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Preface

Continued advances in computer science and in information technology are
contributing to the forward march of the use of computers in mathematics.
While they used to play a tremendous supporting role through computation,
proof assistants, and as mathematical publishing tools, this has now spread to
more social aspects of the mathematics process. The series of Conferences on
Intelligent Computer Mathematics (CICM) host collections of co-located meet-
ings, allowing researchers and practitioners active in related areas to share recent
results and identify the next challenges.

The sixth in this series of Conferences on Intelligent Computer Mathematics
is held in Bath, UK, in 2013. Previous conferences, all also published in Springer’s
Lecture Notes in Artificial Intelligence series, have been held in the UK (Birm-
ingham, 2008: LNAI 5144), Canada (Grand Bend, Ontario, 2009: LNAI 5625),
France (Paris, 2010: LNAI 6167), Italy (Bertinoro, 2011: LNAI 6824), and Ger-
many (Bremen, 2012: LNAT 7362). CICM 2013 included three long-standing
international meetings:

— 12th International Conference on Mathematical Knowledge Management
(MKM 2013)

— 20th Symposium on the Integration of Symbolic Computation and Mecha-
nized Reasoning (Calculemus 2013)

— 6th workshop/conference on Digital Mathematics Libraries (DML 2013)

Since 2011, CICM has also been offering a track for brief descriptions of systems
and projects that span the MKM, Calculemus, and DML topics, the “Systems
& Projects” track. The proceedings of the meetings and the Systems & Projects
track are collected in this volume.

CICM 2013 also contained the following activities:

— Demonstrations of the systems presented in the Systems & Projects track
— Less formal “work in progress” sessions

We used the “multi-track” features of the EasyChair system, and our thanks
are due to Andrei Voronkov and his team for this and many other features.
The multi-track feature also allowed transparent handling of conflicts of interest
between the Track Chairs and submissions. There were 73 submissions, 17 of
which were withdrawn. Each of the remaining 56 submission was reviewed by
at least three, and most by four, Program Committee members. The committee
decided to accept 30 papers. However, this is a conflation of tracks with different
acceptance characteristics. The track-based acceptance rates were:

MKM: 7 acceptances out of 18 submissions
Calculemus: 5 acceptances out of 12 submissions
DML: 6 acceptances out of 8 submissions

S & P: 12 acceptances out of 16 submissions



VI Preface

Invited talks, this year accompanied by full papers included in these proceed-
ings, were given by:

Ursula Martin with the full paper on “Mathematical Practice, Crowdsourcing,
and Social Machines” coauthored with Alison Pease:

For centuries, the highest level of mathematics has been seen as an iso-
lated creative activity, to produce a proof for review and acceptance
by research peers. Mathematics is now at a remarkable inflexion point,
with new technology radically extending the power and limits of indi-
viduals. Crowdsourcing pulls together diverse experts to solve problems;
symbolic computation tackles huge routine calculations; and computers,
using programs designed to verify hardware, check proofs that are just
too long and complicated for any human to comprehend.

Mathematical practice is an emerging interdisciplinary field which draws
on philosophy, social science and ethnography, and the input of mathe-
maticians themselves, to understand how mathematics is produced. On-
line mathematical activity provides a rich source of data for empirical
investigation of mathematical practice — for example, the community
question-answering system mathoverflow contains around 40,000 math-
ematical conversations, and polymath collaborations provide transcripts
of the process of discovering proofs. Such investigations show the impor-
tance of “soft” aspects such as analogy and creativity, alongside formal
deduction, in the production of mathematics, and give us new ways to
think about the possible complementary roles of people and machines in
creating new mathematical knowledge

Social machines are a new paradigm, identified by Berners-Lee, for view-
ing a combination of people and computers as a single problem-solving
entity, and the subject of major international research endeavors. We out-
line a research agenda for mathematics social machines, a combination
of people, computers, and mathematical archives to create and apply
mathematics, with the potential to change the way people do mathe-
matics, and to transform the reach, pace, and impact of mathematics
research.

Assia Mahboubi presented “The Rooster and the Butterflies”:

This paper describes a machine-checked proof of the Jordan-Holder the-
orem for finite groups. The purpose of this description is to discuss the
representation of the elementary concepts of finite group theory inside
type theory. The design choices underlying these representations were
crucial to the successful formalization of a complete proof of the Odd
Order Theorem with the Coq system.



Preface VII

Moreover, Patrick D. F. Ton spoke on “Mathematics and the World Wide Web”:

Mathematics is an ancient and honorable study. It has been called The
Queen and The Language of Science. The World Wide Web is something
brand-new that started only about a quarter of a century ago. But the
World Wide Web is having a considerable effect on the practice of math-
ematics, is modifying its image and role in society, and can be said to
have changed some of its content. There are forces at work in the Web
that may be changing our world not necessarily for the better. I will be
exploring some of the issues this raises.

May 2013 Jacques Carette
David Aspinall

Christoph Lange

Petr Sojka

Wolfgang Windsteiger
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The Rooster and the Butterflies

Assia Mahboubi

Microsoft Research - Inria Joint Centre

Abstract. This paper describes a machine-checked proof of the Jordan-
Holder theorem for finite groups. This purpose of this description is to
discuss the representation of the elementary concepts of finite group the-
ory inside type theory. The design choices underlying these representa-
tions were crucial to the successful formalization of a complete proof of
the Odd Order Theorem with the CoOQ system.

1 Introduction

The Odd Order Theorem due to Feit and Thompson [7] is a major result of finite
group theory which is a cornerstone of the classification of finite simple groups.
Originally published in 1963, this was considered at its time as a demonstration
of an uncommon length and intricacy, whose 255 pages filled an entire volume of
the Pacific Journal of Mathematics. Later simplified and improved by a collective
revision effort [3, [20], it remains a long and difficult proof, combining a broad
panel of algebraic theories. In September 2012, the Mathematical Components
team, lead by Georges Gonthier, completed [10] a formalization of this result
using the CoQ system [T}, @].

This achievement is evidence of the maturity of proof assistants, a family of
software systems pioneered by N. G. de Bruijn’s AUTOMATH system [6], that
aims at “doing mathematics with a computer”. The ambition of proof assistant
is to realize an old dream: automate the verification of mathematical proofs.
Check a theorem with a proof assistant consists in providing a description of the
statement and of its candidate proof in formal logic and then having a generic
and relatively small program checking the well-formedness of this proof with
respect to the elementary rules of logic. A proof assistant provides the support
necessary to obtain both a high confidence in proof checking and the mandatory
set of tools required to ease the process of describing statements and proofs.

For the last decade, proof assistants have been successfully employed in a
variety of contexts, from hardware and software verification to combinatorics or
number theory. However the distinguishing feature of the complete formal proof
of the Odd Order Theorem is that the corresponding libraries of formalized
mathematics cover a range of algebraic theories that is both wide and deep. The
proof of the Odd Order Theorem actually relies on a number advanced results
that necessitate non-trivial combinations of arguments arising from several areas
of mathematics.

When assisting the user in his verification task, the proof assistant is not ex-
pected to invent new results or new justifications. Yet a substantial part of the

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 1-[[8] 2013.
© Springer-Verlag Berlin Heidelberg 2013



2 A. Mahboubi

effort required by such a large scale endeavor consists in reworking the math-
ematics described in the standard literature so that it can be organized in a
satisfactory and modular manner. The software engineering effort leading to
(re)usable and composable libraries of formalized mathematics hence also in-
volves re-thinking the mathematical definitions and proof methods. The for-
malization of the basics has to accommodate the variety of its usage in more
advanced parts of the theory.

In this paper, we outline how elementary concepts of finite group theory have
been revisited in the low-level libraries of this formal proof of the Odd Order
Theorem. We do not claim novelty here: part of the material exposed here has
been already described at various levels of detail in other venues that we list
in the preamble of each section. Previous publications were mostly written for
readers familiar with the CoqQ system, and most of them deal with programming
issues. By contrast, we have tried here to provide a mathematical documenta-
tion of a few CoQ librarieﬁ@, as distant as possible from CoQ syntax, since
this intuition might be difficult to grasp from the documentation headers of the
corresponding files. These documentation headers can be browsed on-line at:

http://ssr.msr-inria.inria.fr/~ jenkins/current/index.html
In the next sections, by formalized, we mean implemented in the COQ system.
The words formal and formally refer to CoQ syntax. The words informal and
informally refer to the corresponding mathematical notations we use throughout
the paper to improve the rendering. We however maintain a precise correspon-
dence between formal syntax and informal notations. We also use the collective
“we” pronoun to refer to the team of authors of these libraries [10].

The rest of the paper is organized as follows. Section 2] explains the repre-
sentation adopted for finite types and finite sets. Section [ is devoted to the
definition of finite groups and their morphisms. Section B describes the formal-
ization of the quotient operation of group theory. Finally, section [ illustrates
how this material is used in the proof of a standard result of finite group theory,
the Jordan-Holder theorem.

2 Preliminaries

In this section, we recall the formal definitions of the preliminary notions we rely
on. This material has already been presented in earlier publications [12}, 8, 10, [IT],
with emphasis on the techniques used for their definition in CoQ. These lower
layers of formalized mathematics are quite constrained by the features of the
logic underlying the CoQ system and, in particular, by its constructiveness. A
significant effort is put in the formalization of the theory of objects that behave
mostly the same in either a classical or a constructive setting. The purpose, and
the challenge, of the corresponding libraries is to provide enough infrastructure
for the user to safely ignore the choices adopted for the implementation of these
lower-level definitions. When these patterns of reasoning are effective, using an

!https://gforge.inria.fr/frs/?group_id=401
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excluded-middle argument or performing a choice operation should be as con-
venient on top of these axiom-free COQ libraries as in the setting of a classical
logic, like the one assumed by most of the mathematical literature.

2.1 Types with Decidable Equality

The type theory implemented by the CoQ proof assistant is a constructive frame-
work: the excluded middle principle is not allowed for an arbitrary statement
without postulating a global axiom. Reasoning by case analysis on the validity
of a predicate is valid constructively when it is possible to implement a (total)
boolean function which decides this validity: the type of boolean values reflects
the class of statements on which the excluded middle principle holds construc-
tively. For instance, we do not need any axiom in order to reason by case analysis
on the equality of two arbitrary natural numbers because equality on natural
numbers is decidable. A decidable predicate is a predicate that can be (and in
our libraries, that is) formalized as a function with boolean values.

The prelude libraries of the system, automatically imported when a CoQ
session is started, define an an equality predicate parametrized by an arbitrary
type T', which is the smallest binary reflexive relation on 7'. This equality is often
referred to as Leibniz equality. However, not all types are a priori equipped with
an associated total and boolean comparison function, testing the validity of a
Leibniz equality. However, the vast majority of the data we manipulate can be
modeled with types equipped with such an operator. This operator legitimates
constructive reasoning and programming by case analysis on the equality of two
objects of such a type and witnesses the decidability of the associated Leibniz
equality predicate. The library hence defines a structure for types with a decidable
equality, formally called eqType. This structure packages a type with a binary
boolean function on this type, plus a proof that the boolean test faithfully models
Leibniz equality. For instance, finite types, natural numbers, rational numbers,
and real or complex algebraic numbers are instances of this structure. Moreover,
pairs, sequences or subtypes of instances of this structure are also canonically
types with a decidable equality.

Another important feature of types with a decidable equality is the fact that
they enjoy the property of uniqueness of identity proofs [14]. This plays a crucial
role in our formalization but is out of the scope of the present paper. The inter-
ested reader can refer to previous publications [12}[TT],[8, [10] for more information
on the formalization of this structure.

In all that follows, and unless explicitly stated, by type we always implicitly
mean type with a decidable equality. Hence the reader can safely forget about
the constructiveness issues mentioned in this section: case analysis on the equal-
ity of two objects is allowed as well as on the membership of an object to a
sequence, etc.

Libraries. The corresponding file to this subsection is eqtype.v.
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2.2 Finite Types, Finite Sets

The library also defines an interface for finite types, which are types with a finite
number of elements. Formally this structure is called finType. It packages a
sequence enumerating exhaustively the elements of the typdq and a proof that
this sequence is duplicate-free. Finite types are a instance of a more general
interface for types equipped with a choice operator: for an arbitrary non-empty
decidable predicate, the choice operator outputs a canonical witness. In the case
of a finite type, the choice operator just inspects the enumeration and picks the
first witness encountered.

This representation of finite types is especially convenient to define functions
with a finite domain. Our motivation here is to craft a datastructure for functions
so that they provably verify the so-called extensionality principle:

Ve, fr=gxr & f=g

which states that the point-wise equality of two functions f and g on their whole
domain type is equivalent to the Leibniz equality of these functions. Again, in
CoQ’s type theory, this principle is not valid in general: two programs that
output the same values on the same inputs are not necessarily identified by
the Leibniz equality predicate. By contrast, we would like for instance to work
with a definition of sets which allows us to equate sets that have point-wise
characteristic functions.

Let us consider a finite type F', with e the enumeration of its elements. Let
le| be the length of e. We represent a total function f with arguments in F' and
values in a type T by a finite sequence Imy of length |e|, of elements in type T
Hence the value of f at e;, the element at position ¢ < |e| in the enumeration
e, is the i-th element of the sequence Im;. We call such a function a finite
function. This representation validates the extensionality principle: the right-to-
left implication is trivial and the left-to-right implication holds because according
to our definition of a finite function the Leibniz equality of two finite functions
really is the Leibniz equality of their respective finite graphs I'my and Img. This
equality is granted by the hypothesis of point-wise equality. Note that we do not
need to assume any finiteness property on the codomain type. If (aT : finType
) is a finite type and (rT : Type) an arbitrary type, the type of finite functions
with (finite) domain aT and codomain rT is formally denoted by {ffun aT >->

rT}. Most of the theory of finite functions however assumes that the codomain
type is an instance of type with decidable equality.

Finite functions with boolean values represent characteristic functions of sets
of elements of their domain type. In other words, a finite set over a finite type
F' is coded by a sequence of boolean values which is a mask on the enumeration
of F: true values select the elements that belong to the set. Now two finite sets
with point-wise equal characteristic functions are (Leibniz) equal by the previous
extensionality principle.

2 These points are objects of a previously known type with decidable equality.
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For any finite type F, {set F} formally denotes the type of finite sets of
elements of type F. Remark that type {set F} has itself a finite number of
elements and is hence an instance of finite type. We can therefore form the type
{set {set F}}, which is the powerset associated to the finite type F. The library
on finite sets provides definitions and notations for the standard concepts related
to sets. For instance x \in A denotes the (decidable) test of membership of the
element x in the set A, informally denoted by = € A. Similarly, A \subset B
denotes formally the (decidable) test of inclusion of the set A in the set B, which
tests whether the true values of the mask defining A are also true values in the
mask defining B. Informally we denote this test by A C B. The expression A :&:

B (resp. A :||: B) denotes the intersection (resp. union) of two sets over the
same finite carrier. The corresponding informal notation is AN B (resp. AU B).
The expression #|A| denotes the cardinal of a finite set, which is the number
of true values in the mask. The notation £ @: A is used for the image set of A
by the function f from a finite type to an other finite type E, which we denote
informally by f(A). The notation £ @ -1: A is used for the preimage set of
A by the function f from a finite type to an arbitrary type, which we denote
informally by f~!(A). We will also use in section Bl the possibility of defining a
set by comprehension: the expression [set x | P x] formally denotes the set of
elements satisfying the (decidable) property P, and we denote this set informally
by o | P)}.

In all what follows, by set we mean a finite set of elements in a finite type. The
reader can safely forget about the implementation described in the present sec-
tion to apprehend the rest of this paper and rely on his or her classical intuition
of sets.

Libraries. The corresponding files to this subsection are choice.v, fintype.v,
finfun.v and finset.v.

3 Elementary Notions of Finite Group Theory

In this section we describe the datastructures adopted in the libraries about the
elementary concepts of finite group theory. The design choices evolved in time
and are now different from their earliest published description [12]. Garillot’s
PhD thesis [§] provides a more recent and accurate account of these choices,
targeted at an audience expert in proof assistants.

The datastructures representing formally the operations defining finite groups
of interest and the operations combining finite groups are shaped by two impor-
tant remarks. First, we model groups as certain subsets of an ambient, larger
group, which fixes the data all its subgroups share: the type of the elements, the
group operation, the identity element. Hence groups are not types but objects,
namely some sets of a finite type. This choice is motivated by the observation
that finite group theory is not about the properties of the elements of a given
group, but mostly about the study of how finite subgroups (of a larger finite

3 Since we define an image set we need the codomain type to be also a finite type.
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group) can combine. The second remark is that it is possible to revisit the stan-
dard definitions of the literature, so that they apply to arbitrary subsets of an
ambient group, and not only to the special subsets that are also groups. The
motivation for this generalization is to make the related constructions total and
the statements of the related results less constrained and hence more usable.

3.1 Finite Groups

We reproduce below excerpts borrowed from the preliminary results of As-
chbacher’s book [2].

Definition 1 (Group, subgroup). A group is a set G together with an asso-
ciative binary operation which possesses an identity and such that each element
of G possesses an inverse. In the remainder of this section G is a group written
multiplicatively. (...) A subgroup of G is a nonempty subset H of G such that
for each x,y € H, xy and = are in H. This insures that the binary operation
on G restricts to a binary operation on H which makes H into a group with the
same identity as G and the same inverse.

Definition 2 (Product). For X,Y C G define XY = {ay; z € X,y € Y}.
The set XY is the product of X with Y.

In definition Bl we can observe that the group G is only here to fix the group
operation and identity shared by the two sets X and Y and is not otherwise part
of the definition. Moreover, these standard definitions and notational conventions
are an instance of the standard practice which consists in using product notations
both for points and sets: a similar convention apply for the inverse X ' =
{71 x € X} of a set X < G and the constant 1 denotes both the identity of
the group and the singleton {1}.

The library for elementary finite group theory defines two main structures. A
first structure packages a finite type with a monoid operation and an involutive
antimorphism. This structure is formally called baseFinGroupType@ and all its
instances share three common notations: the infix notation * denotes the monoid
operation, the postfix “-1 notation denotes the involution and 1 denotes the
neutral element. A second structure enriches the previous one to obtain all of
the group axioms, hence describes what we call group types in the sequel. This
second structure is formally called finGroupType and its instances inherit from
the notations for the group operation, for the inverse and for the identity.

Let G be a group type. Both G and the type of sets of G are instances of the
baseFinGroupType structure. For G, this holds by construction of a group type.
For the type of sets of G, this comes from the properties of set product and set
inverse. We can therefore utilize the notations *, ~=1 and 1 for both point-wise
and set-wise operations of G. Informally, we use a multiplicative convention and
denote by zy the product of the element z by the element y of a group type.

* We do not use an informal name for this concept which we use only once in the rest
of this text.
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Similarly, we denote by AB the set product of two sets A and B of a group type.
In order to avoid useless rigid type constraints in the formalized statements of
finite group theory, we generalize as much as possible the standard concepts of
finite group theory to sets of group type. In all that follows a mere set, sometimes
even abbreviated in a set, refers to an arbitrary set of a group type G. Elements
of a mere set A can be multiplied by the group operation defined by G, although
this product does not necessarily belong to A, nor the identity of G.

For instance if A is an arbitrary mere set of a group type G and x an arbitrary
element of G, we define the conjugate of A by z as the set of conjugates z~ax

of elements a € A by z:
A :={z " ax | ac€ A}

Note that we use here the group operation of G to describe the elements of
A”. Formally this set is defined as the image set of the set A by the function
y — x~'yz. Similarly, we define A, the conjugate of the set A by the set B as
the image of the set B by the function x — A*. The normalizer of a mere set A
is defined as:

N(A):={z | A* C A}

The definition of N(A) is formalized using the comprehension-style construction
mentioned in section The centralizer of a mere set A is the intersection of
the normalizers of all the singleton sets of its elements:

C(A) = () N({z})

TEA

The formal definition of C'(A) uses a library about iterated operators [5], which
provides a modular infrastructure for notations, theory and computation of in-
dexed constructions like [, 4. We also introduce a notation for the localization
of the normalizer and centralizer of a set A to a set B: we denote informally by
Np(A) (resp. Cp(A)) the intersection N(A) N B (resp. C(A) N B).

Finally, for any group type G, a group of G (or just a group) is a mere set G of
G which contains the identity element (1 € G) and is closed under the product
(GG C G). Note that what we call a group here is necessarily a finite group.
The singleton set {1} of the identity element of G is a group of G as well as
the total set containing all the elements of G. This total set actually plays the
role of the ambient group G postulated in many statements, like for instance
in definition 2 A subgroup H of a group G is a group whose underlying set
is a subset of the one underlying G. Formally, {group gT} denotes the type of
groups of a group type gT. For any set A, the group generated by A is obtained
as the intersection of all the sets that are groups and contain A, formalized by
the means of aforementioned library about iterated operators [5]. As usual, the
group generated by A is formally defined as a set, later equipped with a canonical
structure of group. We denote informally by (A) and formally by <<A>> the group
generated by a mere set A. We also prove that some of the above constructions
on mere sets preserve the property of being a group: the intersection of two
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groups is a group, the normalizer of a group is a group.... Note that the set-level
product of two groups is not necessarily a group.

Lemma 1 (Product group [2]). Let X,Y be subgroups of a group G. Then
XY is a subgroup of G if and only if XY =Y X.

In our formal library, we model this fact by defining an alternate product oper-
ation on sets of a group type that always produces a group: the join product of
two sets A and B is simply the group generated by A and B, which coincides
with AB when AB = BA.

As a conclusion of this subsection, let us summarize two differences in flavor
between the usual paper versions of statements and definitions in finite group
theory and their formal versions. First, the standard constructions of new groups
from known groups like normalizer, centralizer, etc. are defined as the construc-
tion of new sets from known sets. The resulting sets are later equipped with
a group structure under the suitable assumption on their components. Second,
every formal statement features one more universal quantification or parameter,
for the parameter group type. For instance, the original statement of the Odd
Order Theorem is the following:

Theorem 1 (Odd Order theorem [7]). Every finite group of odd order is
solvable.

And its formal statement in CoqQ is:

Theorem Feit_Thompson : forall (gT : finGroupType),
forall (G : {group gT}), odd #|G| -> solvable G.

This formal version is not less general than the original one: it can be read as
“every subgroup of odd order of a group is solvable”, where the group and the
subgroup can for instance be the same.

Libraries. The corresponding file to this subsection is fingroup.v.

3.2 Group Morphisms, Isomorphisms

We again quote Aschbacher’s definition [2] of the homomorphisms associated
with the structure of group:

Definition 3 (Group homomorphism). A group homomorphism from a
group G into a group H is a function o : G — H of the set G into the set H
which preserves the group operations: that is for all z,y in G, (zy)a = za ya.
Notice that I usually write my maps on the right, particularly those that are ho-
momorphisms. The homomorphism « is an isomorphism is a bijection. (..) H

1s said to be a homomorphic image of G if there is a surjective homomorphism
of G onto H.

In all that follows, we slightly depart from Aschbacher’s choices: we use the
words group morphism instead of group homomorphism and we write these maps
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applicatively (a(z)) instead of on the right (za). Definition B describes a group
morphism as a function whose domain is a specified group. In type theory, a
function is defined as an object (f : A -> B) whose type A -> B specifies the
domain type A of its arguments and the codomain type B of its values. Such
a function f is necessarily total on its domain type A. However we argued in
sectionB.Ilthat groups are better represented not as types but as objects, namely
as sets of an ambient group type. Hence in our formalization, two groups G and
H are modeled as sets of two (group) types G; and Gs respectively and definition
Blonly specifies a morphism ¢ : G — H as a function and its morphism properties
for certain Gy, the ones in GG. We are hence left to choosing one of the several
standard ways of dealing with partiality issues in type theory: assigning a clever
default value outside the domain, restricting the type of the domain, using a
monadic style....

Several approaches have been successively considered for the formal defini-
tion of group morphisms, leading to different versions of the related libraries.
We eventually reverted the choice described in our earliest publication [12]. Gar-
illot [8] has discussed the motivations for the change to the datastructure we
describe hereafter. The current structure of group morphism, formally denoted
by {morphism D >-> rT}, has three parameters:

— a group type aT called the domain type;
— a group type rT called the codomain type;
— a mere set D of the group type aT called the domain.

The domain type is not displayed to the user in the type {morphism D >-> rT}
because it is implicit: it can be inferred from the type of the parameter D. This
interface describes functions of type aT -> rT which distribute over the product
of two elements if they both belong to the set D.

Since this definition ensures the distributive property only on the domain of
a morphism, it becomes natural to consider alternative definitions of images and
preimages for group morphisms. More precisely, consider f a group morphism
and denote D the domain of f. Let A be a set of the domain type of f. We define
the morphic image of the set A by the group morphism f as the image by f of
the intersection of A with the domain D:

F*(4) = f(AN D)

where f(A N D) refers to the image set by f (see section 22)). Formally, this
morphic image is denoted by £ @x A. Similarly, we define the morphic preimage
of the set R by the group morphism f as the intersection of the domain D with
the preimage by f of R:

fTHR) = fTHR)ND

where f~1(R) is the preimage set of R by f. In CoQ, this morphic preimage
is denoted by £ @*~-1 R. Note that the image and the morphic image of the
domain D coincide. When both the domain D of f and the set A (resp. the set
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R) are groups, the morphic image (resp. the morphic preimage) of A (resp. of
R) is a group. For instance, the morphic preimage of the singleton set {1} of
the identity is a group, called the kernel of the group morphism. Informally we
denote by Ker f the kernel of a group morphism and by Im f its image. We
denote by Kera f the intersection of the kernel of a morphism with a set A.

As a consequence of this formalization choice, each new definition of a mor-
phism should come with the explicit mention of the domain it is a morphism on.
However, we use the facilities offered by CoQ’s type inference mechanism to com-
pute automatically a non-trivial domain for morphisms resulting from standard
operations. For instance if f and ¢ are two group morphisms, under the obvious
compatibility condition on their domain and codomain types, COQ can infer that
the composition go f is a morphism with domain (at least) f~'*(H) where H is
the domain of the morphism g. This means that if we dispose of (f : {morphism

G >-> hT}) and (g : {morphism H >-> rT}) two morphisms, COQ infers the
type (g \o f : {morphism f @*~-1 H >-> rT}) automatically. Similarly, the
inverse of an injective morphism f with domain D is canonically a morphism
with domain f(D). However, it might sometimes be necessary to restrict by hand
the domain of a morphism. We hence provide an operator which constructs a
new morphism g with domain the set A from a known morphism f and a proof
that A C D. Let us mention a last example of useful operation on group mor-
phisms. Let f; and fs be two group morphisms with possibly different codomain
types but with the same domain type. Let D be the domain of f; and G be the
domain of fo. We moreover assume that G is a group. Under this assumption we
can construct the natural factor morphism mapping f1(G) to f3(G) provided
that G is included in D and that the kernel of f; is included in the kernel of fa.
The kernel of this morphism is the morphic image f;(Ker f2) of the kernel of f,
by fi.

When there exists a group morphism such that a set B is the morphic image
of the set A by this morphism, we say that B is the homomorphic image of A.
In CoQ, this is denoted by (B \homg A). We say that a group morphism f with
domain D maps a set A isomophically to the set B when both A is included in D
and the image of the complement of A (in the domain type) by f is equal to the
complement of B (in the codomain type). This seemingly contrived definition
is a concise way of ensuring both that the morphism is injective and that B is
the image of A. In CoQ, we denote by (B \isog A) the existence of a group
morphism which maps A to B isomophically. Note that once again we have posed
these definitions at the level of sets of the group type.

Let us conclude this subsection by mentioning that we adopt a completely dif-
ferent datastructure for the set Aut(G) of automorphisms of a group G, which is
the set of endomorphisms of G that are also isomorphisms. The set of automor-
phisms of a group G of a group type G is defined as the set of permutations of
G that are the identity function outside G and distribute over the group prod-
uct inside G. It is easy to interpret canonically such a permutation as a group
morphism but defining automorphisms as permutations actually allows us to
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transpose the (group) theory already developed for the permutations of a set to
the Aut(G) group.

Libraries. The corresponding files to this subsection are morphism.v and auto-
morphism.v

4 Cosets, Normal Subgroups and Quotients

In this section again we quote Aschbacher’s definitions [2].

Definition 4 (Normal subgroup). A subgroup H of G is normal if g~thg €
H for each g € G and h € H. Write H Q G to indicate H is a normal subgroup.

Definition 5 (Cosets, coset space). Let H be a subgroup of G. For x € G
write Hr = {hz :h € H} and xtH = {xh: h € H}. Hx and xH are cosets of H
in G. Hx is a right coset and xH is a left coset. To be consistent I'll work with
right cosets Hx in this section. G/H denotes the set of all (right) cosets of H
in G. G/H is the coset space of H in G.

Both the definition of the “normal” predicate and the one of right and left cosets
are literally formalized in our formal development, except that they are defined
as usual for mere sets instead of groups. However we depart from Aschbacher’s
choice when it comes to the definition of coset spaces. Instead, we somehow take
backward the following definition [2]:

Definition 6 (Factor group). If H < G the coset space G/H is made into a
group by defining multiplication via

(Hz)(Hy) = Hey x,y € G

Moreover there is a natural surjective homomorphism m : G — G/H defined by
m : x+— Haz. Notice ker(m) = H. Conversely if « : G — L is a surjective
homomorphism with ker(«) = H then the map 8 : Hx — xa is an isomorphism
of G/H with L such that 7 = «. G/H is called the factor group of G by H.
Therefore the factor groups of G over its various normal subgroups are, up to
isomorphism, precisely the homomorphic images to G.

Instead of studying the entire coset space in the sense of definition 5l we formally
define the coset space of a mere set A as the type whose elements are the right
cosets Az, with x spanning the normalizer N(A) of A (see section [B]). Infor-
mally, we denote by C4 the coset space of a set A according to this alternate
definition. An element of C4 is a bilateral coset, since for x € N(A), we have
Az = zA. Note that when H is a group, N(H) happens to be the largest group
(for inclusion) in which H is normal.

Coset spaces as defined in [l are actually of little use when H is not normal
in G, assumption which make the coset space a group. Hence the theory of
coset spaces described in the literature actually boils down to the theory of
quotients of a group by one of its normal subgroup. In our setting, we are able
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to define a better theory of coset spaces which allows us to simplify greatly the
manipulation of quotients by erasing these normality assumptions. Without this
effort, the requirements put in the type constraints are soon too demanding for
the lemmas to be usable as such. We explain this formalization in the rest of
this subsection and illustrate its impact on the three isomorphism theorems of
group theory.

Consider a group H of a group type G. Its coset space Cy is an instance of
group type: the group product operation and the inverse operation are respec-
tively the set product and the set inverse operations, and the identity element
1 € Cy is 1H = H. In CoQ, this new instance Cy of group type is named
(coset_groupType H). For z,y € N(H), the product xHyH of two bilateral
cosets is the coset zyH of the product xy € N(H). But interestingly, if we
extend this correspondence by associating each element z ¢ N(H) with the
identity value 1 € Cy, we obtain a total function on G, which is an instance of
group morphism, in the sense discussed in section The domain type of this
morphism is G, its codomain type is Cy and its domain is the normalizer N (H).
Informally, we denote this morphism by ./H. Formally, we denote this morphism
by (coset H). The quotient of a mere set A by the group H, denoted A/H, is
defined as the morphic image of the set A by this morphism ./H.

When H is a normal subgroup of A, our definition coincide with the one of the
standard literature. It is however more general for it provides a precise meaning
to the quotient of a mere set A by H which requires A neither to be a group
nor to be included in N(H). Using the standard definition [6] what we define as
A/H would be indeed described as N4 (H)H/H. In fact we make the definition
of quotient even more general: if A and B are sets of G, then A/B denotes the
quotient of the set A by the group (B) generated by B: A/B is a set of the group
type C(B)-

We conclude this subsection by commenting three elementary but crucial re-
sults of finite group theory, called isomorphism theorems [18]. The first one is a
rephrasing of the result contained in Aschbacher’s definition Bl

Theorem 2 (First isomorphism theorem). Let f be a group morphism from
G to K. Then
G/(Ker f)— H with (Ker flx — xf

s an injective group morphism. In particular
G/(Ker f) is isomorphic to (Im f).

In our setting, starting from a group morphism f with domain a group G, we
construct a new morphism g with domain G/(Ker f) which is injective and such
that for any set A, the morphic image f*(A) of A by f is equal to g*(A/(Ker f)).
This is a slight generalization of the above statement, which corresponds to the
case where we take A = (. This morphism g can be obtained as the factor
morphism mentioned in section B2 taking f as fo and ./(Ker f) as fi: the
kernel of ./(Ker f) is (Ker f), hence included in (in fact equal to) the one of f.
Moreover the domain of a group morphism is included in the normalizer of its
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kernel, thus the domain of f is included in the one of . /(Ker f). We can therefore
form this factor morphism g, which sends A/(Ker f) to f*(A) for any set A. The
kernel of this morphism is (Ker f)/(Ker f) which is trivial, hence the morphism
is injective.

An easy corollary follows from this first isomorphism theorem. For an extra
subgroup H of G, we can construct a morphism g with domain H/(Keryg f),
which is injective and such that for any subset A of H, the morphic image f*(A)
of A by f is equal to g*(A/(Kerg f)).

The second isomorphism theorem is a central ingredient in the butterfly ar-
gument of the proof of Jordan-Holder theorem (see section [H).

Theorem 3 (Second isomorphism theorem). Let G be a group and H and
K two subgroups of G such that H C N(K). Then HK is a subgroup of G and
thus K is a normal subgroup of HK and:

¢:H—HK/K with u—uK
s an injective group morphism with Ker ¢ = HN K and
H/H N K s isomorphic to HK/K.

In this theorem, we can observe an instance of the partiality issues raised by the
standard definition of quotients in the literature. The statement of the theorem
has two parts: the first one establishes the conditions under which some objects
are well defined. The second one is an isomorphism involving these objects. The
situation is quite easier using the generalized definitions set up in the previous
subsections.

In our setting, an ambient group type G plays the role of the above G, and we
consider two groups H and K of G, such that H C N(K). We prove the second
isomorphism theorem by constructing a morphism g with domain H/H N K,
which is injective and such that ¢*(A/H N K) = A/K for any subset A of H.
Noticing that HNK is Kery (./K), the existence of g is a direct application of the
above corollary of the first isomorphism theorem, applied to the morphism ./ K.
The usual version of the second isomorphism theorem, as stated in theorem [3]
follows from this construction: in our setting H K /K, which is the morphic image
of HK by ./K, is equal to the morphic image H/K of H by ./K.

The conclusion of the third isomorphism theorem uses three distinct quotient
operations, each of which deserves a side condition of well-formedness.

Theorem 4 (Third isomorphism theorem). Let H and K be normal sub-
groups of G such that H is a subgroup of K. Then

¢:G/H—G/K with Hzxw— Kz
is an injective morphism with Ker ¢ = K/H, and

(G/H)/(K/H) is isomorphic to G/K.
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We consider three groups G, H, and K of a group type G. We suppose that
H and K are normal subgroups of G and that H is a subgroup of K. Again,
we slightly generalize the above statement by constructing a morphism g with
domain (G/H)/(K/H) such that for any subset A of G, ¢*(A/H/(K/H)) =
A/K. We proceed in three steps. First, we consider the morphism ./K, whose
domain is N(K). We restrict it to G, using the restriction operation mentioned
in section This is possible since G C N(K) by hypothesis. Then, we factor
the morphism ./H by this restriction. This means we apply the factor operation
described in section with f1 equal to the morphism ./H and fs equal to the
restriction of ./K to G. We hence obtain a morphism ¢’ which maps any subset
A of G/H to A/K and has kernel K/H. Finally, we apply the corollary of the
first isomorphism theorem to ¢’, which constructs the announced morphism g.

Libraries. The corresponding file to this section is quotient.v.

5 The Jordan Hélder Theorem(s)

In this section, we sketch the well-known proof of the Jordan-Hélder theorem for
finite groups [I7, [15] as formalized in COQ on top of the infrastructure presented
in section [Bl

5.1 Simple Groups, Composition Series
A normal series is a sequence of successive quotients of a group.

Definition 7 (Normal series, factors). A normal series for a group G is a se-
quencel = Gy < Gy ... < G, = G, and the successive quotients (Gr+1/Gr)o<k<n
are called the factors of the series.

Formalizing normal series poses no particular problem: it is a sequence of groups
where the sets underlying two consecutive elements are related by the relation
<. The corresponding formal definition is actually obtained from a more general
pattern, that we call subgroup series. Subgroup series are defined as sequences of
groups for which the sets of two consecutive elements related by a binary relation
(on sets). This simple definition suits the formalization of several notions like
normal series, ascending series, descending series, chief series....

A formal definition of the sequence of factors of a normal series is however
slightly more uneasy at first sight. Let G be a group of the group type G, and
(Gk)o<k<n a normal series for G. All the elements of the series are groups of
G. By contrast, each factor Gy41/Gy is a group of the group type Cg, . Since
the elements of the sequence of factors have pairwise distinct types a formal
definition of this sequence would be very intricate. Instead, we represent a factor
(Gr+1/Gr) of anormal series by a pair of groups (G, ,, Gx) where (G}, /Gr) is
a canonical representative of the isomorphism class of (Gg41/Gy,) inside Cg, . The
sequence of factors can hence be represented as a homogeneous sequence, whose
elements are pairs of group of G. The use of the isomorphism representative is
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motivated by the proof described in section The formalization of this defi-
nition uses the choice operator mentioned in section

Definition 8 (Simple group). A group G is simple when its only proper
normal subgroup is the trivial group 1.

Definition 9 (Composition series). A normal series whose factors are all
simple groups is called a composition series.

Definitions 8 and [ are translated literally in the libraries, using the material
presented so far. Simple groups are exactly groups with composition series of
length 1 (containing only the group itself and 1). Similarly trivial groups are are
exactly groups with empty composition series (containing only the group itself).

Lemma 2 (Existence of a composition series). Every finite group has a
composition series.

The proof of lemma ] is an induction on the cardinal of a group G, which is
either simple, or trivial, or has a non-trivial proper normal subgroup H, maximal
for inclusion. In the last case, the quotient G/H is simple and we conclude by
applying the induction hypothesis to H.

Libraries. The corresponding files to this subsection are gseries.v and jor-
danholder.v.

5.2 Uniqueness of Composition Series

The Jordan-Holder theorem states that the (simple) factors of a composition
series play a role analogous to the prime factors of a number. They however do
not control completely the structure of a group: unlike natural numbers non-
isomorphic groups may have composition series with isomorphic factors.

Theorem 5 (Jordan-Hélder Uniqueness). Two composition series of a same
group have the same length and the same factors up to permutation and isomor-
phism.

Let G be a group of a group type G. We prove that for any two composition series
of G, the corresponding sequences of factors are equal up to permutation, since
we have already picked canonical isomorphism representatives for the factors.
Again we proceed by induction on the cardinal of the group G. In the inductive
case, we can assume that G is neither trivial nor simple, and we consider two
non empty composition series of G, (N;)o<i<r+1 and (M;)o<j<s+1. Note that
G = Nyy1 = Mgy1. We call N (resp. M) the group N, (resp. M): (N;)o<i<r
is a composition series of N and (M;)o<,;<s is a composition series of M. Both
N and M are normal subgroups of G. If N and M are equal, then the theorem
is proved from the induction hypothesis. Otherwise we pose I = M N N, which
is normal in both N and M. Now comes the crux of the demonstration: G/N
is isomorphic to M/I and G/M is isomorphic to N/I. This step is called the
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butterfly lemma, or also Zassenhaus lemma [23] and both these isomorphisms
are easy consequences of the second isomorphism theorem [3

To finish the proof, we use lemma[2to construct a composition series (Ix)o<k<t
for I. The butterfly lemma ensures that the quotient N/I is simple. Therefore
(Ir)o<k<t extends to a composition series for N by taking I;11 := N. We dis-
pose of two composition series (I )o<r<t+1 and (N;)o<i<r for the group N whose
cardinal is smaller that the one of G: the induction hypothesis applies and these
series have the same length and the same factors. Similarly we apply the induc-
tion hypothesis to the two composition series we dispose of for M. Hence up to
isomorphism the set of factors associated with (N;)o<i<r+1 i8 G/N, N/I and a
set Fiy of other factors, the set of factors associated with (M;)o<i<r41 is G/M,
M/I and a set Fj; of other factors, such that Fy and Fy; are the same up to
isomorphism and permutation. The isomorphisms established by the butterfly
lemma conclude the proof.

Libraries. The corresponding file to the subsection is jordanholder.v.

5.3 More Butterflies

The more general version of the Jordan-Holder theorem for finite groups deals
with a more general kind of composition series: given a set A which acts on a
group G, an A-composition series is an increasing sequence (Gj)o<g<n 0f sub-
groups of G, with G = G, and such that for each k, G, is a maximal subgroup of
G41 invariant by the action of A. A finite group G has an A-composition series
as soon as A acts on G and the uniqueness theorem transposes to the factors
of A-composition series of a same group, with a little more work, in particular
for establishing the butterfly lemma. We have also formalized this more general
version [2], which we do not detail here by lack of space.

The library also features the analogue Jordan-Holder theorem for the theory
of representations of finite groups [I6], whose proof is again analogue in shape.
However the algebraic structures at stake in that case are much more sophis-
ticated than the ones of finite groups, and their formalization is based on a
significant reworking of the standard mathematical presentations of elementary
linear algebra [9].

As a final remark we would like to mention that these butterfly lemmas are
quite typical, although rather simple, examples where two objects play a sym-
metrical role, which is broken without loss of generality at the beginning of the
proof. The version of the Jordan-Holder theorem we detailed in section [5.2]is so
simple that no additional support is really needed in that proof. However the
code formalizing the two more advanced versions we mentioned above are using
a specific feature of the proof shell [I3] used to develop these libraries, called
the wlog tactic. This command is a key ingredient in order to avoid extremely
painful redundancy in the script describing these mathematical arguments based
on symmetries. This quite elementary feature of the tactic language has actually
been instrumental at several places of the libraries, including advanced group
theory for the proof of the Odd Order Theorem [10)].
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Libraries. The corresponding files to this subsection are jordanholder.v and
mxrepresentation.v. See for instance PFsection9.v for an instance of wlog
tactic, on a tricky chain of circular inequalities with equality conditions.

6 Conclusion

The structure of the paper reflects in miniature the one of the whole set of li-
braries of the formal proof of the Odd Order Theorem. Libraries on elementary
concepts, like types with decidable equality or finite sets, are tightly related to
the type system underlying the CoQ proof assistant. They provide an infrastruc-
ture which allows us to ignore the details of their implementation when it comes
to formalizing finite groups as finite sets of a group type. Here again part of the
basic libraries about finite groups, morphisms, and quotients are devoted to the
infrastructure work which aims at providing the same flavor of mathematical
notations and packaging as in the standard literature of finite group theory. As
a result, there is not much left to say when it comes to describing the formalized
proof of the Jordan-Hélder, and this was precisely the purpose of the upstream
effort. The elementary examples from finite group theory presented here also
illustrate the fact that textbook presentations of abstract algebra are not nec-
essarily sufficient references in order to design the appropriate abstractions for
formal libraries to scale. Future formalizations will show whether the techniques
employed in the present libraries are general enough to apply to more mathe-
matical structures. The design of these patterns will for sure be impacted by
improvements in the implementation of proof assistants [19] but also possibly by
evolutions of the type theory they implement [21].

The difference in purpose of the different layers of libraries affect their de
Bruijn factor [22], a criterion measuring the difference in size between the code
describing a formal proof and the code of the typeset description of a paper
proof. Lower level libraries feature by far the highest de Bruijn factor because
they describe a lot of material which addresses the implicit content of paper
mathematics. This implicit content is not only about datastructures, but also
about how to recompute the implicit content of notational conventions, or abuse
thereof, without which a paper text appears as extremely pedantic and soon
unreadable. By contrast, for advanced libraries like the ones corresponding to
the final chapters of the proof of the Odd Order theorem, it is possible to obtain
a one to one correspondence, and even sometimes a shorter formal proof, which
illustrates the benefits of the re-factoring of the mathematics.

Libraries. An example of infrastructure file with a very large de Bruijn factor
is bigop.v. By contrast, file BGappendixC.v has a very small de Bruijn factor
(3 pages for 170 lines of script according to G. Gonthier, author of the script).
In file PFsection3.v, the local definition of some appropriate boilerplate [10]
significantly shortens a pedestrian computational proof.

Acknowledgments. The author wishes to thank Jacques Carette, William
Farmer, Laurence Rideau and Enrico Tassi for their proofreading.
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Abstract. Cylindrical algebraic decomposition (CAD) is an important
tool for the study of real algebraic geometry with many applications both
within mathematics and elsewhere. It is known to have doubly exponen-
tial complexity in the number of variables in the worst case, but the
actual computation time can vary greatly. It is possible to offer different
formulations for a given problem leading to great differences in tractabil-
ity. In this paper we suggest a new measure for CAD complexity which
takes into account the real geometry of the problem. This leads to new
heuristics for choosing: the variable ordering for a CAD problem, a des-
ignated equational constraint, and formulations for truth-table invariant
CADs (TTICADs). We then consider the possibility of using Grébner
bases to precondition TTICAD and when such formulations constitute
the creation of a new problem.

Keywords: cylindrical algebraic decomposition, problem formulation,
Grdébner bases, symbolic computation.

1 Introduction

Cylindrical algebraic decomposition (CAD) is a key tool in real algebraic geom-
etry both for its original motivation, quantifier elimination (QE) problems [10,
etc.], but also in other applications ranging from robot motion planning [25] etc.]
to programming with complex functions [I3], etc.] and branch cut analysis [I7,
etc.]. Decision methods for real closed fields are used in theorem proving [15], so
CAD has much potential here. In particular MetiTarski employs QEPCAD [4] to
decide statements in special functions using polynomial bounds [I12}23]. Work
is ongoing to implement a verified CAD procedure in Coq [9.22].

Since its inception there has been much research on CAD. New types of CAD
and new algorithms have been developed, offering improved performance and
functionality. The thesis of this paper is that more attention should now be
given to how problems are presented to these algorithms.

How a problem is formulated can be of fundamental importance to algorithms,
rendering simple problems infeasible and vice versa. In this paper we take some
steps towards better formulation by introducing a new measure of CAD com-
plexity and new heuristics for many of the choices required by CAD algorithms.
We also further explore preconditioning the input via Grobner bases.

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 19 2013.
© Springer-Verlag Berlin Heidelberg 2013
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1.1 Background on CAD

A CAD is a decomposition of R™ into cells arranged cylindrically (meaning their
projections are equal or disjoint) and described by semi-algebraic sets. Tradition-
ally CADs are produced sign-invariant to a given set of polynomials in n variables
X, meaning the sign of the polynomials does not vary on the cells. This definition
was provided by Collins in [I0] along with an algorithm which proceeded in two
main phases. The first, projection, applies a projection operator repeatedly to a
set of polynomials, each time producing another set of polynomials in one fewer
variables. Together these sets provide the projection polynomials. The second
phase, lifting, then builds the CAD incrementally from these polynomials. First
R is decomposed into cells which are points and intervals corresponding to the
real roots of the univariate polynomials. Then R? is decomposed by repeating
the process over each cell using the bivariate polynomials at a sample point of
the cell. The output for each cell consists of sections of polynomials (where a
polynomial vanishes) and sectors (the regions between these). Together these
form the stack over the cell, and taking the union of these stacks gives the CAD
of R2. This process is repeated until a CAD of R" is produced. This final CAD
will have cells ranging in dimension from 0 (single points) to n (full dimensional
portions of space). The cells of dimension d are referred to as d-cells.

It has often been noted that such decompositions actually do much more
work than is required for most applications, motivating theory which consid-
ers not just polynomials but their origin. For example, partial CAD [I2], etc.|
avoids unnecessary lifting over a cell if the solution to the QE problem on a
cell is already apparent. Another example is the use of CAD with equational
constraints [2I etc.] where sign-invariance is only ensured over the sections of
a designated equation, thus reducing the number of projection polynomials re-
quired. It is worth noting that while the lifting stage takes far more resources
that the projection, improvements of the projection operator have offered great
benefits.

Applications often analyse formulae (boolean combinations of polynomial
equations, inequations and inequalities) by constructing a sign invariant CAD
for the polynomials involved. However this analyses not only the given problem,
but any formula built from these polynomials. In [3] the authors note that it
would be preferable to build CADs directly from the formulae and so define a
Truth Table Invariant CAD (TTICAD) as one which is has invariant truth values
of various quantifier-free formulae (QFFs) in each cell. In [3] an algorithm was
produced which efficiently constructed such objects for a wide class of problems
by utilising the theory of equational constraints.

1.2 Formulating Problems for CAD Algorithms

The TTICAD algorithm in [3] takes as input a sequence of QFFs, each of which is
a formula with a designated equational constraint (an equation logically implied
by the formula). It outputs a CAD such that on each cell of the decomposition
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each QFF has constant truth value. The algorithm is more efficient than con-
structing a full sign-invariant CAD for the polynomials in the QFFs, since it
uses the theory of equational constraints for each QFF to reduce the projec-
tion polynomials used and hence the number of cells required. Its benefit over
equational constraints alone is that it may be used for formulae which do not
have an overall explicit equational constraint (and to greater advantage than the
use of implicit equational constraints). Many applications present problems in a
suitable form for TTICAD, such as problems from branch cut analysis [I7].

However, it is possible to envision problems where although separate QFFs
are not imposed they could still lead to more economical CADs, (see Example
[6)). Further, we may consider splitting up individual QFFs if more than one equa-
tional constraint is present. This leads to the question of how best to formulate
the input to TTICAD, a question which motivated this paper and is answered
in Section @l Some of this analysis could equally be applied to the theory of
equational constraints alone and so this is considered in Section Bl

In devising heuristics to guide this process we realised that the existing mea-
sures for predicting CAD complexity could be misled. An important use for these
is choosing a variable ordering for a CAD; a choice which can make a substantial
difference to the tractability of problems. We use z < y to indicate x is less than
y in an ordering. In [I4] the authors presented measures for CAD complexity
but none of these consider aspects of the problem sensitive to the domain we
work in (namely real geometry rather than complex). In Section [2] we suggest a
simple new measure (the number of zero cells in the induced CAD of R!) leading
to a new heuristic for use in conjunction with [I4]. We demonstrate in general
it does well at discriminating between variable choices, and for certain problems
is more accurate than existing heuristics.

These three topics are all examples of choices for the formulation of problems
for CAD algorithms. They are presented in the opposite order to which they
were considered above, as it is more natural for presenting the theory. Problem
formulation was considered in this conference series last year [27] where the
idea of preconditioning CAD using Grébner bases was examined. This work is
continued in Section Bl where we now consider preconditioning TTICAD.

The tools developed for the formulation of input here lead to the question of
whether their use is merely an addition to the algorithm or leads to the creation
of a new problem. This question also arose in [26] where a project collecting
together a repository of examples for CAD is described. In Section [6lwe give our
thoughts on this along with our conclusions and ideas for future work.

2 Choosing a Variable Ordering for CAD

2.1 Effects of Variable Ordering on CAD

It is well documented [I4] etc.] that the variable ordering used to construct
a CAD can have a large impact on the number of cells and computation time.
Example[Ilgives a simple illustration. Note that the effect of the variable ordering
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can be far greater than the numbers presented here and can change the feasibility
of a given problem. In [5] the authors prove there are problems where one variable
ordering will lead to a CAD with a constant number of cells while another will
give a number of cells doubly exponential in the number of variables.

Ezample 1. Consider the polynomial f := (z —1)(y*+ 1) — 1 whose graph is the
solid curve in Figure[Il We have two choices of variable ordering, which lead to
the two different CADs visualised. Each cell is indicated by a sample point (the
solid circles). Setting y < x we obtain a CAD with 3 cells; the curve itself and
the portions of the plane either side. However, setting < y leads to a CAD
with 11 cells; five 2-cells, five 1-cells and one 0-cell. The dotted lines indicate the
stacks over the O-cells in the induced CAD of R!. With y < = the CAD of R!
had just one cell (the entire real line) while with < y there are five cells.

We note that these numbers occur using various CAD algorithms. Indeed,
for this simple example it is clear that these CADs are both minimal for their
respective variable orderings, (i.e. there is no other decomposition which could
have less cells whilst maintaining cylindricity.)

—,—
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—_———— e .

Fig. 1. Plots visualising the CADs described in Example [I]

2.2 Heuristics for Choosing Variable Ordering

In [I4] the authors considered the problem of choosing a variable ordering for
CAD and QE via CAD. They identified a measure of CAD complexity that was
correlated to the computation time, number of cells in the CAD and number of
leaves in a partial CAD. They identified the sum of total degrees of all monomi-
als of all projection polynomials, known as sotd and proposed the heuristic of
picking the ordering with the lowest sotd. Although the best known heuristic,
sotd does not always pick the ideal ordering as demonstrated by some experi-
ments in [14] and sometimes cannot distinguish between orderings as shown in
Example
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Ezample 2. Consider again the problem from Example [l Applying any known
valid projection operator to f gives, with respect to y, the set of projection factors
{z — 1,2 — 2}, (arising from the coefficients and discriminant of f). Similarly,
applying a projection operator with respect to x gives {y? + 1}. Hence in this
case both variable orderings have the same sotd.

We consider why sotd cannot differentiate between the orderings in this case.
Algebraically, the only visible difference is that one ordering offers two factors of
degree one while the other offers a single factor of degree two. From Figure [l we
see that one noticeable difference between the variable orderings is the number of
0-cells in the CAD of R! (the dotted lines). This is a feature of the real geometry
of the problem as opposed to properties of the algebraic closure, measured by
sotd. Investigating examples of this sort we devised a new measure ndrr defined
to be the number of distinct real roots of the univariate projection polynomials
and created the associated heuristic of picking the variable ordering with lowest
ndrr. Considering again the projection factors from Example [2] we see that this
new heuristic will correctly identify the ordering with the least cells.

The number of real roots can be identified, for example, using the theory
of Sturm chains. This extra calculation will likely take more computation time
than the measuring of degrees required for sotd. However, both costs are usually
negligible compared to the cost of lifting in the CAD algorithm.

2.3 Relative Merits of the Heuristics

We do not propose ndrr as a replacement for sotd but suggest they are used
together since both have relative merits. We have already noted that the strength
of ndrr is its ability to give information on the real geometry of the CAD. Its
weakness is that it only gives information on the complexity of the univariate
polynomials, compared to sotd which measures at all levels. If the key differences
between orderings are not apparent in the univariate polynomials then ndrr is
of little use, as in Example [3l

Example 3. Consider the problem of finding necessary and sufficient conditions
on the coefficients of a quartic polynomial so that it is positive semidefinite:
eliminate the quantifier in, Vz(paz?+qz+r+22 > 0). This classic QE problem was
first proposed in [I8] and was a test case in [14]. There are six admissible variable
orderings (since x must always be projected first). In all of these orderings the
univariate projection factor set will consist of just the single variable of lowest
order, (either p, g or r) and hence all orderings will have an ndrr of one. However,
the sotd can distinguish between the orderings as reported in [14].

Despite the shortcoming of only considering the first level, ndrr should not be
dismissed as effects at the bottom level can be magnified. We suggest using the
heuristics in tandem, either using one to break ties between orderings which the
other cannot discriminate or by taking a combination of the two measures.
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In [I4] the authors suggested a second heuristic, a greedy algorithm based
on sotd. This approach avoided the need to calculate the projection polynomi-
als for all orderings, instead choosing one variable at a time using the sum of
total degree of the monomials from those projection polynomials obtained so
far. Unfortunately there is not an obvious greedy approach to using ndrr. For
problems involving many variables (so that calculating the full set of projection
polynomials for each ordering is infeasible) we should revert to the sotd greedy
algorithm, perhaps making use of ndrr to break ties.

2.4 Coupled Variables

It has been noted in [24] that a class of problems particularly unsuitable for
sotd is choosing between coupled variables (two variables which are the real
and imaginary parts of a complex variable). These are used, for example, when
analysing complex functions by constructing a CAD to decompose the domain
according to their branch cuts. The ordering of the coupled variables for the
CAD can affect the efficiency of the algorithm, as in Example [l

Ezample 4. Consider f = v/22 4+ 1 where z € C. The square root function has a
branch cut along the negative real axis and so f has branch cuts when

R+ =2 —9>+1<0 and (22 +1) =22y =0,

where z, y are coupled real variables such that z = x+iy. With variable ordering
z < y we have sotd = 8, ndrr = 4 and a CAD with 21 cells while with variable
ordering y < x we have sotd = 8 ndrr = 5 and a CAD with 29 cells. The CADs
are visualised in Figure 2] using the same techniques as described for Figure [II

———— — — — —
.
.
———,— e ——

Fig. 2. Plots visualising the CADs described in Example £
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3 Designating Equational Constraints

An equational constraint is an equation logically implied by a formula. The
theory of equational constraints is based on the observation that the formula will
be false for any cell in the CAD where the equation is not satisfied. Hence the
polynomials forming any other constraints need only be sign invariant over the
sections of the equational constraint. The observation was first made in [1I] with
McCallum providing the first detailed approach in [21]. Given a problem with an
equational constraint McCallum suggested a reduced projection operator, which
will usually result in far fewer projection factors and a simpler CAD.

This approach has been implemented in QEPCAD, a command line interface
for quantifier elimination through partial CAD [4]. It can also be induced in any
implementation of TTICAD as discussed in Section[dl The use of equational con-
straints can offer increased choice for problem formulation beyond that of picking
a variable order. If a problem has more than one equational constraint then one
must be designated for use in the algorithm. We propose simple heuristics for
making this choice based on sotd and ndrr.

Let P be the McCallum projection operator which, informally, is applied to a
set of polynomials to produce the coefficients, discriminant and cross resultants.
The full technical details are available in [I9] and a validated algorithm was given
in [20]. Note that implementations usually make some trivial simplifications such
as removal of constants, exclusion of polynomials that are identical to a previous
entry (up to constant multiple), and only including those coefficients which are
really necessary for the theory to hold.

Next, for some equational constraint f let Py be the reduced projection op-
erator relative to f described in [21]. Informally, this consists of the coefficients
and discriminant of f together with the resultant of f taken with each of the
other polynomials. This is used for the first projection, reverting to P for subse-
quent projections. We can then apply the sotd and ndrr measures to the sets of
projection polynomials as a measure of the complexity of the CADs that would
be produced. We denote these values by S and N respectively and our heuristics
are then to choose the equational constraint that minimises these values.

We ran experiments to test the effectiveness of these heuristics using prob-
lems from the CAD repository described in [26. We selected those problems
with more than one equational constraint, for which at least one of the choices
is tractable. The experiments were run in MAPLE using the ProjectionCAD
package [I6] and the results are displayed in Table [[] with the cell count, compu-
tation time and heuristic values given for each problem and choice of equational
constraint.

The full details on the problems can be found in the repository. The exam-
ples each contain two or three equational constraints and the numbering of the
choices in the table refers to the order the equational constraints are listed in the
repository. The variable orderings used were those suggested in the repository.

! Freely available at http://opus.bath.ac.uk/29503
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Table 1. Comparing the choice of equational constraint for a selection of problems.

The lowest cell count for each problem is highlighted and the minimal values of the
heuristics emboldened.

Problem EC Choice 1 EC Choice 2 EC Choice 3
Cells Time S N Cells Time S N Cells Time S N

Intersection A 657 56 61 7 463 5.1 64 8 269 1.3 42 4

Intersection B 711 6.3 66 6 471 54 71 6 303 1.1 40 5

Random A 375 2.7 81 9 435 3.6 73 8 425 2.8 80 8

Random B 1295 21.4 140 13 477 3.8 84 9 1437 23.9 158 14

Sphere-Catastrophe 285 2.0 61 7 169 1.0 59 5

Arnon84-2 39 0.1 54 5 9 00 47 1

Hong-90 F - 14 0 F - 14 0 27 01 14 0

Cyclic-3 57 03 32 3 117 0.7 35 3 119 0.6 36 4

The time taken to calculate S and N for each problem was always less than 0.05
seconds and so insignificant to the overall timings.

For each problem the equational constraint choice resulting in the lowest cell
count and timing has been highlighted and the minimal values of the heuristics
emboldened. We can see that for almost all cases both the heuristics point to
the best choice. However, there is an example (Random A) where both point to
an incorrect choice. The heuristic based on sotd is more sensitive (because it
measures at all levels) and as a result is sometimes more effective. For example,
it picks the appropriate choice for the Cyclic-3 example while the other does not.

Although the sotd heuristic is superior for all these examples it can be misled
by examples where the real geometry differs, as in Example Bl

Example 5. Consider the polynomials
f=y —2c+y2® +y=y@y® - (e +))y* - (x—1))
9=y =2 c+yr® —y =y’ - (= +1)y" — (z - 1))

along with the formula f = 0A g = 0 and variable ordering x < y. We could use
either f or g as an equational constraint when constructing a CAD. We have

discrim(f) = 256(z% 4 1), discrim(g) = 256(x — 1)*(z 4+ 1)?

and so both the projection sets have the same sotd. However, with f as an
equational constraint the projection set has ndrr= 0 while with ¢ it is 2. The
CADs of R? have 3 and 31 cells respectively.

4 Formulating Input for TTICAD

Let @ represent a set of QFFs, {¢;}. In [3] the authors define a Truth-Table
Invariant CAD (TTICAD) as a CAD such that the boolean value of each ¢; is
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constant (either true or false) on each cell. Clearly such a CAD is sufficient for
solving many problems involving the formulae.

A sign-invariant CAD is also a TTICAD, however, in [3] the authors present
an algorithm to construct TTICADs more efficiently for the case where each ¢;
has a designated equational constraint f; (an equation logically implied by ¢;).
They adapt the theory of equational constraints to define a TTICAD projec-
tion operator and prove a key theorem explaining when it is valid. Informally,
the TTICAD projection operator produces the union of the application of the
equational constraints projection operator to each ¢; along with the cross resul-
tants of all the designated equational constraints, (see [3] for the full technical
details). As noted in the introduction, TTICAD is more efficient than equational
constraints alone.

If there is more than one equational constraint present within a single ¢;
then a choice must be made as to which is designated for use in the algorithm,
(the others would then be treated as any other constraint). As with choosing
equational constraints in Section 3 the two different projection sets could be
calculated and the measures sotd and ndrr taken and used as heuristics, picking
the choice that leads to the lowest values.

However, this situation actually offers further choice for problem formulation
than the designation. If ¢; had two equational constraints then it would be
admissible to split this into two QFFs ¢; 1, ¢; 2 with one equational constraint
assigned to each and the other constraints partitioned between them in any man-
ner. (Admissible because any TTICAD for ¢; 1, ¢;2 is also a TTICAD for ¢;.)
This is a generalisation of the following observation: given a formula ¢ with two
equational constraints a CAD could be constructed using either the traditional
theory of equational constraints or the TTICAD algorithm applied to two QFFs.
On the surface it is not clear why the latter option would ever be chosen since
it would certainly lead to more projection polynomials after the first projec-
tion. However, a specific equational constraint may have a comparatively large
number of intersections with another constraint, in which case, while separating
these into different QFFs would likely increase the number of projection polyno-
mials it may still reduce the number of cells in the CAD, (since the resultants
taken would be less complicated leading to fewer projection factors at subsequent
steps). Example [fl describes a simple problem which could be tackled using the
theory of equational constraints alone, but for which it is beneficial to split into
two QFFs and tackle with TTICAD.

Ezxample 6. Let z < y and consider the polynomials
fi=(y—1) -2’ +2% +u, gi=y— 5+,
for=(y-1)-a*+2"+z, gi=-y-3+3,

and the formula ¢ := f1 =0Ag1 >0A fo=0A g2 <O0.
The polynomials are plotted in Figure [l where the solid curve is f1, the solid
line g1, the dashed curve f; and the dashed line g5. The three figures also contain
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dotted lines indicating the stacks over the 0-cells of the CAD of R! arising from
the decomposition of the real line using various CAD algorithms.

First, if we use the theory of equational constraints (with either f; or fo as
the designated equational constraint) then a CAD is constructed which identifies
all the roots and intersection between the four polynomials except for the inter-
section of g; and gs. (Note that this would be identified by a full sign-invariant
CAD). This is visualised by the plot on the left while the plot on the right relates
to a TTICAD with two QFFs. In this case only three O-cells are identified, with
the intersections of go with f; and g1 with fo ignored.

The TTICAD has 31 cells while the CADs produced using equational con-
straints both have 39 cells. The TTICAD projection set has an sotd of 26 and
an ndrr of 3 while each of the CADs produced using equational constraints have
projection sets with values of 30 and 6 for sotd and ndrr.

Fig. 3. Plots visualising the induced CADs of R' described in Example

As suggested by Example [6] we propose using the measures sotd and ndrr
applied to the set of projection polynomials as heuristics for picking an approach.
We can apply these with the TTICAD projection operator for deciding if it would
be beneficial to split QFFs. This can also be used for choosing whether to use
TTICAD instead of equational constraints alone, since applying the TTICAD
algorithm from [3] on a single QFF is equivalent to creating a CAD invariant
with respect to an equational constraint.

We may also consider whether it is possible to combine any QFFs. If the
formulae were joined by conjunction then it would be permitted and probably
beneficial but we would then need to choose which equational constraint to
designate. Formulae joined by disjunction could also be combined if they share an
equational constraint, (with that becoming the designated choice in the combined
formula). Such a situation is common for the application to branch cut analysis
since many branch cuts come in pairs which lie on different portions of the same
curve. However, upon inspection of the projection operators, we see that such
a merger would not change the set of projection factors in the case where the
shared equational constraint is the designated one for each formula. Note, if
the shared equational constraint is not designated in both then the only way to
merge would be by changing designation.
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When considering whether to split and which equational constraint to desig-
nate the number of possible formulations increases quickly. Hence we propose a
method for TTICAD QFF formulation, making the choices one QFF at a time.
Given a list @ of QFFs (quantifier free formulae):

(1) Take the disjunction of the QFFs and put that formula into disjunctive
normal form, \/ $; so that each ¢; is a conjunction of atomic formulae.
(2) Consider each (51 in turn and let m; be the number of equational constraints.

— If m; = 0 then & is not suitable for the TTICAD algorithm of [3],
(although we anticipate that it could be adapted to include such cases).

— If m; = 1 then the sole equational constraint is designated trivially.

— If m; > 1 then we consider all the possible partitions of the formula
in qASZ into sub QFFs with at least one equational constraint each, and
all the different designations of equational constraint within those sub-
QFFs with more than one. Choose a partition and designation for this
clause according to the heuristics based on sotd and ndrr applied to the

projections polynomials from the clause.
(3) Let @ be the list of new QFFs, ¢;, and the input to TTICAD.

5 Using Grobner Bases to Precondition TTICAD QFFs

Recall that for an ideal, I C R[x|, a Grébner basis (for a given monomial or-
dering) is a polynomial basis of I such that {lm(g) | ¢ € G} is also a basis
for {lm(f) | f € I}. In [7] experiments were conducted to see if Grobner basis
techniques could precondition problems effectively for CAD. Given a problem:

® = /\f:l fi(x) =0,

a purely lexicographical Grobner basis {f;}!_, for the f;, (taken with respect
to the same variable ordering as the CAD), could take their place to form an
equivalent sentence: .
P = /\5:1 fi(x) = 0.

Initial results suggested that this preconditioning can be hugely beneficial in
certain cases, but may be disadvantageous in others.

In [27] this idea was considered in greater depth. A larger base of problems was
tested and the idea extended to include Grébner reduction. Given a problem:

w = (/\:;1 fZ(X) = O) A (/\fil gZ(X) *i 0)3 *i € {:a 7£a >, <}a

you can first compute { fz 21:1 followed by reducing the g; with respect to the fz
to obtain {g; 52:1. Then the following sentence will be equivalent to :

b= (AL fix) = 0) A (A2 §i(x) % 0).

Experimentation showed that this Grobner preconditioning can be highly bene-
ficial with respect to both computation time and cell count, however the effect
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Fig. 4. Plot of the functions described in Example [7]

is not universal. To identify when preconditioning is beneficial a simple metric
was posited and shown to be a good indicator. The quantity TNoI (total number
of indeterminates) for a set of polynomials F' is simply defined to be the sum of
the number of variables present in each polynomial in F. In all testing carried
out (both for [27] and henceforth) if the produced Grobner basis has a lower
TNoI than the original set of polynomials then preconditioning is beneficial for
sign-invariant CAD (the converse is not always true).

A natural question is whether Grébner preconditioning can be adapted for
TTICAD. This is possible by performing the Grébner preconditioning on the
individual QFFs. There is a necessity, however, for a problem to be suitably
complicated for this preconditioning to work: each QFF must have multiple
equational constraints amenable to the creation of a Grébner Basis. This required
complexity means there are few examples in the literature which are suitable and
tractable for experimentation. We demonstrate the power of combining these two
techniques through a worked example.

Example 7. Consider the polynomials

fii=2t+y* -1, Jop = (v — 4y ‘1‘(?!—1)2_17
fizi =2 +y% -1, f22 (-4 +(@y—-1)° -1,
g i=zy— 1, =(@—-4@y-1)—,

and the formula [f171 =0A f172 =0Ag1 > 0] \Y [f271 =0A f272 =0Agg > 0}
The polynomials are plotted in Figure Ml where the solid curves represent
J1,15 f1,2, 91, and the dashed curves fa1, f22, g2.

We will consider both variable orderings: y < = and = < y. We can compute full
CAD:s for this problem, with 725 and 657 cells for the respective orderings. If we
use TTICAD to tackle the problem then there are four possible two-QFF formu-
lations, (splitting QFFs is not beneficial for this problem). The four formulations
are described in the second column of Table
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Table 2. Experimental results relating to Example[[l The lowest cell counts are high-
lighted and the minimal values of the heuristics emboldened.

Ordey Full CAD TTI CAD TTI+Gré CAD
Cells Time Eq Const Cells Time S N Eq Const Cells Time S N
y<x 725 22.802 fii,f2n 153 0.818 62 12 fi1,fo1 27 0.095 37
fin, fae 111 0752 94 10 fi1, f22 47 0.361 50
fro,fon 121 0.732 85 9 fii,fos 93 0.257 50
fiz, foo 75 0840 99 T fio, fon 47 0.151 47
f1,2,f2,2 83 0.329 63
fi2, f2.s 145 0.768 81
fis, fon 95 0.263 46
fis, fan 151 0.712 80 12
fis, fos 209 0.980 62 16
z <y 657 22.029 fi1,f2n1 125 0.676 65 14 fi1,fo1 29 0.085 39 4
fia, foe 117 0792 96 11 fi1,fo 53 0.144 52 6
fio, fan 117 0728 88 11 fii, fas 97 0.307 53 97
fi2, fo2 85 0.650 101 8 fio,f21 53 0.146 49 6
fio, far 93 0332 65 8
fio, fas 149 0.782 81 13
fis, fon 97 0.248 48 11
fis, frr 149 0.798 82 13
fis, fos 165 1.061 65 18

S 2 oo o

We can apply Grobner preconditioning to both QFFs separately, computing a
Grdobner basis, with respect to the compatible ordering, of {f; 1, fi2}. For both
QFFs and both variable orderings three polynomials are produced. We denote
them by {fi.1, fia, fiz} (note the polynomials differ depending on the variable
ordering). The algorithm used to compute these bases gives the polynomials in
decreasing order of leading monomials with respect to the order used to compute
the basis (purely lexicographical).

Table 2] shows that the addition of Grébner techniques to TTICAD can pro-
duce significant reductions: a drop from 153 cells in 0.8s to 27 cells in under 0.1s
(including the time required to compute the Grébner bases). As discussed in [27],
preconditioning is not always beneficial, as evident from the handful of cases that
produce more cells than TTICAD alone. As with Table[Ilwe have highlighted the
examples with lowest cell count and emboldened the lowest heuristic. Looking
at the values of S and N we see that for this example ndrr is the best measure
to use.

In [27] TNoI was used to predict whether preconditioning by Grobner Basis
would be beneficial. In this example TNoI is increased in both orderings by
taking a basis, which correctly predicts a bigger full CAD after preconditioning.
However, TNoI does not take into account the added subtlety of TTICAD (as
shown by the huge benefit above).
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6 Conclusions and Future Work

In this paper we have considered various issues based around the formulation of
input for CAD algorithms. We hav