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Absent a Telephone,

a Bicyclist Had to Save
the World

On the height of the Cuban missile crisis in 1962, no direct telecommunication
line existed between the White House and the Kremlin. All messages going
back and forth had to be sent through intermediaries. The world teetered on
the brink of nuclear Armageddon when in the evening of October 23 President
John F. Kennedy sent his brother, Robert Kennedy, over to the Soviet Embassy
for a last-ditch effort to resolve the crisis peacefully. Robert presented a proposal
how both sides could stand down without losing face. Right after the meeting,
Ambassador Anatoly Dobrynin hastened to write a report to Nikita Khrushchev
in Moscow. A bicycle courier was called in to take this letter to a Western Union
telegraph station, and Dobrynin personally instructed him to go straight to the
station because the message was important — which was hardly an exaggeration.

That man on the bicycle, in my view, has saved the world. Most likely,
without even knowing.

A year later, a direct telegraph line was installed which was popularly called
the “red telephone.” (There never was an actual red telephone sitting in the
Oval Office.) A lesson had been learned: Communication can be vital when it
comes to solving conflicts.

Today the situation is vastly different from what it was less than half a cen-
tury ago. The world is knit together by a network of connections of economic,
political, cultural, and other nature. That is only possible because virtually
instantaneous long-distance communication at affordable cost has become ubiq-
uitous. In earlier centuries, important news — like the outcome of a battle, say —
often was received only several weeks later. Today we are not the least bit as-
tonished when we watch unfolding events in the remotest corner of the planet
in real time, living color, and stereophonic sound.

The biggest machine on earth is the international telephone network. It
allows you to call this minute, on a lark, your neighbor, your friend in New
Zealand, or the Department of Sanitation in Tokyo. And we got used to it!
Behind the scenes, of course, there is a substantial investment in technology
going into this, and more effort is required to keep up with society’s ever-rising
demands. Consider international calls: For some time satellites seemed to be
the most efficient and elegant means. Just a decade or two later, they were
no more up to the growing task, and a new, earthbound technology took over:
optical fiber transmission.

\Y%



VI Absent a Telephone, a Bicyclist Had to Save the World

Meanwhile, the amount of data handled by fibers exceeds anything that
older technology could have handled ever. Today’s Internet traffic would not
exist without fiber, and the cost of a long-distance phone call would still be as
expensive as it was a quarter century ago.

Optical fibers, mostly made of glass but sometimes also other materials, are
the subject of this book. The development toward their maturity we enjoy to-
day was mostly driven by the challenges of telecommunications applications.
Research has faced quite a number of questions concerning basic physics of
guided-wave optics, and many researchers around the world toiled for answers.
As a result, fibers can do more than was anticipated: Besides the obvious appli-
cation in telecommunications, they have also become useful in data acquisition.
This is why engineers and technicians working in either field need to know not
only their electrical engineering, but increasingly also some optics. At the same
time, it emerges that nonlinear physical processes in fibers will lead to exciting
new technology.

This book has its origin in lectures for students of physics and engineering
which I gave at the universities in Hannover, Miinster, Rostock (all in Germany),
and Lulea (Sweden). The book first appeared in the German language. It was
well received, but the German-speaking part of the world is not very big, and I
heard opinions that an English version would find a larger audience.

The book presents the physical foundations in some detail, but in the in-
terest of limited mathematical challenges, there is no fully vectorial treatment
of the modes. On the other hand, I found it important to devote some space
to nonlinear processes on grounds that over the years, they can only become
more relevant than they already are. I proceed in outlining the limitation of
the data-carrying capacity of fibers as they will be reached in a couple of years,
i.e., at a time when the student readers of this book will have entered their
professional life as engineers or scientists, dealing with these questions. For the
English edition, I have expanded certain sections slightly, to keep up to date
with current developments.

It is my hope that both natural scientists and engineers will find the book
helpful. Maybe physicist will think that some segments are quite “technical,”
while engineers may feel that a treatment of nonlinear optics may be not so much
for them. My answer to that is that either subject is required to form the full
picture. In this context, it is sometimes unfortunate that the structure of our
universities emphasizes the distinction between natural scientists and engineers
more than is warranted. I envision that, in analogy to electronics engineers, we
will see the emergence of photonics engineers. They would have good practical
skills on the technical side and at the same time a deep understanding of the
underlying physical mechanisms.
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Part 1

Introduction

An optical fiber in comparison to a paper clip. On the far left, part of the fiber’s
plastic coating is visible; mostly the fiber is bare, though. Only a small fraction
of its diameter of 125 um near the fiber axis serves the waveguiding directly.



Chapter 1

A Quick Survey

Visual, and hence optical, communication is older than language. Hand signals,
waving of the arms, and fire and smoke signals are basic means of communi-
cation, and except under detrimental environmental conditions like pitch-black
darkness or fog, they are useful over longer distances than shouting; besides,
they are not thwarted by noises like surf at the seashore.

Normally we communicate verbally. Hence, when optical means are em-
ployed, there is a necessity to agree on a code that serves to translate the visible
signs into a meaningful message.

Certain signs of nontrivial meaning are understood universally and even
independent of language: consider the handwaving sign for “come here.” On
the other hand, the vocabulary of such signs is too limited to convey truly
complex messages. Codes that represent smaller units of language — syllables,
phonemes, or individual letters — are much more universal. The best-known
example may be the Morse alphabet. Of course, it is mandatory that both sender
and receiver of the transmitted message have agreed on the code ahead of time.
In today’s computerized environment, codes of various kinds are of tremendous
importance.

The range (maximum distance) of optical transmission of messages can be
increased by concatenation of several shorter spans. In the Greek tragedy of
Agamemnon (part of The Oresteia), Aeschylus (ca. 525-456 BCE) mentions
how the news about the fall of the city of Troy was transmitted over 500 km
to Agamemnon’s wife, Clytemnestra [16]. Also, fire and smoke signals were
transmitted from post to post along the Great Wall of China as early as several
centuries BCE; during the Ming dynasty 1368-1644, this link stretched for over
6000 km from the Jiayuguan Pass outpost to the capital, Beijing (and on to the
east). In modern times, the first systematic attempts at optical telecommuni-
cation took place in France, where Claude Chappe constructed the first optical
telegraph in 1791 [73]. It is little known that Chappe initially worked with
electrical devices, but decided that optical ones were advantageous. The French
National Convention was initially decidedly disinterested, but in 1794 the first
state-operated telegraph line was started between Lille and Paris. Every few
kilometers, there were repeater stations called semaphors using mechanically
movable pointers or hands; they were observed from neighboring stations, aided
by telescopes. This system allowed to send messages from Paris to Lille in just
6 min — corresponding to twice the speed of sound. Later, a whole grid of such

F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_1, 3
(© Springer-Verlag Berlin Heidelberg 2009



4 Fiber Optics

lines was built across all of France, eventually reaching a total length of 4800 km
(Fig. 1.1). As is often the case with new technology, the first application was
a military use. Napoleon I successfully used it for his trademark rapid military
campaigns and had a portable system built for his campaign against Russia.
Sweden also built a comparable network, and the UK and other countries fol-
lowed suit. Around 1840, this technology saw its climax and was very common.
Also the USA had a few lines (“Telegraph Hill” remains a San Francisco land-
mark to this day).

NE—— S

Figure 1.1: A semaphor atop the roof of the Louvre. From [10].

However, the age of electric telegraphy dawned by then. Half a century
after their introduction, optical telegraphs were phased out. As it turned out,
electric systems were less prone to service interruption in case of inclement
weather. Beginning ca. 1858, progress in the electric technology finally added
superior speed as a further advantage of electric systems.

One should note that the heyday of the electric telegraph coincides with
the age of colonialism. That is relevant insofar as it speaks to the interplay
between technical and political developments. Colonial powers supported the
new technology because it gave them much better control over their dependen-
cies. One hardly overestimates the importance of fast message transmission
for the political situation of the day. We are denizens of the twenty-first cen-
tury and find it impossible to imagine the absence of electronic means of data
transmission.
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For a long time, in the development of the technology, optical systems took
a back seat. It is therefore amusing to note that the inventor of the telephone,
Alexander Graham Bell,! was strongly interested in optical means of transmis-
sion. In 1880, he introduced what he called the photophone, a contraption in
which the sound pressure waves emanating from a speaker’s lips moved a mir-
rored membrane in such a way that a light beam directed onto it got intensity-
modulated (Fig. 1.2). On the receiver side, a selenium photocell served as a
converter of the received light wave back to an electric current that could be
converted to audible sound with an ordinary headphone. Both transmitter and
receiver were thus realized with optical means; only at the receiver, electrical
gear was also involved.

i

Ll

‘ l' i WW

Wl

Figure 1.2: Alexander Graham Bell’s photophone: Sunlight is directed onto
a membrane that vibrates as it is agitated by the sound from the speaker.
The modulated light beam is transmitted and eventually demodulated with a
Selenium photo cell. Reproduced with permission from Alcatel-Lucent.

This system had the unsurmountable disadvantages that a good light source
was not available — after all, the sun does not always shine — and that the
transmission span was vulnerable to adverse atmospheric conditions: rain, snow,
and fog. Bell had no way of knowing, of course, that 100 years later both
problems would be solved through the introduction of practical lasers and optical
fibers. Only after both these novelties were available, optical data transmission
had a new chance. Indeed, the chance turned into a success story probably
second to none.

1Bell was not the only, indeed not even the first, inventor of the telephone. He filed
his patent in 1876, but the Italian technician Antonio Meucci (who lived in New York) had
demonstrated a working model as early as 1860 and the German teacher Philip Reis built
another version in 1861. The American Elisha Gray had the bad luck of filing his patent
all of 2h after Bell. However, Bell is usually cited as the inventor because he won all legal
patent battles, developed the scheme into a marketable product, and had the wherewithal to
introduce it to the public.



6 Fiber Optics

In the 1960s, the laser had just been invented, and the prospect of having
workable, practical devices in the near future became realistic. At that time,
the propagation of laser beams through the open atmosphere in the presence
of various atmospheric conditions was studied systematically and at different
wavelengths [35]. As an alternative, there were also attempts to guide light
in ducts. This made it necessary to refocus the beam frequently. In one ap-
proach, this was attempted with a large number of lenses that were inserted
into the beam path in certain short distances. In a different try, researchers
experimented with a distributed lens: This involved a gas-filled duct in which
a radial temperature gradient was generated and maintained. The temperature
gradient, by way of expansion of the warmer gas at the center, gave rise to a
refractive index profile that acted as an effective lens. The same basic idea but
in a “solid-state” version is used today in the so-called gradient index fibers (see
below). It is illuminating to assess the state of the art at that time as described
in an account given by Kompfner [90].

There were obvious disadvantages in these approaches: It is not easy to
form bends in such light guides — the bend radius had to be hundreds of meters!
Also, installation and operation were quite costly. Only a few years later there
were optical fibers: thin strands of glass, flexible enough to be coiled around
a finger, and as inexpensive as copper wire, with no maintenance cost because
the light-guiding index profile is built right into the fiber structure!

At that time, it was well known that microwaves can be sent through wave-
guides that are easy to produce. It was also known that glass can be spun into
thin threads, that such threads are flexible, and even that they can guide light.
However, transmission of information through such fibers was impossible due to
the high transmission loss, a property shared by all transparent solid materials
known at that time. Different materials had been studied, but among the best
suited was glass with a chemical composition given by SiOs, known as fused
silica. But even in fused silica, light was attenuated by at least one third after
a distance no longer than 1 m. This ruled out the transmission over any long
distances.

Then, in 1966, K. C. Kao and G. A. Hockham of Standard Telecommunica-
tions Laboratories in London published a paper with a remarkable prediction
[84]. The authors, none of them a materials expert by training, argued that the
strong attenuation of glass was not really an inherent, intrinsic property but was
rather caused by chemical impurities in the glass composition. They predicted
the possibility of producing, by way of suitably refined procedures, glass with
an attenuation no more than 20 dB/km instead of the 1000 dB/km common at
the time. This would represent a reasonable value for transmission.

Here and in the following, we will make extensive use of decibel (dB) units.
They are in ubiquitous use in all of electrical engineering, and it is indispensable
that the reader is aware of what they mean. If you are unsure, check Appendix A
for a thorough explanation.

In hindsight, the paper by Kao and Hockham came out at just the right time.
Very quickly tremendous progress in this direction was achieved in Japan, Eng-
land, and the USA. In a cooperation of Nippon Sheet Glass Co. and Nippon
Electric Co., in 1969, the first gradient index fiber was made that was suit-
able for communication purposes. It was given the name SELFOC fiber (as in
self-focusing), and it had an attenuation below 100dB/km. In England, coor-
dinated by British Post Office, a cooperation between universities and industry
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was launched, and in the USA, Corning Glass Works and Bell Laboratories
joined forces. The latter cooperation was the first to be able to announce the
attenuation factor quoted by Kao and Hockham: In 1970, Kapron and cowork-
ers at Corning created several hundred meters of a single-mode fiber with an
attenuation below 20 dB/km. The production technique involved thin layers of
fused silica deposited on the inside surface of a glass tube (see Sect. 6.2). It
allowed much better chemical purity than before. It also provided the possibil-
ity of adding Germanium oxide in precisely controlled concentration, so that a
radial index structuring can be obtained, which is crucial for waveguiding.

Later on, both this manufacturer and others improved the attenuation to
4dB/km by continuous fine-tuning of the procedure. At this point a limit was
reached, which is indeed due to the structure of the pure fused silica itself.
Nonetheless, losses could be reduced further when it was understood that the
loss is wavelength-dependent (see Chap. 5). Operating with infrared light, in
1976, the milestone of 1dB/km was reached in Japan, and it has now become
commercial routine to obtain less than 0.2dB/km, a value that is indeed very
close to the limit of what is possible at all with fused silica.

As product maturity developed, so did the industrial-scale production ca-
pacity. This, in turn, had a profound effect on the cost. When fiber was first
introduced in a mass market in 1981, standard fiber commanded a price around
5$/m. Within less than 2 years, that number dropped to one tenth, and today
the price may well be below 10 cents/m. The reason is simple: Of three main
factors affecting the cost of a product, two are insubstantial here.

Raw material is cheap because it is abundant. Go to the beach: How much
sand is there?

Labor cost is low because production can be almost completely automated.

Capital investment is high, but as long as a sufficient quantity of fiber is
sold, the cost per meter is low.

A first major field trial of fiber-optic transmission was performed in 1976 in
Atlanta, followed by a first exploratory operation in 1978 in Chicago. Germany
started in 1977 in Berlin; other countries have similar stories.

Further progress concerning fibers was linked to progress with respect to light
sources. Semiconductor laser diodes had been known since the early 1960s,
but the first version required cryogenic cooling and operated only in pulsed
mode. In 1970, the first continuous wave laser diodes at room temperature were
introduced, but their life expectancy was quite short (just a couple of hours).
Today laser diodes are specified as being able to handle x gigabits per second,
but in the early 1970’s it was = gigabits — and that was it! Progress since then
has been truly impressive, and today’s laser diodes can easily reach a useful
lifetime of 10° hours (corresponding to 10 years of continuous operation) and
more.

As fiber was beginning to be deployed, the need for a number of other auxil-
iary components arose. This includes the permanent or reconfigurable connec-
tion between fibers, which requires to maintain quite narrow tolerances in the
relative positioning of the fibers. It took a while to master such tight tolerances
but then the progress on the learning curve eased the transition from multimode
fibers, which have more relaxed requirements, to single-mode fibers that require
the highest precision.
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Multimode fibers are characterized by a relatively large diameter of the light-
guiding core, which is much larger than the wavelength of the light (Fig. 1.3).
In the most common version, the core diameter is 50 pm, embedded in a fiber of
125 um outside diameter. In contrast, single-mode fibers have a core diameter
that is larger than the wavelength only by a small factor; typical values range
between 7 and 10 pm. This does not affect the outer diameter of the fiber, which
may be the same as for a multimode fiber; indeed, the outside diameter of
125 um is the standard value for both fiber types (Fig. 1.4).

multimode fiber

protective coating
core 50 um

or 9um

cladding 125 pm

single-mode fiber

Figure 1.3: Multimode fibers and single-mode fibers only differ in the diameter
of the light-guiding core, which is made from a glass that is doped in a slightly
different way than the surrounding cladding.

In first applications, multimode fibers were used. They allow better incou-
pling efficiency, and there are fewer losses when connecting fibers together. How-
ever, as we shall see in Sect. 2.3, single-mode fibers allow higher data rates
over longer distances. Therefore, once the connector tolerance issue was solved
satisfactorily, single-mode fibers became the favored choice and are almost ex-
clusively used today at least for the long haul. Only for short distances, in
particular in local area networks between several computers inside one building,
multimode fiber is still preferred because the highest data rate is not required,
but some savings can be had in coupling and connecting.

At this point, we should take a look at the basic ingredients of any data
transmission system (see Fig. 1.5). The information to be transmitted can orig-
inate from a person speaking into a telephone, but it might also come from a
telefax machine sending data or from a computer hooked up to a line. In the case
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.

Figure 1.4: A standard optical fiber in comparison to a match.

Coding

v

Light source

light-guiding fiber

Light detector

v

Decoding

Figure 1.5: Sketch of a data transmission.

of a human speaker, the acoustic signal is first converted to an electric signal.
Then it gets coded to whatever format is appropriate for the transmission.
The coded signal is then passed onto a light source to modulate it. This
means that some property of the light wave, for example its amplitude or phase,
is influenced by the coded message. The simplest case would be to switch the
light source on and off in accordance to a digital signal representing the message.
The modulated light is then sent through the fiber and reaches the receiver
where it is decoded and then converted to the required format: In the case of
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a telephone, this is a sound wave from the handset; for a telefax, a printout on
paper.

Everything would work just fine if transmitter and receiver were sitting next
to each other (back to back). The exciting part, and the reason why all this
is done at all, is that one can “insert distance” between both stations. One
only needs to make sure that over the distance, there are no more than minimal
distortions of the signal, so that after decoding the message is still intact and
transmission errors are not perceptible. The founder of information theory,
Claude Shannon, has mathematically stated the relations between the rate of
data transmission, the bandwidth of the line, and the disturbances occurring on
the line (see Sect. 11.1.8).

It is important for a successful transmission that the signal is not attenu-
ated too much on the line. As mentioned above, first field trials used visible
light, but soon people realized that infrared wavelengths are much better in this
respect. One speaks of a first generation of fiber-optic systems that operated
around 850 nm, a wavelength that was convenient due to the availability of very
economic gallium arsenide laser diodes. This spectral region is also known as
the first window for fiber transmission.

The second generation operated at a wavelength around 1300 nm (the second
window). This wavelength was favored because the fiber’s dispersion (which is
the subject of Chap. 4) is particularly low there. As we shall see, this fact
provides a considerable increase of both reach and data rate. The major part of
all systems installed today is designed for this wavelength, although emphasis
meanwhile shifts to the third window.

The third generation moves on to wavelengths near 1550 nm (the third win-
dow). This is the regime where fibers made of fused silica have their global loss
minimum (see Chap. 5).

There have been numerous attempts to make fibers such that the main ad-
vantage of the second window — low dispersion — would occur at the wavelength
of the third window, so that the best of both could be combined. A truly
successful implementation would have allowed to phase in the third generation
more rapidly. However, while it is possible in principle, the commercial success
of these attempts remained limited. One of the reasons that industry preferred
to hang on to the second window for a long time was that the installed base of
second-generation fiber-optic systems represented a value of billions of dollars;
it did not seem to make business sense to give up that legacy. A technical reason
also was that fibers with dispersion optimized at 1550 nm turned out to partially
lose the advantage of the lowest loss. The strategy today is that different fibers
are concatenated so that dispersion is partly compensated; we will consider such
systems in Sect. 11.2.3.

At this point the reader may ask: Why is it that light in fiber optics is supe-
rior to the more conventional electric current over copper cable? The answer to
this is found by considering the fundamental limits to transmission losses in com-
parison with optical fiber and copper wire. For wire it is given by the skin effect,
i.e., the phenomenon that at high frequencies almost all current is carried only
in a thin surface layer of a conductor, while the volume contributes little or is
even counterproductive. This effect, as described in Appendix B, increases with
frequency and eventually defeats any high data rate, long-distance transmis-
sion. Optical fibers do not suffer from this limitation and therefore have a clear
advantage when it comes to transmitting high data rates over long distances.
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What little loss remains in optical fibers is indeed fundamental to fused silica,
as detailed in Chap. 5. There have been approaches to reduce loss even further
by using other glass types. On theoretical grounds, chalcogenides, fluorides, and
halides hold promise to have dramatically lower loss figures than fused silica.
Unfortunately, such theoretical considerations never made it into a realization.
Production of such fibers is fraught with problems arising from their chemi-
cal nature: It is extremely difficult to obtain good purity of a highly reactive
substance. Today significant progress in that direction is not anticipated.

Our quick survey would not be complete without mentioning optical non-
linearity. Since the early 1980s, researchers have investigated the nonlinear
properties of optical fiber. The term refers to the situation that some optical
property of the fiber, such as the refractive index, depends on the intensity
of the light wave passing through it. Nonlinearity does not occur in copper
cables (at least not to any noticeable degree, anyway), but clearly manifests
itself in fibers. This was considered a nuisance for a long time, but today it
is increasingly realized that it is precisely the exploitation of nonlinear effects
that allows a new generation of fiber-optic transmission systems, which turns
out to be vastly superior to previous technology in its data-carrying capacity.
We mention here only in passing the concept of solitons, special light pulses
that maintain their shape not in spite of the presence of nonlinearity but due
to its presence. In Chaps. 9 and 10, we will discuss nonlinearity and solitons in
greater detail.

In some sense, today’s fiber-optic networks have many aspects in common
with the telegraph networks of earlier days: either has both attenuation and
dispersion; these two represent the biggest practical problems. One can beat
attenuation by inserting repeater stations into the fibers at intervals of 50 or
100km or so. The novelty in fiber optics is that there is nonlinearity, and it
causes effects unknown to electrical systems engineers. Meanwhile, however,
the first commercial systems exploiting and embracing nonlinearity and solitons
have taken up service, and it can be anticipated that more is yet to come.

We must also point out now that optical telecommunication is by no means
the only field of application of fibers. Beyond their enormous data-carrying
capacity and great reach, they represent other specific properties that make
them attractive for use in data acquisition systems.

One of these properties is the enormous savings in weight, as compared to
copper wire. One does not so much realize it by comparing the densities (cop-
per: 8.9kg/dm®, fused silica: 2.2kg/dm®) because equal volumes are hardly a
relevant basis for comparison. There are protective jackets around both kinds
of cable, both for mechanical protection and electrical insulation. These jack-
ets represent the lion’s share of the cable’s mass (bare fiber weighs in at just
30mg/m). In a realistic comparison between, let us say, fiber-optic cable and
coaxial cable for use for transmission in the megahertz regime over a few kilome-
ters, it is a rule of thumb that 1 g of fiber cable replaces 10 kg of electrical cable.
(Both reach and data rate of fiber can be scaled up much higher than that of
coaxial cable, though.) This represents an immediate advantage where weight
limitation is an important requirement: on board of vehicles, ships, aircraft,
and spacecraft.

In connection with reduced weight, there is also reduction of space require-
ment. This is important in cable ducts in inner cities that are crowded already;
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any new installation has to find a way to squeeze in. A fiber-optic cable can
replace one or several coaxial cables, upgrade the data rates, and save space
at the same time. It is of course better to replace an existing cable in a duct
with an upgrade than to install new ducts. Just imagine a work crew digging
up Broadway in Manhattan to place more ducts — this is not an option.

As a further distinctive property, fiber-optic cables are immune to electric or
magnetic field interference. This is frequently a definitive advantage in industrial
installations. Even in close proximity to high-voltage installations, etc., there is
no interference picked up by the fiber. This feature sets it apart from electric
conductors.

Moreover, glass is chemically quite inert. As long as the fiber’s protective
jackets are also made of inert materials, fiber-optic cables can be deployed in
chemically hostile environments where metallic parts would quickly corrode.
This is attractive for applications in the chemical industry.

And, finally, a fiber-optic cable guarantees a perfect electrical insulation be-
tween transmitter and receiver. The same thing can be achieved for electric
cables by other means, the so-called optocouplers, but in a manner of speaking,
a fiber is an optocoupler stretched long. Different fluctuating ground potentials
are therefore no longer a concern when subsystems are connected with fiber
optics. This is more than a small benefit when there is a potential risk from
combustible fumes that one might find, e.g., on oil-drilling rigs. The combina-
tion of these properties leads to a fiber-optic sensor technology, which will be
discussed in Chap. 12.
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Physical Foundations

The end of a “bowtie” fiber under the microscope. The fiber’s outside diameter
is 125 um. The light-guiding core is discernible as a small central bright spot.
It is surrounded by a bowtie-shaped birefringent zone that gives this fiber type
its name. For further information see Sect. 4.6.2 and Fig. 4.18 in particular.



Chapter 2

Treatment with Ray Optics

Calculations in technical optics are often done with a technique called raytrac-
ing. This is a treatment of optical systems in the framework of ray optics. It
provides a particularly clear, if incomplete, view of the properties of optical
systems. Strictly speaking, light propagation needs to be treated by taking
the wave nature of light into account. The difference is that waves give rise
to diffraction and interference phenomena which are disregarded in ray optics.
Whenever the geometrical dimensions of the problem are so small as to become
comparable to the wavelength of light, the ray optic treatment breaks down.
This is the case in single-mode fibers.

That notwithstanding, we will first present a ray-optical consideration in
order to get an idea of the phenomena to be expected. When we then proceed
with a wave-optic treatment in Chap. 3, it will become apparent that in fibers
the main difference consists in the fact that the direction of light propagation,
which can be any direction in ray optics, is restricted to a discrete set of angles
in the full picture.

2.1 Waveguiding by Total Internal Reflection

Consider a light ray impinging on some boundary to an optically less-dense
medium. Less dense is optics parlance and means “having a lower index of
refraction.” At a suitable angle of incidence the ray will be fully reflected, in-
stead of passing through. This process is called total internal reflection and
is explained in any textbook on optics (see, e.g., [125, 65, 135]). Total inter-
nal reflection plays a role in many contexts: Prisms in binoculars or camera
viewfinders use it, and it is the reason why to a diver the water surface appears
like a mirror.

Call the angle of incidence « and the angle of refraction 5 (Fig. 2.1). At the
boundary to the less-dense medium (na < ng if we think of air and glass), the
inequality 8 > « holds. On the other hand, 5 cannot exceed 90°. This becomes
clear from an inspection of Snell’s law of refraction

sin «v nA

sinf8  ng

F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_2, 15
(© Springer-Verlag Berlin Heidelberg 2009



16 Chapter 2. Treatment with Ray Optics

/ n =ng >N

Figure 2.1: On the principle of total internal reflection. The ray coming in from
bottom left at angle « strikes the boundary to the less-dense medium and is
either refracted (angle ) and transmitted or, if « is too large for that as in case
3, is totally reflected towards the bottom right. Case 2 represents the borderline
situation with a grazing angle of the outgoing beam.

when keeping in mind that sin § cannot exceed unity. In that limiting case,

. na
SN Qlerit = ——
naG

<1

For even larger angles of incidence, the ray is reflected back into the denser
medium nearly without loss. This is the meaning of the term “total internal
reflection.”

The same mechanism can also be used to guide light around bends. In
1870 the English scientist John Tyndall (1820-1893) during a session of the
Royal Academy demonstrated an experiment which is now part of the standard
repertoire of physics course demonstration experiments: A bucket of water is
fitted in its lower part on one side with a small hole for the water to spit out,
and on the opposing side with a window through which light from a bright lamp
illuminates the hole from inside. The water falls in a parabolic curve, and this
arc of water guides the light. Some part of the light is scattered off from surface
irregularities so that, in a darkened lecture hall, the water column glows in the
dark to spectacular effect (Fig. 2.2).!

The demonstration hinges on the fact that the refractive index of water
exceeds that of the air surrounding it. The index of water is about nw = 1.33,
while that of air is about ny = 1. Most glasses have indices in the range of
ng ~ 1.4 to 1.8, and therefore the same guiding effect can be had in strands or
rods of glass.

ITyndall did not invent this himself. The twisted but amusing story leading up to our
present-day insights about light-guiding and fibers is reported in [64].
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Figure 2.2: Total internal reflection in water lets illuminated fountains glow.
Submerged lamps illuminate the fountain from below, and the water column
guides it up. This picture was taken in Boca Raton, Florida, USA.

And indeed, fibers exist which consist of nothing but basically a long cylinder
of glass or transparent plastic with a diameter of the order of 1 mm. They are
used for some special illumination applications, like guiding light into hard-to-
reach places inside some apparatus, and everybody has seen those decorative
lamps in which a whole bundle of such fibers is combined. Typical optical fibers
for data transmission have a somewhat more complex inner structure, though.

2.2 Step Index Fiber

A frequently used type of fiber is called step index fiber. Its internal structure is
as shown in Fig. 1.3: There is a core with circular cross-section, surrounded by a
cladding zone with ring-shaped cross-section. The core consists of a glass with
slightly higher refractive index than that of the cladding. Light is therefore
guided in the core (but we will need to make this statement more precise in
Sect. 3.13). The advantage of this two-layer structure over the simple version
is that the fiber surface, i.e., the boundary between cladding and the outside
is no longer involved in the light-guiding mechanism. In the event that the
fiber surface is soiled or touches other glass, the function is not compromised.
The unstructured fiber, in contrast, would suffer from enormous loss. Just
consider the case that a drop of oil or other liquid comes into contact with the
fiber surface: if it had a refractive index comparable to that of the glass, the
waveguiding by total internal reflection would break down [158].
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Air Fiber

n=np

Cladding n=ny,

Figure 2.3: Sketch for calculating total internal reflection.

Since the outer surface is not important for the waveguiding in step index
fiber, we may simplify its discussion by pretending that the cladding diameter is
infinitely wide so that no outside surface exists. Now we can discuss the largest
angle with respect to the fiber axis which a ray of light may take and still be
guided by the fiber (Fig. 2.3).

Near the fiber end face, we distinguish three refractive indices n, with

nKg > Ny = Na,

where we used indices A for ambient air, K for core, and M for cladding.? In the
second relation, the equality is valid for unstructured fibers; we will concentrate
on step index fibers, though.

We apply Snell’s law:

ngk sin 3, (2.1)
nkgsiny = mnysind. (2.2)

na sin

When we assume the fiber axis to be perpendicular to the front face, 8+~ = m/2
and hence sin 8 = cos~y. Then

sin 8 = 1/1 — sin? . (2.3)
The limiting angle for total internal refraction is defined by

SiN0max =1 = S0 Ymax = nM/NK. (2.4)

2These indices suggest the German words Kern (core) and Mantel (cladding), respectively.
We keep them from the original German edition of this book because the English words core
and cladding, as they share the same initial, do not provide a better option. Conveniently,
the related English words “kernel” and “mantel” also denote the central part of something
and some kind of enclosure, respectively.
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Inserting Eq. (2.4) in (2.3) and that in (2.1), we obtain

2
) n
NA SIN Qmax = Ny 1 — 3 = y/n&k —nd. (2.5)
n
K

We may assume na = 1 for air. Then the limiting angle ap,.x for rays to be

guided is
Omax — arcsiny/ng —n
a K M-

The argument of arcsin bears a special name: it is called the numerical aperture,

often abbreviated as NA:
NA = y/n% — n3,.

(The word “aperture” derives from Latin apertus = open and indicates some
form of opening. We also find it in “aperitif,” the opening of a meal, and in
“overture,” the opening of an opera or a romantic affair. “Numerical” here
indicates a dimensionless number.)

Clearly, the numerical aperture is a measure of the index difference between
core and cladding. The largest acceptance angle for rays hitting the fiber face
is given by sin ayax = NA, inside the fiber by sin apmax = NA/ng. Using the
fact that in (linear) optics ray paths can be reversed, the acceptance cone at
the same time describes the exit cone of light at the other fiber end. In Fig. 2.4,
this input/output cone is schematically shown.

We use the opportunity to introduce another frequently used quantity which
is also a measure of the index difference between core and cladding:

PN Sl

2.
2nf< (2:6)

The conversion between NA and A is given by
NA = nKv 2A.

Usually the index difference is quite small (a few tenths of 1%) so that A can
be simplified as

(nk — nm) (N + 1)
nk (nk + nm)

nKg — NMm
nK ’

This last relation justifies that A is called normalized refractive index difference
or normalized index step.

Let us consider typical realistic numbers for single-mode fibers. We assume
A = 0.3%; with ng = 1.46, this implies NA = 0.11; 0.11 rad indicates an
acceptance angle of about £7°. Rays hitting the fiber face within a cone of this
angle will be guided in the fiber. Rays coming in at steeper angles will leave the
core; they propagate in the cladding and move away from the axis. Ultimately
they are lost for guiding: The cladding often has more loss than the core, so
that part of this light is dissipated. The rest eventually reaches the outside
surface where typically a plastic coating is applied for protection; the coating
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—— -
Fiber

Figure 2.4: Acceptance and exit cone of a fiber are shown schematically. In
reality, the cone is not quite as sharply limited.

has strong optical loss. We conclude that light rays which have left the core
once are lost forever.?

In this chapter we have used ray optics. We have seen no reason to assume
that within the cone some angle would be preferred over any other one. In the
following chapter, a wave-optical treatment will reveal that within the contin-
uum of angles, only a discrete subset is physically possible. These specific angles
are related to the so-called modes of the light field in the fiber. The concept of
modes is of central importance for the waveguiding properties of fibers and will
be studied in detail in the next chapter. However, if many such modes exist,
the continuum of angles is approximated again, and our ray-optical approxima-
tion is the better justified the more modes there are. In the remainder of our
ray-optical treatment we will therefore have multimode fibers in mind.

2.3 Modal Dispersion

In this paragraph we will consider the fact that different modes, i.e., rays enter-
ing the fiber at different angles, travel different path lengths until they reach the
far end of the fiber. Consequently they arrive at different times. This scatter of
arrival times is known as modal dispersion. Figure 2.5 illustrates the situation.

i

L L

Figure 2.5: Modal dispersion: rays propagating at an angle with the fiber axis
travel a longer distance than those remaining parallel to the axis. This leads to
different arrival times.

In a fiber of length, L, let the path length of a beam propagating at an angle
(3 with the axis be called L’. Clearly, L' = L/cos 3. Earlier we have seen that
sin § cannot be larger than NA/nk. In any event, 5 < 1, and therefore we may

3There is one subtle exception to this otherwise reliable rule: so-called whispering gallery
modes will be described in Sect. 7.5.
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approximate sin 3 =~ 3 and cos 3 ~ 1 — 32/2. Then we obtain

NAZ2

2n2

L’=L<1+
K

>:L@+Ay

Let us insert the numerical example values from above. With A = 0.3%
it follows that L’ is 3 parts in 1000 longer than L. This implies that the path
difference between the straight and the maximally inclined beam reaches one
full wavelength after a distance of 333 wavelengths.

In an interference experiment, one finds a first destructive interference —
and hence a mutual cancellation of both rays — after a path difference of 1/2
wavelength; here, after a distance of 167 wavelengths which corresponds to only
a fraction of a millimeter of fiber length. But of course, since both rays propagate
at an angle, they do not fully cancel out but rather produce a fringe pattern
of parallel bright and dark stripes across their full cross-section. Averaged over
that cross-section, the interference effect cancels out.

Nonetheless, one and the same light signal coupled into the fiber may prop-
agate along different paths so that there is a scatter of propagation times often
called delay distortion. In the case of short light pulses, this causes an increased
duration, i.e., a widening of the pulse. This can go so far that pulses widen to
more than their separation; then neighboring pulses spill into each other. When
this intersymbol interference happens, the transmitted message is mangled and
may be undecipherable.

A rough estimate will suffice to show that this is indeed a serious problem.
Let us for simplicity take the velocity of light in the fiber as ¢/n.* Then, the
propagation time 7 for fiber length L in a step index fiber with core index nk
is 7 = nxL/c. For the ray along the axis, the travel time acquires its minimal

value:
nK L
Tmin = .
C

Meanwhile, the ray traveling at the maximal angle takes the longest time:

L
Tax = B2 (14 A) = 7 (1 + A).
C

In comparison, the difference 67 = Timax — Tmin 1S

TLKL

or = A = Toin A

C

This shows the simple result that the relative amount of propagation time scatter
is given by A:

oT

Tmin

=A]|.

Let us again take A = 0.3% as a typical value. In a fiber of 1km length, the
arrival times will spread over ca. 15ns.

This is just a rough estimate, of course: we used approximations and we
have neglected that in addition to meridional rays there can also be helical rays

4By doing so, we momentarily ignore the distinction between phase and group velocities.
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Figure 2.6: Light guiding by total internal reflection in a fiber. There are
meridional and and helical rays. Meridional rays (a) propagate in a plane,
helical rays (b) on a twisted path.

(Fig. 2.6). Nonetheless it tells us that there is some maximum data rate above
which the transit time spread will begin to deteriorate the signal integrity. The
maximum rate is given by the inverse of the maximum scatter: in our example
we obtain about 70 MHz.

That is not a very high rate, and 1 km is not a very long distance, either. We
therefore realize that the mechanism of modal dispersion can severely hamper
the usefulness of fibers for practical applications. Fortunately, there are ways
to avoid the problem. One can either use the so-called gradient index fibers or,
for the highest demands, single-mode fibers. We will take a closer look at both.

2.4 Gradient Index Fibers

In order to avoid the scatter of arrival times, one can use a certain radial profile
of the refractive index in the fiber. Instead of a step index profile, let us consider
a gradient index profile where the index depends on the radial position like

n(r) = { nky/1—2A(r/a)*: |r|<a (2.7)

M : |’I“| > a,

where a denotes the core radius. The resulting profile is sketched for selected
values of the profile exponent « in Fig. 2.7.

The optimum index profile is the one which minimizes the differences in
transit time. In first approximation, the optimum is obtained for e = 2; in a
parabolic index profile, fiber rays follow a curved — rather than zigzag — path.
While the curved path is still geometrically longer than the straight path along
the axis, the detour is made up for by the lower index away from the axis so
that the optical path is the same.

Now one obtains for the scatter of transit times
niL A as above
nKL A2

c 2

a=00: 0T =

a=2: o=

. A _3
improvement by 5 ~ 10
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Figure 2.7: Some common index profiles, as described by Eq. (2.7). For a = 2
the profile is parabolic. For o — 1 the profile becomes triangular, and for
a — 00, rectangular (step index profile).

This is a considerable improvement: For a gradient index fiber with parabolic
profile, the transit time spread is reduced by about three orders of magnitude.
The modal dispersion is then reduced to a few tens of picosecond per kilometers.

A precise calculation of the optimum profile exponent is quite involved due
to the sudden transition of the index profile in the core to the constant index
in the cladding. It has been found that the optimum value does not occur
exactly at o = 2, but slightly off, depending on glass type, doping material,
and wavelength [95, 51]. One reason is the so-called profile dispersion, which is
treated in Sect. 4.2. Simply stated, it occurs because A depends on wavelength,
due to the fact that both nx and ny; depend on wavelength in not exactly the
same way. Moreover, the optimum exponent is not the same for meridional
rays and helical rays; it thus also depends on the specific mix of excited modes
[24]. For these reasons, the significance of the theoretical optimum is reduced.
Unavoidable manufacturing tolerances in making the fibers make it difficult to
maintain a target value with high precision anyway. Therefore, improvement
over the parabolic index profile through further perfecting the index profile is
only marginal.

2.5 Mode Coupling

The distribution of power over the different modes in a multimode fiber is not
necessarily maintained as the light propagates down the fiber. Whenever the
fiber is bent, there is coupling between modes. Any motion of the fiber on the
table or lab bench, indeed just small temperature fluctuations, can and will
modify the distribution of power over the modes (the “mode partition”). This
has no further consequences as long as the detector at the fiber end correctly
measures the sum of all partial powers. In practice, however, detectors are not
necessarily uniformly sensitive across their surface; in such case some modes
would register stronger than others. Then random changes of the mode partition
will be reflected as random fluctuations of the received power, a phenomenon
called mode partition noise.

As the mode partition fluctuates, the transit time scatter is mitigated to
some degree. It becomes unlikely that a certain photon travels the total distance
in the fastest or the slowest mode; more likely it will undergo a random walk
between faster and slower modes, and experience an averaging effect. Provided
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that the fiber length exceeds a certain minimum called the coupling length
Lcoupl, the temporal spread does not grow in proportion to distance L, but only
as v/L. A typical value for the coupling length is on the order of 100 m for step
index fibers and a few kilometers for gradient index fibers.

Mode mixing is then beneficial for reducing modal dispersion. One can even
enhance this effect by enforced mode mixing. This is accomplished in mode
mixers which are mechanical fixtures that deform and bend the fiber (Fig. 2.8).
It is also a well-known fact that sometimes a fiber can transmit larger bandwidth
when it is made from a concatenation of several pieces, rather than one single
piece. One might have expected that irregularities at the joints (the fiber splices,
see Sect. 8.3.2), would be detrimental, but the opposite is true!

Figure 2.8: Light guiding in a bent fiber: bends imply that rays impinge on the
core—cladding interface at a different angle. Part of the light may even be lost
because the maximum angle for total internal reflection is exceeded (dashed).

2.6 Shortcomings of the Ray-Optical Treatment

The treatment given so far is not accurate. We have pretended that there are
rays of light which are reflected at the core-cladding interface like at an ideal
mirror. Of course, light is a wave phenomenon. The wave partially protrudes
across the interface and reaches into the second medium down to a penetration
depth on the order of a wavelength. This makes the ray path longer; equivalently
one can also speak of an additional phase shift known as Goos—Hdnchen shift
[143]. We are dealing with fibers which have core diameters not a whole lot larger
than the wavelength, and therefore we must expect significant corrections.

However, rather than attempting to incorporate such corrections into a ray-
optical treatment, we take the high road and replace it altogether with a proper
wave-optical treatment in the next chapter. As we shall see, wave optics predicts
automatically that part of the light penetrates into the cladding, that the exit
cone does not have a perfectly sharp boundary, and it will tell us that there is
a discrete set of possible distributions of the electrical field in the fiber cross-
section known as the fiber modes. This is equivalent to saying that rays cannot
make any angle with the axis between zero and the maximum, but only one out
of a discrete set.



Chapter 3

Treatment with Wave
Optics

In this chapter we will start with Maxwell’s equations, derive a wave equation,
apply this to the geometry of the fiber, and finally arrive at the modal structure.
Closed solutions can be obtained for step index fibers and for gradient index
fibers without cladding (i.e., when the gradient continues ad infinitum). We will
restrict our treatment to step index fibers. For the sake of clarity, we will also
use several approximations in order to emphasize important issues over detail.

3.1 Maxwell’s Equations

In MKS units of measurement, Maxwell’s equations are [75]

V-B = 0,
- = 0D
H = J+ — 3.3
V x + 50 (3.3)
= 0B
E = ———. 4
V x 5 (3.4)
Here,
E  electric field strength (V/m)
H magnetic field strength (A /m)
D dielectric displacement  (As/m?)
B magnetic induction (Vs/m2=T)
J  current density (A/m?)
p  charge density (As/m3)

Some textbooks simplify by considering only processes in vacuum. Of course,
there is no use for us in doing so; we need to describe processes inside a material.
Therefore we need to use quantities which are given by the material’s properties:

F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_3, 25
(© Springer-Verlag Berlin Heidelberg 2009
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P polarization
M  magnetization
o conductivity

Polarization and magnetization describe the distortion of atomic orbitals as
they are produced by the influence of the electromagnetic field. Conductiv-
ity describes the transport of electric charges (as is well known, there are no
magnetic charges); in the general case it takes the form of a tensor.

The following relations hold:

D = eE+P, (3.5)
B = po(H+ M), (3.6)
J = oE. (3.7)

where
€o vacuum permittivity  (dielectric constant of free space),
to vacuum permeability (permeability constant of free space).

The numerical values are given by

_ W0 Am
©0 = 47c? Vs
As
~ 885x10712—=
% Vm’
_ Am Vs
Ho = 107 Am

Vs
~ 1.26x 1078,
x Am

Two combinations have special relevance: the product

poeo = 1/¢2,

where ¢ = 2.99792458 x 108 m/s is the speed of light in vacuum, and the ratio

Are\? 9
/,LQ/E(): W :ZO'

Zy ~ 3778 is the vacuum impedance and denotes the amplitude ratio of the
electric and the magnetic part of the electromagnetic wave:

In air and glass we may simplify as follows:
= p=0 There are no free charges (Approximation 1)

= J =0 There are no currents (Approximation 2)

= M =0 There is no magnetization (Approximation 3)
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Hence, of all properties of the material, we retain only the ones which influence
the polarization. Using these approximations, Maxwell’s equations are reduced
to

v-D = 0, (3.8)
V-B = 0,
B oD
B = 1
V x Ho 5 (3.10)
L OB
VxE s (3.11)

3.2 Wave Equation

Applying Vx to Eq. (3.11) yields

VxVxE = Vx(—aB>, (3.12)
ot
, . P .
V(V-E)-V°E = —a( X (3.13)
We rearrange the RHS using Egs. (3.10) and (3.5) and obtain
= = o ( oD
. — 2 = _— —_—
V(V-E) - V2E o (Mo = ) (3.14)
0% -
= =D 1
Hops (3.15)
& 5 9? 5
= ﬁ%ﬂ)@E - M)@R (3.16)
We thus find the wave equation
v B ivE- L% e . D
V(V-E)+V‘E = = atQEJruoatQP' (3.17)

A fully analogous equation can be derived for the magnetic field.

Now we must make some statement about the relation between the polar-
ization P and the field strength E. This involves properties of the material. We
will make the assumption that the polarization follows a change of field strength
instantaneously, i.e., quicker than any other relevant time scale involved (Ap-
proximation 4). Then we can write the polarization as

B o (\OB+ B 4\ ). (3.18)

Now we introduce a further approximation: We will assume that the polarization
of the material is always parallel to the field strength (Approximation 5). This is
a justified assumption: In a homogenous medium, the tensor x(*) takes the form
of a scalar. It is true that certain crystals are in use in optics which are decidedly
nonhomogenous, but glass is homogenous due to its structure (see Sect. 6.1.2).
In a fiber, the homogeneity is only slightly perturbed due to the refractive index
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profile. On the other hand, wave guiding essentially occurs parallel to the axis.
In this geometry one may make the paraxial approximation which plays a role
in many optical arrangements. Here it means that propagation will make only
small angles with the axis. Then the index change between core and cladding,
which is small to begin with, is almost inconsequential because E and H are
both perpendicular to the interface and are proportional to each other. (The
proportionality constant is the impedance, which in free space is given by Zj.)
In this book, we will use the scalar approximation throughout, because (a) a
vectorial treatment is considerably more involved and (b) the impact on the
result is minimal. Below we will briefly point out the difference between the
modes obtained in the scalar treatment and the so-called hybrid modes from a
vectorial calculation.

We return to the wave equation, in which we can now introduce a simplifi-
cation. Given that now E||P and thus D|E, it follows that V-D =V - E = 0.
On the LHS of the wave equation, the term with V - E then disappears and it

remains 52 o2
L1 . .
2
F=——F —P. 1
c? Ot? +ho ot? (3.19)

3.3 Linear and Nonlinear Refractive Index

We will now go one step further and make specific assumptions about the rela-
tion between electric field and polarization.

3.3.1 Linear Case

In many situations, it is well justified to truncate the series expansion of
Eq. (3.18) after the linear term

P =exVE. (3.20)

This is the linear approzimation (Approximation 6); it is valid for low light
intensities. Due to Eq. (3.5) we then get

D=cF (1 + x“)) . (3.21)
The expression inside the bracket is the relative dielectric constant
2
1+X(1) =€= (n—}—iia) ,
2w

where n is the refractive index and « is Beer’s coefficient of absorption. We are
going to study propagation in extremely pure, low-loss glass. If there ever was
a justification for using the low-loss approximation that o ~ 0 (Approximation
7), this is it. Then, € is real and is given by

e =n? (3.22)

On the RHS of Eq. (3.19), we insert the relation (3.20) between E and P and
then obtain

. 282
2E:TL
v c2 Ot?

E. (3.23)
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This is the linear wave equation, as it is obtained directly from Maxwell’s equa-
tions using Approximations 1-7. An analogous equation

L 292 .
-9 g 24
v c? Ot? (3.24)

can be found by similar procedure for the magnetic component of the wave.
From now on we will drop vector symbols (arrows) for convenience.

3.3.2 Nonlinear Case

If one does not truncate the serial expansion (3.18) after the linear term, one
can capture some interesting physical processes that are lost in the linear ap-
proximation, but which are experimentally observed and are of relevance for
advanced applications. As soon as F is no longer so small that truncation after
the linear term is justified, we enter the realm of nonlinear optics.

Here our main interest is for light in glass. Glass is a material which has
a statistical structure, which is isotropic on average. Therefore glass has an
inversion symmetry so that x(?) = 0. The first nonvanishing higher-order term
in the series expansion is then the one containing x®). Even higher terms,
however, can still be safely neglected except in some very special circumstances
since their coefficients are small so that they become noticeable only at enormous
intensities. This is why we can restrict our discussion to the impact of the x(3)
term (alternative Approximation 6). It will turn out, though, that this term can
make a big difference.

As before, we keep the low-loss approximation, so that the only conceivable
effect is a modification of the refractive index. In the linear case we had

P= eox(l)E

and
2

n“=e=1+ X(l).

In the interest of a clear distinction, we shall denote the e appearing here as
€lincar- Similarly, from now on the refractive index n in this equation shall be
denoted by ng; we will call it the small signal refractive index. For the nonlinear
case we obtain

P=c {x(” + X<3)E2} E (3.25)
and
e=n?=14+ Y+ xPE? = ear + XD E2 (3.26)
This is the same as
Y@ )
€ = €linear <1 + —F ) . (327)
€linear

Since the nonlinear contribution to the refractive index is a small correction, we
obtain

@) 3)
n=noy/1+ X E2ang (1425 E?). (3.28)
€linear 2”0

We rewrite this as

a0
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with N
- X
= 3.30
2= o (3.30)
The numerical value of ng for fused silica is slightly frequency-dependent and
is also influenced by dopants. However, these dependencies are weak and we
can use the typical value of 10722 m?/V2. The intensity I (power per area) of
a light field is proportional to the square of the field amplitude. Therefore it is

quite common to write
@31

with T = (ng/Zo)E? and
ng =3 x 107 m?/W. (3.32)

We see that inclusion of the x(®) term results in a modification of the refrac-
tive index: The index always depended on wavelength, but now it also depends
on intensity.

Under conditions that one would consider “reasonable”, this modification
is tiny indeed: Even an irradiated power of 1kW, focused down to a spot of
100 um?, will result in an increase of the index of only

103 W 7
5 =3x107". (3.33)

_ —20 2

This is a change which is much smaller than the core—cladding index difference
of a fiber. As we proceed to consider the field distribution in the fiber, this term
will therefore be inconsequential. Equation (3.23) remains valid — in the linear
case one can equate n with ng, but in the nonlinear case n(I) = ng + nol. We
will see later (beginning with Chap. 9) that this nonlinearity unfolds its impact
when the phase evolution of a light wave is considered.

3.4 Separation of Coordinates

At this point, we introduce simplifications which are based on the special ge-
ometry of fiber: circular cross-section, extended in the longitudinal direction.
This strongly suggests the use of cylindrical coordinates r, ¢, and z. We take
the propagation direction as the positive z direction. As is well known, the
Laplacian in cylindrical coordinates reads

10 (0 1 92 02
ep_ 1L ~ 9 g+
VE= "o (TGTE>+ E+ 55 E. (3.34)

We introduce the following ansatz for the optical field of the light wave:
E=ENZT. (3.35)

Here,

N =N(r,¢)

is the field amplitude distribution in the plane normal to the z-axis,

Z=Z(z)=e
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denotes a running wave with wave number 3, and
T=T() =e“"

denotes a monochromatic wave with (angular) frequency w. Such separation
is permitted due to the linearity discussed above, which makes it possible to
pull out a factor of Ey, and paraxiality, which implies that both the electric
and magnetic field components are basically perpendicular to the propagation
direction; thus, longitudinal and transverse processes are decoupled. We write
0, not k for the propagation constant; this way we admit a difference between
the wave vector and its longitudinal component. This is to allow propagation
in analogy to the rays that make an angle with the fiber axis (see Sect. 2.3).

Using cylindrical coordinates and this ansatz, the wave equation takes the
form

ENZT.

(3.36)

Obviously, all terms contain the constant factor Ey, which is thus cancelled out.
The physical reason, again, is the linearity assumed here.

Partial derivatives act differently upon N, Z, and 7. The first term can be

rewritten as
L9 (2 zr) —2rt2 (+2)
T

10 0 1 92 9? n? 92
—— | r=—ENZT —=5FENZT + —ENZT = - —
T or (r or oM ) + r2 0¢? oNET + 022 oM c? ot?

ror ror \' or
which can be simplified to yield

10 92
=T <;EN+ ﬁ/@ .

The second term becomes

1 o
2T 5 N,
and the third
-B*NZT.
On the RHS we obtain
fZ—QszN ZT.

We will denote the vacuum wave number by kg. Inside a medium with refractive
index n, we will write k = nkg = nw/c. Then, the RHS becomes

—kKNZT.

Now the factor Z7 is common to all terms and is thus cancelled out, too.
This is caused by the homogeneity of the problem in space (at least in propa-
gation direction) and time. We are left with the field amplitude distribution in
the plane normal to the propagation direction. As typical fibers are circular in
cross-section, it is useful to perform a further factorization:

N(r,¢) = R(r) ®(¢). (3.37)
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When we now reinsert all terms and multiply with 72 /R®, we obtain

r 0 r? 92 1 02
rJ e 1 O 1232 — k22 )
RarR—i-R—arzR—i-q)—a(bQ reg k*r=, (3.38)

which after sorting of terms becomes

2 2
L0 4 7( %Rw»agnw» (ZfﬂQ)R) (3.39)

B 992

We see that now the LHS contains ® and not R; on the RHS it is the other
way around. Therefore, both sides must be equal to some constant. We will
denote this constant by m?. Now we have two independent equations for the

azimuthal and the radial parts of the field amplitude distribution:

8%2@ +m?® =0 (3.40)

and

y 02 0
r WRJrra—RJrr ( 27ﬂ2)R:Rm2,

which, by using the abbreviation k2 = k? — 82, is written in simpler form as

5 07 0
T ﬁR+T8—R+ (k*r? —=m*)R = 0. (3.41)

To obtain some understanding of the meaning of quantities , k, and [,
we recall the ray-optical description where we had rays propagating at a small
angle with the axis. We assign the propagation constant k to the wave. 3 was
introduced as its component in the propagation direction. Then, one can look
at k as its transverse component.

3.5 Modes

The equation for the azimuthal structure, Eq. (3.40), has the general solution
® = ¢g cos(me + ¢o) (3.42)

with ¢ and ¢ constants. Surely, ® and 0®/0¢ must be continuous at ¢y and

¢o + 2m. But then, m must be an integer number. This constrains the number

of possible solutions of the equation for the radial structure, Eq. (3.41).
Equation (3.41) has the form

22y + xy + (k%2% —mP)y =0
when one makes the identifications y = R and x = r and interprets the prime as
a derivative with respect to x. In this form, or after scaling out k, the equation
is given in mathematical tables. It is called Bessel’s differential equation. For
integer m it is solved by

y = c1Im(kx) + caNy (k2), (3.43)
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whenever sz is real (i.e., K222 > 0), or by
y = csly (k) + 4Ky (k), (3.44)

whenever xx is imaginary (i.e., k2z? < 0). Here, functions J,,(kz), N,,(k7),
L, (kx), and K,,(kz) are Bessel functions. Properties of Bessel functions are
given in Appendix C.

In order to find the coefficients c¢; to ¢4, we must finally fix the specific
geometry of the fiber. Up to now, we have only assumed cylindrical geometry
and a small value of the refractive index difference. Now we further specify that
we consider a step index fiber: This is both a particularly simple structure and
a realistic choice. For a step index fiber we have

(3.45)

| nx: r<a (inside the core),
T nm: r>a (in the cladding).

Of course, ng > ny because there would be no waveguiding otherwise. In order
to distinguish the refractive indices in core and cladding, and also the wave
numbers, we will use indices “K” and “M” as in Chap. 2.2. Index “0” continues
to denote the respective quantity in vacuum, e.g., kx = nkko.

In the limiting case when the wavelength is much smaller than the geometric
dimensions of the fiber cross-section, we expect to recover the results from ray
optics: Light is guided inside the core. Therefore we look for solutions with the
dominant part of the light wave concentrated in the core. We conjecture, at the
same time, that light in the cladding will have field amplitudes which decrease
further away from the center and will at least not contribute dominantly to the
guided wave.

But then, xr must be real in the core and imaginary in the cladding. In
other words, at least in the core, £ > § must hold: The wave number must be
larger than or equal to its longitudinal component. In the cladding we may well
have the opposite situation. This corresponds to solutions to Bessel’s equation
with transversal standing waves in the core and radially decaying waves in the
cladding.

We expect on physical reasons that the field amplitude distribution does
not have singularities. This implies that for the core the coefficient in the N,
term must vanish. In the cladding, similarly, the coefficient of the I,,, term must
vanish. This makes good physical sense: Far away from the core we expect the
field amplitude to decay at least as rapidly as 1/r because otherwise the integral
of power over the entire transverse plane would diverge.

In order to have xr real in the core, it is required that at r < a, (k7)2 > 0,

T (k}2< — ,62) r2 > 0. In contrast, in the cladding (i.e., at » > a), we need to
have (kr)? < 0 and thus (kM2 — ﬂQ) r2 < 0. Taken together, this implies

kx > B > km.

The range of possible wave numbers for propagation down the fiber is thus
constrained by the requirement of waveguiding.

Once again we introduce abbreviations: The transversal components of the
wave number in core and cladding are given by

’%%{ = sz - /623
Kir — (kn® = 8%);
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it is customary to use the product of these quantities with the core radius a:

u = kxka, (3.46)
= kma. (3.47)

u and w are dimensionless, real positive quantities often used in the literature.
To comment on their physical significance, suffice it to say that w describes the
progression of phase and w the transverse decay of amplitude. One might call
u the radial phase constant and w the radial decay constant.

In order to establish a relation between these somewhat abstract quantities
and measurable quantities, we use the following relation between u and w:

v +w? = (kg —B%)a® — (ky — B%) a® (3.48)
= (ki — ki) d® (3.49)
= kg (nk —niy) @’ (3.50)

It is clear that u?+w? equals a constant. This constant is of central importance
and is called normalized frequency or simply V number. It is given by

V2= kg a? (n% — n%/[)

or

V. = koaNA

o s (3.51)

— a N —N
)\0 K M

and contains all relevant data of an experimental situation. A step index fiber
is characterized by the core radius a and the refractive indices nk and ny or,
alternatively, numerical aperture. Either wavelength or vacuum wave number
completes the description of the experimental situation. In the following, the
value of V' will be the decisive criterion to establish how many modes a fiber
can support.

Using v and w, the general solution of the wave equation for a step index
fiber can be written as:

Nk = CxJIn(ur/a)cos(mo+¢o): r<a,

My = CuKin(wr/a)cos(me +¢o): > a. (3.52)

We recall that from a ray-optical treatment, one would naively expect a rect-
angular field distribution: constant 100% amplitude everywhere in the core and
0% in the cladding. It should by now be obvious that reality is different from
that.

At r = a both solutions must connect in a smooth way. This means that we
do not expect a discontinuity: Rather, we expect the transition to be continuous
and differentiable. This is only possible when the angular dependence is identical
for both solutions, which is why in Eq. (3.52) we already wrote the same ¢q
and m.

The conditions for smooth transition are

Nk(r=a) = Nulr=a), (3.53)
%NK(T =a) = %NM(T = a). (3.54)
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After inserting, we find

CxIm(u) = CuKp(w), (3.55)
0 0
CKEJm(ur/a)’T:a = CMEKW(U]T/Q)‘T:G' (3.56)
In the second of these equations we can introduce
0 _u_0 (3.57)

ar  ad(ur/a)

and thus use the argument ur/a throughout; then we can write the derivative
at r =a as
u Wy
C’Kme(u) = CM—Km(w) (3.58)
a a

(the prime (") denotes the derivative with respect to the argument).
For the existence of a solution, it is required that the determinant of coeffi-
cients be zero:

CKCMJm(u)%K;n(w) - CKCMKm(w)gJ;n(u) = 0. (3.59)

From this, CxCy/a can be eliminated immediately. Now we use a well-known
recursion relation between Bessel functions (see Appendix C):

ull (u) = mIn(u) — ulmer(u), (3.60)
wKl, (w) = mKy(w) — wKpy1(w). (3.61)
With this the derivatives can be eliminated:
T (w) (MK (w) — wKimg1(w)) = K (w)(mdy, (u) — udpgr (w))
Wl (WK p1(w) = uKp(w)Jmi1(w)
Im(u) Kp(w)
W (1) WK1 (0] (362

From this relation between u and w, we will now obtain the permitted solu-
tions for the fundamental mode of the fiber. It is obvious that functions K, (w)
on the RHS are always positive while functions J,,,(u) on the LHS frequently
change their sign. From this, one sees certain combinations of argument values
(and thus V' numbers) for which solutions are possible.

Explicit solutions are best obtained numerically. However, for our present
purpose, we can inspect some special cases which will give us insight without
invoking a computer.

3.6 Solutions for m = 0

Let us first consider the case of m = 0, which stands for rotationally symmetric
field distributions over the fiber’s cross-section. Then the equation is reduced
to
Jo(u) _ Ko(w)
wJi(u)  wKi(w)
For a survey of possible solutions, we use the following table in which LHS and
RHS of Eq. (3.63) are juxtaposed:

(3.63)
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wl Jo J1 | Jo/udy Ko/wK; w
01 O 00 = 00 = 0
+ o+ + = + = + Branch of solutions
2405 | 0 + 0 = 0 = o
- 4+ — = — = — No solution
3832 | — 0 00 = 00 = 0
- _ + = + = + Branch of solutions
5520 | 0 0 = 0 00
4+ = — = - = - No solution

There is an alternation of ranges with and without solutions. The table only
checks the algebraic sign; we can go beyond that and actually compute the
values pertaining to the branches of solutions and plot them in a diagram of
the (u,w) plane. This is done in Fig. 3.1. The curves represent ratios of two
Bessel functions; their shape looks similar to a plot of a tan function. This is
not surprising as we state in Appendix C that Jy resembles a cosine function
and J; a sine function.

8_I M 1 . M 1 M . 1 M I_
01 |: 02| : 03

2.405 3.832 5520 7.016

Figure 3.1: Solutions of the eigenvalue equation for m = 0 in the u—w plane.
As u increases, there is an alternation between regimes with existing (e.g., 0 <
u < 2.405) or nonexisting (e.g., 2.405 < u < 3.832) solutions. Labels at the
branches denote indices mp of the LP,,, modes, as explained in Sect. 3.9.

Additionally, we can plot the locus of all points pertaining to a given V num-
ber. They form segments of circles in the (u,w) plane. For a given fiber, circles
with different radii correspond to experiments at different wavelengths. The
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other way to look at it is that for a given wavelength, different radii correspond
to different core diameters.

Points of intersection between the tan-like branches with the circle segments
define possible solutions, i.e., combinations of v and w in a particular given
situation (V fixed). Obviously the first branch of solutions exists at any V
number between zero and infinity. The second branch shown here exists only
above a minimum V. It takes the value of V' = 3.832, as given by the first
zero of Bessel function J;. For all other branches shown one can make a similar
statement about the minimum V' which is always defined by a zero of J;.

3.7 Solutions for m =1

We might proceed by directly inserting m = 1 into the eigenvalue equation
Eq. (3.59). This is not a problem for a computer solution. However, here we
want to get a feel for the situation without recourse to a computer, and therefore
it is advantageous to use an alternative recursion relation of Bessel functions
which contains not m + 1 but m — 1. This way we obtain an equation for m =1
which again only contains Jo and J; (instead of J; and Jo); this makes our
argument more transparent.
So let us use

ull (u) = —mJn(u) —uly_1(u) and
wKl, (w) = —mKp,(w) —wK,,_1(w)
in Eq. (3.59) to obtain
_ i) Ky(w)
uJo(u)  wKo(w)’

In precise analogy to the procedure shown above we can again write a table to
locate the possible branches of solutions:

u Jl JO —JI/UJ() Kl/wKo w
00 1 0 = 0 = —00
No solution
+ + - = - = =
2405 | + O —00 = —0 = 0
+ - + = + = + Branch of solutions
3.8321 0 -— 0 = 0 = o
- — = — = — No solution
5520 — 0 —00 = —00 = 0
Branch of solutions
- + + = + = +

Again we find an alternation between permitted and forbidden regimes, with
the changes occurring at zeroes of Bessel functions. In comparison to m = 0,
here the regimes switch roles. This way there is a branch of solutions begin-
ning at V' = 2.405, constituting a second mode beyond the fundamental mode.
Figure 3.2 combines all solutions found so far, i.e., for m =0 and m = 1.
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Figure 3.2: Solutions of the eigenvalue equation for m = 0 and m = 1 in the
u—w plane for m = 1. Now there are branches of solutions where there were
gaps in Fig. 3.1.

3.8 Solutions for m > 1

At larger m values one again finds that allowed and forbidden ranges alter-
nate, with the transitions occurring where V' equals zeroes of Bessel functions.
Figure 3.3 shows all modes up to V' =8.

We wrap up what we have learned:

= For V' < 2.405, there is only one branch of solution.
= For V > 2.405, there are initially two branches.
= At certain still higher V' values, more branches come up.

The particular value V' = 2.405 marks the transition from the existence of
a unique solution to more than one solutions. Below, the fiber is said to be
single-moded. This first mode is called the fundamental mode, the transition
point is the cutoff of higher-order modes. For any given fiber, one can calculate
the corresponding cutoff frequency or wavelength from V = 2.405. At lower
frequencies (longer wavelengths) the fiber is single-moded. This implies that
some fiber is not single-moded in an absolute sense: Such statement has meaning
only in relation to a specified wavelength.

3.9 Field Amplitude Distribution of the Modes

We now see that the modes form a two-parameter family. One of the parameters
is m. m indicates the angular dependence of the field distribution of the mode.
For m = 0 the distribution is rotationally invariant, i.e., on any circular path
around the center one would find a constant field amplitude (and thus intensity).
For m = 1, the field amplitude will vary according to a sine function of the
azimuthal angle. It therefore has two zeroes at mutually opposite positions;
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Figure 3.3: All solutions of the eigenvalue equation in the u—v plane up to
u,w = 8.

in between there are a positive and a negative branch, or lobe. Either branch
contains a maximum of the intensity while the algebraic sign indicates the phase
of the field. Thus, in one lobe the field oscillates in opposite phase to the other.
For m = 2, a circular path would run through two full periods of the sine
function; the intensity pattern then resembles a four-leafed clover. Again, each
pair of leaves in opposite positions has the same phase while the other pair has
opposite phase. When m takes even higher values, the angular dependence of
the intensity has 2m leaves.

m also fixes which Bessel functions govern the field distribution in radial
direction: We have found a combination of J,, in the core and K,, in the
cladding. Since J,, oscillates (at any m), there are infinitely many ways to
smoothly connect J,, to K,,, even after m has been fixed. (Recall that the signs
of coefficients Cyi and Ck in Eq. (3.52) were arbitrary). This set of possibilities
is labeled with p, the second parameter. We adopt here the terminology of
modes as introduced in 1971 by Gloge [50]: Modes are designated with “LP,,,”
on grounds that they are essentially linearly polarized. Index m designates the
number of pairs of nodes in the azimuthal coordinate, and index p counts the
possibilities in the radial coordinate.

We can now sketch what the intensity distribution of the modes looks like.
Figures 3.4-3.6 show the various possibilities to make the connection between
the J,, and K,,, terms and give an idea about the intensity distribution.
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LPo4 LPgo LPo3

Figure 3.4: Construction of the radial intensity distribution for modes with
m = 0.

LP1 LP12 LP13

0 o >
|v 10 ur/a

Figure 3.5: Construction of the radial intensity distribution for modes with
m=1.
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LPy, LPy, LPys

Figure 3.6: Construction of the radial intensity distribution for modes with
m=2.

Between V' = 0 and V' = 2.405, there only exists the branch of solution
pertaining to the LPy; mode. This is called the fundamental mode of the fiber;
it has a particularly simple shape, not unlike a bell shape. Between V = 3.832
and V = 5.520 we additionally find the LPgs mode. As V increases, new modes
keep coming up.

This reasoning is borne out very well by experimental observation. In [145],
all modes were excited separately so that the intensity pattern at the fiber end
could be photographed individually. Figure 3.7 shows the result.

3.10 Numerical Example

We consider a typical numerical example to illustrate the transition from a
single-mode fiber to a multi-mode fiber. Take a fiber with a = 4um, A =
3 x 1073, and ng = 1.46. From the definition of V, using the approximation
NA = ngVv2A, and the cutoff condition V = 2.405, one immediately obtains
the condition for the cutoff wavelength:

2rangVv2A

2.405 (3.64)

/\cutoff =
Inserting the numbers, we obtain Acyto = 1.182 um. This fiber is then a single-
mode fiber for all wavelengths longer than 1.182 um. This includes the 1.3- and
1.55-um range preferred in telecommunication. For wavelengths shorter than
Acutoff there is more than one mode: A second mode appears at this cutoff, and
at some particular even shorter wavelength yet another mode appears. This
wavelength is obtained from the same condition by simply replacing V = 2.405
with V' = 3.832. One obtains 742nm.
For even larger V' (even shorter wavelengths) more and more modes are
added. The same fiber which supports just a single mode in the infrared will
carry several modes in the visible! As V grows very large, the wavelength
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Figure 3.7: Observed intensity distribution of all modes existing at V = 6.
For reproduction purposes the gray scale of the original photograph has been
reduced to a binary black and white. From [145] with kind permission.

becomes much smaller than the core radius and we approach the multimode
case. This confirms our previous heuristic assumption.

The LPy; mode exists all the way down to arbitrarily small V|, i.e., at any
arbitrarily long wavelength. None of the other modes has this property. How-
ever, the existence of the fundamental mode down to V' = 0 must not be taken
literally: We have used the approximation that the fiber cladding is infinitely
wide. However, at some very long wavelength the field will penetrate far enough
into the cladding to reach the outside surface. There is always a practical limit
for the longest wavelength supported in the fiber, often dictated by wavelength-
dependent losses.

3.11 Number of Modes

In order to find the total number of modes at any given V, we have to note
that there are degeneracies. For example, any mode can exist in two distinct,
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mutually orthogonal polarization states which are identical in any other respect
as long as we stick to our approximation that fibers are circularly symmetric.
(We will later look at small deviations from this symmetry.) Then, all LPg,
modes are actually pairs (doublets) of modes.

For m # 0, we have to additionally note that the azimuthal dependence
of the solution can be written either with sin or with cos; again, these are two
mutually orthogonal variants. Taking both this and the polarization degeneracy
into account, LP,,,, with m # 0 are actually quartets of modes. Let us consider,
as an example, the situation at V' = 6: From Fig. 3.3 we see six nominal
modes, two of which are pairs, and four, quartets. The total number thus is 20.
Asymptotically one can approximate

V —o00 = total number of modes = V?/2 (step index fiber).

For gradient index fibers, there is a similar approximation with V2/4.

Strictly speaking, the modes do not have precisely linear polarization. This
is due to the fact — neglected in our approximation — that the fiber is not a
perfectly homogenous material but has a step in its refractive index. This leads
to distortions of the field which produces some deviation of the modes, mostly
for higher-order modes. We can live with that because we are mostly interested
in the fundamental mode.

3.12 A Remark on Microwave Waveguides

The reader may or may not be aware that discrete modes also exist in microwave
waveguides. Microwave waveguides are metal pipes with conducting walls. This
enforces a node of the electrical field on the boundary. In contrast, optical fibers
are weakly guiding conduits. Therefore we could use here an approximation
which is not valid in microwave guides whereas there one finds different types
of modes and uses a different terminology [37]. Many of the modes derived
here are linear combinations of metallic waveguide modes; the following table
presents the correspondence:

LP modes Microwave guide modes

LPgy; HE;
LPy,; HE,;, EHo:
LPy; HE31, EHyy
LPgs HEq5
LP3,; HE4;, EHgy

Nevertheless, similarities do exist between optical fibers and microwave
waveguides. The biggest difference may be that they always have a minimum fre-
quency even for the fundamental mode; below, no mode is supported at all. This
can be traced directly to the conducting walls. In Sect. 4.5.2, we will present a
particular case in which a fiber with special structure has a well-defined finite
lower cutoff even for the fundamental mode, too.

3.13 Energy Transport

We have calculated the modal structure of fibers under the assumption of circu-
lar symmetry. Waveguiding arises from the guiding of modes by the refractive
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index structure. As soon as a fiber is bent, the circular symmetry is broken.
And, as may be expected, then additional energy loss arises; bending losses are
discussed in Chap. 5.2. Here we can already note this much:

The fiber core may be decisive for waveguiding, but it would be an over-
simplification that the light power is guided in the core exclusively. We have
seen that the field amplitude decays radially like an exponential function; this
implies that there is always a certain fraction of power well outside the core.
Different modes have different geometric field distributions; the fraction outside
the core must therefore also be different for different modes.

The energy transport out of (or into) a certain volume element is described
by the Poynting vector

S=ExH. (3.65)

The direction of propagation is perpendicular to the plane containing E and
H. Disregarding anisotropic materials, all three vectors are pairwise orthogo-
nal. The reader is reminded that by convention, the direction of polarization
designates the direction of the oscillation of E (historically there was once a
convention to refer to H, but that has long been obsolete).

In most cases, one describes the energy transport of a wave by giving its
irradiance or intensity. By this, one means the temporal average of the instan-
taneous intensity

Iing = E(t) H(t).

I gives power per unit area and thus has units of W/m?. Obviously I is the
temporal average of the Poynting vector:

I=(|S]).

In the special case that the wave is harmonic, the relations between rms and
peak values are E = V2 Ee and H = v/2 Hog. Then we find the intensity as

-tem
2
Using the relation
E=7yH,
one can also write )
I=—FE°2
27

When the wave propagates in nonmagnetic matter with real index n, this be-
comes n
I=—-F°
270

Power P is the integral of intensity over the cross-sectional area s:

P:/Ids.

After a calculation which we will not show in detail here (see [50, 120]), one
finds the energy fraction in the core (Px) and in the cladding (Py) for the
fundamental mode:
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Figure 3.8: Frequency dependence of the partition of power between core and

cladding. The relative power inside the core is shown as a function of V for all
modes up to V' = 8. Modes with m = 0,1 are guided when only a tiny fraction

of power is in the core (at their cutoff these curves begin at zero). It is true for
all modes that for large V' the fraction approaches unity. After [50] with kind

permission.
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For very large V', the mode is strongly concentrated in the core. As V' decreases,
the field begins to spread into the cladding. At the mode cutoff, practically all
the power is in the cladding. This is precisely what causes the loss of wave-
guiding. For modes with m > 2, waveguiding is lost already when the power

fraction outside the core exceeds 1/m. Figure 3.8 illustrates the situation.
We have seen that fields of different modes have different cladding penetra-

tions. For any given mode, the degree of spreading into the cladding depends
on wavelength. This observation is also relevant for the fiber’s dispersion, which

will be treated in Chap. 4.



Chapter 4

Chromatic Dispersion

A light signal propagating in an optical fiber is subject to a variety of ways in
which it can get distorted. Many of these are based on different propagation
velocities for different parts of the signal. After such distortion, there is a risk
that the signal arrives at the receiver in such a mangled form that it may be
impossible to correctly decipher it.

We already encountered one such mechanism: modal dispersion in multi-
mode fibers. Now we will address such distortions as they arise in single-mode
fibers.

At the center of explanation is the fact that the refractive index of the
fiber glass, just like that of any other material, depends on wavelength (or
frequency). No light signal is ever truly monochromatic; rather, it contains
Fourier components from a certain spectral interval. In other words, a light
pulse of finite duration by necessity has a nonzero spectral width. Different
frequency components, however, will propagate with different velocity. This
gives rise to differential transit time and thus to signal distortion called delay
distortion.

The wavelength dependence of the refractive index is behind three differ-
ent contributions to delay distortion. They are collectively called chromatic
dispersion. Individually, they are

Material dispersion. Dy,: This contribution arises directly from the wavelength
dependence of the index. Material dispersion is not specific to fibers but
can be found in any bulk glass. It is independent of geometry and (given
the material) depends solely on wavelength.

Waveguide dispersion. Dy,: In the particular geometry of optical fibers, there is
a modification to the differential propagation time. The reader is reminded
that we saw in Chap. 3.13 that the signal power is partitioned between core
and cladding; the splitting ratio depends on the wavelength. On the other
hand, core and cladding indices are slightly different. As the wavelength
is varied, we have a crossover from mostly core index to mostly cladding
index. The result is a contribution to the wavelength dependence of the
effective index.

Profile dispersion. Dy: Strictly speaking, the index difference between core and
cladding itself, and thus A, is also wavelength-dependent. (Core index and

F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_4, 47
(© Springer-Verlag Berlin Heidelberg 2009
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cladding index do not vary “in parallel.”) This gives rise to another correc-
tion which, however, is often much smaller than material and waveguide
dispersion.

Another reason for dispersive distortions in single-mode fibers is related to
the state of polarization of the light. As mentioned above, each mode can be
decomposed into two mutually orthogonal parts. An ideal fiber has perfect
circular symmetry; then both polarization states (polarization modes) propagate
with identical velocities. However, real-world glass always has at least some
residual birefringence; this implies a slightly different effective index for both
states. One can argue that the term “single-mode fiber” is a misnomer: Even
when it is true that only a single geometric field amplitude distribution (LPg;)
can propagate, it still consists of two polarization modes. This is why in real
fibers there is polarization mode dispersion. Typically it is a small contribution;
we will discuss it further below.

To characterize dispersion, one normally specifies the size of the effect per
distance. For both modal and polarization mode dispersion, one can write the
dispersion parameter

1
D = ZdT , (4.1)
where 07 designates the difference of propagation time after distance L. Units

of ps/km are commonly used. For chromatic dispersion, including material,
waveguide, and profile dispersion, the following specification is common:

1dr
=——. 4.2
Ld\ (42)
Here, D contains the three parts just mentioned:
D=D,,+Dy+D,. (4.3)

This dispersion parameter indicates the propagation time difference per distance
and per wavelength difference; therefore, units of ps/(nm km) are commonly
used.

4.1 Material Dispersion

For any glass, the refractive index varies with wavelength. This gives rise to
chromatic defects of lenses and the color-separating capability of prisms. For
historical reasons, it became common practice (see, e.g., Schott glass catalog
[11]) to characterize types of glasses by giving their indices at three wavelengths:

= np, the refractive index at wavelength 589.30 nm (yellow, Fraunhofer’s D
line of sodium),

= np at wavelength 486.13 nm (blue—green, Fraunhofer’s F line of hydrogen),
and

= n¢ at wavelength 656.27 nm (red, Fraunhofer’s C line of hydrogen).
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This choice was motivated by the availability of narrowband emission lamps
at these wavelengths. As a further characterization, often the Abbe number is
given, defined by

1
op= R~ (4.4)
ng —ngc

Obviously this is a metric of the wavelength dependence of the index near the
central (yellow) wavelength.

Glass catalogs often specify only np and vp. It is instructive, however, to
survey the variation of the index over a wide spectral range. This is schemati-
cally shown in Fig. 4.1. There are absorption bands due to electronic transitions
in the ultraviolet at wavelengths on the order of 100 nm and molecular vibra-
tions in the infrared around 10 pum. In the vast interval in between, including
all of the visible and near-infrared, pure silica glass does not exhibit any reso-
nances. This is the reason, of course, why it appears “crystal-clear” to the eye.
The position of the absorption resonances is reflected in the refractive index.

Refractive index

n
A

infrared 9» 44— ultraviolet ————p
<+—>

visible

<4— transparent range ———»

1 —
J\/ Frequency o

Figure 4.1: Schematic plot of refractive index vs. wavelength. It is dominated
by resonances which occur both in the ultraviolet and the infrared.

Pure fused silica (SiO2) has a refractive index of np = 1.456, decreasing
slightly toward longer wavelengths. As long as one stays clear of the resonances,
one can empirically describe the wavelength dependence with interpolation for-
mulas. One of the best known such formulas is Sellmeier’s equation

TLOAN?
n?(w) = 1+Zm, (4.5)
j=1 J

but there are also variants to this. Coefficients A; denote the resonance
strengths and \; the pertaining wavelengths. These coefficients are tabulated in
the literature (for various glass types, see [11], and for fibers with various doping
materials and concentrations, see e.g., [22]). In most cases three terms in the
sum are considered sufficient; sometimes, five. Let us emphasize again that a
Sellmeier curve is an empirical fit: the coeflicients A; must not be construed to
indicate the resonance wavelengths in a literal sense.
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4.1.1 Treatment with Derivatives to Wavelength

We now turn to the actually observed propagation times and the scatter thereof.
Consider a plane monochromatic wave with angular frequency w and wave num-
ber (. It is well known that it propagates with phase velocity

vph = w/B, (4.6)

whereas the propagation of a signal, like a wave packet, is governed by the group
velocity

Vgr = dw/df . (4.7)
The group propagation time then is
L d
T = —=1 —ﬂ (4.8)
Vgr dw
dg d\
_— . 4.
dX\ dw (4.9)

Since 8 = nko = 2wn/\, we can rearrange the first fraction in the last line:

dag d /n 27 dn

The second fraction can be rearranged using A\ = 27¢/w to yield

dA d (1 2me

Combining, we obtain
21 2
=1 5 (na ) (112)
w

or, since \w = 27c,

- <n—)\d—n>. (4.13)

We have now expressed the wavelength dependence of the group propagation
time as a function of the easily measured quantities n and A\. We emphasize
that we here find the bracketed expression taking the role of the usual index n
which only appears in the first term of that expression. Therefore we call the
bracketed expression the group index:

dn
Ngr = (n - A a) (4.14)

Figure 4.1 shows that throughout the visible and near infrared, m decreases
with increasing wavelength; thus, in this range ng > n. Figure 4.2 shows a
comparison of both indices for fused silica.

The scatter of arrival times at the receiver is obtained from

dr
= — . 4.1
ot I P (4.15)
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Figure 4.2: Refractive index and group index as a function of wavelength, cal-
culated from a three-term Sellmeier’s equation.

Herein, the derivative is

dr L d dn
DT (” - a)
L d?n
el aae
The contribution of the material dispersion D,, to the dispersion coefficient ,

_ldr

m =7 oy (4.16)

is then

A d*n

c d\2’
In some cases the signal may occupy a quite broad spectral band. Then one
must take into account that D varies with wavelength: Dispersion would not be

described to sufficient accuracy by D alone. In such case one can additionally
specify the dispersion slope:

Dy, = (4.17)

_ dDy,

m = —— - 4.1
™ (4.18)

4.1.2 Treatment with Derivatives to Frequency

An alternative terminology to describe dispersion arises when one takes deriva-
tives not with respect to wavelength but with respect to frequency. One starts
from a series expansion of the propagation constant 3

Bw) = n()" = o+ Ar(w —wo) + gl —wo)? - (419)
with g
b= T (4.20)

w=wq
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Let us assess the meaning of 3,,:
fo = B(w =wo) = kn (4.21)
where n is the ordinary (phase) index.

ap

o= o

w=wq

- L (@),

G

w=w9>

B = % (mo) A > . (4.22)

The bracketed expression is the group index ng, as introduced in Eq. (4.14),
which implies that

By inserting w = 27c¢/ ), this can be written as

L
GiL = ngr =7 (4.23)
holds. Then
1
By = — =& (4.24)
Vgr c

(1 is of the order of /1 ~ 5ns/m.

For By we find
_dpp 1 dn d’n
@—@‘z@@+ﬁﬁ- (4.25)

This quantity is called group velocity dispersion parameter or GVD parameter.
It is commonly given in units of ps?/km. The GVD parameter is preferred by
theorists over the dispersion coefficient D which is widely used by technicians.
To convert, one uses

_dpr dﬁ1 dw 2me
Du="N ="dax =P ( A ) (4.26)
and thus
2me w
Dm:ﬂﬁﬁﬁjz—xm. (4.27)

There are some cases in which higher-order dispersion terms become relevant.
Then one can also specify the third-order dispersion (TOD) (3. To convert
between dispersion slope S and (33, one can use

(27c)? dme

Sm = \ B3 + Fﬁ? . (4.28)
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4.2 Waveguide and Profile Dispersion

In addition to material dispersion Dy, in fibers there is waveguide dispersion
Dy,. Without explicitly deriving the result, we state that for step index fibers,
it can be calculated from [50, 120]

VRKA d2
D,=——>—_"_ , 4.2
e dV?2 (Vo) (4.29)
where
)
kR =k

For very large V number, the dimensionless quantity b tends to b = 1; at the
cutoff of each mode there is b = 0.

The reason for the waveguide contribution can be intuitively understood by
noting that for increasing wavelengths, the field extends more and more into
the cladding so that the light wave experiences more and more of the cladding
index, rather than just the core index (Fig. 4.3).

At/ L

core
resulting curve
N
\\\\ ’//
cladding

Ag (core) /N Ag (resulting)

Figure 4.3: The travel time of a signal in a fiber is obtained from taking a suit-
ably weighted average of travel time pertaining to core and cladding material. At
short wavelength, light is guided predominantly in the core; at long wavelength,
overwhelmingly in the cladding. The zero-dispersion wavelength (corresponding
to minimum travel time) therefore shifts toward longer wavelength, compared
to the core material alone.

If one takes into account that on top of this A is also not constant but
depends slightly on wavelength, one obtains what is called profile dispersion or
differential material dispersion D,. This contribution is usually small and will
not be further discussed here. Below we will refer to the sum D = Dy, + Dy, +D,,
(Fig. 4.4).

Specifications by fiber manufacturers quote either D (and sometimes S) or
B2 (and sometimes (3) at specific wavelengths. The values given refer to the
total; relative contributions of material, waveguide, and profile dispersion are
not normally provided. Conversions (4.18), (4.27) and (4.28) remain valid when
indices “m” are dropped.
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Figure 4.4: Total dispersion D results from the material contribution of the
core Dy, and the waveguide contribution Dy,. The zero-dispersion wavelength
is shifted by D, with respect to what would be expected from Dy, alone.

4.3 Normal, Anomalous, and Zero Dispersion

Let us consider some typical numerical values. Figure 4.2 shows the refractive
index for fused silica as obtained from a Sellmeier’s equation. We make the
following observations:

» Throughout the visible and near infrared, dn/dA < 0. This implies that
ngr = n — A(dn/dA) > n. The group index is larger than the phase index.
In the near infrared, ng, is nearly constant at about ng = 1.46 .

» The refractive index n()\) has an inflexion point at A ~ 1.27um. At
this point, group delay is minimal and D, = 3 = 0, so that this point is
referred to as zero-dispersion wavelength. Strictly speaking, this commonly
used term is slightly incorrect since it is only the leading order in the series
expansion of the dispersion that vanishes here. All higher-order terms still
contribute. Below we will call this particular wavelength Ag.

2
d\?
D = —(\/e)(d?n/d)\?) is negative, while for X\ > \g, D is positive. His-
torically, the visible range was investigated first and therefore the trend
observed there was considered “normal.” Then, the case D < 0 is called
“normal dispersion.” Correspondingly, the opposite case D > 0 is called
“anomalous dispersion.” If the fiber is used in the second window near
1.3 pm, there is a minimum of the dispersion (D = 0), while in the third
window around 1.5 um there is anomalous dispersion.

= For A < )¢ and in the visible in particular, is positive and thus

Let us emphasize again: We are here concerned with one type of dispersion
exclusively and that is the group velocity dispersion. For the dispersion of the
refractive index similar terminology is used: There, too, one has “normal” and
“anomalous” dispersion. “Normal” refers to the case that the index decreases



4.4. TImpact of Dispersion 55

toward longer wavelengths, the standard situation in the transparent range of
most materials. The opposite only occurs near atomic resonance frequencies;
that is then called anomalous dispersion (of the index). Unfortunately, some
authors do not always make it entirely clear just which type of dispersion they
refer to, so that occasionally confusion may arise.

The waveguide contribution to the total dispersion is negative through-
out the visible and near infrared. A typical value for standard fibers is
—2ps/(nm km). At long wavelengths, it acts opposite to the material disper-
sion. Consequently, the zero-dispersion wavelength in standard fibers is slightly
shifted with respect to bulk fused silica, toward longer wavelengths by typically
about 20-30nm. According to a CCITT! standard in effect since 1984, the
dispersion of fibers for telecommunication purposes shall be bounded as follows:

|D| < 3.5ps/mmkm for 1,285 nm < A < 1,330 nm,
|D| <20ps/nmkm  at A = 1550 nm.

Near 1.55pum, a value of D = 18ps/nmkm is typical. (According to
Eq. (4.27) this corresponds to 3> = —23 ps?/km.) This value will generate
a propagation time difference between two wavelength components that are
1nm apart, which after a distance of L = 10km reaches 67 = 180ps. The
zero-dispersion wavelength near 1300 nm provides minimal spread in propaga-
tion time in the second window. Third-order dispersion varies not as much
with wavelength as the second-order term. Typical numbers are S(\g) =
0.085 ps/nm? km, corresponding to (33(\o) = —0.08 ps®/km.

As we will see shortly, the shift of the zero-dispersion wavelength by the
waveguide dispersion can be intentionally increased. This allows to make fibers
with custom-designed zero-dispersion wavelength in the infrared at wavelengths
beyond the zero of pure fused silica.

4.4 Impact of Dispersion

Consider the propagation of a light pulse which we think of as being generated
by taking a monochromatic oscillation

E cos(wt — (z)

and multiply (modulate) it with an envelope function. For the latter a reasonable

choice is a Gaussian:
t2

e 275 (4.30)

The temporal profile of the intensity (irradiance) or power of a pulse so generated
is

I(t) = Ipe~t/T0)* (4.31)

LComité Consultatif International Télégraphique et Téléphonique. This committee is now
called ITU-T, a subunit of the International Telecommunication Union, which is a United
Nations agency for information and communication technology issues.
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Here I is the peak value of the intensity and Ty the pulse duration. Note that
there is not a unique way to specify pulse duration: T} refers to the time interval
between the peak and the point where the intensity has dropped to 1/e of the
maximum. However, experimentalists and technicians often prefer the use of
the half width of the pulse, i.e., the time elapsed between the points, where
the power or intensity takes 1/2 of the peak value. This half width is often
denoted by “FWHM” (full width at half mazimum); we will designate it by .
The conversion for a Gaussian is 7 = 2v/1n 2 Tp.

After propagation over fiber length L, both pulse duration and peak power
are modified. One can show that the pulse duration now is

I\ 2
T, =To4/1+ (—) , (4.32)
Lp
where )
T
Lp=-2 4.33
%l (453

is a characteristic length called the dispersion length. After distance Lp, the
pulse duration has increased by v/2. After considerably longer distance, the
pulse duration grows in proportion to distance as

L>Lp = 1,= ‘/82|L/T0 . (434)

The shorter initially, the longer in the end! We point out that there is a very
close analogy with diffraction, the transverse spreading of a narrow fan of light
rays, and dispersion, the longitudinal spreading of a short light pulse. Far-field
diffraction (Fraunhofer diffraction) is the most transparent case: The spread
increases in proportion to distance, i.e., at a constant angle of divergence. The
functional form of the fan of rays is given by the Fourier transform of the initial
shape and remains unaltered; only scale factors evolve. In the near field (Fresnel
diffraction) the situation is more involved, but for a Gaussian it is true that its
shape is maintained except for scale factors (Fig. 4.5). Gaussians display a
particularly simple behavior under this transformation, which is of course why
we considered this special shape.

This close analogy becomes especially clear when we replace the Gaussian
envelope of Eq. (4.30) with a rectangular envelope

T
0 t<—?0,
T T
I=q 1 -3 <t<+,
0 t> Lo
5 -

This is certainly not a realistic proposition, but it comes closest to resemble
diffraction at a slit. Initially certain undulations are generated near the steep
slopes; as propagation proceeds, they spread out. After some wiggling and inter-
fering, the pulse shape eventually approaches the functional form of (sin(x)/x)?2
(see Fig. 4.6). The close relation to diffraction at a slit, and the transition from
near field to far field, is quite obvious here.

In Eq. (4.33) we used (2 and Ty. However, experimentalists and techni-
cians often prefer to use the dispersion parameter D and the full width at
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position

time
: .

Figure 4.5: Dispersive broadening of a Gaussian pulse. The figure shows a pulse
with initial width (FWHM) of 0.5 ps as it propagates over a distance of 21 m and
widens in the process. Its peak height is reduced because energy is conserved.
Fiber dispersion was chosen here as 3 = —18 ps?/km and 35 = 0.

position

power

L ;ime

Figure 4.6: Dispersive broadening of a rectangular pulse. This case is purely
academic, but it shows in particular clarity how steep slopes of the initial shape
are deformed strongly by dispersion.

half maximum 7. Using the conversions 70 = 7(L = 0) = 2vIn27, and
|B2] = |D|A%/(27c) as given above, we can write the relevant term in Eq. (4.32)
as follows:

L Lpa|  LIDA? 2In2

= 4.35
Lp T3 8 T (4.35)
The first fraction on the RHS specifies the fiber(L, D) and the light signal (A,
7o). The second fraction contains only constants and is thus independent of the
specific situation. Its value equals 1.4709 x 107 s/m. If one now inserts L in



58 Chapter 4. Chromatic Dispersion

km, D in ps/nmkm, A in pm, and 79 in ps, units combine to give an additional
numerical factor of 10°, and we can write

1.47L|D|X2\ 2
TL—TQ\/1+<7 |2 | ) . (436)

70

This equation contains directly measurable quantities in technically common
units and is thus of practical value. The “magic number” 1.47 is valid for
Gaussian pulses; for other shapes somewhat different values apply. For exam-
ple, the hyperbolic secant squared shape (sech?) often encountered for solitons
requires a value of 1.87.

Dispersive broadening limits the information-carrying capacity because
pulses must be kept at sufficient temporal distance from each other. The high-
est capacity would be obtained at the lowest dispersion, which in turn is found
at the zero-dispersion wavelength. This is why a large fraction of all installed
fibers is designed for operation in the second window near 1.3 um. However,
this apparently obvious conclusion was arrived at in the framework of the lin-
ear approximation, i.e., at sufficiently small powers or intensities. Nonlinear
effects (Chap. 9 fI.) will modify the result and maximize capacity at a different
condition.

4.5 Optimized Dispersion: Alternative
Refractive Index Profiles

So far we have dealt with fibers with a step index profile. One might note that
there never is such a thing as an exact step index fiber. Due to manufacturing
limitations, there are slight deviations from the ideal profile, e.g., quite often
there is a central dip of the index caused by a certain process step (see Sect. 6.2).

More importantly, fibers are often used with a refractive index profile that
is more complex. When such fibers are produced, the objectives are to (a)
maintain the single-mode property, (b) maintain low loss, and (c) add more
design degrees of freedom for controlling and tailoring the dispersion.

4.5.1 Gradient Index Fibers

In the context of multimode fibers, we have already mentioned a radial depen-
dence of the index according to

n(r) = ngy /1 — 24 (g)a ; (4.37)

single-mode fibers can be endowed with a similar gradient index profile. Ray op-
tics fails to provide a good interpretation in this case. A wave-optic calculation
yields the following;:

a = oo: This limiting case is the step index profile (SI profile). The cutoff of
the second (LP17) mode is at V' = 2.405.

a = 2: For a parabolic profile (Fig. 4.7) the cutoff of the second mode shifts to
V = 3.518.
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Figure 4.7: Pseudo-3D rendering of the refractive index profile. Across the
circular section the index is plotted in vertical direction. From [102].

a = 1: This is a triangular profile, hence the name “T fiber” (as in triangular).
Here the cutoff of the second mode is even higher. As a rough approxi-
mation, the cutoff occurs at V = 2.4054/1 + 2/a..

4.5.2 W Fibers

There may be an additional zone between core and cladding having its own
lower refractive index (Fig. 4.8). Then a cross-sectional index profile roughly
resembles the letter W; hence the name “W fiber” (Fig. 4.9). An alternative
name is “DIC fiber” for depressed-index cladding fiber. This profile provides
ample freedom for designing the dispersion variation.

n
n
core —»
inner cladding
outer cladding ns
n
T T >
-b -a 0 a b r

Figure 4.8: Schematic shape of the index profile of a W fiber (depressed-index
cladding profile). There are three indices for core, inner, and outer cladding,
labeled here as nq, ne, and ng, respectively.
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Figure 4.9: Pseudo-3D rendering of the refractive index profile of a W fiber
(depressed-index cladding profile). From [102].

For this profile, we define a V' number
2
V= Tﬂa\/n% —n? (4.38)

Ng — N3

and an index contrast

R =

(4.39)

ny —ns '

It is a remarkable property of this profile that — in marked contrast to the step
index profile which guides the fundamental mode down to arbitrarily small V'

2.5

2.0+

> 1.5

1.0 H

0.5 T T T T
0 -02 -04 -06 -08 -10
R

Figure 4.10: For fibers with W profile, V' can be controlled by the index contrast.
Over a certain range a linear approximation is appropriate. From [116] with kind
permission by IEEE.
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Figure 4.11: For fibers with W profile, the cutoff behavior can be controlled
through the ratio of radii b/a. There is even a cutoff for the fundamental mode
LPy; as soon as b/a is sufficiently larger than unity. For example, at R = —0.5
and at b/a = 3, the fiber is single mode only in the interval 1.8 <V < 3.0. For
V' > 3.0 there is the additional LP1; mode, and for V' < 1.8 there is no guided
mode at all. After [116] with kind permission by IEEE.

at least in principle — here the fundamental mode has a finite lower cutoff. Ap-
proximately and for medium values of the index contrast (Figs. 4.10 and 4.11),
at the fundamental mode cutoff one has

Vo~1.075(1—R) . (4.40)

Note that in the limit no — m3 which reproduces the step index profile, this
simple linear trend is not maintained, and V goes to zero in accord with our
earlier result for step index fibers.

4.5.3 T Fibers

T fibers or triangular fibers are popular because the dispersion trend is more
favorable than in step index fibers, while losses are, if anything, even lower. The
latter can be traced back to the interface between core and cladding: for the
sudden transition of glass composition there is an enhanced chance of mechanical
stress which is mitigated by a more gradual transition. Figures 4.12 and 4.13
show a modified T profile which is really a combination of T and W profiles.

4.5.4 Quadruple-Clad Fibers

It is possible to add more concentric cladding layers, and increasingly the
number of design degrees of freedom rises in the process. Quite frequently a
quadruple-clad fiber is used (see Figs. 4.14 and 4.15). The core is typically doped
with germanium and thus has a raised refractive index. The first cladding zone
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Figure 4.12: Schematic refractive index profile of a fiber with triangular core
profile, shown with a depressed inner cladding. Again, three indices ny, ns, and
ng need to be distinguished.

Figure 4.13: Pseudo-3D rendering of a triangular profile, here with more com-
plex cladding composition. From [102].

can be doped with phosphorus and fluorine and has lowered index. In the sec-
ond and third cladding zones germanium and phosphorus/fluorine are repeated
with suitable concentrations. The outermost cladding can then remain undoped
fused silica.

4.5.5 Dispersion-Shifted or Dispersion-Flattened?

There is an important distinction between dispersion-shifted and dispersion-
flattened fibers. In comparison to a step index fiber, by using a triangular
core profile with a depressed cladding zone as in Fig. 4.12, one can achieve a
shift of the dispersion curve toward longer wavelengths (Fig. 4.16). The zero-
dispersion wavelength can thus be moved all the way to 1550 nm if desired.
Using a quadruple-clad design one can even achieve a very low dispersion simul-
taneously at both 1300 and 1550 nm by bending the dispersion curve flat.
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Figure 4.14: Schematic refractive index profile of a quadruple-clad fiber. Here
five indices and four radii must be distinguished.

Figure 4.15: Pseudo-3D rendering of a quadruple-clad fiber profile. From [102].

ps
D /“nm km
standard
20 1
0 1.2
-20 flattened

Figure 4.16: Tailoring of the dispersion curve through choice of suitable index
profiles: dispersion-shifted and dispersion-flattened fiber in comparison to a
standard step index fiber.
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The motivation to tailor the dispersion curve is to get the best of two worlds:
the minimal dispersion of the second window combined with the minimal loss
in the third window. Dispersion flattened fibers have low dispersion at both
the second and third windows at the same time; such fibers can be used as
direct replacement for older fiber designed for the second window but provide
the added benefit of also performing well in the third window.

4.6 Polarization Mode Dispersion

Up to now we have disregarded the fact that a light field is fully characterized
only when one takes its state of polarization into account. Different states of
polarization propagate differently, thus arises a special type of dispersion which
we now examine closer.

As we derived the modal profiles in Chap. 3, we used the approximation of
a homogeneous material and found that all modes are twofold degenerate into
distinct orthogonal linear polarization states. The approximation is valid only,
of course, when there is weak guiding (A very small). In the more general case
the modes are not exactly linearly polarized, because the index discontinuity
at the core—cladding interface distorts the modal structure. Nonetheless, the
approximation can be useful.

Moreover, we had assumed isotropy. This implies that the orientation of the
two planes of polarization is arbitrary. One might then conclude that launching
linear polarized light at any orientation will produce light of the same linear
polarization at the fiber end. This is not what experience shows.

In any real fiber there is some — potentially very weak — deviation from ideal
circular symmetry. We have to distinguish between (a) geometric deviations,
like when the core is asymmetric or not centered well; (b) optical deviations
like when the material index is not homogenous; and (c¢) mechanical deviations
due to stress-induced birefringence. The latter contribution may arise either
due to tension built into the fiber — after all, the fiber is rapidly cooled during
its manufacturing which may well introduce tension — or due to tension created
during use as the fiber is being bent.

All these deviations from perfect circular symmetry conspire to create dif-
ferences for the propagation of the two polarization modes. This gives rise to
polarization mode dispersion. We will now consider how it manifests itself and
how to avoid it.

4.6.1 Quantifying Polarization Mode Dispersion

Rather than a single propagation constant § we now need to use two, 3, and
By, to describe conditions for the two polarization states linearly polarized in x
and y directions. As soon as 3, # 3y, the two light waves polarized in parallel
to z and y will propagate differently; hence, they will be alternatingly in phase
and out of phase with each other. This occurs with spatial period

2w
A= ——— .
Ry , (4.41)
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which defines the beat length A. Alternatively, some authors use the modal
birefringence

A A : —

B is only weakly wavelength-dependent, while A is essentially proportional to
wavelength. For a standard fiber B is of the order 107 to 10~%, with random
orientation of the axes. Then, the beat length is 107\ to 108 X, which is on the
order of a couple of meters. If the fiber is strongly bent (coiled on a spooll!),
birefringence can reach B = 107°, with correspondingly shorter beat length.

The propagation time difference for an arbitrarily polarized light signal (de-
composed into the two polarization states) is when one considers phase velocity:

At = %B . (4.43)

This translates into a dispersion of

At B 1077 s

Za 5 _03ps/km . 444
I = ¢ 3x10sm - Vops/lm (4.44)

If instead, and more correctly, one considers group velocity, one finds

dBx _ dp
R (4.45)

L L

At =

Vgr,x Vgr,y

from which one obtains the dispersion contribution through At/L. A typical
value for standard fibers is 0.1 ps/km, a small difference indeed — and yet, con-
sequential in some contexts. Polarization mode dispersion is now the largest
obstacle to further increase of the data-carrying capacity of fibers.

4.6.2 Avoiding Polarization Mode Dispersion

The state of polarization is not maintained in standard fiber. In order to render
a fiber polarization-maintaining, one might try to reduce its residual birefrin-
gence. However, this is a tedious task: Even when the built-in tensions could
be eliminated in a modified manufacturing progress, the manufacturer has no
control over bending of the fiber by the user.

In 1982 two people came up with the same surprising idea practically simul-
taneously: R. H. Stolen then at AT&T Bell Laboratories in the USA and D. N.
Payne at the University of Southampton in England. They drew the surpris-
ing conclusion that when it is not possible to reduce birefringence to negligible
levels, one can achieve the same ends by making it intentionally much larger!
To do this is easy: One can either make the core elliptic, or one can insert
additional structural elements that break the circular symmetry. In most cases
the symmetry is broken by the insertion of elements with a slightly different
thermal expansion coefficient, so that during the cooling of the glass at the end
of the fiber manufacturing process mechanical stress is built into the fiber.

Figure 4.17 shows some popular versions with elliptic core, so-called pits,
PANDA geometry (the latter named after the facial expression of a cutie in the
z00), and bowtie geometry (Fig. 4.18).
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) &)

elliptical core pits panda bowtie

Figure 4.17: Several polarization-maintaining structures. In each case the cir-
cular symmetry is broken.

2D Refractive index profile of bowtie fiber. Y

Figure 4.18: Pseudo-3D rendering of the refractive index profile for a bowtie
fiber. With kind permission from Fibercore [9].

Such geometries allow B = 3 to 8 x 10~ corresponding to A = 1 to 3mm.
The beat length is thus reduced by three orders of magnitude and is now shorter
than the tightest possible bend radii. Therefore, the built-in birefringence due
to this structure overwhelms the random birefringence including any that may
occur during operation due to bending. Why is this, then, a polarization-
maintaining fiber?

If one launches light which is linearly polarized along the direction of one
of the two axes of the elliptical structure, this state of polarization will be
maintained. If, however, the light is polarized at an angle with the axes, one can
mentally decompose it into the two parts along the axes: These will propagate
with different velocity because they experience a different refractive index. The
state of polarization will then cyclically evolve through linear — elliptic —
circular — elliptic again — linear again, etc. This evolution can be exploited to
measure the beat length in a particularly simple experiment: The weak scattered
light exiting the fiber sideways appears modulated with a spatial period because
dipoles do not radiate energy in the direction along their own axis (see Figs. 4.19
and 4.20).

How well does a polarization-maintaining fiber actually maintain the state
of polarization? This is quantified by the extinction ratio F, defined as

P,
E=-101 -— 4.46
0810 P, + P, ( )
Here, indices p and s distinguish the fractions of power P which are polarized

parallel (p) or perpendicular (s, as in German senkrecht) to the initial polariza-
tion plane.
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Figure 4.19: Sketch to illustrate the beat length. The state of polarization
evolves from linear through elliptical to circular, etc. Depending on the state,
emission into a given direction away from the fiber axis is more or less efficient.
From the periodic appearance of bright and dark zones, one can immediately
read the beat length.

Figure 4.20: Measurement of the beat length under a microscope. The periodic
changes of brightness of the light scattered off the core are plainly visible. In
this case the beat length was measured as 0.41 mm.

For short fibers, say, less than 20m, £ = 40 dB would be considered normal.
When the fiber is a kilometer in length, this value will degrade to typically
20dB, and if the fiber is tightly bent or is squeezed, it may go down to 15dB.

Sometimes the holding parameter h is specified; it is defined by

h = <%> /L. (4.47)

It corresponds to the extinction ratio after 1 m of fiber, expressed in linear
units rather than decibel. A typical value for a polarization-maintaining fiber
is h =107° to 1079, sometimes h = 107 is reached.

It is unfortunate that the manufacturing process for polarization-maintaining
fibers is more complex than for standard fibers and that losses tend to be slightly
larger. Polarization-maintaining fibers never became standard, but are used
only in applications where polarization has particular importance (and where
fiber length is limited anyway). This is often the case in metrological appli-
cations (see Chap. 12). In long-haul transmission, such as over transoceanic
distances, polarization-maintaining fibers are not used even though polarization
mode dispersion poses a challenge.

4.7 Microstructured Fibers

In recent years, a very different type of fibers has emerged [133, 86, 29]. These
novel fibers consist of a cylindrical glass body just like ordinary fibers; how-
ever, in the cladding zone there are voids running along the entire length of
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Figure 4.21: A schematic view of a typical holey fiber. Tubular channels run
along the entire length of the fiber parallel to the core which they surround in
a certain geometric arrangement. The hole diameter d and pattern pitch A are
indicated. In the case shown here, the core is at the position of the “missing”
channel at the center.

the fiber so that a pattern of holes appears in the cross section (see Fig. 4.21).
Manufacturing of these fibers differs from the conventional procedure as de-
scribed in Sect. 6.2: The preforms are produced by stacking together a bunch
of glass tubes; that stack is then fused together and drawn into a fiber. This
is often done in two steps: fusing into a “cane” as an intermediate, then the
final drawing into a fiber. The drawing process is modified to proceed at a
somewhat slower speed and at lower temperature so that the holes do not
collapse.

The array of holes in the cladding gives rise to the (somewhat tongue-in-
cheek) name of “holey” fibers. The air-filled holes reduce the effective index of
the cladding so that dopants to raise the core index are not normally applied:
The index difference can easily exceed the 1% limit maximally obtainable with
dopants by far. The regularity of the hole pattern is not crucial in this type of
microstructured fibers; in fact, even fibers with random hole arrangements have
been demonstrated [117].

On the other hand, a strictly periodic arrangement with a pitch not much
different from the wavelength of the light can give rise to resonant reflectivity
when a certain Bragg condition is met; this is very reminiscent to effects with X-
rays passing through crystals (actually, this is how we know the size of crystal
cells) and thus gives rise to the name of photonic crystal fibers. There is an
actual distinction between these two fiber types, but as of this writing, the
names are not used very consistently in the community. We will here adopt the
following definitions:
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Holey fiber designates a microstructured fiber with hollow channels surrounding
the core which itself, however, is massive.

Photonic crystal fiber designates a microstructured fiber with hollow channels
surrounding the core which is also hollow.

Figure. 4.22 shows examples of both types in comparison. We will briefly outline
both types and point out their remarkable properties which cannot be had from
conventional (massive) fiber and which open up exciting possibilities for novel
applications. See also Fig. 4.23.

18HMHm

Figure 4.22: Comparison of two basic types of microstructured fibers. In both
cases a central region around the core is shown. Left: Holey fiber (Type NL-24-
800). Right: Photonic crystal fiber (Type HC-633-01). Both fibers are manufac-
tured by Crystal Fibre AS. With kind permission by NKT Photonics, Birkerad,
Denmark.

4.7.1 Holey Fibers

In conventional fibers, there is a core which by way of suitable doping has a
somewhat higher refractive index than the cladding which surrounds it. Due to
constraints in the chemistry, the index difference can be no larger than about 1%.
In holey fibers, the cladding has a sizeable air fraction so that its effective index
is lowered. These fibers are also known as solid-core photonic crystal fibers.

The light wave experiences an index which has contributions from both the
air holes and the remaining glass in between. In the case of a regular hole
pattern, one can distinguish two quantities: the hole diameter d and the pitch
A. These are often combined with the wavelength of the light into the normal-
ized hole diameter d/A and the normalized spatial frequency A/\. A precise
calculation of the effective index and the modal structure requires numerical
procedures which can be quite involved. It is straightforward, though, to see
the following.

The void content lowers the effective index with respect to that of the glass.
The effective cladding index is therefore a function of the air fill fraction AFF,
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Figure 4.23: A holey fiber seen in an electron microscope together with the eye
of an ant. Insects are endowed by nature with a regularly patterned eye. The
structure of a holey fiber follows a similar design. The author thanks Toralf
Ziems for his assistance in taking this picture.

the ratio of air channel volume to total cladding volume. For the hexagonal
geometry shown in Fig. 4.21 it is calculated by straightforward geometry as

AFF = 2”7§ (X>2 . (4.48)

This expression, by the way, tells us that as the holes get bigger to the point that
the glass walls in between vanish at d = A, the air-filling fraction is bounded by

™

AFF ax e 0.9069 .

When the wavelength is shorter than both the pattern pitch and the hole size,
light will be guided primarily by the glass bridges between the holes. This sug-
gests that in the limit of A — 0 the effective index tends to that of the glass alone.
When on the other hand the wavelength is much larger than the structural di-
mensions, the light field cannot ‘feel’ the holes and interstitial glass separately.
The effective index may then be expected to be some suitably weighted average
of the indices of glass and air. This is the reason for a strong dependence of
effective cladding index on wavelength.

The situation is demonstrated in Fig. 4.24 which shows the effective cladding
index for an infinite triangular array as a function of normalized optical fre-
quency 7 = vA/c for four different air fill fractions. The normalization was
chosen so that conveniently at 7 = 1 the (vacuum) wavelength coincides with
the pattern pitch. The glass index was here assumed to be at a constant
Nglass = 1.4600, and that of air at m,i» = 1, to avoid a complication of the
present discussion by issues of material dispersion. Data points were calculated
using the freely available software described in [79].

For very high frequencies the effective index tends to that of the glass as
expected (arrow at right axis). For very low frequencies the effective index
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tends towards a weighted average of glass and air index. By interpolation be-
tween glass and air indices according to air fill fraction using the Lorentz—Lorenz
equation [75, 30] one obtains the values indicated by arrows on the left?. The
agreement could hardly be any better. The transition regime between the lim-
its occurs close to 7 = 1 when the wavelength equals the pattern pitch, an
eminently plausible result.
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Figure 4.24: The effective cladding index for an infinite triangular array as a
function of frequency for different hole sizes (parameter: air fill fraction). For
simplicity, the index of air n,i, = 1 and glass nglass = 1.46000 were considered
constant. The author thanks Christoph Mahnke for the calculations for this
figure.

The light-guiding mechanism in these fibers is quite similar to that in con-
ventional fibers, except that the index difference can be much larger. That
makes it unnecessary to bother about applying dopants. However, given the
bigger index step, one can choose a much smaller core radius. This gives rise
to higher intensities in the core and thus to stronger nonlinear effects which
may be desirable (see Chap. 9 ff.). The additional design freedom also allows
to design for larger core radius and thus minimized nonlinearity; this, too, is
sometimes desirable depending on the application.

It has been suggested to define a V' number for these fibers in close analogy
to the same quantity in conventional fiber. The definition would read

2m
V= Tp\/n% —ndgy (4.49)

where the effective core radius p takes the role of the core radius a. There is
a certain ambiguity how to define p in terms of the pattern pitch A (one can,
e.g., identify A with the core radius [28]), and thus the numerical value of V' at
cutoff may be different from that in conventional fibers. npgym is the effective
cladding index. The name derives from the fundamental space-filling mode,

2In [42] a linear interpolation is suggested, but does not fit quite as well.
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Figure 4.25: V number in a holey fiber as a function of normalized frequency
A/A. The parameter is d/A. Toward high frequencies, Vg tends to some con-
stant. It never crosses the cutoff (marked by horizontal dotted line) as long as
d/A < 0.4. Then the fiber supports only one mode at any frequency. After [29].

i.e., the fundamental mode that would occupy an infinitely extended cladding
pattern without the central defect which is the core.

As pointed out above, npgy tends to the material index as frequency in-
creases. This partially cancels the A term in the denominator so that V' is not
proportional to frequency but rather becomes almost constant at A/A > 1, with
the specific value depending on d/A (see Fig. 4.25).

Through this effect one obtains a remarkable property which is called the
endlessly single-mode property [28]. It has been found that for d/A small
enough (more precisely: d/A < 0.406 [91]), there is only one mode supported at
any frequency. This means that within the practical limits set by wavelength-
dependent loss, the fiber is always a single-mode fiber. This has been verified
over a tremendous frequency range of efficient waveguiding, which may run from
ultraviolet to infrared — a factor of 4 [28].

Holey fibers have a second very remarkable property, and this regards their
dispersion behavior. For small air-filling fractions, the influence of the holes is
small and the wavelength dependence of group velocity dispersion can be ex-
pected to closely follow the material dispersion. This is indeed the case. How-
ever, as the hole size increases, there is a growing contribution from waveguide
dispersion which can reach the point of overwhelming material dispersion. Since
the waveguide contribution can be anomalous at short wavelengths, the zero-
dispersion wavelength can shift toward shorter wavelengths. The reader will
recall that this is not possible with conventional fiber. At about d/A = 0.30,
dispersion is flattened over a sizable interval. The precise wavelength range of
this interval can be shifted by adjusting the pitch size A. Fibers are being offered
commercially where this range begins at about 1 pm or even 800 nm. Finally,
by judicious choice of pitch and hole size, the dispersion can be even made to
have a maximum in this spectral range so that there can be two zero-dispersion
wavelengths, similar to the case of the dispersion-flattened conventional fiber
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Figure 4.26: Comparison of dispersion of a standard single-mode fiber (compare
Fig. 4.4) with that of two different types of holey fibers (both obtained from a
commercial vendor). Note that in this figure a linear frequency scale is used, and
that dispersion is given as (3. The fiber with a single zero-dispersion wavelength
has a 3-um core diameter, the one with two zero-dispersion points, 2.3 pm.
In either case, the zeroes are shifted toward higher frequencies with respect
to the standard fiber. The measured zero-dispersion frequencies are indicated
in terahertz (arrows); manufacturer’s specifications provide only approximate
values.

shown in Fig. 4.16 but at a wavelength considerably shorter than the material’s
zero-dispersion wavelength (see Fig. 4.26). Applications have been found for
these specialty fibers, but this topic is beyond our present scope.

4.7.2 Photonic Crystal Fibers

This type of microstructured fiber is also known as photonic-bandgap photonic
crystal fiber. Its most remarkable feature is that the core is also a hollow chan-
nel, giving rise to the alternative name of hollow-core photonic crystal fiber.
A hollow (i.e., air-filled) core implies that the light-guiding property certainly
cannot rely on the index step between core and cladding — this step goes the
wrong way. Instead, it is now the regularity of the hole pattern: the periodic
array of holes forms what is called a photonic crystal [163]; for the right wave-
lengths, there is a photonic band gap which keeps the light from leaving the
core through a coherent scattering effect. This is related to periodic structures
in nature which, e.g., give butterfly wings their fancy colors. We repeat that
for solid core holey fibers, the periodicity of the hole pattern is not decisive,
whereas for hollow core photonic crystal fibers it is of crucial importance. By
the details of the pattern, an interval of wavelengths, typically 50 — 150 nm wide,
becomes the guiding range of the fiber. The value of the pitch A is particularly
important: By and large, the range of guidance is shifted proportionally when
A is varied.



74 Chapter 4. Chromatic Dispersion

In an interesting departure from standard practice, a hollow core photonic
crystal fiber with radially varying pitch of the hole pattern was demonstrated
in [141] to allow more freedom in designing the dispersion properties.

4.7.3 New Possibilities

Microstructured fibers offer a variability in almost all fiber parameters, which
is unattainable with conventional fibers. The zero-dispersion wavelength can
be shifted to much shorter wavelengths, the strength of nonlinear effects can
be enhanced or reduced, and the single-mode regime can be greatly enlarged.
This is why these fibers will find a whole range of applications which were
not possible with conventional fibers. On the downside, they are a lot more
difficult to manufacture and therefore quite expensive. They also have much
higher loss than conventional fibers, and mechanically they are not nearly as
robust. It is therefore not anticipated that they will replace conventional fibers
in applications like long-haul transmission.



Chapter 5

Losses

Charly Kao, then with Standard Telecommunications Labs in England, pro-
posed in 1966 that it should be possible to produce fibers with loss below
20dB/km [84]. He had arrived at this conclusion after noting that losses were
not an intrinsic property of the glass itself, but rather were due to impurities.
His remarkable insight earned him the Nobel prize in physics in 2009.

At the time one could make glass with about 1dB/m, this was an improve-
ment over glass of ancient Egypt by four orders of magnitude. Then, in less
than 20 years, another improvement of four orders of magnitude was reached.
The loss came down to 0.2dB/km, a figure now routinely obtained at 1.5 um.
Part of this progress stems from longer wavelengths now being used: In the
visible, the best glass had and has several dB/km loss. Once loss contributions
due to impurities had been almost completely eliminated, a fundamental limit
was reached, which is defined by the structure of the glass itself.

5.1 Loss Mechanisms in Glass

This fundamental limit is determined by three factors: (a) the long-wave tail
of material resonances in the ultraviolet (electronic transitions), (b) the short-
wave tail of material resonances in the infrared (molecular vibrations), and
(c) Rayleigh scattering due to the statistical structure of the glass. Rayleigh
scattering is the same mechanism that makes the sky blue and the sun yellowish
(and contributes to its orange to reddish appearance just prior to sunset). The
reason is its strong wavelength dependence: The efficiency of Rayleigh scattering
scales with the negative fourth power of wavelength.

At the short wavelength end of the visible (in the blue and violet), the con-
tribution from ultraviolet resonances is the leading factor. In much of the the
visible spectral range and also in the first and second window for telecommuni-
cation, Rayleigh scattering dominates while infrared resonances are irrelevant.
The third window finally is in the transition regime: Beginning around 1.6 um
the contribution from infrared resonances overtakes the Rayleigh contribution.

It is not a trivial task to determine with any precision what the theoretical
limit for the lowest possible loss is. Taking clues from data taken on bulk glass,
a minimum of 0.114dB/km was derived; this figure corresponds to an energy
loss of 2.6%/km. In 1986, researchers at the Sumitomo company succeeded
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Figure 5.1: Spectral dependence of the contributions to energy loss in a fiber.

in making a single piece of fiber with a confirmed loss as low as 0.154 dB/km.
This record was not repeated, much less improved upon, for a long time. Only
in 2002, a fiber loss of 0.151dB/km was reported, and this newer record was
then quickly bested to 0.1484 dB/km [118]. In mass production of fibers, in-
dustry has routinely obtained 0.2 dB/km since the late 1980s, and occasionally
0.18dB/km. The reader might think that bargaining for the last few percent-
age points might be of little relevance, but that would be a wrong conclu-
sion: Implications are enormous. Even a minor reduction in loss allows to
use longer spans for transmission. On any long-haul distance, a number of in-
termediate amplifiers or signal conditioners is required; their number can be
reduced as soon as the loss goes down. The consequence of any loss reduc-
tion by, say, a few percent then translates into savings of potentially millions of
dollars.

As can be seen in Fig. 5.1, there is a local loss peak between the second
and third windows, at about 1.39 pm. It is caused by impurity molecules in
the glass. Optical materials must be exceedingly pure to be transparent at all
at this wavelength; water vapor in the atmosphere is particularly detrimental.
The loss peak is caused by molecular vibrations of water molecules embedded
in the glass. There is a characteristic strong vibrational resonance of the OH
bond at 2.8 um. Water is always present in our environment and so ambient air
is opaque at 2.8 um. However, these oscillations are not purely harmonic, but
have overtones (anharmonicity). The first overtone (the second harmonic) at
twice the frequency, i.e., half the wavelength, is the peak that we see in Fig. 5.1.
To be sure, this is a weak overtone, and the OH concentration in the fiber is low,
but the resonance stands out conspicuously because the Rayleigh background
is so low. Since 1998, manufacturers have succeeded to produce fibers with a
much reduced OH content so that the peak disappears into the background (e.g.,
“AllWave Fiber” by Lucent Technologies [13]).

Besides water, numerous other impurities can contribute to loss. Among
these are the transition metals Fe, Cu, Co, Cr, Ni, and Mn. To appreciate the



5.2. Bend Loss 7

required purity, consider this: At 800nm, one ppb of Cu produces an absorp-
tion of several tenths of dB/km. (One ppb, or part per billion, indicates a
concentration of 1079.)

5.2 Bend Loss

We have seen that the composition of the glass gives rise to loss mechanisms.
On top of all that, there are further losses when the fiber is deployed for use,
in particular when it is being bent. This may be intuitively plausible since in a
bend the cylindrical symmetry is broken (Sect. 3.4). One has to distinguish two
contributions to bending loss known as macro-bending loss and micro-bending
loss.

Macro-bending loss occurs when fibers are bent with a “macroscopic” radius
of curvature, i.e., in the range of centimeters. If one falls back to a ray-optic
view (which is applicable only to multimode fibers, of course), one realizes that
the critical angle for total internal reflection can be exceeded in a bent portion.
More physically correct, in a wave-optic picture we have seen that the field
distribution of any mode is not restricted to the core, but extends into the
cladding. As the fiber is being bent, there must be a certain distance from the
fiber’s axis toward the outside of the curve where the propagation velocity (as
determined by the effective index for that mode) begins to exceed the maximum
possible velocity in the cladding (given its index). Of course, the velocity is not
actually exceeded. Rather, the phase fronts cease to be plane and fall behind.
There is then a component of the Poynting vector pointing radially outward;
this implies energy radiated away from the guided mode (see Fig. 5.2).

\

\ radial

\ \
\\ ]
Y I
.... N\ 1

“““ g \
o \/—\‘.

tangential

Figure 5.2: Bending a fiber creates additional loss. On the outside of the bend,
the wave cannot keep up due to its limited velocity. The wavefront gets distorted
so that a radial component of radiation is created.

Strictly speaking, there is mechanical tension in the bent fiber so that the
inside is compressed, the outside expanded. This creates deviations of the refrac-
tive index, effectively lowering it on the outside. The mechanism just described
is counteracted by this, but it is not compensated.
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It should be clear that the critical radius at which radiative loss begins must
be proportional to the bend radius of the fiber. On the other hand, the modal
field radially decays exponentially. Together, it follows that bend loss decreases
exponentially when the bend radius increases. It is also implied that the stronger
the cladding penetration, the higher is the bend loss. Cladding penetration is
high when the index difference between core and cladding is small; a large
value of A is thus beneficial in this context. Also, cladding penetration grows
with increased wavelength; therefore the highest reasonable V' number is also
beneficial. It is therefore good practice to operate close to the cutoff wavelength
of higher-order modes. Higher-order modes also extend farther into the cladding
and are more attenuated by bending than the fundamental mode. Bending thus
shifts the effective cutoff toward shorter wavelengths (Fig. 5.3). This must be
observed when the cutoff wavelength is measured, see Sect. 7.5.
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Figure 5.3: Macro-bend loss for the LP(; fundamental mode (solid lines) and
the LP1; mode (dotted lines), for a loop with radius as indicated in centimeter.
In the limit of infinite bend radius the values for the LP;1; mode constitute the
limit of the single mode regime. At finite radius, the cutoff is shifted toward
shorter wavelengths. At the same time, loss in the single-mode regime increases.
After [120] with kind permission.

It is a standard laboratory trick to shift a fiber’s cutoff from, say, 1,200 nm
to 1,000 nm by winding it 20 turns on some bobbin with 20 mm diameter.

While macro-bending loss is reasonably understood, micro-bending loss is
considerably more complicated. At least so much is clear: The effect is dom-
inated by the statistics of the deviation of the fiber from a straight line. A
roughness of 100nm to 1 um plays a major role. This raises the issue of the
surface material of spools. It is well known in the trade that styrofoam, for ex-
ample, is particularly bad, probably due to its structure which is best described
as air bubbles separated by thin walls. It is also known that micro-bending in
multimode fibers creates only a small, wavelength-independent loss contribu-
tion while in single-mode fibers there is a sharp loss onset at large wavelength
(Fig. 5.4). This tends to shift the wavelength regime of lowest loss, in princi-
ple centered around = 1,600nm, toward 1550 nm. At V numbers close to 2.4
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(i.e., close to the cutoff of higher-order modes), this contribution is usually neg-
ligible. Since fibers are normally used at 2.1 < V < 2.4 for reasons described in
the previous paragraph, the problem is often avoided.
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Figure 5.4: Micro-bending loss of the fundamental mode as a function of wave-
length (normalized to cutoff wavelength). From [48] with kind permission.

5.3 Other Losses

Quite a number of influences may give rise, at least in principle, to further loss
contributions and must therefore be considered in the design of fibers. These
are, of course, taken care of by the fiber’s manufacturer, and the application en-
gineer does not normally deal with such problems. It therefore suffices when we
only briefly outline here: Irregularities in the fiber arising in the manufacturing
process such as variations of the core diameter, variable deviations from circular
symmetry, and variations in refractive index (for example due to fluctuations
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in dopant concentration) can all give rise to increased loss. (Roughness of the
core—cladding interface is often considered in the context of micro-bend loss.)
Loss is also increased when the cladding glass is of less than the near-perfect pu-
rity of the core glass as may happen in certain manufacturing technologies (e.g.,
in MCVD, see Sect. 6.2). At particularly long wavelengths, even an insufficient
outside cladding diameter could cause further loss when the field penetrates the
cladding so deeply that it begins to feel the environment, e.g., a plastic coating.

On top of these effects from manufacturing, there are losses that occur when
during operation very gradually the glass composition changes. This can hap-
pen through the action of ionizing radiation (see Sect. 12.2.4). Beta radiation
(electrons) and gamma rays in particular can damage the material by creat-
ing dislocations of nuclei and bonds in the crystal. Such damage can partially,
slowly heal after irradiation ceases. These problems are of major concern for
space applications, such as aboard spacecraft. In the 1980s, there has been a
long-term exposure test called LDEF (long-duration exposure facility) operated
by the USA. It went on several years longer than originally planned: After the
1986 Challenger disaster, further space shuttle starts were delayed, and this also
involved the return vehicle. Still, the damage found was not too substantial.

There are also chemical effects affecting fiber loss. Substances can diffuse
into the glass; this is well known for helium but there is not much helium out
there. More relevant is the case of oxygen that is ubiquitous in the atmosphere.
Nevertheless, the effect is subtle enough to be negligible for most applications;
in particularly critical cases, one can deposit a barrier layer on the fiber surface.

Finally, it should be remarked that there is indeed one case of impurity that
can even lower losses. Embedded OH™ groups, while they certainly increase
loss in the infrared, can reduce them in parts of the visible and ultraviolet.
This happens on a high background of about 1dB/m and is thus irrelevant for
telecommunications applications. On the other hand, sometimes short wave-
length light must be guided over short distances; this is the case, e.g., in laser
surgery. In such cases, one can exploit this curious fact and use glass with
intentionally high OH™ content.

5.4 Ultimate Reach and Possible Alternative
Constructions

At the wavelength of the third window where Rayleigh loss meets the tail of
infrared absorption, fibers have their global loss minimum. Does this low loss
allow a transoceanic line? Taking a realistic figure of 0.2dB/km and a typical
transoceanic distance of 5,000 km, total loss comes to 1,000 dB. This is too much
by any standard. Consider this:

A total of 1,000dB imply a power attenuation by 100 orders of magnitude.
We must certainly demand that at the very least, a single photon must arrive
at the detector during the time slot reserved for a single bit. Then, we would
have to launch 101% photons. Since the energy of a single photon is given by
E = hv =~ 10719 ], the launch energy would have to be 103! J. Even when we
allow a full second for the time slot, 108" W are about 80 orders of magnitude
more than is realistic since, beginning at several watts continuous power, one
starts to damage the fiber front face. (In radio engineering a single photon has
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much smaller energy; this allows an attenuation of 150dB from transmitter to
receiver without ever reaching a quantum limit. For radio there is a possibility
of worldwide reception, e.g., on short wave; in optics, this is not possible).

5.4.1 Heavy Molecules

A transoceanic link with 0.2 dB/km is thus not viable without several intermedi-
ate amplifiers. How about replacing the silicon dioxide in the glass with heavier
molecules? This would shift the infrared resonance toward longer wavelength
and postpone the onset of the corresponding loss toward longer wavelengths.
One could then move to longer wavelengths and enjoy the benefit that Rayleigh
scattering loss is reduced dramatically (according to the negative fourth power
of wavelength; (Fig. 5.5)). This is certainly a very appealing idea: If one could
change the fiber material so that one could go to wavelengths between 3 and
4 um, one could reduce loss by a factor of 30. Then the whole 5,000 km length
of the span could be taken in one go, without the need for amplification with
its associated technical complexity.

Therefore, researchers have tried for many years to come up with suitable
material. In 1978-1979, three groups suggested virtually at the same time that
fibers made from fluorides, chalcogenides, or halides would have dramatically
lower damping, in principle down to 0.001dB/km. There is only one problem
with all these materials: They offer fantastic perspectives, but so far no one has
ever succeeded in making them so that the loss would compete with existing
fused silica fibers. This is due to the increased chemical reactivity of all these
materials. Also, here are indications that mechanical properties of existing fibers
cannot be matched by these more exotic materials: They tend to be brittle and
break easily.
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Figure 5.5: Theoretical loss of infrared fibers made from various materials, in
comparison to SiO,. Infrared absorption sets on at longer wavelengths so that
the A~ trend of Rayleigh scattering can be exploited toward longer wavelengths.
This leads to considerably weaker damping. Unfortunately, these data remain
theoretical. After [139] with permission.
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Fluorides. Among fluorides, the most frequently used substance is fluorozir-
conate or ZBLAN (pronounced zee-blan). The acronym indicates Zr (zir-
conium), Ba (barium), La (lanthanum), Al (aluminum), and Na (sodium)
as constituent elements. In the manufacturing process, the crystalline sub-
stances are molten in a crucible and then poured into a rapidly spinning
casting mould. The spectral range of reasonably low transmission is be-
tween 500 nm and 3.5 um, with the lowest losses between 1.5 and 2.7 pm.
About 15dB/km at 2.5 um are obtained commercially. The refractive in-
dex is similar to that of fused silica (n & 1.5), dispersion is lower. At
2.8 um, there is a strong OH™ absorption that gives rise to considerable
loss; the figure can vary even among fibers by the same manufacturer from
30 to 80 dB/km. Only multimode fibers with core diameters up to 250 pm
are available. Critical mechanical tension is quoted at a very low 0.6 MPa,
the minimum bend radius at 10 mm. Temperatures above 150°C pose a
problem. Contact with water causes chemical change; coatings need to be
employed as barriers.

Chalcogenides. There are very few glasses with good transmission between 3
and 11 um, including the wavelength of the CO5 laser at 10.6 pm. Chalco-
genides composed of arsenic, germanium, and antimony in combination
with sulfur, selenium, or tellurium make it possible. The ingredients are
mixed, molten, homogenized, and cooled down inside fused silica ampoules
under vacuum. There are practical difficulties with trapped bubbles, in-
clusions, and crystallites. In the visible, these fibers are basically opaque.
Chemically they are reasonably stable; mechanically at 0.1-0.17 GPa crit-
ical tension not very much so. Also, elevated temperatures above 150°C
create difficulties. In most cases, these fibers are made without distinc-
tion between core and cladding just a cylindrical body. Diameters range
from 150 to 500 um, and there is a plastic coating for protection. The
refractive index is about 2.8; therefore coupling both in and out suffers
from large Fresnel loss. Overall, loss is much higher than for fluorides, but
chalcogenide fibers can be used out to much longer infrared wavelengths.

In view of all the difficulties mentioned, efforts to develop such fibers for long-
distance use have been reduced. Meanwhile, development has taken an entirely
different route: Conventional intermediate amplifiers become unnecessary when
fibers themselves are transformed into amplifiers (see Sect. 8.8.1).

There are, however, applications when a flexible light guide is used for a short
distance on the order of 1m. This is true in laser material processing — laser
surgery is, after all, a particular variant thereof. In this kind of application, these
fibers compete with silica fibers and with sapphire fibers (Fig. 5.6). Silica fibers
for these applications are usually made without cladding with 400-1,000 pm
diameter; common wavelengths are 1,064 and 532nm for Nd:YAG Lasers and
514nm for Argon ion lasers. The advent of the Ho:YAG-Lasers operating at
2.1 um created the requirement of silica fibers with less than 5 ppm OH™.

5.4.2 Hollow Core Fibers

For use with CO4 lasers with their high power at a wavelength of 10.6 um, one
uses a different approach: Here, fibers with hollow core are employed. Hollow
core fibers have high loss, but that is of minor importance for guiding high power
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Figure 5.6: Typical spectral transmission curves of some infrared fibers.

over short distance in comparison. All-important is a high damage threshold.
Obviously, in a hollow core, the refractive index is close to 1. Light-guiding takes
place only because, in wavelength regimes of strongly anomalous dispersion, the
index of the cladding may actually fall below 1. In some doped silica glasses
and in sapphire, this occurs around the wavelength of the CO5 laser.

Hollow core fibers are also used in reverse: We will discuss fiber-optic sensors
in Chap. 12 but here we jump ahead and mention that the peak wavelength of
black body radiation around room temperature is within the transmission range
of these fibers. Therefore, the temperature of objects can be measured by gath-
ering radiation with a hollow core fiber without even touching the object, and
guide it to a measuring device. This is an admittedly expensive, but sometimes
very useful clinical thermometer!

5.4.3 Sapphire Fibers

Sapphire is a chemically stable, nontoxic material with reasonable mechanical
strength. It can be worked into fibers by growing from a solution of AlyOs.
Sapphire fibers transmit from the visible range to about 3 pum. Bend radii are
limited to a few centimeter, and loss is around 1dB/m. Sapphire fibers, too,
are fabricated without cladding and with 100-500 pum diameter. They have
good damage threshold and high melting point, which makes them attractive
for transmission of high-power laser light, including laser delivery in surgery and
dentistry.

Like hollow core fibers mentioned in the previous paragraph, sapphire fibers
can be used as a part of an infrared thermometer. Their good heat resistance
and chemical stability are favorable for applications in chemically harsh and/or
high-temperature environments, like inside chemical reactors where sapphire
fibers may offer the best way to measure temperature.

5.4.4 Plastic Fibers

Also suitable only for short-distance transmission are plastic fibers, usually
called POF (plastic, or polymeric, optical fiber) for short. However, they are
used in an entirely different field of application. Plastic is a low-cost mate-
rial and can be shaped very easily into fibers (or any other shape). In most
widespread use is polymethyl methacrylate (PMMA), a.k.a. acrylic glass, per-
spex, or plexiglas; PMMA was used for the first commercially available POF as
early as 1963. Polycarbonate and polystyrene are other options.
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Figure 5.7: Typical spectral transmission curves of polymethyl methacrylate
(PMMA) light-guiding fibers. Data are taken from gradient index fibers. “PF”
refers to perfluorinated material. After [32] with kind permission.

In comparison to fused silica, the optical loss in POFs is enormous and is
measured in dB/m rather than dB/km (see Fig. 5.7). While Rayleigh scattering
and absorption from electronic transitions and from contaminants also exist in
POFs, the dominant loss mechanism seems to be the absorption at harmonics
of the CH bond, which is ubiquitous in plastic materials [81]. A successful
approach to reducing this problem is to replace some of the hydrogen with
heavier molecules such as fluorine, to shift the resonance. However, fluorination
is an expensive process, so that the low-cost advantage is somewhat reduced.

Nevertheless, in terms of low loss, POFs cannot match silica-based fiber.
Their maximum transmission distance is therefore defined by loss, not by dis-
persion. It is thus not a problem that realistically only multimode fibers with
large numerical aperture can be made. Core diameters are often 1 mm or even
more. A cladding can be made from fluorinated PMMA if internal guiding is
desired. A typical numerical aperture can be 0.3.

Certainly, POF's have several quite favorable aspects: Handling is easier than
for fused silica, incoupling efficiency is good, and coupling between fibers is quite
simple. All this adds to the low-cost aspect. One drawback is that these fibers
can be damaged by high-power lasers. Thus the applications are outlined: Plas-
tic fibers are useful for short-distance data transmission where cost limitations
are stringent. Local area computer networks within a building or on premises
are an example. Also, in some stereo equipment, there is optical transmis-
sion between digital audio components such as CD players, DVD recorders, etc.
European car makers have been using POFs for some time because interesting
savings of weight are obtained (a series 7 BMW car contains more than 100 m
POF). There are also plans to use an on-board POF network to provide the car
driver and all passengers individual access to a range of entertainment media.
Quite naturally, the aviation industry is also increasingly using POF.
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Technical Conditions for
Fiber Technology

A variable “wave plate” in all-fiber technology used to adjust the state of po-
larization. It consists of three rotatable fiber loops and permits to translate
any given state of polarization into any desired state. These components are
described in Sect. 8.5.1.
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Manufacturing
and Mechanical Properties

6.1 Glass as a Material

Blood is a quite peculiar juice. Thus spoke Mephistopheles in the tragedy
“Faust” by J. W. v. Goethe. Glass, too, is a quite peculiar juice: There was
a stone age, an iron age, and a bronze age. Glass, however, is the only artifi-
cial material that has been in use uninterruptedly for seven millennia or more
without giving its name to an epoch.

Like the word “crystal,” “glass” refers not to a chemical but to a physical
property. Unlike a crystal, its structure is not neatly ordered but quite irregular.
Glass is a liquid usually mistaken for a solid! But let us start at the beginning.

6.1.1 Historical Issues

The oldest finds date back about 7,000 years before Christ, at the end of the
younger stone age. They hail from the Mideast: Egypt and Mesopotamia,
present-day Iraq. Independently the art of making glass was also developed in
Mykenae (Greece), China, and North Tyrol.

Making glass is closely related to pottery, which has existed in Egypt more
than 8,000 years ago. Maybe by chance people had discovered that a glazing
develops when sand with lime content is exposed to fierce heat together with
soda ash. Beginning about 1,500 BCE, glass was made without ceramic sub-
strate. Blowing glass dates back to ca. 200 BCE in Sidon and Babylon. In the
Roman Empire, glass articles were coveted luxury objects.

In the middle ages, Venice was an important center of the art of glass blow-
ing. Up to 8,000 people worked there. Further north in Central Europe, glass
was mainly made in remote forested areas such as the German Spessart, the
Thuringian and Bavarian Forests, and the Erzgebirge (“ore mountains” on the
German-Czech border) because there both potash and fire wood were in abun-
dant supply. (Potash, or potassium carbonate KoCOsg, is the main constituent of
wood ashes: All plants contain potassium salts.) Until the seventeenth century,
in part the eighteenth century, there were traveling glass makers. To our day
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the glass industry in Central Europe is still concentrated to a good part near
major forests such as the Bavarian Forest.

Modern glass technology was basically started by two Germans, Otto Schott
(1851-1935) and Ernst Abbe (1840-1905) (Fig. 6.1). Schott, son of a glass
maker’s family from Lothringia, conducted systematic experiments with almost
all chemical element to determine which influence their addition to the melt
would have on the properties of the final glass.

Carl Zeib (1816-1888) Ernst Abbe (1840-1905) Otto Schott (1851-1935)

Figure 6.1: Carl Zeiss, Ernst Abbe, and Otto Schott are the founders of modern
optics in which scientific methods and industrial processing are closely interwo-
ven. From [170] with kind permission.

Abbe was a professor at the German university of Jena, and he was a co-
owner of the Carl Zeiss company. Zeiss needed high-quality glass in order to
build optical instruments.

After many tries, Schott finally found the suitable glass recipe; this prompted
a cooperation that then led to the start of “Jenaer Glaswerk Schott und
Genossen” (Jena Glass Works Schott and Co.), which acquired some fame. For
many specialized purposes, they developed just the right glass. The company
did well, and we remark in passing that such fairly revolutionary social novelties
as an 8-h work day and participation of employees in the company’s profits were
introduced.

After the second World War, Americans moved specialists from Jena into
what was to become Western Germany. This gave rise to the new location of
Schott Glass Works in Mainz.

6.1.2 Structure

As mentioned above, both words “glass” and “crystal” do not refer to a specific
chemical composition but to a particular spatial arrangement of molecules. In
a crystal, molecules are arranged in a repetitive, periodic pattern. In glass,
by comparison, they are arranged in a disorderly fashion: glass is amorphous.
Correspondingly, in glass the molecules are not densely packed (Fig. 6.2). Many
substances have glassy states; the table gives a few examples:
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Figure 6.2: Comparison of crystalline and glassy structures for the example
of silicon dioxide. Symbolically shown are silicon ions (Si4_, small spheres),
oxygen ions (0277 larger spheres), and their electronic bonds. Due to the two-
dimensional nature of the sketch, silicon’s tetrahedron configurations with four
bonds are depicted with three, rather than four bonds; the missing fourth bond
may be imagined out of plane. In the crystal, there is high packing density; in
glass, irregularities lead to lesser density.

Substance Glass temperature (K)
Natural rubber 200
PVC 347
Water 140
Glucose 305
Selenium 303
Beryllium fluoride 570
Germanium dioxide 800
Silicon dioxide 1,350

Only a limited selection of glassy substances is useful in the optics industry.
We will deal almost exclusively with glass of silicon dioxide. Silicon, after oxy-
gen, is the second most frequent element in the earth’s crust (28%). It is found
in the form of silicates, silicic acids, and as anhydride SiOy (and of course, these
days, in elementary form inside of computers). Silicic acid is a name for the
oxygenic acids of Si, that is, SiOa(n - H2O) where the case of n = 0 (SiO3 in its
various forms) is sometimes included. In particular, ortho silicic acid H4SiO4
occurs frequently. Over geological time spans, it may shed water and go through
intermediate stages like HySioO5 until finally it becomes the anhydride SiO.

The most important crystalline form of SiO; is quartz. It constitutes the
most important part of silicate rocks; there are also feldspar (KAISi3Osg), mica
(KAI3[AISiz01](OH)3), and salts of polysilicic acids containing Mg™* and Ca™*.
Among these quartz is the hardest. During geological time scales, quartz is
ground down and destroyed, and small fragments remain: gravel or sand. Traces
of soluble silicic acid in the waters of rivers and the sea are incorporated by plants
and animals for mechanical hardness.

Depending on its crystalline modification, quartz has a melting point of
1500-1700°C and a density of 2.3-2.6 g/cm3. Geologically it is found in trans-
parent crystals up to a meter in size. In form of smaller crystals, quartz is con-
tained in all primary rocks such as granite, porphyry, and gneiss. Amorphous
SiOs, often colored by other substances, is the basis of semiprecious stones such
as agate, chalcedony, and opal.
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Glass is obtained for melting together quartz sand, soda ash, potash, and
metallic oxides. Soda ash means sodium carbonate (Na2COs3) and potash is
potassium carbonate (K2COs). If one uses colorless metallic oxide such as CaO
and white (iron-free) quartz sand, one obtains clear glass; addition of other
elements can change the properties. Green or brown bottle glass is made from
ordinary yellow sand (containing iron); other additives are common to control
the color. Window glass consists of NaoO CaO 6SiOy. Lead glass, used
extensively in optics for its high refractive index, consists of KoO PbO 6 SiOs.
Laboratory glass is similar to window glass, except that there are additions of
8% Aly03, 5% B203, and 4% BaO. If a lot of Al;O3 is mixed in, SiOy and Al,O3
will no longer mix and the substance turns turbid in the oven, stays white, and
is not transparent. This is called porcelain, or china.

The main characteristic of glass, its structural irregularity, is reflected in its
heat conductivity, which is about one order of magnitude lower than for the
corresponding crystal. With this structure, glass is in a local, but not a global
minimum of free energy (Fig. 6.3). Consequently a deglassing, a growing of
crystalline structure, may occur — albeit on very long time scales due to the
enormous viscosity of glass. Over historic time spans, glass can be affected to a
measurable amount: very old glass turns turbid and brittle.

4Volume

liquid
supercooled liquid

glass
(value depends on cooling rate)

melting

crystal

crystallizing

Temperature

T T
Glass temperature Melting temperature

Figure 6.3: Glass is a stiffened undercooled liquid. Starting from a crystal, by
raising the temperature it will melt. When the temperature is lowered again,
there can be undercooled melt rather than recrystallization. This melt then
stiffens and becomes glass. In comparison, glass is less densely packed than
crystal, thus occupies a larger volume. In principle, glass can recrystallize over
long periods of time.

Why would one use glassy, not crystalline material for light-guiding fibers?
Crystals can never be made entirely without defects and dislocations, but these
act as efficient scatterers of light so that losses are higher. Moreover, crystals
tend to be brittle so that glass comes out as the better choice. The reader is
referred to [57] for more detail about defects in silica glass.
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6.1.3 How Glass Breaks

When it comes to glass, the layperson does not necessarily think of great elastic-
ity. Rather, the common perception is that glass breaks quite easily. This may
be why it is so fascinating to experience the perfect flexibility of optical fibers.
It is true, though, that cracks can occur in glass, which suddenly, precipitously
cause it to break (Fig. 6.4). On closer inspection, what happens is that fractures
propagate across the material at a speed of hundreds of meters per second (ap-
proaching half the velocity of sound). But that is not true for all cracks: Quite
to the contrary, many tiny cracks advance only at an unperceptibly slow speed,
often at 10712m/h, which corresponds to one snapping atomic bond per hour.
Then visible damage will arrive only after years, after a false sense of safety has
developed.

If pristine glass pieces are tested under high vacuum, they withstand tensions
of more than 10 GPa, about ten times the value for many metal alloys. Surface
defects or contact with abrasives produces microscopic cracks, though, which
are the point of attack for chemicals. The cracks then grow and widen. The
gravest concern is about water because it is so ubiquitous. It acts at the tip of
the crack. As is well known, window panes are cut to size not with a saw as
one would do with wood, but by making a scratch with a diamond, wet it with
water or even saliva, and then break it. This is the same mechanism.

Atoms at the glass surface have fewer bonds than those inside the volume.
Therefore they are at an elevated energetic state. Making the surface larger then
requires an energy supply. When the mechanical energy stored in the material
is larger than this additional surface energy, the crack will grow. Chemical
reactions between the silica and intruding water reduce the required energy
from 3.2 to 0.19eV per bond.

A lot of mechanical stress builds up, at the tip of the crack in particular.
In cracks that are often about 0.4nm, water molecules of 0.26 nm diameter

water etc.

glass

N

crack growth

Figure 6.4: Glass breaks from cracks that grow at their tip.
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and similarly sized ammonia molecules can intrude, but methanol (molecular
diameter 0.36 nm) has a lot less consequence. Even larger molecules do not
affect crack growth appreciably.

It took a number of years until industry had learned to master the making
of glass with the chemical purity required for fibers. Experience from semicon-
ductor industry was a valuable guide in the process. In that industry, gaseous
silicon chloride (SiCly), purified by distillation, is widely used as a starting ma-
terial. It is now also being used for making glass, according to the reaction
formula

SiCly + Oy — SiOy + 2Cls. (6.1)

Gaseous chlorine evaporates; solid silicon dioxide condenses as an amorphous
substance on cool surfaces and can form glass at suitable temperatures (“fused
silica”).

Especially critical for purity are OH ions. The following reaction, for exam-
ple, must be avoided:

2SiClsH + 305 — 25i0s + 3Cly + 2 OH. (6.2)

Dopants serve to modify the refractive index (Fig. 6.5). Germanium and phos-
phorus both increase; fluorine decreases the index. The most frequently used
dopant is germanium. Dopants are added through their chlorides to the reaction
gas, and there can be the following reaction:

GeCly + Oy — GeO5 + 2 Cls. (63)

As a rule of thumb, a concentration of 1 mol% GeO- in fused silica raises the
index by 0.1%.
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Figure 6.5: Influence of dopants on the refractive index at 1.0 and 1.5 pm.
Shown are data for phosphorus (P205), germanium (GeOs), boron (B2Oj), and
fluorine. Calculated after [171].
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6.2 Manufacturing of Fibers

The manufacturing of optical fiber is performed in two steps: First a preform is
made. The term refers to a rod of glass, typically ca. 1 m long, with a diameter
of 10-50mm, and with the refractive index profile already built into it. In
the second step, this preform is then softened by heating and stretched out by
pulling so that the final fiber is obtained.

Both process steps will now be described in some more detail. For making of
the preform there are several alternative ways. All of them have certain advan-
tages and disadvantages; each manufacturer tends to advertise the advantages,
indeed the superiority of their particular proprietary technique.

6.2.1 Making a Preform
OVD

Outside vapor deposition, a technique also known as soot process, was the first
process to achieve the reduction of losses to 20dB/km in 1973 (Fig. 6.6). It
was developed by Corning Glass Works; it is still used at Corning and, through
joint ventures, at other manufacturers.

Glass is deposited on the outside of a massive cylindrical rod of aluminum
oxide. It is generated when the gaseous chemicals are fed into the flame of
a burner so that submicroscopic glass particles condense on the surface. All
the time the rod is rotated and translated so that a uniform layer is formed.
The layer is porous at first (“soot”), but during its deposition concentrations
of dopants are adjusted, and it therefore already contains the dopant profile as
required for the refractive index profile of the finished fiber.

Then this rig is heated to allow evaporation of trapped gases and humidity.
Next, heat is turned up to a higher temperature of 1400-1500°C so that in a

. deposition
carrier tube of SiOp
rotation
burner flame
— _—

translation

GeCly, O,, etc.

T supply of SiCly,
to burner

Figure 6.6: In outside vapor deposition (OVD), the glass is deposited from the
reaction of gaseous chemicals on the outside surface of a carrier rod.



94 Chapter 6. Fibers of Glass

sintering process the porosity is removed. Once the glass is compact, one can
pull out the ceramic carrier rod; finally, the preform is “collapsed” to fill the
central hole and generate a massive object: a scale model of the fiber.

MCVD

Modified chemical vapor deposition was developed ca. 1974 at Bell Laboratories
and is now in widespread use (Fig. 6.7). As compared to OVD, the inside is
turned out: One starts with a glass tube (which will later become part of the
cladding) and passes the gaseous reactants through the bore. Just as in OVD,
a burner is moved along and around the tube; in the heated zone porous glass
is deposited. The difference is that here no residual gas and no water vapor is
trapped because there is the wall of the tube between the burner flame and the
reaction zone, acting as a barrier. Again, in the next step, the porous glass is
sintered. The resulting hollow tube is then collapsed to a massive rod.

The disadvantage to be mentioned here is that the glass tube needs to be of
very high purity and uniformity. Also, during the collapsing step, some of the
dopant used in the last, innermost layer escapes. This is why the finished fiber
often exhibits a central dip in the refractive index profile.

deposition of SiOy
on the inside

supply of SiCly, /

GeCly, Oy, etc.

B

_"‘ exhaust gas: Cly

A J \ >
R

burner flames

4 acetylene

Figure 6.7: In modified chemical vapor deposition (MCVD), the glass is formed
on the inside surface of a glass carrier tube.

PCVD

Plasma chemical vapor deposition goes back to Philips Research Laboratories in
1975 (Fig. 6.8). This is a variant of MCVD where not a gas burner is used for
heating but a microwave generator (3 GHz, several hundreds of watts). Mean-
while, the temperature of the rod is kept at ca. 1000°C in order to minimize
mechanical tensions between tube and deposited layers during heating cycles.
The plasma is uniform enough that constant turning of the tube is not required.
Also, sintering is unnecessary because the glass is deposited free of pores. More-
over, the process is fast since thermal cycling is much reduced. These items
combine into a distinct advantage when very many very thin layers must be
deposited for the most precise control over the refractive index profile. It is not
at all unusual to deposit 2,000 layers. However, this method also suffers from
the central index dip.
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Figure 6.8: In plasma chemical vapor deposition (PCVD), the glass is deposited
inside a carrier tube as in MCVD; however, heat supply is quite different and
relies on microwave heating.

VAD

Vapor phase azial deposition was developed in ca. 1977 in Japan and is used in
that country to this day, and through joint ventures elsewhere, too (Fig. 6.9).
This technique is quite different from the ones described earlier in that the glass
is formed at the end of a rod. One starts at the section of a seed rod, deposits
glass, and lets the structure grow longitudinally. The refractive index profile is
obtained through an elaborate geometry of burner flames and positions of the
nozzles that bring in the reactants. Constant turning helps secure rotational
symimetry.

Here, too, the glass is initially porous. One needs to sinter the soot into
solid glass by pulling the entire rig through a suitably heated zone. On the
other hand, no collapsing is required here.

Q rotation

I advance

burner flames \
\ deposition of

cladding material

deposition of
core material
supply of SiCly,
GeCly, Oy, etc. in
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Figure 6.9: In vapor phase azial deposition (VAD), the new glass forms right on
the end of a carrier rod; this allows to make quasi-endless preforms.
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The unique advantage is that the preform can be made to any length; in
effect, endless. This allows to produce very long lengths of fiber in one piece.

Noncircularly Symmetric Fibers

We have seen in Sect. 4.6.2 that polarization-maintaining fibers intentionally de-
viate from a rotationally symmetric structure. To make such fibers, obviously
some process step must be introduced that breaks the circular symmetry. Sev-
eral approaches have been explored to accomplish this, including mechanically
milling a preform to generate an elliptic cross-section. It is more elegant to intro-
duce a highly reactive gas and have it etch away some material on two opposite
sides, rather than all around. As is well known, the rate of chemical reactions
exponentially depends on temperature (Arrhenius factor). Figure 6.10 shows
the procedure, introduced 1982 in Southampton, in the making of a bowtie
fiber.

burner

Deposit Etch Deposit Collapse

_ sio,

SiO, doped with F, and P,05
SiO, doped with B,O3

- Si0, doped with GeO,

Figure 6.10: To make a nonsymmetric bowtie preform, an intermediate step is
etching with heating on two opposite sides (rather than uniformly all around).
All layers deposited after this step will then grow with a broken symmetry.
When the fiber is pulled from the preform, the characteristic bowtie shape is
obtained. After [27] with kind permission.

6.2.2 Pulling Fibers from the Preform

The preceding paragraphs discussed how a preform can be made. Think of a
preform as a short (typically 1m), fat (typical diameter 10-50 mm) version of
fibers, complete with all internal structure. In a machine called a draw tower,
the preform is heated to the temperature where glass softens and begins to melt,
i.e, around 1950-2250°C (Fig. 6.11). One can then catch a thread of glass and
pull it into a fiber with a diameter of 70-250 pm, but most frequently 125 pm. In
the process, the diameter is reduced some 200-fold; therefore the length increases
by 40,000:1 to about 40 km. At a typical, certainly not particularly rapid, speed
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Figure 6.11: Schematic depiction of a draw tower. The preform is heated to the
onset, of melting. The fiber thus formed gets coated with plastic in an extruder
and is led over pulleys and onto a receiving drum. Noncontact measurement of
fiber and coating diameter is used for closed-loop control of parameters such as
advance speed. A test for tensile strength is also applied right here.

of advancing the preform into the heating zone of 200 um/s, one winds up with
a fiber (pun intended) at 8 m/s. At 5,000s or one and a half hour later, 1m of
preform has been spent, and 40 km of fiber has been made.

This may all sound very simple, but the technical reality is quite involved.
Draw towers are two floors high. Temperature and advance speed must be
maintained to the most exacting tolerance demands. Online measurements of
fiber diameter and other properties are used for elaborate closed-loop control of
parameters. As a result, one can maintain the fiber diameter to within 0.1 pm.

Immediately after cooling, a plastic coating is applied by way of an extruder.
This is important because it protects the fibers from mechanical factors such as
abrasive contact and from chemical influences by water. At the same time, it
contributes to minimize micro-bending loss. Frequently the coating consists of
two layers: an inner layer is soft, pliable; an outer layer, hard, abrasive-resistant.
Epoxides and polyimides are used, also acrylates and silicones. Occasionally, a
barrier layer is applied first to keep water out; it can consist of either amorphous
carbon or metal like aluminum or gold. Before the fiber is coiled on a spool, a
test for tensile strength is conducted.



98 Chapter 6. Fibers of Glass

6.3 Mechanical Properties of Fibers
6.3.1 Pristine Glass

Contrary to a widely held opinion glass is a material that can withstand quite
some mechanical stress. Let us consider tensile strength: Under applied tension,
there is deformation and eventually breakage.

At low stress, most materials deform elastically and stretch in proportion to
tension (Hooke’ law): The relative length change, the strain Al/l, is given by

al_1F (6.4)
l E A
Here F is the applied force (measured in Newton) and A the cross-sectional
area (measured in meter square). F'/A is then the tension (similar to a negative
pressure) and has units of N/m? = Pa (Pascal). The proportionality constant
1/E contains Young’s modulus of elasticity E; E is also measured in Pa.

There is a certain critical value of tension (F'/A)qit, which is called the
elastic limit. Beyond this level many materials, depending on their ductility,
will undergo plastic deformation. Steel wire deforms plastically, and so does
copper wire: it can be stretched 20% longer without snapping. At even higher
tension, the ultimate limit is reached and the specimen is destroyed by rupturing.
Glass fiber, in contrast to ductile metals, exhibits no plastic deformation but
breaks immediately once the critical tension is exceeded. The following table
gives some representative values of elastic properties.

The table indicates that the tensile strength of glass is much less in normal
specimens than in an idealized situation. In the ideal case (absolutely pure
glass without the smallest microscopic scratches in its surface), glass fibers can
almost be as strong as steel. At a tension of 20 GPa over a cross-sectional area
of A= 7(125 wm)?2, this implies a critical tension of 245 N, corresponding to a
fiber suspending a weight of 25kg. Of course, such ideal circumstances never
occur in practice and so the critical strain is at a few percent. This has been
studied extensively.

As may be expected, the plastic coating contributes negligibly to the over-
all tensile strength. The critical tension is strongly influenced by the depth of
surface scratches. According to a theory by Griffith, the value stands in inverse
proportion to the square root of scratch size. When in practice ca. 5 GPa is
obtained, one can conclude that scratches of a few tenths of nanometers are
responsible. In this context the plastic coating, applied immediately after draw-
ing the fiber for a good reason, is all-important because it prevents scratches.
It also limits the access of water. On the bottom line, the coating is important
after all: not by bearing load directly, but by maintaining the initial tensile
strength as intact as possible.

The tension for a 1% strain (0.7 GPa) is obtained from

EA x 1% = 8.6N, (6.5)

so that it is reached at about 880 g load. Fibers are routinely tested for tensile
strength right at the draw tower. Standard values are 0.35 GPa, corresponding
t0 0.5% strain for fibers intended for terrestrial use, and 1.38 GPa, corresponding
to 2% strain, for fibers destined for undersea applications. It should be clear
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Material E (GPa) | (Al/Dait | (F/A)ai (GPa)
Various substances
Steel 210 10% 20
Aluminum 70
Copper 120 20%
Glass 70 1% 0,05
Lead 16
Wood 10
Optical fibers
Ideal 70 30% 20
Real 0] 3...7% 2...5
Coating materials
Thermoplast, polyurethane 0.04
Nylon 1.4
Acrylate 0.35

Selected values of Young’s modulus, critical strain, and critical tension.

that the latter must withstand greater mechanical stress, in particular in the
fiber-laying process.

After deployment, during the intended use, fibers are rarely stressed by more
than one fifth of the test level; this gives a safety margin for a life expectancy
of several decades. As it is difficult to simulate long-term behavior in a short
time one takes resort to statistical extrapolation (Fig. 6.12).

6.3.2 Reduction of Structural Stability

Life expectancy of fibers is dominated by all environmental changes that affect
the growth of microscopic cracks. In vacuum or in a chemically inert atmosphere,
fibers live longer! Unfortunately, this is of little use for technical applications.
There are several ways in which glass can break.

Static fatigue. At constant tensile stress below the critical limit, some fatigue
is observed that can create nasty surprises after a while.

Dynamic fatigue. With tensile stress rising linearly with time, one finds critical
limits that are lower than described earlier. This phenomenon gives rise
to a certain standardized measurement procedure.

Cyclic fatigue. In principle there is no material fatigue in glass as long as
the temperature remains sufficiently far below the softening temperature.
Therefore this process is of minor importance for fibers whereas for many
other materials it is quite relevant. On the other hand, during each cycle
of tension there is dynamic fatigue.

Zero stress aging. This is a case of unclear, in part contradictory evidence. If
glass with a roughened surface is immersed in water at room temperature,
it may even happen that the tensile strength is increased (30% have been
observed). In an attempt to explain, researchers have conjectured that
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the tip of cracks would be rounded through corrosive interaction. In most
cases, however, humidity reduces strength. After drying under vacuum,
the original strength can be partially restored, indicative of reversibility
of the processes involved.
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Figure 6.12: Reliability test of optical fibers: lifetime under tensile stress. With
increasing stress, life expectancy is reduced exponentially. After [159].

The growth of cracks is mostly caused by water from the environment. Static
fatigue does not occur when one operates at liquid nitrogen temperature, or in
absolutely dry atmosphere or in vacuum. In contrast, when there is an elevated
concentration of OH ions, the cracks grow more rapidly. Different types of glass
are more or less resistant; pure fused silica turns out to be the best.

The crack growth rate increases exponentially both with tension and with
temperature. After years of reliable service, static fatigue can lead to an entirely
unsuspected sudden rupture of the fiber.

This risk may be typical for all risks that arise when new technologies are in-
troduced. There is always a remote chance that a hidden flaw goes undiscovered
until people rely on the seemingly trustworthy technology. The risk can only
be held at manageable levels by careful statistical analysis. After some early
mishaps, further nasty surprises from optical fibers are no longer anticipated.
In this context, it is also important that fibers are used as cables; by suitable
construction of the cable, one can keep tensile load away from the fiber and thus
increase reliability.
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How to Measure Important
Fiber Characteristics

It takes some special procedures to characterize an optical fiber through mea-
surement of its relevant characteristics. These procedures, often developed along
with the fibers, are presented in this chapter.

7.1 Loss

It is not trivial to measure fiber loss because the value is low, and some precau-
tions and a very good resolution are required to obtain a meaningful value with
any degree of precision. At values of a few tenths of dB/km, both resolution
and accuracy should be at least a few hundredths of dB/km. Remembering that
0.01dB = 0.23%, this means that better than one part in thousand is asked for,
always a challenge for analog quantities. Here, however, there is one particular
obstacle.

The naive way to do this measurement would be to send light from some
source (a lamp, say, or a laser) into the fiber with the help of some suitable
focusing lens, then measure power right after and right before the fiber, and
compare. However, that strategy fails because the result contains incoupling
loss. This loss is mostly due to the fact that only a fraction of the incoupled
light ends up in the guided mode (or modes). The rest is lost to the cladding
from where it is scattered out. Additionally, there are Fresnel losses at the front
and rear fiber face. With utmost care one may reduce these losses to below 10%,
but 30% are more realistic in a typical laboratory setting. It is the uncertainty
of this value that masks the propagation loss.

This is why one does not use the power before the fiber as a point of reference,
but the power shortly after the fiber input end. This requires to first measure
the throughput of a very long fiber (length L preferably several kilometers), then
cut it after Ly ~ 1 to 2m, and repeat the power measurement with the short
piece. Provided that the incoupling loss did not change during the procedure,
one finds the loss of the piece L — L. Fresnel losses are also cancelled out. This
is known as the cutback technique and is the standard procedure. Still, many
sources of error remain. Here are some:

F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_7, 101
(© Springer-Verlag Berlin Heidelberg 2009
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= Lack of constancy of the light source.
= Lack of constancy of the incoupling.

= Lack of constancy of the detector sensitivity (either due to temperature
fluctuations or by inhomogeneity of the detector surface).

= Too short Ly. Light that is not guided in the mode can travel a short
distance in the cladding before it is completely scattered out. Part of it
may enter the measurement.

= Macro- and micro-bending loss.

Around 1980, it became apparent that repeatable loss measurements were
a necessity. Throughout the 1980s, several round-robin tests were conducted
in various countries in which pieces of fiber were sent around among several
institutions for loss measurement and comparison of results. In one such test in
1983/1984, 16 European laboratories in ten countries were involved. Initially,
there was a spread in the results of more than 0.2dB/km, amounting to more
than 100% of the value, even though the participants were the best labs from
industry and government agencies. It took considerable effort to reach a satis-
factory state of affairs. To achieve constancy of a halogen lamp, for example, it
does not suffice to have a constant current run through it: It is also important
to have a specific value of that current which is lamp type-dependent but often
around 90% of nominal current. At this current, the temporal change of light
output is minimized. It is also important to observe the spatial orientation of
the filament: For reasons of heat distribution, it makes a difference whether it
hangs horizontally or vertically. If all precautions are scrupulously observed,
one may achieve a constant light output within 0.1%. Photodetectors (photodi-
odes) must be selected for homogeneity of sensitivity across their light-sensitive
surface and must be thermostatized to within 0.1°C.

With these and further steps, data can be taken on long fibers with a res-
olution of one part in thousand of 1dB/km, and a repeatabiliy of one part in
hundred. This makes it possible to obtain data as shown in Fig. 7.1 where the
Rayleigh scattering background has been subtracted out so that minute features
like impurity absorption bands become visible. It turns out that such data are
like fingerprints: It is possible to discern otherwise similar fibers and to identify
a particular brand or type of fiber [68].

7.2 Dispersion

To measure fiber dispersion usually implies a measurement of the propagation
time. There are two avenues one can use: One is the standard procedure in
industry but requires a very long piece of fiber, like 100km. At this length
propagation time differences at different wavelengths become directly measur-
able: To obtain a resolution of 0.1 ps/(nmkm), one needs to measure a timing
differential of 10ps/nm. With two light sources 10 nm apart, this is feasible
because fast photodiodes and sampling oscilloscopes easily resolve times well
below 100 ps. An example is given in Figs. 7.2 and 7.3.

A difficulty to keep in mind is that propagation time also varies due to other
causes: The coefficient of thermal expansion of fiber is of the order of 1075 /K
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Figure 7.1: Measurement of fiber loss. A term proportional to A% (Rayleigh
scattering) was first fitted to the data and then subtracted out; plotted are the
residuals. The figure shows two very similar fibers from different manufacturers.
Absorption bands due to OH groups and other impurities look quite different due
to slightly different manufacturing processes. From [68] with kind permission.
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Figure 7.2: Scheme to measure fiber dispersion from propagation time. Four
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modulation between pairs of wavelengths is measured. It takes very long fibers
(~100km) to yield useful signals. From [47] with permission.
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Figure 7.3: Data taken with the setup described in Fig. 7.2. From the propaga-
tion time differentials (top), one finds dispersion through taking the derivative.
From [47] with permission.

[162, 92]; then, a minute temperature fluctuation of 0.01°C creates a change of
length by 1 cm in 100 km fiber and gives rise to 50 ps change of propagation time.
Therefore procedures are chosen that measure propagation time differentials
between several wavelengths simultaneously. This requires several light sources

Intensity change
(arb. units) ,

1 2 3 4
Change of path difference (mm)

Figure 7.4: Measurement of fiber dispersion in a Mach—Zehnder interferometer.
One obtains fringe patterns (interferograms) like the one shown here. Individual
fringes are spaced by one half wavelength and are thus too narrow to be resolved
on the scale of the figure. In the case shown, a polarization-maintaining fiber
was studied; due to its considerable birefringence, there are two clearly distinct
groups of fringes.
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and has thus higher hardware requirements. On the other hand it provides more
direct, uncomplicated data acquisition that reduces manpower requirements.
This is a strategy well suited to the needs of fiber manufacturers who always
have access to the full-length fiber.

For the other route, it suffices to have a much shorter segment of the fiber,
about 1-2m. The fiber is inserted in one arm of an interferometer; Mach-
Zehnder interferometers are the most common arrangement. The reference arm
contains either some other fiber with precisely known dispersion or an air path.

Now one can tune (continuously or stepwise) the wavelength of the light
source and find, at each wavelength, that path length which maximizes inter-
ference contrast. The change of this path length with wavelength leads directly
to the fiber’s dispersion (Figs. 7.4, 7.5, and 7.6). Alternatively, one can use
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Figure 7.5: Path differences obtained from the interferogram of Fig. 7.4, shown
for both axes of the birefringent fiber. From this, the propagation time differ-
ences are obtained by division with c.
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Figure 7.6: Dispersion values 35 obtained from propagation times as in Fig. 7.5.
Shown are results for three different polarization-maintaining fibers; data for the
fast axis (solid) and the slow axis (dashed) are nearly on top of each other on
this scale. For fiber specimen 3, the range near the zero-dispersion wavelength
is shown magnified (inset): On that scale both curves are clearly separated.
Zero-dispersion wavelength for the fast axis here is 1,324 nm and for the slow
axis 1,321 nm.
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broadband light (white light) and record the interferometric fringe pattern as
the path length is scanned; the Fourier transform of that fringe pattern provides
the phase information from which dispersion can be calculated. This procedure
provides the full wavelength dependence in one go.

7.3 Geometry of Fiber Structure

It is also not a trivial task to assess the refractive index profile and the core
radius. The direct route is to measure refractive index in an interferometer,
but since high spatial resolution is required, a setup involving a microscope is
required. One expects refractive index differences of a few 10~3; for a unique
determination, the fiber length must therefore be a few hundred wavelengths;
for visible light, this means a fiber length of no more than ca. 100 um! We
conclude that one would have to prepare a thin slice of fiber by polishing which
is time-consuming and cumbersome.

There are also methods in which the fiber is illuminated from the side. One
first removes the plastic coating, then places the fiber in index-matching gel
and shines light through sideways. On a screen one captures a pattern that,
in principle, contains the required information. Unfortunately the evaluation is
cumbersome again (it requires integral equations) and error-prone. Similarly,
one can place the fiber with transverse illumination into an arm of an interfer-
ometer. Again one can obtain the information in principle, but only after quite
involved evaluation.

All told, it is a lot easier to assess the internal structure of the fiber before
drawing it, i.e., from the preform. Precision is much improved because fine
detail of the index profile can be seen clearly while in the finished fiber the
same dimensions may be obscured by diffraction once they are smaller than one
wavelength and thus below the resolution limit (see Fig. 7.7). Details like a
nonperfect index step or a central index dip (see Sect. 6.2.1) can be seen much
better in the preform (see Figs. 7.8, 7.9, and 7.10).
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Figure 7.7: Core profile of a step index fiber, measured from the final fiber. Due
to diffraction effects this can show no detail finer than about one wavelength.
From [25] with kind permission.
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Figure 7.8: Core profile of a triangular fiber, measured from the preform. The
preform is much bigger, so much finer detail becomes visible. From [134] with

kind permission.
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Figure 7.9: Core profile of a typical gradient index fiber, measured from the
preform. Note the central refractive index dip.
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Figure 7.10: Core profile of a double-clad fiber, measured from the preform.
Again there is a conspicuous central refractive index dip. From [21] with kind

permission.



108 Chapter 7. How to Measure Fiber Characteristics

7.4 Geometry of Amplitude Distribution

The distribution of field amplitudes in the fiber is not limited to the core. It also
must not be confused with the refractive index profile. The field distribution
is wavelength-dependent; roughly speaking, longer wavelengths extend farther
into the cladding. In the simplest case of a step index fiber, a relation has
been formulated between the mode field radius w (defined as the 1/e point of
amplitude), the core radius a, and the V' number [96]:

= 0.65+1.619V 32 4+ 287916 . (7.1)
a

Figure 7.11 shows a plot of this relation. The large extent of the mode at long
wavelengths (V' — 0) is clearly visible, and also the fact that throughout the
single-mode regime (V' < 2.4048) the mode field radius is larger than the core
radius.

10
8 | single- |
| mode : multi-mode regime
regime |

\4

Figure 7.11: Plot of Eq. (7.1). The mode field radius w is normalized to the
core radius a and is plotted as a function of the V' number. Throughout the
single-mode regime V' < 2.4048, w > a holds.

There are several methods to measure the field distribution, and one can
distinguish near-field and far-field methods.

7.4.1 Near-Field Methods

To correctly identify the field distribution of the guiding mode it is essential
that only light from that mode emerges from the fiber end, and that cladding
light has died down. Steps to reduce cladding light may therefore be important.

Near-field methods create an image of the mode field distribution in the
plane of the fiber face directly. If you now think that you only need to look at
the fiber end with a microscope, consider this: We need to distinguish between
conventional (or far-field) microscopes and near-field microscopes. Far-field mi-
croscopes catch the light diffracted out from the object and transform it back
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to form an image. They are subject to Abbe’s theory of diffraction and do not
resolve detail much smaller than a wavelength. This limits the usefulness of
the measurement. There are aggravating facts like aberrations and other errors
in the imaging; for example, the scale factor is normally affected by the exact
position of the focal plane but enters the final result proportionally so that any
uncertainty ends up in the result. Far-field microscope techniques are therefore
generally considered not very precise.

A near-field microscope works very differently. It exploits the fact that a very
small aperture, possibly much smaller than the wavelength, still transmits light,
if with strong attenuation. On the other hand, this small aperture allows to map
out an intensity pattern when it is scanned in the plane perpendicular to the
light propagation direction. Then the resolution is not limited by wavelength,
but basically by the mechanical resolution of the scanning fixture. Near-field
microscopes with atomic resolution have been built.

In practice, one uses a second fiber as a probe. The probe is scanned across
the fiber tip in very close proximity (less than 10 um) to map out the power
distribution (Fig. 7.12). This is why this is called the transverse offset method.
In the limiting case that the probe fiber has a much smaller mode field diameter
than the fiber under test, it should be clear that the desired mode structure
is obtained directly. Unfortunately this case is unlikely; more typically, both
mode fields are of comparable size. Then one obtains the convolution of both
distributions; from this the desired shape can be calculated only if the other is
well known.
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Figure 7.12: Schematic representation of the transverse offset method to mea-
sure mode field diameter. (a) The fiber’s exit cone (and the acceptance cone
likewise) does not appreciably change its diameter over the first few microme-
ters. Therefore one can bring two fiber tips closely together. (b) Then one can
measure how much power is coupled from one fiber to the other, while the trans-
verse offset is scanned. (c¢) From mapping out the transmission as a function of
position, one can draw conclusions about the mode field diameter.
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For typical single-mode fibers and at V numbers not too far from V' = 2.4048,
the intensity distribution is somewhat similar to a Gaussian:

I(w) = Iy exp(—2(w/wp)?). (7.2)

The mode field radius is taken, by convention, as that radius w at which the
field amplitude is down to 1/e ~ 37% of the central maximum. At this point,
the intensity is down by 1/e? ~ 13.5% of the maximum. (In old literature
sometimes other definitions are found, this can create much confusion.)

The convolution of two Gaussians is a Gaussian again, which makes the
Gaussian approximation convenient. The situation is particularly clear when
both fibers have the same mode profile, because they are pieces of the same
fiber. Then the convolution has the v/2-fold radius of the mode profile of each
fiber individually (see Appendix. F), and wy is obtained by reading the radius
where the intensity is down to 1/e of the maximum.

The longitudinal separation of the fibers must be small enough that only the
near field, not the divergent part of the exit cone is measured because otherwise
one would find systematically too large values.

7.4.2 Far-Field Methods

In a very different approach, one allows light to exit from the fiber and propagate
in free space until the far field is reached. This is the case when the distance z

is at least
z w2
5> (5)
where w is the mode-field radius (which one tries to determine, but has reason-
able guesses about). This condition is easily met already after a few millimeters;
in practice, one would prefer a couple of centimeters. At this distance, one can
observe the far field, e.g., on a screen. If the distance were increased even more,
the pattern on the screen would not change: It would just scale linearly in di-
ameter. It is therefore appropriate to measure positions in the pattern as angles
from the fiber tip. The aperture angle of the exit cone is read at the intensity
1/e? = —8.69 dB referred to the on-axis maximum.
Instead of a screen, one may use a photographic plate or an electronic camera.
It is more common, though, to move a single photodetector on segments of circles
around the fiber tip as shown in Fig. 7.13 and map out the far-field pattern this
way. At large angles with the axis there is only weak intensity, and it is of
utmost importance to safeguard against stray light.
If one again applies the Gaussian approximation mentioned in the preceding
paragraph, one obtains wg from the condition

A

== (7.3)

Wo
It is much more precise, though, not to make any approximations of that kind.
The full information about the field distribution in the fiber is contained in the
far-field distribution because the laws of diffraction are unique and they are
known. A full measurement of the far-field amplitude distribution everywhere
on the screen would yield the mode profile unambiguously. (If it were guaranteed
that the fiber is circularly symmetric, it would suffice to measure on a diameter
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Figure 7.13: Setup for a far-field measurement: In sufficient distance from the
fiber, a detector is moved on a circular path (or over a spherical surface) centered
in the fiber tip. The intensity is recorded as a function of angular position.

instead of the full area.) One would have to apply a Hankel transform, which
is a Fourier transform in cylindrical coordinates, using Bessel functions in place
of sin and cos.

But there is a catch: Unfortunately one never measures an amplitude distri-
bution, only an intensity distribution (Fig. 7.14). To make matters worse, one
also does not measure the entire distribution in a 27 solid angle because that is
difficult to do both geometrically and due to the strongly attenuated intensity
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Figure 7.14: Determination of the mode profile from the far field. Top: Mea-
surement of far-field intensity as a function of angle shows obvious deviations
from a Gaussian at large angles. Bottom: The result of a Hankel transform of
the far field is the near field, which is the mode profile in the fiber.
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at large angles from the axis. Both stray light that finds its way to the detector
and the detector’s own noise easily swamp data at large angles.

At large angles to the axis, the intensity goes down so rapidly that cameras
cannot easily cope with the required dynamic range. It should be clear that
excellent linearity is required throughout the dynamic range. This can certainly
not be achieved with conventional photographic means, but electronic cameras
are challenged, too. With a good photodiode and possibly with lock-in technol-
ogy for the weak signals, it is easier to obtain a good dynamic range, limited
only by stray light. With due care, 60 dB can be obtained, but even this usually
means that at angles larger than 30° there is no useful signal.

But back to the amplitudes, rather than intensities: It does not really help
to take the square root of all measured intensities because the field amplitude
may have zeroes, i.e., nodal lines at which the sign of the amplitude changes.
They give rise to dips, or notches, in the far-field profile at certain angles. For
conventional step index fibers, the first dip typically occurs at 0.2 rad so that it
can be seen only when the dynamic range exceeds 50 dB. The only option is to
apply the sign change by hand, but such manipulation should only be performed
with utmost care and critical inspection. Sometimes what looks like a null is
really only an unresolved minimum. It is precisely the far-field information at
large angles that contributes most to the fine structure of the near-field result.
As Abbe’s diffraction theory asserts, it is the large angle information that carries
the high spatial frequency content and is thus responsible for the “sharpness”
of the reconstructed near field.

7.5 Cutoff Wavelength

If one determines the mode-field radius as described in the preceding section
and repeats the procedure for several different wavelengths, one expects to find
a trend as shown in Fig. 7.15. There is a characteristic step at the cutoff

Mode diameter (Lm)

T T T
1.0 1.2 1.4 1.6
' Wavelength (um)

cutoff

Figure 7.15: The mode-field diameter displays a characteristic step at the cutoft.
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wavelength because the higher-order mode has a wider field distribution. If one
takes this approach to measure the cutoff wavelength, one should observe a few
subtle points:

We pointed out in the context of bend loss in Sect. 5.2 that the theoretical
cutoff value at

Acutoft = 2maNA/2.4048 (7.4)

is only found in fibers that are stretched out straight and infinitely long. A
definition better adapted to practical requirements therefore identifies the cutoff
as that wavelength where the loss for the LP;; mode exceeds the loss of the
fundamental mode by 20 dB. Strictly speaking, one would have to measure the
modes individually to apply this criterion.

For practical use, it is helpful to think this through a little more. For short
fibers, the higher-order mode shows up already at longer wavelengths where it
is not an allowed mode, but its loss has not diverged yet. On the other hand,
bends move the effective cutoff toward shorter wavelengths. If one judiciously
selects both fiber length and bend radius, the opposing trends more or less cancel
each other out, and one approaches the ideal situation. There is the standard
procedure to use a fiber of 2m length, bent to a loop of 28 cm diameter. Then
the cutoff is read from the intersection of the asymptotes as shown in Fig. 7.15.

An alternative procedure is a little less involved. One measures the trans-
mitted power as a function of wavelength and repeats with different bend radii.
Changing the bend radius shifts the loss mostly for the higher-order mode (see
Fig. 5.3). From the ratio of spectral transmission with and without bend, one
can read the cutoff wavelength (Fig. 7.16). The standard procedure is to iden-
tify that wavelength at which the transmission differs by 0.1dB from that in
the plateau above the cutoff.

Both this and the previous method occasionally suffer from a special compli-
cation. Sometimes the characteristic step is not as clear as shown here; instead,
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Figure 7.16: Bend loss also shows a characteristic step at the cutoff, because
higher-order modes are much more sensitive to bending. This allows to find the
cutoff. Here the additional loss arising from tight fiber loops was used. From
[70] with kind permission.
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right in the relevant range there are oscillations in the curve so that a clear
reading is not possible. This is caused by the so-called whispering galley modes.
These are modes that can propagate in a curved fiber in the cladding; this in-
volves reflections at the outside surface of the fiber. To safeguard against them,
in effect one removes the outside surface by stripping the plastic coating and
placing the bare fiber in index-matching gel. When the indices are indeed well
matched, cladding light will exit from the fiber after a very short distance and
the problem is solved [161].

7.6 Optical Time Domain Reflectometry
(OTDR)

Fiber technology has given rise to a special tool that can be used to easily
assess many properties of fibers, both in the lab and in the field. It is called
optical time domain reflectometry or OTDR (Fig. 7.17). It is very similar in
spirit to radar: A signal is launched into the fiber; whatever light is reflected or
scattered back is collected and evaluated. Pulsed laser diodes are employed as
light sources and photodiodes to detect the backscattered light.

The time until an echo is registered is calculated from

Techo = 2nL/Cv (75)

where n is the effective index for the mode and L is the length. The factor of
2 arises because light must travel forth and back before it is registered. Echo
strength provides information about the type of condition that causes the echo:
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Figure 7.17: Optical time domain reflectometry (OTDR). Top: Setup. A light
pulse is launched into the fiber under test; the reflected light is recorded as a
function of time. Time can be converted to position in the fiber. Bottom: The
obtained data, shown here schematically, provide information about various
fiber conditions.
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Rayleigh scattering gives a continuous background that gently goes down with
increasing distance; localized conditions like fiber joints or breakage give sharp
peaks.

There is always a certain crosstalk of transmitter light to the receiver, so
that the receiver is overloaded for a short initial moment. This creates a dead
zone in the short range. However, some devices are constructed to minimize
the dead zone and measure even on the shortest distances (millimeters, in some
cases even less).

OTDR equipment is offered by several manufacturers and allows to assess a
fiber over many kilometers with access only to one end. This makes OTDR a
valuable tool for a wide range of tasks, notably to analyze

= fiber loss and its spatial allocation;

= loss at fiber joints like connectors or splices;

= loss at other localized conditions, e.g., sharp bends or damage;
= the location of each of these conditions;

= fiber length; and

= fiber end reflection.

In commercial installations OTDR devices are therefore indispensable in
spite of their cost. Some manufacturers offer plug-in cards for computers with
complete OTDR hardware; this reduces the cost because the computer does
both the number crunching and the displaying.



Chapter 8

Components for Fiber
Technology

The best car would be good for nothing if there were no streets and no gasoline.
Any technology relies on an interplay of various components. Therefore, optical
fiber does not do anything useful without additional components and supporting
technologies. In this chapter we introduce that “periphery.”

8.1 Cable Structure

Optical fiber cables are in use for telephone data since 1980. Initially multi-
mode fibers were used in cables of 60-144 individual fibers. At the operating
wavelength of 825 nm, loss amounted to 3-3.5db/km; therefore every 6 km an
in-line amplifier or repeater was required. Data were transmitted at a rate of
45Mb/s.! One year later, the first operation in the second window near 1300 nm
was started. Initially cables for this wavelength had half as many fibers. Losses
were lower, around 1dB/km, and thus repeaters could be placed every 18 km.
Data rates were 90 Mb/s. All these cables were buried in existing conduits.

Beginning in 1983, single-mode fibers were used and are now unrivalled for
medium and long distances. Multimode fibers are still in use in short-range links
(local area networks or LANs) connecting computers on-premises or within the
same building. The first generation of single-mode fiber technology operated at
1,310 nm, had losses around 0.5 dB/km, required repeater distances of 30km,
and could transmit 400-600 Mb/s.

The fiber count in these cables was around 20-30. The cables were no longer
placed in existing ducts, because these did not provide sufficient protection from
lightning flashes and from rodents.

The USA has the largest domestic telecommunications market worldwide. In
this market there was a profound change in 1983 which we must mention here.
Before, American Telephone and Telegraph, or AT&T, had had an absolutely
dominant market position. In 1983 courts passed a landmark decision referred
to as divestiture, which forced AT&T to give competitors more access. In effect

IDate transmission rates are measured in bits per second. Mb/s stands for megabits per
second.
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the company was split into a central segment and several regional operating
companies. Right after divestiture there were not as many cables as telephone
service providers so that sometimes the same fiber in the same cable was used
in time-sharing agreements by several competitors. Maybe that is why cables
with 96 fibers were then laid.

A couple of years later, loss of 0.4 dB/km, repeater distances of 40 km, and
data rates of 2 Gb/s became routine. This corresponds to 1,500,000 simultane-
ous telephone calls. See Chap. 11 for methods to put many calls onto the same
fiber without mutual interference and Chap. 11.4 for further development.

When a cable incorporating optical fibers is manufactured, there are a cou-
ple of things to observe. Fibers must be protected from adverse environmental
influences. In the interest of a long lifetime of the cable, fibers must not experi-
ence tensile load even while the cable is bent and pulled. Also, both macro- and
micro-bend losses must be avoided in the deployed fiber. Several cable designs
are in use to meet these objectives; Fig. 8.1 shows examples. There is always a
strength member to take care of the tensile load; it may me made of fiberglass,
Kevlar fiber, or steel wire. (Fiberglass is what the poles for pole vault are often
made of; Kevlar is the fiber used for bulletproof vests.) Typically, fibers are
individually placed in tiny tubes where they have some slack and can accom-
modate some extra length. If the cable is then pulled, the stress is kept away
from the fibers. The tubes are filled with a gel which prevents the intrusion of
water; it also damps vibrations and movement of the fiber. Sometimes a group
of fibers sits in a common, slightly larger tube, again filled with gel. There are
also “ribbon” constructions where several fibers are connected in a flat side-by-
side structure similar to an electric flat ribbon cable. Ribbons allow to make
connections of several fibers efficiently by automated machinery. All fibers in a
ribbon can be spliced to another ribbon in one go, rather than handling each
fiber individually.
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Figure 8.1: Schematic cross-section of different cable types. Left: A single fiber
sits loosely in a structure which is stabilized by fiberglass and Kevlar. Center:
Several fibers are placed around a central steel wire acting as strength member.
Right: Several fibers are combined into ribbons. Shown is a cable with several
such ribbons; the structure is stabilized by steel wires. From [18].

There are several options for laying the cables. On long distances, they are
dug into the ground, and in cities they are placed in ducts. In some countries
including the USA, the cheap method is preferred in rural and suburban areas:
the cables are suspended from utility poles. This, of course, is susceptible to
interruptions.



8.2. Preparation of Fiber Ends 119

The most frequent sources of damage are by humans (digging, vandalism)
and natural causes such as lightning strokes and — down to 2m below ground —
rodents. In the USA, damage by gunshot occurs. Sometimes deployed fibers are
subject to temperature extremes: For suspended fibers on poles, one calculates
with —25°C to +65°C for most of the continental USA; in some areas, one has
to design for —40°C to +75°C. In the ground this range is limited to 0°C to
+30°C. In this one respect, undersea cables are in a most benign environment:
On the sea floor the temperature is quite constant around 10°C.

8.2 Preparation of Fiber Ends

Before fibers can be used for anything at all, first the fiber end faces must be
prepared (Fig. 8.2). It is mandatory that the end face, after the fiber has been
cut or cleaved, is perfectly smooth and of optical quality. This is not possible by
bending the fiber till it breaks, or by cutting it with scissors. The simplest way
for controlled fracture is to scratch the fiber surface manually with a diamond,
a tungsten carbide blade, or some other extremely hard material, and then to
apply mechanical tension. With some routine one can obtain reasonably good
surfaces most of the time: The reliability falls short of 100% but in a pinch may
be acceptable, but it is a good idea to check the fiber end with a microscope.

Figure 8.2: Fiber end faces. Left: Here an edge remains. Center: An irregular
surface called a hackle zone. Either is a sign of a bad preparation. Right: A
good preparation results in a face smooth as a mirror.

It is much better to use specialized equipment; the cost lies anywhere be-
tween a few hundred and several thousand euros or dollars. Fiber-breaking
devices apply a well-defined longitudinal tension to the fiber while scoring it
with a blade which may vibrate at ultrasonic frequency. This results in end
faces which are perpendicular to the fiber axis within close tolerances and are
smooth every time.

When fibers are inserted in connectors, it is important that the front face is
in the same plane as the connector front. If the fiber sticks out, it will suffer
from damage; if it is recessed, there will be no good match to the other fiber.
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One cannot obtain the cut in the exact position with the gear just described.
Instead, one inserts the fiber so that it sticks out a bit, then polishes it down
on special polishing pads with very fine abrasive until it fits exactly. A problem
can be that the grinding and polishing exerts shear forces on the glass so that,
in a thin layer just beneath the surface, the glass structure may be modified.
Local changes of the refractive index to n = 1.6 have been observed [80]; in
such cases there will be extra losses. By using a judiciously chosen sequence
of initially coarse, then progressively finer abrasives one can mitigate or even
eliminate the problem. There are commercial fiber-polishing machines, which
can even prepare several connectors simultaneously.

8.3 Connections

Connections between two fibers can be of either one of two basic types: perma-
nent and nonpermanent.

8.3.1 Nonpermanent Connections

Fixtures are available, which have a V-shaped groove in an otherwise smooth
metal surface. A fiber can be placed in the groove where it is held in position
by some clamp. Such groove can be used to bring two fibers in close proximity
to each other manually, but it helps to have a steady hand. The remaining air
gap is sometimes filled with a drop of index-matching liquid to suppress Fresnel
loss. This way a viable connection between two fibers is made; it is called a
finger splice. Such connections are easily opened again and can be useful in a
laboratory setting. Unfortunately, they have a loss between one half and one
decibel.

When fibers are installed for a technical application, one does not want to
deal with such finicky techniques. There are various connector types which
are reminiscent of electronic connectors and almost as trouble-free. They are
the result of a development which first had to deal with issues of geometric
tolerances. To maintain the required precision even after multiple cycles of
opening and closing, the connection was a challenge initially, in particular for
single-mode fibers with their extremely small mode-field radii.

Today one can purchase such connectors for a few euros/dollars from a
variety of vendors. Several connector styles are common (Fig. 8.3). Coupling
loss can result from a variety of causes:

[i] Both fibers have different mode field shape and diameters.
[ii] Between both fibers a distance (air gap) remains.
[ili] Both fibers are positioned with a transverse offset.
[iv] Both fibers are positioned with an angular offset.
[v] There are surface (Fresnel) reflections.

Losses due to these factors were studied in [96]; Fig. 8.4 shows the result. It
should be clear that quite close tolerances must be maintained. If the fibers to
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Figure 8.3: A typical fiber connector. At the center of the ferrule, one can see
the fiber either as a dark or a bright spot, depending on lighting conditions.

be connected are a given, the loss from [i] is unavoidable, while the loss from

[ii]-[iv] arises from lack of precision in the connection and can be minimized.
In case of actual physical contact of both fibers the contribution from [v]

would vanish, but such contact is problematic because abrasion might damage
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Figure 8.4: Theoretical coupling loss between two fibers, after [96]. Shown is
the expected transmissivity (Fresnel loss not considered) if (a) there are unequal
mode-field radii, (b) there is transverse offset, (c) there is a gap, and (d) there is
an angular misalignment. A mode-field radius of @ = 5 um, a cladding refractive
index nyp = 1.46, and a wavelength A = 1.5 um are assumed.
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the fibers in repeated operation. Therefore Fresnel losses are usually accepted.
The reflection at an interface between a medium with index n; and a medium
with index no for perpendicular incidence is given by

ny —neg
ro= )
ny + no
n n 2
1 — 72
R = (M—m2)
ny + no

where r is the reflectivity for the field amplitude, i.e., the the reflected amplitude
normalized to that of the incident wave. R = r? is the reflected power fraction.
For fused silica in the visible and near infrared with n ~ 1.46, one finds r = 0.19
and R = 3.5%. In a connection between two fibers not in physical contact, we
consider two such interfaces: fiber—air-fiber. Naively one may expect twice the
loss from an individual air-glass interface or 7%. Unfortunately the situation is
slightly more complicated than that.

In the case of coherent light the loss may be more or less than 7% because
both reflections may add in phase or in opposite phase. Both reflecting sur-
faces are nearly parallel, and light can bounce back and forth between them.
Depending on the gap width-to-wavelength ratio, a resonance condition may
been fulfilled (round trip path equals integer multiple of wavelength). The total
reflection can vary accordingly between zero and four times the individual re-
flection or 14%. In effect, one has a Fabry—Perot interferometer (see Fig. 8.5).
If the light is not perfectly coherent and the gap is wider than the coherence

d
Laser -
LED-W\/\/\/\M/V\A/\AA/\MN\M
White light k
oll'léllll{od/k

Figure 8.5: Depending on the degree of coherence of the light, there can be
more or less obvious Fabry—Perot resonances in the coupling efficiency as the
gap width between fibers is varied. The coherence length of laser light always
exceeds the gap width. In the case of luminescent diodes (LEDs), the coherence
length is often just a couple of wavelengths; the resonances then quickly decay
as the gap width is increased. For white light, e.g., from a tungsten filament
light bulb, the coherence length is on the order of one central wavelength, and
no oscillations of the coupling efficiency are observed. If the fibers are brought
into physical contact (gap width zero), Fresnel loss vanishes altogether.



8.3. Connections 123

length, resonances are washed out and eventually the naively expected value is
approached. The coherence length of laser light by far exceeds all reasonable
gap widths, and interference needs to be fully taken into account. LEDs have
limited coherence length, and only a few resonances occur. White light would
avoid resonances but is not what one usually deals with.

If two polarization-maintaining fibers are to be joined, there is the addi-
tional requirement that the orientation of the birefringent axes must match (see
Chap. 4.6.2). There are dedicated versions of connectors which have a spe-
cial locking pin so that they always lock at the desired angular orientation and
cannot rotate.

8.3.2 Permanent Connections

Permanent connections are known as splices; the expression comes from sailor’s
language where it denotes a way to join two ropes by unravelling the strands,
then twisting them together. Fiber splices can be made either by gluing or by
fusing. Gluing is a low cost technique; fusion is more durable and has lower and
more reproducible loss.

For gluing, both fibers are inserted in some tight guiding tube, which pro-
vides some centering of the fibers with respect to each other. One can manually
move the fibers somewhat and can try to find the optimum position of lowest
loss.

The tube is filled with a transparent fluid adhesive which cures under ultra-
violet light. As soon as the desired position is found, one turns on an ultraviolet
lamp and hopes that the positions are kept until the adhesive sets. Loss of
0.3 dB can be obtained with some routine, and with luck, even better than that.

The professional procedure is to fuse the fibers. This involves heating the
glass until it softens. As heat sources various options have been tried, including
microscopic gas flames. However, it is now standard to use an electric arc; it
has the advantage of being easily controlled by a computer.

Figure 8.6 shows how the splicing procedure goes about. Both fibers are
positioned and moved closely together. Then during the so-called premelting a
very weak arc discharge, not hot enough to soften the glass, is applied, often
with a slight increase of the gap width. Premelting serves to remove possible
dirt from the fiber tips. Next is the fusing process proper: Microprocessors
control the precise amount of discharge current and arc duration to obtain the
best possible result. While the arc is on, the fibers are advanced toward each
other, actually beyond the zero position so that they are slightly pushed into
each other.

The optical loss in a splice can be discussed in close analogy to that of a
connector [96] (see Fig. 8.4); of course, there is no air gap. Transverse offset is
also not a major problem because when the fiber tips are molten, surface tension
moves the fibers into that position where their outsides connect smoothly. As
long as the cores are centered well in the fiber, this automatically means a
minimal transverse offset. Fibers usually are well-centered these days.

When two fibers with the same mode profile, i.e., fibers of the same type,
are joined, one can obtain losses well below 0.1 dB and with the fanciest fusion
splicers down to 0.02dB. As soon as dissimilar fibers are joined, the mode mis-
match creates an additional loss. For multimode fibers, the situation is more
complicated because the mode partition is modified; for detail see [100].
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Figure 8.6: Schematic representation of splicing: Fibers are positioned in three
axes. A premelting (also called prefusing) cleans the fiber tips, then the fibers
are fused. Afterward, a good splice is nearly invisible.

8.4 Elements for Spectral Manipulation

8.4.1 Fabry—Perot Filters

Selective filters can be produced in fiber technology [97]. Figure 8.7 shows an
all-fiber Fabry—Perot interferometer which uses partially mirrored end faces.
Tuning is accomplished through tiny adjustment of the gap width between the
mirrors by means of a piezoceramic transducer.

8.4.2 Fiber—Bragg Structures

A very different type of in-fiber filters is increasingly used: so-called fiber-Bragg
gratings. The underlying idea stems from the observation that a germanium-
doped fiber core can suffer lasting changes of its refractive index after irradiation
with ultraviolet light. This effect is cultivated in the following way: The beam
of an UV laser is split; both parts are then superimposed at a certain angle.
Where they cross there are interference fringes with a certain spatial period
given by both the wavelength and the crossing angle. The period can therefore
be precisely controlled. The fiber to be treated is positioned in this crossing
area. After a certain exposure time, there is a periodic modulation of the core
index which can act as a Bragg grating. Depending on the length of the treated
zone which may range from millimeters to a few centimeters, one can obtain
narrowband or wideband filters with reflectivities at the center wavelength very
close to 100%. This is why such Bragg filters can even be used as selective end
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Figure 8.7: Two fibers have their end faces coated with a partially reflecting layer
to give a reflectivity R and are then combined into a Fabry—Perot interferometer.
Its transmissivity is shown here for three selected values of R. The curves are
valid for a very small gap; if the gap is wider than a couple of wavelengths,
additional loss arises from the widening of the light exit cone and the beginning
curvature of the wavefronts. Also, short coherence length light will wash out
the fringes. Compare with Fig. 8.5 where R ~ 0.035 was assumed.

mirrors in fiber lasers (see Sect. 9.7.2). A further development are “chirped”
gratings which have a sliding grating period and which find use as band filters.

8.5 Elements for Polarization Manipulation

8.5.1 Polarization Adjusters

It is well known that a given state of polarization can be translated into some
other state of the same degree of polarization by inserting a suitable retardation
plate (birefringent plate) into the beam. The most common plates are half-wave
plates (\/2 plates) with a retardation of one half wavelength which allow, e.g.,
to rotate the plane of polarization of a linearly polarized light beam by any
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angle, and quarter-wave plates (A/4 plates) which can transform, e.g., linear
polarization into circular polarization or the other way round. Such birefringent
elements can also be built in all-fiber technology.
A fiber loop, by virtue of the bending, is birefringent, and its birefringence
is given by [93]
P2
An=b (R) : (8.1)
where b = 0.133 is an empirical constant, r the fiber radius, and R the bend
radius. This birefringence provides a phase difference between the orthogonal
polarization components parallel and perpendicular to the plane of the loop,
given by
2w An

Ap=Akz= 2rRW (8.2)
with W the number of turns. To understand the effect one can mentally decom-
pose the state of polarization of the incoming light into the component along
the fast axis (in the loop plane) and that along the slow axis (parallel to the
loop’s axis) (see Fig. 8.8). This allows to follow both components individually,
putting them together after the loop produces the change of polarization state.
By rotating the loop around the axis given by the incoming fiber, one changes
the projection and thus the change of polarization state. The effect is equivalent
to the rotation of a conventional wave plate around the beam direction.

Twist (Torsion)

i

Figure 8.8: Torsion of a fiber rotates the birefringent axes. If, e.g., the incoming
light is linearly polarized as A, then it oscillates in the fast axis of the non-
twisted fiber (B) and the state of polarization is maintained. If the fiber gets
twisted, though, the polarization plane is at an angle with the resulting axis
(C); then the state of polarization will evolve upon further propagation in the
loop.
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Figure 8.9: Fiber loops as polarization controllers. The individual loops can
be designed as half-wave or quarter-wave elements and are adjusted by rotation
(arrows). For a realization see the picture on p. 85.

Specifically, this is what one finds: If a quarter wave of retardation is desired
and if one chooses W =1 (a single turn), then
T 8mbr?
Ap = 5 = R= \
At A\ = 1.5um and for a fiber with 2r = 125um, a single loop of radius
R = 8.7mm constitutes a quarter-wave plate. Equations (8.2) and (8.3) are
only approximate because as the loops are rotated there is also some circular
birefringence generated which counteracts the linear birefringence. To obtain
a universally useful polarization controller one takes two or, more often, three
loops with diameters on the order of a few centimeters, which may have a sin-
gle, then two, and a single turn again to form a quarter-wave, a half-wave, and
another quarter-wave plate. The loops are hinged so that they can be rotated
easily (Fig. 8.9). Such a device acts as a polarization controller and is capable
of transforming any incoming state into any outgoing state of polarization [93].
This construction is helpful in the laboratory but requires mechanically mov-
ing parts. It is therefore not very suitable for automatic polarization control.
For the latter, a concept is preferred which generates birefringence by squeez-
ing the fiber by mechanical force applied transversally. In a practical design,
the fiber is squeezed at several positions in different directions by piezoceramic
actuators [140].

(8.3)

8.5.2 Polarizers

A polarizer creates losses selectively for one of two possible orthogonal states of
polarization. Three technical realizations are well known in optics.

= Glass plates sit in the beam at an angle; the two linearly polarized com-
ponents (perpendicular and parallel to the entrance plane) are reflected
differently and thus get attenuated differently in transmission. The con-
trast is maximized by choosing Brewster’s angle.

= In birefringent crystals like calcite, both polarization components are spa-
tially separated.

= Dichroitic films contain chain molecules in which electrons can move freely
along the chain but not transversally. All molecules have the same orien-
tation. That part of the light that is polarized parallel to the chains is
absorbed so that only the orthogonal state of polarization is transmitted.



128 Chapter 8. Components for Fiber Technology

In order to make a fiber-optic polarizer, one can insert a slab of dichroitic
material in a gap in the fiber. Alternatively, one can polish down a fiber from
the side until its cross-section has the form of the letter D and the core is nearly
exposed just beneath the flat surface. If the flat surface is then coated with
metal, one obtains polarization-dependent losses.

8.6 Direction-Dependent Devices

8.6.1 Isolators

Isolators are well known in conventional bulk optics and play a role in laser
technology. These are devices which let light pass through in one direction, but
block it in the opposite direction. They are also called optical diodes.

Optical diodes rely on the Faraday effect, the rotation of the plane of polar-
ization of linearly polarized light in a material subject to an external longitudinal
magnetic field. The physical mechanism is based on the splitting of atomic en-
ergy levels into Zeeman substates due to the magnetic field; this yields a circular
birefringence. The resulting angle of rotation of the plane of polarization € is
given, assuming a homogenous magnetic field, by

e=VHL, (8.4)

where H is the magnetic field strength and L the length of the light path through
the material. V is Verdet’s constant.? This material constant has units of
rad/(m A/m) = rad A™'. Since in most instances nonmagnetic materials are
considered, often Eq. (8.4) is written using B instead of H; then, units are
rad/(Tm). Verdet’s constant depends on wavelength; according to classical
theory it is given by

v — e dn

T 2mec da\’ (8.5)

where e is the elementary charge and m, the electron mass. The table shows
selected typical values of V; for a measurement across the entire visible range
for fused silica (Suprasil), see [153].

Material Wavelength | Verdet’s constant,
rad
(/o) v/ ()
Water 632 3.8
Light flint glass 589 9
Heavy flint glass 589 20
Fused silica 589 4.8
Fused silica 632 3.7
TGG 632 134
TGG 1,064 40
YIG 1,310 2,200
YIG 1,550 1,700

2Marcel Emile Verdet 1824-1866.
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In the context of practical components, it is not only Verdet’s constant that
is relevant, but also the ratio of this constant and the optical loss at the oper-
ational wavelength. For visible light, it turns out that TGG (terbium gallium
garnet Th3Gas012) is a useful material. In the near infrared, YIG (yttrium iron
garnet Y3FesO12) is important. Using YIG and a powerful permanent magnet
(e.g., a samarium—cobalt type), path lengths of a few millimeters suffice to ob-
tain a rotation of € = 45°. In the interest of long-term stability, one chooses the
magnetic field strength high enough to drive the material into magnetic satura-
tion. That typically happens at B ~ 1T, in the case of YIG at 0.178 T. Then
the rotational angle becomes independent of fluctuations of the magnetic field
strength.

If one places one polarizer each before and after the Faraday rotator and
sets their angle at 45° relative to each other, light can pass with minimal loss
(in principle, lossless; in practice, often under 1dB). Light propagating in the
opposite direction is projected onto the 45° direction at the rear polarizer, is
rotated by another 45°, and arrives at the front polarizer with a total rotation of
90° so that it is perfectly blocked (Fig. 8.10). In practical devices the blocking
is not perfect; one obtains attenuations around 30dB, in stark contrast to the
forward attenuation of ~1dB (Fig. 8.11).

Occasionally, the fiber itself has been used as a Faraday rotator, in order
to make an all-fiber isolator [138]. Unfortunately, Verdet’s constant for fused
silica is quite small so that extremely powerful (bulky, power-hungry, expensive)
magnets are required. Even with superconducting magnets, one still needs to
use many meters of fiber to obtain a rotation angle of 45°. This is why in
practical devices, almost always TGG or YIG is used.

There is a distinction between polarizing and polarization-independent isola-
tors. The former are built as just described. Polarization-independent isolators
first split the incoming light with birefringent polarizers into two polarization

Forward direction: A—>B —f—»

/v+ Pol 0°

@+ Backward direction: B—~A

A7 o

Figure 8.10: Principle of an optical isolator based on the Faraday effect: As
linearly polarized light in 0° orientation passes in forward direction (A — B),
it can pass through both polarizers without attenuation because they have just
the right position. Backtraveling light (B — A) may be partially blocked by the
rear polarizer, but inasmuch as it passes, it is rotated further and hits the front
polarizer at 90° polarization orientation so that it is blocked there.



130 Chapter 8. Components for Fiber Technology

Figure 8.11: An optical isolator. It comes with two fibers attached, known as
“pigtails”. The engraved arrow indicates the forward direction. A 1 Euro coin
is shown for size comparison.

components. These components are then sent through the isolator on parallel
but separate paths; each is rotated. Finally both components are recombined.
The result is an optical diode which is “transparent” to any forward light, but
blocks any backtraveling light, in full independence of its state of polarization.

8.6.2 Circulators

Circulators are well-known devices in microwave engineering and have been
introduced recently to fiber optics. These are multiport components (at least
three “ports”). Each port can serve as an input or an output for signals. A
signal launched into port 1 appears as an output at port 2, a signal launched
into port 2 appears as an output at port 3, and so on — in the ideal case with
cyclic permutation.

An optical circulator is based on an optical isolator (Fig. 8.12). The only
modification is that the front polarizer is replaced with a version which acts
as a polarizing beam splitter. The backtraveling beam is then not absorbed

.4 B
Forward direction: A—>B qi

’ Pol 45°

.A/B

Pol 0°

Pol 45°

Backward direction: B—>C

Figure 8.12: An optical circulator conveys signals in the directions A — B and
B— C.
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(eliminated) but directed to an additional output, the third port where another
fiber is attached. This way one obtains a three-port circulator with the functions
A — B and B — C. This already suffices for a variety of useful applications. A
typical example is the combination with a fiber-Bragg grating (see Sect. 9.7.2).
Ports A and C are placed in the signal path; the grating is attached at port B.
Fiber-Bragg gratings, which are band reject filters by their nature, are thus con-
verted into band-pass filters which can be used to filter out a single wavelength
from a wide spectrum.

8.7 Couplers

There would be no way to set up a network of fiber-optic links without having
the possibility to branch between several fibers. Often it is required that a signal
be split into two fibers, or two signals from two fibers are to be combined into
one fiber. The same goes for larger numbers of fibers.

8.7.1 Power Splitting/Combining Couplers

The simplest case of coupling is shown schematically in Fig. 8.13. Such a coupler
can be made of discrete bulk optical elements, but is neither practical, cost-
effective, nor lossless.

Fortunately one can obtain nearly the same functionality in an all-fiber
concept. Two fibers are brought together side by side over a length of a few

|

S — 50% beam splitter

'ﬂ

Figure 8.13: A discrete fiber coupler connects four fibers with the help of four
collimation lenses and a beam splitter of, e.g., 50% reflection. However, such a
setup requires delicate adjustments and has a rather large footprint; therefore,
it is not of practical relevance. We show it solely to demonstrate the concept.
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Figure 8.14: Construction of a fused fiber coupler. Two fibers are fused together
over a certain well-defined length such that both cores are at a well-defined
mutual distance. The distance sets the coupling coefficient of the modes; in
combination with the interaction length, the branching ratio is defined. The
power of a signal which is launched at A is split between B and D according to
the branching ratio, etc.

centimeters (Fig. 8.14). Then both are fused together by heating. The modes
in each fiber penetrate into the cladding as we have seen; in the fused coupler,
the mode of one fiber has a nonvanishing spatial overlap with the mode of the
other fiber. This implies that they are coupled to a certain degree. When part
of the energy guided in one fiber can make the transfer to the other fiber, in that
second fiber one obtains a buildup of power — accompanied by a corresponding
reduction of power in the first fiber, of course. Let us consider a symmetric
coupler (two like fibers) in which the phases of the wave in both fibers evolve
in the same way. Then, the powers as a function of common path length z
evolve as

P o cos?(kz), (8.6)
P, o sin’(kz2), (8.7)

where the coupling coefficient « is sensitively dependent on the spatial distance
of both fiber cores. By judicious choice of coupling coefficient and interaction
length, one can tune the branching ratio of the coupler to virtually any desired
value; 0% does not make much sense, but 100% is possible; more useful are
values in between. Very often a 50:50 branching ratio is required. In that case
there is a 3-dB attenuation for each direction so that this case is called a 3-dB
coupler. Also, 10:90 branching ratio couplers (10 dB couplers) and some other
values are employed (Fig. 8.15).

In an alternate procedure, two fibers are polished down from the side until
the (initially circular) cross-section acquires the shape of the letter D. Then, the

Figure 8.15: A typical fused fiber coupler. It comes with four pigtails.
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Figure 8.16: In a four-way splitter made from 3-dB couplers, each output
presents one fourth of the input power. If inputs and outputs switch their
roles, one obtains a four-way combiner which presents the sum of four inputs.
A 4-to-4 coupler made from 3-dB couplers presents one fourth of the sum of four
inputs at each of its four outputs. This principle can be extended to practically
any arbitrary number of inputs and outputs.

flat sides are brought into contact and adjusted; this gives a fiber coupler with
a tunable coupling ratio.

In either case couplers are four-port devices. If only three ports are used, the
device acts as a splitter or as a combiner. One can add more devices in order to
split/combine among more channels: E.g., three couplers allow to make a 1-to-4
splitter (four-way splitter); four couplers can be combined into a 4-to-4 coupler
(4-by-4 broadcast star) (see Fig. 8.16).

In the context of photonic components, there is also a technology of optical
components integrated on a microchip. When the application demands that
light is coupled out of a fiber and into a photonic chip anyway, it may make
sense to include the couplers on-chip.

8.7.2 Wavelength-Dependent Couplers

Quite often, it is desired to split or combine various signals in fibers not all in
the same way but according to their wavelength. This is the prerequisite for
wavelength division multiplexing (WDM, see Sect. 11.1.5) which in turn is the
basis for utilizing the enormous bandwidth provided by the fiber (25 THz in the
third window) to anything more than a ridiculously small fraction.

Such wavelength-dependent couplers (WDM couplers) can be made in prin-
ciple with bulk optics. Figure 8.17 shows the idea for the case of a 5-to-1 WDM
coupler using a diffraction grating and a GRIN lens (GRIN = gradient index).
In practical devices all-fiber versions are desirable. There are constructions us-
ing the wavelength dependence of the branching ratio in fused fiber couplers;
this may be augmented with grating structures. There are also constructions
using interference filters.
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Figure 8.17: Basic idea of a wavelength-dependent coupler (WDM coupler) in
bulk optics using a diffraction grating. The acronym GRIN is for gradient index;
GRIN lenses are offered commercially. In this example, five wavelengths from
an input fiber are split to as many output fibers. Of course, the direction can
be reversed, and one obtains a five-way combiner.

8.8 Optical Amplifiers

Signal power is lost in long pieces of fiber; more is lost in couplers. Often it
is required to make up for the losses by amplifying the optical signals. The
conventional technology, used until a couple of years ago, relied on so-called
“repeaters” in which the optical signal was converted into an electronic signal,
then was amplified and possibly reshaped by electronic means, and finally was
converted back to an optical format. This is not only quite involved; it also
creates a bottleneck for the data rates that can be transmitted over an optical
fiber. The theoretically available bandwidth of the fiber of tens of terahertz
would be reduced to whatever can be handled by electronics, which is perhaps
10 GHz. One does not easily give up three orders of magnitude of opportunity!

Fortunately enough, there are also all-optical amplifiers. They are subject
to the same constraints as any other amplifier: there is no amplification without
noise. Any amplifier adds some extra noise to the signal, and part of this extra
noise is unavoidable due to fundamental physical reasons. The origin of that
contribution can be traced back to Heisenberg’s uncertainty relation of quantum
mechanics [66] as follows.

The uncertainty relation

AE At > h/2
can also be interpreted as

AndG> 5,

where n = E/(hw) is the photon number and ¢ = wt is the phase of the light
wave.

In a (linear) amplifier, the gain factor G represents the ratio of output signal
power to input signal power. An ideal amplifier would just multiply the photon
number such that each input photon would produce exactly G output photons.
In this ideal case, there would be no change to the phase, except for a trivial
overall shift ¢y due to the transit time. Then, an input signal with photon
number ny, would produce an output with ngy = Gni,. ¢, would be converted

to ¢out = ¢in + ¢0~
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Let us now continue our gedanken experiment and place an ideal detector
at the output of the ideal amplifier. “Ideal” means that it can detect photons
such that the equality is fulfilled in the uncertainty relation:

1
Anout A(7750ut = 5

The detector will thus register noyut +Angyt photons and a phase of ¢ous = Adous-

There is no reason why it should be wrong to think of the combination of
amplifier and detector as one unit, which would serve as a particularly sensitive
detector. This internal-gain detector then measures a signal with

Anin Agbin = % ’
which violates the uncertainty relation whenever the amplifier deserves its name,
i.e., whenever G > 1.

The contradiction is resolved when one accepts the following: Any amplifier
adds as much noise to a signal with frequency v as a hypothetical noise source
at the amplifier input would when the amplifier were ideal, and the noise source
had a spectral power density of

dP 1

i <1 G> hv .
This immediately shows: the only possible noise-free amplifier has G = 1 in
which case the word amplifier would be a misnomer.

What does this mean? One might naively think that an attenuation of
some signal and subsequent amplification by the same factor would faithfully
reconstitute the original signal. This is not so! There will be an additional noise
contribution. This extra noise may be strong if the amplifier is of mediocre
engineering, but even the best amplifiers will always add at least some noise.
Fortunately, engineering of optical amplifiers has matured so far that the best
commercially available types are extremely close to the theoretical limit.

For a practical realization of optical amplifiers, there are two quite different
approaches or technologies: active fibers and semiconductor elements.

8.8.1 Amplifiers Involving Active Fibers

It seems that the interest is shifting toward amplifiers which consist simply of a
piece of special fiber. Amplifying fiber is doped with suitable materials and re-
ceives power from an auxiliary light source. In the third transmission window,
erbium is the most suitable dopant [23]; at several other wavelengths, useful
dopants are also known, like neodymium at 1.06 pm. Figure 8.18 schematically
shows the relevant energy levels of these substances. When the transition at
980 or 1,480 nm is pumped, an inversion of the 4113/, with respect to the 415/,
ground state is created; this implies an optical gain. With a few tens of milli-
watts pump power, one can achieve 30 dB gain in about 10 m of erbium-doped
fiber. The gain bandwidth extends from 1,530 to 1,570 nm (Fig. 8.19). The life-
time of the upper state is extremely long (10 ms), and therefore gain saturation
and thus channel crosstalk among wavelength channels are practically absent.
This is important because otherwise the huge bandwidth would not be useable.
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Figure 8.18: Level scheme for optical fibers doped with Er ions or Nd ions.
Shown are the energetic levels in electron volts and the transition wavelengths
in nanometers, both referred to the ground state.

Gain coefficient (m™")

NS N SN TN Y T OO TN M N T Y TN T T T Y S |

1.40 1.45 1.50 1.55 1.60 1.65
Wavelength (pm)

Figure 8.19: Gain spectrum of an Er-doped fiber for various levels of inversion.
Without any inversion (bottom curve) the fiber absorbs light. As the inversion
increases, gain first appears at the long-wavelength side. At the highest inversion
shown (top curve), the gain has spread across the entire band. From [40].

While the gain is not flat throughout the gain bandwidth, it can be equalized
to a large extent with filters.

The complete setup of an Er-doped fiber amplifier has the following compo-
nents (Fig. 8.20):

= a pump source, typically a continuous-wave laser diode with high power
(on the order of 100 mW) at 980 or 1,480 nm;
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Figure 8.20: Various possibilities to employ an Er-doped fiber amplifier: forward
pumping, backward pumping, and bidirectional pumping.

= a wavelength-dependent coupler which inserts the pump light into the
signal path;

= a suitable length of Er-doped fiber; and

= optical isolators which block backtraveling light and therefore make sure
that both amplification of spontaneous emission in backward direction and
stimulated Brillouin scattering (see Sect. 9.7.1) are suppressed.

A typical setup is shown in Fig. 8.21. Such amplifiers are offered commer-
cially. They can be employed in a variety of ways:

As booster: for postamplification of a low-power light source at the beginning
of a transmission line.

As intermediate amplifier: for compensation of loss inserted somewhere along
the line.

As preamplifier: to increase the sensitivity of photodetectors for weak signals
at the end of a transmission line.
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Figure 8.21: Setup of a realistic Er-doped fiber amplifier in forward-pumping
geometry. C: coupler (tap, e.g., 95:5 coupler), WDM-C: wavelength-dependent
coupler to separate signal and pump wavelengths. Filter ASE: selective filter
to suppress amplified spontaneous emission. Filter pump: selective filter to
suppress pump light.

As distribution amplifier: for compensation of losses where the signal power
is split into several branches, to restore the original power level in all
branches.

As an oscillator: by optical feedback, the amplifier is turned into a laser (typ-
ically in conjunction with wavelength-tuning elements). We note that a
fiber amplifier with an optical resonator to provide feedback operates as
a fiber laser; we will return to this aspect in Sect. 8.9.4.

In the second window neodymium or praseodymium is used to dope the
fibers. They do not make quite as near-perfect amplifiers as erbium does, but
there is a large volume of installed fiber-optic systems operating in the second
window, and therefore there is considerable interest in making amplifiers for this
wavelength regime.

8.8.2 Amplifiers Involving Semiconductor Devices

In suitable semiconductor materials with a p—n junction one can excite carriers
from the valence band into the conduction band by running an electric current
through the junction (see Sect. 8.9.1 below). The current thus produces an
inversion, a nonequilibrium excess population in a higher-energy state. The
excited carriers can then return to the valence band by emission of a photon.
When this return is triggered (“stimulated”) by a signal photon, the process
constitutes an amplification. The mechanism is also central for the operation of
semiconductor lasers (see below).

If a laser diode is operated without optical feedback, it never reaches the
threshold for laser oscillation and functions as an amplifier: Stimulated emis-
sion amplifies light sent in. Advantages of this technology are that devices are
readily available, and the energy supply could not be any simpler. Disadvantages
are the relatively narrow gain bandwidth and the less-than-perfect linearity of
the amplification. If several wavelength channels are used simultaneously, the
inversion gets modulated with the beat frequency. Then one finds a possibly
quite severe channel crosstalk. The more wavelength channels are used, the
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more serious the problems get. This is why semiconductor amplifiers have not
found quite the same acceptance in practical applications as doped-fiber devices.

8.9 Light Sources

There is a vast variety of light sources known to man. Discounting sun and stars
as well as flames, we name just a few:

= Tungsten filament light bulbs
= Bulk lasers
» Luminescent diodes (LEDs)
= Laser diodes
= Fiber lasers
For fiber technology, there are certain demands which a light source must meet:
= Must be possible to couple into fiber with good efficiency
= Must have low energy requirements
= Must be cost-effective
= Must have long lifetime
= Must be virtually maintenance-free
= Must provide means of modulation

The first five items are based on economic considerations because one has to
expect that in a vast fiber network there may be huge numbers of light sources,
many of which are located in far-flung and hard-to-reach places. Modulation is a
requirement dictated immediately by the application: to transmit information.

Of course, light bulbs are ruled out. Their coupling efficiency is minimal,
their lifetime is inadequate, and their capability for modulation exists only for
frequencies up to a few hertz, certainly not gigahertz. Bulk lasers as found
in many physics laboratories (think He-Ne lasers, Nd:YAG lasers, etc.) have
good spatial coherence and thus good coupling efficiency. On the other hand,
cost, energy, and maintenance requirements are definite disadvantages for any
application outside a research lab and so is the lack of modulation capability at
least in most types.

Therefore, from the above list, only luminescent diodes (LEDs), laser diodes,
and fiber lasers are left as viable light sources. We will now discuss these choices
in somewhat more detail.

8.9.1 Light from Semiconductors

The mechanism of light generation in semiconductors is the recombination of
carriers at a p—n junction. An electric current provides the energy required
to excite electrons to the conduction band; as they relax back to the valence
band, the amount of energy corresponding to the band gap is released in form
of a photon. For a semiconductor with band gap Fg,,, one finds light with a
frequency of v & Egqap,/h.
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8.9.2 Luminescent Diodes

The recombination radiation has, without extra steps, no preference for any
particular spatial direction. In LEDs, one does not attempt to achieve much
directionality other than getting the light out of the component on one side,
typically in a wide cone. LEDs perfectly fulfill the above requirements of low
cost, low power operation, and long lifetime without maintenance. They can
be modulated up to perhaps 100 MHz, which is sufficient for many applications.
However, for fundamental reasons the fiber-coupling efficiency is not impressive,
and the power actually launched into a fiber is low, well under 1 mW. In this
situation, LEDs find applications for short distances, like in LANs (local area
networks) within premises where highest data rates are less important than
lowest cost. With certain geometries, it has been attempted to optimize the
coupling efficiency. Figure 8.22 shows the design of a “Burrus LED” where the
fiber is butt-coupled to the light-emitting chip.

Fiber

Metal
contacting
tab Mechanical
alignment/support
structure

50 micrometer
thick

GaAs (n)
AlGaAs (n) /\/\\/\((@ AlGaAs double
GaAs (p) P heterostructure
AlGaAs (p) material

GaAs (p)

Figure 8.22: Construction of a “Burrus LED.” The fiber is butt-coupled to the
light-emitting chip and is permanently held in place to avoid the need of later
adjustment.

8.9.3 Laser Diodes

The same principle of generation of light can be refined into the concept of laser
diodes. One shapes the semiconductor chip in such a way that optical feedback
is obtained. Then a stimulated process takes over, and coherent emission of
light results. Coherent light is tremendously much easier to focus and couple
into a fiber than incoherent light.

The first laser diodes in the 1960s consisted of little more than a semicon-
ductor chip with p-doped and n-doped material. They had smoothly cleaved
end facets with a natural reflectivity (Fresnel reflection) on the order of 30%,
due to the high refractive index of semiconductors like GaAs of about n = 3
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Figure 8.23: A schematic view of a laser diode. This simplest of all structures
is known as broad area structure because the active (gain) region is very wide.
It allows a large number of transverse modes to oscillate.

(Fig. 8.23). This reflectivity is fully sufficient for resonator mirrors. The side
faces of the chip remain unpolished and rough and are therefore no good reflec-
tors. The length of the chip on the order of 300 um is basically defined by the
required gain length. The thickness of the active layer is on the order of 0.5 pm.
These dimensions have immediate consequences for the modal structure of the
laser resonator.

The resonator is hundreds of wavelengths long. Then the frequencies of ad-
jacent longitudinal modes differ by fractions of 1%. As the gain bandwidth
amounts to several percent of the central frequency, one can expect the simul-
taneous oscillation of several longitudinal modes. In some cases that may even
be desirable: The process of mode locking can be used to generate short pulses
of light. As for transverse modes, the active layer is thin; in the direction per-
pendicular to the active layer only a single mode can oscillate. On the other
hand, in the lateral direction (perpendicular to the optical axis and parallel to
the active layer), there is a 100 um or so wide gain structure which gives rise
to a multiplicity of lateral modes. Moreover, the modal structure in operation
will not be constant during operation because both carrier density and tempera-
ture (heating during operation) will affect the refractive index. Consider places
where a particular oscillating mode depletes the inversion: Here the refractive
index will be reduced, and the gain mechanism will then prefer other modes.
One therefore has to expect undesired sudden changes in the modal structure
(mode hops) during operation.

Gain Guiding

In view of these problems it was a first improvement to modify the geometry
of current flow through the chip. Narrow contact stripes, or the introduction
of insulating zones, make it possible to restrict the current flow to a narrow
region in the active layer which may be just a couple of micrometers wide. This
is shown schematically in Fig. 8.24. Gain occurs only where there is sufficient
current density which is now only a small part of the active layer; this is called
a gain-guided geometry. The advantages are that (i) the current density is
increased in the relevant position which lowers the laser threshold and (ii) the
transverse mode profile is strongly restricted. Nevertheless, mode hops are not
entirely eliminated; this is easily seen in kinks of the output power vs. pump
current characteristics of such lasers. When it comes to coupling light from such
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Figure 8.24: Possible structure of a gain-guided laser diode. Oxide layers restrict
the electrical contacts, and thus the current flow, to a narrow zone. Carriers are
injected into the active zone only where sufficient current density exists. The
resulting rise in refractive index guides the light and restricts the emission to
basically the same narrow zone.

lasers into fibers, there are nasty consequences: Changes in the modal structure
give rise to modified overlap with the fiber’s modal profile and result in jumps
of the incoupled power. Unpredictable severe fluctuations of power are certainly
not desirable for any application.

Index Guiding

The next improvement was the introduction of the index-guided laser diode
geometry. In a considerably more involved production process (which, however,
has become routine now), there are lateral steps of the refractive index built into
the active layer by use of differently doped material. This is shown in Fig. 8.25.

operating current

v

contact layers

active layer .
‘A)namr length

emission

Figure 8.25: Possible structure of an index-guided laser diode. The active zone
is surrounded on all sides by material with larger band gap; this is also known as
“buried heterostructure.” A lateral index step of ~0.2 provides strong guidance
of the light. By way of the intricate structure, it is assured that also the current
flows only through the relevant part of the active zone, resulting in a low laser
threshold. Many different geometries of buried heterostructure lasers have been
suggested and realized; the one shown here is called an “etched-mesa” structure.
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Even weak index guiding with index steps on the order of 1% make sure that
the index modifications through the concentration of carriers are overwhelmed.
Therefore these structures can run in lateral single-mode operation.

Distributed Feedback

Finally let us look at the longitudinal modes. As long as the resonator mirrors
at the chip facets set the mode spacing, there is little one can do to achieve
single-mode operation: One cannot make the chip shorter because a certain
length is required to provide adequate gain. In this situation only frequency-
selective means can help. When longitudinal single-mode operation is required,
one uses laser diodes into which a grating has been incorporated for wavelength
selectivity (see Fig. 8.26). The grating favors feedback at the frequencies defined
by a Bragg condition for the grating. One can obtain both the selection of a
single mode and an improved frequency stability of this particular mode. The
grating may be extended over the entire resonator length; then this is known
as distributed feedback or DFB laser. The grating may alternatively be formed
only on short segments toward the resonator ends in a zone with little gain; this
is then called distributed Bragg reflector or DBR laser. Both DFB and DBR
lasers have become something of a standard for long-haul transmission because
single-mode operation is favorable, and the frequency stability is good.
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Figure 8.26: Schematic representation of a distributed feedback laser (DFB
laser). A periodic index modulation is introduced over the entire resonator
length; it acts as a grating and selects a particular frequency.

VCSELs

In a more recent development laser diodes are also made with an entirely differ-
ent geometry: They are called vertical cavity surface emitting lasers or VCSELSs
(rhymes with pixels; see Fig. 8.27). In these lasers, the light does not travel the
length but the width of the active layer. This implies that the optical axis (the
direction of light propagation) is parallel to the direction of the pump current.
Above and below the active layer, there are multiple layer reflectors acting as
wavelength-selective mirrors similar to a DBR structure. In this concept, the
resonator length is very short — hardly any longer than the wavelength. This
enforces longitudinal single-mode operation, which is a definite advantage. The
lateral beam profile can be optimized by suitable structuring. In fact, mean-
while VCSELSs can produce better beam geometries than side-emitting lasers. A
downside is that since their resonator and thus their gain length are so short, it
has been difficult to generate high output powers from VCSELs. On the other
hand, they can be modulated at high speed (well above 10 GHz instead of a few
gigahertz). By this token, it appears likely that they will find applications in
fiber optics.

Laser diodes provide the best combination of properties of lasers (spatial
coherence assures good incoupling efficiency) with those of LEDs: long lifetime
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Figure 8.27: Schematic representation of a VCSEL. In this figure, the vertical
dimensions are exaggerated for the sake of clarity. Bragg reflectors above and
below the active layer provide feedback; the thickness of the active layer is only
one wavelength or so.

and low operational power requirement. They can be modulated into the giga-
hertz regime, which is often good enough; if not, they are operated continuous
wave, and an external modulator serves to carve out pulses as required. Cost
ranges from just a few euros for the simplest types up to a few thousand eu-
ros, for the fanciest DFB lasers and other specialty constructions; however, in
relation to the complete system this may still be considered low cost. All told,
laser diodes fulfill all the important requirements of fiber technology and are
therefore the de facto standard. Figure 8.28 shows a typical laser diode. The

Figure 8.28: A laser diode made for communication purposes. This device is
enclosed in a housing which must be bolted to a heat sink with the flange visible
on the right, in order to remove heat. The electrical connections are by pins on
the bottom and are not visible in this picture. The optical output goes into a
piece of fiber attached to the laser (the pigtail). The pigtail is protected with a
plastic coating and a rubber bend relief where it leaves the case.
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device shown has a piece of fiber (the “pigtail”) connected to the chip by the
manufacturer. Coupling the light of laser diodes into single-mode fibers requires
precision; it rarely exceeds 50% in spite of all serious attempts. Therefore it is
a great simplification for the end user when this critical step has already been
taken care of by the manufacturer.

8.9.4 Fiber Lasers

A fiber laser is created when a fiber amplifier is inserted in an optical resonator
[40]. The optical feedback provided by the resonator allows a light field (initially
starting from spontaneous emission) to build upon itself until saturation effects
arrest further growth: This describes a laser. The energy supply (pump source)
must be provided by optical means and is therefore more complex than for laser
diodes. On the other hand, fiber lasers are perfectly suited to coupling their
light into a fiber: All it takes is a splice. Transverse or lateral modes cannot
arise, but the longitudinal mode spectrum has a particularly high number of
modes. This is due to the long resonator length and the often very wide gain
bandwidth, but is not a disadvantage when modelocked operation is required.
A big disadvantage is that by virtue of the long lifetime of the upper laser state
fiber lasers cannot be modulated. Any modulation imposed on the pump power
would be low-pass filtered; in the case of Er-doped fiber lasers the time constant
is 7 = 10ms. Then, the highest possible modulation frequency is a ridiculous
Umax = 1/(277) ~ 16Hz! As mentioned above, external modulation is used
for laser diodes only when the fastest data rates are required; for fiber lasers
one always has to resort to an external modulator. This makes them unlikely
candidates for undemanding, low cost applications with low data rates.

Both erbium and praesodymium fiber lasers are now investigated by many
researchers, and there are also commercial products. One may expect that
they will find many applications. Particularly successful are neodymium-doped
fiber lasers which can produce enormous output powers but mostly work at
a wavelength of 1.06 pum which is not very interesting in the context of fiber-
optic data transmission. They are pumped at 800 nm; this pump wavelength
can be produced at low cost by GaAs diode lasers. We mention in passing
that by absorption of more pump photons one can have upconversion so that
fiber lasers are also capable to generate light with shorter wavelength, including
visible light.

A particular wavelength within the gain bandwidth can be preferred by selec-
tive means. In linear resonators, fiber-Bragg gratings are often used (compare
Fig. 9.30); in ring resonators, a combination of a fiber-Bragg grating and a
circulator (see Sect. 8.6.2) can be used.

8.10 Optical Receivers

As receivers for light one might consider the following options:
= Photomultipliers
= Photodiodes (pn and pin type)
= Photodiodes (avalanche type)

However, for data transmission applications, photomultiplier are ruled out
because for the infrared wavelengths of the second and third windows there
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simply are no photocathode materials. Photodiodes are economic, small, fast,
and reliable. They can also be integrated very well together with other circuitry
like preamplifiers. There is a special version of photodiodes called avalanche
diodes. Avalanche diodes have an internal amplification mechanism and are
therefore more sensitive to weak light signals, but their inner structure is more
complex, and they require more complex circuitry. Therefore they are only used
when the added sensitivity is definitely a requirement. This applies in the latest
generation of transatlantic fiber cables.

8.10.1 Principle of pn and pin Photodiodes

Any photodiode relies on a p—n junction into which light can be irradiated.
At the junction, a photon can generate an electron—hole pair provided that
hv > Egap,. h is Planck’s constant, v is the frequency of the quanta of light,
and FEg,;, is the energetic band gap between valence and conduction bands of
the detector material. In other words, the photon energy must exceed the band
gap. The electric charges thus generated can then be measured as an external
current, called the photocurrent. The current in a photodiode is given by

=1, (e#‘fT - 1) ~1,, (8.8)

where I is the current, U is the voltage, Iy is a constant current given by
the material and the temperature, e is the electron charge, m ~ 1.5 is known
as the Shockley factor, k is Boltzmann’s constant, and T is the temperature
(in Kelvin). The equation differs from that of any ordinary diode only in the
additional term for the photocurrent, I, (Fig. 8.29).
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Figure 8.29: Voltage-current characteristic of a photodiode, with the absorbed
light power as a parameter. For this figure, it was assumed that R = 0.5 A/W
and Iy = 100pA. At constant negative bias voltage, i.e., when one crosses
the set of curves on a vertical path, the reverse current is practically identical
to the photocurrent, which is proportional to the received power and almost
independent of bias. For open circuit (zero current), one crosses the set of curves
on a path given by the horizontal axis; then the diode generates a photovoltage
which is proportional to the logarithm of the received power.
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We have to distinguish two very different modes of operation:

As a current source: This requires a constant bias voltage U = const. which
is applied in reverse direction or may be zero. Then the photocurrent is
proportional to the received light power over many orders of magnitude
and almost independent of the bias voltage. The main effect of the nonzero
bias is to reduce the diode capacity and improve the temporal response.

As a voltage source: This is the operation with high impedance load so that
basically I = 0. Then the diode generates a photovoltage which is pro-
portional to the logarithm of the received light power.

While there can be uses for the voltage source mode occasionally, in our
context the constant current mode is almost always preferred due to its linearity.

Unfortunately, not every photon actually generates a free charge which con-
tributes to the photocurrent, but only a certain percentage. This percentage is
called the quantum efficiency 7 and is an important characteristic of the detec-
tor. n is always smaller than unity because some photons fail to enter the detec-
tor (Fresnel reflection at the surface) or are not absorbed near the junction; some
carriers may also recombine before they contribute to the external photocurrent.

In order to obtain the most efficient absorption of the impinging light, there
is usually an extra layer inserted between the p-doped and the n-doped layers,
which is undoped and thus has only the intrinsic conductivity of the base mate-
rial. This intermediate layer is called the i layer, as in “intrinsic conductivity”.
The diode is then described as a pin diode for its three layers (Fig. 8.30). pin
diodes are the most frequently used type of photodiodes and can reach quantum
efficiencies up to about 90%.

To characterize photodiodes, the sensitivity (sometimes called responsivity)
R is an important quantity:

ol mec me

(8.9)
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Figure 8.30: Structure of a pin photodiode. Light enters through an antire-
flection layer which occupies the free aperture inside the contact ring. The
remainder of the chip surface is passivated with SiO5. Absorption takes place
mostly in the i layer.
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Here n, and n;, denote the number per second of electrons or photons, respec-
tively. If n &~ 1 one can write the numerical relation

e . Alum) [A
R_hc)\_ 1,24 {

W (8.10)

We see that the sensitivity is of the order of 1 A/W in the near infrared.

8.10.2 Materials

Silicon photodiodes are a product for mass markets. They are found in TV
remote controls, in supermarket scanners, in CD and DVD players, as individ-
ual pixels in electronic cameras, etc. The band gap of silicon corresponds to
A = 1.1um. This means that the visible light is covered well, but for fiber
optics, silicon is useful only in the first window. At the longer wavelengths of
the second and third windows silicon is just simply transparent and does not
absorb at all. The band edge of germanium sets on at 1.7 wm so that the entire
wavelength regime of interest is covered. It turns out, though, that diodes from
composite materials such as InGaAs have a similar band gap as germanium but
have lower dark current and are therefore usually preferred.

8.10.3 Speed

The fundamental speed limitation for a photodetector is that photo-generated
carriers must transit the junction area. The maximum speed at which carriers
move through the lattice depends on the material and is defined by scattering
processes at the lattice atoms. Near the junction they are accelerated by the
electric field of an external bias voltage. Some of the carriers, however, are not
generated near the junction but in the p-layer or n-layer before or after. There
the electric field strength is much lower so that these carriers must diffuse away;
they contribute a slow portion to the electric signal. Then there is the external
time constant defined by the circuitry: Unavoidable capacitances both inside
and outside the diode, in combination with resistance in the circuit, defines an
RC low pass. Careful construction allows to produce photodiodes with a couple
of picosecond response time; commercial products are available with bandwidths
up to about 60 GHz.

8.10.4 Noise

Noise is a fundamental limitation to any measurement. When it comes to the
detection of light with photodetectors, several noise mechanisms contribute:

Quantum noise of the light: This is a property of the light itself. Light consists
of photons which arrive according to some statistics. This is reflected in
the temporal distribution of photo-generated carriers and thus causes a
noise contribution to the photocurrent.

dark current noise: This is a property of the detector. The effect depends on
material and temperature; it can be reduced by careful choice of material
and by cooling.
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Surface leak current noise: This again is a property of the detector. Improve-
ments can be obtained by precautions in manufacturing and possibly to
some degree by cooling.

Noise from resistors and amplifiers: This is a property of the external circuitry.
The effect, also known as Johnson noise or Nyquist noise, can be minimized
by optimizing the circuit.

Quantum noise turns out to be the only contribution which cannot be modified
by engineering; it thus constitutes a fundamental limit. We will discuss it in
more detail in Sect. 11.1.7.

8.10.5 Avalanche Diodes

Avalanche diodes are the solid-state equivalent to photomultipliers. In compar-
ison to pn or pin photodiodes, avalanche diodes are operated at a considerable
reverse bias voltage. The high voltage internally generates strong electric fields
which accelerate carriers to the point that upon collision with lattice atoms,
they can generate more carriers by impact ionization. The photocurrent then
grows like an avalanche and is amplified by a gain factor M.

It is not worth it to push M too far. The internal amplification process has its
own noise component which actually grows faster than M. For each combination
of avalanche diode and associated external circuit, there is an optimum gain so
that the inherent noise contribution of the first amplifier stage of subsequent
electronic circuitry becomes irrelevant in comparison to the signal.



Part IV

Nonlinear Phenomena in

Fibers

Experiment to investigate stimulated Brillouin scattering in optical fiber with
visible light (ca. 590 nm). Compare Figs. 9.24, 9.25 and 9.26.



Chapter 9

Basics of Nonlinear
Processes

It is well known from acoustics that when it comes to oscillations, nonlinearity
leads to the appearance of overtones. The same phenomenon also exists in
optics. A first experimental demonstration succeeded in the early 1960s [45]
when the generation of twice the irradiated frequency was shown in a nonlinear
crystal. The mechanism relied on the anharmonicity of the oscillation of the
medium’s polarization as produced by an intense light wave. Shortly thereafter,
the third harmonic was also demonstrated. Since then, nonlinear optics has
evolved into a field of research in its own right. Processes under study are optical
rectification, parametric amplification, self-focusing, and self-phase modulation,
to name just a few. Optical nonlinearity is responsible when optical properties
of some material show intensity-dependent modifications, when light waves with
frequencies are generated that are not present in the irradiated light, or when —
speaking in more general terms — power is redistributed between different Fourier
components of a light field. As a rule, nonlinear effects get more pronounced
as the light intensity is increased. The reverse is also true: When the light
intensity is sufficiently weak, nonlinear processes may safely be neglected. All
of classical optics is therefore linear optics.

9.1 Nonlinearity in Fibers vs. in Bulk

Nonlinear processes are also observed in optical fiber: actually, often in a more
pronounced form than in bulk optics. This is due to two peculiarities of fibers:
By virtue of the very small mode cross-section, there is high intensity even at
moderate power. And the waveguiding allows very long interaction lengths.

These two peculiarities belong together: one could also have high intensity
in bulk optics by suitably focusing down to a tiny spot. But then typically the
length of the interaction zone goes down due to diffraction of light. It may be
best to discuss this for Gaussian beams: Beams generated by lasers typically
have a Gaussian intensity profile (see Appendix D).

For a Gaussian beam, there is a characteristic length called Rayleigh range.
Its significance is that near a focus the beam diameter stays nearly constant
over this length. (Speaking more precisely, the beam radius widens by no more
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than a factor of v/2 over that at the beam waist.) Then the axial intensity drops
by only very little (no more than a factor of 2). The Rayleigh length is given by

2
W
ZR = TO; (9.1)

on the other hand, the intensity at the beam waist is obtained from the total

power Py by the expression
2P,
Iy = —. (9.2)
TWw§
This is the maximum; at the end of the Rayleigh zone Ip = Iy/2.

Let us consider that class of nonlinear interactions which are proportional to
intensity and cumulate with interaction length. Then the product of intensity
and diffraction-limited interaction length is a metric for the strength of the
nonlinear effects. We obtain

2
I =— — =—-F,. 9.3
2R = 3 0 (9.3)

This expression shows that there is no way how one could increase the strength
of the nonlinear process by geometrical means, like nifty focusing arrangements
or whatever.

In stark contrast, the same limitation does not occur in optical fibers. In the
fiber the wave is guided, and the interaction can build up over nearly arbitrary
distances. Of course, losses reduce the intensity in the fiber after some distance.
We take that into account by integrating along the fiber:

L L I
/ 1(z)dz = / Ipe % dz = = (1 —e L) = Iy Leg, (9.4)
0 0 @

where we introduced the effective interaction length

Lot = 1 (1—e ). (9.5)
@

This effective interaction length is quite important in nonlinear fiber optics. It
is always shorter than the actual fiber length. This is because the power goes
down so that remote parts of the fiber contribute only little to the nonlinear
effect. The definition amounts to replacing the actual decreasing power by a
constant, i.e., its initial value, but limiting the interaction length to the effective
value (see Fig. 9.1). In the limiting case that the actual fiber length tends to
infinity, Les tends to 1/a. In practical numbers, assuming a loss of 0.2 dB/km,
Leﬁ"max ~ 22km.

In order to convert the transmitted power to intensity, we need to be more
specific about the mode’s cross sectional area. We obtain it from integrating
the field amplitude E(x,y) across the entire cross-section with suitable normal-
ization:

(15 I B, )2 dndy)
f f |E(z,y)|* dedy

Aegr is the effective mode area. If one uses the Gaussian approximation for the

fiber mode, the effective area simply becomes A.gq = Tw?.

Acﬂ = (96)
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Figure 9.1: Sketch to explain the concept of the effective interaction length.

Let us wrap up: Nonlinear interaction is much stronger in fiber than in bulk.
Compared with a figure of merit %Pg in bulk, for fiber one finds PyLesr/Aectt-
The ratio of the two,

)\Leff

2A.8"
is quite large. Take as typical values A = 1 um, Acg = 50 um?, and Leg = 20 km;
then it is 2 x 108. We conclude that even mild nonlinearity can have very
noticeable consequences in fibers.

9.2 Kerr Nonlinearity

It was shown in Chap. 3 that the refractive index can have an intensity depen-
dence
n=mng+ nal,

where for fused silica ny ~ 3 x 1072m?/W. This is also known as the optical
Kerr effect. It provides a minute modification of the index by the no term,
which does not influence the structure of the modes because nol < (nk — nm).
However, the nal term does modify the phase of the propagating light.
Consider a light wave with power P launched into the fiber. The effective
cross-sectional area of the mode is A.g. Generally, a wave of the type

cos(wt — kz)

propagates such that after distance z = L the phase has the value kL. Therefore,

eff

This phase can be split into a linear and a nonlinear contribution:

2m

Olin = ~ noL
and 9
T N9 wonsg . won2
= — — PL = PL =~PL th = . 9.8
O =3 g Aut e Aest ©:8)

We will extensively use the coefficient of nonlinearity v below.
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With the help of a reference wave providing a phase reference, one could
easily measure the nonlinear phase shift. Let, e.g., A = 1.5um, ny =
3x1072°m2?/W, Agg = 40um?, P = 1W, and L = 1km. Then we obtain
v =3.14 x 1073/(Wm) and ¢, = 3.14rad which corresponds to one half of a
wavelength — certainly easily measured interferometrically.

9.3 Nonlinear Wave Equation

Now we will set up a wave equation which takes all relevant effects into account.
As it will turn out, it fully suffices to write an equation for the field envelope.
This implies that the variable in the equation is not the field strength itself, but
only its amplitude; a term oscillating at the optical frequency is removed. This
is justified whenever the envelope changes much more slowly than the field, in
other words, when within the duration of the shortest pulses of light there are
many oscillation periods of the field. Some current research at the forefront of
laser physics now pushes this limit, but there are no direct consequences for
fiber-optic applications.

9.3.1 Envelope Equation Without Dispersion

At first we want to see how an envelope equation is set up in a simple case. We
start from the linear wave equation derived in Ch. 3 (compare Eq. 3.23)

n? 0°F

E—— — =0 9.9
v 2 o2 (9.9)
and use the following ansatz for E:

E(x,y,z,t) = A(x,y, 2,t) gi(wot=Foz) (9.10)

This describes a wave traveling in positive z direction, with carrier frequency wq
and propagation constant 3y = won/c. All other space and time dependence is
lumped into the envelope A(z,y, z,t). We assume that these dependencies are
variable only at a much slower scale, so that any spatial or temporal derivative
of A, in comparison to the same derivative of the exponential term, is of order
€ < 1. In physical terms this means that the envelope changes only very little
during one oscillation period or over one wavelength. This approximation is
justified as long as even the shortest light pulses contain several oscillations of
the field.
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In order to insert Eq. (9.10) in Eq. (9.9), we first take the derivatives:

90 s
X xr

2 2

gwg — 3713 ei(wot—Bo2)

gj — ziA ei(wot—PBoz)

Y Y

0’E 0%A i(wot—PB0z)

oz T oyt

OF 0A )

7= el(wot—PBoz) _ iBo A ei(wot—P02)

0z 9z

’E >’ A 2 i(wot—PBoz)

72 = \az MO*‘B et

887? = % ei(wut—ﬂoz) + iwg A ei(wot—ﬁoz)

0’E 9%A 0A 9 .

= _ z el i(wot—PBoz)

ot <8t2 2o, OA) ‘ '
Now we insert

0A O9*A  9°A 82A n? 02A . n?0A n?

721ﬂ07+87+ﬁ ,80 7*@*21W0*§+ (2) A_O

Obviously the exponential factor is cancelled out, and we succeeded in finding an

equation of motion for the envelope! The two terms proportional to A mutually

cancel because 82 = win?/c?. The derivatives in z and y directions can be

combined using the transverse nabla operator V,. Then this is what remains:
0A 0’A n20%A . n?0A

—2zﬁ0 +V2 Adr———— -2

92 2o Wwo s B =0. (9.11)

The kth derivative is of order € < 1; therefore, in leading order we only retain

0A n2 0A
2i80— + 27
zﬂo + zwo 2o

or

0A noA
9. "ot
This describes an envelope which propagates with constant shape and with
velocity v = ¢/n, the phase velocity. This is no wonder — we have neglected
both dispersion and nonlinearity so far!
Indeed the equation is better than valid only in first order. In Eq. (9.12),
we note that a z derivative of A (not of E!) is the same as a ¢ derivative up to
a factor of —n/c. One can do the same trick twice:

=0. (9.12)

P?A (72)2 0%A

222\ ¢/ o
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Now one sees that the third and fourth term in Eq. (9.11) cancel out. At next
higher order this is what remains:
0A n 0A N i
0z c Ot Qﬂ()
This is different only in the term for transverse change. In a fiber, diffraction
is compensated by the waveguiding mechanism so that derivatives with respect
to x and y are zero.
The term containing the first temporal derivative can be scaled out. To do
so we introduce a comoving frame of reference

2 _
V2, A=0. (9.13)

n
T=1t——2
c

and obtain a4 )

i

— 4+ V2 A=0. 9.14

0z * 26y Y ( )

This equation describes the transverse diffraction of a wave packet. Without
transverse change the pulse shape is constant.

In a linear fiber, free from dispersion and loss, a wave packet prop-
agates without change of shape with a velocity equal to the phase
velocity.

Now we must incorporate the effects of dispersion, loss, and nonlinearity. This
implies that n will now become a function of frequency (or wavelength) and
power (or amplitude), and the amplitude a function of position (or distance).

9.3.2 Introducing Dispersion by a Fourier Technique

A Fourier transform is used to convert from a function in the temporal domain
to the corresponding function in the frequency domain (or vice versa), or from
spatial position to spatial frequency, etc. Let us begin with a time-frequency
transformation of some function F'(t, z).

We use the abbreviation

F(w) =FT(F(t)

to denote the Fourier transform FT(...), spelled out as

F(w) = F(t) et dt.
Then it holds that
9 2 OF() L,
FT <1§F(t)> —/_Oo i, e dt.

By partial integration one finds:

9 , +oo +o0 9 .
FT (i&F(t)> R / ir(t) Letar

ot

— 0o

+o0 )
0+w/ F(t)e™tdt

wFT(F(t))
= wF(Ww).
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In the second line, we assumed that F(t = +oo0) = 0, which means that for
distant times F'(t) decays. Then we conclude that a Fourier transform acts
simply to replace

wF(w) < z% F(t),

W (W) (i%) ' F(t).

A factor w in the frequency domain corresponds to an operator i(9/0t) in the
time domain. The same logic applies also if instead of w we use Aw = w — wy
throughout, with fixed wy.

Quite similarly we can do a position—spatial frequency transformation, i.e.,
a transformation between coordinate z and wave number 3.

F(B)=FT(F(z)) = /WF(z)e*iﬂz dt.

— 00

The sign in the exponent stands for a wave traveling “to the right” or toward
positive z. With an analogous calculation one finds the following correspon-
dence:

F@) < F()
BR@) o s F(2),

o\~
bR —i— | F(2).
FEE) -~ (-ig ) FG)
Again, this is also valid if A = 8 — 5y instead of 3. We will now apply this
insight to the series expansion of the wave number as a function of frequency,

which is
2 ﬁz AP % n

B =B+ Awp + Aw (9.15)

Now we make the transition to the time domain by inserting operators and
apply them to A(z,t):

AR = ﬁlAw+52 +@Aw3+~-~ (9.16)
04 _ g0y B0 3O
—Z&A = zﬂlatA— 5 8t2A_ atsA—l—---. (9.17)

Obviously 1/, is the group velocity. It is hardly a surprise (but it is nice!) that
now we have an equation containing group velocity, not phase velocity.
It often suffices to truncate the series after the B term. Then we are left
with
0

0
@14 + ﬁla + 52 (%2 =0. (9.18)
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If we now use a frame of reference comoving with group velocity 1/6; by intro-
ducing 7 =t — 1z, we are left with

9 4 0?
A+ ﬁzat? =0. (9.19)

One might include further terms from the series (3.18); then, additional
terms will appear in the wave equation (9.19). For third-order dispersion,
the term would be —(33/6)(9%A/0t3) on the LHS. One can also introduce a
modification of the wave number due to nonlinearity by adding to AS a term
ApNL = n2lfy. Moreover, by using a complex wave number, one can describe
power loss, e.g., with Afjoss = ic/2 where « is Beer’s absorption coefficient. By
including all these, the equation becomes

AB = [iAw+ B2 Aw + fs Aw + Bongf + z 5" (9.20)
e ., 0 ﬂQ 63

The prefactor Bonal can also be written as (wo/c) na(|A|?/Aeg). This is done by
taking the amplitude A as the square root of power, a choice not in accord with
SI conventions but quite common in the literature. Aeg is the effective mode
area in the fiber over which the power |A|? is distributed to give the intensity
I. Then this is left:

19} 2 B3 O

A+ ﬁz s 0, iy APA + %A —0. (9.22)

at2 O

9.3.3 The Canonical Wave Equation: NLSE

We now consider an important special case: By neglecting third-order dispersion
and loss, one retains the nonlinear Schrédinger equation (NLSE):

.0 Ba 02 24

It derives its name from Erwin Schrédinger, of quantum mechanics fame, be-
cause it has a close similarity with the quantum mechanical Schrédinger equa-
tion
0 02

— ) — — Vi =0. 9.24

i V= 5P+ VY (9:24)
Coefficients 32 and v in Eq. (9.23) can be scaled out by using suitable units for
time and amplitude. The essential part of the comparison is this:

= The potential defined by |A|? has a specific shape.

The field itself generates the potential which then acts back on
the field distribution.

= Space and time coordinates have switched roles.
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The quantum mechanic Schrédinger equation describes how a
spatially localized wave packet spreads out spatially as time goes
by.

The nonlinear Schrodinger equation of fiber optics describes how
a temporally short light pulse spreads out in its duration as it
propagates over some distance.

To wrap up: n becomes a function of intensity, but since nol/ng < 1 there
is no influence on mode geometry, field distribution, etc. in leading order. We
may safely neglect transverse changes in the waveguide. On the other hand, the
wave equation is no more linear, and the superposition principle does not hold.
With a Fourier technique we have introduced frequency dependence.

Below we will use the following form of the wave equation as the reference
version:

_0A 1, 0%A i

"9z = T2l 2
A modification of the pulse shape (LHS) can occur through terms for dispersion,
loss, and nonlinearity (RHS). For dispersion we only use the leading order.
For the nonlinearity only the Kerr effect is considered. Of course one can go
further; there are plenty of research papers dealing with higher-order dispersion,
temporal effects in the nonlinearity, or polarization effects. But for now we will
use Eq. (9.25): Already this simplified version presents us with a few surprises.
To get familiar with this matter, let us first distinguish a few limiting cases.

aA —y|APA. (9.25)

9.3.4 Discussion of Contributions to the Wave Equation
Absorption Alone
For B2 = =0, Eq. (9.25) is reduced to

0A a
——ZA 2
0z 277 (9.26)
which is solved by
A= Age™ 2% (9.27)

After a characteristic length L, = 1/a, the amplitude decays to e~ /2 of its
initial value and thus the power to 1/e. This makes it clear that a is Beer’s
absorption coefficient.

Dispersion Alone

For a = v =0, Eq. (9.25) is reduced to

0A 1, 9%A
io= = 2By (9.28)
0z 277072
This is formally similar to a paraxial wave equation for diffraction in only one
spatial direction. A formal solution can be found with Fourier techniques; we
have already seen some results in Chap. 4. Here it may suffice to convince
ourselves: If one sets
A= Aoei(QT+kz)
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then it follows that
k= %92,

and the wave vector becomes frequency-dependent; this corresponds to the pulse
broadening discussed before. Again we can define a characteristic length scale;
we choose Lp = TZ/|B2|. As already discussed, a Gaussian pulse of width Tp
will widen after this distance by a factor of V2.

Nonlinearity Alone

Finally we can also define a characteristic length for the nonlinearity. For (5, =
a =0, Eq. (9.25) is reduced to

DA

i— = —7|A]?A. 9.29
22— 4 (9.29)
Here, always A = A(z,t). We use the shorthand |A(0,t)|* = Py(t) for the initial
intensity profile of the light pulse. Then the equation is solved by

A= /Py(t) oMz, (9.30)

Several aspects are remarkable in this result. First, the intensity profile remains
unchanged; Py(t) does not contain z. Second, there is a characteristic length
Lni, = 1/vPo(t); this does contain power and is therefore intensity-dependent.
At pulse center (maximum of Py(¢)), the value is different from that in the slope.
After this characteristic length, the maximum has acquired a phase factor of e?,
corresponding to a phase shift of 1 rad.

Looking at it from another side, after some given distance, the phase factor
is different for different positions within the pulse profile: It is largest at pulse
center and tapers off in the wings. In other words, the pulse acquires a phase
modulation known as self-phase modulation (Fig. 9.2). This is a crucial insight
for much of the remainder of this discussion, and it will be discussed in more
detail below.

Self-phase modulation may also be interpreted as self-frequency modulation
since phase and frequency modulation are closely related. Using the nonlinear
phase ¢, = vPL, at some position L, the frequency deviation due to nonlin-
earity is " p

nl P
Aw= g =g
as shown in Fig. 9.3. Self-frequency modulation is frequently called chirp; a

self-frequency-modulated pulse is said to be chirped.

9.3.5 Dimensionless NLSE
Let us compare the characteristic lengths (we use Py(0) = Pp):
» L, = 1/a depends solely on fiber properties.

» LN = 1/vPo = (cAest)/(nowoPy) depends on the fiber (on Aeg and ns)
and on the signal (wg and Py). The signal dependence is only by the
instantaneous value, not the temporal profile.
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Field amplitude

Propagation direction

Figure 9.2: Impact of self-phase modulation. Top: Within a light pulse, the
optical field oscillates at a certain frequency; the envelope defines the pulse
duration. Let such a pulse be launched into a medium where there is self-
phase modulation. Bottom: After passing through that medium, phases have
shifted. Propagation is maximally slowed down at pulse center; therefore, waves
appear pulled apart in the rising slope (right) whereas they are compressed in
the trailing slope (left).

(0 I(t) =sech?(t)

Aa(D)
/\Am(t) - X—:ﬁ o
t

Figure 9.3: Sketch to explain the connection between self-phase modulation
and self-frequency modulation. Top: Let the intensity profile be bell-shaped as
shown, e.g., sech?(t). Center: The nonlinear phase follows the intensity profile.
Bottom: The instantaneous frequency is given by the temporal derivative of the
phase and thus follows the temporal derivative of intensity.
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» Lp = T2/|B2| depends on the fiber (|3z|) and on the signal (Tp). This
time the signal dependence is by the temporal profile, not the absolute
values.

By way of these different dependencies, combinations of all kinds are possible
according to circumstances. A comparison of the characteristic lengths allows
to see at one glance which effects are relevant. Certainly the effect represented
by the shortest length scale will give the most important contribution.

Consider the case that of the three coefficients in Eq. (9.25), only @ = 0
and thus L, — oco. This is a case of particular interest, an interplay between
dispersion and nonlinearity. It permits, among other things, pulse compression
and solitons. Realistically, this situation is obtained whenever Lp and Lyt
are comparable but much shorter than L,. This is the case when short (e.g.,
picosecond) light pulses propagate in optical fibers.

Using new variables

A
U = —
VP
z
= — 31
¢ - = (931)
T
T = T
we rewrite the wave equation with @ = 0 as
ou 1 2 Lp 9
] — — — _—— . . 2
i ac 2 sgn (3o 977 o |U|*U. (9.32)

There is a signum function here; this is easily explained by the fact that Lp is
defined in terms of the absolute value |33|. The factor Lp/Lny can be scaled

out by using u = NU:
| Lp 2
N=,|— = [PT2—. 9.33
La 07015, (9.33)

Now the equation takes the form

Ou n 19%u

4z 2, =
ZaC 592 lul“u = 0. (9.34)

This is the celebrated nonlinear Schrodinger equation in its dimensionless form,
as it is most often found in literature. The sign corresponds to —sgn 2 and
stands for anomalous (+) or normal (—) group velocity dispersion, respectively.

There are two possibilities for this sign. Therefore the reader may well guess
at this point that there will be two distinct types, or classes, of solutions. Within
each class the numerical values of parameters merely act as scale factors for the
solution but do not affect its functional type. But, of course, there is also the
very special case of B2 = 0 which requires a careful analysis of its own. Just
because the B2 term in the series expansion, Eq. (4.19), is zero does not at all
imply that all the higher-order terms vanish as well. In that case, higher-order
dispersion must be taken into account.
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9.4 Solutions of the NLSE

In this section, we study solutions of the nonlinear Schrédinger equation (9.34).
First of all, there is the trivial solution

u=0. (9.35)

There is no need to waste time on this one.

9.4.1 Modulational Instability

More interesting is the continuous wave solution
u = \/ug e™°C. (9.36)

For this solution it is important to check the stability. This can be done by
inserting a small perturbation away from the solution in a procedure called
linear stability analysis. The solution is stable when the perturbation produces
an opposite restoring action so that it decays with time. In the opposite case —
when the perturbation keeps growing — the solution is unstable.

The continuous wave solution can be either stable or unstable depending on
the sign of dispersion (this is shown, e.g., in Chap. 5 of [17]). For anomalous
dispersion perturbations grow. The term modulational instability indicates that
perturbations at certain frequencies grow faster than others.! The growth rate,
or instability gain, has a frequency dependence [17]

G = |B2|wv Q% — w? (9.37)

with N
4 4yP

" |BalLnr  [Ba’

where P denotes the peak value of the power.
The gain maximum is

QZ

Gmax = 27P (9.38)

and occurs at the frequency

1 2P
Wmax = =V2 Q=] . 9.39
> i (5.39)

Figure 9.4 shows the spectral profile of this gain.

9.4.2 The Fundamental Soliton

The next solution of the nonlinear Schrodinger equation exists in the case of
anomalous dispersion (for G2 < 0, i.e., on the long wavelength side of the zero-
dispersion wavelength) and takes the form

u = sech(7) e¢/2. (9.40)

'In hydrodynamics there is the analogous phenomenon under the name of Benjamin-Feir
instability [121].
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Figure 9.4: Gain factor of modulational instability. It is assumed that 82 =
15ps?/km and v = 2/(Wkm). P is given as a parameter.

The time-dependent part is a hyperbolic secant (or “sech”) function; it there-
fore describes a bell-shaped pulse. (Some information on sech is gathered in
Appendix E). The position-dependent part is an exponential function acting
as a phase factor; it rotates through 27 over the distance ( = 4w. The pulse
shape (power profile) is constant since the only dependence on position is in the
exponential, see Figs. 9.5, 9.6, and for comparison Fig. 9.7. The pulse shape is
also stable in the sense that a certain perturbation away from the precise shape
can heal out: a remarkable property which we are going to discuss some more!

This solution is a “solitary” solution in the sense that — in marked contrast
to solutions of linear differential equations — the peak amplitude is fixed; if the
solution is multiplied by any constant real factor other than unity, the result is
not a solution. From this property derives the name of this solution: it is called
a soliton. Indeed this is just one particular representative of a wider class of
solitons, and it is more precisely called the fundamental soliton or N = 1 soliton
for reasons which we will see shortly.

Fiber solitons are light pulses which do not change their shape during propa-
gation even though at the same time both dispersion and self-phase modulation
act on it. It should be more than obvious that pulses with this property must
be highly interesting for applications!

When we convert the dimensionless solution back to real-world units, we
note: The condition for a fundamental soliton is

LD = LNL 54 N =1. (941)

By virtue of Eq. (9.33), the peak power of the N = 1 soliton is P = |B2| A TE.
In other words: All N = 1 soliton share the property that the product of peak
power and the square of the pulse duration is a constant, determined solely by
fiber parameters:

PT? = 1821 (9.42)
ot
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To illustrate the importance of this product, we note that the energy of the
soliton is the time integral of power:

“+o00
E, :/ P(t)dt = 2P, Tp. (9.43)

—00

Then, PlTOQ is something like the time integral of energy, a quantity which in
classical mechanics is referred to as action. In quantum mechanics, the time
integral of the amplitude envelope is called the pulse area [20]; here, action is
thus the square of pulse area.

In a given fiber a soliton can have just about any duration, peak
power, or energy. However, these quantities always combine such
that the action has the same value as given by Eq. (9.42).

If we also insert the relations between Ty and 7 (17 = 2Z27T}), between 32 and
D (D = —(w/\)B2), and between ng and 7 (v = na(wo/cAes) ), then we obtain
A |D|Aes 1

D _ =2
P=2" .

9.44
m2c ng T ( )

Here we introduced the numerical constant Z = coskl_l V2 = 0.8813... for
convenience. If we wish to find the average power P; rather than the peak

power 131, we write
P P T 1
1= 55—
Trep 2

where Ti., denotes the repetition rate of the experiment. If we finally insert

(9.45)

the expression for Py, then we can write P; explicitly as a function of easily

measured quantities:
_ A3|D]Aeg 1
Ph=Z—— —. 9.46
! w2engTyep T ( )
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Figure 9.5: The fundamental soliton in a computer simulation: In spite of
dispersion the pulse shape is preserved. Parameters in real-world units: Pulse
duration 7 = 1ps, o = —18ps?/km, B3 = 0, v = 2.5 x 1073/(Wm) and
A = 1.5um (see Fig. 4.5). The peak power pertaining to N = 1 is 22.37W.
Shown is the evolution over two soliton periods (56.16 m) in a temporal window
of +£5ps.
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Figure 9.6: The spectrum of the fundamental soliton in a computer simulation,
using the same parameters as in Fig. 9.5. In spite of nonlinearity the spectral
shape is preserved.
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Figure 9.7: For comparison, here we show the dispersive broadening of a sech?
pulse. Shown is a pulse with an initial duration (FWHM) of 1 ps as it broadens
over a propagation distance of 20m. Of course, the spectrum is preserved in the
process — exactly as in Fig. 9.6. The dispersion is 32 = —18 ps?/km and 85 = 0.

The soliton energy is then

1 .
E1 = E P1T. (947)

Rather than expressing the energy in Joules, it can be interesting to write it as
photon number which is found via npnot = E1/(hv) (see Table 9.1).

From these equations we can draw several conclusions: Obviously a soliton
can exist for any 7; it is straightforward to calculate its power. The shorter the
duration, the higher the power required to form the soliton. Table 9.1 shows
typical orders of magnitude. The table also mentions a characteristic length
20 which is commonly called the soliton period and is given by zo = (7/2) Lp.
Again we convert to real-world units:

[V}

1 m2er
(22)? |D|A*

zZo =

(9.48)

To interpret this quantity, we reinsert the transformation Eq. (9.31) into
Eq. (9.40) and find that the phase of the fundamental soliton rotates full circle
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Table 9.1: Typical orders of magnitude of characteristic soliton parameters. As-
sumed values are a wavelength of 1.5 um, a fiber dispersion of 3y = —18 ps?/km
corresponding to about D = 15ps/(nmkm), and a nonlinearity coefficient v =
2.5 x 1073/(Wm) corresponding to ns = 3 x 1072°m? /W, and Aeg &~ 50 pm?.
The table gives the peak power ]5, the soliton period zg, its energy, and the pho-
ton number, always rounded to three significant digits. In all cases the action
W =|Ba|/y =72 x 1072 Ws?

T P 20 FEy Nphot

1ns 22.4uW 28,100 km  25.4f] 1.92 x 10°
100ps  2.24 mW 281 km 254 fJ 1.92 x 10°
10ps 224 mW 2810 m 2.54pJ 1.92 x 107
1ps 224 W 28.1 m 25.4pJ 1.92x 108

100fs  2.24 kW 281 mm 254 pJ 1.92 x 10°

after a distance

z 1
¢ I m
z = 4rlp = 2=282 (9.49)

The phase of the soliton rotates with respect to the comoving frame
of reference such that it repeats itself after 8z.

The soliton period zg plays a central role in the propagation of higher-order
solitons, described in Sect. 9.4.5 below. It will therefore turn out to be useful to
write the spatial period of the phase, z = 8z, in terms of physical quantities.
The soliton condition Eq. (9.41) gives us two variants:

4T3
2z = 4dgLlp = —0
RTEN
4

= dnlnp = ——. (9.50)
vP

In a fundamental soliton, there is a compensation of the linear chirp by
dispersion and of the nonlinear chirp by self-phase modulation. This is why
fundamental solitons propagate with no change of shape. This makes the fun-
damental soliton the natural bit of optical data transmission.

In a real fiber, there are some practical complications which are not taken
into account in the nonlinear Schrédinger equation. In particular, in the pres-
ence of a gradual mild energy loss, the shape will not stay constant, but will
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readjust according to Eq. (9.42). That is, when a soliton loses some of its energy,
it will acquire a somewhat wider pulse shape.

The key here is that the loss occurs gradually (adiabatically): If the power
is abruptly reduced (at a splice, say) so that instantly N < 1/2, the soliton is
destroyed, and only linear waves carry the remaining energy away. Adiabaticity
implies that the loss is negligible over a distance on the order of zy. If in a
very long fiber energy is continually drained away from the soliton according
to a factor F(z) = E(0)e~%*, the pulse duration Ty will initially increase to
accommodate the adiabatic energy loss. This, however, also increases Lp =
TZ/|B2]. Then, the loss per Lp (in contrast to the loss per unit of z) keeps
growing until, inevitably, at some point the rate of loss exceeds the adiabatic
limit. Beyond that point, the soliton is soon destroyed. This process is described
in detail in [31]; however, practical systems will always be layed out such that
it does not come to this.

9.4.3 How to Excite the Fundamental Soliton

What happens when a pulse is launched into a fiber which corresponds exactly
to a soliton, except that the peak power is raised or lowered with respect to the
soliton peak power? The stable solution of the wave equation is the fundamental
soliton, and therefore a soliton will emerge. To accommodate the deviation in
power, however, it will acquire a duration and peak power which is different
from the start values. If the power is reduced, a somewhat longer soliton will
be generated (see Fig. 9.8); if it is raised, a shorter soliton (Fig. 9.9). This is
the “self-healing property” alluded to above which makes solitons particularly
robust entities.

To find the final shape (duration and peak power) of the soliton quantita-
tively, we consider this: The coefficients of dispersion (2 and nonlinearity -y
define that particular value of the action W = |f33|/v which any soliton in the
fiber must have. Even when the launch pulse does not fulfill this condition, the
soliton must. Therefore a rearrangement of simultaneously peak power, dura-
tion, and energy occurs. Of course there are many ways to vary three parameters
at the same time, but they are not independent: Pr = E and ET = W. There-

Distance

.

Figure 9.8: Soliton formation when a pulse with N = 0.8 is launched in a
computer simulation. Parameters as in Fig. 9.5 but with NV = 0.8 and thus a
peak power of 17.9W.
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Figure 9.9: Soliton formation when a pulse with N = 1.2 is launched in a
computer simulation. Parameters as in Fig. 9.5 but with V = 1.2 and thus a
peak power of 40.27 W.

fore, only a single additional constraint is required to make the rearrangement
unique. This constraint comes from energy considerations:

By conservation of energy, certainly the soliton can not have more energy
than the launch pulse. But it may have less: then the pulse sheds energy, and
the energy of the soliton equals the launch energy minus the energy radiated
off.

If the launched pulse happens to precisely match a fundamental soliton (N =
1), the radiated energy E.,q is zero. It is also zero for other integer values of
N; larger integers describe higher-order solitons (see Sect. 9.4.5 below). Here,
however, we are looking at noninteger N launch conditions. Let us specify
Pyare = (1 + €)2P; equivalent to N = 1 4 ¢, but we keep || < 1/2.

The radiated energy is the initial energy minus the energy of the soliton.
Using the energy of the N = 1 soliton as a convenient energy unit, this can be
written as

Fraq = N2 — (2N - 1).
Then
025 : N=05
Eraa =19 0 : N=1 >

025 : N=15

for intermediate values of N one finds values between 0 and 0.25. Clearly,
one can specify the energy loss directly. A graphical representation is given in
Fig. 9.10:
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Figure 9.10: Sketch to explain pulse energy and soliton content. If one takes
a pulse with fixed duration and increases its energy from zero, beginning at
N = 0.5 a soliton is formed. Its energy increases linearly as the pulse energy
grows. Beginning at NV = 1.5 a second soliton is generated, beginning at N = 2.5
a third, etc. The sum of all soliton energies is a piecewise linear function which
runs close to the parabola E oc N? (dashed line) and touches it wherever N
is integer. These tangent points are the positions where all energy is invested
in solitons. At all noninteger N some part of the energy is not invested into
solitons but is radiated off. This part is given by the difference between the sum
of solitonic energies and the parabola; for the sake of clarity, the lower part of
the picture shows this difference on an expanded scale.

Since both action W and energy E are fixed, the remaining parameters are
fixed, too:

W= |Bl|/v (9.51)
E = Esart — Erads (9.52)
=7 = W/E, (9.53)
=P = E/r. (9.54)

This is shown graphically in Fig. 9.11: At constant action, P= (1/7)2 and thus
log P = 2log(1/7). This curve, plotted in a log P — log (1/7) diagram, has the
slope (dlog P)/(dlog(1/7))=2. At constant energy, on the other hand, the slope
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Figure 9.11: Graphical construction of energy and duration of a soliton when
the launch condition does not quite fit. In the log(P)-log(1/7) diagram, there
is a family of curves of constant energy. Also, a particular soliton (fixed 7 and
15) is highlighted by a white square. All solitons in this fiber must lie on the
curve of constant action (single steeper line). Let the launch condition (hollow
circle) have higher energy as required for the N = 1 soliton (the upper of the
bold lines). Then, one first calculates the energy loss from Fig. 9.10; then one
finds the curve pertaining to the remaining energy (the lower bold line). The
intersection of the final energy and the constant action curves gives the soliton’s
P and 7.

is unity; shown is a selection from this family of curves. One first identifies the
curve of fixed energy pertaining to the launch condition. A second, lower curve
is the one where the energy is reduced by just the amount which is radiated off.
The final soliton must be on this curve. It must also be on the line designating
the soliton action. Therefore, at the intersection of both, we have the final
soliton. The coordinates of the intersection point indicate its pulse duration 7
and peak power P.

There is an interesting consequence from all this: If one launches a light
pulse with N < 1/2 into the fiber, then no soliton will be generated because all
the energy is converted to radiation. In a thought experiment, one may consider
a fiber with a localized loss (at a splice, say). The condition right after the loss
is equivalent to launching a weaker pulse in the fiber. If suddenly N is reduced
to values below 1/2 — i.e., when a soliton is suddenly attenuated by at least a
factor of 4, it is destroyed: 6 dB localized loss kills a soliton. In stark contrast, a
gradual energy loss does not do much harm. This can be seen from the following
consideration: If one attenuates first by less than a factor of 4, then allows for
unperturbed propagation, a new soliton with lower energy and therefore longer
duration will form; some energy will be radiated off and eventually go away by
dispersion so that after settling of transients one clearly sees the new, lower-
energy soliton which also has its own N = 1. Then one may attenuate again
by less than a factor of 4, and the process repeats. A soliton survives if it is
attenuated by a factor of 3 twice, but it dies when it is suddenly attenuated by a
factor of 9. For continuously distributed loss, the soliton can survive for a long
distance; it will continuously rearrange its width to accommodate its energy
level. The long-term decay of a soliton in a fiber has been treated in [31].
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9.4.4 Collisions of Solitons

The speed of propagation of a soliton in the fiber depends on the optical center
frequency due to dispersion. If one launches two solitons with slightly different
center frequency one shortly after the other, it can happen that both collide.
Figure 9.12 shows a computer simulation in which the common “center of mass”
of both solitons is the reference frame. During the collision there are some
pronounced interference spikes, but afterward both solitons continue their paths
unharmed. Both shape and energy of the solitons is maintained; only a phase
shift — not visible in the figure — remains. This behavior is reminiscent of that
of particles; the name “soliton” is meant to evoke that analogy (think proton,
neutron, etc.).

Distance

Time
-

Figure 9.12: Computer simulation of a soliton collision. Both solitons are intact
after the collision.

In optical data transmission, in particular when several wavelength channels
are transmitted at the same time (Chap. 11), such collisions can and will happen.
The phase shift can have a mild influence there. Other than that it plays an
important role in the context of so-called quantum nondemolition measurements
in quantum optics (see, e.g., [38]).

9.4.5 Higher-Order Solitons

If one keeps increasing the power of the launched pulse beyond the N = 1
point, the soliton gets narrower. But then something remarkable occurs at four
times the fundamental soliton power: The pulse goes through different shapes
as it propagates; this is shown in Fig. 9.13. However, it does so in a periodic
fashion, and at certain points along the fiber one finds the sech shape again.
(An analytic expression for the complicated breathing shape was found in [136]).
This behavior is also reflected in the shape of the power spectrum (see Fig. 9.14).
Here we encounter the N = 2 soliton. We ask for its spatial period.

According to Fig. 9.10 at N = 2, there is a superposition of two solitons:
One of them has the same energy as the fundamental soliton at N = 1, the
other, three times as much. However, both are fundamental solitons: the one
with higher power has correspondingly shorter duration. At three times the
energy, the pulse width is one third and the peak power nine times that of the
lower power soliton.
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Figure 9.13: An N = 2 soliton in a computer simulation. Propagation from 0
to 2zg is shown, i.e., over two oscillation periods.
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Figure 9.14: Spectrum of an N = 2 soliton in a computer simulation, again from
0 to 2zp. Note that the spectrum is broadest where the pulse has the shortest
duration (Fig. 9.13).

As both propagate together, their phases evolve at different rates due to their
different power: Eq. (9.50) showed that the phase of the fundamental soliton
has completed a full rotation after a distance z = 4w Ly, = (47)/(vP1). Then,
for the higher-power soliton, the phase rotates nine times as fast.

As both phases rotate at different rates, a beat note is created. The beat
pattern will repeat when the difference between both phases has gone through
2m:

$o— 1 = ¢ =4¢ = 2,

C = L D = Z0-

As a result we see the true significance of zp: This is the spatial period of the
beat note between the constituent fundamental solitons in a higher-order soliton,
and hence the distance after which the power profile repeats itself. However, the
phase underneath the envelope is repeated only up to a phase factor; it truly
repeats for the first time at 8z9 (where one of the constituent solitons has gone
through one full cycle, the other through nine).
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If the power is increased further beyond the N = 2 case, similar logic can
be applied. An N-soliton appears at the N2-fold power of the N = 1 soli-
tons. All solitons with N > 1 have the property that their pulse shape varies
periodically. At integer N the spatial period for the power profile is zy. This
disregards phase information; if phase is included, the pattern repeats only after
82p. Figures 9.15-9.18 show temporal and spectral power profiles of the N = 3
and NV = 4 case. The shapes can become quite complex, but they repeat after
20-
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Figure 9.16: Spectrum of an N = 3 soliton in a computer simulation, in corre-
spondence with Fig. 9.15.

9.4.6 Dark Solitons

For the case of normal dispersion, a solution of the nonlinear Schrédinger equa-
tion is given by
u = tanh T €. (9.55)

When the amplitude profile is described by a tanh(r) function, the power or
intensity profile must follow tanh?(7) = 1 — sech®(7). This implies that there is
zero intensity at 7 = 0 but full intensity far away from the pulse center: a dip in a
bright background. Dark solitons are notches in a constantly bright background
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Figure 9.18: Spectrum of an N = 4 soliton in a computer simulation, in corre-
spondence with Fig. 9.17.

(Fig. 9.19). From the tanh function, they inherit the special property that a
phase jump of 7 occurs at center.

Both in experiment and numerical simulation, one does not have the chance
to work with an infinitely wide bright background. A good approximation can
be found by using a background pulse of considerably longer duration. Of
course, this background pulse, by way of its large width, contains much more
energy than a comparable bright soliton; this seems to make dark solitons not
very attractive for optical data transmission. On the other hand, they are less
sensitive to a variety of perturbations than bright solitons, and some authors
pursue them as an alternative. In practical terms, in reported experiments on
dark solitons, it was already difficult to produce them in the first place.

Strictly speaking, the dark solitons just described are called black solitons.
The reason is that black solitons are only one member of a wider class of dark
solitons which differ in the depth of the intensity minimum. There are dark
pulses which do not dip down all the way to zero and which are called gray
solitons. The general solution of the nonlinear Schrédinger equation for dark
solitons is

u(€,7) = Ao % —sech(ApT) ei(w(T/)+(%)25) (9.56)
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Figure 9.19: A dark soliton in a computer simulation. In comparison to Fig. 9.5,
here all parameters are the same with the exception of the sign of dispersion;
B2 = —18ps?/km has been changed to B2 = +18ps?/km.

with the abbreviations

2
T,:A0T+%\/1732§

and

Btanh(t
p(t) = arcsin L().

1 — B2sech®(t)

The amplitude factor Aq fixes the brightness of the background and B defines
the “grayness”. In the limit limp_.; gray turns black, in a manner of speaking,
and Eq. (9.56) reproduces the solution Agtanh(Ag7). In this case there is the
abrupt phase jump of 7 at soliton center; for gray solitons, the phase transits
in a continuous way, not stepwise.

9.5 Digression: Solitons in Other Fields
of Physics

Solitons, that is, nonlinear waves with special properties, certainly do not exist
solely in optical fibers. Indeed, the term was coined following observations in
other branches of science. The first reported conscious observation of a soliton
phenomenon was written by a Scotsman, the civil engineer John Scott Russell.
In 1838 he noticed a remarkable water wave in the Union Canal near Edinburgh
and wrote this report [132]:

I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat sud-
denly stopped — not so the mass of water in the channel which it
had put in motion; it accumulated round the prow of the vessel in
a state of violent agitation, then suddenly leaving it behind rolled
forward with great velocity, assuming the form of a large solitary
elevation, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change of
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form or diminution of speed. I followed it on horseback, and over-
took it still rolling on at a rate of some eight or nine miles an hour,
preserving its original figure some thirty feet long and a foot and a
half in height. Its height gradually diminished, and after a chase of
one or two miles I lost it in the windings of the channel.

A first attempt at a mathematical explanation was not published until 1895
when Diederik Korteweg and Gustav de Vries formulated a hydrodynamic wave
equation. It was only after their work that in the interplay of dispersion and
nonlinearity solitary waves became an expected feature. Their hydrodynamic
wave equation is now called the Korteweg-de-Vries equation (KdV equation). It
differs from the nonlinear Schrédinger equation of fiber solitons, which concerns
us here, and therefore its solutions are somewhat different, too. One important
difference is that unlike in the nonlinear Schréodinger equation, in the KdV
equation the speed of propagation becomes amplitude-dependent. This is why
water waves move faster in deep water than in shallow water, a fact which has
considerable, indeed dramatic consequences in the case of a tsunami (Japanese
for harbor wave). Triggered by undersea earthquakes, water surface waves with
enormous energy propagate at rapid speed across the ocean, but they do so
with extremely long wavelength and low amplitude. They therefore easily go
unnoticed, but they can cross all of the Pacific Ocean within 2 days. As they
approach a shore where the water depth is reduced, the energy transport remains
conserved, but since the speed is reduced, the amplitude must increase and may
generate crests of 20m elevation. If such a wave hits a shore it will destroy
whatever gets in its path. In December 2004, this happened in a particularly
sad form when a quake off Sumatra triggered an Indian Ocean tsunami which
wreaked havoc in Indonesia, Thailand, Sri Lanka and on to the East African
shores and took about a quarter million human lives (Fig. 9.20).
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Figure 9.20: A model calculation for the Indian Ocean tsunami on December 26,
2004. This is one frame of an animation, taken from [74] with kind permission.
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In 1965, Norman Zabusky and Martin Kruskal studied interactions of solitary
waves [165] and noticed their particle-like properties. Solitons can be reflected
off each other without any harm to their structure. The moniker “soliton”
reminds us of elementary particles.

Application of the soliton concept to fiber optics started in 1971 when
Vladimir Evgen’evich Zakharov and Alexey B. Shabat [166] formulated a wave
equation for pulse propagation in fibers and found solitonic solutions. In 1973,
Akira Hasegawa and Frederick Tappert predicted [62] that such optical solitons
should be observable experimentally and that they hold promise for optical
data transmission. Linn F. Mollenauer and collaborators succeeded in 1980 to
experimentally demonstrate the existence of fiber solitons [111]. Then, various
aspects of optical solitons were subject to closer investigation. F. Mitschke and
Mollenauer showed the particle properties in 1986 by demonstrating for the first
time the interaction forces between fiber-optic solitons [106].

In a slightly different context also in optics, spatial or transverse solitons in
various media are studied. These are beams of light which stabilize their cross-
sectional shape in the presence of nonlinearity and diffraction, in very close
analogy (if one accepts to switch the roles of time and space) to the solitons
described here. However, spatial solitons do not occur in fibers and are therefore
beyond the scope of this book. The reader interested in a comparison is referred
to [19, 167, 128, 85].

9.6 More y® Processes

In our approach to derive a wave equation, we have assumed a monochromatic
wave. Then we found self-phase modulation, an effect by which a monochro-
matic wave or, in extension, a more or less narrowband light pulse modifies itself.
But this is not the only consequence arising from third-order susceptibility x®.
It also gives rise to the following effects:

= (Cross-phase modulation. In the presence of an intensive wave of frequency
w, a wave of frequency w + Aw gets phase modulated.

= Frequency tripling. A new wave of frequency 3w arises from a wave of
frequency w.

= Four-wave mizing. The three fields involved in a x® process may, in the
most general case, all have different frequencies. Then, new frequency
components arise at combination frequencies.

Cross-phase modulation arises because the index modulation created by one
wave also has an influence on the other wave. Frequency tripling, also known
as third harmonic generation, can be understood in either one of two ways:
In the wave picture, the light field acting on an atom can be written as an
oscillation of the type sinwt. In a x® process, there are three waves acting
simultaneously. All three may have the same frequency: Then there is a term
sin®(wt) = 1 (3sinwt — sin3wt) containing the third harmonic. In a particle
picture, there are three photons acting on the atom simultaneously. It absorbs
three times the energy of a single photon. The probability of this process rises
with the third power of the photon density because it takes three simultaneously
arriving photons. Also, the process becomes much more probable when an
atomic energy level exists at or near £ = 3hw.
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In the same way, one can discuss four-wave mixing: In the wave picture the
three irradiated waves may all have different frequencies. Then, one can use a
relation between trigonometric functions of the type

sinwit - sinwst - sin wst =
1. . .
1 [sm(wl + wo 4+ w3)t + sin(—wy + wo + ws)t

+ sin(wy — wa + w3)t + sin(wy + wy — ws)t . (9.57)

There are four combination frequencies, hence the name of the process. In the
particle picture, there are three photons acting on an atomic medium. Both
absorption or stimulated emission can occur. If all three photons are absorbed,
the atom stores an energy equal to the sum and can reradiate a wave with the
corresponding frequency. The other combination tones occur when one of the
photons stimulates an emission. (The loss of energy from the atom is reflected
in the negative sign in the respective term of Eq. 9.57.)

For our purposes, the following remark is important: In the special case
that all w; are integer multiples of a certain fundamental frequency wg, then
the same is also true for all combination frequencies: Let k,l,m € N. Then, if
wy = kwy, wy = lwg, and w3z = mwy, it follows that the combination frequencies
are (k+1+m)wg, (—=k+14+m)wo, (k—14+m)wo, and (k + 1 —m)wp, all integer
multiples of wg. In the special case called degenerate four-wave mizing, two
of the three frequencies are the same. Let, e.g., w1 = wy and w3 = w1 + Aw.
Then the fourth wave has the frequency wy = w; — Aw. As a result, a pair
of frequencies separated by Aw will produce two new frequencies. One is Aw
below the lower frequency, and the other Aw above the higher frequency.

This consideration is simplified insofar as it makes no statements about the
intensities of the generated waves. In order to assess that aspect we need to
consider the following.

Let us assume that energy is transferred through some nonlinear mixing
process from one wave to another. Both propagate through the material in the
same direction. In general their frequencies will differ, and in the presence of
dispersion they have different phase velocities. This implies that their relative
phase will wander as they propagate.

As is well known from coupled oscillators, energy always flows from that
with advanced phase to that with retarded phase. The energy transfer is most
efficient if the phase of the driving oscillator is 90° advanced with respect to the
driven oscillator. This can be generalized to traveling waves.

Right after the launch point, energy from wave A feeds wave B which at
this point just emerges. The phase of wave B is automatically arranged such
that an energy transfer takes place. A certain distance down the fiber, both
waves have experienced a relative phase shift of 90° and energy transfer ceases.
A little further on, the phase of wave B is advanced and energy is transferred
back!

Instead of an unlimited increase of the energy of wave B, there is a periodic
exchange of energy between both waves. This becomes noticeable at the point
where the relative phase is rotated by 90° for the first time. If a most effective
energy transfer is desired, one has to make this distance long; the most obvious
means to do that is to make dispersion small. The technical term is phase
matching of both waves. If, on the contrary, one wishes to thwart the energy
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transfer, one can arrange for strong dispersion. We will look closer into this
logic in Sect. 11.2.3.

9.7 Inelastic Scattering Processes

An important class of nonlinear processes in fibers are scattering processes in
which light is scattered by the medium (glass) either elastically or inelastically.
In the case of elastic scattering, the energy of the light quanta, and thus the fre-
quency, is unaltered. This puts elastic scattering into the realm of linear optics.
We have already discussed Rayleigh scattering, a process in which scattering
occurs in all directions, creating a linear loss: a loss of photons in proportion to
the existing number of photons.

For inelastic scattering processes, an amount of energy J E is exchanged with
the medium (either absorbed by the medium or released). Since 6E = hdév, there
is a frequency shift dv. Two types of inelastic scattering processes in fibers are
distinguished: Brillouin scattering and Raman scattering. These are scattering
processes either at the acoustic (Brillouin) or optical (Raman) phonon branch.
In either case, in principle there can be an upshift or downshift of frequency.
The irradiated wave is called pump wave; the scattered wave is called the Stokes
wave in case of downshift, and the anti-Stokes wave in the case of upshift.

Almost always the downshift (Stokes wave) is much more pronounced. The
medium usually consists of atoms or molecules which are in or near their ener-
getic ground states, as given by the thermal energy and a Boltzmann distribution
of occupation numbers. Then the medium can absorb, but not release energy.

Photons can be scattered spontaneously in both cases, but the rate is low.
On the other hand, beginning at a certain threshold intensity a stimulated scat-
tering process sets on. This is then called stimulated Raman scattering (SRS),
or stimulated Brillouin scattering (SBS). The process can become stimulated
when a sufficient number of spontaneously generated photons is already present
and interacts with the pump wave. Then the polarization of the medium is
driven, and above the threshold the process grows exponentially. Of course
this exponential growth of Stokes or anti-Stokes wave cannot go on indefinitely:
eventually the pump is depleted so that further growth is halted.

To get an idea of all this in more quantitative terms, we use the following rate
equation model: Let Ny be the number of Stokes photons and N, the number
of pump photons. Then, in the stimulated process, we have

% = const. Np(Ng + 1).
The “1” inside the parenthesis is for the spontaneous rate without which the
process can never start (just like in a laser). Once the startup phase is over,
the spontaneous rate may be neglected in comparison to Ng. Then there is a
solution

Ns(z) = Ns(0) exp(g1z),

where g is the gain coefficient for the Stokes wave.

By exponential growth even a single spontaneously occurring photon may
produce a macroscopic light wave. Macroscopic means that the growth continues
until the energy of the pump wave is noticeably depleted. Then a limit to growth
is reached — but this does not necessarily imply a steady equilibrium. Quite to
the contrary, it has been shown for Brillouin scattering in fibers that the Stokes
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wave has strong, irregular power fluctuations which can be interpreted as the
remainder of the stochastic signature of the startup process.

The stimulated scattering process can have profound impact on a light wave
propagating in a fiber. Often this is a detriment, which can in no way be
neglected. On the other hand, we will see that the influence is not always
unwelcome, but can also be harnessed to perform useful functions.

It goes without saying that in any scattering process, conversation of both
energy and momentum must hold. We can write that as

Yw = > w, (9.58)
in out
Sk

> k. (9.59)
out

On the LHS, there are all waves entering the interaction process, and on the

RHS all waves that exit from the process.

9.7.1 Stimulated Brillouin Scattering

We begin by considering the case of Brillouin scattering in which an acoustic
wave is generated.
Wp = Wy -+ Way, (960)

kp = kot ko (9.61)
Indices p, s, and a refer to pump, Stokes, and acoustic waves, respectively.

Pump and Stokes waves oscillate at optical frequencies while the acoustic
wave has a considerably lower frequency. Therefore the wave vectors for pump
and Stokes wave will be similar and much larger than that of the acoustic wave.
We can therefore approximate that |k,| = |ks| and w, < wp,ws. Referring to
Fig. 9.21, we can then write

- - 0
kol = 2|k,|sin =
|Ka| |p‘sm2

with 6 the angle between the propagation directions of pump and Stokes waves.
The pump wave propagates along the fiber, and so 6 is also the angle with the
fiber axis for the Stokes wave.

A wave vector equals angular frequency divided by velocity, so that

- - 0
Wa = Valka| = va2|kp|sin >

Figure 9.21: Sketch for the relation between three wave vectors involved in
Brillouin scattering and the angle §. This is very nearly an equilateral isosceles
triangle, and therefore the perpendicular halves both |k, | and . Then |ky|/2 =
|kp| sin(6/2).
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vg is the velocity of sound, which in fiber is 5960 m/s.

We see that the Stokes shift w, depends on 6 and disappears in forward
direction (§ = 0). This gives rise to conflict with energy conservation except
when the energy of the forward-scattered wave vanishes. In backward direction,
on the other hand, the frequency shift acquires its maximum. The physical
interpretation can be given as a Doppler effect of a wave which is scattered off a
grating traveling itself with the velocity of sound. Directions other than forward
and backward are not relevant in fibers, and single-mode fibers in particular.
(Strictly speaking, SBS does not entirely vanish in forward direction; there is
a minimal forward scattering known as GAWBS (guided acoustic wave Bril-
louin scattering), which is several orders of magnitude weaker than backward
scattering.)

T T T T T T T T T
jk\ J\bj\ j\‘
| | | | |
10.6 10.8 11.0 11.2 114
Frequency (GHz)

Signal (arbitrary units)

Figure 9.22: Brillouin scattering spectrum for three different fibers. (a) undoped
silica core, (b) depressed-clad fiber, (c) dispersion shifted fiber. In all cases the
shift is near 10 GHz. From [155] with permission.

If we rewrite in terms of natural, rather than angular frequencies and use
index “B” for “Brillouin”, the Brillouin shift is given by
wa  20.lkp| n

= — = = 2 B —
B 2w 2w Va Ap

because |k_£)\ = 2mn/\,. If for example n = 1.46 and A, = 1.55 pm, one obtains
vp = 11.2GHz. As a general statement, SBS produces frequency shifts on the
order of 10 GHz, which is a relative shift of 10~ (Fig. 9.22).

The change of Stokes power with distance along the fiber can be described
by p

d(i) = gl,Is — asls. (9.62)

Indices refer to Stokes and pump wave as before. The derivative here has been
taken with respect to (—z) because for SBS the scattered wave travels back-
ward. The frequency of the acoustic wave is so much smaller than the optical
frequencies that we may write w,/ws ~ 1 and a5 = ap. The gain factor g for
SBS is about gg = 20 pm /W, slightly lower than for bulk fused silica with about
gB ~ 50 pm/W.

The corresponding equation for the pump wave reads

dl, w
d—; = —M—Zglpfs —aplp. (9.63)
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It is easy to check that for the lossless case (a5 = o, = 0), the following holds:

d < Iy I >
— | ——=—1]=0.
dz \ws  wp
This demonstrates the conservation of photon number.
The first term on the RHS of Eq. (9.62) is the gain, the second, loss. Cor-
respondingly, in Eq. (9.63) the first term is for saturation, the second, loss. We
now ask for the threshold pump power for the generation of the stimulated ef-

fect. Surely, close to that threshold, the Stokes wave is still weak so that we can
neglect saturation to obtain an expression for the threshold:

dI,

= = ok

() = Ioe ",

dl,

Qs = OBl ol

= I (glpoe_%z — as) .

As we integrate, the first term in parentheses yields

L I
/ Ioe” ™% dz = »0 (1 — e_aPL) = IoLes.
0 Qp
Now we solve
IS(O) = Iz exp (gIPOLeff - OésL) .

By convention, a useful criterion for threshold is that (in the absence of satura-
tion) Is max = Ip,min- As initial value for the Stokes wave, one assumes a single
photon inserted at the (near or far, whichever applies) fiber end to generate
spontaneous scattering. Figure 9.23 clarifies to which positions the quantities
are referred.

As for values of the gain coefficient, strictly speaking they depend somewhat
on spectral line shape, the state of polarization of both waves, etc. However, as
a reasonable order of magnitude, we may use glpoLeg ~ 20. If one inserts the
above values of g and Lef max, one finds a threshold of 2.5 mW in a fiber with
Aeg =50 pm2.

This extremely low value renders stimulated Brillouin scattering the nonlin-
ear process with the lowest threshold. SBS gets in the way whenever continuous
wave experiments are considered. One important consequence is a severe limita-
tion of the fiber’s ability to transmit power: As soon as the pump wave exceeds
threshold, the excess is transferred into a Stokes wave which travels back to the
light source. Figure 9.24 shows an experimental result to illustrate this point.
Continuous wave light with adjustable power from a dye laser is launched into
a single-mode fiber. At the distal fiber end, after about 100m fiber length,
a detector monitors the transmitted power. Power scattered back inside the
fiber is diverted with a beam splitter at the near fiber end and is fed to a sec-
ond detector. It is quite obvious that the linear relation between launched and
transmitted power ends at some point, in this example at about 20 mW. What-
ever power in excess of this threshold is launched is scattered back and appears
at the other detector.



186 Chapter 9. Basics of Nonlinearity

-
»

pump wave

2| Brillouin |
c |
2 I
< Stokes wave | [g(L)
e
0 Length L
4&
> pump wave
B
Is(L
é Raman Stokes wave <—S( )

[
»

0 Length L

Figure 9.23: Sketch to explain the spatial evolution of pump wave and Stokes
wave in stimulated Raman and Brillouin scattering.

The threshold can be lowered even further when power traveling in the fiber
is recycled by reflection at the fiber ends. The main effect is that by back
reflection, a coherent wave can seed the Stokes wave; this is more efficient than
a spontaneous photon. It has been shown that the minute natural Fresnel
reflection at the fiber ends has appreciable influence.

The temporal structure of the backscattered wave is not at all continuous.
The Stokes wave is deeply and irregularly modulated (see Figs. 9.25 and 9.26).
This is a signature of the stochastic nature of spontaneous scattering. In the

co
o

ptrans

Foump Foump

Figure 9.24: Experimental observation of stimulated Brillouin scattering in a
fiber. All powers are given in milliwatt. Left: Above threshold of stimulated
Brillouin scattering the power of a continuous wave laser that is transmitted
through the fiber is clamped. Right: The power “missing” in transmission
appears in the backscattered Stokes wave.
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80

Figure 9.25: The backscattered wave (the Stokes wave) has a deep and irregular
temporal modulation, a result of the origin of the Stokes wave in spontaneous
scattering processes.

801
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Figure 9.26: The Fourier spectrum pertaining to the data shown in Fig. 9.25.
The modulation of the Stokes wave extends up to tens of megahertz. This
bandwidth is related to the damping rate of the acoustic wave in the nanosecond
regime.

presence of optical feedback by reflection at the fiber ends, a resonator is formed;
its round trip frequency (the inverse of its round trip time) constitutes a pre-
ferred frequency. If the reflections are strong enough, the modulation turns from
irregular to periodic with nearly this frequency [39].

Without feedback, this modulation contains frequencies up to nearly
100 MHz. This limit is related to the damping rate of phonons, which is a
few nanoseconds and which also sets the spectral width of the Stokes wave.
Therefore, the Brillouin line width (SBS line width) is about Avg ~ 10 MHz,
corresponding to a relative width of 1073.

There is an important conclusion with regard to some fiber applications here.
It is often the case that in laser-based materials processing the laser power must



188 Chapter 9. Basics of Nonlinearity

be delivered from a bulky laser head to various positions on the workpiece.
Fiber would provide perfect flexibility here, but SBS poses a severe limitation,
and renders the idea to transmit sheer power useless unless extra measures are
taken.

One such measure can be to avoid near-monochromatic pump light. For
broadband pump light (band width Awy,), the effective Brillouin gain is reduced
according to

_ Avg
9B = gBiAuB YA
For short pulses of light, the threshold is then higher because the pulse is spec-
trally wider than the SBS line width. The consequence is that for short, i.e.,
broadband, pulses, the threshold becomes much higher than the SRS threshold
when the pulses have picosecond width. In that case SBS loses its importance.
We should also point out that the Brillouin gain mechanism, most often a
nuisance, can in some cases actually be desirable. It can be exploited to build
a Brillouin laser which can provide laser oscillation on a frequency offset from
the pump by one Brillouin shift. Since the latter is within the reach of direct
electronic detection, such lasers have uses in certain heterodyning applications.
Moreover, there are Brillouin effect-based sensors which can, e.g., exploit the
temperature dependence of the Brillouin frequency to assess temperature. In
combination with (long) pulses and an evaluation of the temporal structure, one
can even have a position-resolved measurement. Fiber-optic sensors are treated
in Chap. 12.

9.7.2 Stimulated Raman Scattering

We have seen that the frequency shift in the case of Brillouin scattering is about
10 GHz. Stimulated Raman scattering (SRS) typically causes a frequency shift
of 10THz or a relative shift of 107'. Therefore, for SRS, we cannot use the
approximation wp/ws & 1 as we did for SBS.

Other than that we can describe the power of the SRS Stokes wave as a
function of position in the fiber in analogy to the above. We obtain

dI
dz

=gl Is — osls. (9.64)
The gain factor g is about gg = 0.1 pm/W. The corresponding equation for the

pump wave is

dI w
d—Zp = —w—ZngIs —op ). (9.65)

Again we convince ourselves that in the lossless case (as = a;, = 0), the photon

number is preserved:
d
= <IS + ﬁlp> =0.
dz wp
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In analogy to the treatment above we find the threshold from

dI,

e = ol
In(z) = Ippe P,

dl _

dz = gIstOe *PE — ol

= I (ngo e~ WwF — as) .

By integration, we conclude

L

1

/ Tooe % dz = 2 (1 — e=L) = IoLeg
0 Qp

with the effective interaction length Leg introduced in Sect. 9.1. Now we solve
I(L) = Isoexp (grIpo Lest — asL) .

Similarly as above, threshold is reached when without saturation Is max = Ip min
holds. The gain term is roughly the same for SBS and SRS and comes to
gloLes ~ 20. By reinserting the values given above for gr, g, and Lef max,
one obtains a threshold power in a fiber with A.g = 50 um? for SRS of about
500 mW, many times the value for SBS. Raman scattering becomes the dominant
scattering process only when quite short pulses are used so that the Brillouin
threshold rises considerably. Pulse durations on the order of 10ps or less are
required for this.

The frequency dependence of the Raman gain was first measured in [147]
(Fig. 9.27); later on researchers also considered how it consists of several con-
tributions with different temporal response [148, 149].

1 4

pump wavelength: 1um

0.5 1

Raman gain factor (10713 m/W)

O T T T T
0 10 20 30 40
Frequency difference (THz)

Figure 9.27: The frequency dependence of Raman gain. The maximum of the
Raman gain spectrum is reached at a detuning between pump and signal of
about 13 THz, but even at smaller detunings there is an appreciable gain. After
(147] with kind permission.
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Figure 9.28: The first tunable Raman laser 1977 consisted of a fiber which
was pumped by a modelocked Nd:YAG-Laser (1064 nm) with pulses of 200 ps
duration. The average pump power was 1.1 W and the repetition rate 100 MHz.
A prism served to separate pump and signal waves; a moveable end mirror
provided tuning. The tuning range extended from 1,101 to 1,125 nm; an average
power up to 20mW was generated. The threshold was at 0.7 W pump power,
and the slope efficiency was 60%. After [94] with kind permission.
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Figure 9.29: This Raman scattering spectrum was obtained by pumping a fiber
with a Nd:YAG laser at 1,064 nm. The Stokes wave acts as a pump for the next
order Stokes wave. This way five orders of Raman scattering are generated in
this example. From [36] with kind permission.

Like SBS, SRS is suitable for use in amplifiers and lasers; these are then called
fiber Raman amplifiers or lasers, respectively. Figure 9.28 shows an experiment
in which a tunable Raman laser was built [94].

Raman amplification of a signal wave by the energy taken from a pump wave
was shown in several experiments; a gain of, e.g., 30dB was obtained. An im-
portant consideration for such amplifiers is the frequency difference (detuning)
between both waves as dictated by the Raman gain spectrum of fibers. The
gain factor acquires its maximum near a detuning of 13 THz. Nd:YAG pump
lasers emit either at 1.06 or at 1.32 pm; this is suitable for signal wavelengths of
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Figure 9.30: A Raman laser using a cascade of several Raman orders for the
generation of light with longer wavelength. Several selective reflectors (fiber-
Bragg gratings) form nested cavities which support the pump wave, the targeted
Stokes order, and all intermediate orders. The numbers shown in the example
refer to the case described in [58] where fifth-order Raman scattering transfers
power from a pump wave at 1,117nm to a new wavelength of 1,480 nm. After

[58].

1.12 or 1.40 um, respectively — certainly not ideally suited wavelengths for the
purposes of fiber optics.

If the Stokes wave has sufficient intensity, it can itself act as pump wave for
another scattering process; this way a second scattered wave can be generated,
and even higher orders may be generated, too. Figure 9.29 shows a case in
which no less than five Stokes orders appear [36]. In devices called Raman
cascade lasers as shown in Fig. 9.30 this can be utilized in an arrangement of
nested cavities for several Stokes orders to transfer power across larger frequency
differences (see, e.g., [41]).

When Raman gain is used to provide gain for a signal transmitted through
the fiber, it should be clear that sufficient pump power must be available and
that the pump frequency must ideally be 13 THz above the signal frequency.
Fortunately, the Raman process is not sharply resonant but fairly broadband so
that there is some tolerance in the signal frequencies suitable for a given pump.
Active fibers like Er-doped fibers described above (Sect. 8.8.1) have a much
narrower gain band, fixed once and for all by properties of the Er ion. They
are therefore not as universally applicable. As increasingly massive wavelength
division multiplex transmission is employed to make use of an ever-increasing
bandwidth (see Sect. 11.1.5), the Er gain band begins to be a limitation for
state-of-the-art systems. Raman amplifiers therefore attract more attention
again recently.



Chapter 10

A Survey of Nonlinear
Processes

10.1 Normal Dispersion

10.1.1 Spectral Broadening

Self-phase modulation (SPM) broadens the frequency spectrum. This effect is
not pronounced as long as the peak nonlinear phase shift remains below 7 or
so. At a few 7, however, the spectrum begins to develop strong undulations as
shown in Fig. 10.1.
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Figure 10.1: Calculated spectral broadening by SPM; the maximum nonlinear
phase shift is given as a parameter. From [146] with kind permission.

The figure is based on numerical calculations based on the nonlinear
Schrodinger equation. This prediction is borne out well by experiment, as shown
in Fig. 10.2. Intense light pulses in sufficiently long fiber easily achieve ¢, > 7.
Then the spectrum takes a nearly rectangular shape (Fig. 10.3), mostly an effect
of the linear chirp across the central part of the pulse.

F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_10, 193
(© Springer-Verlag Berlin Heidelberg 2009
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Figure 10.2: Observed spectral broadening by SPM; the maximum nonlinear
phase shift is given as a parameter. From [146] with kind permission.

This spectral broadening may be desirable, e.g., to filter out different fre-
quency components simultaneously. Sometimes, one wishes to generate a spec-
tral continuum over a certain frequency range. Our main interest at this
point, however, is that a broad spectrum is an important prerequisite for the

1.72 nm
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t

Wavelength

Spectral power density

Figure 10.3: Spectral broadening by self-phase modulation can, in extreme
cases, give a nearly rectangular spectrum. Here the pulses were taken from
a frequency-doubled Nd:YAG laser (532nm) and had a duration of 35 ps. After
[77] with kind permission.
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generation of shorter pulses. In other words, strong self-phase modulation is a
step toward pulse compression.

10.1.2 Pulse Compression

Let us assume that a light pulse has assumed a broad spectrum by self-phase
modulation. Then, there will be a strong chirp in its temporal evolution.

Now, if all this happens in the presence of normal dispersion, the different
spectral components of the pulse will be stretched out temporally. Then, the
pulse will take on a nearly rectangular temporal profile with a very nearly linear
chirp when the components responsible for the flat central part of the spectrum
are rearranged in time.

By using a diffraction grating, one can generate an opposite (anomalous)
dispersion which can recompress the distorted pulse to the shortest duration
compatible with its spectral width. A pair of gratings (see Fig. 10.4) is more
convenient to handle. A combination of a fiber and a grating pair as sketched
in Fig. 10.5 is available commercially as a pulse compressor. It works in the
wavelength regime where the fiber is normally dispersive (which is useful for
light from dye lasers or Nd:YAG lasers), and it can considerably reduce the
pulse duration, as shown in Figs. 10.6 and 10.7.

blue
red
—> 4—
blue
red

Figure 10.4: Schematic representation of dispersion from a pair of diffraction
gratings. Shorter wave light (labelled as ‘blue’) takes a shorter path than longer
wavelength light (‘red’).

10.1.3 Chirped Amplification

There are now laser systems capable of generating peak powers of more than
1PW. They rely on an oscillator-amplifier concept: Pulses generated by an
oscillator are amplified and brought well into the terawatt regime and above.
Such light sources are important tools for basic physics research.

The technical difficulty is that optical components of the amplifier must
withstand the enormous intensities and thus are subject to a damage hazard.
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Figure 10.5: Pulse compression with fiber and grating pair. The fiber gen-
erates strongly chirped pulses due to self-phase modulation. With a grating
arrangement of judiciously chosen dispersion the chirp is compensated, and the
pulse duration is reduced in the process. The figure shows a setup with double
pass through a grating pair and output coupling from a beam splitter (partially
reflecting mirror).
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Figure 10.6: Experimental result with fiber-grating compressor: Here pulses
of initial width 33 ps were compressed down to 410fs. From [76] with kind
permission.

This can be avoided by the concept of “chirped pulse amplification” or CPA
[126], which has its origin in radar technology and is a method to avoid high
peak powers acting on components. One inserts a dispersive element — either a
fiber or a grating — after the oscillator to produce a strong dispersive broadening
of the pulse, with the accompanying reduction in peak power. The spectral
components of the pulse then do not occur at the same time but sequentially.
This predistorted pulse is fed to the amplifier where the highest intensity peaks
are now reduced by the broadening factor. This can amount to several orders
of magnitude, and the damage risk is drastically reduced. After amplification,
all Fourier components are shifted together again by sending the pulses through
another dispersive element which has the same absolute value of dispersion, but
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Figure 10.7: Extreme pulse compression down to 8fs. For some time in the
1980s, this result represented the world’s shortest pulses. From [87] with kind
permission.

the opposite sign. An example is shown in Fig. 10.8 where the first dispersive
element is a fiber, the second, a grating.

CPA is now the method of choice to produce petawatt powers in several
laboratories around the world. To put this into perspective, consider that all
electric power generated in the USA is below 1 TW. Of course, the petawatt level
is maintained only for a split second, indeed, a few hundred femtoseconds. A
pioneering experiment at the Lawrence Livermore Laboratory 1999 [126] demon-
strated pulses with peak power > 1 PW, 680 J energy, and a duration of 440 fs.
Pulses were stretched 25,000-fold before amplification. Recompression had to
be performed in vacuum due to the enormous field strength of the final pulse.
It exceeded by three orders of magnitude those typical field strengths by which
electrons are bound to nuclei in most atoms; any material would instantly break
down. When focused, an intensity of 102 W/ m” was obtained at an energy den-
sity of 30 PJ/m2; this is a lot more than inside stars.

In this case, however, fibers were not used but rather a combination of
gratings. While it is true that fibers provide more dispersion, there are also
contributions from higher-order dispersion that make it difficult to undo the
chirp completely. Also, on a grating one can distribute the power over a larger
area, thus reducing intensity and risk of damage. Therefore, fibers are prefer-
entially found in systems that do not aim at the ultimate power limit but that
are intended to work as a handy laboratory tool. Commercial CPA systems are
available.

10.1.4 Optical Wave Breaking

‘We have seen above that through strong self-phase modulation, pulses acquire an
almost rectangular spectrum. In the presence of normal dispersion, the spectral
components are pulled apart temporally, so that there is an almost linear chirp
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Figure 10.8: Top: When a light pulse is amplified to very high energy, excessive
peak powers may damage the gain medium. Bottom: This is circumvented by
broadening of the pulses with a dispersive element prior to amplification, and a
restoration of the initial pulse width with an oppositely dispersive element after
amplification. As dispersive elements, either fibers as in Fig. 10.5 or gratings
can be used; for the compression gratings are usually preferred.

in the central section of the pulse, and the temporal profile also approximates
a rectangular. Both the leading and trailing slopes are fairly abrupt.

If one then keeps increasing the amount of self-phase modulation by in-
creasing the power, there is a phenomenon called “optical wave breaking” [156]
(Fig. 10.9). The portion of the pulse with the highest frequency is delayed so
that it falls behind the background in the far pulse wings. At the same time,
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Figure 10.9: Optical wave breaking. Top row: Evolution of the instantaneous
frequency profile. There is a considerable nearly linear chirp. Center row:
Evolution of the power profile. The pulse shape becomes nearly rectangular.
Bottom row: The corresponding power spectra. After sufficiently long propaga-
tion (right column) the wave breaks; interference fringes arise. From [156] with
kind permission.

the part with the lowest frequency passes the background. That is, at the po-
sitions of the slopes the pulse “folds over” and interference phenomena arise
[131]. Then oscillations appear in the wings of the temporal profile and in the
spectral profile as well.

10.2 Anomalous Dispersion

10.2.1 Modulational Instability

We have seen in Sect. 9.4.1 that noise or tiny perturbations are subject to gain
when the dispersion is anomalous and that the gain prefers certain frequencies
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Figure 10.10: The first observation of terahertz signals generated by modula-
tional instability [152]. A sequence of 100 ps pulses from a Nd:YAG laser with
an average power of 7.1 W is launched into a fiber of 1 km length. The figure
shows power spectra of the pulse sequence at the fiber input (top) and at the
fiber output (bottom). The newly generated sidebands, indicative of the modu-
lation, are separated from the seed by 2.6 nm or ca. 450 GHz. From [153] with
kind permission.

(typically on the order of 1 THz). This gain can be utilized for the generation
of signals in its preferred frequency range. This comes in handy because it
is not trivial to generate signals at frequencies around 1THz; there are not
many alternative methods. Figure 10.10 shows the first experimental proof
that modulational instability (MI) sidebands grow from noise; in this example
an oscillation of ca.450 GHz was generated [152]. In fiber lasers one can now
generate continuous oscillation of such sidebands, at least in principle [49].

10.2.2 Fundamental Solitons

Solitons exist due to the simultaneous presence of both group velocity dispersion
and Kerr nonlinearity. This can be tested by a very simple experiment: Pulses
of a given duration (in this example, 560 fs) and wavelength (here, 1.5 um) are
sent through a variable attenuator into a fiber (Fig. 10.11). At the distal fiber
end pulse shape and duration are monitored. As long as the power remains
weak, nonlinearity does not yet play any role. Due to dispersion the pulses will
broaden out, here to ca. 50 ps, which is a hundred times their initial width. As
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Figure 10.11: Observation of pulse broadening by dispersion and pulse compres-
sion by nonlinearity, and the equilibrium of the two. A sequence of light pulses
with an initial width of 0.5 ps is sent through a 395-m long fiber. At low power
the pulses broaden out dispersively to ca. 50 ps. As the power is increased,
nonlinearity counteracts dispersion and mitigates the broadening. At ca. 6 mW
average power, the initial pulse width and shape are reproduced at the fiber
end; indeed this is the power at which for the parameters of the fiber used here,
the fundamental soliton is expected.

power is gradually increased, the pulse duration at the fiber end is significantly
reduced. When ca. 6 mW average power is reached, the initial pulse shape is
faithfully reproduced at the fiber end. This is the power level at which the
pulse propagates without any change of shape. We have found the fundamental
soliton! Its pulse shape is stable. Actually, it is stable even in the sense that
mild deviations from the right shape will automatically be reduced.

If the power is further increased, the pulse undergoes a net compression; the
dispersive broadening is overcompensated. But the pulse duration does not fall
monotonously. This is particularly clear where the fiber length happens to be
an integer multiple of zp: Then, at power levels equal to 4, 9, 16, etc. times the
fundamental soliton power, the initial pulse duration is reproduced again. This
repetition is of course due to higher-order solitons, but it is difficult to observe
this cleanly because a multitude of effects gets in the way of an exact reproduc-
tion of the initial shape. On the other hand, the reproduction of the duration
and shape by the fundamental soliton is quite robust and straightforward to
observe experimentally.

10.2.3 Soliton Compression

As described in Sect. 9.4.5, higher-order solitons have an oscillating pulse width
and shape. This is a useful feature for pulse compression. One launches a
pulse into a fiber with suitable power so that it propagates as a soliton of,
say, second order. If its initial shape is reasonably close to a sech, then after
a distance L = 2¢/2 it will be compressed in duration to 23% of its initial
width. Figure 10.12 shows an example. For even higher-order solitons, the
compression is even stronger. The disadvantage of this technique is that the
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Figure 10.12: Compression of pulses at anomalous dispersion, also known as
“soliton compression.” In the example shown a pulse of 60 fs full width is sent
through a fiber of length zo/2, in this case about 50 cm. It is compressed to
19fs full width. From [107].

resulting compressed pulses are not chirp-free, but fortunately for some appli-
cations that is less important than the temporal duration. If the reader com-
pares this scheme with the fiber-grating compression described in Sect. 10.1.2,
it should be apparent that here the fiber performs all functions at once so that
additional components like gratings are not required.

10.2.4 The Soliton Laser and Additive Pulse
Mode Locking

When it comes to the generation of short laser pulses it has become common
practice by now to exploit optical nonlinearities directly. A precursor of today’s
Kerr lens modelocked lasers was conceived in the mid-1980s by Linn F. Mol-
lenauer of Bell Laboratories when a resonator containing a piece of fiber was
coupled to the laser resonator. Both resonators were adjusted to have the same
round trip time. The idea was that the coupled system would provide a stable
pulse shape when the stationarity condition was fulfilled that the pulse returning
from the fiber had the same duration as the pulse going toward it. The power
in the fiber was therefore set such that solitons were formed; only solitons can
maintain their shape or so the reasoning went. Indeed stable pulses were ob-
tained even though the pulses in the fiber were closer to an N = 2 soliton, with
the fiber length (return trip) close to zo [104]. The pulse durations obtained
from this “soliton laser” set records in their day for the wavelengths near the
third window. Directly from the laser pulses as short 60 fs were obtained; with
external soliton compression 19 fs were reached. This corresponds to less than
four cycles of the optical wave!

When pulses from both coupled resonators interact, they do so interfero-
metrically. This means that the length difference of the two cavities must be
maintained to within a fraction of a wavelength during operation. This can only
be performed successfully with an active servo control loop as presented in [104].
The average power circulating in the fiber resonator is tapped at an otherwise
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Figure 10.13: Schematic setup of a soliton laser, a.k.a. additive pulse mode
locked (APM) laser. M: mirror, BS: beam splitter (partially reflecting mirror).
Both resonators are arranged to be synchronous by careful length adjustment.
The servo loop consisting of detector det, amplifier, and the piezoceramic trans-
ducer PZT maintains the length with interferometric stability.

unused port and measured by a photodetector. After electronic processing, it
is fed to a piezoceramic transducer which serves to fine-tune the fiber resonator
length. The processing involves subtraction of a manually set suitable reference
value and amplification with what is known in control systems engineering as a
PI (proportional-integral) characteristic (Fig. 10.13).

Later on it turned out that the concept is more general than to be restricted
to the wavelength regime of anomalous dispersion in the fiber. The relevant
mechanism is the Kerr nonlinearity which creates a self phase modulation. In the
interference process this is translated to a modification of the pulse shape, usu-
ally a reduction of the duration. Dispersion is not really too important in this.
This insight led to the concept of “additive pulse modelocking” (APM), also
known as “interferential modelocking” or “coupled cavity modelocking” [109].
Several different types of lasers were used in this way to generate short pulses,
including Nd:YAG lasers at both 1,064 and 1,319 nm.

10.2.5 Pulse Interaction

It is the remarkable property of a soliton that it induces a perturbation of the
refractive index in the fiber which is just right to make it hang together and
keep its shape. If more than a single pulse propagates down the fiber, each of
them can “feel” the perturbation of the refractive index caused by its neighbor,
in particular when they get into close proximity with each other. The relevant
question to ask is for the relative phase of the optical field of the two pulses
in their slopes where they overlap: are the fields in phase, in opposite phase,
at any other phase angle? For the “in phase” situation, there is constructive
interference, and each pulse “feels” a stronger index modulation on that side
that faces the other pulse. This perturbation acts asymmetrically on the pulse
(Fig. 10.14)!

For opposite phase the fields interfere destructively, and the power in the
overlap region is less than what it would be in the absence of the other pulse.
Again, there is an asymmetric (one-sided) effect.
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Figure 10.14: Interaction of co-propagating light pulses. Upper part: Two pulses
are in phase with each other. Constructive interference will then increase the
intensity in the middle, as compared to the case that the other pulse is absent.
Lower part: Opposite phase pulses interfere destructively; the intensity profile
goes down in the middle. Pulses are always attracted to the point of highest
intensity (and thus, index). Then, in-phase pulses experience mutual attraction,
opposite-phase pulses, repulsion.

In-phase pulses will both move slightly toward their mutual center-of-mass,
opposite-phase pulses will move away from each other. This interaction force
was first demonstrated in [106] after a theoretical prediction had been made in
[53].

In effect, there is what can be described as a force between the light pulses.
Depending on the relative phase, this force can be attractive or repulsive. If
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Figure 10.15: Experimental proof of pulse interaction forces. Autocorrelation
traces of the pulse pair from the source (a) represents a double pulse, consisting
of two humps each 0.9 ps wide and separated by 2.33 ps. (About the interpre-
tation of autocorrelation traces see Appendix F.) If the pulses have the same
phase, after traveling down 340m of fiber they have moved toward each other
so far that they are no longer resolved (b); for opposite phase, they have moved
away from each other (c). From [106].

one lets the separation between the pulses slide to tune the relative phase, the
force will basically change in a sinusoidal fashion. Once the separation increases
noticeably, the force will be reduced exponentially because the slopes of sech
pulses roll down exponentially. Once pulses are separated more than five or
seven or so pulse widths, the interaction force becomes negligible.

The first experimental proof [106] is shown in Fig. 10.15. Time measurements
on a femtosecond scale are only feasible by way of the autocorrelation technique
(see Appendix F). In this experiment the interaction was easily measured. It
was also found that in the case of attraction the pulses move toward each other,
but they do not collide: this is surprising because collisions would be expected
both intuitively and by the nonlinear Schrédinger equation. However, higher-
order effects perturb the pulses as they get increasingly close to each other so
that eventually they actually fly apart [88].

The concept of attraction and repulsion can be extended to the case of
chirped pulses where it is not so straightforward to speak of in-phase or opposite-
phase pulses, see [63].

10.2.6 Self-Frequency Shift

One might be forgiven for adopting the following simple-minded approach to
pulse propagation in optical fiber: While it is possible that the pulse shape is
corrupted by influences like dispersion and self-phase modulation, the optical
center frequency remains unaffected. However, the exact opposite is true: Dis-
persion and self-phase modulation combine in such a way that in the case of
solitons the pulse shape is preserved; the optical center frequency, however, is
shifted. This latter fact was first discovered experimentally [105] and is easily
explained by considering the effect of Raman scattering [54].

The Raman gain spectrum is broad and, as Fig. 9.27 shows, begins at very
small frequency detunings. Therefore, there is Raman self-pumping even within
the bandwidth of a single pulse: The high-frequency slope acts as a pump for
the low-frequency slope. As a result, the spectral center-of-mass of the pulse
shifts continuously toward lower frequencies. If the pulse is a soliton, then its
inherent robustness lets it hang together as an entity; pulses of inferior structural
stability are likely to decay in the process (Figs. 10.16 and 10.17).
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Figure 10.16: First observation of the soliton self-frequency shift. The figure
shows the power spectrum at the far fiber end when short laser pulses are
launched into the near end. The soliton is easily recognized due to its broad
spectrum. With respect to the laser frequency (at which there is a narrower
peak), the soliton is shifted downward in frequency. The amount of shift fluc-
tuates with the laser power because the power defines the soliton width (this
was explained in Sect. 9.4.3); power fluctuations during exposure of this photo-
graphic picture result in a “flat rooftop” of the soliton. From [105].
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Figure 10.17: Soliton self-frequency shift as a function of launch power. Here
power was varied over a wide range with a modulator; its control voltage also
produced the offset between traces. It is clearly visible that the soliton’s spectral
width increases with increasing power; so does the spectral shift. Only above a
certain threshold does the soliton spectrum become visible as a separate struc-
ture. From [105].
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Figure 10.18: Expected amount of self-frequency shift. The shift basically scales
with the inverse fourth power of pulse duration. From [54] with kind permission.

The amount of frequency shift depends strongly on the pulse duration: As
the pulses get shorter, peak power grows quadratically, and the spectral width
linearly. The Raman gain curve grows approximately linearly for small detun-
ings (see Fig. 9.27). Taking all this together, the frequency shift is proportional
to the inverse fourth power of pulse duration [54] (see Fig. 10.18). For 1 ps pulses
the effect is so weak as to be noticeable only after very long distances; for 10 ps
it may be safely neglected in almost all cases. On the other hand, for subpi-
cosecond pulses, the frequency shift becomes a dominant effect: A pulse of less
than 100 fs duration is shifted considerably after only 1 m propagation distance
in standard fiber. The shift can reach large values, amounting to a noticeable
fraction of the optical frequency. However, even a strong shift slows down to a
halt once the pulse is shifted by hundreds of nanometers toward longer wave-
lengths because at the longer wavelength the fiber probably has much higher
dispersion, and also is no longer a low-loss medium. These modifications con-
spire to reduce the peak power and increase the duration so that the frequency
shifting rate comes down.

10.2.7 Long-Haul Data Transmission with Solitons

Fundamental solitons are the natural units, or bits, for the transmission of
information over optical fiber. They are more robust and stable than any other
pulse because they embrace Kerr nonlinearity in the first place, and therefore
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do not get perturbed by it. They exist at anomalous dispersion; it is fortunate
that the wavelength regime of anomalous dispersion in fiber coincides with the
wavelength regime of lowest losses. This is why solitons lend themselves to
applications in long-haul data transmission. Chapter 11 is devoted to a more
detailed discussion of this aspect.



Part V

Technological Applications
of Optical Fibers

Laying optical fiber cables — here within sight of the author’s house — is not
nearly as spectacular as the performance of fiber during operation.



Chapter 11

Applications in
Telecommunications

11.1 Fundamentals of Radio Systems
Engineering

We first present a brief introduction to essential concepts of telecommunications
engineering, insofar as they are relevant for our topic.

11.1.1 Signals

The central concept of all communication engineering is that of a signal. In the
most general case, it is left open what this is physically; it suffices to state that
it is a scalar, real-valued function of time. We assume that the signal contains
information which is meant to be taken from some transmitter to some receiver.
The signal may be represented by some physical quantity such as an electric
voltage, the position of an indicator needle, or the brightness of a light source;
one common realization would be that at each instant, the value of the quantity
is proportional to that moment’s value of the signal.

We must first distinguish continuous-time signals and discrete-time signals.
The latter have a defined value only at certain instants in time, or in other, more
mathematical words consist of a sequence of Dirac pulses (delta functions), each
weighted in accord with the signal value. One can obtain a discrete-time signal
from a continuous-time signal by sampling. Very frequently one chooses to take
samples at a fixed rate, i.e., in equal time steps. Below we will assume a fixed
sampling rate, or clock frequency, throughout.

The other fundamental distinction is between analog signals and digital sig-
nals. An analog signal has a continuous range of values, i.e., can take any
intermediate value within the interval of possible values. In contrast, a digital
signal has a finite number of possible states known as its alphabet.

A thermocouple yields a voltage proportional to temperature; this is an
example for an analog continuous-time signal. A dynamic microphone is another
example of the same. A sequence of results when dice are thrown or the roulette
wheel is turned would represent a discrete-time digital signal. Is is quite often
the case that digital signals are also discrete-time.

F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_11, 211
(© Springer-Verlag Berlin Heidelberg 2009
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An important subclass of digital signals are binary signals. For these the al-
phabet has just two symbols which, depending on context, may be called “zero”
and “one”, “high” and “low”, “true” and “false”, or “plus” and “minus”, etc.

11.1.2 Modulation

Only in the simplest cases a signal is transmitted just as is. There are many ben-
efits if one uses a carrier oscillation, a wave on which the signal is “impressed”.
This is familiar from broadcast signals: At the receiver one selects the carrier
frequency of the desired program. This way several different programs can be
transmitted simultaneously and independently.

The impression of a signal onto a carrier is known as modulation. It can be
done in a variety of ways: If the carrier is a harmonic periodic function (this is
a very common situation), which can be written as

A= Ag cos(Q + o) (11.1)

with amplitude Ag and angular frequency €2, one has the options of subjecting
either Ag, €2, or ¢ to the signal. The result is then referred to as amplitude
modulation, frequency modulation, or phase modulation, respectively.

Amplitude Modulation

Let us assume for simplicity that the range of values of the signal S(t) is re-
stricted to the interval —1 < S(¢) < +1. This can always be achieved by proper
normalization. One can then make the amplitude signal-dependent by letting
Ag = A (14 S(t)) in Eq. (11.1) to obtain amplitude modulation (Fig. 11.1).

Again for the sake of simplicity, we consider the simplest possible signal, a
sinusoidal oscillation with angular frequency w:

S(t) = sinwt. (11.2)

We now let Ag = A (1 + M sinwt) where 0 < M < 1 is called modulation depth.
We insert in Eq. (11.1) and obtain

A=A (14 Msinwt) cos(Qt + ). (11.3)

Using the well-known relation between harmonic functions

sinzcosy = = [sin(z — y) +sin(z + y)],

| =

this then yields
A= A[cos(U + ) + M sinwt cos(Qt + )]
A M
=A {cos(Qt +¢) + - [sin(wt + Qt + ) + sin(wt — At — gp)]} (11.4)

This result contains terms of three different frequencies: The first term on the
RHS at Q2 corresponds to the carrier. The second and third terms have frequen-
cies Q + w. Amplitude modulation (AM) generates new frequency components:
the one at the carrier frequency persists, and one each above and below the
carrier frequency by a difference equal to the signal frequency are new.
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Figure 11.1: Sketch to explain amplitude modulation. Top: The modulation of a
carrier wave with frequency {2 with a signal w = 0.05 2 is shown at a modulation
depth of M = 0.5. Bottom: Modulation generates two sidebands above and
below the carrier, at the distance of the signal frequency. The figure suggests a
signal occupying the band wmin < w < wmax (baseband). The sidebands have
the same width. Note that the lower sideband is inverted.

Fourier components with a frequency equal to carrier frequency plus signal
frequency are collectively called the upper sideband; those at carrier frequency
minus signal frequency, lower sideband. For our example of a sinusoidal mod-
ulation, these “bands” consist of only one sharply defined frequency. However,
any realistic signal will be more complex than that of Eq. (11.2), and may be de-
composed by Fourier analysis into harmonic functions within a certain spectral
interval. Only then are the sidebands aptly named, when we adopt the usage
of the term “band” in the sense of “frequency interval.” The difference between
the highest and the lowest frequency occurring in the signal is the bandwidth.
The bandwidth of a signal is arguably its most important characteristic and will
concern us below.

In the spectrum of the amplitude modulated signal, the upper sideband is
a replica of the original signal spectrum, translated in frequency space by the
carrier frequency. The lower sideband is a shifted and inverted replica.

The combination of carrier and two sidebands is a rather redundant rep-
resentation of the signal. Fach sideband contains the same information; the
carrier, none. Much of the transmitted energy is thus wasted to the carrier.
This is why engineers have come up with variants to amplitude modulation in
which one sideband and the carrier are suppressed for the transmission. This is
called single sideband, or SSB, transmission. It is routinely used in commercial
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radio transmission because it carries the same amount of information at much
lower radiated power, and occupies only half of the bandwidth. For broadcast-
ing purposes, however, SSB is not used because the receivers to decode SSB are
slightly more complex.

Angle Modulation

Instead of imposing the signal onto the amplitude in Eq. (11.1), one can make
either Q or ¢ signal dependent. (Of the three quantities, two remain constant
in each case). Then one obtains frequency or phase modulation, respectively
(Fig. 11.2). In both cases it is the phase angle of the carrier which is acted upon,
so that both cases are collectively called angle modulation. Mathematically, in
both cases, there is a term of the form

sin (a + bsin(2t))  (a, b are constants), (11.5)

and “sine of sine” produces Bessel functions (see Appendix C).
Angle modulation creates sidebands, too. The difference is that even in the
case of a purely sinusoidal signal, more than a single Fourier component appears
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Figure 11.2: Frequency modulation. Top: The modulated oscillation in the
time domain. Center: The instantaneous frequency follows the signal. Bottom:
Several sidebands are generated both above and below the carrier.
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both above and below the carrier. Their frequency differences from the carrier
are equal to integer multiples of the signal frequency; their amplitudes can be
evaluated using said Bessel functions. We will not pursue this context any fur-
ther here; instead, the interested reader is referred to texts on communications
engineering (e.g., [129]).

Intensity Modulation

The types of modulation described so far are applicable when a monochro-
matic carrier wave is available. In the realm of optics, only lasers can provide
monochromatic waves or an approximation thereof.

Unfortunately, in most cases, it is not guaranteed that the laser emission
is truly single frequency. This is certainly not the case for lasers operating on
several modes simultaneously. Not all types of lasers can easily be operated in a
single mode, and for many laser types used in optical telecommunications this is
indeed difficult to achieve. If, however, a laser operates on a multitude of modes
simultaneously, the modulation formats described above are not applicable.

Moreover: even when a laser runs in single-mode operation, strictly speaking
the oscillation is not monochromatic. Rather, it covers a narrow frequency band
(the emission line width) which may be small compared to optical frequencies,
but at the same time may be larger than typical signal frequencies. The emis-
sion line width of a single-mode laser is determined by several factors. These
include technical considerations such as fluctuations of parameters (vibration of
components, temperature fluctuations, etc.); these may be removed in princi-
ple, but practically speaking that is a very difficult task. But then there are
also fundamental limits as set by spontaneous emission in the laser medium.
Fach emission act brings about a perturbation of the phase of the light wave.
As a result there is a finite (nonzero) line width, which was first described by
A. Schawlow and C. Townes, pioneers of laser physics [174]. In real-world lasers,
the Schawlow—Townes limit may be very low, indeed in the millihertz regime so
that it is always swamped by technical perturbations which typically are sev-
eral orders of magnitude larger. But the same reasoning also implies that there
is always — by principle — a phase modulation present in the emission of even
the technically perfect laser, and it is a modulation by a random signal. For
demodulation (decoding) of phase modulation one needs a reference phase, and
in the context of lasers and optics that is always difficult to have. It is true, of
course, that oscillators in radio frequency engineering in principle suffer from
the same line width limit. However, in the radio frequency range, the energy
of the quanta, which is proportional to frequency, is so much lower as to be
perfectly negligible.

All difficulties related to the spectral content of the carrier can be avoided
by using intensity modulation. In this technique, one controls the total intensity
in the same way as kids playing with flashlamps and sending each other Morse
signals. This can be done for light sources with any spectral composition.

Intensity modulation is very simple and is widely used. It can be achieved for
laser diodes or luminescent diodes (LEDs) by simply modulating the operational
current. This also produces an additional frequency modulation because changes
in current produce temperature changes in the chip, but that is irrelevant as
long as spectral information is not evaluated.



216 Chapter 11. Applications in Telecommunications

Applications which demand the highest data rates and/or longest distances
of transmission are sensitive to dispersion and thus to spectral composition. In
such cases single-mode lasers (e.g., of the distributed Bragg type, see Sect. 8.9.3)
are preferred light sources; in the interest of keeping the emission frequency sta-
ble, one keeps the current constant and applies the modulation with an external
modulator.

11.1.3 Sampling

Digital transmission formats are today by far the most successful formats. The
signal to be transmitted is digitized, i.e., reduced to a finite number of values in
the process of sampling , almost always at a certain fixed rate, the sampling rate.
Speaking in mathematical terms, the original signal is multiplied with a periodic
sequence of delta functions (a “picket fence”). The continuous signal is thereby
replaced with a sequence of delta functions with weight factors corresponding to
the respective signal value. This must be done in such a way that the relevant
information contained in the signal is represented by the sequence.

It is therefore important to select a suitable sampling frequency. It should
be obvious that the sampling frequency must be higher than the highest signal
frequency of interest; one can hardly represent an oscillation with fewer sample
points per period than just one. If the sampling rate is too low, another com-
plication arises: Fig. 11.3 demonstrates that in the sampling process, certain
new frequency components are generated which were not present in the original
signal. The reason is that the sequence of delta functions can create beat notes
with Fourier components of the signal,! so that difference frequencies between
sampling frequency and some signal frequencies appear. These undesired addi-
tions to the signal are called aliasing signals.

Aliasing signals are, of course, highly undesirable because they prevent a
faithful reconstruction of the original signal at the receiving station. They can
be avoided by the following precautions:

1. The signal bandwidth is strictly limited with steep-slope low-pass filters
to a certain maximum frequency. For this limit, one selects the highest
frequency deemed necessary for the transmission in terms of reproduction
quality. For high-fidelity music formats as used for CD recording, this
limit is chosen as 20kHz, i.e., the highest frequency audible to a human
ear under the most favorable circumstances. For telephone signals one
chooses 4kHz as the highest frequency (the low-pass filter begins to roll
off slightly below that because “brick wall” filters do not exist) because
that is sufficient for a good intelligibility of the spoken word.

2. Then the sampling frequency is fixed according to the sampling theorem
[172], which stipulates that it must be at least twice the highest signal
frequency. This way it is guaranteed that no overlap exists between signal
band and alias band (see Fig.11.4). For high-fidelity music signals as
on CD the sampling frequency is chosen as 44.1kHz, and for telephone
signals, 8 kHz.

L According to the convolution theorem of Fourier transforms, the spectrum of the sampled
signal is found as the product of the spectra of original signal and picket fence. It contains
the infinite series of harmonics from the sequence of delta functions, each with an upper and
lower sideband from all Fourier components of the signal.



11.1. Fundamentals of Radio Systems Engineering 217

AAAALARR,
JUVVTTY

samples

apparent signal

/ tﬁne

Figure 11.3: If the sampling rate is only marginally larger than the signal fre-
quency, a beat note at the difference frequency appears in the sampled data.
This spurious contribution is called aliasing signal.

Each sample is then represented after analog-to-digital conversion by a bi-
nary number with a given number of digits. More digits give more faithful
amplitude resolution but are more costly to transmit. Therefore the number of
digits (the “bit resolution”) is dictated by the required quality of transmission.
For high-fidelity music, one takes at least 16 bits or one value out of 65,536;
in studio recording 24 bits is now standard. For telephone signals 8 bits (one
value out of 256) is deemed good enough because it already provides quite good
intelligibility.

In this way, the original signal is represented by a stream of binary digits,
i.e., zeroes and ones. They represent a discrete-time, discrete-amplitude version
of the signal. The bit rate is obtained from sampling rate and bit resolution.
For sampling with 8 kHz and at 8 bits resolution one has 64 kbit/s; during each
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Figure 11.4: Beat notes between Fourier components of the signal and the
sampling frequency generate sidebands to the sampling frequency called aliasing
bands. If prior to sampling the signal bandwidth is clipped with a low-pass filter
at a frequency below one half of the sampling frequency, signal band and aliasing
band cannot overlap. This is the prerequisite for faithful signal reconstruction.
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time slot of 1/64,000s = 15.625 ps, one bit is transmitted. This is the value used
in telephony worldwide. For music in the CD format, there are 44,100 samples
of at least 16 bits each, and twice that for stereo. On top of the signal proper, a
CD contains test bits, track information, etc. The standardized SPDIF format
of the digital signal stream in CD players contains as many as 64 bits at each
sample point, used for two stereo channels plus overhead. Then the total data
rate is 2.8224 Mbit /s.

11.1.4 Coding

The sampled signal, a sequence of zeroes and ones, can now be transmitted,
at least in principle. At the receiver, the first task is to recover the clock rate
from the received bit sequence; only then can the bit stream be decoded by
deciding which time slots contain a zero and which a one. To make sure that
decoding can be done error-free, it is advantageous to re-code the bit stream
before transmission. The objective is

= that no long strings of consecutive equal symbols can occur. A long string
of zeroes makes it difficult to regenerate the clock rate.

= that the numbers of zeroes and ones, both presumably of equal probability
in the long run, get equilibrated as quickly as possible. The advantage is
that the demodulated signal then does not contain a DC component; this
simplifies receiver construction.

= that sensitivity toward perturbations is reduced. Ome possibility is to
transmit test bits along with the data which allow a parity check and
possibly some error correction.

For example, the so-called 5B/6B code uses a lookup table by which each block
of 5 bits is replaced by a 6-bit block. The table is set up such that no more than
three consecutive zeroes can ever occur. This makes for a low DC component
and allows easy clock regeneration. The additional bit serves as a parity check
bit and helps in error correction. Of course, the data rate is increased by a
factor of 6/5 = 1.2, and correspondingly more bandwidth is required.

In the CMI format (coded mark inversion) each “zero” is replaced by the
sequence “zero—one”, and each “one” alternatingly by “one—one” and “zero—
zero”. It is obvious that this eliminates the DC component and completely
avoids long strings of equal symbols. On the other hand, the price to pay is
that the effective data rate is doubled, and twice the bandwidth is required.

11.1.5 Multiplexing in Time and Frequency: TDM
and WDM

No single data source can generate the enormous data rates successfully trans-
mitted today over a single fiber. The fiber can carry terabits per second! Such
rates are only obtained when data from many sources, possibly an entire coun-
try, are combined. To compose separate data streams into one can be done by
two methods and by combinations thereof:

TDM: Time division multiplex is an interleaving of bit streams in time. For
long-haul transmission this is universally done to increase the rate to typ-
ically 10 Gbit/s, or more recently to 40 Gbit/s. At this speed, even fast



11.1. Multiplexing in Time and Frequency: TDM and WDM 219

electronic circuitry comes to its limits. Also, at that rate, errors due to
polarization mode dispersion become noticeable and are difficult to keep
in check.

WDM: Wavelength division multiplex is the transmission of independent bit
streams at different optical frequencies. This is the equivalent of different
radio stations transmitting on different frequencies: Different programs are
modulated to carriers of different frequencies and can easily be separated
at the receiver by selective means. With WDM), several bit streams can
be launched into a fiber simultaneously so that the available (low loss)
spectral range can be utilized, more or less. However, WDM is expensive:
For each WDM channel a complete set of hardware including laser diodes
is required. Therefore an economic incentive exists to first increase the bit
rate as far as possible by TDM; this “only” requires some fast electronics.

Figure 11.5 shows both variants: The right part depicts the spectrum obtained
for the combined signal. In the final analysis, TDM and WDM use the same
amount of bandwidth for the transmission of the same amount of data per unit
time.

It is common engineering practice to first combine many telephone channels
with TDM to the highest frequency, which can still be conveniently worked with.
Resulting data rates are not exactly multiples of 64kbit/s but slightly more
due to an overhead from additional bits required for controlling the decoding.
Unfortunately, different countries started using different numbers of telephone
channels for TDM (24 in the USA, 30 in Europe), so that on the transmission
lines different data rates existed. In order to assure smooth international traffic,
a standardization became inevitable.

First the USA created a standard called SONET, for synchronous optical
network. The fundamental clock rate is 51.48 Mbit/s and is referred to as OC-
1 (as in optical carrier). Integer multiples of this clock rate may be used; in

bit stream 1
I I I > WDM
bit stream 2 t
I I
bit stream 3 t @1 ©2 @3 ®
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Figure 11.5: Comparison of time division multiplex (TDM) and wavelength
division multiplex (WDM) formats. For TDM several bit streams are interleaved
temporally; the resulting bit rate is the sum of the individual bit rates. For
WDM each bit stream is coded onto its own carrier. The right half of the figure
shows the spectral composition of both formats; for this example we assume
amplitude modulation. All told, both formats occupy the same bandwidth in
frequency space.
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particular, OC-3 at three times that rate (155.52Mbit/s) and OC-12 at 12 x
51.84 Mbit/s = 622.08 Mbit/s are being used.

By international standardization SDH or synchronous digital hierarchy was
created. The fundamental rate is 155.52 Mbit/s; data packets according to this
standard are referred to as STM-1 (as in synchronous transport module). Note
that OC-3 and STM-1 share the same clock rate.

On long distances, OC-48 signals, or STM-16, are now common; they have
ca. 2.5 Gbit/s. For intercontinental traffic, many commercial systems use OC-
192 (STM-64) at ca. 10GBit/s. OC-768 or STM-256 at ca. 40 Gbit/s is now
introduced. To increase the rate by a factor of 4 presents four times more
payload at something like two and a half times the hardware cost; on top of that
there are space savings in comparison to four OC-192 sets of hardware. However,
at 40 Gbit/s, problems arise that were negligible at lower rates: Polarization
mode dispersion becomes a massive problem. This is because the relevance
of the effect is determined by the relative propagation time scatter, i.e., the
scatter in units of the clock period. Shorter pulses have a proportionally wider
spectrum and thus “feel” more of the dispersion. On the other hand, the clock
period shrinks inversely with clock rate. The relative propagation time scatter
then grows quadratically with clock rate. For OC-768 signals, it is 16 times
as large as for OC-192 signals. Polarization mode dispersion is noticed as a
random fluctuation of the state of polarization of the received optical signal
which translates to level fluctuations. Quite complex compensation has now
been introduced, which can assure glitch-free operation. It may be expected,
though, that the next step after 40 Gbit/s will not advance by another leap of a
factor of 4 as was the rule so far; rather, it seems now that 100 Gbit/s systems
will be the next generation. On the other hand, in laboratory experiments,
researchers already explore much higher data rates [160].

11.1.6 On and Off: RZ and NRZ

The physical representation of a bit value — a zero or a one — in an optical
format is usually obtained by intensity modulation of a light wave. Again, there
are basically two options; the relative advantages and disadvantages have been
under discussion for many years.

Discrete-time signals have a certain clock rate which defines the time slots
for the individual bits. To assign a binary value, zero or one, to a time slot one
may

= either turn the intensity off or on during the entire duration of the time
slot; or

= place a short signal pulse inside the time slot for a one, and no pulse for
a zero.

Figure 11.6 these variants are compared. In the first case, the intensity remains
the same during the entire time slot or, in the event of several ones or zeroes in
a row, for several clock periods. In the second case, the intensity is always zero
when one time slot is over and the next begins. Hence the names no return to
zero or NRZ for the first case and return to zero or RZ for the second.

There are two relevant practical differences. When both zeroes and ones are
statistically equally probable, the average for NRZ is 1/2, and for RZ close to
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Figure 11.6: Comparison of coding binary data in the NRZ and RZ formats.
For NRZ the pulse occupies the entire time slot of the clock period T, for RZ
just a fraction of it. (In principle the pulse might be much shorter than the time
slot; for practical considerations, it is not very much shorter. In the figure, it
is about one half.) Shorter pulses have wider bandwidth, so RZ occupies more
bandwidth.

zero. This plays a role in the construction of receivers where an AC coupling is
usually employed to get rid of 1/f noise and drift.

More relevant is the difference in usage of frequency space: RZ uses more
bandwidth because shorter pulses are spectrally broader. Keeping in mind that
bandwidth is a nonrenewable resource, this is not economical. On the other
hand, an RZ data stream contains a strong Fourier component at the clock
frequency, which makes the design of clock regeneration circuits in the receiver
easy. In the case of NRZ less bandwidth is occupied, but in the spectrum of
an NRZ signal there is a null at the clock frequency. This is easy to see: for
each rising slope in the signal there is also a falling slope. Both types of slopes
occur equally often. They therefore introduce Fourier components of the same
magnitude but opposite phase at the clock frequency which mutually cancel
out. The absence of a strong Fourier component at the clock frequency makes
its regeneration more difficult. It can be done by first differentiating the signal
to emphasize the temporal positions of the slopes with a narrow spike, then
rectifying the result to make all spikes positive-going. This way one obtains a
strong spectral component at the clock rate which can easily be filtered out.

11.1.7 Noise

Noise is the collective term for all kinds of external influences that can hamper
signal transmission. They include man-made, natural, and fundamental
perturbations. The term “noise” must be taken in a broad sense here to
denote any type of extraneous material imposed on the signal, be it coherent
or incoherent, etc.

Man-made noises include emissions from machinery which find their way into
the transmission channel. The reader may have experienced a radio crackling
when a car with inadequate radio frequency noise suppression drove by. In the
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case of wavelength division multiplexing the emissions may arise from other
channels: This is then referred to as channel crosstalk.

Natural noises may be caused by electric storms (lightning flashes), solar
storms, etc.

Fundamental noises include quantum noise. Any signal is quantized because
the basic physical constituents are: Electric currents consist of a certain num-
ber of electrons flowing per second and this number is subject to fluctuations.
Similarly, any detected light power consists of a certain number of photons re-
ceived per second; this number, too, fluctuates. The fluctuations constitute
the quantum noise. Fundamental noise sources also include thermal noise as it
occurs in any electronic circuit. At any temperature other than absolute zero,
all constituents of matter including electrons undergo a random motion due to
their thermal energy; this produces a noise voltage and a noise current in any
real impedance.

Thermal noise can be derived directly from Planck’s distribution formula
for radiation [173]; this is indicative of its fundamental nature. One needs
to consider the spatial and spectral density (power per frequency interval and
per volume element) of a one-dimensional perfect emitter (what physicists call
a “black body”) at temperature T. Planck’s distribution in one dimension,
written as a function of frequency v (in Hertz),? is

2hv

Iy dv = e dv. (116)

ekT —1

Here c is the speed of light in vacuum as usual and Boltzmann’s constant k =
1.38 x 1072 J/K converts temperature to energy units. h = 6.6256 - 10734 Js is
Planck’s constant and hv is the energy of an individual photon.

In the “radio engineering limit” the quantum energy is much smaller than
the thermal energy: With hv < kT we obtain

1, dv = 2kT dv;

from this one can deduce the thermal noise as described by Johnson and Nyquist
[78, 123], with a “white” spectrum

P = 4kTB, (11.7)

where P is the product of open circuit voltage and short circuit current which
produces noise in a bandwidth B.

Above that frequency at which hv = kT, the Nyquist—Johnson formula is
no longer valid. At standard ambient temperature around 300K this limit is
in the far infrared. Therefore, it is perfectly justified that electronics engineers
disregard quantum noise entirely and deal with thermal noise. In the visible
and near-infrared optical range, however, quantum noise has the upper hand
and quantum effects present very real limits.

In either case one deals with noise which approaches a Gaussian amplitude
distribution and a “white” spectrum; the latter means that the noise’s correla-
tion time is shorter than all correlation times of the signal.

2Most textbooks describe Planck’s law for three-dimensional emitters; for the connection
with electronic noise we need the one-dimensional case.
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Fundamental Limitations Due to Noise

In the most favorable case that all technical and thermal sources of noise are
negligible, there is quantum noise left and presents a limit to transmission. Let
us assume binary coding and estimate the limit of reach. We will keep in mind
that in terms of realistic systems the following is far too optimistic; we are after
the ultimate limit.

As discussed in Sect. 5.4, there must be at least a single photon received for
a signal to be detectable. (We are serious about the ultimate limit!) The photon
energy is £ = hv =~ 6.6 x 10734 Js x 200 x 10'2 Hz ~ 10~'° J in the near infrared.
The average launch power is limited to around 1 W so that thermal damage to
the fiber is avoided, this corresponds to 10'° photons/s. Then an attenuation of
no more than 1/10% or 190 dB is admissible when we assume for simplicity the
ridiculous bit rate of 1 bit/s. We also accept that due to the statistical nature
of the photon number in some cases, zero photons will be detected instead of
one; this would constitute a transmission error, and we will come to that. For
a fiber with 0.2dB/km, this gives a maximum distance of 950 km.

Due to energy loss, optical fibers are quantum limited in their reach.
Even in an unrealistically optimistic estimate the maximum distance
is less than 1000 km.

Distances spanned in practical systems are much shorter than that; hence the
requirement of optical amplifiers.

Of course it is not possible to detect a signal consisting of a single photon
without error, due to the statistical nature of both their generation and their
detection. Therefore it is useful refine our estimate as follows: We set an upper
limit to the bit error probability which is deemed sufficient for practical pur-
poses, and calculate how many photons on average must be contained in a light
pulse to accommodate that limit. For the distribution of photon numbers we
may assume Poisson statistics. At an average photon number N, the probability
to have the value n (do not confuse this symbol with the refractive index!) is
given by

p(n) = N"e N /nl.

Then, the probability to erroneously measure a logical “one” when indeed a
“zero” was sent is

p(1) =0'e /11 = 0.

Zeroes are detected error-free! This is no surprise because when zero photons are
sent, and all other noise sources are excluded, the arriving number of photons
got to be zero. For the “ones” it is different: The probability to measure a
“zero” when in fact a “one” was sent is

p(0) = NeN/ol=e N,

In the telecommunications industry it is common to set the maximum allowed
bit error rate in telephony to 107°. We insert this value and solve for N.
On average, there are as many “zeroes” as there are “ones”, but “zeroes” are
detected error-free. Then we can admit an error of 2 x 10~° for the “ones”. It
follows that

Npin = In2 x 1077 = 20.03.

In an ideal situation it would suffice to have 20 photons for a “one”:
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In order to detect a signal with a bit error rate below 10~?, photon
statistics dictates that a logical symbol on average must contain at
least 10 photons.

In any practical context other sources of noise and error will also contribute;
therefore even the best available detectors require at least ten times as many
photons, and typical decent detectors maybe a hundred times as many. Detec-
tors that are uncompromisingly optimized for highest speed may require even
more than that.

11.1.8 Transmission and Channel Capacity

Now we consider the compound signal coded in one of the formats described
above: RZ or NRZ; TDM and/or WDM. This signal is eventually fed to a
receiver. The idea is that this occurs across a certain distance; this implies that
over the distance there is some suitable transmission medium, like a cable. The
medium acts as a channel.

External noises and perturbations also act on the channel; as a result, what
arrives at the receiver is a mix of the signal proper and some noise. It is the
task of the receiver to reconstruct the signal without error and to disregard the
noise. That may or may not be possible. This is the topic of communications
theory, a field which was started by a seminal work by Claude Shannon [137].

Shannon’s work shows that one of the most relevant parameters is the band-
width available for the transmission. Assuming that the channel can provide
the bandwidth B, transmission can take place with a data rate R as long as R
remains smaller than the channel capacity C. The latter is defined by

S
C =B-log, (1 + ﬁ) . (11.8)

Here S is the signal power and N the noise power. Noise is assumed to be
Gaussian white noise. Shannon showed that provided R < C, a coding can
be found such that the bit error rate can be made arbitrarily small. It is well
possible that the coding gets increasingly complex as R approaches C (from
below), but virtually error-free transmission is possible. If, on the other hand,
transmission with R > C' is attempted, the bit error rate can no longer be kept
down.

According to Eq. (11.8), the dominant factor determining the channel ca-
pacity is the bandwidth. One might think, then, that an infinite amount of
data can be transmitted when B is allowed to grow indefinitely. This is not
so. The catch is that the noise also depends on bandwidth. If one restricts the
discussion to white noise, the noise power is proportional to bandwidth. Then
one can write N = NoB, with Ny = const. the spectral noise power density
which is constant. In the limit

lim C # oo,

B—oo
it follows that

. S
BlgnooC’ N -log, €.

In reality, of course, the available bandwidth cannot grow indefinitely anyway
but is bounded by physical considerations.



11.2. Nonlinear Transmission 225

Transmission through optical fiber, in comparison to electric cables, enjoys
the benefit of a wide spectral region of low loss. If we take the regime of the third
window generously as 1,400-1,600 nm corresponding to a frequency interval of
214-188 THz, the bandwidth is 26 THz. With the best available fibers, one
may be able to utilize an even more extended range of (optimistically) 1,250—
1,650 nm; this corresponds to 240-180 THz implying a bandwidth of 60 THz. Of
course, toward the end points of this interval, losses are much higher than in the
middle so that for long-distance transmission one may be tempted to return to
a less optimistic estimate. In any event, realistic estimates produce bandwidths
on the order of 50 THz.

The spectral efficiency

R

n=g Bits/s/Hz (11.9)
indicates how well the data rate makes use of the available bandwidth. For
binary signals only two values are used: off and on, or zero and some power at
least equal to noise power. This can be formally introduced into Eq. (11.8) by
letting S = N; then we obtain

C=B channel capacity for binary transmission. (11.10)

In other words, for binary transmission the maximum rate is 1bit/s in 1Hz of
bandwidth.

11.2 Nonlinear Transmission

In long-haul transmission, it is unavoidable that the fiber’s nonlinearity becomes
noticeable. Nonlinearity is special because in electrical cables both attenuation
and dispersion are well known, but a phenomenon corresponding to the Kerr
nonlinearity in fiber does not exist. This may be why engineers trained in
electronics instinctively considered nonlinearity as an impediment and an utter
nuisance for a long time. The way to avoid nonlinearity, in this logic, is to use
large-mode area fibers to reduce the nonlinear coefficient and to use low power
signals. This approach can go a long way. Indeed, in a remarkable experiment,
a data transmission rate of 1Tbit/s over 300km has been demonstrated [160].
Only a few researchers pointed out as early as in the 1980s that nonlinearity
also presents an opportunity to counteract dispersion’s detrimental effects and
thus to improve the transmission system as a whole. Both approaches are being
pursued, and only the future can tell which one will ultimately be better.
Before any commercial system can be deployed, there are years of extensive
research experiments and laboratory tests, and finally field trials. Lab tests are
not done in actual long-distance optical cables but in closed fiber loops which
can be set up in a laboratory. Signal degradation with distance can then be
assessed in detail by just letting the signal go around the loop for more and
more turns; Fig. 11.7 shows what insiders tongue-in-cheek call a carousel.
Much research deals with that paradigm of transmission in the presence of
Kerr nonlinearity, the fundamental (i.e., N = 1) optical soliton. Solitons are
the natural units (bits) for transmission of data over optical fibers because they
are more robust than any other type of pulse. They require anomalous fiber
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Figure 11.7: A typical laboratory experiment for the study of long-distance
transmission. The long distance is here represented by multiple round trips in a
fiber ring. In this example, the ring has 75 km circumference and contains three
amplifiers. From [114] with kind permission.

dispersion; it comes in handy that the spectral regime of lowest loss coincides
with the anomalous dispersion regime.

According to the latest research, the best results are obtained not with
pure solitons but rather with a certain generalization of the soliton concept.
A number of subtle effects become noticeable on truly long distances on the
order of thousands of kilometers, some in an individual wavelength channel and
others only in the case of WDM. These effects make the situation a little more
complex; it is then a matter of taste whether one still calls the modified pulses
by the name of solitons or by some other name. A few books have recently
become available that are devoted to solitons in optical fiber [61, 17, 115].

11.2.1 A Single Wavelength Channel

In spite of their extraordinary stability, solitons do not enjoy eternal life. Per-

turbations arise from energy loss, Raman scattering, and by mutual interactions

of pulses (see above). Combined, they eventually destroy even solitons [99, 31].

Energy loss may be compensated by optical amplifiers (of the Raman type

or with Er-doped fiber) at least on average. The first question to ask is at

which intervals Lamp one should insert amplifiers into the fiber. It turns out

that the condition Lp > Lamp must be maintained in order to avoid a resonant

perturbation of the solitons [59, 60, 26, 115]. For typical standard fiber and

picosecond pulses, Lp is a few to a few tens of kilometers. Here is a quick
estimate:

T3 (10 ps)?
Ip=—+=———"—
82| 20ps?/km

It would be awkward to insert amplifiers at distances shorter than this. If
dispersion is reduced to 1ps/(nmkm), however, and if pulse durations are in
the single-digit picosecond range, Lp becomes a few hundred kilometers. Then,
very reasonable intervals between amplifiers on the order of tens of kilometers

= 5km.
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are possible. A useful side effect of low-dispersion fiber is that the soliton’s
energy is also scaled down so that less power is required for their generation.
Also, the combined power of possibly a hundred WDM channels is kept low so
that handling live fibers does not pose a health hazard to a service crew. On
the other hand, one should not push dispersion reduction too far because there
is also a signal-to-noise issue when the soliton energy goes down too much.

Gordon—Haus Effect

Amplifiers, by their nature, cause additional noise due to spontaneous emission;
this noise degrades signal integrity in a subtle manner. It modifies the pulse
energy, its optical phase, and its temporal position. Modifications of amplitude,
phase, and position of solitons are not a big worry. However, frequency devia-
tions spell trouble. They arise from asymmetric components of the noise with
respect to the spectral center of the pulse (see Fig. 11.8). In the presence of
dispersion, frequency changes produce changes in the pulse arrival time, which,
after a long distance, add up to a considerable random pulse jitter. If the jitter
becomes too large (i.e., comparable to the clock period), the signal is rendered
unreadable. This phenomenon is called Gordon—Haus jitter [55] in honor of
James P. Gordon and Hermann A. Haus who predicted it. They showed that
the jitter grows with the third power of distance.

A
signal pulse
i Frequency
noise
\J\l V\/ U V Frequency
A
Frequency
noise
component

Figure 11.8: With respect to the pulse spectrum (top), noise (center) may
have asymmetric components (bottom). If noise is then added to the pulse,
the spectral center-of-mass (i.e., the center frequency) is shifted ever so slightly.
Due to dispersion in the fiber, this results in a modified time of arrival. These
random fluctuations of arrival time are called Gordon—Haus jitter.
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Figure 11.9: Experimental demonstration of Gordon—Haus jitter. The apparent
increase of pulse width with increasing distance is in perfect agreement with the
prediction. From [112] with kind permission.

The existence of the Gordon-Haus jitter was clearly shown experimentally
(Fig. 11.9). In the experiment, it was necessary to average over many consecu-
tive pulses so that the arrival time jitter appeared like a pulse broadening. The
apparent increase of pulse width with distance followed precisely the prediction
of the jitter [112].

Filters Along the Line

Insight about Gordon—Haus jitter was the reason why in the transatlantic cables
TAT-12 and TAT-13 (see below) dispersion shifted fiber and Er-doped fiber
amplifier were used, but solitons were not. However, only a short time later
a remedy was found: Wavelength-selective filters reduce frequency fluctuations
as they continuously nudge solitons back to the center of their spectral slot.
Moreover, in a wavelength division multiplexed (WDM) system, differences in
gain from one wavelength channel to the next are equalized by filters because if
one pulse is momentarily too powerful, it acquires a broader spectrum through
self-phase modulation; at the next filter, it then suffers greater loss which brings
its power back to normal [113]. This is shown in Fig. 11.10.

Of course the scheme mandates that filters are placed at certain intervals
along the line; for practical, reasons one chooses the same positions as the ampli-
fiers. On a transoceanic distance there will then be many filters cascaded. It is
well known that for cascaded elements in a linear system, the resulting frequency
response is the product of the individual filter responses. That statement here
implies that a very narrow spectral transmission results. Within this narrow
width spontaneous emission can still grow unhindered and will pose a problem.

Again a very simple idea presents an elegant solution to this problem. All
filters do not have the same center frequency; rather, the center frequencies are
sliding along the line. Then there is no single wavelength for which spontaneous
emission can transit the whole distance because in the product of filter responses,
there is always one factor practically zero for any frequency. For linear signals, a
sliding filter system is opaque! For solitons it is different: Solitons are creatures
of the nonlinear realm. They can adjust their shape and center frequency at
each filter and thus pass through the entire system without any problem. Such a
discrimination between signal and noise has no correspondence in linear systems!
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Figure 11.10: Computer simulation of the equalization of power variations of
solitons by filters. If a pulse has more than its normal power, it will be shorter in
time and broader spectrally. In the selective filter, it experiences extra loss which
will overcompensate the gain and reduce the power toward the equilibrium value.
In this example, three wavelength channels are considered. Stable propagation
is only obtained with the use of filters. From [82] with kind permission.

11.2.2 Several Wavelength Channels

The maximum data rate of an individual wavelength channel is basically limited
by the speed of electronic components as they are available. This limit is opti-
mistically at 100 Gbit/s, and more realistically in the tens of Gbit/s. The rate
may be increased somewhat by optical time division multiplering when two or
more bit streams are first converted into a sequence of pulses with fast electron-
ics, then interleaved by using optical delays of half the clock time. There is hope
that 100 Gbit/s can be obtained, but that is still a far cry from the 50 THz or
so bandwidth which the fiber offers. That tremendous spectral range can only
be utilized by parallel operation of a multitude of wavelength channels, i.e., by
wavelength division multiplex or WDM. The first question arising is at which
spacing to place the spectral channels: should they be equidistant?
Several valid points in favor of equidistance can be brought forward:

= It represents better conceptual clarity.
= [t is in accord with common use in radio and TV transmission.

» Filters with equidistant transmission frequencies are particularly easy to
construct (Fabry—Perot filters).

The counter argument is that the detrimental effect of four wave mixing is most
pronounced in this case: all newly generated frequencies sit right on top of some
other channel (see Sect. 9.6). This is shown in Fig. 11.11.

Nevertheless, international standardization bodies have adopted an equidis-
tant channel grid. The ITU? grid uses a reference frequency of 193,100 GHz,

3International Telecommunication Union, a United Nations agency for information and
communication technology issues.
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Figure 11.11: Experiment about the impact of four wave mixing in a WDM
transmission system. Left: spectra, right: eye diagrams (these are explained in
Sec. 11.3.2). Top row: Ten equidistant channels are launched simultaneously
into a fiber. Center row: At the fiber end numerous mixing products (“combina-
tion tones”) have been generated. The eye diagram indicates severely degraded
signal integrity. Bottom row: If nonequal channel separations are chosen, both
the number and the strength of mixing products are reduced, and the eye dia-
gram indicates good signal integrity (the “eye” is completely open). From [44]
with kind permission.
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which corresponds to a vacuum wavelength of ca. 1,552.5nm. Starting from
this frequency, there is one channel at every 100 GHz increment. Intermediate
channels on a 50 GHz or even 25 GHz grid may be used. WDM using this grid
is also called “dense WDM” or DWDM. This is in contrast to “coarse WDM”
(CWDM) where a much wider spacing of 20 nm is used. Given the regular fre-
quency grid, the problem arising from four wave mixing must be remedied in
some other way.

Four-Wave Mixing and Phase Matching

The amount of degradation caused by four-wave mixing is also determined by
the degree of phase matching of this process (Fig. 11.12). In a fiber without any
dispersion, perfect phase matching of both the generating and the generated
wave would be guaranteed, and mixing products and thus signal perturbation
would reach a maximum. Therefore, dispersion is definitely helpful in this con-
text. Even small amounts of dispersion reduce the efficiency of four wave mixing
noticeably.

D =-0.2 ps/nmkm

D= -1 ps/nmkm

“t D =—2 ps/nmkm

Jo ) i
LINRTRIERRIAY o
w Viv iy Vv L
16.0000 ns 21.0000 ns 26.0000 ns

Figure 11.12: Impact of four-wave mixing on a bit sequence, compared at differ-
ent amounts of fiber dispersion. The less dispersion, the more signal distortion.
From [44] with kind permission.

11.2.3 Alternating Dispersion (“Dispersion
Management”)

An invention conceived for a different purpose is the solution to the four-wave
mixing problem. Engineers had tried to solve the problem of dispersive pulse
broadening by tinkering with the fiber’s dispersion. Their idea was to basi-
cally compensate the dispersion and make it zero at least as a path average
by inserting segments of dispersion-compensating fiber. The latter designates
dispersion-shifted fibers (see Sect. 4.5.5) which have dispersion (35 of the oppo-
site sign as the main fiber. It turned out that a full compensation to zero is not
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at all desirable. In the (unavoidable) presence of fiber nonlinearity, a certain
residual dispersion was found beneficial. This is, of course, rooted in soliton
formation.

In order to reduce the detriment of four-wave mixing by the introduction of
phase mismatch, it suffices to have strong local dispersion (see Sect. 9.6); even
for zero-path average dispersion this end would be achieved. The idea then is to
optimize dispersion along the path by judicious dispersion management (DM)
to create a dispersion map. The dispersion map typically consists of a periodic
alternation of fibers with different dispersion (Fig. 11.13); typical DM period
lengths are a few tens of kilometers.

It is not at all clear that soliton-like pulses would exist in a dispersion man-
aged fiber. After all, the periodic change of sign of dispersion is a profound
perturbation which can certainly not treated as a small perturbation to the
nonlinear Schrodinger equation. Light pulses traveling in DM fibers vary a lot
in pulse duration over one DM period. Nevertheless, pulses do exist which are
stabilized by the action of nonlinearity [119, 122]. This stabilization implies that
after a complete DM period, the original pulse shape and width are restored.
In a “stroboscopic” representation, in which the pulse shape is only shown at a
particular position within the DM period, one sees a stably propagating pulse
again. In a certain generalization of the concept of solitons such pulses are re-
ferred to as DM solitons. Their pulse shape is different from the sech shape of
conventional solitons, as can be seen from Fig. 11.14. Indeed, it more closely
resembles a Gaussian. On a log power scale one even discerns undulations in
the wings.

The repetitive variation of dispersion brings about a further benefit: Since
the pulse shape “breathes” over one dispersion period, the pulse’s phase profile
breathes, too: underneath the envelope there is a chirp bending back and forth.
Where neighboring pulses overlap, the phase relation varies rapidly so that
interaction is mostly washed out. Moreover, for long stretches of the path, the
peak power is reduced and with it the effective nonlinearity. To make up for
that, the power of the DM soliton is higher than in the comparable case of
a fiber with constant dispersion equal to the path average value [142]. This
so-called DM power enhancement [142, 164] provides advantages in terms of
signal-to-noise ratio and also in the context of Gordon-Haus jitter [150].

Dispersion parameter 35
4
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Figure 11.13: Sketch to explain dispersion management. The fiber line consists
of alternating fiber segments with positive and negative dispersion. The path
average dispersion is then much lower than the local dispersion and may be
close to zero.
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Figure 11.14: A DM soliton in a computer simulation. Two periods of the
dispersion map are shown.
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Figure 11.15: Accumulation of dispersion in a dispersion-managed fiber in com-
parison of a central channel and channels at the edges of the spectral range.
From [44] with kind permission.

Due to higher-order dispersion, there is a different By value at the center
frequency of each wavelength channel. Different channels thus experience dif-
ferent dispersion, both for local and path average values. This is illustrated in
Fig. 11.15 where the propagation of signals in neighboring WDM channels with
different dispersion is compared.

As a consequence, in different WDM channels the pulse streams have dif-
ferent power. If we take the unperturbed soliton of the nonlinear Schrédinger
equation as a reference, its energy is found as

p1:@ and E1:2P1T0:M.

715 7To

The energy is proportional to dispersion. As Fig. 11.16 shows, this relation

carries over to the relation between energy and path average dispersion of DM

solitons [113]. Meanwhile fibers with an inverse trend of dispersion (inverse [33)

have been suggested in order to obtain a flat resulting dispersion so that power
differences are equalized.

In a similar fashion, gain must be equalized, too. The spectral gain curve

of Er-doped fibers as shown in Fig. 8.19 is not at all flat. By tweaking fiber

design, an essentially flat range of more than 80 nm has been demonstrated. A
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Figure 11.16: Nine WDM channels of a DM system are operated with signals of
the same bit rate. After a sufficiently long distance, the power in each channel
adjusts itself according to the path average dispersion of that channel. This is
the same scaling behavior as known from “ordinary” solitons. From [113] with
kind permission.

more broadband alternative is to use gain by means of the Raman effect; see
e.g., [124].

At the turn of the millennium, researchers had succeeded to transmit several
terabits per second over a single fiber. Engineers describe these systems as
chirped RZ, i.e., they realize that the pulses have the chirp that a soliton acquires
in a dispersion-managed fiber, yet they typically avoid to speak of solitons. This
seems to be a case of two cultures which, meaning the same thing, call it a by
different name.

For many years, the telecommunications industry has been driven by ever-
increasing demands for transmission capacity. It is a fact of life that fiber is
a nonlinear transmission medium; therefore one only has the choice of either
avoiding the impact of nonlinearity by using wide area fibers and low signal
power, or to embrace it and accept nonlinear chirp—whether one calls that format
“chirped RZ” or “soliton” is of lesser importance. This author believes that
solitons are the future of optical telecommunications. If this turns out to be
true, maybe one day kids will hear about solitons in school!

11.3 Technical Issues

11.3.1 Monitoring of Operations

In commercial service, a permanent monitoring of system integrity is mandatory.
This is done in the following way: The intermediate amplifiers along the line are
combined with so-called loopback modules. These consist of four fiber couplers
as shown in Fig. 11.17. In this arrangement the signal stream can pass, but a
minor portion of it is branched off, attenuated by 45dB, and sent back toward
where it came from. This weak signal does not interfere with other data streams.

Somewhere among the multitude of WDM channels a pseudo-random se-
quence is transmitted. By way of correlation measurement, the return signal
can be detected in spite of being weak. Such monitoring allows to detect addi-
tional losses due to damage or whatever cause. The damage can also be localized
because the return signals from different loopback modules arrive with different
delay.
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Figure 11.17: A loopback module serves to monitor a dual-fiber line during
operation with life traffic. After [169] with kind permission.

In addition, loopback modules are built such that backpropagating light from
Rayleigh scattering can bypass the amplifiers so that OTDR measurements may
be performed. For extremely long distances, one combines OTDR with coherent
detection to increase sensitivity. With these measures the entire fiber length can
be monitored, in part during life data traffic on a reserved channel, and with
improved sensitivity during a routine maintenance interval. Figure 11.18 shows
an example of monitoring a fiber of about 4,400 km length [83].
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Figure 11.18: OTDR measurement of a very long fiber line including several
amplifiers. From [43] with kind permission.
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Figure 11.19: An eye diagram is obtained by displaying the bit stream over
time with synchronization to the clock rate. The upper and lower levels of the
binary signal and the steep slopes at the beginning and end of the bit slot can
be assessed quickly and conveniently; if the eye is wide open, one may expect
error-free reception.

11.3.2 Eye Diagrams

One of the simplest and most efficient ways to test the quality of transmission is
to inspect the so-called eye diagram. The name refers to an oscilloscope display
of the bit stream such that the horizontal deflection is synchronized with the
clock rate. In principle, all slopes (rising as well as falling) are then at the same
position on the screen; in between, in principle there is either the upper or the
lower level. Therefore, in the middle of the picture, there should be an empty
area, which is referred to as the “eye.” All kinds of signal impairments conspire
to close the eye (Fig. 11.19): The slopes of the pulses may be smeared out, e.g.,
when the light source or detector have insufficient bandwidth, fiber dispersion
is unchecked, or by timing jitter. Then the eye is narrowed horizontally. The
upper and lower level may not be maintained, or there may be excessive noise
or channel crosstalk: Then the eye is narrowed vertically. A wide open eye is
an instant indication of good signal integrity.

11.3.3 Filtering to Reduce Crosstalk

Intersymbol interference can lead to channel crosstalk and can be a severe per-
turbation, but by judicious choice of the frequency response of the transmission
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chain it can be nearly eliminated. The reader is reminded that most filters, in
particular those with steep slopes of their spectral transmission, have a non-
monotonous step response. The trick then is to select a frequency response such
that in the distorted filtered temporal shape there are zeroes at multiples of the
clock period. If this is the case, then the crosstalk is eliminated. For example,
a filter with step response

u(t) = % = sinc (%) (11.11)

has the desired property. With this step response, it has a frequency response

T: f <1/2T,
U(f) =

0: f>1/2T.

(T appears here from a normalization fjoooo U(f) = 1.) Such filter with “ver-
tical” slope, usually referred to as a brick wall filter, cannot be built because
it would require an infinite number of selective elements. Also, a filter with
time-symmetric response defies causality (any effect takes place only after the
cause) and thus cannot be built with ordinary hardware.

This is too bad because such a filter would make it possible to optimize
bandwidth use according to the sampling theorem and also because it would
reject all out-of-band noise. So can one still make use of these ideas?

One can approximate the step response of the acausal filter quite well if one
does not perform the filtering in real time but accepts a certain latency. It turns
out, fortunately, that a latency of only a few clock periods suffices. The infinite
“brick wall” slope becomes unnecessary when using a raised cosine filter, which
is its generalization with rounded slope (Fig. 11.20).

0.5
0.2

0 4 8 o T
Time Frequency

Figure 11.20: Explanation of the raised cosine filter. Parameter 3 (increasing
from front to back) sets the sharpness of transition from pass band to rejection
band. The zeroes in the temporal response remain centered on the positions of
the adjacent bits so that channel crosstalk is eliminated.
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If the filter has the frequency response

1-p
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U(f) = (11.12)
T 7T 1-— 1-— 1
§|:1+COS(7]”—7T Zﬁﬁ)}: 2Tﬂﬁ|f|§ 2—;1/67

it follows that it has the step response

. sin(nt/T) cos(Brt/T)
wh) =T 1= @ayT)
which in turn is a generalization of a sinc function. By tweaking the parameter
(3, one can fine-tune the sharpness of the transition from pass band to rejection
band. Such filters can be made to a good approximation and allow to have a
well-defined pass band to keep noise in check. At the same time, they cancel
channel crosstalk from intersymbol interference.

(11.13)

11.4 Telecommunication: A Growth Industry

Nothing displays the increasing globalization as clearly as the increasing demand
for long-distance communications lines. For many years, there has been an
annual growth by some 20-30%. The race to keep up with the rising demand is
fueled by the incentive of money to be made; some of that money is well invested
in research to advance the technology involved. We now give a historical sketch
of the development of telecommunications.

11.4.1 Historical Development

1851: The first undersea cable commences service. It crosses the English Chan-
nel, connecting Dover and Cape Gris Nez, and it will work well for 24
years.

1858: The first transatlantic cable begins operation, but it is broken after only
1 month.

1927: The first transatlantic telephone connection is inaugurated. It is based
on radio transmission in SSB mode between New York and London.

1956: The first transatlantic telephone cable (“TAT-1") takes up service. Its
coaxial cable can accommodate 48 simultaneous telephone channels in
analog format. The amplifiers use electron tubes (transistors are invented
only shortly before and are not mature yet). In a sophisticated scheme,
even the silent intervals in natural conversation are used for transmission
of other channels, a scheme called TASI for “time-assignment speech in-
terpolation.” This technology is very successful so that a few years later
more cables follow, which use the same basic technology but an increasing
number of channels. The seventh of these (TAT-7, with 4,000 telephone
channels) is the last of its kind. It is commissioned in 1983 and can handle
4,200 simultaneous telephone channels. TAT-1 is decommissioned in 1978,
TAT-7 in 1994.
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1962: Telstar I, the first active telephone satellite, is launched.

1965: Intelsat I (“Early Bird”), a greatly improved telephone satellite, is
launched.

1966: Kao and Hockham predict the possibility of making fibers with loss of
not more than 20 dB/km.

1970: The prediction comes true: The first fiber with less than 20 dB/km loss
is introduced. Only a few years later, even 0.2 dB/km are reached.

1976: A first system experiment in the transition from research to commercial
use is started by Bell Laboratories in 1976 in Atlanta. Two cables, made
by Western Electric Co., having 640 m length and containing 144 fibers
each, are laid in existing ducts. Each fiber transmits 44.7 Mbit/s corre-
sponding to 672 telephone channels. The strands are hooked up in series
to create a longer effective distance. The performance is virtually error-
free over about 11km. Including 11 repeaters, even 70 km transmission is
successfully demonstrated. The trial shows that the fibers survive intact
all the bending and pulling involved in placing the fiber, certainly a much
harsher treatment than in a laboratory.

1977: Other countries follow suit. The first comparable experiment in Germany
takes place 1977 in Berlin. A cooperation of AEG-Telefunken, Standard
Elektronik Lorenz, Siemens, and TeKaDe places a 4.3-km cable between
Assmannshauser Strafie and Uhlandstrale. In the same year, England and
Japan perform similar tests.

1985: The first fiber-optic undersea cable, Optican 1, connects the Canary
Islands of Tenerife and Gran Canaria. There are initially problems with
fiber damage by shark attacks; additional steel strength members avoid
that problem.

1988: TAT-8 constitutes the beginning of a new era: that of optical transat-
lantic data transmission (Fig. 11.21). This cable operates in the second

Figure 11.21: Six generations of data transmission cables: In the 1950s a cable
(far left) could transmit 36 telephone channels, the optical fiber cable from the
early 1990s (far right) handled 40,000. Since then, capacity has risen to several
million telephone channels without any major change in outside appearance.
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window at 1.3 um and is the first to transmit in a digital format. Its two
pairs of fibers, each with a capacity of 280 Mbit/s, allow it to transmit
40,000 telephone channels. The cost per channel is thus dramatically low-
ered by two orders of magnitude. A steel cladding of the cable is used
to provider electrical energy as a supply for the repeaters. At a constant
current of 1.6 amperes a voltage of 7,500 Volts is required, the return is
through the ocean water. One year later a transpacific cable TPC-3 and
a connection between mainland USA and Hawaii, HAW-4, follow in the
same technology. These cables form the first generation of fiber-optic in-
tercontinental cables. TAT-8 is decommissioned in 2002.

1991: Fiber-optic cables surpass telephone satellites in terms of number of

transmitted calls. 33 million km of fiber have been laid out. Half of
it, 16 million km, is in the USA. Europe has 9 million km, the Pacific Rim
8 million km.

1992: The first cable of the second generation, TAT-9, starts in March. The

wavelength is now in the third window at 1.55 um. Advanced components
like DFB lasers and APD diodes are used; the transmission format is NRZ.
At 565Mbit/s per fiber in two fiber pairs, 80,000 telephone channels are
transmitted simultaneously. The cable is 9,310 km long. It costs 450 mil-
lion US$ and is owned by a consortium from 35 international telecommu-
nications companies. It links USA and Canada on one side with England,
France, and Spain on the other. For Spain, it is the first fiber-optic direct
link to the USA; before, they had to be content with TAT-5 with 845
telephone channels. Italy, Greece, Turkey, and Israel are connected via
Spain.

In 1992/1993, the same technology is used in the Pacific for TPC-4. The
next cables (TAT-10 between USA and Germany/the Netherlands) and
TAT-11 are configured in a new topology: Instead of a line between two
points a “ring” is used, basically a pair of independent cables between
the same two points. The rationale is that if any damage occurs at any
position, one can route all data traffic around the damage location. The
idea is to ultimately have nets, or webs, that can better survive damage. In
view of the enormous data traffic, it is clear that any service interruption
immediately leads to considerable financial damage. Like the earlier fibers
before, TAT-11 is switched off in 2004.

1994: Unification of Germany has created a new market for telecommunication

because in communist Eastern Germany telephones had been available
only to a narrow privileged class. Meanwhile in the 1980s, Western Ger-
many had fallen behind other countries in making the transition to fiber
optics because the responsible ministry favored copper cables. In the late
1980s this course was reversed, and Western Germany invested heavily in
fiber optics. After unification 1990, this situation led to the inspired deci-
sion to immediately go for the most advanced technology as the country’s
telecommunications infrastructure got an overhaul. Within a few years,
the existing 111 lines between both Germanies were replaced with several
tens of thousands. In mid-1994, Deutsche Telekom had the world’s most
close-meshed fiber-optic network. At a total length of 80,000 km, the fiber
network exceeded the highway network. Also, Deutsche Telekom started
early to put fibers all the way to the subscriber, an activity which is now
described with several new acronyms: FTTH is for fiber to the home,
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FTTC for fiber to the curb, and FTTP for fiber to the premises. These
acronyms can be wrapped up under FTTx for fiber to the whatever.

1995: The third generation begins with TAT-12; TAT-13 follows in late 1996,
and TPC-5 and TPC-6 soon thereafter. Again important technical novel-
ties have been introduced. Dispersion shifted fiber is used; Erbium-doped
fiber amplifiers make it possible to increase the distance between repeaters.
Now RZ is used as the transmission format. The data rate is 5 Gbit/s
equivalent to 1,228,800 telephone channels. Meanwhile, a good fraction
of the total traffic is no longer traditional telephone voice communication
(“POTS” or plain old telephone service), but also fax and data transmis-
sion between computers. Cost per telephone channel has again come down
from TAT-8 levels by more than an order of magnitude. TAT-8 through
TAT-11 are decommissioned 2002 and 2003. Technically they still work
well, but the more recent cables are so much superior that it does not
make any business sense to keep them alive. Some of the decommissioned
cables have later been used for research purposes.

2001: The transatlantic cable TAT-14 takes up service in May. It has been
built for 1.5 billion US$ and can handle 640 Gbit/s (corresponding to 8
million telephone calls). In October, a competing consortium opens Flag
Atlantic-1 on the same route; this cable has six fiber pairs with a combined
capacity of 4.8 Thit/s. The telecommunications industry thrives on short
return-on-investment time and gigantic growth figures. Many competitors
join the industry to lay and operate fiber-optic cables (Fig. 11.22). For the

Figure 11.22: Numerous fiber-optic cables crisscross the oceans of the world; on
the North Atlantic route there is a particular multitude. The dotted auxiliary
line crosses (counting from south to north according to the arrow direction)
the cables Columbus-2, Columbus-3, TAT-9, TAT-8, Apollo (southern route),
Flag Atlantic 1 (southern route), TAT-14, Flag Atlantic 1 (northern route),
TAT-13, Tyco Global Network Transatlantic (southern route), TAT-11, Gemini
(southern route), Atlantic Crossing 1 (southern route), TAT-12, Apollo (north-
ern route), Atlantic Crossing 2, PTAT-1, Hibernia (southern route), Gemini
(northern route), Tyco Global Network Transatlantic (northern route), TAT-
10, TAT-14, AC-1 (northern route), Hibernia (northern route), and Cantat-3.
In 2005 Tyco sold its Global Network Transatlantic cables to VSNL; they are
now called VSNL 2001. For more detail about these cables the reader is referred
to [12]. The author has attempted to show all optical cables on this route as of
June 2009.
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first time in the history of telecommunication, there is an excess capac-
ity: supply surpasses demand. As a consequence the prices come further
down, and revenues of all involved parties plummet. There is a string of
insolvencies, some of which are quite spectacular (2002: Global Crossing,
WorldCom). This is at the same time that the internet bubble bursts, and
the two upheavals are related. Euphoria from the late 1990s dissipates very
quickly, and recovery to normal business takes several years.

Also in 2001, Lucent Technologies rolls out a new DWDM system called
Lambda Extreme for use on long-haul and ultralong-haul segments. It is
based on dispersion-managed soliton transmission with Raman amplifica-
tion, and is specified for 128 x 10 Gbit/s wavelengths (1.28 Thit/s) up to
4,000km or 64 x 40 Gbit/s wavelengths (2.56 Thit/s) up to 1,000km, at a
bit error rate of better than 10~16 [6].

2002: This year heralds the start of commercial soliton transmission systems to

carry actual life traffic. Lucent’s Lambda Extreme technology is deployed
between Tampa and Miami (both Florida). Existing fiber designed for
only 10 Gbit/s and owned by Verizon is used over a distance of 500 km
to transmit 100 Gbit/s signals. In Germany, Deutsche Telekom conducts
trials over 4,000 km with Lucent’s 128-channel version of Lambda Extreme
[14]. While there are several sales of this soliton-based system over the
next few years, Lucent does not publicly disclose any details, and available
information is spotty.

British equipment manufacturer Marconi Solstis deploys an all-optical net-
work based on solitons which takes up operation at the turn of 2002/2003.
This ultralong-haul optical DWDM system, operated by the Australian
carrier IP1, consists of a 2,900 km all-optical connection (without signal
regeneration) between Perth on the west coast of Australia and Adelaide
on the south coast. It uses standard single-mode fiber; solar-powered am-
plifiers are typically spaced 90 km along the link. It is configured to use 40
out of possible 160 channels of 10 Gbit/s each for later upgrade capability.
The system works well in technical terms. Unfortunately, at a time when
the telecom industry is forced to release their workforce by the tens of
thousands it does not work equally well in business terms, so that it gets
decommissioned after only a few years.

Also in 2002, improved fibers are introduced by major fiber manufacturers.
Due to increased purity they avoid the OH absorption peak near 1.4 pm so
that in effect the second and third transmission window are merged into
one that stretches from ca. 1,280 to 1,625 nm.

2003: The dotcom bubble and ensuing economic woes have haunted the tele-

com industry for several years, but business is gradually coming back to
life. New cables are being installed all the time (e.g., Apollo on the North
Atlantic route in 2003), but certainly not at the same hectic pace as be-
fore. During the crisis, research is also trimmed back in the companies
involved because they cannot generate the revenue that it takes to run
large labs. One of the major telecom equipment providers, Lucent Tech-
nologies with its famous Bell Laboratories, is sold in 2006 to the French
company Alcatel. Two years later, Alcatel-Lucent is pulling out of ba-
sic science, material physics, and semiconductor research and will instead



11.4. Telecommunication: A Growth Industry 243

turn its focus on more immediately marketable areas such as networking,
high-speed electronics, wireless, nanotechnology, and software.

2007: In March, the record data transmission rate over a single fiber reaches
26 Thit/s, at a span length of 240 km [52]. At that rate, this entire book
could be transmitted in under 1ms. This is not a soliton system, but
it makes use of all the tricks that are there in “linear” systems. It uses
160 WDM channels and polarization multiplexing. For coding, an RZ
format and differential quaternary phase shift keying is used (see below
in Sect. 11.4.2); this achieves an impressive 3.2 bits/(s Hz) of spectral
efficiency. Distributed Raman amplification balances the losses. Just 5
years earlier, before the introduction of OH peak-free fibers, this signal
would have come close to reaching the limit of the available bandwidth.

2009: The major wire-line equipment providers never found back to their
strength of the 1990s. The telecom business is now driven in large part by
nifty end-user devices like wireless handheld sets loaded with features such
as email and Internet access. Meanwhile, in the wake of the US housing
bubble another economic recession has arrived. To give just one exam-
ple, Canada’s Nortel Networks Corporation was worth 250 billion US$ a
decade ago, but now initiates bankruptcy proceedings. The global mar-
ket for telecom services is estimated at 1.7 trillion US$, but an increasing
share of this amount goes to wireless operators and handheld providers
[67]. It may be anticipated that those of the once big suppliers that remain
will see more or less steady, but certainly not stellar business in the years
ahead.

Also in 2009, a first commercial 100 Gbit/s system is being deployed and
is slated to become operational before the end of the year. It uses dual-
polarization QPSK and will be used for rapid exchange of data in the
financial industry [8].

A new record transmission over a single fiber is reported in May: 32 Tbit/s
over a distance of 580km (Fig. 11.23). 320 WDM channels at 25 GHz
spacing were used; coding was done in both polarization multiplex and
phase shift keying [168].

In assessing the situation today (i.e., summer 2009), one should not forget
that large segments of the earth are not yet covered with fiber-optic access.
This applies to parts of the Far East, but especially to most of Africa. A first
attempt called “Africa One” was planned as a cable forming a ring around that
continent; a couple of branches were to tap into countries in the continent’s
interior. However, the project was abandoned due to financial problems. Given
the sorry state of telecommunication in Africa even today, there seems to be a
lot of opportunity there.

11.4.2 The Limits to Growth

The tremendous increases in transmission rate over the years became possible
after a string of technical improvements such as Erbium-doped fiber amplifiers,
dispersion managed fibers, massive wavelength division multiplexing, and the
use of nonlinear effects (solitons, nonlinear chirp). Today, a multitude of data
sources is interleaved by TDM to bit streams of 2.5 or 10 Gbit/s, and 40 Gbit/s
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Figure 11.23: Record experiments for high data rate transmission over a single
fiber. The figure does not distinguish between different coding formats. For
the key to the data points and detailed information see [15], a compilation
maintained by Dr. Michael Béhm, Rostock University. The figure shows the
situation in June 2009.

is now being introduced after years spent learning to live with polarization
mode dispersion. Then, several such bit streams are combined by WDM and
launched into a fiber. The phrase massive wavelength division multiplez (or with
the unavoidable acronym, MDWM) is used when indeed large numbers (on the
order of a hundred) channels are used.

Currently the record data rate transmitted over a single fiber stands at
32 Thit/s. Spectral efficiencies around 0.4 bit/s/Hz are quite normal, but larger
values have been obtained as described above.

Since fibers offer a bandwidth of ca. 50 THz, Shannon’s theorem predicts for
binary signals a channel capacity of 50 Tbhit/s — assuming a spectral efficiency of
1bit/s/Hz. Obviously the limit is almost reached. It might have been reached
already had it not been for the economic crisis which slowed the 200% /year
growth before the turn of the millennium to a temporary standstill in the first
years of the new millennium.

There are several reasons why the Shannon limit as quoted here needs to be
modified somewhat.

1. In contrast to intensity modulation, single sideband amplitude modula-
tion (SSB) or phase modulation with coherent detection (PSK) allow an
increase by a factor of 2.

2. An optical fiber supports two polarization modes. This also translates
into a potential data rate increase by a factor of 2.

3. Shannon’s theorem holds for a linear channel but the fiber is inherently
nonlinear.
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And of course one might go beyond binary coding and transmit more than 1
bit/time slot.

Ad 1. In the most recent schemes, often QPSK (quaternary phase shift keying) is
used, a format in which the optical phase can assume four different values
in 90° increments. This constitutes a quaternary, rather than binary,
coding.

Ad 2. Both polarization modes are not entirely independent from each other;
rather, there is some crosstalk between them. This is why it is unlikely
that a factor of 2 can be fully reached. In recent experiments, however,
alternating wavelength channels are filled with signals of alternating po-
larization to reduce channel crosstalk; this way they can be placed closer
together which improves spectral efficiency. In one case 1.6 bit/s/Hz was
obtained [144]. Another case combining polarization multiplex with dif-
ferential QPSK for a 3.2bit/(s Hz) efficiency [52] was already mentioned
above; also, a similar scheme was used in [168].

Ad 3. Nonlinearity causes stronger channel crosstalk as soon as one attempts to
transmit more than 1 bit/time slot. This is because more amplitude levels
lead to an increase in average power (the lowest nonzero amplitude level
cannot be reduced for reasons of signal-to-noise ratio), and this leads to
increased impairment from four-wave mixing. Mitra and Stark [110] found
from simulations that an increase is possible only up to 4 bit/s/Hz. With a
somewhat different approach, J. Tang [154] arrives at similar conclusions.
One could alternatively use several phase angles instead of amplitude lev-
els: but angle coding runs into similar problems and does not give a major
advantage [71].

As long as a very different coding is not found that would avoid the limitations,
the limit to growth will be reached in a few years. There are several ideas floated
among researchers, but they will have to prove their worth. We will therefore
refrain from speculation.

So far it has always been possible to increase the data-handling capacity of
the fiber — even legacy fiber! — and not resort to the trivial but costly alternative
of laying more fibers. It is always cheaper to upgrade transmitters and detectors
as to put new fibers in the ground (or to secure the rights of way for new cables).
Surely there must be an ultimate limit to what fibers can do, but it is not yet
clear whether we are close or whether smart ideas will buy more time.

In any event, fibers are the most capable medium to guide information: Free
space optics through the atmosphere suffers from extra loss in inclement weather
conditions and thus from reduced reliability. Nonetheless, it has recently been
explored again as a conduit in special niches, like between offices in upper floors
of neighboring high-rise buildings. In outer space laser beams appear to be a
very promising conduit for transmission when pointing direction stability issues
are solved, but certainly in vacuum which is free from both loss and dispersion
much larger bandwidth is possible in principle. Whatever we have learned from
fiber optics in terms of light sources, data formats, and receivers will then be
of benefit, but fibers themselves will no longer be needed. However, it will be a
while before that happens, and here on the ground fibers will stay with us for a
very long time.



Chapter 12

Fiber-Optic Sensors

The development of fiber-optic technology was mainly driven by the require-
ments of the telecommunications industry. Nonetheless one should not overlook
that telecommunications is not the only application of fiber optics. The other
major application area is in metrology and data acquisition.

12.1 Why Sensors? Why Fiber-Optic?

It used to be that in any major machinery or installation, gauges were located
wherever the relevant information was present: a thermometer at the boiler, a
tachometer at the shaft, a fuel gauge at the tank, etc. Staff could then go to
these locations and take readings. Meanwhile the trend is that data acquisition
and display are separated. For example, consider an airplane: Sticking out a
mercury thermometer is obviously not a good idea for measuring the outside
temperature. Fuel tanks are in the wings; who would climb out there to check a
level tube? Instead, all data of interest are acquired at their respective location
with sensors. The sensor’s response is transmitted, usually by cable, to a central
monitoring station where all displays are side by side to provide an overview.
In the airplane, this location is in the cockpit where the pilot can check all
instruments without leaving his seat.

Industrial installations, too, have a central control room where all informa-
tion comes together. It is not only time-saving when staff do not need to walk
around the premises to take instrument readings, but it also minimizes risks
to humans because often data are taken in hard-to-reach or dangerous places,
such as inside chimneys, in high-voltage apparatus, or in numerous places inside
nuclear power stations.

To go by such a remote sensor concept, there are three ingredients required:

1. Sensors for any physical quantity that may be of interest. This includes
temperature, pressure, stress and strain, distance, filling level, speed,
force, vibration, etc. The sensors must translate such quantities into a
format that can easily be transmitted.

F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_12, 247
(© Springer-Verlag Berlin Heidelberg 2009
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2. Transmission lines.

3. Displays that translate the transmitted data into a format accessible to
human senses, i.e., typically make them visible or audible.

Of course, the scheme also facilitates the keeping of records of relevant data;
witness the “flight recorder” which is of central importance after a plane crash.

It has often been taken for granted that for the transmission one uses an
electric quantity: most often a voltage, but there is at least one standard where
this is a current. The lines are then usually copper cables. The advantage of
this approach is that there are innumerably many suppliers, and sensors can be
picked from an unfathomable variety of hardware. Also, there is an abundant
supply of well-trained engineers and technicians who are knowledgeable about
this technology and can use it very efficiently.

Now enter optical fiber. First, one might have the idea of using sensors
that do not translate the original data into an electrical format, but rather
into some optical format, like a light intensity or wavelength. There is no
difficulty in converting this to a display because optical formats are easily as-
sessed at the receiver. All it takes is a photodetector, and one is back to a
voltage or current that can be displayed in a routine way. Of course, the
question is: If one eventually converts to electrical anyway, why bother with
optics?

The point is that during transmission, the data are in an optical format.
While on its way across the distance, plenty of adverse effects can act on the
transmitted signal. In the case of electric cables, one severe problem is interfer-
ence from external electromagnetic fields. To avoid such difficulty, one usually
provides shielding, which in the case of strong external fields is quite involved.
Optical fiber, by contrast, is immune to that kind of interference.

There are some other properties of optical fibers that are advantageous in
this context. As we saw earlier, they are small and lightweight. The accom-
panying savings in space and weight can be quite important, e.g., in vehicles,
in particular in aircraft or spacecraft. Also, optical fibers withstand extreme
temperatures better than electrical cables. They are also more robust in the
presence of aggressive chemicals. Finally, fibers provide perfectly separated
electrical potentials, a fact that is greatly appreciated, e.g., in petrochemical
installations.

We see, one might have benefits from an optical technology. It is good news
that a wide variety of optical sensors is available. There is hardly any physical
quantity for which no optical sensor exists. New sensors are added all the time
for chemical and other quantities, too.

When we look at these fiber-optic sensors, we need to broadly distinguish
two classes (Fig. 12.1): There are sensors that are mounted in front of, next to,
or in proximity of the fiber, read the quantity under investigation, and launch
a corresponding light signal into the fiber. In this case, the fiber is merely the
transmission medium and has nothing to do with the acquisition of the original
quantity. Such sensors are called extrinsic. In contrast, intrinsic sensors use
the fiber itself or part of it directly to read the original quantity. Then the fiber
is both sensor and cable at the same time. We will look at examples of both

types.
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Figure 12.1: Classification of sensor types. In extrinsic sensors (left column),
a transducer converts the original quantity to an optical format; in intrinsic
sensors (right column) the fiber itself is the transducer. One can also distinguish
transmission sensors (top row) and reflection sensors (bottom row). The former
are simpler in structure because no couplers are required to separate forward
and backward traveling light. The latter are more convenient to use, though,
because only one end of the fiber needs to be accessible.

12.2 Local Measurements

12.2.1 Pressure Gauge

The simplest type of an optical pressure gauge is shown schematically in
Fig. 12.2. A fiber is placed between two corrugated surfaces; if these are pressed
together, the fiber is forced into wiggles and the bending loss increases. By suit-
able calibration procedure, the amount of pressure can be obtained from the
transmission loss. This would be an intrinsic transmission sensor. However,
this very simple concept would be susceptible to errors from variation in light
source output or any other influences that would effect the received power.

12.2.2 Hydrophone

Quite often fiber-optic sensors make use of the interferometric principle to obtain
an impressive sensitivity. The example shown in Fig. 12.3 consists of a Mach—
Zehnder interferometer in which a light beam is split into two branches. After
passing through similar but independent paths they are recombined again. Any
change in the path-length difference is converted into variations of the resulting
power after interference: A change of only half a wavelength provides a 100%
variation in the detected signal.

In this example one interferometer arm contains a length of fiber which is
encased to insulate it from environmental effects while the other consists of the
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Figure 12.2: A simple fiber-optic pressure gauge. As pressure increases, so do
bending losses in the fiber. This can be monitored by assessing the reduction of
transmitted power.

same length of fiber, wound on a hollow drum which is immersed in sea water.
Sound waves, i.e., pressure fluctuations in the water, stretch the drum and the
fiber with it. Again, the fiber itself is the sensing element; this is an intrinsic
sensor.

The amount of stretching of the fiber is a measure of the pressure ampli-
tude, and to the extent that the drum does not have mechanical resonances,
the sensitivity is independent of sound frequency. The sensitivity can be made
extremely high by using a long fiber because for the same relative strain the abso-
lute strain increases with fiber length. Such an underwater microphone is known
as a hydrophone and is extremely important, e.g., for ranging in submarines.
In terms of sensitivity, the fiber-optic version is vastly superior in comparison
to other technologies [33].

apparatus reference fiber

inside vessel

coupler coupler cEEsEr

light
source

@ probe fiber
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in water

Figure 12.3: A fiber-optic Mach—Zehnder interferometer is suitable to assess mi-
nuscule path-length variations. In this example it is employed as a hydrophone:
One fiber coil is subject to pressure fluctuations under water while the other is
insulated from them. Path-length changes as small as a fraction of a wavelength
are easily detected; this is why such constructions can be much more sensitive
than conventional microphones.
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12.2.3 Temperature Measurement

Now we turn to an example of an extrinsic sensor. In the example depicted
in Fig. 12.4, the fiber tip is coated with a layer of a thermo-sensitive phospho-
rescent material commonly called a phosphor (even though no phosphorous is
involved). This phosphor, which may actually be magnesium fluorogermanate,
is optically excited by a brief flash of light (from an LED) that causes it to
emit phosphorescence, i.e., luminescence light with relatively slow exponential
decay. The decay time constant is a good metric for the temperature. It is a
definite advantage that only ratios of intensities must be assessed to obtain the
decay time, but not intensities themselves; any fluctuations due to light source
instability, varying connector losses, etc. therefore cancel out. Such fiber-optic
temperature gauges are commercially available, and the shape of the sensor
can be chosen — depending on intended application — from a variety of several
different types as shown in Fig. 12.4.

Temperature measurement with fiber-optic sensors have several advantages:
The fiber has very small footprint; it has low heat capacity and conductivity
and thus does not distort the heat distribution to be measured. Moreover, the
sensor is fully dielectric so that measurements are not affected by the presence
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Figure 12.4: Different versions of fiber-optic temperature sensors based on the
principle of temperature-dependent luminescence decay time. The luminescent
material (black) is deposited on the fiber tip in the standard version shown
in (a). The sensor is coated with a protective coating (gray). Variant (b) is
optimized for resilience against chemicals and oils; the luminescent material sits
in a protective glass ferrule (light gray), which is filled with epoxy (dotted). In
(c), the last 10 cm of the fiber are embedded in a tube made of aluminum oxide
ceramics (hatched). The luminescent substance is supported by a glass bead;
an air gap keeps the fiber itself away from temperature extremes. An elastic
tip in (d) is meant to provide improved thermal contact with surfaces. (e) and
(f) are versions for noncontact measurement; here the luminescent material is
not applied on the fiber but directly on the workpiece. The light emerging from
the fiber is reflected and captured again; in the case of extended distance a lens
collimates the beam. After [72] with kind permission.
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Figure 12.5: Example for an application in which fiber-optic thermometers have
a vast advantage: temperature measurement inside a microwave oven during
operation. The heating of the components of a meal is shown. Now it has been
proven after all that the dessert is almost boiling while the mashed potatoes are
still lukewarm! After [72] with kind permission.

of strong electric, magnetic, or electromagnetic fields. Electrical thermometers
(thermocouples, etc.) do not share these advantages. Figure 12.5 demonstrates
a measurement of the heating process of a processed meal in a microwave oven.

Alternatively, a fiber can also be used for temperature measurement by ex-
ploiting its thermo-optic coefficient, which describes the change of refractive
index of fiber with temperature changes (there is also a minor contribution
from the thermal expansion). The thermo-optic coefficient of fibers is around
30-40 ppm/K [162, 92]. One can use a fiber Fabry—Perot filter or a fiber-Bragg
grating and assess the spectral shift of the reflection or transmission maximum.
In another variant a Mach—Zehnder arrangement would contain a reference fiber
at fixed temperature.

12.2.4 Dosimetry

As a final example, we look at a fiber that is subject to ionizing radiation.
Dislocations are created in the glass and cause an increased optical loss which
can cause a decrease of the transmitted power. The damage is essentially cu-
mulative so that such a fiber can be used as a radiation dosimeter, i.e., an
integrating gauge for the cumulative radiation received in a certain amount of
time. Fiber-optic dosimeters have a wider linear range than those using other
technologies (Fig. 12.6). Moreover the reading tends to be more precise because
in any dosimeter, there is some degree of recovery of the dislocations after the
irradiation ends. In fiber-optic versions this effect is less pronounced than in
other types, and this makes a difference when an evaluation takes place only
some time later.
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Figure 12.6: Calibration curve of a fiber-optic dosimeter. The additional optical
loss at A = 829nm at room temperature was measured during an irradiation
with 9Co at a dose rate of 1.43 Gy(SiOy)/s. The linear range extends across
four orders of magnitude. Taken from [69] with kind permision.

12.3 Distributed Measurements

A more recent development may push applications of intrinsic sensors far be-
yond what is conceivable with electric sensors. The crucial point is this: An
electric sensor measures at a point — a mathematician might say, on a zero-
dimensional manifold. A fiber is extended and measures along a line, i.e., one
dimensionally. As long as one is only interested in data at certain spots (a zero-
dimensional manifold), this consideration is moot. However, it is important as
soon as one wishes to monitor a higher-dimensional manifold. Examples for
one-dimensionally distributed data acquisition are in monitoring the integrity
of conduits of all types, including pipelines for oil, gas, or water, or power trans-
mission lines, telephone lines, etc. It may be required to permanently monitor
for possible temperature rises, mechanical stress and strain, vibration, etc. It is
just not practical to combine many point-like gauges in short distances because
the numbers would be excessive. A single fiber can accomplish the same job.

In even higher dimensions it is easy to see: One can lay out a fiber in a
zigzag pattern to cover an area. Example: A 2D pressure sensor embedded
in the floor can detect whether a person is present in a certain area. This is a
useful feature either for ensuring the safety of operators of dangerous machinery
or for detecting intruders. Point sensors would have to be distributed in a grid
pattern, implying both large numbers and high cost. As one proceeds from line
to area to volume, the same logic applies.

Distributed fiber-optic sensors are available, and they provide good spatial
resolution to boot! This is accomplished through propagation time effects. It
should be clear how big the advantage is when one can learn in real time not
only that an oil pipeline is subject to a worrying mechanical tension somewhere,
but when the position of the trouble is precisely located — in some cases, within
centimeters. Then, a service crew can be dispatched immediately and fix the
problem before major damage occurs.
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In such applications, the optical fiber itself is just about the cheapest part.
It is therefore not a problem when fibers are buried in concrete when a structure
is built. They can then not be replaced later on; therefore they are referred to
as “lost fibers.” Nevertheless, as long as their ends (or at least one end) remain
accessible, the fiber embedded in a structure can provide important clues about
mechanical stresses acting on the structure in real time. This idea has been
applied in dams and bridges and has become quite normal now [103]. An early
example was Winoosky Dam in Vermont, USA, a dam with turbines providing
electrical power [46]. More than 6 km fibers were embedded. Right at the first
trial runs of the turbines the fiber-optic sensors showed a conspicuous resonance
in the vibration spectrum of one of the turbines: The resonant frequency was
at 168 Hz instead of 174 Hz as expected. Given this clue, the turbine’s manufac-
turer could quickly fix the problem: Due to a defective component the efficiency
was 81% rather than 92%! It would have been much more costly to discover
that under load conditions during operation, and those savings alone paid for
the fibers [2].

Fibers have made inroads into two-dimensional problems: Monitoring
stresses on the hull of a ship is now possible in tankers as well as icebreak-
ers. Wind turbines are another obvious field of application. In aircraft, the
monitoring of structural integrity of the skin — and the wings in particular — is
of the greatest importance. Using a closely knit mesh of fibers, one adds nearly
nothing to overall weight but obtains the perfect means of diagnosis. Such a
skin with embedded high tech is also known as “smart skin.” Raman scattering
types allow temperature monitoring due to temperature-dependent wavelength
shifts and find applications in fire detection in tunnels, pipeline monitoring,
etc. On the other hand, arrays of fiber-Bragg gratings (mostly for stress and
strain detection) seem to be commercially more successful than truly distributed
sensing schemes (see Figs. 12.7 and 12.8).

This is again the point where two considerations converge. Large amounts
of data as produced by a smart skin need to be transmitted. There is hardly
a better medium for this task than optical fiber, an excellent medium for com-
munications. The same on-board fiber network that transmits communications

FC/APC-Connector

all lengths in mm

Figure 12.7: Package of a commercial fiber-Bragg grating temperature sensor
specified for the range —30 to +80°C with 0.1°C resolution and 0.5°C accuracy.
With kind permission by Telegirtner Gerdtebau GmbH [1] and by AOS GmbH
3].
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Figure 12.8: A commercial fiber-optic strain and temperature sensor designed
to be welded directly onto the metal structure to be monitored. This 15 by
40mm size device is specified to acquire +2500 ustrain with a resolution of
0.4 pstrain and a temperature of —170 to +150°C with 0.05°C resolution. With
kind permission of Smart Fibres Limited, Bracknell, UK [4].

Figure 12.9: NASA’s Ikhana, a modified Predator B unmanned aircraft adapted
for civilian research, is being used to test advanced, fiber optic-based sensing
technology to monitor structural integrity. Six fibers on the wing’s top surface
provide more than 2,000 strain measurements, thus providing full information of
the wing shape in real time. They add merely 1 kg of weight and do not appre-
ciably affect aerodynamics. The data gathered improve safety, but the ultimate
goal is to develop active control of wing shape so that the aerodynamics can be
adapted to take-off, cruising, and landing. Such capability could dramatically
improve efficiency and performance. From [5].

(and is in place anyway) can double to transmit information on mechanical
stress, temperature extremes, etc. In the narrower sense of the word this, too,
is communication except it is not humans like captain and flight engineer who
are doing the communicating, but rather the engine, the wing, and the com-
puter. This approach is used a lot in military craft (Fig. 12.9); while details
are typically classified it is a safe bet to assume that all recent constructions of
aircraft, ships, and submarines are equipped with a lot of fiber.

Fault tolerance refers to to the ability of equipment to keep working even
when part of it is damaged. This is an important requirement everywhere, and
in combat aircraft it is absolutely vital. As long as all on-board components are
linked through a web-like structure (rather than linear connections), some local
damage will result not in an interruption of data flow, but merely in its rerouting.
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This is a strategy well known to power utility companies and telephone service
providers alike, and it applies to on-board fiber-optic networks, too.

The paradigm of a web structure is the internet which, as is well known,
was designed with the idea in mind that it should be nearly indestructible.
What cannot be killed even by a nuclear blast is obviously quite robust. Some
crooks exploit this robustness by sending us zillions of spam messages or trading
in unsavory material, all the while relying on the notion that they are almost
unstoppable. This activity is detestable, but it does illustrate the point.

12.4 The Status Today

These days structures such as dams, bridges, tunnels, mines, storage tanks, and
towers are more and more often equipped with sensors, and fiber-optic types are
used increasingly and command an increasing share of the total sensor market.
The most frequently used types are based on fiber-Bragg gratings, Raman and
Brillouin scattering, and mechanical or thermal length variation.

Fiber-optic sensors are always in competition with existing technology, and
must assure a definite advantage before they are adopted. There is the diffi-
culty that on one hand scientists working in research labs are fully prepared to
respectfully treat novel technology with care, but that on the other hand in the
environment of a major construction site the hard hat-wearing crowd has little
patience for the fragility of delicate fibers. If one embeds a fiber in concrete, one
should take great care not to break the fiber end at the place where it sticks out
of the concrete: If it is broken, it may be useless (and is indeed a “lost fiber”!).

Nonetheless, fiber-optic sensors are big business now: The market for fiber-
optic sensors in the USA alone in 2007 was 235 million US$ (170 million for
intrinsic, 65 million for extrinsic sensors). At about 30% annual growth, this
figure is expected to climb to 400 million US$ in 2009 and 1.6 billion US$ in
2014 [7]. In the Asia-Pacific area the market grows even more rapidly and is
expected to reach 190 million US$ in 2009. Defense, aerospace, telecom, and
automotive industries are the major users.



Part VI

Appendices

Beyond the fiber itself, a fiber-optic cable contains a complex structure of me-
chanical elements for protection against abrasion and stress. The picture shows
the tube that contains the fiber; not visible is the gel filling. Further outside
there are strands of Kevlar fiber acting as stress members. Kevlar is a resilient
fibrous material from which, among other things, bulletproof vests are made.



Appendix A

Decibel Units

The measurement units of “decibels” are in widespread use in electrical engineer-
ing; both physicists and engineers are expected to use them proficiently. They
constitute a logarithmic measure useful for gain factors, attenuation factors, etc.
The advantage of using a logarithmic measure is that in a transmission chain,
there are many elements concatenated, and each has its own gain or attenua-
tion. To obtain the total, addition of decibel values is much more convenient
than multiplication of the individual factors.

A.1 Definition

One decibel is the tenth part of 1B. The name refers to Alexander Graham
Bell; for historic reasons his name is truncated to “Bel.” One Bel designates a
ratio of 10:1 between two quantities which have the dimension of a power. Let
us call them P; and Py:

P
d[Bel] = log;, F(l,'

It is also common to use this definition for quantities that are proportional to a
power, such as energy, work, energy density, or intensity (power per area). Of
course, both quantities involved must be of the same type so that the argument
of the logarithm is dimensionless.

In contrast to standard practice in the SI system of units, neither the unit
Bel itself nor its combination with prefixes such as milli- and micro- is used.
The decibel is the only form in use, and it is abbreviated as dB. In fact, one
would rather speak of one hundredth of a decibel than a millibel. A decibel is
defined as the tenth part of a Bel, so that

P
0[dB] = 101log;, Fl
0

For example, inserting the output power of some amplifier as P; and its input
power as Py, §[dB] is the gain factor. Negative gain factors imply attenuation.

It is prudent to remember a few selected numbers: 10dB imply a factor of
10, 20dB a factor of 100. 3dB pretty closely corresponds to a factor of 2, and
correspondingly, 6 dB to a factor of 4.

F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_13, 259
(© Springer-Verlag Berlin Heidelberg 2009
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A.2 Absolute Values

Up to now we described the use of the dB as a relative unit. It can also be used
for absolute values when a standardized reference value for Py is agreed upon.
Most frequently, this is the value of 1 mW. Whenever power is measured with
reference to 1 mW, the letter “m” is appended to the dB to produce dBm:

P
6[dBIn] = 1010g10 W
m

For example, the maximum output power of amplifiers is frequently quoted in
dBm. Thus, 40 dBm are a fancy way to say 10 W.

Another variant of using dB units for absolute values is in widespread use:
dBpV implies dB referred to a reference voltage of one microvolt.

Carried away by the convenience of the notation, some authors use dB for
just about all kinds of quantities. There have been sightings of, e.g., the ratio of
two resistances in dB. This author strongly recommends against such practice.

A.3 Possible Irritations

When using decibel units, novices frequently get confused in either one of two
circumstances.

Amplitude Ratios

The first source of confusion is that decibel is not always used for powers.
In electrical engineering in particular, measurement typically yields not power
directly, but rather a voltage U or a current I. As a consequence, when providing
a gain factor of some device, one needs to specify whether it is a voltage gain, a
current gain, or a power gain factor. This distinction disappears when decibel
units are used.

According to Ohm’s law and assuming a standard load resistance R,

U2
P=UIl=—.
R

Similarly, in optics, the power of a light signal is proportional to the square of
the electrical field amplitude. Again, one needs to specify whether the amplifi-
cation/attenuation is referred to the field amplitude or to the power.

Since
2

L :QIOgE,

log —
& Uz Us

decibels can be used without conflict with the above definition when
A
§[dB] = 201og;o —+
Ag
is observed. Here A denotes an “amplitude type” quantity such as voltage

and field strength, which is proportional to the square root of a “power type”
quantity as described above.



A.4. Beer’s Attenuation and dB Units 261

Example

Consider an amplifier that boosts some input signal from 1 to 20 mV; source
and load impedance are equal. When specifying the gain factor, one needs to
make the distinction between voltage gain and power gain: Gamplitude = 20,
Gpower = 400. Using decibels the gain factor is simply

20 mV
§ = 201log;, % = 26dB

or
400mV?/R

1mV?/R
Two different numerical values are replaced with a single value in dB. On first
encounter, students tend to find this irritating, but in practical usage it is a
real simplification. Of course we had to assume equal impedances at input and
output, but in radio engineering that is very frequently true.

0 =10log;q = 26dB.

Electrical and Optical dB Units

The second source of confusion occurs when light is converted to an electric
signal. As described in Sect. 8.10, common photodetectors such as, e.g., photo
diodes, convert the impinging light power to a proportional electric current. The
electric power delivered by the detector is thus proportional to the square of the
received optical power. One therefore needs to specify whether one speaks of
optical or electric dB. Consider a statement about the dynamic range of some
detector, i.e., the ratio of maximum received power before severe distortion sets
on and the smallest detectable power that is not masked by noise. One “dBypt”
corresponds to two “dBeject.”

A.4 Beer’s Attenuation and dB Units

When light is impinging on a more or less transparent material, the reduction of
power P(L) with increasing penetration depth L is described by the well-known
Beer’s law:

P(L) = Pyexp(—al).

Here, « is called Beer’s absorption coefficient; its reciprocal value is that partic-
ular penetration depth where the initial power P, has decayed to the fraction
1/e = 37%.

By taking the logarithm, one immediately sees that

al =——— log) —.
logloe glo P)()

On the other hand, using the definition of the dB we can write

P
adBL =10 loglo ?
0

Comparing terms yields the conversion formula

agp = —al0log g e =~ —4.34a.



Appendix B

Skin Effect

When alternating current flows through a conductor, the current density is
not necessarily constant across its entire cross-section. When J(0) denotes the
current density at the surface, the current density at some depth = below the

surface is given by _
J(z) = J(0)e™"/0ei@/d,

Here, § is a characteristic penetration depth, i.e., that depth where the current
density is reduced by a factor of 1/e = 37% in comparison to the surface. At
the same time, at this depth there is a phase shift of 1rad. This depth is given
by

52 (B.1)

WHo fhr

Here, in turn, po = 47 1077 Vs/Am is the vacuum permeability, p,. the relative
permeability of the material, p the specific resistance of the material, and w the
current’s angular frequency.

It is straightforward to realize that at a depth of wd, there is a phase shift
of 180°. This implies that at this depth the current flows in opposite phase
to that at the surface. This is, of course, a hindrance for the current flow
through the conductor and is felt as an effective increase of resistance. Somewhat
paradoxically, a massive conductor, such as a solid wire, conducts current less
well than a hollow conductor (a tube) of the same outside diameter!

The effective resistance is given by

p

R=1— B.2

5s (B.2)

with [ the length and s the circumference of the conductor. This should be
compared with the usual expression for direct current resistance,

p
R=1~,
A
where A is the conductor’s cross-sectional area. In effect, only a surface layer
of thickness p contributes to the current flow.
Inserting Eq. (B.1) into Eq. (B.2) yields

_ L Jwppopr
R(w) = . 5
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(© Springer-Verlag Berlin Heidelberg 2009



264 Appendix B. Skin Effect

For our consideration the relevant feature is the relation

R(w) o< yw.

The effective resistance grows with increasing frequency (Fig. B.1). This limits
the usefulness of electrical conductors at very high frequencies. Optical fibers
do not suffer from a comparable limitation.

1 1 1 1
1,000 r
ial Gabl semirigid cable
.
< 100 A o
o
Z
c
S 101 r
©
3
5
g 14 single-mode optical fiber o
1.55 um
0.1 r
T T T T
1 10 100 1,000 10,000 100,000
Frequency (MHz)

Figure B.1: Skin effect causes the effective resistance of a cable to rise with
increasing frequency. Optical fiber is superior, in particular at high frequencies.
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Bessel Functions

Bessel’s differential equation reads

d? d
wzd—lfg + x% + (2?2 —m?)y = 0.

We are only interested in solutions for integer m. They are denoted as J,,, Ny,
and HL.2.

m

The modified Bessel’s differential equation reads

d’y | dy
2 2 2 _

Solutions for integer m are denoted by I,,, and K,,.

C.1 Terminology for the Various Functions

Im, Bessel function | Cylinder function 1. kind
1. kind

Bessel’s Ny, Yy, | Bessel function Cylinder function 2. kind
equation 2. kind Weber’s function
Neumann function

HL? Bessel function | Cylinder function 3. kind
3. kind Hankel function
Modified | I,, Modified Bessel
Bessel’s function 1. kind
equation
K, Modified Bessel | Modified Hankel function
function 2. kind | McDonald’s function
F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_15, 265
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C.2 Relations Between These Functions

Ji(z) cos(km) — J_i(z)

Non(z) = klimm sin(km) ’
Hrln’Q(f) = Jm(v) £iNp(v),
I, (x) = i ™J,(iz),

C.3 Recursion Formulae

With Z,,, denoting some cylinder function of type Jy,, Npn, Hp, I, or K, and
with Z/ () the derivative of Z,,(x) with respect to the argument x,

xZ () =  mZp(x) — 2Zma(x),
xZ () = —mZp(x)+2Zm_1(x).

C.4 Properties of J,, and K,,

The functions J,, describe standing waves. Jy “looks like” cosine, J; like sine.
Asymptotically (for very large z) the following approximations hold:

Jo(z) = \/g cos(z — 7/4),
\/g sin(z — 7/4),
Jo(z) = \/Zcos(m—ﬂ/4—n7r/2+(9(i>>.

Functions with negative index are defined as

Jl(.T)

Jon(2) = (=1)" J, ().

There is a relation with angular functions of the form

+oo
cos(a + Bsiny) = Z In(B) cos(a + ny),

n=-—oo

which is relevant in context with frequency modulation (see Sect. 11.1.2).

Functions K,, describe decaying cylinder waves and “look like” decaying
exponential functions. Asymptotically (for very large x), for all m the following
approximations hold:

kot = L (1+0 (1)),

As long as the argument is larger than 2, the error is less than 5%.



C.5. Zeroes of Jy, J1, and J

C.5 Zeroes of Jy, J;, and J,

Jo J1 Ja
24048 | 0,0000 | 0,0000
5,5201 3,8317 5,1356
8,6537 7,0156 8,4172

11,7915 | 10,1735 | 11,6198
14,9309 | 13,3237 | 14,7960

C.6 Graphs
Functions

Real-valued argument:
va Nm

267

of the Most Frequently Used

P

-

Imaginary-valued argument:

ms fm

Figure C.1: Graph of Bessel functions of types J, K, N, and I, each for index

values 1...3.



Appendix D

Optics with Gaussian
Beams

The general public holds the notion of a laser beam as a cylindrical bundle of
rays that travels arbitrary distances without any change of its diameter so that
it delivers the same power density wherever it hits. Take note, James Bond:
There is no such thing as a cylindrical beam. The laws of diffraction make sure
that any beam with a finite diameter widens as it propagates; the wider the
beam starts out, the more gradual is its spreading, but it is always there.

D.1 Why Gaussian Beams?

For the sake of a quantitative description let us consider a Gaussian beam , i.e.,
a light beam with a transverse distribution of power following a Gaussian bell-
shaped curve. Such beams are ubiquitous in laser physics; they originate from
laser resonators for which the Gaussian profile is the lowest transverse mode. As
light is coupled out, one automatically gets a Gaussian beam. The first concise
treatment of the situation, still worthwhile reading today, is given in [89]; for a
particularly transparent description see [135] or [125].

One might think of a Gaussian beam as created in the following way: Start
with a plane wave and send it through an amplitude mask (like a photographic
slide). Let the mask have a circularly symmetric gray scale so that a bell-shaped
beam is carved out of the plane wave.

Once a beam has a Gaussian profile, it will stay that way. Propagation across
free space will change its size, but not the functional form. In other words, the
Gaussian is invariant (except for scale factors) under diffraction. The reader is
reminded that in the far-field limit of diffraction, the field distribution acquires
a shape given by the Fourier transform of the initial shape. It is well known that
the Fourier transform of a Gaussian is again a Gaussian. Therefore, the near
field Gaussian profile is preserved in the far field — and not just in the limiting
cases, but everywhere in between, too. A Gaussian beam is a diffraction-limited
beam. It is even better: Among all diffraction-limited beams, it is the one with
the least change of shape.

In analogy to the quantum mechanic uncertainty relation and thinking of
light as a stream of photons, one can multiply the transverse localization error

F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_16, 269
(© Springer-Verlag Berlin Heidelberg 2009
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(the beam radius) with the transverse photon momentum (a measure of the
beam’s divergence) and obtain a product that cannot get arbitrarily small. The
minimum product is fulfilled by the Gaussian beam.

If a Gaussian beam is transmitted through common optical elements — lenses,
curved mirrors — it will get deformed. Nonetheless it will maintain its Gaussian
shape. (This is true if we idealize that the lenses are well centered on the beam.)
It takes stronger actions to destroy the Gaussian profile: Nonaxially symmetric
elements such as cylindrical lenses render it into an ellipsoid version, which can
still be considered a generalization; absorbing elements such as apertures can
destroy the Gaussian profile altogether. A knife blade inserted halfway into the
beam will alter the beam shape.

D.2 Formulae for Gaussian Beams

It is a convention to take the beam radius w (as in width) as that distance from
the axis where the field amplitude is reduced to 1/e of the on-axis value; this
is also the radius where the intensity has rolled down to (1/e)? of its on-axis
value.?

The beam is never cylindrical: Its cross-section varies. At some location the
beam has a minimum transverse extent. This is called the beam waist and serves
as an important point of reference. Let us identify the propagation direction
with the z direction; we conveniently place the zero point at the waist. Then
the beam radius is described by

2
w(z) =w(0)4/1+ (i> .
20
Here 2 is a characteristic length called Rayleigh range. It indicates the distance
after which the beam radius has increased by /2 and is given by

sl
A

As one might have expected, zq is referred to the only length scale of relevance

for wave phenomena, i.e., the wavelength .

The Rayleigh range marks the transition from near field to far field: For
distances z < zg, the beam propagates approximately without change of radius,
whereas for z > zy the radius grows in proportion to distance or at a fixed angle.
This divergence angle 6 is found as

zZo0 =

9:arcthmlwoi:@:L
z z Z0 Z0 TWo
with wg = w(0). The reader should note that for a fixed wavelength 6 o< 1/wy:
A beam with wide waist will widen only gradually. Figure D.1 illustrates the
relations between w, z, and 6.
As a Gaussian beam propagates and widens, the wavefront does not remain
plane. Its curvature can be described by the associated radius, R(z).

R(z) = = {1+ (%)2} .

LConfusingly, in some old texts one can find other conventions, like intensity drop to 1/e.
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Ny

S

I A
beam waist

Rayleigh range

divergence

Figure D.1: The contour of a Gaussian beam at r = w(z) takes its narrowest
width wg at the waist (z = 0). In the far field, the beam radius w(z) increases
at a fixed angle 6, called the beam divergence.

Obviously,
liII[I] R(z) = oo and
lim R(z) = =

This implies that the wave fronts are indeed plane at the waist; at very large
distance they form segments of spheres centered around the waist. At some
intermediate distance, the curvature has a minimum: This is the case at z = zg
where R(z) = 2z.

Example

Find the radius of the bright spot on the lunar surface when we aim the beam
of a He—Ne laser (A = 633 nm) at the moon (z = 384,000 km)!

At wg = 1 mm, one obtains zg = 4.96 m and wyeon = 77.4km; at wg = 1 m,
one gets zp = 4.96 x 10° m and wmeon = 5.99m. Lesson learned: In the absence
of a beam expansion by way of a telescope, the beam is scattered about as
to be undetectable (nearly 80km), but using a telescope one can illuminate a
reasonably small spot of 6 m radius. This allows, e.g., to hit a retro reflector such
as placed on the lunar surface by Apollo astronauts and still get a detectable
back-reflected signal.

D.3 Gaussian Beams and Optical Fibers

Fibers are waveguides. Indeed, the waves are weakly guided because the index
contrast between core and cladding is very small. In this situation, the funda-
mental mode profile is nearly Gaussian. Consider as a thought experiment that
the index difference shrinks to zero: Then one would expect the same shape as in
free space. It is of course simpler to deal with a Gaussian, rather than the com-
plicated composition of Bessel functions described in Chap. 3. Therefore, this
approximation is popular and sometimes good enough.

When a beam is coupled from free space into a fiber, one is usually faced with
the matching problem between a true Gaussian beam in free space and a less-
than-exact almost-Gaussian profile of the fiber’s fundamental mode. (However,
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it is usually safe to assume that in a perpendicularly cleaved fiber surface the
wave fronts are plane, so that for incoupling as well as outcoupling of light the
fiber face can be identified with the position of a beam waist.) The mismatch
causes a reduction in coupling efficiency. Even in the presence of ideal lenses
without aberrations, this limit cannot be surpassed [120]. Part of the light
winds up in the cladding and is eventually scattered out of the fiber, rather
than guided in it.

If light propagating inside the fiber is coupled out at the other end and hits a
screen at some distance, the pattern on the screen again is similar to a Gaussian.
This is because the far-field pattern is the Fourier transform of the near-field
pattern as discussed in Sect. 7.4.2 where it was also shown how deviations from
the Gaussian pattern can be exploited to gauge the mode profile.
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Relations for Secans
Hyperbolicus

The function Secans Hyperbolicus (hyperbolic secant) is defined as

2

SeCh(fL‘) = m

For convenience we introduce a numerical factor

Z = cosh ' (v2) =~ 0.881373587,
2Z = cosh™'(3)
= In(3++8) =~ 1.762747174.

cosh™! refers to the inverse function arcosh, not the reciprocal of the function.
One finds the following special values (Fig. E.1):

sech(0) = 1,

sech(l) ~ 0.6480542737,

sech(2) ~ 0.2658022288,
1

sech(Z) = 5\/5

_ Alight pulse with envelope U(t) = U sech(t/Ty) has the power profile P(t) =
Psech?(t/Ty). The following special values hold (Fig. E.2):

sech?(1) =~ 0.4199743416
1
sech?(2) = 7

The pulse duration, taken as the full width at half-maximum (FWHM), is

T = QZTO

F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_17, 273
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The pulse energy is

E = /P(t) dt =P / sech? <—) dt
0
= 2PT,
1 -
= EPT
10
y = sech(x)
1o707... < T
0.648... < >
Y 051 TO
0.0 : :
-2 .1(\ 0 §1 2
=5 x Pa]
Figure E.1: y = sech(z).
1.0
y = sech?2(x)
Y 0.5 0.500... < T >
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00 T T
-2 -10, 0 & 2
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Figure E.2: y = sech?(z).
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Autocorrelation
Measurement

F.1 Measurement of Ultrashort Processes

It would be a straightforward task to measure duration and shape of picosecond
or femtosecond pulses if detectors (and oscilloscopes) with temporal resolution
better than the pulse duration would exist.

However, the fastest photodiodes are restricted to temporal resolutions of
several picoseconds. A dramatic advance of technology is not anticipated, be-
cause the finite mobility of charge carriers themselves inside the solid-state de-
tectors defines the limitation.

For this reason, an entirely different method is used for temporal measure-
ments on ultrashort time scales. The central idea is charming: The pulse to be
measured is referenced to itself. The technique is known as autocorrelation mea-
surement. It does indeed work — the price to pay is that one does not obtain the
full unambiguous information about the pulse shape. To understand the princi-
ple, let us first briefly discuss the mathematical concept of the autocorrelation
function, without getting too formal.

F.1.1 Correlation

The word “correlation” describes a similarity. If A does something and B does
the same at the same time, then the actions of A and B are correlated. If B
consistently does the opposite of what A does, then they are anticorrelated. If
B acts independently of A, both are uncorrelated.

Speaking more specifically, we will compare two real functions of time, f(¢)
and ¢(t). How can we establish a similarity?

First, we take the product of both functions, f(¢)x g(¢). It should be obvious
that this product is non-negative when both functions have the same algebraic
sign (no matter which one) at all times — whenever one changes sign, so does
the other. On the other hand, the product is negative whenever both functions
have opposite sign (again, no matter which function has which sign).

In the event that f(¢) and g(t) are, say, independent random functions, either
will change sign at random times that usually do not coincide with the moments

F. Mitschke, Fiber Optics, DOI 10.1007/978-3-642-03703-0_18, 275
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at which the other changes sign. The product, then, will be positive at some
times, negative at others — and in the long run, either possibility will occur
about half of the time. On average the product is zero.

This brings us to the correlation which is the long-term average of the
product:

“+o0
corr :/ f()g(t)dt.
—00
For uncorrelated functions this quantity will tend to zero.

What happens if the functions are related? The strongest possible correla-
tion of f(¢) and g(t) occurs when both are identical (up to a scale factor), or
f (&) = ag(t) with a some positive real constant. In that case, corr will take
its (positive) maximum value. If, on the other hand, f(t) = —ag(t), corr takes
the same value but with a negative sign. This constitutes the strongest possible
anticorrelation.

F.1.2 Autocorrelation

For those trained in Latin and Greek, the word “autocorrelation” is immediately
clear: it describes a correlation of something with itself. The autocorrelation
function is the temporal average of the product of two functions, which are
identical except for a temporal shift 7:

+o0

autocorr(r) = / FOFE+7)dt.

— 00

It is convenient, and customary, to normalize this expression to its maximum
possible value, which occurs, as argued above, for 7 = 0:

TR+ ) dt
X rwzar

ACF(r) =

ACF(7) has the following properties:

» ACF(0) = 1 for any function f(¢) (which is not zero everywhere); this is
due to the normalization.

» —1 < ACF(t) < +1 for all ¢t and any function; the case ACF(t) > 1 is
impossible for all ¢.

» ACF(T) = ACF(-T): ACF is symmetric.

» If f(t) = const., then ACF(¢) = 1 for all ¢, independent of the value of the
constant (disregarding the case of zero).

w If f(t) = f(t+T), then ACF(T) = 1: Periodic functions have a periodic
autocorrelation function with the same period. Phase is irrelevant, though.

To develop a feeling for this, consider a few selected functions.

Sine function. If f(t) = Asin(wt + @), then ACF(7) = cos(wt). This is inde-
pendent of . Thus, it is also true for ¢ = 7/2, that is, for cosine instead
of sine.
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Noise. ACF(0) =1 is true for any function; on the other hand, we noted above
that for a random signal, ACF(r) = 0. There is no contradiction. At
7 =0, ACF of noise is equal to 1 and then drops very rapidly to zero as
7 grows. The range of 7 over which ACF decays and is still different from
zero indicates the correlation time of the signal.

The inverse of the correlation time is the bandwidth of the noise; there
is no such thing in physics as noise with infinite bandwidth or zero cor-
relation time. Nonetheless that limiting case is important conceptually
and is studied by theorists due to its nice mathematical properties. It
comes by the name of §-correlated white noise. Any physical noise has a
correlation time that is different from zero because nothing in nature ever
acts infinitely fast. White noise with infinite bandwidth violates the law
of energy conservation.

Gaussian. A signal with a temporal variation according to a Gaussian (a Gaus-
sian pulse) has an autocorrelation function that is Gaussian again, but is
wider by a factor of v/2. We encountered the spatial case in Sect. 7.4.1:
Measurement of a mode profile in the near field by the transverse offset
method yields the autocorrelation function of the mode profile. As long
as one can justifiably approximate it as a Gaussian, one can take the mea-
sured radius and simply divide by v/2 to obtain the correct modal radius.

F.1.3 Autocorrelation Measurements

Let us return to our task to measure the duration of ultrashort optical pulses.
The procedure involving the autocorrelation function is now easy to understand.
In the setup of an autocorrelator, the light beam carrying the pulses is first split
at a partially reflecting mirror with reflectivity R = 50%. Thus, there are two
paths; on each there is one replica of the pulses to be measured. Both replicas are
recombined in a nonlinear crystal. The crystal is chosen such that it can generate
the second harmonic of the light (ax(?) effect; compare Eq. (3.18)). In this case
there always is a term containing the product of two electrical fields. Each
partial beam by itself creates such a product of its field with itself, i.e., |E;|?
and |E, |2; of more interest for us is the combination term of E; F5, which is also
generated. (In a popular variant called background-free autocorrelation, these
three contributions can be geometrically separated and only the combination
term is used.)

Finally, a temporal integration is performed. In practice, one does not need
to push the integration limits to £oo; it fully suffices when the integration
interval is much longer than the pulse duration. Ironically, a slow photodetector
is not only good enough here: it is actually required to be slow!

Both replicas of the incoming beam travel similar, but not necessarily equal,
path lengths before they are recombined at the focal point of a lens, which is
inside the nonlinear crystal (Fig. F.1). By fine-tuning the path-length difference,
one can arrange that both replicas arrive simultaneously so that a maximum
combination product term is generated and registered on the detector.

The measurement is performed in the following way: The path difference is
scanned while the detector signal is monitored. Typically one provides the path
difference information to the horizontal input of an oscilloscope, and the detector
signal to the vertical input. As the path difference is varied, the pulse profile
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detector
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beam splitter
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Figure F.1: Sketch of an optical autocorrelator setup. Two replicas of the pulse
stream to be measured arrive at a frequency-doubling crystal through different
paths. Only if both arrive at the same time can there be appreciable power in
the combination product which is monitored by the detector. By variation of
the path-length difference, one can map out the temporal pulse shape.

(or more precisely, its autocorrelation function) is mapped out and appears as
a trace on the oscilloscope screen. If this is done at a repetition rate of at least
30 Hz, the eye perceives a flicker-free representation of the pulse shape.

F.1.4 A Catalogue of Autocorrelation Shapes

Since it is not the pulse shape directly which is measured, there is always the
question of finding the pulse shape that corresponds to the measured autocor-
relation function. This is not a unique relation, but in many cases one has
some extra information to reduce the ambiguity and gets away with it. We
list the relation in Table F.1, and in Fig. F.2 by way of symbolic schematic
representations.

It is important to note the following facts: Autocorrelation measurements
allow to assess pulse durations down into the few-femtosecond regime; it is
conceivable that this can be pushed even further. This exceeds the temporal
resolution of direct detection by several orders of magnitude.

On the other hand, autocorrelation measurement do not yield the pulse
shape directly. The pulse shape cannot be uniquely reconstructed from the
autocorrelation function. (The other way around it would work; alas, that is
of little help.) In particular, phase information about the pulse (such as, the
existence of a chirp) is lost.

As a consequence, an ambiguous determination of the pulse shape implies an
ambiguity in the pulse duration. Absent a better solution, one typically makes
educated guesses about the pulse shape based on independent information, then
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Table F.1: Table of some selected pulse shapes and the corresponding autocor-

relation functions.

Pulse shape

Corresponding autocorrelation

Rectangular , width £1
Gaussian, width T

sech?(t)

Two equal pulses separated by T’

Triangular, width at pedestal £+2

Gaussian, width V2T
3 t cosh(t) — sinh(t)
sinh®(t)

Three-pronged fork. Prongs separated
by T. Center component is twice as
high as off-center components. Width
of components: ACF of original pulses

Gaussian

[

T J AN
>t
sech?
[A
>t

>t

rectangular

pulse pair

triangular
—
T
'
Gaussian

>
1,414 T \
» T

«—
1,543 T

"trident"

Figure F.2: Schematic survey of autocorrelation signals for different pulse
shapes. The ACF of a sech? pulse is given in Table F.1. A pulse pair is rep-
resented by a “three-pronged fork”; the center peak is twice as high as the

off-center peaks.
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calculates the pulse width based on that. This is certainly less than exact sci-
ence. There are more involved procedures giving more detailed information (see,
e.g., [157]), but they are not always available. However, as long as the proce-
dures used are stated clearly (like, the width is quoted as “FWHM assuming
a Gaussian shape” or so), this is acceptable, and indeed widespread practice.
On the other hand, one should not attribute a precision to the widths thus
determined, which is not warranted.
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Glossary

Amplifier (p. 134): In optics, a device which increases the power of a light
wave passing through it. Amplifiers are a central element of any — laser.
In optical telecommunications, mostly semiconductor optical amplifiers
and doped-fiber amplifiers are used.

Autocorrelator (p. 277): Device to measure the duration of ultrashort pulses
down to the few-femtosecond regime. The light beam is split into two;
both parts are brought together again with variable delay in a nonlinear
medium. The mixing signal is detected; the detector does not have to
be very fast. The resulting signal, mathematically the autocorrelation
function of the pulse shape, allows conclusiuons about pulse duration and
shape.

Avalanche diode (p. 149): Special type of — photodiode, in which a high
bias voltage is applied to accelerate charge carriers to the point that they
in turn generate new carriers. In an avalanche process, an amplification
of the primary photocurrent is obtained.

Bandwidth (p. 213): Frequency interval over which a certain signal contains
energy. Usually stated as the difference between highest and lowest signal
frequency.

Bending loss (p. 77): When an optical fiber is tightly bent, additional loss
occurs. A fiber that carries visible light can be observed to shine brightly
at tight bends; here, some of the guided light is lost.

Birefringence (p. 48): Phenomenon in anisotropic materials. Light of differ-
ent linear — polarization is subject to different — refractive index.

Bragg effect (p. 124): A periodic array of scatterers (a grating, in the widest
sense) can reflect a wave when a certain relation between grating constant
(grating period) and wavelength is fulfilled; named after William Henry
Bragg and William Lawrence Bragg (father and son), who shared a Nobel
prize in 1915.

Channel (transmission channel) (p. 224): General term for an arbitrary
transmission medium such as a cable and radio link. which provides a
certain — bandwidth. This results in a certain — channel capacity.

Channel (frequency channel) (p. 219): A frequency band reserved for a
specific signal is also called a channel. Using several channels, different
signals can be transmitted simultaneously; this is well known for radio
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and TV. In fiber optics one such channel may also be called a — WDM
channel to clarify this use of the term.

Channel capacity (p. 224): According to a theorem by C. Shannon, there is
a maximum rate with which information can be successfully transmitted
over a given — channel; this rate is known as channel capacity.

Chirp (p. 162): Term denoting a slide of carrier frequency within a short pulse
of light. The product of spectral and temporal width can be equal to or
larger than a certain constant; in the presence of chirp it is larger.

Circulator (p. 130): A device to steer light signals between several ports. It
lets light beams pass in one direction. Light beams traveling in the the
opposite direction are redirected to a third direction.

Cladding (p. 17): The zone in an optical fiber which surrounds the — core.
In most commercially available fibers the outside diameter of the cladding
is 125 pm.

Core (p. 17): The innermost zone in the structure of an optical fiber. In the
case of — single-mode fibers the radius is several micrometers. Most of
the light is guided in the core.

Coupler (p. 131): Device for coupling of two fibers, so that signals traveling
in them can be split or combined.

Cutoff wavelength (p. 38): The shortest wavelength at which a fiber sup-
ports only a single mode. Occasionally also used for the limit of existence
range of higher-order — modes.

Dispersion (p. 10, 47): Wavelength dependence of some optical characteristic
of a signal. This may be the — refractive index of a glass or the deflection
angle of a prism (“angular dispersion”). In fiber optics the term usually
refers to the group velocity dispersion.

Fabry—Perot interferometer (p. 122): Arrangement in which light passes
back and forth between two mirrors. When the round trip distance equals
an integer multiple of the wavelength, a resonance occurs. Fabry—Perot
interferometers are often used to select specific wavelengths, e.g., in laser
resonators. The name derives from Charles Fabry and Alfred Pérot (Mar-
seille, ca. 1890).

Fiber (p. 6): Spelled fibre in Great Britain. Here the term refers to optical
fibers, thin flexible strands of glass which can conduct light.

Fiber laser (p. 145): A type of — laser, in which the — amplifier (gain
medium) is formed by a fiber which is doped with active substances. In op-
tical telecommunications, it is particularly the Erbium-doped fiber which
finds widespread use.

Fused silica (p. 92): Chemically, silicon dioxide, but in glassy rather than
crystalline form. The corresponding crystal is called quartz.
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Gaussian beam (p. 269): Light beam which contains a single spatial — mode.
It is characterized by a transverse power profile which takes the form of
a Gaussian. Gaussian beams are diffraction-limited, i.e., their spread is
minimal. They are typically generated in lasers. In fibers, the fundamental
— mode is only approximately Guassian.

Gradient index profile (p. 22): In some fibers the — refractive index in
the — core is not constant but varies continuously in the radial direction,
typically in a parabolic way. In — multimode fibers, such a profile reduces
— modal dispersion.

Holey fiber (p. 68): The — cladding of this type of fiber contains voids, i.e.,
cylindrical hollows which run the entire length of the fiber. This lowers
the effective — refractive index of the cladding and enables the guiding of
light.

Isolator (p. 128): In optics, an arrangement which allows light to pass in one
direction, but blocks it in the opposite direction.

Kerr effect (p. 155): Also known as “quadratic electro-optic effect,” named
after John Kerr (1875). By the Kerr effect the — refractive index of a
material is modified in proportion to the square of the amplitude of an
applied electric field. In fibers the “optical Kerr effect” occurs in which
the light field takes the role of the applied field. Then the refractive index
is modified in proportion to the intensity of the light.

Laser (p. 5): The acronym stands for “light amplification through stimulated
emission of radiation.” A light source capable of producing coherent light.
The laser principle relies on stimulated emission in a material which is used
as an optical — amplifier. Energy must be supplied for the amplification;
in the example of — diode lasers, this is done by running a current through
the device.

Laser diode (p. 140): Type of laser, in which the — amplifier (gain medium)
is formed by a semiconductor device of diode structure. Energy is supplied
by an operating current.

LED (p. 140): Acronym for light-emitting diode, also known as luminescent
diode. A semiconductor device producing light when an operating current
passes through. Simpler in structure than a — diode laser; also, the
light is not coherent. Often used for indicator or pilot lights in electronic
equipment of all kinds. Increasingly used for general illumination as LED
technology proceeds because LEDs are much more power-efficient than
light bulbs.

Material dispersion (p. 47): Phenomenon based on the frequency depen-
dence of the — refractive index. It lets short pulses of light widen as
they propagate through a fiber. It also causes chromatic abberations in
lens-based imaging and enables prisms to spread white light into colors.

Modal dispersion (p. 20): In — multimode fibers different — modes prop-
agate at different speed. This causes a scatter in the arrival time at the
receiving end. This spreading of a signal pulse is called modal dispersion
and is typically measured in ps/km.
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Mode (p. 32): Throughout physics there is an important concept of elementary
oscillations known as modes. Resonators of a given geometry support
specific modes which can be obtained from the geometric constraints. For
example, a violin string has a fundamental oscillation and harmonics, each
with its own characteristic frequency and oscillation pattern. In optical
fibers, the constraints select certain field distributions and propagation
constants known as the modes of the fiber. Fibers can be designed to be
— single-mode or — multi-mode fibers.

Mode coupling (p. 23): Energy can be exchanged between the — modes of
a fiber at perturbations of the geometry, like in tight bends.

Mode locking (p. 141): The phases of longitudinal modes of a laser can be
locked together to generate very short pulses of light.

Modulation (p. 212): In optics, the controlled modification of amplitude,
phase, frequency, or polarization of a light wave in order to impress infor-
mation on it which is then carried along.

Modulational instability (p. 165): Phenomenon in some materials exhibit-
ing — nonlinearity, in which a continuous wave becomes unstable and
forms a more or less periodic modulation. In fibers this can happen by
the interplay of — Kerr effect and anomalous — dispersion.

Multimode fiber (p. 7): Type of fiber which supports several — modes. Due
to — modal dispersion this is useful only for moderate data rates and
short distances. Plastic optical fibers are almost always multimode fibers.
The total power of the light signal is distributed over all participating
— modes. This distribution may fluctuate; then mode partition noise is
generated which can be a nuisance in many contexts including fiber-optic
— sensor applications. The safest fix is the use of — single-mode fiber.

Nonlinearity (p. 153): The phenomenon that a property of a device or mate-
rial which has an influence on the signal may not be constant but affected
by the signal. In fiber optics the most relevant nonlinearity is that the —
refractive index of the fiber depends on the light intensity by way of the
— Kerr effect.

Normalized index step (p. 19): A metric for the difference of — refractive
index between — core and — cladding of a fiber. In most fibers this
difference is in the range from 0.001 to 0.01. Bend loss tends to be lower
for fibers with large values.

NRZ (p. 220): Acronym for no return to zero: A binary coding format in
which the light power stays constant throughout the entire clock period.
In a succession of several logical “1”s, the light power stays on for several
clock cycles, without returning to zero in between. Compare — RZ.

Numerical aperture (p. 19): A metric for the acceptance angle of a fiber,
i.e., the angle of the cone within which light can be coupled into a fiber.
The same cone also appears for light leaving the fiber.
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OTDR (p. 114): Acronym for optical time domain reflectometry: Procedure
to measure the time after which a light pulse returns from the fiber and
to evaluate for the position of loss from bends, splices, damage, etc.

Photo diode (p. 146): Semiconductor device for the detection of light. The
photoeffect creates free charge carriers inside the photodiode; these give
rise to a current which can be measured.

Photonic crystal fiber (p. 68): Similar to — holey fiber, voids run the entire
length of the fiber in the — cladding zone. Here the holes are located
precisely in a periodic pattern so that by a — Bragg effect it acts as a
reflector. This generates a strong guiding of light so that the — core
can even have a lower — refractive index than the — cladding, without
compromising the guiding.

PMD (p. 64): Acronym for polarization mode dispersion. In — birefringent
fibers, parts of the signal with different — polarization propagate at dif-
ferent speed; this causes a distortion of the signal.

Polarization (of matter) (p. 26): Under the action of an external electri-
cal field as provided by a light wave, electrons in a material experience
Coulomb interaction forces. This distorts the atomic orbitals. Do not
confuse with — polarization of light.

Polarization (of light) (p. 48): Orientation of the oscillation in a wave. The
oscillation can take place longitudinally (e.g., in sound waves in air) or
transversally (in light waves). If it is transversal, there are several choices
for the direction: The oscillation can be linear (two orthogonal directions,
and their linear combinations) or circular (two directions of rotation, and
their linear combinations). Ordinary lamp light or sunlight is often called
“nonpolarized”; here the state of polarization changes extremely rapidly
so that over time all possibilities are represented with equal probability.
Do not confuse with — polarization of matter.

Polarization-maintaining fiber (p. 66): A type of fiber in which by design
the — birefringence has been made large. To maintain polarization re-
quires that the light be linearly polarized along one of the birefringent
axes.

Polarizer (p. 127): Device which selects the component of a desired polariza-
tion from a light beam with arbitrary — polarization.

Preform (p. 93): Intermediate state in the production of optical fibers.

Refractive index (p. 48): Also index of refraction: An important quantity
in optics to characterize a material. The refractive index is a complex
function of wavelength. The real part indicates how much the speed of
light is reduced in comparison to vacuum. It also governs the angle of
refraction when light passes through an interface between different media
and is therefore responsible for the function of prisms and lenses, among
other things. Its frequency dependence gives rise to — material dispersion.
The imaginary part describes the attenuation of the light wave. Since
attenuation can often be neglected in typical materials encountered in
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optics (air, glass, etc.), the term “refractive index” is often used for the
real part alone.

RZ (p. 220): Acronym for return to zero: A binary coding format in which a
light pulse signals a logical “1,” and its absence a logical “0.” The pulse
duration is shorter than the clock period so that at the beginning and end
of each clock period the intensity is zero in any event. Compare — NRZ.

Self phase modulation (p. 162): Process in optical fibers in which — non-
linearity (— Kerr effect in particular) generates a — chirp in light pulses.

Sensor (p. 247): Device which assesses some physical (or chemical, etc.) quan-
tity and transfers the value to some easily evaluated format, such as an
electrical voltage. Fiber-optic sensors gain acceptance and sometimes can
do things which other sensors cannot.

Single-mode fiber (p. 7): Fiber which supports only a single — mode.
Speaking strictly, this mode is doubly degenerate (and may therefore be
counted as two) due to polarization effects. Single-mode fibers are indis-
pensible for the transmission of very high data rates over long distances.

Soliton (p. 164): A light pulse which maintains its shape during propagation
in the presence of both — dispersion and — Kerr effect.

Splice (p. 123): Low-loss joint between two fibers. Most often, fusion splices
are used: The cleaved surfaces of two fibers are put together, heated, and
melted together.

Step index fiber (p. 17): Optical fiber consisting of — core and — cladding;
either zone has a fixed — refractive index. This results in a radial step in
the index profile.

TDM (p. 218): Acronym for time division multiplex. Format for the simulta-
neous transmission of several signals which are interleaved into each other
so that one falls into the pauses of the other.

Total internal reflection (p. 15): Phenomenon at the interface between two
materials with different — refractive index. The medium with the higher
index is often called “optically more dense.” If a light ray inside the more
dense medium (n = n,) hits the interface with the “thinner” medium
(n = nyp) under a sufficiently flat angle, it gets totally reflected. The
limiting angle is given by ait = arcsin(np/ng)-

Waveguide dispersion (p. 47): Contribution to a fiber’s total — dispersion
which is specific to the geometry of a waveguide.

WDM (p. 218): Acronym for wavelength division multiplex. Format for the
simultaneous transmission of several signals by spreading them out over
the available — bandwidth of the — transmission channel.
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Abbe number, 49
absorption coefficient, 28, 160, 161
acceptance angle, 19
aliasing, 216
amplifier, 134, 137, 138, 226, 241
fiber, 136
Raman, 191
semiconductor, 138
autocorrelation, 205, 277

bandwidth, 213, 224, 225

beam waist, 154, 270

beat length, 65, 66

bend loss, 118

Bessel’s differential equation, 32
birefringence, 48, 64-66, 127

bit error rate, 223

bit rate, 217

bowtie fiber, 65

Brillouin scattering, 182, 183, 185

channel capacity, 224, 244
chirp, 162, 169, 195

chirped pulse amplification, 196
circulator, 130

cladding, 17, 23

clock rate, 220, 221

combiner, 133
communications theory, 224
connector, 120

core, 17, 23

coupler, 131

cutoff wavelength, 38, 112, 113

data rate, 225
delay distortion, 21, 47
DFB laser, 143, 144

dispersion, 47, 158, 161, 169, 205,

225, 227, 232, 233

anomalous, 54, 195, 208

chromatic, 47

material, 47

measurement of, 102

modal, 20, 47

normal, 54, 176, 195

polarization mode, 48, 64, 65,

219, 220, 244

profile, 47, 53

third-order, 52

waveguide, 47, 53, 55
dispersion coefficient, 51
dispersion management, 232, 234
dopant, 92, 135

erbium, 135
eye diagram, 236

Fabry-Perot interferometer, 122,
124
fiber
dispersion-flattened, 62
dispersion-shifted, 62, 228, 241
endlessly single-mode, 72
gradient index, 6, 58
holey, 68
multi-mode, 7, 41, 82, 117
photonic crystal, 68
plastic, 83
polarization-maintaining, 66,
96
quadruple-clad, 61
single-mode, 7, 41, 117, 120,
145, 184
step index, 17, 62
fiber laser, 145
finger splice, 120
four wave mixing, 180, 181, 229,
231, 232, 245
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Fresnel reflection, 186
fundamental mode, 60
fused silica, 6

glass temperature, 89

gradient index profile, 22
group index, 50

group propagation time, 50
group velocity, 50, 54, 159, 160
GVD parameter, 52

information capacity, 58
intensity, 44
irradiance, see intensity
isolator, 128

Kerr effect, 161

laser diode, 7, 139, 140, 143, 145,
215
distributed Bragg reflector, 143
distributed feedback, 143
gain guided, 141
index guided, 142
VCSEL, 143
LED, 139, 140, 143, 215
light pulse, 47, 161, 162, 164, 166,
173, 180, 193, 202, 204,
232
loss, 75, 79, 80, 82, 101, 102, 117,
120, 127, 158, 182, 226,
228
macro bending, 77
micro bending, 78

Maxwell’s equations, 25
mode, 32, 38, 39, 41, 42, 45
fundamental, 35, 37, 38, 41-43
lateral, 145
longitudinal, 145
mode field radius, 108, 110, 120
mode partition noise, 23
modulation, 212
modulational instability, 165
monochromatic, 47

noise, 224, 227
quantum, 222, 223
thermal, 222

nonlinear optics, 29

Index

nonlinear  Schrédinger equation,
160, 164, 165, 169, 176,
177, 179, 193, 205, 232,
233

nonlinearity, 153, 157, 158, 200,
202, 225, 232, 234

coefficient of, 155

normalized frequency, see V number

NRZ, 220, 221

numerical aperture, 19

optical Kerr effect, 155
OTDR, 114, 235

PANDA fiber, 65
parabolic profile, 58
paraxial approximation, 28
paraxial wave equation, 161
phase matching, 181, 231
phase velocity, 157-159, 181
photo diode, 146, 149
avalanche, 146, 149
InGaAs, 148
silicon, 148
photophon, 5
polarization, 26, 48, 64, 65, 126—
128, 220
polarization controller, 127
Poynting vector, 44, 77
preform, 93, 96
propagation time scatter, 220
pulse duration, 56, 166, 173, 201,
207, 232

quantum efficiency, 147
quantum noise, 148, 149

Raman scattering, 182, 188, 189,
205, 226

Rayleigh range, 153, 154, 270

Rayleigh scattering, 75, 182, 235

refractive index, 11, 15-17, 19, 28—
30, 34, 47, 155

refractive index profile, 6, 22, 23, 28,
58-61, 63, 66, 93-95, 106,
108

repeater, 117

RZ, 220, 221, 241

sampling, 216
SDH, 220
self frequency modulation, 162
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self phase modulation, 153, 162,
166, 169, 180, 193, 195,
197, 205, 228
Sellmeier’s equation, 49
semaphor, 3
sensor, 247
distributed, 253
extrinsic, 248
fiber-optic, 248
intrinsic, 248
signal, 211
analog, 211
continuous-time, 211
digital, 211
discrete-time, 211, 220
smart skin, 254
soliton, 166-168, 170, 173, 174, 178,
180, 200, 202, 225-228,

232-234, 243
N =1, 166, 176
N =2 174
bright, 177

dark, 176, 177

fundamental, 166, 168-170,
201, 207

gray, 177, 178
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higher order, 201
soliton laser, 202
SONET, 219
speed of light, 26
splice, 123
splitter, 133
step index profile, 22, 61

TDM, 218

total internal reflection, 15
transmission error, 223
triangular profile, 59

V number, 60, 78, 110
vacuum impedance, 26

wave equation, 27

linear, 29
WDM, 219, 226, 228, 229, 233, 244
WDM coupler, 133
whispering galley mode, 114
window

first, 10

second, 10, 240

third, 10, 225, 240

zero dispersion wavelength, 55, 62




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




