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Preface

Continued advances in computer science and in information technology are
contributing to the forward march of the use of computers in mathematics.
While they used to play a tremendous supporting role through computation,
proof assistants, and as mathematical publishing tools, this has now spread to
more social aspects of the mathematics process. The series of Conferences on
Intelligent Computer Mathematics (CICM) host collections of co-located meet-
ings, allowing researchers and practitioners active in related areas to share recent
results and identify the next challenges.

The sixth in this series of Conferences on Intelligent Computer Mathematics
is held in Bath, UK, in 2013. Previous conferences, all also published in Springer’s
Lecture Notes in Artificial Intelligence series, have been held in the UK (Birm-
ingham, 2008: LNAI 5144), Canada (Grand Bend, Ontario, 2009: LNAI 5625),
France (Paris, 2010: LNAI 6167), Italy (Bertinoro, 2011: LNAI 6824), and Ger-
many (Bremen, 2012: LNAI 7362). CICM 2013 included three long-standing
international meetings:

– 12th International Conference on Mathematical Knowledge Management
(MKM 2013)

– 20th Symposium on the Integration of Symbolic Computation and Mecha-
nized Reasoning (Calculemus 2013)

– 6th workshop/conference on Digital Mathematics Libraries (DML 2013)

Since 2011, CICM has also been offering a track for brief descriptions of systems
and projects that span the MKM, Calculemus, and DML topics, the “Systems
& Projects” track. The proceedings of the meetings and the Systems & Projects
track are collected in this volume.

CICM 2013 also contained the following activities:

– Demonstrations of the systems presented in the Systems & Projects track
– Less formal “work in progress” sessions

We used the “multi-track” features of the EasyChair system, and our thanks
are due to Andrei Voronkov and his team for this and many other features.
The multi-track feature also allowed transparent handling of conflicts of interest
between the Track Chairs and submissions. There were 73 submissions, 17 of
which were withdrawn. Each of the remaining 56 submission was reviewed by
at least three, and most by four, Program Committee members. The committee
decided to accept 30 papers. However, this is a conflation of tracks with different
acceptance characteristics. The track-based acceptance rates were:

MKM: 7 acceptances out of 18 submissions
Calculemus: 5 acceptances out of 12 submissions
DML: 6 acceptances out of 8 submissions
S & P: 12 acceptances out of 16 submissions



VI Preface

Invited talks, this year accompanied by full papers included in these proceed-
ings, were given by:

Ursula Martin with the full paper on “Mathematical Practice, Crowdsourcing,
and Social Machines” coauthored with Alison Pease:

For centuries, the highest level of mathematics has been seen as an iso-
lated creative activity, to produce a proof for review and acceptance
by research peers. Mathematics is now at a remarkable inflexion point,
with new technology radically extending the power and limits of indi-
viduals. Crowdsourcing pulls together diverse experts to solve problems;
symbolic computation tackles huge routine calculations; and computers,
using programs designed to verify hardware, check proofs that are just
too long and complicated for any human to comprehend.

Mathematical practice is an emerging interdisciplinary field which draws
on philosophy, social science and ethnography, and the input of mathe-
maticians themselves, to understand how mathematics is produced. On-
line mathematical activity provides a rich source of data for empirical
investigation of mathematical practice — for example, the community
question-answering system mathoverflow contains around 40,000 math-
ematical conversations, and polymath collaborations provide transcripts
of the process of discovering proofs. Such investigations show the impor-
tance of “soft” aspects such as analogy and creativity, alongside formal
deduction, in the production of mathematics, and give us new ways to
think about the possible complementary roles of people and machines in
creating new mathematical knowledge

Social machines are a new paradigm, identified by Berners-Lee, for view-
ing a combination of people and computers as a single problem-solving
entity, and the subject of major international research endeavors.We out-
line a research agenda for mathematics social machines, a combination
of people, computers, and mathematical archives to create and apply
mathematics, with the potential to change the way people do mathe-
matics, and to transform the reach, pace, and impact of mathematics
research.

Assia Mahboubi presented “The Rooster and the Butterflies”:

This paper describes a machine-checked proof of the Jordan-Hölder the-
orem for finite groups. The purpose of this description is to discuss the
representation of the elementary concepts of finite group theory inside
type theory. The design choices underlying these representations were
crucial to the successful formalization of a complete proof of the Odd
Order Theorem with the Coq system.



Preface VII

Moreover, Patrick D. F. Ion spoke on “Mathematics and the World Wide Web”:

Mathematics is an ancient and honorable study. It has been called The
Queen and The Language of Science. The World Wide Web is something
brand-new that started only about a quarter of a century ago. But the
World Wide Web is having a considerable effect on the practice of math-
ematics, is modifying its image and role in society, and can be said to
have changed some of its content. There are forces at work in the Web
that may be changing our world not necessarily for the better. I will be
exploring some of the issues this raises.

May 2013 Jacques Carette
David Aspinall

Christoph Lange
Petr Sojka

Wolfgang Windsteiger
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The Rooster and the Butterflies

Assia Mahboubi

Microsoft Research - Inria Joint Centre

Abstract. This paper describes a machine-checked proof of the Jordan-
Hölder theorem for finite groups. This purpose of this description is to
discuss the representation of the elementary concepts of finite group the-
ory inside type theory. The design choices underlying these representa-
tions were crucial to the successful formalization of a complete proof of
the Odd Order Theorem with the Coq system.

1 Introduction

The Odd Order Theorem due to Feit and Thompson [7] is a major result of finite
group theory which is a cornerstone of the classification of finite simple groups.
Originally published in 1963, this was considered at its time as a demonstration
of an uncommon length and intricacy, whose 255 pages filled an entire volume of
the Pacific Journal of Mathematics. Later simplified and improved by a collective
revision effort [3, 20], it remains a long and difficult proof, combining a broad
panel of algebraic theories. In September 2012, the Mathematical Components
team, lead by Georges Gonthier, completed [10] a formalization of this result
using the Coq system [1, 4].

This achievement is evidence of the maturity of proof assistants, a family of
software systems pioneered by N. G. de Bruijn’s AUTOMATH system [6], that
aims at “doing mathematics with a computer”. The ambition of proof assistant
is to realize an old dream: automate the verification of mathematical proofs.
Check a theorem with a proof assistant consists in providing a description of the
statement and of its candidate proof in formal logic and then having a generic
and relatively small program checking the well-formedness of this proof with
respect to the elementary rules of logic. A proof assistant provides the support
necessary to obtain both a high confidence in proof checking and the mandatory
set of tools required to ease the process of describing statements and proofs.

For the last decade, proof assistants have been successfully employed in a
variety of contexts, from hardware and software verification to combinatorics or
number theory. However the distinguishing feature of the complete formal proof
of the Odd Order Theorem is that the corresponding libraries of formalized
mathematics cover a range of algebraic theories that is both wide and deep. The
proof of the Odd Order Theorem actually relies on a number advanced results
that necessitate non-trivial combinations of arguments arising from several areas
of mathematics.

When assisting the user in his verification task, the proof assistant is not ex-
pected to invent new results or new justifications. Yet a substantial part of the

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 A. Mahboubi

effort required by such a large scale endeavor consists in reworking the math-
ematics described in the standard literature so that it can be organized in a
satisfactory and modular manner. The software engineering effort leading to
(re)usable and composable libraries of formalized mathematics hence also in-
volves re-thinking the mathematical definitions and proof methods. The for-
malization of the basics has to accommodate the variety of its usage in more
advanced parts of the theory.

In this paper, we outline how elementary concepts of finite group theory have
been revisited in the low-level libraries of this formal proof of the Odd Order
Theorem. We do not claim novelty here: part of the material exposed here has
been already described at various levels of detail in other venues that we list
in the preamble of each section. Previous publications were mostly written for
readers familiar with the Coq system, and most of them deal with programming
issues. By contrast, we have tried here to provide a mathematical documenta-
tion of a few Coq libraries1, as distant as possible from Coq syntax, since
this intuition might be difficult to grasp from the documentation headers of the
corresponding files. These documentation headers can be browsed on-line at:

http://ssr.msr-inria.inria.fr/~jenkins/current/index.html

In the next sections, by formalized, we mean implemented in the Coq system.
The words formal and formally refer to Coq syntax. The words informal and
informally refer to the corresponding mathematical notations we use throughout
the paper to improve the rendering. We however maintain a precise correspon-
dence between formal syntax and informal notations. We also use the collective
“we” pronoun to refer to the team of authors of these libraries [10].

The rest of the paper is organized as follows. Section 2 explains the repre-
sentation adopted for finite types and finite sets. Section 3 is devoted to the
definition of finite groups and their morphisms. Section 4 describes the formal-
ization of the quotient operation of group theory. Finally, section 5 illustrates
how this material is used in the proof of a standard result of finite group theory,
the Jordan-Hölder theorem.

2 Preliminaries

In this section, we recall the formal definitions of the preliminary notions we rely
on. This material has already been presented in earlier publications [12, 8, 10, 11],
with emphasis on the techniques used for their definition in Coq. These lower
layers of formalized mathematics are quite constrained by the features of the
logic underlying the Coq system and, in particular, by its constructiveness. A
significant effort is put in the formalization of the theory of objects that behave
mostly the same in either a classical or a constructive setting. The purpose, and
the challenge, of the corresponding libraries is to provide enough infrastructure
for the user to safely ignore the choices adopted for the implementation of these
lower-level definitions. When these patterns of reasoning are effective, using an

1 https://gforge.inria.fr/frs/?group_id=401

http://ssr.msr-inria.inria.fr/~jenkins/current/index.html
https://gforge.inria.fr/frs/?group_id=401


The Rooster and the Butterflies 3

excluded-middle argument or performing a choice operation should be as con-
venient on top of these axiom-free Coq libraries as in the setting of a classical
logic, like the one assumed by most of the mathematical literature.

2.1 Types with Decidable Equality

The type theory implemented by the Coq proof assistant is a constructive frame-
work: the excluded middle principle is not allowed for an arbitrary statement
without postulating a global axiom. Reasoning by case analysis on the validity
of a predicate is valid constructively when it is possible to implement a (total)
boolean function which decides this validity: the type of boolean values reflects
the class of statements on which the excluded middle principle holds construc-
tively. For instance, we do not need any axiom in order to reason by case analysis
on the equality of two arbitrary natural numbers because equality on natural
numbers is decidable. A decidable predicate is a predicate that can be (and in
our libraries, that is) formalized as a function with boolean values.

The prelude libraries of the system, automatically imported when a Coq
session is started, define an an equality predicate parametrized by an arbitrary
type T , which is the smallest binary reflexive relation on T . This equality is often
referred to as Leibniz equality. However, not all types are a priori equipped with
an associated total and boolean comparison function, testing the validity of a
Leibniz equality. However, the vast majority of the data we manipulate can be
modeled with types equipped with such an operator. This operator legitimates
constructive reasoning and programming by case analysis on the equality of two
objects of such a type and witnesses the decidability of the associated Leibniz
equality predicate. The library hence defines a structure for types with a decidable
equality, formally called eqType. This structure packages a type with a binary
boolean function on this type, plus a proof that the boolean test faithfully models
Leibniz equality. For instance, finite types, natural numbers, rational numbers,
and real or complex algebraic numbers are instances of this structure. Moreover,
pairs, sequences or subtypes of instances of this structure are also canonically
types with a decidable equality.

Another important feature of types with a decidable equality is the fact that
they enjoy the property of uniqueness of identity proofs [14]. This plays a crucial
role in our formalization but is out of the scope of the present paper. The inter-
ested reader can refer to previous publications [12, 11, 8, 10] for more information
on the formalization of this structure.

In all that follows, and unless explicitly stated, by type we always implicitly
mean type with a decidable equality. Hence the reader can safely forget about
the constructiveness issues mentioned in this section: case analysis on the equal-
ity of two objects is allowed as well as on the membership of an object to a
sequence, etc.

Libraries. The corresponding file to this subsection is eqtype.v.
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2.2 Finite Types, Finite Sets

The library also defines an interface for finite types, which are types with a finite
number of elements. Formally this structure is called finType. It packages a
sequence enumerating exhaustively the elements of the type2 and a proof that
this sequence is duplicate-free. Finite types are a instance of a more general
interface for types equipped with a choice operator: for an arbitrary non-empty
decidable predicate, the choice operator outputs a canonical witness. In the case
of a finite type, the choice operator just inspects the enumeration and picks the
first witness encountered.

This representation of finite types is especially convenient to define functions
with a finite domain. Our motivation here is to craft a datastructure for functions
so that they provably verify the so-called extensionality principle:

∀x, fx = gx ⇔ f = g

which states that the point-wise equality of two functions f and g on their whole
domain type is equivalent to the Leibniz equality of these functions. Again, in
Coq’s type theory, this principle is not valid in general: two programs that
output the same values on the same inputs are not necessarily identified by
the Leibniz equality predicate. By contrast, we would like for instance to work
with a definition of sets which allows us to equate sets that have point-wise
characteristic functions.

Let us consider a finite type F , with e the enumeration of its elements. Let
|e| be the length of e. We represent a total function f with arguments in F and
values in a type T by a finite sequence Imf of length |e|, of elements in type T .
Hence the value of f at ei, the element at position i < |e| in the enumeration
e, is the i-th element of the sequence Imf . We call such a function a finite
function. This representation validates the extensionality principle: the right-to-
left implication is trivial and the left-to-right implication holds because according
to our definition of a finite function the Leibniz equality of two finite functions
really is the Leibniz equality of their respective finite graphs Imf and Img. This
equality is granted by the hypothesis of point-wise equality. Note that we do not
need to assume any finiteness property on the codomain type. If (aT : finType

) is a finite type and (rT : Type) an arbitrary type, the type of finite functions
with (finite) domain aT and codomain rT is formally denoted by {ffun aT >->

rT}. Most of the theory of finite functions however assumes that the codomain
type is an instance of type with decidable equality.

Finite functions with boolean values represent characteristic functions of sets
of elements of their domain type. In other words, a finite set over a finite type
F is coded by a sequence of boolean values which is a mask on the enumeration
of F : true values select the elements that belong to the set. Now two finite sets
with point-wise equal characteristic functions are (Leibniz) equal by the previous
extensionality principle.

2 These points are objects of a previously known type with decidable equality.
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For any finite type F , {set F} formally denotes the type of finite sets of
elements of type F. Remark that type {set F} has itself a finite number of
elements and is hence an instance of finite type. We can therefore form the type
{set {set F}}, which is the powerset associated to the finite type F. The library
on finite sets provides definitions and notations for the standard concepts related
to sets. For instance x \in A denotes the (decidable) test of membership of the
element x in the set A, informally denoted by x ∈ A. Similarly, A \subset B

denotes formally the (decidable) test of inclusion of the set A in the set B, which
tests whether the true values of the mask defining A are also true values in the
mask defining B. Informally we denote this test by A ⊂ B. The expression A :&:

B (resp. A :||: B) denotes the intersection (resp. union) of two sets over the
same finite carrier. The corresponding informal notation is A∩B (resp. A∪B).
The expression #|A| denotes the cardinal of a finite set, which is the number
of true values in the mask. The notation f @: A is used for the image set of A
by the function f from a finite type to an other finite type 3, which we denote
informally by f(A). The notation f @^-1: A is used for the preimage set of
A by the function f from a finite type to an arbitrary type, which we denote
informally by f−1(A). We will also use in section 3.1 the possibility of defining a
set by comprehension: the expression [set x | P x] formally denotes the set of
elements satisfying the (decidable) property P, and we denote this set informally
by {x | P (x)}.

In all what follows, by set we mean a finite set of elements in a finite type. The
reader can safely forget about the implementation described in the present sec-
tion to apprehend the rest of this paper and rely on his or her classical intuition
of sets.

Libraries. The corresponding files to this subsection are choice.v, fintype.v,
finfun.v and finset.v.

3 Elementary Notions of Finite Group Theory

In this section we describe the datastructures adopted in the libraries about the
elementary concepts of finite group theory. The design choices evolved in time
and are now different from their earliest published description [12]. Garillot’s
PhD thesis [8] provides a more recent and accurate account of these choices,
targeted at an audience expert in proof assistants.

The datastructures representing formally the operations defining finite groups
of interest and the operations combining finite groups are shaped by two impor-
tant remarks. First, we model groups as certain subsets of an ambient, larger
group, which fixes the data all its subgroups share: the type of the elements, the
group operation, the identity element. Hence groups are not types but objects,
namely some sets of a finite type. This choice is motivated by the observation
that finite group theory is not about the properties of the elements of a given
group, but mostly about the study of how finite subgroups (of a larger finite

3 Since we define an image set we need the codomain type to be also a finite type.
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group) can combine. The second remark is that it is possible to revisit the stan-
dard definitions of the literature, so that they apply to arbitrary subsets of an
ambient group, and not only to the special subsets that are also groups. The
motivation for this generalization is to make the related constructions total and
the statements of the related results less constrained and hence more usable.

3.1 Finite Groups

We reproduce below excerpts borrowed from the preliminary results of As-
chbacher’s book [2].

Definition 1 (Group, subgroup). A group is a set G together with an asso-
ciative binary operation which possesses an identity and such that each element
of G possesses an inverse. In the remainder of this section G is a group written
multiplicatively. (...) A subgroup of G is a nonempty subset H of G such that
for each x, y ∈ H, xy and x−1 are in H. This insures that the binary operation
on G restricts to a binary operation on H which makes H into a group with the
same identity as G and the same inverse.

Definition 2 (Product). For X,Y ⊆ G define XY = {xy; x ∈ X, y ∈ Y }.
The set XY is the product of X with Y .

In definition 2, we can observe that the group G is only here to fix the group
operation and identity shared by the two sets X and Y and is not otherwise part
of the definition. Moreover, these standard definitions and notational conventions
are an instance of the standard practice which consists in using product notations
both for points and sets: a similar convention apply for the inverse X−1 =
{x−1; x ∈ X} of a set X ≤ G and the constant 1 denotes both the identity of
the group and the singleton {1}.

The library for elementary finite group theory defines two main structures. A
first structure packages a finite type with a monoid operation and an involutive
antimorphism. This structure is formally called baseFinGroupType4 and all its
instances share three common notations: the infix notation * denotes the monoid
operation, the postfix ^-1 notation denotes the involution and 1 denotes the
neutral element. A second structure enriches the previous one to obtain all of
the group axioms, hence describes what we call group types in the sequel. This
second structure is formally called finGroupType and its instances inherit from
the notations for the group operation, for the inverse and for the identity.

Let G be a group type. Both G and the type of sets of G are instances of the
baseFinGroupType structure. For G, this holds by construction of a group type.
For the type of sets of G, this comes from the properties of set product and set
inverse. We can therefore utilize the notations *, ^-1 and 1 for both point-wise
and set-wise operations of G. Informally, we use a multiplicative convention and
denote by xy the product of the element x by the element y of a group type.

4 We do not use an informal name for this concept which we use only once in the rest
of this text.
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Similarly, we denote by AB the set product of two sets A and B of a group type.
In order to avoid useless rigid type constraints in the formalized statements of
finite group theory, we generalize as much as possible the standard concepts of
finite group theory to sets of group type. In all that follows a mere set, sometimes
even abbreviated in a set, refers to an arbitrary set of a group type G. Elements
of a mere set A can be multiplied by the group operation defined by G, although
this product does not necessarily belong to A, nor the identity of G.

For instance if A is an arbitrary mere set of a group type G and x an arbitrary
element of G, we define the conjugate of A by x as the set of conjugates x−1ax
of elements a ∈ A by x:

Ax := {x−1ax | a ∈ A}

Note that we use here the group operation of G to describe the elements of
Ax. Formally this set is defined as the image set of the set A by the function
y 
→ x−1yx. Similarly, we define AB , the conjugate of the set A by the set B as
the image of the set B by the function x 
→ Ax. The normalizer of a mere set A
is defined as:

N(A) := {x | Ax ⊆ A}

The definition of N(A) is formalized using the comprehension-style construction
mentioned in section 2.2. The centralizer of a mere set A is the intersection of
the normalizers of all the singleton sets of its elements:

C(A) :=
⋂
x∈A

N({x})

The formal definition of C(A) uses a library about iterated operators [5], which
provides a modular infrastructure for notations, theory and computation of in-
dexed constructions like

⋂
x∈A. We also introduce a notation for the localization

of the normalizer and centralizer of a set A to a set B: we denote informally by
NB(A) (resp. CB(A)) the intersection N(A) ∩B (resp. C(A) ∩B).

Finally, for any group type G, a group of G (or just a group) is a mere set G of
G which contains the identity element (1 ∈ G) and is closed under the product
(GG ⊆ G). Note that what we call a group here is necessarily a finite group.
The singleton set {1} of the identity element of G is a group of G as well as
the total set containing all the elements of G. This total set actually plays the
role of the ambient group G postulated in many statements, like for instance
in definition 2. A subgroup H of a group G is a group whose underlying set
is a subset of the one underlying G. Formally, {group gT} denotes the type of
groups of a group type gT. For any set A, the group generated by A is obtained
as the intersection of all the sets that are groups and contain A, formalized by
the means of aforementioned library about iterated operators [5]. As usual, the
group generated by A is formally defined as a set, later equipped with a canonical
structure of group. We denote informally by 〈A〉 and formally by <<A>> the group
generated by a mere set A. We also prove that some of the above constructions
on mere sets preserve the property of being a group: the intersection of two
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groups is a group, the normalizer of a group is a group.... Note that the set-level
product of two groups is not necessarily a group.

Lemma 1 (Product group [2]). Let X,Y be subgroups of a group G. Then
XY is a subgroup of G if and only if XY = Y X.

In our formal library, we model this fact by defining an alternate product oper-
ation on sets of a group type that always produces a group: the join product of
two sets A and B is simply the group generated by A and B, which coincides
with AB when AB = BA.

As a conclusion of this subsection, let us summarize two differences in flavor
between the usual paper versions of statements and definitions in finite group
theory and their formal versions. First, the standard constructions of new groups
from known groups like normalizer, centralizer, etc. are defined as the construc-
tion of new sets from known sets. The resulting sets are later equipped with
a group structure under the suitable assumption on their components. Second,
every formal statement features one more universal quantification or parameter,
for the parameter group type. For instance, the original statement of the Odd
Order Theorem is the following:

Theorem 1 (Odd Order theorem [7]). Every finite group of odd order is
solvable.

And its formal statement in Coq is:

Theorem Feit_Thompson : forall (gT : finGroupType),

forall (G : {group gT}), odd #|G| -> solvable G.

This formal version is not less general than the original one: it can be read as
“every subgroup of odd order of a group is solvable”, where the group and the
subgroup can for instance be the same.

Libraries. The corresponding file to this subsection is fingroup.v.

3.2 Group Morphisms, Isomorphisms

We again quote Aschbacher’s definition [2] of the homomorphisms associated
with the structure of group:

Definition 3 (Group homomorphism). A group homomorphism from a
group G into a group H is a function α : G → H of the set G into the set H
which preserves the group operations: that is for all x, y in G, (xy)α = xα yα.
Notice that I usually write my maps on the right, particularly those that are ho-
momorphisms. The homomorphism α is an isomorphism is a bijection. (..) H
is said to be a homomorphic image of G if there is a surjective homomorphism
of G onto H.

In all that follows, we slightly depart from Aschbacher’s choices: we use the
words group morphism instead of group homomorphism and we write these maps
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applicatively (α(x)) instead of on the right (xα). Definition 3 describes a group
morphism as a function whose domain is a specified group. In type theory, a
function is defined as an object (f : A -> B) whose type A -> B specifies the
domain type A of its arguments and the codomain type B of its values. Such
a function f is necessarily total on its domain type A. However we argued in
section 3.1 that groups are better represented not as types but as objects, namely
as sets of an ambient group type. Hence in our formalization, two groups G and
H are modeled as sets of two (group) types G1 and G2 respectively and definition
3 only specifies a morphism φ : G→ H as a function and its morphism properties
for certain G1, the ones in G. We are hence left to choosing one of the several
standard ways of dealing with partiality issues in type theory: assigning a clever
default value outside the domain, restricting the type of the domain, using a
monadic style....

Several approaches have been successively considered for the formal defini-
tion of group morphisms, leading to different versions of the related libraries.
We eventually reverted the choice described in our earliest publication [12]. Gar-
illot [8] has discussed the motivations for the change to the datastructure we
describe hereafter. The current structure of group morphism, formally denoted
by {morphism D >-> rT}, has three parameters:

– a group type aT called the domain type;
– a group type rT called the codomain type;
– a mere set D of the group type aT called the domain.

The domain type is not displayed to the user in the type {morphism D >-> rT}

because it is implicit: it can be inferred from the type of the parameter D. This
interface describes functions of type aT -> rT which distribute over the product
of two elements if they both belong to the set D.

Since this definition ensures the distributive property only on the domain of
a morphism, it becomes natural to consider alternative definitions of images and
preimages for group morphisms. More precisely, consider f a group morphism
and denote D the domain of f . Let A be a set of the domain type of f . We define
the morphic image of the set A by the group morphism f as the image by f of
the intersection of A with the domain D:

f∗(A) := f(A ∩D)

where f(A ∩ D) refers to the image set by f (see section 2.2). Formally, this
morphic image is denoted by f @* A. Similarly, we define the morphic preimage
of the set R by the group morphism f as the intersection of the domain D with
the preimage by f of R:

f−1∗(R) := f−1(R) ∩D

where f−1(R) is the preimage set of R by f . In Coq, this morphic preimage
is denoted by f @*^-1 R. Note that the image and the morphic image of the
domain D coincide. When both the domain D of f and the set A (resp. the set
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R) are groups, the morphic image (resp. the morphic preimage) of A (resp. of
R) is a group. For instance, the morphic preimage of the singleton set {1} of
the identity is a group, called the kernel of the group morphism. Informally we
denote by Ker f the kernel of a group morphism and by Im f its image. We
denote by KerA f the intersection of the kernel of a morphism with a set A.

As a consequence of this formalization choice, each new definition of a mor-
phism should come with the explicit mention of the domain it is a morphism on.
However, we use the facilities offered by Coq’s type inference mechanism to com-
pute automatically a non-trivial domain for morphisms resulting from standard
operations. For instance if f and g are two group morphisms, under the obvious
compatibility condition on their domain and codomain types, Coq can infer that
the composition g ◦ f is a morphism with domain (at least) f−1∗(H) where H is
the domain of the morphism g. This means that if we dispose of (f : {morphism

G >-> hT}) and (g : {morphism H >-> rT}) two morphisms, Coq infers the
type (g \o f : {morphism f @*^-1 H >-> rT}) automatically. Similarly, the
inverse of an injective morphism f with domain D is canonically a morphism
with domain f(D). However, it might sometimes be necessary to restrict by hand
the domain of a morphism. We hence provide an operator which constructs a
new morphism g with domain the set A from a known morphism f and a proof
that A ⊆ D. Let us mention a last example of useful operation on group mor-
phisms. Let f1 and f2 be two group morphisms with possibly different codomain
types but with the same domain type. Let D be the domain of f1 and G be the
domain of f2. We moreover assume that G is a group. Under this assumption we
can construct the natural factor morphism mapping f∗

1 (G) to f∗
2 (G) provided

that G is included in D and that the kernel of f1 is included in the kernel of f2.
The kernel of this morphism is the morphic image f∗

1 (Ker f2) of the kernel of f2
by f1.

When there exists a group morphism such that a set B is the morphic image
of the set A by this morphism, we say that B is the homomorphic image of A.
In Coq, this is denoted by (B \homg A). We say that a group morphism f with
domain D maps a set A isomophically to the set B when both A is included in D
and the image of the complement of A (in the domain type) by f is equal to the
complement of B (in the codomain type). This seemingly contrived definition
is a concise way of ensuring both that the morphism is injective and that B is
the image of A. In Coq, we denote by (B \isog A) the existence of a group
morphism which maps A to B isomophically. Note that once again we have posed
these definitions at the level of sets of the group type.

Let us conclude this subsection by mentioning that we adopt a completely dif-
ferent datastructure for the set Aut(G) of automorphisms of a group G, which is
the set of endomorphisms of G that are also isomorphisms. The set of automor-
phisms of a group G of a group type G is defined as the set of permutations of
G that are the identity function outside G and distribute over the group prod-
uct inside G. It is easy to interpret canonically such a permutation as a group
morphism but defining automorphisms as permutations actually allows us to
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transpose the (group) theory already developed for the permutations of a set to
the Aut(G) group.

Libraries. The corresponding files to this subsection are morphism.v and auto-

morphism.v

4 Cosets, Normal Subgroups and Quotients

In this section again we quote Aschbacher’s definitions [2].

Definition 4 (Normal subgroup). A subgroup H of G is normal if g−1hg ∈
H for each g ∈ G and h ∈ H. Write H � G to indicate H is a normal subgroup.

Definition 5 (Cosets, coset space). Let H be a subgroup of G. For x ∈ G
write Hx = {hx : h ∈ H} and xH = {xh : h ∈ H}. Hx and xH are cosets of H
in G. Hx is a right coset and xH is a left coset. To be consistent I’ll work with
right cosets Hx in this section. G/H denotes the set of all (right) cosets of H
in G. G/H is the coset space of H in G.

Both the definition of the “normal”predicate and the one of right and left cosets
are literally formalized in our formal development, except that they are defined
as usual for mere sets instead of groups. However we depart from Aschbacher’s
choice when it comes to the definition of coset spaces. Instead, we somehow take
backward the following definition [2]:

Definition 6 (Factor group). If H � G the coset space G/H is made into a
group by defining multiplication via

(Hx)(Hy) = Hxy x, y ∈ G

Moreover there is a natural surjective homomorphism π : G → G/H defined by
π : x 
→ Hx. Notice ker(π) = H. Conversely if α : G → L is a surjective
homomorphism with ker(α) = H then the map β : Hx 
→ xα is an isomorphism
of G/H with L such that πβ = α. G/H is called the factor group of G by H.
Therefore the factor groups of G over its various normal subgroups are, up to
isomorphism, precisely the homomorphic images to G.

Instead of studying the entire coset space in the sense of definition 5, we formally
define the coset space of a mere set A as the type whose elements are the right
cosets Ax, with x spanning the normalizer N(A) of A (see section 3.1). Infor-
mally, we denote by CA the coset space of a set A according to this alternate
definition. An element of CA is a bilateral coset, since for x ∈ N(A), we have
Ax = xA. Note that when H is a group, N(H) happens to be the largest group
(for inclusion) in which H is normal.

Coset spaces as defined in 5 are actually of little use when H is not normal
in G, assumption which make the coset space a group. Hence the theory of
coset spaces described in the literature actually boils down to the theory of
quotients of a group by one of its normal subgroup. In our setting, we are able
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to define a better theory of coset spaces which allows us to simplify greatly the
manipulation of quotients by erasing these normality assumptions. Without this
effort, the requirements put in the type constraints are soon too demanding for
the lemmas to be usable as such. We explain this formalization in the rest of
this subsection and illustrate its impact on the three isomorphism theorems of
group theory.

Consider a group H of a group type G. Its coset space CH is an instance of
group type: the group product operation and the inverse operation are respec-
tively the set product and the set inverse operations, and the identity element
1 ∈ CH is 1H = H . In Coq, this new instance CH of group type is named
(coset_groupType H). For x, y ∈ N(H), the product xHyH of two bilateral
cosets is the coset xyH of the product xy ∈ N(H). But interestingly, if we
extend this correspondence by associating each element x /∈ N(H) with the
identity value 1 ∈ CH , we obtain a total function on G, which is an instance of
group morphism, in the sense discussed in section 3.2. The domain type of this
morphism is G, its codomain type is CH and its domain is the normalizer N(H).
Informally, we denote this morphism by ./H . Formally, we denote this morphism
by (coset H). The quotient of a mere set A by the group H , denoted A/H , is
defined as the morphic image of the set A by this morphism ./H .

When H is a normal subgroup of A, our definition coincide with the one of the
standard literature. It is however more general for it provides a precise meaning
to the quotient of a mere set A by H which requires A neither to be a group
nor to be included in N(H). Using the standard definition 6, what we define as
A/H would be indeed described as NA(H)H/H . In fact we make the definition
of quotient even more general: if A and B are sets of G, then A/B denotes the
quotient of the set A by the group 〈B〉 generated by B: A/B is a set of the group
type C〈B〉.

We conclude this subsection by commenting three elementary but crucial re-
sults of finite group theory, called isomorphism theorems [18]. The first one is a
rephrasing of the result contained in Aschbacher’s definition 6.

Theorem 2 (First isomorphism theorem). Let f be a group morphism from
G to K. Then

G/(Ker f)→ H with (Ker f)x 
→ xf

is an injective group morphism. In particular

G/(Ker f) is isomorphic to (Im f).

In our setting, starting from a group morphism f with domain a group G, we
construct a new morphism g with domain G/(Ker f) which is injective and such
that for any set A, the morphic image f∗(A) of A by f is equal to g∗(A/(Ker f)).
This is a slight generalization of the above statement, which corresponds to the
case where we take A = G. This morphism g can be obtained as the factor
morphism mentioned in section 3.2, taking f as f2 and ./(Ker f) as f1: the
kernel of ./(Ker f) is (Ker f), hence included in (in fact equal to) the one of f .
Moreover the domain of a group morphism is included in the normalizer of its
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kernel, thus the domain of f is included in the one of ./(Ker f). We can therefore
form this factor morphism g, which sends A/(Ker f) to f∗(A) for any set A. The
kernel of this morphism is (Ker f)/(Ker f) which is trivial, hence the morphism
is injective.

An easy corollary follows from this first isomorphism theorem. For an extra
subgroup H of G, we can construct a morphism g with domain H/(KerH f),
which is injective and such that for any subset A of H , the morphic image f∗(A)
of A by f is equal to g∗(A/(KerH f)).

The second isomorphism theorem is a central ingredient in the butterfly ar-
gument of the proof of Jordan-Hölder theorem (see section 5).

Theorem 3 (Second isomorphism theorem). Let G be a group and H and
K two subgroups of G such that H ⊂ N(K). Then HK is a subgroup of G and
thus K is a normal subgroup of HK and:

φ : H → HK/K with u 
→ uK

is an injective group morphism with Ker φ = H ∩K and

H/H ∩K is isomorphic to HK/K.

In this theorem, we can observe an instance of the partiality issues raised by the
standard definition of quotients in the literature. The statement of the theorem
has two parts: the first one establishes the conditions under which some objects
are well defined. The second one is an isomorphism involving these objects. The
situation is quite easier using the generalized definitions set up in the previous
subsections.

In our setting, an ambient group type G plays the role of the above G, and we
consider two groups H and K of G, such that H ⊂ N(K). We prove the second
isomorphism theorem by constructing a morphism g with domain H/H ∩ K,
which is injective and such that g∗(A/H ∩ K) = A/K for any subset A of H .
Noticing thatH∩K is KerH (./K), the existence of g is a direct application of the
above corollary of the first isomorphism theorem, applied to the morphism ./K.
The usual version of the second isomorphism theorem, as stated in theorem 3,
follows from this construction: in our setting HK/K, which is the morphic image
of HK by ./K, is equal to the morphic image H/K of H by ./K.

The conclusion of the third isomorphism theorem uses three distinct quotient
operations, each of which deserves a side condition of well-formedness.

Theorem 4 (Third isomorphism theorem). Let H and K be normal sub-
groups of G such that H is a subgroup of K. Then

φ : G/H → G/K with Hx 
→ Kx

is an injective morphism with Ker φ = K/H, and

(G/H)/(K/H) is isomorphic to G/K.
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We consider three groups G, H , and K of a group type G. We suppose that
H and K are normal subgroups of G and that H is a subgroup of K. Again,
we slightly generalize the above statement by constructing a morphism g with
domain (G/H)/(K/H) such that for any subset A of G, g∗(A/H/(K/H)) =
A/K. We proceed in three steps. First, we consider the morphism ./K, whose
domain is N(K). We restrict it to G, using the restriction operation mentioned
in section 3.2. This is possible since G ⊂ N(K) by hypothesis. Then, we factor
the morphism ./H by this restriction. This means we apply the factor operation
described in section 3.2 with f1 equal to the morphism ./H and f2 equal to the
restriction of ./K to G. We hence obtain a morphism g′ which maps any subset
A of G/H to A/K and has kernel K/H . Finally, we apply the corollary of the
first isomorphism theorem to g′, which constructs the announced morphism g.

Libraries. The corresponding file to this section is quotient.v.

5 The Jordan Hölder Theorem(s)

In this section, we sketch the well-known proof of the Jordan-Hölder theorem for
finite groups [17, 15] as formalized in Coq on top of the infrastructure presented
in section 3.

5.1 Simple Groups, Composition Series

A normal series is a sequence of successive quotients of a group.

Definition 7 (Normal series, factors). A normal series for a group G is a se-
quence 1 = G0 � G1 . . . � Gn = G, and the successive quotients (Gk+1/Gk)0≤k<n

are called the factors of the series.

Formalizing normal series poses no particular problem: it is a sequence of groups
where the sets underlying two consecutive elements are related by the relation
�. The corresponding formal definition is actually obtained from a more general
pattern, that we call subgroup series. Subgroup series are defined as sequences of
groups for which the sets of two consecutive elements related by a binary relation
(on sets). This simple definition suits the formalization of several notions like
normal series, ascending series, descending series, chief series....

A formal definition of the sequence of factors of a normal series is however
slightly more uneasy at first sight. Let G be a group of the group type G, and
(Gk)0≤k≤n a normal series for G. All the elements of the series are groups of
G. By contrast, each factor Gk+1/Gk is a group of the group type CGk

. Since
the elements of the sequence of factors have pairwise distinct types a formal
definition of this sequence would be very intricate. Instead, we represent a factor
(Gk+1/Gk) of a normal series by a pair of groups (G′

k+1, Gk) where (G
′
k+1/Gk) is

a canonical representative of the isomorphism class of (Gk+1/Gk) inside CGk
. The

sequence of factors can hence be represented as a homogeneous sequence, whose
elements are pairs of group of G. The use of the isomorphism representative is
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motivated by the proof described in section 5.2. The formalization of this defi-
nition uses the choice operator mentioned in section 2.2.

Definition 8 (Simple group). A group G is simple when its only proper
normal subgroup is the trivial group 1.

Definition 9 (Composition series). A normal series whose factors are all
simple groups is called a composition series.

Definitions 8 and 9 are translated literally in the libraries, using the material
presented so far. Simple groups are exactly groups with composition series of
length 1 (containing only the group itself and 1). Similarly trivial groups are are
exactly groups with empty composition series (containing only the group itself).

Lemma 2 (Existence of a composition series). Every finite group has a
composition series.

The proof of lemma 2 is an induction on the cardinal of a group G, which is
either simple, or trivial, or has a non-trivial proper normal subgroupH , maximal
for inclusion. In the last case, the quotient G/H is simple and we conclude by
applying the induction hypothesis to H .

Libraries. The corresponding files to this subsection are gseries.v and jor-

danholder.v.

5.2 Uniqueness of Composition Series

The Jordan-Hölder theorem states that the (simple) factors of a composition
series play a role analogous to the prime factors of a number. They however do
not control completely the structure of a group: unlike natural numbers non-
isomorphic groups may have composition series with isomorphic factors.

Theorem 5 (Jordan-Hölder Uniqueness). Two composition series of a same
group have the same length and the same factors up to permutation and isomor-
phism.

Let G be a group of a group type G. We prove that for any two composition series
of G, the corresponding sequences of factors are equal up to permutation, since
we have already picked canonical isomorphism representatives for the factors.
Again we proceed by induction on the cardinal of the group G. In the inductive
case, we can assume that G is neither trivial nor simple, and we consider two
non empty composition series of G, (Ni)0≤i≤r+1 and (Mj)0≤j≤s+1. Note that
G = Nr+1 = Ms+1. We call N (resp. M) the group Nr (resp. Ms): (Ni)0≤i≤r

is a composition series of N and (Mj)0≤j≤s is a composition series of M . Both
N and M are normal subgroups of G. If N and M are equal, then the theorem
is proved from the induction hypothesis. Otherwise we pose I = M ∩N , which
is normal in both N and M . Now comes the crux of the demonstration: G/N
is isomorphic to M/I and G/M is isomorphic to N/I. This step is called the
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butterfly lemma, or also Zassenhaus lemma [23] and both these isomorphisms
are easy consequences of the second isomorphism theorem 3.

To finish the proof, we use lemma 2 to construct a composition series (Ik)0≤k≤t

for I. The butterfly lemma ensures that the quotient N/I is simple. Therefore
(Ik)0≤k≤t extends to a composition series for N by taking It+1 := N . We dis-
pose of two composition series (Ik)0≤k≤t+1 and (Ni)0≤i≤r for the group N whose
cardinal is smaller that the one of G: the induction hypothesis applies and these
series have the same length and the same factors. Similarly we apply the induc-
tion hypothesis to the two composition series we dispose of for M . Hence up to
isomorphism the set of factors associated with (Ni)0≤i≤r+1 is G/N , N/I and a
set FN of other factors, the set of factors associated with (Mi)0≤i≤r+1 is G/M ,
M/I and a set FM of other factors, such that FN and FM are the same up to
isomorphism and permutation. The isomorphisms established by the butterfly
lemma conclude the proof.

Libraries. The corresponding file to the subsection is jordanholder.v.

5.3 More Butterflies

The more general version of the Jordan-Hölder theorem for finite groups deals
with a more general kind of composition series: given a set A which acts on a
group G, an A-composition series is an increasing sequence (Gk)0≤k≤n of sub-
groups of G, with G = Gn and such that for each k, Gk is a maximal subgroup of
Gk+1 invariant by the action of A. A finite group G has an A-composition series
as soon as A acts on G and the uniqueness theorem transposes to the factors
of A-composition series of a same group, with a little more work, in particular
for establishing the butterfly lemma. We have also formalized this more general
version [2], which we do not detail here by lack of space.

The library also features the analogue Jordan-Hölder theorem for the theory
of representations of finite groups [16], whose proof is again analogue in shape.
However the algebraic structures at stake in that case are much more sophis-
ticated than the ones of finite groups, and their formalization is based on a
significant reworking of the standard mathematical presentations of elementary
linear algebra [9].

As a final remark we would like to mention that these butterfly lemmas are
quite typical, although rather simple, examples where two objects play a sym-
metrical role, which is broken without loss of generality at the beginning of the
proof. The version of the Jordan-Hölder theorem we detailed in section 5.2 is so
simple that no additional support is really needed in that proof. However the
code formalizing the two more advanced versions we mentioned above are using
a specific feature of the proof shell [13] used to develop these libraries, called
the wlog tactic. This command is a key ingredient in order to avoid extremely
painful redundancy in the script describing these mathematical arguments based
on symmetries. This quite elementary feature of the tactic language has actually
been instrumental at several places of the libraries, including advanced group
theory for the proof of the Odd Order Theorem [10].
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Libraries. The corresponding files to this subsection are jordanholder.v and
mxrepresentation.v. See for instance PFsection9.v for an instance of wlog
tactic, on a tricky chain of circular inequalities with equality conditions.

6 Conclusion

The structure of the paper reflects in miniature the one of the whole set of li-
braries of the formal proof of the Odd Order Theorem. Libraries on elementary
concepts, like types with decidable equality or finite sets, are tightly related to
the type system underlying the Coq proof assistant. They provide an infrastruc-
ture which allows us to ignore the details of their implementation when it comes
to formalizing finite groups as finite sets of a group type. Here again part of the
basic libraries about finite groups, morphisms, and quotients are devoted to the
infrastructure work which aims at providing the same flavor of mathematical
notations and packaging as in the standard literature of finite group theory. As
a result, there is not much left to say when it comes to describing the formalized
proof of the Jordan-Hölder, and this was precisely the purpose of the upstream
effort. The elementary examples from finite group theory presented here also
illustrate the fact that textbook presentations of abstract algebra are not nec-
essarily sufficient references in order to design the appropriate abstractions for
formal libraries to scale. Future formalizations will show whether the techniques
employed in the present libraries are general enough to apply to more mathe-
matical structures. The design of these patterns will for sure be impacted by
improvements in the implementation of proof assistants [19] but also possibly by
evolutions of the type theory they implement [21].

The difference in purpose of the different layers of libraries affect their de
Bruijn factor [22], a criterion measuring the difference in size between the code
describing a formal proof and the code of the typeset description of a paper
proof. Lower level libraries feature by far the highest de Bruijn factor because
they describe a lot of material which addresses the implicit content of paper
mathematics. This implicit content is not only about datastructures, but also
about how to recompute the implicit content of notational conventions, or abuse
thereof, without which a paper text appears as extremely pedantic and soon
unreadable. By contrast, for advanced libraries like the ones corresponding to
the final chapters of the proof of the Odd Order theorem, it is possible to obtain
a one to one correspondence, and even sometimes a shorter formal proof, which
illustrates the benefits of the re-factoring of the mathematics.

Libraries. An example of infrastructure file with a very large de Bruijn factor
is bigop.v. By contrast, file BGappendixC.v has a very small de Bruijn factor
(3 pages for 170 lines of script according to G. Gonthier, author of the script).
In file PFsection3.v, the local definition of some appropriate boilerplate [10]
significantly shortens a pedestrian computational proof.

Acknowledgments. The author wishes to thank Jacques Carette, William
Farmer, Laurence Rideau and Enrico Tassi for their proofreading.
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A., Tassi, E., Théry, L.: A machine-checked proof of the odd order theorem. To
appear in the Proceedings of the ITP 2013 Conference (2013)

[11] Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq.
Journal of Formalized Reasoning 3(2), 95–152 (2010)

[12] Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular Formali-
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Abstract. Cylindrical algebraic decomposition (CAD) is an important
tool for the study of real algebraic geometry with many applications both
within mathematics and elsewhere. It is known to have doubly exponen-
tial complexity in the number of variables in the worst case, but the
actual computation time can vary greatly. It is possible to offer different
formulations for a given problem leading to great differences in tractabil-
ity. In this paper we suggest a new measure for CAD complexity which
takes into account the real geometry of the problem. This leads to new
heuristics for choosing: the variable ordering for a CAD problem, a des-
ignated equational constraint, and formulations for truth-table invariant
CADs (TTICADs). We then consider the possibility of using Gröbner
bases to precondition TTICAD and when such formulations constitute
the creation of a new problem.

Keywords: cylindrical algebraic decomposition, problem formulation,
Gröbner bases, symbolic computation.

1 Introduction

Cylindrical algebraic decomposition (CAD) is a key tool in real algebraic geom-
etry both for its original motivation, quantifier elimination (QE) problems [10,
etc.], but also in other applications ranging from robot motion planning [25, etc.]
to programming with complex functions [13, etc.] and branch cut analysis [17,
etc.]. Decision methods for real closed fields are used in theorem proving [15], so
CAD has much potential here. In particular MetiTarski employs QEPCAD [4] to
decide statements in special functions using polynomial bounds [1, 2, 23]. Work
is ongoing to implement a verified CAD procedure in Coq [9, 22].

Since its inception there has been much research on CAD. New types of CAD
and new algorithms have been developed, offering improved performance and
functionality. The thesis of this paper is that more attention should now be
given to how problems are presented to these algorithms.

How a problem is formulated can be of fundamental importance to algorithms,
rendering simple problems infeasible and vice versa. In this paper we take some
steps towards better formulation by introducing a new measure of CAD com-
plexity and new heuristics for many of the choices required by CAD algorithms.
We also further explore preconditioning the input via Gröbner bases.

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 19–34, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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1.1 Background on CAD

A CAD is a decomposition of Rn into cells arranged cylindrically (meaning their
projections are equal or disjoint) and described by semi-algebraic sets. Tradition-
ally CADs are produced sign-invariant to a given set of polynomials in n variables
x, meaning the sign of the polynomials does not vary on the cells. This definition
was provided by Collins in [10] along with an algorithm which proceeded in two
main phases. The first, projection, applies a projection operator repeatedly to a
set of polynomials, each time producing another set of polynomials in one fewer
variables. Together these sets provide the projection polynomials. The second
phase, lifting, then builds the CAD incrementally from these polynomials. First
R is decomposed into cells which are points and intervals corresponding to the
real roots of the univariate polynomials. Then R2 is decomposed by repeating
the process over each cell using the bivariate polynomials at a sample point of
the cell. The output for each cell consists of sections of polynomials (where a
polynomial vanishes) and sectors (the regions between these). Together these
form the stack over the cell, and taking the union of these stacks gives the CAD
of R2. This process is repeated until a CAD of Rn is produced. This final CAD
will have cells ranging in dimension from 0 (single points) to n (full dimensional
portions of space). The cells of dimension d are referred to as d-cells.

It has often been noted that such decompositions actually do much more
work than is required for most applications, motivating theory which consid-
ers not just polynomials but their origin. For example, partial CAD [12, etc.]
avoids unnecessary lifting over a cell if the solution to the QE problem on a
cell is already apparent. Another example is the use of CAD with equational
constraints [21, etc.] where sign-invariance is only ensured over the sections of
a designated equation, thus reducing the number of projection polynomials re-
quired. It is worth noting that while the lifting stage takes far more resources
that the projection, improvements of the projection operator have offered great
benefits.

Applications often analyse formulae (boolean combinations of polynomial
equations, inequations and inequalities) by constructing a sign invariant CAD
for the polynomials involved. However this analyses not only the given problem,
but any formula built from these polynomials. In [3] the authors note that it
would be preferable to build CADs directly from the formulae and so define a
Truth Table Invariant CAD (TTICAD) as one which is has invariant truth values
of various quantifier-free formulae (QFFs) in each cell. In [3] an algorithm was
produced which efficiently constructed such objects for a wide class of problems
by utilising the theory of equational constraints.

1.2 Formulating Problems for CAD Algorithms

The TTICAD algorithm in [3] takes as input a sequence of QFFs, each of which is
a formula with a designated equational constraint (an equation logically implied
by the formula). It outputs a CAD such that on each cell of the decomposition
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each QFF has constant truth value. The algorithm is more efficient than con-
structing a full sign-invariant CAD for the polynomials in the QFFs, since it
uses the theory of equational constraints for each QFF to reduce the projec-
tion polynomials used and hence the number of cells required. Its benefit over
equational constraints alone is that it may be used for formulae which do not
have an overall explicit equational constraint (and to greater advantage than the
use of implicit equational constraints). Many applications present problems in a
suitable form for TTICAD, such as problems from branch cut analysis [17].

However, it is possible to envision problems where although separate QFFs
are not imposed they could still lead to more economical CADs, (see Example
6). Further, we may consider splitting up individual QFFs if more than one equa-
tional constraint is present. This leads to the question of how best to formulate
the input to TTICAD, a question which motivated this paper and is answered
in Section 4. Some of this analysis could equally be applied to the theory of
equational constraints alone and so this is considered in Section 3.

In devising heuristics to guide this process we realised that the existing mea-
sures for predicting CAD complexity could be misled. An important use for these
is choosing a variable ordering for a CAD; a choice which can make a substantial
difference to the tractability of problems. We use x ≺ y to indicate x is less than
y in an ordering. In [14] the authors presented measures for CAD complexity
but none of these consider aspects of the problem sensitive to the domain we
work in (namely real geometry rather than complex). In Section 2 we suggest a
simple new measure (the number of zero cells in the induced CAD of R1) leading
to a new heuristic for use in conjunction with [14]. We demonstrate in general
it does well at discriminating between variable choices, and for certain problems
is more accurate than existing heuristics.

These three topics are all examples of choices for the formulation of problems
for CAD algorithms. They are presented in the opposite order to which they
were considered above, as it is more natural for presenting the theory. Problem
formulation was considered in this conference series last year [27] where the
idea of preconditioning CAD using Gröbner bases was examined. This work is
continued in Section 5 where we now consider preconditioning TTICAD.

The tools developed for the formulation of input here lead to the question of
whether their use is merely an addition to the algorithm or leads to the creation
of a new problem. This question also arose in [26] where a project collecting
together a repository of examples for CAD is described. In Section 6 we give our
thoughts on this along with our conclusions and ideas for future work.

2 Choosing a Variable Ordering for CAD

2.1 Effects of Variable Ordering on CAD

It is well documented [14, etc.] that the variable ordering used to construct
a CAD can have a large impact on the number of cells and computation time.
Example 1 gives a simple illustration. Note that the effect of the variable ordering
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can be far greater than the numbers presented here and can change the feasibility
of a given problem. In [5] the authors prove there are problems where one variable
ordering will lead to a CAD with a constant number of cells while another will
give a number of cells doubly exponential in the number of variables.

Example 1. Consider the polynomial f := (x− 1)(y2+1)− 1 whose graph is the
solid curve in Figure 1. We have two choices of variable ordering, which lead to
the two different CADs visualised. Each cell is indicated by a sample point (the
solid circles). Setting y ≺ x we obtain a CAD with 3 cells; the curve itself and
the portions of the plane either side. However, setting x ≺ y leads to a CAD
with 11 cells; five 2-cells, five 1-cells and one 0-cell. The dotted lines indicate the
stacks over the 0-cells in the induced CAD of R1. With y ≺ x the CAD of R1

had just one cell (the entire real line) while with x ≺ y there are five cells.
We note that these numbers occur using various CAD algorithms. Indeed,

for this simple example it is clear that these CADs are both minimal for their
respective variable orderings, (i.e. there is no other decomposition which could
have less cells whilst maintaining cylindricity.)

Fig. 1. Plots visualising the CADs described in Example 1

2.2 Heuristics for Choosing Variable Ordering

In [14] the authors considered the problem of choosing a variable ordering for
CAD and QE via CAD. They identified a measure of CAD complexity that was
correlated to the computation time, number of cells in the CAD and number of
leaves in a partial CAD. They identified the sum of total degrees of all monomi-
als of all projection polynomials, known as sotd and proposed the heuristic of
picking the ordering with the lowest sotd. Although the best known heuristic,
sotd does not always pick the ideal ordering as demonstrated by some experi-
ments in [14] and sometimes cannot distinguish between orderings as shown in
Example 2.
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Example 2. Consider again the problem from Example 1. Applying any known
valid projection operator to f gives, with respect to y, the set of projection factors
{x − 1, x − 2}, (arising from the coefficients and discriminant of f). Similarly,
applying a projection operator with respect to x gives {y2 + 1}. Hence in this
case both variable orderings have the same sotd.

We consider why sotd cannot differentiate between the orderings in this case.
Algebraically, the only visible difference is that one ordering offers two factors of
degree one while the other offers a single factor of degree two. From Figure 1 we
see that one noticeable difference between the variable orderings is the number of
0-cells in the CAD of R1 (the dotted lines). This is a feature of the real geometry
of the problem as opposed to properties of the algebraic closure, measured by
sotd. Investigating examples of this sort we devised a new measure ndrr defined
to be the number of distinct real roots of the univariate projection polynomials
and created the associated heuristic of picking the variable ordering with lowest
ndrr. Considering again the projection factors from Example 2 we see that this
new heuristic will correctly identify the ordering with the least cells.

The number of real roots can be identified, for example, using the theory
of Sturm chains. This extra calculation will likely take more computation time
than the measuring of degrees required for sotd. However, both costs are usually
negligible compared to the cost of lifting in the CAD algorithm.

2.3 Relative Merits of the Heuristics

We do not propose ndrr as a replacement for sotd but suggest they are used
together since both have relative merits. We have already noted that the strength
of ndrr is its ability to give information on the real geometry of the CAD. Its
weakness is that it only gives information on the complexity of the univariate
polynomials, compared to sotd which measures at all levels. If the key differences
between orderings are not apparent in the univariate polynomials then ndrr is
of little use, as in Example 3.

Example 3. Consider the problem of finding necessary and sufficient conditions
on the coefficients of a quartic polynomial so that it is positive semidefinite:
eliminate the quantifier in, ∀x(px2+qx+r+x2 ≥ 0). This classic QE problem was
first proposed in [18] and was a test case in [14]. There are six admissible variable
orderings (since x must always be projected first). In all of these orderings the
univariate projection factor set will consist of just the single variable of lowest
order, (either p, q or r) and hence all orderings will have an ndrr of one. However,
the sotd can distinguish between the orderings as reported in [14].

Despite the shortcoming of only considering the first level, ndrr should not be
dismissed as effects at the bottom level can be magnified. We suggest using the
heuristics in tandem, either using one to break ties between orderings which the
other cannot discriminate or by taking a combination of the two measures.
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In [14] the authors suggested a second heuristic, a greedy algorithm based
on sotd. This approach avoided the need to calculate the projection polynomi-
als for all orderings, instead choosing one variable at a time using the sum of
total degree of the monomials from those projection polynomials obtained so
far. Unfortunately there is not an obvious greedy approach to using ndrr. For
problems involving many variables (so that calculating the full set of projection
polynomials for each ordering is infeasible) we should revert to the sotd greedy
algorithm, perhaps making use of ndrr to break ties.

2.4 Coupled Variables

It has been noted in [24] that a class of problems particularly unsuitable for
sotd is choosing between coupled variables (two variables which are the real
and imaginary parts of a complex variable). These are used, for example, when
analysing complex functions by constructing a CAD to decompose the domain
according to their branch cuts. The ordering of the coupled variables for the
CAD can affect the efficiency of the algorithm, as in Example 4.

Example 4. Consider f =
√
z2 + 1 where z ∈ C. The square root function has a

branch cut along the negative real axis and so f has branch cuts when

�(z2 + 1) = x2 − y2 + 1 < 0 and �(z2 + 1) = 2xy = 0,

where x, y are coupled real variables such that z = x+iy. With variable ordering
x ≺ y we have sotd = 8, ndrr = 4 and a CAD with 21 cells while with variable
ordering y ≺ x we have sotd = 8, ndrr = 5 and a CAD with 29 cells. The CADs
are visualised in Figure 2 using the same techniques as described for Figure 1.

Fig. 2. Plots visualising the CADs described in Example 4
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3 Designating Equational Constraints

An equational constraint is an equation logically implied by a formula. The
theory of equational constraints is based on the observation that the formula will
be false for any cell in the CAD where the equation is not satisfied. Hence the
polynomials forming any other constraints need only be sign invariant over the
sections of the equational constraint. The observation was first made in [11] with
McCallum providing the first detailed approach in [21]. Given a problem with an
equational constraint McCallum suggested a reduced projection operator, which
will usually result in far fewer projection factors and a simpler CAD.

This approach has been implemented in Qepcad, a command line interface
for quantifier elimination through partial CAD [4]. It can also be induced in any
implementation of TTICAD as discussed in Section 4. The use of equational con-
straints can offer increased choice for problem formulation beyond that of picking
a variable order. If a problem has more than one equational constraint then one
must be designated for use in the algorithm. We propose simple heuristics for
making this choice based on sotd and ndrr.

Let P be the McCallum projection operator which, informally, is applied to a
set of polynomials to produce the coefficients, discriminant and cross resultants.
The full technical details are available in [19] and a validated algorithm was given
in [20]. Note that implementations usually make some trivial simplifications such
as removal of constants, exclusion of polynomials that are identical to a previous
entry (up to constant multiple), and only including those coefficients which are
really necessary for the theory to hold.

Next, for some equational constraint f let Pf be the reduced projection op-
erator relative to f described in [21]. Informally, this consists of the coefficients
and discriminant of f together with the resultant of f taken with each of the
other polynomials. This is used for the first projection, reverting to P for subse-
quent projections. We can then apply the sotd and ndrr measures to the sets of
projection polynomials as a measure of the complexity of the CADs that would
be produced. We denote these values by S and N respectively and our heuristics
are then to choose the equational constraint that minimises these values.

We ran experiments to test the effectiveness of these heuristics using prob-
lems from the CAD repository described in [26]1. We selected those problems
with more than one equational constraint, for which at least one of the choices
is tractable. The experiments were run in Maple using the ProjectionCAD
package [16] and the results are displayed in Table 1 with the cell count, compu-
tation time and heuristic values given for each problem and choice of equational
constraint.

The full details on the problems can be found in the repository. The exam-
ples each contain two or three equational constraints and the numbering of the
choices in the table refers to the order the equational constraints are listed in the
repository. The variable orderings used were those suggested in the repository.

1 Freely available at http://opus.bath.ac.uk/29503

http://opus.bath.ac.uk/29503
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Table 1. Comparing the choice of equational constraint for a selection of problems.
The lowest cell count for each problem is highlighted and the minimal values of the
heuristics emboldened.

Problem EC Choice 1 EC Choice 2 EC Choice 3
Cells Time S N Cells Time S N Cells Time S N

Intersection A 657 5.6 61 7 463 5.1 64 8 269 1.3 42 4
Intersection B 711 6.3 66 6 471 5.4 71 6 303 1.1 40 5
Random A 375 2.7 81 9 435 3.6 73 8 425 2.8 80 8
Random B 1295 21.4 140 13 477 3.8 84 9 1437 23.9 158 14
Sphere-Catastrophe 285 2.0 61 7 169 1.0 59 5
Arnon84-2 39 0.1 54 5 9 0.0 47 1
Hong-90 F - 14 0 F - 14 0 27 0.1 14 0
Cyclic-3 57 0.3 32 3 117 0.7 35 3 119 0.6 36 4

The time taken to calculate S and N for each problem was always less than 0.05
seconds and so insignificant to the overall timings.

For each problem the equational constraint choice resulting in the lowest cell
count and timing has been highlighted and the minimal values of the heuristics
emboldened. We can see that for almost all cases both the heuristics point to
the best choice. However, there is an example (Random A) where both point to
an incorrect choice. The heuristic based on sotd is more sensitive (because it
measures at all levels) and as a result is sometimes more effective. For example,
it picks the appropriate choice for the Cyclic-3 example while the other does not.

Although the sotd heuristic is superior for all these examples it can be misled
by examples where the real geometry differs, as in Example 5.

Example 5. Consider the polynomials

f := y5 − 2y3x+ yx2 + y = y(y2 − (x+ i))(y2 − (x− i))

g := y5 − 2y3x+ yx2 − y = y(y2 − (x+ 1))(y2 − (x− 1))

along with the formula f = 0∧ g = 0 and variable ordering x ≺ y. We could use
either f or g as an equational constraint when constructing a CAD. We have

discrim(f) = 256(x2 + 1)3, discrim(g) = 256(x− 1)3(x + 1)3

and so both the projection sets have the same sotd. However, with f as an
equational constraint the projection set has ndrr= 0 while with g it is 2. The
CADs of R2 have 3 and 31 cells respectively.

4 Formulating Input for TTICAD

Let Φ represent a set of QFFs, {φi}. In [3] the authors define a Truth-Table
Invariant CAD (TTICAD) as a CAD such that the boolean value of each φi is
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constant (either true or false) on each cell. Clearly such a CAD is sufficient for
solving many problems involving the formulae.

A sign-invariant CAD is also a TTICAD, however, in [3] the authors present
an algorithm to construct TTICADs more efficiently for the case where each φi

has a designated equational constraint fi (an equation logically implied by φi).
They adapt the theory of equational constraints to define a TTICAD projec-
tion operator and prove a key theorem explaining when it is valid. Informally,
the TTICAD projection operator produces the union of the application of the
equational constraints projection operator to each φi along with the cross resul-
tants of all the designated equational constraints, (see [3] for the full technical
details). As noted in the introduction, TTICAD is more efficient than equational
constraints alone.

If there is more than one equational constraint present within a single φi

then a choice must be made as to which is designated for use in the algorithm,
(the others would then be treated as any other constraint). As with choosing
equational constraints in Section 3 the two different projection sets could be
calculated and the measures sotd and ndrr taken and used as heuristics, picking
the choice that leads to the lowest values.

However, this situation actually offers further choice for problem formulation
than the designation. If φi had two equational constraints then it would be
admissible to split this into two QFFs φi,1, φi,2 with one equational constraint
assigned to each and the other constraints partitioned between them in any man-
ner. (Admissible because any TTICAD for φi,1, φi,2 is also a TTICAD for φi.)
This is a generalisation of the following observation: given a formula φ with two
equational constraints a CAD could be constructed using either the traditional
theory of equational constraints or the TTICAD algorithm applied to two QFFs.
On the surface it is not clear why the latter option would ever be chosen since
it would certainly lead to more projection polynomials after the first projec-
tion. However, a specific equational constraint may have a comparatively large
number of intersections with another constraint, in which case, while separating
these into different QFFs would likely increase the number of projection polyno-
mials it may still reduce the number of cells in the CAD, (since the resultants
taken would be less complicated leading to fewer projection factors at subsequent
steps). Example 6 describes a simple problem which could be tackled using the
theory of equational constraints alone, but for which it is beneficial to split into
two QFFs and tackle with TTICAD.

Example 6. Let x ≺ y and consider the polynomials

f1 := (y − 1)− x3 + x2 + x, g1 := y − x
4 + 1

2 ,

f2 := (−y − 1)− x3 + x2 + x, g2 := −y − x
4 + 1

2 ,

and the formula φ := f1 = 0 ∧ g1 > 0 ∧ f2 = 0 ∧ g2 < 0.
The polynomials are plotted in Figure 3 where the solid curve is f1, the solid

line g1, the dashed curve f2 and the dashed line g2. The three figures also contain
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dotted lines indicating the stacks over the 0-cells of the CAD of R1 arising from
the decomposition of the real line using various CAD algorithms.

First, if we use the theory of equational constraints (with either f1 or f2 as
the designated equational constraint) then a CAD is constructed which identifies
all the roots and intersection between the four polynomials except for the inter-
section of g1 and g2. (Note that this would be identified by a full sign-invariant
CAD). This is visualised by the plot on the left while the plot on the right relates
to a TTICAD with two QFFs. In this case only three 0-cells are identified, with
the intersections of g2 with f1 and g1 with f2 ignored.

The TTICAD has 31 cells while the CADs produced using equational con-
straints both have 39 cells. The TTICAD projection set has an sotd of 26 and
an ndrr of 3 while each of the CADs produced using equational constraints have
projection sets with values of 30 and 6 for sotd and ndrr.

Fig. 3. Plots visualising the induced CADs of R1 described in Example 6

As suggested by Example 6 we propose using the measures sotd and ndrr
applied to the set of projection polynomials as heuristics for picking an approach.
We can apply these with the TTICAD projection operator for deciding if it would
be beneficial to split QFFs. This can also be used for choosing whether to use
TTICAD instead of equational constraints alone, since applying the TTICAD
algorithm from [3] on a single QFF is equivalent to creating a CAD invariant
with respect to an equational constraint.

We may also consider whether it is possible to combine any QFFs. If the
formulae were joined by conjunction then it would be permitted and probably
beneficial but we would then need to choose which equational constraint to
designate. Formulae joined by disjunction could also be combined if they share an
equational constraint, (with that becoming the designated choice in the combined
formula). Such a situation is common for the application to branch cut analysis
since many branch cuts come in pairs which lie on different portions of the same
curve. However, upon inspection of the projection operators, we see that such
a merger would not change the set of projection factors in the case where the
shared equational constraint is the designated one for each formula. Note, if
the shared equational constraint is not designated in both then the only way to
merge would be by changing designation.
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When considering whether to split and which equational constraint to desig-
nate the number of possible formulations increases quickly. Hence we propose a
method for TTICAD QFF formulation, making the choices one QFF at a time.
Given a list Φ̂ of QFFs (quantifier free formulae):

(1) Take the disjunction of the QFFs and put that formula into disjunctive
normal form,

∨
φ̂i so that each φ̂i is a conjunction of atomic formulae.

(2) Consider each φ̂i in turn and let mi be the number of equational constraints.
– If mi = 0 then Φ̂ is not suitable for the TTICAD algorithm of [3],

(although we anticipate that it could be adapted to include such cases).
– If mi = 1 then the sole equational constraint is designated trivially.
– If mi > 1 then we consider all the possible partitions of the formula

in φ̂i into sub QFFs with at least one equational constraint each, and
all the different designations of equational constraint within those sub-
QFFs with more than one. Choose a partition and designation for this
clause according to the heuristics based on sotd and ndrr applied to the
projections polynomials from the clause.

(3) Let Φ be the list of new QFFs, φi, and the input to TTICAD.

5 Using Gröbner Bases to Precondition TTICAD QFFs

Recall that for an ideal, I ⊂ R[x], a Gröbner basis (for a given monomial or-
dering) is a polynomial basis of I such that {lm(g) | g ∈ G} is also a basis
for {lm(f) | f ∈ I}. In [7] experiments were conducted to see if Gröbner basis
techniques could precondition problems effectively for CAD. Given a problem:

ϕ :=
∧s

i=1 fi(x) = 0,

a purely lexicographical Gröbner basis {f̂i}ti=1 for the fi, (taken with respect
to the same variable ordering as the CAD), could take their place to form an
equivalent sentence:

ϕ̂ :=
∧t

i=1 f̂i(x) = 0.

Initial results suggested that this preconditioning can be hugely beneficial in
certain cases, but may be disadvantageous in others.

In [27] this idea was considered in greater depth. A larger base of problems was
tested and the idea extended to include Gröbner reduction. Given a problem:

ψ := (
∧s1

i=1 fi(x) = 0) ∧ (
∧s2

i=1 gi(x) ∗i 0) , ∗i ∈ {=, �=, >,<},

you can first compute {f̂i}t1i=1 followed by reducing the gi with respect to the f̂i
to obtain {ĝi}t2i=1. Then the following sentence will be equivalent to ψ:

ψ̂ := (
∧t1

i=1 f̂i(x) = 0) ∧ (
∧t2

i=1 ĝi(x) ∗i 0).

Experimentation showed that this Gröbner preconditioning can be highly bene-
ficial with respect to both computation time and cell count, however the effect
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Fig. 4. Plot of the functions described in Example 7

is not universal. To identify when preconditioning is beneficial a simple metric
was posited and shown to be a good indicator. The quantity TNoI (total number
of indeterminates) for a set of polynomials F is simply defined to be the sum of
the number of variables present in each polynomial in F . In all testing carried
out (both for [27] and henceforth) if the produced Gröbner basis has a lower
TNoI than the original set of polynomials then preconditioning is beneficial for
sign-invariant CAD (the converse is not always true).

A natural question is whether Gröbner preconditioning can be adapted for
TTICAD. This is possible by performing the Gröbner preconditioning on the
individual QFFs. There is a necessity, however, for a problem to be suitably
complicated for this preconditioning to work: each QFF must have multiple
equational constraints amenable to the creation of a Gröbner Basis. This required
complexity means there are few examples in the literature which are suitable and
tractable for experimentation. We demonstrate the power of combining these two
techniques through a worked example.

Example 7. Consider the polynomials

f1,1 := x2 + y2 − 1, f2,1 := (x− 4)
2
+ (y − 1)

2 − 1,

f1,2 := x3 + y3 − 1, f2,2 := (x− 4)
3
+ (y − 1)

3 − 1,
g1 := xy − 1

4 , g2 := (x− 4) (y − 1)− 1
4

and the formula [f1,1 = 0 ∧ f1,2 = 0 ∧ g1 > 0] ∨ [f2,1 = 0 ∧ f2,2 = 0 ∧ g2 > 0].
The polynomials are plotted in Figure 4 where the solid curves represent

f1,1, f1,2, g1, and the dashed curves f2,1, f2,2, g2.

We will consider both variable orderings: y ≺ x and x ≺ y. We can compute full
CADs for this problem, with 725 and 657 cells for the respective orderings. If we
use TTICAD to tackle the problem then there are four possible two-QFF formu-
lations, (splitting QFFs is not beneficial for this problem). The four formulations
are described in the second column of Table 2.
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Table 2. Experimental results relating to Example 7. The lowest cell counts are high-
lighted and the minimal values of the heuristics emboldened.

Order Full CAD TTI CAD TTI+Grö CAD
Cells Time Eq Const Cells Time S N Eq Const Cells Time S N

y ≺ x 725 22.802 f1,1, f2,1 153 0.818 62 12 f̂1,1, f̂2,1 27 0.095 37 3
f1,1, f2,2 111 0.752 94 10 f̂1,1, f̂2,2 47 0.361 50 5
f1,2, f2,1 121 0.732 85 9 f̂1,1, f̂2,3 93 0.257 50 9
f1,2, f2,2 75 0.840 99 7 f̂1,2, f̂2,1 47 0.151 47 5

f̂1,2, f̂2,2 83 0.329 63 7
f̂1,2, f̂2,3 145 0.768 81 11
f̂1,3, f̂2,1 95 0.263 46 10
f̂1,3, f̂2,2 151 0.712 80 12
f̂1,3, f̂2,3 209 0.980 62 16

x ≺ y 657 22.029 f1,1, f2,1 125 0.676 65 14 f̂1,1, f̂2,1 29 0.085 39 4
f1,1, f2,2 117 0.792 96 11 f̂1,1, f̂2,2 53 0.144 52 6
f1,2, f2,1 117 0.728 88 11 f̂1,1, f̂2,3 97 0.307 53 97
f1,2, f2,2 85 0.650 101 8 f̂1,2, f̂2,1 53 0.146 49 6

f̂1,2, f̂2,2 93 0.332 65 8
f̂1,2, f̂2,3 149 0.782 81 13
f̂1,3, f̂2,1 97 0.248 48 11
f̂1,3, f̂2,2 149 0.798 82 13
f̂1,3, f̂2,3 165 1.061 65 18

We can apply Gröbner preconditioning to both QFFs separately, computing a
Gröbner basis, with respect to the compatible ordering, of {fi,1, fi,2}. For both
QFFs and both variable orderings three polynomials are produced. We denote
them by {f̂i,1, f̂i,2, f̂i,3} (note the polynomials differ depending on the variable
ordering). The algorithm used to compute these bases gives the polynomials in
decreasing order of leading monomials with respect to the order used to compute
the basis (purely lexicographical).

Table 2 shows that the addition of Gröbner techniques to TTICAD can pro-
duce significant reductions: a drop from 153 cells in 0.8s to 27 cells in under 0.1s
(including the time required to compute the Gröbner bases). As discussed in [27],
preconditioning is not always beneficial, as evident from the handful of cases that
produce more cells than TTICAD alone. As with Table 1 we have highlighted the
examples with lowest cell count and emboldened the lowest heuristic. Looking
at the values of S and N we see that for this example ndrr is the best measure
to use.

In [27] TNoI was used to predict whether preconditioning by Gröbner Basis
would be beneficial. In this example TNoI is increased in both orderings by
taking a basis, which correctly predicts a bigger full CAD after preconditioning.
However, TNoI does not take into account the added subtlety of TTICAD (as
shown by the huge benefit above).
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6 Conclusions and Future Work

In this paper we have considered various issues based around the formulation of
input for CAD algorithms. We have revisited the classic question of choosing the
variable ordering, proposing a new measure of CAD complexity ndrr to com-
plement the existing sotd measure. We then used these measures as heuristics
for the problem of designating equational constraints and QFF formulation for
TTICAD. Finally we considered the effect of preconditioning by Gröbner bases.

It is important to note that these are just heuristics and, as such, can be
misleading for certain examples. Although the experimental results in Section 3
suggest sotd is a finer heuristic than ndrr we have demonstrated that there are
examples when ndrr performs better, not just Example 5 which was contrived
for the purpose but also Example 7 introduced for the work on Gröbner bases.

These issues have been treated individually but of course they intersect. For
example it is also necessary to pick a variable ordering for TTICAD. This choice
will need to made before employing the method for choosing QFF formulation
described in Section 4. However, the optimal choice of variable ordering for one
QFF formulation may not be optimal for another! For example, the TTICAD
formulation with two QFFs was the best choice in Example 6 where the variable
ordering was stated as x ≺ y but if we had y ≺ x then a single QFF is superior.

The idea of combining TTICAD with Gröbner preconditioning (discussed in
[7], [27]) is shown, by a worked example, to have the potential of being a very
strong tool. However, this adds even more complication in choosing a formulation
for the problem. Taken together, all these choices of formulation can become
combinatorially overwhelming and so methods to reduce this, such as the greedy
algorithm in [14] or the method at the end of Section 4, are of importance.

All these options for problem formulation motivate the somewhat philosophi-
cal question of when a reformulation results in a new problem. When a variable
ordering is imposed by an application (such as projecting quantified variables
first when using CAD for quantifier elimination) then violating this would clearly
lead to a new problem while changing the ordering within quantifier blocks could
be seen to be a optimisation of the algorithm. Similar distinctions could be drawn
for other issues of formulation.

Given the significant gains available from problem reformulation it would
seem that the existing technology could benefit from a redesign to maximise
the possibility of its use. For example, CAD algorithms could allow the user to
input the variables is quantifier blocks so that the technology can choose the
most appropriate ordering that still solves the problem.

We finish with some ideas for future work on these topics.

– All the work in this paper has been stated with reference to CAD algorithms
based on projection and lifting. A quite different approach, CAD via Trian-
gular Decomposition, has been developed in [8] and implemented as part of
the core Maple distribution. This constructs a (sometimes quite different)
sign-invariant CAD by transferring the problem to complex space for solving.
A key question is how much of the work here transfers to this approach?
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– Can the heuristics for choosing equational constraints also be used for choos-
ing pivots when using the theory of bi-equational constraints in [6]?

– Can the ndrr measure be adapted to consider also the real roots of those
projection polynomials with more than one variable?

We finish by discussing one of the initial motivations for engaging in work on
problem formulation: a quantifier elimination problem proving a property of
Joukowski’s transformation. This is the transformation z 
→ 1

2 (z + 1
z ) which is

used in aerodynamics to create an aerofoil from the unit circle. The fact it is
bijective on the upper half plane is relatively simple to prove analytically but we
found the state of the art CAD technology was incapable of producing an answer
in reasonable time. Then, in a personal communication, Chris Brown described
how reformulating the problem with a succession of simple logical steps makes
it amenable to Qepcad, allowing for a solution in a matter of seconds. These
steps included splitting a disjunction to form two separate problems and the
(counter-intuitive) removal of quantifiers which block Qepcad’s use of equa-
tional constraints. Further details are given in [13, Sec. III] and in the future
we aim to extend our work on problem formulation to develop techniques to
automatically render this problem feasible.

Acknowledgements. This work was supported by the EPSRC grant:
EP/J003247/1. The authors would like to thank Scott McCallum for many use-
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Abstract. Algorithms like those for differentiating functional expres-
sions manipulate the syntactic structure of mathematical expressions in
a mathematically meaningful way. A formalization of such an algorithm
should include a specification of its computational behavior, a specifi-
cation of its mathematical meaning, and a mechanism for applying the
algorithm to actual expressions. Achieving these goals requires the ability
to integrate reasoning about the syntax of the expressions with reasoning
about what the expressions mean. A syntax framework is a mathemati-
cal structure that is an abstract model for a syntax reasoning system. It
contains a mapping of expressions to syntactic values that represent the
syntactic structures of the expressions; a language for reasoning about
syntactic values; a quotation mechanism to refer to the syntactic value
of an expression; and an evaluation mechanism to refer to the value of
the expression represented by a syntactic value. We present and compare
two approaches, based on instances of a syntax framework, to formalize
a syntax-based mathematical algorithm in a formal theory T . In the first
approach the syntactic values for the expressions manipulated by the
algorithm are members of an inductive type in T , but quotation and
evaluation are functions defined in the metatheory of T . In the second
approach every expression in T is represented by a syntactic value, and
quotation and evaluation are operators in T itself.

1 Introduction

A great many of the algorithms employed in mathematics work by manipulating
the syntactic structure of mathematical expressions in a mathematically mean-
ingful way. Here are some examples:

1. Arithmetic operations applied to numerals.
2. Operations such as factorization applied to polynomials.
3. Simplification of algebraic expressions.
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4. Operations such as transposition performed on matrices.
5. Symbolic differentiation and antidifferentiation of expressions with variables.

The study and application of these kinds of algorithms is called symbolic compu-
tation. For centuries symbolic computation was performed almost entirely using
pencil and paper. However, today symbolic computation can be performed by
computer, and algorithms that manipulate mathematical expressions are the
main fare of computer algebra systems.

In this paper we are interested in the problem of how to formalize syntax-based
mathematical algorithms. These algorithms manipulate members of a formal
language in a computer algebra system, but their behavior and meaning are
usually not formally expressed in a computer algebra system. However, we want
to use these algorithms in formal theories and formally understand what they
do. We are interested in employing existing external implementations of these
algorithms in formal theories as well as implementing these algorithms directly
in formal theories.

As an illustration, consider an algorithm, say named RatPlus, that adds ra-
tional number numerals, which are represented in memory in some suitable way.
(An important issue, that we will not address, is how the numerals are repre-
sented to optimize the efficiency of RatPlus.) For example, if the numerals 2

5
and 3

8 are given to RatPlus as input, the numeral 31
40 is returned by RatPlus as

output. What would we need to do to use RatPlus to add rational numbers in a
formal theory T and be confident that the results are correct? First, we would
have to introduce values in T to represent rational number numerals as syntactic
structures, and then define a binary operator O over these values that has the
same input-output relation as RatPlus. Second, we would have to prove in T
that, if O(a, b) = c, then the sum of the rational numbers represented by a and
b is the rational number represented by c. And third, we would have to devise a
mechanism for using the definition of O to add rational numbers in T .

The second task is the most challenging. The operator O, like RatPlus, ma-
nipulates numerals as syntactic structures. To state and then prove that these
manipulations are mathematically meaningful requires the ability to express the
interplay of how the numerals are manipulated and what the manipulations mean
with respect to rational numbers. This is a formidable task in a traditional logic
in which there is no mechanism for directly referring to the syntax of the expres-
sions in the logic. We need to reason about a rational number numeral 2

5 both
as a syntactic structure that can be deconstructed into the integer numerals 2
and 5 and as an expression that denotes the rational number 2/5.

Let us try to make the problem of how to formalize syntax-based mathemat-
ical algorithms like RatPlus more precise. Let T be a theory in a traditional
logic like first-order logic or simple type theory, and let A be an algorithm that
manipulates certain expressions of T . To formalize A in T we need to do three
things:

1. Define an operator OA in T that represents A: Introduce values in T that
represent the expressions manipulated by A. Introduce an operator OA in
T that maps the values that represent the input expressions taken by A



The Formalization of Syntax-Based Mathematical Algorithms 37

to the values that represent the output expressions produced by A. Write a
sentence named CompBehavior in T that specifies the computational behavior
of OA to be the same as that of A. That is, if A takes an input expression
e and produces an output expression e′, then CompBehavior should say that
OA maps the value that represents e to the value that represents e′.

2. Prove in T that OA is mathematically correct : Write a sentence named
MathMeaning in T that specifies the mathematical meaning of OA to be
the same as that of A. That is, if the value of an input expression e given
to A is related to the value of the corresponding output expression e′ pro-
duced by A in a particular way, then MathMeaning should say that the value
of the expression representing e should be related to the value of the ex-
pression representing e′ in the same way. Finally, prove MathMeaning from
CompBehavior in T .

3. Devise a mechanism for using OA in T : An application OA(a1, . . . , an) of OA

to the values a1, . . . , an can be computed in T by instantiating CompBehavior
with a1, . . . , an and then simplifying the resulting formula to obtain the value
of OA(a1, . . . , an). For the sake of convenience or efficiency, we might want to
use A itself to compute OA(a1, . . . , an). We will know that results produced
by A are correct provided A and OA have the same computational behavior.

If we believe that A works correctly and we are happy to do our computa-
tions with A outside of T , we can skip the writing of CompBehavior and use
MathMeaning as an axiom that asserts A has the mathematical meaning spec-
ified by MathMeaning for OA. The idea of treating specifications of external
algorithms as axioms is a key component of the notion of a biform theory [2,6].

So to use A in T we need to formalize A in T , and to do this, we need
a system that integrates reasoning about the syntax of the expressions with
reasoning about what the expressions mean. A syntax framework [9] is a math-
ematical structure that is an abstract model for a syntax reasoning system. It
contains a mapping of expressions to syntactic values that represent the syn-
tactic structures of the expressions; a language for reasoning about syntactic
values; a quotation mechanism to refer to the syntactic value of an expression;
and an evaluation mechanism to refer to the value of the expression represented
by a syntactic value. A syntax framework provides the tools needed to reason
about the interplay of syntax and semantics. It is just what we need to formalize
syntax-based mathematical algorithms.

Reflection is a technique to embed reasoning about a reasoning system (i.e.,
metareasoning) in the reasoning system itself. Reflection has been employed in
logic [13], theorem proving [12], and programming [5]. Since metareasoning very
often involves the syntactic manipulation of expressions, a syntax framework is
a natural subcomponent of a reflection mechanism.

This paper attacks the problem of formalizing a syntax-based mathematical
algorithm A in a formal theory T using syntax frameworks. Two approaches
are presented and compared. The first approach is local in nature. It employs
a syntax framework in which there are syntactic values only for the expressions
manipulated by A. The second approach is global in nature. It employs a syntax
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framework in which there are syntactic values for all the expressions of T . We
will see that these two approaches have contrasting strengths and weaknesses.
The local approach offers an incomplete solution at a low cost, while the global
approach offers a complete solution at a high cost.

The two approaches will be illustrated using the familiar example of polyno-
mial differentiation. In particular, we will discuss how the two approaches can be
employed to formalize an algorithm that differentiates expressions with variables
that denote real-valued polynomial functions. We will show that algorithms like
differentiation that manipulate expressions with variables are more challenging
to formalize than algorithms like symbolic arithmetic that manipulate numerals
without variables.

The following is the outline of the paper. The next section, Section 2, presents
the paper’s principal example, polynomial differentiation. The notion of a syntax
framework is defined in Section 3. Sections 4 and 5 present the local and global
approaches to formalizing syntax-based mathematical algorithms. And the paper
concludes with Section 6.

2 Example: Polynomial Differentiation

We examine in this section the problem of how to formalize a symbolic differenti-
ation algorithm and then prove that the algorithm actually computes derivatives.
We start by defining what a derivative is.

Let f : R→ R be a function over the real numbers and a ∈ R. The derivative
of f at a, written deriv(f, a), is

lim
h→0

f(a+ h)− f(a)

h

if this limit exists. The derivative of f , written deriv(f), is the function

λx : R . deriv(f, x).

Notice that we are using the traditional definition of a derivative in which a
derivative of a function is defined pointwise.

Differentiation is in general the process of finding derivatives which ultimately
reduces to finding limits. Symbolic differentiation is the process of mechanically
transforming an expression with variables that represents a function over the
real numbers into an expression with variables that represents the derivative
of the function. For example, the result of symbolically differentiating the ex-
pression sin(x2) which represents the function λx : R . sin(x2) is the expression
2 ·x ·cos(x2) which represents the function λx : R . 2 ·x ·cos(x2). Symbolic differ-
entiation is performed by applying certain differentiation rules and simplification
rules to a starting expression until no rule is applicable.

Let us look at how symbolic differentiation works on polynomials. A polyno-
mial is an expression constructed from real-valued constants and variables by
applying addition, subtraction, multiplication, and natural number exponentia-
tion. For example, x · (x2 + y) is a polynomial. The symbolic differentiation of
polynomials is performed using the following well-known differentiation rules:
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Constant Rule

d

dx
(c) = 0 where c is a constant or a variable different from x.

Variable Rule

d

dx
(x) = 1.

Sum and Difference Rule

d

dx
(u± v) =

d

dx
(u)± d

dx
(v).

Product Rule

d

dx
(u · v) = d

dx
(u) · v + u · d

dx
(v).

Power Rule

d

dx
(un) =

{
0 if n = 0.
n · un−1 · d

dx (u) if n > 0.

Written using traditional Leibniz notation, the rules specify how symbolic dif-
ferentiation is performed with respect to the variable x. The symbols u and v
range over polynomials that may contain x as well as other variables, and the
symbol n ranges over natural numbers. Notice that these rules are not meaning
preserving in the usual way; for example, the rule d

dx (c) = 0 is not meaning
preserving if we view c as a value and not as an expression.

Let PolyDiff be the algorithm that, given a polynomial u and variable x, applies
the five differentiation rules above to the starting expression d

dx(u) until there

are no longer any expressions starting with d
dx and then simplifies the resulting

expression using the rules 0 + u = u+ 0 = 0 and 1 · u = u · 1 = u and collecting
like terms. Applied to x · (x2 + y), PolyDiff would perform the following steps:

d

dx
(x · (x2 + y)) =

d

dx
(x) · (x2 + y) + x · d

dx
(x2 + y) (1)

= 1 · (x2 + y) + x ·
( d

dx
(x2) +

d

dx
(y)
)

(2)

= 1 · (x2 + y) + x ·
(
2 · x1 · d

dx
(x) + 0

)
(3)

= 1 · (x2 + y) + x · (2 · x1 · 1 + 0) (4)

= 3 · x2 + y (5)

Line (1) is by the Product Rule; (2) is by the Variable and Sum and Difference
Rules; (3) is by the Power and Constant Rules; (4) is by the Variable Rule; and
(5) is by the simplification rules. Thus, given the function

f = λx : R . x · (x2 + y),
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using PolyDiff we are able to obtain the derivative

λx : R . 3 · x2 + y

of f via mechanical manipulation of the expression x · (x2 + y).
Algorithms similar to PolyDiff are commonly employed in informal mathe-

matics. In fact, they are learned and applied by every calculus student. They
should be as available and useful in formal mathematics as they are in informal
mathematics. We thus need to formalize them as described in the Introduction.

The main objective of this paper is to show how syntax-based mathematical
algorithms can be formalized using PolyDiff as example. We will begin by making
the task of formalizing PolyDiff precise.

Let a theory be a pair T = (L, Γ ) where L is a formal language and Γ is a set
of sentences in L that serve as the axioms of the theory. Define TR = (LR, ΓR) to
be a theory of the real numbers in (many-sorted) simple type theory. We assume
that LR is a set of expressions over a signature that includes a type R of the
real numbers, constants for each natural number, and constants for addition,
subtraction, multiplication, natural number exponentiation, and the unary and
binary deriv operators defined above. We assume that ΓR contains the axioms
of a complete ordered field as well as the definitions of all the defined constants
in LR (see [8] for further details).

Let Lvar ⊆ LR be the set of variables of type R and Lpoly ⊆ LR be the set
of expressions constructed from members of Lvar, constants of type R, addition,
subtraction, multiplication, and natural number exponentiation. Finally, assume
that PolyDiff : Lpoly × Lvar → Lpoly is the algorithm described in the previous
section adapted to operate on expressions of LR.

Thus to formalize PolyDiff we need to:

1. Define an operator Opd in TR that represents PolyDiff.
2. Prove in TR that Opd is mathematically correct.
3. Devise a mechanism for using Opd in T .

Formalizing PolyDiff should be much easier than formalizing differentiation
algorithms for larger sets of expressions that include, for example, rational ex-
pressions and transcendental functions. Polynomial functions are total (i.e., they
are defined at all points on the real line) and their derivatives are also total. As
a result, issues of undefinedness do not arise when specifying the mathematical
meaning of PolyDiff.

However, functions more general than polynomial functions as well as their
derivatives may be undefined at some points. Thus using a differentiation algo-
rithm to compute the derivative of one of these more general functions requires
care in determining the precise domain of the derivative. For example, differenti-
ating the rational expression x/x using the well-known Quotient Rule yields the
expression 0, but the derivative of λx : R . x/x is not λx : R . 0. The derivative
is actually the partial function

λx : R . if x �= 0 then 0 else ⊥.
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We restrict our attention to differentiating polynomial functions so that we can
focus on reasoning about syntax without being concerned about issues of unde-
finedness.

3 Syntax Frameworks

A syntax framework [9] is a mathematical structure that is intended to be an
abstract model of a system for reasoning about the syntax of an interpreted
language (i.e., a formal language with a semantics). It will take several definitions
from [9] to present this structure.

Definition 1 (Interpreted Language). An interpreted language is a triple
I = (L,Dsem, Vsem) where:

1. L is a formal language, i.e, a set of expressions.1

2. Dsem is a nonempty domain (set) of semantic values.
3. Vsem : L → Dsem is a total function, called a semantic valuation function,

that assigns each expression e ∈ L a semantic value Vsem(e) ∈ Dsem. �
A syntax representation of a formal language is an assignment of syntactic values
to the expressions of the language:

Definition 2 (Syntax Representation). Let L be a formal language. A syn-
tax representation of L is a pair R = (Dsyn, Vsyn) where:

1. Dsyn is a nonempty domain (set) of syntactic values. Each member of Dsyn

represents a syntactic structure.
2. Vsyn : L → Dsyn is an injective, total function, called a syntactic valuation

function, that assigns each expression e ∈ L a syntactic value Vsyn(e) ∈ Dsyn

such that Vsyn(e) represents the syntactic structure of e. �
A syntax language for a syntax representation is a language of expressions that
denote syntactic values in the syntax representation:

Definition 3 (Syntax Language). Let R = (Dsyn, Vsyn) be a syntax repre-
sentation of a formal language Lobj. A syntax language for R is a pair (Lsyn, I)
where:

1. I = (L,Dsem, Vsem) in an interpreted language.
2. Lobj ⊆ L, Lsyn ⊆ L, and Dsyn ⊆ Dsem.
3. Vsem restricted to Lsyn is a total function V ′

sem : Lsyn → Dsyn. �
Finally, we are now ready to define a syntax framework:

1 No distinction is made between how expressions are constructed in this definition as
well as in subsequent definitions. In particular, expressions constructed by binding
variables are not treated in any special way.
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Definition 4 (Syntax Framework in an Interpreted Language).
Let I = (L,Dsem, Vsem) be an interpreted language and Lobj be a sublanguage

of L. A syntax framework for (Lobj, I) is a tuple F = (Dsyn, Vsyn, Lsyn, Q,E)
where:

1. R = (Dsyn, Vsyn) is a syntax representation of Lobj.
2. (Lsyn, I) is a syntax language for R.
3. Q : Lobj → Lsyn is an injective, total function, called a quotation function,

such that:
Quotation Axiom. For all e ∈ Lobj,

Vsem(Q(e)) = Vsyn(e).

4. E : Lsyn → Lobj is a (possibly partial) function, called an evaluation func-
tion, such that:
Evaluation Axiom. For all e ∈ Lsyn,

Vsem(E(e)) = Vsem(V
−1
syn (Vsem(e)))

whenever E(e) is defined. �
A syntax framework is depicted in Figure 1. For e ∈ Lobj, Q(e) is called the
quotation of e. Q(e) denotes a value in Dsyn that represents the syntactic struc-
ture of e. For e ∈ Lsyn, E(e) is called the evaluation of e. If it is defined, E(e)
denotes the same value in Dsem that the expression represented by the value of e
denotes. Since there will usually be different e1, e2 ∈ Lsyn that denote the same
syntactic value, E will usually not be injective. Q and E correspond to the quote
and eval operators in Lisp and other languages.

Common examples of syntax frameworks are based on representing the syntax
of expressions by Gödel numbers, strings, and members of an inductive type. Pro-
gramming languages that support metaprogramming — such as Lisp, F# [10],
MetaML [18], MetaOCaml [15], reFLect [11], and Template Haskell [16] — are
instances of a syntax framework if mutable variables are disallowed. See [9] for
these and other examples of syntax frameworks.

The notion of a syntax framework can be easily lifted from an interpreted
language to an interpreted theory. This is the version of a syntax framework
that we will use in this paper.

Definition 5 (Model). Let T = (L, Γ ) be a theory. A model of T is a pair
M = (DM

sem, V
M
sem) such that DM

sem is a nonempty set of semantic values that
includes the truth values t (true) and f (false) and V M

sem : L → DM
sem is a total

function such that, for all sentences A ∈ Γ , V M
sem(A) = t. �

Definition 6 (Interpreted Theory). An interpreted theory is a pair I =
(T,M) where T is a theory and M is a set of models of T . (If T = (L, Γ ),
(L,DM

sem, V
M
sem) is obviously an interpreted language for each M ∈M.) �

Definition 7 (Syntax Framework in an Interpreted Theory).
Let I = (T,M) be an interpreted theory where T = (L, Γ ) and Lobj ⊆ L. A
syntax framework for (Lobj, I) is a triple F = (Lsyn, Q,E) where:
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L

Lobj

Lsyn

Dsem

Dsyn

Vsem

Vsyn

V ′sem

Q

E

Fig. 1. A Syntax Framework

1. Lsyn ⊆ L.
2. Q : Lobj → Lsyn is an injective, total function.
3. E : Lsyn → Lobj is a (possibly partial) function.
4. For all M = (DM

sem, V
M
sem) ∈ M, FM = (DM

syn, V
M
syn, Lsyn, Q,E) is a syn-

tax framework for (Lobj, (L,D
M
sem, V

M
sem)) where DM

syn is the range of V M
sem

restricted to Lsyn and V M
syn = V M

sem ◦Q.

Let I = (L,D, V ) be an interpreted language, Lobj ⊆ L, and F =
(Dsyn, Vsyn, Lsyn, Q,E) be a syntax framework for (Lobj, I). F has built-in quo-
tation if there is an operator (which we will denote as quote) such that, for all
e ∈ Lobj, Q(e) is the syntactic result of applying the operator to e (which we
will denote as quote(e)). F has built-in evaluation if there is an operator (which
we will denote as eval) such that, for all e ∈ Lsyn, E(e) is the syntactic result of
applying the operator to e (which we will denote as eval(e)) whenever E(e) is de-
fined. There are similar definitions as those above when F is a syntax framework
in an interpreted theory.

A syntax framework F for (Lobj, I), where I is either an interpreted language
or an interpreted theory, is replete if Lobj = L and F has both built-in quotation
and evaluation. If F is replete, it has the facility to reason about the syntax
of all of L within L itself. Examples of a replete syntax framework are rare.
The programming language Lisp with a simplified semantics is the best known
example of a replete syntax framework [9]. T. Æ. Mogensen’s self-interpretation
of lambda calculus [14] and the logic Chiron [7], derived from classical NBG set
theory, are two other examples of replete syntax frameworks [9].
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4 Local Approach

In order to formalize PolyDiff in TR we need the ability to reason about the
polynomials in Lpoly as syntactic structures (i.e., as syntax trees). This can
be achieved by constructing a syntax framework for (Lpoly, I

′
R) where I ′R =

(T ′
R,M′) is an interpreted theory such that T ′

R is a conservative extension of
TR. Since we seek to reason about just the syntax of Lpoly instead of a larger
language, we call this the local approach.

The construction of the syntax framework requires the following steps:

1. Define in TR an inductive type whose members are the syntax trees of the
polynomials in Lpoly. The inductive type should include a new type symbol
S and appropriate constants for constructing and deconstructing expressions
of type S. Let Lsyn be the set of expressions of type S. For example, if x+3
is a polynomial in Lpoly, then an expression like plus(var(sx), con(s3)) could
be the expression in Lsyn that denotes the syntax tree of x + 3. Next add
an unspecified “binary” constant Opd of type S → (S → S) to LR (that is
intended to represent PolyDiff). Let T ′

R = (L′
R, Γ

′
R) be the resulting extension

of TR. T
′
R is clearly a conservative extension of TR.

2. In the metatheory of T ′
R define an injective, total function Q : Lpoly → Lsyn

such that, for each polynomial u ∈ Lpoly, Q(u) is an expression e that denotes
the syntax tree of u. For example, Q(x+ 3) could be plus(var(sx), con(s3)).

3. In the metatheory of T ′
R define an injective, total mapping E : Lsyn → Lpoly

such that, for each expression e ∈ Lsyn, E(e) is the polynomial whose syntax
tree is denoted by e. For example, E(plus(var(sx), con(s3))) would be x+ 3.

Let (Lpoly, I
′
R) where I ′R = (T ′

R,M
′) and M′ is the set of standard models of

T ′
R in simple type theory (see [8]). It is easy to check that F = (Lsyn, Q,E) is

a syntax framework for (Lpoly, I
′
R). Notice that E is the left inverse of Q and

hence the law of disquotation holds: For all u ∈ Lpoly, E(Q(u)) = u.
We are now ready to formalize PolyDiff in T ′

R. First, we need to define an
operator in T ′

R to represent PolyDiff. We will use Opd for this purpose. We write
a sentence CompBehavior

λa, b : S . is-var(b)⇒ B(a, b, Opd(a)(b))

in T ′
R where, for all u ∈ Lpoly and x ∈ Lvar,

B(Q(u), Q(x), Opd(Q(u))(Q(x)))

holds iff

PolyDiff(u, x) = E(Opd(Q(u))(Q(x))).

That is, we specify the computational behavior of Opd to be the same as that of
PolyDiff.

Second, we need to prove that Opd is mathematically correct. We write the
sentence MathMeaning

for all u ∈ Lpoly, deriv(λx : R . u) = λx : R . E(Opd(Q(u))(Q(x)))
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in the metatheory of T ′
R that says Opd computes derivatives (with respect to

the variable x). That is, we specify the mathematical meaning of Opd to be the
same as that of deriv. And then we prove in T ′

R that MathMeaning follows from
CompBehavior. The proof requires showing that the value of E(Opd(Q(u))(Q(x)))
equals deriv((λx : R . u), x), the derivative of (λx : R . u) at x, which is

lim
h→0

(λx : R . u)(x+ h)− (λx : R . u)(x)

h
.

The details of the proof are found in any good calculus textbook such as [17].
Third, we need to show how PolyDiff can be used to compute the deriva-

tive of a function λx : R . u in T ′
R. There are two ways. The first way is to

instantiate the sentence CompBehavior with Q(u) and Q(x) and then simplify
the resulting expression (e.g., by beta-reduction). The second way is to replace
E(Opd(Q(u))(Q(x))) in MathMeaning with the result of applying PolyDiff to u
and x. The first way requires that PolyDiff is implemented in T ′

R as Opd. The
second way does not require that PolyDiff is implemented in T ′

R, but only that
its meaning is specified in T ′

R.
The local approach is commonly used to reason about the syntax of expres-

sions in a formal theory. It embodies a deep embedding [1] of the object language
(e.g., Lpoly) into the underlying formal language (e.g., LR). The local approach
to reason about syntax can be employed in almost any proof assistant in which
it is possible to define an inductive type (e.g., see [1,4,20]).

The local approach has both strengths and weaknesses. These are the
strengths of the local approach:

1. Indirect Reasoning about the syntax of Lpoly in the Theory. In T ′
R using Lsyn,

we can indirectly reason about the syntax of the polynomials in Lpoly. This
thus enables us to specify the computational behavior of PolyDiff via Opd.

2. Direct Reasoning about the syntax of Lpoly in the Metatheory. In the metathe-
ory of T ′

R using the formula

for all u ∈ Lpoly, x ∈ Lvar,PolyDiff(u, x) = E(Opd(Q(u))(Q(x))),

we can directly reason about the syntax of the polynomials in Lpoly and
specify the mathematical meaning of PolyDiff.

And these are the weaknesses:

1. Syntax Problem. We cannot refer in T ′
R to the syntax of polynomials. Also

the variable x is free in x + 3 but not in Q(x + 3) = plus(var(sx), con(s3)).
As a result, Q and E cannot be defined in T ′

R and thus PolyDiff cannot be
fully formalized in T ′

R. In short, we can reason about syntax in T ′
R but not

about the interplay of syntax and semantics in T ′
R.

2. Coverage Problem. The syntax framework F can only be used for reasoning
about the syntax of polynomials. It cannot be used for reasoning, for exam-
ple, about rational expressions. To do that a new syntax framework must be
constructed.
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3. Extension Problem. Lpoly, Lsyn, Q, and E must be extended each time a new
constant of type R is defined in T ′

R .

In summary, the local approach only gives us indirect access to the syntax of
polynomials and must be modified to cover new or enlarged contexts.

If Lobj (which is Lpoly in our example) does not contain variables, then we can
define E to be a total operator in the theory. (If the theory is over a traditional
logic, we will still not be able to define Q in the theory.) This variant of the local
approach is used, for example, in the Agda reflection mechanism [19].

5 Global Approach

The global approach described in this section utilizes a replete syntax framework.
Assume that we have modified TR and simple type theory so that there is a
replete syntax framework F = (Lsyn, Q,E) for (LR, IR) where IR = (TR,M)
andM is the set of standard models of TR in the modified simple type theory.
Let us also assume that Lsyn is the set of expressions of type S and LR includes
a constant Opd of type S→ (S→ S). By virtue of F being replete, F embodies
a deep embedding of LR into itself.

As far as we know, no one has ever worked out the details of how to modify
simple type theory so that it admits built-in quotation and evaluation for the
full language of a theory. However, we have shown how NBG set theory can be
modified to admit built-in quotation and evaluation for its entire language [7].
Simple type theory can be modified in a similar way. We plan to present a version
of simple type theory with a replete syntax framework in a future paper.

We can formalize PolyDiff in TR as follows. We will write quote(e) and eval(e)
as �e� and �e�, respectively. First, we define the operator Opd in TR to represent
PolyDiff. We write a sentence CompBehavior

λa, b : S . is-poly(a) ∧ is-var(b)⇒ B(a, b, Opd(a)(b))

in TR where, for all u ∈ Lpoly and x ∈ Lvar,

B(�u�, �x�, Opd(�u�)(�x�))

holds iff

PolyDiff(u, x) = �Opd(�u�)(�x�)�.

That is, we specify the computational behavior of Opd to be the same as that of
PolyDiff.

Second, we prove in TR that Opd is mathematically correct. We write the
sentence MathMeaning

∀ a : S . is-poly(a)⇒ deriv(λx : R . �a�) = λx : R . �Opd(a)(�x�)�

in TR that says Opd computes derivatives (with respect to the variable x). That
is, we specify the mathematical meaning of Opd to be the same as that of deriv.
And then we prove in T ′

R that MathMeaning follows from CompBehavior.
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Third, we use PolyDiff to compute the derivative of a function λx : R . u in
T ′
R in either of the two ways described for the local approach.
The strengths of the global approach are:

1. Direct Reasoning about the syntax of Lpoly in the Theory. In TR using Lsyn,
quote, and eval, we can directly reason about the syntax of the polynomials
in Lpoly. As a result, we can formalize PolyDiff in TR as described in the
Introduction.

2. Direct Reasoning about the syntax of LR in the Theory. In TR using Lsyn,
quote, and eval, we can directly reason about the syntax of the expressions
in the entire language LR. As a result, the syntax framework F can cover all
current and future syntax reasoning needs. Moreover, we can express such
things as syntactic side conditions, formula schemas, and substitution for a
variable directly in TR (see [7] for details).

In short, not only does the global approach enable us to formalize PolyDiff in TR,
it provides us with the facility to move syntax-based reasoning from the metathe-
ory of TR to TR itself. This seems to be a wonderful result that solves the problem
of formalizing syntax-based mathematical algorithms. Unfortunately, the global
approach has the following serious weaknesses that temper the enthusiasm one
might have for its strengths:

1. Evaluation Problem.

Claim: eval cannot be defined on all expressions in LR.

Proof: Suppose eval is indeed total. TR is sufficiently expressive, in the sense
of Gödel’s incomplete theorem, to apply the the diagonalization lemma [3],
to obtain a formula LIAR such that

LIAR = �¬�LIAR��.

Then

�LIAR� = ��¬�LIAR��� = ¬�LIAR�,

which is a contradiction. �
This means that the liar paradox limits the use of eval and, in particular,
the law of disquotation does not hold universally, i.e., there are expressions
e in LR such that ��e�� �= e.

2. Variable Problem. The variable x is not free in the expression �x+3� (or in
any quotation). However, x is free in ��x + 3�� because ��x + 3�� = x + 3.
If the value of the variable e is �x + 3�, then both e and x are free in �e�
because �e� = ��x+ 3�� = x+ 3.

This example shows that the notions of a free variable, substitution for a
variable, etc. are significantly more complex when expressions contain eval.

3. Extension Problem. We can define Lcon ⊆ Lsyn in TR as the language of
expressions denoting the syntactic values of constants in LR.
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Claim: Assume the set of constants in L is finite and T ′
R = (L′

R, Γ
′
R) is an

extension of TR such that there is a constant in L′
R but not in LR. Then T ′

R

is not a conservative extension of TR.

Proof: Let {c1, . . . , cn} be the set of constants in L. Then

Lcon = {�c1�, . . . , �cn�}

is valid in TR but not in T ′
R. �.

This shows that in the global approach the development of a theory via
definitions requires that the notion of a conservative extension be weakened.

4. Interpretation Problem.

Let T = (L, Γ ) and T ′ = (L′, Γ ′) in be two theories in a simple type theory
that has been modified to admit built-in quotation and evaluation for the
entire language of a theory.

Claim: Let Φ be an interpretation of T in T ′ such that Φ is a homomorphism
with respect to the logical operators of the underlying logic. Then Φ must
be injective on the constants of L.

Proof: Assume that Φ is not injective on constants. Then there are two
different constants a, b such that Φ(a) = Φ(b). �a� �= �b� is valid in T . Hence

Φ(�a� �= �b�) = �Φ(a))� �= �Φ(b)�

since Φ is a homomorphism, and the latter inequality must be valid in T ′

since Φ is an interpretation (which maps valid formulas of T to valid formulas
of T ′). However, since Q is injective, our hypothesis Φ(a) = Φ(b) implies
�Φ(a))� = �Φ(b)�, which is a contradiction. �
This shows that the use of interpretations is more cumbersome in a logic
that admits quotation than one that does not.

6 Conclusion

Syntax-based mathematical algorithms are employed throughout mathematics
and are one of the main offerings of computer algebra systems. They are difficult,
however, to formalize since they manipulate the syntactic structure of expres-
sions in mathematically meaningful ways. We have presented two approaches to
formalizing syntax-based mathematical algorithms in a formal theory, one called
the local approach and the other the global approach. Both are based on the no-
tion of a syntax framework which provides a foundation for integrating reason-
ing about the syntax of expressions with reasoning about what the expressions
mean. Syntax frameworks include a syntax representation, a syntax language for
reasoning about the representation, and quotation and evaluation mechanisms.
Common syntax reasoning systems are instances of a syntax framework.

The local approach and close variants are commonly used for formalizing
syntax-based mathematical algorithms. Its major strength is that it provides
the means to formally reason about the syntactic structure of expressions, while
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its major weakness is that the mathematical meaning of a syntax-based mathe-
matical algorithm cannot be expressed in the formal theory. Another weakness
is that an application of the local approach cannot be easily extended to cover
new or enlarged contexts.

The global approach enables one to reason in a formal theory T directly about
the syntactic structure of the expressions in T as well as about the interplay of
syntax and semantics in T . As a result, it is possible to fully formalize syntax-
based algorithms like PolyDiff and move syntax-based reasoning, like the use of
syntactic side conditions, from the metatheory of T to T itself. Unfortunately,
these highly desirable results come with a high cost: Significant change must be
made to the underlying logic as illustrated by the Evaluation, Variable, Exten-
sion, and Interpretation Problems given in the previous section.

One of the main goals of the MathScheme project [2], led by J. Carette and
the author, is to see if the global approach can be used as a basis to integrate
axiomatic and algorithmic mathematics. The logic Chiron [7] demonstrates that
it is possible to modify a traditional logic to support the global approach. Al-
though we have begun an implementation of Chiron, it remains an open question
whether a logic modified in this way can be effectively implemented. As part of
the MathScheme project, we are now pursuing this problem as well as developing
the techniques needed to employ the global approach.

Acknowledgments. The author would like to thank Jacques Carette and
Pouya Larjani for many fruitful discussions on ideas related to this paper. The
author is also grateful to the referees for their comments and careful review of
the paper.
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Abstract. The aim of this work is to certify lower bounds for real-
valued multivariate functions, defined by semialgebraic or transcenden-
tal expressions. The certificate must be, eventually, formally provable in
a proof system such as Coq. The application range for such a tool is
widespread; for instance Hales’ proof of Kepler’s conjecture yields thou-
sands of inequalities. We introduce an approximation algorithm, which
combines ideas of the max-plus basis method (in optimal control) and of
the linear templates method developed by Manna et al. (in static analy-
sis). This algorithm consists in bounding some of the constituents of the
function by suprema of quadratic forms with a well chosen curvature.
This leads to semialgebraic optimization problems, solved by sum-of-
squares relaxations. Templates limit the blow up of these relaxations at
the price of coarsening the approximation. We illustrate the efficiency of
our framework with various examples from the literature and discuss the
interfacing with Coq.

Keywords: Polynomial Optimization Problems, Hybrid Symbolic-
numeric Certification, Semidefinite Programming, Transcendental Func-
tions, Semialgebraic Relaxations, Flyspeck Project, Quadratic Cuts,
Max-plus Approximation, Templates Method, Proof Assistant.

1 Introduction

Numerous problems coming from various fields boil down to the computation of a
certified lower bound for a real-valued multivariate function
f : Rn → R over a compact semialgebraic set K ⊂ Rn.

Our aim is to automatically provide lower bounds for the following global
optimization problem:

f∗ := inf
x∈K

f(x) , (1.1)

We want these bounds to be certifiable, meaning that their correctness must be,
eventually, formally provable in a proof system such as Coq. One among many
applications is the set of several thousands of non-linear inequalities which occur
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in Thomas Hales’ proof of Kepler’s conjecture, which is formalized in the Fly-
speck project [1, 2]. Several inequalities issued from Flyspeck actually deal with
special cases of Problem (1.1). For instance, f may be a multivariate polyno-
mial (polynomial optimization problems (POP)), or belong to the algebra A of
semialgebraic functions which extends multivariate polynomials with arbitrary

compositions of (·)p, (·)
1
p (p ∈ N0), |·|,+,−,×, /, sup(·, ·), inf(·, ·) (semialgebraic

optimization problems), or involve transcendental functions (sin, arctan, etc).
Formal methods that produce precise bounds are mandatory because of the

tightness of these inequalities. However, we also need to tackle scalability issues,
which arise when one wants to provide coarser lower bounds for optimization
problems with a larger number of variables or polynomial inequalities of a higher
degree, etc. A common idea to handle Problem (1.1) is to first approximate f by
multivariate polynomials through a semialgebraic relaxation and then obtain a
lower bound of the resulting POP with a specialized software. This implies being
able to also certify the approximation error in order to conclude. Such techniques
rely on hybrid symbolic-numeric certification methods, see Peyrl and Parrilo [3]
and Kaltofen et al. [4]. They allow one to produce positivity certificates for such
POP which can be checked in proof assistants such as Coq [5, 6], HOL-light [7]
or MetiTarski [8]. Recent efforts have been made to perform a formal verifica-
tion of several Flyspeck inequalities with Taylor interval approximations [9]. We
also mention procedures that solve SMT problems over the real numbers, using
interval constraint propagation [10].

Solving POP is already a hard problem, which has been extensively studied.
Semidefinite programming (SDP) relaxations basedmethods have been developed
by Lasserre [11] and Parrilo [12]. A sparse refinement of the hierarchy of SDP re-
laxations by Kojima [13] has been implemented in the SparsePOP solver. Other
approaches are based on Bernstein polynomials [14], global optimization by inter-
val methods (see e.g. [15]), branch and bound methods with Taylor models [16].

Inequalities involving transcendental functions are typically difficult to solve
with interval arithmetic, in particular due to the correlation between arguments
of unary functions (e.g. sin) or binary operations (e.g. +,−,×, /). For illustration
purpose, we consider the following running example coming from the global
optimization literature:

Example 1 (Modified Schwefel Problem 43 from Appendix B in [17]).

min
x∈[1,500]n

f(x) = −
n∑

i=1

(xi + εxi+1) sin(
√
xi),

where xn+1 = x1, and ε is a fixed parameter in {0, 1}. In the original problem,
ε = 0, i.e. the objective function f is the sum of independent functions involving
a single variable. This property may be exploited by a global optimization solver
by reducing it to the problem minx∈[1,500] x sin(

√
x). Hence, we also consider a

modified version of this problem with ε = 1.

Contributions. In this paper, we present an exact certification method, aiming
at handling the approximation of transcendental functions and increasing the size
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of certifiable instances. It consists in combining SDP relaxations à la Lasserre /
Parrilo, with an abstraction or approximation method. The latter is inspired by
the linear template method of Sankaranarayanan, Sipma and Manna in static
analysis [18], its nonlinear extension by Adjé et al. [19], and the maxplus basis
method in optimal control introduced by Fleming and McEneaney [20], and
developed by several authors [21–24].

The non-linear template method is a refinement of polyhedral based methods
in static analysis. It allows one to determine invariants of programs by consid-
ering a parametric family of sets, S(α) = {x | wi(x) � αi, 1 � i � p}, where the
vector α ∈ Rp is the parameter, and w1, . . . , wp (the template) are fixed possibly
non-linear functions, tailored to the program characteristics. The max-plus basis
method is equivalent to the approximation of the epigraph of a function by a
set S(α). In most basic examples, the functions wi of the template are linear or
quadratic functions.

In the present application, templates are used both to approximate transcen-
dental functions, and to produce coarser but still tractable relaxations when
the standard SDP relaxation of the semialgebraic problem is too complex to
be handled. Indeed, SDP relaxations are a powerful tool to get tight certified
lower bound for semialgebraic optimization problems, but their applicability is
so far limited to small or medium size problems: their execution time grows
exponentially with the relaxation order, which itself grows with the degree of
the polynomials to be handled. Templates allow one to reduce these degrees, by
approximating certain projections of the feasible set by a moderate number of
nonconvex quadratic inequalities.

Note that by taking a trivial template (bound constraints, i.e., functions of
the form wi(x) = ±xi), the template method specializes to a version of inter-
val calculus, in which bounds are derived by SDP techniques. By comparison,
templates allow one to get tighter bounds, taking into account the correlations
between the different variables. They are also useful as a replacement of stan-
dard Taylor approximations of transcendental functions: instead of increasing
the degree of the approximation, one increases the number of functions in the
template. A geometrical way to interpret the method is to think of it in terms of
“quadratic cuts”: quadratic inequalities are successively added to approximate
the graph of a transcendental function.

The present paper is a followup of [25], in which the idea of max-plus approx-
imation of transcendental function was applied to formal proof. By comparison,
the new ingredient is the introduction of the template technique (approximating
projections of the feasible sets), leading to an increase in scalability.

The paper is organized as follows. In Section 2, we recall the definition and
properties of Lasserre relaxations of polynomial problems (Section 2.1), together
with reformulations by Lasserre and Putinar of semialgebraic problems classes.
In Section 2.2, we outline the conversion of the numerical SOS produced by the
SDP solvers into an exact rational certificate. Then we explain how to verify this
certificate in Coq. The max-plus approximation, and the main algorithm based
on the non-linear templates method are presented in Section 3. Numerical results
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are presented in Section 4. We demonstrate the scalability of our approach by
certifying bounds of non-linear problems involving up to 103 variables, as well
as non trivial inequalities issued from the Flyspeck project.

2 Notation and Preliminary Results

Let Rd[x] be the vector space of multivariate polynomials in n variables of degree
d and R[x] the set of multivariate polynomials in n variables. We also define the
cone of sums of squares of degree at most 2d:

Σd[x] =
{∑

i

q2i , with qi ∈ Rd[x]
}
. (2.1)

The set Σd[x] is a closed, fully dimensional convex cone in R2d[x]. We denote by
Σ[x] the cone of sums of squares of polynomials in n variables.

2.1 Constrained Polynomial Optimization Problems and SDP

We consider the general constrained polynomial optimization problem (POP):

f∗
pop := inf

x∈Kpop

fpop(x), (2.2)

where fpop : Rn → R is a d-degree multivariate polynomial, Kpop is a compact
set defined by inequalities g1(x) � 0, . . . , gm(x) � 0, where gj(x) : Rn → R is
a real-valued polynomial of degree ωj, for j = 1, . . . ,m. Recall that the set of
feasible points of an optimization problem is simply the domain over which the
optimum is taken, i.e., here, Kpop.

Lasserre’s Hierarchy of Semidefinite Relaxations. We set g0 := 1 and
take k � k0 := max(�d/2�,max1�j�m�ωj/2�). We consider the following hierar-
chy of semidefinite relaxations for Problem (2.2), consisting of the optimization
problems Qk, k � k0,

Qk :

⎧⎨
⎩

supμ,σj
μ

s.t. fpop(x)− μ =
∑m

j=0 σj(x)gj(x),

μ ∈ R, σj ∈ Σk−
ωj/2�[x], j = 0, · · · ,m.

We denote by sup(Qk) the optimal value of Qk. A feasible point (μ, σ0, . . . , σm)
of Problem Qk is said to be a SOS certificate, showing the implication g1(x) �
0, . . . , gm(x) � 0 =⇒ fpop(x) � μ.

The sequence of optimal values (sup(Qk))k�k0 is non-decreasing. Lasserre
showed [11] that it does converge to f∗

pop under certain assumptions on the
polynomials gj . Here, we will consider sets Kpop included in a box of Rn, so that
Lasserre’s assumptions are automatically satisfied.
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Application to Semialgebraic Optimization. Given a semialgebraic func-
tion fsa, we consider the problem f∗

sa = infx∈Ksa fsa(x), where Ksa is a ba-
sic semialgebraic set. Moreover, we assume that fsa has a basic semialgebraic
lifting (for more details, see e.g. [26]). This implies that we can add auxiliary
variables z1, . . . , zp (lifting variables), and construct polynomials h1, . . . , hs ∈
R[x, z1, . . . , zp] defining the semialgebraic set Kpop := {(x, z1, . . . , zp) ∈ Rn+p :
x ∈ Ksa, h1(x, z) � 0, . . . , hs(x, z) � 0}, such that f∗

pop := inf(x,z)∈Kpop
zp is a

lower bound of f∗
sa.

2.2 Hybrid Symbolic-Numeric Certification and Formalization

The previous relaxation Qk can be solved with several semidefinite program-
ming solvers (e.g. SDPA [27]). These solvers are implemented using floating-
point arithmetics. In order to build formal proofs, we currently rely on exact
rational certificates which are needed to make formal proofs: Coq, being built
on a computational formalism, is well equipped for checking the correctness of
such certificates.

Such rational certificates can be obtained by a rounding and projection algo-
rithm of Peyrl and Parillo [3], with an improvement of Kaltofen et al. [4]. Note
that if the SDP formulation of Qk is not strictly feasible, then the rounding and
projection algorithm fails. However, Monniaux and Corbineau proposed a par-
tial workaround for this issue [5]. In this way, except in degenerate situations, we
arrive at a candidate SOS certificate with rational coefficients, (μ, σ0, . . . , σm).
This certificate can straightforwardly be translated to Coq; the verification then
boils down to formally checking that this SOS certificate does satisfy the equal-
ity constraint in Qk with Coq’s field tactic, which implies that f∗

pop � μ.
This checking is typically handled by generating Coq scripts from the OCaml
framework, when the lower bound μ obtained at the relaxation Qk is accurate
enough.

Future improvements could build, for instance, on future Coq libraries han-
dling algebraic numbers or future tools to better handle floating point approxi-
mations inside Coq.

3 Max-plus Approximations And Non-linear Templates

3.1 Max-plus Approximations and Non-linear Templates

The max-plus basis method in optimal control [20, 21, 23] involves the approxi-
mation from below of a function f in n variables by a supremum

f � g := sup
1�i�p

λi + wi . (3.1)

The functions wi are fixed in advance, or dynamically adapted by exploiting the
problem structure. The parameters λi are degrees of freedom.

This method is closely related to the non-linear extension [19] of the template
method [18]. This extension deals with parametric families of subsets of Rn of
the form S(α) = {x | wi(x) � αi, 1 � i � p}. The template method consists
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in propagating approximations of the set of reachables values of the variables
of a program by sets of the form S(α). The non-linear template and max-plus
approximation methods are somehow equivalent. Indeed, the 0-level set of g,
{x | g(x) � 0}, is nothing but S(−λ), so templates can be recovered from max-
plus approximations, and vice versa.

The functions wi are usually required to be quadratic forms,

wi(x) = p�i x+
1

2
x�Aix ,

where pi ∈ Rn and Ai is a symmetric matrix. A basic choice is Ai = −cI, where
c is a fixed constant, and I the identity matrix. Then, the parameters p remain
the only degrees of freedom.

The consistency of the approximation follows from results of Legendre-Fenchel
duality. Recall that a function f is said to be c-semiconvex if x 
→ f(x) + c‖x‖2
is convex. Then, if f is c-semiconvex and lowersemicontinuous, as the number
of basis functions r grows, the best approximation g � f by a supremum of
functions of type (3.1), with Ai = −cI, is known to converge to f [20]. The same
is true without semiconvexity assumptions if one allows Ai to vary [28].

A basic question is to estimate the number of basis functions needed to attain
a prescribed accuracy. A typical result is proved in [24, Theorem 3.2], as a
corollary of techniques of Grüber concerning the approximation of convex bodies
by circumscribed polytopes. This theorem shows that if f is c−ε semiconvex, for
ε > 0, twice continuously differentiable, and if X is a full dimensional compact
convex subset of Rn, then, the best approximation g of f as a supremum or r
functions as in (3.1), with wi(x) = p�i x− c‖x‖2/2, satisfies

‖f − g‖L∞(X) �
C(f)

r2/n
(3.2)

where the constant C(f) is explicit (it depends of det(f ′′ + cI) and is bounded
away from 0 when ε is fixed). This estimate indicates that some curse of dimen-
sionality is unavoidable: to get a uniform error of order ε, one needs a number
of basis functions of order 1/εn/2. However, in what follows, we shall always
apply the approximation to small dimensional constituents of the optimization
problems (n = 1 when one needs to approximate transcendental functions in a
single variable). We shall also apply the approximation by templates to certain
relevant small dimensional projections of the set of lifted variables, leading to a
smaller effective n. Note also that for optimization purposes, a uniform approx-
imation is not needed (one only needs an approximation tight enough near the
optimum, for which fewer basis functions are enough).

3.2 A Templates Method Based on Max-plus Approximations

We now consider an instance of Problem (1.1). We assume that K is a box and
we identify the objective function f with its abstract syntax tree tf . We suppose
that the leaves of tf are semialgebraic functions, and that the other nodes are
either basic binary operations (+, ×, −, /), or unary transcendental functions
(sin, etc).
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Our main algorithm template optim (Figure 1) is based on a previous method
of the authors [25], in which the objective function is bounded by means of
semialgebraic functions. For the sake of completeness, we first recall the basic
principles of this method.

Bounding the objective function by semialgebraic estimators. Given a function
represented by an abstract tree t, semialgebraic lower and upper estimators t−

and t+ are computed by induction. If the tree is reduced to a leaf, i.e. t ∈ A,
it suffices to set t− = t+ := t. If the root of the tree corresponds to a binary
operation bop with children c1 and c2, then the semialgebraic estimators c−1 ,
c+1 and c−2 , c

+
2 are composed using a function compose bop to provide bounding

estimators of t. Finally, if t corresponds to the composition of a transcendental
(unary) function φ with a child c, we first bound c with semialgebraic functions
c+ and c−. We compute a lower bound cm of c− as well as an upper bound cM of
c+ to obtain an interval I := [cm, cM ] enclosing c. Then, we bound φ from above
and below by computing parabola at given control points (function build par),
thanks to the semiconvexity properties of φ on the interval I. These parabola
are composed with c+ and c−, thanks to a function denoted by compose.

These steps correspond to the part of the algorithm template optim from
Lines 1 to 10.

Reducing the complexity of semialgebraic estimators using templates. The semi-
algebraic estimators previously computed are used to determine lower and upper
bounds of the function associated with the tree t, at each step of the induction.
The bounds are obtained by calling the functions min sa and max sa respectively,
which reduce the semialgebraic optimization problems to polynomial optimiza-
tion problems by introducing extra lifting variables (see Section 2).

However, the complexity of solving the POPs can grow significantly because
of the number nlifting of lifting variables. If k denotes the relaxation order, the
corresponding SDP problem Qk indeed involve linear matrix inequalities of size
O((n+ nlifting)

k) over O((n+ nlifting)
2k) variables.

Consequently, this is crucial to control the number of lifting variables, or
equivalently, the complexity of the semialgebraic estimators. For this purpose,
we introduce the function build template. It allows to compute approxima-
tions of the tree t by means of suprema/infima of quadratic functions, when
the number of lifting variables exceeds a user-defined threshold value nmax

lifting.
The algorithm is depicted in Figure 2. Using a heuristics, it first builds can-
didate quadratic forms q−j and q+j approximating t at each control point xj

(function build quadratic form, described below). Since each q−j does not
necessarily underestimate the function t, we then determine the lower bound
m−

j of the semialgebraic function t− − q−j , which ensures that q−j + m−
j is a

quadratic lower-approximation of t. Similarly, the function q+j +M+
j is an upper-

approximation of t. The returned semialgebraic expressions max1�j�r{q−j +m−
j }

and min1�j�r{q+j + M+
j } now generate only one lifting variable (representing

max or min).
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Input: tree t, box K, SDP relaxation order k, control points sequence s =
{x1, . . . ,xr} ⊂ K

Output: lower bound m, upper bound M , lower semialgebraic estimator t−2 , upper
semialgebraic estimator t+2

1: if t ∈ A then
2: t− := t, t+ := t
3: else if bop := root (t) is a binary operation with children c1 and c2 then
4: mci ,Mci , c

−
i , c+i := template optim(ci,K, k, s) for i ∈ {1, 2}

5: t−, t+ := compose bop(c−1 , c
+
1 , c

−
2 , c+2 )

6: else if r := root(t) ∈ T with child c then
7: mc, Mc, c

−, c+ := template optim(c,K, k, s)
8: par−,par+ := build par(r,mc,Mc, s)
9: t−, t+ := compose(par−, par+, c−, c+)
10: end
11: t−2 , t

+
2 := build template(t,K, k, s, t−, t+)

12: return min sa(t−2 , k), max sa(t+2 , k), t
−
2 , t

+
2

Fig. 1. template optim

Quadratic functions returned by build quadratic form(t,xj) are of the form:

qxj ,λ : x 
→ t(xj)+D(t)(xj) (x−xj)+
1

2
(x−xj)

TD2(t)(xj) (x−xj)+
1

2
λ(x−xj)

2

(we assume that t is twice differentiable) where λ is computed as follows. We
sample the Hessian matrix difference D2(t)(x) − D2(t)(xj) over a finite set of
random points R ⊂ K, and construct a matrix interval D enclosing all the
entries of (D2(t)(x) − D2(t)(xj)) for x ∈ R. A lower bound λ− of the minimal
eigenvalue of D is obtained by applying a robust SDP method on interval matrix
described by Calafiore and Dabbene in [29]. Similarly, we get an upper bound
λ+ of the maximal eigenvalue of D. The function build quadratic form(t,xj)
then returns the two quadratic forms q− := qxj ,λ− and q+ := qxj ,λ+ .

Example 2 (Modified Schwefel Problem). We illustrate our method with the func-
tion f from Example 1 and the finite set of three control points {135, 251, 500}.
For each i = 1, . . . , n, consider the sub-tree sin(

√
xi). First, we represent each sub-

tree
√
xi by a lifting variable yi and compute a1 :=

√
135, a2 :=

√
251, a3 :=

√
500.

Then, we get the equations of par−a1
, par−a2

and par−a3
with buildpar, which are

three underestimators of the function sin on the real interval I := [1,
√
500]. Sim-

ilarly we obtain three overestimators par+a1
, par+a2

and par+a3
. Finally, we obtain

the underestimator t−1,i := maxj∈{1,2,3}{par−aj
(yi)} and the overestimator t+1,i :=

minj∈{1,2,3}{par+aj
(yi)}. To solve the modified Schwefel problem, we consider the

following POP:⎧⎪⎨
⎪⎩

min
x∈[1,500]n,y∈[1,

√
500]n,z∈[−1,1]n

−
∑n

i=1(xi + εxi+1)zi

s.t. zi � par+aj
(yi), j ∈ {1, 2, 3}, i = 1, · · · , n

y2i = xi, i = 1, · · · , n
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Input: tree t, box K, SDP relaxation order k, control points sequence s =
{x1, . . . ,xr} ⊂ K, lower/upper semialgebraic estimator t−, t+

1: if the number of lifting variables exceeds nmax
lifting then

2: for xj ∈ s do
3: q−j , q+j := build quadratic form(t,xj)

4: m−
j := min sa(t−1 − q−j , k) � q−j +m−

j � t− � t

5: M+
j := max sa(q+j − t+1 , k) � q+j +M+

j � t+ � t
6: done
7: return max1�j�r{q−j +m−

j }, min1�j�r{q+j +M+
j }

8: else
9: return t−, t+

10: end

Fig. 2. build template

b

y

b �→ sin(
√
b)

par−b1

par−b2

par−b3

par+b1

par+b2

par+b3

1 b1 b2 b3 = 500

Fig. 3. Templates based on Max-plus Semialgebraic Estimators for b �→ sin(
√
b):

t−2,i := maxj∈{1,2,3}{par−bj (xi)} � sin√xi � t+2,i := minj∈{1,2,3}{par+bj (xi)}

Notice that the number of lifting variables is 2n and the number of equality
constraints is n, thus we can obtain coarser semialgebraic approximations of f
by considering the function b 
→ sin(

√
b) (see Figure 3). We get new estimators

t−2,i and t+2,i of each sub-tree sin(
√
xi) with the functions build quadratic form,

min sa and max sa. The resulting POP involves only n lifting variables. Besides,
it does not contain equality constraints anymore, which improves in practice the
numerical stability of the POP solver.

Dynamic choice of the control points. As in [25], the sequence s of control points
is computed iteratively. We initialize the set s to a single point of K, chosen
so as to be a minimizer candidate for t (e.g. with a local optimization solver).
Calling the algorithm template optim on the main objective function tf yields
an underestimator t−f . Then, we compute a minimizer candidate xopt of the un-

derestimator tree t−f . It is obtained by projecting a solution xsdp of the SDP
relaxation of Section 2.1 on the coordinates representing the first order mo-
ments, following [11, Theorem 4.2]. We add xopt to the set of control points s.
Consequently, we can refine dynamically our templates based max-plus approx-
imations by iterating the previous procedure to get tighter lower bounds. This
procedure can be stopped as soon as the requested lower bound is attained.
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Remark 1 (Exploiting the system properties). Several properties of the POP can
be exploited to decrease the size of the SDP relaxations such as symmetries [30]
or sparsity [31]. Consider Problem (1.1) with f having some sparsity pattern
or being invariant under the action of a finite subgroup symmetries. Then the
same properties hold for the resulting semialgebraic relaxations that we build
with our non-linear templates method.

4 Results

Comparing Three Certification Methods. We next present numerical re-
sults obtained by applying the present template method to examples from the
global optimization literature, as well as inequalities from the Flyspeck project.
Our tool is implemented in OCaml and interfaced with the SparsePOP solver [31].

In each example, our aim is to certify a lower bound m of a function f on
a box K. We use the algorithm template optim, keeping the SOS relaxation
order k sufficiently small to ensure the fast computation of the lower bounds. The
algorithm template optim returns more precise bounds by successive updates of
the control points sequence s. However, in some examples, the relaxation gap is
too high to certify the requested bound. Then, we perform a domain subdivision
in order to reduce this gap: we divide the maximal width interval of K in two
halves to get two sub-boxes K1 and K2 such that K = K1 ∪K2. We repeat this
subdivision procedure, by applying template optim on a finite set of sub-boxes,
until we succeed to certify that m is a lower bound of f . We denote by #boxes
the total number of sub-boxes generated by the algorithm.

For the sake of comparison, we have implemented a template-free SOS method
ia sos, which coincides with the particular case of template optim in which
#s = 0 and nlifting = 0. It computes the bounds of semialgebraic functions
with standard SOS relaxations and bounds the univariate transcendental func-
tions by interval arithmetic. We also tested the MATLAB toolbox algorithm
intsolver [32], which is based on the Newton interval method [33]. Experi-
ments are performed on an Intel Core i5 CPU (2.40GHz).

Global Optimization Problems. The following test examples are taken from
Appendix B in [17]. Some of these examples depend on numerical constants, the
values of which can be found there.

– Hartman 3 (H3): min
x∈[0,1]3

f(x) = −
4∑

i=1

ci exp

[
−

3∑
j=1

aij(xj − pij)
2

]

– Mc Cormick (MC), with K = [−1.5, 4]× [−3, 3]:
min
x∈K

f(x) = sin(x1 + x2) + (x1 − x2)
2 − 0.5x1 + 2.5x2 + 1

– Modified Langerman (ML):

min
x∈[0,10]n

f(x) =
5∑

j=1

cj cos(dj/π) exp(−πdj), with dj =
n∑

i=1

(xi − aji)
2
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– Paviani Problem (PP), with K = [2.01, 9.99]10:

min
x∈K

f(x) =
10∑
i=1

[
(log(xi − 2))2 − log(10− xi))

2
]
−
(

10∏
i=1

xi

)0.2

– Shubert (SBT): min
x∈[−10,10]n

f(x) =
n∏

i=1

( 5∑
j=1

j cos((j + 1)xi + j)
)

– Modified Schwefel (SWF): see Example 1

Informal certification of lower bounds of non-linear problems. In Table 1, the
time column indicates the total informal verification time, i.e. without the exact
certification of the lower bound m with Coq. Each occurrence of the symbol
“−” means that m could not be determined within one day of computation by
the corresponding solver. We see that ia sos already outperforms the interval
arithmetic solver intsolver on these examples. However, it can only be used for
problems with a moderate number of variables. The algorithm template optim

allows us to overcome this restriction, while keeping a similar performance (or
occasionally improving this performance) on moderate size examples.

Notice that reducing the number of lifting variables allows us to provide more
quickly coarse bounds for large-scale instances of SWF. We discuss the results
appearing in the two last lines of Table 1. Without any box subdivision, we can
certify a better lower bound m = −967n with nlifting = 2n since our semialge-
braic estimator is more precise. However the last lower bound m = −968n can
be computed twice faster by considering only n lifting variables, thus reducing
the size of the POP described in Example 2. This indicates that the method is
able to avoid the blow up for certain hard sub-classes of problems where a stan-
dard (template free) POP formulation would involve a large number of lifting
variables.

Formal certification of lower bounds of POP. For some small size instances of
POP, our tool can prove the correctness of lower bounds. Our solver is interfaced
with the framework mentioned in [5] to provide exact rational certificates, which
can be formally checked with Coq. This formal verification is much slower. As
an example, for the MC problem, it is 36 times slower to generate exact SOS
certificates and 13 times slower to prove its correctness in Coq. Note that the
interface with Coq still needs some streamlining.

High-degree polynomial approximations. An alternative approach consists in ap-
proximating the transcendental functions by polynomial functions of sufficiently
high degree, and then applying sums of squares approach to the polynomial
problems. Given d ∈ N and a floating-point interval I, we can approximate an
univariate transcendental function on I by the best uniform degree-d polynomial
approximation and obtain an upper bound of the approximation error. This tech-
nique, based on Remez algorithm, is implemented in the Sollya tool (for further
details, see e.g. [34]).

We interfaced our tool with Sollya and performed some numerical tests. The
minimax approximation based method is eventually faster than the templates
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Table 1. Comparison results for global optimization examples

Problem n m
template optim ia sos intsolver

k #s nlifting #boxes time #boxes time time

H3 3 −3.863 2 3 4 99 101 s 1096 247 s 3.73 h
H6 6 −3.33 2 1 6 113 102 s 113 45 s > 4 h
MC 2 −1.92 1 2 1 17 1.8 s 92 7.6 s 4.4 s
ML 10 −0.966 1 1 6 8 8.2 s 8 6.6 s > 4 h
PP 10 −46 1 3 2 135 89 s 3133 115 s 56min
SBT 2 −190 2 3 2 150 36 s 258 0.6 s 57 s

SWF (ε = 0)

10 −430n 2 6 2n 16 40 s 3830 129 s 18.5min
100 −440n 2 6 2n 274 1.9 h > 20000 > 10 h −
1000 −486n 2 4 2n 1 450 s − − −
1000 −488n 2 4 n 1 250 s − − −

SWF (ε = 1)
1000 −967n 3 2 2n 1 543 s − − −
1000 −968n 3 2 n 1 272 s − − −

Table 2. Results for Flyspeck inequalities using template optim with n = 6, k = 2
and m = 0

Inequality id nT #s nlifting #boxes time

9922699028 1 4 9 47 241 s
9922699028 1 4 3 39 190 s
3318775219 1 2 9 338 26min
7726998381 3 4 15 70 43min
7394240696 3 2 15 351 1.8 h
4652969746 1 6 4 15 81 1.3 h
OXLZLEZ6346351218 2 0 6 4 24 200 5.7 h

method for moderate instances. For the examples H3 and H6, the speed-up factor
is 8 when the function exp is approximated by a quartic minimax polynomial.

However, this approach is much slower to compute lower bounds of problems
involving a large number of variables. It requires 57 times more CPU time to solve
SWF (ε = 1) with n = 10 by considering a cubic minimax polynomial approx-
imation of the function b 
→ sin(

√
b) on a floating-point interval I ⊇ [1,

√
500].

These experiments indicate that a high-degree polynomial approximation is not
suitable for large-scale problems.

Certification of Various Flyspeck Inequalities. In Table 2, we present
some test results for several non-linear Flyspeck inequalities. The information
in the columns time, #boxes, and nlifting is the same as above. The integer nT
represents the number of transcendental univariate nodes in the corresponding
abstract syntax trees. These inequalities are known to be tight and involve sum
of arctan of correlated functions in many variables, whence we keep high the
number of lifting variables to get precise max-plus estimators. However, some
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inequalities (e.g. 9922699028) are easier to solve by using coarser semialgebraic
estimators. For instance, the first line (nlifting = 9) corresponds to the algorithm
described in [25] and the second one (nlifting = 3) illustrates our improved tem-
plates method. For the latter, we do not use any lifting variables to represent
square roots of univariate functions.

5 Conclusion

The present quadratic templates method computes certified lower bounds for
global optimization problems. It can provide tight max-plus semialgebraic es-
timators to certify non-linear inequalities involving transcendental multivariate
functions (e.g. for Flyspeck inequalities). It also allows one to limit the growth
of the number of lifting variables as well as of polynomial constraints to be
handled in the POP relaxations, at the price of a coarser approximation. Thus,
our method is helpful when the size of optimization problems increases. Indeed,
the coarse lower bounds obtained (even with a low SDP relaxation order) are
better than those obtained with interval arithmetic or high-degree polynomial
approximation. For future work, we plan to study how to obtain more accurate
non-linear templates by constructing a sequence of semialgebraic estimators,
which converges to the “best” max-plus estimators (following the idea of [35]).

Furthermore, the formal part of our implementation, currently can only handle
small size POP certificates. We plan to address this issue by a more careful
implementation on the Coq side, but also by exploiting system properties of the
problem (sparsity, symmetries) in order to reduce the size of the rational SOS
certificates. Finally, it remains to complete the formal verification procedure by
additionally proving in Coq the correctness of our semialgebraic estimators.

Acknowledgements. The authors thank the anonymous referees for helpful
comments and suggestions to improve this paper.
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Abstract. Fiji is a Java platform widely used by biologists and other
experimental scientists to process digital images. In our research, made
together with a biologists team, we use Fiji in some pre-processing steps
before undertaking a homological digital processing of images. In a previ-
ous work, we have formalised the correctness of the programs which use
homological techniques to analyse digital images. However, the verifica-
tion of Fiji’s pre-processing step was missed. In this paper, we present a
multi-tool approach (based on the combination of Why/Krakatoa, Coq
and ACL2) filling this gap.

1 Introduction

Fiji [27] is a Java platform widely used by biologists and other experimental sci-
entists to process digital images. In our research, made together with a biologists
team, we use Fiji in some pre-processing steps before undertaking a homological
digital processing of images.

Due to the fact that the reliability of results is instrumental in biomedical
research, we are working towards the certification of the programs that we use
to analyse biomedical images – here, certification means verification assisted by
computers. In a previous work, see [16, 17], we have formalised two homological
techniques to process biomedical images. However, in both cases, the verification
of Fiji’s pre-processing step was not undertaken.

Being a software built by means of plug-ins developed by several authors,
Fiji is messy, very flexible (program pieces are used in some occasions with a
completely different objective from the one they were designed), contains many
redundancies and dead code, and so on. In summary, it is a big software sys-
tem which has not been devised to be formally verified. So, this endeavour is
challenging.
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C02-01, and by the European Union’s 7th Framework Programme under grant agree-
ment nr. 243847 (ForMath).
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There are several approaches to verify Java code; for instance, proving the
correctness of the associated Java bytecode, see [22]. In this paper, we use Kraka-
toa [11] to specify and prove the correctness of Fiji/Java programs. This expe-
rience allows us to evaluate both the verification of production Fiji/Java code,
and the Krakatoa tool itself in an unprepared scenario.

Krakatoa uses some automated theorem provers (as Alt-Ergo [5] or CVC3 [3])
to discharge the proof obligations generated by means of the Why tool [11].
When a proof obligation cannot be solved by means of the automated provers,
the corresponding statement is generated in Coq [9]. Then, the user can try to
prove the missing property by interacting with this proof assistant.

In this picture, we add the ACL2 theorem prover [20]. ACL2 is an automated
theorem prover but more powerful than others. In many aspects, working with
ACL2 is more similar to interactive provers than to automated ones, see [20].
Instead of integrating ACL2 in the architecture of Why/Krakatoa, we have fol-
lowed another path leaving untouched the Why/Krakatoa code. Our approach
reuses a proposal presented in [2] to translate first-order Isabelle/HOL theories
to ACL2 through an XML specification language called XLL [2]. We have en-
hanced our previous tools to translate Coq theories to the XLL language, and
then apply the tools developed in [2] to obtain ACL2 files. In this way, we can
use, unmodified, the Why/Krakatoa framework; the Coq statements are then
translated (if needed) to ACL2, where an automated proof is tried; if it suc-
ceeds, Coq is only an intermediary specification step; otherwise, both ACL2 or
Coq can be interactively used to complete the proof.

The organization of the paper is as follows. The used tools together with
our general way of working are briefly presented in Section 2. Section 3 deals
with a methodology to “tame” production Fiji code in such a way that it is
acceptable for Why/Krakatoa – this method is general enough to be applied to
any Java code. Section 4 describes an example of the kind of specification we
faced. The role of ACL2, and the tools to interoperate between Coq and ACL2,
are explained in Section 5. The exposition style along the paper tries to be clear
(without much emphasis on formal aspects), driven by real examples extracted
from our programming experience in Fiji; in the same vein, Section 6 contains a
complete example illustrating the actual role of ACL2 in our setting. The paper
ends with a conclusions section and the bibliography.

All the programs and examples presented throughout this paper are available
at http://www.computing.dundee.ac.uk/staff/jheras/vpdims/.

2 Context, Tools, Method

2.1 Context

Fiji [27] is a Java programwhich can be described as a distribution of ImageJ [26].
These two programs help with the research in life sciences and biomedicine since
they are used to process and analyse biomedical images. Fiji and ImageJ are
open source projects and their functionality can be expanded by means of either

http://www.computing.dundee.ac.uk/staff/jheras/vpdims/
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a macro scripting language or Java plug-ins. Among the Fiji/ImageJ plug-ins
and macros, we can find functionality which allows us to binarise an image via
different threshold algorithms, homogenise images through filters such as the
“median filter” or obtain the maximum projection of a stack of images.

In the frame of the ForMath European project [1], one of the tasks is de-
voted to the topological aspects of digital image processing. The objective of
that consists in formalising enough mathematics to verify programs in the area
of biomedical imaging. In collaboration with the biologists team directed by
Miguel Morales, two plug-ins for Fiji have been developed (SynapCountJ [24]
and NeuronPersistentJ [23]); these programs are devoted to analyse the effects
of some drugs on the neuronal structure. At the end of such analysis, some ho-
mological processing is needed (standard homology groups in SynapCountJ and
persistent homology in NeuronPersistentJ). As explained in the introduction, we
have verified these last steps [16, 17]. But all the pre-processing steps, based on
already-built Fiji plug-ins and tools, kept unverified. This is the gap we try to
fill now, by using the facilities presented in the sequel.

2.2 Tools

Why/Krakatoa: Specifying and Verifying Java Code. The Why/Kraka-
toa tools [11] are an environment for proving the correctness of Java programs
annotated with JML [7] specifications which have been successfully applied in
different context, see [4]. The environment involves three distinct components:
the Krakatoa tool, which reads the annotated Java files and produces a repre-
sentation of the semantics of the Java program into Why’s input language; the
Why tool, which computes proof obligations (POs) for a core imperative lan-
guage annotated with pre- and post-conditions, and finally several automated
theorem provers which are included in the environment and are used to prove
the POs. When some PO cannot be solved by means of the automated provers,
corresponding statements are automatically generated in Coq [9], so that the
user can then try to prove the missing properties in this interactive theorem
prover. The POs generation is based on a Weakest Precondition calculus and
the validity of all generated POs implies the soundness of the code with respect
to the given specification. The Why/Krakatoa tools are available as open source
software at http://krakatoa.lri.fr.

Coq and ACL2: Interactive Theorem Proving. Coq [9] is an interactive
proof assistant for constructive higher-order logic based on the Calculus of Induc-
tive Construction. This system provides a formal language to write mathematical
definitions, executable algorithms and theorems together with an environment
for semi-interactive development of machine-checked proofs. Coq has been suc-
cessfully used in the formalisation of relevant mathematical results; for instance,
the recently proven Feit-Thompson Theorem [13].

ACL2 [20] is a programming language, a first order logic and an automated the-
orem prover. Thus, the system constitutes an environment in which algorithms

http://krakatoa.lri.fr
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can be defined and executed, and their properties can be formally specified and
proved with the assistance of a mechanical theorem prover. ACL2 has elements of
both interactive and automated provers. ACL2 is automatic in the sense that once
started on a problem, it proceeds without human assistance. However, non-trivial
results are not usually proved in the first attempt, and the user has to lead the
prover to a successful proof providing a set of lemmas, inspired by the failed proof
generated by ACL2. This system has been used for a variety of important formal
methods projects of industrial and commercial interest [15] and for implementing
large proofs in mathematics.

2.3 Method

In this section, we present the method that we have applied to verify Fiji code.
This process can be split into the following steps.

1. Transforming Fiji code into compilable Krakatoa code.
2. Specifying Java programs.
3. Applying the Why tool.
4. If all the proof obligations are discharged automatically by the provers inte-

grated in Krakatoa, stop; the verification has ended.
5. Otherwise, study the failed attempts, and consider if they are under-specified;

if it is the case, go again to step (2).
6. Otherwise, consider the Coq expressions of the still-non-proven statements

and transform them to ACL2.
7. If all the statements are automatically proved in ACL2, stop; the verification

has ended.
8. Otherwise, by inspecting the failed ACL2 proofs, decide if other specifications

are needed (go to item (2)); if it is not the case, decide if the missing proofs
should be carried out in Coq or ACL2.

The first step is the most sensitive one, because it is the only point where informal
(or, rather, semi-formal) methods are needed. Thus, some unsafe, and manual,
code transformation can be required. To minimize this drawback, we apply two
strategies:

– First, only well-known transformations are applied; for instance, we elimi-
nate inheritance by “flattening” out the code, but without touching the real
behaviour of methods.

– Second, the equivalence between the original code and the transformed one
is systematically tested.

Both points together increase the reliability of our approach; a more detailed
description of the transformations needed in step (1) are explained in Section 3.
Step (2) is quite well-understood, and some remarks about this step are provided
in Section 4. Steps (3)-(6) are mechanized in Krakatoa. The role of ACL2 (steps
(6)-(8)) is explained in Section 5 and, by means of an example, in Section 6.
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3 Transforming Fiji-Java to Krakatoa-Java

In its current state, the Why/Krakatoa system does not support the complete
Java programming language and has some limitations. In order to make a Fiji
Java program compilable by Krakatoa we have to take several steps.

1. Delete annotations. Krakatoa JML annotations will be placed between \*@
and @*\. Therefore, we need to remove other Java Annotations preceded
by @.

2. Move the classes that are referenced in the file that we want to compile into
the directory whyInstallationDir/java api/. For example, the class RankFil-
ters uses the class java.awt.Rectangle; therefore, we need to create the folder
awt inside the java directory that already exists, and put the file Rectan-
gle.java into it. Moreover, we can remove the body of the methods because
only the headers and the fields of the classes will be taken into consideration.
We must iterate this process over the classes that we add. The files that we
add into the java api directory can contain import, extends and implements

clauses although the file that we want to compile cannot do it – Krakatoa
does not support these mechanisms. This is a tough process: for instance, to
make use of the class Rectangle, we need to add fifteen classes.

3. Reproduce the behaviour of the class that we want to compile. Considering
that we are not able to use extends and implements clauses, we need to move
the code from the upper classes into the one that we want to compile in
order to have the same behaviour. For instance, the class BinaryProcessor
extends from ByteProcessor and inside its constructor it calls the constructor
of ByteProcessor ; to solve this problem we need to copy the body of the super
constructor at the beginning of the constructor of the class BinaryProcessor.
If we find the use of interfaces, we can ignore them and remove the implements
clause because the code will be implemented in the class that makes use of
the interface.

4. Remove import clauses. We need to delete them from the file that we want to
compile and change the places where the corresponding classes appear with
the full path codes. If for example we are trying to use the class Rectangle
as we have explained in Step 2, we need to replace it by java.awt.Rectangle.

5. Owing to package declarations are forbidden, we need to remove them with
the purpose of halting “unknown identifier packageName” errors.

6. Rebuild native methods. The Java programming language allows the use
of native methods, which are written in C or C++ and might be specific
to a hardware and operating system platform. For example, many of the
methods in the class Math (which perform basic numeric operations such
as the elementary exponential, logarithm, square root, and trigonometric
functions) simply call the equivalent method included in a different class
named StrictMath for their implementation, and then the code in StrictMath
of these methods is just a native call. Since native methods are not written
in Java, they cannot be specified and verified in Krakatoa. Therefore, if our
Fiji program uses some native methods, it will be necessary to rewrite them
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with our own code. See in Section 6 our implementation (and specification)
of the native method sqrt computing the square root of a number of type
double, based on Newton’s algorithm.

7. Add a clause in if-else structures in order to remove “Uncaught exception:
Invalid argument(“equal: abstract value”)”. We can find an example in the
method filterEdge of the class MedianFilter where we have to replace the
last else... clause by else if(true)....

8. Remove debugging useless references. We have mentioned in a previous step
that we can only use certain static methods that we have manually added to
the Why core code and therefore we can remove some debugging instructions
like System.out.println(...). We can find the usage of standard output
printing statement in the method write of the class IJ.

9. Modify the declaration of some variables to avoid syntax errors. There can
be some compilation errors with the definition of some floats and double
values that match the pattern <number>f or <number>d. We can see an
example in the line 180 of the file RankFilters.java; we have to transform
the code: float f = 50f; into float f = 50.

10. Change the way that Maximum and Minimum float numbers are written.
Those two special numbers are located in the file Float.java and there are
widely used to avoid overflow errors, but they generate an error due to the
eP exponent. To stop having errors with expressions like 0x1.fffffeP+127d

we need to convert it into 3.4028235e+38f.

4 Specifying Programs for Digital Imaging

As already said in Section 2.2, Fiji and ImageJ are open source projects and many
different people from many different teams (some of them not being computer
scientists) are involved in the development of the different Fiji Java plug-ins.
This implies that the code of these programs is in general not suitable for its
formal verification and a deep previous transformation process, following the
steps explained in Section 3, is necessary before introducing the Java programs
into the Why/Krakatoa system. Even after this initial transformation, Fiji pro-
grams usually remain complex and their specification in Krakatoa is not a direct
process. In this section we present some examples of Fiji methods that we have
specified in JML trying to show the difficulties we have faced.

Once that a Fiji Java program has been adapted, following the ideas of Sec-
tion 3, and is accepted by the Why/Krakatoa application, the following step in
order to certify its correctness consists in specifying its behaviour (that is, its
precondition and its postcondition) by writing annotations in the Java Mod-
elling Language (JML) [7] . The precondition of a method must be a proposition
introduced by the keyword requires which is supposed to hold in the pre-state,
that is, when the method is called. The postcondition is introduced by the key-
word ensures, and must be satisfied in the post-state, that is, when the method
returns normally. The notation \result denotes the returned value. To differen-
tiate the value of a variable in the pre- and post- states, we can use the keyword
\old for the pre-state.
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Let us begin by showing a simple example. The following Fiji method, included
in the class Rectangle, translates an object by given horizontal and vertical in-
crements dx and dy.

/*@ ensures x == \old(x) + dx && y == \old(y) + dy;

@*/

public void translate(final double dx, final double dy) {

this.x += dx; this.y += dy;

}

The postcondition expresses that the field x is modified by incrementing it by dx,
and the field y is increased by dy. In this case no precondition is given since all
values of dx and dy are valid, and the keyword \result does not appear because
the returned type is void.

Using this JML specification, Why/Krakatoa generates several lemmas (Proof
Obligations) which express the correctness of the program. In this simple case,
the proof obligations are elementary and they can be easily discharged by the
automated theorem provers Alt-Ergo [5] and CVC3 [3], which are included in
the environment. The proofs of these lemmas guarantee the correctness of the
Fiji method translate with respect to the given specification.

Unfortunately, this is not the general situation because, as already said, Fiji
code has not been designed for its formal verification and can be very compli-
cated; so, in most cases, Krakatoa is not able to prove the validity of a program
from the given precondition and postcondition. In order to formally verify a Fiji
method, it is usually necessary to include annotations in the intermediate points
of the program. These annotations, introduced by the keyword assert, must
hold at the corresponding program point. For loop constructs (while, for, etc),
we must give an inductive invariant, introduced by the keyword loop invariant,
which is a proposition which must hold at the loop entry and be preserved by
any iteration of the loop body. One can also indicate a loop variant, which must
be an expression of type integer, which remains non-negative and decreases at
each loop iteration, assuring in this way the termination of the loop. It is also
possible to declare new logical functions, lemmas and predicates, and to define
ghost variables which allow one to monitor the program execution.

Let us consider the following Fiji method included in the class RankFilters.
It implements Hoare’s find algorithm (also known as quickselect) for computing
the nth lowest number in part of an unsorted array, generalizing in this way the
computation of the median element. This method appears in the implementation
of the“median filter”, a process very common in digital imaging which is used
in order to achieve greater homogeneity in an image and provide continuity,
obtaining in this way a good binarization of the image.

/*@ requires buf!=null && 1<= bufLength <= buf.length && 0<=n <bufLength;

@ ensures Permut{Old,Here}(buf,0,bufLength-1)

@ && (\forall integer k; (0<=k<=n-1 ==> buf[k]<=buf[n])

@ && (n+1<=k<=bufLength-1 ==> buf[k]>=buf[n]))

@ && \result==buf[n] ;



Verifying a Plaftorm for Digital Imaging 73

@*/

public final static float findNthLowestNumber

(float[] buf, int bufLength, int n) {

int i,j;

int l=0;

int m=bufLength-1;

float med=buf[n];

float dum ;

while (l<m) {

i=l ;

j=m ;

do {

while (buf[i]<med) i++ ;

while (med<buf[j]) j-- ;

dum=buf[j];

buf[j]=buf[i];

buf[i]=dum;

i++ ; j-- ;

} while ((j>=n) && (i<=n)) ;

if (j<n) l=i ;

if (n<i) m=j ;

med=buf[n] ;

}

return med ;

}

Given an array buf and two integers bufLength and n, the Fiji method
findNthLowestNumber returns the (n+1)-th lowest number in the first bufLength
components of buf. The precondition expresses that buf is not null, bufLength
must be an integer between 1 and the length of buf, and n is an integer be-
tween 0 and bufLength − 1. The definition of the postcondition includes the use
of the predicate Permut, a predefined predicate, which expresses that when the
method returns the (modified) bufLength first components of the array buf must
be a permutation of the initial ones. The array has been reordered such that the
components 0, . . . , n− 1 are smaller than or equal to the component n, and the
elements at positions n+1, . . . , bufLength−1 are greater than or equal to that in
n. The returned value must be equal to buf[n], which is therefore the (n+1)-th
lowest number in the first bufLength components of buf.

In order to prove the correctness of this program, we have included different
JML annotations in the Java code. First of all, loop invariants must be given
for all while and do structures appearing in the code. Difficulties have been
found in order to deduce the adequate properties for invariants which must be
strong enough to imply the program (and other loops) postconditions; automated
techniques like discovery of loop invariants [18] will be used in the future. We
show as an example the loop invariant (and variant) for the exterior while, which
is given by the following properties:
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/*@ loop_invariant

@ 0<=l<=n+1 && n-1<=m<=bufLength-1 && l<=m+2

@ && (\forall integer k1 k2; (0<=k1<=n && m+1<=k2<=bufLength-1)

@ ==> buf[k1]<=buf[k2])

@ && (\forall integer k1 k2; (0<=k1<=l-1 && n<=k2<=bufLength-1)

@ ==> buf[k1]<=buf[k2])

@ && Permut{Pre,Here}(buf,0,buf.length-1) && med==buf[n]

@ && ((l<m)==> ((l<=n)&&(m>=n)));

@ loop_variant m - l+2;

@*/

To help the automated provers to verify the program and prove the generated
proof obligations it is also necessary to introduce several assertions in some
intermediate points of the program and to use ghost variables which allow the
system to deduce that the loop variant decreases.

Our final specification of this method includes 78 lines of JML annotations
(for only 24 Java code lines). Krakatoa/Why produces 175 proof obligations
expressing the validity of the program. The automated theorem prover Alt-Ergo
is able to demonstrate all of them, although in some cases more than a minute (in
an ordinary computer) is needed; another prover included in Krakatoa, CVC3, is,
on the contrary, only capable of proving 171. The proofs of the lemmas obtained
by means of Alt-Ergo certify the correctness of the method with respect to the
given specification.

In this particular example, the automated theorem provers integrated in
Krakatoa are enough to discharge all the proof obligations. In other cases, some
properties are not proven, and then one should try to prove them using interac-
tive theorem provers, as Coq. In this architecture, we also introduce the ACL2
theorem prover, as explained in the next section.

5 The Role of ACL2

In this section, we present the role played by ACL2 in our infrastructure to
verify the correctness of Java programs. The Why platform relies on automated
provers, such as Alt-Ergo or CVC3, and interactive provers, such as Coq or PVS,
to discharge proof obligations; however, it does not consider the ACL2 theorem
prover to that aim. We believe that the use of ACL2 can help in the proof
verification process. The reason is twofold.

– The scope of automated provers is smaller than the one of ACL2; therefore,
ACL2 can prove some of the proof obligations which cannot be discharged
by automated provers.

– Moreover, interactive provers lack automation; then, ACL2 can automat-
ically discharge proof obligations which would require user interaction in
interactive provers.

We have developed Coq2ACL2, a Proof General extension, which integrates
ACL2 in our infrastructure to verify Java programs; in particular, we work with
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ACL2(r) a variant of ACL2 which supports the real numbers [12] – the for-
malisation of real analysis in theorem provers is an outstanding topic, see [6].
Coq2ACL2 features three main functions:

F1. it transforms Coq statements generated by Why to ACL2;

F2. it automatically sends the ACL2 statements to ACL2; and

F3. it displays the proof attempt generated by ACL2.

If all the statements are proved in ACL2; then, the verification process is ended.
Otherwise, the statements must be manually proved either in Coq or ACL2.

The major challenge in the development of Coq2ACL2 was the transforma-
tion of Coq statements to ACL2. There is a considerable number of proposals
documented in the literature related to the area of theorem proving interoper-
ability. We have not enough space here to do a thorough review, but we can
classify the translations between proof assistants in two groups: deep [8, 14, 19]
and shallow [10, 21, 25].

In our work, we took advantage of a previous shallow development presented
in [2], where a framework called I2EA to import Isabelle/HOL theories into
ACL2 was introduced. The approach followed in [2] can be summarized as fol-
lows. Due to the different nature of Isabelle/HOL and ACL2, it is not feasible
to replay proofs that have been recorded in Isabelle/HOL within ACL2. Nev-
ertheless, Isabelle/HOL statements dealing with first order expressions can be
transformed to ACL2; and then, they can be used as a schema to guide the proof
in ACL2.

A key component in the framework presented in [2] was an XML-based spec-
ification language called XLL (that stands for Xmall Logical Language). XLL
was developed to act as an intermediate language to port Isabelle/HOL theo-
ries to both ACL2 and an Ecore model (given by UML class definitions and
OCL restrictions) – the translation to Ecore serves as a general purpose formal
specification of the theory carried out. The transformations among the different
languages are done by means of XSLT and some Java programs. We have in-
tegrated the Coq system into the I2EA framework as can be seen in Figure 1;
in this way, we can reuse both the XLL language and some of the XSLT files
developed in [2] to transform (first-order like) Coq statements to ACL2.

In particular, functionality F1 of Coq2ACL2 can be split into two steps:

1. given a Coq statement, Coq2ACL2 transforms it to an XLL file using a
Common Lisp translator program; then,

2. the XLL file is transformed to ACL2 using an XSLT file previously developed
in [2].

In this way, ACL2 has been integrated into our environment to verify Java
programs. As we will see in the following section, this has meant an improvement
to automatically discharge proof obligations.
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Isabelle/HOL

Coq

XLL ACL2

Fig. 1. (Reduced) Architecture of the I2EA framework integrating Coq

6 The Method in Action: A Complete Example

In our work, we deal with images acquired by microscopy techniques from biolog-
ical samples. These samples have volume and the object of interest is not always
in the same plane. For this reason, it is necessary to obtain different planes from
the same sample to get more information. This means that several images are
acquired in the same XY plane at different levels of Z. To work with this stack
of images, it is often necessary to make their maximum projection. To this aim,
Fiji provides several methods such as maximum intensity or standard deviation
to obtain the maximum projection of a set of images.

In this section, we consider the Fiji code for computing the maximum projec-
tion of a set of images based on the standard deviation, which uses in particular
the method calculateStdDev located in the class ImageStatistics.

double calculateStdDev(double n, double sum, double sum2) {

double stdDev = 0.0;

if (n>0.0) {

stdDev = (n*sum2-sum*sum)/n;

if (stdDev>0.0)

stdDev = Math.sqrt(stdDev/(n-1.0));

else

stdDev = 0.0;

} else

stdDev = 0.0;

}

The inputs are n (the number of data to be considered), sum (the sum of all
considered values; in our case, these values will obtained from the pixels in
an image) and sum2 (the sum of the squares of the data values). The method
calculateStdDev computes the standard deviation from these inputs and assigns
it to the field stdDev. The specification of this method is given by the following
JML annotation.
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/*@ requires ((n==1.0)==> sum2==sum*sum) && ((n<=0.0) || (n>=1.0)) ;

@ behaviour negative_n :

@ assumes n<=0.0 || (n>0.0 && (n*sum2-sum*sum)/n <=0.0);

@ ensures stdDev == 0.0;

@ behaviour normal_behaviour :

@ assumes n>=1.0 && ((n*sum2-sum*sum)/n > 0.0);

@ ensures is_sqrt(stdDev,(double)((n*sum2-sum*sum)/n/(n-1.0)));

@*/

The precondition, introduced by the keyword requires, expresses that in the
case n = 1 (that is, there is only one element in the data) the inputs sum and
sum2 must satisfy sum2 = sum ∗ sum. Moreover we must require that n is less than
or equal to 0 or greater than or equal to 1 to avoid the possible values in the
interval (0, 1); for n in this interval one has n− 1 < 0 and then it is not possible
to apply the square root function to the given argument stdDev/(n− 1.0). This
fact has not been taken into account by the author of the Fiji program because
in all real applications the method will be called with n being a natural number;
however, to formalise the method we must specify this particular situation in
the precondition. For the postcondition we distinguish two different behaviours:
if n is non-positive or sum and sum2 are such that n ∗ sum2 − sum ∗ sum < 0, the
field stdDev is assigned to 0; otherwise, the standard deviation formula is applied
and the result is assigned to the field stdDev. The predicate is sqrt is previously
defined.

For the proof of correctness of the method calculateStdDev in Krakatoa, it is
necessary to specify (and verify) the method sqrt. The problem here, as already
explained in Section 3, is that the method sqrt of the class Math simply calls
the equivalent method in the class StrictMath, and the code in StrictMath of
the method sqrt is just a native call and might be implemented differently on
different Java platforms. In order to give a JML specification of the method
sqrt is necessary then to rewrite it with our own code. The documentation of
StrictMath states “To help ensure portability of Java programs, the definitions
of some of the numeric functions in this package require that they produce the
same results as certain published algorithms. These algorithms are available from
the well-known network library netlib as the package “Freely Distributable Math
Library”, fdlibm”. In the case of the square root, one of these recommended
algorithms is Newton’s method; based on it, we have implemented and specified
in JML the computation of the square root of a given (non-negative) input of
type double.

/*@ requires c>=0 && epsi > 0 ;

@ ensures \result >=0 && (\result*\result>=c)

@ && \result*\result - c < epsi ;

@*/

public double sqrt(double c, double epsi){

double t;

if (c>1) t= c;

else t=1.1;

/*@ loop_invariant
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@ (t >= 0) && (t*t> c) ;

@*/

while (t* t - c >= epsi) {

t = (c/t + t) / 2.0;

}

return t;

}

/*@ requires c>=0 ;

@ ensures (\result >=0) && (\result*\result>=c)

@ && (\result*\result - c < 1.2E-7);

@*/

public double sqrt(double c){

double eps=1.2E-7;

return sqrt(c,eps);

}

The first method computes the square root of a double x with a given precision
epsi; the second one calls the previous method with a precision less than 1.2E−7.
Using JUnit, we have run one million tests between 1E9 and 1E − 9 to show
that the results of our method sqrt have similar precision to those obtained
by the original method Math.sqrt. Here, we applied the “first test, then verify”
approach – intensive testing can be really useful to find bugs (and can save us
time) before starting the verification process.

From the given JML specification for the Fiji method calculateStdDev and
our sqrt method, Why/Krakatoa produces 52 proof obligations, 9 of them cor-
responding to lemmas that we have introduced and which are used in order to
prove the correctness of the programs. Alt-Ergo is able to prove 50 of these proof
obligations, but two of the lemmas that we have defined remain unsolved. CVC3
on the contrary only proves 44 proof obligations.

The two lemmas that Alt-Ergo (and CVC3) are not able to prove are the
following ones:

/*@ lemma double_div_pos :

@ \forall double x y; x>0 && y > 0 ==> x / y > 0;

@*/

/*@ lemma double_div_zero :

@ \forall double x y; x==0.0 && y > 0 ==> x / y == 0.0;

@*/

In order to discharge these two proof obligations, we can manually prove their
associated Coq expressions.

Lemma double_div_zero : (forall (x_0_0:R), (forall (y_0:R),

((eq x_0_0 (0)%R) /\ (Rgt y_0 (0)%R) -> (eq (Rdiv x_0_0 y_0) (0)%R)))).

Lemma double_div_pos : (forall (x_13:R), (forall (y:R),

((Rgt x_13 (0)%R) /\ (Rgt y (0)%R) -> (Rgt (Rdiv x_13 y) (0)%R)))).
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Both lemmas can be proven in Coq in less than 4 lines, but, of course, it is nec-
essary some experience working with Coq. Therefore, it makes sense to delegate
those proofs to ACL2. Coq2ACL2 translates the Coq lemmas to the follow-
ing ACL2 ones. ACL2 can prove both lemmas without any user interaction (a
screenshot of the proof of one of this lemmas in ACL2 is shown in Figure 2).

(defthm double_div_zero

(implies (and (realp x_0_0) (realp y_0) (and (equal x_0_0 0) (> y_0 0)))

(equal (/ x_0_0 y_0) 0)))

(defthm double_div_pos

(implies (and (realp x_13) (realp y) (and (> x_13 0) (> y 0)))

(> (/ x_13 y) 0))

Fig. 2. Proof General with Coq2ACL2 extension. The Coq2ACL2 extension consists
of the Coq2ACL2 menu and the right-most button of the toolbar. Left: the Coq file
generated by the Why tool. Top Right: current state of the Coq proof. Bottom Right:
ACL2 proof of the lemma.

7 Conclusions and Further Work

This paper reports an experience to verify actual Java code, as generated by
different-skilled programmers, in a multi-programmer tool called Fiji. As one
could suspect, the task is challenging and, in some sense, the objectives are
impossible to accomplish, at least in their full extent – after our experiments,
we have found that the Fiji system is unsound, but the errors are minor (e.g. a
variable declared as a real number but which should be declared as an integer)
and can be easily corrected.

Nevertheless, we defend the interest of this kind of experimental work. It is
useful to evaluate the degree of maturity of the verification tools (Krakatoa, in
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our case). In addition, by a careful examination of the code really needed for a
concrete application, it is possible to isolate the relevant parts of the code, and
then it is possible to achieve a complete formalisation. Several examples in our
text showed this feature, see Section 4.

In addition to Krakatoa, several theorem provers (Coq and ACL2) have been
used to discharge some proof obligations that were not automatically proved by
Krakatoa. To this aim, it has been necessary the integration of several tools,
and our approach can be considered as semi-formal: we keep transformations as
simple as possible, and substantiate the process by systematic testing.

As a further interest of our work, we have reused a previous interoperability-
proposal [2], between Isabelle and ACL2, to get an integration of ACL2 (through
a partial mapping from Coq to ACL2), without touching the Krakatoa kernel.

Future work includes several improvements in our method. Starting from the
beginning, the transformation from real Java code to Krakatoa one could be
automated (Section 3 can be understood as a list of requirements to this aim).
Then, a formal study of this transformation could be undertaken to increase the
reliability of our method. In addition, we can try to automatically reconstruct
ACL2 proofs in Coq.

As for applications, more verification is needed to obtain a certified version of,
for instance, the SynapCountJ plug-in [24]. The preliminary results presented in
this paper allow us to be reasonably optimistic with respect to the feasibility of
this objective.
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Abstract. Broadly speaking, there are two kinds of semantics-aware as-
sistant systems for mathematics: proof assistants express the semantic
in logic and emphasize deduction, and computer algebra systems express
the semantics in programming languages and emphasize computation.
Combining the complementary strengths of both approaches while mend-
ing their complementary weaknesses has been an important goal of the
mechanized mathematics community for some time.
We pick up on the idea of biform theories and interpret it in the

Mmt/ OMDoc framework which introduced the foundations-as-theories
approach, and can thus represent both logics and programming languages
as theories. This yields a formal, modular framework of biform theory
graphs which mixes specifications and implementations sharing the mod-
ule system and typing information.
We present automated knowledge management work flows that inter-

face to existing specification/programming tools and enable anOpenMath
Machine, that operationalizes biform theories, evaluating expressions by
exhaustively applying the implementations of the respective operators.We
evaluate the new biform framework by adding implementations to the
OpenMath standard content dictionaries.

1 Introduction

It is well-known that mathematical practices – conjecturing, formalization, prov-
ing, etc. – combine (among others) axiomatic reasoning with computation. Nev-
ertheless, assistant systems for the semantics-aware automation of mathematics
can be roughly divided into two groups: those that use logical languages to ex-
press the semantics and focus on deduction (commonly called proof assistants),
and those that use programming languages to express the semantics and focus
on computation (commonly called computer algebra systems). Combining
their strengths is an important objective in mechanized mathematics.

Our work is motivated by two central observations. Firstly, combination ap-
proaches often take a deduction or computation system and try to embed the
respective other mode into its operations, e.g., [HT98,DM05] and [HPRR10],
respectively. Secondly, most of these systems are usually based on the homo-
geneous method, which fixes one foundation (computational or deductive) with
all primitive notions (e.g., types, axioms, or programming primitives) and uses
only conservative extensions (e.g., definitions, theorems, or procedures) to model
domain objects.

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 82–97, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this paper, we want to employ the heterogeneous method, which focuses
on encapsulating primitive notions in theories and considers truth relative to a
theory. It optimizes reusability by stating every result in the weakest possible
theory and using theory morphisms to move results between theories in a truth-
preserving way. This is often called the little theories approach [FGT92]. In
computational systems this is mirrored by using programming languages that
relegate much of the functionality to an extensible library infrastructure.

SL PL

Spec Impl

Obl

Ref

In homogeneous approaches, we usually fix a
specification language SL and a programming lan-
guage PL and one implementation for each. In pro-
gram synthesis, a specification Spec is extended
(hooked arrows) to a refined specification Ref, from
which a program can be extracted (snaked arrow).
Both can be visualized by the diagram on the right
where dotted arrows denote the written-in relation.
In both cases, the proofs are carried out in a theory
of SL, and a non-trivial generation step crosses the
border between the SL-based deduction system (the gray area) and the PL-based
computation system, e.g., [HN10] generates programs from Isabelle/HOL proofs.

Dually, we find approaches that emphasize PL over SL. SML-style module
systems and object-orientation can be seen as languages that transform parts
of SL (namely the type system but not the entailment system) into PL. An
example is the transformation of SL=UML diagrams into PL=Java stubs, which
are then refined to a Java program. Advanced approaches can transform the
whole specification into PL by enriching the programming language as in [KST97]
or the programming environment as in [ABB+05].

A third approach is to develop a language SPL that is strong enough to com-
bine the features of specification and programming. Several implementations of
λ calculi have been extended with features of programming languages, e.g., Coq
[The11] and Isabelle/HOL [NPW02]. The FoCaLiZe language [H+12] systemat-
ically combines a functional and object-oriented programming language with a
logic, and a compilation process separates the two aspects by producing OCaml
and Coq files, respectively. The source files may also contain raw Coq snippets
that are not verified by FoCaLiZe but passed on to Coq. In Dedukti [BCH12],
rewriting rules are used to enhance a specification language with computational
behavior, and the computational aspect can be compiled into a Lua program.

We want to create a heterogeneous framework in which we can represent
such homogeneous approaches. We use the Mmt language [RK13], which ex-
tends the heterogeneous method with language-independence inspired by logical
frameworks. The key advantage is that this permit flexibly combining arbitrary
specification and programming languages. In Mmt, we represent both PL and
SL as Mmt theories SL and PL (see diagram below), which declare the primitive
concepts of the respective language. The dotted lines are represented explicitly
using the meta-theory relation, and relatively simple mappings (dashed snaked
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lines) transform between specifications Spec and implementations Impl and the
corresponding Mmt theories Spec and Impl.

Typically SL and PL share some language features, e.g., the type system, which
SL enriches with deductive primitives and PL with computational primitives.
Mmt can represent this by giving a (possibly partial) morphism bifound : SL→
PL that embeds SL features into PL. Via bifound, Impl can access both SL and
PL features, and the fact that Impl implements Spec is represented as an Mmt
theory morphism (dashed line).

SL PL

Spec Impl

SL PL

Spec Impl

bifound

Our framework is inspired by the biform theories of
[Far07], which extend axiomatic theories with transform-
ers : named algorithms that implement axiomatically spec-
ified function symbols. We follow the intuition of hetero-
geneous biform theories but interpret them in Mmt. Most
importantly, this permits SL and PL to be arbitrary lan-
guages represented in Mmt.

We leverage this by using types and examples in Spec to
generate method stubs and test cases in Impl. Our interest
is not (yet) the corresponding treatment of axioms, which
would add formal deduction about the correctness of pro-
grams. In particular, we do not provide a formal definition
of the meaning of the computational knowledge other than
linking symbols to algorithms via theory morphisms.

As a computational backend, we develop what we call the universal machine.
It extends Mmt with a component that collects the individual implementation
snippets occurring in a biform Mmt theory graph and integrates them into a
rule-based rewriting engine. The universal machine keeps track of these and
performs computations by applying the available rules.

In the past, a major practical limitation of frameworks like ours has been
the development of large libraries of biform theories. Here a central contribution
of our work is that the Mmt API [Rab13b] (providing, e.g., notations, module
system, and build processes) makes it easy to write biform theories in practice.
Moreover, the API is designed to make integration with other applications easy
so that the universal machine can be easily reused by other systems.

We evaluate this infrastructure in an extensive case study: We represent a
collection of OpenMath content dictionaries in Mmt (i.e., SL = OpenMath)
and provide implementations for the symbols declared in them using the pro-
gramming language Scala (i.e., PL = Scala). The resulting biform theory graph
integrates OpenMath CDs with the Scala code snippets implementing the sym-
bols.

2 Representing Languages in MMT

In this section we introduce the Mmt language and directly apply it to modeling
the pieces of our running example by representing OpenMath and Scala in
Mmt.
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2.1 The MMT Language and System

Mmt [RK13] is a knowledge representation format focusing on modularity and
logic-independence. It is accompanied by the Mmt API, which implements the
language focusing on scalable knowledge management and system interoperabil-
ity. For our purposes, the simplified fragment of Mmt (which in particular omits
named imports and sharing between imports) given in Figure 1 suffices.

Module ::= theory T : ModuleName Statement∗

| view V : ModuleName → ModuleName Statement∗

Statement ::= constant c [: Term] [= Term] [#Notation]
| include ModuleName

Term ::= c | x | number | OMA(Term+) | OMBIND(Term;x+; Term)
Notation ::= (number[string...] | string)∗

Fig. 1. A Fragment of the Mmt Grammar

We will briefly explain the intuitions behind the concepts and then exemplify
them in the later sections, where we representOpenMath CDs and Scala classes
as Mmt theories.

An Mmt theory theory T : M Σ defines a theory T with meta-theory M
consisting of the statements in Σ. The meta-theory relation between theories
is crucial to obtain logic-independence: The meta-theory gives the language, in
which the theory is written. For example, the meta-theory of a specification is
the specification logic, and the meta-theory of a program is the programming
language – and the logic and the programming language are represented as Mmt
theories themselves (possibly with further meta-theories). Thus, Mmt achieves
a uniform representation of logics and programming languages as well as their
theories and programs.

Mmt theories form a category, and an Mmt view V : T1 → T2 Σ defines a
theory morphism V from T1 to T2 consisting of the statements in Σ. In such a
view, Σ may use the constants declared in T2 and must declare one definition
for every definition-less constant declared in T1. Views uniformly capture the
relations “T2 interprets/implements/models T1”. For example, if T1 represents
a specification and T2 a programming language, then views T1 → T2 represent
implementations of T1 in terms of T2 (via the definitions in Σ).

Theories and views are subject to the Mmt module system. Here we will
restrict attention to the simplest possible case of unnamed inclusions between
modules: If a module T contains a statement include S, then all declarations of
S are included into T .

Within modules,Mmt uses constants to represent atomic named declarations.
A constant’s optional type and definiens are arbitrary terms. Due to the freedom
of using special constants declared in the meta-theory, a type and a definiens are
sufficient to uniformly represent diverse statements of formal languages such as
function symbols, examples, axioms, inference rules. Moreover, constants have
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an optional notation which is used by Mmt to parse and render objects. We will
not go into details and instead explain notations by example, when we use them
later on.

Mmt terms are essentially the OpenMath objects [BCC+04] formed from
the constants included into the theory under consideration. This is expressive
enough to subsume the abstract syntax of a wide variety of formal systems. We
will only consider the fragment of Mmt terms formed from constants c, variables
x, numbers literals, applications OMA(f, t1, . . . , tn) of f to the ti, and bindings
OMBIND(b;x1, . . . , xn; t) where a binder b binds the variables xi in the scope t.

2.2 Content Dictionaries as MMT Theories

OpenMath declares symbols in named content dictionaries that have global
scope (unlike Mmt theories where symbols must be imported explicitly). Con-
sequently, references to symbols must reference the CD and the symbol name
within that CD. The official OpenMath CDs [OMC] are a collection of content
dictionaries for basic mathematics. For example, the content dictionary arith1
declares among others the symbols plus, minus, times, and divide for arithmetic
in any mathematical structure – e.g., a commutative group or a field – that
supports it.

Each symbol has a type using the STS type system [Dav00]. The types describe
what kinds of application (rarely: binding) objects can be formed using the
symbol. For example, its type licenses the application of plus to any sequence of
arguments, which should come from a commutative semigroup. Moreover, each
symbol comes with a textual description of the meaning of the thus-constructed
application, and sometimes axioms about it, e.g., commutativity in the case of
plus.

OpenMath Mmt

CD theory
symbol constant
property F constant OMA(FMP, F )

We represent every OpenMath CD
as an Mmt theory, whose meta-theory
is a special Mmt theory OpenMath.
Moreover, every OpenMath symbol is
represented as an Mmt constant. All
constants are definition-less, and it remains to describe their types and nota-
tions. Mathematical properties that are given as formulas are also represented
as Mmt constants using a special type.

Meta-Theory and Type System. OpenMath must declare all those symbols that
are used to form the types of OpenMath symbols. This amounts to a formaliza-
tion of the STS type system [Dav00] employed in the OpenMath CDs. However,
because the details STS are not obvious and not fully specified, we identify the
strongest type system that we know how to formalize and of which STS is a
weakening. Here strong/weak means that the typing relation holds rarely/often,
i.e., every STS typing relation also holds in our weakened version. The types in
this system are: i) Object ii) OMA(mapsto,Object, . . . ,Object, A,Object) where A
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is either Object or naryObject iii) binder. Here binder is the type of symbols that
take a context C and an Object in context C and return an Object. This type
system ends up being relatively simple and is essentially an arity-system.1

theory OpenMath
constant mapsto # 1×... → 2
constant Object
constant naryObject
constant binder
constant FMP

Fig. 2. Mmt Theory OpenMath

Moreover, we add a special symbol FMP to
represent mathematical properties as follows:
A property asserting F is represented as a con-
stant with definiens OMA(FMP, F ).2 Intuitively,
we can think of FMP as a partial function that
can only be applied to true formulas. We do
not need symbols for the formation of formulas
F because they are treated as normal symbols
that are introduced in CDs such as logic1.

This results in the following Mmt theory OpenMath in Figure 2. There, the
notation of mapsto means that it takes first a sequence or arguments with sepa-
rator × followed by the separator → and one more argument.

theory arith1 : OpenMath
plus : naryObject → Object

# 1+...
minus : Object × Object → Object

# 1 − 2
plus : naryObject → Object

# 1∗...
. . .

theory NumbersTest : OpenMath
include arith1
include fns1
include set1
include relations1
maptest = FMP
{0,1,2} map (x �→ −x∗x+2∗x+3) = {3,4}

Fig. 3. OpenMath CDs in Mmt

Notations. In order to write OpenMath objects conveniently – in particular,
to write the examples mentioned below – we add notations to all OpenMath
symbols. OpenMath does not explicitly specify notations for the symbols in
the official CDs. However, we can gather many implied notations from the
stylesheets provide to generate presentation MathML. Most of these can be
mapped to Mmt notations in a straightforward fashion. As Mmt notations are
one-dimensional, we make reasonable adjustments to two-dimensionalMathML
notations such as those for matrices and fractions.

Example 1. We will use a small fragment of our case study (see Section 5) as a
running example. The left listing in Fig. 3 gives a fragment of the Mmt theory
representing the CD arith1. Here the notation of plus means that it takes a
sequence or arguments with separator +, and the one of minus that it takes two
arguments separated by −.
1 In fact, we are skeptical whether any fully formal type system for all of OpenMath
can be more than an arity system.

2 We do not use a propositions-as-types representation here because it would make it
harder to translate OpenMath to other languages.
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The right listing uses the module system to import some CDs and then give
an example of a true computation as an axiom. It uses the symbols set1?set,
fns1?lambda, and relation1?eq and the notations we declare for them.

2.3 Scala Classes as MMT Theories

Scala [OSV07] combines features of object-oriented and functional programming
languages. At the module and statement level, it follows the object-oriented
paradigm and is similar to Java. At the expression level, it supplements Java-
style imperative features with simple function types and inductive types.

A class is given by its list of member declarations, and we will only make use
of 3 kinds of members: types, immutable typed values, and methods, which are
essentially values of functional type.

Values have an optional definiens, and a class is concrete if all members have
one, otherwise abstract. Scala introduces special concepts that can be used in-
stead of classes without constructor arguments: trait in the abstract and object
in the concrete case. Traits permit multiple inheritance, i.e., every class can in-
herit from multiple traits. Objects are singleton classes, i.e., they are at the same
time a class and the only instance of this class. An object and a trait may have
the same name, in which case their members correspond to the static and the
non-static members, respectively, of a single Java class.

The representation of Scala classes proceeds very similarly to that of Open-
Math CDs above (see Figure 4). In particular, we use a special meta-theory
Scala that declares the primitive concepts needed for our Scala expressions. Then
we represent Scala classes as Mmt theories and members as constants. While
OpenMath CDs always have the flavor of specifications, Scala classes can have
the flavor of specifications (abstract classes/traits) or implementations (concrete
classes/objects).

Scala Mmt

trait T theory T
type member constant of type type
value member constant
method member constant of functional type

object O of type T theory morphism T → Scala

members of O assignment to the corresponding T -constant

extension between classes inclusion between theories

Fig. 4. Scala Classes as Mmt Theories

Meta-Theory and Type System. Our meta-theory Scala could declare symbols for
every primitive concept used in Scala expressions. However, most of the complex-
ity of Scala expressions stems from the richness of the term language. While the
representation of terms would be very useful for verification systems, it does not
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contribute much to our goals of computation and biform development. Therefore,
we focus on the simpler type language. Moreover, we omit many theoretically
important technicalities (e.g., singleton and existential types) that have little
practical bearing. Indeed, many practically relevant types (e.g., function and
collection types) are derived notions defined in the Scala library.

Therefore, we represent only the relevant fragment of Scala in Scala. Adding
further features later is easy using the Mmt module system. For all inessential
(sub-)expressions, we simply make use Mmt escaping: Mmt expressions can
seamlessly escape into arbitrary non-Mmt formats.

theory Scala
constant type
constant Any
constant Function # (1,...)=> 2
constant Lambda # (1,...)=> 2
constant List # List[1]
constant list # List(1,...)
constant BigInt
constant Double
constant Boolean
constant String

Fig. 5. The Mmt Theory Scala

Thus, we use the Mmt theory Scala in Fig-
ure 5, which gives mainly the important type
operators and their introductory forms. Where
applicable, we use Mmt notations that mimic
Scala’s concrete syntax. This has the added
benefit that the resulting theory is hardly
Scala-specific and thus can be reused easily
for other programming languages. It would be
straightforward to add typing rules to this the-
ory by using a logical framework as the meta-
theory of Scala, but this is not essential here.

Representing Classes. It is now straightfor-
ward to represent a Scala trait T containing
only 1. type members, 2. value members whose types only use symbols from
Scala, 3. method members whose argument and return types only use symbols
from Scala as an Mmt theory T with meta-theory Scala.
1. type n yields constant n: type

2. val n: A yields constant n: A

3. def n(x1:A1,..,x r:Ar):A yields constant n: (A1,...,Ar)=>A

Here A is the structural translation of the Scala type A into an Mmt expression,
which replaces every Scala primitive with the corresponding symbol in Scala.

Similarly, we represent every object O defining (exactly) the members of T
as an Mmt view O : T → Scala. The member definitions in O give rise to
assignments in O as follows:
1. type n = t yields constant n = t

2. val n: A = a yields constant n = ”a”

3. def n(x1:A1,...,xr:Ar):A = a yields constant n = (x1:A1,...,xr:Ar):A = ”a”

Here ”E” represents the escaped representation of the literal Scala expression
E. Note that we do not escape the λ-abstraction in the implementation of comp.
The resulting partially escaped term is partially parsed and analyzed by Mmt.
This has the advantage that the back-translation from Mmt to Scala can reuse
the same variable names that the Scala programmer had chosen.

Example 2. A Scala class for monoids (with universe, unit, and composition)
and an implementation in terms of the integers are given as the top two code
fragments in Figure 6, their Mmt representations in the lower two.



90 M. Kohlhase, F. Mance, and F. Rabe

trait Monoid {
type U
val unit: U
def comp(x1: U, x2: U): U

}

object Integers extends Monoid {
type U = BigInt
val unit = 0
def comp(x1: U, x2: U) = x1 + x2

}

theory Monoid : Scala
constant U : type
constant unit : U
constant comp : (U,U) => U

view Integers : Monoid −> Scala
constant U = BigInt
constant unit = ”0”
constant comp = (x1:U, x2:U) => ”x1 + x2”

Fig. 6. Scala and Mmt representations of Monoids and Integers

Representing the Module Systems. The correspondence between Mmt theory
inclusions and Scala class extensions is not exact due to what we call the import
name clash in [RK13]: It arises when modules M1 and M2 both declare a symbol
c and M imports both M1 and M2. OpenMath and Mmt use qualified names
for scoped declarations (e.g., M1?c and M2?c) so that the duplicate use of c is
inconsequential. But Scala – typical for programming languages – identifies the
two constants if they have the same type.

There are a few ways to work around this problem, and the least awkward
of them is to qualify all field names when exporting Mmt theories to Scala.
Therefore, the first declaration in the trait Monoid is actually type Monoid U
and similar for all other declarations. Vice versa, when importing Scala classes,
we assume that all names are qualified in this way.

It remains future work to align larger fragments of the module systems, which
would also include named imports and sharing.

3 Biform Theory Development in MMT

We can now combine the representations of OpenMath and Scala in Mmt into
a biform theory graph. In fact, we will obtain this combination as an example
of a general principle of combining a logic and a programming language.

Bifoundations. Consider a logic represented as an Mmt theory L and a pro-
gramming language represented (possibly partially as in our case with Scala) as
an Mmt theory P . Moreover, consider an Mmt theory morphism s : L → P .
Intuitively, s describes the meaning of L-specifications in terms of P .

Definition 1. A bifoundation is a triple (L, P, s : L→ P ). L P

T

s

rNow consider a logical theory T represented as an Mmt the-
ory with meta-theory L. This yields the diagram in the category
of Mmt theories, which is given on the right. Then, inspired
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by [Rab13a], we introduce the following definition of what it means to implement
T in P :

Definition 2. A realization of T over a bifoundation (L, P, s) is a morphism
r : T → P such that the resulting triangle commutes.

Note that in Mmt, there is a canonical pushout s(T ) of T along s. Thus, using
the canonical property of the pushout, realizations r are in a canonical bijection
with morphisms r′ : s(T )→ P that are the identity on P .

A Bifoundation for OpenMath CDs and Scala. We obtain a bifoundation by
giving an Mmt morphism s : OpenMath → Scala. This morphism hinges upon
the choice for the Scala type that interprets the universal type Object. There
are two canonical choices for this type, and the resulting morphisms are given
in Figure 7. Firstly, we can choose the universal Scala type Any. This leads
to a semantic bifoundation where we interpret every OpenMath object by its
Scala counterpart, i.e., integers as integers, lists as lists, etc. Secondly, we can
choose a syntactic bifoundation where every object is interpreted as itself. This
requires using a conservative extension ScalaOM of Scala that defines inductive
types Term of OpenMath objects and Context of OpenMath contexts. Such
an extension is readily available because it is part of the Mmt API.

view Semantic: OpenMath −> ScalaOM
constant Object = Any
constant mapsto = Function
naryObject = List[Any]
binder = (Context,Term) => Any
FMP = (x:Any) => ”assert(x == true)”

view Syntactic: OpenMath −> ScalaOM
constant Object = Term
constant mapsto = Function
naryObject = List[Term]
binder = (Context,Term) => Term
FMP = (x:Term) =>

”assert(x == OMS(logic1.true))”

Fig. 7. Two Bifoundations From Scala to OpenMath

In both cases, n-ary arguments are easily interpreted in terms of lists and
functions as functions. The case for binders is subtle: In both cases, we must
interpret binders as Scala functions that take a syntactic object in context.
Therefore, even the semantic foundation requires ScalaOM as the codomain.

Finally, we map mathematical properties to certain Scala function calls, e.g.,
assertions. In the semantic case, we assert the formula to be true. In the syntactic
case, we assert it to be equal to the symbol true from the OpenMath CD logic1.
Here, OMS is part of the Mmt API.

Of course, in practice, only the simplest of FMPs actually hold in the sense
that a simple Scala computation could prove them. However, our interpretation
of FMPs is still valuable: It naturally translates examples given in the Open-
Math CDs to Scala test cases that can be run systematically and automatically.
Moreover, in the syntactic case, we have the additional option to collect the as-
serted formulas and to maintain them as input for verification tools.
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4 Mechanizing Biform Theory Graphs

We are particularly interested in the syntactic bifoundation given above. It cor-
responds to the well-understood notion of a syntactic model of a logic. Thus,
it has the advantage of completeness in the sense that the algorithms given in
T -realizations can be used to describe deductive statements about T . In this
section, we make this more precise and generalize it to arbitrary logics.

Abstract Rewrite Rules. First we introduce an abstract definition of rule that
serves as the interface between the computational and the deductive realm. We
need one auxiliary definition:

Definition 3. An arity is an element of {n, n∗ : n ∈ N} ∪ {binder}.

We use n (n∗) for symbols that can be applied to n arguments (and a sequence
argument), and we use binder for symbols that form binding object. For example,
2 is the arity of binary symbols and 0∗ the arity of symbols with an arbitrary
sequence of arguments. This is a simplification of the arities we give in [KR12]
and use in Mmt, which permit sequences anywhere in the argument list and
gives binders different arities as well.

Now let us fix an arbitrary set of Mmt theories and write C for the set of con-
stants declared in them. We write T for the set of closed Mmt terms using only
constants from C, and T (x1, . . . , xn) for the set of terms that may additionally
use the variables x1, . . . , xn. Then we define:

Definition 4. A rule r for a constant c with arity n ∈ N is a mapping T n → T .
Such a rule is applicable to any t ∈ T of the form OMA(c, t1, . . . , tn). In that
case, its intended meaning is the formula t = r(t1, . . . , tn).

A rule for a constant c with arity n∗ is a mapping T n× (
⋃∞

i=0 T i)→ T . Such
a rule is applicable to any t ∈ T of the form OMA(c, t1, . . . , tk) for k ≥ n. In that
case, its intended meaning is the formula t = r(t1, . . . , tk).

A rule for a constant cwith arity binder is amapping {(G, t)|G = x1, . . . , xn∧t ∈
T (G)} → T . Such a rule is applicable to any t ∈ T of the form OMBIND(c;G; t′).
In that case, its intended meaning is the formula t = r(G, t′).

A rule base R is a set of rules for some constants in C. We write R(c, a) for
the set of rules in R for the constant c with arity a.

Our rules are different from typical rewrite rules [BN99] of the form t1 � t2 in
two ways. Firstly, the left hand side is more limited: A rule for c is applicable
exactly to the terms t1 whose head is c. This corresponds to the intuition of a rule
implementing the constant c. It also makes it easy to find the applicable rules
within a large rule base. Secondly, the right hand side is not limited at all: Instead
of a term t2, we use an arbitrary function that returns t2. This corresponds to
our open-world assumption: Constants are implemented by arbitrary programs
(written in any programming language) provided by arbitrary sources.

In the special case without binding, our rules are essentially the same as those
used in [Far07], where the word transformer is used for the function r(−).

It is now routine to obtain a rewrite system from a rule base:
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Definition 5. Given a rule base R, R-rewriting is the reflexive-transitive closure
of the relation �⊆ T × T given by:

r∈R(c,0)
c�r()

ti�t′i for i=0,...,n
OMA(t0,...,tn)�OMA(t′0,...,t′n)

r∈R(c,n) or r∈R(c,i∗) for i≤n
OMA(c,t1,...,tn)�r(t1,...,tn)

ti�t′i for i=1,2
OMBIND(t1;G;t2)�OMBIND(t′1;G;t′2)

r∈R(c,binder)
OMBIND(c;G;t)�r(G,t)

R-rewriting is not guaranteed to be confluent or terminating. This is unavoidable
due to our abstract definition of rules where not only the set of constants and
rules are unrestricted but even the choice of programming language. However,
this is usually no problem in practice if each rule has evaluative flavor, i.e., if it
transforms a more complex term into a simpler one.

Realizations as Rewriting Rules. Consider a realization r of T over the bifoun-
dation (OpenMath, ScalaOM, Syntactic), and let ρ be the corresponding Scala
object. Then for every constant c with type OMA(mapsto,Object, . . . ,Object) de-
clared in T , we obtain a rule rc by putting rc(t1, . . . , tn) to be the result of
evaluating the Scala expression ρ.c(t1, . . . , tn)

3. We obtain rules for constants
with other types accordingly. More generally, we define:

Definition 6. Given a theory T , an arity assignment maps every T -constant
to an arity.

Given an arity assignment, a realization T → ScalaOM is called syntactic if
the type of every T -constant with arity a is mapped to the following Scala type:
(Term,...,Term) => Term if a = n; (Term,...,Term, List[Term]) => Term

if a = n∗; and (Context,Term) => Term if a = binder.

A syntactic realization r : T → ScalaOM induces for every constant c of T a rule
rc in a straightforward way. If c has arity n, the rule rc maps (t1, . . . , tn) to the
result of evaluating the Scala expression r(c)(t1, . . . , tn), where r(c) is the Scala
function that r assigns to c. Technically, rc is only a partial function because
evaluation might fail or not terminate; in that case, we put rc(t1, . . . , tn) =
OMA(c, t1, . . . , tn). For other arities, rc is defined accordingly.

Definition 7. We write Rules(r) for the rule base containing for each constant
c declared in T the rule rc.

A general way of obtaining arity assignments for all theories T with a fixed
meta-theory L is to give an Mmt morphism e : L → OpenMath. e can be
understood as a type-erasure translation that forgets all type information and
merges all types into one universal type. Then the arities of the T -constants are
determined by the OpenMath types in the pushout e(T ). Therefore, we can
often give bifoundations for which all realizations are guaranteed to be syntactic,
the bifoundation (OpenMath, ScalaOM, Syntactic) being the trivial example.

3 Technically, in practice, we need to catch exceptions and set a time-out to make rc
a total function, but that is straightforward.
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Def. 7 applies only to realizations in terms of Scala. However, it is straightfor-
ward to extend it to arbitrary programming languages. Of course, Mmt – being
written in Scala – can directly execute Scala-based realizations whereas for any
other codomain it needs a plugin that supplies an interpreter.

The Universal Machine. We use the name universal machine for the new Mmt
component that maintains the rule base arising as the union of all sets Rules(r)
for all syntactic realizations r with domain ScalaOM in Mmt’s knowledge base.
Here “universal” refers to the open-world perspective that permits the extension
with new logics and theories as well as programming languages and implemen-
tations.

The universal machine implements the rewrite system from Def. 5 by exhaus-
tively applying rules (which are assumed to be confluent) and exposes it as a
single API function, called simplification. The Mmt system does not perform
simplification at any specific point.

Instead, it is left to other components like plugins and applications to decide
if and when simplification should be performed. In the Mmt API, any term may
carry metadata, and this is used to mark each subterm that has already been sim-
plified. Thus, different components may call simplification independently without
causing multiple traversals of the same subterm.

Additionally, the API function is exposed in two ways. Firstly, Mmt accepts
simplification requests via HTTP post, where input and output are given as
strings using Mmt notations or as OpenMath XML elements. Secondly, sim-
plification is integrated with the Scala interactive interpreter, where users can
type objects using Mmt notations and simplification is performed automatically.
It is straightforward to connect further frontends.

5 Building a Biform Library

We evaluate the newMmt concepts by building a biformMmt theory graph based
on the bifoundation (OpenMath, Scala, Syntactic), which represents > 30 of the
officialOpenMathCDs inMmt and provides Scala implementations and test cases
for> 80 symbols. This development is available as anMmt project and described
in more detail at https://tntbase.mathweb.org/repos/oaff/openmath.

Mmt projects [HIJ+11] already support different dimensions of knowledge,
such as source, content, and presentation, as well as build processes that trans-
form developments between dimensions. We add one new dimension for gener-
ated programs and workflows for generating it.

Firstly, we write Mmt theories representing the OpenMath CDs such as the
one given on the left of Fig. 3. Specifically, we represent the arith, complex, fns,
integer, interval, linalg, list, logic, minmax, nums, relation, rounding, set, setname,
and units CDs along with appropriate notations.

Secondly, we write views from these CDs to ScalaOM. Then a new Mmt
build process generates all corresponding Scala classes. Typically, users write
view stubs in Mmt and then fill out the generated Scala stubs using an IDE

https://tntbase.mathweb.org/repos/oaff/openmath
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of their choice. Afterwards Mmt imports the Scala stubs and merges the user’s
changes into the Mmt views. This is exemplified in Fig. 8. Here the left side
gives a fragment of an Mmt view out of arith1, which implements arithmetic on
numbers. (We also give other views out of arith1, e.g., for operations on matrices.)
The implementation for plus is still missing whereas the one for minus is present.
The right side shows the generated Scala code with the editable parts marked
by comments.

view NumberArith :
arith1 −> ScalaOM =
plus = (args: List[Term]) ”
”

minus = (a: Term, b: Term) ”
(a,b) match {
case (OMI(x), OMI(y)) =>
OMI(x − y)

}
”

object NumberArith extends arith1 {
def arith1 plus(args: List[Term]) : Term = {
// start NumberArith?plus
// end NumberArith?plus

}
def arith1 minus(a: Term, b: Term) : Term = {
// start NumberArith?minus
(a,b) match {

case (OMI(x), OMI(y)) => OMI(x − y)
}

// end NumberArith?minus
}

}

Fig. 8. Partial Realization in Mmt and Generated Scala Code

Finally, we write Mmt theories for extensions of the OpenMath CDs with
examples as on the right in Fig. 3. We also give realizations for them, which
import the realizations of the extended CDs. Here Mmt generates assertions for
each FMP.

To apply these workflows to large libraries, we have added three build pro-
cesses to Mmt that can be integrated easily with make files or Mmt IDEs.
extract walks over an Mmt project and translates realizations into Scala source
files containing the corresponding objects. This permits editing realizations us-
ing Scala IDEs. integrate walks over the Scala source files and merges all
changes made to the realizations back into the Mmt files. load walks over the
Scala source files, compiles them, loads the class files, and registers the rule
bases Rules(r) with the universal machine. Optionally, it runs all test cases and
generates a report.

6 Conclusion

We described a formal framework and a practical infrastructure for biform the-
ory development, i.e., the integration of deductive theories and computational
definitions of the functions specified in them. The integration is generic and per-
mits arbitrary logics and programming languages; moreover, the same module
system is used for specifications and implementations.
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We have instantiated our design with a biform development of theOpenMath
content dictionaries in Scala. Future work will focus on the development of larger
biform libraries and the use of further logics and programming languages. In
particular, we want to explore how to treat richer type systems and to preserve
their information in the generated Scala code.

Regarding the integration of deduction and computation we focused only on
“soft verification”, i.e., linking function symbols with unverified implementa-
tions. We only extracted the computational content of examples (which results
in test cases) and omitted the more difficult problem of axioms. We believe that
future work can extend our approach to generate computation rules by spotting
axioms of certain shapes such as those in inductive definitions or rewrite rules.
Moreover, given a verifier for the used programming language, it will be possible
to generate the verification obligations along with the generated programs.

Acknowledgements. The work reported here was prompted by discussions
with William Farmer and Jacques Carette. An initial version of the universal
machine was developed in collaboration with Vladimir Zamdzhiev.
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Abstract. The highest level of mathematics has traditionally been seen
as a solitary endeavour, to produce a proof for review and acceptance
by research peers. Mathematics is now at a remarkable inflexion point,
with new technology radically extending the power and limits of indi-
viduals. Crowdsourcing pulls together diverse experts to solve problems;
symbolic computation tackles huge routine calculations; and computers
check proofs too long and complicated for humans to comprehend.
The Study of Mathematical Practice is an emerging interdisciplinary

field which draws on philosophy and social science to understand how
mathematics is produced. Online mathematical activity provides a novel
and rich source of data for empirical investigation of mathematical prac-
tice - for example the community question-answering system mathover-
flow contains around 40,000 mathematical conversations, and polymath
collaborations provide transcripts of the process of discovering proofs.
Our preliminary investigations have demonstrated the importance of
“soft” aspects such as analogy and creativity, alongside deduction and
proof, in the production of mathematics, and have given us new ways to
think about the roles of people and machines in creating new mathemat-
ical knowledge. We discuss further investigation of these resources and
what it might reveal.
Crowdsourced mathematical activity is an example of a “social ma-

chine”, a new paradigm, identified by Berners-Lee, for viewing a combi-
nation of people and computers as a single problem-solving entity, and
the subject of major international research endeavours. We outline a fu-
ture research agenda for mathematics social machines, a combination of
people, computers, and mathematical archives to create and apply math-
ematics, with the potential to change the way people do mathematics,
and to transform the reach, pace, and impact of mathematics research.

1 Introduction

For centuries, the highest level of mathematical research has been seen as an
isolated creative activity, whose goal is to identify mathematical truths, and
justify them by rigorous logical arguments which are presented for review and
acceptance by research peers.

Yet mathematical discovery also involves soft aspects such as creativity, in-
formal argument, error and analogy. For example, in an interview in 2000 [1]
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Andrew Wiles describes his 1989 proof of Fermat’s theorem in almost mystical
terms “... and sometimes I realized that nothing that had ever been done before
was any use at all. Then I just had to find something completely new; it’s a
mystery where that comes from.” Michael Atiyah remarked at a workshop in
Edinburgh in 2012 [2]“I make mistakes all the time” and “I published a theorem
in topology. I didn’t know why the proof worked, I didn’t understand why the
theorem was true. This worried me. Years later we generalised it—we looked at
not just finite groups, but Lie groups. By the time we’d built up a framework,
the theorem was obvious. The original theorem was a special case of this. We
got a beautiful theorem and proof.”

Computer assisted proof formed some of the earliest experiments in artificial
intelligence: in 1955 Newell, Shaw and Simon’s Logic Theorist searched forward
from axioms to look for proofs of results taken from Russell and Whitehead’s
1911 Principia Mathematica. Simon reported in a 1994 interview [74] that he
had written to Russell (who died in 1970, aged 97), who “wrote back that if
we’d told him this earlier, he and Whitehead could have saved ten years of their
lives. He seemed amused and, I think, pleased.” By the mid-1980s a variety
of approaches and software tools, such as the theorem provers HOL, NuPrl and
Nqthm, had started to be developed for practical reasoning about programs: [42]
is a thorough account of the early history. This laid the foundation for a flour-
ishing academic and industry community, and currently verification to ensure
error-free systems is a major endeavour in companies like Intel and Microsoft
[37], as well as supporting specialist small companies. At the same time theo-
rem provers are now being used by an influential community of mathematicians.
Tom Hales and his team have almost completed a ten-year formalisation of their
proof of the Kepler conjecture, using several theorem provers to confirm his ma-
jor 1998 paper [36]. In September 2012 Georges Gonthier announced that after
a six year effort his team had completed a formalisation, in the Coq theorem
prover, of one of the most important and longest proofs of 20th century algebra,
the 255 page odd-order theorem [32]. He summarised the endeavour as:

Number of lines ˜ 170 000
Number of definitions ˜ 15 000
Number of theorems ˜ 4 200
Fun ˜ enormous!

The growth in the use of computers in mathematics, and in particular of com-
puter proof, has provoked debate, reflecting the contrast between the “logical”
and “human” aspects of creating mathematics: see [56] for a survey. For ex-
ample in an influential paper in 1979, De Millo, Lipton and Perlis [28], argued
that “Mathematical proofs increase our confidence in the truth of mathematical
statements only after they have been subjected to the social mechanisms of the
mathematical community”, and expressed concern over “symbol chauvinism”.
Similar concerns were raised in the mathematical community over the use of a
computer by Appel and Haken [10] to settle the long standing four colour conjec-
ture. Indeed, Hume, in his 1739 Treatise on Human Nature [40] p231, identified
the importance of the social context of proof:
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There is no Algebraist nor Mathematician so expert in his science, as to
place entire confidence in any truth immediately upon his discovery of it,
or regard it as any thing, but a mere probability. Every time he runs over
his proofs, his confidence encreases; but still more by the approbation of
his friends; and is rais’d to its utmost perfection by the universal assent
and applauses of the learned world. [sic]

The sociology of science addresses such paradoxes in the understanding of the
scientific process, and a comprehensive account is given by sociologist Donald
MacKenzie in his 2001 book “Mechanizing Proof” [52]. He concludes that used to
extend human capacity the computer is benign, but that “trust in the computer
cannot entirely replace trust in the human collectivity”. In recent years “the
study of mathematical practice” has emerged from the work of Pólya and Lakatos
as a subdiscipline drawing upon the work of sociologists, cognitive scientists,
philosophers and the narratives of mathematicians themselves, to study exactly
what it is that mathematicians do to create mathematics. Section 2 of this paper
contains a fuller account.

The mathematical community were “early adopters” of the internet for dis-
seminating papers, sharing data, and blogging, and in recent years have devel-
oped systems for “crowdsourcing” (albeit among a highly specialised crowd) the
production of mathematics through collaboration and sharing, providing further
evidence for the social nature of mathematics. To give just a few examples:

– A number of senior mathematicians produce influential and widely read
blogs. In the summer of 2010 a paper was released plausibly claiming to prove
one of the major challenges of theoretical computer science, that P �= NP :
it was withdrawn after rapid analysis organised by senior scientist-bloggers,
and coordinated from Richard Lipton’s blog. Fields Medallist Sir Tim Gowers
used his blog to lead an international debate about mathematics publishing.

– polymath collaborative proofs, a new idea led by Gowers, use a blog and
wiki for collaboration among mathematicians from different backgrounds
and have led to major advances [35]

– discussion fora allow rapid informal interaction and problem-solving; in three
years the community question answering system for research mathematicians
mathoverflow has 23,000 users and has hosted 40,000 conversations

– the widely used “Online Encyclopaedia of Integer Sequences” (OEIS) invokes
subtle pattern matching against over 200,000 user-provided sequences on a
few digits of input to propose matching sequences: so for example input of
(3 1 4 1) returns π (and other possibilities) [3]

– the arXiv holds around 750K preprints in mathematics and related fields.
By providing open access ahead of journal submission, it has markedly in-
creased the speed of refereeing, widely identified as a bottleneck to the pace
of research [27]

– Innocentive [4], a site hosting open innovation and crowdsourcing challenges,
has hosted around 1,500 challenges with a 57% success rate, of which around
10% were tagged as mathematics or ICT.
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As well as having a remarkable effect on mathematical productivity, these sys-
tems provide substantial and unprecedented evidence for studying mathematical
practice, allowing the augmentation of traditional ethnography with a variety of
empirical techniques for analysing the texts and network structures of the in-
teractions. In Section 3 we describe two of our own recent preliminary studies,
of mathoverflow and polymath, which provide evidence for the theories of Pólya
and Lakatos, and shed new light on mathematical practice, and on the current
or future computational tools that might enhance it. Analysing the content of a
sample of questions and responses, we find that mathoverflow is very effective,
with 90% of our sample of questions answered completely or in part. A typical
response is an informal dialogue, allowing error and speculation, rather than
rigorous mathematical argument: a surprising 37% of our sample discussions
acknowledged error. Looking at one of the recent mini-polymath problems, we
find only 24% of the 174 comments formed the development of the final proof,
with the remainder comprising a high proportion of examples (33%) alongside
conjectures and social glue. We conclude that extending the power and reach
of mathoverflow or polymath through a combination of people and machines
raises new challenges for artificial intelligence and computational mathematics,
in particular how to handle error, analogy and informal reasoning.

Of course, mathematics is not the only science in which productive new hu-
man collaborations are made possible by machines. Over the past twenty years
researchers in e-science have devised systems such as Goble’s myExperiment [71]
for managing scientific workflow, especially in bioinformatics, so that data, anno-
tations, experiments, and results can be documented and shared across a uniform
platform, rather than in a mixture of stand alone software systems and formats.
Michael Nielsen, one of the founders of polymath, in his 2011 book “Reinvent-
ing discovery” [61] discusses a number of examples of crowdsourced and citizen
science. Alongside polymath, he describes Galaxy Zoo, which allows members of
the public to look for features of interest in images of galaxies, and has led to
new discoveries, and Foldit, an online game where users solve protein folding
problems.

Considered more broadly, such systems are exemplars of “Social machines”,
a broad new paradigm identified by Berners-Lee in his 1999 book “Weaving
the Web” [16], for viewing a combination of people and computers as a single
problem-solving entity. Berners-Lee describes a dream of collaborating through
shared knowledge:

Real life is and must be full of all kinds of social constraint — the very
processes from which society arises. Computers can help if we use them
to create abstract social machines on the Web: processes in which the
people do the creative work and the machine does the administration. .
. The stage is set for an evolutionary growth of new social engines. The
ability to create new forms of social process would be given to the world
at large, and development would be rapid.

Current social machines provide platforms for sharing knowledge and leading to
innovation, discovery, commercial opportunity or social benefit: the combination
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of mobile phones, Twitter and google maps used to create real-time maps of the
effects of natural disasters has been a motivating example. Future more ambi-
tious social machines will combine social involvement and sophisticated automa-
tion, and are now the subject of major research, for example in Southampton’s
SOCIAM project [5] following an agenda laid out by Hendler and Berners-Lee
[38]. In Section 4 we look at collaborative mathematics systems through the lens
of social machines research, presenting a research agenda that further develops
the results of work on the practice of mathematics.

2 The Study of Mathematical Practice

The study of mathematical practice emerged as a fledgling discipline in the
1940’s when mathematician and educator Georg Pólya formulated problem-
solving heuristics designed to aid mathematics students. These heuristics, such as
“rephrase the question”, and “draw a diagram” were based on Pólya’s intuition
about rules of thumb which he himself followed during his research, and have
been influential in mathematics education (although not without critics, who ar-
gue that meta-heuristics are needed to determine when a particular route is likely
to be fruitful [48,62,73]). Pólya’s idea, that it is possible to identify heuristics
which describe mathematical research – a logic of discovery – was extended by
Imre Lakatos, fellow countryman and philosopher of mathematics and science.1

Lakatos used in-depth analyses of extended historical case studies to formulate
patterns of reasoning which characterised conversations about a mathematical
conjecture and its proof. These patterns focused on interactions between math-
ematicians and, in particular, on the role that counterexamples play in driving
negotiation and development of concepts, conjectures and proofs.

Lakatos demonstrated his argument by presenting a rational reconstruction
of the development of Euler’s conjecture that for any polyhedron, the number of
vertices (V) minus the number of edges (E) plus the number of faces (F) is equal
to two; and Cauchy’s proof of the conjecture that the limit of any convergent
series of continuous functions is itself continuous. He outlined six methods for
modifying mathematical ideas and guiding communication: surrender, monster-
barring, exception-barring, monster-adjusting, lemma-incorporation, and proofs
and refutations. These are largely triggered by counterexamples, or problematic
entities, and result in a modified proof, conjecture or concept. For instance,
the methods of monster-barring and monster-adjusting exploit ambiguity or
vagueness in concept definitions in order to attack or defend a conjecture, by
(re)defining a concept in such a way that a problematic object is either excluded
or included. With monster-barring, the ambiguous concept is central to the con-
jecture and defines the domain of application, such as a “polyhedron” (in Eu-
ler’s conjecture), a “finite group” (in Lagrange’s theorem), or an “even number”
(in Goldbach’s conjecture). Here, Lakatos presents the picture-frame, for which

1 Lakatos translated Pólya’s [67] and other mathematical works into Hungarian before
developing his own logic of discovery, intended to carry on where Pólya left off [46,
p. 7].
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V - E + F = 16 - 32 + 16 = 0 (see figure 1): this is “monster-barred” as being
an invalid example of a polyhedron, and the definition of polyhedron tightened
to exclude it. With monster-adjusting, the ambiguous concept is a sub-concept
(appears in the definition of the central concept), such as “face”, “identity”,
or “division” (following the polyhedron/finite group/even number examples).
(Re)defining this sub-concept can provide an alternative way of viewing a prob-
lematic object in such a way that it ceases to be problematic: Lakatos gives
the example of Kepler’s star-polyhedron, which is a counterexample if V - E +
F is 12 - 30 + 12 = -6 (where its faces are seen as star-pentagons), but can
be salvaged if we see V - E + F as 32 - 90 +60 = 2 (where its faces are seen
as triangles) (see figure 1). The result of both of these methods is a preserved
conjecture statement, where the meaning of the terms in it have been revised or
clarified.

Fig. 1. Controversial polyhedra: A picture-frame, on the left, for which V - E + F =
16 - 32 + 16 = 0, and Kepler’s star-polyhedron, on the right, for which V - E + F
can be 12 - 30 + 12 = -6 (if it has star-pentagon faces) or 32 - 90 +60 = 2 (if it has
triangular faces)

In Lakatos’s exception-barring method, a counterexample is seen as an excep-
tion, triggering a refinement to the conjecture, and in his lemma-incorporation
and proofs and refutations methods, problematic objects are found and exam-
ined to see whether they are counterexamples to a conjecture or a proof step,
which are then revised accordingly.

Lakatos held an essentially optimistic view of mathematics, in which the pro-
cess of mathematics traditionally thought of as impenetrable and inexplicable
by rational laws, considered to be lucky guess work or intuition, is seen in a ra-
tionalist light, thereby opening up new arenas of rational thought. He challenged
Popper’s view [70] that philosophers can form theories about how to evaluate
conjectures, but not how to generate them, which should be left to psycholo-
gists and sociologists. Rather, Lakatos believed that philosophers could theorise
about both of these aspects of the scientific and mathematical process. He chal-
lenged Popper’s view in two ways - arguing that (i) there is a logic of discov-
ery, the process of generating conjectures and proof ideas is subject to rational
laws; and (ii) the distinction between discovery and justification is misleading as
each affects the other; i.e., the way in which we discover a conjecture affects our
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proof (justification) of it, and proof ideas affect what it is that we are trying
to prove (see [49]). This happens to such an extent that the boundaries of each
are blurred. These ideas have a direct translation into automated proof research,
suggesting that conjecture and concept generation are subject to rationality as
well as proof, and therefore systems can (perhaps even should) be developed
which integrate these theory-development aspects alongside proof generation.

At the heart of both Pólya and Lakatos’s work was the idea that the mecha-
nisms by which research mathematics progresses – as messy, fallible, and
speculative as this may be – can usefully be studied via analysis of informal math-
ematics. This idea has been welcomed and extended by a variety of disciplines;
principally philosophy, history sociology, cognitive science and mathematics ed-
ucation [9,21,26,54]. The development of computer support for mathematical
reasoning provides further motivation for studying the processes behind infor-
mal mathematics, particularly in the light of the criticisms this has sometimes
received. Sociologist Goffman [31] provides a useful distinction here, of front
and backstage activities, where activities in the front are services designed for
public consumption, and those in the back constitute the private preparation of
the services. Hersh [39] extends this distinction to mathematics, where textbook
or publication-style “finished mathematics” takes frontstage, and the informal
workings and conversations about “mathematics in the making” is hidden away
backstage. Pólya employed a similar distinction, and Lakatos warned of the dan-
gers of hiding the backstage process, either from students (rendering the subject
impenetrable) or from experts (making it more difficult to develop concepts or
conjectures which may arise out of earlier versions of a theorem statement).
Computer support for mathematics, such as computer algebra or computational
mathematics, has typically been for the frontstage. A second, far less developed,
approach is to focus on the backstage, including the mistakes, the dead ends and
the unfinished, and to try to extract principles which are sufficiently clear as to
allow an algorithmic interpretation: the study of mathematical practice provides
a starting point for this work.

Implicit or explicit in much work on mathematical practice is the recogni-
tion that mathematics takes place in a social context. Education theorist, Paul
Ernest [29], sees mathematics as being socially constructed via conversation; a
conversation which is as bound by linguistic and social conventions as any other
discourse. Thus, if such conventions are violated (by other cultures, or, per-
haps, by machines) then shared understanding is lost and – mirroring Kuhnian
paradigm shift – new conventions may need to be formed which accommodate
the rogue participant. Kitcher [44], a philosopher of mathematics, elaborates
what a mathematical practice might mean, suggesting a socio-cultural definition
as consisting in a language and four socially negotiated sets: accepted state-
ments, accepted reasonings, questions which are considered to be important and
meta-mathematical views such as standards of proof and the role of mathe-
matics in science (agreement over the content of these sets helps to define a
mathematical culture). Mackenzie [52] looked at the role of proof, especially com-
puter proof, and his student Barany [12] used ethnographic methods to trace the
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cycle of development and flow of mathematical ideas from informal thoughts, to
seminar, to publication, to dissemination and classroom, and back to informal
thoughts. He sees (re)representations in varying media such as notes, blackboard
scribbles, physical manifestations or patterns of items on a desk, as necessary,
for the knowledge to be decoded and encoded into socially and cognitively ac-
ceptable forms. In particular, Barany investigated the relationship between the
material (the “pointings, tappings, rubbings, and writings” of mathematics [12,
p.9]) and the abstract, arguing that each constrains the other. Other develop-
ments in the study of mathematical practice include work on visualisation, such
as diagrammatic reasoning in mathematics [30,53]; analogies, such as between
mathematical theories and axiom sets [13,72]; and mathematical concept de-
velopment, such as ways to determine potential fruitfulness of rival definitions
[75,76]. At the heart of many of these analyses lies the question of what proof
is for, and the recognition that it plays multiple roles; explaining, convincing,
evaluating, aiding memory, and so on, complementing or replacing traditional
notions of proof as a guarantee of truth). This in turn gives an alternative picture
of machines as members of a mathematical community.

3 Mathematical Practice and Crowdsourced Mathematics

In this section we outline preliminary results from our own ongoing programme
of work which uses collaborative online systems as an evidence base for further
understanding of mathematical practice. We studied a sample of mathoverflow
questions and the ensuing discussions [57], and the third mini-polymath problem
[65], looking at the kinds of activities taking place, the relative importance of
each, and evidence for theories of mathematical practice described in the previous
section, especially the work of Pólya [67] and Lakatos [46].

mathoverflow and polymath are similar in that they are examples of the back-
stage of collaborative mathematics. They provide records of mathematicians
collaborating through nothing more than conversation, underpinned by varying
levels of shared expertise and context. While participants may invoke results
from computational engines, such as GAP or Maple, or cite the literature, nei-
ther system contains any formal links to software or databases. The usual pre-
sentation of mathematics in research papers is the frontstage, in a standardised
precise and rigorous style: for example, the response to a conjecture is either a
counterexample, or a proof of a corresponding theorem, structured by means of
intermediate definitions, theorems and proofs. By contrast these systems present
the backstage of mathematics: facts or short chains of inference that are rele-
vant to the question, but may not answer it directly, justified by reference to
mathematical knowledge that the responder expects the other participants to
have.

3.1 Mathoverflow

Discussion fora for research mathematics have evolved from the early newsnet
newsgroups to modern systems based on the stackexchange architecture, which
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allow rapid informal interaction and problem-solving. In three years mathover-
flow.net has accumulated 23,000 users and hosted 40,000 conversations. Figure 2
shows part of a mathoverflow conversation [8], in answer to a question about the
existence of certain kinds of chains of subgroups. The highly technical nature
of research mathematics means that, in contrast to activities like GalaxyZoo,
this is not currently an endeavour accessible to the public at large: a separate
site math.stackexchange.com is a broader question and answer site “for people
studying math at any level and professionals in related fields”. Within mathover-
flow , house rules give detailed guidance, and stress clarity, precision, and asking
questions with a clear answer. Moderation is fairly tight, and some complain it
constrains discussion.

The design of such systems has been subject to considerable analysis (see, for
instance, [15]), and meta.mathoverflow contains many reflective discussions. A
key element is user ratings of questions and responses, which combine to form
reputation ratings for users. These have been studied by psychologists Tausczik
and Pennebaker [77,78], who concluded that mathoverflow reputations offline
(assessed by numbers of papers published) and in mathoverflow were consistently
and independently related to the mathoverflow ratings of authors’ submissions,
and that while more experienced contributors were more likely to be motivated
by a desire to help others, all were motivated by building their mathoverflow
reputation.

Fig. 2. A typical mathoverflow conversation

Within mathoverflow we identified the predominant kinds of questions as:
Conjecture (36%), which ask whether or under what circumstances a state-
ment is true; What is this (28%), which describe an object or phenomenon
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and ask what is known about it; and Example (14%) which ask for examples of
a phenomenon or an object with particular properties. Other smaller categories
ask for an explicit formula or computation technique, for alternatives to a known
proof , for literature references, for help in understanding a difficulty or apparent
contradiction,2 or for motivation.

Analysing the answers in our sample shed further light on how the system was
being used. mathoverflow is very effective, with 90% of our sample successful,
in that they received responses that the questioner flagged as an “answer”, of
which 78% were reasonable answers to the original question, and a further 12%
were partial or helpful responses that moved knowledge forward in some way.
The high success rate suggests that, of the infinity of possible mathematical
questions, questioners are becoming adept at choosing those for mathoverflow
that are amenable to its approach.

The presentation is often speculative and informal, a style which would have
no place in a research paper, reinforced by conversational devices that are ac-
cepting of error and invite challenge, such as “I may be wrong but...”, “This
isn’t quite right, but roughly speaking...”. Where errors are spotted, either
by the person who made them or by others, the style is to politely accept
and correct them: corrected errors of this kind were found in 37% of our
sample.3

In 34% of the responses explicit examples were given, as evidence for, or coun-
terexamples to, conjectures: thus playing exactly the role envisaged by Lakatos.
We return to this below. In 56% of the responses we found citations to the liter-
ature. This includes both finding papers that questioners were unaware of, and
extracting results that are not explicit in the paper, but are straightforward (at
least to experts) consequences of the material it contains.

It is perhaps worth commenting on things that we did not see. As we shall see
in the next section, in developing “new” mathematics considerable effort is put
into the formation of new concepts and definitions: we saw little of this in math-
overflow, where questions by and large concern extending or refining existing
knowledge and theories. We see little serious disagreement in our mathoverflow
sample: perhaps partly because of the effect of the “house rules”, but also be-
cause of the style of discussion, which is based on evidence from the shared
research background and knowledge of the participants: there is more discussion
and debate in meta.mathoverflow, which has a broader range of non-technical
questions about the development of the discipline and so on.

3.2 Polymath

In 2009 the mathematician Timothy Gowers asked “Is massively collaborative
mathematics possible?” [34], and with Terence Tao initiated experiments which

2 Several questions concerned why Wikipedia and a published paper seemed to con-
tradict each other.

3 This excludes “conjecture” questions where the responses refutes the conjecture. We
looked at discussions of error: we have no idea how many actual errors there are!
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invited contributions on a blog to solving open, difficult conjectures. Participants
were asked to follow guidelines [7], which had emerged from an online collabora-
tive discussion, and were intended to encourage widespread participation and a
high degree of interaction, with results arising from the rapid exchange of infor-
mal ideas, rather than parallelisation of sub-tasks. These included “It’s OK for
a mathematical thought to be tentative, incomplete, or even incorrect” and “An
ideal polymath research comment should represent a ‘quantum of progress’ ”.
While mathoverflow is about asking questions, where typically the questioner
believes others in the community may have the answer, polymath is about col-
laborating to solve open conjectures.

There have now been seven Polymath discussions, with some still ongoing,
leading to significant advances and published papers, under the byline of “D
J H Polymath” [69]. Analysis by Gowers [35], and by HCI researchers Cran-
shaw and Kittur [43], indicates that polymath has enabled a level of collab-
oration which, before the internet, would probably have been impossible to
achieve; the open invitation has widened the mathematical community; and
the focus on short informal comments has resulted in a readily available and
public record of mathematical progress. As noted by Gowers, this provided “for
possibly the first time ever (though I may well be wrong about this) the first
fully documented account of how a serious research problem was solved, com-
plete with false starts, dead ends etc.” [33]. Four annual mini-polymath projects
(so far) have selected problems from the current International Mathematical
Olympiad: thus in contrast to the open-ended research context of polymath,
participants trust the question to be solvable without advanced mathematical
knowledge.

We investigated mini-polymath 3, which used the following problem.

Let S be a finite set of at least two points in the plane. Assume that no three points
of S are collinear. A windmill is a process that starts with a line l going through a
single point P ∈ S. The line rotates clockwise about the pivot P until the first time
that the line meets some other point Q belonging to S. This point Q takes over as the
new pivot, and the line now rotates clockwise about Q, until it next meets a point of
S. This process continues indefinitely.
Show that we can choose a point P in S and a line l going through P such that the
resulting windmill uses each point of S as a pivot infinitely many times.

It was solved over a period of 74 minutes by 27 participants through 174
comments on 27 comment threads. People mostly followed the rules, which were
largely self regulating due to the speed of responses: a long answer in response
to an older thread was likely to be ignored as the main discussion had moved
on. Some sample comments included:
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1 If the points form a convex polygon, it is easy.

2 Can someone give me *any* other example where the windmill cycles without vis-
iting all the points? The only one I can come up with is: loop over the convex hull of S

3 One can start with any point (since every point of S should be pivot infinitely
often), the direction of line that one starts with however matters!

4 Perhaps even the line does not matter! Is it possible to prove that any point and
line will do?

5 The first point and line P0, l0 cannot be chosen so that P0 is on the boundary of
the convex hull of S and l0 picks out an adjacent point on the convex hull. Maybe
the strategy should be to take out the convex hull of S from consideration; follow it
up by induction on removing successive convex hulls.

6 Since the points are in general position, you could define “the wheel of p”, w(p)
to be radial sequence of all the other points p!=p around p. Then, every transition
from a point p to q will “set the windmill in a particular spot” in q. This device
tries to clarify that the new point in a windmill sequence depends (only) on the two
previous points of the sequence.

Within mini-polymath 3, we classified the main activity of each of the 174 com-
ments as either:

Example 33% (1, 2 above). Examples and counterexamples played a key role:
in understanding and exploring the problem, in clarifying explanations, and in
exploring concepts and conjectures about the problem. In the early stages of
understanding the problem, a number of participants were misled by the use of the
term “windmill” to think of the rotating line as a half-line, a misunderstanding that
led to counterexamples to the result they were asked to prove.4

Conjecture 20% (3, 4 above). This category included exploration of the limits of
the initial question and various sub-conjectures. We identified conjectures made by
analogy; conjectures that generalised the original problem; sub-conjectures towards
a proof; and conjectured properties of the main windmill concept.

Proof 14% (5 above) Proof strategies found included induction, generalisation, and
analogy.

Concept 10% (6 above) As well as standard concepts from Euclidean geometry
and the like, even in such a relatively simple proof, new concepts arise by analogy;
in formulating conjectures; or from considering examples and counterexamples. For
example, analogies involving “windmills” led to the misapprehension referred to
above.

Other 23% These typically concerned cross referencing to other comments; clari-
fication; and social interjections, both mathematically interesting and purely social,
including smiley faces and the like. All help to create a friendly, collaborative, infor-
mal and polite environment.
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3.3 What do We Learn about Mathematical Practice?

Both mathoverflow and mini-polymath provide living examples of the backstage
of mathematics.

While the utility of Pólya’s ideas in an educational setting has been contested,
mini-polymath shows many examples of his problem-solving heuristics operating
in a collaborative, as opposed to individual, setting: for example we see par-
ticipants rephrasing the question, using case splits and trying to generalise the
problem. This is hardly surprising, as the questions themselves may have been
designed to be solved by these techniques.

Both mathoverflow and mini-polymath afford precisely the sort of openness
that Lakatos advocated in the teaching and presentation of mathematics (de-
scribed above). We have seen the striking number of examples used in both
mathoverflow and mini-polymath : this accords with the emphasis which Lakatos
placed on examples. He emphasised fallibility and ambiguity in mathematical de-
velopment, addressing semantic change in mathematics as the subject develops,
the role that counterexamples play in concept, conjecture and proof development,
and the social component of mathematics via a dialectic of ideas. Although his
theory was highly social, it was not necessarily collaborative. For reasons of space
we single out here Lakatos’s notion of “monster-adjusting” examples: others are
considered in [65].

Monster-adjusting occurs when an object is seen as a supporting example of a
conjecture by one person and as a counterexample by another; thus exposing two
rival interpretations of a concept definition. The object then becomes a trigger
for concept development and clarification. Thus in our mathoverflow example
this occurs, relative to the larger conversation not displayed, in the comment
and adjustment of Figure 2 around “Why does q have to be odd?” In our mini-
polymath study the monster-adjusting occurs in clarifying the rotating line of
the question as a full line not a half-line: the problematic object is an equilateral
triangle with one point in the centre; this exposes different interpretations of the
concept of the rotating line.

While with sufficient ingenuity most of the examples we found in both sys-
tems could be assigned to one or more of Lakatos’s categories, the process is
quite subtle, and dependent on context in a way not always taken into account
in Laktos’s work: the mathoverflow example taken alone could also be seen a
variation of Lakatos’s exception-barring, where the conjecture is strengthened
by lifting unnecessary conditions.

While Lakatos identifies the role that hidden assumptions play, and suggests
ways of diagnosing and repairing flawed assumptions, he does not suggest how
they might arise. Here we can go beyond Lakatos and hypothesise as to what
might be the underlying reason for mistaken assumptions or rival interpretations.
Lakoff and colleagues [47] and Barton [14] have explored the close connection
between language and thought, and shown that images and metaphors used in
ordinary language shape mathematical (and all other types of) thinking. We
hypothesise that the misconception of a line as a half-line may be due to the



Mathematical Practice, Crowdsourcing, and Social Machines 111

naming of the concept; which triggered images of windmills with sails which
pivoted around a central tower and extended in one direction only.5

We expect the use and development of online discussion to provide researchers
into mathematical practice with large new bodies of data of informal reasoning
in the wild. While it is an open question whether online mathematics is repre-
sentative of other mathematical activity, it is certainly the case that this is one
type of activity. This is validated by peer reviewed collective publications arising
out of online discussions and by the user-base of 23,000 people on MathOverflow
(a small but significant proportion of the world’s research mathematicians).6 It
is also an open question as to whether it is desirable for online mathematical
collaboration to model offline work, given the new potential of the online world.
As a form of mathematical practice, it will inform (evolving) theories of (evolv-
ing) mathematical practices and – crucially – provides a much-needed way of
empirically evaluating them.

The interdisciplinary study of mathematical practice is still very young, par-
ticularly when considered relative to its older, more respectable sibling, the phi-
losophy of mathematics (˜70 years versus ˜2,300 years).7 Different disciplines
will focus on different aspects of the sites: philosophers will concern themselves
with their fundamental question of how mathematics progresses; sociologists
on the dynamics of the discussion and the socio-cultural-technical context in
which it takes place; linguists may analyse the language used, and compare it to
other forms of communication; mathematicians might reflect on whether there
is a significant difference between massively collaborative maths and ordinary
mathematics research; cognitive scientists will look for evidence of hypothesised
cognitive behaviours, and so on. However, these questions are deeply interre-
lated. We predict that multi-disciplinary collaboration in constructing theories of
mathematical practice will increase, and that online discussion sites will play an
important role in uncovering processes and mechanisms behind informal mathe-
matical collaboration. There is a an exciting potentially symbiotic relationship-
in-the-making between the study of mathematical practice and that of computer
support for mathematics.

5 The IMO presents tremendous opportunity for cultural and linguistic analysis, as
each problem is translated into at least five different languages, and candidate prob-
lems are evaluated partially for the ease with which they can be translated, and the
process of translating a problem is taken extremely seriously.

6 Estimates vary from ˜80,000 (an estimate by Jean-Pierre Bourguignon based on
the number of people who are in a profession which attaches importance to mathe-
matics research and hold a Mathematics PhD or equivalent [17]), to ˜140,000 (the
number of people in the Mathematics Genealogy Project who got their PhD be-
tween 1960-2012), to ˜350,000 (the number of people estimated still living, on the
Math Reviews authors database): see http://mathoverflow.net/questions/5485/how-
many-mathematicians-are-there

7 We calculated the 2325 year age gap based on Polya’s [68] in 1945 marking the
beginning of MP and Plato’s [66] in 380 BC on the theory of forms and the status
of mathematical objects, marking the beginning of PoM.
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4 Mathematics as a Social Machine: The Next Steps

The goal of social machines research is to understand the underlying computa-
tional and social principles, and devise a framework for building and deploying
them.

While polymath and mathoverflow are fairly recent, the widely used “Online
Encyclopaedia of Integer Sequences” (www.oeis.org) is a more long-standing
example of a social machines for mathematics. Given a few digits of input, it
proposes sequences which match it, through invoking subtle pattern matching
against over 220,000 user-provided sequences: so, for example, user input of (3 1
4 1) returns π, and 556 other possibilities, each supported by links to the math-
ematical literature. Viewed as a social machine, it involves users with queries
or proposed new entries; a wiki for discussions; volunteers curating the system;
governance and funding mechanisms through a trust; alongside traditional com-
puter support for a database, matching engine and web interface, with links to
other mathematical data sources, such as research papers. While anyone can
use the system, proposing a new sequence requires registration and a short CV,
which is public, serving as a reputation system.

One can imagine many kinds of mathematics social machines: the kinds of
parameters to be considered in thinking about them in a uniform way include,
for example:

– precise versus loose queries and knowledge
– human versus machine creativity
– specialist or niche users versus general users
– logical precision versus cognitive appeal for output
– formal versus natural language for interaction
– checking versus generating conjectures or proofs
– formal versus informal proof
– “evolution” versus “revolution” for developing new systems
– governance, funding and longevity

Current social and not-so-social machines occupy many different points in this
design space. Each dimension raises broad and enduring challenges, whether in
traditional logic and semantics, human computer interaction, cognitive science,
software engineering or information management.

4.1 Mathematical Elements

Likely mathematical elements of a mathematics social machine would include
the following, all currently major research activities in their own right.

“Traditional” machine resources available, include software for symbolic and
numeric mathematics such as GAP or Maple, theorem provers such as Coq or
HOL, and bodies of data and proofs arising from such systems. Our work high-
lights the importance of including databases of examples, perhaps incorporating
user tagging, and also of being able to mine libraries for data and deductions
beyond the immediate facts they record: see in particular the work of Urban [79]
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on machine learning from such libraries. The emerging field of mathematical
knowledge management [20] addresses ontologies and tools for sharing and min-
ing such resources, for example providing “deep” search or executable papers.
Such approaches should in future be able to provide access to the mathematical
literature, especially in the light of ambitious digitisation plans currently being
developed by the American Mathematical Society and the Sloan Foundation [6].

The presentation in mathoverflow and polymath is linear and text based.
Machine rendering of mathematical text has been a huge advance in enabling
mathematicians to efficiently represent their workings in silico, which in turn
has enabled online rapid-fire exchange of ideas, but technology for going beyond
the linear structure to capture the more complex structure of a proof attempt,
or to represent diagrams, is less developed. At the end of the first polymath
discussion there were 800 comments, and disentangling these for newcomers to
the discussion or to write up the proof for publication can be problematic. Rep-
resenting the workflow in realtime using argumentation visualization software,
which provides a graphical representation, would help prospective participants
to more easily understand the discussion and to more quickly identify areas to
which they can contribute: initial experiments using the Online Visualization of
Argument software 8 developed by Chris Reed and his group at the University
of Dundee, are promising.

Turning to the less formal side of mathematics, current challenges raised by
the mathematical community, for example see [2], include the importance of col-
laborative systems that “think like a mathematician”, can handle unstructured
approaches such as the use of “sloppy” natural language, support the exchange
of informal knowledge and intuition not recorded in papers, and engage diverse
researchers in creative problem-solving. This mirrors the results of research into
mathematical practice: the importance of human factors, and of handling in-
formal reasoning, error, and uncertainty. Turning messy human knowledge into
a usable information space, and reasoning across widely differing user contexts
and knowledge bases is only beginning to emerge as a challenge in artificial intel-
ligence applied to mathematics, for example in the work of Bundy [18] on “soft”
aspects such as creativity, analogy and concept formation and the handling of
error by ontology repair [58], or work in cognitive science which studies the role
of metaphor in the evolution and understanding of mathematical concepts [47].

Automated theory formation systems which automatically invent concepts
and conjectures are receiving increasing attention. Examples include Lenat’s
AM [51], which was designed to both construct new concepts and conjecture re-
lationships between them, and Colton’s HR system [24,25]. HR uses production
rules to form new concepts from old ones; measures of interestingness to drive
a heuristic search; empirical pattern-based conjecture making techniques to find
relationships between concepts, and third party logic systems to prove conjec-
tures or find counterexamples. Other examples include the IsaScheme system by
Montano Rivas [60], which employs a scheme-based approach to mathematical
theory exploration; the IsaCosy system by Johansson et al. [41] which performs

8 http://ova.computing.dundee.ac.uk/

http://ova.computing.dundee.ac.uk/
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inductive theory formation by synthesising conjectures from the available con-
stants and free variables; and the MATHsAiD system by McCasland [55], which
applies inference rules to user-provided axioms, and classifies the resulting proved
statements as facts (results of no intrinsic mathematical interest), lemmas (state-
ments which might be useful in the proof of subsequent theorems), or theorems
(either routine or significant results). A survey of next generation automated the-
ory formation is given in [64], including Pease’s philosophically-inspired system
HRL [63], which provides a computational representation of Lakatos’s theory
[46], and Charnley’s cognitively-inspired system [22] based on Baar’s theory of
the Global Workspace [11].

Social expectations in mathoverflow, and generally in research mathematics,
are of a culture of open discussion, and knowledge is freely shared provided it is
attributed: for example, it is common practice in mathematics to make papers
available before journal submission. As with mathematics as a whole, informa-
tion accountability in principle in a mathematics social machine comes from a
shared understanding that the arguments presented, while informal, are capable
of refinement to a rigorous proof. In mathoverflow, as described in [77], social ex-
pectation and information accountability are strengthened through the power of
off-line reputation: users are encouraged to use real names, and are likely to inter-
act through professional relationships beyond mathoverflow. A further challenge
for social computation will be scaling these factors up to larger more disparate
communities who have less opportunity for real-world interaction; dealing in a
principled way with credit and attribution as the contributions that social com-
putation systems make become routinely significant; and incorporating models
where contributions are traded rather than freely given.

4.2 Social Machines: The Broader Context

The research agenda laid out by social machines pioneers like Hendler, Berners
Lee and Shadbolt is ambitious [38], with a goal of devising overarching principles
to understand, design, build and deploy social machines. Viewing mathematics
social machines in this way has the potential to provide a unifying framework
for disparate ideas and activities.

Designing social computations. Social machine models view users as “entities”
(cf agents or peers) and allow consideration of social interaction, enactment
across the network, engagement and incentivisation, and methods of software
composition that take into account evolving social aggregation. For mathematics
this has far reaching implications — handling known patterns of practice, and
enabling others as yet unimagined, as well as handling issues such as error and
uncertainty, and variations in user beliefs.

Accessing data and information. Semantic web technology enables databases
supporting provenance, annotation, citation and sophisticated search. Mathe-
matics data includes papers, records of mathematical objects from systems such
as Maple, and scripts from theorem provers. There has been considerable re-
search in mathematical knowledge management [45], but current experiments in
social machines for mathematics have little such support. Yet effective search,
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mining and data re-use would transform both mathematics research and related
areas of software verification. Research questions are both technical, for example
tracking provenance or ensuring annotation remains timely and correct [23], and
social, for example many mathoverflow responses cite published work, raising
the question of why users prefer asking mathoverflow to using a search engine.

Accountability, provenance and trust. Participants in social machines need
to be able to trust the processes and data they engage with and share. Key
concepts are provenance, knowing how data and results have been obtained,
which contributes to accountability, ensuring that the source of any breakdown
in trust can be identified and mitigated [80]. There is a long tradition of openness
in mathematical research which has made endeavours like polymath or the arXiv
possible and effective — for example posting drafts on the arXiv ahead of journal
submission is reported as speeding up refereeing and reducing priority disputes
[2]. Trusting mathematical results requires considering provenance of the proof,
a major issue in assessing the balance between formal and informal proofs, and
the basis for research into proof certificates [59]. Privacy and trust are significant
for commercial or government work, where revealing even broad interests may
already be a security concern.

Interactions among people, machines and data. Interactions among people,
machines and data are core to social machines, which have potential to support
novel forms of interaction and workflow which go beyond current practice, a
focus of current social machine research [38]. Social mathematics shows a vari-
ety of communities, interactions and purposes, looking for information, solving
problems, clarifying information and so on, displaying much broader interac-
tions than those supported by typical mathematical software. In particular such
workflows need to take account of informality and mistakes [50].

In conclusion, social machines both provide new ways of doing mathemat-
ics and the means for evaluating theories of mathematical practices. Improved
knowledge of human interactions and reasoning in mathematics will suggest
new ways in which artificial intelligence and computational mathematics can
intersect with mathematics. We envisage that the challenges raised will include
developing better computational support for mathematicians and modelling soft
aspects of mathematical thinking such as errors, concept development and value
judgements. There is much to be done, and a substantial body of research lies
ahead of us, but the outcomes could transform the nature and production of
mathematics.
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Abstract. HOL(y)Hammer is an AI/ATP service for formal (computer-
understandable) mathematics encoded in the HOL Light system, in par-
ticular for the users of the large Flyspeck library. The service uses several
automated reasoning systems combined with several premise selection
methods trained on previous Flyspeck proofs, to attack a new conjecture
that uses the concepts defined in the Flyspeck library. The public online
incarnation of the service runs on a 48-CPU server, currently employing
in parallel for each task 25 AI/ATP combinations and 4 decision pro-
cedures that contribute to its overall performance. The system is also
available for local installation by interested users, who can customize it
for their own proof development. An Emacs interface allowing parallel
asynchronous queries to the service is also provided. The overall struc-
ture of the service is outlined, problems that arise are discussed, and an
initial account of using the system is given.

1 Introduction and Motivation

HOL Light [10] is one of the best-known interactive theorem proving (ITP)
systems. It has been used to prove a number of well-known mathematical theo-
rems1 and to formalize the proof of the Kepler conjecture targeted by the Fly-
speck project [9]. The whole Flyspeck development, together with the required
parts of the HOL Light library consists of about 14.000 theorems and 1800 con-
cepts. Motivated by the development of large-theory automated theorem prov-
ing [12,18,26,31] and its growing use for ITPs like Isabelle [19] and Mizar [29,30],
we have recently implemented translations from HOL Light to ATP (automated
theorem proving) formats, developed a number of premise-selection techniques
for HOL Light, and experimented with the strongest and most orthogonal combi-
nations of the premise-selection methods and various ATPs. This work, described
in [15], has shown that 39% of the 14185 Flyspeck theorems could be proved in
a push-button mode (without any high-level advice and user interaction) in 30
seconds of real time on a fourteen-CPU workstation.

The experiments that we did emulated the Flyspeck development (when user
always knows all the previous proofs2 at a given point, and wants to prove the
next theorem), however they were all done in an offline mode which is suitable

1 http://www.cs.ru.nl/~freek/100/
2 The Flyspeck processing order is used to define precisely what “previous” means.
See [15] for details.

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 120–135, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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for such experimentally-driven research. The ATP problems were created in large
batches using different premise-selection techniques and different ATP encodings
(untyped first-order [23], polymorphic typed first-order [4], and typed higher-
order [8]), and then attempted with different ATPs (17 in total) and different
numbers of the most relevant premises. Analysis of the results interleaved with
further improvements of the methods and data have gradually led to the current
strongest combination of the AI/ATP methods.

This strongest combination now gives to a HOL Light/Flyspeck user a 39%
chance (when using 14 CPUs, each for 30s) that he will not have to search
the library for suitable lemmas and figure out the proof of the next toplevel
theorem by himself. For smaller (proof-local) lemmas such likelihood should be
correspondingly higher. To really provide this strong automated advice to the
users, the functions that have been implemented for the experiments need to be
combined into a suitable AI/ATP tool. Our eventual goal (from which we are of
course still very far) should be an easy-to-use service, which in its online form
offers to formal mathematics (done here in HOL Light, over the Flyspeck-defined
concepts) what services like Wolfram Alpha offer for informal/symbolic math-
ematics. Some expectations (linked to the recent success of the IBM Watson
system) are today even higher3. Indeed, we believe that developing stronger and
stronger AI/ATP tools similar to the one presented here is a necessary prerequi-
site (providing the crucial semantic understanding/reasoning layer) for building
larger Watson-like systems for mathematics that will (eventually) understand
(nearly-)natural language and (perhaps reasonably semanticized versions/alter-
natives of) LATEX. The more user-friendly and smarter such AI/ATP systems
become, the higher also the chance that mathematicians (and exact scientists)
will get some nontrivial benefits (apart from the obvious verification/correctness
argument, which however so far convinced only a few) from encoding mathemat-
ics (and exact science) directly in a computer-understandable form.

This paper describes the first instance of such a HOL Light/Flyspeck-based
AI/ATP service. The service – HOL(y)Hammer4 (HH) – is now available in its
strongest form as a public online system, running on a 48-CPU server spawning
for each query 25 different AI/ATP combinations and four decision procedures.
This functionality is described in Section 2, together with short examples of
interaction (Emacs, command-line queries). The service can be also installed
locally, and trained on user’s private developments. This is described in Section 3.
The advantages of the two approaches are briefly compared in Section 4, and
Section 5 concludes and discusses future work.

2 The Online Service Description

The overall architecture of the system is shown in Figure 1. The service receives
a query (a formula to prove, possibly with local assumptions) generated by one

3 See for example Jonathan Borwein’s article: http://theconversation.edu.au/

if-i-had-a-blank-cheque-id-turn-ibms-watson-into-a-maths-genius-1213
4 See [33] for an example of future where AIs turn into deities.

http://theconversation.edu.au/if-i-had-a-blank-cheque-id-turn-ibms-watson-into-a-maths-genius-1213
http://theconversation.edu.au/if-i-had-a-blank-cheque-id-turn-ibms-watson-into-a-maths-genius-1213
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Fig. 1. Online service architecture overview

of the clients/frontends (Emacs, web interface, HOL session, etc.). If the query
produces a parsing (or type-checking) error, an exception is raised, and an error
message is sent as a reply. Otherwise the parsed query is processed in parallel by
the (time-limited) AI/ATP combinations and the native HOL Light decision pro-
cedures (each managed by its forked HOL Light process, and terminated/killed
by the master process if not finished within its global time limit). Each of the
AI/ATP processes computes a specific feature representation of the query, and
sends such features to a specific instance of a premise advisor trained (using
the particular feature representation) on previous proofs. Each of the advisors
replies with a specific number of premises, which are then translated to a suitable
ATP format, and written to a temporary file on which a specific ATP is run.
The successful ATP result is then (pseudo-)minimized, and handed over to the
combination of proof-reconstruction procedures. These procedures again run in
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parallel, and if any of them is successful, the result is sent as a particular tactic
application to the frontend. In case a native HOL Light decision procedure finds a
proof, the result (again a particular tactic application) can be immediately sent
to the frontend. The following subsections explain this process in more detail.

2.1 Feature Extraction and Premise Selection

Given a (formal) mathematical conjecture, the selection of suitable premises
from a large formal library is an interesting AI problem, for which a number
of methods have been tried recently [16, 26]. The strongest methods use ma-
chine learning on previous problems, combined in various ways with heuristics
like SInE [12]. To use the machine learning systems, the previous problems have
to be described as training examples in a suitable format, typically as a set
of (input) features characterizing a given theorem, and a set of labels (output
features) characterizing the proof of the theorem. Devising good feature/label
characterizations for this task is again an interesting AI problem (see, e.g. [30]),
however already the most obvious characterizations like the conjecture symbols
and the names of the theorems used in the conjecture’s proof are useful. This
basic scheme can be extended in various ways; see [15] for the feature-extraction
functions (basically adding various subterm and type-based characteristics) and
label-improving methods (e.g., using minimized ATP proofs instead of the orig-
inal Flyspeck proofs whenever possible) that we have so far used for HOL Light.

On average, for each feature-extraction method there are in total about 30.000
possible conjecture-characterizing features extracted from the theorems in the
Flyspeck development. The output features (labels) are in the simplest setting
just the names of the 14185 Flyspeck theorems5 extracted from the proofs with a
modified (proof recording [13]) HOL Light kernel. These features and labels are
(for each extraction method) serially numbered in a stable way (using hashta-
bles), producing from all Flyspeck proofs the training examples on which the
premise selectors are trained. The learning-based premise selection methods cur-
rently used are those available in the SNoW [5] sparse learning toolkit (most
prominently sparse naive Bayes) together with a custom implementation of the
k-nearest neighbor (k-NN) learner. Training a particular learning method on
all (14185) characterizations extracted from the Flyspeck proofs takes from 1
second for k-NN (a lazy learner that essentially just loads all the 14185 proof
characterizations) and 6 seconds for naive Bayes using labels from minimized
ATP proofs, to 25 seconds for naive Bayes using the labels from the original
Flyspeck proofs.6 The trained premise selectors are then run as daemons (using

5 In practice, the Flyspeck theorems are further preprocessed to provide better learning
precision, for example by splitting conjunctions and detecting which of the conjuncts
are relevant in which proof. Again, see [15] for the details. The most recent number
of labels used is thus 16082.

6 The original Flyspeck proofs are often using theorems that are in some sense redun-
dant, resulting in longer proof characterizations (and thus longer learning). This is
typically a consequence of using larger building blocks (e.g., decision procedures,
drawing in many dependencies) when constructing the ITP proofs.
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their server modes) that accept queries in the language of the numerical features
over which they have been trained, producing for each query their ranking of all
the labels (corresponding to the available Flyspeck theorems).

Given a new conjecture, the first step of each of the forked HOL Light AI/ATP
managing process is thus to compute the features of the conjecture according
to a particular feature extraction method, compute (using the corresponding
hashtable) the numerical representation of the features, and send these numeric
features as a query to the corresponding premise-selection daemon. The daemon
then replies (again, the speed depending on the learning method and the fea-
ture/label size) within a fraction of a second with its ranking, which is translated
back (using the corresponding table) to the ranking of the HOL Light theorems.
Each of the AI/ATP combinations then uses its particular number (optimized so
that the methods in the end complement each other as much as possible) of the
best-ranked theorems, passing them together with the conjecture to the function
that translates such set of HOL Light formulas to a suitable ATP format.

2.2 Translation to ATP Formats and Running ATPs

As mentioned in Section 1, several ATP formalisms are used today by ATP and
SMT systems. However the (jointly) most useful proof-producing systems in our
experiments turned out to be E [22] version 1.6 (run under the Epar [28] strategy
scheduler), Vampire [21] 2.6, and Z3 [6] 4.0. All these systems accept the TPTP
untyped first-order format (FOF). Even when the input formalism (the HOL
logic [20] - polymorphic version of Church’s simple type theory) and the output
formalism (TPTP FOF) are fixed, there are in general many methods [3] how to
translate from the former to the latter, each method providing different tradeoffs
between soundness, completeness, ATP efficiency, and the overall (i.e., including
HOL proof reconstruction) efficiency. The particular method chosen by us in [15]
and used currently also for the service is the polymorphic tagged encoding [3]. To
summarize, the higher-order features (such as lambda abstraction, application)
of the HOL formulas are first encoded (in a potentially incomplete way) in first-
order logic (still using polymorphic types), and then type tags are added in a
way that usually guarantees type safety during the first-order proof search.

This translation method is in general not stable on the level of single formu-
las, i.e., it is not possible to just keep in a global hashtable the translated FOF
version for each original HOL formula, as done for example for the MizAR ATP
service. This is because a particular optimization (by Meng and Paulson [17]) is
used for translating higher-order constants, creating for each such constant c a
first-order function that has the minimum arity with which c is used in the par-
ticular set of HOL formulas that is used to create the ATP (FOF) problem. So
once the particular AI/ATP managing process advises its N most-relevant HOL
Light theorems for the conjecture, this set of theorems and the conjecture are
as a whole passed to the translation function, which for each AI/ATP instance
may produce slightly different FOF encoding on the formula level. The encoding
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function is still reasonably fast (fractions of a second when using hundreds of
formulas), and still has the property that both the FOF formula names and the
FOF formulas (also those inferred during the ATP proof search) can (typically)
be decoded back into the original HOL names and formulas (allowing later HOL
proof reconstruction).

Each AI/ATP instance thus produces its specific temporary file (the FOF
ATP problem) and runs its specific ATP system on it with its time limit. The
time limit is currently set globally to 30 seconds for each instance, however (as
usual in strategy scheduling setups) this could be made instance-specific too,
based on further analysis of the time performance of the particular instances.
Vampire and Epar already do such scheduling internally: the current version
of Epar runs a fixed schedule of 14 strategies, while Vampire runs a problem-
dependent schedule of several to dozen of strategies. Assuming one strategy
for Z3 and on average eight strategies for Vampire, this means (counting the
combinations in Table 1) that for each HOL query there are now 249 different
proof-data/feature-extraction/learning/premise-slicing/ATP-strategy instantia-
tions tried by the online service within the 30 seconds of the real time allowed
for the query. Provided sufficient complementarity of such instantiations, this
significantly raises the overall power of the service.

2.3 The AI/ATP Combinations Used

The 25 currently used combinations of the machine learner, proof data, number
of top premises used, the feature extraction method, and the ATP system are
shown in Table 1. The proof data are either just the data from the (minimized)
ATP proofs (ATP0, ..., ATP3) created by a particular (MaLARea-style [31], i.e.,
re-using the proofs found in previous iteration for further learning) iteration of
the experimenting, possibly preferring either the Vampire or Epar proofs (V pref,
E pref), or a combination of such data from the ATP proofs with the original
HOL proofs, obtained by slightly different versions of the HOL proof record-
ing. Such combination typically uses the HOL proof only when the ATP proof
is not available, see [15] for details. The standard feature extraction method
combines the formula’s symbols, standard-normalized subterms and normalized
types into its feature vector. The standard normalization here means that each
variable name is in each formula replaced by its normalized HOL type. The
all-vars-same and all-vars-diff methods respectively just rename all for-
mula variables into one common variable, or keep them all different. This obvi-
ously influences the concept of similarity used by the machine learners (see [15]
for more discussion). The 40-NN and 160-NN learners are k-nearest-neighbors,
run with k = 40 and k = 160. The reason for running these 25 particular combi-
nations is that they together (computed in a greedy fashion) currently provide
the greatest coverage of the solvable Flyspeck problems. This obviously changes
quite often, whenever some of the many components of this AI architecture gets
strengthened.
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Table 1. The 25 AI/ATP combinations used by the online service

Learner Proofs Premises Features ATP

Bayes ATP2 0092 standard Vampire
Bayes ATP2 0128 standard Epar
Bayes ATP2 0154 standard Epar
Bayes ATP2 1024 standard Epar
Bayes HOL0+ATP0 0512 all-vars-same Epar
Bayes HOL0+ATP0 0128 all-vars-diff Vampire
Bayes ATP1 0032 standard Z3
Bayes ATP1 V pref 0128 all-vars-diff Epar
Bayes ATP1 V pref 0128 standard Z3
Bayes HOL0+ATP0 0032 standard Z3
Bayes HOL0+ATP0 0154 all-vars-same Epar
Bayes HOL0+ATP0 0128 standard Epar
Bayes HOL0+ATP0 0128 standard Vampire
Bayes ATP1 E pref 0128 standard Z3
Bayes ATP0 V pref 0154 standard Vampire
40-NN ATP1 0032 standard Epar
160-NN ATP1 0512 standard Z3
Bayes HOL3+ATP3 0092 standard Vampire
Bayes HOL3+ATP3 0128 standard Epar
Bayes HOL3+ATP3 0154 standard Epar
Bayes HOL3+ATP3 1024 standard Epar
Bayes ATP3 0092 standard Vampire
Bayes ATP3 0128 standard Epar
Bayes ATP3 0154 standard Epar
Bayes ATP3 1024 standard Epar

2.4 Use of Decision Procedures

Some goals are hard for ATPs, but are easy for the existing decision procedures
already implemented in HOL Light. To make the service more powerful, we also
try to directly use some of these HOL Light decision procedures on the given
conjecture. A similar effect could be achieved also by mapping some of the HOL
Light symbols (typically those encoding arithmetics) to the symbols that are
reserved and treated specially by SMT solvers and ATP systems. This is now
done for example in Isabelle/Sledgehammer [18], with the additional benefit of
the combined methods employed by SMTs and ATPs over various well-known
theories. Our approach is so far much simpler, which also means that we do not
have to ensure that the semantics of such special theories remains the same (e.g.,
1/0 = 0 in HOL Light). The HOL Light decision procedures might often not be
powerful enough to prove whole theorems, however for example the REAL_ARITH7

tactic is called on 2678 unique (sub)goals in Flyspeck, making such tools a useful
addition to the service.

7 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_ARITH.html

http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_ARITH.html
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Each decision procedure is spawned in a separate instance of HOL Light using
our parallel infrastructure, and if any returns within the timeout, it is reported
to the user. The decision procedures that we found most useful for solving goals
are:8

– TAUT9 — Propositional tautologies.
(A ==> B ==> C) ==> (A ==> B) ==> (A ==> C)

– INT_ARITH10 — Algebra and linear arithmetic over Z (including R).
&2 * &1 = &2 + &0

– COMPLEX_FIELD — Field tactic over C (including multivariate R11).
(Cx (&1) + Cx(&1)) = Cx(&2)

Additionally the decision procedure infrastructure can be used to try common
tactics that could solve the goal. One that we found especially useful is simpli-
fication with arithmetic (SIMP_TAC[ARITH]), which solves a number of simple
numerical goals that the service users ask the server.

2.5 Proof Minimization and Reconstruction

When an ATP finds (and reports in its proof) a subset of the advised premises
that prove the goal, it is often the case that this set is not minimal. By re-running
the prover and other provers with only this set of proof-relevant premises, it is
often possible to obtain a proof that uses less premises. A common example
are redundant equalities that may be used by the ATP for early (but unneces-
sary) rewriting in the presence of many premises, and avoided when the num-
ber of premises is significantly lower (and different ordering is then used, or a
completely different strategy or ATP might find a very different proof). This
(pseudo/cross-minimization) procedure is run recursively, until the number of
premises needed for the proof no longer decreases. Minimizing the number of
premises improves the chances of the HOL proof reconstruction, and the speed
of (re-)processing large libraries that contain many such reconstruction tactics.12

Given the minimized list of advised premises, we try to reconstruct the proof.
As mentioned in Section 2.1, the advice system may internally use a number of
theorem names (now mostly produced by splitting conjunctions) not present in
standard HOL Light developments. It is possible to call the reconstruction tactics
with the names used internally in the advice system; however this would create

8 The reader might wonder why the above mentioned REAL_ARITH is not among the
tactics used. The reason is that even though REAL_ARITH is used a lot in HOL Light
formalizations, INT_ARITH is simply more powerful. It solves 60% more Flyspeck
goals automatically without losing any of those solved by REAL_ARITH. As with the
AI/ATP instances, the usage of decision procedures is optimized to jointly cover as
many problems as possible.

9 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/TAUT.html
10 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/INT_ARITH.html
11 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_FIELD.html
12 Premise minimization has been for long time used to improve the quality and refac-
toring speed of the Mizar articles. It is now also a standard part of Sledgehammer.

http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/TAUT.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/INT_ARITH.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REAL_FIELD.html
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proof scripts that are not compatible with the original developments. We could
directly address the theorem sub-conjuncts (using, e.g., “nth (CONJUNCTS thm)

n”) however such proof scripts look quite unnatural (even if they are indeed
faster to process by HOL Light). Instead, we now prefer to use the whole original
theorems (including all conjuncts) in the reconstruction.

Three basic strategies are now tried to reconstruct the proof: REWRITE13

(rewriting), SIMP14 (conditional rewriting) and MESON [11] (internal first-order
ATP). These three strategies are started in parallel, each with the list of HOL
theorems that correspond to the minimized list of ATP premises as explained
above. The strongest of these tactics – MESON – can in one second reconstruct
79.3% of the minimized ATP proofs. While this is certainly useful, the perfor-
mance of MESON reconstruction drops below 40% as soon as the ATP proof uses
at least seven premises. Since the service is getting stronger and stronger, the ra-
tio of MESON-reconstructable proofs is likely to get lower and lower. That is why
we have developed also a fine-grained reconstruction method – HH_RECON [14],
which uses the quite detailed TPTP proofs produced by Vampire and E. This
method however still needs an additional mechanism that maintains the TPTP
proof as part of the user development: either dedicated storage, or on-demand
ATP-recreation, or translation to a corresponding fine-grained HOL Light proof
script. That is why HH_RECON is not yet included by default in the service.

2.6 Description of the Parallelization Infrastructure

An important aspect of the online service is its parallelization capability. This is
needed to efficiently process multiple requests coming in from the clients, and to
execute the large number of AI/ATP instances in parallel within a short overall
wall-clock time limit. HOL Light uses a number of imperative features of OCaml,
such as static lists of constants and axioms, and a number of references (mutable
variables). Also a number of procedures that are needed use shared references
internally. For example the MESON procedure uses list references for variables.
This makes HOL Light not thread safe. Instead of spending lots of time on a
thread-safe re-implementation, the service just (in a pragmatic and simple way,
similar to the Mizar parallelization [27]) uses separate processes (Unix fork),
which is sufficient for our purposes. Given a list of HOL Light tasks that should
be performed in parallel and a timeout, the managing process spawns a child
process for each of the tasks. It also creates a pipe for communicating with each
child process. Progress, failures or completion information are sent over the pipe
using OCaml marshalling. This means that it is enough to have running just
one managing instance of HOL Light loaded with Flyspeck and with the advising
infrastructure. This process forks itself for each client query, and the child then
spawns as many AI/ATP, minimization, reconstruction, and decision procedure
instances as needed. The service currently runs on a 48-core server with AMD
Opteron 6174 2.2 GHz CPUs, 320 GB RAM, and 0.5 MB L2 cache per CPU.

13 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REWRITE_TAC.html
14 http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/SIMP_TAC.html

http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/REWRITE_TAC.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/HTML/SIMP_TAC.html
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2.7 Use of Caching

Even though the service can asynchronously process a number of parallel re-
quests, it is not immune to overloading by a large number of requests coming
in simultaneously. In such cases, each response gets less CPU time and the re-
quests are less likely to succeed within the 30 seconds of wall-clock time. Such
overloading is especially common for requests generated automatically. For ex-
ample the Wiki service that is being built for Flyspeck [24] may ask many
queries practically simultaneously when an article in the wiki is re-factored,
but many of such queries will in practice overlap with previously asked queries.
Caching is therefore employed by the service to efficiently serve such repeated
requests.

Since the parallel architecture uses different processes to serve different re-
quests, a file-system based cache is used (using file-level locking). For any in-
coming request the first job done by the forked process handling the request
is to check whether an identical request has already been served, and if so, the
process just re-sends the previously computed answer. If the request is not found
in the cache, a new entry (file) for it is created, and any information sent to the
client (apart from the progress information) is also written to the cache entry.
This means that all kinds of answers that have been sent to the client can be
cached, including information about terms that failed to parse or typecheck,
terms solved by ATP only, minimization results and replaying results, includ-
ing decision procedures. The cache stored in the filesystem has the additional
advantage of persistence, and in case of updating the service the cache can be
easily invalidated by simply removing the cache entries.

2.8 Modes of Interaction with the Service

Figure 2 shows an Emacs session with several HOL Light goals.15 The online
advisor has been asynchronously called on the goals, and just returned the answer
for the fifth goal and inserted the corresponding tactic call at an appropriate
place in the buffer. The relevant Emacs code (customized for the HOL Light
mode distributed with Flyspeck) is available online16 and also distributed with
the local HOL(y)Hammer install. It is a modification of the similar code used for
communicating with the MizAR service from Emacs.

An experimental web editor interacting both with HOL Light and with the
online advisor is described in [24]. The simplest option (useful as a basis for
more sophisticated interfaces) is to interact with the service in command line,
for example using netcat, as shown for two following two queries. The first query
is solved easily by INT_ARITH, while the other requires nontrivial premise and
proof search. Table 2 gives an overview of the service use so far (the queries came
from 67 unique IP addresses).

15 A longer video of the interaction is at http://mws.cs.ru.nl/~urban/ha1.mp4
16 https://raw.github.com/JUrban/hol-advisor/master/hol-advice.el

http://mws.cs.ru.nl/~urban/ha1.mp4
https://raw.github.com/JUrban/hol-advisor/master/hol-advice.el
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Fig. 2. Parallel asynchronous calls of the online advisor from Emacs

$ echo 'max a b = &1 / &2 * ((a + b) + abs(a - b))'
| nc colo12-c703.uibk.ac.at 8080

......
* Replaying: SUCCESS (0.25s): INT_ARITH_TAC
* Loadavg: 48.13 48.76 48.49 52/1151 46604

$ echo '!A B (C:A->bool).((A DIFF B) INTER C=EMPTY) <=> ((A INTER C) SUBSET B)'
| nc colo12-c703.uibk.ac.at 8080

* Read OK
..............
* Theorem! Time: 14.74s Prover: Z Hints: 32 Str:
allt_notrivsyms_m10u_all_atponly

* Minimizing, current no: 9
.* Minimizing, current no: 6
* Result: EMPTY_SUBSET IN_DIFF IN_INTER MEMBER_NOT_EMPTY SUBSET SUBSET_ANTISYM

Table 2. Statistics of the queries to the online service (Jan 24 - Mar 11 2013)

Total (Unique) Parsed Typechecked Solved ATP-solved Reconstructed Dec. Proc. solved

482 445 382 228 108 86 142
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3 The Local Service Description

The service can be also downloaded,17 installed and used locally, for example
when a user is working on a private formalization that cannot be included in the
public online service.18

Installing the advisor locally now requires two passes through the user’s repos-
itory. In the first pass, a special module of the advisor stores the names of all the
theorems available in the user’s repository, together with their features (symbols,
terms, types, etc., as explained in Section 2.1). In the second pass, the dependen-
cies between the named theorems are computed, again using the modified proof
recording HOL Light kernel that records all the processing steps. Given the ex-
ported features and dependencies, local advice system(s) (premise selectors) are
trained outside HOL Light. Using the fast sparse learning methods described
in Section 2.1, this again takes seconds, depending on the user hardware and
the size of the development. The advisors are then run locally (as independent
servers) to serve the requests coming from HOL Light. While the first pass is
just a fast additional function that can be run by the user at any time on top
of his loaded repository, the second pass now still requires full additional pro-
cessing of the repository. This could be improved in the future by running the
proof-recording kernel as a default, as it is done for example in Isabelle.

The user is provided with a tactic (HH_ADVICE_TAC) which runs all the mech-
anisms described in the Section 2 on the current goal locally. This means that
the functions relying on external premise selection and ATPs are tried in paral-
lel, together with a number of decision procedures. The ATPs are expected to
be installed on the user’s machine and (as in the online service) they are run
on the goal translated to the TPTP format, together with a limited number of
premises optimized separately for each prover. By default Vampire, Eprover and
Z3 are now run, using three-fold parallelization.

The local installation in its simple configuration is now only trained using
the naive Bayes algorithm on the training data coming from the HOL Light
proof dependencies and the features extracted with the standard method. As
shown in [15], the machine learning advice can be strengthened using ATP de-
pendencies, which can be also optionally plugged into the local mode. Further
strengthening can be done with combinations of various methods. This is easy
to adjust; for example a user with a 24-CPU workstation can re-use/optimize
the parallel combinations from Table 1 used by the online service.

4 Comparison of the Online and Local Service

The two related existing services areMizAR and Sledgehammer.MizAR has so far
been an online service (accessible via Emacs or web interface), while Sledgehammer
has so far required a local install (even though it already calls some ATPs over a

17 http://cl-informatik.uibk.ac.at/users/cek/hh/
18 The online service could eventually also accommodate private clones, using for ex-
ample the techniques proposed for the Mizar Wiki in [2].

http://cl-informatik.uibk.ac.at/users/cek/hh/
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network). HOL(y)Hammer started as an online service, and the local version has
been added recently to answer the demand by some (power)users.

As described in Section 2, the online service now runs 25 different AI/ATP in-
stances and 4 decision procedures for each query. When counting the individual
ATP strategies (which may indeed be very orthogonal in systems like Vampire and
E), this translates to 249 different AI/ATP attempts for each query. If the de-
mands grows, we can already now distribute the load from the current 48-CPU
server to 112 CPUs by installing the service on another 64-CPU server. The old
resolution-ATP wisdom is that systems rarely prove a result in higher time limits,
since the search space grows very fast. A more recent wisdom (most prominently
demonstrated by Vampire) however is that using (sufficiently orthogonal) strategy
scheduling makes higher time limits much more useful.19 And even more recent
wisdom is that learning in various ways from related successes and failures fur-
ther improves the systems’ chances when given more resources.20 All this makes
a strong case for developing powerful online computing services that can in short
bursts focus its great power on the user queries, which are typically related tomany
previous problems. Also in some sense, the currently used AI/ATP methods are
only scratching the surface. For example, further predictive power is obtained in
MaLARea [31] by computing thousands of interesting finite models, and using eval-
uation in themas additional semantic features of the formulas.ATPprototypes like
MaLeCoP [32] can already benefit from accumulated fine-grained learned AI guid-
ance at every inference step that they make. The service can try to make the best
(re-)use of all smaller lemmas that have been proved so far (as in [25]). And as usual
in machine learning, the more data are centrally accumulated for such methods,
the stronger the methods become. Finally, it is hard to overlook the recent trend
of light-weight devices for which the hard computational tasks are computed by
large server farms (cloud computing).

The arguments for installing the service locally are mainly the option to use
the service offline, and so far also the fact that the online service does not yet
accept and learn on (possibly private) user developments. The latter is just
a matter of additional implementation work. For example the MizAR service
already now keeps a number of (incompatible) MML versions over which the
query can be formulated, and techniques have been recently developed for the
Mizar wiki that provide very fast and space-efficient cloning of large libraries and
private additions over them managed by the server. As usual, the local install
will also require the tools involved to work on all kinds of architectures, which is
often an issue, particularly with software that is mostly developed in academia.

5 Conclusion and Future Work

HOL(y)Hammer is one of the strongest AI/ATP services currently available. It
uses a toolchain of evolving methods that have been continuously improved as

19 In [15], the relative performance of Vampire in 30 and 900 seconds is very different.
20 See, e.g., the performance graph for the MaLARea 0.4 system in the recent
Mizar@Turing12 competition: http://www.tptp.org/CASC/J6/TuringWWWFiles/

ResultsPlots.html#MRTProblems

http://www.tptp.org/CASC/J6/TuringWWWFiles/ResultsPlots.html#MRTProblems
http://www.tptp.org/CASC/J6/TuringWWWFiles/ResultsPlots.html#MRTProblems
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more and more experiments and computations have been done over the Flyspeck
corpus in the past six months. The combinations that jointly provide the greatest
theorem-proving coverage are employed to answer the queries with parallelization
of practically all of the components. The parallelization factor is probably the
highest of all existing ATP services, helping to focus the power of many different
AI/ATP methods to answer the queries as quickly as possible.

At this moment, there seems to be no end to better premise selection, better
translation methods for ATPs (and SMTs, and more advanced combined systems
like MetiTarski [1]), better ATP methods (and their AI-based guidance), and
better reconstruction methods. Useful work can be also done by making the
online service accept private user developments and clones that currently have to
rely only on the local installation. An interesting future direction is the use of the
service with its large knowledge base and growing reasoning power as a semantic
understanding (connecting) layer for experiments with tools that attempt to
extract logical meaning from informal mathematical texts. Mathematics, with
its explicit semantics, could in fact pioneer the technology of very deep parsing
of scientific natural language writings, and their utilization in making stronger
and stronger automated reasoning tools about all kinds of scientific domains.
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Abstract. We assume some standard choices for the branch cuts of
a group of functions and consider the problem of then calculating the
branch cuts of expressions involving those functions. Typical examples
include the addition formulae for inverse trigonometric functions. Un-
derstanding these cuts is essential for working with the single-valued
counterparts, the common approach to encoding multi-valued functions
in computer algebra systems. While the defining choices are usually sim-
ple (typically portions of either the real or imaginary axes) the cuts
induced by the expression may be surprisingly complicated. We have
made explicit and implemented techniques for calculating the cuts in the
computer algebra programme Maple. We discuss the issues raised, clas-
sifying the different cuts produced. The techniques have been gathered
in the BranchCuts package, along with tools for visualising the cuts. The
package is included in Maple 17 as part of the FunctionAdvisor tool.

Keywords: branch cuts, simplification, symbolic computation.

1 Introduction

We consider the problem of calculating the branch cuts of expressions in a single
complex variable. When defining multi-valued functions mathematicians have
a choice of where to define the branch cuts. There are standard choices for
most well-known functions [1, 18, 21], usually following the work of Abramowitz
and Stegun. These choices were justified in [11] and match the choices within
the computer algebra programme Maple for all elementary functions except
arccot (for reasons explained in [11]). Within this paper we assume branch cut
definitions matching those of Maple (which may be observed using Maple’s
FunctionAdvisor by giving the function name without an argument). We note
that a different choice would not lead to any fewer or less complicated issues.

Handbooks (including online resources such as [21]) and software usually stop
at these static definitions. However, our thesis is that this knowledge should be
dynamic; processed for the user so it is suitable for their situation. Hence we
consider the problems that follow after the initial choice of definition is settled.
This will involve symbolic computation but is also an issue of Mathematical
Knowledge Management (following the process view of MKM in [9]).

We wish to axiomatically understand the branch cuts of expressions in multi-
valued functions, such as functions applied to a non-trivial argument, function
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compositions, and function combinations (sum, product, relations). Many of the
well-known formulae for elementary functions, such as addition formulae for in-
verse trigonometric functions, are such expressions. Care needs to be taken when
working with multi-valued functions since there are different, often unstated,
viewpoints possible as discussed in [12,13]. Most computer algebra software (and
indeed most users) tend to work with multi-valued functions by defining their
single-valued counterparts which will have discontinuities over the branch cuts.
As a result, relations true for the multi-valued functions may no longer be true
for the single valued counterparts and hence understanding the branch cuts of
the relations becomes essential for working with them efficiently.

Despite the importance of understanding such branch cuts, the authors are
not aware of any (available) software which calculates them beyond the original
definitions. It also seems rare for them to get a detailed mathematical study in
their own right, beyond their introduction and simple examples, with [17] one
notable exception.

We denote multivalued functions evaluating to sets of values using names with
upper cases (i.e. Arctan, Sqrt(z), Log) and denote their single valued counter-
parts by the normal notation (i.e. arctan,

√
z, log). So, for example, Sqrt(4) =

{−2, 2} while
√
4 = 2. (Given our above choice of branch cut definitions, this now

means our notation throughout the paper matches the commands in Maple.)
We note that when dealing with sets of values for multi-valued functions not
all combinations of choices of values of will be meaningful and sometimes the
choices for sub-expression values are correlated.

A simple example of the problem described above is that while the identity
Sqrt(x)Sqrt(y) = Sqrt(xy) is true (in the sense that the set of all possible prod-
ucts of entries from the two sets on the right is the same as the set on the left),
the single valued counterpart

√
x
√
y =
√
xy is not universally true (for example

when x = y = −1). The regions of truth and failure are determined by the
branch cuts of the functions involved.

The standard choices for branch cuts of the elementary functions are reason-
ably simple, always taking portions of either the real or imaginary axes. Indeed,
all the branch cut definitions within Maple adhere to this rule (including those
from outside the class of elementary functions). However the branch cuts invoked
by the expressions built from these can be far more complicated.

Consider for example the composite function arcsin(2z
√
1− z2) which is a

term from the double angle formula for arcsin. While arcsin(z) has simple branch
cuts (when z takes values along the real axis, to the left of −1 and to the right of
+1), the branch cuts of the composite function are curves in the complex plane
as demonstrated by the plot of the function on the left of Figure 1.

The cuts can be described by the four sets below which are visualised in the
image on the right of Figure 1.{
�(z) = 0, 1 < �(z)

}
,

{
�(z) = �(z),�(z) = −(1/2)

√
2 + 4�(z)2

}
,{

�(z) = 0,�(z) < −1
}
,

{
�(z) = �(z),�(z) = (1/2)

√
2 + 4�(z)2

}
.

(1)

We have implemented techniques for calculating the branch cuts inherited by
functions acting on non-trivial arguments, and extended this to calculate the
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Fig. 1. Plots relating to arcsin(2z
√
1− z2)

cuts of expressions and relations of such functions. The techniques have been
gathered together in a Maple package, BranchCuts included as part of Maple
17 and accessed via the FunctionAdvisor tool. Readers with an earlier version
can download the code as detailed in Appendix A. Both the sets in (1) and the
visualisation on the right of Figure 1 were produced by the package. In fact, all
the 2d figures in the paper are produced by the package from the output of the
branch cut algorithms, while all the 3d figures are numerical plots of either the
real or imaginary parts of the expressions in question.

Maple’s FunctionAdvisor is a handbook for special functions, designed to
be both human and machine readable, and interactive, processing the output
to fit the query, [10]. It covers topics such as symmetries and series expansions
with information for almost all of Maple’s built in functions. In Maple 16 the
functionality for branch cut computation was limited. There existed a table with
the defining cuts for most functions in terms of a variable z and if a function was
given with a different argument it would return the definitions with z replaced by
that argument. Presenting branch cuts this way could be unintuitive and in some
cases incorrect (for example, when the argument induced its own branch cuts
these were not returned). In Maple 17 queries to FunctionAdvisor on branch
cuts use the BranchCuts package discussed in this paper, and additionally, a
variety of options are now available for visualising the cuts.

The primary motivation for the implementation is a wider project at Bath
on simplification. The aim is to develop the technology for computer algebra
systems to safely apply identities for multi-valued functions on their single valued
counterparts. The key idea is to decompose the complex domain using cylindrical
algebraic decomposition (CAD) according to the branch cuts of the functions
involved, so that the truth value of the proposed identity will be constant in
each region of the decomposition and hence may be tested by a sample point.
This decomposition approach was introduced in [15] with the method using CAD
developed in a series of papers; [2–6, 20]. Many of the results are summarised
in [19] with the current state discussed recently in [14]
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In this paper we discuss the implementation of the techniques in Maple, and
the issues raised. We start in Section 2 by giving pseudo-algorithms describing
the implementation. These can produce sets of cuts which are a superset of
the actual branch cuts, that is, some of the cuts produced may not actually
correspond to discontinuities of the functions. This led us to a classification
of the different types of output, presented in Section 3. While there has been
work on calculating branch cuts before, most notably in [15], our work goes
much further with the careful description of the algorithms, their output and
how it may be classified. Finally, in Section 4 we consider the use of this work
in simplification technology and the effect of the condition that the input to
CAD be a semi-algebraic set (list of polynomial equations or inequalities in
real variables). Finally, some details on using the actual Maple package are
provided in Appendix A. Although our implementation is in Maple, we note
that the ideas presented are relevant for any system to compute branch cuts.

2 Calculating Branch Cuts

2.1 Moving to Real Variables

We first consider representing branch cuts as portions of algebraic curves in two
real variables; the real and imaginary parts of a complex variable, z.

Example 1. Consider the function f(z) = log(z2 − 1). The function log has
branch cuts when its argument lies on the negative real axis hence f(z) has
branch cuts when �(z2− 1) = 0 and �(z2− 1) < 0. If we let x = �(z), y = �(z)
then this reduces to 2xy = 0, x2− y2− 1 < 0, with solutions {y = 0, x ∈ (−1, 1)}
and {x = 0, y free}. Hence the branch cuts are as shown in Figure 2.

This technique is summarised by Algorithm 1. In the implementation steps 1
and 2 are performed by calls to FunctionAdvisor, accessing the table of defining
cuts. In step 2 we assume that the defining cuts are portions of either the real
or imaginary axis encoded as the choice of which is zero and a range over which

Fig. 2. Plots relating to f(z) = log(z2 − 1) from Examples 1 and 4
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the other varies. While not strictly required in theory the assumption is used
throughout the implementation. Then in step 6 the semi-algebraic set will consist
of one equality and one or two inequalities (depending on whether the range runs
to infinity). Each solution in step 7 will consist of an equality defining one of
{x, y} in terms of the other, and a range for the other variable. Step 7 could
be implemented with a variety of techniques. We use Maple’s standard solving
tools and find it most efficient to first solve the equality and then consider each
possible solution with the inequalities. In using these tools we are assuming that
Maple can identify all the solutions, which is not the case for polynomials of high
degree. However, we find them sufficient for all practical examples encountered.

Algorithm 1. BC–F–RV1
Input : f(p(z)) where p is a polynomial and f has known defining cuts.
Output: The branch cuts of the mathematical function defined f(p(z)).

1 if f introduces branch cuts then
2 Obtain the defining branch cut(s) for f .
3 Set 	(z) = x,
(z) = y to obtain p(z) = p(x, y).
4 Set R and I to be respectively the real and imaginary parts of p(x, y).
5 for each defining cut Ci do
6 Define a semi-algebraic set in (x, y) by substituting R and I into Ci.

Set Bi to be the set of solutions to the semi-algebraic set.
7 return The union of the Bi.
8 else
9 return the empty set.

2.2 Combinations of Functions

We extend Algorithm 1 to study combinations of functions (sums, products and
relations) by applying the algorithm to each component and then taking the
union of the sets of branch cuts in the outputs, as specified in Algorithm 2. In
step 3 a suitable algorithm is one beginning BC–F that accepts Fi as input.

Note that the output specification of Algorithm 2 is looser than that of Algo-
rithm 1. One reason for this is that a combination of functions with branch cuts
may have their individual branch cuts intersecting, and if the discontinuities in-
troduced are equivalent then these would cancel out as in Example 2. In Section
3 we classify the output of these algorithms, including output relating to these
cancellations, (Definition 3).

Example 2. Let f(z) = log(z+1)− log(z−1) and use Algorithm 2 to identify the
branch cuts. First we use Algorithm 1 to identify the branch cut of the first term
as the real axis below −1 and the branch cut of the second to be the real axis
below 1. Hence Algorithm 2 returns the union; the real axis below 1 as visualised
on the left of Figure 3. However, the function actually only has discontinuities
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Algorithm 2. BC–C
Input : Any combination of functions whose branch cuts can individually be

studied by an available algorithm.
Output: A set of cuts, a subset of which are the branch cuts of the

mathematical function defined by the expression.

1 Set F1, . . . Fn to be the functions involved in the expression.
2 for i = 1 . . . n do
3 Set Bi to the output from applying a suitable branch cuts algorithm to Fi.

4 return ∪iBi

on the real axis in the range (−1, 1) as demonstrated by the plot on the right of
Figure 3. Crossing the negative real axis below −1 does induce a discontinuity
in the imaginary part of both terms. However, those discontinuities are equal
and so cancel each other out in the expression for f(z).

Fig. 3. Plots relating to f(z) = log(z + 1) − log(z − 1) from Example 2

2.3 Allowing Nested Roots

We can extend Algorithm 1 to let p be a rational function by modifying step
7 to multiply up after substituting R and I into Ci. The question of zero de-
nominators will only arise if the input p itself has a zero denominator and so we
might assume this issue would have been dealt with previously.

We can relax the input specification further by allowing nested roots, more
specifically, by letting the argument belong to the class of radical expressions in z
(expressions built up from +,−, /, ∗ and n

√ where n is a natural number greater
than 1). This is because such an argument can be modified to give a rational
function from which information on the real and imaginary parts of the original
argument can be inferred, a process known as de-nesting the roots. Hence we
can still obtain a semi-algebraic set representing the branch cuts as before.
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By de-nesting the roots we may end up with extra solutions which do not
define branch cuts of the input function. For example, consider a function with
argument q(z) which when squared gives q2 = p(z), a rational function in z.
However, this now represents the solution set q(z) = ±p(z), i.e. solutions for
both branches of the square root, instead of just the desired principal branch.
Ideally these erroneous solutions should be identified and removed.

Another issue in relaxing the input specification is that we must now consider
the possibility of extra branch cuts arising from the argument itself. Taking these
issues into account, we describe Algorithm 3. This is a modification of Algorithm
1 with a relaxed input specification, leading to looser output specification.

Algorithm 3. BC–F–RV2
Input : f(q(z)) where q is a radical expression and f has known defining cuts.
Output: A set of cuts, a subset of which are the branch cuts of the

mathematical function defined by f(q(z)).

1 if f introduces branch cuts then
2 Obtain the defining branch cuts for f .
3 Set z = x+ iy to obtain q(z) = q(x, y).
4 De-nest the roots in q(x, y) to obtain p(x, y). Set Rp and Ip to be

respectively the real and imaginary parts of p(x, y).
5 Define a semi-algebraic set in (x, y) from Rp and Ip using information from

the defining cuts.
6 Set B to be the solutions of the semi-algebraic set.
7 If possible, remove erroneous solutions arising from the de-nesting.
8 else
9 Set B to be the empty set.

10 Set A =BC–C(q(z)) (application of Algorithm 2).
11 return A ∪B.

Various methods for de-nesting roots and removing the erroneous solutions
have been studied in [2–4,19]. The BranchCuts package currently has only a very
limited implementation of the squaring method outlined above, but further work
is planned. Note that even this simple implementation can induce the erroneous
solutions discussed as outlined by Example 3.

Example 3. Let f = log(2
√
z) and use Algorithm 3 to identify the branch cuts.

First we set q = 2
√
z = 2

√
x+ iy. Then we de-nest by squaring to give p = q2 =

4(x+ iy). In this simple example,

Rp = 4x and Ip = 4y. (2)

We suppose that q = Rq + Iqi and hence

p = R2
q − I2q + 2i(RqIq) (3)
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Since log has defining cuts along the negative real axis we knowRq < 0 and Iq =
0. Upon comparing (2) and (3) we see the second condition implies y = 0 and
x = 1

4R2
q > 0. In this example the first condition offers no further information

(if the defining cut had not run to ∞ it could have bounded x). Hence we define
the semi-algebraic set {y = 0, x > 0}. We also compute the set {y = 0, x < 0},
which is the branch cut of q(z) itself, and return the union of the sets which
together specify the entire real axis as presented visually on the left of Figure 4.

Unfortunately, the function only actually has discontinuities over the negative
real axis, as demonstrated by the plot of the right of Figure 4. The first solution
set was erroneous. This is clear since if x > 0 and y = 0 then

√
z > 0 and so

can never lie on the negative real axis. The solution related to the case q = −√p
which was not relevant to the problem. (The reason for the factor of 2 in the
example is because Maple automatically simplifies log(

√
z) to 1

2 log(z) which
can be analysed by Algorithm 3 to give exactly the branch cuts of the function.)

Fig. 4. Plots relating to f(z) = log(2
√
z) from Example 3

2.4 Using a Complex Parametric Representation

We now consider a second approach to representing branch cuts, first suggested
by [15]. Rather than moving to real variables this approach defines cuts using a
complex function of a real parameter and a range for that parameter.

Example 4. Let f(q(z)) = log(z2−1), the function from Example 1. We consider
when q takes values on the branch cuts of f by setting q = a where a ranges over
the cuts. In this case z2−1 = a can be easily rearranged to give z(a) = ±

√
a+ 1.

Hence we can represent the branch cuts by the two roots, each presented with
the range a ∈ (−∞, 0). By considering the behaviour of the functions for vari-
ous portions of the parameter range we see that these define the same cuts as
presented in Example 1 and visualised on the right of Figure 2.

This technique is summarised by Algorithm 4. In this case the assumption that
the defining cuts are portions of either the real or imaginary axis is really re-
quired. If q(z) is a radical expression containing nested roots then step 5 will
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require de-nesting and so the output may be a superset of the actual branch
cuts. (For example, the set produced for log(2

√
z) is equivalent to that produced

in Example 3.) Note that Algorithm 4 could have been provided with the input
and output specifications of Algorithm 3 (i.e if q(z) were a radical expression
then given sufficient computing resources all the branch cuts could be identified
as part of a larger set). Instead we have provided the specifications used for the
implementation. This does not restrict the possibilities for q(z), instead building
in a warning system to ensure the correctness of the output. In particular this al-
lows q to contain any elementary function, returning not the complete (possibly
infinite) set of branch cuts but at least those in the principal domain.

Algorithm 4. BC–F–CV
Input : f(q(z)) where f has known defining cuts.
Output: A set of cuts which either contain the branch cuts of the

mathematical function defined by f(q(z)) as a subset, or are
accompanied with a warning that this is not the case.

1 if f introduces branch cuts then
2 Obtain the defining branch cuts for f , each a range on an axis.
3 for each cut Ci do
4 If Ci is on the real axis then set q(z) = a, otherwise set q(z) = ia.
5 Find the solutions z(a) to this equation. If the complete set of solutions

cannot be guaranteed then provide a warning
6 Set B to be the set of solutions, each given with the range for a from Ci.
7 If possible, remove erroneous solutions arising from any de-nesting.

8 else
9 Set B to be the empty set.

10 Set A =BC–C(q(z)) (application of Algorithm 2).
11 return A ∪B.

This approach was simple to implement in Maple using the solve command
as a black box for step 5. (As discussed before Algorithm 1, this is making as-
sumptions on the solve tools which would not always be valid, but they are found
to be sufficient for all practical examples encountered.) The main advantage of
this approach over moving to real variables is that it tends to be much quicker,
especially when there are nested roots. The major disadvantage is that the out-
put is usually far more complicated (requires much more space to display), often
contains components that map to the same cuts, and is far less intuitive (the
curves encoded are not visible algebraically). Example 5 demonstrates some of
these features. Despite the often unwieldy output, Maple’s plotting features
allows for the position and nature of the cuts to be quickly made apparent.

For these reasons it is expected that the earlier algorithms are more useful for
implementation in other code and use in mathematical study while Algorithm 4
is very useful for getting a quick visual understanding of the branch cuts in an
expression and may have much utility in practical applications for this purpose.
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Example 5. A classic example within the theory of branch cut calculation and
simplification is that of Kahan’s teardrop, from [16]. Kahan considers the relation

2arccosh

(
3 + 2z

3

)
− arccosh

(
5z + 12

3(z + 4)

)
= 2arccosh

(
2(z + 3)

√
z + 3

27(z + 4)

)

(4)
noting that it is true for all values of z in the complex plane except for a small
teardrop shaped region over the negative real axis, as demonstrated by the plot
on the left of Figure 5. Both of the approaches to calculating branch cuts outlined
above will return a set represented visually by the image on the right of Figure
5. However, the algebraic representations are quite different. When working in
real variables the upper half of the teardrop is represented by the set{
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√
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while using the complex parametric approach the same portion of the teardrop
is given by
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with a running over the range (−1, 1).

We note that the identity (4) in Example 5 is actually introduced by a fluid
mechanics problem and so this example demonstrates how issues relating to
branch cuts may be encountered by users of multi-valued functions in other
fields. Hence the importance of understanding them fully and the benefit of an
accurate and intuitive representation.

3 Classification of Branch Cuts

The work of Section 2 raises several issues and necessitates a classification of the
different cuts that can be produced by these methods. It is common to use the
generic term branch cuts to refer to any curve portions that are defining cuts
of functions or output from the algorithms. We classify these, starting with the
definition most usually meant by users.
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Fig. 5. Plots relating to equation (4) from Example 5

Definition 1. Let F be an analytic multi-valued function and f its single-valued
counterpart. The branch cuts of the mathematical function (called true
cuts for brevity) are the curves or curve segments over which f is discontinuous,
corresponding to F moving to another branch of its Riemann surface.

Hence all the defining branch cuts are true cuts, as are any cuts produced by Al-
gorithm 1. However, as demonstrated by Examples 2 and 3 the other algorithms
may give output that does not adhere to this definition.

Definition 2. Define any branch cuts calculated by the algorithms over which
the function is actually continuous as spurious cuts.

(In [15] the authors used the term removable instead of spurious, in analogy
with removable singularities.) All branch cuts may be classified as either true or
spurious. We further classify spurious cuts according to their origin.

Definition 3. Define those spurious cuts introduced through a de-nesting pro-
cedure as de-nesting cuts, while those introduced by the intersection of true
cuts from different parts of an expression as formulation cuts.

Hence all spurious branch cuts produced by the algorithms in this paper are
either de-nesting cuts or formulation cuts. Some spurious cuts may be both (or
more accurately there may be two cuts, one of each type, which coincide).

Note that the output of Algorithms 3 and 4 are collections of true cuts and
de-nesting cuts, while the output of Algorithm 2 is a collection of true cuts,
de-nesting cuts and formulation cuts.

It would be desirable to have algorithms to remove all spurious cuts, or per-
haps better, algorithms that do not introduce them in the first place. There has
already been work on the removal of certain spurious cuts in [15] and [19, etc.]
and this will be the topic of more study. We feel that formulation cuts will be
the more difficult to avoid since they are inherent to the formulation of the
mathematical function chosen in the expression given to an algorithm. Consider

fε(z) = log(z + 1)− ε log(z − 1).
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When ε = 1 we are in the case of Example 2 and applying Algorithm 2 will
result in a branch cut over the real axis below 1, with the portion between −1
and 1 being a true cut and the rest a spurious cut. However, if we let ε differ
at all from 1 then the spurious cuts will instantly become true. The size of the
discontinuities will depend on the magnitude of ε but their presence does not.
Figure 6 shows the presence of the true cuts occurring when ε varies by just one
tenth from 1.

Fig. 6. Plots relating to fε(z) = log(z + 1)− ε log(z − 1)

4 Semi-algebraic Output for Simplification Technology

As discussed in the introduction, the primary motivation for this work was appli-
cation in simplification technology, based on decomposing the domain according
to the branch cuts of proposed simplifications using CAD. However, most CAD
algorithms require the input to be a semi-algebraic set (list of polynomial equa-
tions and inequalities), with the polynomials usually defined over the field of
rational coefficients. None of the algorithms described so far give such output,
however Algorithms 1 and 3 could be easily modified to do so, by terminating
early and returning the output of steps 5 and 6 respectively. We denote such
an algorithm by BC−F−SA and note that it could be used on combinations via
Algorithm 2. For Example 1 BC−F−SA would return {2xy = 0, x2−y2−1 < 0}.
However, for more complicated examples, the output may contain far more in-
formation than required to describe the cuts.

Example 6. Consider the formula

arctan(z) + arctan(z2) = arctan

(
z(1 + z)

(1− z3)

)
. (5)

The plot on the left of Figure 7 is a visualisation for the output from either of
the approaches in BranchCuts, while the true cuts are apparent from the centre
plot. Define,

f(x, y) = (1− x) y4 −
(
2 x3 + 1

)
y2 − x5 − x4 + x2 + x

g(x, y) = y6 − y5 + 3 x2y4 − 2
(
x2 + x

)
y3

+ 3
(
2 x+ x4

)
y2 −

(
x4 + 2 x3 + 2 x+ 1

)
y + x6 − 2 x3.
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If we were to instead take the semi-algebraic output, then we would have the
following list of semi-algebraic sets,

{x = 0,−y ≤ −1}, {x2 − y2 = 0,−2 xy ≤ −1}, {f(x, y) = 0, g(x, y) ≤ −1},
{x = 0, y ≤ −1}, {x2 − y2 = 0, 2 xy ≤ −1}, {f(x, y) = 0, g(x,−y) ≤ −1}.

A full sign-invariant CAD for this problem would ignore the relation signs and
just consider the polynomials present. A plot of the polynomials is given on the
right of Figure 7 and clearly contains far more information than required to
understand the branch cuts. Note that the correctness of the original formula is
governed only by the branch cuts and hence the plot on the left: equation (5) is
true in the connected region containing the origin and false in the other three
full dimensional regions. A CAD allows us to find the regions of truth and falsity
axiomatically by testing each cell of the CAD using a sample point.

There are various smarter approaches than calculating a full sign-invariant CAD,
such as partial CADs and equational constraints. Work on a CAD based method
that can take into account more of the structure of problems of branch cut
analysis has recently been reported in [7], and studied further in [8].

5 Summary and Future Work

We have considered the problem of calculating the branch cuts of expressions,
presenting two approaches and describing their implementation as part of Maple
17. We have classified the output of our algorithms and described how they could
be adapted to provide semi-algebraic output for simplification technology. We
are currently working on developing such technology based on the new concept
of a truth table invariant CAD [7,8]; a decomposition which can be more closely
fitted to the semi-algebraic description of branch cuts.

Future work with branch cuts will include the generalisation to many complex
variables and the utilisation of better knowledge of branch cuts elsewhere, such
as for choosing intelligent plot domains. Most importantly will be the further
characterisation of spurious cuts and methods to remove them from the output.

Fig. 7. Plots relating to equation (5) from Example 6
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A The BranchCuts Package in Maple 17

The BranchCuts package is part of the MathematicalFunctions package in
Maple 17, but is usually accessed directly by queries to the FunctionAdvisor.
To access the commands individually in Maple 17 use
> kernelopts(opaquemodules=false):
> with(MathematicalFunctions:-BranchCuts):
Readers with an earlier version of Maple can download a file with the code
from http://opus.bath.ac.uk/32511/ along with an introductory worksheet
demonstrating its installation and use.

Two key commands are available; BCCalc which produces branch cuts using
the algorithms of this paper and BCPlot which can make 2d visualisations of the
output. There are two mandatory arguments for BCCalc; the expression to be
considered and the variable. The key optional argument is the choice of method.
Providing method=RealVariables will cause BCCalc to use Algorithms 1 and
3 while providing method=ComplexVariable will use Algorithm 4. The default,
chosen for efficiency, uses Algorithm 1 where possible and Algorithm 4 elsewhere.
Combinations of functions are dealt with using Algorithm 2.

The specification of the algorithms are checked but not strictly enforced. In-
stead warnings are provided if the method is not applicable or the output cannot
be guaranteed to contain all true cuts. The package can work with any function
whose defining cuts (or lack of cuts) is recorded in the FunctionAdvisor table.
It covers all elementary functions and many others such as Bessel functions,
Jacobi θ-functions and Chebyshev polynomials. These examples are actually
multivariate in a computer algebra sense (univariate functions with parameters
in a mathematical sense). Their branch cuts can be considered since they only
occur with respect to one variable. If the presence of the branch cuts depends
on the value of the parameters then the condition is checked. If it cannot be
determined true or false (say if the relevant parameter has not been set), then
the branch cut is included but a relevant warning is given. For example,

> BCCalc( BesselJ(a,sqrt(z^3-1)), z,
parameters={a}, method=RealVariables );

http://dlmf.nist.gov
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produces the message, Warning, branch cuts have been calculated which
only occur if a::(Not(integer)), and outputs the six branch cuts

{�(z) = 0,�(z) < 1}, {�(z) = 0, 1 < �(z)},
{�(z) = − 1

3
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3�(z), 12
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√
3�(z),− 1
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√
3 < �(z)}, {�(z) = 1

3

√
3�(z),�(z) < − 1

2

√
3}.

Applying BCPlot to this output produces the image on the left of Figure 8. The
true cuts for two specific values of a can be observed in the centre and right
plots, demonstrating the validity of the warning message.

Fig. 8. Plots relating to BesselJ(a,
√
z3 − 1)
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Abstract. The Agora system is a prototype “Wiki for Formal Math-
ematics”, with an aim to support developing and documenting large
formalizations of mathematics in a proof assistant. The functions imple-
mented in Agora include in-browser editing, strong AI/ATP proof advice,
verification, and HTML rendering. The HTML rendering contains hy-
perlinks and provides on-demand explanation of the proof state for each
proof step. In the present paper we show the prototype Flyspeck Wiki as
an instance of Agora for HOL Light formalizations. The wiki can be used
for formalizations of mathematics and for writing informal wiki pages
about mathematics. Such informal pages may contain islands of formal
text, which is used here for providing an initial cross-linking between
Hales’s informal Flyspeck book, and the formal Flyspeck development.
The Agora platform intends to address distributed wiki-style collab-

oration on large formalization projects, in particular both the aspect of
immediate editing, verification and rendering of formal code, and the
aspect of gradual and mutual refactoring and correspondence of the ini-
tial informal text and its formalization. Here, we highlight these features
within the Flyspeck Wiki.

1 Introduction

The formal development of large parts of mathematics is gradually becoming
mainstream. In various proof assistants, large repositories of formal proof have
been created, e.g. in Mizar [1], Coq [2], Isabelle [3] and HOL Light [4]. This has led
to fully formalized proofs of some impressive results, for example the odd order
theorem in Coq [5], the proof of the 4 color theorem in Coq [6] and a significant
portion of the proof of the Kepler conjecture [7] in HOL Light.

Even though these results are impressive, it is still quite hard to get a consid-
erable speed-up in the formalization process. If we look at Wikipedia, we observe
that due to its distributed nature everyone can and wants to contribute, thus
generating a gigantic increase of volume. If we look at the large formalization
projects, we see that they are very hierarchically structured, even if they make
use of systems like Coq, that very well support a cooperative distributed way
of working, supported by a version control system. An important reason is that
the precise definitions do matter in a computer formalised mathematical theory:

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 152–167, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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some definitions work better than others and the structure of the library impacts
the way you work with it.

There are other reasons why formalization is progressing at a much slower
rate than, e.g. Wikipedia. One important reason is that it is very hard to get
access to a library of formalised mathematics and to reuse it: specific features
and notational choices matter a lot and the library consists of such an enormous
amount of detailed formal code that it is hard to understand the purpose and use
of its ingredients. A formal repository consists of computer code (in the proof
assistant’s scripting language), and has the same challenges as a programming
source code regarding understanding, modularity and documentation. Also, if
you want to make a contribution to a library of formalized mathematics, it
really has to be all completely verified until the final proof step. And finally,
giving formal proofs in a proof assistant is very laborious, requiring a significant
amount of training and experience to do effectively.

To remedy this situation we have been developing the Agora platform: wiki
technology that supports the development of large coherent repositories of for-
malised mathematics. We illustrate our work by focusing on the case of a wiki
for the Flyspeck project, but the aims of Agora are wider. In short we want to
provide proof assistant users with the tools to

1. Document and display their developments for others to be read and studied,
2. Cooperate on formalizations,
3. Speed up the proving by giving them special proof support via AI/ATP

tools.

All this is integrated in one web-based framework, which aims at being a “Wiki
for Formal Mathematics”. In the present paper we highlight and advocate our
framework by showing the prototype Flyspeck Wiki. We first elaborate on the
three points mentioned above and indicate how we support these in Agora.

Documenting formal proofs. An important challenge is the communication of
large formalizations to the various different communities interested in such for-
malizations: PA users that want to cooperate or want to build further on the de-
velopment, interested readers who want to understand the precise choices made
in the formalization and mathematicians who want to convince themselves that
it is really the proper theorem that has been proven. All these communities have
their own views on a formalization and the process of creating formalization, giv-
ing a diverse input that benefits the field. Nonetheless, communicating a formal
proof is hard, just as hard as communicating a computer program.

Agora provides a wiki based approach: Formal proofs are basically program
code in a high-level programming language, which needs to be documented to be
understandable and maintainable. A proof development of mathematics is spe-
cial, because there typically is documentation in the form of a mathematical text
(a book or an article) that describes the mathematics informally. This is what
we call the informal mathematics as opposed to the formal mathematics which
is the mathematics as it lives inside a proof assistant. For software verification
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efforts, there is no pre-existing documentation, but Agora can be used to pro-
vide documentation of the verification as well. These days, informal mathematics
consists of LATEX files and formal mathematics usually consist of a set of text
files that are given as input to a proof assistant to be checked for correctness.

In Agora, one can automatically generate HTML files from formal proof devel-
opments, where we maintain all linking that is inherently available in the formal
development. Also, one can automatically generate files in wiki syntax from a
set of LATEX files. These wiki files can also be rendered as HTML, maintaining
the linking inside the LATEX files, but more importantly, also the linking with
the formal proof development. Starting from the other end, one can write a wiki
document about mathematics and include snippets of formal proof text via an
inclusion mechanism. This allows the dynamic insertion of pieces of formal proof,
by referencing the formal object in a repository.

Cooperation on formal proofs. With Agora, we also want to lower the threshold
for participating in formalization projects by providing an easy-to-use web in-
terface to a proof assistant [8]. This allows people to cooperate on a project, the
files of which are stored on the server.

Proof Support. We provide additional tools for users of proof assistants, like
automated proof advice [9]. The proof states resulting from editing HOL Light
code in Agora are continuously sent to an online AI/ATP service which is trained
in a number of ways on the whole Flyspeck corpus. The service automatically
tries to discharge the proof states by using (currently 28) different proof search
methods in parallel, and if successful, it attempts to create the corresponding
code reconstructing such proofs in the user’s HOL Light session.

To summarize, the Agora system now provides the following tooling for HOL
Light and Flyspeck:

– a rendering of the informal proof texts, written originaly in LATEX,
– a hyperlinked, marked up version of the HOL Light and Flyspeck source code,

augmented with the information about the proof state after each proof step
– transclusion of snippets of the hyperlinked formal code into the informal text

whenever useful
– cross-linking between the informal and formal text based on custom Flyspeck

annotations
– an editor to experiment with the sources of the proof by dropping down to

HOL Light and doing a formal proof,
– integrated access to a proof advisor for HOL Light that helps (particularly

novices) to finish their code while they are writing it, or provide options for
improvement, by suggesting lemmas that will solve smaller steps in one go.

Most of these tools are prototypical and occasionally behave in unexpected ways.
The wiki pages for Flyspeck can be found at http://mws.cs.ru.nl/agora_cicm/
flyspeck. These pages also list the current status of the tooling.

The rest of the paper is structured as follows. Section 2 shows the presentation
side of Agora, as experienced by readers. The internal document model of Agora

http://mws.cs.ru.nl/agora_cicm/flyspeck
http://mws.cs.ru.nl/agora_cicm/flyspeck
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is described in Section 3, Section 4 explains the interaction with the formal HOL
Light code, and Section 5 describes the inclusion of the informal Flyspeck texts
in Agora. Section 6 concludes and discusses future work.

1.1 Similar Systems

There are some systems that support mashing up informal documentation with
computed information. In particular, Agora shares some similarities with tools
using the OMDoc [10] format, as well as the IPython [11] architecture (and
Sage [12], which uses IPython as an interface to computer algebra functionality).

OMDoc is mainly a mechanization format, but supports workflows that are
similar to Agora’s, but differs in execution: OMDoc is a stricter format, requiring
documents to be more structured and detailed. In particular, this requires its
input languages, such as sTEX, to be more structured. On the other hand, Agora
does not define much structure on the files its includes, rather extracting as much
information as possible and fitting it in a generic tree structure. Because Agora
is less strict in its assumptions, it becomes easier to write informal text, freeing
the authors of having to write semantic macros.

The IPython architecture has the concept of a notebook which is similar to a
page in Agora: it is a web page that allows an author to specify ’islands’ of Python
that are executed on the server, with the results displayed in the notebook. Agora
builds on top of this idea, by having a collection of documents referring to each
other, instead of only allowing the author of a document to define new islands.

2 Presenting Formal and Informal Mathematics in Agora

Agora has two kinds of pages: fully formal pages, generated from the sources of
the development, and informal pages, which include both markup and snippets
of formal text. To give readers, in particular readers not used to reading the
syntax of a proof assistant, insight in a formal development, we believe that it
is not enough to mark up the formal text prettily:

– there is little to no context for an inexperienced reader to quickly understand
what is being formalized and how: items might be named differently, and in
a proof script, all used lemmas are presented with equal weight. This makes
it difficult for a reader to single out what is used for what purpose;

– typically, the level of detail that is used to guide the proof assistant in its
verification of a proof is too high for a reader to understand the essence of
that proof: it is typically decorated with commands that are administrative
in nature, proof steps such as applying a transitivity rule. A reader makes
these steps implicitly when reading an informal proof, but they must be
spelled out for a formal system. In the extreme, this means that a proof that
is ‘trivial’ in an informal text still requires a few lines of formal code;

– because most proof assistants are programmable, a proof in proof assistant
syntax can have a different structure than its informal counterpart: proofs
can be ‘packed’ by applying proof rules conditionally, or applying a proof
rule to multiple similar (but not identical) cases.
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On the other hand, it is not enough to just give informal text presenting a
formalization: without pointers to the location of a proof in the formal develop-
ment, it is easy for a reader to get lost in the large amount of code. To allow
easier navigation by a reader, the informal text should provide references to the
formal text at the least, and preferably include the portions of formal text that
are related to important parts of the informal discussion.

By providing the informal documentation and formal code on a single web
platform, we simplify the task of cross-linking informal description to formal
text. The formal text is automatically cross-linked, and annotated with proper
anchors that can also be referenced from an informal text. Moreover, our system
uses this mechanism to provide a second type of cross-reference, which includes a
formal entity in an informal text [13]: these references are written like hyperlinks,
using a slightly different syntax indicating that an inclusion will be generated.
Normal hyperlinks can refer to concepts on the same page, the same repository,
or on external pages.

These mechanisms allow an author of an informal text to provide an overview
of a formal development that, at the highest level, can give the reader insight in
the development and the choices made. Should the reader be interested in more
details of the formalization, cross-linking allows further investigation: clicking
on links opens the either informal concepts or shows the definition of a formal
concept.

The formalization of the Kepler conjecture in the Flyspeck project provides us
with an opportunity to display these techniques: not only is it a significant non-
trivial formalization, but its informal description in LATEX [14] contains explicit
connections between the informal mathematics and the related formal concepts
in the development. We have transformed these sources into the wiki pages
available on our Agora system1. Parts of one page are shown in Figures 1 and 2.

2.1 Informal Descriptions

The informal text on the page is displayed similarly to the source (Flyspeck)
document, from which it is actually generated (see Section 5), keeping the for-
mulae intact to be rendered by the MathJax2 JavaScript library. The difference
to the Flyspeck source document is that the source document contains references
to formal items (see also Section 5), while the Agora version includes the actual
text of these formal entities. To prevent the reader from being confused by the
formal text, which can be quite long, the formal text is hidden behind a clearly-
labeled link (for example the FAN and XOHLED links in Figure 1 which link to the
formal definition of fan and the formal statement of lemma fan cyclic).

The informal page may additionally embed editable pieces of formal code
(instead of just including addressable formal entities from other files as done in
the demo page). In that case (see Section 4) clicking the ’edit’ on these blocks
opens up an editor on the page itself, which gives direct feedback by calling

1 http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/
2 http://mathjax.org

http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/
http://mathjax.org
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Fig. 1. Screenshot of the Agora wiki page presenting a part of the “Fan” chapter of
the informal description of the Kepler conjecture formalization. For each formalized
section, the user can choose between the informal presentation (shown here) and its
formal counterpart (shown on the next screenshot). The complete wikified chapter is
available at: http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/.

http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/


158 C. Tankink et al.

Fig. 2. http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/(formal)

HOL Light in the background, and displaying the resulting proof assistant state,
together with a proof advice which uses automated reasoning tools to try to find
a solution to the current goal.

2.2 Formal Texts

The formal text of the development, in the proof assistant syntax, is included
in Agora as a set of hyperlinked HTML pages that provide dynamic access to
the proof state, using the Proviola [15] technology we have previously developed:
pointing at the commands in the formal text calls the proof assistant and pro-
vides the state on the page. The results of this computation are memoized for
future requests: this makes it possible for future visitors to obtain these states
quickly, while not taking up space unnecessarily.

The pages are hyperlinked (see Section 4.2) to allow a reader to explore the
presented formalization. The formalization could be large and, in projects like
Flyspeck, produced by a number of collaborators. The current alternatives to hy-
perlinking are unsatisfactory in such circumstances: it amounts to either mem-
orization by the reader of large parts of the libraries, or mandatory access to a
search facility. In HOL Light, this search facility is the system itself: typing in
the name of a lemma prints out its statement.

http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/
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3 Document Structure: Frames and Scenes

The pages in Agora are generated from in-memory documents : (Python) objects
equipped with methods for rendering and storing the internal files. To cater for
multiple proof assistants and document-preparation tools, such as a renderer for
wiki syntax, we use the object-inheritance to instantiate documents for different
systems, while providing a common interface. This interface consists of a tree-like
structure of frames, grouped into scenes.

Documents in Agora are structured according to our earlier work on a system
called Proviola [16], for replaying formal proof: this tool takes a “proof script”
and uses a light-weight parser to transform it into a list of separate commands.
This list can then be submitted to a proof assistant, storing the responses in the
process. This memoization of the proof assistant’s responses is stored together
with the command, into a data structure we call a frame. Frames can store more
than just a response and a command, in particular, we assume that all frames
in Agora documents store a markup element that contains the HTML markup
of the frame’s command.

To display a document as a page, it would be enough to display the list of
frames in order, rendering the markup of each frame, and this is how the purely
formal pages in Agora are rendered. However, we want our tools to be able to
display not only flat lists of text, but also combine them in meaningful ways:
for example by grouping a lemma with its proof, but also combining multiple
lemmas into a self-contained section. For this, we introduced a scene: a scene is
a grouping of (references to) frames and other scenes, that can combine them in
any order. The system will render such a tree structure recursively, displaying
the markup of each frame referenced to. The benefit of grouping files into scenes
is that it becomes easier to re-mix parts of a document into a new document,
such as including formal text into an informal page.

Inclusion. To allow remixing scenes from documents into new content, it is
necessary to provide an interface that allows including scenes into pages. In
previous work [13], we introduced an interface in the form of syntax: Agora
allows users to write narratives in a markup language similar to Wikipedia’s,
which is extended with the notion of a reference. This reference is similar to
Isabelle’s antiquotation: it is syntax for pointing to formally defined entities on
the Web which carry some metadata, which can be automatically provided by
a theorem prover. When rendered, the references are resolved into marked up
‘islands’ of formal text. The rest of the syntax is a markup language allowing
mathematical notation and hyperlinks.

These islands are included in the scene structure as references to the marked
up scenes. At the moment, we only allow referring to formal scenes from informal
text, which is enough to render the Flyspeck text. Having an inclusion syntax
fits the Agora philosophy: the documentation workflow can use the formal code,
but it should not change it. Instead, writing informal documentation about a
development should be similar to writing a LATEX article, only in a different
markup language. However, it is occasionally necessary to add code directly to
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an informal page, for example to write an illustrative example or a failed attempt;
such a code block is not part of the formal development, but benefits from the
markup techniques applied to the development.

In the document structure, such code blocks are just scenes, that are marked
to be written in a particular language. From the rendered page, it is possible
to open an editor for each scene, which requires special functionality to support
writing formal proofs.

4 Interaction with Formal HOL Light Code

4.1 Parsing and Proving

For HOL Light, adding Proviola support implies adding a parser that can trans-
form a proof script into a list of commands, and adding a layer to communicate
with the prover’s read-eval-print loop (REPL). This is sufficient, but so far does
not create a very illustrative Proviola display: most HOL Light proofs are pack-
aged into a single REPL-invocation that introduces and discharges a theorem.
Making this into a useful Proviola display is left for future work, but we will
sketch how a better display can be implemented using the scene structure of a
Proviola document.

To illustrate the workings of the parser and the prover, we use the following
example code:

(∗ Example code fragment . ∗)
g ‘ x=x ‘ ; ;
e REFL TAC ; ;
l e t t = (∗ Use top thm to v e r i f y the proof . ∗)

top thm ( ) ; ;

Parser Because HOL Light proofs are written as syntactically correct scripts that
are interpreted by the OCaml read-eval-print loop (REPL), the parser separates
a proof script into the single commands that can be interpreted by this REPL.
These commands are, in the Flyspeck sources, terminated by ‘;;’3 and followed
by a newline, so our parser splits a proof script into commands by looking for
this terminator. Additionally, the proof can contain comments, surrounded by
‘(*’ and ‘*)’: we let the parser only emit a command if the terminator does not
occur as part of a comment. Finally, comment blocks that are not within other
commands are treated as separate commands. This last decision differs from
traditional source-code parsers, which regard comments as white space, because
Agora reconstructs the proof script’s appearance from the frames in the movie,
in order to show the complete proof script if a reader desires it.

The parser does not group the frames into a scene structure: a HOL Light
proof is represented as a single scene containing all frames. For our example, the
following frames are generated:

3 According to the OCaml reference manual,
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual003.html#toc4

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual003.html#toc4
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– (∗ Example code fragment. ∗)
– g ‘x=x‘;;

– e REFL TAC;;

– let t = (∗ Use top thm to verify the proof . ∗)
top thm ();;

The first comment does not occur within a command, so it is parsed as a separate
command, and the second comment occurs inside a command.

Prover. HOL Light is not implemented as a stand-alone program with its own
REPL. Instead, it is implemented as a collection OCaml scripts and some parsing
functions. This means that the ‘prover’ instance is actually a regular OCaml
REPL instance, which loads the appropriate bootstrap script. The problem of
this approach is that these scripts take several minutes to load, a heavy penalty
for wanting to edit a proof on the Web. To offset the load time, one can checkpoint
the OCaml instance after it has bootstrapped HOL Light. Checkpointing software
allows the state of a process to be written to disk, and restore this state from the
stored image later. We use DMTCP4 as our checkpointing software: it does not
require kernel modifications, and because of that is one of the few checkpointing
solutions that works on recent Linux versions.

Communication with the provers is encapsulated by a Python class: creating
an instance of the class loads the checkpoint and connects to its standard input
and output. The resulting object has a sendmethod which writes a provided com-
mand to standard input and returns the REPL’s response. Beyond this low-level
communication mechanism, the object also provides a send_framemethod. This
method takes an entire frame and sends the command stored in it. This method
does not only send the text, but also records the number of tactics that the prover
has executed so far, by examining the length of the current goalstack. This gives
an indication of how far a list of frames is processed, and allows the prover to use
HOL Light’s undo function to prevent executing too many commands.

After sending the frames generated from our example code, the frames have
stack numbers as shown in Table 1.

When the frame with the REFL TAC invocation is changed, the send_frame
method will send the HOL Light undo function, b ();; as many times as is
necessary to return to state 1. Afterwards, it will send the command of the
changed frame.

Table 1. Frames with state numbers

Command State

(∗ Example code fragment. ∗) 0
g ‘x=x‘;; 1
e REFL TAC;; 2
let t = ... 2

4 http://dmtcp.sourceforge.net

http://dmtcp.sourceforge.net
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The HOL Light glue does not send all commands equally: the Flyspeck formal-
ization packs its proofs within an OCaml module, which causes the REPL not
to give output until the module is closed. Because we want to give state infor-
mation per command, the gluing code ignores the module and end commands
that signal the opening and closing of modules.

Packaged Proofs. To allow Proviola to record a packaged proof, it needs to break
the proof down to its individual commands. To do this, we propose to use the
Tactician tool [17]: this is an extension to HOL Light that records a packaged
proof as it is executed, and allows the user to retrieve the actual tactics executed,
which exposes the tree-like structure of such a proof: some of the tactics in the
packaged proof might be applied multiple times, to different subgoals generated
during the proof.

We can use the sequential tactic script generated by Tactician directly, render-
ing it instead of the packaged proof, or do more sophisticated post-processing: we
could match up the generated tactics to their occurrence in the packaged proof,
and generate a special scene for each packaged proof. This scene would render
as the original proof, but execute the Tactician-generated sequence to provide
responses. This gives readers a better feel of what is going on in such a packaged
proof, but depends on a correct matching of the packaged proof to the sequential
proof. We have not yet fully investigated the reach of these possibilities, however,
so this remains as future work.

4.2 Hyperlinking

It seems that no proper hyperlinking facility exists so far for HOL-based systems.
Such a facility should plug in to the parsing layer of the systems (as done, e.g.,
for Coq and Mizar), and either export the information about symbols’ definitions
relative to the original formal text, or directly produce a hyperlinked version of
the text: this hyperlinking pass should be fast, so it can be run when a page is
loaded in the browser.

For HOL Light (and Flyspeck), we so far did not try to hook into the parsing
layer of the system, and only provide a heuristic hyperlinking system. Still, such
a hyperlinker can be useful, because relatively few concepts are overloaded in
the formalization, and most of the definitions and theorems are introduced using
a regular syntax: this means that the hyperlinker can generate an index for file
definitions with only a small chance of ambiguity. The hyperlinking proceeds in
two broad steps, an indexing step and a rendering step. The indexing is done by
a Perl script that generates a symbol index by:

1. collecting the globally defined symbols and theorem names from the formal
texts by heuristically matching the most common patterns that introduce
them,5 and

2. optionally adding and removing some symbols based on a predefined list.

5 To help this, we also use the theorem names stored by the HOL Light processing in
the ”theorems” file, using the mechanisms from the file update database **.ml.
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The page renderer of Agora then processes the texts again by heuristically to-
kenizing the text, looking up tokens and their linking in the generated index.
Additionally, the page rendering also uses the index to generate metadata that
can be used by the referencing mechanism [13].

The complete hyperlinking of the whole library now takes less than ten sec-
onds, and while obviously imperfect, it seems to be already quite useful tool
that allowed us to browse and study the library. The generated index of 15,780
Flyspeck entities together with their URLs can be loaded into arbitrary external
application, and used for separate heuristic hyperlinking of other texts. This
function is used by the script that translates the LATEX sources of the informal
text describing Flyspeck into wiki syntax (Section 5), to link the formally defined
concepts to their HOL Light definitions.

4.3 Editing and Proof Advising

Editing. We can directly use the tools that turn text into frames for building the
server backend of a (simple) web-based editor: the front end of this editor just
gathers the entered text and sends it to the server, the server processes it into
a list of frames and post-processes it: both by generating proof assistant (HOL
Light) responses and by sending markup information based on the correctness
of a part of the text. Because this processing is incremental, information can
be returned on demand: after the text has been parsed into frames, the server
can give the editor information as it is produced, using the protocols described
in [8]. As also described in that paper, it remains an open question on how to
properly deal with the impact of the formal text written in the editor, as this
might invalidate the entire repository. An example of the editor interaction is
shown in Figure 3. It already shows also the proof advising facility.

Fig. 3. The interactive editor built in the Wiki with the proof state for the line with
the cursor. The screenshot features a section of Harrison’s triangular numbers formal-
ization. In line 5 the advisor automatically finds a proof that n(n+1) is even, slightly
different from the one used in the edited formalization.
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Proof Advising In order to further facilitate the online Wiki authoring using
HOL Light, we have added a post-processing step to the editor. For each goal
interactively computed by the proof assistant, the editor automatically submits
this goal to the AI/ATP proof advisor (HOL(y)Hammer) service [18]. The advisor
uses a number of differently parametrized premise-selection methods (based on
various machine-learning algorithms) to find the most relevant theorems from
the Flyspeck library for a given goal, and passes them (after translation to first-
order logic) to automated theorem provers (ATPs) such as Vampire [19], E [20],
and Z3 [21]. If an ATP proof is found, it is minimized and reconstructed by a
number of reconstruction strategies described in [22]. In parallel to such AI/ATP
methods, a number of decision procedures are tried on the goal. The currently
used decision procedures are able to solve boolean goals (tautologies), goals that
involve naturals (arithmetic), integers, rationals, reals and complex numbers
including Gröbner bases. Whenever any of the strategies finds a tactic that solves
the goal, all other strategies are stopped and the result of the successful one is
transmitted to the Agora users through a window. The users can immediately
use the successful results in their proof.

The protocol to communicate with the advisor has been designed to be as
simple as possible, in order to enable using it not only as a part of Agora but
also via an experimental Emacs interface [18] and from the command line tool in
the spirit of old style LCF. A request for advice consists of a single line which is
a text representation of a goal to prove. To encode a goalstate as text the goal
assumptions need to be separated from the goal conclusion and from each other.
We use the ‘ character as such separator, since the character never appears in
normal HOL Light terms as it is used to denote start and end of terms by the
Camlp5 preprocessor. When a request for advice is received the server parses the
goal assumptions and conclusion together, to allow matching the free variables
present in more than one of them and ensure proper typing. The response is
also textual and the connection is closed when no more advice for the goalstate
is available. Server-side caching is used to handle repeated queries, typically
produced by refactoring an existing proof script in the Wiki.

5 Inclusion of the Informal Flyspeck Texts

We have used a version of the informal Flyspeck LATEX text that has 309 pages,
but only a smaller part has so far been chosen for the experiments: Chapter 5
(Fan). The file fan.tex has 1981 lines. There are 15 definitions (some of them
define several concepts) and 36 lemmas. The definitions have the following anno-
tated form (developed by Hales), which already cross-links to some of the formal
counterparts (formally defined theorem names like QSRHLXB and MUGGQUF and
symbols like azim_fan and is_Moebius_contour):

\begin{definition}[polyhedron]\guid{QSRHLXB}

A \newterm{polyhedron} is the

intersection of a finite number of closed half-spaces in

$\ring{R}^n$.

\end{definition}
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The lemmas are written in a similar style:

\begin{lemma}[Krein--Milman]\guid{MUGGQUF}

Every compact convex set $P\subset\ring{R}^n$ is the convex hull

of its set of extreme points.

\end{lemma}

The text contains many mappings between informal and formal concepts, e.g.:

\formaldef{$\op{azim}(x)$}{azim\_fan}

\formaldef{M\"obius contour}{is\_Moebius\_contour}

\formaldef{half space}{closed\_half\_space, open\_half\_space}

There are several systems that can (to various extent) transform LATEX texts to
(X)HTML and similar formats. Examples include LaTeXML6, PlasTeX7, xhtm-
latex8, and TeX4ht.9 Often they are customizable, and some of them can be
equipped with custom non-HTML (e.g., wiki) renderers. For the first experi-
ments we have however relied only on MathJaX for rendering mathematics, and
custom transformations from LATEX to wiki syntax that allow us to easily experi-
ment with specific functions for cross-linking and formalization without involving
the bigger systems. The price for this is that the resulting wiki pages are more
similar to presentations in ProofWiki and Wikipedia than to full-fledged HTML
book presentations. We might switch to the larger extendable systems when it
is clear what extensions are needed for our use-case.

The transformations are now implemented in about 200 lines of a Perl script
(Creolify.pl) translating the Flyspeck LATEX sources into the enhanced Creole wiki
syntax used by Agora. The script is easily extendable, and it now consists mainly
of about 30 regular-expression replacements and related functions taking care
of the non-mathematical LATEX syntax and macros. The mathematical text is
handled by the (slightly modified) macros taken from Flyspeck (kepmacros.tex)
that are prepended to any Agora Flyspeck text and used automatically by Math-
Jax. Producing and tuning the transformations took about one to two days of
work, and should not be a large time investment for (formal) mathematicians
interested in experimenting with Agora. The particular transformations that are
now used for Flyspeck include:

– Transformations that handle wiki-specific syntax that is (intentionally or
accidentally) used in LATEX, such as comments, white space, fonts and section
markup.

– Transformations that create wiki subsections for various LATEX blocks, sec-
tions, and environments. Each definition, lemma, remark, corollary, and
proof environment gets its own wiki subsection, similarly, e.g., to ProofWiki
and Wikipedia.

6 http://dlmf.nist.gov/LaTeXML/
7 http://plastex.sourceforge.net/
8 http://www.matapp.unimib.it/~ferrario/var/x.html
9 http://tug.org/tex4ht/

http://dlmf.nist.gov/LaTeXML/
http://plastex.sourceforge.net/
http://www.matapp.unimib.it/~ferrario/var/x.html
http://tug.org/tex4ht/
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– The transformation that add linking and cross-linking, based on the LATEX
annotations. Each LATEX label produces a corresponding wiki anchor, and
each LATEX reference produces a link to the anchor. Newly defined terms
(introduced with the newterm macro) also produce anchors. Formal anno-
tations (introduced with the guid and formaldef macros) are first looked
up in the index of all formal concepts produced by hyperlinking of the for-
malization (Section 4.2), and if they are found there, such annotations are
linked to the corresponding formal definition.

6 Conclusion and Future Work

The platform is still in development, and a number of functions can be im-
proved and added. For example, whole-library editing, guarded by global con-
sistency checking of the formal code that has been already verified (as done for
Mizar [23]), is future work. On the other hand, the platform already allows the
dual presentation of mathematical texts as both informal and formal, and the
interaction between these two aspects. In particular, the platform takes both
LATEX and formal input, cross-links both of them based on simple user-defined
macros and on the formal syntax, and allows one to easily browse the formal
counterparts of an informal text. It is already possible to add further formal
links to the informal concepts, and thus make the informal text more and more
explicit. A particular interesting use made possible by the platform is thus an
exhaustive collaborative formal annotation of the Flyspeck book. The platform
also already includes interactive editing and verification, which allows at any
point of the informal text to switch to formal mode, and to add the correspond-
ing formal definitions, theorems, and proofs, which are immediatelly hyperlinked
and equipped with detailed proof status information for every step. The editing
is complemented by a relatively strong proof advice system for HOL Light. This
is especially useful in a Wiki environment, where redundancies and deviations
can be discovered automatically. The requests for advice can become grounds
for further experiments on strengthening the advice system.

One future direction is to allow even the non-mathematical parts of the wiki
pages to be written directly with (extended) LATEX, as it is done for example in
PlanetMath. This could facilitate the presentation of the projects developed in
the wiki as standalone LATEX papers. On the other hand, it is straightforward to
provide a simple script that translates the wiki syntax to LATEX, analogously to
the existing script that translates from LATEX to wiki.
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Abstract. In a variety of applications, such as handwritten mathemat-
ics and diagram labelling, it is common to have symbols of many different
sizes in use and for the writing not to follow simple baselines. In order to
understand the scale and relative positioning of individual characters, it
is necessary to identify the location of certain expected features. These
are typically identified by particular points in the symbols, for example,
the baseline of a lower case “p” would be identified by the lowest part
of the bowl, ignoring the descender. We investigate how to find these
special points automatically so they may be used in a number of prob-
lems, such as improving two-dimensional mathematical recognition and
in handwriting neatening, while preserving the original style.

Keywords: Handwriting analysis, Handwriting neatening, Mathemati-
cal handwriting recognition, Pen computing.

1 Introduction

Many digital ink applications allow handwritten characters in various sizes and
in different locations. For example, in mathematics, subscripts and superscripts
appear relatively smaller than normal text and are written slightly below or
above it. Moreover, these subscripts and superscripts may themselves have sub-
scripts or superscripts. Such notation is easily read and understood. This involves
determining the relative baselines and sizes of symbols. This process may present
various ambiguities, for example whether a particular symbol is a lower case “p”
or an upper case “P” giving the subscripted pq or the juxtaposed Pq.

In order to find the scale and offset of individual characters, it is necessary to
identify the location of certain expected features which are typically defined by
particular points. These particular points occur at different locations in different
symbols, and the precise location can vary in different handwriting samples of
the same symbol. For example, the baseline of lowercase “p” would be identified
by the lowest part of the bowl, ignoring the descender. In contrast, the baseline
of lowercase “k”, would be identified by the toes. In this article we refer to a
point such as this, that determines the height of a metric line, as a determining
point. Knowing the determining points of each symbol can help us solve a num-
ber of problems. For example, one can use the determining points to improve
two-dimensional mathematical recognition. By comparing the baseline locations

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 168–183, 2013.
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and the sizes of adjacent symbols, one can identify superscripts and subscripts
(e.g. S2, S2, S

2) with more confidence. Another application is in handwriting
neatening. Since handwritten symbols often come with variations in alignment
and size, certain transformations based on determining points can be applied to
obtain normalized samples while preserving the original writing style.

Recording determining points for an individual handwritten symbol is easy.
One can manually annotate the symbol with the positions of all its determin-
ing points. However, finding determining points for all symbols in a collection is
much more challenging. First, with a large database the labour for manual anno-
tation would be prohibitively costly. Secondly, applications such as mathematics
involve a large variety of symbols derived from a range of alphabets and other
sources. In practice, many of them are often poorly written and there is no fixed
dictionary of words to aid in disambiguation [1]. This increases the difficulty to
find determining points reliably. Meanwhile, each person’s handwriting is unique
— even identical twins write differently [2]. Even if a training database were to
be fully annotated, it is not entirely clear how this should best be used to iden-
tify the points of interest in new input. Last, but not least, the usual methods
for detecting determining points depend on device resolution significantly. With
rapidly evolving technology, this means that new algorithms cannot use archival
data directly and therefore must be “re-sampled” (interpolated).

We are interested in the problem of how to automatically find determining
points of handwritten mathematical symbols and to use them in a variety of prob-
lems. Considerable related work has been conducted, some of which we highlight
here. Pechwitz and Märgner [3] proposed an algorithm that can find determining
points from symbol skeleton approximated by piecewise linear curve. However,
these determining points are only useful in detecting baseline locations. In 2010,
Infante Velázquez [4] developed an annotation tool to record determining points
manually for handwritten characters represented in InkML [5]. The determining
points were later used to neaten new handwriting, making it uniform in size,
alignment and slant while preserving writers’ particular writing styles. However,
this tool recorded each determining point with absolute coordinates and was
therefore subject to device resolution and variations in style. As device resolu-
tion may vary among different vendors and over generations of technology, this
approach is not device-independent. Similar problems exist in [6]. In addition,
Zanibbi et al. [7] proposed a technique to automatically improve the legibility
of handwriting by gradually translating and scaling individual symbol to closely
approximate their relative positions and sizes in a corresponding typeset ver-
sion. This technique detects baseline locations by comparing symbols’ bounding
boxes, which leads to troubles with vertical placement and scale. For example, it
fails to distinguish between “x2” and “x2”. In 2012, Hu and Watt [8] presented
an algorithm to find turning points that determine the shape of characters, but
that approach lacked the ability to capture the geometric meaning of each deter-
mining point and therefore does not provide sufficient information to calculate
certain desired symbol metrics, such as the location of baseline. Harouni et al.
[9] later proposed a method to find determining points in handwritten Arabic
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Fig. 1. An example to illustrate the concepts of metric lines

characters. The method consisted of two stages. In the first stage, the raw input
data were converted to a standard format using smoothing, normalization and
interpolation techniques. In the second stage, each stroke of input characters
was split into several pieces. The method calculated the local maximum and
minimum of each piece and recorded them as determining points. However, this
method is not optimal as it requires extra effort to split strokes and may generate
undesired determining points that lack meaning.

In this article, we present an algorithm to find determining points auto-
matically and suggest how they may be used in areas such as improving two-
dimensional mathematical recognition and in neatening handwriting. The basic
approach is to identify the points of interest on one average instance of each
type of symbol, and to use this information to find the corresponding points on
newly written symbols. We borrow ideas from typography, where a number of
determining points are identified to measure the metrics of different font fami-
lies, and apply these to handwriting. We consider several types of determining
points, which, in turn, determine certain metrics. These include the locations
of the five main metric lines, i.e. the baseline, x line, ascender line, cap line,
and descender line, as shown in Figure 1, as well as symbol width and slant. To
make the determining points device-independent, the algorithm first converts all
handwritten symbols into parametric curves approximated by truncated orthog-
onal series, mapping each symbol to a single point in a low dimensional vector
space of series coefficients. We then compute the average symbol for each class
by computing the average of the points for the class in the vector space. The de-
termining points of interest are identified on these average symbols. From these,
the algorithm can derive corresponding determining points in samples automat-
ically. The beauty of this algorithm is that it is writer-independent. We only
need to annotate once, on the average symbols. This reduces cost significantly.
Furthermore, the algorithm is device-independent as all symbols are represented
in the functional space, which is robust against changes in device resolution.

The remainder of this article is organized as follows. In Section 2, we recall
how to represent digital ink using functional approximation. Section 3 discusses
several types of determining points that are useful in finding symbol alignment
lines. In Section 4, we present the algorithm that can identify determining points
in handwritten mathematical symbols automatically. Section 5 evaluates the per-
formance of the algorithm. We then investigate the possible use of the algorithm
in a number of problems in Section 6. Section 7 concludes the article.
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2 Functional Approximation for Digital Ink

Digital ink is generated by sampling points from a traced curve at a certain rate,
and thus is typically given in the form of a series of points, each of which contains
x and y values in a rectangular coordinate system at a sequence of times. Since
the sampling rate and resolution typically depend on the hardware type, different
devices usually result in different numerical point values for the same character.
In order to take device differences into account, various ad hoc treatments have
been developed, such as size normalization and “re-sampling” (interpolation). To
make the representation more robust under changes in hardware, we represent
handwritten symbols as coefficients for an approximating basis in a function
space. This approach has been used in earlier work [10–13].

We consider an ink trace as a segment of a plane curve (x(s), y(s)), parame-
terized by Euclidean arc length

s =

∫ √
dx2 + dy2.

This parameterization has been found to lead to good recognition and is intuitive
sense, since it gives curves that look the same the same parameterization [10].
Given a digital ink trace (x(s), y(s)) and an approximating basis {Bi(s)}i=0,...,d,
we represent the trace using the coefficients xi and yi from

x(s) ≈
d∑

i=0

xiBi(s) y(s) ≈
d∑

i=0

yiBi(s)

It is convenient to choose the functions Bi(s) to be orthogonal polynomials, e.g.
Chebyshev, Legendre or some other polynomials. By choosing an appropriate
family of basis polynomials to high enough degree, the approximating curve can
be made arbitrarily close to the original trace.

We have found a Legendre-Sobolev basis allows approximating curves to have
the desired shape for relatively low degrees. These may be computed by Gram-
Schmidt orthogonalization of the monomials {si} with respect to the inner
product

〈f, g〉 =
∫ b

a

f(s)g(s)ds+ μ

∫ b

a

f ′(s)g′(s)ds.

If a symbol has multiple strokes, we join consecutive strokes by concatenating the
point series, which yields a single curve. For more details see [13]. An example
of using Legendre-Sobolev polynomials in approximation is shown in Figure 2.
After approximation, we may now represent the digital ink trace, or symbol, as
the coefficient vector (x0, ..., xd, y0, ..., yd). We may standardize the location and
size of the character by setting x0, y0 to 0 and the norm of the vector to 1.
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(a) (b)

Fig. 2. Approximation using Legendre-Sobolev series. (a) Original.
(b) Approximated using series of degree 12 with μ = 1/8.

3 Handwriting Metrics

In order to understand the scale of individual symbols, it is necessary to identify
the location of certain expected features which are typically defined by a number
of determining points. These determining points have locations that vary from
symbol to symbol, but typically occur where parts of the symbols touch certain
invisible horizontal lines. To discuss this, we adopt concepts from typeface design.
In this article, we consider several types of determining points related to the
following metrics. We concentrate on symbols used in European alphabets. Many
other writing systems would have other metric lines determined in a similar way.

Baseline. Most scripts share the notion of baseline. It is a guide line for writing
so that adjacent symbols can retain their horizontal alignment. It is also used as
the reference to obtain other metrics such as x height, ascender height, etc. While
some symbols such as lower case “p” may extend below the baseline, it serves as
the imaginary base for most symbols. Figure 3 shows examples of baselines and
their determining points. As shown in Figure 3(b), the three legs of the lowercase
“m” are not completely aligned. In such case, multiple determining points are
identified and the location of the baseline may be determined by the average y
value of all the determining points.

X Line and Height. The x line falls at the top of most lowercase symbols,
such as “a” and “y”, and is located over the baseline. Some symbols may extend
above the x line, such as “h” where the x line is located at the top of the shoulder.
The x height is the distance between the baseline and the x line. Figure 4 shows
an example of x line and associated determining points. Certain symbols, such
as lowercase “x”, may have multiple determining points to define the x line. In
such a case, the location of the x line is determined by the average of their y
values.

Ascender Line and Height. The part of a lowercase symbol, such as “h” and
“k”, that extends above the x line is known as an ascender. The ascender line
is located above the x line and is determined by the height of the ascenders.
The ascender height is the distance between the baseline and the ascender line.
Figure 5 shows an example of an ascender line and ascender height. The location
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(a) (b)

Fig. 3. Baseline with (a) one, and (b) multiple determining points.

(a) (b)

Fig. 4. x line and x height with (a) one, and (b) multiple determining points.

of the ascender line is determined by the determining point shown in red. In the
case that there are multiple determining points, the location of the ascender line
is given by the average y value of all the relevant determining points.

Cap Line and Height. The cap line is used to align uppercase symbols and
is usually located below the ascender line, although it is not limited to that
position. Indeed, in handwriting it often coincides with the ascender line. The
cap height is the distance between the baseline and the cap line. Figure 6 shows an
example of a cap line and cap height. The location of the cap line is determined
by the determining point shown in red. In the case that there are multiple
determining points, the location of the cap line may be taken as the average y
value of all the determining points.

Descender Line and Height. The descender line is located below the baseline.
It is used to align descenders, which are the parts of symbols that extend below
the baseline. Figure 7 shows an example of a descender line and descender height.
If there are multiple determining points, the location of the descender line is given
by the average y value of all the determining points.

Slant and Width. In some handwriting styles, symbols are written with incli-
nation either to the left or to the right. The degree of inclination is referred to
as the slant. The width of a symbol is given by the horizontal distance from the
left-bounding and right-bounding lines with the given slant. Figure 8 shows an
example of symbol width and slant.
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Fig. 5. Ascender line and height Fig. 6. Cap line and height

Fig. 7. Descender line and height Fig. 8. Slant (θ) and width

4 Algorithm

In this section, we present an algorithm to find automatically the determining
points for newly written symbols. The algorithm derives determining points for a
new symbol from the known determining points of an annotated average symbol
of the same type.

Average Symbols

We classify symbols so that symbols that are written the same way and could be
interpreted the same way are in the same class. So, for example, there may be
several classes for the numeral “8”, depending on whether the symbol is written
with one continuous stroke or two separate strokes, which stroke is written first
and the direction of writing. On the other hand, a Latin letter “O” and the
numeral “0” could belong to the same class.

Taking each sample as a point in the functional approximation space, it has
been found in earlier work that classes of points are almost completely pair-
wise separable by single hyperplanes. Thus the convex hulls of the class point
sets are to a good approximation non-intersecting. Any point on a line segment
between two sample points of the same class falls within that class. It is therefore
meaningful to compute the average of a set of known samples for a class as the
average point in the function space
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(a) (b)

Fig. 9. (a) Samples provided by different writers. (b) The average symbol.

C̄ =

n∑
i=1

Ci/n,

where n is the number of the samples and Ci is the coefficient vector for the
ith sample. Figure 9(a) shows a set of samples provided by different writers and
Figure 9(b) shows the average symbol.

Deriving Determining Points from Average Symbols

Our algorithm is based on the observation that the average symbols typically look
similar to the samples of the same class. Within a given class, the features present
in one sample should be present in other samples and at a similar location. We
can take the location to be the arc length along the ink trace to the defining
point of the feature. We assume that, if two symbols are sufficiently similar, the
locations of corresponding determining points will be similar (given by distance
along the curve).

This suggests that we can find the determining points of a new symbol by
taking the known locations on an annotated symbol and making an adjustment.
In more detail, to detect the determining points in a sample, we start with an
annotated sample in the same class. For now, this will be the average of the
training samples, annotated with its determining points. Each annotation con-
sists of the location (as arc length), the type of determining point (e.g. baseline,
x line, etc) and whether it is located at a local minimum or local maximum of y
value.

For each determining point of the annotated sample, we guess that the corre-
sponding determining point on the new sample will be near the same arc length
location. So we take the point at that location in the new sample and follow
the trace upward or downward, depending on whether that determining point
is supposed to be at a local minimum or local maximum. This can be easily
done using a number of numerical methods. In our implementation, we applied
Newton’s method to solve y′(s) = 0. A formal algorithm is given in Algorithm 1.

Figure 10 shows examples of using Algorithm 1. Figure 10(a) shows the deter-
mining points annotated on the average symbol “η”. This is the reference symbol
A in the algorithm. Figures 10(b1) and 10(c1) show two example input samples S
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Algorithm 1. LocateDeterminingPoints

Input : A, the coefficient vector for a reference symbol.

DA = [(s1, T1,K1), . . . (sn, Tn,Kn)], a vector of determining points.
For each, the position is given as arc length si on the curve of A, the
value Ti states which type of metric line is being defined, and the value
Ki states whether the metric line is given by a local minimum or local
maximum at yA(si).

S, the coefficient vector for the input sample whose determining points
are to be found.

Output: DS = [(�1, T1,K1), . . . , (�n, Tn,Kn)], giving the locations, �i, and
types of the determining points of S.
The value of �i along S corresponds to the value si along A.

1. Let xA(s), yA(s), xS(s), yS(s) be the coordinate functions defined by the
coefficient vectors A and S.
2. for i ∈ 1..n do

if Ki = max then
f ←− −yS

else if Ki = min then
f ←− yS

�i ←− local minimum of f(s) nearest s = si.

Note this local minimum or maximum is of a real univariate polynomial and
any standard method may be used. For example, we use Newton’s method to
solve f ′(s) = 0 with initial point s = si.

3. Return[(�1, T1,K1), . . . , (�n, Tn, Kn)]

with initial approximate locations si for the determining points. Figures 10(b2)
and 10(c2) show the determining points found at locations �i. Figure 11 shows
several examples of determining points found for samples of “π”.

5 Experiments and Testing

We developed a software tool to annotate handwriting samples with their deter-
mining points. Figure 12 shows the user interface. By selecting a nearby location,
the tool is able to find the target determining point automatically. The locations
of all the metric lines discussed in Section 3 can be detected. Multiple deter-
mining points may exist for certain metrics lines. In such circumstances, the
location of the corresponding metric line is determined by the average of the
values given by all the determining points of that kind. Symbol slant can also be
recorded by adjusting a spinner. Symbol width is automatically detected with
slant considered.

To evaluate the performance, we have tested the algorithm against a large
handwriting dataset. The handwriting dataset we used contained altogether
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(a) (b1) (b2) (c1) (c2)

Fig. 10. Automatically finding determining points. (a) Average symbol “η”.
(b1) Sample 1 initial approximations and (b2) with determining points found.
(c1) Sample 2 initial approximations and (c2) with determining points found.

(a) (b) (c) (d) (e)

Fig. 11. Automatically finding determining points. (a) Average symbol “π”.
(b-e) Determining points derived from the average symbol.

64944 samples of 240 different symbols. Most of the samples are Latin and Greek
letters, digits, operators, or other mathematical symbols provided by various
writers. All of these samples had been classified in advance. As some symbols
were written in different styles (e.g. completely different forms, different numbers
of strokes, or strokes in different orders), a total of 382 classes were examined. We
first computed the average symbol for each class, in which determining points
were identified using the software tool shown in Figure 12.

We then computed determining points for all the samples using Algorithm 1.
The number of determining points varied from 2 to 5, according to the sample.
If any of the determining points were mis-positioned, we considered it as incor-
rect. We chose up to 30 samples randomly from each class and examined their
correctness visually. In total, we examined 8119 samples, of which 421 samples
have at least one mis-positioned determining point. This gave a measured error
rate of 5.2%.

We found the error was introduced mainly from two sources. The first was
mis-classified samples in the original data set. These were either mis-labelled (e.g.
“e” of style 1, instead of “e” of style 2), or had strokes given in a different order
from the usual. In this latter case, we have the option of defining a new style or
normalizing the order of the strokes. The second source was that some samples
are significantly different from the average symbol. As a result, the determining
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Fig. 12. Software tool to identify determining points.

points in the average symbol may not be mapped correctly to those dissimilar
samples.

As misclassified samples were errors in the training data, rather than errors
by the algorithm, we excluded those samples from the experiment. We further
added 39 new classes (giving 421 classes in total) to split out those samples
with different stroke orders. After these corrections, the measured error rate
decreased to 2.0% (9593 samples reviewed, of which 189 samples had at least
one mis-positioned determining point).

To address the second issue, that of points mis-positioned because the sample
was far from the average shape, we used a homotopy between the average and
the test sample in a multi-step method. Recall that, in the function space, a
line from the average symbol to the test sample lies entirely within the class.
By dividing this line into several equal steps, we may apply Algorithm 1 several
times to follow the determining points through the homotopy. If C̄ is the average
symbol for the class and Ctarg is the input sample, then the line joining the two
points in the function space is given by C(t) = (1− t)C̄ + tCtarg, with t ranging
from 0 to 1. The determining points should move smoothly as the character is
deformed by the homotopy, and we can choose a step size. Figure 13 shows an
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(a) (b)

Fig. 13. Failure example: (a) average symbol, (b) target with one point misplaced

(a) (b) (c) (d)

Fig. 14. Success in 3 steps: (a) average (b) step 1 (c) step 2 (d) step 3 = target

Table 1. Error rates of the multi-step method on 9593 samples

Steps 1 2 3 4 6 8 10 20

Failed Samples 189 69 36 28 25 25 24 24

Error Rates 2.0% 0.72% 0.38% 0.29% 0.26% 0.26% 0.25% 0.25%

example where Algorithm 1 fails to identify one of the determining points when
applied naively. However, when applied in a 3 step homotopy, it succeeded, as
shown in Figure 14.

We have tested the multi-step method against the same handwriting dataset.
We chose up to 30 samples randomly from each class and examined their cor-
rectness visually. The measured error rates are reported in Table 1. The samples
that failed in the 10-Step and 20-Step methods typically either had slants that
interfered with the strategy of using local minimum or maximum y value to
find determining points or that were very badly written. For these samples, our
algorithm was able to identify some determining points correctly but not all of
them, as shown in Figure 15. Note that the points found would in any case be
sufficient for most applications.
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(a) (b) (c) (d)

Fig. 15. Multi-step failures: (a) Average, (b) target. (c) Average, (d) target.

6 Use Cases

Determining points can be used in a variety of digital ink applications to solve
different problems. Here we describe two scenarios in which determining points
have been found useful.

Handwriting Recognition

Juxtaposition ambiguity is common in mathematical handwriting recognition.
This is usually caused by symbols that are next to each other are written in
different sizes and at different heights. Figure 16 shows an example with several
relative positionings of two characters. The first character can in each case be a
“P” or “p” and the second can be interpreted as a “q” or “9”. Together there
could be a variety of possible interpretations:

P 9 P9 P9 p9 p9 p9
P q Pq Pq pq pq pq

However, by comparing symbols’ baseline locations and sizes, we can predict each
expression with more confidence. This is because the baselines of subscripts and
superscripts are typically placed slightly below or above the normal line of text
and their sizes are relatively smaller. Note that to determine the relative position,
it is definitely not sufficient to compare the baselines of the symbol bounding
boxes. This is seen in Figure 17(d). Similarly, having an imputed baseline deter-
mined by symbol class (such as at 50% height for “q”) is insufficient. We thus
find it is important to find and use the symbol’s determining points.

Handwriting Neatening

Handwriting neatening is becoming possible in some digital ink applications.
It is used to transform handwriting to obtain visually appealing output while
preserving the original writing style. Figure 18 shows an example. By identifying
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(a) (b) (c) (d) (e) (f)

Fig. 16. Juxtaposition ambiguity.

(a) (b) (c) (d)

Fig. 17. Disambiguation by baselines. (a) P9 (b) Pq (c) pq (d) p9

(a) (b)

Fig. 18. Neatening using determining points. (a) original, (b) neatened.

(a) (b)

Fig. 19. Neatening using determining points. (a) original, (b) neatened.
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the determining points of each character, we can shift and scale these characters
to make corresponding metrics lines aligned properly, as shown in Figure 18(b).
Figure 19 shows a second example. In this case, all characters including the
superscripts and subscripts were adjusted in order to obtain a normalized output.
Transforming the function y(s) for each symbol is the simplest approach to
neatening. A more aggressive approach is to replace each input symbol with the
appropriately scaled version of the average of like symbols seen by the same
writer, and further transformations can be employed. However, this is beyond
the scope of the present article.

7 Conclusion and Future Work

We have presented an algorithm to identify automatically the determining points
in handwritten symbols. Identifying these determining points helps us better
understand the scale of individual characters as well as find the locations of
certain desired features. In contrast to existing methods, which treat digital ink
traces as a collection of discrete points, this algorithm relies on interpreting ink
traces as single points in a functional space. This allows device independence,
on one hand, and a simple formulation of homotopic deformation, on the other.

Various features can be recorded by using the determining point algorithm.
The nature of the determining points depends on the symbol set used. In our
case, the symbols were based mostly on those of European languages and math-
ematical operators, so the baseline, x line, ascender line, descender line and cap
line were used.

To evaluate the performance of the algorithm, we have tested it against
a database of handwritten mathematical characters. The experiments showed
promising results. To demonstrate possible use of determining points, we have
described two scenarios: handwriting recognition and handwriting neatening, in
both of which determining points have been found useful.

There are a few directions we would like to pursue in the future. First, we wish
to include determining points in our handwriting recognizer. It is expected that,
combined with ambient baseline information, this will improve the recognition
rate. Secondly, we would like to investigate using rotation- and slant-invariant
techniques [14, 15] in conjunction with the present methods. At a more detailed-
level, we would like to annotate all samples in our database using a supervised
multi-step method. This will allow us to perform a more satisfying statistical
analysis of the effectiveness of our method. Finally, before incorporating these
techniques in our recognition framework, we would like to investigate the corre-
lation between the model-sample distance and the number of steps required for
low error rates, and how the number of required steps varies by class.

We would like to thank Isaac Watt for helping to organize the handwriting
dataset used in the experiments.
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Capturing Hiproofs in HOL Light
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Abstract. Hierarchical proof trees (hiproofs for short) add structure to
ordinary proof trees, by allowing portions of trees to be hierarchically
nested. The additional structure can be used to abstract away from de-
tails, or to label particular portions to explain their purpose.
In this paper we present two complementary methods for capturing

hiproofs in HOL Light, along with a tool to produce web-based visual-
isations. The first method uses tactic recording, by modifying tactics to
record their arguments and construct a hierarchical tree; this allows a
tactic proof script to be modified. The second method uses proof record-
ing, which extends the HOL Light kernel to record hierachical proof
trees alongside theorems. This method is less invasive, but requires care
to manage the size of the recorded objects. We have implemented both
methods, resulting in two systems: Tactician and HipCam.

1 Overview

Proofs constructed by an interactive theorem proving system can be extremely
complex. This complexity is reflected in the size of input proof scripts needed
for large verifications, which may amount to hundreds of thousands of lines of
proof script. It is also reflected in attempts to demonstrate the overall result of
a proof development as a proof tree: real proof trees rapidly become large and
unwieldy and the debate over their utility continues.

A common way of managing complexity is by introducing hierarchy. This
can be done in the input proof script language: an example is the Isar proof
language [17]. Isar uses block structure to induce a hierarchy; new blocks are
introduced for proof constructs like induction and case distinction.

Hierarchy can also be used to tame large proof trees, which is our focus in
this paper. We employ a notion of hierarchical proof known as hiproofs [11,6].
The hope is that by providing mechanisms to add hierarchy to proofs as they
are constructed, we may build proof trees that can be more easily managed and
exploited in useful ways. With good interfaces, users may be able to navigate
proof trees comfortably, to zoom in on some detail about how a proof proceeded,
or to gain an oversight without having expert knowledge of the source language.
Automatic tools may be provided that take advantage of hierarchy and labelling,
for example, allowing operations for querying and transforming proofs (such as
the prototype query language in [7]) or providing inputs for machine learning to
investigate patterns in proof.

Block structured proof scripts and hierarchical proofs fit well together; the lat-
ter can provide a semantics for the former [19]. Here we chose to start work from

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 184–199, 2013.
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HOL Light [1], which does not have a hierarchical input language. Proofs are
constructed by composing tactics in the meta-language OCaml. So we need other
ways of introducing hierarchy. This is possible by several means: by transform-
ing a previously produced proof tree, by modifying standard tactics to produce
nested labelled proofs, or by introducing dedicated user-level tactics. We use the
tactic based mechanisms here.

Outline. We will first give a quick introduction to hiproofs. We then describe
two methods for obtaining hierarchical proofs in HOL Light. Both work by in-
strumenting the HOL Light theorem prover, but they work on different levels of
atomicity. The Tactician tool works at the layer of tactics by modifying them
so that proof information is recorded in a goal tree. The HipCam tool works at
the layer of inference rules and modifies the HOL Light kernel so that hiproofs
are recorded in the theorem data structure, thereby extending the proof record-
ing approach described in [16] to also record hierarchy. The two approaches have
complementary advantages and disadvantages; further discussion follows as they
are introduced and in the concluding section.

2 Hierarchical Proofs

As an introductory example, Figure 1 shows the proof of the HOL Light theorem
TRANSITIVE_STEPWISE_LT_EQ. HOL Light is written in OCaml and therefore we
use a prettified OCaml notation in this paper. Figure 2 shows the hierarchical
proof generated from this proof by Tactician (a similar visualisation can be
generated via HipCam), and Figure 3 shows the expanded version of the <==

box. All boxes have been introduced automatically during the generation of the
hiproof, with the exception of the box labelled “Prepare induction hypothesis”,
which has been introduced by an explicit labelling command.

let TRANSITIVE_STEPWISE_LT_EQ = prove

(‘!R. (!x y z. R x y /\ R y z ==> R x z)

==> ((!m n. m < n ==> R m n) <=> (!n. R n (SUC n)))‘,

REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[LT] THEN

DISCH_TAC THEN SIMP_TAC[LT_EXISTS; LEFT_IMP_EXISTS_THM] THEN

GEN_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN

REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL; ADD_CLAUSES] THEN

INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES] THEN ASM_MESON_TAC[]);;

Fig. 1. Tactic-style proof of TRANSITIVE STEPWISE LT EQ

Hiproofs were introduced by Denney et al [11], as a uniform formalisation of
ideas that had been experimented with in several proof development systems.
Denotationally, hiproofs are described as a forest of trees with a nesting relation.
A syntactic formulation was added later [6]; adapted to the purposes of this
paper, this syntax can be represented as a datatype as follows:
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Fig. 2. Hierarchical proof of TRANSITIVE STEPWISE LT EQ

type hiproof =

Atomic of label × goal × int

| Sequence of hiproof list

| Tensor of hiproof list

| Box of label × hiproof

Here Atomic (l, g, n) represents the application of an atomic tactic labelled l to
a goal g yielding n subgoals (Fig. 4) whereas Sequence and Tensor are used
to build more complex proofs. The left hiproof in Figure 5 illustrates this, the
picture shown corresponds to the hiproof expression g defined by

g = Sequence [Atomic (T1, A, 2), Tensor [Atomic (T2, B, 1), Atomic (T3, C, 2)]].

The basic idea of hierarchical proofs is now that tactics are not necessarily atomic
but that it is possible to “look inside” a tactic by representing its inside as a
hiproof, too. The expression Box (l, h) allows this and denotes a tactic labelled l
with an inner hiproof. The right hiproof in Figure 5 boxes up the hiproof g to
its left and is written in our notation as Box (“Tactic”, g).

Labels are arbitrary and can be used for different purposes; they can contain
simple names for tactics or proof methods as we show in examples, or could, for
example, contain references into the source code of the proof.

We are only interested in well-formed hiproofs. In well-formed hiproofs se-
quences and tensors are at least two elements long. To check further require-
ments, let the function IN : hiproof → int be defined via
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Fig. 3. Expanded box in hiproof of TRANSITIVE STEPWISE LT EQ

Fig. 4. Atomic (Tactic, A, 3)



188 S. Obua, M. Adams, and D. Aspinall

Fig. 5. Composite hiproof (left) and its boxed up version (right)

IN(Atomic(l,g,n)) = 1

IN(Sequence [e,. . .]) = IN(e)
IN(Tensor[e1,. . .,en]) = IN(e1) + . . . + IN(en)
IN(Box(l,h)) = IN(h)

and let the function OUT : hiproof → int be defined via

OUT(Atomic(l,g,n)) = n
OUT(Sequence [. . .,e]) = OUT(e)
OUT(Tensor[e1,. . .,en]) = OUT(e1) + . . . + OUT(en)
OUT(Box(l,h)) = OUT(h)

Now IN(h) denotes the number of subgoals that the proof h proves, and OUT(h)
is the number of subgoals that still need to be proved after h has been considered.
Then a well-formed hiproof H is subject to the following additional constraints:

– Every hiproof contained in H is well-formed, too.
– H = Box(l, h) implies IN(h) = 1.
– H = Sequence[e1, . . ., en] implies OUT(ei) = IN(ei+1) for 1 ≤ i < n.

The well-formedness constraints ensure that hiproofs are “plugged together”
correctly, and serve as (informal) invariants maintained in our software.

Our implementations include a module (based on Javascript and HTML5
Canvas) that displays well-formed hiproofs in a web browser as shown in Figure 2
and Figure 3. Boxes can be collapsed so that they display only their label and not
their inner hiproof. The display of intermediate goals can be toggled individually.

In the next two sections we will present two methods for capturing hiproofs
of HOL Light theorems.
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label flattened proof

A

B

C

D

E

F

G

H

I

J

K

L

M

N

g ‘!R. (!x y z. R x y /\ R y z ==> R x z)

==> ((!m n. m < n ==> R m n) <=> (!n. R n (SUC n)))‘;;

e (REPEAT STRIP_TAC);;

e (EQ_TAC);;

(* *** Subgoal 1 *** *)

e (ASM_SIMP_TAC [LT]);;

(* *** Subgoal 2 *** *)

e (ASM_SIMP_TAC [LT]);;

e (DISCH_TAC);;

e (SIMP_TAC [LT_EXISTS; LEFT_IMP_EXISTS_THM]);;

e (GEN_TAC);;

e (ONCE_REWRITE_TAC [SWAP_FORALL_THM]);;

e (REWRITE_TAC [LEFT_FORALL_IMP_THM; EXISTS_REFL; ADD_CLAUSES]);;

e (INDUCT_TAC);;

(* *** Subgoal 2.1 *** *)

e (REWRITE_TAC [ADD_CLAUSES]);;

e (ASM_MESON_TAC []);;

(* *** Subgoal 2.2 *** *)

e (REWRITE_TAC [ADD_CLAUSES]);;

e (ASM_MESON_TAC []);;

Fig. 6. Flattened proof of TRANSITIVE STEPWISE LT EQ

3 Tactician

Tactician is a productivity tool for refactoring individual HOL Light tactic proof
scripts. It supports two main refactoring operations: packaging up a series of
tactic steps into a single compound tactic joined by THEN and THENL tacticals,
and the reverse operation, for flattening out a packaged-up tactic into a series
of tactic steps. It is aimed at helping experts maintain their proof scripts, and
helping beginners learn from existing proof scripts. It can be obtained from [4].

Behind the scenes, Tactician uses a representation of the recorded tactic proof
tree which is close to a hiproof; recording hierachical proofs was one of its original
design goals.

3.1 Example

A typical packaged up proof has already been presented in Fig. 1. The result of
flattening out this proof is shown in Fig. 6. The following hiproof can be directly
read off from the flattened proof (we omit the goals in Atomic):

Sequence[

Atomic(A,1),Atomic(B,2),

Tensor[

Atomic(C,0),

Sequence[

Atomic(D,1),Atomic(E,1),Atomic(F,1),
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Atomic(G,1),Atomic(H,1),Atomic(J,2),

Tensor[

Sequence[Atomic(K,1),Atomic(L,0)],

Sequence[Atomic(M,1),Atomic(N,0)]]]]]

This hiproof corresponds (after introduction of several Boxes) to the visualisation
shown in Fig. 2 and Fig. 3.

3.2 Tactic Recording

It helps to recall how a tactic proof is constructed in HOL Light. The user starts
with a single main goal, which gets broken down over a series of tactic steps
into hopefully simpler-to-prove subgoals. The user works on each subgoal in
turn. The proof is complete when the last subgoal has been proved. Behind the
scenes, the standard subgoal package maintains a proof state that consists of a
list of current proof goals and a justification function for constructing the formal
proof of a goal from the formal proofs of its subgoals. Tactics are functions that
take a goal and return a subgoal list plus a justification function. The subgoal
package state is updated every time a tactic is applied, incorporating the tactic’s
resulting subgoals and justification function.

Tactician works by recording such a tactic-style proof in a proof tree, where
each node in the tree corresponds to a goal in the proof. When a user wants
to refactor the proof, the proof tree is abstracted to a hiproof, which then gets
refactored accordingly before being emitted as an ML tactic proof script. We
give a brief overview of the recording mechanism here; more details are in [5].

The proof tree gets initialised when a tactic proof is started, and is added to
as tactics are executed. Tactics are modified so that they work on a modified, or
“promoted”, goal datatype called xgoal (Fig. 7). Each xgoal carries a unique
goal id, which corresponds to a node in the proof tree. A modified tactic has
type xtactic. It takes an xgoal input, strips away its id, applies the original
unmodified tactic, and generates new ids for each of the resulting goals. Informa-
tion about the tactic step, including an abstraction of the text of the tactic as it
would appear in the proof script, is then inserted into the proof tree at the node
indicated by the input’s id. An index of ids and references to their corresponding
nodes is maintained to enable nodes to be located.

Boxes around tactics can be introduced manually via a function

val hilabel : label → xtactic → xtactic

type goalid = int

type xgoal = goal × goalid

type xgoalstate = (term list × instantiation ) ×
xgoal list × justification

type xtactic = xgoal → xgoalstate

Fig. 7. Modifications of HOL Light’s datatypes
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so hilabel(l, t) sets up a new box with the label l around the tactic t. The input
of t becomes the input of the box, and the subgoals which result from applying
t become the outputs.

Apart from basic tactics, there are tactic-producing functions which depend
on additional arguments like terms, theorems, or other tactics. We also need to
modify these more complicated tactic forms. Because each tactic form has a fixed
ML type signature, a generic wrapper function can be written for performing
this modification for each such form. About 20 such wrappers need to be written
to cover the commonly used tactic forms in the HOL Light base system.

3.3 Capturing Hiproofs with Tactician

Based on its tactic recording mechanism, Tactician can generate hiproofs from
tactic style proofs by a straightforward transformation of the tactic proof tree to
hiproofs. Because the proof tree corresponds naturally to the user’s actual proof
script, so does the hiproof. Hierarchical boxes can optionally be introduced by
the various wrapper functions. This method of generating hiproofs works also
for proofs that have not been completed yet, and can therefore potentially be
used to visualise the current proof state during interactive proof as a hiproof.

Tactician outputs a proof at the user level, i.e., involving the same atomic
ML tactics, rules and theorems as occur in the original proof script. Low-level
information of the proof is not retained. This has the advantage that hierarchical
proofs are maintained at a level meaningful to the user, and the overhead of
recording is kept low.

One fundamental limitation of Tactician is that tactics that take functions
as arguments cannot be “promoted” if the function itself does not return a pro-
motable datatype (the only common instance of this in HOL Light is PART_MATCH,
which takes a term transformation function as an argument). Another is that
ML type annotations in the proof script need to mention promoted, rather than
unpromoted, ML datatypes.

With Tactician version 2.2, proof script files involving several hundred lines
of ML will typically encounter one or two occurrences of such limitations. It is
possible to get around these problems by making hand edits to the proof script,
but highly-automated processing of very large bodies of proof is not currently
feasible.

4 HipCam

The basic idea of HipCam is to modify the HOL Light kernel, instead of modi-
fying the higher-level tactic-layer like Tactician does. While Tactician relies on
tactic recording, HipCam instead uses a proof recording approach closely related
to that pioneered in [16] . HipCam can be downloaded from [15].

HipCam is minimally invasive; any theorem proven using the original HOL
Light kernel can be proven using the HipCam-modified kernel and modification
of proof scripts is not needed, except to add explicit hierarchy and labelling, in-
crementally as desired. However, HipCam does not allow recovering proof scripts
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from recorded proofs; it is intended primarily as a tool to construct large hiproofs
for inspection, rather than replay or refactor proof scripts.

4.1 Proof Recording

HipCam does not alter the signature of the HOL Light kernel except to add two
functions. To extract a hierarchical proof from such a theorem in the modified
kernel, one applies the new kernel function

val hiproof : thm → hiproof

to the theorem. This is made possible by changing the definition for the type
thm from

type thm = Sequent of term list × term

which stores the assumptions and conclusion of a theorem to

type thm = Sequent of hiproof × term list × term

which in addition stores the hiproof of a theorem. This change in the implemen-
tation of thm is visible outside the kernel in only one way, by using native ML
equality to compare theorems. Fortunately, after proof recording was introduced
to HOL Light, native ML equality is not used to compare theorems anymore.
To test two theorems for equality, the function equals thm is called; it only
compares assumptions and conclusions.

All kernel primitives which produce values of type thm are modified to also
produce corresponding theorem-internal hiproofs. None of those primitives in-
troduce hierarchy, though. To produce hiproofs with an actual hierarchy we need
another new kernel function, hilabel, which will draw a box around an existing
hierarchical proof. What could be the signature of such a function? Our first
guess might be

val hilabel1 : label → hiproof → hiproof

which can simply be defined via

let hilabel1 l h = Box(l,h)

The obvious problem with this is that still for no theorem t will hiproof(t)
contain any boxes. This is simply because hilabel1 does not allow any change
of the internal hiproofs of theorems.

Our next guess might therefore be to rectify this problem as follows:

val hilabelthm : label → thm → thm

let hilabelthm l (Sequent(h,asms,concl)) =

Sequent(Box(l,h),asms,concl)

Unfortunately, hilabelthm does not allow us to create boxes as flexibly as we
want to. This is because for any theorem t = Sequent(h,asms,concl) the in-
variants IN(h) = 1 and OUT(h) = 0 hold. In other words, no sub-goals can
be exported from nested boxes and we could only construct fully nested trees.
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So a sub-hiproof H like the ones from Fig. 5 could not be contained in any of
the hiproofs created via hilabelthm because OUT(H) = 3 holds.

What we need when drawing a box onto a hiproof is the ability to specify
which part of the hiproof should become part of the box, and which part should
stay outside of the box. We gain this ability by drawing boxes around rules
instead of just theorems:

type rule = thm list → thm

val hilabel : label → rule → rule

We will see in the next section how hilabel works and how it can be imple-
mented. Meanwhile, we can see that hilabel will satisfy all of our boxing needs.
It is still trivial to box theorems:

let hilabelthm l t = hilabel l (fun _ → t) []

It is also straightforward how to label tactics (with a reminder of the types):

type goalstate = (term list × instantiation ) ×
goal list × justification

type tactic = goal → goalstate

val hilabeltac : label → tactic → tactic

let hilabeltac l t g =

let (inst , gls , j) = t g in

let k inst = hilabel l (j inst)

in (inst , gls , k)

The above code reduces labelling a tactic to labelling the justification function
that is obtained as the result of applying the tactic to a goal.

4.2 Implementing hilabel

Let us examine how we want hilabel to behave. Assume we have a rule

val rule : thm list → thm

and three theorems α1, α2 and α3 such that

rule[α1,α2,α3]

yields a new theorem as the result of applying rule to these theorems. The
hiproof of this new theorem will then in some way depend on the hiproofs of the
αi, e.g. like depicted on the left in Fig. 8. Now, if instead of applying the original
rule, we apply the labelled rule

(hilabel "rule" rule )[α1,α2,α3]

then we’d like the hiproof of the resulting theorem to look like depicted on the
right in Fig. 8. Note that all we guarantee for the boxed hiproof is that the
hiproofs of the αi will appear (if at all) outside of the box. In particular, there
is no predetermined order in which the hiproofs of the αi will appear. It might
even be the case that some of these hiproofs are not used at all, or are used more
than once. This situation is shown in Fig. 9: here the proof of rule[α1,α2,α3]
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Fig. 8. rule[α1,α2,α3] vs. (hilabel "rule" rule)[α1,α2,α3]

Fig. 9. Unused α3 and duplicate α1

does not make use of α3, and uses α1 twice. We detect multiple appearances of
the same αi and treat only the first occurrence normally. The other occurrences
are marked as being duplicate instances of goals proven elsewhere.

Our design of hilabel is driven by trying to make the collapsing and expand-
ing of boxes in a visualised hiproof straightforward. One can imagine other ways
of dealing with reordered, duplicate, or missing dependencies. For example, we
could introduce a new hiproof constructor for boxes which rewire the outputs
of their inner hiproofs such that externally, the outputs of the box correspond
1-to-1 and in the right order to the arguments of the rule the box is supposed
to represent (a swap primitive can be used for this purpose; see [18]).

To implement hilabel, we first introduce three kinds of labels: the identity
label Lid, the duplicate label Ldup and a family of variable labels Lname

var where
name is from some infinite set V of variable names. We then define
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Fig. 10. Explicit display of identity tactic

Identity(g) ≡ Atomic(Lid,g ,1)
Duplicate (g) ≡ Atomic(Ldup,g,0)
Variable(name,g) ≡ Atomic(Lname

var ,g ,0)

to serve us as identity tactic, duplicate marker, and hiproof variable, respectively.
We need the identity tactic because without it we could not represent the right
hand side hiproof in Fig. 8 (which is just a prettification of the hiproof shown
in Fig. 10). We have already motivated why we need duplicate markers (Fig. 9).
And we need variables so that we can track how the hiproofs of αi are being used
in constructing the hiproof for rule[α1,. . .,αk]. The details of how this tracking
is achieved are shown in Fig. 11. There the notation α/h is used to represent the
theorem resulting from replacing the hiproof of the theorem α with the hiproof
h. The heavy lifting in hilabel is done by the function turnvars.

A major challenge in the actual implementation of hilabel and turnvars

is that recorded proof trees quickly grow to be enormous. Their representations
in memory exploit sharing, but repeatedly traversing such trees depth-first to
compute or update them is impractical. More sophisticated data structures could
help with this, but we use the simple fix of adapting the described algorithms
so that all important properties of a hiproof are computed (and then cached
for shared reuse) during the construction of the hiproof, so later traversals are
unnecessary. One such property of a hiproof we have introduced is its shallow
size SS(h) which measures the size of a hiproof h as if all boxes it contained
were replaced by atomics instead:

SS(Atomic(l,g,n)) = 1

SS(Sequence [e1,. . .,en]) = 1 + SS(e1) + . . . + SS(en)
SS(Tensor[e1,. . .,en]) = 1 + SS(e1) + . . . + SS(en)
SS(Box(l,h)) = 1

We can use the shallow size of a hiproof h to adjust h to the needs of the hiproof
consumer. For visualisation, for example, we are not interested in hiproofs that
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val hilabel : label → rule → thm list → thm

let hilabel l rule [α1,. . .,αk] =

let N be a set {n1, . . . , nk} of k fresh names in

let α′
i = αi/( Variable(ni, goal(αi))), i = 1 . . . k, in

let β = rule[α′
1,. . .,α

′
k] in

let (names, h) = turnvars N (hiproof(β)) in

let H be a function such that H(ni) = hiproof(αi) in

let b = Box(l,h) in

let h′ =

match (map H names) with

[] → b
| [a] → Sequence [b,a]
| a → Sequence[b,Tensor(a)]

in β/h′

val turnvars : V set → hiproof → V list × hiproof

let turnvars N h =

let h′ =

(replace all occurrences of Var(n,g) in h where n ∈ N
either with Identity (g) or with Duplicate (g)
and massage the result so that it is well -formed)

in let names =

(the list of variable names which correspond

to the outputs of h′)

in (names,h′)

Fig. 11. Description of hilabel and turnvars

have a shallow size larger than a certain threshold τ , say τ = 1000. Therefore we
replace subexpressions of the form Box(l,h) with an atomic whenever SS(h) >
τ . Note that such a replacement requires that we introduce a property for atomics
which keeps track of the variables that the replaced box contained.

Another way to cut-out uninteresting detail is to look at the label of a box.
For example, when l indicates that the box corresponds to a standard HOL Light
inference rule, we could also elide the detail. Therefore HipCam has two modes:
a max-detail mode, which does not replace boxes corresponding to standard
inference rules, and a high-level mode which does.

4.3 Capturing Hiproofs with HipCam

We have applied HipCam to several formalisations that ship with HOL Light.
Fig. 12 displays how much time and space were needed for each formalisation,
without HipCam, with HipCam in max-detail mode, and with HipCam in high-
level mode. The results are quite surprising: using HipCam incurs only a modest
speed penalty of a maximum factor of not more than 1.5. HipCam’s memory
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Proof Original Max-Detail High-Level

#use "hol.ml";; 4 min 30 sec / 0.1 GB 7 min / 2.2 GB 6 min / 0.7 GB
Gödel 1 10 min 30 sec / 0.1 GB 15 min / 3.1GB 13 min / 0.9 GB
e is transcendental 13 min / 0.2 GB 19 min / 4.2 GB 16 min / 1.5 GB
Jordan curve theorem 31 min / 0.4 GB out of memory 45 min / 6.5 GB

Fig. 12. HipCam statistics, using a MacBook Pro, Quad Core 2.4GHz, 16GB RAM

usage is more taxing, using several gigabytes for large formalisations. The max-
detail mode needs about three times as much memory as the high-level mode.

The memory usage of HipCam’s max-detail mode is higher, but similar to the
memory used by the standard proof recording approach, allowing some inflation
for the extra information used by HipCam like the shallow size. But depending
on the use of the recorded proof we can dramatically undercut these memory
requirements as the high-level mode shows; this is not possible in a simple proof
recording approach where larger examples would fail outright.

5 Related Work

In Section 1 we explained the difference between hierarchical structure of stored
proof trees and the hierachical structure of proof script input languages (provided
by languages such as Isar [17]). The later may be manipulated by text-based
interfaces, for example, to fold (temporarily hide) sub-sections.

The urge to present proofs in two dimensions is widespread. Some systems
have taken a tree-like approach from the start, using interfaces that present
proofs in a nested hierarchical form as they are developed, enforcing struc-
ture rigidly, or using a GUI to build trees. One early example is Nuprl’s tactic
trees [12]; another is the Tecton system which introduced proof forests and al-
lowed to print out their graphical representation [14]. The more recent ProofWeb
system [13] allows both “flag” style proof development as well as tree-style, con-
necting each style back to source Coq code. An interesting mix of proof scripts
and a graphical representation also appears in Hyperproof and its methodology
of heterogenous reasoning [9,8]. Proofscape [2] is a recently launched project
which aims to become a visual library of mathematics. It displays proofs with
an adjustable level of detail which corresponds to our notion of hiproof boxes
which are either collapsed or expanded in their visualisation.

A complete survey of proof visualisation tools for proof is out of scope, but we
mention one example that inspired the visualisation work here: the Prooftree tool
by Tews [3] displays proof trees for Coq in Proof General (in turn itself inspired
by the similar feature provided in PVS). Contrary to our current visualisation
software, Prooftree supports interactive visualisation during a proof, but it does
not yet include hierarchical proof trees.

On a different strand, a main purpose of Tactician is to serve as a refactoring
tool that can convert between “flat” and “packaged up” proofs. There is related
work on proof refactoring, including some approaches designed based on hiproof
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semantics by Whiteside [19,18], as well as tools that have been implemented
such as the conversion between procedural and declarative proof scripts inside
ProofWeb [13] and the Levity tool [10] which allows moving lemmas between
different theories. Generally such tools are still in the early days.

6 Conclusions

Hierarchical proofs as invented in [11] have so far been mostly theoretical con-
structs. Our work is directed towards gaining hands-on experience with “real-
world” hiproofs. With Tactician and with HipCam we have laid the technical
foundations for such an undertaking, we are able now to take existing bodies of
formalisations, represent them as hiproofs, and study them as such.

Tactician can present individual proofs at the level of detail given by the user,
but because of its mentioned limitations, it is less suitable to automatically ob-
tain hiproof representations of existing large formalisations, or to delve arbitrar-
ily deep to understand the results of a complicated tactic; this is what HipCam
was designed for. Tactician recovers user-level proof steps lost to HipCam, but
hierarchy doesn’t appear for free in either case. Both tools allow the user to an-
notate tactics to automatically add labels (for example, boxing up an induction
or simplification tactic), or add labels manually in particular proofs.

It is natural to ask whether the approaches can be combined. The disadvantage
with Tactician is the need to modify scripts pervasively, but this issue arises
mainly because of its aim to record proof script input fully to allow refactoring;
without this the wrapper functions are much simpler. Conversely, HipCam could
be provided with a modified subgoal package like Tactician’s that records user-
level proof steps and triggers only high-level capturing mode between steps.

More crucially, looking at hiproofs generated automatically via HipCam from
theorems like the Jordan Curve Theorem is not very illuminating, because there
isn’t enough hierarchy yet. The problem is that it is hard to distinguish between
those parts of the proof which convey its meaning, and those parts which exist
for mostly technical reasons. So the challenge is how to “box up” the technical
parts of a proof, so that its meaningful parts are emphasised, and do this in
a hierarchical way. In future work we plan to investigate semi-intelligent ways
of transforming a hiproof to introduce structure, as well as using some manual
labelling on some case study large developments.

Acknowledgements. We’re grateful to the CICM referees for providing good
suggestions to improve the paper and to members of the Mathematical Reasoning
Group at Edinburgh for feedback and discussions. Our research was supported
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Abstract. Novel auction schemes are constantly being designed. Their
design has significant consequences for the allocation of goods and the
revenues generated. But how to tell whether a new design has the desired
properties, such as efficiency, i.e. allocating goods to those bidders who
value them most? We say: by formal, machine-checked proofs. We invest-
igated the suitability of the Isabelle, Theorema, Mizar, and Hets/CASL/
TPTP theorem provers for reproducing a key result of auction theory:
Vickrey’s 1961 theorem on the properties of second-price auctions. Based
on our formalisation experience, taking an auction designer’s perspective,
we give recommendations on what system to use for formalising auctions,
and outline further steps towards a complete auction theory toolbox.

1 Motivation: Why Formalise Auction Theory?

Auctions are a widely used mechanism for allocating goods and services1, per-
haps second in importance only to markets. They are used to allocate electro-
magnetic spectrum, airplane landing slots, oil fields, bankrupt firms, works of
art, eBay items, and to establish exchange rates, treasury bill yields, and stock
exchange opening prices. Novel auction schemes are constantly being designed,
aiming to maximise the auctioneer’s revenue, foster competition in subsequent
markets, and to efficiently allocate resources.

Auction design can have significant consequences. Klemperer attributed the
low revenues gained in some government auctions of the 3G radio spectrum in

� This work has been supported by EPSRC grant EP/J007498/1. We would like to
thank Peter Cramton and Elizabeth Baldwin for sharing their auction designer’s
point, and Christian Maeder for his recent improvements to Hets.

1 For the US, the National Auctioneers Association reported $268.5 billion for 2008 [2].

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 200–215, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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2000 (€20 per capita vs. €600 in other countries) to bad design [18]. Design prac-
tice outstrips theory, especially for complex modern auctions such as combinat-
orial ones, which accept bids on subsets of items (e.g. collections of spectrum).
Designing a revenue-maximising auction is NP-complete [6] even with a single
bidder. Important auctions often run ‘in the wild’ with few formal results [19].
We aim at convincing auction designers that investing into formalisation pays
off with machine-checked proofs and a deeper understanding of the theory. To
this end, we want to provide them with a toolbox of basic auction theory formal-
isations, on top of which they can formalise and verify their own auction designs
– which typically combine standard building blocks, e.g. an ascending auction
converting to a sealed-bid auction when the number of remaining bidders equals
the number of items available. Given the ubiquity of specialist support across a
range of service sectors, we conjecture that auction designers might be suppor-
ted by formalisation experts, creating a niche for specially trained experts at the
interface of the core mechanised reasoning community and auction designers.

Our ForMaRE project (formal mathematical reasoning in economics [22])
seeks to increase confidence in economics’ theoretical results, to aid in discover-
ing new results, and to foster interest in formal methods within economics. To
formal methods, we seek to contribute new challenge problems and user exper-
ience feedback from new audiences. Auctions are representative of practically
relevant fields of economics that have hardly been formalised so far.2 Economics
has been formalised before [15], particularly social choice theory (cf. §5 and [10])
and game theory (cf. [37] and our own work [16]). However, none of these formal-
isations involved economists. Formalising (mathematical) theories and applying
mechanised reasoning tools remain novel to economics.3

§2 establishes requirements for the Auction Theory Toolbox (ATT); §3 ex-
plains our approach to building it. §4 is our main contribution: a qualitative
comparison of how well four different theorem provers satisfy our requirements.
§5 reviews related work, and §6 concludes and provides an outlook.

2 Requirements for an Auction Theory Toolbox

Conversations with auction designers established ATT requirements as follows:

D1. Formalise ready-to-use basic auction concepts, including their definitions
and essential properties.

D2. Allow for extension and application to custom-designed auctions without
requiring expert knowledge of the underlying mechanised reasoning system.

From a computer scientist’s technical perspective, these translate to:
2 Even code verification is typically not considered, although Leese, who worked on the

UK’s spectrum auctions, has called for auction software to be added to the Verified
Software Repository at http://vsr.sourceforge.net [47].

3 There is a field ‘computational economics’; however, it is mainly concerned with the
numerical computation of solutions or simulations (cf., e.g., [13]).

http://vsr.sourceforge.net
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C1. Identify the right language to formalise auction theory. This language should
(a) be sufficiently expressive for concisely capturing complex concepts,
while supporting efficient proofs for the majority of problems, (b) be learn-
able for economists used to mathematical textbook notation, and (c) provide
libraries of the mathematical foundations underlying auctions.

C2. Identify a mechanised reasoning system (a) that assists with cost-effective
development of formalisations, (b) that facilitates reuse of formalisations
already existing in the toolbox, (c) that creates comprehensible output to
help users understand, e.g., why a proof attempt failed, or what knowledge
was used in proving a goal, and (d) whose community is supportive towards
users with little specific technical and theoretical background.

Note the conflicts of interest: a single language might not meet requirement C1a,
and if it did, it might not be supported by a user-friendly system.

3 Approach to Building the Auction Theory Toolbox

To avoid a chicken-and-egg problem, we identify relevant domain problems in
parallel to identifying languages and systems suitable for formalisation.

3.1 The Domain Problem: Vickrey’s Theorem and Beyond

We started with Vickrey’s 1961 theorem on the properties of second-price auc-
tions of a single, indivisible good, whose bidders’ private values are not publicly
known. Each participant submits a sealed bid; one of the highest bidders wins,
and pays the highest remaining bid; the losers pay nothing. Vickrey proved that
‘truth-telling’ – submitting a bid equal to one’s actual valuation of the good –
was a weakly dominant strategy, i.e. that no bidder can do strictly better by
bidding above or below their valuation whatever the other bidders do. Thus, the
auction is also efficient, allocating the item to the bidder with the highest valu-
ation. Bidders only have to know their own valuations; in particular they need no
information about others’ valuations or the distributions these are drawn from.

As variants of Vickrey auctions are widely used (e.g. by eBay, Google and Ya-
hoo! [45]), this formalisation will enable us to prove properties of contemporary
auctions as well. The underlying theory is straightforward to understand even
for non-economists and can be formalised with reasonable effort. Finally, form-
alising Vickrey provides a good introduction for domain experts to mechanised
reasoning technology by serving as a small, self-contained showcase of a widely
known result, helping to build trust in this new technology.

Maskin collected 13 theorems, including Vickrey’s, in a review [24] of an influ-
ential auction theory textbook [25]. This sets the roadmap for building the ATT
– a collaborative effort, to which we welcome community contributions [23].

3.2 Paper Elaboration to Prepare the Machine Formalisation

To prepare the machine formalisation, we refined the original paper source, aware
that current mechanised reasoning systems typically require much more explicit
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statements than commonly found on paper: automated provers must find proofs
without running out of search space, whereas proof checkers require proofs at a
certain level of detail, which in turn requires detailed statements. Maskin states
Vickrey’s theorem in two sentences and proves it in another six sentences [24,
Proposition 1].4 Our elaboration uses eight definitions specific to the domain
problem plus an auxiliary one about maximum components of vectors, as follows:

N = {1, . . . , n} is a set of participants, often indexed by i. An allocation is a
vector x ∈ {0, 1}n where xi = 1 denotes participant i’s award of the indivisible
good to be auctioned (i.e. ‘i wins’), and xj = 0 otherwise. An outcome (x, p)
specifies an allocation and a vector of payments, p ∈ Rn, made by each parti-
cipant i. Participant i’s payoff is ui ≡ vixi −pi, where vi ∈ R+ is i’s valuation of
the good. A strategy profile is a vector b ∈ Rn, where bi ≥ 0 is called i’s bid.5 For
an n-vector y = (y1, . . . , yn) ∈ Rn, let y ≡ maxj∈N yj and y−i ≡ maxj∈N\{i} yj .

Definition 1 (Second-Price Auction). Given M ≡ {
i ∈ N : bi = b

}
, a

second-price auction is an outcome (x, p) satisfying:
1. ∀j ∈ N\M, xj = pj = 0; and
2. for one6 i ∈ M , xi = 1 and pi = b−i, while, ∀j ∈ M\ {i} , xj = pj = 0.

Definition 2 (Efficiency). An efficient auction maximises
∑

i∈N vixi for a
given v, i.e., for a single good, xi = 1 ⇒ vi = v.

Definition 3 (Weakly Dominant Strategy). Given some auction, a strategy
profile b supports an equilibrium in weakly dominant strategies if, for each i ∈ N

and any b̂ ∈ Rn with b̂i �= bi, ui

(
b̂1, . . . , b̂i−1, bi, b̂i+1, . . . , b̂n

)
≥ ui

(
b̂
)

.7 I.e.,
whatever others do, i will not be better off by deviating from the original bid bi.

Theorem 1 (Vickrey 1961; Milgrom 2.1). In a second-price auction, the
strategy profile b = v supports an equilibrium in weakly dominant strategies.
Furthermore, the auction is efficient.

The attempt to be close to a paper formalisation may introduce artefacts that
unnecessarily complicate machine formalisation. E.g., the contiguous numeric
participant indexing is merely a convention: formally any relation between par-
ticipants’ valuation, bid, allocation, and payment vectors suffices. Similarly, the
product vixi recalls the general divisible good case (xi ∈ [0, 1]) and works around
the lack of an easy and compact ‘if–then–else’ textbook notation.8

4 The high level of Maskin’s text is owed to its summative nature. Original proofs in
auction theory are typically more thorough.

5 This simplification is sufficient for proving the theorem. More precisely, all parti-
cipants know that each vi is an independent realisation of a random variable with dis-
tribution density f . A participant’s strategy is a mapping gi such that bi = gi (vi, f).

6 When running an auction in practice, this i may be selected randomly, but this
circumstance does not matter for the proof of Vickrey’s theorem.

7 The notation ui (b) is standard in economics but formally misleading. A more careful
notation is ui (xi, vi, pi), where xi and pi depend on b and the auction type.

8 Case distinctions with curly braces consume at least two lines.
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Proof. Suppose participant i bids bi = vi, whatever b̂j the others bid. Let b̂i←v

abbreviate the overall vector (b̂1, . . . , b̂i−1, vi, b̂i+1, . . . , b̂n). There are two cases9:
1. i wins. This implies bi = vi = b̂i←v, pi = b̂i←v−i, and ui(b̂i←v) = vi − pi =

b̂i←v
i − b̂i←v−i ≥ 0. Now consider i submitting an arbitrary bid b̂i �= bi, i.e.

assume an overall bid vector b̂. This has two sub-cases:
(a) i wins with the other bid, i.e. ui(b̂) = ui(b̂i←v), as the second highest

bid has not changed.
(b) i loses with the other bid, i.e. ui(b̂) = 0 ≤ ui(b̂i←v).

2. i loses. This implies pi = 0, ui(b̂i←v) = 0, and bi ≤ b̂i←v−i; otherwise i
would have won. This yields again two cases for i’s alternative bid :
(a) i wins, i.e. ui(b̂) = vi − b̂−i = bi − b̂i←v−i ≤ 0 = ui(b̂i←v).
(b) i loses, i.e. ui(b̂) = 0 = ui(b̂i←v).

By analogy for all i, b = v supports an equilibrium in weakly dominant strategies.
Efficiency is immediate: the highest bidder has the highest valuation. 	


3.3 Choosing Language and System
In terms of logic, it is not immediately obvious whether Vickrey’s theorem is in-
herently higher-order. Defining the maximum operator on arbitrarily sized finite
sets of real-valued bids and proving its essential properties requires induction
and thus exceeds first-order logic (FOL): similarly for the finiteness of a set10

and a formalisation of real numbers.11 However, if one takes real vectors and a
maximum operation on them for granted, and explicitly requires the maximum
to exist, FOL suffices to formalise the relevant domain concepts: single good
auctions, second-price auctions, and the theorem statement.12

In terms of syntax, we assume that auction designers will prefer a language
that is close to the textbook mathematics they are used to, rather than having
a programming language flavour. We assume that at least optional type an-
notations support intuitive modelling of domain concepts (e.g. an auction as a
function that takes bids and returns an allocation and payments) and prevent
formalisation mistakes by cheap early checks (cf. [21]).

In terms of user experience, we study two paradigms: automated provers try,
given a theorem and a knowledge base, to automatically find a proof, potentially
appealing to our audience if the user just has to push a button (as with model
checkers). Interactive provers interactively check a proof written by the user,
which may be convenient when a paper proof already exists.
9 Our initial elaboration of Maskin’s proof, which distinguishes cases on the basis of

participants’ bids, resulted in nine leaf cases. Straightforward on paper, we found
them tedious to formalise in Isabelle, which triggered the rearrangement shown here.

10 Finiteness matters: the set {bi = 1 − 1
i

: i = 1, 2, 3, . . . } has no maximum.
11 Real numbers are not usually required for running auctions in practice. Even financial

exchanges that allow ‘sub-pennying’ have a minimal discrete quantum of currency.
12 For instance, our Mizar proof never invokes any second-order scheme directly. Two

proof steps use the fact that a finite set of numbers includes its maximum, which is
proved in the Mizar Mathematical Library (MML) using the induction scheme.
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4 Qualitative Comparison of the Languages and Systems

We have formalised Vickrey’s theorem in four systems, which differ in logic, syn-
tax and user experience: Isabelle, followed by Mizar, CASL and Theorema. For
each system at least one author has in-depth knowledge. The purpose of redoing
formalisations from scratch is to understand the specific advantages and disad-
vantages of the systems and to obtain as idiomatic a formalisation as possible.
The formalisations and instructions for using them are available from the ATT
homepage [23]. Tab. 1 compares the features of the systems and their languages
and shows the state of our work. The following subsections assess the languages
and systems w.r.t. the technical requirements C* of §2. Tab. 2 at the end of this
section summarises our findings to underpin our final recommendations.

4.1 Level of Detail and Explicitness Required (req. C1a)
All systems required greater detail and explicitness than the paper elaboration
of §3.2. The Isabelle formalisation needs 3 additional definitions and 7 auxili-
ary lemmas. Guiding the automated provers of Theorema and Hets and Mizar’s
proof checker required similar numbers of auxiliary statements, plus, in The-
orema and Hets, further ones to emulate proof steps (cf. §4.2). However, first
steps beyond Vickrey’s theorem suggests that these auxiliaries make it easier to
formalise further notions. As our work involved beginners and experts13, we can
only approximately quantify the formalisation effort beyond the paper elabora-
tion. The ‘de Bruijn factor’ [40], the formalisation size divided by the size of an
informal TEX source, measured after stripping comments and xz compression, is
around 1.5 for all formalisations14 except Theorema15. This observation suggests
that machine formalisation is generally still harder than elaboration on paper.

Even while explicit machine formalisation imposes tedious work on the author,
it can also prove beneficial. On paper, it was neither immediately obvious that
exactly one participant wins a second-price auction, nor that the outcome is a
function of the bids. While obvious that at least two participants are required to
define the ‘second highest bid’, the standard literature largely overlooks this, but
formalisation forced us to choose whether to allow it (by, e.g., defining max ∅ ≡ 0)
or to explicitly require n ≥ 2.

4.2 Expressiveness vs. Efficiency (req. C1a)
As discussed in §3.2, we did not strictly take the elaborated paper source as a
specification for the formalisation, but wrote idiomatic formalisations. In Isa-
belle and Mizar, we, e.g., avoided specific intervals {1, . . . , n} as sets of auction
13 The Mizar formalisation was, e.g., completely written by an expert (Caminati),

whereas the Isabelle formalisation was initially written by a first-time user with a
general logic background (Lange), then largely rewritten by an expert (Wenzel).

14 A typical average is 4, but our paper proof is particularly detailed.
15 Determining a de Bruijn factor for Theorema does not make sense: single keystrokes

or clicks may yield complex inputs, Mathematica notebooks store layout and main-
tenance information, and Theorema caches proofs in the notebook (cf. §4.6).
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participants: arbitrary (finite) sets of natural numbers simplify the formalisa-
tion, and the highest and second highest bids are determined using library set
operations. In contrast, Theorema naturally indexes its built-in tuples from 1 to
n and allows for restricting quantified variables to such ranges, e.g. ∀i=1,...,n.

The CASL formalisation confirms the assumption of §3.3 that FOL suffices
for expressing and proving the essence of Vickrey’s theorem. For many FOL
provers, CASL’s (sub)sorts16 are mere syntactic sugar but allow us to stay close
to the domain language, speaking, e.g., of ‘valuation vectors’, each of which also
is a valid ‘bid vector’. Note that we have avoided using partial functions (e.g., for
modelling out-of-scope vector indices) because of the complex logic translations
required for coding them out.

Isabelle and Mizar process the proof in a few seconds on a 2.5 GHz dual-core
processor; Hets/TPTP need about an hour; in Theorema it is not yet complete.
We used rather weak HOL features, e.g., no synthesisation of functions. Coin-
ciding with earlier, general observations on HOL [8], the low processing time
suggests that there is no disadvantage in choosing a rich logic, which allows
for expressing relevant concepts (such as maxima of finite sets of real numbers)
naturally. Our formalisations’ small size (less than 5 K after compression) does
not yet warrant a precise quantitative judgement of time efficiency. Particularly
for FOL there exist highly optimised automated provers. They are conveniently
accessible in Hets, via the System on TPTP [34] web service (accepting TPTP
input that Hets can generate), but also from Isabelle/HOL via the Sledgehammer
interface (see §4.3). Still, we observed a source of inefficiency in formalising for
automated provers: the high share of preconditions with long conjunctions in our
CASL formalisation makes it hard for the automated FOL provers to identify ap-
plicable axioms. Such conjunctions result from the absence of structured proofs in
CASL. This requires, whenever a theorem is too complex for automated proving,
to ‘emulate’ proofs steps via auxiliary lemmas, whose antecedents are conjunc-
tions of all relevant assumptions in the current branch of the proof tree. Perform-
ance improvements by guiding provers through the search space can, however, be
achieved with the extra effort of grouping frequently occurring conjunctions of
assumptions into single abstract predicates, as in the following concrete case for
the proof of Vickrey’s theorem: spaWithTruthfulOrOtherBid(n, x, p, v, b̂, i, b) ⇔
secondPriceAuction(n, x, p)∧|v| = |b̂| = n∧ inRange(n, i)∧ b̂i �= vi ∧b = b̂[i←v].

4.3 Proof Development and Management (req. C2a)

The systems we studied offer different ways of invoking automated provers and
keeping track of proof efforts in progress. The ‘apparent’ difference between
automated and interactive theorem proving blurs at a closer look. The inter-
active prover Isabelle features various automated proof methods; furthermore
Sledgehammer gives access to E, SPASS, and TPTP provers. One can configure
the facts they should take into account (e.g. local assumptions and conclusions).
16 TPTP’s typed first-order form (TFF [33]) is sorted, but without subsorts. We have

not used it, as Hets cannot currently produce it from CASL.
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For Mizar, there are also automated external tools (MPTP, MoMM, MizAR) [31].
Theorema’s automated proving workflow is conceptually similar: specifying the
knowledge to be used, then configuring the prover.17 Hets users can select ax-
ioms and previously proved theorems to be sent to an automated prover but have
little control beyond. Isabelle’s prover configuration is editable within the form-
alisation source. Theorema stores it in hidden fields within the formalisation and
exposes it via a dedicated GUI. Configuring proof tools in Hets is separate from
the formalisation: the proof management GUI does not currently store settings
persistently; however one can write scripts to be processed on the command line.

Just as Isabelle requires complex statements to be proved in multiple steps,
involving different proof methods, the automated provers of Theorema18 and
Hets also require guidance by explicit configuration at times, as can be seen
from the *.hpf proof scripts in our Hets formalisation [23]. Often, a theorem
c : A ⇒ C was too complex for automated proving, whereas the job could be
done by a script that first proved auxiliary lemmas a : A ⇒ B and b : B ⇒ C,
possibly with different provers, and then proved c providing only a and b as
axioms. This is conceptually the same as in Isabelle but has four significant
user experience differences: 1. Each additional ‘proof step’ has to be stated as
a lemma with full assumptions on the left hand side (similar to the example in
§4.2), 2. CASL, originally a specification rather than a prover language, does
not syntactically distinguish theorems from lemmas, 3. the scripts have to be
maintained separately from the formalisation, and 4. a multi-step proof takes
many seconds longer, as Hets translates the input theory from CASL to the
respective prover’s native language before each proof.19 This gives a clear in-
centive to eliminate unnecessary proof steps from a CASL formalisation. This
experience also influenced our Isabelle formalisation, where writing multi-step
proofs is comparatively painless. There, one lemma had a three-step proof, until
experiments with the CASL formalisation made us attempt an automated proof.
Thus we realised that we could reduce the Isabelle proof to a single step.20

Mizar differs by focusing, instead of built-in tactics and automated proof
methods, on a natural deduction style which ‘tries to “keep a low profile” in
its logical foundations’ and aims at ‘clarity, human readability and closeness
to standard mathematical proofs’ [38]. Influenced by Mizar, the Isar language
(‘intelligible semi-automated reasoning’) replaced Isabelle’s original tactic inter-
face. In the name of its readability focus, Mizar deliberately prevents users from
extending the verifier’s power [38, §2.1], often forcing them to justify trivial pas-
sages. Mizar’s registrations do allow for custom automation [4]; however, these at
times involute exploits often push registrations beyond their intended scope [20]
and may result in implicit inferences and less readable proofs.

Particularly in developing the proof of a theorem as complex as Vickrey’s
top-down, it is useful to defer proofs of lemmas or proof steps, as to use them

17 For Theorema, a prover is a collection of inference rules applied in a certain strategy.
18 This assessment relies on experience with Theorema 1.
19 This is necessary as, by default, each successful proof adds one theorem to the theory.
20 As it makes use of one definition and two lemmas, this was not obvious a priori.
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in a larger proof without the workaround of temporarily declaring them as ax-
ioms. Theorema proofs can use unproved theorems as knowledge. Isabelle’s sorry

keyword creates a fake proof. CASL theorems are formulas with the annotation
%implied. When imported into a theory, (open) theorems become axioms, and
Hets can use them without proof, but the open proof obligation is still visible in
the imported theory. Mizar’s verifier offers top-down proving for free by mark-
ing unaccepted inferences as errors and then proceeding. This results in a formal
proof sketch, ‘very close to informal mathematical English’ but still close to a
fully formalised proof [41]. Furthermore, one can prefix the keyword proof with
@ to expressly and silently skip a proof, or disable the verifier on arbitrary code
portions using pragmas. Mizar’s Emacs mode exposes these as one-touch macros,
which speeds up the verification process and improves interaction [38].

4.4 Library Coverage and Searchability (reqs. C1c, C2b)

To a varying degree we have been able to reuse mathematical foundations from
the systems’ libraries. Isabelle can find reusable material by find_theorems quer-
ies; Sledgehammer helps to extract a sufficient set of lemmas from the library,
which is then minimised towards a necessary set. MML Query is a search engine
for the MML [3]. CASL’s library is searchable as plain text; Theorema’s is not.

Theorema has a built-in tuple type, including a maximum operation, we used
it to formalise bid vectors. The CASL library provides inductive datatypes such
as arrays [29] but no n-argument maximum operation. The Isabelle/HOL library
provides a Max operation on finite sets, and various Cartesian product types
suitable for representing bids. Given Isabelle’s functional programming syntax
we found it, however, most intuitive to model our own vectors as functions
N → R evaluated up to a given n. Wrappers make the set maximum operator
work on these vectors and prove the properties required subsequently. Our Mizar
formalisation draws on generic relations and functions, which the MML richly
covers. Thus, we only had to add a few interfacing lemmas.

4.5 Term Input Syntax (req. C1b)

Conversations with auction designers suggest that they find Theorema’s term
input syntax most accessible. The two-dimensional notation in Mathematica
notebooks is similar to textbook notation, and our target audience is largely
familiar with Mathematica. The syntax of Isabelle and CASL is closer to pro-
gramming languages. Isabelle’s functional type syntax f : A ⇒ B ⇒ C looks
less closely related to textbook notation than CASL’s f : A ∗ B → C. Isabelle,
CASL and Mizar allow for defining custom ‘mixfix’ operator notations. Isabelle
provides rich translation mechanisms beyond that, but the layout remains one-
dimensional, e.g. ∀x ∈ A. B(x) instead of Theorema’s ∀

x∈A
B[x] for bounded

quantification. Isabelle Proof General and Isabelle/jEdit approximate textbook
notation by Unicode symbols. Isabelle, Mizar and Hets can export LATEX. Mizar
uses ASCII; its lack of binders makes mathematical concepts such as limits and
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sums cumbersome to denote [43]. A major reason for us not to cover the TPTP
language is its technical, non-extensible ASCII syntax (using, e.g., !/? for ∀/∃).

Theorema, CASL and Mizar support sharing common quantified variables
across multiple statements, corresponding to the practice of starting a textbook
section even of several axioms like ‘let n, the number of participants, be a natural
number ≥ 1’. This helps to avoid redundancy but is prone to copy/paste errors.
For example, our CASL formalisation has sections with global quantifiers ∀i, j
(e.g. to accommodate the maximum and second-price auction definitions of §3.2),
but these include axioms that only use i. Literally pasting into this axiom an
expression using j does not cause an error, as j is bound in the current scope as
well, but changes the semantics of the axiom in a way hard to detect.

4.6 Comprehensibility and Trustability of the Output (req. C2c)

Machine proofs may ‘succeed’ for unintended reasons, e.g. accidentally stating
a tautology such as an implication with an unsatisfiable antecedent. Or they
succeed as intended, but the user cannot follow the (automated) deduction. In
such situations the prover’s output is crucial. Isabelle provides tracing facilities
for simplification rules and introduction and elimination rules used in standard
reasoning steps. Its inference kernel can produce a full record (usually large and
unreadable) of the internal reasoning of automated tools via explicit proof terms,
e.g. for independent checking. By default the kernel relies on static ML type-
discipline to achieve correctness by construction, without explicit proof terms.
Theorema’s proof data structure captures the entire proof generation according
to the rules and strategy selected. It can be displayed as a structured textbook-
style proof with configurable verbosity, and visualised as a browsable tree that
distinguishes successful from failed branches. Mizar ‘just’ verifies what the user
wrote according to natural deduction rules, hence he is unlikely to doubt the res-
ult. On the other hand, for the same reason, Mizar has no way to detect proofs
succeeding for unintended reasons, and offers little help to a user clueless about
a failing step. A correct Mizar proof can be improved by enhancer utilities [11,
§4.6]: some report useful additional information (e.g., unneeded statements re-
ferred in a step, unneeded library files, unneeded lemmas); others cut steps that
a human might want to see, impacting readability and possibly the original con-
fidence the user had in the proof. Hets uniformly displays the success of a proof
and the list of axioms used; however the latter output is only informative with
SPASS. Otherwise, the raw technical output of the prover is displayed, which
strongly differs across provers. E.g., SPASS uses resolution calculus, which looks
different from a textbook proof. Similarly, System on TPTP outputs performance
measures and the status of the given problem (e.g. ‘Theorem’ or ‘Unsatisfiable’),
but otherwise the raw prover output.

When a proof attempt fails because the statement was wrong, studying a
counterexample may help. Isabelle has the Nitpick counterexample finder built
in. Hets integrates several ones (Darwin is supported best [28]) and also employs
them for consistency checking, as importing a theory whose axioms have no
model results in vacuous truth. Both Isabelle and Hets can attempt a proof or
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otherwise try to find a counterexample in the same run. Theorema and Mizar
do not support counterexamples.

Before proving, all systems check whether the input is syntactically well-
formed and well-typed. Isabelle/jEdit performs parsing, type checking and proof
processing during editing, and attaches warnings and error messages like modern
IDEs. The other systems require the user to explicitly initiate checking. Mizar
and Hets check complete files, whereas in Theorema (which only checks syntax),
one can individually check each notebook cell (typically containing one to a few
statements). Mizar’s verifier is particularly error resilient: it seldom aborts before
the last input line, thus reporting errors for the whole file.

4.7 Online Community Support and Documentation (req. C2d)

Community support and documentation are major prerequisites for system ad-
option. We assume that users with little previous mechanised reasoning and
formalisation knowledge will seek low-threshold support from tutorial documents
or mailing lists rather than attending community meetings – which, in theorem
proving, so far focus on scientific/technical aspects rather than applications.

We compare the community sizes, assuming that large communities are re-
sponsive even to non-experts: Isabelle is developed at multiple institutions; its
user mailing list gets more than 100 posts a month, with over 1000 different
authors since 2000. CASL, an international standard, has been subject of hun-
dreds of publications but does not currently have a mailing list. Hets is mainly
developed and used within a single institution; its user mailing list receives less
than 10 posts a month. Recalling that Hets is an integrative environment, users
can also request help from the communities of TPTP (subject of more than 1000
publications, no mailing list) and individual provers. Theorema is developed
within a single institution and will not have a mailing list before the 2.0 release.
Mizar is developed at one institution by a team that provides dedicated email
user assistance: the ‘Mizar User Service’. MML grows by 30–60 articles a year,
with 241 contributors so far. The mailing list gets around 10 posts a month.

Isabelle and CASL feature comprehensive tutorials and reference manuals,
Hets has a user guide, Mizar offers tutorials [26]. Theorema has partial built-in
help texts and is documented in a few publications.

5 Related Work

§1 mentioned earlier efforts to formalise economics. Particularly Arrow’s im-
possibility theorem, one of the most striking results in theoretical economics, has
been a focus for formalisation efforts, including Nipkow’s Isabelle and Wiedijk’s
Mizar formalisation [30, 42]. As in our case (cf. §3.2), they required initial paper
elaboration; additionally, it helped them to identify omissions in their source [9].
This source states three alternative proofs, but Tang’s/Lin’s fourth, induction-
based proof, allowed for obtaining insights on the general structure of social
choice impossibility results using computer support [36].
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Table 2. Performance (as far as results were comparable)
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§4.2 §4.3 §4.5 §4.3 §4.4 §4.6 §4.7 §4.1

Isabelle/HOL ++b ++ + ++ ++ ++ � ++ ++ ++ ++ 1.3
Theorema ? n/ac ++ ++ + –– ++ n/a – –– – n/a
Mizar ++ ++ – ++ ++ + � n/a ++ + � 1.7
CASL/TPTP �d – + ++ + – � + + � + 1.5
a PI/TI = proof/term input; LC/LS = library coverage/search; PO = proof output; CE
= counterexamples (incl. consistency checks); WF = well-formedness check. b scores
from very bad (––) to very good (++) c fully GUI-based d automated provers

The formal verification technique of model checking has been applied to auc-
tions. Tadjouddine et al. proved the strategy statement of Vickrey’s theorem via
two abstractions to reduce the model checker’s search space: program slicing to
remove variables irrelevant w.r.t. the property, and discretising bid values (e.g.
‘higher than someone’s valuation vi’) [35]. Our formalisation is, to the best of our
knowledge, the first for theorem provers; in the more expressive languages it has
the comprehensibility advantage of preserving the structure of the original do-
main problem. From earlier economics formalisation efforts cited above, it differs
in its goal to (ultimately) help economists to use formal methods themselves.

Our focus thus lies on comparing different provers by full parallel formalisa-
tion. Wiedijk compared Isabelle/HOL, Mizar, Theorema, and 14 other provers
by general, technical criteria, studying the code resulting from experts formal-
ising a pure mathematics theorem (

√
2 /∈ Q), and comparing it to a detailed

paper proof [44]. We complement this with the end user’s perspective: our ob-
servations, e.g., on the closeness of the input syntax to textbook notation or
the comprehensibility of the output are general, but we emphasised these cri-
teria as they are important to auction designers. Griffioen’s/Huisman’s 1998
PVS and Isabelle/HOL comparison is, like Wiedijk’s, independent from a spe-
cific application but closer to ours in its look at systems’ weaknesses from a
user’s perspective [12]. Like us, they rate proof management and user support,
but go into more detail up to the ‘time it takes to fix a bug’. Their findings on
user interfaces have been obsoleted by progress in developing textbook-like proof
languages and editors with random access and asynchronous validation.

6 Conclusion and Outlook

Auctions allocate trillions of dollars in goods and services every year, but their
design is still ‘far less a science than an art’ [24]. We aim at making it a science
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by enabling auction designers to verify their designs. By parallel formalisation
of the first major theorem in a toolbox for basic auction theory (ATT), we have
investigated the suitability of four different theorem provers for this job, taking
the perspective not only of experienced formalisers but also of our end users.
Our contribution is 2×2-fold: 1. to auction designers we provide (a) a growing
library to build their formalisations on, and (b) guidelines on what systems to
use; 2. to the CICM community we provide (a) challenge problems21 and (b) user
experience feedback from a new audience. This paper focuses on 1b and 2b.

For a concrete application, our findings confirm the widespread intuitions that
formalisation benefits from an initial paper elaboration, that the ‘automated vs.
interactive’ distinction proves of little importance in practice, and that no single
system satisfies all requirements. For now, our comparison results in Tab. 2 guide
auction designers in choosing a system, given their formalisation requirements
and experience. The ideal theorem proving environment would feature a library
as versatile as in Isabelle or Mizar, a prover as efficient as those of Isabelle or
Mizar, giving error messages as informative as in Isabelle/jEdit, further a proof
input language as close to textbook style as those of Isabelle or Mizar, or an
interface to explore automated proofs as informative as Theorema’s, a textbook-
like term syntax as Theorema’s, an integration of diverse tools as in Isabelle
or Hets, and a community as lively as Isabelle’s. We have not yet exploited all
strengths of the systems evaluated: maintaining a growing ATT with increasingly
complex dependencies will benefit from stronger modularisation, as supported
by Isabelle and even more so by the theory graph management of Hets/CASL.
Regarding auction practice, we are working towards ways to check that formal
definitions of auctions are well-defined functions (‘for each admissible bid input
there is a unique outcome, modulo some randomness’). Given a constructive
proof of this property, it should be possible to obtain verified program code
that determines the outcome of an auction given the bids. This may work using
Isabelle’s code generator, but we will also explore provers based on constructive
type theory.

Broader conclusions about auction theory require further research. Bidding
typically requires forming conjectures of others’ beliefs, involving integration over
conditional density functions (cf., e.g., Proposition 13 in Maskin’s review [24]).
We expect that much of the required foundations should already be available
in the libraries of Isabelle and Mizar. Maskin limits his review to single good
auctions, noting that few general results exist for multi-unit and combinatorial
auctions.22 Such auctions are often more economically critical (e.g. spectrum
auctions, monetary policy [19]) but also more complicated. The real challenge
for mechanised reasoning will be to demonstrate its use in this domain.23

21 Our problems are not currently challenging systems’ performance but the promises
of their languages and libraries.

22 The last two chapters of [25] address multi-unit auctions; multi-unit and combinat-
orial auctions are the focus of [7].

23 Even more ambitiously, many results in auction theory are simplified or extended
by explicit application of mechanism design; cf. [17].
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Abstract. Comparison of answers offered by a computer algebra system
(CAS) with answers derived by a student without a CAS is relevant, for
instance, in the context of computer-aided assessment (CAA). The issues
of identity, equivalence and correctness emerge in different ways and are
important for CAA. These issues are also interesting if a student is charged
with the task of comparing the answers. What will happen when students
themselves are encouraged to analyse differences, equivalence and correct-
ness of their own answers and CAS answers? What differences do they no-
tice foremost? Would they recognise equivalence/non-equivalence? How
do they explain equivalence/non-equivalence? The paper discusses these
questions on the basis of lessons where the students solved trigonometric
equations. Ten equations were chosen with the aim to ensure that the ex-
pected school answer and the CAS answer would differ in various ways.
Three of them are discussed more thoroughly in this paper.

Keywords: Computer Algebra Systems, Teaching and Learning Math-
ematics, Equivalence, Trigonometric Equations.

1 Introduction

The answers offered by a computer algebra system (CAS) are evaluated (in liter-
ature) mainly from a professional user’s point of view. CAS users could compare
their (or others’) answers with the answers of a CAS for various reasons. For
example, a mathematical researcher could use a CAS to confirm hand-derived so-
lutions (see [1]). Some mathematicians use a CAS in order to check the solutions
of students (see [2]).

There are also broader overviews, for example, in [3] where hundreds of an-
swers are evaluated in case of several CAS. A comparison of answers offered by a
computer algebra system with answers derived by a student could be also used.
One fruitful area is computer-aided assessment (CAA) where a student’s answer
is assessed automatically with the help of (”invisible”) CAS. The capability of a
CAA system depends on the capability of the CAS. It is necessary for compari-
son and assessment to explore the issues of identity, equivalence and correctness,
and not only in the sense of classical mathematics (see [4] and [5]).

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 216–229, 2013.
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Further interesting issues arise if a student (not a computer program) is
charged with the task of comparing the answers. This paper focuses on the fol-
lowing questions: What will happen when students themselves are encouraged
to analyse differences, equivalence and correctness of their own answers and
CAS answers? What differences do they notice foremost? Would they recognise
equivalence/non-equivalence? How do they explain equivalence/non-equivalence?
As different systems could present answers in different ways, a particular CAS
was prescribed to initiate an ”intrigue” and obtain information about the effect
of different representations.

The paper is based on lessons where first-year students solved trigonometric
equations. Solving trigonometric equations is an interesting topic in this context
because of the variety of possible presentations of solutions, units of measure-
ment, general and particular solutions, etc.

The students worked in pairs and their discussions were audio-taped. The stu-
dents had worksheets with equations and tasks (see Sect. 4). The order of solvable
equations was prescribed and was different for different pairs. The students first
solved an equation (correctly or not) without and then with a particular CAS.
The systems used were Maxima [6], Wiris [7], and WolframAlpha [8]. A specific
CAS was prescribed for the equation to attain the expected difference between
the students’ answers and the CAS answer.

Data of more than 100 instances of equation-solving (29 pairs of students)
were collected. Three equations from ten are more interesting from the MKM
point of view and they were chosen for deeper analyses in this paper (47 instances
of equation-solving, 26 pairs of students).

Before comparing their own answers with the answers of a CAS, students
should read and understand CAS answers. Generally, the issue of readability of
a CAS answer is multi-faceted. On the one hand, it is connected to sophisticated
mathematical reasoning, for example, branch cut and cylindrical algebraic de-
composition (CAD) (see [9], [10]). On the other hand, sometimes a rather simple
difference (for example, in notation) between a CAS answer and a school-like
answer could be confusing for the student (see [11]). The issue of readability of
CAS answers is important for this study.

The broader perspectives of the topic could be described in teaching-learning
context and in research context. The further purpose is to suggest a new method
of using CAS for teaching and learning mathematics where students’ discussion,
critical thinking and deeper insight into important issues (such as equivalence)
should be brought out. The readability of a CAS answer is as challenging as the
learning of the CAS syntax. Moreover, the black box nature of a CAS reveals
issues that can go as deep as university-grade mathematics (see [2]). However,
C. Buteau et al. note in [12]: Although practitioners have to deal with unusual or
unexpected behaviour of CAS, this was occasionally shown to provide pedagogical
opportunities. A thorough study is needed for the method and this paper is a
part of it. Besides direct teaching-learning context, perspectives in the research
context are also important. Such an analysis of students’ worksheets and discus-
sions could provide new opportunities for studying their thinking and learning.
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A. Sfard (in [13]) compares the possibility to analyse conversation even to a
microscope that gives new power perspectives to 17th century scientists.

Accordingly, the study also includes a search for preliminary answers to ques-
tions about suitability of the method for teaching-learning and research.

Section 2 gives a brief overview of related works. The choice of equations is
described in Sect. 3. An overview of the lessons is provided in Sect. 4. The main
examples are discussed in Sect. 5, 6, 7. Section 8 concludes the paper.

2 Related Work

This study is related to a number of different research areas. For example, com-
parisons of the different CAS, like [3], [14] and [15] are notable. Such reviews
do not focus on pedagogical aspects. However, M. Wester mentioned: One could
invoke mindset (Elementary_math_student) to initially declare all variables to
be real, make

√
−1 undefined, etc., for example [3]. The adequacy of CAS an-

swers is under consideration in [16] and [11], for instance. The paper [11], based
on the experiments of P. Drijvers, is focused on parameters, but also defines a
more universal list of obstacles. In addition, he suggests that an obstacle could
be an opportunity. The CAS answers are observed from a school-oriented point
of view in [17] and [18].

The papers [4] and [5] were written from the background of CAA. CAA sys-
tems could be connected with a CAS. For example, the STACK system uses
Maxima [19]. The issues of identity, equivalence and correctness are very impor-
tant. They help to distinguish between mathematical, pedagogical and aesthetic
correctness. Their study is focused on automated assessment. In our study the
students were charged with the task of comparing the answers themselves. The
issue of the ”right answer” is also very important in this case. Our study is
also related to the analysis of discourses, audio recordings, etc., but these topics
are too far removed from the main focus of this paper. Furthermore, we do not
deal here with the theoretical background of checking equivalence (for exam-
ple [20]) where trigonometry has a somewhat problematic status. The topic of
trigonometric equations is considered in the next section.

3 Choice of Equations and CAS

Our study is focused on trigonometric equations because of the variety of their
answers. It is quite usual for a trigonometric equation to have several reasonable
representations of the correct answer. Different solution strategies may lead to
different-looking but still equivalent answers. A classroom discourse in case of
the equation

2 + cos2 2x = (2− sin2 x)2 (1)

is presented in [21]. Four different answers were under consideration.
The variety of answers is actually even larger as the circumstances involved

go beyond a pure solving strategy. For example, one could prefer radians or
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degrees. General solutions can be sought in some and particular solutions in other
instances. Some basic formulae could be slightly different in different regions. For
instance, the solution for sinx = m, could be expressed as

x = arcsinm+ 2nπ, n ∈ Z

x = π − arcsinm+ 2nπ, n ∈ Z
(2)

or (as in Estonian textbooks, for example)

x = (−1)n arcsinm+ nπ, n ∈ Z . (3)

If we use a CAS, the variety is likely to increase because of the peculiarities of
the CAS. For example, some notation issues could arise. Different treatments of
the (default) number domain can also have an impact. Nevertheless, the issues
of general and particular solutions or ”regional” differences could be relevant.
In this study, 10 equations were chosen for the class. Some of them were from
regular school textbooks, others from books where trigonometry is handled at
a somewhat advanced level. We analyse three of them in more depth in the
paper. These equations seemed to be more suitable for this research track, as
the focus is primarily on different representations of the answers and not so
much on extraneous roots, complex domain, etc., (like in case of some other
equations). The equations were chosen to attain a specific type of difference
between the expected answer of the students and the answer of the particular
CAS. (Actually, as students solved the equations themselves, they also made
mistakes and the comparison was made between their actual answers and the
CAS answers. It is more thoroughly explained in the next section.)

The first example is the equation sin(4x + 2) =
√
3
2 , where the students use

Formula 3 (as taught in Estonian schools) but WolframAlpha expresses series
separately (see Sect. 5). (The issue of branches in CAS is also discussed in [22]).
The second example is tan3 x = tanx, where students give general solutions but
Wiris gives particular solutions (see Sect. 6). The third example is cos

(
x− π

6

)
=

0.5, where Maxima uses its own notation with union and %z (see Sect. 7). The
other equations with more specific nuances (extraneous roots, issues of domain,
indeterminacy, etc.) are not discussed in this paper but are listed for the sake of

completeness: 2 sin 2x cos 2z + cos 2x = 0,
tan2 x

tanx
= 0, tan(x+

π

4
) = 2 cotx− 1,

2 cos2 x+4 cosx = 3 sin2 x, sinx− sin2 x = 1+cos2 x,
1− cosx

sinx
= 0, 1− cosx =

√
3 sinx.

4 In Class

This section gives a brief overview of the lessons in the course ”Elementary
mathematics”, which is a somewhat repetitious course of school mathematics for
the first-year university students. The students had quite diverging skill levels in
solving trigonometric equations. As the advanced students were dismissed from
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the course (on the basis of a preliminary test), the proportion of wrong answers
probably increased. The students had very few experiences with CAS. CAS were
not used in other lessons of the course.

The lesson in question was taught by the author (who was not a regular
teacher of the course). The lesson lasted for 90 minutes and consisted of an
introduction, a period of equation-solving (ca 70 minutes), and closing (saving
and copying data). The introduction gave an overview of the lesson, the aims of
the study, etc. The computer algebra systems were not specially introduced but
the students were warned that the answers of a CAS could differ from human
answers and could also be incorrect. The types of possible differences were not
explained. The order of solvable equations was prescribed and was different for
different pairs of students in order to collect data about different equations. The
students solved the equations in pairs and the discussions were audio-taped in
order to obtain a deeper overview beyond the notes on paper. The students
first had to solve the trigonometric equations by themselves and then with a
particular CAS. They were encouraged to analyse differences, equivalence and
correctness of their own answers and CAS answers. The worksheet included the
following tasks (in the case of the first example):

– Solve an equation sin(4x+ 2) =
√
3
2 (without the computer at first).

– How confident are you in the correctness of your answer?

– Solve the equation with the CAS WolframAlfa using the command solve.

Fig. 1. WolframAlpha input

– How unexpected is the CAS answer at first view?

– Analyse the accordance of your answer with the CAS answer! If you want to
complement/correct your solution, please use the green pen.

– What are the differences between your answer and the CAS answer?

– How are your answer and the CAS answer related (analyse equivalence/non-
equivalence, particular solutions/general solutions)?

– Rate the correctness of your (possibly corrected) answer.

– Rate the correctness of the CAS answer.
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Some of the issues are discussed thoroughly in this paper, others are mentioned
only in the conclusion where further work is described.

The student papers and audio-tapes were analysed and the results in case
of three examples are presented in the next sections. Each presentation begins
with a brief introduction of the example, including reasons for selecting the ex-
ample, a possible school answer, and a snapshot of the CAS answer. Next, the
equivalence/non-equivalence of the students’ answers with the CAS answers is
discussed. It is based on mathematical reasoning by the author (Math. in ta-
bles). The second dimension is the students’ opinion about the equivalence/non-
equivalence that is based on an analysis of paper and audio data (Stud. in tables).
The tables are also presented. The discussion concludes with some pedagogical
comments.

5 Different Forms of General Solution

The first example is the equation where the CAS answer is particularly unex-
pected for those who use the (−1)n formula (Formula 3) in case of sinx = m (as
is common for Estonian students). The possible school answer for the equation

sin(4x+ 2) =

√
3

2
(4)

is

x = −1

2
+ (−1)n π

12
+

nπ

4
, n ∈ Z . (5)

Fig. 2. sin(4x+ 2) =
√

3
2
. WolframAlpha
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WolframAlpha gives two series of solutions (see Fig. 2). The answers are actually
equivalent. The students did not receive any specific information about the CAS
answer.

As our textbooks and teachers use mainly the (−1)n form, the students’ an-
swers and the CAS answer seemed quite different at least for this reason. (Twelve
pairs (of 17) used (−1)n form, 4 gave particular solution. One pair gave initially
particular solution and after correction (−1)n form.)

As several pairs made mistakes, one could count 11 cases of equivalence with
the CAS answer and 6 cases non-equivalence. Four pairs (of equivalent cases)
used both degrees and radians in the same answer, for example:

x = 15◦ · (−1)n + 45◦ · n− 1

2
, n ∈ Z . (6)

Our main focus in the paper is to observe how students compare their own and
CAS answers. In many cases, their opinion about the equivalence is ascertainable,
sometimes not. The results are presented in Table 1.

Table 1. sin(4x+ 2) =
√

3
2
. Equivalence/non-equivalence

Stud. Equivalent Stud. Non-equivalent Abstruse

Math. Equivalent 4 5 2

Math. Non-equivalent 3 3

The depth of discussions about the comparison varied between the student
pairs. For example, 3 pairs identified actual equivalence through reasonable dis-
cussion, while one pair simply presumed it. There were also 3 pairs whose answer
was not equivalent with the CAS answer, but they counted them as equivalent
without any real discussion. Seven pairs did not recognize that the answers were
equivalent. Mainly, they did not grasp that n in their answer (like in Formula 3)
and n in the CAS answer (see Fig. 2) was not the same. This points to an au-
tomated (and correct) habit of solving the algorithm of trigonometric equation
without exhaustive understanding of the solution. Three pairs identified the non-
equivalence of their answer and the CAS answer. Their answers were remarkably
different from the CAS answer.

It seems that the different representations of the same answer, like in this
example, could initiate instructive discussion. It could also point to a possible
superficial treatment of the fairly important issue of the meaning of n. A simpler

equation, like sin 4x =
√
3
2 , could probably be a more straightforward means for

clarifying the phenomenon. The example is suitable if the students use the (−1)n
formula. This is also an issue of different traditions. For example, it is usual to
find solutions such as

x = (−1)nπ
6
+ nπ, n ∈ Z (7)

(being the solution of sinx = 1
2 ) in the textbooks of some countries, such as

Estonia, whereas we are aware that many others do not.
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6 If the CAS Gives Only Particular Solutions

As the second example, we have chosen a situation where a CAS gives only par-
ticular solutions, but the students were asked to present general solutions. Wiris
has its own rules for the presentation of solutions to trigonometric equations. In
case of sinx = a, for example, arcsina and π − arcsina are presented.

The students should frame the CAS solutions up to their own general solu-
tions. In case of the equation

tan3 x = tanx (8)

the human answer could be

x = nπ, n ∈ Z

x = ±π

4
+ nπ, n ∈ Z

(9)

or
x = nπ, n ∈ Z

x =
π

4
+ nπ, n ∈ Z

x = −π

4
+ nπ, n ∈ Z .

(10)

Wiris gives the particular solutions (Fig. 3).

Fig. 3. tan3 x = tan x. Wiris

We count these answers as equivalent in the sense that all series are presented
by 2 instances. Certainly, nπ and {0;π} are not equivalent in the usual mathe-
matical sense. The order of solutions is quite confusing as instances of the series
of solutions are not always side by side (for example, π

4 and 3π
4 are not from

same ”club”). The students did not receive any specific information about the
CAS answer. Many of the student pairs (9 of 14) gave the right answer and they
also figured out (after smaller or larger effort and discussion) the relationship
between their and CAS answer (see Table 2). One pair could not frame π, 3π

4
and 5π

4 up to their right answer. Again, the meaning of n in the formula seemed
to be incoherent for them. The cases where students omitted some solutions
were very interesting. One such pair corrected their mistake and finally found
the right answer. They added to

π + πn
π

4
+ πn

(11)
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missing

− π

4
+ πn . (12)

We do not focus on emotions in this paper but their joy after the correction
was remarkable. The other pair (initially only nπ solution) had a member who
already diagnosed their mistake. The third pair did not analyse the CAS solu-
tions thoroughly enough and did not notice that their answer was incomplete.
It is impossible to give a thorough overview of the discussion of the pair that
got an incomplete answer and also considered it as non-equivalent with the CAS
answer, as their discussion was very laconic. It seems that the representation

Table 2. tan3 x = tanx. Equivalence/non-equivalence

Stud. Equivalent Stud. Non-equivalent

Math. Equivalent 9 1

Math. Non-equivalent 2 1

Non-equivalent → Equivalent 1

of the answer is generally accomplishable in this case. The possible corrective
virtue is also notable. The standard of representation of answers to trigonometric
equations could provide more instructive examples, as the choice of a particular
solutions is not always as transparent.

7 Unusual Form of Arbitrary Integer

The third example is related to CAS notation. The CAS answer is actually very
similar to a normal human answer but with some CAS-specific peculiarity. The
human answer to the equation

cos
(
x− π

6

)
= 0.5 (13)

could be
x = −π

6
+ 2nπ, n ∈ Z

x =
π

2
+ 2nπ, n ∈ Z .

(14)

Maxima gives the same answer in a somewhat distinctive way (Fig. 4). The
package to_poly_solve is used for solving trigonometric equations. We cite the
Maxima manual for clarity: Especially for trigonometric equations, the solver
sometimes needs to introduce an arbitrary integer. These arbitrary integers have
the form %zXXX, where XXX is an integer [23].

The meaning of %z was also an important issue for solving the equation with
Maxima. The students did not receive any specific information about the CAS
answer, but they had additional brief paper manuals (3 pages) on using different
CAS where %z was explained. Only two pairs found the info about %z from
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Fig. 4. cos
(
x− π

6

)
= 0.5. Maxima

this manual. Almost all pairs mentioned the %z as a remarkable difference from
their own answer. An explanation was given if the students asked about it.
Nevertheless, two pairs remained confused and could not understand the CAS
answer. The meaning of such a notation could be more clearly indicated in the
CAS user-interface. For example, tooltips could be used. Eight pairs (of 16) got
the right answer (see Table 3). Five of these pairs quite easily found the CAS
answer to be equivalent. Three pairs had an answer equivalent with the CAS
answer but their opinion about equivalence was abstruse. One of these pairs
could not understand the CAS answer because of %z. The second pair did not
observe the CAS answer sufficiently and did not notice the relation between
the CAS answer and their own (not fully simplified) answer. The third pair’s
discussion was too laconic. One pair corrected their mistake and finally found
the right answer, from

. . .

x− 30◦ = arccos
1

2
+ 2πn

. . .

(15)

to
. . .

x− 30◦ = ± arccos
1

2
+ 2πn

. . . .

(16)

Three pairs saw equivalence that really did not exist. There were also four pairs
who considered their wrong answers as non-equivalent with the CAS answer.
One of these pairs could not understand the meaning of %z correctly. Two pairs
tried to find their mistakes, one pair had evidently a different answer.

It seems that the different notation can cause major trouble for some people,
while it can be easily acceptable for others. It should be mentioned that the
students used Maxima for the first time and many issues would probably be
resolved in the course of further use.

Table 3. cos
(
x− π

6

)
= 0.5. Equivalence/non-equivalence

Stud. Equivalent Stud. Non-equivalent Abstruse

Math. Equivalent 5 3

Math. Non-equivalent 3 4

Non-equivalent → Equivalent 1
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Table 4. Adequate identification of equivalence/non-equivalence

Section Equation Adequate identification

Different Forms of General Solution sin(4x+ 2) =
√

3
2
7 (of 17) 41%

If CAS gives only particular solutions tan3 x = tan x 11 (of 14) 79%

Unusual Form of Arbitrary Integer cos
(
x− π

6

)
= 0.5 10 (of 16) 62%

8 Conclusion

The study focused on a lesson where students solved trigonometric equations
at first without a CAS and then with a CAS. The main task was to compare
the answers. Recognition of equivalence can be a difficult task for students.
Even those students who solve trigonometric equations quickly and correctly
can find it hard to correctly compare their answer with the CAS answer. The
three examples presented in the paper helped to highlight different aspects of
this situation.

If we look at the findings in Sections 5, 6 and 7, it is possible to single out the
cases where students identified the equivalence/non-equivalence of their answer
and the CAS answer adequately. The proportions of these cases are presented in
Table 4. The cases where the non-equivalent answer was changed to equivalent
in the light of the CAS answer are also included.

There seem to be different ”hindrances” to identification of equivalence/non-
equivalence in case of different equations. Probably, the proportion of adequate
identifications of equivalence/non-equivalence could be increased by drawing spe-
cial attention to the problematic issues before solving or in the worksheets. It is
important to decide what issues are adequate and useful for the students. For
example, the meaning of n in the answers of trigonometric equations is relevant
and useful for mathematical insight. (The %z6 topic is also connected to this
issue.) It is probably possible to increase the proportion of students’ answers
that are equivalent to CAS answers. For example, it is possible to use simpler
equations or give more hints about the solution. Principally, it is possible to give
whole solutions but then the students would have a weaker connection with the
exercise.

These questions could be studied in further experiments. Actually, there are
various ideas for further work. Data from the lessons (see worksheet in the Sect.
4) include information about students’ pen and paper solutions, confidence, rat-
ing of correctness of their answers and CAS answers, etc. The data could be
analysed with the topic discussed in this paper. Of course, the seven equations
not discussed in this paper should be included in the study. It is notable that
some of these equations have CAS answers that are non-equivalent to school
answers.

As a teacher, the author could argue (so far without scientific proof) that
the lessons were successful. (It was also confirmed by the actual teachers of
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these groups.) It seems that the task of comparing their own answers and CAS
answers was interesting to the students. Generally, they became accustomed to
the style of the lesson and actively discussed the topic of trigonometry. The
method seems to be fruitful in research context as well. The paper data and
audio-tapes complement each other and give a good overview about the students’
activities during the solving process.

Coming back to the issue of readability of the answer, it should be mentioned
that %z6 form could be confusing for some students, but it seems to be easily
explainable. However, the change of %z6 form could be considered as a possible
suggestion to CAS developers. In addition, it is possible to improve the order of
particular solutions in Wiris.

It would be quite useful if a CAS would have the possibility to choose a mode
according to a particular style of presenting the answers. For example, one could
choose whether a general solution would be in (−1)n form or in the form of
two series. On the one hand, it is good if the CAS answers are very school-like.
On the other hand, the moderate difference between the students’ and CAS
answer could also be challenging and useful. Specification of such moderation is
one of the most challenging issues of further work. It opens more questions. For
example, how would such a specification look like? Would it be possible to work
out indicators that qualify the type of answers?

One could even say that having different answers compared to school solutions
is a part of the charm of CAS. It is possible to propose various lesson scenar-
ios other than those used in the lessons considered here. A discussion where
all students would participate could be very useful. The discussion could take
place during the same lesson after solving and comparing, but it is also possible
to arrange the concluding discussion during the next lesson. In any case, the
concluding part is desirable, as students need feedback.

It is also possible to direct students to use CAS tools in the comparison of
answers. For example, they could try to substitute a solution into the equation,
simplify the difference of answers with the help of the CAS. Of course, it is
possible that students compare their own answers with CAS answers as they did
in these lessons. Another possible task for students could be a comparison of the
answers of different computer algebra systems. In addition, one and the same
CAS could offer different answers with different commands or assumptions and
these answers could be also compared.

We can conclude that the method of asking students to compare their own
answers with CAS answers seems to have potential in the context of learning as
well as research, but further work is certainly needed. This style of comparison
could contribute of the usage of computer-based tools for doing mathematics
in different ways. On the one hand, the students see that calculations can be
performed faster and easier. On the other hand, one should understand that
evaluation of a CAS answer may not be so fast and easy. The abilities of critical
thinking (particularly, with respect to computer algebra systems) are likely to
be developed by the exercises.
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Abstract. Mathematics is an ancient and honorable study. It has been
called The Queen and The Language of Science. The World Wide Web is
something brand-new that started only about a quarter of a century ago.
But the World Wide Web is having a considerable effect on the practice
of mathematics, is modifying its image and role in society, and can be
said to have changed some of its content. This paper explores some of
the issues this raises.

1 Introduction

Mathematics, which is presumably the interest most common to readers of this
piece, has always been a somewhat abstruse subject to most of the world. How
it can be communicated has played a role in how it has been perceived by
the public, but is also very important to its practitioners. Mathematicians have
generally been using the standard ways to communicate all along1.

Very roughly speaking we have gone from spoken language, to marks on rocks,
bones and wood, cuneiform tablets, papyrus and parchment, on to paper and
finally, in a great breakthrough, to printing.

That last development, printing, has been the modern thing for about 500
years. It incorporated special mathematical symbols and textual layouts devel-
oped over many years, and increasingly allowed additional aids such as diagrams
and illustrations. However, the advent of electronic computing machines did not
just make it much easier to produce the penalty copy2of printed mathematics,
as is now commonly done with desktop publishing. The networked aspect of the

� My thanks are due to many colleagues with whom I have discussed these things over
the years, especially from Mathematics Reviews and the W3C Math Working Group.
I am also particularly grateful to Andrei Iacob for his continuing to provide new ideas
and pointers to intellectual stimulation, and to Wolfram Sperber of Zentralblatt für
Mathematik.

1 The use by the Inca culture for numerical records of quipu, a system of knotting in
color-coded cords, could be considered an exception, but it does make use of ordinary
materials and is apparently both in use today and similar to seemingly independent
systems elsewhere [Gullberg:2007]. It can be argued though, that numerals were
themselves initially on-standard.

2 Material to be printed which carries extra cost due to the presence of special symbols
or layout requirements.
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telegraph and telephone, important communication developments from the 19th
century, has not effected a sea-change in mathematics (and science), though it
did make a great difference to society and popular culture (as did radio and later
television).

In 1990 Tim Berners-Lee, with Robert Caillau, working at CERN, capitalized
on the networking of computing (internet) to introduce what became the World
Wide Web: in simplest terms this is basically hypertext on an internet. That is
the change we wish to examine here3.

Berners-Lee was, and is still, an idealist. He intended the new communication
medium he knew they were starting to be a force for public understanding and
good. It can be seen to have been that in many ways. One of them is the im-
proved access to a great deal of knowledge. That includes mathematics. For the
special case of mathematical knowledge there have had to be some small targeted
improvements in the technology, which are still continuing. Wider public access
to mathematics may be changing the numeracy level of the population, and the
public is becoming aware that mathematics lies behind such desirable things as
search services and coding for CDs, and maybe also encryption. Politicians, even
in the US where there are significant anti-scientific movements, are getting more
of the scientific picture, to the benefit of mathematics I would argue. Mathe-
matics is changing its position in society as a result of the advent of the World
Wide Web.

Mathematics itself, as a subject of enquiry, has benefitted from the technology
which has been facilitated by the World Wide Web. The fact that mathematical
notions can be communicated so much more rapidly and widely than before,
using the networks of computers across the globe has led to a real increase in
mathematical knowledge.

It is largely email and the sharing of files produced by desktop publishing that
can be seen to have started the new age, but it is the World Wide Web that has
carried it through to a fully new era. Sharing libraries of papers, books, notes,
datasets, software and simulations makes a difference to how we learn more of
our subject, whether as a student or as a researcher.

Perhaps this is similar to the change in society produced by the dissemination
of knowledge in print material, which devalued the real person of a teacher
and facilitated studying while not at someone’s feet. This new communication
medium, which really is world wide and almost instantaneous, is changing how we
learn. There are disadvantages, as there were to print’s introduction, notably the
information overload we are subject to. We are just beginning to learn how to use
our new tools. In addition to the personal communication aspects, there are the
effects of globally networked computer power; examples where this has changed
matters for mathematics are projects like GIMP for number theory, and the
enormous algebra calculations associated with, say, root systems for exceptional
Lie algebras. There are also various numerical or symbolic computation services
that are offered, such as ones associated with AMPL, or Mathematica and Maple.

3 The first Web page has just been restored to public view at [CERN:WWW-1].
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There have been developments within mathematics that are readily traced
back to the needs of the developing technology. There has been a great deal of
new work associated with networks as mathematical objects, of which study of
the physical internet is a fine example; but then networks began to be investi-
gated all over from biologically to sociologically. It’s not entirely the case that
the World Wide Web network sparked the first interest in such matters, but the
realization of the importance for us of that real network has meant an increased
consciousness of networks wherever they are to be found.

All sorts of developments to do with signal processing, switching theory, en-
coding and encryption come out of the technology that lies behind the internet
which supports the World Wide Web, and which the World Wide Web needs
developed. The advent of large datasets was, and their study and usefulness are,
encouraged by the World Wide Web. Next we are going on to the Semantic Web,
where there are attempts to encode, transmit and work automatically with more
of the meanings we impute to strings of characters that fly about our internet
and make up our World Wide Web.

There are disadvantages to this new technology and communication medium.
As usual, there are unexpected possibilities opened for miscreants, fraudsters,
the misguided but well-intentioned, for social control and crime, and for erosion
of values previously held dear by, in this case, the mathematical community. 4 It
is incumbent on us to be aware that maybe, as Alan Kay has put it, “The best
way to predict the future is to invent it”.5

The exigencies of time and space available mean that the range of subjects
touched on in the introduction cannot be expanded on here. Below there’s dis-
cussion of mathematical communication in history and of a modern web technol-
ogy, MathML, the author has been closely involved with. Another such example
would be the newly revised Mathematical Subject Classification, MSC2010, now
in SKOS form for the new Semantic Web world of Linked Datasets — for descrip-
tion of this see the references at [MSC2010:info]. There’s also the matter of the
development of new types of mathematical documents such as those with visual-
izations and manipulatives )for personal examples see [Ion:2011], [Ion:2003-], and
[MSC:TiddlyWiki]; for more striking, and important examples see [Arnold:2007],
[Wolfram:mathdemos] or [Wolfram:Alpha], and also millions of personal web
sites and blogs, some notable ones with serious mathematical reach at the
research level [Tao:blog], [Gowers:blog], [Baez:site] and crowd-sourcing efforts
[Polymath:Project], [Nielsen:blog], [mathoverflow], [PlanetMath]. The matters
of ethical behavior and social media are much discussed and there are questions
as to whether the culture of mathematics makes other subjects experiences less

4 Similar things happened upon the introduction of the telegraph, for instance
[Standage:2007].

5 Alan Kay claims to have uttered the phrase at a meeting in 1971 involving peo-
ple from PARC, Palo Alto Research Center and Xerox planners.[Smalltalk:website].
More recently he has apparently considered evolving it to “The best way
to predict the future is to {invent, prevent} it” with alternating blinking
words.[Windley:blogsite]
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relevant [AnaEtAl:2013], [ResnikEtAl:2013], [AMS:Social Media], [BikEtAl:2013].
This list could readily be extended. An attempt to do a more thorough job can
be found at the author’s [Ion:UM-Home].

Finally I would like to mention the fact that this contribution might be dep-
recated as nothing more than a cut-and-paste job, which the new technology
and Web access have made so much easier. Is it a bit like a rap remix with lots
of included samples? Perhaps that is what the Web is facilitating, and that is
part of the change in knowledge creation that is going on. What is there that’s
original about such a piece? Does it matter? Is it not likely that the writer does
not know what is original in what’s written, and indeed we often fool ourselves
into thinking we have come up with something new when we should know we
have not? Research seems to show this [Sugimori:2013].

2 A Potted History of Mathematical Communication

2.1 Pre-history

Mathematical notions we can imagine go back to the beginnings of human cul-
ture. But the traces of early forms of number though they might be subtly en-
coded in language and teased out by linguistic research are not obvious until they
are recorded on something that persists physically. One of the earliest examples
of an artefact that can be pointed to as something mathematical seems to be
the Ishango Bone, maybe 22,000 years old from the Upper Paleolithic era, un-
earthed in 1960 [Huylebrouck:2008] [Cornelissen et al.:2008] [Crèvecoeur:2008]
[Ishango:website] [Ishango:Wikipedia] [Ishango:YouTube], and now held at the
Royal Belgian Institute for Natural Sciences in Brussels [KBI:website] (see Fig.
1). It shows tally markings that have been claimed to show prime numbers, or
perhaps to be associated with a calendar, but may simply be expressed in base
12. There is also a Lebombo Bone dated at 37,000 years old [Bogoshi et al.:1987]
[Lebombo:website], as well as a Czech contender for oldest object, and a newly
studied second Ishango Bone.

2.2 Ancient Times

Let us move on now quickly to ancient times in Babylonia where organized scripts
for setting down language were being developed. Writing on tablets of mud that
baked dry has the advantage that it has persisted, or at least some of it has,
through the ages to the present. There are examples of bullae bearing cuneiform
writing that scholars can interpret to show clearly mathematical calculations
dating back to over 2000 BCE. There is one, for instance, that seems to show
a table of the powers of 70 times 2, up to 16,470,860,000,000 ( 2 × 707) from
2050BCE, and another from 1800BCE with the values of N3 + 3N2 + N =
N [(N + 1)(N + 2)− 1] for N = 1..50 [Sumer:Clay].

Another tablet from these early days, known as MS 3051, shows a geometrical
figure [Friberg:2005] (on the Web see [Friberg: page 190]).



234 P.D.F. Ion

Fig. 1. The Ishango Bone; from 4 sides and a close-up

A different medium which has shown its persistence is papyrus, and this ex-
ample again shows the use of non-textual aids for mathematics, in this case a
triangle diagram in an Egyptian fragment known as Problem 59 from ca. 1850
BCE [Egypt:Papyri].

2.3 Historical Times

The Archimedes Palimpsest — a couple of thousand years later in the early
part of our modern era, around 1000 CE — is the most recently famous piece of
the mathematical record rediscovered. It was recently auctioned for a record price
after being lost for many decades. The palimpsest is a series of parchment pages
on which a text ascribed to Archimedes was erased to be replaced by a Christian
religious text which was thought more valuable at the time[Archimedes:website].

Leibniz (1646–1716) was a towering figure of his time, a truly versatile diplomat
and scholar, who was a librarian, lawyer and philosopher. As a librarian he can be
said to have introduced a system of indexes (author, title, keywords), timelines,
and a classification scheme with a decimal code aspect like that most common
today. He even used 500 for Science, as nowadays. Of course, he’s widely known
for his work on binary notation and his conception of a calculus ratiocinator
which is the origin of the name of one of the parts of CICM, Calculemus!, as
well as for his form of the calculus which was seen as a competitor to Newton’s.
He was a prodigious worker and wrote about 40,000 letters and much other
material, so that there are presently six sites undertaking digitization of his
works to make it available on the Web.

Pasigraphy is not well-known today, but as a conception it plays a role in our
story. In 1897, at the First International Congress of Mathematicians in Zürich
there were not many talks. Striking among their titles is “Pasigraphie, ihren
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jetzigen Zustand, und die pasigraphische Bewegung in Italien”6. The presenter,
the logician Schröder from Karlsruhe7 began his talk by saying that if there were
any topic that really belonged at an International Conference of Mathematicians,
then it was pasigraphy. He was sure that pasigraphy would take its rightful place
on the agenda of all succeeding such conferences. Pasigraphy is the study of
universal languages of symbols intended to encapsulate semantics and to provide
a basis for calculational ratiocination, i.e. reasoning by manipulation of symbols.
This is in line with Leibniz’s conception.

Schröder then went on to disagree with the distinguished chairman of the
session, Giuseppe Peano8, by saying that he did not think that Leibniz’s problem
of providing an algebra universalis, a symbolic calculus for mathematics had been
solved. Peano had just published, in 1894, his “Formulaire des Mathématiques”
[Peano:1894], in which he felt he had essentially provided just that. It is in
fact there that Peano’s axioms for the natural numbers are to be found, along
with axiomatizations and highly symbolic representations for much of arithmetic,
algebra, geometry and calculus.

Schröder goes on to offer some of his own considerations on the topic of
universal symbolics for math, including some remarks that can be seen as rather
prescient about, for instance, the complexity of formulas9.

Paul Otlet and his friend Henri La Fontaine, about 1895, conceived the idea of
a universal library that would aggregate all knowledge and make it retrievable
through targeted searches carried out on a well-organized index system. They
designed many subsystems with great care, and were able to obtain funding from
the Belgian Government to start realizing their dream. La Fontaine applied the
money he received as a Nobel Peace Prize largely to the project of building a
Universal Bibliographic Repertoire.

Otlet designed a highly advanced index card machine: “a moving desk shaped
like a wheel, powered by a network of hinged spokes beneath a series of moving
surfaces. The machine would let users search, read and write their way through a
vast mechanical database stored on millions of 3×5 index cards.This new research
environment would do more than just let users retrieve documents; it would also
let them annotate the relationships between one another, the connections each
[document] has with all other [documents], forming from them what might be
called the Universal Book.”

They negotiated with John Dewey and obtained his permission, under some
terms on non-competitiveness, to extend his Dewey Decimal System of classifi-
cation to a Universal Decimal Classification (UDC), also still in use today. They
started cataloging and collecting, and even responding to remote queries not
just received through the post, but made using the new telegraph and telephone

6 “Pasigraphy, its present state, and the pasigraphic movement in Italy”
7 Perhaps best known today from the so-called Schröder-Bernstein theorem.
8 The Italian mathematician who can be considered leader of the pasigraphic move-
ment in Italy, and who was also active in developing universal natural language
Interlingua [Interlingua:Wikipedia].

9 In fact Galois in an open letter had brought that up already. [Neumann:2011]
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systems. Indeed their vision included a distributed information system that is
very modern in conception. A big problem in implementing this was that the
records were on slips in card files and the querying agents were library assis-
tants scurrying from one box to another and gathering notes. Nonetheless a
start of the system called the Mundaneum, in Mons, was demonstrated and ran
for a while until larger forces supervened. With the world-wide downturn of eco-
nomic life around 1930 public funding dried up, and then the political turmoil
in Europe culminating in the invasion and occupation of Belgium by a foreign
army meant an end to this grad project. Nowadays there is a revival of interest
in the Mundaneum [Mundaneum:Accueil] and it has a web presence under the
Google Cultural Institute [Mundaneum:Google]10. It can seen as an ancestor of
both Google and the Semantic Web. The modern scholar to whom we should be
grateful for unearthing the Mundaneum and reviving interest in it is W. Boyd
Rayward [Rayward:1975].

Vannevar Bush [Bush:Wikipedia], as Director of the Office of Scientific Re-
search and Development, was a very important figure in the scientific side of
the American War effort during World War II. But in this context his impor-
tance is the article he published in 1945 entitled “As we may think”[Bush:1945]
[NyceKahn:1991]. Bush envisaged a desk-like machine that would have the
world’s information stored in some accessible way, say using photographic mi-
crofilm technology, that would allow users to store trails of their explorations as
they navigated the world’s knowledge.

Doug Engelbart [Engelbart:Wikipedia], inventor of the computer mouse and
early graphical user interfaces, as well as a developer of hypertext and networked
computing, says he was much influenced by Bush’s article. In addition he was both
idealistic and of a philosophical inclination. Bardini and Friedewald write “After
he had read the works of Benjamin Lee Whorf whose ethno-linguistic writings in-
fluencedmany scientists during the late 1950s, he was convinced that technological
systems were not only shaped by humans but also shaped human thinking them-
selves. Man and machine could not be treated separately in such a technological
system. Thus Engelbart concluded that developing a tool for augmenting human
intellect had to be a co-evolution ofman and technology.”[BardiniFriedewald:2002]

3 The World Wide Web

The early days of the World Wide Web and of the internet have been extensively
discussed and reminisced over by many of the key figures in its early development.
However it is the pervasiveness of its influence that I need to emphasize here. I
will mention two incidents that seem to me to make the point without recourse
to academically justified statistical studies.

10 “Google de papier” (Le Monde); “The web time forgot” [Spiegel:2011]; “L’ancêtre
génial de Google” [Spiegel:2011].
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The first is the appearance of Sir Tim Berners-Lee at the opening ceremony
of the London Olympic Games 27 July 2012, shown on TV putting on Twitter
his message “This is for everyone” from his Next Cube computer, which flashed
round the stadium on ‘pixel’ paddles mounted by the seats of 70,500 members of
the audience, and is estimated to have reached a television audience numbering
about 109 [Berners-Lee:Twitter]. That is a a true world-wide web presence. It af-
fects the image of computers, technology and mathematics as well. The first Web
page has just been reconstructed at CERN as a cultural icon [Berners-Lee:Web1].

Fig. 2. Tim Berners-Lee’s Olympic tweet

The second example of hype that seems to me a nice illustration is what I saw
recently in a magazine I picked up in Stuttgart airport[Welt der Wunder:2013].
There was a piece entitled “Will the internet be the new world power? If so, who
rules it?”11 The piece emphasized the view that, roughly speaking, the internet
was a community which amounted to a culture like a country, with about 2×109

citizens. Of these about 50% were born in it (or with it) and 50% were immigrants
(older people have to learn to navigate the internet and the world wide web). This
new power has 5 declared state enemies (Bahrein, China, Iran, Syria, Vietnam)
who would like very much to curb it. But it is a market, according to the Boston
Consulting Group of about 4.2 × 1012$, so a very significant economic power.
Finally, from another point of view it is approaching the size of natural brains in
number of connections, so the question arises whether it is becoming some sort of
new communal brain? Again we see the idea that the WWW affects everything,
and certainly science and mathematics, which are the basis of its technology.
But the socio-political effects on science and mathematics may be greater than
the considerations arising from the technological needs.

3.1 MathML

One of the ironies early in the days of the World Wide Web seemed to be
that although the birthplace of the WWW is certainly CERN, the European
Organization for Nuclear Research[CERN:Website], so one might assume that

11 “Wird das Internet die neue Weltmacht? Wenn ja, wer regiert sie?”
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technical documentation full of equations would be of importance its early users,
there was no easy way to specify the display of equations on Web pages for some
time.

In May 1997 the W3C formed a Math Working Group to consider how to fa-
cilitate math on the Web12 The Math WG contained representatives of diverse
backgrounds. There were those from computer corporations and publishing, com-
puter algebra people13 and invited experts from organizations not members of
the W3C14.

The objectives originally considered were far-reaching: To develop an open
specification for math to be used with HTML that:

1. Is suitable for teaching, and scientific communication;
2. Is easy to learn and to edit by hand for basic math notation, such as arith-

metic, polynomials and rational functions, trigonometric expressions, uni-
variate calculus, sequences and series, and simple matrices;

3. Is well suited to template and other math editing techniques;
4. Insofar as possible, allows conversion to and from other math formats, both

presentational and semantic, such as TeX and computer algebra systems.
5. Output formats may include graphical displays, speech synthesizers, com-

puter algebra systems input, other math layout languages such as TeX, plain
text displays (e.g. VT100 emulators), and print media, including braille. It
is recognized that conversion to and from other notational systems or media
may lose information in the process;

6. Allows the passing of information intended for specific renderers;
7. Supports efficient browsing for lengthy expressions;
8. Provides for extensibility, for example through contexts, macros, new ren-

dering schemas or new symbols. Some extensions may necessitate the use of
new renderers.

The above goals were ratified by those at the initial meeting in October 1996! In
essence, the participants were working up to a full-scale pasigraphy for mathe-
matics. The connections to the computer algebra engines, which were supposed
to communicate the semantics of mathematical expressions were to be part of
realizing Leibniz’s calculus ratiocinator.

Many ideas were considered early on. After all, several WG participant orga-
nizations already had markup languages that they were using to express a great
deal of really useful mathematics: for instance, Scratchpad (later Axiom) from

12 Dave Raggett [Raggett:Wikipedia], who produced the HTML 3.2 draft, was himself
a proponent of adding some math capabilities to HTML. In fact there was some
confusion over the math in HTML 3.2. books appeared with sections explaining
simple extensions to HTML for math that were little more than ideas that had been
suggested as to how something might be done. They were not in any draft accepted
by the W3C. In fact the HTML 3.2 draft never evolved to a Recommendation of the
W3C.

13 IBM, Hewlett-Packard, Adobe, Elsevier Science, Wolfram Research, Maplesoft, Soft-
Quad, ....

14 American Mathematical Society, Geometry Center, Stilo Technologies, ...
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IBM, and, of course, the input languages of Maple and Mathematica. Other
influences were naturally the already pervasive TEX, much used in science and
spreading in scientific publishing, and the presence on the scene of Java15.

One clear thing was that although some of the technical solutions available
for mathematical markup were very clever and powerful, the W3C Math WG
would have to come up with a lingua franca into which all could translate for
no single player would be allowed by the others to dominate the field.

The WG finally decided that it would develop a markup language which ac-
corded with XML. In fact, MathML 1.0 is an XML application, one of the first
written at more than a toy level. A salient reason is that general acceptance of
a math specification would only happen if it embedded well into the technology
of the internet. And that was then coming to be dominated by XML and its
relatives. We wanted something that really met the goal of facilitating the use of
math on the Web, so we fell in line with the evolving standards of the Web. This
had many implications for later work, and was not easy to take. The primary
goal was to create something that would be powerful, usable and adopted. The
Math WG has stuck with that intention throughout.

Many on the WG had considerable experience with TEX, and could consider
that as a natural paradigm for a math language for the Web. IBM, drawing on its
extensive experience with Scratchpad and then Axiom, could have itself proposed
a language for math. Wolfram Research’s Mathematica clearly offered a very rich
language for expressing math in ASCII characters. But the disadvantage to any
of these foundations would have been that we could not have been able to offer
a public specification which all could agree had the expressiveness they would
like to see, and none would feel they had not contributed to.

Producing an XML application meant the need for an easy input syntax for
math on Web pages, would remain unmet, even for simple math. But the ad-
vantages of a machinable lingua franca outweighed the disadvantages. The prob-
lematic input of formulas was intended to be facilitated by interface applications
tailored to the needs of their user communities — high school, research scientists,
TEXies . . .

The details of what was developed are naturally in the MathML specifica-
tions themselves. Other than that they are couched in XML terms and do not
address input issues, the most important design decision made is probably that
there are both Presentation and Content Markup sections to MathML. Presen-
tation markup is enough to allow specification of all the layout schemata in
common use today, and can be claimed to be at least as expressive as TEX for
that purpose, if one does not allow the use of the aspects of TEX that make

15 One then easily rejected suggestion was that each formula would be a program
written in Java, which would allow different representations of it, in print or as an
object for other computation, responding to others of its semantic aspects. However
running many such function in a document was out of the question. It seems to
me paradoxical that the current fallback for rendering of MathML, which does a
remarkably good job of being universal, is MathJax [MathJax:website], written in
JavaScript and using functions for each formula.
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it a full programming language. Content markup is intended to be tailored to
expressing the semantics of mathematical formulas as found in about the first 14
years of schooling in the US. In addition, there are arrangements made, for the
purposes of both Content and Presentation that allow that allow customizing
beyond the basic schemata and semantics already provided; naturally these are
not very easy to do. On the Content side the MathML specification, has been,
over the years, carefully harmonized with the efforts of the OpenMath Society
[OpenMath:website], which has developed a very general XML notation intended
to allow codifying mathematical semantics.

4 Disadvantages of the Web

What are the disadvantages of this new technology and communication medium?
Too many even to enumerate here. The text below concentrates on just one
aspect.

One of the problems is the interaction of a changing ethical environment and
the ease that the new tools provide for repurposing material on the internet.
This can be plagiarism of others’ work when no references to sources are given,
self-plagiarism when authors repeat their own materials whether knowingly or
not, or just plain copying whether witting or not. Of course, it can be argued that
there are many cases where repetition serves the reader, or where transclusion
of documents is an enhancement. It has for along time been standard practice
in mathematical papers to repeat notational conventions. For instance there
are over 5,000 cases of “R denotes” in the reviews of Mathematical Reviews
(MR) and over 388,000 on Google. We all know how troubling it is when one is
apparently not privy to what an author intended some symbol to denote. For
example, “Everyone knows IN means the natural numbers”—but some people
think that doesn’t include 0! So specifying notation is essential. Thus sometimes
a whole section of one article looks like that of another simply because they are
both rehearsing the same notational context required. But what if two papers
seem to have pages of similar material except that the norm ‖·‖∞ in the one has
been replaced throughout by ess. sup.·, and the authors are quite different?16

What if one of the items is a preprint in English from a US institute with
apparently Indian authors and the other item has the same formulas but a text
in Hindi whose fragments seem to parallel the original very well, but there are
completely different Indian authors17. And what if there’s more coincidence, up
to the extreme of everything the same except for the author (as practiced by the
infamous plagiarizer Dǎnuţ Marcu[Marcu:wk])?

In other fields there is now increasing attention paid to plagiarism detec-
tion. It is of importance economically in, say, the medical and pharmaceutical
business. But reputations have been gained through plagiarism, and destroyed

16 The second paper had two authors and appeared later although the suspicion is that
the first paper, with a different single author from another country, is derivative of
the second on whose behalf someone complained to MR.

17 I found two examples of this while at MR.
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when it is found out. This seems to have been important in German political
life recently with ministers resigning over scandals involving questioning their
academic credentials. There are even questions raised about the originality of
President Vladimir Putin’s thesis which copies 16 pages from an earlier text-
book, but this is also part of a larger political struggle [Time:2013].

Mitigation of the problem of plagiarism and repetition, with its resulting
undermining of the literature’s value, is partly possible using the new technolo-
gies. The main improvements will result from a renewed emphasis on profes-
sional ethics and corresponding educational attention. Some of this has started
to take place in mathematics [Arnold:2009] [Arnold:2012], but slowly enough
[Jackson:2002].

A striking German example of what can be done now so much material is
electronically available and computing power can be deployed to implement al-
gorithmic checking is the [VroniPlag Wiki]. It describes itself as collaborative
documentation of plagiarism — critical examination of university theses on the
basis of reliable locations of plagiarism. There are detailed displays, page by
page, of text and unmentioned plausible earlier sources and local values for the
percentage of apparently derivative material. This work is carried out by volun-
teers, so is an example of crowd-sourcing.

At the other end of the automation spectrum is [eTBLAST], a free web-based
text comparison engine, that had its origin in [BLAST] (Basic Local Alignment
Search Tool) which finds similarity in sequences, usually of nucleotides or pro-
teins. eTBLAST’s founders seem to have taken the view that documents are
just sequences of letters too, and so can be treated with similar techniques. eT-
BLAST’s corpus does include [arXiv.org], so significant mathematical material.
But there has been much development since the initial start of this service 10
years ago, and they are actively involved in plagiarism detection. A byproduct
of eTBLAST is [Deja Vu] that deals with MEDLINE material.

5 Final Thoughts

The tendencies today seem to be very much the opposite of the great Gauß’s
motto Pauca sed matura. Twitter’s whole point [Twitter] is to encourage CXL
litterulae et immatura.18

The effects of the Web have been imagined over the centuries. They will be
different from much of that already imagined as well.

The medium may not be the message (Macluhan) but it does help shape it
(Whorff).
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http://www.mathunion.org/ICM/ICM1897/Main/icm1897.0147.0162.ocr.pdf

Rayward:1975. Rayward, W.B.: The Universe of Information: the Work of Paul Otlet
for Documentation and International Organisation. All-Union Institute for Sci-
entific and Technical Information (VINITI) for the International Federation for
Documentation. Moscow, 239 p. (1975), http://lib.ugent.be/fulltxt/
handle/1854/3989/otlet-universeofinformation.pdf 236

Robson:2008. Robson, E.: Mathematics in ancient Iraq: a social history, 441 p. Prince-
ton University Press (2008) ISBN:9780691091822, LCCN:2007041758,
http://books.google.com/books?id=w-e6kfvoq5gC

Standage:2007. Standage, T.: The Victorian Internet: The Remarkable Story of the
Telegraph and the Nineteenth Century’s On-line Pioneers (Paperback) Walker &
Company, 227 p. (2007) ISBN-10: 0802716040; ISBN-13: 978-0802716040 232

Sugimori:2013. Sugimori, E., Kitagami, S.: Plagiarism as an illusional sense of au-
thorship: The effect of predictability on source attribution of thought. Acta Psy-
chol. 143(1), 35–39 (2013), http://dx.doi.org/10.1016/j.actpsy.2013.01.007
233

Welt der Wunder:2013. Wird das Internet die neue Weltmacht? Wenn ja, wer regiert
sie? Welt der Wunder, 4/13, 34–44 (2013),
http://www.bauer-plus.de/file/5704/20130417125213/welt-der-wunder.jpg

237

Web References — Valid 15 April 2013 or Thereafter

AMS:Social Media. AMS and Social Media: Connecting the Mathematics Community
(Facebook, Twitter, LinkedIn, YouTube, Wordpress Blogs, podcasts, Instagram,
RSS), http://www.ams.org/about-us/social 233

Archimedes:website. The Archimedes Palimpsest (Dataset),
http://www.archimedespalimpsest.net/ 234

Arnold:2012. SIAM Past President Doug Arnold on mathematical literature and schol-
arly publishing (video) http://connect.siam.org/siam-past-president-
doug-arnold-on-mathematical-literature-and-scholarly-publishing/ 241

Arnold:2007. Arnold, D., Rogness, J.: Möbius Transformations Revealed (Video),
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Abstract. Retrieving documents by querying their mathematical con-
tent directly can be useful in various domains, including education, engi-
neering, patent research, physics, and medical sciences. As distinct from
text retrieval, however, mathematical symbols in isolation do not contain
much semantic information, and the structure of an expression must be
considered as well. Unfortunately, considering the structure to calculate
the relevance scores of documents results in ranking algorithms that are
computationally more expensive than the typical ranking algorithms em-
ployed for text documents. As a result, current math retrieval systems ei-
ther limit themselves to exact matches, or they ignore the structure com-
pletely; they sacrifice either recall or precision for efficiency. We propose
instead an efficient end-to-endmath retrieval system based on a structural
similarity ranking algorithm. We describe novel optimizations techniques
to reduce the index size and the query processing time, and we experimen-
tally validate our system in terms of correctness and efficiency. Thus, with
the proposed optimizations, mathematical contents can be fully exploited
to rank documents in response to mathematical queries.

1 Introduction

Documents with mathematical expressions are extensively published in technical
and educational web sites, digital libraries, and other document repositories such
as patent collections. Retrieving such documents with respect to their math con-
tent is a challenging problem. Mathematical expressions are objects with complex
structures and rather few distinct symbols and terms. The symbols and terms
alone are usually inadequate to distinguish among mathematical expressions. For
example, a search for documents that include the expression

∫
x
√
x2 + a2 dx is

not likely satisfied by a document that includes
√
x+ 2

∫
2ax dx. Moreover, rele-

vant mathematical expressions might include small variations in their structures

or symbols. For example, a document including 1+
n∑

i=1

ik might well be useful in
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response to a query to find documents including
n∑

j=1

j2. Hence exact matching

of mathematical expressions is not a sufficiently powerful search strategy.
The majority of the published mathematical expressions are encoded with

respect to their appearance (presentation), and most instances do not preserve
much semantic information. Content-based mathematics retrieval systems [3,9]
are limited to resources that encode the semantics of mathematical expres-
sions, and they do not perform well with expressions encoded using presentation
markup. Other systems search based on the presentation of mathematical ex-
pressions [2,5,13,18,19], but they either find exact matches only or they use a
“bag of symbols” model that often returns many irrelevant results.

Because mathematical expressions are often distinguished by their structure,
we should not rely merely on the symbols they include but instead consider a
search paradigm that incorporates mathematical structure as well. More specif-
ically, the similarity of two expressions, defined as a function of their structures
and the symbols they share [6], can be used as an indication of the relevance of
documents when a math expression is given as a query. To be useful, besides the
correctness of results (i.e. their relevance to the query), the query processing time
must be kept reasonably low. However, this is difficult to achieve because calcu-
lating structural similarity of expressions is computationally expensive, and many
potential expressions must be considered in response to each query. Hence, effi-
ciently processing a query is a challenging problem that we address in this paper.

The rest of this paper is organized as follows. In Sect. 2 we explain the query
language and the search problem. We next describe related work. We describe
a structural similarity search algorithm in Sect. 4, and we propose optimization
techniques for this algorithm in Sect. 5 and 6. We finally present an evaluation
of our algorithm and conclude the paper.

2 The Framework

A mathematical expression is a finite combination of symbols that is formed ac-
cording to some context-dependent rules. Symbols can designate numbers (con-
stants), variables, operators, functions, and other mathematical entities.

A text document, such as a web page, that contains a mathematical expres-
sion is a document with mathematical content. We assume that a query is a
mathematics expression. Given a query, the search problem is to find the top-k
relevant documents, where documents are ranked with respect to the similarity
of their mathematical expressions to the query.

Presentation MathML is part of the W3C recommendation that is increasingly
used to publish mathematics information on the web, and many web browsers
support it. There are various tools to translate mathematical expressions from
other languages, including LATEX, into Presentation MathML. Thus we can as-
sume that stored expressions are encoded in this form when they are indexed.
Because forming queries directly with Presentation MathML is difficult, how-
ever, input devices such as pen-based interfaces and tablets [11,16] or more
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widely-known languages such as LATEX might be preferred for entering a query.
Nevertheless, automatic tools can also be applied to translate queries to Presen-
tation MathML, and therefore, regardless of the user interface, we can assume
a query is also represented using this encoding. In summary, it is appropriate
to assume that Presentation MathML is employed when querying mathematics
information on the web.

3 Related Work

Currently, there are a few alternative approaches to math retrieval. In one ap-
proach, expressions that match the query exactly are considered as relevant.
Examples include algorithms that are based on comparing images of expres-
sions [20,21] (they calculate the similarity of images, which allows for very lim-
ited variation among the expressions returned) or using very detailed and formal
query languages that enable database operations to match expressions [2,5]. We
characterize such algorithms as ExactMatch algorithms in this paper. Some other
algorithms perform some normalizations on the query and also on the expressions
before exactly matching them [18]. As shown below, ExactMatch and Normal-
izedExactMatch perform poorly when searching for mathematical content.

As a variant, some algorithms consider retrieving expressions that share sub-
structures with the query [3,6,9,15]. These algorithms do not consider ranking
the results when many partial matches exist. We characterize all such algorithms
as SubexprExactMatch algorithms and note that normalized subexpression exact
match algorithms are also feasible.

Another approach to math retrieval is to transform an expression into a col-
lection of tokens where each token represents a math symbol or a substruc-
ture [13,14,17,19,12]. Regardless of the tokenization details, some structure in-
formation is missed by transforming an expression into bags of tokens, which
affects the accuracy of results as shown below.

Algorithms for retrieving general XML documents based on tree-edit distance
have beenproposed [10], and these could be adapted tomatchXML-encodedmath-
ematical expressions. An alternative for matching based on structural similarity is
to express a query in the formof a template, specifying preciselywhere variability is

Fig. 1. Mean reciprocal rank versus success rate of each algorithm for Forum queries
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permitted and where exact matching is required [7]. This PatternSearch approach
requires more effort and skill on the part of the user who formulates queries.

Elsewhere [8] we have compared these various approaches in terms of their
ability to retrieve documents that contain mathematical expressions that match
a query. Some of the results are summarized in Fig. 1, which is explained in more
detail in Sect. 7. For the present, we merely observe that similarity search (Sim-
Search) and PatternSearch outperform the other approaches by a wide margin in
terms of accuracy, and forming queries with SimSearch is much easier than with
PatternSearch. The goal of this paper is to demonstrate that similarity search
can also be sufficiently fast to be used in practice.

4 Structural Similarity Search

Text with XML markup such as Presentation MathML can be naturally ex-
pressed as ordered labelled trees, also called Document Object Model (DOM)
trees. A DOM tree T is represented by T = (V,E), where V represents the set
of nodes and E represents the set of edges of T . A label λ(n) is assigned to each
node n ∈ V . In this paper we refer to a math expression and its corresponding
DOM tree interchangeably.

We define similarity in terms of “tree edit distance” as follows. Consider two
ordered labelled trees T1 = (V1, E1) and T2 = (V2, E2) and two nodes N1 ∈
V1 ∪ {Pφ} and N2 ∈ V2 ∪ {Pφ} where Pφ is a special node with label ε. An edit
operation is a function represented by N1 → N2 where N1 and N2 are not both
Pφ. The edit operation is a deletion if N2 is Pφ, it is an insertion if N1 is Pφ,
and a rename if N1 and N2 do not have the same labels. (Deleting a node N
replaces the subtree rooted at N by the immediate subtrees of node N ; insertion
is the inverse of deletion.) A cost represented by the function ω is associated with
every edit operation. For example, ω might reflect the design goal that renaming
a variable is less costly than renaming a math operator. For ease of explanation,
however, we will assume that the costs of all delete and insert operations are 1
and the cost of rename is 2. A transformation from T1 to T2 is a sequence of edit
operations that transforms T1 to T2. The cost of a transformation is the sum
of the costs of its edit operations. The edit distance between T1 and T2 is the
minimum cost of all possible transformations from T1 to T2.

A forest is an ordered sequence of trees. For example deleting the root of a
tree results in a forest that consists of its immediate subtrees. Note that a single
tree and the empty sequence of trees are also forests. With these definitions, the
following recursive formula can be used to calculate edit distance [22]:

dist(F1, F2) = min

⎧⎪⎨
⎪⎩

dist(F1 − u, F2) + ω(u → ε),

dist(F1, F2 − v) + ω(ε → v),

dist(F1 − Tu, F2 − Tv) + dist(Tu, Tv)

dist(Tu, Tv) = min

⎧⎪⎨
⎪⎩

dist(Tu − u, Tv) + ω(u → ε),

dist(Tu, Tv − v) + ω(ε → v),

dist(Tu − u, Tv − v) + ω(u → v)

(1)
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where F1 and F2 are two non-empty forests such that either F1 or F2 contains
at least two trees, Tu and Tv are the first (leftmost) trees in F1 and F2 respec-
tively, u and v are the roots of Tu and Tv respectively, and F − n represents
the forest produced by deleting root n from the leftmost tree in forest F . The
edit distance between a forest F and the empty forest is the cost of iteratively
deleting (inserting) all the nodes in F . This formulation implies that a dynamic
programming algorithm can efficiently find the edit distance between two trees
T1 and T2 by building a distance matrix.

We calculate the structural similarity of two mathematical expressions E1 and
E2 represented by trees T1 and T2 as follows:

sim(E1, E2) = 1−
dist(T1, T2)

|T1|+ |T2|
(2)

where |T | is the number of nodes in tree T .
Assume document d contains mathematical expressions E1 . . . En. The rank

of d for a query Q is calculated as the maximum similarity of expressions in d:

docRank(d,Q) = max
Ei∈d

sim(Ei, Q) (3)

As described, a search algorithm based on the structural similarity of math
expressions would be time consuming because it requires calculating the edit
distances of many pairs of trees, which is computationally expensive. A naive
approach is to calculate the similarity score of every document and return the
top k documents as the search result. However, this naive approach performs
some unnecessary computations and can be optimized as follows:

1. Calculating the similarity of the query and an expression requires finding
the edit distance between their corresponding DOM trees which is compu-
tationally expensive. On the other hand, it is not necessary to calculate the
similarity of expressions that can be quickly seen to be too far from the
query.

2. Many expressions are repeated in a collection of math expressions, and many
share large overlapping sub-expressions. Hence, memoizing some partial re-
sults and reusing them saves us from repeatedly recalculating scores.

The next two sections address these observations.

5 Early Termination

In this section we propose a top-k selection algorithm that reduces query pro-
cessing time by avoiding some unnecessary computations. More specifically, we
define an upper limit on the similarity of two mathematical expressions that can
be calculated efficiently, and we define a stopping condition with respect to this
upper limit.

For a tree T , we designate the set of labels in T as τ(T ) = {λ(N)|N ∈ T }.
For two trees, T1 and T2, we define τ-difference and τ-intersection as follows:

(T1 −τ T2) = {N ∈ T1|λ(N) /∈ τ (T2)} (4)
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T1 ∩τ T2 = ({N |N ∈ T1} − (T1 −τ T2)) ∪ ({N |N ∈ T2} − (T2 −τ T1)) (5)

Note that both τ -difference and τ -intersection are defined over sets of nodes, not
sets of labels. As a result,

|T1 ∩τ T2| = |T1| − |T1 −τ T2|+ |T2| − |T2 −τ T1| (6)

Consider expression E and query Q. We first calculate an upper bound on the
value of sim(E,Q). If the label of a node N in TE , the DOM tree of E, does
not appear in TQ, the DOM tree of Q, their edit distance is at least equal to
1+dist(TE−N, TQ) where TE−N is the tree that results from deleting N from
TE. A similar argument can be made for nodes in TQ whose labels do not appear
in TE. Hence, the following lower bound on the edit distance of E and Q can be
defined: dist(TE , TQ) ≥ |TE −τ TQ|+ |TQ−τ TE| from which an upper bound on
the similarity of the two expressions is calculated using (2) and (6):

sim(E,Q) ≤ 1− |TE −τ TQ|+ |TQ −τ TE |
|TE|+ |TQ|

=
|TE ∩τ TQ|
|TE |+ |TQ| (7)

and the upper bound for the relevance of a document d to Q is calculated using
(3):

docRank(d,Q) ≤ upperRank(d,Q) = max
Ei∈d

|TEi ∩τ TQ|
|TEi |+ |TQ| (8)

We employ a keyword search algorithm to calculate upperRank(d,Q) as follows.
We build an inverted index on node labels, treating each expression as a bag of
words. A document is a collection of such expressions (bags of words). In general
the keyword search algorithm can be modified by assigning custom weights to
terms to handle arbitrary edit costs.

To find the most relevant expressions, we maintain a priority queue of length
k (“the top-k list”), as presented in Algorithm 1. This algorithm produces
the same results as the naive algorithm, but it reduces the query processing
time by avoiding some unnecessary computations. In Sect. 7 we show that this
optimization significantly reduces the query processing time.

6 Compact Index and Distance Cache

In this section we propose an indexing algorithm that i) reduces the space re-
quirement and ii) speeds up the query processing. Our indexing algorithm is
based on the observation that often many subexpressions appear repeatedly in
a collection of math expressions.

Consider a collection of trees C = {T1, . . . , Tn}. Let G ∈sub C denote that
G is a subtree of Ti for some Ti ∈ C. The total number of subtree instances in
C is equal to |T1| + · · · + |Tn|. If two subtrees G1 and G2 represent equivalent
subexpressions, we write G1 ∼ G2. This relation partitions {G|G ∈sub C} into
equivalence classes. Given an arbitrary tree T , its frequency in C is the size of
the matching equivalence class in C:

freq(T,C) = |{G|G ∈sub C ∧G ∼ T }| (9)
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Algorithm 1. Similarity Search with Early Termination
1: Input: Query Q and collection D of documents.
2: Output: A ranked list of top k documents.
3: Treat Q as a bag of words and perform a keyword search to rank documents with respect to

upperRank(d, Q).
4: Define a cursor C pointing to the top of the ranked result.
5: Define an empty priority queue TopK.
6: while true do
7: dC ← the document referenced by C.
8: if dC is null or upperRank(dC , Q) < min

d∈TopK
docRank(d,Q) and |TopK| = k then

9: break
10: end if
11: Calculate docRank(dC , Q).
12: if |Topk| < k or docRank(dC , Q) > min

d∈TopK
docRank(d,Q) then

13: Insert dC in TopK.
14: if |TopK| > k then
15: Remove document with smallest score from TopK.
16: end if
17: end if
18: C ← C.next
19: end while
20: return TopK

We omit the second argument C when it is clear from context.
Given a collection of math expressions, we observe that many subtrees appear

repeatedly in various expressions’ DOM trees. To confirm this, we ran experi-
ments on a collection of more than 863,000 math expressions. Details of this
collection are presented in Sect. 7.1, and the experimental confirmation is in-
cluded in Sect. 7.3.

The basis of our indexing algorithm is to store each subexpression once only
and to allow matching subtrees to point to them. This significantly decreases the
size of the index, and as we will explain later, it also effectively speeds up the
retrieval algorithm. The approach can also be combined with other optimiza-
tion techniques, such as the one proposed in Sect. 5, to further decrease query
processing time.

We assign a signature to each subtree such that matching subtrees have the
same signatures and subtrees that do not match the same expression have dif-
ferent signatures. Any hash function that calculates a long bit pattern from the
structure and node labels and any collision resolution method can be used for
this purpose.

Our index is a table, indexed by signatures, whose entries represent unique
MathML subtrees (both complete trees and proper subtrees). Each entry con-
tains the label of the root and a list of pointers to table entries corresponding to
the list of the children of the root. A data structure called exp-info is assigned
to each expression that represents a complete tree in order to store information
about documents that contain it. Each entry also contains some other informa-
tion, such as the frequency of the corresponding tree in the collection.

Initially, the index is empty. We add expression trees one by one to the index.
To add a tree T we first calculate its signature to index into the table. If there
is a match, we return a pointer to the corresponding entry in the table. We also
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update the exp-info of T if it is a complete tree. If T is not found, we add a new
entry to the table for that index, storing information such as the root’s label, etc.
Then, we recursively insert subtrees that correspond to the children of the root
of T in the index, and insert a list of the pointers to their corresponding entries
in the entry of T . This algorithm guarantees that each tree is inserted once only,

even if it repeats. Figure 2 shows a fragment of the index after x2−1
x2+1 is added.

<mn>

<mn>

{<http://www.wikipedia...}

<math> <mfrac>

<mrow>

<mrow>

<msup>
<mi>

<mo>

<mo>    +

   −

x

2

1

Fig. 2. The index after x2−1
x2+1

is added

Calculating the edit distance between two trees involves calculating the edit
distance between many of their corresponding subtrees. Dynamic programming
ensures that each pair of subtrees is compared no more than once within a single
invocation of sim(Ei, Q), but building the distance matrix involves calculating
the similarity between each pair of subtrees, one from Ei and one from Q. As
noted in the previous section, many subexpressions are shared among the mathe-
matical expressions found in a typical document collection; building the distance
matrix to compute the similarity of a query to each stored expression indepen-
dently does not capitalize on earlier computations. We can reduce computation
time significantly by memoizing some intermediate results for later reuse.

When calculating the edit distance between two trees, we store the result in
an auxiliary data structure that we call a distance cache. More specifically, the
cache stores triples of the form [Te, Tq, dist(Te, Tq)] where Te is a subtree of the
expression, Tq is a subtree of the query, and dist(Te, Tq) is the edit distance
between Te and Tq. Effectively we are saving the distances computed by the
dynamic programming algorithm (1) across similarity calls.

We implement the cache as a hash table where the key consists of the two
signatures for Te and Tq. Hence, the complexity of inserting and searching for
a triple is O(1). If D represents the set of all document-level expressions whose
distances to Q are calculated through invocations to docRank in Algorithm 1,
S = {G|G ∈sub D}, and n is the number of equivalence classes in S, the space
required to store the distance cache is O(n|Q|).

Each time we require the edit distance between two trees, we use the value in
the cache if it is there. Otherwise we calculate the distance and store the result
together with the signatures of the two subtrees in the cache.

If the available memory is limited or there are too many expressions, we may
not be able to store all pairs of distances as just described. However, calculating
the edit distance between small trees may be sufficiently fast that there is no
benefit gained by using the cache, and storing such pairs significantly increases
the size of the cache. Furthermore, storing the results for rare subtrees may not
be worthwhile, as the stored results may not be reused often enough to realize
the benefit of using the cache.
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The benefit of memoizing the edit distance between two trees comes from
the savings in processing time if the result is found in the cache instead of
being calculated for the distance matrix. Following this line of reasoning, we
augment the caching criteria described above to choose which distances should
be stored and which should not. We calculate the benefit of storing the triple
[Te, Tq, dist(Te, Tq)] as benefit(Te, Tq) = calcCost(Te, Tq) − cacheCost (Te, Tq),
where calcCost (Te, Tq) and cacheCost(Te, Tq) are the costs of calculating the
edit distance and looking up a value in the cache respectively. We also wish to
account for the number of times we will be able to realize the savings by reusing
the value from the cache. Therefore, to each pair (Te, Tq), we assign a weight
weight(Te, Tq) that reflects the frequency of occurrence of that pair. We suggest
how to compute the weights below.

Consider a set of tree pairs P = {(T 1
e , T

1
q ), . . . , (T

n
e , T

n
q )} and a space con-

straint that allows C triples to be cached. Our task is then to select a set of subtree
pairs H∗ = argmax

H

∑
(T i

e ,T
i
q)∈H

weight(T i
e , T

i
q) benefit(T

i
e , T

i
q) such that |H| ≤ C.

If we are given the set P , the problem is easily solved by choosing the C
triples having the highest values for weight(T i

e , T
i
q) benefit(T

i
e , T

i
q). However, Al-

gorithm 1 maintains a sorted list of expressions, and starting from the head of
the list calculates the similarity of each expression to Q. Thus, we cannot predict
exactly which pair of subtrees will be compared before the algorithm stops.

We need to assign the weight for a pair of subtrees that reflects the number of
times that pair will be needed for filling a dynamic programming matrix during
the remainder of the execution of Algorithm 1. Consider the following motivating
example:

Example 1. Assume freq(Te, D) = 100, and freq(Tq, {TQ}) = 1. The similarity
between the expressions represented by Te and Tq will be calculated at most 100
times by Algorithm 1. While processing the query, if the edit distance function
has already been called to fill 99 distance matrices for this pair, it will be called
at most once more for the rest of the query processing. Caching the edit distance
between Te and Tq at this point is not likely to be as cost-effective as caching
the distance for another pair of trees if those trees might still be compared 10
more times during query processing.

We want to assign a weight to each pair that reflects this declining benefit.
However, we cannot afford to store frequencies for every pair of subtrees (other-
wise we could store the distances instead). Therefore, we estimate the frequencies
based on the frequencies for each subtree independently.

Note that Te matches freq(Te, D) subtrees of the expressions in the collection
and requires up to |TQ| entries to be made in the distance matrix during dynamic
programming. We augment the index described above by adding fields freqD
and freqcur to each node to store the frequency of that subexpression in the
document collection together with a variant of that frequency, both initialized to
be equal to freq(Te, D) for the node corresponding to Te. Whenever we require
a value for dist(Te, Tq), we calculate its score as the weighted benefit based
on expected re-use as score(Te, Tq) = freqcur(Te) freq(Tq, {TQ}) benefit(Te, Tq)
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where freq(Tq, {TQ}) is the number of subtrees in the DOM tree of Q that
match Tq. We also save the score in the cache along with the distance, and
update freqcur(Te) with the value freqcur(Te) − 1

|TQ| to reflect the maximum

number of times Te might still be required in a distance computation.
Algorithm 2 details how the scores for each pair of trees is calculated and used

to manage a limited cache. A priority queue maintains the most promising M
pairs in the cache as similarity search progresses. Thus the cache stores quadru-
ples [se, sq, dist(Te, Tq), score(Te, Tq)] where se and sq are the signatures for Te

and Tq respectively. Because score(x, y) increases monotonically with freqcur(x)
and freq(y) and because trees cannot repeat more frequently than any of their
subtrees, if dist(Te, Tq) is stored in the cache for some subtree Te stored in the
document collection and some subtree Tq of the query, then dist(T ′

e, T
′
q) is also

stored for all T ′
e ∈sub Te and T ′

q ∈sub Tq, as long as benefit(T ′
e, T

′
q) is sufficiently

high.

Algorithm 2. Calculating Edit Distance with a Limited Cache
Input: Two trees Te and Tq , |TQ| (the number of nodes in the query tree), and cache M storing
quadruples.
Output: dist(Te, Tq) (with side-effects on M and freqcur(Te))
Form pair p = (se, sq) that consists of the signatures of Te and Tq .
freqcur(Te) ← freqcur(Te) − 1

|Q| .
v ← freqcur(Te) ∗ freq(Tq) ∗ benefit(Te, Tq) (the score for this pair).
if p is found in M then

dist ← dist(Te, Tq) associated with p in M
Replace the matched quadruple in M by (se, sq, dist, v).

else
dist ← computed dist(Te, Tq) using the distance matrix and cache for subproblems.
m ← min{score(m)|m ∈ M}
if m < v then

if |M| = C then
Remove the entry with minimum score from M.

end if
Insert (se, sq , dist, v) into M.

end if
end if
return dist

In the next section we show that the proposed optimization techniques signif-
icantly reduce the query processing time in practice.

7 Experiments

In this section we investigate the performance of the proposed algorithms.

7.1 Experiment Setup

Data Collection. For our experiments we use a collection of web pages with
mathematical content. We collected pages from the Wikipedia and DLMF (Digi-
tal Library of Mathematics Functions) websites. Wikipedia pages contain images
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of expressions annotated with equivalent LATEX encodings of the expressions. We
extracted the annotations and translated them into Presentation MathML using
Tralics [4]. DLMF pages use Presentation MathML to represent mathematical
expressions. Statistics summarizing this dataset are presented in Table 1A.

Table 1. Experimental dataset and query statistics

A Wikipedia DLMF Combined
Num. pages 44,368 1,550 45,918
Num. exprs. 611,210 252,148 863,358

Avg. expr. size 28.3 17.6 25.2
Max. expr. size 578 223 578

B Interview Forum Combined
Num. queries 45 53 98

Avg. query size 14.2 23.8 19.4

Query Collection. To evaluate the described algorithms we prepared two sets
of queries as follows.

– Interview: We invited a wide range of students and researchers to participate
in our study. They were asked to try our system and search for mathematical
expressions of potential interest to them in practical situations. They could
also provide us with their feedback about the quality of results after each
search.

– Mathematics forum: People often use mathematics forums in order to ask
a questions or discuss math-related topics. Many threads start by a user
asking a question in the form of a single mathematics expression. Usually,
by reading the rest of a thread and responses, the exact intention of the
user is clear. This allows us to manually judge if a given expression, together
with the page that contains it, can answer the information need of the user
who started the thread. We manually read such discussions and gathered a
collection of queries.

We only consider queries with at least one match in our dataset. Table 1B
summarizes statistics about the queries, where the number of nodes in the query
tree is used to represent query size.

Evaluation Measures. We evaluate the proposed algorithms using the follow-
ing measures:

MRR: The rank of the first correct answer is a representative metric for the
success of a mathematics search. Hence, for each search we consider the Recip-
rocal Rank (RR), that is, the inverse of the rank of the first relevant answer. The
Mean Reciprocal Rank (MRR) is the average reciprocal rank for all queries:

MRR =
1

|Q|
∑
q∈Q

1

R(q) (10)

where Q is the collection of queries, and R(q) is the rank of the first relevant
answer for query q.
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Success-Rate: If at least one of the top 20 search results returned by an al-
gorithm for a given query is relevant, we classify the search as successful. Al-
ternatively, if the first relevant answer is not among the top 20 results, or if
no relevant result is returned at all, the search is classified as unsuccessful. The
success rate is the number of successful searches divided by the total number of
searches:

Success Rate =
|{q ∈ Q|q is successfully searched}|

|Q| (11)

Query Processing Time: The time in milliseconds from when a query is submitted
until the results are returned. A query is encoded with Presentation MathML
and if the user interface allows other formats, the time taken to translate it is
ignored. Also the network delay and the time to render results are not included.
For a collection of queries, we measure the query processing time of each and
report the average query processing time.

Alternative Algorithms. We evaluate the described algorithms by comparing
their performance against the following alternative algorithms:

– TextSearch: The query and expressions are treated as bags of words. A stan-
dard text search algorithm is used for ranking expressions according to a
given query1.

– ExactMatch: An expression is reported as a search result only if it matches a
given query exactly. Results are ranked with respect to the alphabetic order
of the name of their corresponding documents.

– NormalizedExactMatch: Some normalization is performed on the query and
on the stored expressions: in particular, we replace numbers and variables
with generic labels N and V , respectively. The normalized expressions are
searched and ranked according to the ExactMatch algorithm.

– SubexprExactMatch: An expression is returned as a search result if one of its
subexpressions exactly matches the query. Results are ranked by increasing
sizes of their DOM trees and ties are broken using the alphabetic order of
the name of their corresponding documents.

– NormalizedSubExactMatch: Normalization is performed on the query and on
the stored expressions as for NormalizedExactMatch, and an expression is
returned as a search result if one of its normalized subexpressions matches
the normalized query..

– MIaS: Expressions are matched using the algorithm proposed by Sojka and
Liska [17]: An expression is first tokenized, where a token is a subtree of the
expression. Each token is next normalized with respect to various rules (e.g.
number values are removed, or variables are removed, or both), and multiple
normalized copies are preserved. The result, which is a collection of tokens,
is indexed with a text search engine. Each query is similarly normalized (but
not tokenized) and then matched against the index.

1 We used Apache Lucene [1] in our implementation.
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– PatternSearch: Expressions are matched against a query template as de-
scribed by Kamali and Tompa [7]. Like SubexprExactMatch, results are
ranked with respect to the sizes of their DOM trees.

– SimSearch: Expressions are matched against a query according to the algo-
rithm described in Sect. 4.

We further refine SimSearch to cover the following algorithms that reflect the
proposed optimization techniques:

– Unoptimized: Each expression is stored independently. The relevance score
is calculated for any expression sharing at least one tag with the query.

– ET: The early termination algorithm described in Sect. 5. Each expression
is stored independently. As described, an inverted index is used to calculate
upper bounds on the scores of each document, which increases the index size.

– Compact: Similar to unoptimized a query is processed by comparing the
relevance of each document that contains an expression with at least one
node whose tag appears in the query. Each subtree is stored once only to
reduce the index size as described in Sect. 6.

– Compact-ET-NMC: The early termination algorithm with a compact index,
and no memory constraint as described in Sect. 6.

– Compact-ET-MC: The early termination algorithm with a compact index
and a constraint on the memory that is available during the query processing
(Sect. 6). The results are presented for specific amounts of available memory
separately (e.g. if the memory constraint allows storing 1000 cache entries,
we use the label Compact-ET-MC-1000). We consider three values for the
memory constraint: 5000, 10000, and 50000 entries.

– Compact-ET-RandMC: Similar to Compact-ET-MC, but entries are chosen
at random for being assigned space in the cache.

7.2 Correctness

Fuller descriptions of the algorithms and correctness results for the experiments
are reported elsewhere [8]. For completeness, we summarize the correctness re-
sults here.

The success rate against MRR for each algorithm is plotted in Fig. 1 for the
Forum queries and in Fig. 3 for the Interview queries. As both figures show,
PatternSearch and SimSearch have high success rates and also high MRRs. In-
terestingly, PatternSearch has a higher MRR because irrelevant expressions are
less likely to match a carefully formed pattern, whereas SimSeach has a slightly
higher success rate because in some cases even an experienced user may not be
able to guess the pattern that will yield a correct answer.

In summary, SimSearch and PatternSearch perform much better than the
other approaches in terms of the correctness of results. However, because forming
queries for SimSearch is easier, it is generally preferred over PatternSearch.
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Fig. 3. MRR versus success rate of each algorithm for Interview queries

7.3 Index Size

The average number of repetitions of subtrees with sizes in specific ranges is
listed in Table 2A. The average repetitions of trees whose sizes are in the range
of [1−k] for various values of k is shown as a graph. As the results suggest, most
subtrees repeat at least a few times. Not surprisingly, for smaller subtrees the
rate of repetition is higher.

Next, we compare the compact index to an index that stores each expression
independently. For our experiments, an expression’s signature is computed by a
conventional hash function applied to its XML string S: S[0] ∗ 31(z−1) + S[1] ∗
31(z−2)+ · · ·+S[z−1] where S[i] is the ith character in S and z = |S|. As shown
in Table 2C, the size of the compact index (in terms of the number of nodes
stored) is significantly smaller than that of the regular index.

7.4 Query Processing Time

Figure 4A shows that the early termination algorithm significantly reduces the
query processing time — by a factor of 44. Using the compact index and mem-
oizing partial results also reduces the query processing time by an additional

Table 2. Subtree repetitions in experimental dataset and resulting index sizes

Size Avg. repetition

1-5 325.0
6-10 10.5
11-15 3.2
16-20 2.1
21-25 1.7
26-30 1.5
> 30 1.3

Num. Nodes

Original index 19,775,322
Compact index 1,284,701

A B C
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factor of 1.5, to about .8 seconds per query on average. (Note that accuracy
is not affected by employing any of the optimization techniques.) Figure 4B
compares the proposed approach against alternative approaches. The alterna-
tive algorithms use straightforward text search or database lookup algorithms,
which result in query processing times that are two to four times faster, but at
the expense of very poor accuracy. To date, these approaches have been preferred
to a more elaborate similarity search, largely because the latter was deemed to be
too slow to be practical. However, Compact-ET-NMC, which applies both early
termination and memoization, has practical processing speeds and far better
accuracy.

A B

Fig. 4. The query processing time of alternative algorithms

The effect of the available memory on the query processing time is investigated
in Fig. 5. For higher values of the space budget, the query processing time is
very similar to that of Compact-ET-NMC, which assumes there is no constraint
on the available memory. Even for smaller values of the constraint (e.g. when we
can memoize at most 5,000 intermediate results), there is a notable improvement
over the performance of ET .

The figure also compares the performance when the available space is managed
with respect to the described algorithm and when distances for pairs of trees are
chosen to be cached at random. For a small space budget, caching randomly
chosen pairs has little advantage over the ET algorithm, which does not use
a cache. For greater values of the space budget the performance is improved
compared to ET, but not as much as when caching is applied more strategically.

Fig. 5. The query processing time for various space budgets and cache strategies



Structural Similarity Search for Mathematics Retrieval 261

For example, the performance of Compact-ET-MC-50000 is very close to that of
Compact-ET-NMC, which assumes unlimited memory is available, and Compact-
ET-MC-5000 performs similarly fast as Compact-ET-RandMC-50000 while using
only a tenth of the space budget. This validates the proposed method for choosing
which pairs to cache.

8 Conclusion

Mathematics retrieval is still in an early stage of development. We have shown
that in order to correctly capture the relevance of math expressions, their struc-
tures must be considered. Tree edit distance, which is a standard technique to
compare structures, is computationally expensive, but optimization techniques
can reduce query processing time significantly. Through extensive experiments,
we showed that our algorithm significantly outperforms baseline algorithms in
terms of the accuracy of results while performing comparably in terms of query
processing time even when memory is limited. Additional improvements should
still be explored, however, to close the remaining performance gap.
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Abstract. Publishing and archiving mathematical literature presents its
own sets of problems. Reaching the goal of building global digital mathe-
matics library (DML), smaller DMLs play an inevitable role in collecting,
validating, digitizing and checking data from smaller publishers.

In this paper, we overview the technical challenges of building a
machine-actionable set of modules we have developed over almost a
decade of evolution of the Czech Digital Mathematics Library (DML-CZ).
Firstly, we survey methods of effective automated data acquisition from
the content providers. Then we show OCR processing of mathematical
documents and automated segmentation of plain text references for meta-
data enhancement and effective DOI look up. Finally we describe con-
nection to the European Digital Mathematics Library (EuDML) project
and public interfaces of DML-CZ for the best visibility and accessibility.

Keywords: DML-CZ, EuDML, DOI, ParsCit, references, validation,
DSpace, OAI-PMH, TeX, LaTeX, Tralics, Infty, machine-actionable dig-
ital library, library automation, Google Scholar, webometrics.

1 Introduction

Publishing and archiving mathematical literature is a unique and challenging
task in many respects. It revolves around handling of mathematical formulae in
papers, dealing with the number and diversity of math publishers’ size and ap-
proaches, as well as the existence of reference databases as Mathematical Reviews
and Zentralblatt Math community services. There are specific citation patterns
across a great diversity of topic areas throughout their long evolution. Handling
all these specifics in a local digital mathematical library (DML) possesses variety
of challenges.

One possible approach to run and sustain a project of a small digital library
is to try to automate as many processes as possible, while still maintaining high-
quality, checked data in the repository. The running costs of such a system can
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be too high to allow it to survive in the digital publishing ecosystem unless
machine-actionable modules are developed for a DML.

This paper provides an overview of the technical challenges we have coped with
in the design, development and adoption of technologies and technical solutions
during almost a decade of evolution of the Czech Digital Mathematics Library
(DML-CZ, http://dml.cz/).

The structure of the paper is as follows: The following section reports on
the interfaces and formats we have settled on in the DML-CZ with our data
providers — a machine-actionable input module that validates the data from
them. In Section 3 we discuss the tools and the conversions we perform on the
data collected from data providers: getting the full text including math formulae,
enhancements of bibliographies, reference and DOI matching modules. Section 4
deals with the interfaces we use to export the enhanced and checked data to the
wider public: it is available to EuDML, Google Scholar and review databases.

The schema of the modules described in this paper can be seen in Figure 1.
Ellipses refers to external entities. The automatic modules, depicted as rectan-
gles, are integrated in our two main subsystems, Metadata Editor and DSpace,
shown here as circles.

Fig. 1. Overview of modules described in this paper

http://dml.cz/
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2 Inputs

The aim of the DML-CZ project is the digital preservation of the content of the
bulk of the mathematical literature that has ever been published in the Czech
lands. Since the start of the project several years ago, most of the old publications
have been processed. With fewer papers yes to be retro-digitized, it is increasingly
important to cooperate with editors of the active Czech mathematical journals
on the continuous inclusion of new publications. Journal papers are the core
contents that are regularly added to the library. DML-CZ holds ten journals
that constitute the content, which amounts to several hundreds new papers per
year, on a regular basis:

1. Acta Universitatis Carolinae. Mathematica et Physica
2. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium.

Mathematica
3. Applications of Mathematics
4. Archivum Mathematicum
5. Commentationes Mathematicae Universitatis Carolinae
6. Communications in Mathematics
7. Czechoslovak Mathematical Journal
8. Kybernetika
9. Mathematica Bohemica

10. Pokroky matematiky, fyziky a astronomie

For the long term sustainability of the DML-CZ project it was vital to reduce
the costly manual labour in the routine processing of new publications while
maintaining the good quality of metadata. To achieve this, we cooperate closely
with the publishers who prepare the DML-CZ data as an integral part of their
publishing process. Data providers prepare the DML-CZ data according to the
DML-CZ input format specification. This simple data format is related to the
internal data format of the DML-CZ Metadata Editor tool (see Section 3) and
consists of these parts:

1. XML metadata file describing the publication (title, authors, abstract, key-
words, . . . ),

2. XML metadata file containing a semantically marked up list of references
of the paper, i.e. each of the references has properly marked author names,
title, year of publication etc.,

3. full text of the paper in the PDF format, and,
4. optional but highly recommended bunch of source files1 suitable for genera-

tion of the paper.

An XML metadata file containing a semantically marked-up list of references is
important for the proper presentation of metadata via the web interface of the

1 Being a mathematical digital library, the DML-CZ content providers use almost
exclusively the TEX typographic system for the preparation of their publications.
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digital library and especially for further internal processing (e.g. DOI lookup,
see Section 3.2) and for use by third parties (see Section 4.2).

The inclusion of sources in the data package is optional, but we strongly
recommend it. The availability of the original source codes enables us to instantly
correct some sorts of errors that are occasionally found in the metadata provided.
One example of such corrections is the substitution of the authors’ custom TEX
macros for their LATEX equivalents in the metadata. We support fixed set of
macros, including the ones used in LATEX packages developed by the AMS.

There are three basic options for DML-CZ data providers to prepare the data
for DML:
1. Develop and use their own tools for DML-CZ data generation,
2. adopt a ‘complex’ DML-CZ LATEX-based processing system,
3. integrate a ‘lightweight’ TEX extension for DML-CZ.

These options were documented in our earlier publications. [Růž08, RS10, RS11]
No matter which option the data provider uses, the result is a data archive

ready to be delivered to the DML-CZ Metadata Editor for further processing
and subsequent publication. To be automatically processable, the data archives
have to follow the above-mentioned rules. As there is a variety of different ways
our publishers prepare the data the input validation module of the Metadata
Editor checks compliance of the provided data with the DML-CZ requirements.

The validation process includes
– data integrity tests,
– tests of the completeness of the data set,
– the validation of XML metadata (title of the publication and the list of

references),
– validity of the LATEX code included in the metadata.

Mathematical publications collected in the DML-CZ contain a lot of mathemati-
cal expressions, and these expressions often appear in the metadata. Thus, DML-
CZ allow the use of mathematical expressions in the metadata encoded in the
LATEX notation. The use of LATEX markup is allowed only for the mathematical
statements. The rest of the metadata is plain text without any special markup.
Moreover, the set of allowed LATEX macros is fixed, restricted to the LATEX and
subset of AMS packages. No new macros may be used in titles, abstracts or the
bibliography. Compliance with these restrictions is automatically checked, and
the metadata validated. These tests save us from further manual corrections
as the DML-CZ workflow requires the automatic conversion of the mathemat-
ical expressions for various purposes, e.g. conversion of mathematical formulae
to MathML [Aus+10] for indexing, exporting as well as further processing like
conversion of MathML formulae to text for better accessibility.

Fatal errors detected by the input validation module — such as invalid XML
metadata — prohibits data upload to the DML-CZ system. In addition, the vali-
dation module produces a variety of warnings. These cover optional parts of the
data package such as source codes and possible errors that it cannot be fully to
checked automatically, e.g. absence of the list of references can be an error in
the case of regular article but might be completely acceptable for an editorial.
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3 Processing

At the beginning of the project, the Metadata Editor [BKŠ08] was developed
to enable DML-CZ team to organize a large amount of old scanned publica-
tions and label them with metadata descriptions manually. In the later stages
of the project, the Metadata Editor was used mostly as an entry point for new
born-digital publications provided mainly by the editorial staff of the journals
included in the DML-CZ. Incoming documents are then checked and assigned to
appropriate collections. The web interface of the Metadata Editor allows quick
fixes and provides operators with tools for publishing final version of the doc-
uments to the public DML-CZ repository which is available to all readers at
http://dml.cz/.

Now that new data comes in high quality directly from the publishers, the
Metadata Editor is now used mainly as a control interface for the processes and
as an interface to run enhancement modules on the data and metadata. During
the publishing process

– articles and items of their references are checked against review databases —
if a match is found, the identifier is attached to the item and presented as a
direct link in the DML-CZ public repository,

– PDF full text is equipped with TEX-typeset cover page containing document
metadata and providing users with the persistent DML-CZ link to the pub-
lication landing page,

– new PDFs are optimized and re-compressed for faster download and viewing
in the browser,

– finally, PDF documents are marked with a digital signature and together
with metadata are published in the public DML-CZ repository.

The similarity of documents is periodically recomputed over the DML-CZ con-
tent enabling the DML-CZ public repository to provide its users with an indica-
tion of the similarity of the given documents across the DML-CZ repository.

3.1 Maths Optical Character Recognition

DML-CZ participates in the European Digital Mathematics Library (EuDML)
project (see Section 4). With a large proportion of the old publications scanned
the necessity to make accessible versions of DML-CZ documents available to
the EuDML have lead us among other reasons2 to reprocess the DML-CZ con-
tent with the optical character recognition software (OCR). Previous version of
texts extracted from the scanned images by FineReader did not contain mathe-
matical formulae, which often bear the main semantic message in mathematical
literature.

The tool used for OCR processing is InftyReader.3 [Suz+03] This software in-
corporates the unique ability to recognize mathematical expressions. InftyReader
2 Such as preparation of data for development and testing of improved mathematical

documents similarity computations and maths-aware search engines.
3 http://www.inftyproject.org/

http://dml.cz/
http://www.inftyproject.org/
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accepts various bitmap image formats on the input (TIFF, BMP, GIF, PNG,
PDF) and saves recognized objects in its own XML format. This rich internal
representation of the document can be consequently transformed to various for-
mats including LATEX, XHTML+MathML and other XML formats. This trans-
formation is a challenging task, as conversion ideally goes from presentation to
content markup and disambiguation is needed.

Even though the initial Infty internal representation is common for all the dif-
ferent conversion export drivers (to MathML, LATEX), the drivers seems to be of
varying quality. Our main goal was the use of InftyReader generated LATEX out-
put that could be consequently processed similarly to the LATEX code contained
in the DML-CZ metadata, i.e. converted to the MathML by Tralics [Gri10]. How-
ever, InftyReader 2.9.5 generated LATEX source code proved to contain several
types of systematic errors that make its direct use difficult. For example, some
math mode commands, such as \ddagger, are generated outside the math mode
or the math mode itself is occasionally not opened/closed properly (missing a
dollar sign). This leads to a substantial amount of subsequent errors during the
processing of the rest of the LATEX code. There is also the use of non-existent com-
mands such as \napos, \uu instead of \u{u}, etc. Thus, use of the InftyReader
generated TEX files results in at least one error during their processing by Tralics
for more than 60% of the TEX inputs.

On the other hand, the development team of the InftyReader is willing to help
us. We managed to correct several kinds of errors tweaking internal configuration
tables4 and other fixes were developed by the InftyReader team. We believe the
TEX output will be significantly improved in future releases of the InftyReader.

Luckily, use of InftyReader generated XHTML+MathML seems more reliable
with the current version of the transformation module. XHTML+MathML driver
outputs less than 5% of invalid output files. Not being directly presented to the
users these outputs seem to be good enough for internal use: indexing for simi-
larity search, MathML to text conversion for document similarity computations,
document classification and clustering.

Being available for MS Windows only, the InftyReader processing runs on sep-
arate server on a virtual machine. Batch processing was further complicated by
random crashes of the InftyReader on certain input files. As it required constant
monitoring, we used AutoIt software to automate attention handling required
for InftyReader; we log all peculiarities of the OCR process to be reviewed only
after the whole recognition batch has been processed. Running in four parallel
threads on a server with today’s standard hardware configuration5, the content
of the DML-CZ with more than 33,000 papers on more than 300,000 pages can
be reprocessed by InftyReader-based workflow in approximately two weeks.

3.2 DOI References Parsing

An important part of scientific publications are their lists of references. The
usefulness of the digital repository increase if references to other documents
4 These tweaks were then integrated to newer releases of the InftyReader.
5 Quad-core CPU at 2.8 GHz, 4 GiB RAM.
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contains widely used unambiguous persistent identifiers, such as DOI (Digital
Object Identifier), linking directly to the target of the ID.

However, not all authors use DOI or other identifiers as part of the reference
and the markup used is not uniform. Moreover, DOI can be assigned to a publi-
cation arbitrarily long after the document is published, i.e. author can cite the
publication long before the DOI was assigned.

Thus, a DOI look up is often the responsibility of the digital library maintainer
and it is necessary to periodically look up for the existence of DOIs for documents
that do not have assigned this identifier so far.

CrossRef provides tools for DOI lookup.6 To achieve the best results, high
quality markup for references is necessary, i.e. important elements such as au-
thors, title, year of publication, journal name, publisher, pages etc. have to be
properly indicated in the data.

Unfortunately, this is not the usual case. New issues of DML-CZ journals with
metadata provided directly by the publishers are of reasonable quality according
to the detail of markup references. However, even here we are provided with just
basic ‘authors — title — the rest’ segmentation of the reference string by some
publishers as the preparation of richly marked up metadata is a time consuming
and costly operation.

A large proportion of the DML-CZ contains old, scanned publications with the
only available texts obtained from OCR processing. For these papers, semiauto-
matic basic ‘authors — title — the rest’ segmentation required a vast investments
in time, money and human resources during the development of the project. Even
then, the quality of the metadata cannot be guaranteed. Thus, we have a great
interest in the automatic segmentation of unstructured reference strings.

Our first attempt was the use of the Perl module Biblio::Citation::Parser.7
This tool has proved to be too simple to successfully cope with various citation
formats that are in common use in the DML-CZ. A very promising solution to
this challenging problem seems to be the ParsCit tool.8 [CGK08, LNK10]

For example, the plain text reference string

[5] Lambe, L., Stasheff, J.: Applications of perturbation theory
to iterated fibrations. Manuscripta Math. 58 (1987), 363–376.

is segmented by Biblio::Citation::Parser (version 1.10) as follows:

<authors>Lambe, L., Stasheff, J.</authors>: <title>Applications
of perturbation theory to iterated fibrations. Manuscripta Math.
58 (1987), 363–376</title>

It should be noted that the citation string was written without a line break. If
the line break is part of the reference string, the tool fails completely. In contrast,
ParsCit (version 110505) segmented the reference string as shown in Figure 2.
6 http://www.crossref.org/guestquery/ ; http://help.crossref.org/#ID5824
7 http://search.cpan.org/ mjewell/Biblio-Citation-Parser-1.10/
lib/Biblio/Citation/Parser.pm

8 http://wing.comp.nus.edu.sg/parsCit/

http://www.crossref.org/guestquery/
http://help.crossref.org/#ID5824
http://search.cpan.org/~mjewell/Biblio-Citation-Parser-1.10/lib/Biblio/Citation/Parser.pm
http://search.cpan.org/~mjewell/Biblio-Citation-Parser-1.10/lib/Biblio/Citation/Parser.pm
http://wing.comp.nus.edu.sg/parsCit/
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<?xml version="1.0" encoding="UTF-8"?>
<algorithms version="110505">

<algorithm name="ParsCit" version="110505">
<citationList>
<citation valid="true">

<authors>
<author>L Lambe</author>
<author>J Stasheff</author>

</authors>
<title>Applications of perturbation theory to iterated

fibrations.</title>
<date>1987</date>
<journal>Manuscripta Math.</journal>
<volume>58</volume>
<pages>363--376</pages>
<marker>[5]</marker>
<rawString>Lambe, L., Stasheff, J.: Applications of

perturbation theory to iterated fibrations.
Manuscripta Math. 58 (1987), 363–376.</rawString>

</citation>
</citationList>

</algorithm>
</algorithms>

Fig. 2. Reference segmentation done by ParsCit

<?xml version="1.0" encoding="UTF-8"?>
<references xmlns:str="http://exslt.org/strings">

...
<reference id="5">

<prefix>[5]</prefix>
<title>Applications of perturbation theory to iterated

fibrations</title>
<authors>
<author>Lambe, L.</author>
<author>Stasheff, J.</author>

</authors>
<journal>Manuscripta Math.</journal>
<volume>58</volume>
<year>1987</year>
<pages>363-376</pages>
<suffix>Manuscripta Math. 58 (1987), 363–376.</suffix>

</reference>
...

</references>

Fig. 3. Example of the hand made metadata of references from the publisher
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The conversion was equally successful regardless of how many line breaks were
included in the reference string. In fact, ParsCit should even be able to recognize
individual parts of the full text such as title, abstract, list of references etc. For
the purpose of segmenting references we use a plain text file with the string
‘References’ at the very beginning which is followed by the list of references.
Each of the reference strings is one line with no line breaks. One blank line is
used as the separator of the references.

We are currently considering using this tool for DOI lookups. Our first tests
involving ParsCit as a preprocessor for CrossRef DOI look up by HTTP XML
Query9 suggest reasonable accuracy.

The CrossRef XML query schema defines a large set of elements for the struc-
tural description of various parts of the reference string and special element
<unstructured_citation> that can contain the raw citation string. Structural
elements from the ParsCit output XML can be easily transformed into the Cross-
Ref XML query schema. It can be mostly done by renaming ParsCit XML output
elements to their CrossRef XML query counterparts. Instead of a full list of au-
thors, it proved better to use just the first author in the ‘Lastname, Firstname’
notation, i.e. ParsCit output

<authors>
<author>L Lambe</author>
<author>J Stasheff</author>

</authors>

becomes

<author search-all-authors="false">Lambe, L</author>

in the CrossRef XML query.
To provide a DOI lookup service with as much information as possible the

CrossRef query is constructed not only from the structural elements ParsCit has
identified in the input, but the raw citation string from the ParsCit <rawString>
element is added to the query as the <unstructured_citation> element.

Hand made metadata record of our sample reference from the publisher is
shown in Figure 3. Its transformation to the CrossRef XML query format is
similar to the ParsCit output transformation and the resulting XML query varies
in small details such as punctuation only.

As a basic test we have used articles of volume 48, issue 5 of the Archivum
Mathematicum journal (http://dml.cz/handle/10338.dmlcz/143106) that was
published at the end of 2012. As we have high quality metadata for references
from the publisher of the journal we compared the results of the DOI lookup us-
ing these hand made metadata and automatically segmented plain text reference
strings harvested from the landing pages of the articles.

As can be seen in the summary in Table 1 and Figure 4 both hand made
metadata and ParsCit generated metadata led to a surprisingly similar result of

9 http://help.crossref.org/#ID5829

http://dml.cz/handle/10338.dmlcz/143106
http://help.crossref.org/#ID5829
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Table 1. Comparison of DOI lookup results using hand made and ParsCit automat-
ically segmented references from the articles of Archivum Mathematicum, volume 48,
issue 5

number ParsCit hand made
of refs. resolved not resolved resolved not resolved

article #2 10 1 9 2 8
(10.00%) (90.00%) (20.00%) (80.00%)

article #3 6 3 3 3 3
(50.00%) (50.00%) (50.00%) (50.00%)

article #4 19 4 15 4 15
(21.05%) (78.95%) (21.05%) (78.95%)

article #5 12 3 9 3 9
(25.00%) (75.00%) (25.00%) (75.00%)

article #6 17 6 11 6 11
(35.29%) (64.71%) (35.29%) (64.71%)

article #7 16 6 10 4 12
(37.50%) (62.50%) (25.00%) (75.00%)

article #8 9 3 6 3 6
(33.33%) (66.67%) (33.33%) (66.67%)

article #9 10 1 9 2 8
(10.00%) (90.00%) (20.00%) (80.00%)

article #10 13 5 8 5 8
(38.46%) (61.54%) (38.46%) (61.54%)

article #11 13 2 11 1 12
(15.38%) (84.62%) (7.69%) (92.31%)

Fig. 4. Visualization of DOI lookup results from Table 1
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CrossRef DOI lookup.10 ParsCit always correctly identified all the references and
segmented them well enough to achieve results comparable to the hand made
metadata. Further investigation of the possibilities of deployment of this tool
will be of great interest to us in the near future.

4 Output Modules

The content of the DML-CZ digital library is collected to be read and used. To
achieve this, it has to be visible and usable. To achieve high visibility, it has to
be indexed by search engines, especially by Google, given that it is used for 85%
of searches today.

DML-CZ is available to the outside world via the DSpace repository software.
This includes the end user interface (classic web based on HTML/JavaScript)
and the OAI-PMH server providing the DML-CZ metadata together with links
to the DML-CZ data in various XML formats. [Kre08] This section describes
the complete workflow from the DML-CZ internal metadata to the EuDML
specific NLM formats exported via OAI-PMH. The last subsection discusses the
cooperation with Google Scholar.

4.1 Metadata Transformation

The project of the European Digital Mathematics Library EuDML [Syl+10],
http://eudml.org/, is based on metadata and data of smaller regional DML
projects. It was realized that almost every EuDML content provider uses a dif-
ferent internal format for their holdings. For example, the DML-CZ internal
metadata format was established during the development of DML-CZ several
years before the EuDML project was started. To adopt the EuDML format to
be used by the DML-CZ internal tools would be quite difficult and time consum-
ing, causing troubles in the well established DML-CZ workflow and would create
a lot more work on the publishers’ side. Now that the DSpace OAI-PMH is able
to provide reliable metadata and their transformations into various formats, we
took advantage of it.

Thus, a great deal of efforts went into mapping the metadata into the unique
metadata format that is required for central processing and global enhancement
methods.

The basic schema stands on the OAI-PMH and assumes that local repositories
make their metadata available via an OAI server and are harvested by the Eu-
DML central repository. There are now two ways of exposing the local metadata
to the EuDML.

The first possibility is to expose metadata in an internal format which local
DML repositories use natively. Metadata is harvested in this format and on
the harvester side transformed into the specific EuDML metadata format. This
approach puts almost no demands on the local repositories and most of the work
is done on the EuDML side.
10 Articles #1 and #12 are not present as they do not contain any references.

http://eudml.org/
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The second option, used in DML-CZ, is to expose metadata in the EuDML
specific formats. For this purpose two formats have been set up — one for journals
(eudml-article2 11) and one for books (eudml-book2 12). This assumes most of
the work has to be done on the local repository side which can however bring
some benefits — metadata has to be validated, errors have to be identified and
corrected. This process leads to improved local repository metadata. For the
DML-CZ this approach has been adopted.

Both eudml-article2 and eudml-book2 formats are based on the NLM Journal
Archiving and Interchange Tag Suite format (version 3.0) [Dig08]. The NLM
format is suitable for describing journal articles and is used without any changes
in EuDML. To describe books, the NLM format has been extended and several
new tags have been added. In the rest of the text both formats are referred to
just NLM. [NIS12]

As the metadata for most of the DML-CZ content is very static and hardly ever
changes, the transformations from DML-CZ internal XML metadata [BKŠ08]
into the NLM are done in a batch with the help of XSL transformation. The
result is a not a fully compatible NLM (pre-NLM) file stored directly next to
journal/book metadata file in the internal structures. The file is not in the final
NLM format because there are certain kinds of dynamic information (e.g. links
to fulltexts) that have to be added on-the-fly by OAI-PMH at the moment the
metadata are requested.

The XSL 2.0 transformations are used to obtain the NLM format from the
internal format, including EuDML specific XSL functions for handling metadata
like language codes. As a transformer the Saxon is used. The transformation
process is integrated into the internal tools via set of bash scripts.

4.2 OAI-PMH

The pre-NLM file is then stored (on demand or automatically during import/
/update operations) in the DSpace repository. A DSpace digital object (called
Item) schema allows various kinds of files to be stored. These are logically sepa-
rated into so called Bundles. The pre-NLM file is stored in such a specific Bundle
and used later by the DML-CZ OAI-PMH server.

DSpace OAI-PMH server is fully and easily configurable and provides vari-
ous methods (XSL crosswalks, plugins in Java) how to add a custom format. A
special Java plugin for exposing NLM formats has been developed. The plugin
is called when metadata for an Item (or Record in terms of OAI-PMH) are re-
quested on the OAI-PMH server. The plugin loads stored pre-NLM XML and
adds links to fulltexts. These links cannot be added during the first transforma-
tion phase (pre-NLM) because at that time the information about the publisher’s
moving wall is not known (articles behind the publisher’s moving wall can be
used only for indexing and not for exposing fulltexts). The resulting XML is in
the final NLM format and is served in an OAI-PMH <record> element.
11 Namespace http://jats.nlm.nih.gov.
12 Namespace http://eudml.org/schema/2.0/eudml-book

http://jats.nlm.nih.gov
http://eudml.org/schema/2.0/eudml-book
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However, the way DSpace works with OAI-PMH Sets in the default configu-
ration is not meaningful in DML-CZ, because the DSpace core structures repre-
sented by Community and Collection objects are handled in a different semantic
way in the DML-CZ. The Sets are treated as the Collections which represent
journal issues in the DML-CZ. The DSpace has been patched to change the Sets
to be top level Communities, thus the Sets represent whole journals, proceedings
series and monographs collections (as can be seen at the DML-CZ homepage).
The patch includes a new database index table of articles and chapters for the
top communities in DSpace and necessary code changes to work with it.

4.3 Google Scholar

The connection to Google Scholar is made in the way they recommend — the
HTML header <meta> tags are used to fill up necessary article/chapter metadata.
While there is no precise specification of the citation_ format, the example pro-
vided by Google is followed. Every HTML page in DML-CZ is generated on-the-
fly via XSL so the <meta name="citation\_(spec)" content="(value)"/>
tags are processed the same way. Indexing these <meta> tags allows Google
Scholar to link directly to the fulltexts in DML-CZ without the necessity of
parsing paper metadata from landing HTML pages and PDFs. We believe that
agreement on this interface might contribute slightly to the Page ranking of
papers, as the metadata are contributed from the verified DML-CZ source.

Looking at the Google Analytics statistics over the last five years, the ratio
of DML-CZ traffic generated by Google searches continually increases, reaching
more than 85% at the time of writing. This shows the importance of this export
interface, together with the sitemap updates we regenerate regularly and thus
point Google to the newly published items automatically. DML-CZ is now ranked
among the top ten repositories in Central and Eastern Europe, and best repository
in the Czech Republic, measured by http://repositories.webometrics.info/.

5 Conclusions

We have reported on the workflows, interfaces and modules we have developed
for the low-cost running of DML-CZ. When agreeing on formal interfaces that
could be enforced by validation, considerable savings of manual work have been
achieved, while in parallel increasing data quality and services of the library.
After introducing the modules described, there is almost no manual intervention
necessary. We perform manual checks of uploaded data before sending them to
the public library but this is not strictly necessary.

Exporting data via the agreed interfaces to Google and EuDML skyrocketed
the visibility of DML-CZ repository content, as measured by webometrics.info
or similar metrics. We believe that our DML-CZ example demonstrates that
by maintaining solid information technologies, Computer Science methodologies
and web standards, even a small digital library can be run at a moderate cost.

Our future plans include adding further machine-actionable modules and func-
tionalities into DML-CZ. Having full texts with math formulae by math OCR

http://repositories.webometrics.info/
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now, it is natural to add formulae searching with our Math Indexer and Searcher
system MIaS [SL11], which already works well in EuDML. One of the most chal-
lenging remaining issues is the improvement of the process of the automated
OCR of mathematics and its tighter integration into the rest of the system.

Also, new EuDML external APIs will be employed, namely for article simi-
larity — similar articles will be acquired from the EuDML set instead of from a
local set of articles in DML-CZ only. We also expect extensive development of
the module for automatic parsing of the references. We hope we could signifi-
cantly improve the quality of references metadata and eliminate the necessity of
their costly and inefficient manual corrections.
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Abstract. In this paper, we present a new approach to the seman-
tic enrichment of mathematical expression problem. Our approach is a
combination of statistical machine translation and disambiguation which
makes use of surrounding text of the mathematical expressions. We first
use Support Vector Machine classifier to disambiguate mathematical
terms using both their presentation form and surrounding text. We then
use the disambiguation result to enhance the semantic enrichment of a
statistical-machine-translation-based system. Experimental results show
that our system archives improvements over prior systems.

Keywords: MathML, Semantic Enrichment, Disambiguation, Statisti-
cal Machine Translation.

1 Introduction

The semantic enrichment of mathematical documents is among the most signif-
icant areas of math-aware technologies. It is the process of associating semantic
tags, usually concepts, with mathematical expressions. We use MathML [10]
Presentation and Content Markup to represent mathematical expressions and
their meaning. The semantic enrichment task then becomes the task of generat-
ing Content MathML outputs from Presentation MathML expressions. It is an
important technology towards fulfilling the dream of global digital mathematical
library (DML).

The semantic enrichment of mathematical expression is a challenging task.
Mathematical notations are ambiguous, context-dependent, and vary from com-
munity to community. Given a Presentation MathML element, there are many
potential mappings to its Content MathML element. For example, the token δ
can be mapped to KroneckerDelta, DiracDelta, DiscreteDelta, or δ. By cor-
rectly disambiguating these token elements, we can get a more accurate semantic
enrichment system.

Disambiguation of mathematical elements is an important component in the
semantic enrichment system. Basic methods for dealing with ambiguities so

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 278–287, 2013.
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far were either rule-based [1] or statistics-based [7]. The rule-based approach
is of course generally not able to derive meaning from arbitrary Presentation
MathML expressions. The statistics-based approach resolves ambiguities based
on the probabilities, and thus gets better results than the rule-based system.
In this paper, we enhance the statistics-based approach by combining it with a
disambiguation component.

So far, there has been limited discussion about the contribution of surrounding
text to mathematical element disambiguation problem. It is becoming increas-
ingly difficult to ignore the surrounding text of mathematical expressions. For
example, the token δ can be mapped to KroneckerDelta if its surrounding text
contains the word ‘Kronecker delta’. It is difficult to disambiguate using only
the presentation of mathematical expression. The combination of mathematical
expression itself and its surrounding text can lead to improvements in disam-
biguation process.

The aim of this paper is to examine and solve the ambiguity when mapping
Presentation MathML elements to their Content elements. This paper also at-
tempts to find the contribution of surrounding text to mathematical element
disambiguation problem. We use a Support Vector Machine (SVM) learning
model for MathML Presentation token element (mi) disambiguation. Both pre-
sentation of mathematical expression and its surrounding text are encoded in a
feature vector used in SVM. We evaluate the efficacy of the system by incorpo-
rating it into an SMT-based semantic enrichment system.

We formulate the problem as follows: given a Presentation MathML expres-
sion and its surrounding text, can we interpret its Content MathML expression?
This paper provides contributions in three main areas of mathematical semantic
enrichment problem. First, we show that combination of a disambiguation com-
ponent and the SMT-based system improves the system’s performance. Second,
we show that the text surrounding the mathematical expressions contributes to
the disambiguation process. Third, we show that the name of the category that
a mathematical expression belongs to is the most important text feature for
disambiguation.

The remainder of this paper is organized as follows. Sections 2 provides a
brief overview of the background and related work on semantic enrichment of
mathematical expressions. Section 3 presents our method. Section 4 describes
the experimental setup and results. Section 5 concludes the paper and points to
avenues for future work.

2 Related Work

MathML [10] is the best-known open markup format for representing mathemat-
ical formulas. It is recommended by the W3CMathWorking Group as a standard
to represent mathematical expressions. MathML is an application of XML for
describing mathematical notations and encoding mathematical content within
a text format. MathML has two types of encoding: Content MathML addresses
the meaning of formulas; and Presentation MathML addresses the display of
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formulas. We use MathML Presentation Markup to display mathematical ex-
pressions and MathML Content Markup to convey mathematical meaning.

Most major computer algebra systems, such as Mathematica [5] and Maple [6],
are capable of importing and exporting MathML of both formats. These import-
ing and exporting functions enable the conversion from Presentation to Content
MathML. Importing, of course, depends on the interpretation of each computer
algebra systems engine.

There is a project called SnuggleTeX [1], which addresses the semantic in-
terpretation of mathematical expressions. The project provides a direct way to
generate Content MathML from Presentation MathML based on manually en-
coded rules. The current version at the time of writing this paper supports op-
erators that are the same as ASCIIMathML [2]. For example, it uses the ASCII
string “\in” instead of the symbol “∈”. One major drawback of this approach is
that it always makes the same interpretation for the same Presentation MathML
element.

A recent study by Nghiem et al. [7] also addressed the semantic interpretation
of mathematical expressions. This study applied a method based on statistical
machine translation to extract translation rules automatically. This approach
contrasted with previous research, which tended to rely on manually encoded
rules. This study also introduced segmentation rules used to segment mathemat-
ical expressions. Combining segmentation rules and translation rules strength-
ened the translation system and the best system achieved 20.89% error rate.
The shortcoming of this approach is that it did not make use of text information
surrounding mathematical expressions.

Wolska et al. [8,9] presented a knowledge-poor method of finding a denota-
tion of simple symbolic expressions in mathematical discourse. The system used
statistical co-occurrence measures to classify a simple symbolic expression into
one of seven predefined concepts. They showed that the lexical information from
the linguistic context immediately surrounding the expression improved the re-
sults. The lexical information from the larger document context also contributed
to the best interpretation results. This approach had been evaluated on a gold
standard manually annotated by experts, achieving 66% precision.

3 Our Approach

The system has two phases, a training phase and a running phase, and consists
of three main modules.

– Statistical-based rule extraction: Extracts rules for translation, given the
training data. We establish two types of rules: segmentation rules and trans-
lation rules. Each rule is associated with its probability.

– SVM-based disambiguation: An SVM training algorithm builds a model that
assigns to identifiers (mi) their correct content. Features are extracted from
both the presentation of mathematical expressions and their surrounding
text.



Semantic Enrichment of Mathematical Expressions 281

– Translation: The input of this module includes a Presentation MathML ex-
pression, a set of rules for translation, and the output from the disambigua-
tion module. This module translates Presentation into Content MathML
expression.

Figure 1 shows the system framework.
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Fig. 1. System Framework

3.1 Statistical-Based Rule Extraction

The rules for translation were extracted according to the procedure used by
Nghiem et al. [7]. Given a set of training mathematical expressions in MathML
parallel markup, we extracted two types of rules: segmentation rules and trans-
lation rules. Translation rules are used to translate (sub)trees of Presentation
MathML markup to (sub)trees of Content MathML markup. Segmentation rules
are used to combine and reorder the (sub)trees to form a complete tree. The out-
put of this module is a set of segmentation and translation rules, each rule is
associated with its probability.

3.2 SVM Disambiguation

An mi token element in MathML presentation markup can be translated into
many different elements in MathML content markup. In this paper, we assumed
that onemi element can be translated into one of a limited predefined set of Con-
tent elements. Given an mi element, we use an SVM training algorithm to build
a model that assigns to its correct Content element. When translating, each of
the Presentation mi elements will be disambiguated before generating Content
MathML expressions. The accuracy of the SVM disambiguation is a crucial pre-
processing step for a high-quality MathML Presentation to Content translation.
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We used the alignment output of GIZA++1 [11] to generate training and
testing data for the disambiguation problem. Given a training data consists of
several parallel markup expressions, we used GIZA++ to align the Presentation
terms to the Content terms. From this alignment results, we extract pairs of
Presentation mi elements and their associated Content elements. Only mi ele-
ments that have ambiguities in their translation are kept to generate training
and testing data. Table shows 1 the examples of Presentation mi elements and
their associated Content elements.

Table 1. Presentation mi elements and their associated Content elements

Presentation
elements

Content elements

<mi> σ </mi> <ci>Weierstrass Sigma</ci>
<ci>Divisor Sigma</ci>
<ci> σ </ci>

<mi> μ </mi> <ci>MoebiusMu</ci>
<ci> μ </ci>

<mi>H</mi> <ci>StruveH</ci>
<ci>Harmonic Number</ci>
<ci>Hankel H1</ci>
<ci>Hankel H2</ci>
<ci>Hermite H2</ci>
<ci>H</ci>

<mi>y</mi> <ci>Bessel Y Zero</ci>
<ci>Spherical Bessel Y</ci>
<ci>y</ci>

For each mathematical expression, an mi element has only one correct trans-
lation. In other mathematical expressions, the same mi element might have an-
other correct translation. Assume that an mi element e has n ways of translating
from Presentation into Content MathML. For each mathematical expression, we
create one positive instance by combining e and its correct translation. We also
create n− 1 negative instances by combining e and its incorrect translations.

The features used in the SVM disambiguation may be divided into two main
groups: Presentation MathML features and surrounding text features. Presenta-
tion MathML features are extracted from the Presentation MathML markup of
the mathematical expression. Surrounding text features are extracted from the
text surrounding the mathematical expression. The category which the mathe-
matical expression belongs to is also used. Table 2 shows the features we used
for classification.

There were six Presentation MathML features in our experiment. The first one
determines whether the mi element is the only child of its parent. The relation

1 https://code.google.com/p/giza-pp/
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Table 2. Features used for classification

Feature Description

Presentation
MathML

Only child
Is it the only child of its parent
node

feature Preceded by mo Is it preceded by an <mo> node
Followed by mo Is it followed by an <mo> node

&#8289;
Is it followed by a Function
Application

Parent’s name The name of its parent node
Name The name of the identifier

Text feature Category
Relation between category name
and candidate translation

Unigram Vector represents unigram feature
Bigram Vector represents bigram feature
Trigram Vector represents trigram feature

Candidate translation
One of n candidate translations of
the mi element

between the mi element and its surrounding mo elements is encoded in the fol-
lowing three features. The last two features represent the name of the mi element
and its parent. Among these features, the name of the mi element is the most
important feature.

Among the text features, the first one is the category that mathematical
expression belongs to. In mathematical resource websites, such as the Wolfram
Functions Site, mathematical expressions belong to different categories. But usu-
ally we do not have the text surrounding these mathematical expressions. We
then can calculate the relation between the category name and the Content
translation of each mi element. The relation has one of three values: the same as
the Content translation, contains the Content translation, or does not contain
the Content translation.

In case we have the text surrounding or the description of the mathematical
expressions, we can use n-gram features [12]. In this paper, we use unigram,
bigram and trigram features. These features are implemented as the vectors
containing the n-grams which appear in the training data. We will assign each
instance into one of two classes, depending on the candidate translation. The
class is ‘true’ if the candidate translation is the correct Content translation of
the mi element, and ‘false’ otherwise.

3.3 Translation

After disambiguation, we use the result to enhance the semantic enrichment of a
statistical-machine-translation-based system. The input of this module includes
a Presentation MathML expression, a set of rules for translation, and the out-
put from the disambiguation module. The output of this module is the Content
MathML expression which represents the meaning of the Presentation MathML
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expression. If there is only one mapping from a Presentation element, that Con-
tent element is chosen. If the disambiguation module accepts more than two
mappings from a Presentation element, the Content element with higher proba-
bility is chosen.

4 Evaluation

The first dataset for the experiments is the Wolfram Functions site [3]. This
site was created as a resource for educational, mathematical, and scientific com-
munities. All formulas on this site are available in both Presentation MathML
and Content MathML format. The only text information on this dataset is the
function category of each mathematical expression. In our experiments, we used
136,685 mathematical expressions divided into seven categories.

The second dataset for the experiments is the Archives of the Association for
Computational Linguistics Corpus [4] (ACL-ARC). It contains mathematical
expressions extracted from scientific papers in the area of Computational Lin-
guistics and Language Technology. Currently, we use mathematical expressions
drawn from 20 papers which were selected from this dataset. We have manually
annotated all mathematical expressions with MathML parallel Markup and their
textual descriptions. Out of 2,065 mathematical expressions in the dataset, only
648 expressions have their own description. Table 3 shows examples of mathe-
matical expressions and their description in ACL-ARC dataset.

The evaluation was done using two metrics: accuracy score for disambiguation
and tree edit distance rate score for semantic enrichment. The accuracy score of
disambiguation is the ratio of correctly classified instances to total instances. The
tree edit distance rate (TEDR) score [7] is defined as the ratio of (1) the minimal
cost of transforming the generated into the reference Content MathML tree using
edit operations and (2) the maximum number of nodes of the generated and
the reference Content MathML tree. We also compare our semantic enrichment
results to the results of Nghiem et al.

First, we set up an experiment to examine the disambiguation result on each
Presentation MathML mi element. In this experiment, we compare three sys-
tems. The first system uses both Presentation MathML and text features. The
second system uses only Presentation MathML features. The last system chooses
the interpretation with highest probability.

Training and testing were performed using ten-fold cross-validation. For each
category, we partitioned the original corpus into ten subsets. Of the ten subsets,
we retained a single subset as validation data for testing the model, remaining
subsets are used as training data. The cross-validation process was repeated
ten times, and the ten results from the folds then averaged to produce a single
estimate. Table 4 shows the results of the disambiguation component.

The results in Table 4 show that disambiguation result using SVM outper-
formed the ‘most frequent’ method. The reason ‘most frequent’ method got
high scores is because mathematical elements often have a preferred meaning.
The systems that used only Presentation MathML features achieved even better
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Table 3. Examples of mathematical expressions and their description in ACL-ARC
dataset

Textual description
MathML Presentation

expression
MathML Content

expressions

a word to be translated
<mrow> <mi>w</mi>
</mrow>

<ci>w</ci>

a word in a dependency
relationship

<mrow> <mi>w</mi>
</mrow>

<ci>w</ci>

a matrix
<mrow> <mi>t</mi>
</mrow>

<ci>t</ci>

a similarity matrix which
specifies the similarity
between individual elements

<mrow> <mi>sim</mi>
</mrow>

<ci>sim</ci>

argument

<mrow> <msub>
<mi>S</mi> <msub>
<mi>j</mi>
<mi>i</mi> </msub>
</msub> </mrow>

<apply> <selector />
<ci>S</ci> <apply>
<selector /> <ci>j</ci>
<ci>i</ci> </apply>
</apply>

The LM probabilities

<mrow> <mi>P</mi>
<mo></mo> <mrow>
<mo>(</mo> <mrow>
<mi>v</mi>
<mo> | </mo> <mrow>
<mi>Parent</mi>
<mo></mo> <mrow>
<mo>(</mo>
<mi>v</mi>
<mo>)</mo> </mrow>
</mrow> </mrow>
<mo>)</mo> </mrow>
</mrow>

<apply> <ci>P</ci>
<apply> <ci> | </ci>
<ci>v</ci> <apply>
<ci>Parent</ci>
<ci>v</ci> </apply>
</apply> </apply>

scores, because they use surrounding mathematical elements. It is interesting to
note that on the ACL-ARC data, the ‘most frequent’ system get higher score
than the system with text features. Overall, on WFS data, we gained 5 to 16
percent accuracy improvements.

The systems that also used text features outperform the systems that used
only Presentation MathML features in most of WFS categories. This result may
be explained by the fact that the category of a mathematical expression is closely
related to that expression. Contrary to expectations, this study did not find any
improvement in ACL-ARC data. It seems possible that these results are due to
the lack of training data and the sparseness of n-gram features. This finding was
unexpected and suggests that in order to use n-gram text features, we need more
data.

Second, we set up an experiment to examine the semantic enrichment result.
The results from disambiguation component are used in the semantic enrichment
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Table 4. Disambiguation accuracy

Category
Number

of
instances

With
text

features

Without
text

features

Most
frequent

ACL-ARC 2,996 92.9573 93.7583 93.4246

Bessel-TypeFunctions 1,352 92.8254 92.3077 86.0947

Constants 714 91.1765 90.3361 83.7535

ElementaryFunctions 6,073 96.1963 96.3774 89.6427

GammaBetaErf 3,816 95.2830 94.4706 78.0136

HypergeometricFunctions 72,006 97.5571 97.0697 88.0746

IntegerFunctions 11,955 95.8009 95.1652 90.0711

Polynomials 5,905 98.2388 95.3091 87.3328

All WFS Data 320,726 98.9243 98.4398 92.7025

system. We compare three systems: with text feature, without text feature, and
the system of Nghiem et al. which used ‘most frequent’ method. In this experi-
ment, we use 90 percent of expressions for training both SVM-based disambigua-
tion and translation components. We use the other 10 percent of expressions for
testing. Table 5 shows the translation result.

Table 5. Semantic enrichment TEDR

Category
Number
of expres-

sion

With
text

feature

Without
text

feature

Most
frequent

Bessel-TypeFunctions 701 18.0604 18.0604 18.4118

Constants 555 33.9016 34.0328 34.6230

ElementaryFunctions 9,537 7.4879 7.4809 7.7343

GammaBetaErf 1,558 17.2308 17.2851 18.4796

HypergeometricFunctions 9,347 49.4678 49.4797 49.6902

IntegerFunctions 1,175 20.5292 20.5874 20.9945

Polynomials 727 19.6309 19.7987 20.2685

All WFS Data 23,600 29.0707 29.0869 29.2769

The results in Table 5 show that combining disambiguation and statistical
machine translation improved the system. Expressions in ‘Gamma Beta Erf’
category benefit from the disambiguation module the most with 1.2 percent
error rate reduction. Less ambiguity in elementary functions might lead to lower
performance in ‘Elementary Functions’ category. We did not evaluate on ACL-
ARC data because the disambiguation result was almost the same as the ‘most
frequent’ method. Overall, on WFS data, we achieved 0.2 to 1.2 percent error
rate reduction.
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5 Conclusion

In this paper, we have presented a new approach to the semantic enrichment
for mathematical expression problem. Our approach, which combines statistical
machine translation and disambiguation component, shows promise. This study
has shown that the disambiguation component using presentation features im-
proved the system performance. The use of text features, especially the category
of each expression, also played an important role in the disambiguation of math-
ematical elements. Experimental results of this study showed that our system
achieves improvements over prior systems.

This research has raised many questions in need of further investigation. One
question is finding and combining new features, such as the style of the font,
for the disambiguation task. Another possible improvement is making use of
co-occurrence of mathematical elements in the same document. In the scope of
this paper, we only disambiguated lexical ambiguities of mathematical expres-
sions. Structural ambiguities should also be considered to achieve better results.
The evidence from this study suggests that in a small dataset, descriptions of
mathematical expressions did not improve the system performance. Further work
needs to be done to establish whether descriptions of mathematical expressions
contribute to the the task in a larger dataset.
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Abstract. DLMF was released to the public in May 2010 and is now
completing its 3rd year online. As a somewhat early adopter of large-
scale MathML content online, and exposing a math-aware search engine
to the public, the project encountered situations distinct from those with
our previous web sites. In the hopes that our experiences may inform
developers of current and future Digital Library projects, we describe
some of our observations delivering MathML content and trends in both
web usage and browser evolution. We will also look at the the ways our
readers have used math search, attempting to assess whether they found
what they sought, and ways the engine might be improved.

1 Introduction

Three years ago, after a considerable gestation, the Digital Library of Mathemati-
cal Functions (DLMF) [5] was released as a free resource to the public. As it is the
successor to theHandbook ofMathematical Functions byAbramowitz& Stegun [1],
we also served the traditional audience with the commercial publication of a com-
panion Handbook [9]. We faced certain challenges [7]: to use what were (when we
started) cutting edge technologies like MathML [3] to enhance reuse and accessi-
bility; given the heavymathematical content, math-aware search seemed essential;
we needed to develop tools to assist in authoring XML and MathML content.

In our role as proponents of Mathematical Knowledge Management (MKM),
we are enthusiastic about MathML and work to develop enabling technologies
such as math-aware search; we’ll happily promote these technologies in venues
such as the current one. On the other hand, the goal of the DLMF project itself
is to provide and make useful the mathematical knowledge it contains. It uses
the technologies, even quietly encourages their use, but doesn’t loudly force or
announce them. The effect of this is that our users are not, for the most part,
coming to our site with expectations of MathML or math search; when they
submit a search query they are more likely to simply use what comes to mind,
than following explicit instructions for ‘how to search for math’.

Our DLMF is just one of several different kinds of ‘Digital Library’ and so not
all of our experiences will be relevant to all other library developers. Nonetheless,
we anticipate that many of them will be helpful to other developers. After looking
at general usage of the DLMF, we will focus on the delivery of MathML and use
patterns of math-aware search.

� The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 288–295, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Response

The reviews and feedback we have had on the DLMF and Handbook, at least
to our faces, has been almost completely positive. Most complaints that we
have received question the accuracy of formulae, occasionally with justification.
In a few other cases, we have apparently overlooked listing someones favorite
software package. Another handful of comments concerned technical problems
with MathML, typically missing fonts, or other browser issues. In response, we
have made 5 minor updates of the DLMF to include 20 corrections in errata
along with various technical and conversion improvements.

An internal study of the citation indices indicates that citations of the Hand-
book and DLMF are gradually displacing citations of Abramowitz & Stegun.
Citations specifically of the online DLMF seem to be a small portion (17%) of
the total. Although the continued increase of citations of Abramowitz & Stegun
had originally been an important motivation for the DLMF project, the total
citations over the last 3 years, ironically, seem to be leveling off. A speculation is
that use of the DLMF is indeed displacing both the new and old printed hand-
books, but that since citation of online materials is unfamiliar to most authors,
it is either not being cited as consistently, or its citations are harder to recognize
in the citation indices. [We’ve added a ‘How to Cite’ page, to try to improve the
outlook.] It is difficult to confirm this theory, however.

3 General Log Analysis

Web server logs are notoriously difficult to interpret, or are simply unreliable
[4]. A surprising amount of traffic, half the bandwidth, seems to be web indexing
robots (or worse). We seemingly expend as many resources preparing to find
material as we do using it once we’ve found it! Many of those robots routinely
masquerade as familiar web browsers. Normally, various caches shield the server
from many page requests and thus skew the statistics. However, since we use
content negotiation based on agent identification strings, we mark the pages as
uncacheable and thus may be less affected by this inaccuracy. Nevertheless, the
server logs are what we have and they will have to serve.

The traffic to our site has been gradually increasing since its unveiling (Figure
1). Initially around 200 visits per day increasing to over 600 — we’ve arbitrarily
defined a ‘visit’ to end when a visitor has not requested a new page for more
than 30 minutes. A visit appears to average around 4–5 pages. We’re restricting
our attention to what we believe are humans in the following discussions.

Sketchy information encourages speculation. Do the trends of average visit
duration, shown in Figure 2, indicate a gradually decreasing attention span?
Apparently people spend an average of 5 minutes at the site, but near 10% stay
for more than a half-hour.

We spent some effort making snippets of our formula available as TEX or
Presentation MathML(pMML). There seems to be a pay-off, as it appears that
on average, each visitor (385/day) downloads at least a pMML (202/day) or TEX
(196/day) or BibTEX (25/day) snippet.
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Fig. 1. Daily visits to DLMF

4 MathML Specific Issues

Setting up a website to use MathML may encourage us to be a bit too clever
for our own good. We want to serve MathML whenever possible, but otherwise
fall back to images for the math. Portal pages, or forcing users to understand
and choose the appropriate format, are awkward and intrusive. So we set up
our server to determine, by user-agent sniffing, which format the browser sup-
ports and send that automatically. It actually works fine, although we have to
occasionally update the agent rule base.

One complication is due to breaking the assumptions of stock web analyzers.
The analyzer may no longer correctly classify requests as being requests for
pages, for example. Moreover, it can yield a wildly misleading picture of browser
share which is typically based on the number of successful requests originating
from each kind of browser.

The DLMF has a total 1,613 pages, with some 38K math expressions. Thus,
to view a typical page, a MathML supporting browser will fetch the single page,
with embedded MathML and is ready to display. A non-MathML agent will load
the page without MathML, and make an average of 24 extra requests to fetch
the images of the math before it can view the page. This severely biases the
apparent market share. Interestingly, the total amount of data downloaded in
both cases is comparable.

It seems more interesting for our purposes to divide up browsers into 3 cate-
gories. DLMF makes fairly heavy demands on the rendering agent, and so only
the most complete implementations, whether native or via plugin, are served
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Fig. 2. Lengths of visits to DLMF

MathML by default. A second category has partial (or even sporadic) support
for MathML, but not quite good enough to cover DLMF’s material; for exam-
ple, supporting only the CSS profile, or missing crucial elements like prescripts
and multiscripts; we’ll call these ‘almost MathML’. The final category is without
MathML support. Figure 3 shows the trend in page views between these three
categories of browser. (We’ll avoid ‘naming names’, since support is evolving,
and our main interest here is the (positive) outlook.)

One should be careful over-interpreting Figure 3, as these figures seem rather
sensitive to the patterns used for robots, and as the robots vary their choice of
browser to mimic. Nevertheless, it seems encouraging that MathML supporting
browsers, and particularly browsers that could support it, with a bit more effort1,
sum up to such a large and growing share.

In the meantime, there have been two other encouraging developments af-
fecting MathML support. One is the inclusion of MathML in HTML5 [2], along
with the support of most browsers. Although many browsers claim to support
HTML5, few in fact implement MathML (yet). This lack is partially ameliorated
by the second development, the advancement of MathJax [6] which implements
MathML rendering using JavaScript and CSS.

One ‘take away’ lesson is the following. Even if XML and namespaces seems
unloved by the HTML5 community, it is only through the use of XML infras-
tructure that DLMF can almost trivially track this change. We will be adding
HTML5 with MathML as a formatting option in the near future; perhaps using

1 Not that we are offering business advice.
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Fig. 3. Browser trends

MathJax as the fallback rendering engine. Additionally, although the agent-
sniffing machinery may seem less necessary with the advent of MathJax, it may
still be useful for handling other contingencies, such as mobile agents and tablets.

5 Search Issues

DLMF provides a search engine which supports mathematics-specific search, as
well as conventional text search. Taking guidance from modern search engines we
let the user type whatever query they expect to work, and attempt to make the
best of it. We infer, based on the tokens in the query, whether it was intended
to find math or text, what kind of notation they’re using, and so on. In the
following, we’ll try to assess whether or not we have succeeded, but it is also
interesting to see what queries these untrained users did in fact submit.

Our search engine converts the math to a serialized text equivalent, both in
the document during indexing and in the query during search, and then leverages
a text search engine to perform the actual search look-up [8]. This type of search
engine is oriented towards the more informal usage that we envision. However,
it is certainly not the only approach to math-aware search in all contexts.

From our web server analysis, we see that there were an average of 24 searches
a day; roughly 1 for every 16 visits. About 16% of them appear to be intended
to be math searches, although perhaps a third of these are simple terms, like
exp, that are easily interpreted as either math or text.

Figure 4 shows the number of ‘tokens’ (basically sequences of contiguous let-
ters or numbers or individual noise characters) used in math and text queries.
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Fig. 4. Distribution of number of search terms per query

The shapes indicates that math queries are most commonly expressions of sev-
eral terms, but queries up to 58 were seen. Text queries tend to be at most a few
words, and a superficial scan of the lists suggest they are almost always phrases.

Out of the math searches, common patterns include

– $ wildcard (10%: suggesting they did read the help file after all!);
– LATEX markup (5%);
– various identities (e.g. c2 = a2 + b2);
– pairs of math symbols presumably expected in the same formula, but not a

math expresssion, as such;
– simple formula fragments: sin 2x, sinh cos.

Some surprising math queries include

– cut & pasted long formula;
– examples from Help page;
– sinx+cosy or sinacosb;
– \hbox and \vbox;
– x_sub{0};
– + apparently used as query meta-operator (or url encoding?).

But does it work? At a commercial website, a sale is easily recognized as a suc-
cess, but for a Digital Library, success is your readers discovering the information
they desire. Did they leave the site because they found the information, and are
now going on to do some productive work, or did they leave out of frustration?
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Short of a survey, with its own set of problems, how can we tell if the search
engine works for the users?

We therefore turn back to our server logs to attempt to infer success or failure
from the users’ sequences of actions. What do they do after they have executed
a search? If they follow the link to one of the search results (we’ll call that ‘Click
Thru’ in the following), what do they do after that? One might idealize a a
successful outcome as when a user performs a search, inspects one of the results
and then, having found the desired item, will visit random other pages within
the site. Less successful outcomes would have the user floundering, checking the
next page of hit results (‘Next 10’), trying other search results or formulating
alternative searches (‘New Search’).

Table 1 collects the tracks derived from our web logs, showing how the behav-
ior of users searching for math differed from those searching for text. It would
seem that searchers for text often follow that idealized path suggested above.
While it isn’t clear that searchers for math are unsuccessful, they certainly ap-
pear to need more fishing around to find what they wanted (assuming they did);
they were more likely to check the next page of hits or try a different query.
Moreover, even after they’ve clicked on one search result, they were more likely
to come back to the search results and try another result or another search.
Whether this is somehow due to the different nature of ‘searching for a math
expression’, or is a measure of poor search results is hard to tell.

Table 1. What users did after a search, or after clicking on a search result

Next page request
Total Click

Thru
Next
10

New
Search

Other
Page

Left
DLMF

Searches 23190
Math 3644 (16%) 37% 12% 30% 14% 7%
Text 19308 (83%) 43% 5% 26% 17% 8%

ClickThru 20888
Math 2963 (14%) 18% 13% 33% 30% 6%
Text 17751 (85%) 24% 5% 18% 44% 9%

6 Conclusions

The DLMF is online and appears to be appreciated and used after 3 years. Of
course, mathematics, let alone, special functions, is a niche, not mainstream,
interest; we don’t expect web traffic to rival Google or Amazon. Nor do we
expect browser implementers to pay as much attention to MathML as to video.
Nevertheless, there are reasons for optimism about delivering math on the web;
solutions sometimes appear where you least expect them.

We find math search to be used modestly, but this is not surprising given that
users don’t expect it and we have ruled out being confrontational to promote
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it. Our log analysis suggests that math searches require a bit more work to find
results than do text searches, but nevertheless appear to serve the users. A more
convincing analysis of search behaviors, and indications of search success, would
likely require instrumenting the search engine to generate search-specific logs.

Disclaimer: Certain products, commercial or otherwise, are mentioned for in-
formational purposes only, and do not imply recommendation or endorsement
by NIST.
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Abstract. At the very center of digital mathematics libraries lie con-
trolled vocabularies which qualify the topic of the documents. These
topics are used when submitting a document to a digital mathematics
library and to perform searches in a library. The latter are refined by
the use of these topics as they allow a precise classification of the mathe-
matics area this document addresses. However, there is a major risk that
users employ too precise topics to specify their queries: they may be em-
ploying a topic that is only "close-by" but missing to match the right
resource. We call this the topic trap. Indeed, since 2009, this issue has
appeared frequently on the i2geo.net platform. Other mathematics por-
tals experience the same phenomenon. An approach to solve this issue is
to introduce tolerance in the way queries are understood by the user. In
particular, the approach of including fuzzy matches but this introduces
noise which may prevent the user of understanding the function of the
search engine.

In this paper, we propose a way to escape the topic trap by employing
the navigation between related topics and the count of search results for
each topic. This supports the user in that search for close-by topics is a
click away from a previous search. This approach was realized with the
i2geo search engine and is described in detail where the relation of being
related is computed by employing textual analysis of the definitions of
the concepts fetched from the Wikipedia encyclopedia.

Keywords: mathematical documents search, topics search, web math-
ematics library, search user interface, learning resources, mathematics
classifications, mathematics subjects.

1 Searching by Mathematical Topics

The problem to retrieve mathematical documents in large collections becomes an
everyday challenge with the ever-growing collection of digital texts that mathe-
matics professionals and learners have access to.

Word based search in mathematical documents, while still prevailing, suffers
from broad issues: formulæ are not covered and, more importantly, the same
concepts may be expressed in different terms or with the same terms but in a
different sentence organization. For example, the concept of right angle is often
expressed in sentences such as the angle in A is right, or as α = 90◦.

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 296–309, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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To alleviate this issue, classifications have been established and mathematical
documents annotated by them. The document is indexed by them. They can be
called topics or subjects, even though philosophy of science would treat these
concepts as fundamentally different, we consider these names to be equivalent in
this paper. Nowadays, most research papers in mathematics are annotated using
the Mathematics Subjects Classification (MSC)1 and platforms to offer search
with them are available. In education, several repositories have been created to
share learning resources in communities of practice: the contributed resources
are annotated with the topics being covered, as well as many other properties
(rights, typical age, instructionnal function, ...). All offer users to search and
contribute using topics.

Topic based engines employ a classification of topics. They allow users to
search not only by words (and maybe by formulæ) but by the concepts or scien-
tific domains that the resource treats. Examples of such classifications include
the MSC, the EUN LRE Thesaurus,2 and the GeoSkills ontology (described in
Section 3).

The usage of such classifications effectively diminishes the ambiguity of the
search by words in the text as it diminishes the choices of possible expressions.
Moreover, the classifications can, generally, be expressed in multiple languages
and thereby allow to find search results in multiple languages, even if the user
does not understand them. We shall survey below different methods of choosing
the topic.

Even though topic based search can be an effective way to drill down the num-
ber of documents matching a word, it also strongly depends on the chosen topic
and users may find themselves very quickly trapped in the niche of a topic that
is too precise. Innovative ways to relax the queries when facing an insufficient
search result are the focus of this paper.

In the experience of the author, including reports of multiple users using
the i2geo platform, searching by topic is permanently compared to searching
by words: users will often attempt and mistrust a topic that has been entered if
they realize that some documents may be about that topic but have not matched
the search. Doing so, they quickly realize that word based search suffers from
multiple issues (sketched, among others, in [LKM09]). Reports such as the log-
books analyzed in [LK13] indicate this hesitation.

With word searches, at least three solutions exist to offer tolerant or fuzzy
matching:

1 The Mathematics Subjects Classification is the most commonly used classification
for mathematical documents at the research level. It can be browsed through its
main catalog at http://msc2010.org/. A description of recent developments is given
in [IS12].

2 The EUN LRE Thesaurus is a classification of learning material topics aimed at
comprehensiveness across Europe but not at a very deep precision. It is avail-
able in 15 languages and contains, for mathematics, less than 20 topics. See
http://lreforschools.eun.org/web/guest/lre-thesaurus for its list.

http://msc2010.org/
http://lreforschools.eun.org/web/guest/lre-thesaurus
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Partial Results. In almost all search engines as well as i2geo.net the search
method assumes that, by default, most of the ingredients of a query (for ex-
ample the different words) are not queried as a conjunction but as a weighted
disjunction: show first the results that match all words, but include also those
that only contain single words. This common practice often fails at informing
the user about the quality of a series of match and thus introduces noise.

Latent Semantics. Another way, which has been the basis of [LD97] is to
employ a vector space model of the word/document occurrence and deduce
a distance between documents from distance in these spaces. It has been
caled latent semantic analysis (LSA). Given a relatively homogenous corpus
of texts, this provides effective ways to detect relationships between words
and between documents and thus allows search results to include documents
that match terms nearby. Little research has investigated this approach for
mathematics (we know of [Car04] alone).

Suggested Terms. Another way, commonly practiced in contemporary web
search engines, is the suggestion of terms that are likely to match the user’s
query while the original one would lead to no search result as described
in [Hea09, §4.3]. A version of this feature is the widespread Google search
engine’s “did you mean” as well as its suggested queries. Thus far, little query
suggestion has been used for mathematics search engines.

1.1 Outline

This paper first draws a panorama of the user interfaces that search by topics.
It then describes the search mechanism of the i2geo.net platform, followed by
the core contribution: a method to suggest related topics having searched for a
topic and its implementation. A discussion sets the contribution in perspective.
As conclusion, we sketch future works.

2 Selecting Topics and Searching

The choice of the right topic in a search process is a key step. While seasoned
mathematicians will often only search the topics of the communities they are
used to, commonly calling them by number in the case of the MSC, there are
multiple usage types where the user is not necessarily aware of the complete
classification. They include searches for literature by a mathematician outside
his or her domain of expertise, searches for literature by non-researchers, and
searches for learning resources by newcomers in the learning resources platform.

An example is the concept of complexity of an algorithm. It can be found in 7
domains of the MSC, including Mathematical logic and foundations and Computer
science. What would a student enter as classification key? The process of choosing
the right topic is often a preparation step that is not done in conjunction with
the search engine.

Several user interfaces paradigms exist to select a topic:
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Fig. 1. Selecting a topic in two
steps in the Cosmos portal

One way to do so is to employ a multi-stage hi-
erarchy where the user first selects a broad topic
then finer grained ones. This approach suffers
from one major drawback: the hierarchy must
be somewhat natural or be learned. As an ex-
ample, [Meg12] reports incomprehension of most
pupils when they are told that the history branch
is part of humanities when using the EduTube-
Plus educational video repository3 browsing by
the topics of the EUN-LRE thesaurus. Similarly,
the Cosmos portal4 has a fine grained classifica-
tion of physical topics which avoids repetitions;
a normal user, thus, needs to search multiple times to find the classical topic
of optics which has been put under the main topic of waves while it could have
been under the main topic of light or fields.

An enriched version of these approaches is the facetted navigation approach
described in [Hea09, §8.6]. This approach is richer because it indicates to the
user the amount of matching documents before refining or generalizing a query
along a hierarchy. In this research we leverage this witness of the query total as
an important support to inform the user before choosing a query. However, we
claim that navigating up (generalizing) or down (specializing) along a hierarchy
may be too restricted and that the user may need alternative ways to navigate
to related topics.

Another method of displaying topics to be chosen is by offering tag clouds
which lay out the topics so as to fill the plane by attributing a size to a topic
dependent on its frequency in the collection being searched. This method works
only well for a small number of topics which are not too inhomogeneous.

Finally, another method to access the topics is that adopted by both major
mathematical search engines Zentralblatt5 and MathSciNet6: they suppose that
the user will employ subject codes of the MSC to denote the topics. Both of these
search engines do not offer a way to search for the topic, they suppose the codes
to be known and let users use other tools like the MSC’s main catalog to identify
the codes. The euDML library varies this by combining browsing for content and
browsing for topics.7 This approach makes it natural for users to switch between
topics of the same parent.

3 The EduTubePlus repository ran during the EU project of the same name. See
http://www.edutubeplus.info/. Successor repositories are being built.

4 The Cosmos portal is a learning objects repository to share resources pertaining to
astronomy in classroom. http://portal.discoverthecosmos.eu/

5 Zentralblatt Math is a service giving access to abstracts of most of the current and
past mathematics research. It is accessible at http://www.zentralblatt-math.org.

6 MathSciNet, also called Math Reviews, is a also service to crawl through ab-
stracts of most of the current and past mathematics research. It is accessible at
http://www.ams.org/mathscinet/.

7 The euDML library gives access to a considerable amount of free access mathematics
research papers. It can be browsed by topics at https://eudml.org/subjects/MSC.

http://www.edutubeplus.info/
http://portal.discoverthecosmos.eu/
http://www.zentralblatt-math.org
http://www.ams.org/mathscinet/
https://eudml.org/subjects/MSC
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Fig. 2. Searching for circumcircle

The approach employed by the i2geo.net platform is a mix of the approaches
above. It employs the search paradigm to allow the user to find the right topic
(this is similar to what a newbie can achieve by browsing MSC’s catalog), but
also allows other forms of navigation by displaying the topic behind a hyperlink
everytime the topic is mentioned. This allows users to meet the topic in other
places and search for it.

The approach of i2geo.net aims at being easy to use by teachers of varying
proficiency in mathematical science and in the usage of the computer tools.
It has, thus, been kept on a single platform with a somewhat consistent user
interface.

The auto-completion phase, where the user searches for a topic, competency,
or educational level, is depicted in the Ficture 2 where the user searches for the
concept of circumcircle, choosing it from the possible choices and find it in several
languages below.
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In all these approaches, the niche trap of a user stuck in searching for a topic
that is too precise is wide open. In the MSC based search above, it is very
likely that a user would not attempt to query all the topics pertaining to the
complexity; if also including a keyword such as graph to get informed about
complexity of graph algorithms, he or she will either get too many results or
too little. Similarly in i2geo, it has been easy to choose a topic that yields zero
results and thus fall into an annoying trap.

3 The Cross-Curriculum Search of i2geo

The i2geo.net platform, described in [LKM09] and available at http://
i2geo.net/, is a learning object repository where teachers of Europe come to
share learning resources to learn using dynamic geometry tools. The resources
include simple documents of the dynamic geometry systems as well as learning
material to support such a learning (exercise sheets, teacher advice, ...). The
platform has been built during the Inter2geo project8 gathering mathematics
education experts from France, Spain, Germany, the Netherlands, and the Czech
Republic until 2010. It is now maintained by the University of Halle.

The i2geo search supports search by word and by topic. The topics represent
concepts, capacities (which are called competencies), and educational levels of
the compulsory mathematics education, they are encoded in an ontology called
GeoSkills, each being expressed in the languages of the countries above. The mul-
tilinguality of this ontology and the topic based search offered in i2geo supports
the mainly graphical nature of many learning resources using dynamic geome-
try: it is easy to translate a resource of dynamic geometry from one resource to
another. The i2geo search has been called a cross-curriculum search.

The main method of searching is by the choice of a topic, competency, or
educational level, and obtaining the matching search results which obeys the
following rules which form the ontology based query-expansion mechanism of
i2geo search:

– If a topic is chosen, i.e. an abstract mathematical concept, resources that have
been annotated with this topic are returned and, less preferred, resources
that have been annotated by more specific topics.

– If a competency is chosen, i.e. a capacity including a verb and topics (see
[LD09]), resources that have been annoated with this competency are re-
turned first and, if not, resources annotated with one of the ingredient of
this topic.

– If a level is chosen, only resources annotated with that level are returned.

The resulting search is effective to find learning resources as soon as the topic is
correctly identified but its usage in the last three years has been frustrating for
users which often fall in the niche trap of a topic that is too fine as reported, for
example, in the log-books of teacher’s usage found in [LK13].
8 More information about the Inter2Geo eContentPlus project can be read in
http://i2geo.net/Main/About.

http://i2geo.net/
http://i2geo.net/
http://i2geo.net/Main/About
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One of the particularly annoying situation has been that of the search com-
petencies which are expected to describe precise capacities that a learner is epx-
ected to acquire. These are typically narrowly defined so that they correspond
to a rather isolated place in the curriculum standard. Thus searching for a com-
petency is a very precise action, so much that it returned zero results in most of
the cases. Thus, we have made it deliberately tolerant: it should not only return
the resources annotated with that competency but resources with are matching
any of its ingredients; for example, the comptency use the intercept theorem to
calculate magnitudes9 has as ingredients, the competency process use in calculat-
ing magnitudes and the topics intercept-theorem, rational number, measure, and
proportional. Even if a highlighting method would be used (as in [Hea09, §5.5]),
the user would still only understand the relationship to the query if he would
completely understand the ingredients of the competency.

One of the actions that users can make, if they realize that they are lost
in a too precise topic, is to click on the topic which is displayed and see its
hierarchy, then click add this topic so that resources matching this parent or this
child are displayed. However this operation has been repeteadly evaluated as too
heavy, with users switching to words queries. So as to realize a simpler switch,
we have developed a query suggestion mechanism which suggests to the user
related queries, including parent and children nodes (for concepts), referenced
concepts and competency process (for competencies), and related concepts which
we describe in the following section.

Moreover, the search index of the terms (topics, competencies, levels) has
been enriched with counts of matching resources. This allows the count to be
displayed everytime the term is displayed. This inclusion allows the input of
topics to be restricted to those that would not yield empty search results. The
query suggestions are depicted in figure 3.

You searched
for: 

 Intercept-Theorem (27)

See also:
use the intercept theorem to calculate magnitudes (3) • words: Intercept theorem (95) •

parallel (36) • proportional (8) (more...)

(details...)

Fig. 3. Suggested queries related to the concept of intercept theorem

4 Computing Related Topics through LSA and Popular
Definitions

In order for related topics to be computed, an ontology was created which bases
on the GeoSkills’ ontology and adds the property of being related as a reified
9 This competency can be browsed at http://i2geo.net/comped/showCompetency.
html?uri=use_intercepttheorem_to_obtain_magnitudes .

http://i2geo.net/comped/showCompetency.html?uri=use_intercepttheorem_to_obtain_magnitudes
http://i2geo.net/comped/showCompetency.html?uri=use_intercepttheorem_to_obtain_magnitudes
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relationship between the nodes of the GeoSkills ontology. Such a relationship is
enriched with a similarity between 0 and 1.

– As a first step, a part of the relationships are authored manually using Pro-
tégé OWL 410 to state the important relationships between concepts that
are likely not to be achieved by the text similarity methods below. Such
a relationship exists, for example, to connect the topic of circular diagram
and of pie chart which are two concepts that are very common in statistics
education. They almost have the same semantics but they have not been
clearly identified as equivalent with certainty (several experts have hypothe-
sized that circular diagrams allow chords that are not diagrams to be allowed
as limits of the domains). These different topics have been contributed by
mathematics education experts, mostly teachers, so we contend that such a
differentiation of topics is useful even though it is subtle. Coping with such a
differentiation without disorienting is, thus, part of the mission of the i2geo
search engine and the query suggestion mechanism is a step forward: these
two concepts are flagged as close relatives (with the biggest similarity).

– As a second step, relationships are simply built by policy: parent concepts,
competency ingredients, educational levels, age, or educational regions.

– As a third step, relationships are built by analogy between definitions. To
this effect, concepts have been annotated with the URLs to the sections of a
Wikipedia page stating a definition of it, for each of the language. Currently
this annotation has been done for the languages the author masters, English,
French, and German. In each language, a text analysis process, similar to
the Latent Semantic Analysis [LD97], is performed on these definition texts
which can compute similarity distance between the concepts. The Seman-
ticVectors library is used for this [WC10].

Because it is built on different corpora for different languages, this suggestion
mechanism takes in account the semantic fields of each language. For example,
the fact that a disc is the surface inside of a circle in English and French makes
it close to other regions of the plane while the closest German translation of the
mathematical disc, “eine Scheibe”, is a cylinder, with a thickness. While a strict
organization might have decided that “Scheibe” is not the appropriate transla-
tion, other namings that attempt to denote the interior of a circle (“Kreisfläche”,
“Kreisscheibe”) in German seem to have never been widespread.

5 i2geo Implementation

The search engine of i2geo is based on its sharing platform repository, which
stores learning resources and displays them, supporting a complete learning ob-
jects sharing mechanism described in [LKM09] which derives from the XWiki

10 Protégé is a widespread ontology editor. See http://protege.stanford.edu/. It has
been used for most ontology engineering tasks around GeoSkills in versions 3.

http://protege.stanford.edu/
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Collaborative Learning Asset Managements System (XCLAMS11). The resources
search index extends Apache Lucene with i2geo and XWiki information. This
user interface extends the basic text search mechansim with the search weight-
ing described in section 3 and with the chooser for topics, competencies, and
levels. This chooser is a JavaScript component which fetches results from the
auto-completion index as the user types.

The auto-completion index, also based on Lucene, is populated by reading the
ontologies: the GeoSkills ontology [LD09], the ontology of relationships (called
GeoSkills-Relatives), and the ontology of subjects. The ontology is read using
the library OWLapi and the reasoner Pellet.

Similarly as the GeoSkills ontology and its displays such as the CompEd web-
application [DL09], which are designed to be updated on a daily basis to take
advantage of the changes by the curriculum experts, the GeoSkills-Relatives on-
tology is designed to be updated when changes are made either in the definitions’
texts or in the manual relationships. While GeoSkills would receive updates from
curriculum experts, the GeoSkillsRelatives ontology would receive updates from
developers receiving feedback from users and encoding them using Protégé, and
from the definition texts fetched from their web-sources, currently Wikipedia.
These ontologies are then published and they enter the rebuild of the auto-
completion index which, also, queries the numbers of matching resources for
each term.

The code of the software and the ontologies are open-source, under the Apache
Public License, and available from http://github.com/i2geo/. It has not yet
entered the production site of i2geo.net, as it is being polished.

6 Discussion

Having described the technical realization of this approach, we now discuss its
relevance to research areas which are closely related to it.

6.1 Navigation Between Topics

The approach of suggesting queries we have developed supports the user in
exploring the topics’ organization, inviting them to look at topics which are
laterally related to the queried topics. This form of navigation shares the practice
of facetted navigation of [Hea09, §8.6] in that it suggests queries, but it does so
without being restricted to the hierarchy of topics. Moreover, users can explore
the structure of topics: they can click on the queried topic and see a topic page.
The topic pages of i2geo, served by the CompEd server, perform a similar role as
the MSC catalog: they allow users that wish to inquire about the classifications’
structure to navigate through it. Zentralblatt Math and euDML present any
occurrence of an MSC subject as a hyperlink to the query for this topic but do
not provide a link to the context, that is, its hierarchy. In contrast, the i2geo
11 Technical details on the open-source XCLAMS project can be found

http://xclams.xwiki.org

http://github.com/i2geo/
http://xclams.xwiki.org
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search links them to topic pages (except for the suggested queries which display
the number of matching resources and link to the search result). It is probable
that the approach of presenting this as a pop-up window, as i2geo does it, is
inappropriate for contemporary web habits. However the topic pages provide
information to users. The MSC Catalog and euDML search engine also render
the topic in its environment wrt other topics; however no further information is
provided about each of the subjects.

Should such links be such as euDML? As a drill-down of the search? As
a topic page? Topic pages could include illustrations, or links to a Wikipedia
or MathWorld, which would draw on users visual memory, so that they are
supported in recognizing topics and thus better remember them.

Alternatively, a few attempts have been made to navigate through math-
ematical topics by the display of a graph that represents a map of the top-
ics’ relationships. Examples include the server http://thesaurus.maths.org/
(now closed), the knowledge map of the Khan Academy’s Knowledge Map
(https://www.khanacademy.org/exercisedashboard), or the MSC map at
http://map.mathweb.org. However, all these approaches consume a large screen
space and are thus difficult to combine with the search activity.

It remains open if additional navigation mechanisms, be them topic pages or
graphical knowledge maps, are effective in providing the users of the search tool
an awareness of the structure and nature of the topics so that they can be chosen
effectively.

6.2 Applicability for MSC Subjects

What are the challenges to port the approach we described to the subjects
of the Mathematics Subjects Classification? It relies on a few ingredients: the
ontological structure between topics, the multiple names of each so as to allow
search and identifiable display, and the existence of Wikipedia pages to describe
them so that additional relatedness connections are computed.

One of the challenges lies in the user interface: when unknown to the user,
subjects are best understood when displayed within the hierarchy as this pro-
vides context information. For example, the subject 14Q20 Effectivity, complexity
if suggested, has much chances to confuse users, since its belonging to algebraic
geometry is not explained. Similarly the subject 97H60 Linear algebra when dis-
played would miss its belonging to the subject 97-XX Mathematics education.

Another challenge lies in finding pages that form a source of descriptions of
subjects to perform the computation of relatedness between the subjects. While
pages in Wikipedia exist for main subjects, they are largely missing for more
refined subjects.

6.3 Mix and Match on the World Wide Web

More and more markup formats are available to allow web-page authors to in-
dicate inside web-pages such properties as being of a given topic. The anchoring

http://thesaurus.maths.org/
https://www.khanacademy.org/exercisedashboard
http://map.mathweb.org
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of topics within a structure such as a taxonomy or ontology makes them a par-
ticularly good source for identifiable keys to describe the topics.

Among the main markups that allow this indication is the family of microdata
annotations at http://schema.org/, in particular CreativeWork’s about prop-
erty. This property can carry both a text and a URI so that such initiatives as
the standardized thesaurus encoding of MSC [IS12] in the SKOS language or the
ontological nature of GeoSkills in the OWL language can be easily encoded there.

It appears, from schema.org’s intro pages, that such an inclusion in web-pages
of digital mathematics libraries would allow the main web search engine to give
a significant weight to the topics annotations and be able to exploit the classifi-
cation structure. Thus they could suggest generalizations to the domain of cate-
gory theory when mentioning topoi, or to perpendicular bisector when mentioning
circumscribed triangle. This could complement the suggested queries offered by
these systems which are mostly based on the of earlier users’ queries and are,
thus, almost always absent when inputting refined mathematical topics.

We have observed that regular users commonly use main web search engine
in parallel to the search engine of the digital libraries. We expect that the search
engines’ complementary features are likely to enrich each others, where users are
able to depict features of one to describe desired features of others.

7 Conclusion

In this paper, we have described a way to enrich the search engines that employ
topics so as to avoid the trap of a too precise topic. This trap seems to be
common to all search engines that offer this function, including the exemplary
facetted search system of [Hea09, §8.6].

The solution we propose is to enable the user in choosing topics that are
closely related to the query by the presentation of suggested topics decorated
by the number of matches. For example, it allows a user who has search results
about ellipse to go in one click to the search results for conic sections, to cone,
disc, or meridian.

The mathematics learning resources’ sharing platform http://i2geo.net has
integrated this suggestion mechanism. This integration supports the user to ex-
plore other search queries that may satisfy better their expectactions. Anchoring
this choice in the display of the available data appears to be an important step
to guide the user while still avoiding the pages with empty search results.

Users typically lack the knowledge of the topics classifications employed by
search engines. The suggestion mechanism allow them to explore related topics.
This lack of knowledge is stated quite clearly by the teachers trying to find
the history domain but needing to navigate through social studies first (see
Section 2). It is also echoed by multiple i2geo users who prefer to switch to text
search.

It could be suggested that such a lack of knowledge could be alleviated by
designing a more natural hierarchy or by educating the users in the usages of
widespread classifications. This would be quite artificial: many hierarchy deci-
sions are natural in one culture and not in others; this is the case for the history

http://schema.org/
http://i2geo.net
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domain which is a part of social studies in the American education systems but
not in most European ones. Thus, offering a tool to stimulate the users in ex-
ploring the related topics is an important way to support the user into gaining
a better knowledge of how topics are navigated and to let them come out of the
trap of a too precise topic.

7.1 Future Work

Studies currently planned ahead of this research include the following:
A stabilization of the server code is the closest objective. The current im-

plementation, requiring delicate versions of each of the software libraries, has
prevented a full deployment to the server. This implementation will reach the
users of the http://i2geo.net platform which is used regularly by users of Eu-
rope and beyond (since last year, a mean of 90 search queries per day has been
observed).

Another facet is a broader coverage of definition URLs of topics. On the
one hand, a fairly modest count of topics has been enriched with the URL of
Wikipedia definitions, while a broad part has been automatically guessed with-
out validation. On the other hand, only three languages have been taken up,
French, English, and German. We intend to employ the Curriculum-encoders’
voluntaries community to organize such contributions ( http://i2geo.net/
xwiki/bin/view/Group_Curriculum-Encoders/ ).

These two development works are the basis to get a usable implementation.
They are likely to enhance productivity of users that employ topic based search.
Early and recent experiments in which pre-service teachers were discovering
i2geo.net have confirmed the need for more stimulations to attempt search by
other topics. Such discoveries, generally coupled with an introduction in a course,
form an important field-trial-like evaluation of the search platform: the little time
they allocate to discover the platform and the relative neutrality of students make
them good candidates to judge the quality of a prime-time experiment.

Finally, as indicated in [IS12], it is likely that linking across several taxo-
nomies will emerge as a common practice. One of the attempts to do so has
been done on http://i2geo.net/xwiki/bin/view/Subjects/ which takes a
handful of relevant mathematical domains as search subjects and maps them to
GeoSkills nodes allowing users to search for dynamic geometry constructions in
probability and statistics, for example. The mapping there is created by onto-
logical axiom statements making equivalent the subjects to the union of topics
and competencies. Such a mapping is currently being leveraged by a team of the
Open University of Cyprus for the subjects of the MathTax taxonomy12. It will
allow fine-grained subjects search on http://i2geo.net and on the upcoming
http://opendiscoveryspace.eu and thus become more compatible with the
MSC.

Linking across several classifications, either as done in the i2geo subjects or
in other ways described in Section 6.3, is likely to shed a new light on the
12 The MathTax taxonomy is in use in parts of the USA’s National Sciencce Digital

Library. It can be browsed at http://people.uncw.edu/hermanr/MathTax/.

http://i2geo.net
http://i2geo.net/xwiki/bin/view/Group_Curriculum-Encoders/
http://i2geo.net/xwiki/bin/view/Group_Curriculum-Encoders/
http://i2geo.net/xwiki/bin/view/Subjects/
http://i2geo.net
http://opendiscoveryspace.eu
http://people.uncw.edu/hermanr/MathTax/
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suggestions of related terms since the display of them would be less homogenous.
At the same time, such a mix is likely to distill more relevant information from
the user’s culture and context and thus create more relevant search experiences.
It has the potential of exploiting the user’s locality or earlier search to influence
the weight of suggested queries and thus, for example, prefer suggested queries
that are in the user’s region’s curriculum standard, closer to the user’s known
concepts, or to the user’s currently research topics.
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Abstract. Ontologies provide a formal description of concepts and their
relationships in a knowledge domain. The goal of ontology alignment
is to identify semantically matching concepts and relationships across
independently developed ontologies that purport to describe the same
knowledge. In order to handle the widest possible class of ontologies,
many alignment algorithms rely on terminological and structural meth-
ods, but the often fuzzy nature of concepts complicates the matching
process. However, one area that should provide clear matching solutions
due to its mathematical nature, is units of measurement. Several on-
tologies for units of measurement are available, but there has been no
attempt to align them, notwithstanding the obvious importance for tech-
nical interoperability. We propose a general strategy to map these (and
similar) ontologies by introducing MathML to accurately capture the
semantic description of concepts specified therein. We provide mapping
results for three ontologies, and show that our approach improves on
lexical comparisons.

Keywords: MathML, ontology matching, ontology alignment, units of
measurement.

1 Introduction and Motivation

An increasing number of scientific and technological areas, including multi-
agents, bioinformatics and the semantic web, are making use of ontologies to
better represent their knowledge domain. An ontology describes a domain of in-
terest by presenting a vocabulary as well as definitions of the terms used in the
vocabulary [1]. With independent individuals and groups developing their own
ontologies, we are faced with the problem of heterogeneous representation across
ontologies. This is quite problematic when it becomes necessary to amalgamate
or link data between various sources. Over the years, several solutions have been
proposed for matching ontologies (i.e. identify corresponding or matching terms
in different ontologies). Most take a generic approach in order to deal with the
widest possible variety of ontologies from various domains. Consequently, these
matchers do not take advantage of domain specific attributes which could lead
to better matches.

One area of application where a domain-agnostic approach might be sub-
optimal concerns units of measurement. Units are particularly interesting since,
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unlike more common concepts which often carry multiple meanings, they have a
clear definition due to an inherent mathematical structure. For example, person
can be interpreted as either equivalent to human or as a subclass of human,
both alignments are acceptable depending on the application. Contrast this to
units of measurement, where there are well established rules, such that a unit
defined in one ontology should only be matched to equivalent units in another
ontology. Aligning units of measurement ontologies is of particular importance to
areas requiring data sharing or conversion between units, just to name a few. For
example, independent sensor networks may use different ontologies to represent
their measurements and a mapping is required when their data is consolidated.

The aim of this paper is to propose a semi-automatic solution for the prob-
lem of aligning units of measurement ontologies. The solution we propose hinges
on the use of MathML to extend the semantic description of the units that al-
ready exist in the ontology. To understand the underlying idea of our approach,
consider two ontologies, Ω1 and Ω2, containing definitions for units of measure-
ment. Assuming that these definitions contain both the dimensions and conver-
sion values of the units, it cannot be assumed that the way this information is
represented and encoded is similar. For example, assume in ontology Ω1 the unit
degree Celsius is denoted as degreeCelsius respectively, whereas in ontology Ω2 it
is known as ThermoUnit C. More often than not, these two ontologies will have
been developed by groups working independently. To circumvent this problem,
we propose to insert for each unit in an ontology a MathML-encoded description
using the information available in the ontology. In the degree Celsius example, a
straightforward search based on a generic lexical comparison would find it dif-
ficult to spot this match. But if both ontologies contain the MathML-encoded
relationship between Celsius and the base unit Kelvin, i.e. Tc = Tk − 273.15,
then matching of these terms across the ontologies becomes trivial.

Our choice for using MathML in these encodings is motivated by the fact that
this is already a widely accepted language for describing mathematical equa-
tions. Furthermore, due to its standardization, it is possible to write a generic
program that can process different equations. Although in general, matching
ontologies is difficult, the problem is made more manageable through the cre-
ation of a richer set of structures and relationships, which encode the precise
mathematical relationships that exist between measurement units. This allows
for more exact matchings as well as non-obvious ones (e.g. NewtonPerMeter and
joule per square metre).

This paper focuses on units defined in RDFS/OWL ontologies. For ontolo-
gies, even the ones within the confines of RDFS and OWL, there is no explicit
requirement to represent the mathematical structure of units. The definitions
vary from extremely minimal (for example only the names of the units) to more
complex (some ontologies define dimensions, conversions, alternative symbols
and so on). Even in the latter case, there is no clear and consistent manner
for representing the mathematical structure. For example, to denote division
between two units, one ontology defines the properties numerator and denomi-
nator, while another merely defines the property hasOperand and indicates the
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division by the inversion of the unit (e.g. perKilogram). To make matters worse,
the labeling of concepts in ontologies are different (some examples encountered
were: cubic metre vs. meterCubed, Vector L1 vs. SI length dimension exponent
for the length dimension). Additionally, the structure and organization of con-
cepts within ontologies can vary. Due to these variations, there is no logical link
between units in different ontologies.

The semantic web is composed of layers, each building upon the previous one.
The ontology vocabulary level defines the terms and relationships for concepts.
The layer above this, the logic level, builds upon this foundation using reasoners
to provide inferences. Reasoners lack the arithmetic skills to spot the correspon-
dence between a statement such as “1 week hasDuration 7 days” in one ontol-
ogy and the concatenation of statements “1 day hasDuration 86400 secs” and
“1 week hasDuration 604800 secs” in another. Providing mathematical descrip-
tions of these facts (encoded in MathML which is amenable to manipulations
by software such as Mathematica) creates new opportunities for more effective
identification.

The rest of the paper is structured as follows: first, in section 2 we describe
some background information and related work. This is followed by a description
of our proposed solution in section 3. Section 4, outlines the application of our
approach to real life ontologies. Finally, section 5 outlines the results, followed
by the conclusions and future work in section 6.

2 Background and Related Work

While this paper focuses on units representedwithin RDFS/OWLontologies, units
have been considered and represented in other related areas. OpenMath for exam-
ple, deals with units using content dictionaries (CD). In [2] and [3], the representa-
tion of units in CDs is proposed and discussed. A question of whether or not RDF
is a more suitable means of representation is also raised, but not definitively dealt
with by the authors. [4] builds upon these CDs and suggests changes for better con-
formance to the SI standard. As will be explained later on, our method of inserting
MathML into existing ontologies utilizes the information available within them.
The information is extracted and MathML is automatically generated without
any recognition of the unit that is being processed. Therefore we do not attempt
to match the units to ones available in CDs.

An alignment between ontologies is described as a set of correspondences. Cor-
respondences represent a relationship (equivalence, subclass, disjointness, etc.)
between the entities of the two ontologies being aligned. Entities here can refer
to classes, properties, individuals and so on. Consider two ontologies, Ω1 and
Ω2, to be aligned, where Ω1 has the class dog, denoted here as Ω1:dog and Ω2

has the classes animal and canine, denoted as Ω2:animal and Ω2:canine. The
correspondences that make up the alignment would be:

1. Ω1:dog is a subclass of Ω2:animal
2. Ω1:dog is equivalent to Ω2:canine
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The matching process can have additional inputs, such as a partial initial align-
ment, weights and thresholds (varies between matching algorithms) and sources
for common knowledge (e.g. WordNet [5], UMLS [6]). Depending on the match-
ing algorithm, the correspondence may have a level of confidence (normally be-
tween 0 and 1) associated with it [7].

Over the years, many ontology matching systems have been proposed, some
of which are summarized in [1], [8], [9]. Although the approach taken by each
system is different, most are based on terminological and structural methods.
Terminological methods refers to the use of lexical comparisons of the labels,
comments and/or other annotations of each entity. Structural comparisons look
at for example similarities in the hierarchy of the ontology structure or the cor-
responding neighbors of matched entities. Semantic methods can also be applied
for verification of matches or building on initial matches. These methods include
looking at the range of values, cardinality, the transitivity and symmetry of the
entities [7].

In an effort to find a common basis on which to compare ontology matching
systems, the Ontology Alignment Evaluation Initiative (OAEI [10]) was formed.
The initiative is composed of several tracks dealing with ontologies from different
areas such as biomedical, conferences and anatomy. In particular the benchmark
tests (see [11] for more information) have generated quantitative results, allowing
for the comparison between different matching systems and tracking of advance-
ments in these systems. It is clear that many of the systems are generic matchers,
while some have more inclination towards specific areas (e.g. ASMOV towards
the biomedical area). This is further indicated in the test case ontologies, which
deal mainly with concepts from various domains.

Our proposed matching allows for an n to m cardinality (n entities in one
ontology can align to m entities in the second ontology), which is an important
improvement over a simple lexical comparison. Matching systems commonly only
produce a one to one alignment [7]. Ones that provide an n to m alignment are
AgreementMaker, COMA++ and ASMOV.

AgreementMaker comprises of a first layer, which produces similarity matri-
ces based on concepts between the two provided ontologies. The features of the
concepts (e.g. label, comments, annotations) are compared using syntactic and
lexical comparisons. The results are fed into the second layer, which uses con-
ceptual or structural methods to improve the results. Descendant’s Similarity
Inheritance (DSI) and Sibling’s Similarity Contribution (SSC) are examples of
the algorithms used for this stage. The last layer outputs a final matching or
alignment by combining two or more matchers from the previous layers. For the
first two layers, several matchers are available for comparison [12].

Similarly, COMA++ is based on an iterative process constructed of three
main steps. The first is component identification, where relevant components
for matching are determined. The second step is the matcher execution which
applies multiple matchers in order to compute component similarities. The final
step is similarity combination, where the correspondences between components
is found from the calculated similarities [13].
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ASMOV initially applies a pre-processing step to the two input ontologies.
This step is terminological based and uses either an external thesaurus or string
comparison method. The next step comprises of the structural methods, the
first being a calculation of relation or hierarchical similarity. The second part
comprises of internal or restriction similarity based on the established restrictions
between classes and properties. Finally, an extensional similarity is found using
data instances in the ontology [14].

Clearly these matchers are generically designed to deal with a wide variety of
ontologies. Our approach focuses on the area of units of measurement and applies
MathML to better represent the semantics of the units in order to increase
correct equivalence alignments.

The incorporation of MathML into ontologies has been done before. For ex-
ample, the Systems Biology Ontology (SBO) from the European Bioinformatics
Institute [15] incorporates subject related equations using MathML. However,
other than representing equations, the MathML is not being used further. More
interesting usages of MathML can be seen in the Systems Biology of Microor-
ganisms initiative, which has the aim of producing computerized mathematical
models representing the dynamic molecular process of a micro-organism [16].
Within this initiative, SysMO Seek is an“assets catalogue” representing infor-
mation such as models, experiments, and data. MathML is used to represent the
mathematical models [17].

Another notable area where MathML and ontologies merge, is the OntoModel
tool. Utilized for pharmaceutical product development, OntoModel allows for
model creation, manipulation, querying and searching. It uses a combination of
Content MathML and OWL. The former is used to represent the mathematical
equations and the latter is used for the ontologies that represent the mathemat-
ical models and other related information [18].

While SysMo Seek and OntoModel use MathML to represent mathematical
equations/models, the MathML is not used to align ontologies as we propose
here.

3 Proposed Alignment Approach

The main contention of this paper is that MathML could play a pivotal role in
this effort of efficient ontology alignment. MathML comes in two distinct flavors:
Presentation MathML simply specifies what formulas should look like, while the
aim of Content MathML is to encode the exact semantics of mathematical ex-
pressions. With the introduction of version 3.0, MathML has come closer in-line
with OpenMath, particularly with respect to content dictionaries [19]. Obviously,
we are interested in Content MathML and in the remainder of this paper we will
use MathML as shorthand for Content MathML version 3.0.

Ontologies describing units of measurement routinely provide information on
their fundamental physical dimensions (e.g. length, mass, time, etc. ) and their
conversion value (e.g. Celsius = 5/9(Fahrenheit - 32)). As can be seen, the con-
version value includes both a multiplier and an offset. A special case is dimen-
sionless units, which are sometimes represented by an additional “dimension”,
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and must be handled in a slightly different manner (more on this later). Usually,
it is understood that the conversions convert back to the SI base and/or derived
units. For example watt can be described as either joule per second (W = J/s)
or kilogram-meter-squared per second-cubed (W = kg · m2/s3). This wording
in itself illustrates another problem with lexical representation. Does the term
“squared” correspond to the meter only or to kilogram-meter? Although to a
person, this is clear, to a machine different interpretations are possible, unless a
convention has already been established. The introduction of MathML resolves
this ambiguity. To determine if two units are equivalent, their dimensions and
conversion values must match.

The basic idea underpinning our approach is very straightforward. Suppose
we have two ontologies, say Ω1 which relates concepts α, β, γ, . . . (we will denote
this as Ω1 = {α, β, γ, . . .}) and a second ontology Ω2 = {ξ, η, ζ, . . .}. In addition,
let us assume that we are given as prior knowledge that concept α in Ω1 is
equivalent to concept ξ (denoted here as Ω1 : α ↔ Ω2 : ξ), as well as Ω1 : β ↔
Ω2 : η. If we now are able to determine (e.g. using MathML) that γ = α/β but
also that ζ = ξ/η then we can confidently infer the previously unknown match
Ω1 : γ ↔ Ω2 : ζ.

Specifically, our matcher requires three inputs: Ω′
1, Ω

′
2 and initial matchings

(prior knowledge). Ω′
1 and Ω′

2 are ontologies, which have been modified by insert-
ing MathML into them as an alternate representation of their units. In order to
align the units in the two ontologies, the MathML representation is compared,
with the initial matchings acting as a common reference point. Our matcher
will provide correspondences with only equivalence relations. A more detailed
explanation is given in the following sections.

3.1 Minimum Prior Knowledge

As pointed out earlier, all units can be described both in SI base units and in
derived units which, in turn, can be re-expressed in base units. Therefore, it
can be concluded that all units can be described using the seven SI base units:
meter, kilogram, kelvin, second, candela, ampere and mole. In view of this, in
order to match two unit ontologies, only the SI base units need to be matched as
a starting point. This is used as the minimum prior knowledge that is required
to process the MathML labels. An assumption that our general approach makes
is that the unit conversion values are always relative to the SI base units and
this is reflected in the MathML comparison. When two units of measurement
ontologies are to be matched, the user must supply an initial matching between
the base units found in each ontology.

3.2 Generation and Insertion of MathML

The difficulty in generating MathML and inserting it into an existing ontology
depends on the structure of the ontology and what information is available in it.
For instance, different ontologies will use different properties to indicate that one
unit is the quotient of two other units. However, given a well structured ontology
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that is consistent in how it represents the units, a repeatable pattern will emerge
as to where the necessary information for the MathML encoding can be found.
A program can be written to automatically process these patterns and recast
them in MathML code. We inserted MathML into three exisiting ontologies, one
of which will be looked at in more detail later on. But in the end, the effort of
inserting MathML will vary from ontology to ontology.

For the purposes of our approach, the MathML need only be inserted such
that it is accessible by our matcher. Consequently, there is no need for inte-
grating the MathML with the existing ontology such that any external semantic
reasoner (e.g. Fact++, Pellet) can process it. With this in mind, we take a sim-
ilar approach as OntoModel, which generates the MathML for an equation and
incorporates it as a string into a hasML property [18]. While a specific data
property could be developed, it did not make sense to create a new ontology
just for one data property for the MathML code. Consequently, it was decided
to incorporate the MathML into the ontologies as an rdfs:comment with an
rdf:parseType="Literal" to indicate that markup language is being used (see
[20] and [21]).

3.3 Processing of MathML

Once the ontologies have MathML inserted to represent their units, the matching
process can begin to determine equivalent units. Before a comparison of the
MathML code can be done, it must first be extracted from each ontology for
every unit. By this, we mean that a search is done in each ontology for an
rdfs:comment containing MathML code. The assumption by the matcher is
that each unit that will be considered and aligned already has the corresponding
MathML inserted. Expanding upon this initial matching of units (i.e. aligning
entities without corresponding MathML) is a topic of future work (section 6). As
noted previously, some units describe their conversions not in SI base units, but
derived units. Both approaches are commonly used. Therefore, when comparing
the MathML code, it must be checked to see if the units can be broken down
further if they are not expressed in terms of base units.

As an example, consider we are given by the user the initial base units match-
ings of:

Ω1:meter↔ Ω2:metre
Ω1:kilogram↔ Ω2:kilogram
Ω1:second↔ Ω2:second time
Ω1:kelvin↔ Ω2:kelvin

Ω1:candela↔ Ω2:candela
Ω1:ampere↔ Ω2:ampere

Ω1:mole↔ Ω2:mole

Where Ω1 is the first ontology and Ω2 is the second ontology. We encounter
the units Ω1:joule and Ω2:newton metre during the matching process. They are
given by the following equations (represented in MathML):
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Ω1 : joule = (Ω1 : newton)× (Ω1 : meter) (1)

Ω2 : newton metre =
(Ω2 : metre)2 × (Ω2 : kilogram)

(Ω2 : second time)2
(2)

Here eq. (1) is expressed in the derived unit of newton, while eq. (2) is expressed
completely in base units. Having only the base units as initial matchings, in
order to compare these two units, the unit of Ω1:newton needs to be processed
first. Therefore the following equation has to be first determined by the matcher:

Ω1 : newton =
(Ω1 : meter)× (Ω1 : kilogram)

(Ω1 : second)2
(3)

Knowing eq. (3), when the matcher encounters eq. (1), it searches for Ω1:newton
and upon finding it, reconstructs eq. (1) in its base units. Now the two units
can be compared, with reference to the initial matchings. Once the dimensions
and conversion values match, it can be concluded that the units are equivalent.
This does not apply however to dimensionless units. For example, the units
radian and steradian are both dimensionless and have a conversion multiplier
of 1 and 0 offset. In this case, a lexical comparison (i.e. using different distance
measurements) is used. When the comparison is completed, equivalence rules
representing the alignment can be created and the results outputted to a file for
later processing.

4 Application of Approach

As a proof of concept, the approach outlined in the previous section was applied
to three ontologies. The implementation is divided into two phases.

Phase I. involves the following pre-processing steps for each individual ontology:

1. Find dimension and conversion data for the units
2. Generate MathML based on information of previous step and insert as

rdfs:comment

3. Output modified file of ontology with the MathML code

Phase II. compares two modified ontologies given initial matchings of the base
units:

1. Read in the initial matchings file and two ontology files. Extract the MathML.

2. Compare the units (specifically their dimensions and conversion value) and
determine which are equivalent

3. Output a file containing equivalence rules between the units of the two on-
tologies
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The approach is broken down into two phases in order to make the implemen-
tation more modular . A general program can be written for Phase II, since the
MathML is standardized. This program can be reused for comparison between
any two units ontologies. The onus of inserting the MathML into the ontology
can be placed on either its creator or a third party.

4.1 Phase I

Inserting MathML into Existing Ontologies. The three ontologies looked
at in this work are: 1) Quantities, Units, Dimensions and Types (QUDT) [22],
2) Ontologies of units of measure 1.8 (OM) [23] and 3) Semantic Web for Earth
and Environmental Terminology (SWEET) version 2.2 [24]. QUDT was origi-
nally developed by NASA for the NASA Exploration Initiatives Ontology Models
project. It is currently being developed by TopQuadrant (see [25]) and NASA.
The OM ontology was developed at Wageningen UR - Food & Biobased Re-
search by the Intelligent Systems group. OM was designed to improve upon the
deficiencies found in other units ontologies and was based on standards found
in the field of units of measure. Additionally, the ontology is made more acces-
sible by providing web services for things such as listing units by application
area and unit conversion [26], [27]. SWEET is another ontology developed by
NASA, but this time from the Jet Propulsion Laboratory. The focus of this on-
tology is on the Earth sciences and it bases its terms on the keywords found
in the NASA Global Change Master Dictionary [28]. The three ontologies are
supported by prominent organizations, while OM purports to be an improved
ontology, designed in light of the flaws of previous units ontologies.

All three ontologies are fairly different in their structures and labeling. As a
result different programs were written to insert the MathML into each ontology.
However the general approach is similar in that patterns in the structure of the
ontologies were first identified. A program was then written, using the Apache
Jena library (http://jena.apache.org/) for Java and SPARQL queries, to uti-
lize these patterns in order to extract the necessary information for the resulting
MathML equation. Due to space restrictions, we provide a description of only
the insertion of MathML into the OM ontology.

The OM ontology is well structured with units broken down into groups based
on whether they are single, a multiple, an exponent or comprising of a division
and so on. The units’ mathematical relationship to other units is further ex-
pressed by object and data properties. To make this discussion more concrete,
figure 1 shows an example of how unit division (in this case millimetre per day)
is structured in the OM ontology. Here the unit division breaks down into the
numerator and denominator object properties. In this example, they point to
millimetre and day respectively. The two terms and their position in the division
operation are clearly indicated through these properties. By following the numer-
ator arm, it is seen that millimetre is comprised of the singular unit metre, which
also happens to be a base unit. Millimetre also has a prefix milli with a value
of 1e-3. This value comprises part of the overall conversion necessary to convert
millimetre per day to metre per second. The denominator path breaks down the

http://jena.apache.org/
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Fig. 1. Breakdown of a unit based on the division of two other units in the OM on-
tology. Length-dimension and time-dimension further break down into the basic seven
dimensions: time, length, mass, amount of substance, temperature, electric-current and
luminosity.

unit day into a numerical value of 86400 (the number of seconds in a day) and
a unit of measure or measurement scale, second-time. The conversion value is
determined as 1e-3/86400. The dimensions can be extracted in several ways. Ei-
ther the speed-dimension can be directly processed or the length-dimension and
time-dimension can be processed with the knowledge that one is the numerator
and the other the denominator. Not shown in the figure, is that these dimensions
break down into the seven dimensions: time, length, mass, amount of substance,
temperature, electric-current and luminosity.

Other units consisting of a division, are represented similarly. The organiza-
tion is different for unit multiplication, exponentiation and so on. What this
example shows is that there are patterns in the OM structure which, once recog-
nized, can be used to automatically determine the conversion value and dimen-
sions of a unit. For example, numerical values found in the numerator section
should be divided by the values found in the denominator section. In the case
of multiplication where the unit breaks down into term 1 and term 2, values
found after processing terms 1 and 2 should be multiplied. The dimensions are
either processed directly if the unit has dimension data or constructed from the
dimensions of the base units that comprise it.

After studying the OM ontology, we found that only a handful of these pat-
terns exist. Recognizing this made it possible to write a program that searched
the ontology, extracted the dimension data and calculated the conversion data.

The approach for the QUDT and SWEET ontologies was the same. In all
three, we were able to identify patterns that covered the majority of units. Some
units which did not fall within these patterns had to be handled manually. Rea-
sons for this non-conformity vary from unusual units to errors in the ontologies.
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Generating MathML. Each unit is represented by an equation which incor-
porates its dimension and conversion data. In other words the unit is described
in terms of its SI equivalent units and the conversion values necessary to convert
to these SI units. The general structure of such a conversion equation is shown
in eq. 4 below:

unit = a× [nx1
1 ][nx2

2 ][nx3
3 ]...

[dy11 ][dy22 ][dy33 ]...
+ b (4)

Here a represents the conversion multiplier and b the conversion offset of the
unit. The variables ni and dj represent the different units this unit is comprised
of. So as noted before, the latter can be base SI units or derived units. Basically,
for our approach to work they can be any other unit as long as it is possible to
trace them back to a base SI unit. At least one of ni and dj should be present,
but there is no limitation on the combination of these variables, this depends on
the unit. The structure of the general conversion eq. 4 is fairly straightforward,
simplifying the generation of the MathML encoding. An example of MathML
code generated and inserted as a label is given in figure 2 for the unit newton.

As can be seen in the figure, the references to the other units in the ontology
are given by the id attribute. The variables n1, n2, d3 are equivalent to the ni
and dj in eq. 4. In this manner, the variables show the relationship of one unit
to other ones in the ontology, which can eventually be traced back to the SI base
units. After the MathML is inserted into the rdfs:comment of each unit, the
modified model of the ontology is outputted to a file.

4.2 Phase II

The implementation of this phase can be a standalone program. It will process
ontology files containing MathML in their rdfs:comment. In addition, an initial
alignment containing equivalences between the seven SI base units is provided
to the program. Below is a detailed description of the steps.

Extract MathML. A search through the ontologies for all individuals con-
taining MathML code is initially done. This is done by conducting a SPARQL
query for all rdfs:comment and a filter is applied for only comments containing
MathML. The results of this query are assumed to be all the processable units.
In other words, anything without MathML is ignored (see Future Work, section
6). The MathML is then parsed to extract the dimension and conversion data.

Compare Units. Once all the units in each ontology have the necessary infor-
mation extracted, a comparison can be made using the initial matching data.
Since no further information is known about the ontologies, a very general ap-
proach was taken. In the first pass, each unit in one ontology is compared to
all the ones in the other. To compare the dimension data, the initial matching
units and units that have already been found to be the same, are referred to.
The reason for this is, as mentioned before in section 3.3, some units may be de-
scribed in terms of other ones. Hence, a second pass is necessary to catch all the
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Fig. 2. Sample MathML for unit newton (N). It encodes the fact that N = (m ·kg)/s2
Notice how the SI base units are identified using the id attribute. The xref to the
same unit in the < ci > tag makes the relationship more explicit.

units which were not matched due to this reason. The steps of the comparison
are summarized in figure 3.

– Step 1: First the simplest comparison is made by checking if the offsets of
the conversion value are the same. If they are not, the units are not equivalent
and a false is returned by the function.

– Step 2: Second, the multiplier of the conversion value is compared to see if
they are the same.

– Step 3: Once the conversion value is confirmed to be the same, the di-
mensions are looked at next. If the units are expressed in units other than
base SI units, these must first be broken down or matched. For example,
tesla can be given as T = N/(A×m). If tesla is described in terms of new-
ton (N) in both ontologies and newton has already been matched, then
no breakdown is required. Otherwise a search is done for newton (already
checked units are stored in memory) and if found, T will be modified to T
= (kg×m)/(A×m×s2).

– Step 4: The next step, reduce dimensions, checks if there are the same
units in the denominator and numerator and reduces them, resulting in T
= kg/(A×s2).

– Step 5: Once the units have been reduced as necessary, they can be com-
pared with reference to the initial mappings and already matched units, to
see if they are the same. If they are, the units match. Output the matched
units.
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Fig. 3. The steps taken when comparing two units. First the conversion value is com-
pared. If these are equal, the units (representing the dimensions) are matched or broken
down into their base SI units if possible. Next, the reduce dimensions step checks if
there are the same units in the denominator and numerator and reduces them. Fi-
nally, they are compared with reference to already matched units to determine if the
dimensions are the same.

5 Results

To evaluate our matching approach, we manually aligned the ontologies for com-
parison (referred to as reference alignments). Following suit with the OAEI com-
parisons, we calculate the precision, recall and F-measure. The measurements
of precision and recall are well known in information retrieval, but have been
modified to take into consideration the semantics of alignments for the purposes
of evaluating ontology alignments [29]. For this reason, we use the Alignment
API version 4.4 to compare the generated alignments from our method with the
reference alignments. The results are given in table 1.

The F-measures, being a combination of the precision and recall values, are
fairly good. As a point of reference, the highest F-measure produced by the
matchers participating in the OAEI competition from 2007-2010 was around
0.86 [1]. As can be seen the recall values are very good, indicating that most of
the alignments in the reference are covered by the generated ones. The precision
values are lower, indicating there are a number of false positives (i.e. units that
were incorrectly identified as equivalent by the MathML approach). Looking
closer at the results, the false positives fall into the following categories:
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Table 1. Precision, recall and F-measure values

Alignment Precision Recall F-Measure

OM-QUDT 0.81 0.95 0.87
SWEET-QUDT 0.77 0.97 0.86
SWEET-OM 0.82 0.99 0.90

1. Mathematically equivalent but conceptually different units: There are two
sub-types within this category. The first covers matches such as hertz = bec-
querel. While they are mathematically equivalent (both being equal to 1/s),
conceptually they are different, with the former representing frequency and
the latter representing radioactive decay. The second sub-type encompasses
matches such as (square meter · steradian) = square meter. When reduced
completely, steradian becomes dimensionless and the equation is once again
mathematically equivalent. This problem could be dealt with by modifying
the Reduce dimensions step in the comparison. Both problems could also be
handled by adding additional checks (e.g. lexical comparison of the labels).

2. Incorrect information in the ontologies: The insertion of the MathML is de-
pendent on the information in the ontologies and if this information is incor-
rect, the resulting MathML and therefore the comparison is affected. Several
problems were found in each of the ontologies. For example in QUDT, there
are incorrect conversion values for the units of teaspoon, tablespoon and cen-
tistokes. Also there are no conversion values for the units of degree Celsius
per minute and year tropical, to name a few. In the OM ontology the di-
mensions were wrong for the current density dimension and the permittivity
dimension. In the SWEET ontology, some of the units were incorrectly com-
posed. For example, the unit joule is only composed of perSecondSquared
and kilogram, missing the meter squared.

These issues can be improved upon in future work, which will increase the pre-
cision values. Supporting documents for the results can be found at [30].

6 Conclusion and Future Work

Ontology alignment is a difficult problem, but by harnessing domain specific
attributes, this problem can be simplified. We have shown that in the area of
units of ontologies, MathML can be used to better represent the semantics of the
units in order to compare them between ontologies. The generated alignments
provide good precision and recall values when compared to manually created
reference alignments.

For future work, we intend to improve upon the results by using further checks
to ensure that the matched units are conceptually correct as well as mathemati-
cally. Furthermore, it will be interesting to look at combining this approach with
other methods of ontology alignment. For example, the MathML matching can
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be used as an initial match in combination with lexical comparisons for non-
mathematical concepts. This initial mapping is then fed into an algorithm which
considers structural similarities between the two ontologies to build upon the
initial matching. Another advantage of inserting MathML is that the informa-
tion for conversion between units is more explicit. Instead of having to find the
dimension information (to see if the units are compatible) and the conversion
information within the ontologies, the MathML can be referred to. We intend to
explore this area in the future for different applications, such as automatic unit
conversion of sensor data between different networks.
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Abstract. We present Clide, a web interface for the interactive theorem
prover Isabelle. Clide uses latest web technology and the Isabelle/PIDE
framework to implement a web-based interface for asynchronous proof
document management that competes with, and in some aspects even
surpasses, conventional user interfaces for Isabelle such as Proof General
or Isabelle/jEdit.

1 Introduction

Recent advances in web technology, which can succinctly if not quite accurately
be summarised under the ‘HTML5’ headline, let us develop interfaces of near-
desktop quality, leveraging the advantages of the web without diminishing the
user experience. Web interfaces do not need much resources on the user side,
are portable and mobile, and easy to set up and use, as all the user needs is a
recent web browser (in particular, there can be no missing fonts or packages).
The question arises how far we can exploit this technology for a contemporary
interactive theorem prover.

This paper reports on such an attempt: a modern, next-generation web in-
terface for the Isabelle theorem prover. Isabelle is a particularly good candidate
for this, because it has an interface technology centered around an asynchronous
document model. As demonstrated by the system presented here, Clide, we can
answer the motivating question affirmatively, modulo some caveats. Readers are
invited to try the public test version of the system at http://clide.informatik.
uni-bremen.de .

2 Basic System Architecture

The basic system architecture is clear: we need a web server to connect with Is-
abelle on one side, and with web browsers on the other side. Hence, the questions
to address are, firstly, how to connect Isabelle with a web server, and secondly,
how to use a browser to edit Isabelle theory files?

� Research supported by BMBF grant 01IW10002 (SHIP).

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 326–329, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://clide.informatik.uni-bremen.de
http://clide.informatik.uni-bremen.de


A Web Interface for Isabelle 327

Isabelle on the Web. Isabelle poses some specific challenges when implementing a
web interface, most of which are common to most interactive theorem provers (or
at least those of the LCF family). Firstly, Isabelle’s syntax is extremely flexible
and impossible to parse outside Isabelle. Thus, the interface needs to interact
closely with the prover during the syntactic analysis. Moreover, the provided
notation is quite rich, and requires mathematical symbols, super- and subscript,
and flexible-width fonts to be displayed adequately.

Secondly, Isabelle’s document model is asynchronous [1], meaning that at
any time changes of the document can be made by the user (editing the text)
or by the prover (parsing the text, or annotating it with results of it being
processed). Further, the prover may be slow to respond, or may even diverge.
Hence, the communication between the web server and the browser needs to be
asynchronous too — the browser needs to be able to react to user input at any
given time, and simultaneously needs to be able to process document updates
from the prover communicated via the web server.

Finally, there is also something of a ‘cultural’ gap [1], with sequential theo-
rem provers written in higher-order functional languages on one side, and asyn-
chronous web applications written in imperative languages like Java on the other
side. Fortunately, the Scala programming language provides the foundation to
unify these worlds, and the Isabelle/PIDE framework [2] crosses that chasm to
a large extent. It provides access to Isabelle’s document model and interaction
from a Scala API, encapsulating Isabelle’s ML LCF core; all that remains is
to connect it to a web server, and thence a browser. In our application, we
use Scala together with the Akka library and Play, a fast, reliable and fully
concurrent state-of-the-art framework for web development — and because of
Isabelle/PIDE, it seamlessly integrates with Isabelle.

Editing Theory Files. HTTP does not allow server pushes where the server
initiates messages to the browser, which is essential for an asynchronous model
as needed here. There are workarounds such as AJAX and Comet, but for an
application like this, where up to a couple of thousand small messages need to be
sent per minute, the resulting message overhead is prohibitively expensive. The
solution here are WebSockets, as introduced in HTML5. They allow for a full-
duplex TCP connection with just one single byte of overhead, and are supported
by all major browsers in their recent incarnations.

Secondly, Javascript (JS) is still the only viable choice for cross-browser client-
side logic. Its significant weaknesses can be ameliorated by libraries such as
BackboneJS for an MVC architecture on the client, RequireJS for modularisation
and dependency management, and CoffeeScript, a language that compiles to JS
but exhibits a clean syntax and includes helpful features like classes.

3 Implementation Considerations

The single most important design constraint was the asynchronous communica-
tion between server and browser; Fig. 1 shows the system architecture.
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Fig. 1. The Clide system architecture

Fig. 2. The Clide interface, with the editor component on the right

System Architecture. The asynchronous document model is implemented by two
modules, Session.scala and isabelle.coffee in Scala and JS, which run
on the server and in the browser respectively, and synchronise their document
models. The two modules communicate via WebSockets, using a self-developed
thin communication layer which maps the relevant Scala types to JS and back,
using Scala’s dynamic types and JSON serialisation; this way, we can call JS
functions from Scala nearly as if they were native, and vice versa.

Interface design. The visual design of the interface is influenced by the Microsoft
Design Language [3]. It eschews superfluous graphics in favour of typography
(Fig. 2), reducing the interface to the basics such that it does not distract from
the center of attention, the proof script. The prover states can be shown inline in
the proof script (useful with smaller proof states, or when trying to understand
a proof script), or in a dedicated window (useful for large proof states).



A Web Interface for Isabelle 329

The Editor. The interface itself is implemented in JS, using jQuery and other li-
braries. Its key component is the editor. It needs to be able to display mathemati-
cal symbols, Greek letters and preferably everything Unicode; perform on-the-fly
replacements (as symbols are entered as control sequences); use flexible-width
fonts; allow super- and subscripts; and allow tooltips and hyperlinks for text
spans. No available JS editor component provided all of these requirements, so
we decided to extend the CodeMirror editor to suit our needs. For mathematical
fonts, we use the publicly available MathJax fonts. This results in an editing
environment allowing seamless editing of mathematical notation on the web.

4 Conclusions

Clide provides a much richer user experience than previous web interfaces such
as ProofWeb [4], which is unsurprising because of the recent advances in web
technology mentioned above. Comparing it with the two main other Isabelle
interfaces (which are representative for other interactive theorem provers), Proof
General [5] and Isabelle/jEdit [2], we find that Clide has a better rendering of
mathematical notation. It equals them in terms of responsiveness, and is easier
to set up and use. However, as this is still a research prototype the user and
project management is rudimentary, and the data storage could be improved by
integrating a source code management system or cloud storage on the server.
Moreover, we see a great potential in collaborative proving with more than one
user editing the same theory file at the same time.

In answer to the motivating question, however, we can offer the following: web
technology is ready for theorem proving, but still needs to settle down (we had
to use lots of different libraries, and expect none of them to be too stable); and
Isabelle/Scala is a practically useful foundation to this end, but took some effort
to get acquainted with. (We gratefully acknowledge the support of Makarius
Wenzel here.) Readers are invited to validate this assessment on their own. A
public test version of the system is online, so why not give it a spin?

References

1. Wenzel, M.: Isabelle as document-oriented proof assistant. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS, vol. 6824,
pp. 244–259. Springer, Heidelberg (2011)

2. Wenzel, M.: Isabelle/jEdit - a prover IDE within the PIDE framework. In: Jeuring,
J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS, vol. 7362, pp. 468–471. Springer, Heidelberg (2012)

3. Microsoft: Ux guidelines for windows store apps (November 2012),
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx.

4. Kaliszyk, C., Raamsdonk, F.V., Wiedijk, F., Hendriks, M., Vrijer, R.D.: Deduction
using the ProofWeb system, http://prover.cs.ru.nl/

5. Aspinall, D.: Proof General: A generic tool for proof development. In: Graf, S. (ed.)
TACAS 2000. LNCS, vol. 1785, pp. 38–42. Springer, Heidelberg (2000)

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://prover.cs.ru.nl/


The ForMaRE Project –
Formal Mathematical Reasoning in Economics�

Christoph Lange1, Colin Rowat2, and Manfred Kerber1

1 Computer Science, University of Birmingham, UK
2 Economics, University of Birmingham, UK

http://cs.bham.ac.uk/research/projects/formare/

Abstract The ForMaRE project applies formal mathematical reasoning
to economics. We seek to increase confidence in economics’ theoretical
results, to aid in discovering new results, and to foster interest in formal
methods, i.e. computer-aided reasoning, within economics. To formal
methods, we seek to contribute user experience feedback from new audi-
ences, as well as new challenge problems. In the first project year, we con-
tinued earlier game theory studies but then focused on auctions, where
we are building a toolbox of formalisations, and have started to study
matching and financial risk. In parallel to conducting research that con-
nects economics and formal methods, we organise events and provide
infrastructure to connect both communities, from fostering mutual aware-
ness to targeted matchmaking. These efforts extend beyond economics,
towards generally enabling domain experts to use mechanised reasoning.

1 Motivation of the ForMaRE Project

The ForMaRE project applies formal mathematical reasoning to economics. The-
oretical economics draws on a wide range of mathematics to explore and prove
properties of stylised economic environments. Mathematical formalisation and
computer-aided reasoning have been applied there before, most prominently to
social choice theory (cf., e.g., [3]) and game theory (cf., e.g., [15]). Immediately
preceding ForMaRE, we have ourselves formalised pillage games, a particular
form of cooperative games, and motivated this as follows at CICM 2011 [6]:
1. Economics, and particularly cooperative game theory, is a relatively new area
for mechanised reasoning (still in 2013) and therefore presents a new set of ca-
nonical examples and challenge problems. 2. Economics typically involves new
mathematics in that axioms particular to economics are postulated. One of the
intriguing aspects of cooperative game theory is that, while the mathematical
concepts involved are often intelligible to even undergraduate mathematicians,
general theories are elusive. This has made pillage games more amenable to
formalisation than research level mathematics. 3. In economics, as in any other
mathematical discipline, establishing new results is an error-prone process, even
for Nobel laureates (cf. [6] for concrete examples). As one easily assumes false
� This work has been supported by EPSRC grant EP/J007498/1.
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theorems or overlooks cases in proofs, formalisation and automated validation
may increase confidence in results. Knowledge management facilities provided
by mechanised reasoning systems may additionally help to reuse proof efforts
and to explore theories to discover new results. Despite these potential benefits,
economics has so far been formalised almost exclusively by computer scientists,
not by economists.

2 The ForMaRE Strategy

The ForMaRE project, kicked off by the authors in May 2012 and further advised
by more than a dozen of external computer scientist and economist collaborators,
seeks to foster interest in formal methods within economics. Our strategy consists
in using this technology to establish new results, building trust in formalisation
technology and enabling economists to use it themselves.

2.1 Establishing New Results

In preparing one of our first activities, an overview of mechanised reasoning
for economists (cf. sec. 3.1), we realised that exciting work was being done in
areas with broader audiences than cooperative games. We therefore chose to
study auctions, matching markets and financial risk. We have not yet established
new results but have defined first research goals with experts in these fields,
some of whose works we cite in the following: auctions are widely used for
allocating goods and services. Novel auctions are constantly being designed –
e.g. for allocating new top-level Internet domains [1] – but their complexity
makes it difficult to establish basic properties, including their efficiency i.e. give
a domain to the registrar who values it highest and is therefore expected to
utilise it best. Matching problems occur, e.g., in health care (matching kidney
donors to patients) and in education (children to schools) [14]. Impossibility
results are of particular interest here; they rely on finding rich counter examples.
Finally, modern finance relies on models to price assets or to compute risk, but
banks and regulators still validate and check such models manually. One research
challenge is to develop minimal test portfolios that ensure that capital models
incorporate relevant risk factors [16].

2.2 Building Trust in Formalisation Technology

Economic theorists typically have a solid mathematics background. There is a
field ‘computational economics’; however, it is mainly concerned with numerical
computation of solutions or simulations [4]. Contemporary economists still prove
their theorems using pen and paper. While we aim at establishing new results to
showcase the potential of formal methods (see above), we also seek to establish
confidence in formal methods within the economics community. Thus, as a first
step, we have demonstrated the reliability of formal methods by re-establishing
known results. Computer scientists have previously done so by formalising some
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of the many known proofs of Arrow’s impossibility theorem, a central result of
social choice theory [13, 18]. We have started to formalise the review of an influ-
ential auction theory textbook [12] in four theorem proving systems in parallel,
collaborating with their developers or expert users [10]. This formalisation, cur-
rently covering Vickrey’s theorem on second price auctions, constitutes the core
of an Auction Theory Toolbox (ATT [11]). The review covers 12 more canon-
ical results for single good auctions. We plan to extend the ATT, including new
auction designs as well, and welcome contributions from the community.

2.3 Enabling Economists to Use Mechanised Reasoning

Ultimately we aim at enabling economists to formalise their own designs and val-
idate them themselves, or at least to train specialists beyond the core mechanised
reasoning community, who will assist economists with formalisation – just like
lawyers assist with legal issues. For users without a strong mechanised reasoning
background the complexity and abundance of formalised languages and proof as-
sistants poses an adoption barrier. In selected fields, we will provide toolboxes of
ready-to-use formalisations of basic concepts, including definitions and essential
properties, and guides to extending and applying these toolboxes. Concretely,
this means: 1. identifying languages that are (a) sufficiently expressive while
still exhibiting efficient reasoning tasks, that are (b) learnable for people used
to informal textbook notation, and that (c) have rich libraries of mathematical
foundations, and 2. identifying proof assistants that (a) assist with formalisation
in a cost-effective way, (b) facilitate reuse from the toolbox, (c) whose output
is sufficiently comprehensible to help non-experts understand, e.g., why a proof
attempt failed, and (d) whose community is supportive towards non-experts. In
building the ATT, we are comparing four different systems, whose philosophies
cover a large subset of the spectrum: Isabelle (interactive theorem prover, HOL,
accessible via a document-oriented IDE), CASL/Hets (uniform GUI frontend to
a wide range of automated FOL provers), Theorema (automated but configurable
theorem prover, HOL with custom FOL and set theory inference rules, Mathem-
atica notebook interface with a textbook-like notation), and Mizar (automated
proof checker, FOL plus set theory). For details on these systems and how well
they satisfy the requirements, see [10].

3 Building, Connecting, and Serving Communities

In parallel to our research on connecting economics and formal methods, we are
conducting community building efforts.

3.1 Connecting Computer Science and Economics

With this CICM paper, with an invited lecture at the British Automated Reas-
oning Workshop [5], and an upcoming tutorial at the German annual computer
science meeting themed ‘computer science adapted to humans, organisation and
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the environment’ [8], we aim at making developers and users of mechanised
reasoning systems, aware of 1. new, challenging problems in the application do-
main of economics, of 2. new target audiences not having the same background
knowledge about formal languages, logics, etc., and thus of 3. the necessity of
enhancing the usability and documentation of the systems for a wider audience.
Conversely, our message to economists, e.g. in a mechanised reasoning invited
lecture at the 2012 summer school of the Initiative for Computational Econom-
ics (ICE [4]), is that there is a wide range of tools to assist with reliably solving
relevant problems in economics.

3.2 Infrastructure for the Community

With the ForMaRE-discuss@cs.bham.ac.uk mailing list and a project community
site (both linked from our homepage), we furthermore provide infrastructure to
the communities we intend to connect. The main purpose of the community site
is to collect pointers to existing formalisations of theorems, models and theories
in economics [2], inspired by Wiedijk’s list of formalisations of 100 well-known
theorems [17], and to give a home to economics formalisations not published
online otherwise. The site is powered by Planetary [7], a mathematics-aware web
content management system with LATEX input, a format familiar to economists.

3.3 Reaching Out to Application Domains beyond Economics

Finally, we are reaching out to further application domains beyond econom-
ics. At our symposium on enabling domain experts to use formalised reasoning
(Do-Form [9]), economics and its formalisation was a strong showcase, with our
expert collaborators working on auctions, matching and finance giving hands-on
tutorials (cf. sec. 2.1), but we also attracted submissions on domains as diverse as
environmental models and autonomous systems and on tools from controlled nat-
ural language to formal specification. Do-Form has aimed at connecting domain
experts having problems (‘nails’) and computer scientists developing systems
(‘hammers’) from the start of its novel submission and review process, which
involved match-making. We initially invited short hammer and nail descriptions.
We published the accepted submissions with editorial summaries and indications
of possible matches1 online and then called for the second round of submissions:
revisions of the initial submissions (now elaborating on possible matches), regu-
lar research papers or system descriptions, particularly encouraging new authors
to match the initial submissions. This finally resulted in 12 papers.

We believe that such community-building efforts, which originated from For-
MaRE’s goal to apply formal mathematical reasoning in economics, will also help
to achieve closer collaboration within the CICM community2: In future, CICM
attendees and reviewers reading this paper might point us to the best tools for
formalising auctions, matching markets, and financial risk.
1 E.g., we pointed out to the authors of a hammer description that their system might

be applicable to the problem mentioned in some nail description.
2 This was one of the topics discussed in the 2012 MKM trustee election.
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Abstract. LATExml, a TEX to XML converter, is being used in a wide
range of MKM applications. In this paper, we present a progress report for
the 2012 calendar year. Noteworthy enhancements include: increased cov-
erage such asWikipedia syntax; enhanced capabilities such as embeddable
JavaScript and CSS resources and RDFa support; a web service for remote
processing via web-sockets; along with general accuracy and reliability im-
provements. The outlook for an 0.8.0 release in mid-2013 is also discussed.

1 Introduction

LATExml [Mil] is a TEX to XML converter, bringing the well-known author-
ing syntax of TEX and LATEX to the world of XML. Not a new face in the
MKM crowd, LATExml has been adopted in a wide range of MKM applications.
Originally designed to support the development of NIST’s Digital Library of
Mathematical Functions (DLMF), it is now employed in publishing frameworks,
authoring suites and for the preparation of a number of large-scale TEX corpora.

In this paper, we present a progress report for the 2012 calendar year of
LATExml’s master and development branches. In 2012, the LATExml Subversion
repository saw 30% of the total project commits since 2006.

Currently, the two authorsmaintain a developer andmaster branch of LATExml,
respectively. The main branch contains all mature features of LATExml.

2 Main Development Trunk

LATExml’s processing model can be broken down into two phases: the basic
conversion transforms the TEX/LATEX markup into a LATEX-like XML schema; a
post-processing phase converts that XML into the target format, usually some
format in the HTML family. The following sections highlight the progress made
in support for these areas.

2.1 Document Conversion

There has been a great deal of general progress in LATExml’s processing: the
fidelity of TEX and LATEX simulation is much improved; the set of control se-
quences covered is more complete. The I/O code has been reorganized to more

� The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.
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closely track TEX’s behavior and to use a more consistent path searching logic.
It also provides opportunities for more security hardening, while allowing flexi-
bility regarding the data sources, needed by the planned web-services. Together
these changes allow the direct processing of many more ‘raw’ style files directly
from the TEX installation (i.e., not requiring a specific LATExml binding). This
mechanism is, in fact, now used for loading input encoding definitions and multi-
language support (babel). Additionally, it provides a better infrastructure for
sTeX.

The support for colors and graphics has been enhanced, with a more complete
color model that captures the capabilities of the xcolor package and a move to-
wards generation of native SVG [FFJ03]. A summer student, Silviu Oprea, now
at Oxford, developed a remarkable draft implementation supporting the conver-
sion of pgf and tikz graphics markup into SVG; this code will be integrated
into the 0.8 release.

Native support for RDFa has been added to the schema, along with an optional
package, lxRDFa, allowing the embedding of the semantic annotations within
the TEX document. Various other LATEX packages have also been implemented:
cancel, epigraph. Additionally, the texvc package provides for the emulation of
the texvc program used by Wikipedia for processing math markup; this allows
LATExml to be used to generate MathML from the existing wiki markup.

2.2 Document Post-processing

The conversion of the internal math representation to common external formats
such as MathML and OpenMath has been improved. In particular, the frame-
work fully supports parallel math markup with cross-referencing between the
alternative formats. Thus presentation and content MathML can be enclosed
within a m:semantics element, with the corresponding m:mi and m:ci tokens
connected to each other via id and xref attributes.

The evolution of MathML version 3 has also been tracked, as well as the
current trends in implementations. Thus, we have shifted towards generating
SMP (Supplemental Multilingual Plane, or Plane 1) Unicode and avoiding the
m:mfenced element. Content MathML generation has been improved, particu-
larly to cover the common (with LATExml) situation where the true semantics
are imperfectly recognized.

Finally, a comprehensive overhaul of the XSLT processing was carried out
which avoids the divergence between generation of the various HTML family of
markup. The stylesheets are highly parameterized so that they are both more
general, and yet allow generation of HTML5 specific markup; they should allow
extension to further HTML-like applications like ePub. Command-line options
make these parameters available to the user.

While the stylesheets are much more consistent and modular, allowing easy
extension and customization, other changes lessen the need to customize. The
set of CSS class names have been made much more consistent and predictable,
if somewhat verbose, so that it should be easier for users to style the generated
HTML as they wish. Additionally, a resource element has been defined which
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allows binding developers to request certain CSS or JavaScript files or fragments
to be associated with the document. A converted AMS article, now finally looks
(somewhat) like an AMS article!

2.3 Unification

Although the separation of the conversion and post-processing phases is a natural
one from the developer’s document processing point of view, it is sometimes arti-
ficial to users. Moreover, keeping the phases too far separated inhibits interesting
applications, such as envisioned by the Daemon (see section 3) and automated
document processing systems such as the one used for arXMLiv. Thus, we have
undertaken to bring all processing back under a single, consistent, umbrella,
whether running in command-line mode, or in client/server mode. The goal is to
simplify the common use-case of converting a single document to HTML, while
still enabling the injection of intermediate processing.

Some steps in that direction include more consistent error reporting at all
phases of processing, with embedded ‘locator’ information so that the original
source of an error can (usually) be located in the source. Additionally, logs
include the current SVN revision number to better enable tracking and fixing
bugs.

3 Daemon Experimental Branch

The Daemon branch [Gina] hosts experimental developments, primarily the de-
velopment of client/server modules that support web services, optimize process-
ing and improve the integration with external applications. Since the last report
in CICM’s S&P track [GSK11], the focus has fallen on increasing usability, se-
curity and robustness.

The daemonized processing matured into a pair of robust HTTP servers, one
optimized for local batch conversion jobs, the other for a real-time web-service,
and a turnkey client executable that incorporates all shapes and sizes of LATExml
processing. Showing a commitment to maintaining prominent conversion sce-
narios, shorthand user-defined profiles were introduced in order to simplify
complex LATExml configurations, e.g. those of sTeX and PlanetMath[Pla]. An
internal redesign of the configuration setup and option handling of LATExml con-
tributed to facilitating these changes and promises a consistent internal API for
supporting both the core and post-processing conversion phases.

The RESTful [Fie00] web service offered via the Mojolicious [Rie] web frame-
work now also supports multi-file LATEX manuscripts via a ZIP archive workflow,
also facilitated by an upload interface. Furthermore, the built-in web editor and
showcase [Ginb] is available through a websocket route and enjoys an expanded
list of examples, such as a LATEX Turing machine and a PSTricks graphic.

A significant new experimental feature is the addition of an ambiguous gram-
mar for mathematical formulas. Based on Marpa [Keg], an efficient Earley-style
parser, the grammar embraces the common cases of ambiguity in mathemati-
cal expressions, e.g. that induced by invisible operators and overloaded operator
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symbols, in an attempt to set the stage for disambiguation to a correct opera-
tor tree. The current grammar in the main development trunk is heuristically
geared to unambiguously recognize the mathematical formulas commonly used
in DLMF and parts of arXiv. The long-term goal is for the ambiguous grammar
to meet parity in coverage and implement advanced semantic techniques in order
to establish the correct operator trees in a large variety of scientific domains.

It is anticipated that the bulk of these developments will be merged back into
the main trunk for the 0.8 release. The new ambiguous grammar and Mojolicious
web service are two notable exceptions, which will not make master prior to the
0.9 release.

4 Outlook

Although development was never stagnated, an official release is long overdue;
a LATExml 0.8 release is planned for mid-2013. It will incorporate the enhance-
ments presented here: support for several LATEX graphics packages, such as Tikz
and Xypic; an overhauled XSLT and CSS styling framework; and a merge of
daemonized processing to the master branch.

References

[FFJ03] Ferraiolo, J., Fujisawa, J., Jackson, D.: Scalable Vector Graphics (SVG) 1.1
Specification. W3C Recommendation. World Wide Web Consortium (W3C)
(January 14, 2003),
http://www.w3.org/TR/2008/REC-SVG11-20030114/

[Fie00] Fielding, R.T.: Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis. University of California, Irvine (2000),
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[Gina] Ginev, D.: LaTeXML: A LATEX to XML Converter, arXMLiv branch,
https://svn.mathweb.org/repos/LaTeXML/branches/arXMLiv (visited on
March 12, 2013)

[Ginb] Ginev, D.: The LATEXML Web Showcase,
http://latexml.mathweb.org/editor (visited on March 12, 2013)

[GSK11] Ginev, D., Stamerjohanns, H., Miller, B.R., Kohlhase, M.: The LATEXML
Daemon: Editable Math on the Collaborative Web. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS
(LNAI), vol. 6824, pp. 292–294. Springer, Heidelberg (2011),
https://svn.kwarc.info/repos/arXMLiv/doc/cicm-systems11/paper.pdf

[Keg] Kegler, J.: Marpa, A Practical General Parser. System homepage at
http://jeffreykegler.github.com/Marpa-web-site/

[Mil] Miller, B.: LaTeXML: A LATEX to XML Converter,
http://dlmf.nist.gov/LaTeXML/ (visited on March 12, 2013)

[Pla] PlanetMath.org – Math for the people, by the people (March 2013),
http://www.planetmath.org

[Rie] Riedel, S.: Mojolicious - Perl real-time web framework. System homepage at
http://mojolicio.us/

http://www.w3.org/TR/2008/REC-SVG11-20030114/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://svn.mathweb.org/repos/LaTeXML/branches/arXMLiv
http://latexml.mathweb.org/editor
https://svn.kwarc.info/repos/arXMLiv/doc/cicm-systems11/paper.pdf
http://jeffreykegler.github.com/Marpa-web-site/
http://dlmf.nist.gov/LaTeXML/
http://www.planetmath.org
http://mojolicio.us/


The MMT API: A Generic MKM System

Florian Rabe

Computer Science, Jacobs University Bremen, Germany
http://trac.kwarc.info/MMT

Abstract. The Mmt language has been developed as a scalable repre-
sentation and interchange language for formal mathematical knowledge.
It permits natural representations of the syntax and semantics of virtu-
ally all declarative languages while making Mmt-based MKM services
easy to implement. It is foundationally unconstrained and can be instan-
tiated with specific formal languages.

The Mmt API implements the Mmt language along with multiple
backends for persistent storage and frontends for machine and user ac-
cess. Moreover, it implements a wide variety of Mmt-based knowledge
management services. The API and all services are generic and can be
applied to any language represented in Mmt. A plugin interface per-
mits injecting syntactic and semantic idiosyncrasies of individual formal
languages.

The Mmt Language. Content-oriented representation languages for mathemati-
cal knowledge are usually designed to focus on either of two goals: (i) the automa-
tion potential offered by mechanically verifiable representations, as pursued in
semi-automated proof assistants like Isabelle and (ii) the universal applicability
offered by a generic meta-language, as pursued in XML-based content markup
languages like OMDoc. The Mmt language [11] (Module system for Mathe-
matical Theories) was designed to realize both goals in one coherent system. It
uses a minimal number of primitives with a precise semantics chosen to permit
natural and adequate representations of many individual languages.

A key feature is foundation-independence: Mmt systematically avoids a com-
mitment to a particular type theory or logic. Instead, it represents every formal
system as an Mmt theory: domain theories (like the theory Group), logics (like
first-order logic FOL), and logical frameworks (like LF [4]) are represented uni-
formly as Mmt theories. These theories are related by the meta-theory relation,
e.g., LF is the meta-theory of FOL, which in turn is the meta-theory of Group.
Mmt uses this relation to obtain the semantics of a theory from that of its meta-
theory; thus, an external semantics (called the foundation), e.g., a research article
or an implementation, only has to be supplied for the topmost meta-theories.
For example, a foundation for LF can be given in the form of a type system.

Theories contain typed symbol declarations, which permit the uniform represen-
tation of constants, functions, and predicates as well as – via the Curry-Howard
correspondence – judgments, inference rules, axioms, and theorems. Theories are
related via theory morphisms, which subsume translations, functors, and models.

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 339–343, 2013.
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Finally,Mmt provides a module system for building large theories andmorphisms
via reuse and inheritance.

Mathematical objects such as terms, types, formulas, and proofs are repre-
sented uniformly as OpenMath objects [1], which are formed from the symbols
available to the theory under consideration: For example, LF declares the sym-
bols type and λ; FOL declares ∀ and ⇒, and Group declares ◦ and e. Mmt
is agnostic in the typing relation between these objects and instead delegates
the resolution of typing judgments to the foundation. Then all Mmt results are
obtained for arbitrary foundations. For example, Mmt guarantees that theory
morphisms translate objects in a typing- and truth-preserving way, which is the
crucial invariant permitting the reuse of results in large networks of theories.

The Mmt API. Exploiting the small number of primitives in Mmt, the Mmt
API provides a comprehensive, scalable implementation of Mmt itself and of
Mmt-based knowledge management (KM) services. The development is inten-
tionally application-independent : It focuses on the data model of Mmt and its
KM services in a way that makes the integration into specific applications as
easy as possible. But by itself, it provides only a basic user interface.

All algorithms are implemented generically and relegate all foundation-specific
aspects to plugins. Concrete applications usually provide a few small plugins to
customize the behavior to one specific foundation and a high-level component
that connects the desired Mmt services to a user interface.

The API is written in the functional and object-oriented language Scala [9],
which is fully compatible with Java so that API plugins and applications can
be written in either language. Excluding plugins and libraries, it comprises over
20, 000 lines of Scala code compiling into about 3000 Java class files totaling
about 5 MB of platform-independent bytecode. Sources, binaries, API documen-
tation, and user manual are available at http://trac.kwarc.info/MMT.

Knowledge Management Services. The Mmt API provides a suite of coherently
integrated KM services, which we only summarize here because they have been
presented individually. A notation language based on [7] is used to serialize Mmt
in arbitrary output formats. Notations are grouped into styles, and a rendering
engine presents any Mmt concept according to the chosen style.

Mmt content can be organized in archives [5], a light-weight project ab-
straction to integrate source files, content markup, narrative structure, notation
indices, and RDF-style relational indices. Archives can be built, indexed, and
browsed, and simplify distribution and reuse. A query language [10] integrates
hierarchic, relational, and unification-based query paradigms. A change manage-
ment infrastructure [6] permits detecting and propagating and changes at the
level of individual OpenMath objects.

User and System Interfaces. If run as a standalone application, the API responds
with a shell that interacts via standard input/output. The shell is scriptable,
which permits users and application developers to initialize and configure it
conveniently. For example, to check the theory Group, the initialization script

http://trac.kwarc.info/MMT
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would first register the Mmt theory defining the syntax of LF and then a plugin
providing a foundation for LF, then register the theory FOL, and finally check
the file containing the theory Group.

A second frontend is given by an HTTP server. For machine interaction, it
exposes all API functionality and KM services via a RESTful interface, which
permits developing Mmt-based applications outside the Java/Scala world. For
human interaction, the HTTP server offers an interactive web browser based on
HTML+presentation MathML. The latter is computed on demand according to
the style interactively selected by the user. Based on the JOBAD JavaScript
library [3], user interaction is handled via JavaScript and Ajax. In particular,
Mmt includes a JOBAD module that provides interactive functionality such as
definition lookup and type inference.

To facilitate distributingMmt content, allMmt declarations are referenced by
canonical logical identifiers (the Mmt URIs), and their physical locations (their
URLs) remain transparent. This is implemented as a catalog that translates
Mmt URIs into URLs according to the registered knowledge repositories. Mmt
declarations are retrieved and loaded into memory transparently when needed
so that storage and memory management are hidden from high-level services,
applications, and users. Supported knowledge repositories are file systems, SVN
working copies and repositories, and TNTBase databases [12]. The latter also
supports Mmt-specific indexing and querying functions [8] permitting, e.g., the
efficient retrieval of the dependency closure of an Mmt knowledge item.

A Specific Application for a Specific Foundation. The LATIN project [2] built
an atlas of logics and related formal systems. The atlas is realized as an Mmt
project, and Mmt is used for building and interactively browsing the atlas.

All theories in the atlas use LF as their meta-theory, which defines the abstract
syntax of LF and thus of the logics in the atlas.

For concrete syntax, the Twelf implementation of LF is used. To integrate
Twelf with Mmt, LATIN developed an Mmt plugin that calls Twelf to read
individual source files and convert them to OMDoc, which Mmt reads natively.

Based on this import, Mmt’s foundation-independent algorithms can index
and catalog the LATIN atlas and make it accessible to KM services and appli-
cations. Here the use of Twelf remains fully transparent: An application sends
only an Mmt URI (e.g., the one LATIN defines for the theory FOL) to Mmt
and receives the corresponding Scala object.

From the perspective of Mmt, Twelf is an external tool for parsing and type
reconstruction that is applicable only to theories whose meta-theory is LF. From
the perspective of Twelf on the other hand, the Mmt theory LF does not exist.
Instead, the symbols type, λ, etc. are implemented directly in Twelf’s underlying
programming language.

This is a typical situation: Generally, Mmt uses the meta-theory to determine
which plugin is applicable, and these plugins hard-code the semantics of the
respective meta-theory. Similar concrete syntax plugins can be written for most
languages and exist for, e.g., the ATP interface language TPTP, the ontology
language OWL, and the Mizar language for formalized mathematics.
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LATIN also customizes the Mmt web server by providing a style that provides
notations for objects from theories with meta-theory LF. The above screen shot
shows the generic web server displaying a theory IMPExt: It imports the theory
IMP of the implication connective imp and extends it with derived rules for
the introduction and elimination of double implications, i.e., formulas of the
form A imp (B imp C). The symbol impI represents the derivation of the rule

A,B�C
�A imp (B impC) . Via the context menu, the user has called type inference on the

selected subobject, which opened a dialog showing the dynamically inferred type.
The interactive type inference is implemented using the HTTP interface to the

Mmt API. First of all, the LATIN style is such that the rendered HTML includes
parallel markup in the form of special attributes on the presentation MathML
elements. JavaScript uses them to build an Mmt query that is posted to the
server as an Ajax request and whose response is shown in the dialog. This query
bundles multipleMmt API calls into a single HTTP request-response cycle: First
the parallel markup is used to retrieve the OpenMath object corresponding to
the selected expression (and its context), then type inference is called, and finally
the rendering engine is called to render the type as presentation MathML.

For the type inference, LATIN provides one further plugin: a foundation plugin
that supplies the typing relation for theories with meta-theory LF. Mmt uses
it to perform type inference directly in memory without having to call external
tools like Twelf. Such foundation plugins are easy to write because they can
focus on the logical core of the type system and, e.g., parsing and module system
remain transparent to the plugin. For example, the plugin for LF comprises only
200 lines of code

Except for the concrete syntax plugin, the presentation style, and the foun-
dation plugin, all steps of the above example are foundation-independent and
are immediately available for Mmt content written in any other meta-theory.
Moreover, being a logical framework, these plugins LF are immediately inherited
by all logics defined in LF: We obtain, e.g., type inference for FOL and Group
(in fact: for all logics defined in LATIN) without writing additional plugins.



The MMT API: A Generic MKM System 343

Furthermore, all implementations are application-independent and can be im-
mediately integrated into any application, e.g., a Wiki containing LF objects.
This customization of Mmt to specific foundations and specific applications oc-
curs at minimal cost, a principle we call rapid prototyping for formal ystems.
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Abstract. The main goal of the project Math-Net.Ru is to collect scien-
tific publications in Russian and Soviet mathematics journals since their
foundation to today and the authors of these publications into a single
database and to provide access to full-text articles for broad interna-
tional mathematical community. Leading Russian mathematics journals
have been comprehensively digitized dating back to the first volumes.

1 Introduction

Math-Net.Ru (http://www.mathnet.ru) is an information system developed at
the Steklov Mathematical Institute of the Russian Academy of Sciences and
designed to provide online access to Russian mathematical publications for the
international scientific community. It is a non-profit project supported by the
Russian Academy of Sciences and working in the first place with journals founded
by the RAS, but covering also other high-quality math journals. The project was
started in 2006. Its main idea is to digitize the full archives of leading Russian
and Soviet mathematics journals going back to the first volumes. Old Russian
and Soviet mathematics journals especially published before the 1930th years
could only be found in several libraries, i.e. in fact were hardly available to the
public.

The Journals section is a key component of the system. Other sections include
Persons, Organizations, Conferences and Video Library [1]. The mobile version
of the database http://m.mathnet.ru reproduces the most important function-
ality of the system but adopted for viewing on smart phones and other mobile
devices.

The system has two-server architecture which includes a MSSQL database
server powered by Windows 2008 server and an Apache web server powered by
Linux. The servers are connected by a 1Gb direct network line and are located
in the same server rack. All webserver scripts are written on PHP, also MSSQL
stored procedures are used in SQL logic. The database including statistics has
size about 80Gb, the total size of the full-text PDF files is about 110 Gb. The
total size of videofiles is 2600 Gb.

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 344–348, 2013.
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2 Journals

The section contains a collection of 120 000 articles published in 86 mathematical
and physical journals. The number of journals and papers is constantly growing.
Most articles were published in Russia, but there are also journals from the
former USSR: Ukraine, Belorussia, Kazakhstan, Republic of Moldova.

The page of a journal provides information about its founder, publisher and
the editorial board. The archive of the journal represents both the current issues
and its historic archives, including full texts articles. Access to full-text PDF
files is specified in an agreement signed with each journal, normally access is
free except for the recent (2–3 years) issues.

We have comprehensively digitized historic archives of the leading Russian
and Soviet mathematics journals back to the fist volumes, the list includes: Alge-
bra i Analiz (since 1989); Zhurnal Vychislitel’noĭ Matematiki i Matematicheskŏı
Fiziki (since 1961); Diskretnaya Matematika (since 1989); Funktsional’nyi Analiz
i ego Prilozheniya (since 1967); Bulletin de l’Académie des Sciences (1894–
1937); Izvestiya Akademii Nauk. Seriya Matematicheskaya (since 1937); Matem-
aticheskoe Modelirovanie (since 1989); Matematicheskii Sbornik (since 1866);
Matematicheskie Zametki (since 1967); Trudy Matematicheskogo Instituta im.
V.A. Steklova (since 1931); Uspekhi Matematicheskikh Nauk (since 1936); Teo-
reticheskaya i Matematicheskaya Fizika (since 1969).

The original title, abstract and keywords, English translation title, abstract
and keywords, a link to the English version, a list of references and a list of
forward links are supplied for every paper. Titles, abstracts, keywords, refer-
ences and forward links are stored in the database in the LATEX format. We use
MathJax technology (http://www.mathjax.org) to output mathematics on the
website. For every paper we provide external links to all possible representations
of the publication in Internet including links to Crossref, MathSciNet, Zentral-
blatt MATH, ADS NASA, ISI Web of Knowledge, Google Scholar links to the
references cited and related papers. Enhanced search facilities include search for
publications by keywords in the title, abstract or full-text paper, by the authors’
and/or institutions names.

For most journals we provide information about their citation statistics and
impact factors [2]. Impact factors are calculated on the basis of forward links
(back references) stored in the database. English version journals are supplied
with the classical Impact Factors calculated by the Institute for Scientific In-
formation (ISI) of the Thomson Reuters Corporation (ISI Web of Knowledge).
It is important to note that the classical (ISI) impact factors do not include
citations of the Russian versions. We take into account citations of both versions
and calculate the integral impact factor of the journal. This includes citations
in classical scientific journals, but also citations in conference proceedings, elec-
tronic publications. Table 1 provides examples of the number of references to
the volumes of years 2009–2010 and the values of Impact Factors 2011 of some
journals provided by the Math-Net.Ru and ISI Web of Knowledge. A significant
difference between the citation numbers and impact factors of Math-Net.Ru and
ISI Web of Knowledge is explained by the fact that the latter does not take
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Table 1. Citation number for volumes of years 2009–2010 and Impact Factors 2011,
provided by Math-Net.Ru and ISI

Journal Math-Net.Ru values ISI values

Citations Impact Citations Impact
number Factor number factor

Matematicheskii Sbornik 130 0.813 85 0.567

Trudy Matem. Instituta im. V.A. Steklova 75 0.455 42 0.171

Avtomatika i Telemekhanika 227 0.698 96 0.246

Diskretnaya Matematika 43 0.483 – –

Siberian Electronic Mathematical Reports 37 0.378 – –

Russian Journal of Nonlinear Dynamics 35 0.407 – –

into account references to the Russian versions of papers. Proofs of the data
stated in the Table 1 can be found in the section “Impact factor” of the page
of the corresponding journal on Math-Net.Ru and in Journal Citations Reports
provided by ISI Web of Knowledge system. Our system calculates one-year and
2-year impact factors (similar to classical) and also 5-year ones.

It is noteworthy that for many Russian journals ISI does not provide impact
factors so Math-Net.Ru data is a single way to evaluate the citation indexes of
the journal. Table 1 provides some examples of Russian mathematical journals
having no classical (ISI) impact factor but a significant number of citations in
Russian and international sources.

3 Persons and Institutions

Portal Math-Net.Ru also includes comprehensive information about Russian and
foreign mathematicians and institutions where authors of publications work or
study. Up to now the database includes 52 000 individual persons and 4 000 in-
stitutions. Visitors of the website are free to register online and to contribute to
the database in case when they have at least one published article in a scientific
mathematics or physics journal. Personal web page provides the list of personal
publications and presentations, keywords, the list of scientific interests and biog-
raphy, web-links to additional personal resources. Special tools are available to
arrange a full list of personal publications, including papers not available within
the Math-Net.Ru system. The web-page of an institution contains general infor-
mation, a link to its original web-page and a list of authors whose papers are
presented in Math-Net.Ru.

4 Citation and Forward Link Database

The citation database accumulates the reference lists and forward links of all the
publications available at Math-Net.Ru as well as personal lists of publications of
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the authors. All references are collected into a single database and stored in the
format AMSBIB [2] developed in the Division of Mathematics of the Russian
Academy of Sciences. The bibliography is stored using special LATEX commands
dividing a reference into several parts: journal name, authors, publication year,
volume, issue, pages information, additional information about the volume/issue
and other possible publication details. By means of these commands it is pos-
sible to avoid manual markup of the list of references; it also enables an au-
tomatic creation of the bibliography in PDF/HTML/XML formats, arranging
hyperlinks to various publication databases including MathSciNet, Crossref and
ZentalBlatt Math. Since all the references are collected into a single database an
advanced cited-reference search by various terms is arranged: publication title,
year, author, pages. The reference database is much wider than the database of
Math-Net.Ru publications and a search through the reference database results
in additional information about articles.

5 Video-Library, Conferences, Seminars

Our project thoroughly collects information about mathematical events occuring
in Russia and the states of the former Soviet Union. This concerns scientific
conferences and seminars, public lectures. Most information about such events
is provided by the organizers. The system software allows arranging an event
home page, which includes general information, the list of organizers, the event
schedule and a list of presentations with links to own web pages. A presentation
webpage contains the title, abstract, date and place of the event and includes
additional materials such as a list of references, PowerPoint files and a video-
record when available. We encourage conference/seminar organizers to record
videos of the presentations and we take on post-processing of the video files.
Our system accepts the most popular video formats and enables viewing them
online in all operation systems, including mobile devices. The mobile version of
the system provides full access to the video-library. The system offers viewing
videos in normal and full High Definition quality. An online access to all video
records is free, all video files can be downloaded for home viewing.

6 Manuscript Submission and Tracking System

The website is managed by a contents management system, which provides neces-
sary functionality to add/update/remove any information available. The content
management system is used to manage current and archive publications of the
journals, to communicate with authors and to create reports for editorial needs.
The content management system resolves the problem of the creation of a doc-
ument processing system in the editorial office of a Russian scientific journal.
Most western publishers provide such systems for their journals but they cannot
be used in Russian journals due to lack of Russian language fields. The content
management system includes all kinds of editorial activities from the submission
of a manuscript to the publication of the peer-reviewed paper in print and online.



348 D.E. Chebukov et al.

The main features of the system include: submission of a manuscript by the
author in electronic form at the journal website; registration of the authors in the
database of persons; registration of the manuscript in the paper database and ar-
ranging a paper flow process, which includes classification, peer review, authors’
revision, scientific editing, translation into English, editing of the English version
publication, publication in print and online; communication facilities between
authors, referees, translators, typesetters, editorial board members and other
people involved into publication process; personal access of the authors, refer-
ees, editors to editorial information necessary for publication process; arranging
a list of forthcoming papers; sending email notifications from the database; cre-
ation of automatic reports for editorial needs.

Manuscript submission is available at the journal home page for registered
authors only. New authors should first fill in a registration form. Manuscript
submission process consists of filling in several online forms providing informa-
tion about the manuscript title, abstract, authors, keywords; then the author is
asked to supply a full-text manuscript in LATEX and PDF formats. The editor is
notified about a new submission by email, examines it on the subject of compli-
ance with the journal rules and starts the peer-review process. Every editorial
paper flow record can be supplied with a number of documents (files) specifying
details of the process. The system generates comprehensive reports about all
kinds of editorial activities.

Access to the manuscript submission system depends on the user’s role in
the publishing process: author, referee, editor, journal administrator. Authors
can only see paper flow details with hidden referees names. Authors are able to
submit a revised version of the manuscript and download the final PDF of the
published paper. Referees can download full texts of papers and upload reviews.
They have access only to those papers they are working with. Editors normally
register new papers, add paper flow records, communicate with the authors,
referees, typesetters. Journal administrators can amend anything within their
journals.

References

1. Zhizhchenko, A.B., Izaak, A.D.: The information system Math-Net.Ru. Applica-
tion of contemporary technologies in the scientific work of mathematicians. Russian
Math. Surveys 62(5), 943–966 (2007)

2. Zhizhchenko, A.B., Izaak, A.D.: The information system Math-Net.Ru. Current
state and prospects. The impact factors of Russian mathematics journals. Russian
Math. Surveys 64(4), 775–784 (2009)



A Dynamic Symbolic Geometry Environment
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Abstract. An enhancement of the dynamic geometry system GeoGebra
for the automatic symbolic computation of algebraic loci and envelopes
is presented. Given a GeoGebra construction, the prototype, after rewrit-
ing the construction as a polynomial system in terms of variables and
parameters, uses an implementation of the recent GröbnerCover algo-
rithm to obtain the algebraic description of the sought locus/envelope
as a locally closed set. The prototype shows the applicability of these
techniques in general purpose dynamic geometry systems.

Keywords: Dynamic Geometry, Locus, Envelope, GröbnerCover Algo-
rithm, GeoGebra, Sage.

1 Introduction

Most dynamic geometry systems (DGS) implement loci generation just from a
graphic point of view, returning a locus as a set of points in the screen with
no algebraic information. A simple algorithm based on elimination theory to
obtain the equation of an algebraic plane curve from its description as a locus
set was described in [1]. This new information expands the algebraic knowledge
of the system, allowing further transformations of the construction elements,
such as constructing a point on a locus, intersecting the locus with other ele-
ments, etc. The same consideration can be made with respect to the envelope
of a family of curves. This algebraic approach is a significant improvement over
the numeric-graphic method mentioned above. An implementation of the algo-
rithm in a system embedding GeoGebra in the Sage notebook was described
at CICM 2011 [2]. In fact, the algorithm is already behind the LocusEquation
command in the beta version of the next version of the DGS GeoGebra [3] (see
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funded by the Spanish Ministerio de Economı́a y Competitividad and the European
Regional Development Fund (ERDF).
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http://wiki.geogebra.org/en/LocusEquation_Command). It has also recently
been implemented by the DGS JSXGraph [4] to determine the equation of a lo-
cus set using remote computations on a server [5], an idea previously developed
by the authors in [6].

Unfortunately, this algorithm does not discriminate between regular and spe-
cial components of a locus (following the definitions in [7])1. More concretely, the
obtained algebraic set may contain extra components sometimes due to the fact
that the method returns only Zariski closed sets (i.e. zero sets of polynomials)
and sometimes due to degenerate positions in the construction (e.g. two vertices
being coincidental for a triangle construction).

There is little that can be done to solve these problems with the simple elimi-
nation approach. Concerning degeneration, there is no alternative except explic-
itly requesting information from the user about the positions producing special
components. However, the recent GröbnerCover algorithm [8] has opened new
possibilities for the automated processing of these problems. From the canonical
decomposition of a polynomial system with parameters returned by the algo-
rithm, and following a remark by Tomás Recio concerning the dimensions of
the spaces of variables and parameters, a protocol has been established to dis-
tinguish between regular and special components of a locus set. For example,
a circle, a variety of dimension 1, is declared to be a special component of a
locus by the protocol if it corresponds to a point, a variety of dimension 0. This
heuristic in the protocol improves the automatic determination of loci but does
not fully resolve it. It is not difficult to find examples where this general rule does
not suit the user’s interests. This is a delicate issue because, in some situations,
these special components are the relevant parts of the sought set (the study of
bisector curves is a good source for such examples).

As an illustration, let us consider the following problem included in [9] together
with a remark about its difficult synthetic treatment: Given a triangle ABC.
Take a point M on BC. Consider the orthogonal projections N of M onto AC,
and P onto AB respectively. The lines AM and PN meet at X. What is the
locus set of points X when M moves along the line BC?

When the vertices of the triangle ABC are the points (2, 3), (1, 0) and (0, 1),
the locus set is a conic from which a point has to be removed. That is, the
locus set is not an algebraic variety but a locally closed set. Figure 1 shows the
plotting of the conic in GeoGebra together with its precise algebraic description
as provided by the prototype.

If we consider this same construction with A(0, 0), B(1, 0) and C(0, 1), a stan-
dard DGS will plot a straight line as locus, while ordinary elimination will give
the true locus 2x + 2y = 1 plus two other lines, namely, the coordinate axes
x = 0 and y = 0. These extra lines correspond to two degenerate positions for
the mover: M = B and M = C. Applying the criterion sketched above, the
system identifies these two lines as special components and hence removes them

1 A special component of a locus is basically a one-dimensional subset of the locus
corresponding to a single position of the moving point.

http://wiki.geogebra.org/en/LocusEquation_Command
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Fig. 1. Locus as a constructible set

from the final description. In tables 1 and 2 we find the parametric systems
and outputs from the GröbnerCover algorithm for the two considered instances
respectively.

2 Prototype Description

The system (accessible at [10]) consists of a web page with a GeoGebra applet
where the user constructs a locus or a family of linear objects depending on
a point. For any of these constructions (specified using a predetermined set
of GeoGebra commands) the prototype provides the algebraic description of
the locus/envelope by just pressing one button. Note that in its current state,
the system does not provide the equation of the envelope, but the one of the
discriminant line. A note stating this fact should be given if using the system
for teaching purposes.

The process is roughly as follows. First, the XML description of the GeoGebra
construction is sent to a Server where an installation of a Sage Cell Server ([11])
is maintained by the authors. There, the construction follows an algebraization
process, as specified by a Sage library [12]. The communication Sage-GeoGebra
is made possible by the JavaScript GeoGebra functions that allow the data
transmission to and from the applet. In particular, the XML description of any
GeoGebra diagram can be obtained. The processing of the XML description of
the diagram is made by some ad-hoc code by the authors that use Sage through
the Sage cell server, a general service by Sage. More concretely, Singular, included
in Sage and with an implementation of the GröbnerCover algorithm, is used. The
Gröbner cover of the obtained parametric polynomial system is analyzed, and
the accepted components of the locus/envelope are incorporated into the applet.
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Table 1. Parametric system, GröbnerCover output and returned locus for instance
with A(2, 3), B(1, 0) and C(0, 1).∗ Includes regular functions (see [8]).

Parametric System −x1−x2+1, 2x1+2x2− 2x3− 2x4,−2x3+2x4− 2, x1+
3x2−x5− 3x6,−3x5+x6+3,−(x4− y)(x3−x5)+ (x4−
x6)(x3 − x),−(y − 3)(x1 − 2) + (x− 2)(x2 − 3)

Basis segment 1 {1}

Segment 1 V(0) \ V(x2 − 4xy + 6x− y2 + 8y − 7)

Basis segment 2 ∗ {{(5y − 20)x6 + (−3x + 6y + 3), (x − 2y + 7)x6 +
(−3y)}, {(5y−20)x5+(−x−3y+21), (x−7y+27)x5+(4y−
28)}, x4−1, x3, {(y−4)x2+(−x+2y+1), (x−2y+7)x2+
(−5y)}, {(y−4)x1+(x−3y+3), (x−y+3)x1+(4y−4)}}

Segment 2 V(x2 − 4xy + 6x− y2 + 8y − 7) \ V(y − 4, x− 1)

Basis segment 3 {1}

Segment 3 V(y − 4, x− 1) \ V(1)

Locus (after heuristic step) V(x2 − 4xy − y2 + 6x+ 8y − 7) \ V(y − 4, x− 1)

Table 2. Parametric system, GröbnerCover output and returned locus for instance
with A(0, 0), B(1, 0) and C(0, 1)

Parametric System −x1 − x2 + 1, x3,−x2 + x4,−x1 + x5,−x6,−x1y +
x2x,−(x4 − y)(x3 − x5) + (x4 − x6)(x3 − x)

Basis segment 1 {1}

Segment 1 V(0) \ (V(2x+ 2y − 1) ∪ V(x) ∪ V(y))

Basis segment 2 {x6, (x + y)x5 − x, (x + y)x4 − y, x3, (x + y)x2 − y, (x +
y)x1 − x}

Segment 2 (V(2x+2y−1)\V(1))∪ (V(x)\V(x,y))∪ (V(y)\V(x,y))

Basis segment 3 {x6, x4 + x5 − 1, x3, x2 + x5 − 1, x1 − x5, x
2
5 − x5}

Segment 3 V(x, y) \ V(1)

Locus (after heuristic step) V(2x+ 2y − 1)

Note that the goal is not to provide a final tool but a proof-of-concept proto-
type showing the feasibility of using sophisticated algorithms like GröbnerCover
to supplement the symbolic capabilities of existing dynamic geometry systems,
as well as to show the advantage of connecting different systems by using web
services.
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Abstract. ML4PG is a machine-learning extension that provides statis-
tical proof hints during the process of Coq/SSReflect proof development.
In this paper, we use ML4PG to find proof patterns in the CoqEAL li-
brary – a library that was devised to verify the correctness of Computer
Algebra algorithms. In particular, we use ML4PG to help us in the for-
malisation of an efficient algorithm to compute the inverse of triangular
matrices.

Keywords: ML4PG, Interactive Theorem Proving, Coq, SSReflect, Ma-
chine Learning, Clustering, CoqEAL.

1 Introduction

There is a trend in interactive theorem provers to develop general purpose
methodologies to aid in the formalisation of a family of related proofs. How-
ever, although the application of a methodology is straightforward for its de-
velopers, it is usually difficult for an external user to decipher the key results
to import such a methodology into a new development. Therefore, tools which
can capture methods and suggest appropriate lemmas based on proof patterns
would be valuable. ML4PG [5] – a machine-learning extension to Proof General
that interactively finds proof patterns in Coq/SSReflect – can be useful in this
context.

In this paper, we use ML4PG to guide us in the formalisation of a fast algo-
rithm to compute the inverse of triangular matrices using the CoqEAL method-
ology [4] – a method designed to verify the correctness of efficient Computer
Algebra algorithms.

Availability. ML4PG is accessible from [5], where the reader can find related
papers, examples, the links to download ML4PG and all libraries and proofs we
mention here.

2 Combining the CoqEAL Methodology with ML4PG

Most algorithms in modern Computer Algebra systems are designed to be effi-
cient, and this usually means that their verification is not an easy task. In order
to overcome this problem, a methodology based on the idea of refinements was

� The work was supported by EPSRC grant EP/J014222/1.
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presented in [4], and was implemented as a new library, built on top of the SSRe-
flect libraries, called CoqEAL. The approach [4] to formalise efficient algorithms
can be split into three steps:

S1. define the algorithm relying on rich dependent types, as this will make the
proof of its correctness easier;

S2. refine this definition to an efficient algorithm described on high-level data
structures; and,

S3. implement it on data structures which are closer to machine representa-
tions.

The CoqEAL methodology is clear and the authors have shown that it can be
extrapolated to different problems. Nevertheless, this library contains approxi-
mately 400 definitions and 700 lemmas; and the search of proof strategies inside
this library is not a simple task if undertaken manually. Intelligent proof-pattern
recognition methods could help with such a task.

In order to show this, let us consider the formalisation of a fast algorithm to
compute the inverse of triangular matrices over a field with 1s in the diagonal
using the CoqEAL methodology. SSReflect already implements the matrix in-
verse relying on rich dependent types using the invmx function; then, we only
need to focus on the second and third steps of the CoqEAL methodology. We
start defining a function called fast_invmx using high-level data structures.

Algorithm 1. Let M be a square triangular matrix of size n with 1s in the
diagonal; then fast_invmx(M) is recursively defined as follows.

– If n = 0, then fast_invmx(M)=1%M (where 1%M is the notation for the identity
matrix in SSReflect).

– Otherwise, decompose M in a matrix with four components: the top-left el-
ement, which is 1; the top-right line vector, which is null; the bottom-left
column vector C; and the bottom-right (n − 1)× (n − 1) matrix N ; that is,

M =

(
1 0
C N

)
. Then define fast_invmx(M) as:

fast_invmx(M)=

(
1 0

−fast_invmx(N) *m C fast_invmx(N)

)

where *m is the notation for matrix multiplication in SSReflect.

Subsequently, we should prove the equivalence between the functions invmx and
fast_invmx – Step S2 of the CoqEAL methodology. Once this result is proven,
we can focus on the third step of the CoqEAL methodology. It is worth men-
tioning that neither invmx nor fast_invmx can be used to actually compute the
inverse of matrices. These functions cannot be executed since the definition of
matrices is locked in SSReflect to avoid the trigger of heavy computations during
deduction steps. Using Step S3 of the CoqEAL methodology, we can overcome
this pitfall. In our case, we implement the function cfast_invmx using lists of
lists as the low level data type for representing matrices and to finish the for-
malisation we should prove the following lemma.
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Lemma 1. Let M be a square triangular matrix of size n with 1s in the diagonal;
then given M as input, fast_invmx and cfast_invmx obtain the same result but
with different representations. The statement of this lemma in SSReflect is:

Lemma cfast_invmxP : forall (n : nat) (M : ’M_n),

seqmx_of_mx (fast_invmx M) = cfast_invmx (seqmx_of_mx M).

where the function seqmx_of_mx transforms matrices represented as functions
to matrices represented as lists of lists.

The proof of Lemma 1 for a non-expert user of CoqEAL is not direct, and, after
applying induction on the size of the matrix, the developer can get easily stuck
when proving such a result.

Problem 1. Find a method to proceed with the inductive case of Lemma 1.

In this context, the user can invoke ML4PG to find some common proof-pattern
in the CoqEAL library. ML4PG generated solutions is presented in Figure 1.

Fig. 1. Suggestions for Lemma cfast_invmxP. The Proof General window has been
split into two windows positioned side by side: the left one keeps the current proof
script, and the right one shows the suggestions provided by ML4PG.

ML4PG suggests three lemmas which are the equivalent counterparts of
Lemma 1 for the algorithms computing the rank, the determinant and the fast
multiplication of matrices. Inspecting the proof of these three lemmas, the user
can find Proof Strategy 1 which is followed by those three lemmas and which
can also be applied in Lemma 1.

Proof Strategy 1. Apply the morphism lemma to change the representation
from abstract matrices to executable ones. Subsequently, apply the translation
lemmas of the operations involved in the algorithm – translation lemmas are
results which state the equivalence between the executable and the abstract coun-
terparts of several operations related to matrices.

It is worth remarking that the user is left with the task of finding a proof strategy
from the suggestions provided by ML4PG. In the future, we could apply symbolic
machine-learning techniques such as Rippling [1] and Theory Exploration [3] to
automatically conceptualise the proof strategies from the suggestions provided
by ML4PG.
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3 Applying ML4PG to the CoqEAL Library

In the section, we show how ML4PG discovers the lemmas which follow Proof
Strategy 1. This process can be split into 4 steps: extraction of significant features
from library-lemmas, selection of the machine-learning algorithm, configuration
of parameters, and presentation of the output.

Step 1. Feature Extraction. During the proof development, ML4PG works
on the background of Proof General, and extracts (using the algorithm described
in [5]) some simple, low-level features from interactive proofs in Coq/SSReflect.
In addition, ML4PG extends Coq’s compilation procedure to extract lemma-
features from already-developed libraries.

In the example presented in the previous section, we have extracted the fea-
tures from the 18 files included in the CoqEAL library (these files involve 720
lemmas). Any number of additional Coq libraries can be be selected using the
ML4PG menu. Unlike e.g. [6], scaling is done at the feature extraction stage,
rather than on the machine-learning stage of the process.

Step 2. Clustering Algorithm. On user’s request, ML4PG sends the gath-
ered statistics to a chosen machine-learning interface and triggers execution of a
clustering algorithm of the user’s choice – clustering algorithms [2] are a family
of unsupervised learning methods which divide data into n groups of similar
objects (called clusters), where the value of n is provided by the user.

We have integrated ML4PG with several clustering algorithms available in
MATLAB (K-means and Gaussian) and Weka (K-means, FarthestFirst and Ex-
pectation Maximisation). In the CoqEAL example, ML4PG uses the MATLAB
K-means algorithm to compute clusters – this is the algorithm used by default.

Step 3. Configuration of Granularity. The input of the clustering algorithms
is a file that contains the information associated with the lemmas to be analysed,
and a natural number n, which indicates the number of clusters. The file with
the features of the library-lemmas is automatically extracted (see [5]).

To determine the value of n, ML4PG has its own algorithm that calculates
the optimal number of clusters interactively, based on the library size. As a result,
the user does not provide the value of n directly, but just decides on granularity in
the ML4PG menu. The granularity parameter ranges from 1 to 5, where 1 stands
for a low granularity (producing a few large clusters with a low correlation among
their elements) and 5 stands for a high granularity (producing many smaller clus-
ters with a high correlation among their elements). By default, ML4PGworkswith
the granularity value of 3 and this is the value presented in the previous section.

Step 4. Presentation of the Results. Clustering algorithms output contains
not only clusters but also a measure which indicates the proximity of the elements
of the clusters. In addition, results of one run of a clustering algorithm may differ
from another; then ML4PG runs the clustering algorithm 200 times, obtaining
the frequency of each cluster as a result. These two measures (proximity and
frequencies) are used as thresholds to decide on the single “most reliable” cluster
to be shown to the user, cf. Figure 1.
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These 4 steps are the workflow followed by ML4PG to obtain clusters of similar
proofs. Let us present now the results that ML4PG will obtain if the user varies
the different parameters – these results are summarised in Table 1.

Table 1. A series of clustering experiments discovering Proof Strategy 1. The
table shows the sized of clusters containing: a) Lemma cfast_invmxP, b) Lemma about
rank (rank_elim_seqmxE), c) Lemma about fast multiplication (fast_mult_seqmxP),
and d) Lemma about determinant (det_seqmxP).

g = 1 g = 2 g = 3 g = 4 g = 5
Algorithm: (n = 72) (n = 80) (n = 90) (n = 102) (n = 120)

Gaussian 24a,b,c,d 12a,b,c,d 10a,b,c,d 10a,b,c,d 10a,b,c,d

K-means (Matlab) 20a,b,c,d 14a,b,c,d 4a,b,c,d 0 0

K-means (Weka) 16a,b,c,d 11a,b,c,d 4a,b,c,d 0 0

Expectation Maximisation 52a,b,c,d 45a,b,c,d 43a,b,c,d 39a,b,c,d 14a,b,c,d

FarthestFirst 30a,b,c,d 27a,b,c,d 27a,b,c,d 26a,b,c,d 20a,b,c,d

As can be seen in Table 1, the clusters obtained by almost all variations of the
learning algorithms and parameters include the lemmas which led us to formulate
Proof Strategy 1. However, there are some remarkable differences among the
results. First of all, the results obtained with the Expectation Maximisation and
FarthestFirst algorithms include several additional lemmas that make difficult
the discovery of a common pattern. The same happens with the other algorithms
for granularity values 1 and 2; however the clusters can be refined when increasing
the granularity value. The results are clusters of a sensible size which contain
lemmas with a high correlation; allowing us to spot Proof Strategy 1.
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1 Background

Interactive theorem proving is a technology of fundamental importance for math-
ematics and computer-science. It is based on expressive logical foundations and
implemented in a highly trustable way. Applications include huge mathematical
proofs and semi-automated verifications of complex software systems. Interac-
tive development of larger and larger proofs increases the demand for computing
power, which means explicit parallelism on current multicore hardware [6].

The architecture of contemporary interactive provers such as Coq [13, §4],
Isabelle [13, §6] or the HOL family [13, §1] goes back to the influential LCF
system [4] from 1979, which has pioneered key principles like correctness by
construction for primitive inferences and definitions, free programmability in
userspace via ML, and toplevel command interaction. Both Coq and Isabelle
have elaborated the prover architecture over the years, driven by the demands
of sophisticated proof procedures, derived specification principles, large libraries
of formalized mathematics etc. Despite this success, the operational model of
interactive proof checking was limited by sequential ML evaluation and the se-
quential read-eval-print loop, as inherited from LCF.

2 Project Aims

The project intends to overcome the sequential model both for Coq and Isabelle,
to make the resources of multi-core hardware available for even larger proof de-
velopments. Beyond traditional processing of proof scripts as sequence of proof
commands, and batch-loading of theory modules, there is a vast space of possi-
bilities and challenges for pervasive parallelism. Reforming the traditional LCF
architecture affects many layers of each prover system, see figure 1.

Parallelization of the different layers is required on the level of the execu-
tion environments (SML, OCaml), which need to include some form of multi-
threading or multi-processing supported by multi-core architectures. Isabelle can
build on parallel Poly/ML by David Matthews [5] and earlier efforts to support
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Fig. 1. Reformed LCF-architecture for parallel proof-document processing

parallel proof checking [8]. For Coq, some alternatives with separate OCaml pro-
cesses need to be investigated, because early support for parallel threads in Caml
[3] was later discontinued.

Further reforms carry over to the inference kernel, which has to be extended
by means to decompose proof checking tasks into independent parts that can be
evaluated in parallel. The tactic code of proof procedures or derived specifica-
tion packages needs to be reconsidered for explicit parallelism, while the inherent
structure of the proof command language can be exploited for implicit paral-
lelism. The latter is particularly appealing: the prover acts like system software
and schedules proofs in parallel without user (or programmer) intervention. Some
of these aspects need to be addressed for Coq and Isabelle in slightly different
ways, to accommodate different approaches in either system tradition.

Our approach is document-centric: the user edits a document containing text,
code, definitions, and proofs to be checked incrementally. This means that check-
ing is split into parallel subtasks reporting their results asynchronously. The
document model and its protocols need to support this natively, as part of
the primary access to the prover process. Finally, a system front-end is required
to make all these features accessible to users, both novices and experts. Instead
of a conventional proof-script editor, the project aims to provide a full-scale
Prover-IDE following the paradigm of “continuous build — continuous check”.

These substantial extensions of the operational aspects of interactive theorem
proving shall retain the trustability of LCF-style proving at the very core. The
latter has to be demonstrated by formal analysis of some key aspects of the
prover architecture.
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The theoretic foundation of the document model is directed by a fine-grained
analysis of the impact of changes made by the user on the formal text. This anal-
ysis not only helps the parallelization of the verification of the document but also
the reuse of already checked parts of the document that are almost unimpacted
by the user edits. To give a formal account on this notion of proof reuse and
to implement this mechanism without compromising the system trustability, we
must assign a precise static semantics to the changes. One foundational part of
the project will consist of studying what kind of logical framework is adapted
to the specification and verification of proof reuses. By the end of the project,
we expect to get a language of semantically-aware and mechanically-verifiable
annotations for the document model.

3 Current Research and First Results

Project results are not just paper publications, but actual implementations that
are expected to be integrated into Coq and Isabelle, respectively. Thus users of
these proof assistants will benefit directly from the project results.

3.1 A State Transaction Machine for Coq

Parallelizing a sequential piece of purely functional code is a relatively easy
task. On the contrary parallelizing an already existing piece of imperative code
is known to be extremely hard. Unfortunately Coq stores much of its data in
global imperative data structures that can be accessed and modified by almost
any component of the system

For example some tactics, while building the proof, may generate support lem-
mas on the fly and add them to the global environment. The kernel, that will verify
the entire proof once completed, needs to find these lemmas in order to validate
the proof. Hence distributing the work of building and checking the proof among
different partners is far from being trivial, given that the lack of proper multi-
threading in OCaml forces these partners to live in different address spaces.

In the prototype under implementation [7] all side effects have been eliminated
or tracked and made explicit in a state-transaction data structure. This graph
models a collection of states and the transactions needed to perform in order
to obtain a particular state given another one. Looking at this graph one can
deduce the minimum set of transactions needed to reach the state the user is
interested in, and postpone unnecessary tasks. While this is already sufficient to
increase the reactivity of the system, the execution of the tasks is still sequential.

Running postponed tasks in concurrent processes is under implementation,
but we are confident that the complete tracking of side effects done so far will
make this work possible.

3.2 Logical Framework for Semantic-Aware Annotations

During the POPLmark challenge, Coq has been recognized as a metalanguage
of choice to formalize the metatheory of formal languages. Hence, it can se-
mantically represent the very specific relations between the entities of a proof



362 B. Barras et al.

development. Using Coq as a logical framework (for itself and for other theorem
provers) is ambituous and requires: (i) to represent partial (meta)programs; (ii)
to design a programming artefact to automatically track dependencies between
computations; (iii) to reflect the metatheory of several logics; (iv) to implement
a generic incremental proof-checker. The subgoal (i) has been achieved thanks
to a new technique of a posteriori simulation of effectful computations based on
an extension of monads to simulable monads [2]. The goal (ii) is investigated
through a generalization of adaptative functional programming [1].

3.3 Parallel Isabelle and Prover IDE

The first stage of multithreaded Isabelle, based on parallel Poly/ML by David
Matthews, already happened during 2006–2009 and was reported in [8,9]. In the
project so far, the main focus has been improved scalalibity and more uniformity
of parallel batch-mode wrt. asynchronous interaction. Cumulative refinements
have lead to saturation of 8 CPU cores (and a bit more): see [12] for an overview
of the many aspects of the prover architecture that need to be reconsidered here.

The Isabelle2011-1 release at the start of the project included the first officially
“stable” release of the Isabelle/jEdit Prover IDE [9], whose degree of parallelism
was significantly improved in the two subsequent releases Isabelle2012 (May
2012) and Isabelle2013 (February 2013). The general impact of parallelism on
interaction is further discussed in [11].

Ongoing work investigates further sub-structural parallelism of proof elements,
and improved real-time reactivity of the implementation. Here the prover architec-
ture and the IDE front-end are refined hand-in-hand, as the key components that
work with the common document model. The combination of parallel evaluation
by the prover with asynchronous and erratic interactions by the user is particu-
larly challenging. We also need to re-integrate tools like Isabelle/Sledgehammer
into the document model as asynchronous agents that do not block editing and
propose results from automated reasoning systems spontaneously.

3.4 Prover IDE for Coq

Once that the Coq prover architecture has become sufficiently powerful during
the course of the project, we shall investigate how the Isabelle/PIDE front-
end and Coq as an alternative back-end can be integrated to make a practically
usable system. Some experiments to bridge OCaml and Scala in the same spirit as
for Isabelle have been conducted successfully [10]. An alternative (parallel) path
of development is to re-use emerging Prover IDE support in Coq to improve its
existing CoqIde front-end, to become more stateless and timeless and overcome
the inherently sequential TTY loop at last.

4 Project Partners

The project involves three sites in the greater Paris area:

– The LRI ForTesSE team at UPSud (coordinator:B. Wolff), including mem-
bers from the Cedric team (CNAM),
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– the INRIA Pi.r2 team at PPS / UParis-Diderot (site leader: H. Herbelin),
including members from the INRIA Gallium team, and

– the INRIA Marelle-TypiCal team at LIX / Ecole Polytechnique (site leader:
B. Barras)

Research is supported by under grant Paral-ITP (ANR-11-INSE-001) with for-
mal start in November 2011 and duration of 40 months total. Further information
is available from the project website http://paral-itp.lri.fr/.
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Abstract. The Web Geometry Laboratory (WGL) project’s goal is to
build an adaptive and collaborative blended-learning Web-environment
for geometry.
In its current version (1.0) theWGL is already a collaborative blended-

learningWeb-environment integrating a dynamic geometry system (DGS)
and having some adaptive features. All the base features needed to im-
plement the adaptive module and to allow the integration of a geometry
automated theorem prover (GATP) are also already implemented.
The actual testing of the WGL platform by high-school teachers is

underway and a field-test with high-school students is being prepared.
The adaptive module and the GATP integration will be the next steps

of this project.

Keywords: adaptive, collaborative, blended-learning, geometry.

1 Introduction

The use of intelligent computational tools in a learning environment can greatly
enhance its dynamic, adaptive and collaborative features. It could also extend the
learning environment from the classroom to outside of the fixed walls of the school.

To build an adaptive and collaborative blended-learning environment for geom-
etry, we claim that we should integrate dynamic geometry systems (DGSs), geom-
etry automated theorem provers (GATPs) and repositories of geometric problems
(RGPs) in a Web system capable of individualised access and asynchronous and
synchronous interactions. A system with that level of integration will allow build-
ing an environment where each student can have a broad experimental learning
platform, but with a strong formal support. In the next paragraphs we will briefly
explain what do we mean by each of these features and how the Web Geometry
Laboratory (WGL) system cope, or will cope, with that.

A blended-learning environment is a mixing of different learning environments,
combining traditional face-to-face classroom (synchronous) methods with more
modern computer-mediated (asynchronous) activities. AWeb-environment is ap-
propriate for both situations (see Figure 1).

� IAESTE traineeship PT/2012/71.
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An adaptive environment is an environment that is able to adapt its behaviour
to individual users based on information acquired about its user(s) and its en-
vironment and also, an important feature in a learning environment, to adapt
the learning path to the different users needs. In the WGL project this will be
realised through the registration of the geometric information of the different
actions made by the users and through the analysis of those interactions [4].

A collaborative environment is an environment that allows the knowledge to
emerge and appear through the interaction between its users. In WGL this is
allowed by the integration of a DGS and by the users/groups/constructions
relationships.

Using a DGS, the constructions are made from free objects, objects not defined
by construction steps, and constructed objects using a finite set of property
preserving manipulations. These property preserving manipulations allow the
development of “visual proofs”, these are not formal proofs. The integration
in the WGL of a GATP will give its users the possibility to reason about a
given DGS construction, this is an actual formal proof, eventually in a readable
format. They can be also used to test the soundness of the constructions made
by a DGS [1,2].

As said above to have an adaptive and collaborative blended-learning envi-
ronment for geometry we should integrate intelligent geometric tools in a Web
system capable of asynchronous and synchronous interactions. This integration
is still to be done, there are already many excellent DGSs [7], some of them have
some sort of integration with GATPs, others with RGP [1,5]. Some attempts to
integrate these tools in a learning management system (LMS) have already been
done, but, as far as we know, all these integrations are only partial integrations.
A learning environment where all these tools are integrated and can be used in
a fruitful fashion does not exist yet [6].

2 The Web Geometry Laboratory Framework

Internet

School server

Fig. 1. School Server

A class session using WGL is un-
derstood as a Web laboratory where
all the students (eventually in small
groups) and the professor will have a
computer running WGL clients. Also
needed is a WGL server, e.g. in a
school Web-server (see Figure 1).

The WGL server is the place where
all the information is kept: the login
information; the group definition; the
geometric constructions of each user;
the users activity registry; etc. In the
WGL server is also kept the DGS ap-
plet and the GATP will also execute



366 P. Quaresma, V. Santos, and S. Bouallegue

Fig. 2. Students’ Interface

there. Each client will have an instance of the DGS applet, using the server to
all the needed information exchange.

After installing aWGL server the administrator of the system should define all
the teachers that will be using the system. The teachers will be privileged users
in the sense that they will be capable of define other users, their students. In
the beginning of each school year the teachers will define all his/her students as
regular users of theWGL. The teacher may also define groups of users (students),
these groups can be define at any given time, e.g. for a specific class, and it will be
within this groups that the collaboration between its members will be possible.
The definition of the groups and the membership relation between groups and
its members will be the responsibility of the teachers that could create groups,
delete groups and/or modify the membership relation at any given time.

Each user will have a “space” in the server where he/she can keep all the
geometric construction that he/she produces. Each user will have full control
over this personal scrapbook, having the possibility of saving, modifying and
deleting each and every construction he/she produces using the DGS applet.

To allow the collaborative work a permissions system was implemented. This
system is similar to the “traditional Unix permissions” system. The users will
own the geometric construction defining the reading, writing and visibility per-
missions (rwv) per geometric construction. The users to groups and the con-
structions to groups relationships can be established in such a way that the
collaborative working, group-wise, is possible.

By default, the teacher will own all the groups he/she had created granting
him/her, in this way, access to all the constructions made by the students. The
default setting will be rwvr-v---, meaning that the creator (owner) will have
all the permissions, other users belonging to his/her groups will have “read”
access and all the others users will have none. At any given moment he/she
can download (read) the construction into the DGS, modify it and, eventually,
upload the modified version into the database.
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The collaborative module of WGL distinguishes students having the lock over
the group construction from those without the lock. The students with the lock
will have a full-fledged DGS applet, and they will be working with the group
construction (see Figure 2). The students without the lock will have also the
two DGS applets, but the construction in the “group shared construction” one
is a synchronised version of the one being developed by the student with the
lock, and a full-fledged version that can be used to develop his/her own efforts.
A text-chat will be available to exchange information between group members.
The teacher could always participate in this efforts having for that purpose an
interface where he/she can follow the students and groups activities.

The WGL collaborative features are thought mostly for a blended-learning
setting, that is, a classroom/laboratory where the computer-mediated activities
are combined with a face-to-face classroom interaction. Nevertheless given the
fact that the WGL is a Web application the collaborative work can extend itself
to the outside of the classroom and be used to develop collaborative work at
home, e.g. solving a given homework. In this setting the only drawback it will
be a slow connection to the WGL server. We estimate that a normal bandwidth
(≥ 20Mb) will be enough.

The WGL as a Web client/server application; the database (to keep: con-
structions; users information; constructions; permissions; user’s logs); the DGS
applet; the GATP and the synchronous and asynchronous interaction are all
implemented using free cross-platform software, namely PHP, Javascript, Java,
AJAX, JQuery and MySQL, and also Web-standards like XHTML, CSS style-
sheets and XML. The WGL is a internationalised tool (i18n/l10n) with already
translations for Portuguese and Serbian, apart from default support for English.
All this will allow to build a collaborative learning environment where the ca-
pabilities of tools such as the DGS and the GATP can be used in a more rich
setting that in an isolated environment where (eventually) every students could
have a computer with a DGS but where the communication between them would
be non-existent. The exchange of text, oral and geometric information between
members of a group will enrich the learning environment.

Learning environments supported by computer are seen as an important
means for distance education. The DGS are also important in classroom en-
vironments, as a much enhanced substitute for the ruler and compass physical
instruments, allowing the development of experiments, stimulating learning by
experience. There are several DGS available, such as: GeoGebra, Cinderella,
Geometric Supposer, GeometerSketchpad, CaR, Cabri, GCLC but none of then
defines a Web learning environment with adaptive and collaborative features [6].
The program Tabulæ is a DGS with Web access and with collaborative features.
This system is close to WGL, the permissions system and the fact that the DGS
is not “hardwired” to the system but it is an external tool incorporated into the
system, are features that distinguish positively WGL from Tabulæ. The adaptive
features, the connection to the GATP and the internationalisation/localisation
are also features missing in Tabulæ [6].
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3 Conclusions and Future Work

When we consider a computer system for an educational setting in geometry, we
feel that a collaborative, adaptive blended-learning environment with DGS and
GATP integration is the most interesting solution. That leads to a Web system
capable of being used in the classroom but also outside the classroom, with
collaborative and adaptive features and with a DGS and GATPs integrated.

The WGL system is a work-on-progress system. It is a client/server modu-
lar system incorporating a DGS, some adaptive features, i.e., the individualised
scrapbook where all the users can keep their own constructions and with a collab-
orative module. Given the fact that it is a client/server system the incorporation
of a GATP (on the server) it will not be difficult. One of the authors has already
experience on that type of integration [2,3,5].

A first case study, involving two high-schools (in the North and Center of
Portugal) three classes, two teachers and 44 students and focusing in the use of
WGL in a classroom, is already being prepared and it will be implemented in
the spring term of 2013.

The next task will be the adaptive module, the logging of all the steps made
by students and teacher and the construction of student’s profiles on top of that.
The last task will be the integration of the GATP in the WGL. We hope that at
the end the WGL can became an excellent learning environment for geometry.

A prototype of the WGL system is available at http://hilbert.mat.uc.pt/
WebGeometryLab/. You can enter as “anonymous/anonymous”, a student-level
user, or as “cicm2013/cicm”, a teacher-level user.
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1. Janičić, P., Narboux, J., Quaresma, P.: The Area Method: a recapitulation. Journal
of Automated Reasoning 48(4), 489–532 (2012)
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Abstract. An information service for mathematical software is presented.
Publications and software are two closely connected facets of mathematical knowl-
edge. This relation can be used to identify mathematical software and find rele-
vant information about it. The approach and the state of the art of the information
service are described here.

1 Introduction

In 1868, the first autonomous reviewing journal for publications in mathematics – the
“Jahrbuch über die Fortschritte der Mathematik” – was started, a reaction of the math-
ematical community to the increasing number of mathematical publications. The new
information service should inform the mathematicians about recent developments in
mathematics in a compact form. Today, we encounter a similar situation with math-
ematical software. Until now, a comprehensive information service for mathematical
software is still missing. We describe an approach towards a novel kind of informa-
tion service for mathematical software. A core feature of our approach is the idea of
systematically connecting mathematical software and relevant publications.

2 The State of the Art

There have already been some activities towards the development of mathematical soft-
ware information services. A far-reaching concept for a semantic web service for math-
ematical software was developed within the MONET project [1] which tries to analyze
the specific needs of a user, search for the best software solution and organize the solu-
tion by providing a web service. However, the realization of such an ambitious concept
requires a lot of resources. Also, a number of specialized online portals and libraries for
mathematical software were developed. One of the most important portals for mathe-
matical software is the Netlib [2] provided by NIST. Netlib provides not only metadata
for a software but also hosts the software. Netlib has developed an own classification
scheme, the GAMS [3] system, which allows for browsing in the Netlib. Other impor-
tant manually maintained portals, e.g., ORMS [4], Plato [5] or the mathematical part of
Freecode [6], provide only metadata about software.
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3 The Publication-Based Approach

Mathematical software and publications are closely interconnected. Often, ideas and
algorithms are first presented in publications and later implemented in software pack-
ages. On the other hand, the use of software can also inspire new research and lead to
new mathematical results. Moreover, a lot of publications in applied mathematics use
software to solve problems numerically. The use of the publications which reference a
certain software is a central building block of our approach.

Identification of Software References in the zbMATH Database. There are essen-
tially two different types of publications which refer to a software, publications
describing a certain software in detail, and publications in which a certain soft-
ware is used to obtain or to illustrate a new mathematical result. In a first step,
the titles of publications were analyzed to identify the names of mathematical soft-
ware. Heuristic methods were developed to search for characteristic patterns in the
article titles, e.g., ‘software’, ‘package’, ‘solver’ in combination with artificial or
capitalized words. It was possible to detect more than 5,000 different mathematical
software packages which were then evaluated manually.

Software References in Publications – Indirect Information of Software. The auto-
matically extracted list of software names (see above) can be used as a starting point
for searching software references in the abstracts: More than 40,000 publications
referring to previously identified software packages were found in the zbMATH
database. Of course, the number of articles referring to a given software is very
different, ranging from thousands of publications for the ’big players’ (e.g. Math-
ematica, Matlab, Maple) to single citations for small, specialized software pack-
ages. An evaluation of the metadata of the publications, especially their keywords
and MSC classifications has shown that most of the information is also relevant for
the cited software and can therefore be used to describe the latter. For instance, we
collect the keywords of all articles referring to a certain software and present them
in swMATH as a keyword cloud, common publications and the MSC are used to
detect similar software.

More Information about Software. Web sites of a software – if existing – are an im-
portant source for direct information about a software. As mentioned above, there
are also special online portals which sometimes provide further information about
certain mathematical software packages.

Metadata Scheme for Software. The formal description of software can be very com-
plex. There are some standard metadata fields which are also used for publications,
like authors, summary, key phrases, or classification. For software however, further
metadata are relevant, especially the URL of the homepage of a software package,
version, license terms, technical parameters, e.g. , programming languages, oper-
ating systems, required machine capacities, etc., dependencies to other software
packages (some software is an extension of another software), or granularity. Un-
fortunately, often a lot of this metadata information is not available or can only
be found with big manual effort. The focus of the metadata in swMATH is there-
fore on a short description of the software package, key phrases, and classification.
For classification, we use the MSC2010 [7] scheme even though the Mathematics
Subjects Classification is not optimal for software.
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Quality Filter for Software. swMATH aims at listing high-quality mathematical soft-
ware. Up to now, no peer-reviewing control system for software is established.
However, the references to software in the database zbMATH can be used as an
indirect criterion for the quality of a software: The fact that a software package is
referred in a peer-reviewed article also implies a certain quality of the software.

4 Further Software

There are several reasons which suggest an extension of the publication-based ap-
proach. A major drawback of the publication-based approach is the time-delay between
the release of software and the publication of an article describing the software. This
delay can be up to several years for peer-reviewed journals. A second reason, not every
software is referenced in peer-reviewed publications. Often, software is described in
technical reports or conference proceedings.

Also, not all publications describing or using mathematical software are contained
in the zbMATH database, e.g., if a software was developed for a special application and
articles on it were published in a journal outside the scope of Zentralblatt MATH.

In order to build a comprehensive information service about mathematical software,
we therefore still use other sources of information as online portals for mathematical
software, contacts to renowned mathematical institutions, research in Google and other
search engines with heuristic methods. One problem here is the quality control of this
software. Being listed on a renowned portal for mathematical software should be a clear
indicator for the quality of a software, whereas a mere Google hit does not mean much
with respect to quality.

5 Sustainability

swMATH is a free open-access information service for the community. The develop-
ment and maintenance of it, however, are not for free. For sustainability, the resources
needed for the maintenance of the service must be minimized. Automatic methods
and tools are under development to search for mathematical software in the zbMATH
database, and to maintain and update the information on software (e.g. an automatic
homepage verification tool).

In order to ease the maintenance of the service, the developments of the user in-
terface and the retrieval functionalities are carried out in close coordination with the
corresponding developments in zbMATH. The swMATH service enhances the existing
information services provided by FIZ Karlsruhe/Zentralbatt MATH. The integration of
the database swMATH in the information services of Zentralblatt MATH contributes to
its sustainability. At the moment, links from software-relevant articles to zbMATH are
provided. In the near future, back links from zbMATH to swMATH will be added too.

6 The swMATH Prototype

The first prototype of the swMATH service was published in autumn 2012. Currently,
the service contains information about nearly 5,000 mathematical software packages.
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Fig. 1. The detailed information for the software ”Singular”
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It can be found at http://www.swmath.org. The user interface of swMATH con-
centrates on the essentials, containing simple search and an advanced search mask. Then
a list of the relevant software is presented.

The detailed information about this software is shown if the name is clicked. It con-
tains a description of the software, a cloud representation of key phrases (auto-generated
from the key phrases of the publications), the publications referring to the software, the
most important MSC sections, similar software and a plot showing the number of ref-
erences over time. The latter is an indicator for usefulness, popularity and acceptance
of a package within the mathematical community.

7 swMATH – An Information Service under Development

swMATH is a novel information service on mathematical software basing on the anal-
ysis of mathematical publications. Automatic tools periodically check the availability
of URLs. Further heuristic methods to automatically extract relevant information from
software websites are currently developed. Another possibility to keep the software
metadata up-to-date is direct contact with (selected) software authors and providers.

So far, the software identifiers in swMATH are not persistent. However, for the pro-
ductive release of swMATH persistent identifiers are planned.

The user interface is under permanent development; we recently added a brows-
ing feature and will further enhance the usability of the swMATH web application. In
order to meet the demands of the mathematical software community, we created an on-
line questionnaire which has recently been distributed to several thousand participants,
https://de.surveymonkey.com/s/swMATH-survey.

We hope that the swMATH service will be a useful and broadly accepted information
service for the mathematical community.
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Abstract. Students of our department solve algebraic exercises in math-
ematical logic in a computerized environment. They construct transfor-
mations step by step and the program checks the syntax, equivalence
of expressions and completion of the task. With our current project, we
add a program component for checking relevance of the steps.

1 Introduction

Computerized exercise environments for algebraic transformations try to
preserve equivalence of expressions but they usually do not evaluate whether
solution steps are relevant (for the actual task type) or not. Some versions of
Algebra Tutors of Carnegie Mellon University in the nineties required a pre-
scribed solution path to be followed. For example, Equation Solving Tutor [6]
counted division before subtraction in 2x = 11 − 3 as an error. But the review
article “Cognitive Tutors: Lessons Learned” [1] summarizes: “Our earlier tutors
required students to always stay on path. More recent tutors allow the student
to go off path but still focus instruction on getting student back on path ...”.
There is one commonly known algebra environment, Aplusix [3], where the pro-
gram displays the ratios of what part of the syntactic goals factored, expanded,
reduced, sorted is already reached and what part remains. However the ratios in
itself are not of much help for a student. For example, if the student does not
reduce the fraction ba/bc but converts it to ab/bc then the ratios simply indicate
some improvement with regard to the goal sorted.

Students of our department have solved technical exercises in Mathematical
Logic on computers since 1991. One of our programs is an environment for
algebraic transformations [5,4]. For many years it seemed that checking of syntax,
order of logical operations and equivalence of expressions is sufficient for training
and assessment. Some years ago the introductory part of propositional logic
containing also tasks on expressing of given formulas using {&,¬}, {∨,¬} or
{⊃,¬} only and on disjunctive normal form (DNF) was moved into the first-
term course Elements of Discrete Mathematics. We saw that, besides students
who solved our exercises very quickly, there were others who were in real trouble.
Most problematic were DNF exercises where many solutions had a length of 50–
70 steps or more. The instructors were not able to analyze long solutions (note
that the main program does not record the marking and conversion rule but
only displays rows with formulas). We decided to write an additional program
that checks the relevance of solution steps and annotates the solutions.
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Our main program, analysis tool and some other necessary files are available at
http://vvv.cs.ut.ee/~prank/rel-tool.zip. The paper describes the basic
environment (Section 2) and our supplementary tool for normal form exercises
(Section 3). Section 4 provides some discussion of further opportunities.

2 Correctness Checking in the Main Program

Working in our formula transformation environment, the student creates the
solution step by step. Each conversion step consists of two substeps. At the first
substep the student marks a subformula to be changed. For the second substep
the program has two different modes. In the INPUT mode the program opens
an input box and the student enters a subformula that replaces the marked part.
In the RULE mode the student selects a rule from the menu and the program
applies it. Figure 1 demonstrates a DNF exercise in the RULE mode.

Fig. 1. Solution window of the main program. The student has performed three steps
and marked a subformula for moving the negation inside.

At the first substep the program checks whether the marked part is a proper
subformula. At the second substep in the INPUT mode the program checks
syntactical correctness of the entered subformula and equivalence. In the RULE
mode the program checks whether the selected rule is applicable to the marked
part. In case of an error the program requires correction. However, our main
program does not evaluate the relevance of conversions.

In our course the exercises on expression of formulas using given connectives
are solved in the INPUT mode and exercises on DNF in the RULE mode.

http://vvv.cs.ut.ee/~prank/rel-tool.zip
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3 A Tool for Solution Analysis

Our lectures contain the following six-stage version of the algorithm for conver-
sion of formulas to full disjunctive normal form:

1. Eliminate implications and biconditionals from the formula.
2. Move negations inside.
3. Use distributive law to expand the conjunctions of disjunctions.
4. Exclude contradictory conjunctions and redundant copies of literals.
5. Add missing variables to conjunctions.
6. Order the variables alphabetically, exclude double conjunctions.

We now describe how the analysis tool treats relevance of solution steps. The
program accepts the choice of the rule if it corresponds to the algorithm stage or
is one of the simplification rules (rules in positions 1–2, 23–26 and 28 in Figure
1). For some conversions the tool checks additionally that the rule is applied
reasonably. Elimination of biconditional should not duplicate implications and
biconditionals. Negations should be moved inside starting from the outermost
negation. All the literals of a conjunction should be ordered alphabetically in
one step. (There are some more checks of similar type).

The analysis tool displays on the screen and records in a text file for each step
an annotation that contains the following information:

1. Number of the stage in the FDNF algorithm [+ a clue about the conversion].
2. Number and meaning of the applied rule + OK if the step was acceptable.
3. Error message if the step was not acceptable.
4. Initial and resulting formula with the changed/resulting part highlighted.

For example, the five lines below will be recorded as the annotation of solution
step 2 in Figure 1. The symbol ’%’ denotes implication. Rectangles and triangles
point to the changed part of the formula and to the error message.

The tool also compiles statistics of error messages in the whole solution file of
the student and statistics of the group of students. This statistics is recorded
in the form of tables where the rows correspond to separate solution attempts
of the tasks and the columns are for particular error types and for some other
characteristics (number of steps, number of steps taken back, total number of
errors, stage reached in the solution algorithm). This output can be copied into
a spreadsheet environment for further statistical treatment.

The analysis tool gives an error message when the formula contains indepen-
dent parts that are in different stages of the algorithm and the applied conversion
does not correspond to the stage of the whole formula. However, in such cases it
is quite easy to understand whether the step makes the solution longer or not.
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Does the tool find all reasons for long solutions? Our initial count of the possi-
bilities for rule misapplication gave us 15 error types for full DNF tasks. A compar-
ison of solutions and received annotations disclosed several additional unwise ap-
proaches to performing the right conversions: incomplete reordering of variables,
addition of one variable instead of two etc. After including them we ended up with
19 error types. The most frequent errors are presented in Table 1.

From the scanned solution files we learned about a further, ‘more delicate’
solution economy problem. The algorithm prompts the user to apply the dis-
tributivity law at stage 3 and to eliminate redundant members at stage 4. Such
ordering enables a very straightforward proof of the feasibility of the algorithm.
However, it is often useful to perform some conversions of stage 4 before stage
3. Our analyzer does not require nor prohibit this. Conversions of stage 4 use
only simplification rules and they do not evoke error messages.

Table 1. Results and numbers of diagnosed errors in final tests in 2011 and 2012

Quantity/error Test 2011 Test 2012

Number of solutions (completed/total) 131/162 150/169

Steps 5766/7270 4096/4764

Steps taken back 500/933 112/186

Relevance errors diagnosed 1097/1481 321/502

4. Negation moved into brackets at stage 1 39/56 32/33

5. Negation moved out of brackets 55/157 12/36

6. Inner negation processed first 142/219 68/94

7. Distributive law applied too early 70/84 35/44

9. Members reordered too early 274/327 21/52

10. Members of FALSE conjunction reordered 67/81 13/39

11. Reordering together with redundant members 59/68 12/13

12.Members of disjunction reordered (as for CNF) 192/197 32/33

13. Variables added too early 102/147 45/74

16. Only a part of conjunction reordered 45/45 15/16

Average number of steps in completed solutions 44.0 27.3

Table 1 presents data about solutions of a full DNF task in the final tests
of 2011 and 2012. Randomly generated initial formulas contained four different
binary connectives and 2–3 negations (like Fig. 1). The results of 2011 looked
rather disappointing. With 185 students taking the test, 162 of them submitted
the solution file of formula transformation tasks, and the full DNF task was
completed in 131 files. The average number of steps in completed solutions was
44 when the optimal number was 15–25. Very often several steps had been taken
back (using Undo).

In the autumn term of 2012 we made the analyzer available to the students,
although it does not have a developed user interface. We added a small task file
with only two full DNF tasks and required that they submit a solution file where
each of the two solutions can only contain one diagnosed relevance error. The
students could also use the annotation tool when preparing for the final test.
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The results of 2012 in Table 1 demonstrate that the annotation tool is useful for
the students as well.

4 Extending the Approach to Other Situations

It seems that our current program is able to produce satisfactory explicit di-
agnosis of the relevance of steps in solutions of DNF and CNF tasks in RULE
mode. There is an obvious extension to the algorithmically less interesting tasks
on expression of formulas using negation and one binary connective.

Is it possible to apply relevance checking to the conversions in INPUT mode?
Our students solve some exercises in INPUTmode. The relevance tool is designed
to determine what rule is used for the step and so we had the opportunity to scan
the input-based solutions. We discovered that virtually all steps were performed
using the same rules 1–29, sometimes removing double negations from the result
of the step. Nevertheless it is clear that for understanding free conversions we
should replace the indirect identification of a single rule by direct modelling of
one or more sequentially applied rules. It probably also means replacing our
string representations with structured representations of mathematical objects
and using the tools that work in these representations.

There exists a very powerful rule-based conversion environment, Mathpert, for
algebra and calculus exercises [2] (later versions are called MathXpert). It could
be a quite interesting task to complement MathXpert with relevance checking.

Acknowledgments. Current research is supported by Targeted Financing grant
SF0180008s12 of the Estonian Ministry of Education.
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Abstract. A high-quality content analysis is essential for retrieval functionalities
but the manual extraction of key phrases and classification is expensive. Natu-
ral language processing provides a framework to automatize the process. Here,
a machine-based approach for the content analysis of mathematical texts is de-
scribed. A prototype for key phrase extraction and classification of mathematical
texts is presented.

1 Introduction

The database zbMATH [1] provided by FIZ Karlsruhe/Zentralblatt MATH is the most
comprehensive bibliographic reviewing service in mathematics. Both key phrases and
classification of the mathematical publications are central features of content analysis
in zbMATH. Up to now, these data are created by expert which means time and labor-
expensive work.

In the last years, computational linguistics has developed concepts for natural lan-
guage processing by combining linguistic analysis and statistics. These concepts and
tools were used as a platform for our activities to develop machine-based methods for
key phrase extraction and classification according to the Mathematical Subject Classi-
fication (MSC2010) [2].

The DeLiVerMATH project funded by the Deutsche Forschungsgemeinschaft is a
common activity of the library TIB Hannover, the research center L3S Hannover and
FIZ Karlsruhe. It started in March 2012.

2 The Prototype

We are starting with a presentation of a prototype extracting key phrases and classifying
a mathematical text. Snapshot on Figure 1 demonstrates its functionality.
The original text, here a review from zbMATH, is located in the left box on the top. The
input can be – in principle – an arbitrary mathematical text.

The extracted candidates for key phrases and their frequencies are presented in the
list on the right side and are also highlighted in the original text.

The proposed MSC classes calculated with Naive Bayes (nb) and Support Vector
Machines (sv) are shown below the input text. Currently, the classification is restricted
to the top level of the MSC.

Moreover, a list of unknown tokens (tokens outside of dictionary) together with a
proposed word class is given.

J. Carette et al. (Eds.): CICM 2013, LNAI 7961, pp. 379–382, 2013.
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Fig. 1. The user interface of the prototype

3 Natural Language Processing (NLP) in Mathematical
Publications

Existing Open Source tools and dictionaries from NLP were adapted to the special
needs of mathematical texts. NLP provides a broad spectrum of methods for text anal-
ysis, especially

– Segmentation to identify text units
– Tokenization, the process of breaking a text stream into words, symbols and formu-

lae, or other meaningful elements called tokens
– Morphological Parsing for a linguistic analysis of tokens
– Part-Of-Speech (PoS) tagging, the classification of a token within a text, e.g., ‘con-

vergence’ as a noun.
– Parse Tree, the identification of associated text fragments, e.g., of a noun phrase
– Named Entity Recognition, the detection of phrases typically used by a community

Especially, the PoS tagging is of fundamental importance for the text analysis. PoS tag-
ging requires a classification scheme for the tokens. Here we use the Penn Treebank PoS
scheme [3] consisting of 45 tags for words and punctuation symbols. This scheme has
relevant drawback for mathematical texts: no special tag for mathematical formulae. In
our approach, mathematical formulae will be handled with an auxiliary construct: for-
mulae (which are available as TeX code) are transformed to special nouns. This allows
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us to extract phrases which contain formulae beside the English text. A more detailed
analysis of the mathematical formulae will be done in the MathSearch project of FIZ
Karlsruhe and Jacobs University of Bremen. The PoS tagging use large dictionaries
to assign a tag to a token. Here, the Brown corpus [4] is used as a dictionary cov-
ering more than 1,000,000 English words which are classified according to the Penn
Treebank scheme. Some NLP tools are provided as Open Source software. Within the
DeLiVerMATH project, the Stanford PoS Tagger [5] is used.

There are two problems: the ambiguity of PoS tags (many tokens of the corpus can
belong to more than one word class) and unknown words (mathematics has a lot of
tokens outside the Brown corpus). For both problems, a suitable PoS tag of a token
in a phrase can be determined using the Viterbi algorithm, a dynamic programming
technique. Moreover, mathematics relevant dictionaries are under development

Acronyms. Often special spellings are used for acronyms (capitals) which can be eas-
ily identified in texts by heuristic methods. A database of 3,000 acronyms with their
possible resolutions was build up and implemented.

Mathematicians. The author database of zbMATH covers the names of more than
840,000 mathematicians which can be used to identify names of mathematicians in
the text phrases.

Named Mathematical Entities. Named mathematical entities are phrases which are
used for a special mathematical object by the mathematical community. It is planned
to integrate existing lists of named mathematical entities and other vocabularies, es-
pecially the Encyclopedia of Mathematics [6], PlanetMath [7], and the vocabularies
of the mathematical part of Wikipedia and the MSC.

The analysis of single tokens is only the first step for the linguistic analysis. Also in
mathematics, phrases are often much more important for the content analysis than sin-
gle tokens. Key phrase extraction requires the identification of chunks. Noun phrases
are the most important candidates for key phrases. The first version of our tool searches
for distinguished PoS tag patterns of noun phrases in the zbMATH items (abstracts or
reviews). Some problems may arise, e.g., longer key phrases are extracted only partially.
A more general approach is to use, instead of that, syntactic parsers for the identification
of key phrases being based on grammars for the English language. A syntactic parser
will be implemented into the prototype as the next step. Not all extracted noun phrases
are meaningful for the content analysis as the example shows. Here we plan to build
up filters (dictionaries of often used irrelevant noun phrases). For the classification, dif-
ferent approaches and classifiers already are implemented on different corpora: abstract
and reviews, key phrases, and also full texts (in planning). Up to now, the classification
is restricted to the top level of the MSC, a finer classification is under way.

4 Evaluation

The prototype will be evaluated by the editorial staff of Zentralblatt MATH to assign
key phrases and classification to mathematical publications. The additional expense to
evaluate the key phrases and classification is low because the tool can be integrated and
used in the daily workflow. The editors can reject a proposed key phrase and classifica-
tion in an easy way. We state that the number of key phrases seems to be significantly
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higher compared with the number of manually created key phrases which could be
used for a better retrieval (e.g., to find similar publications) and the ranking. Some tech-
niques to reject irrelevant phrases and detect similar phrases must be developed. For the
classification, different methods are under development, the prototype shows the clas-
sification calculated with the Naive Bayes and the Support Vector Machine approach.
It seems that the quality for the top level of the MSC is sufficient. But, we need a finer
MSC classification in the future. We will also analyze the influence on the corpora to the
classification and seek an answer to the question: Is it better to use key phrases instead
of reviews and abstracts or fulltexts for the classifiers?

5 Outlook

The methods and tools are developed and checked for database zbMATH but can also
be used for the content analysis of full texts. Up to now, the method is restricted to
English texts. An extension to other languages is possible by adding dictionaries and
grammars of other languages. A production version of the tool could be provided on
the Web site of the FIZ Karlsruhe/Zentralblatt Math as an additional service for the
mathematical community. One objective of the project is to build up a controlled vo-
cabulary of mathematics and to match this with the MSC. Therefore, the most frequent
key phrases for the MSC classes will be determined. These phrases could be the base of
a controlled vocabulary for mathematics, a helpful tool for the standardization of math-
ematical language and communication and a starting point for developing a thesaurus
for mathematics. The prototype is a first step towards a machine-based content analysis
of mathematical publications. We are optimistic that the approach described above can
contribute to a less expensive content analysis and allows an improved retrieval.
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