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Preface 

Wireless networking is undergoing a transformation from what has 
been primarily a medium for supporting voice traffic between telephones, 
into what is increasingly becoming a medium for supporting traffic among 
a variety of digital devices transmitting media of many types (voice, 
data, images, video. etc.) Wireline networking underwent a similar 
transformation in the 1990s, which led to an enormous build-up in the 
capacity of such networks, primarily through the addition of new optical 
fiber, switches and other infrastructure. Creating a similar build-up in 
the capacity of wireless networks presents many challenges, including 
notably the scarcity of two of the principal resources for providing high 
capacity in wireless networks, namely power and bandwidth. Moreover, 
the physical nature of wireless communication channels themselves, in- 
volving such features as mobility, interference, and fading, adds to  the 
challenge of providing high-quality multimedia communications to large 
groups of users. 

A principal way of enabling the advanced services required of wire- 
less networks is to add intelligence throughout the network in order to 
exploit increases in processing power afforded by Moore's Law type im- 
provements in microelectronics. One way of doing this is through the 
introduction of advanced signal processing at  the node level of the net- 
work, in order to mitigate the impairments of the wireless channel and to 
exploit the diversity opportunities provided by such channels. Multiuser 
detection, which addresses issues of optimal signal reception in multiple- 
access channels, is a major technique in this context. A very extensive 
research effort has been devoted to the development of multiuser de- 
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tection algorithms over the past two decades1. This research has shown 
that substantial performance gains can be realized in interference-limited 
channels through the introduction of advanced signal processing. 

Recent research activity in wireless networking has begun to  focus on 
the higher layers of the network, and on the special problems presented 
at such layers by the particular properties of the wireless physical layer. 
One of the key issues of this research is cross-layer design, which seeks to 
enhance the capacity of wireless networks significantly through the joint 
optimization of multiple layers in the network, primarily the physical 
(PHY) and medium access control (MAC) layers. Although there are 
advantages of such design in wireline networks as well. this approach is 
particularly advantageous for wireless networks due to  properties such 
as mobility and interference that strongly affect performance and design 
of higher layer protocols. This monograph is concerned with this issue 
of cross-layer design in wireless networks, and more particularly with 
the impact of node-level multiuser detection on such design. This is 
currently a very active research area, and the intention of this work is to 
provide an introduction to this area. and to present some of the principal 
methods developed and results obtained to date. 

This work is intended for engineers, researchers and students with 
some prior exposure to the field of communication networks. Although 
the book is largely self-contained and presents necessary background 
on wireless networking and multiuser detection, it is not intended to 
provide a complete treatment of these subjects. However, an extensive 
bibliography is included to direct the reader to  additional details on 
these subjects as desired. 

'An account of some of this work can be found in thc rcccnt book, Wireless Comrnunicatzon 
Systems: Advanced Technzques for Szgnal Reception, b y  Xiaodong Wang and H. Vincent 
Poor (Prentice-Hall: Upper Saddle River, N J ,  2004). 
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Chapter 1 

MULTIUSER DETECTION FOR WIRELESS 
NETWORKS 

1. Future Generation Wireless Networks 

Future generations of wireless networks will enable heterogeneous ser- 
vices with a variety of data rates that may even reach up to the order of a 
gigabit per second. One of the strongest motivations for supporting traf- 
fic heterogeneity and high speed data rates is the enormous popularity 
and societal impact of wireline Internet enabled applications. Since the 
appearance of the desktop computer, two separate evolutionary paths 
have been emerging: on one hand the laptop and palmtop have become 
extremely popular as their users enjoy the freedom of being untethered, 
but on the other hand, the advantages of networking have become in- 
creasingly important as users want to maintain connectivity [Goodman, 
20001. Wireless Internet is the answer to merging these seemingly dis- 
parate requirements. Indeed, the convergence of computing and wireless 
communications, in the form of smart phones and similar devices. is 
the leading trend in these fields. Furthermore, wireless data  services 
are becoming increasingly popular worldwide, with the current reported 
number of subscribers for third generation (3G) cellular services increas- 
ing from 70 million in September 2003, to over 128 million at the end 
of July 2004 (w~vw.3gtoday.com). Moreover, more than 7 million world- 
wide subscribers to TViMax wireless broadband services are expected by 
2009 (www.wi-fitechnology. corn) . 

For the North American market, WiFi hotspots are becoming wide- 
spread, while 3G cellular networks are just now being deployed and are 
available only for a few regions. A recently emerging trend for commer- 
cial data  services is to integrate cellular and WiFi, with companies in 



2 MULTIUSER DETECTION IN CROSS-LAYER DESIGN 

North America [Brewin. 20041 and Japan leading the way by launching 
converged WiFi/cellular handhelds and bundled data services. 

To support the widespread use of high speed wireless data services for 
future generation wireless networks, a key element is to reduce the cost 
of wireless transmission in terms of the actual price per Mbyte, as well 
as in terms of the amount of required transmission power. 

In the following, we will summarize several network solutions that 
have been proposed to support wireless data services, and we will discuss 
how the cost of data transmission is influenced by each of these network 
designs. 

1.1 Third Generation (3G) Cellular Networks 

The third generation cellular networks currently being deployed are 
required to  provide ubiquitous coverage for heterogeneous applications 
with varied quality of service (QoS) requirements (Fig. 1.1). This implies 
that 3G networks must support high data rate traffic in a highly bursty 
environment. 

The wireless technology of choice for implementing 3G systems is code 
division multiple access (CDMA) due to  its soft capacity characteriza- 
tion, which allows a graceful degradation of the network performance 
as demand increases, and due to its robustness to inter-cell interference 
which supports the powerful anytimelanywhere principle. Moreover, the 
nature of the CDMA air interface promotes statistical multiplexing of 
streams with varied bit error rates and delay requirements. 

Both cdma2000 (u?vw.tiaonline.org), developed primarily in North 
America, and wideband CDMA (WCDTVIA) [Holma and Toskala, 20021, 
developed primarily in Europe and Asia (www.3gpp.org), focus on pro- 
viding high data rates to mobile users. The standard requirements spec- 
ify a data  rate of 384 Kb/s for outdoor devices moving at  high speeds, 
and 2 Mbps for devices moving at pedestrian speeds. However, in re- 
ality, the achieved transmission rates depend on the prevalent channel 
conditions, and consequently, a rate adaptation technique is used. SIany 
times, the high data rates are achieved at  the expense of high power con- 
sumption and high costs for users. To reduce these transmission costs, 
3G networks' capacity enhancements rely primarily on sophisticated re- 
source management techniques, without imposing any improvements in 
the receiver design. As we will see in this book. multiuser receivers have 
the potential to increase the network capacity dramatically, thus having 
a significant impact on the effective price of wireless data. 
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Fzy'ure 1.1. Heterogeneous applications and ubiquitous coverage in third generation 
cellular networks 

1.2 Wireless Application Protocol (WAP) 
One industry solution to provide low cost wireless Internet access to 

mobile users with cell phones concentrates on building a "cell phone 
centric Internet" using WAP (wireless application protocol). WAP is 
intended to be used for networks of handheld digital wireless devices 
such as mobile phones, pagers, two-way radios, and smart phones, and 
is suitable for basic applications such as accessing weather forecasts and 
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stock quotes, messaging, personal information management, financial 
services and location based services. 

TVAP uses high compression for data and improves the cell phone user 
interface using the WML (Wireless Markup Language) to  display text 
and icons on a cell phone's screen. Despite the advantage of providing 
an immediate solution for the wireless Internet, it has an inherent, very 
significant, disadvantage: the "cell phone centric Internet" is not the 
real World Wide Web; its content is subject to the availability of wireless 
Internet Web pages for the desired targeted sites, Most of the "cell phone 
centric Internet" is constructed and managed by the cellular operating 
companies. 

Thus, WAP provides only a partial and interim solution for data wire- 
less networks. While it is useful in a transitional phase, next generation 
wireless networks must commit to genuine information connectivity. 

1.3 Network Costs for Data Transmission 
Although at  first glance 3G networks seem to be on the right track for 

providing ubiquitous connectivity, the price per Mbyte may be too high 
for the successful proliferation of Internet services on such networks. The 
cost per n'lbyte is influenced by the overall cost of the system (Csystem). 
For uniform coverage with QoS guarantees, a general system cost formula 
[Zander, 20011 can be expressed as 

where N p  is the number of access points (base stations) required to 
provide services and c is a proportionality constant. The effective band- 
width Bus,, required per user with Ruse, subscribers over a service area 
As,,,i,, must be scaled by an overprovisioning factor f (Q) for QoS de- 
livery to  high rate data users. 

The factor f (Q) can be greatly reduced by efficient access control al- 
gorithms relying on statistical traffic multiplexing. It  is also immediately 
apparent from (1.1) that,  for a fixed number of users, the system cost is 
strongly influenced by the effective bandwidths of the users, for a given 
service coverage area. 

It  is evident that reducing the effective bandwidth for high rate users 
will result in a cost reduction for Internet services. While the WAP 
solution is based on decreasing the bandwidth requirement for the ap- 
plications (basic applications and higher compression), improvements 
for third generation cellular technology can be achieved using multiuser 
receivers for CDMA systems. As we will see in the next section, the ca- 
pacity improvements achieved by multiuser detectors come a t  the cost of 
significant implementation complexity. This complexity has prevented 
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the use of such receivers in previous cellular systems, which were primar- 
ily designed for voice telephony. However, with the emergence of new 
high speed applications and the rapid increase in the processing speeds 
of low power, low cost digital signal processing (DSP) devices and inte- 
grated circuits, multiuser detection should become an attractive choice 
for next generation wireless networks. 

1.4 Wireless Networks for Unlicensed Bands: 
WiFi, WiMax, HomeRF, Bluetooth and 
Infost at ions 

The deployment of wireless data networks in unlicensed bands is ideal 
for data  users who can freely use the spectrum without the need to 
obtain a license for it. Operating in unlicensed bands can significantly 
reduce the cost of wireless data, by reducing the implementation price 
floor related to spectrum acquisition. 

In response to different application requirements, several types of net- 
works have emerged in the unlicensed spectrum, such as WiFi, WiMax, 
HomeRF, Bluetooth, and infostations. In general, all these networks 
are based either on a star configuration, i.e., there is an access point to 
which all portable terminals transmit in a single-hop fashion, or they use 
a peer-to-peer topology that facilitates the deployment of on-the-fly ad 
hoc networks with multi-hop transmissions1. In this section, we discuss 
some of the key technologies in this category. 

WiFi 

While high data rate adoption is trailing for 3G cellular networks 
in North America, the use of wireless local area networks (LANs) for 
nomadic computing is growing dramatically. Because of this increasing 
popularity of local network wireless access, hot spot access points are 
becoming available to users in a variety of commercial areas such as 
airports, hotel lobbies, coffee shops, book shops, etc. 

Wireless LANs are intended for low mobility and stationary users, 
and have a relatively small coverage area (e.g., a room, a floor, etc.) 
The name WiFi stands for "wireless fidelity" (similar to  HiFi for "high 
fidelity" in audio systems), and it refers to the fact that wireless LANs 
were originally targeted primarily at office use requiring high quality 
transmission. 

'Ad hoc networks will be discussed in more detail in Section 1.5. 
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Commercially available wireless LANs (WLANs) are based on the 
IEEE 802.11 family of wireless Ethernet standards, which has several 
different variants: 

IEEE 802.11a radios transmit a t  5 GHz and send data up to  54 Mbps 
using OFDM (Orthogonal Frequency Division Multiplexing); 

IEEE 802.11b radios transmit a t  2.4 GHz and send data up to 11 
PIlIbps using direct sequence spread spectrum modulation; 

IEEE 802.11g is an extension to IEEE 802.11b , with enhanced data 
rate transmission of up to 54 Mbps within the 2.4 GHz band using 
OFDWI technology. 

IEEE 802.11g maintains backward compatibility with IEEE 802.11b at 
11 Wlbps, while IEEE 802.11a is not interoperable with either IEEE 
802.11b or IEEE 802.11g systems. 

Wireless LANs can be configured either in a star topology with one 
access point and portable units transmitting to the access point, or in 
a peer-to-peer architecture. The latter option is not widely used and 
appears to  have relatively poor performance [Xu and Saadawi, 20011. 

Wireless Metropolitan Area Networks 

Although IEEE 802.11 based wireless network implementations are 
very popular for wireless LAN access, a wider area network implemen- 
tation such as a MAN (Metropolitan Area Network) is difficult to  im- 
plement with this technology, since IEEE 802.11 has performance lim- 
itations for large numbers of users with high bandwidth requirements. 
In addition, interference is often a significant problem in IEEE 802.11 
networks if deployed for large coverage areas, due to the fact that they 
operate in unlicensed bands. 

A solution for wireless NAN implementation is the recently pro- 
posed IEEE 802.16 family of standards [IEEE 802.16 Working Group, 
20041 which offers a high speed/capacity, low cost, and scalable solu- 
tion for fiber optic backbone extention. IEEE 802.16 supports point- 
to-multipoint architectures in the 10-66 GHz range, with data  rates up 
to 120 Mbps. At these frequencies, transmission requires a direct line 
of sight between the transmitter and receiver. However, non-line-of-site 
access provisioning at  lower frequencies has been proposed in a recent 
version of the standard: IEEE 802.16a, which also includes support for 
a mesh architecture, and which operates in both licensed and unlicensed 
bands between 2GHz and l lGHz,  using OFDM. 

The IEEE 802.16 [IEEE 802.16 Working Group, 20041 family of stan- 
dards has a series of very desirable properties such as: support for mul- 
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tiple services simultaneously with QoS provisioning. bandwidth on de- 
mand with spectrum efficient MAC design, and link adaptation (adap- 
tive modulation and coding). The standard also supports the use of 
adaptive antennas and space-time coding for physical layer performance 
enhancement. 

The technology integrates well with IEEE 802.11 wireless LANs and 
thus may be used in the future for linking 802.11 hot spots to the Internet 
via a wireless broadband connection. Moreover, it is a good candidate for 
home wireless broadband access. At this stage of development, the tech- 
nology is still too expensive for consumers, but the prices are expected 
to fall dramatically as major industry players support the new technol- 
ogy. The forum that promotes and supports brodband wireless access 
networks based on the 802.16 standard is the WiMax forum [WiMax, 
20041. 

HomeRF 

As opposed to the WiFi technology, which was originally oriented to- 
wards the corporate user, HomeRF technology aims to provide a cheaper 
and lower quality (lower data speeds) wireless network technology in 
the home network environment. Home networks are envisioned to con- 
nect PCs, PDAs. laptops, cordless phones, smart appliances, etc., in 
and around the home. Home networks were promoted by the HomeRF 
working group which ceased activity in January 2003, after finalizing a 
standard called Shared Wireless Access Protocol (SWAP). 

SWAP is a hybrid standard that supports both voice and data,  and 
interoperates with both the PSTN (Public Switched Telephone Network) 
and the Internet. The voice support is based on the Digital Enhanced 
Cordless Telecommunications (DECT) standard, while the data sup- 
port relies on the IEEE 802.11 wireless Ethernet specification. SWAP 
supports streaming services (voice and video) via a centralized network 
controller, as well as ad hoe peer-to-peer transmission for data  services. 
SWAP devices use frequency hopping spread spectrum technology with 
50 hops per second and transmit a t  about 1 Mb/s. Some manufacturers 
allow for an increase in the transmission speed up to  2 Mb/s when little 
interference is present. The range of a HomeRF network covers a typical 
home and backyard (about 75 to 125 feet). The future of such networks 
is uncertain in view of the increasing popularity of WiFi systems for 
home use. 

Bluetooth 

Bluetooth has primarily been proposed as a technology for cable re- 
placement in personal area networks. It  is a low cost, low power, short 
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range wireless link intended as an alternative to IrDA (Infrared Data As- 
sociation) [Infrared Data Association, 20041, which is based on infrared 
light pulses and consequently requires direct line of sight between trans- 
mitter and receiver. 

The Bluetooth standard allows small, inexpensive radio chips (un- 
der $5) to be integrated into many electronic devices (e.g., computers, 
printers, mobile phones, etc.) . Devices that are Bluetooth enabled de- 
tect each other independently (without any user intervention) and form 
a pico-network, within a typical range of 10 meters (using 1 mW of 
transmit power). The piconet is a star network, with one node acting 
as master controlling the transmission of the others. The master node 
synchronizes and schedules the transmissions for all the other nodes. 
Similar to  HomeRF and WiFi, Bluetooth operates in the 2.4 GHz unli- 
censed band. The physical layer interface is based on frequency hopping 
spread spectrum, and it supports one data channel at 721 Kb/s and up 
to three voice channels at 56 Kb/s. Since the standard provides only for 
low rate transmission and supports only very short range transmissions, 
Bluetooth is not a technology replacement for either WiFi or HomeRF 
for wireless LAN implementation. 

Infostations 

As a hybrid architecture between cellular networks and wireless LANs, 
the infostation paradigm [Frenkiel and Imielinski, 1996, Frenkiel et al., 
20001, abandons the anytimelanywhere requirement, replacing it with a 
more affordable "many-timelmany-where" philosophy, and promises to 
deliver data inexpensively ("free bits") for high data rate users. This 
network concept can reduce the cost of providing high-rate data by de- 
creasing the effective bandwidth allocated for high rate users, as a result 
of using only very good channels in the proximity of access points. Un- 
like WiFi, HomeRF, and Bluetooth, the infostation concept is not yet 
implemented in a commercially available system. 

The conceptually simple idea behind infostations is based on the well 
known fact that optimal use of a collection of channels is achieved by 
waterfilling solutions, in which more power is transmitted on the better 
channels [Cover and Thomas, 19911, as opposed to transmitting more 
power when the channel is worse, as is the case for 3G systems. For 
time-varying fading channels, the optimality of waterfilling in time was 
verified in [Goldsmith and Varaiya, 19971, and this result can also be 
extrapolated to  channels whose quality variations are due to distance 
based path loss. Infostations are systems designed to optimize through- 
put, without the constraint of anytime/anywhere coverage, and thus will 
have pockets of very high rate coverage and large areas without any ser- 
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vice. An infostation is a source of information providing low power, very 
high data rate Internet access to portable devices in a limited surround- 
ing area, similar to a hot spot in a WiFi network. 

An example of a potential infostation location is in an airport: an in- 
fostation can be located for example at an X-ray machine in an airport 
security area, so that useful information such as maps and attractions 
at the flight destination point. or recent e-mails and faxes, can be down- 
loaded to a laptop computer that passes through the machine. Similarly, 
an infostation can be placed in a jetway corridor, and data generated 
during the flight can be uploaded, and pertinent local information, such 
as weather and traffic reports can be downloaded on arrival at  an airport 
after a flight. 

The airport example is characteristic of the categories of traffic that 
can be supported by infostations. Obviously, real time applications can- 
not be accomodated, and even for delay tolerant services there are several 
technical challenges that must be overcome. The restricted range of an 
infostation introduces problems of its own: a portable terminal may be 
in the range of an infostation for only a few seconds, which may not be 
enough for completion of a transfer. With very high-speed radios, the 
bottleneck in information transfer in this architecture would be the or- 
ganization and transfer of the information from the Internet to the infos- 
tation in a timely manner. It is likely that infostations would be located 
in a cellular service area, which may support the infostation network by 
providing location updates to the backbone wireline network, which in 
turn will select the next infostation to receive the requested information 
for resuming file transfer (Fig. 1.2 [Goodman, 20001). The coopera- 
tion between these two heterogeneous networks, as well as the perfor- 
mance of such two-tier systems [Kishore et al., 2003, Ortigoza-Guerrero 
and Aghavami, 20001 offer several challenging technical problems still 
requiring solutions. To help relieve the problems associated with the 
information transfer it is very likely that local and general interest in- 
formation would be cached at the infostation site. Examples of location 
dependent information are local area maps, restaurant locations, traffic 
and weather reports, etc. General interest information might include 
stock quotes, electronic news, and popular music recordings. 

The implementation of infostations can be built upon the current com- 
mercially available short range technologies such as IEEE 802.11 wireless 
LANs [Crow et al., 19971, the Bluetooth technology [Bhagwat, 20011, 
or the emerging ultrawideband (UWB) technology [Win and Scholtz, 
20001. The characterization and modeling of the channels for such short 
range communication scenarios is an active area of research [Domaze- 
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Figure 1.2. Illustration of the irifostation concept 

tovic et al., 20021, as are a number of other aspects of the infostation 
concept. 

1.5 Ad Hoc Networks 
An even more forward-looking solution for next generation wireless 

networks, which completely reverses the cellular model, is the ad hoc 
network architecture. 

An ad hoc network is defined as a collection of wireless terminals that 
self-configure to form a network without relying on a pre-existing in- 
frastructure. Cost reduction in such networks is achieved by lowering 
the system price floor related to  the infrastructure costs (base stations 
and auctioned spectrum), and also by their inherent multi-hop capacity 
increase potential. More specifically, ad hoc networks allow for peer-to- 
peer communication, as well as multihop connections, which have been 
shown to improve performance in both cellular (multihop routing to the 
base station)[Jabbari and Zadeh, 20011 and ad hoc network settings. 
As such, it has been shown that the coverage and capacity of ad hoc 
networks (measured in bit-meterslsec) increases with the increase in the 
number of users N. Several studies in the literature have been dedicated 
to  quantify this capacity increase under various scenarios (see for exam- 
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ple [Shepard, 1995, Gupta and Kumar, 2000, Toumpis and Goldsmith, 
2001, Grossglauser and Tse. 2002, Perevalov and Blum, 2003, Comaniciu 
and Poor, 2004c, Gupta and Kumar, 2003, Bansal and Liu, 20031. Early 
work of [Gupta and Kumar, 20001 has shown that a capacity increase 
in the order of 0 ( a )  is achieved for random access, two dimensional 
fixed ad hoc networks. While this is a rather pessimistic result since 
the per node throughput will decrease as 0(1/fi), several papers in 
the literature have shown that some form of multiuser diversity may be 
exploited in ad hoc networks to increase capacity. In [Grossglauser and 
Tse, 2002, Gupta and Das, 2001, Perevalov and Blum, 2003. Bansal and 
Liu, 20031 mobility of the nodes is exploited to improve the capacity 
at the expense of very large to moderate transmission delays. In [Co- 
maniciu and Poor, 2004c, Gupta and Kumar, 20031, signal processing 
based solutions for improved spectral efficiency are used to increase the 
network performance. As we will discuss in more detail later on in the 
book. the work in [Comaniciu and Poor, 2004~1 shows significant user 
capacity increase for given network delay constraints in CDMA ad hoc 
networks using multiuser receivers. 

An information theoretic result in [Gupta and Kumar, 20031 shows 
that a capacity in the order of O(N)  may be achieved for certain classes 
of networks, and gives a constructive example of achieving O ( N )  ca- 
pacity for an ad hoe network using a multiple transmit-receive antenna 
architecture. 

The impact of all these studies is that if signal processing2, com- 
bined with smart resource management techniques (e.g. power control, 
scheduling and routing) can drive the ad hoc network capacity close to 
O(N) ,  then each new user can support itself and the spectrum becomes 
essentially free. While this represents only a theoretical performance 
benchmark, it provides a strong economic motivation for investigation 
of high capacity ad hoc networks as possible future generation wireless 
data network solutions. 

Although, by definition, ad hoe networks do not require any backbone 
infrastructure, they may potentially benefit from establishing a node 
hierarchy, which can improve their performance. However, in contrast 
with the cellular scenario, such a hierarchy is not a design requirement 
for ad hoc networks. 

The lack of infrastructure in ad hoc networks requires new technolo- 
gies for mobility management, service discovery and energy efficient in- 

'1n this book, our focus 1s on signal processing in the form of multiuser dctcction. 
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F~gure 1.3. Ad hoc network illustration 

formation routing, and poses design challenges at all layers of the pro- 
tocol stack. 

Ad hoc networks have the advantage of low cost deployment and they 
can be easily tailored for specific applications. They are suitable for a 
large array of applications [Goldsmith and Wicker, 20021 such as data 
networks, home networks [Lansford et al., 20001, device networks (Blue- 
tooth [Bhagwat, 2001]), sensor networks [Akyildiz et al., 20021, etc. A 
large range of application-dependent network requirements must be met 
regardless of the network topology, the link quality at each local node 
and the node traffic. Moreover, the nodes usually have stringent energy 
constraints as well. Significant research has been directed towards im- 
plementing application-dependent QoS requirements in variable network 
conditions, and has specifically addressed power control, coding, adap- 
tive techniques at the link layer, scheduling at the MAC (medium access 
control) layer and energy and delay constrained routing at the network 
layer. Although most of this research has concentrated on the layered 
protocol approach and has proposed adaptive and distributed techniques 
for the particularly considered layer, recent work shows that significant 
performance improvement can be achieved by considering cross-layer 
design in ad hoc networks (eg .  [Bertocchi et al., 2003, Cruz and San- 
thanam, 2003, Goldsmith and Wicker, 2002, Jabbari et al., 2002al). 

The use of a DS-CDMA (direct sequence CDMA) air interface for ad 
hoc network implementation would have many desirable advantages such 
as high capacity, low probability of intercept and robust performance in 
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narrowband interference (particularly attractive for unlicenced bands) 
and fading. As will become clear in the next section, the use of multiuser 
receivers may be especially beneficial for CDMA ad hoc networks for 
which tight power control may be difficult to implement. Further, the 
use of CDMA transmitter optimization could also alleviate the nearlfar 
problem and consequently, significantly increase the network capacity. 

1.6 Cross-Layer Design 
To summarize the above, several diverse solutions have been proposed 

for next generation wireless networks. A question that remains to be an- 
swered is: should fourth generation (4G) networks be application-specific 
or should they be designed to be flexible enough so that they will be able 
to support a large array of applications? Most of the network architec- 
tures that we have presented in Section 1.4 are application specific, and 
provide support for limited mobility. The infostation paradigm extends 
the mobility support by conceptually implementing a wireless LAN with 
roaming. Also, mobility extensions for Winlax are under consideration 
in the IEEE 802.16e version for the MAN standard. 

Nevertheless, some of the data networks discussed previously are not 
suitable for real time applications with mobility (e.g. emergency com- 
munications and real-time interactive services such as interactive video 
and browsing, or voice calls). Most probably, these services will still be 
deployed in cellular type networks. or maybe in ad hoc networks, or a 
combination between the two architectures (e.g. [Jabbari et al., 2002bl). 
While radio resource management remains a key component in such net- 
works, further significant performance gains may be obtained in CDMA 
based networks by employing multiuser receivers. 

In this book, we focus on the current design approaches and state-of- 
the art analytical tools for wireless CDMA networks that use multiuser 
detection in cross-layer design; that is, design that simultaneously con- 
siders the requirements of multiple network layers. 

Cross-layer design has recently captured the interest of the research 
community due to its possible performance advantages over the tradi- 
tional layered network design approach. To ensure QoS delivery, adapt- 
ability to channel transmission conditions should be implemented at  all 
layers of the protocol stack. A key question that arises is whether this 
adaptability should be implemented at each layer independently (Fig. 
1.4), preserving the classical rnodular design approach of the Open Sys- 
tems Interconnect (OSI) model, or the optimization should be jointly 
implemented over multiple layers of the protocol stack (Fig. 1.5). 

This question has stirred some debate over the advantages and dis- 
advantages of cross-layer design. The advantages of using a modular 
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Network Layer 

Fzgure 1.4. Adaptation a t  local layers in the OSI model 

approach are increased flexibility in upgrading certain layers, easy de- 
bugging, and low complexity. These are key properties that should be 
preserved in a cross-layer design approach, to ensure that the short term 
gains in performance and capacity can be transformed into long term 
gains [Kawadia and Kumar, 20031, while considering cost, maintainabil- 
ity and standardization [Shakkottai et al., 20031. 

The advantages of a cross-layer design approach are direct conse- 
quences of the nature of the wireless link itself. The wireless link charac- 
teristics affect all levels of the network protocol stack, and therefore all 
layers must be responsive to changing channel conditions. Furthermore, 
tight coupling between protocols at different layers exists. 

For example, at the physical layer, receiver filters can be dynamically 
adjusted to respond to interference changes; at the link layer, power, 
rate and coding can be adapted, again affecting the interference level; 
at  the MAC layer, adaptive scheduling can be implemented based on 
the current level of interference and on the current link quality; adap- 
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Figure 1.5. Cross-layer adaptation 

tive routing (for ad hoc networks) or soft handoff (in cellular systems) 
can be implemented in response to the current interference level and 
distribution in the network; a t  the application layer, soft QoS can be de- 
fined, where the application QoS requirements are dynamically adjusted 
depending again on the current interference levels. 

All the above adaptation protocols react to, and have an impact on, 
the interference level and distribution in the network. As a consequence, 
for efficient design, the adaptation protocols a t  each layer should not be 
independently developed, but rather should be designed in an integrated 
way, such that the interdependencies between layers can be exploited. 
Some extensively studied, classical examples of cases in which integration 
of different adaptation techniques at different layers is crucial for the 
performance of wireless networks, include the interaction between source 
and channel coding (e.g. [Aazhang et al., 1998]), and the interaction 
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between data link layer protocols and the transport control protocol 
(TCP) (e.g. [Kostic, 20011, [Harris et al., 20011). 

More recently, cross-layer design optimization of resource manage- 
ment algorithms has been proposed for various network scenarios and 
considering various performance measures (see for example [Alonso and 
Agusti, 2004. Cruz and Santhanam, 2003, ElBatt and Ephremides, 2004. 
Jabbari et al., 2002a, Jung and Vaidya, 2002, Radunovic and Boudec, 
2002, Radunovic and Boudec, 20041 and the references therein). For 
ad hoe networks, energy efficient routing implies tight interdependencies 
among all layers of the protocol stack [Bertocchi et al., 2003. Cruz and 
Santhanam, 2003, Goldsmith and Wicker, 2002, Jabbari et al., 2002al. 

The development of cross-layer protocols enhances the network's abil- 
ity to adapt: performance information can be exchanged among layers 
for an optimal response to  degrading transmission conditions. The inte- 
grated adaptive protocol must still have an hierarchical structure. since 
network variations take place on different time scales: for example, vari- 
ations in the achieved link signal-to-interference ratio (SIR) are very 
fast, on the order of microseconds for high speed mobility, while varia- 
tions in users' traffic are much slower, on the order of tens to  hundreds 
of seconds [Goldsmith and Wicker, 20021. The rate of adaptation for a 
protocol is determined by its location in the protocol stack. However. 
information exchange between layers and joint optimization may greatly 
improve the system performance. 

Fundamental questions that must be answered in cross-layer design 
are: what information should be exchanged among layers, and how 
should such information be factored into each layer's performance adap- 
tation algorithm [Goldsmith and Wicker, 2002]? In this book, we address 
these questions in the context of integrating the network and physical 
layer performance in wireless networks using multiuser receivers. l i e  
begin, in the following section, with an introduction to  basic principles 
and results for multiuser detection, and with a general discussion of the 
tradeoffs involved in choosing the "right" receiver for next generation 
wireless networks. 

2. Introduction to Multiuser Receivers: 
Pros and Cons 

In CDMA systems, the notion of capacity is directly related to the 
QoS perceived by the users. In general, a certain bit error rate (BER) 
target is required, which is application specific (e.g. lop3 for voice users, 
and or better for data applications). The achieved BER is directly 
related to  the level of interference in the system, which thus dictates 
the system capacity. It immediately follows that any improvement in 
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the management and suppression of interference, greatly impacts the 
system capacity. 

Matched filter (MF) receivers, in combination with tight power control 
and powerful coding have been shown to have reasonably good perfor- 
mance for second generation CDMA systems supporting only voice users. 
Indeed, under a white Gaussian noise model for the multiple-access in- 
terference (MAI) , the matched filter receiver is optimal. However, this 
model is not accurate for wireless data systems, especially when the 
traffic is characterized by high burstiness as is the case with multimedia 
traffic. The structure of MA1 can be exploited to build better receivers, 
which leads to the development of multiuser detectors. Better interfer- 
ence management will also certainly increase spectral efficiency, which 
of course is a desirable feature for all wireless networks. 

In what follows, we address the following question: is multiuser detec- 
tion (MUD) the right solution for future generation wireless networks? 
In order to answer this question, we start with several more basic ques- 
tions: Why is multiuser detection superior to conventional, matched 
filter detection? What is the performance/complexity tradeoff for var- 
ious MUD schemes? And, do we still need power control if multiuser 
receivers are used? 

2.1 Performance of Matched Filter Receivers 

Consider a single cell synchronous DS-CDMA system with K active 
users. The received signal at the base station in such a system can be 
expressed as [Verd6, 19981 

where Ak, bk ,  sk( t )  are the received signal amplitude, the transmitted 
symbol and the signature waveform, respectively, of user k ,  and n( t )  
is an additive white Gaussian noise (AWGN) process with power spec- 
tral density a'. For simplicity, we assume throughout that the symbols 
{bk) take binary il values, although other cases are readily treated. 
When the symbols are taken to be random, we assume that they are 
independent, taking the values &1 equiprobably. 

For random signature sequences , the signature waveform sk(t) can 
be written as 
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where N is the spreading gain, sk,, k = 1 , .  . . , K, j = 1 , .  . . , N are 
independent equiprobable 4 1  random variables, T, is the chip duration 
and p ~ ,  is the deterministic chip waveform, assumed to have unit energy. 
The vector s z  = [ski, skz.. . . , skN]  is the signature sequence of user k, 
and N is the spreading gain. The normalized cross-correlation between 
two users' signature waveforms over the bit duration Tb can be defined 
as 

Equation (1.4) is equivalent to 

For random signature sequences, it can be shown that E{pk,[) = 0, and 
E{pi,,) = 1/N [Verdc, 19981. 

Although a synchronous CDMA system is harder to implement in 
practice for the reverse link of a cellular system than for the forward 
link (it requires access to a common clock or closed-loop timing con- 
trol), it is usually the model considered in theoretical analyses. This 
is due to  the fact that the insights gained using a simplified analysis 
can be, in general, easily extended for a one shot analysis approach 
for asynchronous systems. In an asynchronous system, because of the 
time offsets among the reception of users' signals, one must take into 
account the fact that users transmit a frame or a stream of bits: bk = 

[bk [-MI, . . . , bk [0], . . . , bk [MI]. If we consider a one shot approach for 
detection, then for the symbol bk[O] of user k (the user of interest), an 
interfering user e would affect the desired user partly by transmiting bit 
be[-11 and partly by transmiting bit be[O] (Fig. 1.6). 

To characterize the influence of user ! on user k ,  equivalent virtual in- 
terfering users can be defined, having signature waveforms corresponding 
to the left (si(t))  and right (sg(t)) signature waveform of user t: 

where ~e is the time offset of user j relative to user k, and Be is the 
partial energy of the et'"nterfering signal over the left overlapping bit. 
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Figure 1.6. Asynchrorious CDMA: basic model 

Thus, a two-user asynchronous system can be viewed as a three-user syn- 
chronous system, and by generalization, a K user asynchronous system 
is equivalent to a synchronous one with 2K - I users. 

Due to  this equivalence, many theoretical results developed for syn- 
chronous users can be readily adopted for asynchronous systems. With 
this in mind. in what follows we focus our presentation on synchronous 
systems, as described by (1.2). 

The general multiuser detection problem is to determine the transmit- 
ted symbols for all users, given the received signal r ( t ) .  In [ V e r d ~ ,  19861 
it was shown that the appropriately sampled outputs of filters matched 
to the various users' signature waveforms form a sufficient statistic for 
this decision problem. Given a symbol duration Tb, these matched filter 
outputs are given by 

For the conventional matched filter detector, the decision is made by 
quantifying these outputs directly as 

bk = sgn(vk), k = I , .  . . , K. (1.9) 
where sgn(.) denotes the algebraic sign of its argument. 

Equation (1.9) represents the optimal decision for detection in the 
presence of white Gaussian noise only, under both maximum likelihood 
(ML) and maximum a posteriori probability (MAP). In a multiuser set- 
ting, the matched filter outputs also contain multiple access interference 
(NAI) components which are not white Gaussian random variables. The 
output of the matched filter for user k can be expressed as 
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K 

yk= A + C p k , e ~ e b e +  nk (1.10) 
v 

e#k 
v 

desired signal , , Gaussian noise 
M AI 

where nk = ~2 n(t)sk(t)dt.  
To illustrate the performance of the matched filter we consider a sim- 

ple two-user example (K = 2) with pl,2 = p2,l = p. Without loss of 
generality, consider the bit error rate for user 1, which can be expressed 
as 

pTf = P(& # h)  = i P(y l  < O / h  = +1) +i P(y l  > Olbl = - I ) .  
v '-"-4 

P+ P- 

BY symmetry, P+ = P-, and thus, pTf = P+ = P-. We derive P- as 
follows 

Since the signature waveforms are normalized, n l  - N(0,  a 2 ) .  Hence 
the probability of error for the conventional matched filter receiver is 
given by 

where Q(2) = Jzm ept2I2dt. 

Since Q(.) is monotonically decreasing, an upper bound on the prob- 
ability of error is given by 

The bound is smaller than 112 if 2 < h, which is called the "open eye" 
condition (the interferer is not dominant). If the interferer is dominant, 
the conventional receiver exhibits the nearlfar problem: the error prob- 
ability is not monotonic with the noise power, and a powerful interferer 
can completely obscure the reception of a less powerful user. 

From the network performance point of view, the achievable power 
efficiency (the required signal to noise ratio for a given BER target) is 
of special interest. This can be best illustrated by using power tradeoff 
region diagrams, which represent the set of required signal to noise ratios 



Multiuser Detection for Wireless Networks 2 1 

(SNRs) {A:/a2, Az/a2, .  . . , A;/a2), such that max P[ 5 C, where P[ 
k 

is the error probability of user k ,  and 5 is a target bit error rate. 
In Fig. 1.7 two-user power tradeoff regions are depicted for the 

matched filter receiver for different values of the cross-correlation co- 
efficient between the users' signature sequences, and for a bit error rate 
requirement of < = The upper bound in performance is achieved 
when the signature sequences are orthogonal, which is equivalent to  the 
case of a single user in additive white Gaussian noise. For fixed cross- 
correlation, the best performance is obtained for equal powers. Note 
that,  as the cross-correlation increases, the sensitivity to imbalances in 
the received powers increases as well, and also higher energies are re- 
quired, even for the case of perfect power control (A1 = Aa). 

5 10 15 20 25 
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Figure 1.7. Power tradeoff regions for two uscrs employing matched filter receivers 

5 - 
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In early work on multiuser detection [Verdc, 19861, the near/far prob- 
lem was shown to be a consequence of the inability of the matched filter 
to exploit the structure of the MAI, and not to  be associated with CDMA 
in general. An optimal multiuser detector was proposed based on the 
maximum likelihood detection of the transmitted symbols. 

Before analyzing this optimal receiver, we define some performance 
measures frequently used to quantify the performance of multiuser de- 
tectors. 

For a given multiuser detector and background noise level u ,  the ef- 
fective energy of user k, ek(u) ,  is the energy that user k would require 
to achieve the same bit error rate %(a), in an equivalent single user 
Gaussian channel with the same noise level: 

The mult iuser  e f i c iency  represents the ratio between the effective and 
actual energies, ek(a) /A& and quantifies the performance loss due to 
other users in the channel. The asymptot ic  mult iuser  e f i c i e n c y  measures 
the slope with which Pk (a )  goes to zero in the high SNR (signal to noise 
ratio) region: 

qk = lim ek (O)/A:. (1.14) 
0 1 0  

The near/ far  resistance represents the minimal multiuser efficiency, min- 
imized over the received energies of all the other users: 

2.2 Multiuser Detectors 
An optimum detection rule can be based on maximum likelihood de- 

tection of the transmitted symbols. Let y = [yl ,  ya, . . . , yKIT be the 
vector of matched filter outputs, where yk is defined as in (1.10). The 
vector y can be expressed as 



Mu1tiuse1- Detection for Wireless Networks 2 3 

where R is the normalized cross-correlation matrix, with 1's on the 
main diagonal, and entries Rk,! = pk,!, n is a Gaussian noise vector 
with zero mean and covariance matrix equal to a 2 ~ ,  and b is the 
vector of information symbols. The matrix A is a diagonal matrix: 
A = diag[Al,.  . . , AK]. 

The likelihood function of y given b is given by 

i -;(y - ~ ~ b ) ~ ( a ~ ~ ) - l ( y  - R A b )  
d y l b )  = exp ( 2 ~ ) ~ / ~ a ~ l l / 2  

where IR/ denotes the determinant of R. The maximum likelihood sym- 
bol decisions are thus determined as b = arg max R(b) ,  with 

b 

Cl(b) = 2 b T ~ y  - b T ~ b ;  H = A R A .  (1.17) 

The above maximization problem is a combinatorial optimization prob- 
lem which is known to be NP-hard: its computational complexity in- 
creases exponentially with the number of users in the system3. This 
0 ( 2 K )  implementation complexity required by the optimal detector makes 
it impractical for real systems. The optimal detector represents, how- 
ever, a basis for comparison for other, suboptimal, receivers. 

In Fig. 1.8, the power-tradeoff regions for optimal multiuser detection 
receivers are shown for the same bit error rate probability target of 10V3 
that was used to illustrate the matched filter case. We notice a very 
significant performance improvement compared with the matched filter 
case. Further, an interesting observation is that equal powers are detri- 
mental for the optimum receiver, especially for high cross-correlation 
values. An intuitive explanation for this is that the receiver can better 
separate very similar users (with highly correlated sequences) if they are 
at least received with very different powers. 

Although equal power control is not appropriate for this receiver, a 
minimal transmitted power solution can be achieved by implementing 
unequal power control. For example, for p = 0.95, equal power control 
leads to a requirement of (18, 18) dB for the users, while the minimal 
power solution requires only (10,15) d B  or (15,10) dB.  It  can thus 
be concluded that power control still helps to  improve the system per- 
formance, even for the optimal receiver case. The difference from the 

3Note however that ,  it was shown independentely in [Ulukus and Yatcs, 1998c] and 
[Ephremides and Sankaran, 19981 that ,  for synchronous systems and a specific choice of the 
signature sequences (i.e., having negativc cross-correlations), an optimal multiuser detector 
can be implemented with polynomial complexity, 0 ( K 3 ) .  Also, it has been shown in [Schlcgcl 
and Grant, 20001 that ,  optimal multiuser detection for users with equal cross-corrclations has 
a complexity of O ( K  log(K)). 
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F,igure 1.8. Power tradeoff' regions for two users employing optimal rnultiuser dctec- 
tion 

conventional power control for matched filter systems is that ,  in this 
case, unequal power targets are used. The fact that the users can be 
treated interchangeably renders more potential gains for multicell sys- 
tems: a user further away from the base station may be allocated the 
lowest received power, thus reducing the interference perceived by the 
neighboring cells. A more detailed discussion on this topic will follow in 
Chapter 3. 

Numerous suboptimal approaches to  multiuser detection have been 
proposed, to trade off performance and complexity. The most widely 
studied solutions can be classified into two categories: linear and non- 
linear multiuser detectors. For linear multiuser receivers, a linear trans- 
formation is applied to the vector of matched filter outputs, and a new, 
better decoupled. set of decision variables is produced, which can then 
be quantized to produce symbol decisions. The two most important lin- 
ear receivers are the decorrelating detector [3] and the linear minimum 
mean-square error (LhIMSE) detector [4]. Non-linear detection, also 
called subtractive detection, is based on estimating the interference and 
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removing it from the signal before detection. Examples of non-linear 
receivers are the succesive interference cancellation (SIC) [5, 61 and the 
parallel interference cancellation (PIC) receivers [7, 81. This multiuser 
receiver classification is summarized in Fig. 1.9. 

Multiuser 

Optimal 
Maximum Likelihood Receiver Suboptimal 

Non-linear 

Successive 

Ftgure 1.9. A classification of multiuser receivers 

In the linear receiver category, the decorrelator [Lupas and Verdil, 
19891 completely eliminates the multiple access interference by orthogo- 
nalizing the users. Starting from (1.16), if the linear transformation R-' 
is applied to  the outputs of the matched filters, the resulting decision 
vector is given by 

From (1.18) it can be immediately inferred that each component of the 
decision vector yd is interference free. On the other hand, the back- 
ground noise can be enhanced by the transformation R-'. The use 
of this detector requires that the set of signature sequences be linearly 
independent. Two advantages of the decorrelator are that it does not 
require knowledge of the received amplitudes, and it affords a decentral- 
ized implementation. Indeed, the output decision variable, y;;d, for the 
kth user can be expressed as: 
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where R;,! is the ( k ,  O ) t h  element of matrix R-l, and St = cE, R+I. 
Thus, the decorrelator can be implemented as a modified matched filter 
(see Fig. 1.10) of the form 

F q r e  1.10. Decorrelator implcmcntcd as a modified matched filter rcccivcr 

The decorrelating receiver is optimal (in the maximum-likelihood sense) 
when the amplitudes of the signals are not known. In this case, the decor- 
relating detector is obtained through joint maximum likelihood estima- 
tion of the transmitted symbols and amplitudes. Also, the decorrelating 
receiver achieves maximal near/far resistance: r l f  = 1 / R i k .  The prob- 
ability of error achieved by an arbitrary user k using the decorrelator is 
given by 

In contrast with the decorrelator, which is optimized to suppress the 
intereference, and the matched filter, which is optimized for noise sup- 
pression, the LMMSE receiver [Madhow and Honig, 19941 takes into 
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account the relative importance of both interference and background 
noise. The linear transformation for the LMMSE detector is given by 
the solution to the problem 

rnin E { b  - cy12) = c E m i ~ K  trace{cov(b - Cy)}, (1.21) 
C E R ~ X K  

where cov(b - C y )  = E {(b  - C y ) ( b  - c ~ ) ~ ) .  It  is easily seen that 
C*  = A - ' [ R + o ~ A - ~ ] - ~  is the solution to (1.21), and thus the LWIMSE 
decisions are given by 

A 

bk = sgn (([R + a2~-2] - 'y )k )  

The covariance matrix cov(b - C'y) can be expressed as 

and thus the achievable minimum mean square error is 

I1IMSE = trace{cov(b - C'y)} = trace { [ I K ~ K  + o - 2 ~ ~ ~ ] 1 } .  

(1.24) 
To illustrate the trade off between noise reduction and intererence 

supression, we analyze the LMMSE receiver for the k th  user for two 
limiting cases: no interferers, and no noise, respectively 

No interference: Suppose Ak # 0 is fixed and Al -t 0, Vl  = 1 , .  . . , K ,  1 # 
A 2. k ;  then the LMbISE receiver, ([R + 02A-2]-1)(Tow k )  -+ [ A : & 2 ,  0, ..., 01, 

becomes the matched filter receiver. 

No noise: Suppose o + 0; then the LMMSE receiver becomes the 
decorrelator 

As a consequence of the fact that the LMWISE receiver becomes the 
decorrelator when a -, 0, the LhlAlSE detector has the same asymp- 
totic efficiency as the decorrelator. The exact error probability for the 
LMMSE receiver is very difficult to compute. However, a useful approx- 
imation for the bit error probability is [Poor and Verdc, 19971 

where S I R k  is the signal-to-interference-plus-noise ratio of user k a t  the 
output of the LMMSE transformation. Like (1.20), (1.25) depends on 
the number of users. 
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Note that,  for a linear detector based on a transformation C y ,  we can 
write (Cy)k as c c r ,  where c c  is an N x 1 vector, and where r is the 
received vector: 

K 

The vector ck can be interpreted as a set of filter coefficients for detecting 
user k's data. It  is straightforward to show that the LMMSE filter 
coefficients can be derived as 

and the corresponding SIR expression becomes 

where C = o ~ I ~ ~ ~  + c & ~ ~  A~S~S; .  
We can compare the linear multiuser receivers' performance with that 

of the matched filter and optimal receiver using the power tradeoff re- 
gions. In Fig. 1.11, we compare the achievable power efficiency for both 
the LMMSE and decorrelating receivers for a fixed BER requirement of 

To compute the power tradeoff regions for the LMhISE receiver, 
we use the approximate BER formula (1.25). 

Analyzing Fig. 1.11 we notice that the decorrelating and LMMSE 
receivers have fairly close performance characteristics. However, the 
LMMSE receiver generally outperforms the decorrelator4. The differ- 
ence is pronounced when the correlation coefficient is high, since the 
decorrelator's noise enhancement is more significant in this case. In 
terms of sensitivity to  power control imbalances, the decorrelator is ob- 
viously unaffected by the interferers' powers. However, to achieve a 
certain target SIR, a minimum transmitted power for the desired user is 
necessary to surpass the enhanced noise power. Therefore, power con- 
trol might be useful in systems using decorrelating receivers, in order 
to preserve the terminal battery and to reduce the interference seen by 
neighboring cells. The minimal power solution calls for equal received 
powers for all users. For the LMMSE case, we can also notice (and this 
will be proved in Chapter 3) ,  that equalizing the received powers of all 
users can improve the system performance. 

The performance of the linear receivers should be compared with that 
of the optimal receiver (Fig. 1.8) and the matched filter receiver (Fig. 

4 ~ h i s  is not uniformly the case however [Moustakides and Poor, 20011 
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Fzgure 1.11. Power tradeoff regions for two users crnploying the dccorrclating (solid 
line) and LMhlSE (dash-dot linc) rcccivcrs. 

1 .7 ) .  Notice that the linear filters and the optimal receiver have very 
similar performance for the equal received power case, which represents 
the best case for the suboptimal receivers, but a worst for the optimal 
receiver. However, a very significant gain in performance is achieved in 
general compared with the matched filter case. 

In terms of complexity, both the decorrelating and LMMSE receivers 
require computing the inverse of a K x K matrix related to  the cor- 
relation matrix of the signature sequences, which can be achieved with 
0 ( K 3 )  complexity. Using a direct implementation, this matrix inverse 
must be computed each time a user changes activity (enters or exits 
the system, goes on and off temporarily, etc.). To decrease the compu- 
tational complexity, rank one updates, and order updates can be used 
to compute the inverse of the correlation matrix or its Cholesky factor- 
ization. Based on these techniques, detector update algorithms having 
computational complexity of 0 ( K 2 )  have been proposed [Juntti. 19951. 

Direct implementation of linear detectors requires knowledge of the 
cross-correlation matrix R. This can be avoided if the filters are imple- 
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mented adaptively, with as little knowledge as the timing of the desired 
user. However, some adaptive implementations require the use of train- 
ing sequences, which in turn represents a waste of system bandwidth. As 
an alternative solution, blind adaptive algorithms have been proposed 
that require only the knowledge of a desired user's signature sequence 
and its timing information. Note that this is the same amount of infor- 
mation required for a matched filter implementation. This is particularly 
attractive for ad hoe networks, in which information about network sig- 
naling structure is inherently decentralized. 

An additional advantage of an adaptive implementation in cellular 
systems is that a linear adaptive LMMSE detector can supress other-cell 
interference, in addition to the intra-cell interference. Furthermore, a co- 
herent solution can constructively combine any multipath components 
falling within the filter's window span [Honig and Tsatsanis, 20001. A 
disadvantage is that blind algorithms usually work only for systems with 
so-called short spreading codes, i.e., systems for which the same spread- 
ing code is used during every symbol interval. This type of spreading 
code is not used in existing 2G and 3G cellular telephony systems. 

Because of the above mentioned advantages. considerable work has 
been done on designing low complexity blind adaptive algorithms with 
minimal performance loss compared to direct implementation. In prac- 
tical systems, complexity, tracking and convergence for such algorithms 
are important performance measures. 

Among the most representative blind adaptive algorithms, we mention 
the BADD (blind adaptive decorrelating detector) [Ulukus and Yates, 
1998b], the NIOE (minimum output energy) detector [Honig et al., 19951, 
and subspace tracking methods [Wang and Poor, 19981. This list is by no 
means exhaustive: surveys of adaptive multiuser receivers can be found 
in [Madhow, 20001, [Honig and Tsatsanis, 2000], [Lim and Roy. 19981 
and [Wang and Poor, 20041. 

The BADD receiver is based on a stochastic convergence to the decor- 
relating receiver in the mean square sense. It  requires knowledge only of 
the signature sequence of the desired user and the variance of the addi- 
tive white Gaussian noise. Its complexity is O(N)  per iteration (Recall 
that N is the spreading gain). However, the performance of the de- 
tector depends on the adaptation step size, and for a small achievable 
mean-square error (MSE), the convergence rate is very slow. 

The minimum output energy detector is an adaptive implementation 
of the LMhlSE receiver, based on the observation that the mean square 
error is minimized when the variance at  the output of the linear trans- 
formation is minimized within an "anchor" constraint on the filter coeffi- 
cients. The adaptive algorithm uses a constrained optimization approach 
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and is very sensitive to possible desired-signal signature mismatch that 
could occur as a result of multipath fading and timing errors. To avoid 
complete cancellation of the desired signal, one solution proposed in 
[Honig et al., 19951 is to switch to a decision directed mode before the 
SIR is compromised. The implementation complexity of the MOE de- 
tector depends on the update algorithm. For least-mean-squares (LMS) 
updates the complexity is O(N)  per iteration, while for recursive least 
squares (RLS) updates, the complexity is O ( N ~ )  per iteration. 

A more robust alternative to  implementing blind LMMSE, as well as 
decorrelating receivers, is based on subspace tracking [Wang and Poor, 
19981. Both the LMMSE receiver and the decorrelator can be expressed 
in terms of signal subspace parameters which can then be tracked using 
the PASTd [Yang, 19951 or other subspace tracking algorithms. This 
approach also offers the capability of tracking the rank of the signal sub- 
space, which is equivalent to tracking the number of active users. The 
complexity of this approach is O ( K N )  per iteration, and it achieves 
better performance compared to the MOE receiver. Simulation results 
show slow convergence with random initialization; however, this can be 
improved if an SVD (singular value decomposition) is used for initial- 
ization. 

To summarize the above discussion, although linear detection avoids 
the exponential complexity of optimal multiuser detection, there are still 
complexity issues associated with the implementation of linear multiuser 
receivers. Of particular importance for future wireless networks are the 
number of floating point operations (flops) and the required information 
for filter computation and updates, as well as the rate of convergence to 
the desired filter for the adaptive implementations. We summarize these 
important properties for the linear receivers discussed above in Tables 
1.1 and 1.2 

Table 1.1. Linear Receivers: Inforniatiori Requirements 

Rep. Inf. M F  Dec. L M M S E  Adapt. LMMSE/Dec.  Blind LMMSE/Dec 

Code user J J  J 
Code interf. - J d 
Timing user J J 
Timing interf. - J 

J J 
J 

Rec. amplit. - d 
Noise level 4 
Training seq. - J 
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Table 1 2. Linear Rcceivcrs: Implementation Complcxitj 

Dec. L MMSE LMMSE/Dec. ,updates Blind LMMSE/Dec. 

o ( K ~ )  o ~ K ~ )  o ( K ~ )  o ( Iv~) /o(KN)/o(N)  

To achieve further complexity reduction, non-linear interference can- 
cellation receivers have been proposed. Successive interference cancella- 
tion (SIC) receivers are among the least complex of multiuser detectors. 
At each stage of SIC, a single user is detected and removed from the 
overall received signal. so that the users detected at later stages see re- 
duced multiple access interference. The current user is detected using its 
matched filter detector. Its signal is then respread and subtracted from 
the next user's received signal. The disadvantage of this scheme is that 
it is very sensitive to decision errors in previous stages. If a signal can be 
correctly reconstructed then it is completely removed from subsequent 
stages, but if there is an error, the interference is doubled. To improve 
SIC performance, the "hard" intermediate decisions can be replaced by 
"soft" decisions. This can be achieved by replacing the sign function in 
the matched filter receiver by a different nonlinearity. For example, a 
good option is to  use the hyperbolic tangent function scaled with the 
SIR. This function is very similar to the sign function in the high SIR 
regime but discounts the effect of unreliable decisions in the low SIR 
regime. A simplified block diagram for an SIC detector is presented in 
Fig. 1.12. 

An exact evaluation of the bit error rate of the SIC receiver is very 
difficult. Usually, the performance is measured using simulations, or 
is computed using approximations. A commonly used approximation 
assumes that the system performance is equivalent to that of a single 
user matched filter with a supplementary Gaussian noise source having 
zero mean and variance 1/N for each interferer [Verdfi, 19981. Conse- 
quently, the probability of error for user k can be approximated using 
the following recursive formula: 

The expression in (1.29) enables the derivation of power tradeoff re- 
gions for appropriate bit error rate targets. 
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Figure 1.13. Power tradeoff regions for two users employing succesive interference 
cancellation detector 
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The power tradeoff regions are shown in Fig. 1.13 for a target bit- 
error rate of lo-? We first notice an asymmetric performance for the 
two users. This is an inherent property of the succesive interference 
cancellation scheme: while the user decoded first is strongly affected by 
the power of the interfering user (matched filter performance), the second 
user might have performance close to the single user system. Note that,  
in practical systems. the cancellation of the first user is not perfect, since 
it is strongly affected by the bit error rate and by amplitude and phase 
estimation errors. A more detailed discussion on this subject will follow 
in Chapter 3. 

Due to  the asymmetry in BER performance, equal power control rep- 
resents the worst case for systems using SIC receivers. Nevertheless, 
SIC systems can benefit from unequal power control, such that users re- 
ceived with higher powers can be detected first. Although this represents 
a straightforward solution for the detection order, it completely neglects 
the effect of correlations between users. A better solution is to detect 
the users in the decreasing order of their energies a t  the output of the 
matched filter receivers [Patel and Holtzman, 1994aI. A more detailed 
discussion of the detection order for power controlled SIC receivers will 
follow in Chapter 3. Comparing Figs. 1.13. 1.11 and 1.7, we can see that 
SIC receivers (especially used in conjuction with unequal power control) 
outperform the matched filter receiver but have worse performance than 
that of the linear receivers. On the other hand, the reduction in com- 
plexity is substantial compared with their linear conterparts. although 
there is a penalty in increased detection delay. The implementation com- 
plexity and the detection delay for the SIC receiver grow linearly with 
the number of users. To reduce the detection delay, parallel cancellation 
(PIC) can be implemented, which detects all the users in parallel, then 
reconstructs the interference and subtracts it from the useful signal. A 
comparison between SIC and PIC receivers can be found in [Patel and 
Holtzman, 1994131. 

To improve the performance of PIC, multiple stages can be imple- 
mented, which successively refine the estimates of the interfering symbols 
for progressively better cancellation. However, multistage PIC cannot 
guarantee improvements in performance with an increase in the number 
of stages, since incorrect decisions lead to further performance degrada- 
tion. A solution to this problem has been proposed in [Divsalar et al., 
19981: only a partial cancellation of the MA1 is implemented at  each 
stage, with a weighting factor selected according to  the level of confi- 
dence for the estimators. 

Although parallel interference cancellers have lower detection delay 
than SIC receivers, they have a higher complexity than does SIC. How- 
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ever, if parallelism is exploited, the time complexity of PIC can be greatly 
reduced and the number of operations per processor become significantly 
less than that for SIC. 

On a final note, we mention that blind successive interference cancel- 
lation receivers have been recently proposed [Samardzija et al., 20021, 
which require only the knowledge of the desired users' signature se- 
quences, timing and power. As in the case of blind linear receivers, 
the approach here uses the sample covariance matrix of the received sig- 
nal vector. Based on a maximum mean energy (MME) criterion, dom- 
inant interference components from the received signal are successively 
removed in a blind manner. 

More sophisticated iterative multiuser detectors can be developed by 
exploiting structure in the symbol vector, improved either through prior 
information or through error control coding. Such detectors can span the 
performance gap between linear and optimal multiuser receivers, while 
maintaining relatively low complexity [Poor, 20041. 

2.3 Performance of Blind Receivers 
In this section, we discuss the performance of blind and group-blind 

multiuser receivers. Group-blind multiuser receivers are hybrid receivers 
built using knowledge of the spreading sequences for only a subset of 
the users in the system. A group-blind linear multiuser receiver zero- 
forces the interference caused by the known users, and suppresses the 
interference caused by the unknown ones using an MMSE criterion. 

In what folows, we will summarize the performance analysis results 
presented in [Zhang and Wang, 2002bl for networks using blind LMMSE 
receivers. The analysis in [Zhang and Wang, 2002bl assumes that deter- 
ministic codes are used, and the receivers are estimated from the received 
signal samples. The number of received signal samples required for filter 
estimation is denoted by T. 

For blind receivers, an estimate of the filter vector Zk for an arbitrary 
user k is obtained from the received signals {r[n])&l (r[n] is the nth re- 
ceived signal vector in a sequence of T samples used for estimation, with 
the received vector being defined as in (1.26)), such that the estimation 
error can be denoted as 

and it is characterized by a covariance matrix C,.  
The estimation error Ack ,  as well as its covariance matrix. depend 

on the actual implementation of the blind receiver. In [Hgist-Madsen 
and Wang, 20021 and [Zhang and Wang, 2002b], two different imple- 
mentations are considered: the direct matrix inversion (DMI), and the 
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subspace approach [Wang and Poor, 19981. It  can be shown that the 
exact linear MMSE receiver can be computed as 

where C, is the covariance matrix of the received vector, and u,A,'u: 
is the singular value decomposition of the covariance matrix C,. Based 
on (1.31), the DM1 method replaces the exact covariance matrix of the 
received vector by 

I- 

such that 
A - -1 
Ck = Cr  Sk. 

For the subspace method, the eigencomponents of the exact covaria- 
tion matrix (Us and A,) are replaced in (1.32) by the ones computed 
using a,, 6, and As, such that 

If the number of samples used for filter estimation is large, it has 
been shown that for a fixed number of users and fixed spreading gain, 
the output SIR for the blind LMMSE receiver can be approximated as 

where 

and 
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with 

More information is available for constructing the filter coefficients for 
the group-blind receiver: the signature sequences of K users are assumed 
to be known, while those of the remaining K - K users are unknown. 
I t  is assumed that s has full column rank, where the columns of s are 
the K known signature sequences. Denoting by 6, the unit vectors in 
]ELK, it can be shown that the filter vector for an arbitrary user k can 
be computed as 

Using the following partitioning and notation, 

(yhere R = S'S, P = diag(Pl, , .. . , PK) ,  and Qllhas dimension K x 
K), it was shown in [H@st-Madsen and Wang, 20021 that the SIR for the 
group-blind receiver, can be approximated as 

where 

and 
N - K  

C3 = 7 02[Q;;m;;]1,1. 
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3. Multiuser Detection for Next Generation 
Wireless Networks 

As we have previously discussed in Section 1, future generation wire- 
less networks face the challenge of providing low cost, high data rate 
transmission for a diverse population of users with a wide range of QoS 
specifications. While the emerging third generation standards have been 
successful in increasing the data transmission rate, this is still achieved 
at the expense of increased energy consumption and high bandwidth de- 
mands. One possible technique for increasing wireless network efficiency 
and consequently for decreasing the total system cost for providing high 
data rate services is to use multiuser receivers. So why have commercial 
systems not yet adopted this powerful technique? The short answer is 
implementation complexity. Furthermore, the performance advantages 
of multiuser receivers are reduced by their sensitivity to imperfections 
in channel tracking (tracking errors in frequency, phase, and timing). 

As we will discuss in later chapters in the book, it has been shown 
that,  although both linear and interference cancelling receivers are af- 
fected by imperfections in channel estimation, they still preserve their 
performance advantages over the matched filter receiver. We will specif- 
ically discuss in Chapter 3 the impact of imperfect channel estimation 
on system capacity for systems using linear receivers and for those using 
a combination of linear receivers and successive interference cancellation 
schemes (groupwise successive interference cancellation). The impact 
of imperfect amplitude and phase estimation for successive interference 
cancellation receivers will also be examined in Chapter 3. 

In terms of implementation complexity, successive interference cancel- 
lation receivers are the least costly to implement but also have the dis- 
advantage of long detection delays. For large numbers of users this may 
be unacceptable, especially for delay sensitive applications. Although 
linear receivers are more costly to implement, they are superior to inter- 
ference cancellers in terms of combating the multiple access interference. 
The tradeoffs between implementation costs and performance must be 
balanced carefully when choosing a particular receiver over another. 

Several studies have focussed on comparisons among these subop- 
timal receivers, under various conditions. For example, comparisons 
among SIC, partial PIC, decorrelating and LMMSE detectors are pre- 
sented in [Buehrer et al., 19961 for various conditions such as perfect 
power control (equal received powers for all users), single path Rayleigh 
fading and twopath frequency selective Rayleigh fading. The results in 
[Buehrer et al., 19961 show that, for perfect power control, the partial 
PIC has the best performance, while the LMMSE and the decorrela- 
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tor perform similarly. For Rayleigh fading channels, the linear receivers 
have a performance advantage, and the performance gap increases for 
the two-path channel. The performance of PIC and decorrelating re- 
ceivers is also compared in [Juntti et al., 19971, where a BPSK (binary 
phase-shift keying) CDMA system operating over a multipath Rayleigh 
fading channel is considered, together with decision directed channel 
estimation. Simulation results in this paper indicate that with low to 
moderate signal-to-noise ratio, PIC outperforms the decorrelator. The 
decorrelator is only superior to  PIC under severe near-far scenarios at 
high SNR. 

Performance comparisons between SIC and PIC receivers have been 
presented in [Buehrer et al., 19961 and [Patel and Holtzman, 1994bl. 
The general observation is that perfect power control with equal pow- 
ers benefits PIC receivers while significantly reducing the performance 
of SIC. As we will see later in this book, optimal SIC performance is 
achieved using unequal power control. This result is also suggested by 
the power-tradeoff regions of the SIC receiver shown in Section 2. 

Due to their reduced implementation complexity, interference cancel- 
lation receivers are currently preferred for implementation in cellular 
wireless networks. Several companies, such as Fujitsu, NTT DoCoMo 
and NEC, have built suboptimal reduced complexity multiuser receivers. 
based on either successive interference cancellation, or parallel interfer- 
ence cancellation [Ephremides et al., 20001. Capacity improvements on 
the order of 100% compared with systems using conventional receivers 
have been reported, when no intercell interference is present. For the 
multicell case, the capacity was improved 1.3 times compared with the 
conventional receiver case. 

The performance of PIC receivers can be improved by cascading sev- 
eral detection stages as in [Xu et al., 20021, where a real-time prototype 
VLSI implementation of the multistage PIC algorithm is presented. 

Important progress has also been made in implementing both linear 
multiuser detectors and interference cancellation receivers using software 
radio technology based on a combination of DSP and FPGA (field pro- 
grammable gate array) devices [Seskar and Mandayam, 1999a, Seskar 
and Mandayam, 1999bI. Software radios can be used to  provide recon- 
figurable radio architectures for diverse QoS guarantees. A combination 
of receiver flexibility and integrated resource management may offer the 
widest range of QoS guarantees in wireless networks. 

While DSP implementation is currently too power-inefficient to be 
used in mobiles, rapid advances in DSP and CMOS (Complementary 
Metal-Oxide Semiconductor) technologies will most likely make possible 
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the use of multiuser receivers for mobile terminals in next generation 
wireless networks. 

4. Multi-Rate Multiuser Detection 
One of the requirements for the next generation wireless networks is to 

integrate a wide range of applications, requiring a correspondingly wide 
range of transmission rates. To implement multirate communications in 
CDMA systems, several strategies have been proposed, such as 

1 Fixed processing gain, variable chip rate [Wu and Geraniotis, 19941, 
[Wyrwas et al., 19921; 

2 Fixed chip rate, variable spreading gain [Ottosson and Svensson, 
19951, [Wu and Geraniotis, 19941, [Wyrwas et al., 19921; 

3 Multicode (MC) [Chih-Lin and Gitlin, 19951 [Ottosson and Svensson, 
19951; 

4 Multi-modulation [Ottosson and Svensson, 19951. 

The fixed processing gain, variable chip rate strategy introduces signif- 
icant implementation complexity issues such as the need for synchroniza- 
tion of the receiver to its particular code rate and the need for additional 
frequency planning due to the unequal bandwidth spreading for differ- 
ent users. For that reason, the other three strategies are preferred, with 
the most popular choices being the fixed chip rate variable processing 
gain scheme and the multicode scheme. The two preferred implementa- 
tions have similar performance, with a slight advantage for the multicode 
method [Ottosson and Svensson, 19951, [Yao et al., 20041, and outper- 
form the multi-modulation scheme, which suffers from a severe near/far 
problem [Ottosson and Svensson, 19951. The multi-modulation access 
strategy employs an M-ary QAM (quadrature amplitude modulation) 
scheme and varies the modulation level, M to accommodate multiple 
bit rates. Different modulation schemes require different transmission 
powers; hence the occurrence of the near/far problem in such systems. 

In the multicode access strategy, all users multiplex their information 
symbols onto multiple low rate signature waveforms. One advantage of 
this scheme is that all the users have the same processing gain, and thus 
it may be easier to construct signature sequences with good crosscor- 
relation properties. However, this access scheme yields a high peak-to- 
average power ratio for high rate users, since the sum of many parallel 
channels gives rise to large amplitude variations. As a consequence, the 
multicode access strategy requires more costly power amplifiers. 
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The fixed chip rate, variable spreading gain (VSG) scheme performs 
similarly to the multicode method for both AWGN (additive white Gaus- 
sian noise) and multipath fading channels. For very high rate users only 
a small spreading gain is used, making this technique more susceptible 
to intersymbol interference and sensitive to external interference from 
neighboring cells [Ottosson and Svensson, 19951. Three different detec- 
tion strategies for variable spreading gain systems have been proposed: 
the low rate detector (LRD), the high rate detector (HRD), and group- 
wise successive interference cancellation (GSIC). Due to similarities be- 
tween the LRD and HRD, we first focus our discussion on these two 
schemes. To explain the conceptual differences between the LRD and 
HRD, we consider a simple two-user system, in which one user transmits 
with a high rate (user 2), equal to n/f times the rate of the lower rate user 
(user 1). As a consequence, in user 1's bit interval of width T:'), user 2 

transmits M bits, each within a bit interval of width T:') = T:')/M (see 
Fig. 1.14). In the example shown in Fig. 1.14, user 1 transmits bit 1 
while user 2 transmits a succession of bits: {I,  1, -1, l ) .  These bits mod- 
ulate a spreading sequence of length N1 = MN2. In the example from 
Fig. 1.15, N2 = 6, N1 = 24 and M = 4. In the LRD case, the detector 
operates a t  a lower bit rate and therefore, a decoding delay of h1 bits 
is incurred for the high rate user. To implement an LRD, an equivalent 
system is considered in which each high rate user is equivalent to  M 
virtual low rate users, which have expanded signature sequences. The 

( expanded signature sequences ii) for virtual user i, i = 1. 2. .  . . , M ,  are 
constructed by zero padding the original signature sequence for trans- 
mitted bit i ,  to  form an extended signature sequence of length MN2.  
For the considered example: 

Therefore, the equivalent LRD implementation is a simple multiuser 
detector implementation for a system with K = K1 + MK2 virtual users 
( K 1  is the number of low rate users and K2 is the number of high rate 
users). 

An alternate implementation of multirate multiuser detectors is the 
HRD, which operates a t  the higher transmission rate, and therefore out- 
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Piyu~e 1.14. Bit transmission for multirate systems 

low rate user 1 

n i l 1 1  n n m n \ 

%utanl usel (2, 1) 

U U 

virtual w e r  (2, 2) 
1; = 5 

%drt11d user (2, 3) n n 

v i r t ~ ~ d  user (2. 1) 

Fzgare 1.1,5. Virtual user equivalence in LRD multirate systems 

puts bit decisions for the high rate users every T:') time units. The 
advantage of the HRD is that no bit delays are incurred for the high 
rate users. As we will see momentarily, this comes at the expense of 
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worse performance for the low rate users. As we can see from Fig. 1.16, 
the effective signature sequence for the low rate user is reduced to a 
truncated signature sequence which varies periodically, with period M. 
For the considered example, the signature sequence of the low rate user 
is split into four truncated signature sequences: ST = [sTl, sT2, s[, , ST,], 
with 

To detect a low rate user, maximal ratio combining is used to  combine 
the outputs of the M subintervals. 

lug11 rate user 2 
bit I bit 2 bit J 

Fzgure 1.16. HRD for multirate systems 

Peformance analyses of LRD and HRD as well as comparisons between 
the two techniques have been reported for both the decorrelator [Saquib 
et al., 19991 and the LMLISE [Ge and Ma, 19981 detectors. 

As an alternate implementation, groupwise multiuser detection [Wijk 
et al., 19951 has recently emerged as an appealing solution for multirate 
multiuser detection. In GSIC systems, users are grouped according to 
their transmission rates and are detected in groups, while the interfer- 
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ence among groups is successively cancelled (see Fig. 1.17). In Fig. 
1.17 a block diagram of GSIC is presented. Given the received signal 
r ( t ) ,  the users in the first detection group are detected and their bits are 
estimated as GI .  Then, based on the detected bits and the estimated 
amplitude and phase for all class 1 users, their signals are reconstructed 
and subtracted from the received signal r ( t ) ,  such that,  ideally, the class 
1 users' interference is completely cancelled. This process continues until 
the last group of users is detected. A natural detection order has been 
proposed in the literature [Wijting et al., 19991, which considers the de- 
tection of the high rate users first. These high rate users are expected 
to cause more interference due to high power requirements, and in turn, 
to be less sensitive to the low power users' interference. 

Within a group, any type of detector can be implemented, although 
the simplest, most common choice is to  use matched filter receivers. 
Performance comparisons with various other detectors (e.g. the decor- 
relator, parallel interference cancellers (PIC) detectors) have been pre- 
sented in [Juntti, 1998bl and [Juntti, 1998a] using simulations. More 
recently, performance analysis for power controlled GSIC systems have 
been presented in [Kim and Bambos. 20011 for a perfect cancellation sce- 
nario, and in [Comaniciu and Poor, 2003bl for the imperfect cancellation 
case. Further discussion regarding the characterization of the capacity 
of systems using GSIC will follow in Chapter 3. 

GSIC systems have the advantages of a relatively simple implemen- 
tation and good performance, but they have been shown to be quite 
sensitive to channel estimation errors and they also yield detection de- 
lays that increase with an increase in the number of detection groups. 

Detection group 2 b2 

Y' 

L Detection group J 1 iJ 

Fzgure 1.1 7. Groupwise successive interference cancellation 
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5. Information Theoretic Aspects: Spectral 
Efficiency 

While the discussion on the performance of multiuser detection thus 
far has focussed on performance metrics such as the bit error rate and 
other measures derived from it, a more fundamental approach is to con- 
sider the performance from an information theoretic point of view. In 
a CDMA system with K users using signature sequences of length N 
chips, the fundamental figure of merit is the spectral efficiency, which 
is defined as the total number of bits per chip that can be transmit- 
ted reliably. Further, in a CDhlA system, approximating its bandwidth 
as the chip rate, the spectral efficiency can be essentially measured in 
bits per second per hertz (bits/s/Hz). The most comprehensive treat- 
ment of the performance of multiuser detectors in this context is due to 
[ V e r d ~  and Shamai, 19991 where the focus is on systems that use random 
spreading sequences. The reasoning for this particular choice of signa- 
ture sequences is that it accurately models second and third generation 
CDNlA cellular systems that use pseudonoise sequences that span sev- 
eral symbol intervals. Addit iodly,  the spectral efficiency obtained by 
averaging out the random signature sequences serves as a lower bound on 
the optimal spectral efficiency achievable with deterministically chosen 
signature sequences. 

Before we summarize the results on the spectral efficiency of the var- 
ious multiuser receivers, it is of interest to consider the following two 
cases for the purposes of brnchmarking the spectral efficiency perfor- 
mance. First, consider a system where there is no spreading imposed and 
the users are jointly detected in the presence of additive white Gaussian 
noise with power spectral density N0/2. The maximal spectral efficiency 
qnS in such a system can be shown to satisfy the following equation 

where the spectral efficiency is shown as an explicit function of the ratio 
of the energy per bit Eb to 1%. It can be verified that the solution to 
the above equation is positive if and only if 2 > log, 2 = -1 .6dB.  
If we now consider a system with spreading and further impose that 
the system be synchronous with orthogonal signature waveforms of chip 
length N being employed by the K users, then the spectral efficiency 
korth can be shown to be 
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where it is necessary that K < N .  When K = N it is seen that or- 
thogonal multiple access achieves the same spectral efficiency as an un- 
constrained multiple access system with no spreading for equal rate and 
equal power users. It is also well known that when K 2 N ,  it is still 
possible to find spreading codes that incur no loss in spectral efficiency 
relative to the case of no spreading. These signature sequences are re- 
ferred to as Welch-bound-equality (WBE) sequences [Rupf and Massey. 
19941. 

In the case of random spreading sequences, the spectral efficiency is 
a random variable itself. Using an asymptotic (large N and K with 
K I N  fixed) analysis, [Verdfi and Shamai, 19991 shows the convergence 
of these random spectral efficiencies to deterministic quantities for the 
cases of the following receivers: the matched filter receiver, the optimal 
multiuser receiver, the decorrelator and the LTVIMSE receiver. Letting 
p = 5 denote the number of users per dimension and 

the spectral efficiencies in each of the above cases is given as follows. 

For the single-user matched filter receiver, the spectral efficiency, 
rlrnf, converges almost surely as K -+ cc to 

lim r7mf = - log 
K+m ' 2 ( I +  l + S N R P  """ ? 

For p > 0, the optimal spectral efficiency, rloPt, converges almost 
surely as K -+ oo to 

1 
1im = log 1 + S N R  - -F (SNRJ)  

K-+co 2 4 

1 
1 + S N R  /3 - - F ( S N R ,  p) 

4 ? 
log e -- 

8 S N R  F ( S N R ,  P) 

For /3 _< 1, the spectral efficiency, rldec, of the decorrelator converges 
in the mean-square sense as K -+ cc to 
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For ,!il > 0, the spectral efficiency, qmmSe, of the LMMSE receiver 
converges in the mean-square sense as K 4 oo to 

In the above expressions, SNR denotes the ratio of the energy per 
transmitted N chips to the height of the noise power spectral density 
N0/2,  and in each case is given as SNR = $%,I with q being the appro- 
priate achievable rate for each receiver. Figure 1.18 shows the spectral 
efficiencies of the various receivers under the large K analysis as a func- 
tion of the ratio % for 2 = 10dB. It  is observed that a t  l xge  values 

of $, the optimal receiver does begin to approach the spectral efficiency 
of the case of no spreading, but the linear multiuser receivers experience 
a loss in spectral efficiency beyond an optimal value of 5. This leads 
to the interesting question regarding the optimal trade-off between cod- 
ing and spreading in a CDMA system. For the optimal receiver and the 
matched filter reciever, it is seen that the spectral efficiency is maximized 
by letting % + cm. Thus for these receivers, the coding-spreading trade- 
off favors coding, and it is best to use these receivers in systems with 
low rate error-correcting codes with minimal spreading (see also [Hui, 
19841). For large values of K, for the decorrelator, the optimal choice 
of ranges from 0 to 1 thereby suggesting a larger spreading factor in 
contrast to the optimal and matched filter receivers. In Fig. 1.19, the 
spectral efficiency with the optimal choice of $ is shown for the various 
receivers as a function of 2. It  is observed that for the decorrelator, the 
spectral efficiency is higher than that of the matched filter receiver for 
a > 5.2dB and, unlike the matched filter, the spectral efficiency grows 
N? 
wlthout bound. For the case of the LMMSE receiver, for low values of 
2, the optimal 5 is very large indicating that the spectral efficiency is 
the same as that of the matched filter receiver. As pointed out in [ V e r d ~  
and Shamai, 19991, t,he optimal $ reaches a value of 1 at  2 = 4dB and 

a minimum value of 0.75 at 5 = 10dB. 

For low $$ systems such as are encountered in typical cellular CDMA 
settings, both the decorrelator and the LMMSE receiver provide com- 
parable spectral efficiencies relative to the case of orthogonal signatures. 
The spectral efficiencies of the above multiuser receivers has also been 
considered for frequency flat fading channels in [Shamai and VerdB, 20011 
in conjunction with power control strategies based on variants of water- 
pouring optimization. Significant gains in the spectral efficiencies can be 
realized using optimal as well as suboptimal power control algorithms 
for the matched filter, the LMMSE receiver and the optimal receiver, 
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Spectral Efficiency 
(bits per chip) 

Optinral 

Matched Filter 
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Figure 1.18. Spcctral efficiencies for 2 = 10dB (reprinted with permission from 
[Verdfi and Shamai, 19991) 

thereby motivating the need for integrating power control (cross-layer 
design) with multiuser detection. 

6. Multiuser Detection in Cross-Layer Design: 
Introductory Remarks and Book Outline 

This first chapter of the book has been dedicated to  the review of var- 
ious wireless network architectures, and to the presentation and com- 
parison of different multiuser receivers. While the early research on 
multiuser detection was focused on showing its superiority in adverse 
near/far conditions, recently the focus has shifted to studying its perfor- 
mance in power controlled wireless networks, and furthermore, to under- 
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Spectral Efficiency 
(bits per chip) 

7 Decorrelator 

Flgure 1 19 Spectral effic~ency for opt~mal KIN (reprinted with permiss~on from 
[Verdfi and Shamai, 19991) 

standing its interactions with upper layer protocols in cross-layer design. 
In Chapter 2 of the book, we briefly present several resource allocation 
techniques for QoS provisioning in wireless networks and we discuss in 
more detail their cross-layer interactions with multiuser receivers. 

QoS guarantees for various applications can only be achieved if QoS 
support is provided at  all layers of the protocol stack, i.e., network adap- 
tation to changes in the achieved QoS must be hierarchically imple- 
mented across all layers. We have already noted that the interactions 
between different layers can be modeled by an exchange of pertinent 
information between layers. A certain level of abstraction for the per- 
formance of various layers can greatly simplify cross-layer design. More- 
over, such abstraction can make it easier to  determine what information 
should be exchanged between layers, and how this information should 
be used by the adaptation protocols to optimize the overall network 
performance. Chapter 3 of the book presents such an abstraction of 
the physical layer, by discussing the user capacity of power controlled 
wireless networks using multiuser receivers for several implementation 
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scenarios and different network architectures, including cellular and ad 
hoc networks. Based on the results in this chapter, integrated admission 
control is also discussed in detail for both cellular and ad hoc networks 
in Chapter 4. 

Finally, general perspectives on integrated design in wireless networks 
using multiuser receivers are presented in Chapter 5. 



Chapter 2 

INTEGRATED RADIO RESOURCE 
ALLOCATION 

1. Introduction to  Radio Resource Allocation 

A common characteristic of multiple access wireless conlmunication 
systems is that their capacity is limited by interference. As a result, ad- 
mission of a new user into such a system results in more interference to 
the existing users and a consequent degradation in their signal quality. 
When the number of active users in the network reaches a certain value, 
the quality of transmission can become unacceptably low due to inter- 
ference, implying that additional users cannot be admitted immediately 
if a certain Quality of Service (QoS) is required. Further, an inherent 
characteristic of wireless channels is the variation encountered in space, 
time and frequency due to mobility and to propagation effects encoun- 
tered by radio waves. The propagation effects are usually classified into 
two categories: small-scale fluctuations due to  scattering, and large-scale 
fluctuations due to shadowing. The traditional treatment of resource al- 
location in wireless systems is based on signal quality measurements that 
are averaged over time scales where small-scale fluctuations become in- 
significant. As a result, most approaches to  understanding and designing 
resource allocation strategies take into consideration primarily path loss 
models and occasionally slowly varying large-scale fading effects due to 
shadowing. 

Radio resource management is the collective term used to classify sys- 
tem level strategies for managing the physical layer of wireless networks, 
including transmitter power control. channel allocation and handoff. It 
is an important component necessary to sustain any wireless network 
of multiple users. One lesson of the cellular telephone success story is 
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that effective radio resource management is essential to promote system 
quality and efficiency, and it will be increasingly important in enabling 
the wireless data networks of the future. The simplest abstraction of 
radio resource management is the need to enable the following five re- 
quirements necessary for a wireless network: 

Power  Control :  power control is used to provide every user with a 
transmitter power level necessary to achieve a certain required level of 
signal quality a t  the receiver. The measure of signal quality depends 
on the nature of the wireless application and also on the time scale 
used in measuring such signal quality. 

Base  S t a t i on  Assignment  (cellular networks): base station as- 
signment is necessary to provide every mobile user with a receiver or 
access point to  which it can connect. The strategies used to enable 
this are also often referred to as handoffs and may in general enable 
connectivity for a given user to more than one access point. 

Rou t i ng  (ad hoc networks): Routing protocols are implemented in 
ad hoe networks in order to establish multi-hop transmission paths 
between any source-destination pair of nodes. 

Channe l  Assignment:  Channel assignment is used to provide every 
user with a radio channel on which it can transmit. The channel 
assigned to transmitter/receiver pairs may be defined by frequency or 
time slots as in frequency-division multiple-access (FDMA) and time- 
division multiple-access (TDMA) systems, respectively, or signature 
sequences as in the case of CDNA systems. 

Admission Control :  Admission control is necessary to regulate the 
entry of new users into the network in order to  preserve the QoS of 
existing users and also to guarantee required signal quality for new 
users. 

In all the above cases, the commonly considered metrics of signal 
quality include the signal-to-interference ratio (SIR), the bit-error rate 
(BER) and the frame-error rate (FER). The performance of radio re- 
source management strategies is usually characterized by measures such 
as the probability of dropping existing users, the probability of blocking 
new users, the delay in handoffs, the frequency of handoffs and the re- 
sulting multiuser capacity of the wireless network under various strate- 
gies. There have been considerable developments in the area of radio 
resource management [Zander and Kim, 20011 focussing historically on 
voice services and more recently on a variety of wireless data applica- 
tions. These techniques range in character from static to dynamic as well 
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as from centralized to distributed resource allocation. Earlier approaches 
to radio resource allocation considered admission control, channel alloca- 
tion, power control and handoffs [Zander, 199213, Hong and Rappaport. 
1986, Vijayan and Holtzman, 1993, Sivarajan et al., 19891 as problems 
distinct from each other. while later efforts integrated these problems 
with a unified perspective [Chuah et al., 19951, More recent work on 
resource allocation for wireless data has focussed on using approaches 
from microeconomics and game theory to model and design efficient net- 
works [Goodman and Mandayam, 2000, Saraydar et al., 2002, Meshkati 
et al., 20031. 

As we will see in the following sections of this chapter, multiuser re- 
ceivers have a great impact on the design and performance of all resource 
management techniques. For example, consider the soft handoff problem 
for CDMA cellular networks. We know that soft handoff is necessary in 
CDMA cellular systems primarily because of MAI. If either SIC or MUD 
is used in these networks the effect of LIAI is reduced, and as a conse- 
quence, the coverage (or range) of each cell is effectively increased. thus 
reducing the requirements on soft-handoff. Additionally, when we inte- 
grate SIC with power control, the cancellation order of users typically 
suggests ordering of powers in each cell in such a manner that it reduces 
other-cell interference. This again results in relaxing the requirements 
for soft-handoff. 

Specific examples of integration of different resource management 
techniques with multiuser detection will be presented shortly. We start 
our discussion with a brief introduction to power control. 

2. Power Control 
In a mobile communication network, users are subject to a time vary- 

ing radio channel that results in fluctuations of their received signals. In 
addition, a major problem in multiuser systems is the near/far effect, by 
which a nearby interferer can disrupt the reception (at a fixed receiver) 
of a highly attenuated desired signal. Both of these effects call for mobile 
devices to control their transmitter powers so that the received signal 
quality is acceptable. Additionally, the dynamic range and sensitivity of 
electronic components such as amplifiers in transceiver circuits requires 
power control to enable smooth transition in signal strengths for high 
fidelity operation. Power control algorithms developed in the literature 
usually require knowledge or estimates of some measure of signal quality 
such as the SIR, received signal power, or the bit or frame error rate, and 
sometimes knowledge of the channel gains. All of these quantities vary in 
time due to the fluctuations inherent in mobile channels. Power control 
algorithms come in many varieties, and may be classified according to  
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the nature of implementation as centralized or distributed, synchronous 
or asynchronous, iterative or non-iterative, and deterministic or stochas- 
tic. 

The earliest works on power control considered algorithms that were 
non-iterative, synchronized and centralized [Aein, 1973, Nettleton and 
Alavi, 1983, Zander, 1992b, Grandhi et al., 19931. These works identi- 
fied the power control problem as an eigenvalue problem for nonnegative 
matrices. The power control problem is typically considered in a static 
(snapshot) setting where the radio link of every mobile user to its des- 
tination receiver (for cellular systems this may be the base station) is 
completely characterized by a deterministic channel gain. 

The simplest and most tractable measure of signal quality is the SIR. 
For a cellular system, for any user k ,  the SIR ykj at  base station j is 
given by 

where h k j  is the link gain from user k to base station j, p = (pl ,pz,  . . . , p ~ ) ~  
is the vector of transmitted powers of the K users in the system and a; is 
the background noise variance seen at receiver j. The QoS requirement 
for acceptable signal reception is specified by means of a target SIR A/* 
as y 2 y*. If it is required that all the K users be received at  the base 
station j with SIRS above the target, then the system of inequalities 
ykj 2 y*,iJk = 1 , .  . . , K can be written as a matrix inequality: 

where I is the identity matrix and F is a normalized link gain matrix 
such that 

Here, the vector 7) = y*(*, . . . *), and the inequality in (2.2) is taken 
hl, ' l t K ,  

componentwise. The target SIR y* is said to  be feasible if there exists 
a nonnegative power vector p = (pl, p2, . . . , pK)T such that ykl, > y* 
for all k .  Using the theory of nonnegative matrices, it can be shown 
that the SIR target y* is achievable if the Perron-Frobenius (largest) 
eigenvalue, e ~ ,  of the matrix F is less than one. The eigenvalue e F  is a 
measure of system load and resource consumption and it plays a central 
role in radio resource management issues related to power control and 
admission control. 

For example, in the noiseless case (7 = 0) it can be shown that a t  all 
links the maximum achievable target SIR y* is equal to the reciprocal of 
the dominant eigenvalue of the matrix Fly*.  This fact forms the basis 
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for SIR balancing power control algorithms [Zander, 1992131 that aim to 
maximize the minimum SIR at all links in the system. Further, when 
there is noise in the system, the above quantity represents an upper 
bound on the maximum feasible balanced SIR level. 

Centralized power control schemes that solve for a power vector satis- 
fying (2.2) require a centralized mechanism where the link gain matrix H 
needs to be known. Distributed power control algorithms are more desir- 
able in that they are more practical in a time varying environment and 
also avoid the heavy signaling required for centralized control. Several 
distributed power control algorithms that rely only on local measure- 
ments for each mobile user have been proposed, including the works of 
[Zander, 1992a, Foschini and Miljanic, 19931. In the simplest abstraction 
of such algorithms, the power update for user k is given as 

where is the SIR of user k at iteration n and pp)  is the correspond- 
ing transmit power. The convergence of these algorithms in each specific 
case can be shown using standard techniques from numerical linear alge- 
bra under the assumption that the link gain matrix remains unchanged 
during the iterations. A unified framework developed in [Yates, 19951 
views distributed power control algorithms as iterations of the form 

where the iterative mapping I ( . )  is referred to  as the interference func- 
tion. It has been shown that any power control algorithm of the form 
(2.5) will converge to the unique feasible (if it exists) solution of (2.2) 
as long as the interference function is standard, i.e., if it satisfies the 
following properties: 

Positivity : I(p) > 0 

Monotonicity : p > pt  3 I ( p )  > I ( p t )  

Scalability : 'i ct. > 1, ct.I(p) > I ( a p )  

Distributed algorithms for power control have also been considered 
from several other aspects such as integration with base station assign- 
ment [Yates and Huang, 1995, Hanly, 19951. using BER as a metric 
[Kumar et al., 19951 and integration with multiuser receivers [Kumar 
and Holtzman, 1995, Ulukus and Yates, 1998aI. The topic of integrating 
power control with multiuser receivers and with admission control will 
be discussed at length in the remaining sections of this chapter. 
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The above developments relate primarily to static power control where 
the link gain matrix is fixed in a snapshot analysis. In reality, these 
channel gains vary even though signal quality measurements are obtained 
by averaging over several observations. Analysis of the dynamic behavior 
of power control can be found in [Ulukus and Yates, 1998d] and [Zander 
and Kim, 20011. In practical systems such as 2G and 3G implemetations 
of CDMA, extensive link information is not readily available for power 
control updates, and the exchange between the base station and the 
mobile is limited to qualititative and quantized information. Typically 
this exchange is limited to 1-bit feedback commands from the receiver 
to the transmitter to either increase or decrease the transmit power in 
fixed increments. This scenario can be modelled as a stochastic non- 
linear feedback control system and an analysis of the same is considered 
in [Song et al., 20011. 

More recent work on power control for wireless data has focussed on 
using approaches from microeconomics in which the QoS of heteroge- 
neous data users is captured by means of utility functions. Distributed 
power control algorithms are then analyzed using the framework of game 
theory [Goodman and Mandayam, 2000, Saraydar et al., 2002, MacKen- 
zie and Wicker, 2001, Xiao et al., 2001, Meshkati et al., 20031. The issue 
of cross-layer design in the context of power control interactions with 
radio link and transport layer data retransmission protocols has been 
considered in [Song and Mandayam, 20011 using a hierarchical control 
theoretic approach for modeling and analysis. 

3. Integrated Power Control and Multiuser 
Detection 

As seen in the previous sections, both multiuser detection and power 
control are primarily techniques that are used to combat the near/far 
problem while implicitly allowing a graceful degradation of performance 
with an increase in system load. While multiuser detection may be 
viewed as a purely physical layer design strategy, power control is often 
considered to be a system level control technique. In keeping with the 
cross-layer design paradigm considered in this book, an interesting ques- 
tion to ask is what performance gains may be had if these two techniques 
are integrated. The first attempts at answering this question were con- 
sidered in [Kumar and Holtzman, 19951 and independently in [Ulukus 
and Yates, 1998a]. The basic premise of the integrated approach is to 
consider a strategy that controls both the transmitter powers and re- 
ceiver filters of the users in an iterative and distributed manner. Given 
a QoS requirement specified in terms of a target received SIR for each 
of the users, the receiver filters are first updated to  suppress the inter- 
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ference optimally, followed by assignment of transmitter powers to each 
of the users in a manner that causes the least interference to others. 

Here, we will present the basic principles for integrating power control 
and multiuser receivers for a cellular setting, although the integration 
technique can be applied to any wireless network with fixed access points. 
Later in the book, we will discuss the integration of power control and 
multiuser detection in ad hoc wireless networks. 

Consider a multicell synchronous CDMA system with K users. Gen- 
eralizing equation (1.26)) the baseband received signal vector, r k  E RN, 
at  the assigned base station of user k can be written as 

where s t  E RN is the spreading signature sequence of user e, hke is the 
link gain of user e to the assigned base station of user k  and pe is the 
transmit power of user e. n is a zero mean Gaussian random vector with 
covariance matrix a21. If a linear receiver filter ck is applied for user k 
a t  its assigned base station, then the receiver filter output is given by 

where c r n  is a zero mean Gaussian random variable with variance 
a 2 c r c k .  The corresponding SIR of user k can be written as 

The simplest integrated power control and multiuser detection algorithm 
seeks to find a set of optimal powers p = (pl , p a ,  . . . , p ~ ) ~  and a set 
of receive filters c l ,  c2, . . . , CK such that each user k  achieves its QoS 
requirement of SIRk > yi, where y; is the required SIR target of user 
k ,  k = 1 , 2 , .  . . , K. Formally, the integrated pourer control and multiuser 
detection problem can be stated as 
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subject to the constraints that for each user k = 1 , .  . . , K :  

It can be seen that the solution to the above problem remains the same 
if the set of constraints in (2.10) are rewritt,en as 

Observing that the optimization in (2.9) is over the power vector only 
and that the inner optimization in (2.11) is over each user's filter coef- 
ficients for a fixed set of powers, a distributed and iterative integrated 
power control and multiuser detection algorithm can be realized as fol- 
lows. 

For a fixed set of powers, solving the filter optimization in (2.11) for 
each user, it was shown in [Ulukus and Yates, 1998aI that the filter for 
user k is given by 

where the N x N matrix Xi, is given by 

Note that the receiver filter cz is the same as the LMMSE receiver filter 
derived in (1.27). Thus, iterating on the filter coefficients for a given set 
of powers results in a receive filter vector that maximizes the SIR for 
each user. In order to iterate on the powers, given the set of receivers, 
the transmit power for each user should be chosen to meet the constraint 
in (2.11) with equality. Thus, we can chose the set of powers to  be 
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The power vector updates given a set of filter coefficients can now be 
written as 

p(n+l) = @I) .  (2.15) 

where I (p )  = [ I l (p) ,  . . . , I K ( ~ ) ] ~ ,  with 

(2.16) 
The interference function I (p)  given above is a standard interference 
function in that it satisfies the conditions of positivity, monotonicity 
and scalability outlined in Section 2. Thus the power control algorithm 
in (2.14) can be shown to converge to  a unique feasible (if it exists) 
solution where p = I ( p ) .  The filter coefficients then converge to  the 
corresponding LMMSE receiver. 

In terms of implementing the above iterative power control and mul- 
tiuser detection algorithm, each user k implements a two-stage iteration 
as follows. At iteration n +  1, the Lh4MSE filter for user k is constructed 
by using the power vector p (n)  corresponding to  the nth iteration. Then, 
the power vector is updated using the set of new filter coefficients ob- 
tained at  the (n + iteration. If the SIR targets are feasible, then 
starting from any initial power vector and filter coefficients, this itera- 
tive procedure will converge to the unique minimal power fixed point. 
I t  may seem that the value of this algorithm is limited in practice since 
the implementation for user k requires knowledge of all the other trans- 
mitter powers and the link gains to obtain C k  and hence cz. However, 
several simple estimation procedures have been proposed in [Ulukus and 
Yates, 1998a] to  estimate C k ,  where user k requires only the knowledge 
of its own link gain hkk. The availability of such link gain information is 
in fact fairly standard in several practical systems where the downlink 
information is used to infer the uplink gains and vice versa. An alterna- 
tive approach to arrive at the same solution for integrated power control 
and multiuser detection is to use measurements of the mean square error 
in updating the filter coefficients [Kumar and Holtzman, 19951. 

As an illustration of the performance gains obtained by integrating 
power control with multiuser detection, we present results (adapted with 
permission from [Ulukus and Yates, 1998a1) for a multicell CDLIA sys- 
tem with 25 base stations that are uniformly spaced over a square grid of 
5km x 5km. K users each using a random signature sequence of length 
N = 150 are independently and uniformly distributed on this grid. The 
link gains in the system are chosen to be inversely proportional to the 
fourth power of the distance between the transmitter and the receiver. 
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Fzgure 2.1. Performance gains of integrated power control and multiuser detection 
(reprinted with permission from [Ulukus and Yates, 1998a1) 

(This is a reasonable approximation to path loss in terrestrial cellular 
systems.) Figure 2.1 shows the total transmit power in the uplink as a 
function of the number of iterations of the integrated power control and 
multiuser detection algorithm for the cases of K = 250,500, and 1000 
users. The performance of the conventional matched filter receiver with 
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power control is also shown for reference. Aside from power savings ob- 
viously observed, it can also be seen that for the case of K = 1000 users, 
the integrated approach converts an infeasible system (as evidenced by 
the unbounded increase of the total power for the conventional matched 
filter receiver) into a feasible one. Thus this approach increases system 
capacity by allowing individual users to use higher SIR targets (and 
corresponding data rates). Alternatively, the network capacity can be 
increased by supporting more users a t  a fixed target SIR. 

While the earliest work [Kumar and Holtzman, 1995, Ulukus and 
Yates, 1998al on integrating power control with multiuser detection de- 
scribed above focussed primarily on linear multiuser receivers for single- 
rate systems, there has been considerable progress in exploring various 
aspects of such an integrated approach to  power control. These range 
from using reduced complexity [Wang et al., 20011 and pilot based es- 
timation [Almutairi et al., 20001 procedures for various power control 
parameters to multirate multiuser systems [Saquib et al., 2000, Kim 
and Bambos, 20011 to integrating power control with non-linear inter- 
ference suppression techniques [Shum and Cheng, 2000, Varanasi and 
Das, 2002, Berggren and Slimane, 2002, Andrews and Meng, 2003, Shu 
and Niu, 20031 and also evaluating such an integrated approach for the 
forward link [Xiao and Honig, 20021. 

An issue of paramount importance in all of the above approaches 
is the performance of integrated power control algorithms in practice 
where there is a lack of ideal knowledge of various user parameters. The 
stochastic power control approach first broached in [Ulukus and Yates, 
1998dl for conventional matched filters has been reconsidered notably 
in the context of multiuser detection for multirate systems in [Saquib 
et al., 20001 and for multicell systems in [Varanasi and Das, 20021. The 
integrated approach in asynchronous multirate systems with linear re- 
ceivers is similar in philosophy to that described for single-rate systems 
with the difference being the use of appropriate sliding windows and 
appropriate sampling intervals to distinguish classes of users with dif- 
ferent rates. The work in [Saquib et al., 20001 considers a family of 
BER objectives and proposes stochastic algorithms for decorrelating re- 
ceivers in which the feasibility of power control is shown to be related 
to the condition that the users in the system have non-zero asymptotic 
efficiencies. Linear and decision-feedback based non-linear multiuser de- 
tectors are integrated with stochastic power control for use in a multicell 
CDMA system in [Varanasi and Das, 20021, where for a feasible system, 
the power control algorithms are shown to converge in the mean-square 
sense to the minimal power solution. 
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As we noted in Chapter 1, non-linear interference suppression schemes 
such as successive interference cancellation [Patel and Holtzman, 1994al 
are being employed in integration with power control in emerging wire- 
less data systems such as 3G and beyond. An interesting issue that 
arises in this context is the desired ordering of users for cancellation in 
the SIC scheme. If the total transmit power realized after power control 
is used as a measure of performance, then in single-rate systems, under 
identical cancellation errors, the detection order is not important. How- 
ever, for multirate systems [Shum and Cheng, 20001 showed that under 
perfect cancellation, ranking users in descending order of link gains min- 
imizes the total transmission power regardless of the different target SIR 
settings for users with different rates. This result also holds in certain 
cases when the cancellation is imperfect [Agrawal et al., 20041. Inte- 
grated power control with groupwise serial multiuser detection, which is 
typically employed in multirate systems using a variable spreading fac- 
tor, has also been considered in [Kim and Bambos, 20011 where an active 
link protection algorithm is used along with distributed power control. 
Optimal power control for groupwise successive interference cancellation 
systems with LMMSE receivers for in-group detection, and imperfect 
interference cancellation among groups, has been recently proposed in 
[Comaniciu and Poor, 2003bl. More recent approaches to the study and 
design of integrated power control and multiuser detection involve for- 
mulating and analyzing distributed algorithms for these in the setting 
of a noncooperative game [Meshkati et al., 20031. 

4. Access Control, Power Control and Multiuser 
Detection 

We have seen in the previous section that performance gains can be 
achieved in a cellular system by joint receiver optimization and power 
control. Another possible dimension to be added is to exploit also the 
traffic burstinessl by appropriately designing the MAC. An integrated 
access control, power control and multiuser optimization algorithm pro- 
posed in [Comaniciu and Mandayam, 20021 adjusts to  changes in the 
interference levels and stucture by both optimizing the physical layer 
(dynamically adjusting the transmission powers and the receiver filters) 
and the MAC scheduling. In this algorithm, the MAC layer appropri- 
ately schedules the delay insensitive traffic to take advantage of periods 
of low real-time traffic activity, while physical layer adjustments lead 

'1t is a well known fact that taking advantage of traffic burstiness can significantly improve 
system capacity [Viterbi, 19951. 
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to increased network capacity. In what follows, this algorithm will be 
illustrated for a voice and data CDMA system, for which users' QoS 
requirements are specified in terms of SIR targets and delay constraints. 
The MAC algorithm guarantees that the voice users' delay requirements 
are met, by always giving priority to the voice traffic. At the physical 
layer, the target SIRs are guaranteed if the power control feasibility con- 
dition holds, i.e., there exists a positive power vector assignment such 
that all users can meet their target SIRs. 

The design of such an integrated algorithm imposes several challenges: 

Real-time burst activity prediction: 

Real-time changes in traffic activity require frequent updates of linear 
multiuser receiver filter coefficients, thus significantly increasing the 
implementation complexity. As a performance/complexity tradeoff, 
an alternate implementation is considered in which only data users 
employ multiuser detectors, while voice users (real-time users) employ 
matched filters. In order to further decrease complexity, only the 
signature sequences for the data users are considered for the update 
of the data users' filters, while the voice interference is approximated 
as background noise. This implementation is termed a partial hybrid 
system (H - MMSE(P)), to differentiate it from the case in which 
all users make use of multiuser receivers, termed uniform LMMSE 
(U - M M S E ) .  

Real-time burst activity prediction is more difficult for the uniform 
multiuser detector scenario since the access control needs exact knowl- 
edge of all users' signature sequences whenever any user changes ac- 
tivity. For the partial hybrid system, only the change in the interfer- 
ence power needs to be known for residual capacity updates, and thus 
a simple prediction algorithm similar to one proposed in [Comaniciu 
and Mandayam, 2000j can be used. 

Optimization of filter coefficients: 

Every time the interference pattern changes, the multiuser receivers 
must be re-optimized. Although not specifically addressed in [Co- 
maniciu and Mandayam, 20021, complexity reduction at this step can 
be achieved if decorrelating receivers are employed for the partial hy- 
brid system, since the decorrelator filter coefficients do not depend 
on the white noise level, and thus need not be updated when the 
real-time interference changes. 



64 MULTIUSER DETECTION IN CROSS-LAYER DESIGN 

Spectrally efficient data scheduling: 

For both implementation scenarios (H-MMSE(P) and U-MMSE) ,  
data is scheduled according to the residual capacity determined from 
the power control feasibility condition, in a round robin fashion. 

While delay guarantees for both voice and data users are implemented 
by the MAC scheduling procedure with the support of the admission 
control2, the total capacity available for users is limited by the power 
control feasiblity condition, which for a heterogeneous (voice and data) 
network can be derived as follows. 

Power Control Feasibility Condition for Heterogeneous Net- 
works 

Assuming a network of K, voice users transmitting at rate R,, and Kd 
data users transmitting at  a rate Rd = MR,, where M 2 1 is an inte- 
ger, the general expression for the SIR achieved at the output of a linear 
multiuser detector with coefficients ck, for an arbitrary user Ic is given as: 

where K i  represents the number of virtual data users in the system. For 
the uniform LMhISE approach, K i  = M K d ,  si E (-1 /m, 0 , l  
with J = K, + 1 , .  . . K u  + K i ,  and the receiver filter vector for the 
kth data  user is ck E RNu. As above, a2 denotes the background 
noise level. For the partial hybrid LMMSE approach, K i  = Kd, si - 
sJ E ( - 1  /a, 1 / f i ) N c l ,  and ck E I R N d .  Since the partial hybrid 
LMMSE system operates at the high rate Ad&, we define { s ~ * ) ( ~ ) ,  
m = 1 , 2 ,  . . . , M, to be the truncated voice signature sequence of length 
Nd,  corresponding to the current data bit interval m. For notational 
simplicity, the superscript m will be suppressed in what follows, so 
that s; E { - 1 / a ,  l / a ) " d ,  l = 1,.  . . , K,. represents the trun- 
cated voice signature sequence for the current data bit interval. In re- 
ality, the truncated voice signature sequence differs from one data bit 

2The admission control limits the number of users admitted in the system, such that ,  given 
the scheduling algorithm, the delay rcquircmcnts for all users can be met, while maintaining 
the interference level within a tolerable range. 
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interval to another, with a periodicity of M data  bit intervals. For 
the uniform LMMSE scenario, s; - s t .  For both scenarios, h j  and he, 
j = K, + 1 , .  . . , Kv + Kd and e = 1 , .  . . , K,, represent the link gains for 
data and voice, respectively. 

Expression (2.17) can be particularized for voice users, so that the 
filter coefficients represent the desired user's spreading sequence. For 
random spreading sequences with data users' sequences normalized with 
1 / a  and voice sequences normalized with 1 / a ,  the SIR for voice 
user k can be expressed as 

The SIR expression for the partial hybrid LMMSE case can be sim- 
plified via the following proposition. The proof is omitted here and can 
be found in [Comaniciu and Mandayam, 20021. 

P r o p o s i t i o n  2.1. Consider  a partial hybrid mul t iuser  detector C D M A  
sys tem,  where data and voice users  have different t ransmiss ion  rates,  re- 
flected in different spreading gains  Nd and N,, respectively (N, = M N d ) ,  
the  data users  employ mul t iuser  receivers built us ing on ly  knowledge of 
data signature sequences, and the  voice users  use  convent ional  receivers. 

T h e n ,  for  a n y  data filter vector  c k ,  a n y  truncated voice signature 
sequence { s ; } ( ~ ) ,  e = 1 , .  . . , K,, and a n y  data bit decoding interval  
m = 1 , .  . . , D l ,  we  have 

As a consequence, the voice interference power for a given filter vector 
c k  E R N d ,  can be expressed as &(crck)  zZ1 hrpt. Hence, the SIR 
expression for the kth data user for the partial hybrid LMMSE system 
case becomes 
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For both U - M M S E  and H - MMSE(" , the LMMSE filter coefficients 
are computed as in [Ve rd~ ,  19981: 

K,+Kd 

where zI, = ae21dim+ 1 hJp, s;siT, Idim is the identity matrix of 
3=&+1,3#k 

dimension dim, with dim = N, x N, for the uniform LhIMSE case, and 
dim = Nd x Nd for the partial hybrid LMMSE case, corresponding to 
the length of the data users' signature sequences (or extended signature 
sequences for the uniform LMMSE case). 

For the uniform LMMSE scenario ae2 = a2, whereas for the partial 
hybrid LMMSE approach oe2 = o2 + & ~2 hrpl, where o2  is the 
background noise level. 

Denote the target SIR for a user k (voice or data) by 7;. Then, the 
QoS requirements are SIRk  > yi, k = 1 . . . n, n = ( K ,  + Ki) .  

For the partial hybrid scenario, the system of equations expressing 
the above conditions can be written as 

Therefore, the power control feasibility condition is given by 

with 
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where for zk,j = hk/hj,  the rows of the matrix A can be written as 

~k [~ l , k /Nv , .  . . , ~n,k /Nv] ,  for k = 1, . . . K v  

a: = (C$k)2 [&(c:cx)~I,x. , &(C:CX)ZK,.I, ( ~ k ~ n )  T 2 in,i<,+l.. . 
. . . , ( c ~ s ~ ) ~ z ~ ~ , ~ ]  , for k = + 1, . . . n. 

(2.26) 
The matrix C is similar to  the matrix A except that it has zeros on the 

main diagonal. To find a positive power vector solution, we note that the 
matrix (Idim - C )  is a nonnegative matrix, and by the Perron-Frobenius 
theorem [Strang, 19881, it has exactly one positive eigenvalue A* for 
which the corresponding eigenvector is positive (i.e., all components have 
the same sign). Thus, the equalities X p  = (Idim - C ) p  = 02u hold for 
X = A*. The condition A* > 0 is equivalent to 

The resulting power vector solution is given by 

A similar result can be derived for the uniform LMMSE case. The 
power control feasibility condition reduces to the same eigenvalue condi- 
tion (2.27) for a different choice for the matrix C .  If identical derivation 
steps are applied, the system of equations that represents the SIR con- 
ditions can be reduced to the same matrix equation (1.16), but with 
different expressions for A ,  B and u: 

and 

for k = 1, . . .  , n. 
Once we have derived the power control feasibility condition for dif- 

ferent network scenarios, the integrated access control algorithm can be 
summarized as follows. 
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Integrated Access Control and Detection 

A t  each t i m e  slot: 

1 Predict the  n e w  voice interference structure and power. 

2 Re-opt imize  the  filter coe f i c ien t s  according t o  the  n e w  voice inter fer-  
ence s tructure  ( o r  interference power) using (2.20).  

3 Recompute  the  Perron-Frobenius eigenvalue of the  m a t r i x  C 

4 If Xmnz ( C )  < 1 : 
Increment  the  number  of data users  granted access, and  update  the  

powers and filter coef ic ients;  
If power control i s  still feasible, schedule m o r e  data users  for  trans- 

miss ion;  
Else 

Decrement  the  number  of data users  granted access and  update  pow- 
ers  and filter coef ic ients;  

Repeat unt i l  power control i s  feasible. 

A flowchart for the access control algorithm is presented in Fig. 2.2. 
For implementing the access control, the base station (BS) maintains two 
lists containing IDS for the active and inactive data users respectively. 
At each time slot, when the voice activity changes may favor the increase 
of the number of active data users, the data user selected for possible 
transmission is the one that is at the head of the line in the inactive 
data users list. Whenever the power control feasibility condition does 
not hold, data users become successively inactive, starting with the head 
of the line for the active list, until power control feasibility is satisfied. 
The head of the line user is the oldest one in that particular list; when 
a data user changes activity from inactive/active, its ID is attached at  
the end of activelinactive list. 

The implementation of the proposed access control algorithm differs 
for the uplink and downlink, and also depends on the particular scenario. 
Implementation issues are summarized in Table 2.1. 

For both uplink and downlink scenarios, since the power update for all 
users is given by (2.28) which depends on the filter coefficients and these 
in turn depend on the choice of powers, the Perron-Frobenius eigenvalue 
computation, as well as the power and filter updates must be done it- 
eratively. Simulation results show a typically rapid convergence for the 
iterative procedure (see Fig. 2.3). 

The tradeoffs between the implemeiitation complexity and perfor- 
mance are illustrated in Figs. 2.4 and 2.5. Figure 2.4 illustrates the 
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At  the end of t m e  slot n 
predict changes In volce 

accord~ng to predicted Interference 

Select new data user k t o  be 
inactlve In next slot, 

Seiect new data user k f o r  
transmlssion in next slot, 

n =  n + l  Scheduie user k f o r  
transmission 
update lists n BS  

Fzgure 2.2. Integrated access control and receiver adaptation flowchart 

Tuble 2.1. Implementation Issues Related to Uplink/Downlink 

Filter updates Feedback information 
from base to  mobile 

Uniform - both voice and data user filters 
LMMSE - requires knowledge of 
uplink active voice users' 

signature sequences 

change status bit for 
data  user that 

changed activity 

Uniform -both voice and data user filters - signature sequences for voice 
LhlhlSE - requires knowledge of user that changed activity 
downlink active voice users' - signature sequences for data 

signature sequences user that changed activity 

Partial Hybrid - only data user filters change status bit for 
LMMSE - requires only knowledge data user that 
uplink of voice interference power changed activity 

Partial Hybrid - only data user filters - total received voice power 
LMMSE - requires only knowledge - signature sequences for data 
downlink of voice interference power user that changed activity 
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Fzgure 2.3. Simulated convergence of the Perron-Frobenius eigenvalue for the partial 
hybrid LhlMSE implemcntation 
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Figure 2.4. Total data throughput capacity 

total data throughput that can be accommodated by the system for 
both LI\/IMSE approaches and also for the uniform h4F system. It  can 
be seen that employing access control improves the system capacity re- 
gardless of the particular receiver structure. The best performance is 
obtained, as expected, by the uniform LMMSE approach with access 
control. However, it can be seen that the partial hybrid system, used in 
conjunction with access control, has very good performance with sub- 
stantial complexity reduction. 
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Fzgure 2.5. Throughput per user for integrated access control and detection 

The improved performance achieved by the access control comes with 
a penalty in the data throughput per user, as seen in Fig. 2.5. This 
throughput penalty arises as a consequence of the fact that in order to 
increase the overall system utilization, more data users must be admitted 
into the system so that the low real-time traffic activity can be fully 
exploited. However, for the time slots in which the real-time traffic load 
is high, only a few data users can be scheduled for transmission and 
thus the average throughput per data user is reduced when the number 
of admitted data users increases. In Fig. 2.5, the throughputs achieved 
per data  user are represented as multiples of the basic transmission rate 
R (equal to the voice rate R,), and are seen to decrease as the number 
of data users in the system increases. 

All numerical values were obtained for N,  = 128. Nd = 32, y, = 5, 
yd = 10, T, = 0.02~7, a2 = 10-17, and K, = 10. Power vector initial- 
izat ion~ for received voice and data powers were 20 dB above the noise 
floor, and perfect voice activity prediction was assumed for maximal gain 
illustration. The matched filter performance was determined based on 
results from [Comaniciu and Mandayam, 20001. 

5. Traffic-Aided Multiuser Detection 
In the previous section, we saw that access control can yield signif- 

icant gains even for systems using multiuser detectors. The approach 
in [Comaniciu and Mandayam, 20021 assumes that traffic activity can 
be predicted, and this information can be used for data scheduling as 
well as for receiver adaptation. While for the simplified partial hybrid 
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Activity MUD - i 
Y Detection 

Fzgure 2.6. Two stage multiuser detector (reprinted with pcrrnission from [Chen and 
Tong, 20011) 

approach, only the prediction of the aggregate interference power level is 
required and an approach similar to that in [Comaniciu and Mandayam, 
20001 can be used, the uniform multiuser detection receiver update re- 
quires individual activity tracking for all users, which is more difficult to 
achieve. In this section, we discuss the implementation of a traffic-aided 
multiuser detection receiver, which dynamically updates the set of active 
users used for constructing the multiuser detector. This implementation 
has been proposed in [Chen and Tong, 20011 and it is based on a two 
stage receiver, as seen in Fig. 2.6. 

The second stage multiuser detector is simply a classical multiuser 
detector when the knowledge of the set of active users is available. In 
[Chen and Tong, 20011 a decorrelating receiver is considered for stage 
two. To examine this problem, consider a system in which packets are 
sent by multiple users in each of a succession of time slots. In order to 
detect the set of users that are active in a given slot, an activity indicator 
y$ for the kth user is used for modeling the received signal y, in slot n: 

where s k ,  A;~) and bik) are respectively, the signature sequence, the 
amplitude and the symbol for user k in time slot n ,  K is the total 
number of users, T is the number of bits in a packet (i.e., the packet 
length), and z,(t) is the background noise. The indicator y$ is 1 if user 
k is active in slot n, and 0 otherwise. 

Given (2.30), the user identification problem becomes an estimation 
problem for the binary random sequence ?:. Chen and Tong use a first 
order approximation for the traffic burstiness, in which an individual 
source is modeled as a two-state hlarkov chain with a state transition 
matrix 
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Figure 2.7. State tracker with matched filter receiver (reprinted with permission 
from [Chen and Tong, 20011) 

where p(k) = P (?: = lIY:-l = 0). and 4(k)  = P (Y: = o ~ $ - ~  = 1). 

On defining the "hidden" state T, = (n,il), . . . , -y!,")), an optimal traf- 

fic tracker can be developped by modeling the received vector using a 
hidden Markov model (HMM). Since, the combined state variable F, is 
a Markov sequence with state dimensionality 2", the complexity grows 
exponentially with the number of users and therefore suboptimal solu- 
tions are preferable. The key to complexity reduction is the decoupling 
of individual users' state tracking. An important observation is that,  al- 
though performance loss is incurred by this suboptimal approach, good 
performance can still be achieved since the required signal to noise ratio 
for detection of the presence of a particular user is much less that the 
one required for symbol detection for that user. The presence estimation 
exploits the fact that remains constant for the entire duration of a 
packet, which yields a form of diversity. and also the fact that traffic 
prediction can improve the estimate of A,:. 

A simple front end receiver based on matched filtering is proposed 
in [Chen and Tong, 20011 (see Fig. 2.7). The simple matched filter is 
selected for the first stage detector, due to  its implementation simplicity, 
and due to the fact that it does not impose any restrictions on the rank 
of the cross-correlation matrix of all the spreading codes in the system. 
In general, a full-rank condition might be too restrictive, since the total 
number of users in the system is typically much higher than the number 
of active users. 

In what follows, we describe in more detail the implementation and 
performance of the two-stage detector, using a matched filter front end 
for activity detection. If the received signal is passed through a filter 
matched to user k's signal, the output is given by 
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where I, is the set of all active users in time slot n, and pke is the 
correlation coefficient between the signature sequences of users k and 
!. Assuming that z,(t) is white and Gaussian with spectral height 
a2, d k ) ( l ) ,  ~ ( ~ ) ( 2 ) ,  . . . , dk) (T) is a sequence of independent zero mean 
Gaussian random variables, each having variance a2. 

In order to  make the analysis tractable, a Gaussian approximation is 
made for the second term in (2.32). An enhanced noise variable can be 
defined as 

gk' (t) = pkeA!,*) bit) (t) + I(') ( t)  . 

Assuming zero-mean symbols, the variance of g k ) ( t ) ,  is given by 

The above defined variance cannot be computed due to the fact that 
the active set of users is not known. Instead a predicted variance can be 
defined, which takes advantage of the traffic statistics 

(2.35) 
Given the Gaussian approximation, and combining all the user-k matched 

filter outputs in one packet into an observation vector w(k), can be 
estimated using the following hypothesis testing model: 

In (2.36)) b(k)  is the symbol vector of the packet for user k and z ( ~ )  is 
a Gaussian random vector with zero mean and covariance matrix aiI. 
The above model implicitly assumes that the amplitude is constant for 
all the symbols within a packet. To relax this condition and to  deal 
with the fact that the symbol vector is unknown, a uniformly most 
powerful invariant (UMPI) test statistic is proposed. Although for the 
given composite hypothesis testing problem, a uniformly most powerful 
test does not exist, the invariance principle can be used to determine an 
optimal UMPI test. 

The first step is to determine whether or not the test problem is 
invariant under a group of transformations. Once this invariant group of 
transformations is obtained, a maximal invariant (MI) statistic is found, 
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and the UMPI test is based on this statistic. For the given problem, the 
test for -& can be abstracted as the following test concerning the mean 
m of a Gaussian random vector w ( ~ ) ,  having covariance matrix equal to 
0;1: 

The above hypotheses can be shown to be invariant to any orthogonal 
transformation, so that an MI statistic is given by 

This MI statistic has a chi-square distribution under hypothesis 1 and 
noncentral chi-square distribution under hypothesis 2. Thus, a UMPI 
test statistic is the maximum invariant itself: T ( ~ ) ( ~ , )  = w ( ~ ) ~ w ( " .  

Traffic predictability can improve the estimate for yk.  In particular, 
given that yk is a two-state Markov chain, T(~)(zJ,) satisfies an HMM, 
and an HMM tracker can be used to determine yk ,  given T ( ~ ) ( v ~ )  and 
the state estimate from the previous slot. Chen and Tong compare the 
performance of this traffic aided estimator with the one-shot UMPI test 
which does not use any traffic information. The one-shot UMPI decision 
is determined using a simple thresholding of the 1\41: 

In contrast, the HMM decision uses information about the past states, 
as follows 

The thresholds Q and T are selected so as to trade off the false alarm 
probability and the probability of a miss. It is shown in [Chen and Tong, 
20011 that,  under the usual channel conditions, the penalty for a miss 
detection is more severe than that for a false alarm, when a decorrelating 
receiver is used in the second stage of the detector. It is also suggested 
that an optimal threshold might be selected experimentally, due to the 
high complexity of the analysis. 
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Some numerical examples are presented in [Chen and Tong, 20011 to 
illustrate the benefits of using traffic prediction in the receiver design. 
Particularly, the focus is on comparing the performance of the one-shot 
UMPI test with the HMM tracker which uses the previous state esti- 
mates. For the numerical results, the state transition matrix is chosen 

When a user is active, it will randomly generate a data packet with 
BPSK modulation a t  the nth time slot. No power control is considered 
and the amplitudes are fixed and equally spaced on a log scale in the 
range of 20 dB. The packet length is assumed to be 128 bits with error 
correcting capability for correcting up to  8 bit errors. The total number 
of users is 20 and the spreading gain is 31. The signature sequences' 
cross-correlation coefficients are in the range of -0.4839 to 0.3548 with a 
bell-shaped histogram. 

In Fig. 2.8 the detection performance for two approaches are com- 
pared using receiver operating characteristic (ROC) curves. Unlike, the 
traditional ROCs, these are "ergodic ROCs", in the sense that the prob- 
ability of false alarm and miss detection are computed by averaging over 
time, instead of using a statistical average based on repeated sampling. 
The performance of the hidden Markov model tracker is shown to be 
superior to that of the one-shot approach, especially in the region of 
interest (probability of detection close to 1). 

In Fig. 2.9 the packet error probability is shown as a function of 
the SNR, for several different approaches, including the HMM tracker, 
the one-shot detector, the full model (in which no activity detection is 
performed and all users are considered active at all times), the simple 
matched filter receiver and the true model (perfect knowledge of activ- 
ity is assumed). It can be seen that the HMM tracker has excellent 
performance, very close to that resulting from use of the true model. 

6. Medium Access Control for Multipacket 
Reception Networks 

Traditionally, in the layered model approach, the medium access con- 
trol is designed without detailed knowledge of the underlying physical 
layer, considering only simple collision models. In cross-layer design, 
the performance of the physical layer influences the MAC design, and 
in turn the access control may also have impact on the physical layer 
performance, as we have already seen in the previous two sections. 

In this section we review results on MAC protocols that exploit the 
multipacket reception (MPR) capability of CDMA networks with mul- 
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Fzg'ure 2.9. Packet error probability (reprinted with permission from [Chen and 
Tong, 20011) 

tiuser receivers. In [Zhao and Tong, 2003, Zhao and Tong, 2004, Mergen 
and Tong, 2001, Mergen and Tong, 20021 the physical layer performance 
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is abstracted using an MPR matrix, which describes the MPR capability 
of a node. For slotted networks, this MPR matrix was proposed in [Ghez 
et al., 1988, Ghez et al., 19891 and is defined as 

where R , ,  is the conditional probability that J packets are correctly 
received, given that i packets are transmitted. 

This MPR matrix is general enough to model the performance of dif- 
ferent packet reception scenarios, ranging from the traditional collision 
channel Ro, to the strongest hlPR capability R1, for which all trans- 
mitted packets can be correctly received: 

The focus of [Zhao and Tong, 2003, Zhao and Tong, 2004, Mergen and 
Tong, 2001, Mergen and Tong, 20021 is not on defining the MPR matrix 
for given physical layer characteristics, but on building efficient MAC 
protocols for a given MPR matrix model. The role of the MAC is to 
regulate the transmission of packets such that the network throughput is 
maximized. This can be achieved by allowing only an optimal subset of 
users to access the channel. The difficulty comes from the fact that,  while 
the target number of users to access the channel can be computed, the 
exact number of users having packets to transmit is a random variable. 
The solution is to dynamically change the subset of active users, based on 
throughput performance. While this is a general access problem studied 
also for classical collision channels, even the simplest access protocol, 
such as slotted ALOHA [Bertsekas and Gallager, 19921, will need to be 
adapted to  the MPR model [Ghez et al., 19881, and its performance will 
certainly benefit from better physical layer reception capabilities. 

More sophisticated MAC algorithms for general MPR channels for cel- 
lular networks were analyzed in [Zhao and Tong, 2003, Zhao and Tong, 
20041. In [Zhao and Tong, 20031 the Multi-Queue Service Room (MQSR) 
protocol was proposed. In this protocol, the users that are allowed to ac- 
cess the system are first admitted into the so-called service room. These 
users will then be further scheduled for transmission dynamically, based 
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Figure 2.10. Throughput comparisons (reprinted with permission from [Tong et al., 
ZOOl]) 

on resource availability. In order to dynamically adjust the number of 
transmitting users, the service room is further divided into the access 
room and the waiting room. Only the users in the access room are ac- 
tually allowed to transmit. If too many users are currently in the access 
room, some of them are pushed back into the waiting room. Conversely, 
more users can be allowed in the access room if more resource become 
available. This protocol involves a high computational cost, resulting 
from the need to update the joint distribution for all users' states. A 
simpler protocol, the dynamic queue protocol, is proposed in [Zhao and 
Tong, 20041, and is based on splitting the transmission time into time 
periods. The current time period is used for transmission of packets gen- 
erated in the previous period. The optimal access set for a time period is 
determined by minimizing the length of the transmission period, given 
the probability that a user has a packet, and given the MPR matrix 
model. 

Performance comparisons for the above two protocols with the slotted 
ALOHA protocol for channels with or wihout MPR capability, and with 
a simple urn scheme for collision channels are presented in Fig. 2.10 
for 10 users in the network and for probability p that a user generates 
a packet within a given time slot interval. The urn protocol randomly 
picks a subset of users to access the channel such that the probability 
that there is one active user in the set is maximized. 
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From Fig. 2.10, we can make several observations: 

1 The MPR capability greatly increases the network throughput, even 
for simple MAC protocols such as slotted ALOHA; 

2 Better MAC protocols are more efficient even for simple collision 
channels; and 

3 The network performance benefits from improvements a t  both the 
physical layer and the MAC layer. 

We also note that this approach permits a certain design separation 
at  different layers for cellular systems. The only information shared 
between the layers is the MPR matrix. 

Things become more complicated for ad hoc networks, since not all 
the nodes have the same intended receiver and the access control per- 
formance is strongly inter-related with the routing protocol as well. The 
solution proposed in [Mergen and Tong, 2001, Mergen and Tong, 20021 
decomposes the network into independent clusters, each containing a 
single receiver and its associated transmitters. This reduces the prob- 
lem essentially to  the cellular case. and therefore the previous MAC 
results can be applied directly. An extension to the dynamic queue pro- 
tocol for ad hoc networks was proposed in [Mergen and Tong, 20011. 
Here, a protocol based on receiver controlled transmissions (RCTs) is 
analyzed. Receiver controlled transmission is a combination of schedul- 
ing and random access. In the scheduling part, disjoint receiver nodes 
(not interfering with each other) and their neighborhoods are selected 
for transmission in the next m slots. This is achieved by symmetrically 
covering the network (a  simple Manhattan network model is considered) 
with various tilings. The nodes in the center of each tile are selected 
as receivers and then the tilings are shifted so that the network goes 
through (2r2 + 21- + 1) states ( r  is the transmission radius), such that 
all nodes can be selected as receiver nodes. The network stays in each 
state for m slots. For each state, each receiver node chooses a subset of 
transmitters in its neighborhood from which it will receive packets in the 
next contention period. Since the number of transmitters holding pack- 
ets is random, a dynamic queue protocol can be applied to this scenario 
as well. The neighborhood dimension and the transmission period for a 
given configuration (m) can be optimized as a function of the traffic load 
in the network. It  can be seen that,  although a minimum transmission 
radius is recommended for collisions channels, for a better NIPR capabil- 
ity of the nodes, a higher connectivity radius results in higher network 
throughput. Another approach for access control in ad hoc networks 
was proposed in [Mergen and Tong, 20021, and is based on randomly 
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decomposing the network into clusters, based on an a priori selection 
of seeds for all nodes, under the assumption that each node knows the 
network topology up to two-hop distances and also all the seeds for up 
to second order neighbors. After decomposing the network, perfect local 
scheduling/polling is applied for managing the transmissions in a given 
neighborhood. 

A similar approach for designing MAC in ad hoc networks (using cell 
splitting and MPR channel models) is presented in [Rodoplu and Meng, 
20001. Here it is also assumed that the transmission is time duplexed, 
and therefore a transmission schedule must be assigned to every cell. 
The network is divided into blocks, and each block is divided into cells. 
The assigned duplex schedule is designed such that nodes that fall within 
different cells can communicate with each other and with cells in adja- 
cent blocks (all blocks have the same duplex schedule). It is assumed 
that nodes in the same cell will use a separate range of channels, since 
they would have the same duplex schedule. Signature sequence assign- 
ment to improve the network performance is also discussed in [Rodoplu 
and Meng, 20001. Two types of interference may affect the network per- 
formance: multiple access interference and co-channel interference. To 
reduce the interference, the sequences are dynamically assigned as the 
users enter different blocks and different cells within the blocks. Simi- 
larly to  the cellular concept, they are reused in blocks that are sufficiently 
far apart. 

It it shown in [Rodoplu and bleng, 20001 that the proposed MAC 
protocol benefits from the MPR capability of multiuser detectors, and 
outperforms the commonly used 1-persistent CSMA (carrier sense mul- 
tiple access) MAC protocol. 

7. Routing and Multiuser Detection in Ad Hoc 
Networks 

Routing in ad hoc networks has traditionally been studied as a means 
of providing multi-hop connections from any source node to  its selected 
destination. On the other hand, more recent research treats routing as 
a resource allocation problem and shows that it influences both the en- 
ergy consumption in the network, and the interference level, and thus 
strongly inter-relates with the performance of different protocols at dif- 
ferent layers of the protocol stack. A very important QoS measure that 
is particularly influenced by routing is energy consumption. The con- 
cept of "energy aware routing" has recently been proposed for ad hoc 
networks, and routing protocols that minimize the energy consumption 
in the network have been developed. In this section, we focus on work 
related to performance enhancement by integration of routing and mul- 
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tiuser detection [Cai et al., 20021 and by integration of routing, multiuser 
detection and power control [Comaniciu and Poor, 2004bl. 

In [Cai et al., 20021, the authors propose routing protocols that min- 
imize the average transmission power in a synchronous network using 
blind LMMSE receivers. The proposed routing protocols minimize a 
routing cost, based on a link cost measure that represents the average 
power consumption for that particular link. To derive this link cost mea- 
sure, it is assumed that the nodes transmit with fixed powers and use 
blind LMMSE receivers and error correcting codes. For data services 
an ARQ (automatic repeat request) type protocol is also implemented, 
which allows for retransmissions of incorrectly received packets. 

Based on the observation that the output of a linear MMSE receiver 
is well approximated by a Gaussian random variable [Poor and Verdc, 
19971. the bit error rate of an LMMSE receiver can be approximately 
expressed as 

P b  " Q ( ~ R ) ,  (2.45) 

where SIR is determined from (1.36), and Q(s)  = & Jzm exp (-$) dt. 
If data is organized into packets of length L, and a code capable of 

correcting up to t errors per packet is used, the packet error probability 
can be expressed as 

Consequently, for a transmission power of Pk for node k, and an av- 
erage power consumption from transmitting a data packet of nPk (a is 
a network parameter), the average transmission power consumption for 
a transmission from k to a node j can be derived to be 

where P, is the error probability on the given link. We note that the 
link costs (2.47) are usually not symmetric, i.e., the link cost for ( k , j )  
is generally different from the cost for ( j ,  k). 

For real time services, no retransmission is possible, and therefore the 
links selected for transmission must be reliable links, i.e., if the required 
BER is P,,,, they must meet the condition 

The protocol proposed by [Cai et al., 20021, known as MATPR (min- 
imum average transmission power routing), can be implemented to  be 
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either reactive or proactive. In proactive mode, each terminal main- 
tains a routing table so that a route can be used immediately when a 
packet needs to be forwarded. In reactive mode, a route discovery pro- 
cess is initiated only on demand, and no routing table is maintained. 
Faster forwarding is achieved for proactive schemes at  the expense of 
larger overhead for network updates. If the updates are infrequent, the 
proactive schemes are recommended. 

For data services, the main implementation of a proactive protocol 
can be summarized as follows. Each terminal k should determine the 
average SIR with which each of its neighbors can be received. Nodes are 
considered to be neighbors if their received SIRs at  the selected node 
permit demodulation. The packet error rate of each link destined to  k is 
then determined, and this information will be broadcast periodically by 
k .  Also, each node computes link costs (2.47) for all outgoing links, and 
a local link cost table is established to record the link costs. Periodically 
all nodes must broadcast their local link cost table to the network, so 
that every node can have an accurate global link cost table. Based on 
these cost tables, minimum average transmission power routes can be 
determined using Dijkstra's algorithm [Bertsekas and Gallager, 19921. 

A similar approach is used for real time services, except that only 
reliable links are considered for the routing process, and a link cost is 
defined as the transmission power for the transmitting node. 

For reactive protocols, each node will determine the neighbors' SIRs 
and compute the packet error rate of each link destined to it as before, 
but without broadcasting any information. When a node A attempts to 
discover a route to B. A broadcasts a route request packet which includes 
its transmission power and other routing information. If another node 
receives the packet, it will compute the average transmission power cost 
using its own transmission power, and also the packet error rate for the 
corresponding link. Then, the computed link cost and its transmission 
power are included in the packet and broadcast again. The process is 
repeated until the route request packet arrives at the destination node, 
which may receive multiple route request packets, and chooses the route 
with minimum cost. The destination node will then send a route reply 
packet to node A including the selected route list. When A receives 
the reply packet the data communication can begin, using the selected 
route. 

Similarly, a reactive routing protocol can be implemented for real time 
services with the amendment that all the links selected for the route must 
be reliable. Thus, if another node receives a packet intended for route 
discovery, it will include its own information in the packet, only if its 
link to the source node is reliable. 
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In [Cai et al., 20021, the performance of the MATPR protocol was 
compared against the traditional shortest hop distance routing, and it 
was shown that significant power consumption savings can be achieved 
with MATPR. 

While the results in [Cai et al., 20021 are obtained for fixed transmis- 
sion powers for all nodes, in [Comaniciu and Poor, 2003c, Comaniciu and 
Poor, 2004bl it is shown that significant energy gain can be obtained if 
a joint power control and routing algorithm is implemented in networks 
using linear receivers. 

In [Comaniciu and Poor, 2003c, Comaniciu and Poor, 2004b], joint 
power control, distributed power control and routing for CDMA ad hoc 
networks is proposed. Each node k can adjust its transmission power 
level (Pk), such that all transmissions originating at that node would 
meet their target SIRS. An ad hoc network consisting of K nodes is 
considered in the analysis. It  is assumed that each node generates traffic 
to  be transmitted towards a randomly chosen destination node. If traffic 
is relayed by a particular node, the transmissions for different sessions 
at that node are time multiplexed. 

In order to  characterize the data QoS measure, a data transmission 
model similar to that in [Goodman and Mandayam, 20001 is used. Data 
is transmitted in packets of length L, and a packet received in error 
is retransmitted until correctly received. Assuming that all the errors 
can be detected and that a packet is not relayed to its next destination 
node until it is correctly received from its previous transmission link, the 
utility per link of an arbitrary terminal Ic can be measured in the num- 
ber of information bits correctly received per Joule of energy expended 
[Goodman and Mandayam, 20001, 

where is the approximate probability of correct reception of a 
packet [Goodman and Mandayam, 20001, yk is the target SIR, m is the 
number of information bits within a packet, R is the transmission rate 
for terminal Ic, R = WIN,  and W is the system bandwidth. As before, 
N is the spreading gain. 

For a particular example of a Gaussian channel with frequency shift 
keying (FSK) modulation, was selected in [Goodman and Man- 
dayam, 20001 to be 

where B E R k  = 0.5 exp(-yk/2). The approximation in (2.50) was used 
instead of Pc(yk) = (1 - B E R ~ ) ~ ~ ,  which is the probability of correct 
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reception, in order to avoid the degenerate solution for which maximum 
utility is obtained for p = 0 (i.e., when the power is turned off). Based 
on the definition in (2.50)) the authors in [Goodman and Mandayam, 
20001 showed that maximizing the utility leads to the following condition, 
which gives an optimal target SIR y*: 

If we define the link QoS measure for terminal k to be the energy con- 
sumed for the correct transmission of an information bit, E:: 

then the energy per bit transn~ission for a particular link can be mini- 
mized by using the least amount of power that ensures the target SIR 
y* on that particular link. 

Taking into account the above considerations, we express the link QoS 
requirement for an arbitrary link (k, j), k ,  j = 1,2 ,  ..., K as 

where S,T is the set of active links for the current routing configuration 
r ,  obtained using the routing protocol. The joint optimization problem 
at the network level can then be formulated as 

minimize zZ1 Pk 
subject to 

2 ?*, v(k, j) E Si (2.54) 
Pi 2 0 

and T E 'Y, 

where 'Y is the set of all possible routes. From (2.54) we can see that the 
optimal power allocation depends on the current route selection. On the 
other hand, for a given power allocation, efficient routing may reduce 
the interference, thus further decreasing the required energy-per-bit. 

Power Control Issues 

In a cellular setting, a minimal power transmission solution is achieved 
when all links achieve their target SIRS with equality. For an ad hoc net- 
work, implementation complexity constraints restrict the power control 
to adapt power levels for each node, and not for each active link. If mul- 
tiple active transmission links start at node k (Fig. 2.11), then the worst 
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link must meet the target SIR with equality. If we denote the set of all 
outgoing links from node k by Sz, then the minimal power transmission 
conditions become 

minSIR j  = y*, Vk = 1 , 2  ,..., K. (2.55) 
jes; 

Figure 2.11. Multiple transmissions from node k 

The achievable SIR for an arbitrary active link (k, j )  E Si can be 
expressed as 

where h(k,j)  is the link gain for link (k, j ) ,  ck is the filter vector for 
transmissions from node k, sk is the signature sequence for node k ,  and 
a2 is the background noise level. ck can be selected to  be any linear 
receiver, but for the numerical results discussed below, an LMMSE filter 
is considered, which has the property of maximizing the SIR. 

Condition (2.55) can then be expressed as 

From (2.57), the powers can be selected as 
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where pT = [PI, P2,. . . , PK]. 
Similarly to  the cellular case, it can easily be shown that I(k,3)(p) is 

a standard interference function, and also T ( p )  = max(k,j) I(k,j)(p) is a 
standard interference function. Thus, for a feasible system, an iterative 
power control algorithm based on 

converges to  a minimal power solution [Yates, 19951, for both synchronous 
and asynchronous power updates. Since all the information required for 
the power updates can be estimated locally, the power control algorithm 
can be implemented distributively (see also [Ulukus and Yates, 1998a1). 

Joint Power Control and Routing 

The performance in this setting can be further improved by optimally 
choosing the routes as well. Finding the optimal routes to minimize 
the total transmission power over all possible configurations is an NP- 
hard problem. In [Comaniciu and Poor, 2003~1, a suboptimal solution is 
proposed, based on power control, iterative power control and routing, 
which is shown to converge rapidly to a local minimum energy solution. 
Dijkstra's algorithm [Bertsekas and Gallager, 19921 with associated costs 
for the links is used for finding minimal energy routes. The cost for an 
arbitrary link (k, j) is determined as 

In order to estimate costs for links that are not currently active, the 
achievable SIRS for all links must be estimated. This requires that each 
node k updates a routing table which should contain the estimated link 
gains toward all the other nodes, h(k,j), j = 1,2 ,  ..., K ,  j # k, the trans- 
mitted powers of all nodes, Pj, j = 1,2, ..., K ,  and the extended esti- 
mated interference at all the other nodes, defined as 

(2.61) 
Hence, the estimated SIR for link (k, j )  can be expressed as 
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We note that the achievable SIR on any potential link (currently active 
or not) depends only on the current distribution of nodes, and on the 
current power assignment, and does not depend on the current assigned 
routes, and consequently does not change for new route assignments. 
This property is a result of the fact that multiple sessions are time- 
multiplexed at a node, and are all transmitted with the same power. 

Initial distribution 

power 

Fzgure 2.12. Joint power control and routing algorithm 

Starting from an initial distribution of powers and routes, and as- 
suming that the system is feasible for the initial configuration, the joint 
power control and routing algorithm is summarized in Fig. 2.12. It 
was proved in [Comaniciu and Poor, 2004bl that the joint power control 
and routing algorithm converges to a locally minimal transmitted power 
solution. The achieved local minimum depends on the initial network 
configuration chosen. 

For initialization of the joint protocol, an algorithm similar to that 
proposed in [Cai et al., 20021 is used: an initial distribution of powers 
is selected, then routes are determined by assigning link costs equal 
to the link utility (2.49), without imposing any SIR constraint. This 
initialization permits us to quantify the energy improvements of the joint 
optimization versus the initial starting point (with fixed and randomly 
chosen powers). 

As a final observation, we mention that the solution can be improved 
with little increase in complexity if the algorithm is run several times 
using different random power initializations, and the best energy solution 
over all runs is determined. 
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Simulation results illustrate the performance of the joint protocol for 
an ad hoc network with 30 nodes, unifornily distributed over a square 
area of 200 x 200 meters. The spreading gain was seletected to be N = 
32, the optimal target SIR was determined to be y* E 12.5, and the 
noise level was set to  a2 = 10-13, which corresponds approximately to 
the thermal noise power for a bandwidth of 1 MHz. Random initial 
transmission powers were selected, approximately 70 dB above the noise 
floor. 

Figure 2.13 shows the initial distribution of powers, as well as the 
optimal power distribution after convergence. 

, i o - ~  Initial distribut~on of powers 

Final d~stributlon of powers 

0.9 

Fzgure 2.13. Distribution of powers versus node number: (a) initially, (b) aftcr. con- 
vergence 
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Figures 2.14 and 2.15 illustrate the performance of the proposed joint 
optimization algorithm. In Fig. 2.14, it can be seen that the total trans- 
mitted power in the network progressively decreases as the proposed 
algorithm iteratively optimizes power and routes. The values in Fig. 
2.14 represent the total transmitted power obtained over a sequence of 
iterations: [power control, routing, power control, routing, power con- 
trol]. 

Fzywe  2.14. Total transnlission power 

In Fig. 2.15, the achieved energy-per-bit is compared for the same 
experiment with the initial energy value (without power control). I t  
can be seen that substantial improvements are achieved by the proposed 
joint optimization algorithm (approximately one order of magnitude). 

Figure 2.15. Total energy consumption 
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As a final observation, we can see that,  a t  the end of each iteration 
pair [routing, power control], the energy is further minimized. However, 
after new routes are selected, the powers are not yet optimized, so it 
is possible that previous routes might have better energy-per-bit per- 
formance (for the same power allocation, higher SIRS may improve the 
energy consumption). 

8. Admission Control: General Framework 
The role of the admission control is to restrict the number of users in 

the system so that QoS specifications for all users in the network can be 
met. In general, network and physical layer QoS requirements may be 
conflicting. For example, reducing the call blocking probabilities at the 
network layer results in admitting more users into the network, which 
consequently increases the level of interference in the system, and may 
lead to  a degradation in the achieved physical layer QoS (SIR and packet 
access delay). Another way to reduce the call blocking probabilities, 
while preserving the requested QoS for the physical layer, is to queue 
incoming call requests, which will lead to an increased call connection 
delay. All these tradeoffs must be considered carefully when designing 
call admission control. 

Considering a network with J classes of users, the interplay between 
physical and network layer QoS constraints can be illustrated by using 
an equivalent queueing system, as in Fig. 2.16 [Comaniciu and Poor, 
2003al. The average connection delays and the blocking probabilities 
can be derived using a queueing analysis. The service rate for each 
queue is varied by the admission control such that physical layer QoS 
requirements (SIR) can be met. 

The classical approaches for admission control can be classified into 
three categories: the complete sharing policy, the threshold policy, and 
the optimal, state dependent, policy. 

The complete sharing policy accepts new users into the network when- 
ever the SIR condition can be met for all users, including the new call 
requesting connection. No preference is given to different classes of users. 
As a consequence, this policy cannot control the blocking probability or 
average call connection delay. The obtained performance is simply char- 
acterized by the statistical properties of the traffic. On the other hand, 
a threshold policy may be designed to accommodate performance con- 
straints for different classes of users. Consider, for example, a network 
with two classes of users. Each incoming call request is buffered and 
the queues are served according to the admission control strategy, which 
means K1 servers are allocated for class 1, and K2 servers are allocated 
for class 2. The network performance is given by the performance of two 
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Figure 2.16. Equivalent queueing system (reprinted with permission from [Cornani- 
ciu and Poor, 2003al) 

M / M / K , / B ( i )  queues, i = 1 , 2 ,  where B ( i )  is the buffer length for queue 
i .  Note that the threshold can be determined such that blocking prob- 
abilities for one of the queues can be met. Also, blocking probabilities 
and delays cannot be optimized independently in this admission policy, 
since they are inter-related, and are determined by the performance of 
the equivalent M / M / K % / B ( i )  queue. 

The third option for admission control design is to change dynamically 
the resource allocation for different classes of users depending on the 
current state of the network. This state must be defined so as to reflect 
the current QoS in the network. A new call is admitted depending on the 
current state and on the next state to which the network will transition 
when the call is admitted. This new state must meet QoS specifications 
for all users. The admission control policy may be optimized with respect 
to  QoS specifications. More details on how this admission control policy 
can be implemented in a network using multiuser receivers will follow in 
Chapter 4. 
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Regardless of which of these three strategies is used, the admission 
control has the role of managing the available physical resources among 
different classes of users, so that network QoS requirements can be met. 
This pool of resources is given by the physical layer capacity, which is 
determined such that SIR constraints for all users can be met. This 
means that the first step in designing admission control is to  understand 
the physical layer performance. In the next chapter, we will discuss 
the capacity of power controlled networks using multiuser receivers, and 
then we will resume our discussion of admission control in Chapter 4. 



Chapter 3 

ASYMPTOTIC CAPACITY FOR 
WIRELESS NETWORKS 
WITH MULTIUSER RECEIVERS 

Much of the previous work on multiuser detectors has focused on 
their ability to combat the near/far effect by rejecting the worst case 
interference. However, as we have seen in the previous chapter, the 
performance of systems using multiuser receivers can be significantly 
improved if used in conjunction with power control. Power control is 
only one of the available resource management tools that provide flexible 
QoS to different users in a network. QoS requirements can be supported 
at  all layers of the protocol stack, and the system capacity characterizes 
all resources that are available to users, such that QoS specifications 
are met. Characterizing the network capacity for a system that uses 
multiuser receivers is difficult due to the fact that the SIR performance 
of such systems depends on the particular realization of the signature 
sequences for the users currently in the system. Moreover, the resource 
allocation problems encountered at  higher networking layers have close 
interactions with the physical layer for such systems, and thus are more 
difficult to understand. 

In this context, a breakthrough network capacity analysis has been 
proposed in [Tse and Hanly, 19991, for asymptotically large networks. 
In this work it was shown that,  in a large system (large number of users 
and large number of degrees of freedom), a decoupling of the interference 
is possible for various linear receivers, such as the decorrelator and the 
LMMSE detector. Thus, each interferer can be characterized by a level 
of effective interference, and will occupy a certain effective bandwidth. 
Hence, the network capacity can be defined as a sum of these effective 
bandwidths. The work in [Tse and Hanly, 19991 serves as a foundation 
for characterizing the network performance for different types of net- 
works (cellular and ad hoc networks), and has been extended to account 
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for various scenarios (e.g. random and optimal sequences, multiple rate 
transmission, and combinations of linear receivers with SIC). In this 
chapter, we will describe this asymptotic approach to characterizing the 
network capacity for power controlled systems using multiuser receivers. 

1. Effective Bandwidths and Capacity for Linear 
Receivers in Cellular Networks 

1.1 General Formulation for Synchronous 
Networks 

We define the network user capacity to be the number of users that 
can be supported for a given QoS requirement. The analysis in [Tse and 
Hanly, 19991 assumes random, normalized spreading sequences, modeled 
as 

where the skJ1s are iid (independently identically distributed) random 
variables with zero means and unit variances. While in practice it is 
common to choose skg E (-1, I) ,  the analysis in [Tse and Hanly, 19991 
allows for a more general model, with the mild restriction that ~ { s i , )  < 
oo. Although the sequences are randomly chosen, it is assumed that they 
can be acquired by the receiver in a timely manner, i.e., any changes in 
the sequences occur much more slowly than the time scale required for 
aquisition. 

The system model is restricted to a single power-controlled, syn- 
chronous cell, and the QoS measure is the achievable SIR. The capacity 
analysis has also been extended to consider the asynchronous transmis- 
sion case [Kiran and Tse, 20001, which we will also discuss later on in 
this chapter. 

We begin our discussion with the case of linear MMSE receivers; then 
we will compare these results with analogous results for the decorrelator 
and the matched filter receiver. 

The main result in [Tse and Hanly, 19991 is based on properties of 
the limiting eigenvalue distribution for large matrices with random ele- 
ments. More specifically, it has been shown in [Silverstein and Bai, 19951 
that the empirical distribution of the eigenvalues for random matrices 
converges to a nonrandom distribution, in the limit, as the matrix dimen- 
sions increase without bound. As a consequence, even though for finite 
systems the achievable SIR is a random variable depending on the cur- 
rent assigned signature sequences (which are random), [Tse and Hanly, 
19991 have shown that,  in the limit, the SIR converges to a deterministic 
value. 
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This result is summarized in the following theorem given in [Tse and 
Hanly, 19991, for a power controlled, single cell synchronous CDMA 
system, in which an arbitrary user k is received with power Pk. 

Theorem 3.1. Let  yk(N) be the  r a n d o m  SIR of the  L M M S E  receiver 
for u s e r  k ,  w h e n  the  spreading gain in N .  T h e n ,  yk(N)  converges t o  7; 
in probability as  N -+ oo and a: = i s  fixed, where 7; i s  t h e  unique 
solut ion t o  the  equation 

where 

Ep{ . )  denotes  the  expectation wi th  respect t o  the  l imi t ing empirical dis- 
tr ibut ion of t h e  received powers. 

Heuristically, Theorem 3.1 says that,  for a large system, the achievable 
SIR for user k can be expressed as 

The proof of Theorem 3.1 is based on applying random matrix results 
to  the covariance matrix of the interference, and can be found in [Tse 
and Hanly, 19991. 

Note that the above result should not be interpreted as stating that 
the interference is additive accross users, since the term I ( . )  depends on 
the SIR, which in turn depends on the interference created by all users in 
the system. Nevertheless, Theorem 3.1 represents a powerful and simple 
analytical tool for power controlled networks using LMMSE receivers. In 
general, when only a verification is needed that user k meets its target 
SIR (yT), it suffices to  check that 

j=l, j f k  

The term I(Pj, P k ,  yT) can be interpreted as the effective interference of 
user j on user k at a target SIR of y ~ .  

Although no general explicit solution exists for the achievable SIR in 
(3.5), for the special case of equal powers, a closed form solution is given 
by 
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The above closed form solution for the achievable SIR has also been 
obtained independently in [ V e r d ~  and Shamai, 19971. 

Based on (3.6), we can compare the asymptotic theoretical results for 
equal power networks, with simulation results for finite networks (finite 
number of users and finite spreading gain). In Fig. 3.1, we reproduce 
simulation results from [Tse and Hanly, 19991. 

Fzywe 3.1. Finitc network simulations (reprinted with permission from [Tsc and 
Hanly, 19991) 

Note that, as the spreading gain increases, the spread around the the- 
oretical values becomes narrower (= 1 - 2 dB). However, for fixed 
processing gain, the spread is large for a large number of users in the 
network. As a consequence, we can say that the asymptotic analysis is 
a very good match for finite networks using large spreading gains and 
carrying relatively light loads. In general, the asymptotic SIR value is a 
very good approximation to the achievable mean SIR for finite networks, 
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but its variance increases with decreasing spreading gain, which makes 
high-rate networks more susceptible to modelling errors. 

A more accurate performance analysis would be based on character- 
izing the outage probability in the network (i.e., the probability that 
the achieved SIR is below the target). In order to  compute the outage 
probability, we would need to know the actual SIR distribution at the 
output of the receiver. This is often very difficult to characterize. In 
[Honig and Veerakachen, 19961, the SIR distribution was characterized 
using simulation results, while more recent work [Kim and Honig, 19981 
and [Tse and Zeitouni, 20001 assume a Gaussian distribution for the 
output SIR, based on the central limit theorem, and derive closed form 
expressions for the SIR variance. It was shown in [Tse and Zeitouni, 
20001 that the standard deviation for the SIR distribution decreases as 
l / n .  The same result can be proved for the decorrelator. Simulation 
results show very good agreement for the standard deviation approxi- 
mation, but an overly pessimistic result for computing the 1% outage 
probability, which implies that the Gaussian approximation is not very 
accurate for predicting the tail of the SIR distribution. A more accurate 
approximation, which assumes that the SIR has a beta distribution, has 
been proposed independently for the decorrelator in [Tse and Zeitouni, 
20001 and [Miiller et al., 19971. The SIR for the decorrelator exhibits 
similar convergence properties towards a deterministic constant as that 
of the LMVIMSE receiver in the asymptotic case. Asymptotic convergence 
properties for the decorrelator are summarized in the following theorem 
from [Tse and Hanly, 19991: 

Theorem 3.2. Let yk(N)  be the random SIR of the decorrelator receiver 
for user  k ,  when the spreading gain is  N .  T h e n ,  -/k(N) converges t o  yz 
in probability as N + oo with cu = $ fixed, where yc is  given by 

To better characterize the system performance, the notions of effec- 
tive interference and effective bandwidth were introduced in [Hanly and 
Tse, 19991. The effective interference represents the effective level of in- 
terference that can be ascribed to a user for its successful demodulation. 
The effective bandwidth of user k (ek) can be defined such that all users 
can meet their SIR requirements if and only if the sum of their effective 
bandwidths is less than the spreading gain of the system, i.e., 
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By analyzing the SIR expression in (3.7) we note that the effective 
interference seen by user k is equal to Pk/y$ and does not depend on the 
interferers' powers. In Fig. 3.2 a comparison of the effective interference 
for the linear MMSE, the decorrelator and the matched filter receivers 
is presented [Hanly and Tse, 1999, Tse and Hanly, 19991. 

Decorr mj 

Fzgure 3.2. Effective interference for linear receivers 

1 

From (3.7), it is straightforward to show that the SIR target yk for 
an arbitrary user k can be met if 

- 
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Consequently, we can see from (3.8) and (3.9) that the effective band- 
width of the decorrelator is limited to ed,, = 1, irrespective of the powers 
of the interferers. 

It  can be conjectured that better capacity performance can be achieved 
by the linear PIiIMSE receiver, due to its property of maximizing the SIR. 
In what follows, we confirm this conjecture by presenting capacity results 
for power controlled networks using linear MMSE receivers. The main 
result in [Tse and Hanly, 19991 for characterizing the network capacity 
is based on SIR feasibility condition as follows. 
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Theorem 3.3. The SIR requirements (y*) for all users i n  the network 
can be satisfied when N -+ oc with ol = $ fixed, if and only if 

Furthermore, the minimal power solution is  achieved when the received 
powers for all users are 

I t  can readily be seen from (3.8) and (3.11) that the effective bandwith 
for the LMMSE receiver is e,,,,,, = 6. For comparison purposes, we 
also derive the effective bandwidth for the matched filter receiver to be 
emf = y*. A comparison of the effective bandwidths for the three linear 
receivers is given in Fig. 3.3. 

Figure 3.3. Effective bandwiths for linear receivers 
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General capacity results can be obtained for all three receivers when 
J classes of users are present in the network, having different SIR re- 
quirements, yj, j = 1 , .  . . , J .  The simplest case is the matched filter 
receiver, for which the capacity region is given as 

I 

- _ __ _ _ - - - 
I' 

OO 5 10 
SIR --> 15 
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K where aj = $. If a maximum transmission power is imposed for an 
arbitrary class i ,  the capacity region becomes 

J 

xaj-yj 5 min [I - g] . 
l<i<J 

j=1 

For the decorrelator, (3.9) can be straightforwardly extended for the 
multi-class case, with or without power constraints as 

J 

C a i  5 min [I - g] , 
l<i<J 

3=1 

respectively. 
Finally, for the LMMSE receiver, for large networks, 3 is constant, 

p3 

and therefore the required received power for an arbitrary class i can be 
specified as 

Consequently, the network capacity region becomes 

and if power constraints are imposed: 

J 

" < min [I-g] 
C a j =  l<i<l 
j=1 

1.2 Partial Hybrid Networks 
The capacity advantage of multiuser receivers is evident from Figs. 

3.2 and 3.3. However, this advantage comes at the price of higher imple- 
mentation complexity. This disadvantage becomes more significant for 
multimedia networks supporting bursty traffic, which requires frequent 
filter coefficient updates, thus substantially increasing the implementa- 
tion complexity. One possible approach to overcome this disadvantage is 
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to use simple matched filter receivers for real-time streams that require 
on-line filter adaptation and detection and are less sensitive to detection 
errors (voice traffic is a good example). On the other hand, data users 
would greatly benefit from using more advanced receivers. Further com- 
plexity reduction can be achieved if the real-time users are perceived by 
the data users' receivers as background noise. This reduces the update 
frequency for the data users' receivers as well, and it is thus suitable for 
simple access control design. Some advantages of the partial hybrid re- 
ceivers have already been discussed in Chapter 2 in the context of MAC 
design. Such mixed receivers networks (partial hybrid systems) are an- 
alyzed in [Comaniciu, 20021, and the corresponding capacity results are 
presented in the following paragraphs. 

To evaluate the asymptotic capacity, the effects of data  on voice per- 
formance, as well as the effects of voice on data performance should be 
determined. The bidimensional asymptotic capacity is obtained as a re- 
sult of the intersection of two QoS requirements for the system: the SIR 
target guarantee for voice and the SIR target guarantee for data.  

It  can be shown that,  to meet their target SIRS (7; and 72, respec- 
tively), all voice users and all data users must transmit with the equal 
powers P, and Pd, respectively. Denoting as K the ratio of the data 
power to the voice users' power, the following feasibility theorems for 
voice and data, respectively, hold. 

Theorem 3.4. In a C D M A  s y s t e m  in which voice users  employ  matched 
filters and data users  have LMMSE receivers, denot ing a, = K,/N and 
a d  = K d / N  as the  number  of voice users  and data users  per d imens ion ,  
and y,* and y; as the  target SIR requirements for voice and data,  respec- 
t ively,  a distribution of received powers exists such  t h a t  t h e  target SIRS 
for all voice users  are m e t ,  zf and only  if 

Moreover, if (3.20) holds, the  m i n i m u m  voice power solut ion i s  given 
by 

pFn = inf{P : SIR , (P )  > 7,') = %P2 (3.21) 
1 - 7; [a, + K C Y ~ ] '  

where SIR, represents the  achieved SIR for all voice users .  

Theorem 3.5. In a C D M A  s y s t e m  in which voice users  employ  matched 
filters and data users  employ LMMSE receivers, denot ing a, = K,/N 
and a d  = Kd/N  as the  number  of voice users  and da ta  users  per d imen-  
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sion,  and y,* and yz as the  target S I R  requirements for voice and data,  
respectively, a distribution of received powers exists such  that  t h e  target 
S I R S  for all data users  are m e t ,  i f  and only  i f :  

Moreover, if (3.22) holds, t h e n  the  minimum voice power solut ion i s  
given by: 

where S I R d  represents the  achieved S I R  for all data users .  

The proof for Theorem 3.5 relies on the following lemma, which makes 
the results in [Tse and Hanly, 19991 directly applicable. 

Lemma 3.1. I n  a partial hybrid mul t iuser  detector C D M A  sys tem,  
where data users  employ mul t iuser  receivers built us ing on ly  knowledge 
of data signature sequences, and voice users  have convent ional  receivers, 
we  have 
~ { ( c ~ s ) ' )  = &E{(c~c)} for  a n y  data filter vector  c and  a n y  voice sig- 
nature sequence s .  It follows from Lemma 3.1, that such a partial hy- 
brid multiuser detector CDMA system is equivalent from the data users' 
performance point of view to an all data system employing multiuser de- 
tectors, and operating with an enhanced noise power C' = (a2 + % P). 

Based on the power control feasibility conditions in Theorems 3.4 and 
3.5, the hybrid system capacity expression is thus given in the following 
theorem. 

Theorem 3.6. T h e  bidimensional capacity of a C D M A  s y s t e m  having 
voice users  employing matched filter receivers and data users  employing 
partial L M M S E  receivers, i s  expressed as  

(QU, Ad), voice and data s y s t e m  
voice only  s y s t e m  (3.24) 

, data on ly  s y s t e m  

where 

Recall that the transmission powers for voice and data users are con- 
strained to satisfy Pd = KP,. The system performance will depend on 
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the particular value of K chosen. While both voice and data users can be 
constrained to transmit with minimal powers, this will further decrease 
the system capacity. If both voice and data users are transmitting with 
the minimal powers necessary to  achieve their target SIRS, and given the 
constraint that their ratio is equal to 6 ,  the system capacity becomes: 

voice and data system 
voice only system (3.25) 

, data only system 

where 

Figures 3.4 (a) and (b) illustrate the system capacity for two cases: 
without power constraints and with power constraints. It can be seen 
from these examples that the capacity is reduced if power constraints 
are enforced. 

Similar capacity derivations can be applied for the partial hybrid 
decorrelator case, based on Lemma 3.1 and the results of [Tse and Hanly, 
19991. Asymptotic capacity results for the partial hybrid decorrelator 
are summarized in the following paragraphs. 

Lemma 3.2. T h e  r a n d o m  SIR performance o f  an arbitrary data u s e r  in 
a n  integrated C D M A  s y s t e m  in which real-time t r a f i c  employs  matched 
filters and  data users  employ partial decorrelator receivers, converges as  
K, -f m, Kd + m, L --+ m, and a = (K, + Kd)/N = a, + a d ,  t o  7; 
given by 

Theorem 3.7. T h e  bidimensional capacity of a C D M A  s y s t e m  having 
voice users  employing matched filter receivers and data users  employing 
partial decorrelating receivers, i s  g iven by 

voice and data s y s t e m  
voice only  s y s t e m  (3.27) 

, data on ly  s y s t e m  

where 
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F q r e  3.4. Bidimensional capacity for the H - M M S E ( P )  system: (a) No power 
constraints (b) Minimum power transmission for both voice and data and power ratio 
fixed to K 

The system capacity is illustrated in Fig. 3.5  (a) for different values of 
6.  
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Figure 3.5. Bidimensional capacity for the H-D(")  system: (a) No power coristraints 
(b) Minimum power transmission for both voice and data and power ratio fixed to  K 

If data power constraints apply (both voice and data users are con- 
strained to transmit with minimal powers), the system capacity becomes: 

voice and data system 
voice only system (3.28) 
data only system 
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Fzgure 3.6. Partial hybrid LMMSE and decorrelator: simulations and asymptotic 
analysis 

where 

We note that the performance of the partial hybrid systems depends 
on the particular value of K chosen. For a higher capacity, 6 can be 
optimized as a function of the number of voice users currently in the 
system. In Fig. 3.6 we present asymptotic and simulation results to 
illustrate this for the partial hybrid LMMSE and partial hybrid decor- 
relator systems. Simulation results are shown for finite systems: finite 
number of users and finite spreading gains. No power constraints are 
enforced. A spreading gain of 128 is used for both voice and data users, 
data SIR targets are 10 and voice SIR targets are 5. The simulation 
results are averaged over different signature sequence realizations. The 
ratio K of data power to voice power is determined from the simulations. 
The corresponding values are marked on the figure for the LMMSE case 
and for the decorrelator case. in the order LMMSE/decorrelator. 

As a first observation, we can see that the analytical results are very 
close to the simulation results even for moderate spreading sequence 
lengths and low numbers of users in the system. As expected, the ob- 
tained power ratios from simulations are chosen such that the data pow- 
ers predominate if more voice users are present in the system, and are 
lower than voice powers if there are only a few voice users in the sys- 
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tem. Another interesting observation is that the LWIWISE detector and 
the decorrelator perform identically for the a, range considered in the 
simulations. This is due to the fact that, for both cases, the capacity 
is restricted by the voice power control feasibility condition for the pa- 
rameter values chosen for simulation. This suggests that,  if the partial 
hybrid decorrelator is used in conjunction with access control, it would 
give performance similar to that of the partial hybrid LMMSE with 
a further reduction in complexity: filter coefficients do not depend on 
changes in the noise level, which includes changes in voice interference 
power. Recall that a joint access control algorithm for networks using 
multiuser receivers has been discussed in detail in the previous chapter. 

1.3 Optimal Signature Sequences 
While the previous sections have considered the case in which normal- 

ized, random signature sequences are assigned to users, the performance 
can potentially be improved by optimizing the signature sequence selec- 
tion as well. The QoS feasibility condition translates now into finding 
signature sequences and allocating transmission powers for all users, such 
that they will meet their target SIRS. In [Viswanath et al., 19991, the 
capacity of such networks is investigated for optimal signature sequences 
for all users. Two linear receivers are compared: the linear MMSE re- 
ceiver, and the matched filter receiver. 

A surprising result is demonstrated in [Viswanath et al., 19991: while 
the LMMSE receiver performance is asymptotically unchanged for op- 
timal sequences compared to the random assignment case, the matched 
filter receiver performs as well as the LMMSE receiver when optimal 
signature sequences are assigned. This result holds for the case when 
there are no power constraints. If power constraints are imposed, then 
optimal signature assignment, corresponding to WBE (Welch-bound- 
equality) sequences, gives better performance for both linear receivers 
considered. Since the unconstrained power solution for both LhlIMSE 
and matched filters using WBE sequences gives identical capacity as the 
LMMSE with random sequences case, in what follows we present capac- 
ity results and minimum power solutions for LMMSE and matched filter 
(MI?) receivers when power constraints are imposed [Viswanath et al., 
19991. 

Theorem 3.8. K users, hawing a n  SIR requirement of y and using WBE 
sequences, are admissible i n  a network using linear MiLISE o r  matched 
filter receivers if and only if 
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where N i s  the spreading gain, and i s  the maximal  transmitted power 
constraint. 

T h e  min imal  power solution corresponds t o  equal received powers for  
all users: 

For the power constrained case, again denoting a = K I N ,  we can 
compare the capacity in (3.29). with an equivalent formula for the case 
of linear MMSE receivers using random sequences (derived in Section 1 

of this chapter): cr < 1 + .I - (1 + -y)a. It  can easily be seen that the 
7 pt 

network with WBE sequences performs better than this random signa- 
ture case, even for the LMMSE receiver, i.e., the use of WBE sequences 
leads to a smaller power requirement for the same network capacity, or 
conversely, for equal received powers it achieves a higher capacity. 

More results for multi-class networks, a downlink analysis, as well as 
detailed derivations and proofs can be found in [Viswanath et al., 19991. 

1.4 Multipath Fading Channels 
In a fast multipath fading environment, it is very likely that channel 

estimates will not be perfect, and channel estimation errors will limit 
the capacity gains obtained using multiuser detectors. A problem that 
occurs in multipath channels is that the effective signature sequence of 
a user is characterized by both energy and direction. As a consequence, 
if the channel is not perfectly known, the effective signature sequence is 
not known, and it cannot be cancelled by the multiuser receiver. While 
solutions to this problem have been proposed in the literature, in which 
the received signature sequence is estimated, and then the receiver is 
built for the effective set of signature sequences in the network, the 
estimation errors will clearly adversely impact the performance. Several 
questions arise naturally in connection with such solutions. In particular. 
if some measure of the channel estimation errors is available, how can 
this be factored into the receiver design? And, how would such networks 
perform? 

Answers to these questions for asymptotically large networks using 
linear multiuser receivers are provided in [Evans and Tse, 20001. In 
[Evans and Tse, 20001 the authors assume that any arbitrary user k's 
channel is not perfectly known; instead, it is statistically characterized 
by first and second order moments: the average link gain jhkI2, and the 
estimation error variance <;. This paper shows that the variance (2 does 
not depend on the path index if the average power per path is the same 
for all paths. The model assumes that intersymbol interference can be 
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neglected (i.e., the delay spread of the channel is small compared to the 
symbol duration), and that the time delays of the multipath components 
are known, so that only the path gains need to be estimated. 

An implicit assumption for the channel model is that it is conditioned 
on the slower fading (free space path loss and shadow fading), which does 
not affect the received power over the time scales of interest. The ef- 
fects of slow fading are absorbed into the attenuated transmitted power, 
defined for user k as 

where zk is the path loss due to free space loss and shadow fading, Pk is 
the transmitted power and K is the total number of users in the system. 

For simplicity, the analysis in [Evans and Tse, 20001 assumes that the 
average received powers of all paths of each user are the same, so that 
for user k, the average received power of path 1 (pk,l) can be expressed 
as - 

Pk &,r = 2- = p k l h k ~  1'. (3.32) 

where is the total average received power for user k, and L is the total 
number of paths. 

The analysis in [Evans and Tse, 20001 is decoupled into two parts ac- 
cording to the receiver structure, which comprises a data estimator and 
a channel estimator. The data estimator is a "one-shot" linear receiver 
which accounts only for information from previously detected symbols 
through the coupling with the channel estimator. The channel estima- 
tor uses training symbols and it is shown that it can provide accurate 
estimates, as long as its window length is at  least equal to the number 
of resolvable paths. 

The main result for an LMMSE network is summarized as follows. 

Theorem 3.9. The S I R  achieved by an arbitrary user (say the ktfL one) 
in  an LMMSE network can be expressed as 

where y is the unique fixed point in  (0, m) that satisfies 
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est imated average power gain for u s e r  j ,  defined as  

where h j , ~  i s  the  average link ga in  for the  lth path of u s e r  j 

It can be seen that the overall effect of an interferer is equivalent to 
L - 1 users with power tipk and one with power xLl l h k l j 2 ~ k  + tipk. 
When the channel is known perfectly, the interferer looks like a single in- 
terferer with power Pk xLl /hk1I2, whereas as the uncertainty increases, 
the interferer is perceived as L separate interferers each having reduced 
power p/L. However, because of the convexity of the effective inter- 
ference function, L low power interferers are more damaging than one 
high power interferer (with the same total power), and this is the reason 
why significant performance degradation occurs if channel estimates are 
poor. 

Similar capacity results are derived for the post-combining decorrelat- 
ing receiver. This decorrelating receiver has two stages: the first stage 
decorrelates the users by considering each path as a separate interferer; 
the second stage combines the L outputs from different paths for the 
same user. For this receiver, we have the following. 

Theorem 3.10. T h e  SIR for the  decorrelator converges a lmos t  surely 
t o  the  value 

where 

and hk 1' i s  f r o m  (3.35). 

For comparisons purposes, results for networks using matched filter 
receivers are also presented in [Evans and Tse, 20001. 

Theorem 3.11. T h e  SIR for the  matched filter receiver converges al- 
m o s t  surely t o  the  value 

where ~d i s  the  unique fixed point in (0, co) that  satisfies 
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2 & 2  with I,*(L,Cj, / ,/ ) = (L  - ~)I(<;P~) + I(Pj(<; + jhj2)) ,  and I (p)  = p. 
Again, hj  j 2  is defined as i n  (3.35). 

As we mentioned previously, the above capacity results rely on average 
link gain estimates, and on knowledge of channel estimation errors. In 
[Evans and Tse, 20001, channel estimation is treated as a standard Gaus- 
sian estimation problem, in which an LMMSE estimate of the channel 
is obtained conditioned on knowledge of the transmitted symbols over 
a training period. The length of the training period is characterixed by 
the length of the estimation window T ,  and characterizes the estimation 
accuracy. It  is shown in [Evans and Tse, 20001 that in the asymptotic 
case, the channel estimation variance converges almost surely to a de- 
terministic constant E2 .  
Theorem 3.12. The minimum square error for any path converges al- 
most surely as N + oo (with a = KIN fixed) to the constant 

where y, satisfies the equation 

From (3.41), y, can be written in closed form as 

We note that,  as the window length increases, the contribution of the 
interference to y, becomes negligible and, in the limit, the variance is 
well approximated by u2/r.  Again, we note that as L increases, while T 

and the total power per user remain constant, each interferer is perceived 
by the channel estimator as L low power interferers, and its performance 
approaches the performance of a matched filter estimator. This corre- 
sponds to the case in which only a priori statistics of the channel are 
available. 

While Theorem 3.12 was initially proved for long sequences (the sig- 
nature sequences are independently chosen from symbol to symbol), the 
proof was extended to the case of repeated sequences as well, under an 
additional mild assumption that the data symbols have zero mean. Also, 
it was shown that Theorem 3.12 holds even if the signature sequences 
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along the different paths are shifted replicas of the same transmitted 
sequence. 

The final result in [Evans and Tse, 20001 couples the results obtained 
for data and channel estimation in the following theorem for the linear 
MMSE receiver, when luk1I2 is the received power of path 1 of user k ,  
and the variance of the received power is given by Theorem 3.12. 

Theorem 3.13. T h e  SIR achieved by a n  arbitrary u s e r  ( say  the  kth 
one)  in a n  LMMSE network can  be expressed as: 

where ~d i s  t h e  unique fixed point in (0, m) that  satisfies 

It  follows from Theorem 3.13 that the SIR is aymptotically chi-square 
distributed with 2L degrees of freedom. 

A similar coupling result is obtained for the matched filter receiver, 
which shows that the SIR for the matched filter converges (in probabil- 
ity) to  

with ~d = [a2 + a$'. 
No coupling result is required for the decorrelator, since its SIR is 

independent of the interferers' received powers. 
The above results from [Evans and Tse, 20001 characterize the SIR 

performance for linear receivers (LMMSE detector, decorrelator and 
matched filter) in a multipath fading environment for arbitrary trans- 
mission powers for the users. The questions to  be answered next are: 
how can the network capacity be optimized with respect to power se- 
lection? And what would be the capacity of a multi-class network with 
different SIR target requirements? These questions were addressed in 
[Comaniciu and Poor, 2003al for an LMMSE network with J classes of 
users, having different target SIRS, $, j = 1, 2 , .  . . , J .  

The asymptotic network capacity can be derived building upon the 
results presented in Theorem 3.9 for the SIR convergence. We can see 
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that as K, N -+ ca, r d  approaches a constant for all users. If we impose 
the condition that the achieved SIR should be -/: for all class j users, 
j = 1, 2, . . . , J (i.e., the minimal power solution is achieved with 
equality), and using the assumption that all users in the same class have 
the same channel characteristics, it follows from (3.33) that all users in 
the same class j must have equal attenuated transmitted powers: 

where uII = (;/lhj12. 
Since the powers must be positive, and yd 2 0, an immediate result 
is that (1 - uj$) > 0, and the achievable SIR target must satisfy the 
condition 

% < l / u j ,  j = l ,  2 , . . . ,  J. (3.47) 

Denoting Q j  = l h j / 2 ~ j  for the class j of users, and imposing that the 
SIR bound should hold with equality (SIRj  = y;), from (3.33) we can 
express yd as 

7; 
Yd = , j = l ,  2 , . . . ,  J. (3.48) 

Qj(1 - u j ~ , * )  
Thus, for multiple classes of users, the following equality holds: 

Expressing the SIR condition for an arbitrary user in class 1, it can 
be shown that the feasibility condition can be expressed as 

Hence, the transmitting power for user 1 can be determined as 

where 
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Since the transmitted power must be positive, and considering (3.47) and 
(3.52), the system capacity is restricted by the power control feasibility 

The flat fading case can be obtained by setting L = 1. 
The above derivation can be summarized via the following theorem. 

Theorem 3.14. I n  a n  asymptotically large CDMA sys tem (K, -+ oo, 
N -+ co with aj = K j / N  constant,  j = 1 , .  . . , J )  operating with lin- 
ear MMSE receivers in a multipath fading environment  with imperfect 
channel estimation, a min imal  received power solution exists such that 
all users  achieve their  target S I R s ,  if and only i f  

T h e  min imal  transmit  power solution for a user  i n  class i is  given by 

For comparison purposes, the capacity regions for a multi-class net- 
work using matched filter receivers are also derived in [Comaniciu and 
Poor, 2003a], and are specified as a power control feasibility condition: 

The minimum transmit power solution for a user in class i is shown to 
be 

1 pt = - eio2 
- 2 

' 'ilhi1 (1 - uiei) 

In Fig. 3.7 we present asymptotic physical layer capacity comparisons 
for LMMSE and matched filter systems, for a network with two classes 
of users when L = (1, 3, 5); and the target SIRs are y* = 5 for both 
classes. 
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Fzgvre 3.7. Asymptotic capacity comparisons: MF versus LMPYISE 
permission from [Comaniciu and Poor, 2003al) 

(reprinted with 

1.5 Multi-Rate Networks 
As we discussed in Section 4 of Chapter 1, QoS support for heteroge- 

neous services requires the implementation of multi-rate receivers. While 
in Chapter 1 we have focused on describing possible implementations for 
multi-rate multiuser receivers (LRD - low rate detector, HRD - high rate 
detector, and GSIC - groupwise successive interference cancellation de- 
tector), in this chapter we discuss the asymptotic capacity for power 
controlled networks using these architectures. This section's material is 
based mainly on research described in [Yao et al., 20041 for multicode and 
various LRD and HRD scenarios, and in [Comaniciu and Poor, 2003b1, 
which analyzes the capacity of multi-rate GSIC networks. Asymptotic 
capacity comparisons among different multi-rate schemes have also been 
presented in [Biglieri et al., 20001. 

For simplicity, the analysis in [Yao et al., 20041 considers a two class 
network: low rate and high rate, where the rate for the high rate class 
is &I times higher than the rate of the low rate class. It is assumed that 
all the spreading sequences are randomly chosen and normalized. 

We start our discussion with the simplest case, the multicode imple- 
mentation, for which a high rate users is equivalent to M low rate virtual 
users, and therefore the results in [Tse and Hanly, 19991 can be straight- 
forwardly applied. It can thus be proven that the SIR of any user k in 
the network converges to a deterministic value 
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where the interference function I ( . )  is defined as in (3.3), Fo(p) and 
F1(~) are the distributions of powers for the two classes of users (low 
rate and high rate, respectively), and a.0 = and a.1 = represent 
the number of users per dimension for the low rate class and the high 
rate class, respectively. 

We note that (3.55) holds for both high rate and low rate users, since 
there is no difference between a physical and a virtual low rate user. If 
the SIR requirements for the two classes of users are 7; and y; for the 
high and low rate class, respectively, and if maximal power constraints - 
Ph and PL are imposed, the user capacity for multicode implementation 
is given by the following SIR feasibility condition: 

Similar results for the multicode asymptotic capacity region have been 
derived independently in [Guo and Aazhang, 1999, Guo, 19991. The 
multicode implementation is very simple, but has the disadvantage of 
a high peak to average power ratio requirement. An alternate solution 
for multi-rate implementation is to use variable spreading gain. As we 
have seen in Chapter 1, two different implementations may be consid- 
ered: the LRD (low rate detector) and the HRD (high rate detector). 
For each scenario, two different signature sequence assignments for the 
low rate users are discussed in [Yao et al., 20041: general random codes 
(GRCs), and random repetition codes (RRCs). The random repetition 
codes are obtained by repeating the first subinterval sequence (corre- 
sponding to a high rate code interval) for each of the subsequent M - 1 
intervals (the low rate sequence can be considered as a concatenation of 
M subintervals, each of length equal to the spreading length of high rate 
users). The random repetition codes have the advantage that they can 
reduce the implementational complexity and they facilitate the adaptive 
implementation for the LMMSE receiver. 

We summarize the main results of [Yao et al., 20041 as follows. 

Theorem 3.15. (HGRC): For a n  asymptotically large network, using 
high rate detectors and general random codes, the output  SIR for a n y  
user  k (low rate o r  high rate) can be approximated b y  the solution to  the 
equation 

(3.57) 
and the user  capacity region of this network i s  
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Theorem 3.16. (LGRC): For an  asymptotically large network, using 
low rate detectors and general random codes, the output S I R  for any 
user k (low rate or high rate) can be approximated by the solution to the 
equation 

and the user capacity region of this network is 

Theorem 3.17. (HRRC):  For an asymptotically large network, using 
high rate detectors and random repetition codes, the output S I R  for any 
high rate user k can be approximated by the solution to the equation 

7; = 
Pk 

o2 + QO J I (P.  Pk, $) dFo(p) + ~ I Q I  J I ( P .  Pk. i ; )dFi  ( p )  ' 
(3.61) 

while the output S I R  for a low rate user is  approximated by 

The network capacity region is  determined by 

o2 > max --, - 
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and where x(cro, crl) is  the solution to  the equation 

Theorem 3.18. ( L R R C )  : For a n  asymptotically large network, using 
low rate detectors and random repetition codes, the output  S I R  for a n y  
high rate user  k can be approximated by the solution t o  the equation 

where yk,~ and yk,2 are defined as 

and 

T h e  output SIR for a low rate user  Ic can expressed as a solution t o  

The above results give insights into the performance tradeoffs for dif- 
ferent implementations for multi-rate systems. Asymptotically, the mul- 
ticode network and the LRD for general random codes have the best 
performance. The bidimensional user capacities for all of the scenarios 
discussed above are compared in Fig. 3.8 for both the asymptotic limit 
and finite networks (simulation results). 

For these numerical results, the spreading gains were selected to be 
128 and 32, respectively, and the target SIRS were chosen to be 1 dB 
for the low rate users and 10 dB for the high rate users. The power 
constraints impose that the SNR can be no more than 20 dB (resp. 30 
dB) for low (resp. high) rate users. For finite networks, we can see 
that the MC and LGRC still have the highest capacity. but it is lower 
than the expected limit. This is due to the fluctuations in the achieved 
output SIR as discussed also in [Tse and Hanly, 19991. Determining 
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Figure 3.8. Capacity for multi-rate networks (reprinted with permission from [Yao 
et al., 20041) 

the simulated capacity requires that all the users must meet their target 
SIRS. This calls for capacity overprovisioning, so that we expect that the 
simulated capacity will always be smaller than the theoretical asymptotic 
prediction. Following the results in [Tse and Zeitouni, 20001, the SIR 
can be characterized as being asymptotically Gaussian with mean y* 

2y*(1+7*)2 and variance & + ~ { s : , }  - 3 ( 7 * ) 2 ] ,  where sll is the first $ (l+ye)2+a 

element of user's 1 signature sequence. It was verified in /Yao et al., 20041 
that,  by applying the above distribution for the SIR in an MC system in 
which all users have the same target SIR, very good agreement between 
the simulation results and the adjusted theoretical limit is obtained. 
This phenomenon supports the assumption that the mismatch between 
asymptotic results and finite networks simulations is due to the fact 
that the output SIR is a random variable for finite networks, rather 
than being a deterministic constant. 

As we have discussed in Chapter 1, an alternative to LRD and HRD 
implementations is the GSIC system, in which the users are detected in 
groups, and the interference between groups is cancelled using successive 
interference cancellation. 
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In [Comaniciu and Poor, 2003b1, optimal power allocation and capac- 
ity regions of LMMSE GSIC systems in multipath fading channels are. 
derived for asymptotically large systems. The analysis uses the same 
model assumptions, and the same notations as in Section 1.4 of this 
chapter. For GSIC, the impact of channel estimation errors is two-fold: 
they impact the LMMSE receiver performance within a class of users 
in the same detection group, and also they are strongly related to the 
cancellation errors for the successive group interference cancellation. 

Consider J classes of users, in which all users in a given class j have 
the same transmission rates (same spreading gains) and the same SIR 
targets, y> All users in the same class are detected within the same 
group. The first detected group is selected according to a criterion such 
as minimal received power. Then, the interference caused by the first 
group is reconstructed and cancelled from the received signal. This is 
done successively until the last group of users has been detected. For a 
given detection order, we denote the groups as 1 , 2 , .  . . , J, which repre- 
sents the detection order. 

The imperfect channel estimation yields an imperfect cancellation for 
KJ group j of users, resulting in a residual interference power ~j Ck=l Qj,k,  

where Kj  is the number of users in class j, QjSk = P j , k h j / 2  is the received 
power of user k from class j, and ~j is the fractional error in canceling the 
total interference power created by the jth group. This result implicitly 
assumes that the fractional error for canceling a group j user is the same 
for all users in class j .  Since the target bit-error rates are usually very 
low, it can be assumed that the cancellation error is mostly determined 
by the amplitude and phase estimation errors. Similarly to the approach 
in [Andrews and Meng, 20031 we assume that the cancellation error ( E )  

for the successive interference cancellation, is approximately the same 
as the total channel estimation standard deviation, <. Assuming further 
that the multipath components are iid, and have estimation error vari- 
ances of t2, the estimated cancellation error for an L path channel can 
be approximated by: 

Based on the SIR expression for multipath fading channels (3.33), and 
using the results in [Comaniciu and Poor, 2003al for multiclass systems 
using LMMSE receivers, it can be shown that,  for a GSIC system, all 
users within a detection group should have equal received powers. Since 
each group of users is detected using LMMSE receivers, while the in- 
terference created by other groups is perceived as white noise, it can be 
shown that every group j of users can be approximated as an all LMMSE 
system with enhanced noise Ci :  
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with a1 defined as a1 = Kl/Nl.  This equivalence is based on the fact that 
the receiver filter coefficients for group j users ignore the structure of the 
interference from other groups, and thus any pair of filter coefficients and 
signal signature sequences for users in other groups may be considered 
to be independent. 

Using (3.34), (3.48) and (3.69)) and after straightforward algebraic 
manipulation, we can derive the power control feasibility condition such 
that the target SIR y,* can be met with equality for an arbitrary class j 
of users: 

where 0j = y,"/(l -uj$) > 0, and Aj = (L-l)uJyj*+(l+uj)y~/( l+y,") .  
Given that target SIRS must be met for all users, the power control 

feasibility can be expressed as a matrix equation condition 

where qT = [&I, Q 2 ,  . . . ,QJ] ,  uT = [Ql,&, . . . , 0 j ] ,  I j x j  is the identity 
matrix, and 

The matrix A is a nonnegative matrix, but it is not necessarily irre- 
ducible, since perfect cancellation of group 1 users results in a reducible 
matrix. For a nonnegative, irreducible matrix, a positive vector solution 
to  (3.71) exists iff p(A) < 1, where p(A) is the spectral radius of A .  
This is usually the practical case since perfect cancellation is difficult to  
achieve in practice. Nevertheless, this result has been proven to  hold 
under more general circumstances [Agrawal et al., 20041 for a nonneg- 
ative matrix and a positive noise vector term in the matrix condition, 
provided that the power control feasibility condition can be expressed 
in a standard form, using a standard interference function: q = i (q) .  
For the considered GSIC system, we can alternatively express the power 
control feasibility condition as 



124 MULTIUSER DETECTION IN CROSS-LAYER DESIGN 

It is straightforward to show that function i (q)  is a standard interference 
function by verifying the three properties presented in [Yates, 19951:. 
positivity, monotonicity and scalability (see Section 2 in Chapter 2).  It 
can be shown that all three properties hold true if 0, > 0, V j  = 1, . . . , J, 
which holds if yj* < l /uj ,Vj  = 1, . . . , J. 

The main capacity result of [Comaniciu and Poor, 2003bl can be sum- 
marized in the following theorem. 

Theorem 3.19. I n  a groupwise successive interference cancellation sys- 
t e m  wi th  LMMSE receivers wi th in  a group, and operating u n d e r  a mul -  
t ipath fading env i ronment  w i th  imperfect channel  es t imat ion,  a positive 
power vector  solut ion exists such  tha t  all users  m e e t  the i r  target S I R S  
yj, if and only  if 

1 
yj < - and p(A) < 1. (3.74) 

l / j  

If (3.74) holds, t h e n  the  opt imal  received power allocation for  the  groups 
of users  i s  given b y  

It was also proved in [Comaniciu and Poor, 2003bl that the received 
power requirements for different groups can be derived using a recursive 
formula. Denoting by Qj  the required received power for detection class 
j, and using the notation rj = (1 - ajAj)/Oj, it can be shown that 

or equivalently, 
Q ,  - "j-1 ri + eiai 

3 - z = 1  Q1, (3.77) 
r i+l  + ai+l 

The total received power requirements for all users, for a given detection 
order, can then be express as 

that is, 
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While the above results were derived for a given, arbitrary, detection 
order, this can be optimized for a minimal received power solution. Using 
a similar approach to that in [Shu and Niu, 20031. it can be shown that 
the optimal detection order for GSIC is the same as for SIC systems, 
i.e., groups must be detected in the ascending order of their cancellation 
errors. 

An interesting observation is that this result is in contrast with the 
popular recommendation of detecting higher rate users first. Although 
the analysis in [Comaniciu and Poor, 2003bl considers only the impact of 
the imperfect amplitude estimation on the cancellation errors, this model 
can be extended to encompass other effects, such as the performance 
differences between the asymptotic analysis and the practical finite case. 
In this case, higher rate users (using lower spreading gains) may have a 
higher cancellation error due to a higher achieved SIR variance relative 
to the estimated average SIR for asymptotically large systems [Evans 
and Tse, 20001. 

Capacity regions for the general case of a GSIC system with J groups 
can be defined in a generic form as 

The computation of the maximal eigenvalue p(A) is not very complex 
since A is a J x J matrix, where J is the number of groups, which is 
usually a small number. 

For the particular case of a GSIC system with two detection groups, an 
explicit dependence between the number of users that can be supported 
in each class can be obtained as 

where A = ( a l A l  + c22A2)2 + 4 a 1 ~ 2 ( 0 1 0 2 ~ 1  - AlA2). 
A similar capacity expression can be derived for GSIC with matched 

filter receivers, namely 

with A* = (alAT + + 4a l a2 (QlQ2~ l  - A;&$). 
In Fig. 3.9 we compare the performance of the matched filter GSIC 

and the LMMSE GSIC, for different channel estimation errors and for 
required target SIRS of 10 for both classes. The estimated average link 
gain lh3I2, j = 1 , 2  is 1, and the channel path length is L = 3. We notice 
that both implementations are strongly affected by channel estimation 
errors, but a very substantial performance gap exists in favor of the 
LMMSE implementation. Also, in Fig. 3.10, the GSIC network capacity 
is compared with an equivalent MC implementation for L = 3. 
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Figure 3.9. Capacity comparisons: GSIC with LMhlSE versus GSIC with MF 

* GSIC: 5' = 0.02 
MC: 5' = 0.02 

- GSIC: 5' = 0.06 
+ MC: 5' = 0.06 
- GSIC: c2 = 0.09 
4 MC: k2 = 0.09 

Fig.cl7.e 3.10. Capacity comparisons: GSIC with LMMSE versus MC 
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1.6 Asynchronous Networks 
Although synchronous transmission is often not a practical scenario, 

the synchronous analysis is usually very useful as a performance bench- 
mark for networks using linear multiuser receivers. In general, a syn- 
chronous analysis can be extended to the asynchronous case by consider- 
ing an equivalent synchronous system with more interferers having lower 
powers. In [Kiran and Tse, 20001, the authors present a rigorous analysis 
for the asymptotic performance of asynchronous networks with linear re- 
ceivers using random spreading codes. They show that the matched filter 
performance in the asynchronous case is the same as that achieved for 
the synchronous case. They also show that,  if the observation window is 
infinite, the same is true for the decorrelator and the LMMSE detector. 
However, for the "one-shot" detection approach, the achieved SIRS for 
both the decorrelator and the LMMSE detector degrade for the asyn- 
chronous case. Although exact capacity values are difficult to derive, 
in [Kiran and Tse, 20001 the authors present very tight lower bounds 
on the achievable SIR for both the decorrelator and the LMMSE detec- 
tor in the asynchronous case, under the simplifying assumption that the 
nodes are chip-synchronous. They also show by means of simulations 
that the chip-synchronous scenario provides conservative estimates for a 
truly asynchronous system. 

In an asynchronous system, the various relative delays rk: are assumed 
to be random. As a consequence, the SIR performance measure is also a 
random variable depending on the random spreading sequences and on 
the random delays. It is assumed that although the delays are random, 
the receiver has acquired timing information for all users. Also, the un- 
derlying assumption of the analysis in [Kiran and Tse, 20001 is that as 
the system becomes asymptotically large, the empirical distributions of 
powers and delays converge to fixed distributions F ( P )  and G(T), respec- 
tively. For the LMMSE receiver, a tight lower bound for the achieved 
SIR is proposed in [Kiran and Tse, 2000], under a symmetry assumption 
for the relative delay distribution function G(T): G(T) = 1 - G ( l  - T). 
It  is shown that the achievable SIR, yi, is lower bounded by y k ,  which 
(for a given user k) is the solution of the fixed point equation 

with the standard interference function I ( . )  having the same expression 
as for the synchronous case previously discussed. We note that for the 
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asynchronous case, the effective interference created by any user 1 in the 
system on user k ,  is the sum of the corresponding effective interference 
from the synchronous case for two partial symbols within the observation 
window. 

For equal received powers P and uniform delay distribution, the SIR 
lower bound, 7, can be expressed as 

Based on (3.84), a lower bound on the network capacity can be deter- 
mined for the LMMSE case, when the maximal transmission power is 
set to  P: 

Further, the user capacity when no power constraints are imposed is 
given by 

1 

The capacity expression in (3.85) can be extended straightforwardly 
to the case with J  classes of users, having different SIR requirements -y;, 
j = l ,  . . , ,  J :  

where aj,,,,, 4 K j / N j .  From (3.871, we can see that the effective 
bandwidth for the asynchronous LMMSE network is 

For the decorrelator, exact SIR convergence results are obtained in 
[Kiran and Tse, 20001: 

Consequently, the network capacity and the effective bandwidth for 
the decorrelator are given by 
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Figure 3.11. Effcctivc bandwidth comparisons 

and 
edec(~*) = 2 .  (3.91) 

Therefore, the capacity results from the previous subsection can be ex- 
tended straightforwardly to 

when no power constraints are imposed. 
In Fig. 3.11, we compare the effective bandwidths for the three dis- 

cussed linear receivers - LMMSE detector, decorrelator, and matched 
filter for both the synchronous and asynchronous cases. 

From these results we can see that for small required SIRs, the matched 
filter receiver has a lower effective bandwidth than the decorrelator, 
whereas for large required SIRs, the decorrelator outperforms the matched 
filter. The cross-over between these two regimes occurs a t  a higher value 
for the required SIR in the asynchronous system than in the synchronous 
system. We also note that there is a more significant performance im- 
provement for the LMMSE receiver over the decorrelator in the asyn- 
chronous case, compared with the synchronous case. This can be ex- 
plained by the fact that the LMLISE receiver takes advantage of the 
fact that the overlap of symbols is only partial and thus yields reduced 
energy, while the decorrelator loses a full extra degree of freedom by 
considering an additional interfering symbol per user. 
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Performance can be improved for both the LTVIMSE receiver and the 
decorrelator if a larger detection window is used. More specifically, it has 
been shown [Kiran and Tse, 20001 that for a detection window length of 
T symbols, the effective bandwidths for the LMMSE and the decorrela- 
tor, respectively, are given by 

and 

It  can easily be seen that as T -+ oo, the network performance for the 
asynchronous case becomes identical to  that for the synchronous case. 

1.7 Imperfect Power Control 
As we have seen up to this point, SIR is a key performance mea- 

sure in wireless networks using linear multiuser receivers. However, our 
previous discussions of network performance have assumed that perfect 
power control is achievable, and thus the network capacity is determined 
by the power control feasibility condition. A question that remains to be 
addressed is: what happens in practice when power control loops yield 
imperfect control of the received powers? For example, how robust is 
the LMWISE receiver's performance to imperfections in power control 
and how can the network capacity be characterized under these con- 
ditions? These questions have been addressed in [Zhang et al., 20011, 
which showed that under some mild conditions on the distribution of 
powers, the output multiple access interference is approximately Gaus- 
sian, and thus the bit error rate is strongly related to  the achievable 
SIR1. In this case, the network capacity may be determined by imposing 
an outage condition: 

P(SIR  < Y*) 5 4, (3.95) 

where y* is the target SIR and 4 is the maximum allowable outage 
probability. 

In [Zhang et al., 20011, asymptotic Gaussianity of the MA1 as K ,  N --t 
oo with a = K I N  fixed, has been proved for synchronous transmission 
for two different scenarios: 

1 The statistics of the output MA1 are averaged over the signature 
sequences: 

'[Poor and Vcrdli, 19971 also shows similar results in the non-asymptotic case 
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For this case, the WIAI is shown to be asymptotically Gaussian if the 
empirical distribution function for the mean received powers {pl ,  p2, 
. . . , pK)  converges weakly to a distribution function F,, and if the 
second moments of the received powers are bounded. 

2 The statistics of the output MA1 are conditioned on the signature 
sequences and powers: 

For this case, the conditional distribution is shown to converge weakly 
to the same Gaussian distribution for almost every realization of the 
signatures and powers, if the joint empirical distribution function of 
{Plpl,  P2p2,  . . . , PKpK) converges weakly to  a distribution func- 
tion Fp,p, and if the received powers Pk are uniformly bounded from 
above, while the mean powers are bounded from below by a positive 
number. 

Furthermore, it was shown that the variance of the distribution is not 
affected by the fluctuations in the interferers' powers. The SIR is proved 
to converge as K ,  N 4 cm, with a = K I N  fixed, to the solution to the 
equation 

We note that power control is still needed to  achieve the desired SIR 
performance. Imperfect power control leads to  a probabilistic guarantee 
for the SIR as in (3.95). Based on outage probability requirements, 
in [Zhang and Chong, 20001 the asymptotic capacity expression or a 
network having LMMSE receivers was derived to be 

where p is the mean received power, and a2 is the noise power. Similar 
convergence results for the MA1 were proved for the asynchronous case, 
under the assumption that the system is chip-synchronous and the off- 
sets {rl, , r z ,  . . . , rK)  have an empirical distribution which converges 
weakly to a deterministic distribution function H,. The same conver- 
gence results as for the synchronous case have been proved for both 
unconditional and conditional MAI, if the empirical distribution func- 
tion for the mean received powers {pl,  pa, . . . , pK)  converges weakly to 
a distribution function F,, and if the received powers Pk are uniformly 
bounded from above, while the mean powers are bounded from below 
by a positive number. 
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1.8 Blind and Group-Blind Multiuser Receivers 

Our previous discussion on the performance of networks using linear 
multiuser receivers assumes that all signature sequences in the network 
are known by all users and are used to  compute the filter coefficients. 
In practice, this is a major disadvantage for the multiuser receivers' 
implementation, and has been for a long time an obstacle to the adoption 
of multiuser detection technology in current commercial networks. As 
we have already mentioned in Chapter 1, a solution to this problem 
is to implement blind multiuser receivers. In this section, we discuss 
the capacity of synchronous, power controlled networks using blind and 
group blind multiuser receivers. An introduction to the performance of 
such blind receivers has been presented in Chapter I. 

Building upon results in [Tse and Hanly, 19991, which treats the "ex- 
act LMTVISE" case (LMTVISE receivers built using knowledge of all codes 
in the network), and [Heist-I\/Iadsen and Wang, 20021, which quantifies 
the SIR estimation error for blind LMMSE receivers, [Zhang and Wang, 
2002bl proposes a large system analysis in which the SIR performance 
for networks using blind receivers is quantified. The analysis assumes 
that binary random spreading is used, and that the spreading gain N, 
the number of users K, and the number of received signal samples re- 
quired for filter estimation, T ,  go to infinity, while the ratios a K  = K I N  
and ar = T I N  are fixed. It  is also assumed that a!K < I and a.r is 
"reasonably large". 

The main result of [Zhang and Wang, 2002bl reveals a saturation phe- 
nomenon when blind receivers are used, such that the achievable SIR is 
both interference limited and also estimation error limited. In the fol- 
lowing paragraphs we will present the main results of [Zhang and Wang, 
2002bl on network performance with blind and group-blind multiuser 
receivers. 

Following the analysis in [Heist-Madsen and Wang, 20021, if we as- 
sume that the spreading sequences are random, the output SIRS will be 
random as well. However, it was shown in [Zhang and Wang, 2002b1, 
that the SIR can be well approximated by a deterministic constant for 
asymptotically large systems. The analysis in [Zhang and Wang, 2002bl 
assumes that the sequence of powers for all users is bounded above and 
below by positive numbers and that the distribution of powers converges 
weakly to a distribution function Fp. The asymptotic SIR convergence 
for the blind and group-blind receivers was shown in [Zhang and Wang, 
2002bl based on results developed in [Tse and Hanly, 19991, in which it 
is shown that the SIR achieved per unit power for linear MMSE systems 
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(70) is the solution to the fixed-point equation: 

Asymptotic SIR results for the above blind receivers are summarized 
in the following theorem [Zhang and Wang, 2002.3, Zhang and TVang, 
2002bl. (Recall that DM1 refers to the direct matrix inversion method 
of blind multiuser detection.) 

Theorem 3.20. I n  the  asymptot ic  regime, as N + oo, wi th  a~ = g, 
if? Y 

cup = and cuy = fixed, for almost  every  realization of signature 
sequences, the  output  S I R  achieved b y  the  blind linear M M S E  receiver i s  
well approximated as 

and 

en = lim - 
d (yo(a2) - 9) 

$10 dc12 

An important observation is that an SIR saturation phenomenon oc- 
curs, such that,  when the SNR increases (Pk/a2 4 cm), the asymptotic 
SIR for the three receivers approaches 

DM1 

{ S 2 1 R k ) ~ k I u 2 + M  = subspace (3.100) 
group-blind. 

The above results indicate that the network capacity for a system using 
blind receivers is both interference and estimation error limited. This 
phenomenon is illustrated in Fig. 3.12, in which the dashed lines rep- 
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Fzgure 3.12. Saturation phenomenon for blind LMMSE receivers (reprinted with 
permission from [Zhang and Wang, 2002bl) 

resent {SIRk)Pklg2ico, computed2 as in (3.100). The parameter values 
for this example are N = 32, oly = 10, and O K  = 0.5. 

As a final note, we compare the performance of the three blind receiver 
implementations. It  was shown in [Zhang and Wang, 2002bl that if 
dk < 1, then the subspace receiver outperforms the DMI, and if dk > 1, 
DM1 performs better. Moreover, we can see that in the high SNR region, 
the subspace receiver outperforms D M ,  whereas in the low SNR region 
(Pk -, 0), if is2 < 2,  the subspace receiver is better, otherwise, the 
DM1 is better. As expected, since the group-blind receiver uses more 
information than the subspace receiver, it will always perform better 
than the latter one. On the other hand, it performs worse than DM1 
when dl, 2 1 + z. 

2 ~ n  this figure, the abbreviation SIiYR refers to the SIR. 
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2. Ad Hoc Networks 
Due to  the inherent nature of ad hoc network architectures, a major 

problem in such networks is performance optimization of the air inter- 
face, so as to ensure that all users receive their requested QoS, while 
the network capacity is reasonably high. However, in general, if ran- 
dom access is employed in ad hoc networks. the performance will be 
strongly affected by collisions, and sophisticated medium access control 
must be implemented. Even so, pessimistic capacity results for such net- 
works can be obtained. In [Gupta and Kumar, 20001, the authors study 
the capacity of a fixed ad hoc network in which the nodes' locations 
are fixed but randomly distributed. They prove that. as the number of 
nodes ( K )  per unit area increases. the achievable throughput between 
any randomly selected source-destination pair is of order 0(1/&?). A 
capacity increase for such networks has been reported in [Grossglauser 
and Tse, 20021, which shows that exploiting mobility can result in a 
form of multiuser diversity and can improve the system capacity. The 
authors of [Grossglauser and Tse, 20021 propose a two-hop transmission 
strategy in which the traffic is first randomly spread (first hop) across 
as many relay nodes as possible, and then it is delivered (second hop) 
as soon as any of the relaying nodes is close to the destination. The 
disadvantage of this scheme is that it involves large delays and therefore 
it is not suitable for delay sensitive traffic. A capacity increase with 
mobility has also been noticed in [Gupta and Das, 20011, in which the 
capacity is empirically determined for a different network model that 
exploits spatial diversity. 

In contrast with the previous approaches to characterize the capacity 
of ad hoc networks, [Comaniciu and Poor, 2004~1 shows that significant 
capacity gains can be obtained in a CDkIA ad hoc network using linear 
multiuser receivers, even when tight delay and power requirements are 
enforced. This result is a consequence of the inherent advantages of 
CDMA (resistance to  intereference and fading) and of multiuser receivers 
(near/far resistance). The capacity analysis in [Comaniciu and Poor, 
2004~1 builds upon results in [Tse and Hanly, 19991, but considers multi- 
hop transmissions and delay constraints. 

The ad hoc network model considered in the analysis of [Comaniciu 
and Poor, 2004~1 consists of K mobile nodes having a uniform stationary 
distribution over a square area of dimension b x b. All nodes use random 
spreading codes and equal transmission powers, Pt, and are assumed 
to be active at any given time (worst case scenario). As in [hlostofa 
et al., 2001], a transmitter-oriented protocol is considered, in which each 
transmiting node has its own signature sequence. Although this imple- 
mentation yields more complex receivers and longer aquisition times, it 
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has very good capturing probabilities, allowing multiple packet recep- 
tion at the same receiver node. To avoid collisions, multiple concurrent 
transmissions from the same node are not allowed; instead, transmis- 
sions from one node to multiple destination nodes are time multiplexed. 
The analysis considers short range transmissions for the ad hoc network, 
such that a free space propagation path loss model is suitable. The link 
gain distribution is then derived using the free space propagation model, 
and an approximate distribution function for the distance between any 
two nodes [Miller, 20011, such that the link gain cumulative distribution 
function is given by 

FH (h) = exp (- z )  , h > 0, 

where C = 5 X 2 ,  1; = 3.5 is a constant related to the distance distribu- 
tion function [Miller, 20011, and X is the wavelength of the carrier. 

Taking the derivative of (3.101) we obtain the probability density 
function for the link gain: 

Using (3.102) the mean link gain can be easily computed to be: 

where El(x) = Szm exp(-t)dt is the exponential integral. 
The traffic can be transmitted directly between any two nodes, or 

it can be relayed through intermediate nodes. It is assumed that the 
end-to-end delay can be measured by the number of hops required for 
a route to be completed. The quality of service requirements for the ad 
hoc network are the bit error rate (mapped into an SIR requirement), 
the average source-destination throughput (Ts-D), and the transmission 
delay. Both the throughput and the delay are influenced by the maxi- 
mal number of hops allowed for a connection and consequently, by the 
network diameter D.  The network diameter is defined as the longest 
shortest path (measured in number of hops) between any source desti- 
nation nodes in the network. 

Using arguments similar to those in [Gupta and Kumar, 20001. a sim- 
plified computation shows that, if the number of hops for a transmission 
is D ,  then each node generates Dl(K) traffic for other nodes, where 
l (K)  represents the traffic generation rate for a given node. Thus, the 
total traffic in the network must meet the stability condition D l (K)K 5 
WIN, where W is the system bandwidth, and N is the spreading gain. 
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This implies that the average source-destination throughput that can be 
supported by the network must meet the condition 

In [Gupta and Kumar, 20001, it is argued that although (3.104) shows 
that the throughput decreases with an increase in the number of hops 
required, this does not account for the fact that if the range of a node in- 
creases, more collisions occur and the throughput decreases. In contrast 
to the model considered in [Gupta and Kumar, 20001, using a CDMA air 
interface allows multiple packet reception without collisions, and thus. 
a decrease of the network diameter D is obtained as a result of better 
physical links, and thus directly translates into a throughput increase 
for the network. 

In terms of SIR requirements, a connection can be established between 
two nodes if the SIR is greater than or equal to the target SIR y. The 
obtained SIR for a particular link is random due to the randomness of 
the nodes' positions. 

The network capacity is defined to be the maximal number of nodes 
that can be supported such that both the SIR constraints and the delay 
constraints can be met for any arbitrary source-destination pair of nodes. 
The delay constraints are mapped into a maximum network diameter 
constraint D. Using geometric arguments, we will show that this further 
translates into a link probability constraint p, which at the physical layer 
represents the probability that a randomly chosen link is feasible. In 
the following section, we characterize the ad hoc network asymptotic 
capacity for the case in which the number of nodes and the spreading 
gain increase without bound, while their ratio is fixed. 

2.1 Asymptotic Capacity 

Physical Layer Performance 

The physical layer capacity is derived under the assumption that a 
link probability constraint p has been imposed by the network layer, 
such that delay constraints can be met. In the physical layer, the link 
probability p is affected by the level of interference in the network and 
thus it is very sensitive to  the choice of receiver. Capacity results for 
the matched filter, LNINISE detector and decorrelator, are presented in 
the folowing for the synchronous transmission case. These results are 
then extended to the more realistic scenario in which nodes transmit 
asynchronously. 
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Matched Filter Receiver - Synchronous Transmission 

The SIR condition for an arbitrary node k using a matched filter 
receiver in a network with random, normalized spreading sequences can 
be expressed as: 

(3.105) 
where we define the S N R  = 3 to be the ratio of the transmit power to 
the noise power. 

Denoting by a: the fixed ratio K I N  and letting the number of nodes 
and the spreading gain go to infinity, by using the law of large numbers 

K [Yates and Goodman, 19991, it follows that: $ C!=,, e j k  he -+ ~ E H ,  
with EH computed as in (3.103). 

The network diameter guarantees require a link probability value 
equal to p. This translates into a physical layer condition 

Using the notation TIJF = ySNRP1 + a y E H ,  the network diameter 
condition renders an S N R  condition 

where ThfF can be derived using (3.101) as follows: 

Equation (3.107) implies that a positive power solution exists if and only 
if - 

For ad hoc networks, it is most likely that the mobile nodes are en- 
ergy limited so that we impose a maximal power transmission limit P ~ .  
Denoting SNR, = Pt/a2, the ad hoc network capacity becomes: 
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Decorrelator - Synchronous Transmission 

Recall that (see Section 1.1 of this chapter) the SIR of an arbitrary 
node in an asymptotically large network using decorrelating receivers 
can be expressed as 

Thus, if no power constraints are imposed, the network capacity region 
is 

a d  < 1. (3.113) 

If power constraints are imposed, and S N R  5 SNR,  (SNR, is the 
maximal SNR allowed), the physical layer constraint can be expressed 

If we define Td = *, the feasibility condition becomes 

S N R  = < SNR,. 
T d ( 1  - a )  

, t h e  Imposing a network constraint on the Td value, Td = --- 
log(&) 

asymptotic capacity region for a network using decorrelating receivers 
and having transmission power constraints is given as 

LMMSE Receiver - Synchronous Transmission 

To derive the asymptotic ad hoc network capacity for the case of 
LMMSE receivers, we express the SIR for an arbitrary node k in a large 
network with equal transmission powers as follows: 

Imposing the QoS condition: S I R k  > y, 'dlc = 1 . 2 , .  . . , K, (where y is 
the target SIR), we have 

SIR,  > h k  
1a.h =T' (3.118) 

S1VR-l + h EE,,,,, ,&& 
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Again, fixing a = K I N ,  as the number of nodes and the spreading gain 
increase without bound we can apply the law of large numbers, so that,  

where we use the notation E{Hlhk} to denote the normalized condi- 
tional average interference (normalized to the number of nodes per di- 
mension). It is shown in [Comaniciu and Poor, 2004~1 that E{Hlhk} 
can be expressed as: 

E{Hlhk} = C exp (2) ( 6 2 ~  + 2) - 4 (6iic + $)I . 
(3.119) 

Thus, the link probability constraint becomes 

We define the function f (h) = h - ?SNR-' - ayE{Hlh} and we plot 
it in Fig. 3.13. We observe that f (h) is a monotonically increasing 
function of h for the region of interest, and thus we can express the 
condition (3.120) as 

P (H > T M M S E )  = P (3.121) 

Figure 3.13. SIR condition monotonicity (all curves are coincident) (reprinted with 
permission from [Comaniciu and Poor, 2004~1) 
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Equation (3.121) has the same solution as in the previously analyzed 
cases, and the physical layer constraint becomes 

A positive transmitting power solution exists if and only if 

or equivalently, 

If power constraints are imposed, 

or equivalently, 

the capacity region becomes 

Figure 3.14 illustrates the physical layer capacity as a function of the 
link probability constraint p for the three receivers considered, with and 
without power constraints. For the power-constrained case, a maximal 
transmission power of Pt = 104a2 is considered for this example. A 
target SIR y = 5 is imposed. From Fig. 3.14 we can observe that there 
is a significant capacity advantage if multiuser receivers are used, and 
conversely, for given capacity requirements, substantial power savings 
can be achieved by networks using multiuser receivers. As expected, the 
LMMSE receiver performs the best due to its property of maximizing 
the SIR. For higher transmission rates and lower delay requirements 
(translated into a high link probability constraint) using the matched 
filter is not feasible. 
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Figure 3.14. Physical layer capacity for given link probability constraint: syn- 
chronous transmission (reprinted with permission from [Comaniciu and Poor, 2004~1) 
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Recall that (see Section 1.6 in this chapter), the SIR for the decorre- 
lator can be approximated as 

1 
a++J 

0 2 0 4 0 6 0 8 1 
D 

Therefore, the capacity results from the previous subsection can be 
straightforwardly extended to 

when no power constraints are imposed. 
If power constraints are imposed (SNR 5 SNR,),  we derive the 

capacity region as 

LMMSE Receiver - Asynchronous Transmission 

According to our previous discussion in Section 1.6, to  characterize 
the capacity of an asynchronous ad hoc network using LMMSE receivers, 
we must rely on the lower bound obtained for the achievable SIR: 

D 
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where 7 is a random variable that characterizes the delay associated with 
an arbitrary node (a fraction of a symbol duration), and the expectation 
is taken with respect to P and T. Since the received power P can be 
expressed as P = Pth, for equal transmit powers for all nodes, (3.130) 
becomes 

It  is straightforward to see that aE{ I ( rP th ,  Pthk, S I R k )  + I ( ( 1  - 
r )P th ,  Pt hk, S IRk)}  can be expressed as 

Using an identical derivation for the network capacity as for the syn- 
chronous case, all the capacity formulas hold with E{Hlhk} replaced 
by E {E{H hk, T)}. In Fig. 3.15, we provide capacity comparisons 
between networks using LMMSE receivers in the synchronous and the 
asynchronous cases. (Here we assume that T is uniformly distributed on 

[0,11.) 

Network Capacity 

The overall network capacity is determined such that both physical 
layer and network layer QoS requirements can be met. In the previous 
section we have determined the maximal number of active nodes that 
can be simultaneously supported by the network, as a function of a link 
probability constraint, which maps to the transmission delay require- 
ment. In this section, we use geometric arguments to  determine the 
dependence of the link probability on the network diameter constraint 
(which is a surrogate for the delay constraint). 

We consider the asymptotic case, in which we have an infinite num- 
ber of nodes in the considered square area. The nodes are uniformly 
distributed, and we ignore the edge effects: the square area can be con- 
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/ - MMSE sync, no power constralnts 
MMSE sync SNRC=IO~ 
MMSE async no power constralnts 

Figure 3.15. Capacity comparisons for ad hoc networks with LMMSE receivers: syn- 
chronous versus asynchronous transmission (reprinted with permission from [Cornani- 
ciu and Poor, 2004~1) 

sidered to be a part of a multiple cell layout. It can be seen from Fig. 
3.16 that the worst case distance is obtained when the source and des- 
t,ination nodes are on the opposite vertices of the square. We showed in 
t'he previous section that the link probability p can be expressed as 

where the threshold T depends on the particular receiver structure used. 
This is equivalent to saying that a reliable transmission exists within a 
radius dm,, of the transmitting node. Consider now a diameter restric- 
tion of D = 2, as in Fig. 3.16. In order to be able to  transmit from the 
source node (SN) to the destination node (DN) using only one interme- 
diate node (IN), the minimal value for dm,, must be 

For a generic value of D, the constraint becomes 

From (3.133) and (3.135), we obtain a threshold requirement of 
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Fzgure 3.16. Network diameter constraint (reprinted with permission from [Comani- 
ciu and Poor, 2004~1) 

To determine the link probability constraint we introduce (3.136) into 
the link probability expression: p = 1 - exp(-CIT). In Fig. 3.17 we 
illustrate the mapping between the link probability constraint and the 
required network diameter. 

" ; 4 5 6 f C A l o  
D (network dlameter) -> 

Fzgure 3.17. Link probability requirement (reprinted with permission from [Comani- 
ciu and Poor, 2004~1) 
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Using the link probability constraint values previously determined, 
the ad hoc network capacity can be determined for given delay (network 
diameter) specifications. In Fig. 3.18 an example for the network capac- 
ity for a network diameter constraint of D = 2 is presented. Fig. 3.18 
shows the number of users per dimension that can be supported in an ad 
hoc network for a given delay constraint, as a function of the maximum 
transmission power requirement, SNR, = P~/o ' .  

Figure 3.18. Ad hoc network capacity for delay sensitive traffic, D = 2 (reprinted 
with permission from [Comaniciu and Poor, 2004~1) 
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As we have seen in the previous subsections, ad hoc network capacity 
is greatly enhanced by using a CDMA access method and separating the 
users using multiuser detectors. Tight power and delay constraints can 
thus be met in such networks. We will show now that using multiuser 
detectors in CDMA ad hoc networks improves also the overall through- 
put of the network. To see this, we compare the network throughput 
that can be achieved for our analysis by the LMMSE receiver, with the 
scenario described in [Gupta and Kumar, 20001, in which random access 
is used. No delay constraints are enforced, and very similar network 
models are used for comparison: all nodes are randomly located and 
independently and uniformly distributed in a unit area (disc in [Gupta 
and Kumar, 20001, square in our analysis), each node transmits traffic to 
a randomly chosen destination, all nodes transmit with the same power 
and the transmission rate is R. Both synchronous and asynchronous 

I o2 I o4 I o6 I o8 10'0 
SNRc 
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transmission cases are considered for the CDMA network and LMMSE 
receivers are considered. 

For the random access scenario, the order of the average throughput 
capacity has been shown in [Gupta and Kumar, 20001 to be l (K)  = 

8 ( ) For the CDMA network we approximate the network @Gm ' 
throughput based on (3.104): l (K)  r; 5 ,  where R = W I N .  We compare 
the network throughput for the Gupta-Kumar analysis (G-K) [Gupta 
and Kumar, 20001, with both a synchronous and an asynchronous CDMA 
network using LMMSE receivers. The same numerical values as before 
are selected for the example plotted in Fig. 3.19, which shows the nor- 
malized network throughput as a function of the number of nodes per 
unit area. The spreading gain is chosen to be N = 32. We can see that,  
although the CDMA ad hoc network capacity also decreases with the 
increase of the number of nodes per unit area, its capacity is significantly 
higher than the random access network (G-K). Also, the use of LMMSE 
receivers yields unreduced throughputs for the network for a fairly large 
network (approx. 40 nodes per unit area for synchronous transmission). 
Of course this advantage comes at the price of an increased implemen- 
tation complexity in acquiring the signature sequences for all users and 
dynamically adjusting the receivers. 

G-K 

Fzgure 3.19. Network throughput comparison (reprinted with pcrmission from [Co- 
maniciu and Poor, 2004~1) 
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2.2 Capacity for Finite Networks: Simulations 
Since the above capacity results are asymptotic in nature; a perfor- 

mance validation through simulations is required for practical finite net- 
works. The experiments presented in this section consider unlimited 
power transmission for the LMAISE case, and maximal power constraints 
for the decorrelator, Pt = 1 0 ~ c ~ '  (the case of the decorrelator with un- 
limited transmission power is trivial: a < 1). For implementation sim- 
plicity, all numerical results are obtained for synchronous transmission, 
and using b = 6, X = 0.1 m and y = 5. The experiments consist of 
selecting a finite (variable) number of nodes and randomly generating 
their locations uniformly across a square area. Then, the link gains, and 
consequently the achieved SIRS are computed for all pair of nodes, using 
(3.105), (3.112), and (3.117), respectively. We note that the simulations 
do not consider the SIR formulas' accuracy for finite systems, as this 
issue has already been discussed earlier in the chapter. In the simula- 
tions, a link is considered to be feasible if the computed SIR is greater 
than or equal to the target SIR, and the network diameter computation 
uses Dijltstra's algorithm [Bertsekas and Gallager, 19921. The probabil- 
ities associated with a range of network diameters are determined. An 
infinite network diameter means that the network is disconnected. The 
link probability p is also determined and compared with the theoretical 
results. 

Some simulation examples are presented in Tables 3.1, 3.2, and 3.3. It 
can be seen that both the physical layer capacity results, reflected in the 
achievable link probability p, and the network performance results (i.e., 
the achieved network diameter) are very close to the asymptotic ones, 
especially for larger numbers of nodes in the network cell (the considered 
square area). 

2.3 Implications for Admission Control 
The results in this chapter provide simple abstract models for the 

physical layer performance in various scenarios, and therefore, they help 
to bridge the physical and the network layer design. At higher lay- 
ers, QoS provisioning will be based on these simple models. Once the 
physical layer capacity is determined, resources can be managed at the 
network layer using an admission control policy. Based on the results 
presented in this chapter, admission control algorithms can be imple- 
mented for both cellular and ad hoc networks. This topic is the subject 
of the following chapter. 
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Table 3.1. Simulation Results for Ad Hoc Networks with Delay Constraints: MF 
(reprinted with permission from [Comaniciu and Poor, 2004cl) 
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Table .?.2. Simulation Results for Ad Hoe Networks with Delay Constraints: Decor- 
relator (reprinted with permission from [Cornaniciu and Poor, 2004~1) 
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Table 3.3. Simulation Results for Ad Hoc Networks with Delay Constraints: LMMSE 
(reprinted with perrriission from [Cornaniciu and Poor, 2004~1) 



Chapter 4 

INTEGRATED ADMISSION CONTROL 

1. Cellular Wireless Networks 

As we discussed in Chapter 2, the two simplest admission control 
schemes (complete sharing policy and threshold policy) are based on re- 
stricting the maximal number of users into the network using the phys- 
ical layer capacity as an admission condition. As a consequence, simple 
admission control algorithms may be derived in a straightforward man- 
ner for each of the scenarios analyzed in Chapter 3. 

Some earlier work on admission control has adopted very simple mod- 
els for characterizing the physical layer performance. In [Holma and 
Laakso, 19991, the system performance improvement using multiuser de- 
tectors is quantified by a factor that represents the percentage of intra- 
cell interference cancelled, and which is determined experimentally. The 
capacity characterization in Chapter 3 permits a better understanding 
of the physical layer performance and impacts the design of upper layer 
protocols such as admission control. 

Based on the SIR convergence results discussed in the previous chap- 
ter, an optimal admission control for a multi-class network is proposed 
in [Singh et al., 20011, which exploits the interplay between the LMMSE 
receiver performance and the network layer throughput performance 
(blocking probability). In particular, for Poisson arrivals of new calls, 
and exponential call durations, an optimal admission policy (which mini- 
mizes the blocking probability) is derived using the SMDP (semi-Markov 
decision process) [Tijms, 19861 theory. 

In a semi-Markov decision process, a system of interest is described 
by a sequence of states, such that the next state of the system depends 
only on the current state and on an action taken. For call admission 
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control, the action is selected according to an admission control policy, 
such that a specified QoS criterion is optimized. SMDPs can essentially 
be solved by considering an equivalent discrete time average cost Markov 
decision process, using a process called uniformization [Bertsekas, 19951. 
As a consequence, algorithms such as policy iteration, value iteration 
and linear programming (LP), can be used to provide solutions for the 
SMDP problem. An advantage of the LP approach is that optimization 
constraints can easily be added. In [Singh et al., 20011, the admission 
control policy is determined such that a weighted sum of blocking prob- 
abilities for all classes of users is minimized, subject to  constraints on 
blocking probabilities for specific classes of users. 

An SMDP is completely characterized [Tijms, 19861 by the following 
quantities: 

the state space X; 

the action space A ;  

pxy (a) = the probability that a t  the next decision epoch the system 
will be in state y ,  if action a is selected at the current state x ;  

rx(a)  (sojourn time)= the expected time until the next decision 
epoch after action a is chosen in the present state x :  

rx(a) > 0,Yx E X, a~ A x ,  

where Ax  represents the admissible action space (to be defined be- 
low); and 

c(x, a)=the expected costs incurred until the next decision epoch 
after action a is chosen in the current state x .  

The admission control policy derived in [Singh et al., 20011 optimizes 
the network layer performance, given SIR constraints a t  the physical 
layer (Fig. 4.1). The state space of the SMDP is constructed by selecting 
all possible configurations of users that meet target SIR requirements at 
the physical layer, for given fixed transmission powers. To improve the 
network performance, new call requests that cannot be allowed in the 
network are queued, using finite length buffers. The possible actions for 
the admission control are: admit a new or queued user into the network, 
queue a new call request, or reject a new call request. The network 
performance measure is the blocking probability, and it is proved in 
[Singh et al., 20011 that this probability can be expressed as an average 
cost criterion for the SMDP process. However, the average delay cannot 
be expressed as an average cost criterion, and thus call connection delays 
were not considered as a QoS measure in [Singh et al., 20011. Detailed 



Integrated admission control 

Network layer Admission Control 

I Physical layer I 

Fzgure 4.1 .  Optimization of network layer performance (reprinted with permission 
from [Comaniciu and Poor, 2003al) 

2 Admission Control 

2 Power Contml 

Figure 4.2. Joint optimization across physical and network layers (reprinted with 
permission from [Comaniciu and Poor, 2003al) 

characterization of the SMDP, and complete derivations for its dynamics 
and cost functions can be found in [Singh et al., 20011. 

In this section, we discuss in more detail the work in [Comaniciu 
and Poor, 2003a1, which extends and completes [Singh et al., 20011. 
In [Comaniciu and Poor, 2003a], joint optimization across the network 
and physical layers is proposed (Fig. 4.2). At the physical layer, the 
QoS requirements are specified in terms of a target SIR, and optimal 
target powers are dynamically adjusted according to the current number 
of users in the system. The network QoS is specified in terms of the 
blocking probabilities and the call connection delays. The network layer 
guarantees that both the physical layer and the network layer QoS are 
met by employing admission control. 

The analysis in [Comaniciu and Poor, 2003al models the network as an 
equivalent queueing system, as described in Chapter 2 (Fig. 2.16). The 
service rate for each queue is varied by the admission control such that 
the power control feasibility condition holds and hence all users can meet 
their target SIRs. A single cell, power controlled synchronous CDMA 
system is considered, which supports J classes of users, characterized 
by different target SIRs, yj, different blocking probability requirements, 
pi, and different connection delay constraints, Ej, j = 1, 2, . . . , J .  
Requests for connections occur with rates X j ,  j = 1, 2, . . . , J and are 
Poisson distributed. The call durations are exponentially distributed 
and the mean duration for class j is p j ,  j = 1, 2, . . . , J .  

The admission policy is constructed by accounting for both the phys- 
ical layer QoS (the physical layer capacity is determined as given in 
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Theorem 3.14), as well as the network layer QoS (blocking probabili- 
ties and call connection delays). At the physical layer, target powers 
are ajusted according to the current number of users admitted into the 
system (Theorem 3.14). 

At the network layer, the equivalent queueing problem consists of J 
M/M/Kj /B( j )  queues (B( j )  represents the length of buffer for queue 
j, and Kj is the number of class j users), j = 1, 2, . . . , J .  The 
service rates depend on the current number of connections (such that 
aj = K J / N  satisfies (3.53)), and also on the current number of calls 
waiting for connection (according to delay and blocking constraints). 

The state space 

The state of the jth queue is characterized by the number of users 
ni( t )  in the queue at time t ,  t > 0, and the number of servers n$(t) at  
time t (equivalent to the number of connections admitted for class j ) .  
The state of the system at decision epoch t can be defined as 

Since the arrivals and departures of users are random, {x(t),  t > 0) rep- 
resents a finite state stochastic process. The state space X i s  comprised 
of all state vectors x, such that SIR constraints can be met: 

%(l+U.) where we use the notation Aj  = (L - l)ujyj + 
l+yJ3 . 

Decision epochs 

Every time a new user arrives and requests a new connection, and 
any time a departure occurs, the state of the system changes. Since 
these changes in the system state should affect the admission process, 
the decision epochs are the set of all arrival and departure instances. 

The action space 

At each decision epoch, an action a is chosen that determines how the 
admission control will perform at the next decision moment. The action 
vector a is state dependent, and its components depend on the type of 
event: arrival or departure. In general, action a at decision epoch t is 
defined as 
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where a: denotes the action for queue j if an arrival occurs and a,d 
denotes the action for queue j if a departure occurs, which are defined 
as follows: 

maintain the number of servers for queue j 
= { yi increase (by 1) the number of servers for queue j 

0; decrease (by 1) the number of servers for queue j 
maintain the number of servers for queue j 

The action space can be defined as the set of all possible actions: 

The action space must be restricted for a given state x E X, such 
that the selected action will not result in a transition into a state that is 
not allowed (not in X). Also, the admissible action space (Ax),  must be 
restricted such that l / rx (a )  > 0, Vx E X, a E Ax,  i.e, (a:, a;, . . . , a$)  # 
( 0 , 0 , .  . . ,0 )  if the system is in state x = ( 0 , 0 , 0 ,0 , .  . . ,0 ,0 ) .  

Thus, the admissible action space Ax can be defined as: 

A x = { a ~ A : a ~ = O i f x + ( O , O  , . . . ,  0 , 1 ,  . . . ,  0,O) $ X ,  and 
v 
j 

(a:, a;, . . . , a?) # (0,0, . . . ,0 )  if x = (0 ,0 ,0 ,0 , .  . . , 0 , 0 ) )  . (4.5) 

T h e  s t a t e  dynamics  

The state dynamics of an SMDP can be characterized by the transition 
probabilities of its embedded chain, and the expected sojourn time for 
each state-action pair [Bertsekas, 19951. 

We define the following notation: 

x j  = [ni:  n$] represents the state vector for class j users, such that the 
state vector for the system can be expressed as x = [xl ,  xn, . . . , xJ]. 

eg represents a vector of dimension 2 5 ,  containing only zeros except 
for the position 2 ( j  - 1) + 1, which contains a 1; x + eg is equivalent 
to  xj + [l, 01 and maps an increase in the queue of class j users by 1. 
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ej represents a vector of dimension 2 J ,  containing only zeros except 
for the position 2 ( j  - 1) + 2, which contains a 1; x + ej is equivalent 
to x j  + [O, 11 and maps an increase in the number of servers for class 
j users (number of admitted users) by 1. 

Derivations of pxy(a) and .rx(a) rely on the statistical properties of 
the arrival and departure processes, which are Poisson and mutually in- 
dependent. It  follows that the cumulative process is also Poisson and 
thus the cumulative event rate is the sum of the rates for all constituent 
processes. It  should be mentioned that arrivals that are blocked do not 
constitute an event such that the cumulative process includes only the 
unblocked arrivals, which are also Poisson with rates Xj(l - Pl) .  Hence, 
the inter-event time .rZ(a) (the expected sojourn time) can be defined as 
the inverse of the event rate: 

Equation (4.6) can be interpreted as follows: the embedded chain always 
changes state when an arrival occurs unless the arrival is blocked (the 
queue is full and no new servers are allocated for that particular queue), 
and also, it always changes state when a departure occurs. 

To derive the transition probabilities, the decomposition property of a 
Poisson process is used: an event of certain type occurs (e.g. arrival class 
j, departure class i) with a probability equal to the ratio between the 
rate of that particular type of event and the total cumulative event rate 
l/.rx(a). Hence, the transition probabilities for the embedded Markov 
chain are determined to be: 

otherwise 

(4.7) 
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Op t ima l  policy: l inear  p rog ramming  approach  

For any given state x E X, an action a is selected according to a 
specified policy R . A stationary policy R is a function that maps the 
state space into the admissible action space, where the class of admissible 
policies can be defined as: 

Rx,a = {RIR : X + A x ,  1 / rx (R)  > 0 ) .  (4.8) 

According to [Bertsekas, 19951, an average cost criterion for a given 
policy R and an initial state xo can be associated with the SMDP: 

1 T 

JR(xo)  = lim -E {/ c(x(t) ,  a(t))dt} . 
T-co T 

An optimal policy R*, that minimizes an average cost criterion JR(xo) 
for any initial state xo, exists under the weak unichain assumption [Ti- 
jms, 19861. 

In (4.9), c(x( t ) ,a( t ) )  can be interpreted as the expected cost until 
the next decision epoch, and will be selected to  meet the network layer 
performance criteria as will be discussed shortly. An optimal policy 
for the above defined SMDP process can be determined using a linear 
programming approach. The optimal policy R*(x)  E Rx,a. x E X, can 
be obtained using the decision variables uGa, x E X, a E Ax,  which 
are obtained by solving the linear program associated with the SZlDP 
[Tijms, 19861: 

subject to  the constraints 

and 

where B:, represents a weighting of the cost function for class j ,  and U is 
defined as: 

U = {ux,a : ux,a  > 0. 'da E Ax and 'dx E X}. 

A heuristic explanation [Tijms, 19861 for (4.10) is to  interpret uxarx(a) 
as the steady-state probability of being in state x and choosing action 
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a (for an aperiodic Markov chain). Hence, the objective function is to 
minimize the long run average of the cost function per unit time. The 
first constraint in (4.10) can be interpreted as a balance equation, and the 
second constraint requires that the sum of the steady state probabilities 
should be equal to 1. 

After solving (4.10), an optimal policy for the admission control can 
be constructed as follows [Tijms, 19861: 

Yx, choose any a*, such that uGa, > 0; then set the optimal policy 
for state x to  be R*(x )  = a*. 

As we will see shortly, for our purpose of meeting QoS requirements 
in terms of blocking probabilities and average delay constraints, it is 
important to be able to solve a constrained optimization. The linear 
programming approach allows us to  introduce very easily probabilistic 
constraints related to an expected cost function ci (x, a) for class j [Ti- 
jms, 19861: 

where C ia a fixed value constraint, and $, are the state subspace 
and the action subspace that result in blocked calls for class j . 

When probabilistic constraints are imposed, the optimal policy be- 
comes a randomized policy: in each state, an action a is chosen randomly 
according to a probability T$(x) = u K , ~ /  CaEAx ~ 2 , ~ .  The randomized 
policy can be specified as a matrix R* (dim(X) ,dim(AX)) ' with each entry 

given as R* (i ,  j) = T; (i) .  The (i ,  j)th entry for matrix R* represents the 
probability that action j is selected when the system is in state i. The 
matrix R* is determined off line, and the admission control randomly 
chooses actions at each decisions epoch, according to the corresponding 
probabilities from the matrix R*.  

Cost functions a n d  network QoS 

The ,network layer performance measures are the blocking probabili- 
ties, Pi, j = 1, . . . , J (which reflect the network throughput capacity), 
and the average connection delays W j ,  j = 1, . . . , J. The network QoS 
requirements are specified as 

To determine the optimal admission policy, the cost functions c(x, a) 
and c1(x, a )  must be defined. 



Integrated admission control 161 

Blocking probabilility 

In [Singh et al., 20011, the authors proved that the blocking probabil- 
ity can be expressed as 

The expression (4.13) represents the cumulative average blocking prob- 
ability. We can then obtain an expression for the expected blocking 
probability until the next decision epoch for class j, when action a is 
chosen in current state x: 

C(X, a)j = (1 - ay)( l  - 6(B( j )  - n:)). (4.14) 

To minimize a weighted sum of blocking probabilities for all users in the 
system, (4.14) gives the expected cost in (4.10). Furthermore, blocking 
probability constraints can be met by selecting cl(x, a)j = (1 - a?) ( l  - 
S(B( j )  - n:)), and C = Qj in (4.11). 

Average delay 

As opposed to the blocking probability, the average connection delay 
cannot be expressed as an average cost criterion. However, it is shown 
in [Comaniciu and Poor, 2003al that a combination of cost functions can 
be used to ensure that the QoS requirements in (4.12) are met for all 
users, if the requirements are feasible. 

The average connection delay can be expressed using a queueing anal- 
ysis for the equivalent system in Fig. 2.16. The delay expression for a 
particular class j is given by Little's theorem as a function of the average 
number of calls in the jth queue Ni, the arrival rate Xj ,  and the blocking 
probability for class j, P i :  

The delay restrictions imposed in (4.12) for a class j of users can be 
rewritten as 

N; 5 EjAj(l - P;). (4.16) 

Since Pi < Qj is also required, (4.16) is guaranteed to  be met if 
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Therefore, the network QoS requirements can be reformulated to  be 

The average number of calls in the queue can be expressed as an av- 
erage cost function by selecting the expected cost until the next decision 
epoch (for class j )  to be 

c(x, a)j = ni. (4.19) 

Hence, to determine an admission policy that satisfies the restrictions in 
(4.18), constraints on both the blocking probability and on the average 
number of queued call requests must be imposed. The last ones can be 
obtained by selecting cl(x, a)j = n; and C = EjXj(l - Qj) in (4.11). 
The optimal admission policy can be determined as described in the 
following result. 

Proposition 4.1. A n  optimal admission control policy can be deter- 
mined as a solution of a constrained linear programming optimization, 
such that the network Q o S  requirements i n  (4.12) can be guaranteed for 
all users  if the sys tem is  feasible. T h e  linear program i s  formulated as  
follows: 

subject t o  the constraints 

j=1 ,  . . . ,  J> 
and 
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T h e  optimal solution obtained by solving (4.20)  min imizes  both the 
blocking probabilities (a weighted s u m  for all classes) as well as the av- 
erage delays, subject t o  the network Q o S  constraints in (4.12) .  

Proposition 4.1 gives the optimal admission policy that minimizes 
blocking probabilities and average delays under certain network QoS 
constraints. However, the admission policy exists only if the system is 
feasible, that is, only if for the given arrival rate for each class, the net- 
work QoS requirements can be met for the given buffer dimension. As we 
will see also in the numerical results section, not all buffer configurations 
result in feasible solutions. The buffers' dimensions are thus parameters 
of the optimization, being closely related to the blocking probability. 
In case of infeasibility, the linear programming can be reformulated for 
different buffer configurations. A numerical example will be discussed 
shortly. 

There is also the scenario in which the arrival rate is too high and 
no buffer configuration can be found to accommodate the network QoS 
requirements. Theoretically, a maximal arrival rate per class can be de- 
fined, which is the arrival rate that can be supported by the network 
such that QoS requirements are met. This represents the network ca- 
pacity. However, this quantity is very hard to determine analytically. 
As a solution, the LP optimization may be solved for increasingly lower 
arrival rates, until the system becomes feasible. If A; < A, is the network 
capacity for class j ,  determined using this trial and error procedure, the 
final blocking probability requirements must be relaxed, and the result- 
ing blocking probability for class j is determined as 

A*  
where pi  = 1 - A. 

A j  

In other words, in this situation, the admission control policy will be 
selected as a solution to an LP formulation with a lower arrival rate 
A,", such that it will meet the specified QoS requirements for this ar- 
rival rate. The above discussion on the design of such an optimal policy 
applies directly, with the only difference being that further action is 
needed to reduce the arrival rate, and the final admission control will be 
implemented in two steps. To reduce the arrival rate from the initial rate 
A, to A;, a higher level admission control can be implemented as follows: 

Higher-Level Admission Control: Before requesting a n e w  call con- 
nection, each user zn class j runs a Bernoulli  trial experiment with prob- 
ability of = 1-p i .  I n  case of success, the request for connec- 
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t ion  is  made;  otherwise the call is  automatically rejected. T h i s  ensures 
that the rate of call connection requests is  reduced t o  A,* = ddmXj, and 
the Poisson distribution of the call connection requests i s  preserved. 

After the call connection request has been made, the call is admit- 
ted or rejected according to the previously discussed optimal admission 
policy, based on the SMDP formulation. 

We now illustrate the performance of the proposed call admission con- 
trol using simulations for a two-class system having equal high trans- 
mission rates corresponding to an equivalent spreading gain N, = 8 
(N = 128 and &I = 16 codes; N, = IVIM).  Parameter values for 
the experiments are XI = 1, X2 = 0.5, p1 = 0.25, pz = 0.1375 and 
y_l = 72 = 10. It is also assumed that the estimated channel gain is 
/h i2  = 1 and the channel estimation variance is c2 = 0.05. 

The optimal policy for each experiment is obtained using an LP opti- 
mization. For each numerical example, a randomized optimal stationary 
policy R* is obtained, which is then used for simulations. The aver- 
age call connection delays are obtained from simulations, averaged over 
10.000 call requests. The blocking probabilities can be obtained both as 
a result of the LP optimization, as well as from simulations implemented 
using the obtained optimal policy. 

Both blocking probability and delay constraints are imposed: 6 = 

[0.2,0.1] and Z = [2.5,0.67], respectively. The delay constraints trans- 
late into constraints on the average number of users in the queues: n =[2, 
0.31. Different buffer configurations are considered, some of which are in- 
feasible: B = [ I ,  11, B = [l, 21, B = [ I ,  31, B = [2,3], and B = [3,3]. The 
network performance is summarized in Table 4.1. The first four columns 
represent the blocking probabilities and average number of queued calls 
obtained from the LP optimization. The last four columns represent 
simulation results. We can see that all four buffer configurations re- 
sult in admission policies for which the imposed QoS requirements are 
met. From Table 4.1, we see that when delay constraints are imposed, 
increasing the length of the buffer for class 2 (the most delay sensitive 
class) lowers Pb2, but increases P l .  This is a consequence of the fact 
that class 2 users are more delay sensitive, and by increasing their buffer 
length (and correspondingly decreasing their blocking probability), their 
service has to be increased as well, so that the delay constraints can be 
met. The most delay sensitive class (class 2) is an expensive class, since 
increasing its share of capacity (lower blocking probability obtained us- 
ing more buffering) affects the performance of all other classes in the 
system. 
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Table 4.1. Numerical Results: Admission Control with Delay and Blocking Proba- 
bility Constraints (reprinted with permission from [Comaniciu and Poor, 2003al) 

On a final note, we compare the performance of the optimal admission 
policy with two other approaches for call admission control: the complete 
sharing policy, and the threshold policy. Results for the complete sharing 
policy are presented in Table 4.2. 

Table 4.2. Numerical Results for the Complete Sharing Policy (reprinted with per- 
mission from [Comaniciu and Poor, 2003al) 

del. 2 

0.4037 
0.6177 
0.4027 
0.6383 

( B / P; I P: / delay 1 / delay 2 ] 

del. 1 

0.8349 
0.9706 
1.3718 
1.6654 

For the threshold policy, the resources are partitioned between the 
two classes such that the blocking probability for the most demanding 
class (class 2) is met. In order to fairly compare the results, we impose 
the same blocking probability constraints as the ones considered for the 
optimal policy: [0.2, 0.11. 

According to (3.53), the total number of users that can be accepted 
into the system for the considered numerical values is K = K1 + K2 = 8. 
We wish to  find K1 and Kz such that Pt < 0.1. For fixed K 2  and B(2) ,  
we have an M/M/K2/(B(2)  + K2)  queue, and the blocking probability 
can be computed as [Bertsekas and Gallager, 19921 

P: -sim. 

0.1040 
0.0585 
0.1022 
0.0573 

n2 

0.1880 
0.3 

0.1847 
0.3 

0.1 
0.0598 

0.1 
0.0533 

B 

[2,1] 
[2,2] 
[3,1] 

- [3 ,2 ]  

P; -sim. 

0.1797 
0.1881 
0.1656 
0.1907 

Pd- 
0.1865 

0.2 
0.1645 
0.1855 

n l  

0.6865 
0.8283 
1.1655 
1.3702 
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where p2 = and po is the probability of an empty queue and no 
I C W 2  ' 

one in service: 

The average connection delay experienced by calls in class 2 can be 
exmessed as 

where PQ is the probability of queueing, defined as 

We note that both the blocking probability and the delay depend on 
K2 and B(2); therefore they cannot be optimized independently. If we 
fix K2 and B(2) for a given constraint for the blocking probability, the 
delay is also automatically fixed to the value computed from (4.24). 

Table 4.3. Numerical Results for the Threshold Policy (reprintcd with permission 
from [Comaniciu and Poor, 2003al) 

I B 1 P,' I Pt 1 delay 1 I delay 2 

1 12,ll 1 0.3325 1 0.1132 / 1.3461 1 0.2340 

We represent Pb2 in Fig. 4.3 as a function of K2 for three different 
values of the buffer length. It can be seen that the partition [Kl, K2] = 
[3,5] gives P: = 0.1, depending on the designed buffer length. Therefore, 
this partition is used to  obtain simulation results, which are summarized 
in Table 4.3. We note that the QoS constraints: KP = [0.2,0.1] and Z = 
[2.5,0.67] cannot be met. Lower blocking probabilities can be obtained 
if the buffer lengths are increased for both classes, but this comes at 
the expense of increased delay. We observe that the threshold policy is 
clearly suboptimal and lacks flexibility in guaranteeing the desired QoS. 
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Fzyure 4.3. Threshold policy: blocking probability for class 2 (reprinted with per- 
mission from [Comaniciu and Poor, 2003al) 

2. Ad Hoc Networks 
Admission control for ad hoe networks usually imposes some hierar- 

chical structure, such that the network is divided into clusters and a 
cluster-head node is in charge of admission control. Alternatively, a dis- 
tributed approach based on only local information may be more suitable. 

A simple admission control scheme can be designed based on capacity 
results discussed in Chapter 3. Once we know the maximal number of 
nodes that can be supported by the network for given QoS specifications 
(SIR and delay), a complete sharing policy or a threshold policy can 
be readily determined (recall that for ad hoe networks, the delay is 
caused by the multi-hop routing). Once admitted, a user is guaranteed 
to meet its QoS requirements, irrespective of mobility, when a shortest 
hop routing protocol is used, and for fixed power transmission. 

If power control is also implemented, the admission control can be 
determined as a power control feasibility condition, following the work 
in [Comaniciu and Poor, 2004bl. If the system is too heavily loaded, the 
powers will begin to increase without bound (the power control algorithm 
does not converge), and the new user needs to be dropped out of the 
network. For this scenario, admission control is effectively integrated 
with power control and routing. 

Integrated admission control, power control and routing is also pro- 
posed in [Sankaran and Ephremides, 20021 for multicasting in ad hoc 
networks, and will be discussed in more detail in the following. In 
[Sankaran and Ephremides, 20021, circuit switched multicasting for a 
synchronous, fixed CDMA ad hoe network is analyzed. In this multi- 
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casting scheme, nodes perform session admission control by specifying 
reception power bounds for signals. The admission control involves de- 
ciding whether or not a node can take part in a new multicast session. 
If an arbitrary node k decides to take part in the new session, it must 
specify a minimal ( ~ ( k , , ~ , ) )  and a maximal (P(~,,~~.) power value that 
can be received by the node k for that session. The minimal power 
value ensures that target SIRS are met at the receiving node, whereas 
the maximal reception power value ensures that the signal for the new 
session does not cause too much interference to the ongoing multicast 
sessions. The network connectivity graph for the new multicast session 
is a function of the minimal and maximal power levels set by the nodes. 
To set up a new session, three steps are necessary: 

1 admitting the new session; 

2 building the multicast tree; and 

3 implementing power control, such that the power will be in the spec- 
ified range. 

Admission control 

The admission control proposed in [Sankaran and Ephremides, 20021 
is based only on localized information, i.e., nodes have access only to 
information from their neighbors. Each node k decides if it can take 
part of a new session or not, based on its residual capacity. The max- 
imal capacity for node k is determined using (3.14), (3.16), or (3.19) 
(for the matched filter, decorrelator or LMMSE receiver, respectively), 
under the assumption that all the processed sessions can be received 
with the same power ~ ( k , ~ ~ , ) .  In reality, in a multicast session, signals 
processed at node k usually cannot all be received with the same power, 
since the transmitting nodes may have multiple destination nodes with 
links characterized by different link gain coefficients. To overcome this 
problem, two different versions for the admission control are proposed 
in [Sankaran and Ephremides, 20021. 

A d m i s s i o n  control 1 

For the first version, the value for ~ ( k , , , ~ , )  is fixed. Choosing its value 
affects the node's capacity: a higher value means greater capacity, but it 
is restricted by the capability of all its source nodes to be received with 
at least that amount of power. One possible approach is to  choose the 
smallest maximal power value that can be received from any of the node's 
neighbors. Note that it is not necessarily required for the transmitting 
node to be received at node k with ~ ( k , , ~ , ) ;  this is necessary only if the 
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receiving node operates at full capacity. A transmitting node informs its 
neighbors about its maximal transmission power that may be required 
for each outgoing session, Pb,maz), which is determined as the maximal 
power required such that it will be received with a t  least power p(k,,i,) 
at all receiving nodes (k is an arbitrary receiving node index). Since 
a transmitter may actually be received with a higher power than the 
minimum required, node k must also select a maximal allowed received 
power p(k,,,,). A simple calculation of p(k,,,,) can be done for the 
simplest case in which matched filter receivers are used. In this case, 
the interference depends only on the total interference power and does 
not depend on the actual number of interferers. If we denote as p2u, the 
total power received at node k, including the interference signals, then 
the node sets its maximal received power to be equal to  

where K~ is the approximated user capacity for node j (exact when all 
users are received with the same power). 

A disadvantage of this algorithm is that all nodes assume that every 
transmitter e transmits with maximal power, and is thus received by an 
arbitrary node k with at least p(k,,,,,), even though this is not the case 
for most of the time. This leads to inefficient network utilization and 
consequently to higher blocking probabilities for new sessions. One way 
to  overcome this problem is to increase the value p(k,,i,) gradually as 
the load increases. This leads to  the second version of the admission 
control. 

A d m i s s i o n  control 2 

For this version, a node decides to participate in new sessions by 
assuming that current transmissions are going to  increase their powers 
by a factor of 6, when the node joins the new session. The factor 6, 
greatly influences the performance of the admission control and therefore 
must be chosen carefully. The admission control decision requires several 
steps: 

If there exists a session which, after the power increase, will violate 
the maximum received power constraint, node k cannot participate 
in this new session and sets P(~,,,,) = 0. It  is assumed that power 
increases occur only as a consequence of new session additions. 

Otherwise, 

Node k recomputes p(k,,,,) and ~ ( k , , , ~ )  for the scaled powers, and 
also recomputes its capacity K ~ .  We note that the capacity is com- 



170 MULTIUSER DETECTION IN CROSS-LAYER DESIGN 

puted according to (3.14), (3.16), or (3.19), but considering an en- 
hanced noise power 02, instead of 0;. The enhanced noise power 
accounts for the interference power at node k (from signals that are 
not currently processed by the node; see also the discussion on hybrid 
partial systems in Chapter 3).  

For LMMSE receivers, since the interference function is not additive, 
node k must determine also the maximal number of neighbors that 
can transmit for the new session1: Nk,,,, = b(k,maz)/p(k,minl]. 

We note that, for the decorrelator, the SIR performance at one node 
will depend only on the current SNR, i.e., no constraint needs to be 
imposed on the maximal number of neighbors that can transmit for 
the new session, but the enhanced noise plus interference power a? 
must be updated for the scaled powers. Based on the updated noise 
level, a new capacity value K~ is then derived. 

A disadvantage of this algorithm is that, even if a node decides to 
deny a session, due to the scaling algorithm for the powers, an ongoing 
session for that node can still cause a transmission with a higher power 
than the maximal allowable power. When this happens, all the nodes 
that process signals from the node that violated the power constraint do 
not admit any new session until the transmitter can reduce its power to 
acceptable levels. 

Multicast routing 

Once the nodes decide that they can participate in a new session, they 
will form a set of potential downstream neighbors for that session. A 
node ! is a potential downstream neighbor of k if node k can satisfy the 
power range requirements for node !. In addition, for LMMSE receivers, 
the maximum transmitting neighbors condition must also be satisfied. 
The network connectivity graph for the multicast tree depends on the 
set of potential downstream neighbors for that particular session. Each 
multicast tree is characterized by a certain distribution of powers for 
the nodes, which influences the current interference level and the total 
energy consumption. We can define the cost of a link (k, 1) as the trans- 
mission power Pke required by node k to be correctly received by node 
e. In general, a node will have many outgoing links (see an example in 
Fig. 4.4), and thus the node cost will be the maximal cost over all the 
outgoing links. 

'It is proved in [Sankaran and Ephremides, 20021 that the SIR constraint will still hold if 
fewer than the maximal allowable number of neighbor nodcs transmit, provided that the total 
received power satisfies the maximal power constraint. 
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Fzgwe 4.4, Multiple outgoing links in a multicast tree 

For the example considered in Fig. 4.4, the cost of node k is costh = 
max{Pk,, Pke, Pk,, PA,). The multicast cost of a tree is the sum of costs 
for all nodes in the tree. While, the goal is to minimize this cost, addi- 
tional constraints must be met, such as maximal power values specified 
by each node, as well as a maximal number of transmitting neighbors 
for the case in which LMMSE receivers are used. The problem of find- 
ing an optimal multicast tree is NP-hard, and a suboptimal solution 
is proposed in [Sankaran and Ephremides, 20021: the pruned extended 
tree algorithm (PET). In this algorithm, an extended tree rooted at 
the source is constructed, and then the multicast tree is obtained by 
removing nondestination leaf nodes from the tree (pruning). The term 
"extended tree" means that not all the leaves in the obtained tree will be 
multicast destinations. Starting with the source, nodes are added to the 
tree one at a time, until all the multicast destinations have been added. 
The instantaneous cost of the tree is the cost of the current tree. The 
rule for addition of new nodes is to add a link that gives the minimal 
cost addition to  the current multicast tree cost. The addition is made 
only if the above mentioned additional restrictions hold. 

After adding a new link, backsweeping may be necessary, i.e, a node 
parent in the tree is changed if this results in a reduction of the overall 
cost for the tree. Backsweeping must be done carefully to avoid loops in 
the tree. 

Power control 

The last step in the process is to ensure that the sessions will really 
get the desired QoS, and this implies that power control must be im- 
plemented. Similarly to the problem in [Comaniciu and Poor, 2003c], a 
node may need to satisfy SIR constraints for multiple outgoing links, so 
that the SIR condition translates to the requirement that the weakest 
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outgoing link must meet the target SIR. As we discussed in Chapter 2, 
this power control problem is standard and can be implemented as an 
iterative power control algorithm algorithm: 

where T (p )  = max(k,!) I(k,e)(p) is a standard interference function, and 
( k , ! )  is an arbitrary link. The expressions for I(k,t) can be directly 
determined by imposing the condition that the achievable link SIR must 
be greater than or equal to a target SIR y*. Consequently, for the 
matched filter we have 

and for the LMMSE receiver we have 

Here hk,! is the link gain from node k to node !. 

Performance results 

The performance of the proposed admission control (version 2) and 
the multicast algorithm were illustrated by simulations in [Sankaran and 
Ephremides, 20021. We present here an example for 10 simulations, 50 
nodes and 100 multicast sessions per simulation. Parameter values used 
for the experiments are: p,i, = (0.1, I ) ,  maximal transmission power 5, 
6 = 1.3, y* = 3, N = 511, and a2 = 0.2. Nodes are placed randomly in a 
square grid of dimensions (10 x 10). The arrival process for the multicast 
sessions is Poisson with mean A, and the session duration is exponential 
with mean 1. Three different performance metrics are considered: 

Multicast efficiency: 

where X is the number of multicast requests, m i  is the number of des- 
tinations reached for the ith session, and ni is the number of intended 
destinations for the ith session. 

Blocking probability 
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where bx is the number of completely blocked multicast requests 
(mi = 0). 

Average power consumption 

where X' is the number of multicast request for which at least one 
destination is reached, ei is the sum of energies for all nodes partici- 
pating in session i, Ti is the number of nodes transmitting in session 
i ,  and ti is the duration for session i. 

The simulation results are illustrated in Figs. 4.5: 4.6, and 4.7 

I 
10 20 30 40 50 

Arnval Rate, ), 

Figure 4.5. Multicast efficiency (reprinted with permission from [Sankaran and 
Ephremides, 20021) 

Performance comparisons among the three receivers reveal that,  while 
the LMMSE receiver performs the best, the performance of the decorre- 
lator is comparable with that of the matched filter. 
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Figure 4.6. Blocking probability(reprinted with permission from [Sankaran and 
Ephremides, 20021) 
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Fzgure 4.7. Averagc power consumption (reprintcd with pern~ission from [Sankaran 
and Ephremides, 20021) 
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Chapter 5 

MULTIUSER DETECTION IN 
CROSS-LAYER DESIGN: PERSPECTIVES 

Cross-layer design and multiuser detection are both controversial top- 
ics. For multiuser detection, an extensive literature is dedicated to show- 
ing that significant gains in spectral efficiency, user capacity and near/far 
resistance can be achieved. On the other hand, skeptics argue that the 
complexity cost of multiuser detection makes it impractical for commer- 
cial implementation. Despite this, the least complex of the multiuser 
receiver family (the interference cancellation receivers) are begining to 
be implemented in third generation cellular systems. Further, there is 
considerable potential for multiuser receivers to be used in emerging 
types of networks such as ad hoc networks, which are particularly sus- 
ceptible to interference and to near/far problems. One of the hurdles to  
be overcome in implementing multiuser detectors in ad hoc networks is 
the requirement of continuous adaptation of filter coefficients as a result 
of changes in the user population, and consequently, the need to con- 
tinuously learn the signature sequences of neighboring transmitters. We 
have seen that one possible solution to this problem is to blindly learn 
the interference subspace and construct the filter coefficients accordingly. 
For rapidly moving users in an ad hoc network (when the users move 
quickly in and out of a neighborhood), multiuser detection is not a suit- 
able solution. This type of network is probably most suitable for random 
access and short bursty transmissions, for which implementing a mul- 
tiuser receiver is very difficult. This, and related considerations, suggest 
that the suitability of multiuser detection is application and network de- 
pendent. However, as DSP and CMOS technologies continue to evolve, 
the class of networks for which multiuser detection is suitable will grow. 

Another obstacle to the deployment of multiuser receivers has been 
the fact that the physical layer performance was hard to quantify in 
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a network context when interacting with upper layer protocols, such 
as power control, access control and routing. We have seen that some 
progress has been made in characterizing and optimizing such systems, 
although there is still considerable room for further research in this area. 

Understanding and exploiting the interactions between different layers 
of the protocol stack is the core of the cross-layer design concept. Several 
questions about cross-layer design must be answered before these inter- 
actions can be successfully exploited. First of all, does cross-layer design 
mean that we must completely discard the OSI layered model? Do we 
still need a network architecture? Is cross-layer design suitable for all 
types of networks and all types of applications? Are the gains obtained 
from cross-layer design of a short-term nature, or of a long term nature? 

We address the above questions by analyzing simple facts related to 
wireless networks. First of all, wireless networks do not come with fixed 
links as their wireline counterparts do. This means that the upper layer 
protocols must rely on a network model that is inherently physical layer 
dependent. Aside from channel impairments, the reliability of the links 
that form this network model depends on the level of interference in the 
system, which in turn may be influenced by upper layer protocols. We 
have already seen examples in this book that discuss the interdependence 
among the receiver design, routing. power control, access control and 
admission control. 

On the other hand, the layered architecture has multiple advantages: 
it has a modular design, it is easily upgradable and suitable for stan- 
dardization and mass production, which immediately translates into long 
term gains for this architecture. The success story of the Internet is 
a very good example supporting the efficiency and suitability of the 
OSI model. Layered, modular, architecture models have certain ad- 
vantages that are equally important for wireless networks. A common 
missconception in cross-layer design is that the layered approach must 
be completely eliminated, and all layers must be integrated and jointly 
optimized. While this approach might lead to some overall performance 
gains in the short term, it is clearly impractical and cannot be consid- 
ered as a solution for future generation network design. At the other 
extreme, the isolated design for layers as commonly used in wireline 
networks might be applied for wireless networks as well. This is also a 
undesirable since it ignores the interactions between layers and might 
lead to severe penalties in performance. The solution for cross-layer de- 
sign should rather be based on a holistic view of wireless networking, 
which maintains the layered approach, while accounting for the inter- 
actions between various protocols at different layers. QoS support for 
various applications should be implemented at all layers in the protocol 
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stack and the response to changes in the channel environment should be 
hierarchically implemented across all layers. Interactions between differ- 
ent protocols can be accounted for by exchanging pertinent information 
between layers. Abstract models for layers may also greatly simplify the 
design. We have seen an example in Chapter 3 of how the physical layer 
performance can be abstracted for upper layers: the capacity of power 
controlled networks was derived for asymptotically large networks. If 
such an abstraction is possible, it is much easier to determine what in- 
formation should be exchanged between layers and how it should be used 
by the adaptation protocols. In general, the inter-layer coupling is diffi- 
cult to  characterize and this is one of the current key research problems 
in cross-layer design. Another important issue is that of maintaining 
the right balance between performance, complexity and scalability for 
wireless network optimizations. 

Note that some inter-layer coupling may occur in all kinds of networks 
(even wireline), but it is especially strong for wireless architectures, due 
to  the nature of wireless transmission. As a consequence, cross-layer 
design might be beneficial for all wireless architectures and all types of 
applications. However, caution should be exercised when implementing 
cross-layer optimization, since one would expect that the optimal trade- 
offs among performance, complexity and scalability would be application 
and network dependent. 

As a final remark, in this book we have shown that multiuser de- 
tection in cross-layer design has the potential to significantly improve 
the performance of wireless networks. This topic is fairly new and it 
opens many new and exciting research problems for all types of wireless 
networks supporting heterogeneous applications. 
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