q (—829 — ?2€2> e® (1 + cos® i)

+sin2wsin2Q (1658 + 88562) ®cosi+cos2Q (—238568) sin’i,

— ([ 22891 22891
Ajo = cos2wcos2€ ( 7829 7) (1 + cos l) —|—sm2wsm2§2< 3869 7) cosi,

— 1099 — (1099
Aj1o = cos2wcos2Q (— 51 68) (14 cos?i) +sin2a)sin2£2( B e8> cosi,
(6.66)
— 1798 137
Bj1 = cos2msin2Q (32— 120€% + Te“ - 2e6) ecosi
— 899 137 ¢
+sin2wcos2Q (16 60e* + — e — == ) (1+cos?i),

_ 584 676
Bj = cos2msin2Q (—32 + Tez +17286* + 6€6> e cosi

— 292 ,
+sin2wcos2§2< 16+ —=¢ 2 4 864et + ¢ ) 2 (1+cos?i),
224 1724 314
Bﬂ—COSZ(DSlHZQ( 3 E e +446¢* + 6>€COSl

(112 862 165
—|—sin2a)cos2§2<3—32 +223e* + 6) 1+cosz

5920 ,
3

Bjs = cos2®sin2Q (272 - —908¢* + 119¢ ) e”cosi

+sin2wcos2Q (136— ? 2

119
—454¢% + 5 e6) & (14cos?i),
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— 16218 17428
Bjs = cos2wsin2€Q2 (676 — Tez — 1534> eScosi

— 810 8714 4
+sin2wcosZQ(33 7?962 I ) (1+cos i),

Bje = cos2®sin2Q (42364 — 64364 e — 3?27 e4> e*cosi

¢ Sin2600s20 (21332 B 3233262 _ 3;27 64) ¢ (1 +cos?i),
Bj7 = cos2®sin2Q <62330 - 378940762) e’ cosi

+sin2wcos2Q <31315 3;227 ) (l +cos l)

_ 85
Bjg = cos2®sin2Q (1658 + 86‘2> e cosi

— 85
+5sin2@cos2Q <829 + 662) e (1+cos?i),

— (22891 22891
Bjo = cos2msin2Q ( T ) cosi+ sin2wcos2Q (ne7> (1 +cos?i),

— (1099 — (1099
Bjip = cos2sin2Q <12e8) cosi—+ sin2wcos2Q <24e8) (1+cosi).

(6.67)
For j = 3, there are
dj = sin20sin2Q (—144 — 47¢%) & cosi
_ 35
+cos2mcos2Q <<68+ 262) & 4 cos?i <76+ 79 ) es)
cos 29( (—96+ 1446> — 1264 + 15e°) p
+ (160 24062 + 36¢* — 23e6) ecos? i> : (6.68)

_ 175 ¢
Aj = cos2@sin2€ (32— 104¢* — 294¢* + — 2 )COSZ

— 293 321
+sin2wcosZQ< <1668€2 — %e“ + 4e6>

2
+ <16 — 36 — ?e“ + 49e6> cos? i) ,
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= 1688
Ajp = cos2msin2Q (128 -5 P

_ 1108 517
Hm2wmﬂ9<<%32 587¢ lzé)e

580 2 4 1213 6 2.
+(4 = —839¢ 2 e’ |ecosi|,

— 1426¢* Sgse(’) ecosi

—( 224 2903
Aj3 = cos2@sin2Q (—3 +716€% —994e* — 3 e°> cosi

_ 112 1186 1297
—|—sin2wcosZQ<<—+ e?—691e* — 66>

3 3
112 962 2 4 1606 ¢ 2.
—I—( 3 + 3 —303¢ 3 e’ |cosi|,

Ajs = cos2msin2Q (—272 +

_ 3472 225
+sin2a)cos29<< 1364+ —— > — 79¢* — e6>e

65336 e +384¢* 52566> ecosi

3 4
3064 475
+(—Bé+ 3e?+%34 12é>emﬁo,

— 52774 13909
Ajs = cos2msin2€ (—676+ e 64) e cosi

5 ¢ 15

+ sin2wcos2§2< ( 3384+ ——

24697 2 9377 4\ 2 .
(338+ 15 +156)ecosz,

9359 5, 4532 4\ ,
5 ¢ 5 ) ¢

4264 7
A16—0052w51n29<—36+2402 —|—945 >e3cosi

+ sin2wcos2§2< (—

2132 3185 1207
+ (— + e+ e4> &% cos? i> ,

2132 4021 5 743 )
73 73 e 3 e e

3 3 8
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3 12 e COS1

— 6230 6775
Aj7 = cos2msin2Q (— + e2> 4

3 168

3115 32773 ,\ 4 5.
—I—( 3—&—168e>e cos“i |,

ey 215
Ajg = cos2@sin2Q (—1658 + 24e2> & cosi

_ 385 725
+5sin2mcos2Q ((—829+ 16€2> e+ (—829 - 48e2) & cos? i) ,

— 3115 62077
+sin2a)0052§2<< g2> &

—( 22891 22891

Ajo = cos2wsin2Q < 369 6> cosi+ sin2®cos2Q ( 729 6) (1 + cos? i),
—( 1099 [ 1099 ,

Aj1o = cos2msin2Q (— B e7> cosi+sin2@cos 2L ( 1 ) (1+cos z)

(6.69)

= 878
Bji = sin2wsin2€Q (—32+ 122¢* + 764 — 56e6> cosi
— 287 123
+cos2mcos2Q ( (16 — 726 — Te“ + e6>

2
11 ¢
+cos?i [ 16 —40e* —197¢* — 2e

+cosZQ(( 96 + 60¢” + 80¢* — 929 )e

1565
+ <96 + 13262 — 440¢* + 4e6> cos? i) ,

— 1720 ,
Bj, = sin2@sin2Q (—128—|—

731
e +1382 + — 6 )(;051

— 1124 455
+coschosZQ< (803 e? — 5656 — > e6) e

596 o2 4 1007 ¢
+ cos l<48 =3 —817¢ —?e
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+cos2£2< (—1 14 +352¢% — 39¢* —60e6) P
i (144 —208¢% —281¢* + 94e6) ecos? i) :

— (224 5635
Bjz = sin2wsin2Q (3 —716¢€* + 1006¢* + 6e6> cosi

— 112 1186 4981
+cos2mcos2Q ( ( -5+ Tez —697¢* — 12e6>

112 962 6289
2. ) 4 6
+ cos z( =3 + — 3 —309¢ 2 e))

— 4
+ cos2£2< (—212—|— 628¢% + 2364) &

(212— ltﬂ 2 14467e4> % cos? i>,

Bjs = sin2@sin2Q <272 - 653j 2

— 3472 105
+cosZa)cosZQ<< 136+T e? — 87 — > e6)e

+cos2i< 136+303ﬁ 2 +455¢* 227(36)@)

+c0s2Q ((—308 +579¢* + 55¢*) & + (308 — 425¢* — 117¢*) &’ cos? i),

— 52774 , 27193 ,
Bjs = sin2sin2Q (676 e 309 ) 2 cosi

281
—368¢ +§ )ecosz

9359 , 17503 ,
2+ )62

2 20 338
+ cos2mcos (( +— 5 50

24697 36883

2. 2 41 2
+ 338+ —e" + ——

COS l< 1 e >€ >

_ 4219 ,\ , 1923 ,\ 4 5.
2Q( | —412 412 —
+cos (( + = 20 )e +< 20e>ecosz ,

64 2831
Bjc =sin2w sin2Q (3 —2402¢% — 1264) e cosi

— 2132 4021 , 2135 4\ ;
2 2Q —
+cos2mcos (( 3 + 3 e”+ 24e>e
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4 costi 2132 n 3185e2+ 352764 2
3 3 24

= 34
+c0s2Q ((371 +20e%) & + <371 + 3e2> e’ cos® i> ,

2 77
Bj7 = sin2wsin2Q (6330 — %e > e*cosi

3 +168

toosi (21 32773 o\ 4
3 168

—( 4759 ¢\ . .
+ cos2Q2 (— 73 e )sm i

— 3115 62077 ,
+cos2wcos2§2< (— >e4

= 215
Bjg = sin2wsin2Q (1658 — 24€2> & cosi

— 385 725 ,
+cos2mcos2Q <(829+ 1662) e +cos?i ( 829 — K > es>

— ([ 235
+ cos2Q (—8e7> sin’ i

22891

_ — [ 22891
Bjo = sin2wsin2Q ( ) cosi+ cos2@cos2Q ( - e6> (14 cos?i),

e7> (14cos?i).

(6.70)

— (1099
Bj10 = sin2sin2Q ( 0

— 1
e7> cosi+ cos2mcos2Q (— 299

For j = 4, there are
. = 3 2 4 e . AT 3 2 4 . .
dj = sin2cos2Q 1+5e €"cosisini+ cos2wsin2€ 1—|—5e e’ sini
+5in20 (—8 +12¢% =3¢ —|—e6) sini, 6.71)

37 73 _ _
Ajl = < 4+ ? e+ 864) esini (cosZa)cosZQcosif sin2@ sinZQ) ,

29 — _
—e + 4€6> sini (cos 2w cos2Qcosi —sin2m sinZQ) ,

271 25 — _
174+ ==+ 2e4> &% sini (cos 2wcos2Qcosi—sin2m sinZQ) ,

8 97 103 — _
Ajz = (3 — e+ 86‘4) esini (cos2wcosZQcosi— sin2a)sin2£2) ,
( 4 1
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169 323 — _
Ajs = <6 — 8€2> > sini (coschosZQcosi— sin2a)sin2£2) ,
209 29 , _ _
Aje = ( z i ) e*sini (cos2wcosZQcosi7sinZwsinZQ),
1221
Aj; = ( 6 5) sini (cos2mcos2Qcosi —sin2wsin2Q)
235 ¢\ . . = .. .=
Ajp=|7g¢" ) sini (cos2wcos2Qcosi — sin2wsin2Q) (6.72)
38 67 — _
Bj = ( - ?ez — 864> esini (sin2wcos2900si—cos2w sin2£2)
+ <—24 +45¢% — 421e4> esinisin2Q,
2 03 4 23 ¢\ . .. = . o=
Bjp=|—4+22¢ — 76 — Ze sini (s1n2wc0s2£2cosz—cos2ws1n2£2)
+ (—18 +40¢* — 147e4> €% sinisin2Q,
28 97 109 — —
Bj; = <—3 + 762 — 864) esini (sinZa) €082€2cosi — cos2m sin2§2)
53 123 _
+ <—3 + 4€2> ¢*sinisin2Q,
271 17 _ _
Bjs = ( 17+ T e+ 12e4> &2 sini(sinZwCOSZQcosi—cosZwsinZQ)

77 31 —
+<4+4 )e4sinisin2Q,

169 323 — _
Bjs = <_6 + 862) e’ sini (sin20cos2Qcosi — cos 2w sin2Q)

287 s\ . .. =
+ (—206 )smlstQ,

20 2 _ _
9 9 ) e*sini (sin 20 cos2€2cosi — cos2m sin ZQ)

47 ¢
< 12 )smzstQ

> sini (sin2@cos2Qcosi — cos2wsin2Q)

e
(5
7=

35 ¢
T ) sini (sin2ecos2Qcosi — cos2wsin2Q) . (6.73)
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For j =5, there are
_ 3 _ 3
dj = sin2@sin2Q (—l - 262) et + cos2wcos2Q <1 + 2€2> e*cosi
+cos2Q (8 _126% 4364 — ef’) cosi, (6.74)
73 4 A= =
—e e (cos 2msin2Q + sin2w cos 2£2 cos l) ,

63 29 — —
442265 — 6t — 4e6> (cos2wsin2Q + sin 2w cos 2Qcosi) ,
28 9

? g —e > e (cos 205sin2Q + sin 2w cos 2Q cos i) ,

72 103 ,

271 2B

17
e 12

- ) ¢* (cos2wsin2Q + sin2w cos 2Qcos i) ,

6
209

) 4 (cos20sin2Q + sin 2 cos 2Q cos i) ,

1221 5

) cos20sin2Q + sin 2w cos 2Qcosi)

@
48

> (cos2msin2Q + sin 2w cos 2Qcosi) (6.75)

= (-5
(-
(-
= (-
( 169 323 )3(Coszwsin29+sin2woosZQcosi),
e (-
(s
e (-
= (a0

38 67 _ _
e+ 8 e4> e (sin20sin2Q — cos 2 cos 2Q cos i)

— 41
+ cos2Q (24 —45¢% + Ze4> ecosi,

63 4

,2_(4 20+ e

23 — _
+7 6) (sin20sin2Q — cos 2w cos 2Q cos i)
o) 2 T4\ 2
+c0s2Q | 18 —40e —i—Ze e cosi,

28 97 109 — —
Bjs = (3 -5 e+ 8e4> e (sin20sin2Q — cos 2w cos 2Qcos i)

53 123
+cosZQ( 3 ) ez> &3 cosi,

271 17 _ _
Bjys= (17 - e — 12e4> ¢* (sin208in2Q — cos 2w cos 2Q cos i)

— (77 31
+ cos2Q (4 — 462> e*cosi,
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16 323 — —
Bjs = (69 — 882) e (sinZa) sin2Q — cos 2w cos 2L cos i)

_ (287
+ cos2Q (2065) cosi,

209 2
Bjs= (6 Zg ) (sm2wsm29—coschosZQcosz)

+cos2Q < )cosz
Bj = (

235 _ _
Bjs = (4866) (sin2@sin2Q — cos 2w cos 2Qcos i) . (6.76)

sm 2w5sin2Q — cos 2w cos 2Q cos 1)

For j = 6, there are
dj= sin2@sin2Q ( 88 4 37¢ )e cosi
_ 37
+ cos2mwcos2Q (44 — 262) & (1 +cos? i)

+c0s2Q (96 — 144¢® + 60" — 9e6) esin?i, 6.77)
595 A 1197 4
3¢ e)
(2005 2wsin2Qcosi+ sin2m cos 2Q (1 + cos? i) ),
B 2692 2 1571 o
Ajz—(176 — ¢ +169¢* + — B )
(2cos2wsin2Qcosi+ sin2wcos 2Q (1 +cos?i) ),
112 1858 2 4 370 ¢
An=|—— —1
i3 ( 3 + — 3 855¢ 3 —e
(2005 2wsin2Qcosi + sin2@ cos 2Q (1 + cos? i) ),

4696 o2 4 425 ¢
S -1 finket
Ajy ( 3 705¢ e e

(2cos2wsin2Qcosi+ sin2wcos 2Q (1 +cos?i) ),

1273 10003
Ajs= (338+ Tgez — ]5e4) ¢

(2cos2wsin2Qcosi+ sin 2 cos 2Q (1 +cos?i) ),
2132 6529 649
Ajg = (— 4+ — e4> e

Aj = (16— 164¢> + =

3 3 8
(2005 2wsin2Qcosi+ sin2m cos 2Q (1 + cos? i) ) ,
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L[ 311521427 ,)
A]7—( 3+24€>€

(2005 2wsin2Qcosi+ sin2m cos 2Q (1 + cos? i) ) ,

2265 5\ ;5
Aig = 2
8 ( 829 + —— 16 >€

(2cos2wsin2Qcosi+ sin2wcos 2Q (1 +cos?i) ),

22891
Ajo = ( > 6) (2cos2wsin2Qcosi -+ sin2wcos2Q (1 +cos?i))

1099 — —
Ajio = (— o e7> (2cos2wsin2Qcosi+ sin 20 cos2Q (1 +cos?i)) , (6.78)

625 , 525
—e +—

]p—(m—lﬁz 5

e6> (cos 2mcos2Q (1 + cos? i)
. . . 1059 2
—2sin2®sin 2!20051) + [ =96 +636¢* — 1000e* + —— 1 sin“icos2Q,

2708 1201 —
Bj = (176 — Tez +191&* + 1266) e(coschosZQ (1 +cos? i)

— 2sin2msin2Qcos i) + (—144-+784e2-999e4+-42e6)esnﬁicoszfi

112 1858 1057 —
Bj3:(—3+ 3 ¢> —1861¢* — 1266)(cos2wcos29(l+cos2i)

_ 24 _
—mmuwgnnmmw)+(—m2+Uﬁh9—:Dd>e%m%mng,

4696

173 _
Bjs = (—136—|— —1713¢* — 266>e(cos2wc052§2 (1—|—coszi)

— 2sin2a)sin2§cosi) + (7308+ 1041¢* — 131e )e sm210052§2

1273 40637 —
Bjs = (—338 + Tgez — 60364) & (cos2wcos2§2 (1 +cos? i)
— 11107 —
—2sin2m sinZQcosi) + ( 20 > e*sin?icos2Q),

2132 652 2041 —
Bj():(— 3 + 3962— 7 e4>e3<0032w0052§2(1+coszi)

—2sin2wsin2£2cosi> (=317+114e )e sin®icos2Q,
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3115 21427 _ _
Bj; = (— e2) et (cos 2w cos2Q (1 + cos? i) —2sin2@sin2€2cos i)

3 24
475 —
+ < 28966) sin®icos2Q,
2265 5\ s _ P e
Bjs = 829+ — =~ |e (cos2wcos2Q (14 cos” i) —2sin2w sin2Qcos i)

2 _
+ (— 256’7> sin? icos2Q,

22891 — _
Bjo = (— - e6> (cos2wcos2Q (1+cos?i) —2sin2wsin2Qcosi)

1099 — —
Bjio = <— o e7> (cos 2w cos2€) (1 + cos? i) —2sin2msin 20 cos i) . (6.79)

6.5 Properties of the Solutions of Geopotential Perturbations

The properties of the solutions of geopotential disturbances of lower order and de-
grees may be summarised from the solutions given in Sects. 5.2, 6.2, 6.3 and 6.4.

Long Term Perturbations

Only the disturbances of the C»g have long term components and only the Keplerian
elements of (w, Q, M) are long term perturbed. Long terms are functions of (a, e,
i), which are considered constants here. The order ratios of the perturbations are of
(1, e, e2), respectively. Because of slow changes of (w, €2), long periodic terms are
periodic functions of (w, €2). Short periodic terms are functions of M.

Long Periodic Perturbations

All geopotential disturbances have long periodic components on all Keplerian ele-
ments (a, e, @, i, Q, M). The order ratios of the long periodic perturbations of the
zonal term of Cyg and Csg are (ae?, e, 1, €%, €%, 1) and (ae®, e, 1, €%, €%, 1), respec-
tively. The order ratios of the long periodic perturbations of the tesseral term of D;;
and D, are (aes, e e e, 1) and (ae4, o, 1,1,1, 1), respectively. This is important
information for truncation in computing practice.

Short Periodic Perturbations

The order ratios of the short periodic perturbations of the zonal term of Cyo and Cxg
are (ae, e, e, e, e, 1) and (ae, e, 1, e, e, 1), respectively. The order ratios of the short
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periodic perturbations of the tesseral term of D;; and D>, are (ae, e, 1, e, e, 1) and
(ae, e, 1, e, e, 1), respectively.

Truncation of the Short Periodic Perturbations

Generally speaking, the amplitudes of the short periodic terms are of orders of k=2l
or el¥=3I where k is the index of the series in (5.26), (6.20), (6.40) and (6.60). These
facts are not allowed to be used directly for truncation of series. As seen in the
formulas of the solution, the coefficients of potent of e may some times be very
big. Truncation has to be done carefully by taking account of individual satellite
characters.

Transformation of the Long Periodic Perturbations

As mentioned already, the terms with a factor of M in the solution have to be trans-
formed back to functions of ¢, w, €, or (w and Q). The transformation may be
carried out by using relations of

—1 —1 -1
aM Q
() dM = dr = (‘1(*’) do = (d> Q. (6.80)
da /, dr /), dt J,

All functions of sin®, cos®, sin€2, cosC2 should be reduced to sine and cosine func-
tions of nw + mg.

Singularity of the Solutions

The short periodic perturbations of the zonal term of Cyg are singular if e = 0. The
long periodic perturbations of the zonal term of C3g are singular if ¢ = 0. The short
periodic perturbations of the zonal term of C3 are singular if ¢ = 0 and/or sini = 0.
The long and short periodic perturbations of the tesseral terms of D1 and D;, are
singular if e = 0. The singularity problem will be discussed further in Chap. 10.

6.6 Solutions of Geopotential Perturbations of 6 x 6 Order
and Degrees

Similarly, the solutions of the geopotential perturbations up to order and degrees of
6 x 6 can be derived. However, because of the length of the formulas, the solutions
will not be given here. Interested readers may visit the homepage of the author for
more information about the development.
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6.7 Solutions of Geopotential Perturbations of 1 X m Order
and Degrees

For geopotential perturbation function of / x m order and degree one has

b .
Rin = 177 Qi (¥) 4 (Q.101) (6.81)

1 N

D (1;/ > ecos" f.  (6.82)

aV(1- 62)N =0

1 1 N
— =—— _(l+ecos =
N aN(l—ez)N( f)

Then (6.13) can be written as

OR,,  —(+1) by, ,
m_ D P () g (@),

da a
IR bim 9q(Q,u,i)
879 = rlﬁle ()C) T’
dRy, . by 90 (%) N o - b 9q(Q1,0)
TR i q(Q,u,z)smucosz+lem(x)T’
&le o blm anm (.X) . ni blm 8q(Q,u,l)
3w AT ox q(Q,u,i)cosusini+ lem (x) T ou

OR; by (—1—1 )
Rin oL (acos ) O () g (@01

bim IQim 2 i
Bin 90 (x) ( 2ecos/ gy f)q(Q,u,i)

AT Oy _
bim dq(Q,u,i) (2+ecosf .
o Qim () du 1—e¢? sinf
and
ale blm (—l — 1) ae . R
aM = r1+2 msn]f le (x)q(Q,M,l)
b 2
4 m? Qi (x) (cosusini\/ 1- ez> q(Q,u,i) (6.83)
yl+3 dx
byna* dq(Q,u,i
+ ﬂle (x) 9q(Q,u.i) (Cosusini\/ 1-— 62) .
ri+3 u
By substituting equations (6.83) into (4.11) the disturbed equations of motion can
be obtained and they can be generally written as (for j =1, ..., 6)
do; 1 20 (x) ~ 0q(Qu,i) dq(Qu,i) dq(Q,u,i)
—=F|—= Q
a (rN’Q(x)’ o A T T T e )

(6.84)
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where N is an integer. Notice

sin™ u = (sin f cos @ + cos fsin®)"

N
N . - . N—
= Z ( coskla)smklfcosN klfsmN M,

(6.85)
cosV u = (cos fcos @ — sin fsin )"

N
= Z (—NH <]1<\i ) cosk! feosH wsin™*! £sinV K @,
K1=0

then (6.78) is the potential function of sin f and cos f. Using transformation (5.22),
disturbed equations of motion can be transformed into functions of M. Integrating
the differential equations with respect to M, and transforming the M-related long
periodic terms back into functions of (w, €2), the solutions of the disturbed equations
of motion can be derived.

In principle, the solutions of the general geopotential perturbation of any [ X m
order and degree can be obtained.



Chapter 7
Solutions of Extraterrestrial Disturbances

Solutions of the extraterrestrial disturbances of the attracting forces of the sun, the
moon, and planets, the drag force of the atmosphere, and solar radiation pressure
are given in this chapter. For convenience, the ephemeris of the sun and the moon,
as well as planets, are described.

7.1 Key Notes to the Problems

As mentioned in Chap. 1, the Keplerian motions of the satellite under the influence
of the centre force of the Earth are perfect, exact and of mathematical beauty. As
soon as it is found by derivation that the satellite is moving in an orbital plane,
the equations of motion are re-represented in the plane and the Keplerian motion is
then derived. Note that even in the centre force field, it would be nearly impossible
to derive the solution without the step of coordinate transformation. This indicates
the importance of the selection of the coordinate system. The transformation of the
coordinate system is allowed because the frame remained an inertial one after a
series of constant rotations.

The use of an alternative coordinate system is the first key to the solution of
the equation of motion influenced by extraterrestrial disturbances. Xu (2004) in-
troduced the so-called disturbance coordinate system by proposing an adjustment
model of solar radiation (see Sect. 4.2.4). However, the coordinate system is not an
orthogonal Cartesian one and its axis changes direction with time and therefore the
coordinate system is not an inertial one. An approximation of the expression of the
solar radiation model is the second key to the solution. The approximation allows
the position of the satellite with respect to the Earth to be neglected in case of solar
radiation under special conditions. For a properly selected time interval, the dis-
turbance coordinate system may be considered a frame that has constant rotational
relations with respect to the inertial one. In such a case, the coordinate system can
be considered approximately “inertial”. Then Newton’s second law can be used and
the orbital disturbance of the solar radiation can be solved. The approximation can
be made as precise as required.

The orbits of the satellite can be considered a central motion (Keplerian motion)
plus a series of disturbances. According to the order estimation discussed in

G. Xu, Orbits, 147
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Sect. 4.2.7, extraterrestrial perturbations are of second order. These are important
for the approximation measure taken during the derivation.

For convenience during later discussions, the definition of the so-called distur-
bance coordinate system is given again (see Sect. 4.2.4). The origin is the geo-
centre, and the three axes are defined by 7 (radial vector of the satellite), 7 (the
sun-satellite identity vector) and p (the atmospheric drag identity vector). These
three axes are always in the main disturbance directions of the indirect solar radia-
tion (reflected from the Earth’s surface), direct solar radiation and atmospheric drag,
respectively.

7.2 Solutions of Disturbance of Solar Radiation Pressure

Solar radiation pressure is a force caused by sunlight acting on the satellite’s surface.
The radiation force can be represented as (see (4.70))

7z S rgun =
Ssolar = myPC,— ea— T CYIN (7.1)
m |V— rsun|
where
" 7 L EXil Lo . 7T
€, =—=, €= SRARLLL éx=¢,xé, and iy = 3 S (7.2)
|r| |ez><nsun‘ |r_rsun|

where the meanings of all symbols are the same as that of (4.63).

Three Approximations

The solar radiation force vector is pointed from the sun to the satellite. If the shadow
factor is known exactly, and the luminosity of the sun and the surface reflectivity of
the satellite are considered constants, then the length of the solar force vector can
be considered a constant, because (see (4.73))

2 2 2
T, Ysun T,

sun sun ) 73
(rsun+r)2 o |?*?sun‘2 o (rsun_r)2 73)

For GPS and GEO satellites there are

2 Tsun 2 r 2 2r 5
sun = . ~(1F i) ~1F ~1F3x10™
("‘sun:‘:’")2 <rsunir> < Tsun Tsun

and

2 2 2
T Tsun r 2r _s
= ~(1F :Iz) ~1F ~1F5x107°, (7.4)
(rsun:t”)2 (rsuni’") ( Fsun Fsun
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respectively. That is, the solar radiation force vector can be considered approxi-
mately a vector, with constant length and changing direction. The approximation
has a precision of better than 3rd order and is precise enough for our purposes. For
convenience, this approximation is called the first approximation later on.

The identity solar vector of the satellite 7y, can be approximated by

e = ‘f.“ (7.5)

)
rse|

where index se denotes that the vector is pointing from the sun to the centre of
the Earth. For GPS and GEO satellites the maximal angles between the above two
identity vectors are 1.5 x 107> and 2.5 x 1073 (rad), respectively. Therefore, such an
approximation (called the second approximation) is allowed and is precise enough
The third approximation is made for suitable time duration of At =1, —#; | by

e (t) it (tr), th=(tr+1_1)/2, tE€[ti_1:ti]- (7.6)

The discrete vector in this equation may be called an average vector of the time
duration Ar. For Ar = Smin, the third approximation has a precision of 3 x 1073
(rad).

Note that the order of the solar radiation disturbance on a GPS satellite is about
50m. For GPS satellite, all the three approximations will lead to a precision of
millimetre level. For the other satellite, the precision of the approximations should
be individually estimated.

Discretization and Solution

Denote the satellite period as 7', and shadow access and exit points as f, and f,
respectively. The local noon is selected as the starting point of counting (see Fig.
7.1). A so-called sign function can be defined as

1, 0<t<T/2,
6(’)_{—1, T/2<t<T. 7.7

The sign function shows that the solar radiation accelerates the satellite during the
first half period and decelerates it during the second half period with respect to the
nominal motion of the satellite. Then the duration of one period of 0 ~ T can be
equally divided by Az, i.e., by #),t},...,;,...,T. The acceleration of the solar radia-
tion of (7.1) is then discretized as

- S
asolar(t) = '}’PsCrEnse@k) (7.8)

The disturbed velocity caused by the solar radiation is then

Vsolar (1) 2 YP,C, nse (t)8 (1) At (7.9)
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It is obvious that, the disturbed velocity of the satellite is not zero during the passing
of the shadow. The disturbed position caused by the solar radiation is then

~

ﬁso]ar 2 Vsolar tj (7.10)

Equation (7.10) is the solution of the solar radiation disturbance on the orbit of the
satellite.

Properties of the Solution

The integration (or summation) of the acceleration of the solar radiation within a
period T is nearly zero. However, the position disturbed by the solar radiation during
a period T is not zero. In other words, the disturbance of the solar radiation has
the non—conservative behaviour. The disturbance may not be a periodic function of

the orbit. The parameters of the force model, if they are not well known, can be
determined using the expressions of the solution.

7.2.1 Solutions via Gaussian Perturbed Equations

Gaussian Perturbed Equations

Equation (7.8) is the approximated solar radiation force (acceleration) vector with
constant length, which can be written as

- S
Ssolar(t) = myPC, nse( ) (7.11)



7.2 Solutions of Disturbance of Solar Radiation Pressure 151

or
. Sx Ny
Ssolar ([) = fy = ‘S ny |, (7.12)
Sz n;

where solar-Earth identity vector (7.5) in ECSF frame can be computed by the the-
ory given in Sect. 7.8; & represents the constant length of the solar radiation force
vector.

The force vector in the ECSF frame can be transformed to the orbital coordinate
system (see (4.16)) using

fr fr
fo | =R3(f)R3(@)R1()R3(Q2) | fy |, (7.13)
Jn Sz

where

R3 ()R (i)R3(€2)
cos@cosQ —sinwcosisinQ  coswsinQ +sinwcosicos  sin ®sini
= | —sinwcosQ —coswcosisinQ —sin ®sin{2 + cos wcosicos{2 cos @ sini
sinisin Q —sinicos cosi

Denote these elements of the matrix with R;j, and

ny Ri1ny+ Riany + Rysn,
ny | =&| Ryny + Roony +Rozn; |, (7.14)
n3 R31ny + R3ony + R3zn,
then one has
fr ny nicos f+nysinf
Jo | =Rs(f) | ma | = | —misinf+naycosf |. (7.15)
Jn n3 n3
Using (4.23) one has
(1-¢%)
=(1— E 7.16
1 +ecosf (1= ecosE) (7.16)
and
cosE = L£TC0sf) (7.17)
1+ ecosf

Putting all these formulas into (4.26), the Gaussian disturbed equations are

da 2 ecos f(ny cos f + ny sin f)

dt ~ pv/1_e2 | +(1+ecosf)(—nysinf+nycosf) |’
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q = sin f(n; cos f +ny sin f)
e —e

dt  na +<e—|—cosf+cosf) (—nysin f + ny cos f)

1+ecosf

di V1—e2cosu
N R
dt ~ na(1+ecosf) >’

dQ V1 —e?sinu

ar nasini(1l +ecos f

)n37

(7.18)
[ —cos f(n; cos f +njsin
do Vi—¢ flnicos f+mysinf) e
o = 2 - I—,
dr nae _+% sin f(—ny sin f +ny cos f) dr
i 2e .
am 1—e2 |~ COSf_W (n1cos f+nysin f)
- 5
dr nae _ %Sinf(fnlsianrnzCOSf)
Characters of Gaussian Perturbed Equations
1. There exist long and short periodic perturbations
Note that
1 —cos2
sin f = 7;05 f,
2,  1+cos2f (719
cos” f = ——,
2
! 1 f+ (7.20)
— =~ 1—ecos .
1+ecosf
and
cosu = cos Wcos f —sin@sin f,
/ / (7.21)

sinu = cos w sin f + cos fsin @.

Obviously, all the six Gaussian perturbed equations include the long periodic term
perturbations, which are formed by terms without f (in other words, constant terms
are created by terms of sin® f and cos? f). And the remaining terms are short periodic
terms. Remember that by integration variable transformation from ¢ to f or M for
solving the short periodic C, perturbations, long periodic terms will also be created
(see Sect. 5.2). Therefore, no effort will be made to separate the long and short
periodic terms.
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2. Concerning time variable (ny, n, and n;)

In (7.18) the variables ny, np and n3 are functions of (@, L, i) and (ny, ny, ny).
(o, Q, i) are long periodic variables and they are considered constants in short pe-
riodic integrations. However, the identity vector (ny, ny, n;) of solar-Earth is also time
variable. In the discussion in Sect. 7.2 the (ny, ny, n;) can be considered constants
within 5 min. The maximum change of the identity vector around its average is ca. 0.5
degrees per day, that is, the maximum of change rate is about 0.0086 rad/day. In other
words, the identity vector (ny, ny, n;) can be represented by an average plus a drift
term, and the drift term compared with the average term is about one order smaller
and in some cases is allowed to be neglected. As soon as the vector (7, ny, n;) is
considered constant, (7.18) can be solved by integration as shown in Chaps. 5 and 6.
In cases where change of the identity vector is not allowed to be neglected, the
integration interval has to be made shorter so that the assumption will be valid and
then the integrated solution should be summated to obtain the complete solutions.

Solutions of Gaussian Perturbed Equations

For simplifying the disturbed equations, denote

nie cosi ns 2 Vvi—e (7.22)
ng=—, Ns=n i, ng=—, = = (.
4 Sing 5 4 6 7 81 o2 82 Y
V1—e¢2 1 —é?

83 = 82, 84— , 85—84, 86— — .
nae nae

8]

Omitting the factors g; (j = 1,...,6) in the disturbing equations (of course, after the
equations are solved, the factors shall be multiplied back), one has

da _ {ecosf(nlcosf—FnzSiﬂf) ]

dr +(14ecos f)(—nysin f +npcos f)
de sin f(n) cos f + ny sin f)
dr + (1::0000831; —|—cosf) (—nysinf +nycos f)
di cosu
S PR
dt 1+ecosf >
@_ sinu " (7.23)
dt ltecosf v
do [ —cos f(n) cos f +nysin f) 40
& |+ G (g sin fmacos f) | T e
S T—— —n n
| l+ecosf : 2 !
= cosf—i (n1cos f+nysin f)
ar 1+ecosf) 2
B 2
dr i % sin f(—ny sin f + na cos f)
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Let
1
1 —0)+n697 Ml —M_a)l, mfv l—eCOSf, (724)
and equation (7.23) can be further simplified as
da _ |ecos f(nicosf+nysinf)
dt | +(14ecosf)(—nysinf+nycosf) |’
de _ |sinf(ncos f+nysinf)
dt | +(e+(2—e?*)cosf—ecos? f)(—nysinf+nycosf) |’
di
g cosu(l —ecos f)n3,
dr (7.25)
r inu(1 )
e sinu ecos f)ny,
do; | —cos f(njcos f+nysinf)
dt | +(2+ecosf)(1—ecosf)sinf(—nysinf+nycosf) |’
dM
Fl = [—2¢(1 —ecos f)(n)cos f+mnysinf)].

Simplified Gaussian perturbed equations (7.25) may be solved using symbolic com-
putational software. The infinite integrations of the differential equations can be
represented by

16 16
(Ac;(M))y = b, <d,(w,Q)M+ > AjcoskM+ Y, Bj sinkM) , (7.26)
k=1 k=1

where j is the index of Keplerian elements. b; includes the omitted factors g; and
the factor caused by the variable transformation from ¢ to M (see (5.24)) as well as
the factors /; given below:

hy = (1152 x210)7',  hy = (55296 x 2310) !,  h3 =hy,

1 1 (7.27)
hy=hi, hs= (2654208 x 60060) ", he = (576 x 210)~",

hj—factors are introduced to simplify the derivations of (7.26). The first term on the
right-hand side of (7.26) is symbolic and represents the long periodic perturbation of

/ dj(®,Q)dM. (7.28)

dM can be transformed to d(nm + mQ) depending on the form of d; according to
(7.28).
For j= 1, there are
d; = 120960e(n; — ny) + (90720¢® — 16380¢° 4 430080e” ) (1 +m2),  (7.29)
Aji = 241920(ny + €*ny) — 45360071 + (201600e* — 5040¢°) (n1 — ny),



7.2 Solutions of Disturbance of Solar Radiation Pressure 155

Ajy = (181440e — 383040¢* )1 + (—60480e +241920¢° )1,
+ (183645¢° — 13440¢7) (n) — n2),
Aj3 = 171360e%n; — 80640e%n; — (272160¢* — 86520¢°) (1) — n2),
Ajs = 178920¢’n; —98280e’ny — (224280¢° — 47040¢7) (1) — n2),
Ajs = (118944e* — 132552¢°) (n) — ny),
Aje = (79275¢° — 67200¢) (ny — n2),
Ajy = 518405 (n) —na),
Ajs =26880¢’ (n; —ny), (7.30)
Bji = 241920(ny — €*ny) — 514080¢*nz + (221760¢* 4 362880¢°) (11 + ),
Bjp = (60480e — 241920¢% )11 4 (181440e — 403200¢° ),
+ (407295¢° — 215040¢”) (n1 +ny),
Bj3 = 80640¢’n; + 17136061, — 272160¢* (n1 +n2),
Bjy = 178920¢°n 4 98280¢°n; — (318465¢° — 53760¢” ) (ny +n2),
Bjs = (118944e* — 145152¢%)(n) +na),
Bjs = (79275¢° —71680¢" ) (n1 +ny),
Bj7 = 51840¢° (ny +my),
Bjs = 26880¢’ (ny +n2). (7.31)

For j =2, there are

d; = (191600640 — 47900160e* — 68523840¢* + 7572549605
—584836560¢® 4 74511360¢'%)n,, (7.32)
Aj1 = (—31933440¢ + 66528000¢> — 220374000¢°
4 1193886540¢” — 975633120¢° )11,
Ajp = (31933440 — 63866880¢ + 37089360¢* + 153901440¢°
+162189720¢® — 274760640¢')n;,
Aj3 = (31933440¢ — 54552960¢> +93749040¢>
—75121200¢" + 162660960¢” )1,
Ajy = (27941760e* 4 17297280¢* — 51586920¢°
—3090780e® + 143700480¢'%)n; ,
Ajs = (22087296¢> +-41746320¢° — 79767072¢" 446236960 )11,
Ajs = (—20679120e* +99792000e® — 52751160e® — 24664640¢'%)n;,
Aj7 = (—41841360¢° 4 122551110e” —79500960¢° )1,
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Ajs = (—52855110e® +72179415¢* — 21732480¢'%)n;,

Ajo = (—55908930¢” + 53813760¢”)n;,

Ajio = (—33197472¢% 4 19869696¢')ny

Ajiy = —17418240¢%n,,

Ajin = —6307840¢'n;, (7.33)

Bj1 = (—95800320e + 125072640¢° + 525072240¢°

—262383660¢’ — 166209120¢° )15,

Bj» = (31933440 — 95800320¢> + 402660720 — 534829680¢°

+295162560¢® — 104670720¢')n,

Bj3 = (31933440e — 78503040¢> — 146860560¢°

+88787160e + 53037600¢° )2,

Bjs = (27941760¢* — 153180720¢* + 15744960¢°

+19015920¢® +47900160¢'%)n,,

Bjs = (22087296¢° +41679792¢> — 98855064¢” +35681184¢”)ns,
(—20679120¢* + 1120442405 — 80905440¢® + 197120¢'%)n5,
(—41841360¢° + 141925410¢” — 70598880¢” )1,

(—52855110e° +91981890¢® — 23802240¢'%)n5,
(-
(-

Bjs =

55908930¢” 4- 57164800 )n,,

331974728 +20815872¢')n,,

110 =
Bj11 = —17418240¢°ns,
Bji» = —6307840¢'%n,. (7.34)

For j = 3, there are

= (—362880¢ — 90720¢> + 16380e° — 430080e” )3 cos o, (7.35)
Aji = (241920 + 30240¢% — 201600¢* 4 5040¢°)n3 sin o,

Ajy = (60480e 4 100800¢® — 183645¢° + 13440¢” )n3 sin @,

(10080e? +272160e* — 86520¢®)n3 sin o,
(—
=
(-

17640 n 1+ 224280¢° — 4704067)713 sin,
—118944¢* +132552¢5)n3 sin o,
Aje = 79275¢ + 67200¢’ )3 sin o,
Aj7 = —51840¢°n3sin o,
Ajs = —26880¢’n3sin o, (7.36)
Bj1 = (241920 — 30240¢* — 221760¢* — 362880¢° )13 cos @,
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Bjr = (60480e + 80640¢> — 407295¢° +215040¢” )13 cos @,
(10080¢” 4-272160¢* )13 cos ,

(—17640¢> +318465¢° — 53760¢” )n3 cos @,

=(=

(-

118944¢* 4 145152¢%)n3 cos o,
Bjs = (—79275¢° +71680e’ )n3 cos o,
Bj7 = —51840¢n3 cos o,
Bjs = —26880¢n3cos .

For j =4, there are

d; = (—362880e — 90720¢” + 16380¢> — 430080¢” )14 sin @,

Aj1 = —(241920+ 30240¢* —201600¢* + 5040¢%)n4 cos @,

Ajp =
100800¢> +272160e* — 86520¢®)n4 cos o,
17640¢> 4 224280¢> — 47040¢” )ny cos o,
118944¢* 4 132552¢%)n4 cos o,
79275¢€° + 67200e” )ny cos o,
A= 51840@6n4 cos,
Ajs = 26880e"n4 cos o,
Bj1 = (241920 — 30240¢> — 221760¢* — 362880¢° )14 sin @,
By = (60480e + 80640¢ — 407295¢° +-215040¢” )ny sin o,
= (10080e” +272160e*)ny sin o,
(—17640¢>n; +318465¢° — 53760¢” \ny sin o,
=(=
(=

Ajg=—
Ajs=
Ajs =

—(
—(
(
—(=
—(=
(=

16*

118944¢* +145152¢%)ny sin,
Bje = (—79275¢ +71680¢ )ns sin ,
Bj7 = —51840¢°ns sin o,
Bjs = —26880e"nysin o.

For j =5, there are

60480e 4 100800¢> — 183645¢° + 13440¢” )ny cos ,

157

(7.37)

(7.38)

(7.39)

(7.40)

d;j = (—239117598720 + 39852933 120¢* + 78875596800¢* — 687047961600¢°

—280700259840¢% +264212708760¢'° — 139810130560¢'2
+333583810560¢')ny,

(7.41)

Aji = (199264665600e — 142806343680¢” — 148410662400¢° 4 1111921050240

— 2852805795840¢° +2015768795040¢'! —261258117120¢'*)n5,
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Ajr = (—39852933120 + 139485265920¢% — 4774049280¢* — 48639951360¢°

+196151155200¢% — 1068285418200¢'° + 777063006720¢ 2
— 74785751040¢'*)n5,

Aj3 = (—39852933120e + 74724249600¢° + 293431057920¢° — 414339045120¢”

+497781123840¢° — 818554857120¢"! +298896998400¢ )15,

Ajs = (—29889699840¢” — 80536135680¢* 4-493525992960¢° — 455895760320¢®

+447162390675¢'° — 560126286720e'> + 116114718720¢'* )15,
Ajs = (—11623772160¢> — 310313203200¢° + 737853532416¢”
—502012038528¢° 4 33185797448¢'! —262881755136¢'*)ns,

Ajo = (60678858240¢* — 499891392000¢° + 844928884800¢"
— 47343700700 4 242311829760¢'* — 118082764800e'* )5,
Aj7 = (117216253440¢° — 634880600640¢” + 820172770560¢°
—340771345200¢'"' + 118188195840¢' )y,
Ajg = (160847406720¢° — 641571250320¢*
+670415635890¢'" —204615290880e'? + 69865635840¢'* )5,
Ajo = (188641252800e — 570422012160¢”
+462878816400e¢'! — 72571699200 )15,
Ajio = (171528477120e% — 433911602124e'°
+261564855552¢'? — 36212047872¢' s,
Aji1 = (139990032000¢” —284139732240¢'! + 96546078720e " )5,
Ajiz = (101723306685¢'% — 155150835840e'? + 29520691200 )15,
Aji3 = (62960325120e'! — 62958551040¢')ns,
Ajia = (32709980160e'? — 17431265280e'* )1,
Ajis = 14169931776¢" s,
Aji6 = 3936092160 *n,,

(7.42)

Bj1 = (—199558799360e — 3321077760¢’ — 437344427520 — 22745923200¢’

— 153357684480¢° + 129582573120¢'! 4+316609413120¢'3)n;

Bj> = (39852933120 — 79705866240¢* — 508747599360¢* + 588937789440¢°

+79757758080¢® — 195407372160¢'° + 317154277440¢'>
—228293345280¢')n;,

Bj3 = (39852933120¢ — 18265927680¢® — 163355512320¢° + 320034274560¢

—38665186560¢° + 41147346240¢"! — 147234447360e'3)n;
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Bjs = (298896998406 4 325673187840¢" — 551575664640¢° + 398736898560¢
— 18850656825¢'" — 166889923200¢'% 4 34686812160¢'*)n;,
Bjs = (11623772160¢> + 349584947712¢° — 699910219008¢”
+442322584704¢° — 155644673184¢'! +30517014528¢"3)n;,
Bjs = (—60678858240¢* 4 500375715840¢° — 756216901440¢*
+340157737920e'% — 24104240160e'? — 328007680¢'*)n;,
Bj7 = (—117216253440¢° 4 608566495680¢’ — 735828762240¢°
+300759544800¢!! —27148492800¢'3 )1,
Bjs = (—160847406720¢° + 5973529161606
—579512888955¢'" + 171441270000e'? — 9717227520¢'* )11,
Bjo = (—188641252800¢” 4-527603556480¢°
— 404266742880e'! +72694702080¢'° )1,
Bjio = (—171528477120¢® 4-401784102720¢°
—229893247584¢'2 +22238920704¢'*)n1
Bj11 = (—139990032000¢° +261524259360e' ' —96898314240¢'% )y,
Bj1» = (—101723306685¢'° + 141910728960e'? — 27634647040¢'* )1y ,
Bj13 = (—62960325120e'! 4 60517416960e'*)n;,
Bjia = (—32709980160¢'? + 16868966400¢'* )11 ,
Bjis = —14169931776¢"n;,
Bjis = —3936092160¢'*n; . (7.43)

For j = 6, there are

= (3628802 +90720¢* — 16380¢° + 430080¢® )n;, (7.44)
Aj1 = (241920e 4 30240¢ — 201600¢° 4 5040¢” )ny,
Ajp = (60480¢% + 100800¢* — 183645¢° + 13440¢®)n,,
= (10080¢> +272160¢> — 86520¢” )1y,
= (—17640¢* +224280¢® — 47040¢%)n,,
= (—118944¢° 4 132552¢" )n,,
Aje = (— 79275€° + 67200¢% )5,
Aj7 = —51840¢"ns,

Ajs = —26880e*ns, (7.45)
Bj1 = (—241920e +30240¢> +221760¢° + 362880¢” )n;,

Bjp = (—60480¢* — 80640¢* 4-407295¢% — 215040¢% )11,
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Bj3 = (—10080¢’ —272160¢° )11,
By = (17640¢* — 318465¢° + 53760¢%)ny,
Bjs = (118944¢° — 145152¢" )y,
B = (79275¢° — 71680%)n;,
Bj7 = 51840¢n;,
Bjs = 26880¢®n;. (7.46)

Properties of the Solution
Disturbances of the solar radiation consist of both the long periodic and short pe-

riodic terms. The orientation of the orbital ellipse is subjected to higher frequency
disturbance than that of the other Keplerian elements.

7.3 Solutions of Disturbance of Atmospheric Drag

Atmospheric drag, caused by the air, is the disturbance force acting on the satellite’s
surface. Air drag force can be represented as (see (4.75))

- 1 /C4S 55 2 - ?_?air
fdrag = *mi < (o |r*rair’ gy, Ng= 5= 7> (7.47)
m ‘r_rair|

where the meanings of the symbols are the same as given in (4.75); and identity vec-
tor 7, is the direction of the air drag force. For CHAMP satellite, with an orbit height
of 400 km, the air drag force identity vector 7, changes its direction about 1.2 x 1073

KN KN 2 . .
(rad) per second. The amount of |r — rairf changes slower than the direction. In such
a case the acceleration of the air drag can be discretized by

. 1 (C4S B - 2.,
Adrag = 3 (;) 9 ’r(tk) - rair(tk)| Ha (k).
The disturbed velocity caused by the atmospheric drag is then

k

o CiS = 2,

Vairdrag 2 *Lo- |V(ti) - rair(ti)| 7 (t;) At (7.48)
i=1

The disturbed position caused by the solar radiation is then

~

palr z Vairdrag t/ (7 49)
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Equation (7.49) is the solution of the solar radiation disturbance on the orbit of the
satellite.

For all satellites, with an orbit height higher than 1,000 km, the atmospheric drag
is nearly zero; therefore this effect does not need to be taken into account.

7.3.1 Solutions via Gaussian Perturbed Equations

Air Drag Force Vector for Gaussian Perturbed Equations

Air drag force is given in (7.47) (using & to represent the coefficient part of the air
drag force vector) o o

fdrag = é |7_?air‘ (7_7air)~ (7.50)
Using (4.16) the air drag force vector can be rotated from the ECSF to the orbital
coordinate frame by

fr fe
fo | =R3(f)Rs(@)R1()R3(Q) | £y | - (7.51)

I E
Satellite position and velocity vectors in orbital frame are given in (3.41) and (3.42)

a(cosE —e) rcos f
Gg=| avl—e?sinE | = | rsinf |, (7.52)
0 0
—sinE na —sinf na

d=| V1—e?cosE | ——— e+cos f . (7.53)

0 1—ecosE - 0 V1—¢2

They can be rotated from the orbital frame to the ECSF frame using (3.43)

<§) = R3(—Q)Ry (—i)R3(— ) ( g) . (7.54)

Air velocity in the ECSF frame is given in (4.76)

. -y 0-10 X
Far =k, xF=kw, | x | =kw,| 1 0 0 v | = kw,.R47, (7.55)
0 000 Z

where w, is the angle velocity of the Earth’s rotation. Thus in the ECSF frame
there is

7 — Fair = R3(—Q)R1 (—i)R3(— )G — k@, R4R3(— Q)R (—i)R3(—w)G.  (7.56)
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Denote following matrix as R

R3((D)R1 (i)R3 (Q)R4R3(—Q)R1 (—i)R:;(—w) = R3((D)R1 (i)R4R1 (—i)R3(—a))

0 —cosisini 0 —cosi sinicos®
=R3(w)| cosi 0 0 |Ri(—w)= cosi 0 —sinisino |,
—sini 0 0 —sinicos @ sinisin @ 0
(7.57)

and note that the length of a vector is invariable under rotational transformations,
one has

fr
Jo | = é ’7_?air| RB(f) (Ei—kweRq) = é |q_kweREi’ R3(f) (q_kweREi) :
In
(7.58)
The force vector (7.58) is represented completely in Keplerian elements.

Gaussian Perturbed Equations and the Solutions

The air drag force vector (7.58) has to be further simplified. Denote the elements of
the matrix R with R;;, then one has approximately

‘ na —sin f cos f
4 —kw.RG = Nipys e+cosf | —koR(1—e*) | sinf | (1—ecosf)
- 0 0
. . (7.59)
b1 sin f+ bz sin fcos f
= b2 oS f + b4 cos® f + bys ;

b3y sin f 4 b3z cos f + b3z sin fcos f+ b3q c0s2f

where coefficients b;; can be obtained by comparison.
For convenience, the simplified Gaussian disturbed equations of motion can be
written as shown below (see (7.25), (7.24) and (7.22))

%Ctl = [ecosf- fr+(1+ecosf)- fol,
% = [sinf - f; + (esin® f+ (2= e*)cos f) - fu] ,
% =cosu(l—ecosf)- fi,
a | e (7.60)
T sinu(1 —ecosf)?m. S
dTa: =[—cosf- fr+(2+ecos f)(1 —ecos f)sinf- fo],
dm,

= = [2e(1—ecosf)- fr].
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Putting the air drag force vector and other mathematical relations into the simplified
Gaussian disturbed equations (7.60), theoretically, the equations could be solved.
It is obvious that numerical solutions may be computed; however, there are still
problems that have to be solved by deriving the analytic solutions.

7.4 Solutions of Disturbance of the Sun

The solutions of the disturbance of the sun (see Fig. 7.2) may be similarly derived
by the discretization demonstrated in Sect. 7.2. However, analytic solutions are pre-
ferred in theoretical and practical aspects.

Potential Function of the Sun

The disturbance forces of multiple point-masses acting on the satellite are (see
(4.50))

) FeFn
Foa = —m Y, Gm(j) | "0y D] (7.61)
J F=Fuipl” T

where Gm(j) are the gravitational constants of the sun and the moon as well as the
planets. The disturbance acceleration of the sun is then

S 1 1 N F—T7 . 7
Js=—mg P— figs + ——> 5 T I e _.s y Ny = TS (7.62)
77 7| 7 — 7] |7

The identity vectors 7y and 7i; represent the vectors from the satellite to the sun and
the geocentric vector of the sun, respectively. The maximum difference between the
two identity vectors is about 1.7 x 10~* (rad) for the GPS satellite (except the sign
difference). For CHAMP satellite the difference is about 4.5 x 10~ (rad). That is,
for most satellites the difference between the two identity vectors can be neglected.
Then (7.62) can be approximated by

)
sun . Earth )

Fig. 7.2 Attracting . .
disturbance force of the sun orbit ~ . __ . "
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. ~1 1)\
7 =7 |7

Because (see (7.3))
1 1
< < ,
(rs+r)> 7 [F=F> ~ (rs—r)?

there are (for GPS or GEO satellite)

(7.64)

1 1 2r 32 1 2r
= (1FE ) == (12 £24%x1077--0) . (7.65
(rsir)z ”sz( Ts rs2 T > r52< :Frs 8 > ( )

Then (7.63) turns out to be
o 2r
fs= m/.tsr—3ns. (7.66)
)

Neglecting the change of the geocentric distance of the satellite r, the potential func-
tion of the disturbing force of the sun is

Vo= —mp . (7.67)

Disturbed Equation of Motion and the Solutions

Note that the potential function is the only function of the three Keplerian elements
(a, M, e). The derivatives of the potential function with respect to Keplerian ele-
ments are then

&VS_aVSﬁ_lv Vs  dVy IV
da  drda a '’ 0 di Jdo
QVy_Eﬁ_facost
de r de r '

and

oV, _ Vs or _ aesinf - (7.68)

oM roM  Ji-¢&

Substituting the above derivatives and V; into the equation of motion (4.11), one has

da  —2mug esinf

dt l’ll’? '\/1—62’
de  —mu;V1—eé*sinf
d na ¥z’

do  mugV/1—e?cosf

d nae rz
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di dQ
—_ = —_— :O
d 7 dr ’
dM 2 mpy (1-¢*)  1—e* mpygcosf
dt  na r? 14ecosf  nae r’
(7.69)
2
= mits (1 26 ) 2e ! —cosf
naer; l+ecosf
m.us(l_ez) 2
= e (2¢— (142¢*)cos f).

According to (5.22) there are
7 7 9 4
sin f = (1 — 8ez> sinM +e (1 — 662) sin2M + gez sin3M + 563 sindM,

4 9 4
cosf+e= <1 — Zez> cosM +e (1 — 362> cos2M + §62C0S3M+ 563 cos4M.
(7.70)

Denote

5S:/sinfdt:/sinf <df) dM = (CZ‘?)
0 0

7 7 3 1
X (— (1 — 8€2> cosM — g <l — 6e2> cos2M — gez cos3M — §e3 cos4M>,
-1

X ((1 — zez> sinM + ¢ (1 — §€2> sin2M + %ez sin3M + %63 sin4M) .

2
(7.71)
Then the solutions are
—2m e
Aa = oS
“ nrr 1—e2
_ V1_e2
Ae = Lze&g,
nar?
V1—e2
Ao ="EV"C (ot 50),
naers;
Ai = const., AQ = const., (7.72)
1— 2
AM = Lze) (e(3—2e2)t — (1+2¢%)8C).

naer;
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The orbital parameters (i, 2) are not affected by the sun perturbation. 2 and M are
partly linearly perturbed by the sun. The remaining terms are all short periodic ones.
The solutions are called potential function approximated solutions.

7.4.1 Solutions via Gaussian Perturbed Equations

Equation (7.66) is the disturbing force of the sun and can be simplified by

- 2r M
fs = mis—iis = Erlny |. (7.73)
r n
Using (7.51), one has
Jr Ny 1 nj
fO( = R3 (f)réR:;((D)Rl(l)R:; (Q) ny = R3 (f)m ny (774)
I n; 3
or approximately
fr nycos f+nysinf
fo | =1 —ecosf) | —nysinf+nycosf |, (7.75)
Jn n3

where coefficients ny, ny, n3 can be obtained by comparing with (7.74) and it is
notable that they are different from those in (7.15). Comparing (7.75) with (7.15)
one notices that the solutions of the simplified Gaussian perturbed equations can
be derived in principle without great problem; however, they are rather complicated
because of the factor (1 — ecosf). Then the simplified Gaussian disturbed equations
(7.60) can be used to derive the solution.

7.5 Solutions of Disturbance of the Moon

The disturbance acceleration of the moon is (see (7.61))

- | I 1 . . =T . 7
Sm = —my = 3lsm T S5H0m |, Hem= 3 _.m y  Mm = _.m . (7.76)
2 2 _
|V—Vm| |rm| |I’ I’m‘ |rm|

The identity vectors 7, and 7, represent the vectors from the satellite to the moon
and the geocentric vector of the moon, respectively. The maximum difference be-
tween the two identity vectors is about 7 X 1072 (rad) for the GPS satellite (except
the sign difference). For CHAMP satellite the difference is about 1.7 X 1072 (rad).



7.5 Solutions of Disturbance of the Moon 167

It is obvious that for precise purpose the difference between the two identity vectors
should be taken into account and the solutions can be derived via discretezation as
in Sect. 7.4. Suppose the difference of the two identity vectors can be neglected.
Then (7.76) can be approximated by

- -1 1 .
fm = —mUpy <—»—»2 + ”> Ny (777)
|7 — o |7om]
Because (see (7.3))
1 1 1

< < , (7.78)
(rm 1) 7 [F=Fp)* ~ (rm—1)?

there are (for GPS satellite)

1 1 2r | 317 1 2
:(l¢rj:2:p..> %2(1:Frj:1.4><102--~>. (7.79)
I, ¥ I,

(rm:l:r)z r}%1 m m T m

Then (7.77) turns out to be
- 2r
= m.umr?nm~ (7.80)

Neglecting the change of the geocentric distance of the satellite r, the potential func-
tion of the disturbing force of the moon is

r
Vi = _m.umﬁ (7.81)

The only difference between (7.67) and (7.81) is the index; instead of “s” for the

[T3e L]

sun, “m” is used for the moon. Therefore the solutions of the disturbance of the

[T o9

moon are similar to that of (7.72); one just needs to change the index “s” to “m”.

Discretization and Solution

Denote the satellite period as T. The local noon of the moon is selected as the
starting point of counting (see Fig. 7.3). A so-called sign function can be defined as

1, 0<r<T/2
6<t):{1, T/2<t<T. (7.82)

The sign function shows that the attracting force of the moon decelerates the satel-
lite during the first half period and accelerates during the second half period with
respect to the nominal motion of the satellite. Then the duration of one period of
0 ~ T can be equally divided by Az, i.e., by #),t{,....1;, ..., T. The acceleration of the
disturbance of the moon (7.76) is then discretized as

1
an(t) = —lp | ————5Hgm 7. . .83
o= <|7<n<>—rm<tk>|2 W P “”) )
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Fig. 7.3 Attracting force S
disturbance of the moon . IS
L4 .
L4 .
’ .
' 1
4 @ - s Q '
. ]
moon . Earth R
A ’
A .
~ ’
orbit *~ . -

The disturbed velocity caused by the moon is then

1 . (t)+ 1
-
() =Pt [P

The disturbed position caused by the moon is then

k
Vm(t) == Z.um ( ﬁm(ti)> Ar. (7.84)
i=1
k
Pr(t) =D V(1)) At (7.85)

Equation (7.85) is the discrete solution of the disturbance of the moon on the orbit
of the satellite.

Solutions via Gaussian perturbed equations of the moon are very similar to that
of the sun. Therefore, the discussions are omitted here.

7.6 Solutions of Disturbance of Planets

The disturbance acceleration of a planet is (see (7.61))

- 1 1 77 7
fr=—mu sy + 73 g = ——2=, i, = L. (7.86)
' p(‘?_?p’z v ?p|2 p>7 v |V*Vp|7 ! |r,,|

The identity vectors 7is, and 7, represent the vectors from the satellite to the planet
and the geocentric vector of the planet, respectively. The geocentric distance of the
planet is far greater than that of the moon. The maximum difference of the two
identity vectors is very small for satellite (except the sign difference). Therefore, the
difference of the two identity vectors can be neglected. Then (7.86) can be approxi-

mated by
fp=—mu, —71#% iip. (7.87)
[F=7[" [%l
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Because (see (7.3))
1 1

< < ; (7.88)
(rp+1)? |?f?p|2 (rp—r)?
there are (for Earth’s satellite)

1 1 2r 312 1 2
=1t w2<1$r:|: ) (7.89)
(rp£r) rp T rI7 rp

Then (7.87) turns out to be
o 2r
= mpp—=Tip. (7.90)
p

Neglecting the change of the geocentric distance of the satellite r, the potential func-
tion of the disturbing force of the planet is

-
Vp=—mity . (7.91)
P

The only difference between (7.67) and (7.91) is the index; instead of “s” for the
sun, “p” is used for planet. Therefore the solutions of the disturbance of the planet
are similar to that of (7.72); one just needs to change the index “s” to “p”. For more
planets the solutions are still valid; one just needs to change the related parameters

to the related planets.

7.7 Summary

Solutions of the extraterrestrial disturbances of the attracting forces of the sun, and
the moon, as well as planets, the drag force of the atmosphere, and solar radiation
pressure are derived in this chapter.

The solar radiation is a non-conservative disturbing force; of course, the distur-
bances of the orbit are also non-conservative ones. They are generally non-periodic
effects.

The disturbance of the sun has no influence on the orbital plane; however, there
are long term effects on the orientation of the ellipse and the position of the satellite
as well as short periodic effects on the semi-axis of the satellite and the shape of the
ellipse. The effects of the moon and planets are similar to that of the sun.

7.8 Ephemeris of the Moon, the Sun and Planets

The ephemeris of the sun and the moon as well as planets are needed for the com-
putation of shadow functions of the sun and moon (solar radiation pressure), and
the disturbance forces of the sun, the moon and planets. The computation of the



170 7 Solutions of Extraterrestrial Disturbances

ephemeris of the sun and the moon can be simplified by considering the orbit of
the sun (indeed it is the Earth!) and the moon as Keplerian motion. Consider the
orbital right-handed coordinate system, the origin in the geocentre, the xy-plane as
the orbital plane, the x-axis pointing to the perigee, and the z-axis pointing in the
direction of § x § where g and § are the position and velocity vectors of the sun or
the moon. The two vectors are (see (3.41), (3.42))

3 a(cosE —.e) chsf . —sinf na
qg= a\/?smE = qsz)nf , qg= e+gosf \/17—7’ (7.92)
where ol )
= Ttecosf' (7.93)

The position and velocity vectors of the sun or the moon in the ECEI and ECSF
coordinate systems are then (see Sect. 2.5 and (3.43))

(?) — Rs(— Q)R (—i)Rs(~ ) (g) |
()-ncalf)

where a and i are the semi-major axis of the orbit and the inclination angle of the
orbital plane of the moon or the sun in the ecliptic coordinate system (ECEI). Q is
the ecliptic right ascension of the ascending node, e is the eccentricity of the ellipse,
® is the argument of perigee, f is the true anomaly of the moon or the sun, and € is
the mean obliquity (the formula is given in Sect. 2.4). Because the sun moves along
the ecliptic and the ascending node is defined as the equinox, parameters i and Q
are zero. True anomaly f, eccentric anomaly E and mean anomaly M are given by
the Keplerian equation and by the following formulas:

(7.94)

E —esinE =M,
gcos f =acosE —ae,
gsinf =bsinE = a\/1—e?sinE. (7.95)

For the moon, eccentricity ey, = 0.05490, inclination iy, = 5.°145396 and semi-
major axis ay = 384401km. For the sun, eccentricity e; = 0.016709114
—0.0000420527 — 0.000000126T% and semi-major axis a; = 1.0000002 AU. AU
signifies the astronomical units (AU = 1.49597870691 x 108km). The fundamen-
tal arguments are given in the IERS Conventions (see McCarthy, 1996) as
follows:

I = 134.°96340251 4 1717915923."2178T +31.”8792T2 4+ 0."051635T>
—0."700024470T*,
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I' = 357.°52910918 4 129596581.”0481T — 0.”553272 +0.”000136T"
—0.7000011497*,

F = 93.°27209062 + 1739527262"8478T — 12."7512T2 —0.”001037T3
+0.700000417T*,

D = 297.°85019547 + 1602961601”2090T — 6.”3706T2 +0.”0065937°
—0.700003169T*,

Q = 125.°04455501 — 6962890."2665T +7."4722T% +0."0077027>
—0.00005939T*, (7.96)

where [ and I’ are the mean anomalies of the moon and the sun, respectively. D is the
mean elongation of the moon from the sun. Q is the mean longitude of the ascend-
ing node of the moon. F' = L —Q, L is the mean longitude of the moon (or Lpgon),
and T is the Julian centuries measured from epoch J2000.0. Formulas of (7.96) are
the arguments used to compute the nutation. Mean angular velocities n of the sun
and moon are the coefficients of the linear terms of [ and I’ (units: second/century),
respectively.

For computation of the ephemeris of the sun, I’ is set as M in (7.95), so that E and
f of the sun can be computed. Using D = Ligon — Lsun = F + Q — Lgyn, the mean
longitude Lg,, can be computed. @ can be computed by the relation Ly, = @+ f.

For computation of the ephemeris of the moon, / is set as M in (7.95), so that E
and f of the moon can be computed. @ can be computed by the spherical triangle
formula

tan(®w + f) = tan F'/ cos ip, (7.97)

where angles u(= @ + f) and F are in the same compartment.

Substituting the earlier-mentioned values of the moon and the sun into (7.92)-
(7.94) respectively, ephemeris of the moon and the sun are obtained in the ECSF
coordinate system. For more precise computation of the ephemeris of the moon,
several corrections have to be considered (see Meeus, 1992; Montenbruck, 1989).
Equivalently, a correction dF' can be added to F, and the change of du in (7.97) can
be considered df and added to f, where dF has the form (units: seconds)

dF = 22640sin/ + 769sin(2]) + 36sin(3/) — 125sin D +2370sin(2D) — 668 sin!’
—412sin(2F) +212sin(2D — 21) +4586sin(2D — ) + 192sin(2D + 1)
+165sin(2D — ') +206sin(2D — 1 —1I') — 110sin(l +1') + 148sin(l — ).

The orbits of the planets are given in the sun-centred ecliptic coordinate system
by six Keplerian elements — the mean longitude (L) of the planet, the semi-major
axis (a, units: AU) of the orbit of the planet, the eccentricity (e) of the orbit, the
inclination (i) of the orbit to the ecliptic plane, the argument (w) of the perihelion,
and the longitude (€2) of the ascending node. The orbital elements are expressed as a
polynomial function of the instant of time 7 (Julian centuries) for Mercury, Venus,
Mars, Jupiter, and Saturn as follows (see Meeus, 1992):
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L 252.250906 149474.0722491  0.00030397 —0.00000002
a 0.38709831 0 0 0 1
e | 0.20563175 0.000020406 —0.0000000284 —0.0000000002 T
i | 7.0049860 0.0018215 —0,00001809  0.000000053 T2 |°
[0} 29.1252260  0.3702885 0.00012002  —0.000000155 73
Q Mercury 48.3308930 1.1861890 0.00017587 0.000000211

L 181.979801 58519.2130302 0.00031060  0.000000015

a 0.72332982 0 0 0 1

e _ | 0.00677118 —0.000047766 0.0000000975 0.00000000044 T

i | 3.3946620 0.00100370 —0,00000088 —0.000000007 T2 |°
w 54.883787 0.50109980 —0.00148002 —0.000005235 T3

Q Venus 76.6799200 0.90111900  0.00040665 —0.00000008
L 355.4332750 19141.6964746  0.00031097 0.000000015
a 1.523679342 0 0 0 1
e | 0.09340062 0.000090483 —0.0000000806 —0.00000000035

i o 1.8497260  —0.0006010 0.00012760 —0.000000006 T2
0] 286.502141 1.0689408 0.00011910 —0.000002007 T3
Q Mars 49.558093 0.7720923 0.00001605 0.000002325

L 34.351484 3036.3027889 0.00022374 0.000000025

a 5.202603191 0.0000001913 0 0 1

e | 0.04849485 0.000163244 —0.0000004719 —0.00000000197 T
i o 1.303270 —0.00549660 0.00000465 —0.000000004 T2
[0} 273.866868 0.5917118 0.00063010 —0.000005138 T3
Q Jupiter 100.464441  1.0209550 0.00040117 0.000000569

and

L 50.0774710 1223.5110141 0.00051952  —0.000000003

a 9.554909596 —0.0000021389 0 0 1

e | 0.05550862 —0.000346818 —0.0000006456 0.00000000338 T

i o 2.488878 —0.0037363 —0.00001516  0.000000089 T2 |°
0] 339.391263 1.0866715 0.00095824 0.000007279 T3
Q 113.665524 0.8770979 —0.00012067 —0.00000238

Saturn

where except for the semi-major axis a and eccentricity e, all other elements have
units of degrees. F = L —Q, and f and E can be computed by using (7.97) and
(7.95). Mean angular velocities n of the planets are the coefficients of the linear
term of L (units: degree/century). The coordinate vector of the planet can then be
computed using (7.92)—(7.94). The results are in the sun-centred equatorial coordi-
nate system. The results have to be transformed to the ECSF coordinate system by

a translation
OO o
"] EcsF ¥/ sun "] sces
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Table 7.1 Gravitational constants of the sun, the moon and planets

Planet Gravitational constant (m3s—2)
sun 1.3271240000000E+20
moon 4.9027993000000E+12
Earth 3.9860044180000E+14
Mercury 2.2032070000000E+13
Venus 3.2485850000000E+14
Mars 4.2828300000000E+13
Jupiter 1.2671270000000E+17
Saturn 3.7940610000000E+16

where vectors with an index of sun and SCES are geocentric position and velocity
vectors of the sun and the planet in the sun-centred equatorial system.
Gravitational constants of the sun, the moon and planets are given in Table 7.1.



Chapter 8
Numerical Orbit Determination

In this chapter, the principle of numerical orbit determination will be outlined. An
algebraic solution of the variation equation is derived. Numerical integration and
interpolation algorithms as well as the related partial derivatives are given in detail.

8.1 Principle of GPS Precise Orbit Determination

Recalling the discussions made in Sect. 4.1, the perturbed orbit of the satellite is the
solution (or integration)

t
X (1) =X (1) + /F"dt, (8.1)
io
which can be obtained by integrating the differential state equation under the initial
condition ‘
X()=F, 8.2)
X (t0) = Xo,

where X (7) is the instantaneous state vector of the satellite, X (1) is the initial state
vector at time 7y (denoted by Xj), F is a function of the state vector X (¢) and time 7,

and )
- r - r

X=|5 F={( - .

(r) and (f/m)

where f is the summated force vector of all possible force vectors acting on the
satellite, m is the mass of satellite, and 7, 7 are the position and velocity vectors of
the satellite.

If the initial state vector and the force vectors are precisely known, then the pre-
cise orbits can be computed through the integration in (8.1). Expanding the integra-
tion time ¢ into the future, the so-called forecasted orbits can be obtained. Therefore,
suitable numerical integration algorithms are needed (see next section).

In practice, the precise initiate state vector and force models, which are related to
the approximate initial state vector and force models, have to be determined. These
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176 8 Numerical Orbit Determination

can be realised through suitable parameterisation of the models in the GPS observa-

tion equations and then the parameters can be solved by adjustment or filtering.
We generally denote both the range and range rate together by p; their partial

derivatives with respect to the orbit state vector (see Xu, 2003, 2007) have the forms

o p 0 2

P o 2B

oF’ oF X
Therefore, the orbit parameter related parts in the linearised GPS observation
equation are

I ICH) o WX
77A ] 7_’7_’A ’ 83
o oy T g "
where X X
o T S O
y= (%), &= (shar) To=o o

X R Y are the state vector of satellite and the parameter vector of the force models, and
index O denotes the related initial vectors of time #. ¥ is the total unknown vector
of the orbit determination problem, the related correction vector is Ay = y — ¥y, and
AX, is the correction vector of the initial state vector. The partial derivative of X with
respect to ¥ is called transition matrix which has the dimension of 6 x (6 +n), where
n is the dimension of vector Y. The partial derivatives of the equation of motion of
the satellite (see (8.2)) with respect to the vector y are

(8.4)

oX() _oF _aFox (oF\'
ay 9y o9xay \ody)’

where the superscript * denotes the partial derivatives of F with respect to the ex-
plicit parameter vector ¥ in F', and

= 033 E3x3
_(9F\ _ 7 2 03><3E3><3)
Dm‘(ay)‘ Lor tor = ()
r

"Z)a? ’(7)“94 8.5)
aﬁ * 3x6 3><£ 0
C@t) = <q> = 19f :< 3*“*”)),
) O3 — L G(t
Yy 3%6 moy ( )

where E is an identity matrix; the partial derivatives will be discussed and derived
in a later section in detail. Notable that the force parameters are not functions of z.
Therefore the order of the differentiations can be exchanged. Denoting the transition
matrix by ®(,1), then (8.4) turns out to be

dd(¢,10)

—g = D(1)D(t,19) + C(1). (8.6)
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Equation (8.6) is called a differential equation of the transition matrix or variation
equation (see, e.g., Montenbruck and Gill, 2000). Denoting

@(t,1) = (ﬁgg;) : 8.7)

an alternate expression of (8.6) can be obtained by substituting (8.7) and (8.5) into
(8.6)

42 (1,1 d¥(t,1

% =A(t)¥(t,1) +B(t)% +G(1). (8.8)

The initial value matrix is (initial state vector does not depend on force parameters):

D(t9,10) = (Egx6  Opxn) - (8.9)

That is, in the GPS observation equation, the transition matrix has to be obtained
by solving the initial value problem of the variation equation (8.6) or (8.8). The
problem is traditionally solved by integration.

8.1.1 Algebraic Solution of the Variation Equation

The variation equation can also be solved by numerical differentiation.

Equation (8.8) is a matrix differential equation system of size 3 x (6 +n). Be-
cause A(¢) and B(t) are 3 x 3 matrices, the differential equations are independent
from column to column. That is, we need to discuss just the solution of the equation
of a column. For column j, (8.8) and (8.9) are

ANV 3 .
d ‘Z’tg“) -3 (A,-k(t)‘l‘kj(t)+Bik(t)d\{’§;(t)> LGy, =123, (8.10)
k=1

‘Pi/‘(lo)) ( 8ij ) . {1, ifk=j,
0 ) = L =123, &= fk=
(‘Pij(fo) 8(iv3); l K0, ifk#j,

where index ij denotes the related element of the matrix. For time interval [7, ] and
differentiation step h = (t —ty)/m, one has t, =ty +nh,n=1,...,m and

dz\l"ij(t) o q‘ij(th) _Z\Pij(tn) +\Yij(tn—1) i—1.2.3

T,ft - h2 ) 1=1,2,5,

d¥;(t Wit — Wit

—gt() = ”("*”Zh M) o), =), =123
t=ty

(8.11)
Then (8.10) turns out to be

Wij(to) =Wij(o),  Wij(n) =ij(t0) +h¥ij(r0), i=1,2,3.



178 8 Numerical Orbit Determination

Wij(tnr1) —2Wij(tn) +¥ij(ta-1) _

h2
3 Wiiltnr1) — Wri(ta
k 1 k 1 ;
Z( it (1) Wrj (1) + B (1) it )2h i1y )>+Gi,»(tn), i=1,2,3,
(8.12)
wheren=1,2,...,m—1.For i = 1,2,3 and the sequential number n, there are three

equations and three unknowns of time #,1, so that the initial value problem has a
set of unique solutions sequentially. Equation (8.12) can be rewritten as

E B W1j(tns1) Ry
Iy
(112 7 > Yoj(tus1) | = R2 |, (8.13)
W3(tnr1) R3

where

R \Plj(tn) \Plj([nfl) Gl_i([n)

2F E  B(t,)

RZ = ﬁ +A(tn) \P2j(tn) - }72 + W \PZj(tnfl) + GZj(tn)

R3 lI‘Bj(l‘n) lPSj(tnfl) G3j(tn)
Forn=1,...,m—1, this equation is solvable. Note that the three matrices

(-1 (o). (%)

are independent from the column number j. The solutions of (8.13) are vectors

Wij(tat1) l?lj(thrl)
\sz(thr]) and sz(tn+1) , n=1,....m—1, (8.14)
lP?aj (tl’l+l ) \P3j (tn+1)

where the velocity vector can be computed using the definition of (8.11). Solving
the equations of all column j, the solutions of the initial value problem of (8.8) and
(8.9) can be obtained. Note that the needed values are the values of ¢, which can be
computed by averaging the values of #, | and #;,_;.

8.2 Numerical Integration and Interpolation Algorithms

The Runge—Kutta algorithm, Adams algorithm, Cowell algorithm and mixed algo-
rithm as well as interpolation algorithms are discussed in this section (see, e.g.,
Brouwer and Clemence, 1961; Bate et al., 1971; Herrick, 1972; Xu, 1994; Liu et al.,
1996; Press et al., 1992).
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8.2.1 Runge-Kutta Algorithms

The Runge-Kutta algorithm is a method that can be used to solve the initial value
problem of

dx
o~ FeX), (8.15)
X(l‘()) = X(),

where X is the initial value of variable X at time #y, and F is the function of ¢ and
X. For step size h, the Runge-Kutta algorithm can be used to compute X (79 + h).
By repeating this process, a series of solutions can be obtained as X (1o + 1), X (o +
2h), ..., X(to + nh), where n is an integer. Denoting t, = fo + nh, X (t, + h) can be
represented by the Taylor expansion at #, by

dx n? d’x n d"x
X(t,+h)=X(t, h — —_—— — 8.16
(1) =X (1) +h ,njLZdt2 . nl dem ,:tn+ , (816)
where
X _F
a7’
$X _dF(X) _OF OF X _OF OF
a2 dt 9t 9XoJt It X’
X  9°F _9*F 2F  92F , (9F\?
=2 F Z)F 8.17
a3~ o TPaox T oex T ax2 <ax> @17
and
&*x  JPF  PF 5 J*F OF  J9’F 4
T = o amag OF F 0T 5 OF 4 2P) 12 50 S s
9%F OF OF 9°F OF 3°F , (JdF\?JF [JF\*JF
P2ox2 o F T ax aax T Oox axat (97) §+<Tx) ax

The principle of the Runge-Kutta algorithm is to use a set of combinations of
the 1st order partial derivatives around the (z,,X(#,)) to replace the higher order
derivatives in (8.16), that is,

X(thrl tn +2W1 iy (8.18)

where
Ki =hF (t,,X (t,))
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and

i—1
K; = hF (t,, +oh, X (1) + Y, ﬁ,-,-K,) (i=2,3,...), (8.19)
Jj=1

where w;, oy, and f; j are constants to be determined, and L is an integer. The Taylor
expansions of K; (i = 2,3,...) at (#,,X (#,)) to the 1st order are

oF  oF 'd
2
K; = hF (t,,X (1)) + h* o, Oi 5" +h8x 2 BiiK; (8.20)
or
JoF JF
= hF(tr” (tn)) +h2 ((Xza +ﬁ21 8X ) 3 (821)
JoF 8F aF JoF JoF

oF oF
Ky =hF + K> <a4a + (Bar +ﬂ42+ﬁ43)8x )

OF OF OF OF
+h {(ﬁ42a2+ﬁ43as)ax 5 + (Ba2B21 + Baz(B31 + B32)) 8X8XF}
JoF OF oF oF
+n 134313328)( % ( T +ﬁ218XF>’

OF oF
= hF + h? (asgt +(Bs1 + Bs2 + Bs3 +l354)aXF>

a JIF . OF
oF +ﬁ21 F + Bs3 ( — + (B +ﬁ32)8F>
+h == aF ot o X
0X +PBs4 < o + (Bar + Baz+ B13) =< X )
OF OF
4OF (Bs3B320n + Psa(Bazon + Bios)) 5 ——
o OF OF

+(Bsa (Ba2Po1 + Baz (B3t + B32)) + B2Br1) 5w

oF OF OF oF oF
—i—hs ﬁ54 <B4zl3%2 X 9% ( +le ))

2.4 8X

where F and the related partial derivatives have values at (¢,, X(#,)). Substituting
these formulas into (8.18) and comparing the coefficients of 4" (= 1/n!) with (8.16),
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a group of equations of constants w;, ¢; and B;; can be obtained by separating them
through the partial derivative combinations. For example, for L = 4, one has

and

wi+wr+wi+wy =1,

1
wWo 0l + w303 +Wwa04 =

5;
1
waBo1 +w3(Bs1 + Bs2) + wa(Bar + Baz + Paz) = o
1 (8.22)
1
w31 B2 +wa(Bo1Baz + B31Ba3 + B32Paz) = o
1
w4043 B30 = %

1
waP1BazP2 = %

There are 13 coefficients in the seven equations, so the solution set of (8.22) is
not a unique one. Considering w as weight and o as the step factor, one may set,
e.g,wi=wr=w3=ws=1/4, a0 =1/3, 03 =2/3, a4 = 1 and substitute the same
into (8.22) and have

and

Bo1 + B31 + B2+ Par + Bao + Paz =2,
B32+ Baz +2Paz =2,

B21B32 + B21Baz + B31Baz + B2 Paz = ;

1
B3Pz = >

B21Ba3B32 = é

Letting B3> = 1, one has B4 =0, 31 = —1/3, and B4; = 1/2. Thus, a 4th-order
Runge-Kutta formula is

where

1
X (tps1) :X(t,,)+ZZKi, (8.23)

Ki = hF (0, X (1)) (8.24)

1 1
KZ =hF (tn"_ §h7X(tn) + 3K1) )
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2
K3y = hF (rn + 53X () = 5

1
=K +Kz>

and

2 2

Similarly, a commonly used 8th order Runge-Kutta formula can be derived. It is
quoted as follows (see Xu, 1994; Liu et al., 1996):

1 1
K4y =hF (tn +h,X(ty)+ =K1 + K3> .

1
X(th) =X, + 340 (41K1 + 27Ky + 272K5 + 27Kg + 216K7 + 216Ky + 41K10)
(8.25)
where
K| = hF(t,, ,,) X, =X(tn), (8.26)
4
=hF (1 hX —K
2 1 1
=hF (1t —h, X, —K -K
n+9 3 n+18 1+6 2>7
=hF t+1hX+ 1K+1K
= n 12 1 4 3
1

—h, X, + K1+§K4>

8
1
t,+=h,X, +5 (13K1 27K3 +42K4+8K5)),

3
1
2
2
3
tn+1
6

1
h X+ Ja5g (389K1 — 54K; + 966K — 824Ks + 2431(6)) 7

hE | t,+h, X, +

1
55 (~231K1 + 81K — 164K, + 656Ks — 122K¢ + 800K7)> ,

K (

K, (

K (

Ks = hF <tn +
Ks (

K (

Ks (

Ky

5 1
. (tn+6h Xt 52 (127K +18K3—678K4+456K5>

—9Ks +576K7 +4Kg)
and
1
ta+h,X,+—(1481K; —81K3+7104K4 — 3376K:
Kio = hF n+n, +820( 81K, —81K3 +7104K4 —3376K5 .
+72K¢ — 5040K7 — 60K3 + 720Ky)

From the derivation process, it is obvious that the Runge-Kutta algorithm is an ap-
proximation of the same order Taylor expansions. For every step of the solution, the
function values of F have to be computed several times. The Runge-Kutta algorithm
is also called the single step method and is commonly used for computing the start
values for other multiple step methods.
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Errors of the integration are dependent on the step size and the properties of func-
tion F. To ensure the needed accuracy of the orbit integration, a step size adaptive
control is also meaningful in computing efficiency (see Press et al., 1992). Because
of the periodical motion of the orbit, the step control just needs to be made in a few
special cycles of the motion. A step doubling method is suggested by Press et al.
(1992). Integration is taken twice for each step, first with a full step, then indepen-
dently with two half steps. By comparing the results, the step size can be adjusted
to fit the accuracy requirement.

To apply the above formulas for solving the initial value problem of the equation
of motion (8.2), equation (8.15) shall be rewritten as

ax, .
d—[k:Xk(z,X), X(to) =X (k=1,2,3),
dx, . .
o = X)) m Xilo) = Xio

where X = (X1,X2,X3,X1, X2,X3). Using the Runge-Kutta algorithm to solve the
above problem, an additional index k shall be added to all X and K in (8.25):

1

X, (¢ =X
i (tnr1) w10

(41Kyq + 27Ky + 272Kys + 27Ky + 216Ky + 216K39 +41K;10)

and the same index k shall be added to K on the left side and F on the right side
of (8.26). For the last three equations, F; = f;/m, so X; can be computed. For the
first three equations, F, = X, so Fj can be computed through computing X; at the
needed coordinates ¢ and X.

8.2.2 Adams Algorithms

For the initial value problem of

dx
— =F(t,X),
dt (8.27)
X(to) ZX(),
there exists ,
n+1
X(thy1) =X(t,) + F(t,X)dr. (8.28)

In

The Adams algorithm uses the Newtonian backward differential interpolation
formula to represent the function F by
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(t—tn)(t —ty— 1)V2

F(t,X)=F, X

(8.29)
(t—ta)(t —tn1) - (t —typg1) VEE

e Kk

where F, is the value of F at the time #,, h is the step size, VKF is the k™ order
backward numerical difference of F, and

VE, =F,—F,
V2F,=VE,~VF,_ 1 =F,—2F, | +F, 2,

< i i m!
mp — —1\c/ . Jj o
% Fn—jgo( D'CuFaye G = G071 (8.30)

where CJ, is the binomial coefficient. Letting s = (t —,,) /h, then dr = hds, s = 0 if
t=t,, s =1ift =1,41, so that (8.29) and (8.28) turn out to be

k
X) = 2 ;n+m—1Van
m=0

and
Tnt1
X(tar1) =X (t,) + Zc+m 12 )/CJ,F, jhds. (8.31)
By denoting
')/m—/ Cnim ]dS‘
X o (8.32)
Bi= z (=1)Cy¥m,
m=j
one has .
X(tas1) =X (ta) + 1Y, BiFaj, (8.33)
j=0

where the sequences of the two sequential summations have been changed. For the
first equation of (8.32), there is (see Xu, 1994)

- |
W=1 =1=3 gty (m21), (8.34)
j=1

Equation (8.33) is also called the Adams-Bashforth formula. It uses the function
values of {F,_;,j = .,k} to compute the X, 1. When the order of the algorithm
is selected, the coefﬁ01ents of B; are constants. This makes the computation using
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(8.33) very simple. For every integration step, just one function value of F, has to
be computed. However, the Adams algorithm needs {F,_;,j =0,...,k} as initial
values, but to compute those values, the states {X,_;,j =0,...,k} are needed. In
other words, the Adams algorithm is not able to start the integration itself. The
Runge-Kutta algorithm is usually used for computing the start values.

The Adams-Bashforth formula does not take the function value F, ;| into ac-
count. Using F;; 1, the Adams algorithm is expressed by the Adams-Moulton for-
mula. Similar to the above discussions, function F can be represented by

r— (t—tyg1)(t —t,)

F(t,X)=F+ ;Znﬂ VE 1+ 2 V2Fu
(8.35)
4t (t —tus1)(t _]t(nlz,k (t—tait2) VAE,L L,
where "
V"Fyp1 = %(—U-/’Cﬁfnﬂﬁ. (8.36)
Jj=

If one lets s = (t —t,11)/h, then dt = hds, s = —1ift =t,,and s =0if t = 1,11
similar formulas of (8.33) and (8.32) can be obtained:

k
X(tn—H) :X(tn)+h2ﬁ;Fn+l—j7 (8.37)
Jj=0
k . .
Bi =2 (=1)YCl
m=j (8.38)

0
Vo= [ Cllrds

and (see Xu, 1994)

m

* * 1 *

wX=1, 7y = j;j+1ym_j (m>1). (8.39)
Because of the use of F;; to approximate F, the Adams-Moulton formula may
reach a higher accuracy than that of the Adams-Bashforth formula. However, be-
fore X,,+1 has been computed, F,,; might not have been computed exactly. So an
iterative process is needed while using the Adams-Moulton formula. A simple way
to use the Adams-Moulton formula is to use the Adams-Bashforth formula to com-
pute X,,+1 and F,11, and then to use the Adams-Moulton formula to compute the
modified X,y using F, ;. Experience shows that such a process will be accurate

enough for many applications.
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8.2.3 Cowell Algorithms

For the initial value problem of

2
i% =F(1,X),
. ; 8.40
X(t0) = Xo, (8.40)
X(to) :X()7
there is .
X(t)=X(to)+ | F(t,X)dr. (8.41)

tn
Note that here X is the position coordinate of the satellite. In other words, the
disturbing force F is not the function of the velocity of the satellite.
By integrating (8.41) in areas of [t,, t,+1] and [¢,, #,—1] respectively, one has

. Int1 1
X(tn+1)—X(t,,)—X(t,,)(th—tn):/ / F(t,X)dedt (8.42)

and o
X(tno1) = X (t2) = X (1) (bn—1 1) = / R dd, (8.43)

th tn

where (fy+1 —t,) = h = (t, — t,—1). Adding both equations together, one has

Int1 t Tn—1 1
x(tn+1)—2x(t,,)+x(tn,1):/ /+/ F(t.X)didr.  (8.44)
In In In In

Similar to the Adams-Bashforth formula, function F' can be represented by

t—t, t—1,)(t —t,—
F(t.X)=Fy+— VF,,+%V2FH
(t—1,)(t —ty_1) . (t—1t ) (8:45)
—pn —lp—1) -\ —lp—k+1 k
et A VXE,.

Substituting (8.45) into (8.44), one has (similar to the derivation of Adams algo-
rithms) (see Xu, 1994)

k
X(tns1) = 2X (tn) = X (tn—1) +h* Y. BiFu—j, (8.46)
j=0

where

Bi =Y, (=1)/C}0m, (8.47)
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zo 2
Go=1, Op=1-3 —=
=1

bjt10m—j (m=>1),

1
T

M-

bj=
1

Equation (8.46) is called the Stormer formula. Similar to the discussions in
Adams algorithms, taking F, | into account, one has

t—ty1 t—t,1)(t—1
F(LX) :Fn+1+ hn+ VF,,.;,.]-I-%VZF,Z_H
(8.48)
t—t, t—t,) - (t—t,_
oy ) ky:ilk (1 —tn k+2)Van+1
and (see Xu, 1994)
k
X(tas1) = 2X (tn) = X (ta—1) + 12 Y BiFus1-, (8.49)
=0
where
k . .
Bi = Y, (=1)Cjo, (8.50)
m=j
=1 o= sbinc (m>1)
I=TA
and

U
bi=Y
i=1

Equation (8.49) is called the Cowell formula. Because of the use of F,;; to
approximate F, the Cowell formula may reach a higher accuracy than that of the
Stormer formula. However, before X;,;1 has been computed, F;;+; may not be com-
puted exactly. So an iterative process is needed while using the Cowell formula. A
simple way is to use the Stormer formula first to compute X, | and F,1, and then
the Cowell formula to compute the modified X, using F;; . Experience shows
that such a process will be accurate enough for many applications.

8.2.4 Mixed Algorithms and Discussions

Above we discussed three algorithms for solving the initial value problem of the
orbit differential equation. The Runge-Kutta algorithm is a single step method. The
formulas of different order Runge-Kutta algorithms do not have simple
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relationships, and even for a definite order the formulas are not unique. For every
step of integration, several function values of F have to be computed. Interestingly,
the Runge-Kutta algorithm is a self-starting method. Generally, it is used for pro-
viding the starting values for multiple-step algorithms.

Adams algorithms are multiple-step methods. The order of the formulas can be
easily raised because of their sequential relationships. However, the Adams algo-
rithms cannot start themselves. For every step of integration, only one function value
has to be computed. The disturbing function is considered a function of time and the
state of the satellite. So Adams methods can be used in orbit determination without
having any problem with the disturbing function. For a higher accuracy requirement,
a mixed Adams-Bashforth method and Adams-Moulton methods can be used in an
iterative process.

Cowell algorithms are also multiple-step methods. The order can be changed eas-
ily. Cowell methods also need starting help from other methods. Analysis shows that
Cowell algorithms have a higher accuracy than that of Adams algorithms when the
same orders of formulas are used. However, Cowell formulas are only suitable for
that kind of disturbing function F, which is the function of the time and the posi-
tion of the satellite. It is well-known that the atmospheric drag is a disturbing force,
which is a function of the velocity of the satellite. Therefore Cowell algorithms can
be used only for integrating a part of the disturbing forces. A mixed Cowell method
still retains this property.

Obviously, the forces of the equation of motion have to be separated into two
parts: one includes the forces that are functions of the velocity of the satellite, and
the other includes all remaining forces. The first part can be integrated by Adams
methods and the other by Cowell methods. The Runge-Kutta algorithm will be used
for providing the needed starting values.

The selections of the order number and step size are dependent on the accuracy
requirements and the orbit conditions. Usually the order and the step size are se-
lectable input variables of the software, and can be properly selected after several
test runs. Scheinert suggested using 8th-order Runge-Kutta algorithms, as well as
12th-order Adams and Cowell algorithms (see Scheinert, 1996). Note that for the
order selection; it is not the higher the order is, the higher the accuracy will be. For
the step size selection, it is not the smaller the step size is, the better the results
will be.

8.2.5 Interpolation Algorithms

Orbits are given through integration at the step points fy + nh(n = 0,1,...). For
GPS satellites, % is usually selected as 300 s. However, GPS observations are made,
usually in IGS, every 15s. For linearisation and formation of the GPS observation
equations, the orbit data sometimes have to be interpolated to the needed epochs.
To obtain the ephemeris of any epoch, a Lagrange polynomial is used first to
fit the given data and then to interpolate the data in the chosen epoch. The general
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Lagrange polynomial is (see Wang et al., 1979):
NOEDWHOBIHE (8.51)

where

II@—&) k# j, (8.52)
where the symbol IT is a multiplying operator from k = 0 to k = m, m is the order of
the polynomial, y(z;) are given data at the time #;, L;() is called the base function
of order m, and ¢ is the time at which data will be interpolated. Generally speaking,
t should be placed around the middle of the time duration (¢, #,,,) if possible. There-
fore, m is usually selected as an odd number. For IGS orbit interpolation, a standard
m is selected as 7 or 9.
For the equal distance Lagrange interpolation there is

t =ty + kAt,
t—t, =t—ty—kAt,
tj—te=(j—k)At,
then
" (t — 19 — kA?)

Liit)=T] —2—— k], 8.53
0= "0a > *#7 (8.53)

where At is the data interval.

Usually the ephemeris of the sun and the moon are computed or forecasted every
half day (12h). The ephemeris of the sun and the moon at a required epoch are
interpolated from the data of the two adjacent epochs (1, #) by using a Sth-order
polynomial:

fO)=a+blt—t)+clt—n)?+dt—1) +e(t—t)* + f(t —1,)°.
For data at two epochs, e.g.,

1 1 X1,)1,21,X1,01,21,%1, 1,21

and

12 1X2,2,22,%2,2,22,%2, 32,22,
where x and X are the velocity and acceleration components related to x. Considering
the formulas of f(¢), df(¢)/dt, d>f(t)/dt? and letting t = ¢1, one gets a = x1, b = X
and ¢ = X /2. Letting t = 1,, coefficients of d, e, f can be derived theoretically, e.g.,
in the case of 1, —t; = 0.5:

d= 80(X2 —xl) — 163y — 24x) + iy — 34y,
e = —240(xp — x1) + 561, + 64%) — 4% + 651,
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f= 192(X2 —xl) — 48Xy — 48x1 +4xy — 4xy.

For components y and z, the formulas are similar. Such an interpolating algorithm
is accurate enough for using the given half day ephemeris of the sun and moon to
get the data at the required epoch. The computation of the ephemeris of the sun and
moon are discussed in Sect. 7.8.

By deriving the Adams and Cowell algorithms, the Newtonian backward differ-
entiation formula has been used to represent the disturbing function F. By simply
considering F a function of ¢ (¢ is any variable), one has

t—ty (t—tn)(t —tn—1)
h 2142
(t—=ta)(t—tn1)-(t =ty gs1)
k\h*

F(t)=F(t,) + VF, + V2E,

(8.54)

VXE,.

This is an interpolating formula of F(r) using a set of function values of {F,_;,
j=0,... k}.

8.3 Orbit-Related Partial Derivatives

As mentioned in Sect. 8.1 the partial derivatives of

o 9L g U (8.55)
7 o7 Y

will be derived in this section in detail, where the force vector is a summated vector
of all disturbing forces in the ECSF coordinate system. If the force vector is given
in the ECEF coordinate system, there is

of of Al reln1 dfecer O frcEr
—.,—< | =R, Ry R< R - . 8.56
<a?’a7> NS M oF T oF (80
Because
7= R -TECEF,
f=R-facEr;

one may have the velocity transformation formula

d# dR d7ecer
- R.—ECED
4 ar Eeert a
where
—1p—1p—1p-—1
R=Ry'Ry'RS'Ry,.
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Therefore one has

J7ECEF -1
— =R,
Jr
ITECEF
Y :Ril’
or

and

Iecer _ Iecer ITEcEF _ Ifpcer g1

Y

Iecer _ Iecer ITECEF _ fpcer po

1. Geopotential Disturbing Force

The geopotential disturbing force vector (see Sect. 4.2) has the form

oV A% oV
bi1=—+by=—+b31 =55

fv or (9(p dA
- av av oV
= | = | bra=—+byn=——+by—— 8.57
JSECEF Sy s 23, thanor | (8.57)
for av A%
bi13— +byy—
135 + 239({’
where
cos@cosA  cos@sinA  sing
bi1 b1z bi3 | | '
d(r.e,1) e _ sinosind -
00y 7) — | by by b3 | = . sin g cos A . sinpsinA —cos

b31 b32 b33 —_ COS)L 0

sinA
rCos @ rCos @

and (¥, ¥/, 7/) are the three orthogonal Cartesian coordinates in the ECEF system.
Thus,

afx’
a(x/7y/7z/)
a]?ECEF o afy’ o a(fx’vfyﬂfz’) 8(r,(p,/l) !
ao | aW,y.2) _( d(r.e,2) 3(x’,y’,z'))'
3t
a(x/’y/7z/)

(8.58)

Using index j(=1,2,3) to denote index (x', y, Z), one has
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192
dbij 9V by aV  dbs; vV OV 92V v\
o ar " ar ap " ar ar TPg2 TPig5, a<p+b3fa 97
9fi | 9bjov by 9V by, av+ % o *v b I*V
o(r,o,A) 90 or " 90 90 T a9 9% Tigrag g2 Y Pigean |
9b1j dV  dby; dV  Ibs3; IV I*v *v v
9% ar " ar 9p " or ar TPugman TPigean TG
(8.59)
where
0 0 0
b1y b12 b3
P 1 1 -1
5 by by by | = —sm(pcosl sm(psm), —5 Cos @
r
1 —1
b31 b3y b33 5 sind — cos A 0
r?cos @ r’cos @
—sin@cosA  —sin@sinA  cos
b1y b1z b3 ¢ 4 4
0 1 A 1 i 1.
% b21 b22 b23 — 7;COS(pCOS 7;COS(pSIH 7; sm(p
b3\ b3z b33 _ 0P Gina P cosa 0
rcos2 @ rcos? @
and
—cos@sinA  cos@cosA 0
b1y b2 b3
P . 1.
i by by brs | = ;sm(psm?t - sinpcosA O (8.60)
b31 b3y b33 - cosA — sinA 0
rcos @ rcos @
and
IV wu S < a\!l— _—
=52+ Y Y e+ (;) Py (i 9)[Cp cosmA + SppsinmA] |
[=2m=0
0%V & & dP;,,(sin
990 = —% NN (1+1) (r) lmé(p(p)[Clmcosml + Sy sinmA],
[=2m=

l _ _
(I+1) (g) Pi(sin @)m[—CpsinmA + Sp Cosml]] ,

1d’P
g) M [CimcosmA + S;,, sinmA],

de?
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2 o 1 1dpP;,,(si — -
&7‘/ = %Z Z (g) Mm[—clmsinml + SpmcosmA]

dpIA I=2m=0 de

and

82V ‘u > 2[4 I_ . — = .

572 71;%0’" (;) P (sin @) [CpycosmA + Sp,, sinmA], (8.61)
where

dPy,,(si _ _

’éfp“‘"’) = B(m)Py(n11)(sin @) — mtan @P,,(sin @),

d*Ppy(sing) APy 1) (5in @) = . dP;,(sing)
i - B(m) a0 —mcosz(pP;m(sm(p) —mtan(pT

— B(m)B(m+1)Pyy2)(sin @) — B(m) tan 9(2m+ 1)Pyg,. 1) (sin )

+ <m2 tan® ¢ —m ) Piy(sing),

cos2 @

| 1/2
BOn) = [ 32 ) (= m) 14+ 1)
and
| 1/2
B(m+1) = [z(l—m—l)(l+m+2)] . (8.62)

Other needed functions are already given in Sect. 4.2. Because the force is not a
function of velocity, it is obvious that

OfcEF
o7

= [0]3x3- (8.63)

Only non-zero partial derivatives will be given in the text that follows.

Supposing the geopotential parameters C?:n, sy 1m are known (as initial values),
Cim» Sim are true values, and ACy,,,, AS),, are searched corrections (unknowns), then
the geopotential force is

JecEF (Cims Sim) = frcer( Cf,[n,SN ) + ficEE (Cims Sim) — frcer( Cﬁ'n,S’fn)
(8.64)

:fECEFCN SN ) + fecER (AC ), ASi),

and
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av
. bii bia biz\ | or
_ Ofecer b2y by ba3 S
O(AC 1, ASim) T O(ACHLAS) | de |
b31 b3y b33 v
ER
d oV a\'= . .
m (3}’) = —%(H— 1) (;) Py (sing) (cosmA sinmA ),

(cos mA sinmA )

d (&V) _ % (g)l dP;,,(sing)

9(AC i, ASy) \ @ r do
and
d VN u ra\— . .
ST 50 (%> =—m (;) Puy(sing) (—sinmA cosmA ). (8.65)

2. Perturbation Forces of the Sun and the Moon as well as Planets

The perturbation forces of the sun, the moon and the planets are given in Sect. 4.2
(see (4.50)) as

o =—mY Gm(j) [ Ty r’;’“)] : (8.66)
j F=Tun” T

where Gm(}j) are the gravitational constants of the sun and the moon as well as the

planets, and the vectors with index m(j) are the geocentric vectors of the sun, the

moon and the planets. The partial derivatives of the perturbation force with respect

to the satellite vector are then

T
af, Gm(j) 3 R I
m m ]
57 :7mzﬁ EJrﬁ Y = Ym(j) Y= Ym(j) ’
7P| F=Fun|” | ~
2= Zm(j) 27 Zm(j)
(8.67)

where E is an identity matrix of size 3 x 3. The partial derivatives of the force vector
with respect to the velocity vector of the satellite are zero. The disturbances of the
sun, moon and planets are considered well-modelled; therefore, no parameters will
be adjusted. In other words, the partial derivatives of the force vector with respect
to the model parameters do not exist.
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3. Tidal Disturbing Forces

Similar to the geopotential attracting force, the tidal force (see Sect. 4.2.3) has the
form

Vv av Vv

£ b1 =— 5 +by=— 70 +b31 =5 92

. oV 8V oV

Jecer= | fy | = | b5 5, +b228go +by— 7 | (8.68)
£ v v

b137 +by3=— 70

where V = 8V + 8V} + 6V», which is a summation of the Earth tide potential and
the two parts of ocean loading tide potentials. Equation (8.59) is still valid for this
case. Other higher order partial derivatives can be derived as follows:

2V L N (1) (nt2)at! Fulsin@)Pu(sind)
YD N T T e (n - b)!
! 1 (n+k)!

+2 i P (sin @) Py (sin ;) coskh;
k=

dP,(sinp)
P
s 38 wenan [

- J T 2l n ’
drde 575 2 gE k;'%:pm(mpnk(sinaj)coskhj
2V & Y a2 [ (n—k)! ]
8r%—j:21u,-)§;kn g 2,; G 1 ok (S Q)P (sin & esinkhy |

[ d?PB, (sing) i
325‘/ 2 N u2"+l d(pz
202 :Z“/zk" n+el 1 |12 .

() ! rrtlpt n (n—k)! d°Py(sing)

j=1 n=2 Jj +2
L kgl (n+k)!  de?

P, (sind;)

Py (sin§;) coskh;

228V 2 N a2 L (n—k)! dPy(sin@) . .
EPYRL _j:z'lluj,g'zknr"“r'jﬂ ZIZ‘I R do P (sin6;)ksinkh; | ,
aZaV 2 N a2n+l n k)
AT :jzzll/,tjng‘szn r"*elr’;“ {2/{2‘1 (TR K* Py (5in @) Py (sin ;) coskh;
928V, oo | N B,(sm(p) ,,(ﬂln(pg) (2* 5()n)
L /GGHZ(1+k/)w R Y ds,

ar n=0 e (n—k). P (sin @) Py (sin @5 ) cosk(As — 4)

) (n+k) nk @)k Os

P,(sing) .
Pn S s 2— n)"
- n +2 n AT : )

Ide p S " (n=k)! dBu(SIn0) p i) cosk(ds — 1)

K=o (n+k)!t  do
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228V,
droA

(325V1
dpdL

(325V1
JdA?

(325V2
ar?

928V,
arde

8r8l

028V,
EPED

and

228V,
FYe

where
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1) (2_ 80)1)'
+
#GGH 2 1+k’ T n —k dS7
- EZ—&-k; P (sin @) Py (sin @5 )ksink(As — A)
[ d?Py(si .
. o | T psing) + 2 &)
B #GGH 2 (1+k:’)r"il 1 (n—k)! APy (sing) o
n=0 )T kT ino. -
0 Z ! do? P (sin@y) cosk(As — A)
- [ (2 - 5011)
aﬂ
=()GoH Y (1+k,)—* _ . ds,
2 W)kt | (n—k)! dPy(sing) . B
o n=0 L Z ! 7(1(,) P (sin @ )ksink(A; —A)
" 7(2 - 6011)'
GH21+1<’ Y ds,
# i Z EZ+113 P (5in @) Py (sin @ )k? cosk(As — 4)
s (nt1)(n+2)ag P )3 )
n n a
= ﬂGGe“r 2 | n -k . ds,
2= 3 i Plsing)Busin,) cosk(hs ~ 1)
P, (sing) .
= _(n+1)a" do ————=By(sin@y) + (2 — on)-
#G(’eu’ = 2 no(n—k)! dPnk(SiIl(P)P (si ) k(A — 1) ds,
| Z Tl dp sin @) cos k(A
) [ (27 60n)
aVL
G ur nie n p— ! ds7
ﬂ Oe a 2 p OEZ+£) P (sin @) By (sin @y )ksink(A; — 1)
[ d*P,(si .
%Pn(sm(ps) + (2= 8on)-
e
%%G et 3, ST (n—k)! 2Py (sing) &
Z ! TP,,k(sm @s)cosk(As —A)
- n i (2 - 6011)‘
a
:#Gceurz | o (1= k) dP(si ds
I ww“'kﬂ$+5fl%$@&mm%mmuafm
7(2(7 502)'
e n (n— d
ﬂGO’eur = kgo (n—o—k; Py (sin @) Py (sin @)k cosk(Ag — ) 5
(8.69)
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dp(sing) _ _n (Pi—1(sin@) — sin P, (sin @))

dp  cosg
and 4P (sing)
)k (sin ) .
"di(p"’ = Pyier)(sing) — ktan Py (sin @) (8.70)

4. Solar Radiation Pressure

If solar radiation force acting on the satellite’s surface (see Sect. 4.2.4) is

2 S F-7
Feolar = myPCrrl, — — 0 (8.71)

m (7 — o>

then the partial derivatives of the perturbation force with respect to the satellite
vector are

T
7 X — X X — X
afsolar o ) S 1 3 sun sun
oF mVPSC,rsun% I — = o 2 | Y Ysun Y — Ysun s
|r_rsun| |r_rsun‘ Z— Zem Z— Zem
(8.72)

where FE is an identity matrix of size 3 x 3. The partial derivatives of the force vector
with respect to the velocity vector of the satellite are zero. The disturbance of the
solar radiation is considered not well-modelled; therefore, unknown parameters will
also be adjusted. The total model (see Sect. 4.2.4) is

B . aii ap a3 1
fsola.r—force = fsolar + | a21 ax az3 cosu | . (8.73)
as1 az as; sinu
Thus,
~ . ait a2 ai3 0
p) 3 0 . u
fsolarH force _ fsilar + | a21 am an —sinu | =, (8.74)
a7 o7 r
asy asn asjz cosu
where .
du . du a(Qvi7w7a7e7M) 9(7,7) (8.75)
oF  I(Qi,wae,M) IR F) oF '

On the right-hand side of above equation there are three matrices, the first one is a
1 X 6 matrix (vector) and is given in Sect. 4.1.2 (see (4.24)), the second one is given
as its inverse in Sect. 5.4 (see (5.59) and (5.61)), and the third one is a 6 X 3 matrix,
or

2 2
Ju :<0,0,1,0,Tic:2”csmf, (%) \/1—e2>,

d(Q,i,w,a,e,M)
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. 1 IR . Pl -1
2(Q,i,0,a,e,M) a(7,7) | @i 0 M o(a,e,m)
oFF)  \dQiwaeM)) IR ., 99
9(Q.i,0) 7 " 9(a,e,M)
and
a(?a?)_ E3><3
or _(03x% ' (8.76)
du du 2(Qi,0,a,e,M) I(F,F)
oF  9(Qi,w,a,e,M) d(7,7) o7
and .
8(7,?) O3><3>
= . 8.77
or (E3><3 ( )

The partial derivatives of the force vector with respect to the model parameters
are (fori=1,2,3)

" 1, ifj=1,
O froltoree TS = ¢ cosu, ifj =2, (8.78)
ij sinu, ifj = 3.
If the model (4.74)
. aj b] 1
o fsolar = | a2 by (t ) (8.79)
az bz
is used, then one has
M:(m, i=1,2,3. (8.80)

8(a,~,bi)

5. Atmospheric Drag

Atmospheric drag force has the form (see Sect. 4.2.5)

- 1 (C4S ERER SRR
fdrag:_mi <:1)G’r_rair| (r_rair)a (8.81)
and the air drag force model is
ﬁlirfdrag = fdrag + (1 + Q)Afdraga (3.82)

where (see (4.84) and (4.85))

Afarag = la+b(20) cos(2f) + co(3w) cos(3f) +dp(w)cos /] ,  (8.83)



8.3 Orbit-Related Partial Derivatives 199

sinkw, if coskw =0
coskw

It is obvious that the partial derivatives of the air drag force with respect to the
satellite position vector are zero, and

7 X — Xair X — Xair
afd:ag = _ml <CdS> o |?_?air|E+ 5 1_', Y — Yair Y — YVair )
o7 2 m |r_ rair| Z— Zair Z— Zair
(8.85)
aA;;‘ag — 260 (20)sin(2f) — cp(30)sin(3f) — do(w)sin f] f,  (8.86)
IA farng _ I9(20) I9(30) Ip(w)] .
o [bcos(Zf) EPS +ccos(3f) B +dcosfw D, (8.87)
kcoskw, if coskw =0
20 (k) ’
= (k=1,2,3), (8.88)
Jo i:l::a(i), if coskw # 0
iy _ 0oy (@)  9(Qi0.a.eM)I(.7) (8.89)
oF ) dw,f) Qi maeM) d(7,7) Pl '

where

dw
8(971.) a)7a7e)M)

e = (0000 5 wnr (2 V)

2(Q,i,w,a,e,M)

=(0,0,1,0,0,0),

Some of the formulas in this subsection have been already derived. The partial
derivatives of the force vector with respect to the model parameters can be obtained
from (8.82) and (8.83).



Chapter 9
Analytic Orbit Determination

Chapters 5, 6 and 7 covered the most important contents of analytic solutions of
the disturbed equations of satellite motion. In this chapter, emphasis will be on the
applications of the analytic orbit theory.

9.1 Principle of Analytic Orbit Determination

Orbit determination aims to determine the initial orbital elements (i.e., the initial
state vector of the satellite) and the unknown model parameters. The technique of
numerical orbit determination is developed in a situation that, on one hand, one
needs the technique; however on the other hand, one does not have analytic solu-
tions of the disturbed equations of satellite motion. The key difference between the
numerical and the analytic orbit determination is that the orbits are represented in
the former algorithm by differential equations and in the latter algorithm by analytic
formulas.

Recalling the discussions in Chaps. 5, 6 and 7, the perturbed orbit of the satellite
is the solution (or integration)

Gj(l‘) = Gj(l‘o) + (Gj(l‘) —Gj(t())) where G/’(l‘) —Gj(l()) = /Fjdl‘. 9.1)

Gj(r) are the infinite integrations of the right functions of the equations of motion
and are given explicitly by analytic formulas. Equations (9.1) have been obtained
by integrating the disturbed equations of motion

{ Gj(1) = Fj, ©92)

Oj (10) = Ojy;

where () is the jth Keplerian element, 0;(fo) is the related initial value at time 7o,
Fj is the related right function of the differential equation and is a function of dis-
turbing forces.

G. Xu, Orbits, 201
(© Springer-Verlag Berlin Heidelberg 2008
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If the initial Keplerian elements and the force functions are precisely known, then
the precise orbits can be computed by using (9.1). Computing for time ¢ of future,
the so-called forecasted orbits can be obtained. That is, for orbit determination using
analytic solutions, the traditional numerical integration algorithms are not necessary
any more (because the differential equations are theoretically integrated by deriving
the solutions).

In practice, the precise initial Keplerian elements are not exactly known and the
parameters of the force models have to be co-determined. These can be realised
through suitable parameterisation of the models in the GPS observation equations
and then solved by adjustment or filtering.

We generally denote both the range and range rate together by p; their partial
derivatives with respect to the orbit state vector (see Xu, 2003/2007) have the form

dp d
9P P 9.3)
I gy
Therefore, the orbit parameter related parts in the linearised GPS observation equa-
tion are then

ap; a(r,r) 8(0'1-,]:#1,...,6)A_,T’ ©.4)
(7, 7) d(oj,j=1,...,6) o0y
where ’
¥= (60,17), AT = (A607A17) . (9.5)

o, Y are the Keplerian element vector and the parameter vector of the force models,
and index 0 denotes the related initial vectors of time 7. y is the total unknown vec-
tor of the orbit determination problem, the related correction vector is Ay = y — ¥y,
and AGj is the correction vector of the initial Keplerian element vector. The partial
derivatives of the satellite state vector with respect to the Keplerian element vector
are known and can be found in Sect. 5.4. The partial derivative of the Keplerian
element vector with respect to y is called transition matrix which has the dimension
of 6 x (6 4+ n), where n is the dimension of vector Y. Because of the analytic solu-
tions of the disturbed equations of motion, the partial derivatives of the Keplerian
elements with respect to the vector ¥ are almost given by the solutions explicitly.
That is to say, by analytic orbit determination, the transition matrix is represented
by analytic formulas instead of the so-called variation equations in the numerical
algorithm. The variation equation has disappeared from the orbit determination pro-
cess; so the numerical integration algorithms traditionally used to solve the variation
equation are not necessary any more.

Note that the orbit disturbances are mostly linear functions of the parameters of
the force models. Therefore, the partial derivatives of Keplerian element vector with
respect to parameter vector y of the force models are directly the coefficients of the
related force parameters. No special derivations of the partial derivatives are needed.
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Compared to numerical orbit determination (Chap. 8), in analytic orbit determi-
nation, no variation equations need to be solved; no numerical integration algorithms
are necessary; no special orbit-related partial derivatives have to be derived. These
significant advantages should lead to more efficient algorithms and more accurate
orbit determination.

9.2 Real Time Ability

Limitations of the Numerical Orbit Determination

Real time ability of the numerical orbit determination is limited first by the adjust-
ment or filtering algorithms used.

If the classic least squares adjustment algorithm is used to solve the parameters
of the orbit determination problem, it is not possible to obtain the solution in real
time because of the size and dimension of the equations. The equations of IGS
orbit determination are formed and solved daily. It takes from less than an hour to
several hours to compute the results depending, of course, on the computer used.
The so-called rapid IGS orbits are partly computed using 23 hours past data and one
hour updated data. In general, the classic least squares adjustment algorithm is not
suitable for real time purpose.

Sequential least squares algorithm and Kalman filtering technique are partly de-
veloped for real time applications. Sequential least squares algorithm is a special
case of the Kalman filtering; therefore, the discussions will be focused on the filter-
ing method. Kalman filtering solves the equations of every epoch or every epoch-
block by taking into account the information from the past to obtain the results. In
this way the problem can be solved epoch-wise or epoch-block-wise depending on
the property of the problem. For equations of orbit determination the problem is not
solvable (or singular) for a few epochs because of the dimension of the unknowns.
The equations of orbit determination are generally solvable in half an hour (see Xu,
2004) or longer. That is, the filtering technique and the property of the equations of
orbit determination make the real time application of the numerical orbit determi-
nation very difficult.

Furthermore, in numerical orbit determination, the numerical integration algo-
rithms have to be used to integrate the orbits and to solve the variation equations.
Numerical integrator usually has a so-called integrator length. The selection of the
integrator length depends on the accuracy requirement and the physical properties
of functions that will be integrated and therefore is not free of choice. Usually in
IGS orbit determination, the integrator length is selected as five minutes. This also
restricts the real time application of the numerical orbit determination.

Because of the adjustment and filtering techniques and the use of the numerical
integrator as well as the properties of the physical problem, numerical orbit deter-
mination, is difficult to be at real time.
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Real Time Ability of Analytic Orbit Determination

Using the analytic orbit theory the observation equation of the orbit determination
problem can be formed easily epoch-wise. The equations are solvable for an epoch-
block. Taking past information into account, the solvable equations of an epoch-
block can be formed and solved in real time. Taking the information before the
solved epoch-block into account, Kalman filtering technique can be used to de-
termine the orbit in real time. This is very significant for applications of satellite
technology nowadays and should be further studied intensively.

9.3 Properties of Analytic Orbit Determination

Initial time selection

In numerical orbit determination, the initial time is a matter of free choice. For nu-
merical integration, it really does not matter from which time point one starts to
integrate. However, in analytic orbit solution, nearly a half of the formulas are func-
tions of initial time point (another half of the formulas are infinite integrations and
functions of instantaneous time). In turn, the functions of the initial time point are
in terms of sines and cosines. Of course, theoretically the initial time point of orbit
determination can be freely selected. However, if the initial time point is selected at
that point such that the sines or cosines of mean anomaly are zero, the intensity of
the computations can be reduced by 25%. That is, a suitable initial time selection is
very important for analytic orbit determination.

Using general models for 2nd order geopotential disturbances

As shown in Chap. 6, the solutions of the 2nd order geopotential disturbances are
very long. Theoretically, any order and any degree of the disturbances can be de-
rived; however, to program all the formulas into software will be definitely a prob-
lem. For orbit determination the 2nd order geopotential disturbances are small terms
and they can be dealt with like corrections to the initial and nominal orbit. For short
periodic terms, the solutions are formed by a set of functions of

{sinnM, cosnM,n=1,... ,N}, (9.6)

where M is the mean anomaly of the orbit; n is an integer index and has a truncation
number N.

Similarly, for the long periodic terms of the 2nd order geopotential disturbances,
the solutions can be formed by the following sets of functions
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{sinnw, cosnw,n=1,...,1},
{sinnQ, cosnQ,n=1,...,J},
{sin(nw +mQ), cos(no+mQ),n,m=1,...,K}, 9.7)

where m is an integer index; /, J and K are truncation numbers.
The general models of the solutions of the 2nd order geopotential disturbances
are then

N I
Y (AncosnM + B, sinnM) + Y, (C, cosn® -+ Dy sinnw)
n=1 n=1
J K
+ 2 (E,cosnQ+ F, sinnQ) + 2 (Gumcos(nw + mQ) + Hyp sin(nw + mQ)),
n=1 n,m=1

(9.8)

where coefficients (A,,, B, C,, D,, E,, F,,,Gn, H,n) can be considered as unknown
and should be codetermined by orbit determination. The truncation numbers of (/,
J, K) are generally much smaller than N because of the long periodic properties and
shall be suitably selected through practical experiments.



Chapter 10
Singularity-Free Theory and Discussions

The previous chapters of this book covered the most important contents of satellite
orbit theory, including analytic solutions and applications. Especially, the solutions
of the geopotential and extraterrestrial disturbances of the second order were derived
and the analytic applications of the theory were discussed. In this, the last chapter
of this book, emphasis will be on singularity-free theory and discussions.

10.1 Singularity-Free Orbit Theory

The singularity problem of the solutions of the geopotential disturbances is dis-
cussed first. Then the singularity-free disturbed equations of motion are given for
three cases; i.e., for the circular orbit, equatorial orbit, circular and equatorial orbit,
respectively. If the singularity-free disturbed equations of motion are used, then the
derived orbit solutions are singularity-free.

10.1.1 Problem of Singularity of the Solutions

As already discussed in the properties of the solutions (Sects. 5.3 and 6.5), the de-
rived solutions are singular in the cases of e = 0 and/or sini = 0. In other words,
the solutions are not valid for the satellite with a circular or an equatorial orbit. An
alternative method to overcome the problem of circular orbit has already been dis-
cussed in Sect. 4.1.1 by introducing new variables (see (4.12)). The new variables
do not have clear geometric meanings and were used to replace the variables (@, f),
which could not be defined in a circular orbit. In the alternative equation of distur-
bance (4.15), the e factor in the dividend is then eliminated, i.e., the singularity of
e = 0 disappears. Using another set of variables (a, h = sinicosQ, k = —sinisin{2,
E=ccos(w+Q), n =—esin(0+Q), L =M+ o+ Q), both the singularities
caused by ¢ = 0 and sini = 0 may disappear. This means that the singularity is
not a real problem of the orbits, but a consequence of poor parameterisation of
the orbits. Another method to overcome the singularity problem is the canonical
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transformation. All these methods overcome the singularity problem on one hand
and pay the price of losing the geometric meanings of the orbital variables on the
other hand.

In the cases of e = 0 and/or sini = 0, the orbits are becoming simpler in prac-
tice. However, the equations used to describe a simpler problem are becoming more
complicated. This is in conflict with basic scientific philosophy and common sense.
A simpler problem should be able to be described in simpler terms.

Looking into the solutions given in Chaps. 5 and 6 carefully, it is obvious that the
singular problem is not created by the partial derivations of the potential function
with respect to the Keplerian variable. In other words, the singularity problem exists
from the beginning in the Lagrangian perturbed equation system (4.11). This may
be verified by derivations of (4.11) (see Kaula, 1966/2001).

10.1.2 Disturbed Equations in the Case of Circular Orbit

In the case of a circular orbit, the perigee of the orbit is arbitrary. Then the ascending
node of the orbit can be defined as the perigee and the argument of the perigee @ can
be considered a constant of zero. (Of course, the eccentricity e is a constant of zero,
too.) In this special case the orbit is simpler than the general one. Note that in such
a case the eccentric anomaly f is identical with the mean anomaly M. The disturbed
equations of motion (similar to (4.11)) in this case can be similarly derived and have
accordingly the following simpler forms

d_ 2R

dr = naoM’

de

=~ _0

dt ’

do cosi OR

—_— = — — 10.1
dt na®sini di’ (10.1)
@1 ox

dr ~ na?sini 0Q’

w@_ 1 or

dr  na?sini 9i’

dm 2 R

a " nada

10.1.3 Disturbed Equations in the Case of Equatorial Orbit

In the case of an equatorial orbit, the ascending node is arbitrary. Then the vernal
equinox can be defined as the ascending node of the orbit and the right ascension
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of the ascending node € can be considered a constant of zero. (Of course, sini, the
sine function of inclination angle i, is a constant of zero, too.) In this special case the
orbit is simpler than a general one. Especially, the transformed geopotential function
with orbital variable is greatly simplified in such a case. The disturbed equations of
motion (similar to (4.11)) in this case can be similarly derived and have accordingly
the following simpler forms

G _ 2 0K

dt  naom’
de_1-¢ R VT TR
dr  nale oM nate 0o’
do _ VTR

dr = na’e de’

di

o

dt ’

@

dr ’

dM 29R 1—¢*0dR

— =n )
dt na da na’e de

(10.2)

10.1.4 Disturbed Equations in the Case of Circular
and Equatorial Orbit

In the case of a circular and an equatorial orbit, both the perigee and ascending
node are arbitrary. Then the vernal equinox can be defined as the perigee and the
ascending node of the orbit; and the argument of the perigee @ and right ascension of
the ascending node €2 can be considered constants of zero. (Of course, ® and siniare
constants of zero, too). In this special case the orbit is the simplest one compared
with the others. Note that in such a case the eccentric anomaly f is identical with the
mean anomaly Mand the transformed geopotential function with orbital variable is
greatly simplified. The disturbed equations of motion (similar to (4.11)) in this case
can be similarly derived and have accordingly the following simpler forms

da _ 2 0R
dr = naoM’
de
7:0
dt ’
do
7:0
dr ’
di
1:0’

dr
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Q

d 7

M _ 2 0R 10
dr na da’

10.1.5 Singularity-Free Disturbed Equations of Motion

Define two delta functions as

|1 ife#0 _ 1 if sini £ 0,
% = {e2 ife=o a4 G {sinQi if sini = 0. (109
Then one has the singularity-free disturbed equations of motion
da_ 2 R
dt  na oM’
de 1-¢*9dR . VI-€ IR

dt  na?e OM ¢ nate dw ©

do m% B cosi 87R6‘
dr nate de ©  na2\/1—e2sini 0i (10.5)
di S <cosiaR — 8R> i
dr  na?y/1—e?sini do Q)"
dQ 1 OR
& e 1—sini di
dM 2 0JR 1-¢*0R

— =n
dr na da  na’e de

Equations (10.5) are the singularity-free disturbed equations of motion. The solu-
tions derived from these equations are singularity-free. For some reasons, the solu-
tions given in this book are mostly derived from (4.11). To obtain the singularity-free
solutions one has to add the two factors of the delta functions (10.4) into the given
solutions and the interested readers may attempt these themselves.

10.1.6 Simplified Singularity-Free Disturbed
Equations of Motion

Similar to the simplified Gaussian disturbed equations of satellite motion (see
(7.25)), the simplified singularity-free disturbed Lagrange equations of motion can
be derived and written as
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da 2 OR
dr  na oM’
de_l—ezda V1—¢e% OR
dr ~ 2ae dr ¢ nale 0w

do  VI—€29R dQ

(]

dt  nale 553—00515,
. (10.6)
G (R Ry
dt  na2v/1—eZsini o o)
dQ I IR

= N 6!3
dt na?v/1—eZsini di
dm 2 R dQ
- _ J —V1- (+cosz>

dr na da d

It is obvious that such equations will lead to a simplified process of solving the
problems.

10.2 Equations of Motion in Non-Inertial Frame

It is well known that Newton’s second law is valid in the inertial coordinate sys-
tem. This is also the reason why the orbit problem is usually dealt within the ECI
frame. However, the geopotential force (or say, geopotential function) is described
in an Earth-Centre-Earth-fixed non-inertial system. Without exception, one has to
transform the geodetic coordinates of the potential function into orbital elements.
However, for the equation of motion expressed in the inertial frame and for a sim-
plified transformation between the CEI and ECEF

d®Xgcr
dr?

=Fger and  Xper = R3(0t)Xecer,  Fecr = R3(@t)Fecer,  (10.7)

the equation of motion expressed in ECEF frame can be derived

d>x dy

— T iom= — -

dr2 + wdt ’x = fu(x,,2),

d%y dx

—= 2 —wly= (10.8)
g2 2oy — oy =00,

d’z

dtz :fz(xayvz)v

where o is the Earth’s angular velocity. The homogenous solution of (10.8) is
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|
x= Ee—'“’f [c1(1+E+iot —iwEt) — c2(1 —iE — ot — 0Et) + ca(t + Et) — csi(t — Et)],

1.
y= Ee*"‘” [c1(i—iE — ot — WEt) + c2(1+ E — it — ioEt) +c4i(t — Et) + ¢5(¢t + Et)],

7= c3 + cet,

where ¢; is integral constants and E = %' j = \/—1.

As soon as any one special solution of (10.8) is found, then the general solution
of (10.8) is equal to the special solution plus the homogenous solution. It may be
worthwhile to consider the problem of geopotential disturbance alternatively.

10.3 Discussions

Simplified Singularity-Free Equations of Motion

As seen above (Sect. 10.1), the singularity problem has been solved by using sim-
plified and singularity-free equations. The simplified orbit problem is described us-
ing simplified coordinates. The geometric meanings of the variables are remained
the same. The use of the traditional and partly non-geometric sensed variable set
of (a, h = sinicosQ, k = —sinisinQ, & = ecos(w + Q), N = —esin(o + Q),
A =M+ o+ Q) is obviously not an ideal choice. One of the important reasons
for using the canonical transformation to represent the orbit equations is that the
canonical equations are also singularity-free. After the disturbed equations of mo-
tion (10.6) are singularity-free, the advantages of the use of canonical equations
have to be carefully re-evaluated.

Analytic Solution vs. Numeric Solution

Solutions of the extraterrestrial disturbances are some times given both in analytic
and numerical form (see, e.g., Sects. 7.2 and 7.4). The formulas of the discrete
solutions are very easy to be used for computation; however, they do not have clear
geometric explanations for the effects of the disturbances.

Potential Functions of the Sun, Moon and Planets

An approximation has been used in the derivation of the potential function of the
disturbing force of the sun. Similar means have been used for the moon and can
also be used for the planets. Therefore, the related solutions are derived under a
precondition that the approximation is allowed.
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Confusion of Non Conservative Force with Conservative Effect

Solar radiation is a non conservative disturbing force. It is said that such a non con-
servative force has a conservative effect. This is confusion and is shown in Fig. 10.1
with an example of solar disturbance on a GEO satellite. One of the possible reasons
of such confusion may come from the adjustment model of the solar radiation used
in the numerical orbit determination. The models (4.72) are periodic functions of
the orbit. No matter what results are obtained from the adjustment, the results are
periodic (or conservative). If the determined models are used to interpret the effects
of the solar radiation, the confusion is then the consequence. This shows that the
parameterisation is very important and the parameterisation should be physically
reasonable.

Long Term Effects in Extraterrestrial Disturbances

There exist long term effects in the extraterrestrial disturbances (see (7.26)). The
long term perturbations have to be taken into account in the transformation of inte-
gral variables. This shall be especially noticed in the practical applications.

Long Term and Long Periodic Effects in Short Periodic Disturbances

There exist long term and long periodic effects in the short periodic geopotential dis-
turbances (see (5.34)). The long term and long periodic effects derived in Sect. 5.2

Solar radiation disturbance (m)

) 05T |
Time (in period T)

Fig. 10.1 Solar radiation disturbance on a GEO satellite
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are not unique and not the complete effects. Note that all the long term and long
periodic effects have to be accumulated if the relations will be used.

Further Studies

Further studies have to be carried out on the analytic solutions of the Gaussian equa-
tions disturbed by the air drag, on the use of the simplified equations of motion, on
the applications of the analytic theory (especially on the analytic orbit determina-
tion), on the study of the correlation of the geopotential disturbances on the orbits,
on the third order solutions disturbed by the Earth and ocean tides as well as rela-
tivity disturbance.



Appendix 1
TAU 1980 Theory of Nutation

Table A.1 The units of A; and B; are 0.”0001, units of A} and B} are 0.”00001 (cf. McCarthy, 1996)

Coefficents of values of
1 I F D Q A; A/ B; B!
0 0 0 0 1 —171996 —1742{ 92025 89
0 0 2 -2 2 —13187 16| 5736 —31
0 0 2 0 2 —2274 -2 977 -5
0 0 0 0 2 2062 2| —895 5
0 -1 0 0 0 —1426 34 541 —1
1 0 0 0 0 712 1 -7 0
0 1 2 -2 2 —517 12 2241 -6
0 0 2 0 1 —386 —4 200 0
1 0 2 0 2 —301 0 129 -1
0 -1 2 -2 2 217 -5 =95 3
-1 0 0 -2 0 158 0 -1 0
0 0 2 -2 1 129 1| =70 0
—1 0 2 0 2 123 0o -53 0
1 0 0 0 1 63 1] =33 0
0 0 0 2 0 63 0 -2 0
—1 0 2 2 2 -59 0 26 0
-1 0 0 0 1 —58 -1 32 0
1 0 2 0 1 -51 0 27 0
-2 0 0 2 0 —48 0 1 0
-2 0 2 0 1 46 0| -—-24 0
0 0 2 2 2 —38 0 16 0
2 0 2 0 2 -31 0 13 0
1 0 2 -2 2 29 0] -—12 0
2 0 0 0 0 29 0 —1 0
0 0 2 0 0 26 0 —1 0
0 0 2 -2 0 —-22 0 0 0
-1 0 2 0 1 21 of -10 0
0 2 0 0 0 17 -1 0 0
-1 0 0 2 1 16 0 -8 0
0 2 2 -2 2 —16 1 7 0
0 1 0 0 1 —15 0 9 0
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Table A.1 (continued)

Coefficents of

values of

—13
—12

11

—-10

1/
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Table A.1 (continued)

Coefficents of

values of
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