Xiaofeng Meng
Zhiming Ding
Jiajie Xu

Moving Objects
Management

Models, Techniques and Applications

(@) TSINGHUA

SSSSSSSSSSSSSSS

@ Springer

Moving Objects Management

Xiaofeng Meng * Zhiming Ding * Jiajie Xu

Moving Objects Management

Models, Techniques and Applications
Second Edition

With 105 Figures

%=/ UNIVERSITY PRESS

/&) TSINGHUA @ Springer

Xiaofeng Meng Zhiming Ding

Renmin University of China Jiajie Xu

Beijing, China Chinese Academy of Sciences
Beijing, China

ISBN 978-3-642-38275-8 ISBN 978-3-642-38276-5 (eBook)
DOI 10.1007/978-3-642-38276-5
Springer Heidelberg New York Dordrecht London

Jointly published with Tsinghua University Press, Beijing
ISBN: 978-7-302-32286-3 Tsinghua University Press, Beijing

Library of Congress Control Number: 2014931650

© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2010, 2014

This work is subject to copyright. All rights are reserved by the Publishers, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publishers’ locations, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publishers can accept any legal responsibility
for any errors or omissions that may be made. The publishers make no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

The widespread use of mobile positioning tools like GPS and smart mobile phones
nowadays has aroused great interests in location-based services (LBS) that have
to store and manage continuously changing positions of moving objects. This
book gives a comprehensive and complete view of a moving objects database and
introduces how it is used in LBS and transportation applications. It aims at moving
objects management, from the location management perspective to analyze how
the continually changing locations affect the traditional database and data mining
technology. Specifically, the book describes the cutting edge technologies related to
topics like moving objects modeling and location tracking, indexing and querying,
trajectory prediction, location uncertainty, traffic flow analysis, objects clustering,
traffic aware navigation and privacy issues as well as their application to intelligent
transportation systems.

Previous studies mostly focused on moving objects database in free space.
They assumed that the movement of the objects is unconstrained and based on
Euclidean spaces. However, in the real world, objects usually move within spatially
constrained networks, e.g., vehicles move on road networks. Overlooking this reality
often leads to unrealistic data modeling and inaccurate query results. The content in
this book focuses mainly on the moving objects within spatial networks, which is
more practical. By exploiting the network feature of spatial networks, this book
introduces models, techniques, and applications of moving objects management in
a spatial network.

This book is intended to help readers understand the main technologies in
moving object management and apply them to LBS and transportation applications.
Compared with the first edition, this book particularly focuses on the constrained
network environments, and it has made substantial changes to each chapter so that
the cutting edge techniques in this field are included. With its accessible style
and emphasis on practicality, the book presents new concepts and techniques for
managing continuously moving objects. Database management systems developers,

vi Preface

mobile applications developers, and applied R&D researchers will find the study
an essential companion for new concepts, development strategies, and application
models associated with this kind of changing location data. The book:

* Presents a comprehensive architecture of moving object management, which
includes not only basic theories and new concepts but also practical technologies
and applications

» Describes a set of new database techniques in modeling, tracking, indexing,
querying of moving objects, traffic flow analysis, as well as data mining
techniques in clustering analysis of moving objects

* Introduces some new research issues in location privacy and uncertainty man-
agement of moving objects, which are topics of major interest in this field

* Provides typical applications of moving objects management in intelligent
transportation systems

Organization of the Book

This book contains 12 chapters, which describe the problems, models, techniques,
and applications of moving objects management. It is organized as follows:

In Chap. 1, we introduce some background of moving objects management,
including its concept and applications. Finally we present the main content: key
technologies of moving objects databases and our focus in this book.

In Chap.2, we introduce some underlying modeling methods and present two
moving object models that can reflect real-time traffic conditions of the road net-
work. The first one is the DTNMOM, which considers the dynamics of underlying
road network. And for the second model called ARS-DTNMOM, we introduce
the concept of atomic route section and define its corresponding data types and
operations in database.

In Chap. 3, we introduce a few underlying methods on moving object track-
ing. Then, we describe three representative network-constrained location update
strategies (Net-LUM, ANLUM, and EuNetMOD), which can achieve better per-
formances in terms of communication costs and location tracking accuracy.

In Chap.4, we first introduce a few of the underlying spatial index structures
including the R-tree, TPR-tree, spatio-temporal R-tree, trajectory-bundle tree, and
MON:-tree. Then, we propose two new index methods that are used for indexing
frequently updated trajectories of network constrained moving objects and indexing
the whole trajectories with historical, current, and near future positions, respectively.

In Chap.5, we classify the basic querying types for moving objects according
to spatial predicates, temporal predicates, and moving spaces. Then, we introduce
how to process a range query and a kNN query in a spatial network, based on the
Euclidean restriction and network expansion frameworks.

Preface vii

In Chap. 6, we introduce advanced querying for moving objects including similar
trajectory queries and density queries for moving objects in a spatial network. We
first present how to process the snapshot density queries. Then, we introduce some
efficient methods based on the safe interval to continuously monitor dense regions
for moving objects.

In Chap. 7, we first review some linear prediction methods and analyze their lim-
itations in handling moving objects in spatial networks, then present the simulation-
based prediction methods: fast-slow bounds prediction and time-segment prediction,
and finally present an uncertain path prediction method which can predict future
trajectories based on the uncertain historic trajectories of moving objects in spatial
networks.

In Chap. 8, we study the uncertainty management problem for moving objects
databases with a few uncertainty models. Then we introduce a novel framework
that can manage uncertainty trajectory effectively and answer queries about them
accurately; particularly, we focus on the key technical issues like uncertain trajectory
modeling, database operations, and query processing of uncertainty management.

In Chap.9, we study the underlying researches and inherent problems in traffic
behavior analysis based on moving object trajectories. Then we firstly propose a new
model for objects moving on dynamic transportation networks (MODTN), based
on which we introduce a real-time traffic flow statistical analysis method (NMOD-
TFSA).

In Chap. 10, we introduce the clustering analysis of moving objects in spatial
networks. After that, we introduce two new static clustering algorithms, which
use the information of nodes and edges in the network to improve the clustering
efficiency and accuracy. Then, we introduce the notion of cluster block (CB)
as the underlying clustering unit and propose a unified framework of clustering
moving objects in spatial network (CMON), which improves the dynamic clustering
performance of moving objects and supports different clustering criteria. Finally, we
introduce two trajectory clustering algorithms which use the partition-and-group
framework for clustering trajectories and a filter-refinement framework for hot
region discovery, respectively.

In Chap. 11, we present another application, traffic aware route navigation, with
a new traffic aware route planning model based on incremental planning method
introduced. By selecting intermediate destinations, a partial path rather than whole
path is planned each time for long distance queries. In this way, route planning is
more efficient because it is carried out in a much smaller region, and unnecessary
re-calculations caused by the dynamic road conditions can be avoided.

In Chap. 12, we introduce location privacy, and analyze the challenges of
preserving location. Then, we provide an analysis of the current studies including
the system architecture, location anonymity, and query processing.

As shown in Fig. 1, the contents of the whole book construct a comprehensive
moving object management and application system. Figure 1 also shows the
relationship of each component in the system.

viii Preface

Moving Objects Management and Application System ‘

r—-————"—-—777 ! __________ = L v B
: Intelligent Transportation System : Po?atlon
Applications | Dynamic Dynamic | rl\;acy
| Transportation Transportation ! -
| . ! Clustering
| Navigation Network | .
L= — — ———_ 4 Analysis
I . .)
) | Moving Moving Uncertainty I
Techniques Objects [—=| Objects |[~— of Moving |
: Querying Prediction Object |
|
S L __
S .
! |
|
Models I [Moving Object L Moving Object Moving Object :
: Indexing Modeling Updating |
| < > > |
|
! Moving Objects Databases |

Fig. 1 Organization of the book

Acknowledgments

The work described in this book has been supported by the grants from the Natural
Science Foundation of China (No. 61379050, 91024032,91124001, 91224008); the
National 863 High-tech Program (No. 2013AA013204); and Specialized Research
Fund for the Doctoral Program of Higher Education (No. 20130004130001).

This book is based on the research work of the authors for over 15 years. The
book integrates the collective intelligence from the mobile group of the WAMDM
Lab (Lab of Web and Mobile Data Management) at Renmin University of China,
and the database group of NFS Center (The National Engineering Research Center
of Fundamental Software) at Institute of Software, Chinese Academy of Sciences.
The authors would like to express their great thanks to all the people who contributed
to this book, including Dr. Jidong Chen, Dr. Xiao Pan, Dr. Limin Guo, Dr. Kuien
Liu, Dr. Haoming Guo, Xing Hao, Zhen Xiao, and Rui Ding. In particular, the
authors wish to thank Dr. Jidong Chen, Dr. Xiao Pan, and Dr. Limin Guo for their
valuable efforts on this book.

Beijing, China Xiaofeng Meng
December 2012 Zhiming Ding
Jiajie Xu

Contents

1 Introduction............. ... 1
1.1 Concept of Moving Objects Data Management 1
1.2 Applications of Moving Objects Database 2
1.3 Key Technologies in Moving Objects Database 3
1.3.1 Moving Objects Modelingcoeeeiiiiiiine... 3
1.3.2 Location Tracking of Moving Objects..................... 4
1.3.3 Moving Objects Database Indexes......................... 6
1.3.4 Uncertainty Managementcooeeeeiiinnnnen... 7
1.3.5 Moving Objects Database Querying....................... 7
1.3.6 Statistical Analysis and Data Mining of
Moving Object Trajectoriesoovuueeeeernnunnnen... 8
1.3.7 Location Privacyoooiiiiiiiiiiiiiiiiiiie... 9
1.4 Applications of Mobile Data Management 9
1.5 Purpose of This BOOKccooiiiiiiiiiiii 10
References.o.ovviii i 10
2 Moving Objects ModelingooL L. 15
2.1 INtroduCtion.........ooiuiiiiiii i 15
2.2 Representative Modelsoouuiiiiiiiiiiiiiiiiiiiiii 17
2.2.1 Moving Object Spatio-Temporal (MOST) Model 17
2.2.2 Abstract Data Type (ADT) with Network 18
2.2.3 Graph of Cellular Automata (GCA)ccovveeeennnn. 20
23 DTNMOM... .o e 21
24 ARS-DTNMOM ... 26
2.5 SUMMATY . ettt et e e 30
References......o.oviiii i 30
3 Moving Objects Tracking...............ccoooiiiiiiiiiiiiiiiiii i, 33
3.1 INErOAUCHON ..ttt e 33
3.2 Representative Location Update Policies 34
3.2.1 Threshold-Based Location Updating 34
3.2.2 Motion Vector-Based Location Updating 35

ix

Contents

3.2.3 Group-Based Location Updatingcceennnn. 35
3.2.4 Network-Constrained Location Updating 36
3.3 Network-Constrained Moving Objects Modeling and Tracking ... 36
3.3.1 Data Model for Network-Constrained Moving Objects .. 36
3.3.2 Location Update Strategies for
Network-Constrained Moving Objects 38
3.4 A Traffic-Adaptive Location Update Mechanism 40
3.4.1 The Autonomic ANLUM (ANLUM-A) Method 42
3.4.2 The Centralized ANLUM (ANLUM-C) Method 44
3.5 A Hybrid Network-Constrained Location Update Mechanism 47
3.6 SUMMATY ...ttt ettt e e 48
References......o.ovii i 49
Moving Objects Indexingcooiiiiiiiiiiiiiiiiiiiiiiiiiinnn 51
4.1 INtroduCtion......oouuiiii i 51
4.2 Representative Indexing Methodsccciiiiiiiiena. 53
421 TheR-Tree....cccooviiiiiiiiiiii i 53
422 TheTPR-TIeE.....ccouviiiiiiiiii it 54
4.2.3 The Spatio-Temporal R-Tree.............ccovviiiie... 56
4.2.4 The Trajectory-Bundle Tree............cooceevviiiiie... 57
425 The MON-TICE ...couvviiiiiiiiii i 58
4.3 Network-Constrained Moving Object
Sketched-Trajectory R-Treeccovviiiiiiiiiiiiiiiiiieean. 59
43.1 DataModel........ccooviiiiiiiiiii i 60
4.3.2 Index Structure..........cooeieiiuiiiiinieiiniieninnnennnn.. 61
433 IndexUpdate.......c.ooiiiiiiiiiiiiiiiiiiiiiiiiiiiieee.. 64
434 QUETY cuvtintt et 65
4.4 Network-Constrained Moving Objects Dynamic
Trajectory R-TI€ecoovinniiiiieiiii e 67
4.4.1 Index Structure of NDTR-Treec.coeenee. 67
442 Active Trajectory Unit Management 68
4.43 Constructing, Dynamic Maintaining, and
Querying of NDTR-Treecccovvviiiiiiiiiiiinne... 70
4.5 SUMMATY .ttt 71
References......c.oviii i 72
Moving Objects Basic Queryingcooiiiiiiiiiiiiiiinnn.. 73
5.1 Introduction.........ooiuiiiiiiii i 73
5.2 Classifications of Moving Object QUeriesccceevvunne. 74
5.2.1 Based on Spatial Predicatesoooeeein. 74
5.2.2 Based on Temporal Predicatesccoennn. 76
5.2.3 Based on Moving Spaces..........oovieiiiiiiiiiiiiieann. 76
5.3 PoINtQUETICS ...ttt 77
5.4 NN QUETICS « v vttt e ettt e et 78
5.4.1 Incremental Euclidean Restriction......................... 78

5.4.2 Incremental Network Expansion........................... 79

Contents Xi
5.5 Range QUETIES «.uunnttittt et 81
5.5.1 Range Euclidean Restrictionoooeeeee.an. 81

5.5.2 Range Network Expansionc..cooovviiiena. 82

5.6 SUMMAIY ...ttt ettt e e e 83
References.......ovii i 84
6 Moving Objects Advanced Querying.................ccooviiiiinnnnn.. 87
6.1 Introduction............coiiiiiiiiiii i 87
6.2 Similar Trajectory Queries for Moving Objects 89
6.2.1 Problem Definitionccooiiiiiiiiiiin 90

6.2.2 Trajectory Similaritycccooiiiiiiiiiiiiiiiiiinn. 92

6.2.3 Query Processingoovvieiiiiiiiiiiiiiiiiiiiiie 94

6.3 Convoy Queries on Moving Objectsccovviiiieieiiiinnne. 95
6.3.1 Spatial Relations Among Convoy Objects 96

6.3.2 Coherent Moving Cluster (CMC)..........oovvvvieeeennn. 96

6.3.3 Convoy Over Simplified Trajectory (CoST)............... 96

6.3.4 Spatio-Temporal Extension (CoST*) 98

6.4 Density Queries for Moving Objects in Spatial Networks 99
6.4.1 Problem Definitioncoooiiiiiiiiiii 99

6.4.2 Cluster-Based Query Preprocessing 100

6.4.3 Density Query Processing...........oooeeeviiiiiiieeeann. 102

6.5 Continuous Density Queries for Moving Objects 105
6.5.1 Problem Definitioncoooiiiiiiiiiin 106

6.5.2 Building the Quad-Treec.oovviiiiiiiiiiiienn. 107

6.5.3 Safe Interval Computationcccevviiniieeeennnn. 108

6.5.4 Query Processingooouvieiiiiiiiiiiiiiiiiiiiie e 112

6.6 SUMMAIYttt ettt e s 112
References.o.oviiii i 113
7 Trajectory Prediction of Moving Objects 117
7.1 IntroduCtion.........ooouiiiiiiii i 117
7.2 Underlying Linear Prediction (LP) Methods........................ 118
7.2.1 General Linear Prediction......................ooooin. 118

7.2.2 Road Segment-Based Linear Prediction................... 118

7.2.3 Route-Based Linear Prediction 119

7.3 Simulation-Based Prediction (SP) Methods 120
7.3.1 Fast-Slow Bounds Predictiono... 120

7.3.2 Time-Segmented Prediction..................ooovieeaa. 123

7.4 Uncertain Path Prediction Methodsooooie. 123
741 Preliminary.........ccoooiiiiiiiiiiiiii e 124

7.4.2 Uncertain Trajectory Pattern Mining Algorithm 126

743 FrequentPath Tree.............coooiiiiiiiiiiiiiiiin. 127

7.4.4 Trajectory Predictioncoooiiiiiiiiiiiiiiiiinn. 130

7.5 Other Nonlinear Prediction Methodscooiiien. 130
7.6 SUMMATY ...ttt ettt et e e 131

R OIENCES .. i 131

xii

10

Contents

Uncertainty Management in Moving Objects Database 133
8.1 INtroduction...........coeiiiiiiiiiiiiiiii i 133
8.2 Representative Modelscooiiiiiiiiiiiiiiiiiiiii 135
8.2.1 2D-Ellipse Model..........cccoviiiiiiiiiiiiiiiiii s 135

8.2.2 3D-CylinderModel..........cooiiiiiiiiiiiiiiii i, 136

8.2.3 Model the Uncertainty in Database 137

8.3 Uncertain Trajectory Managementccovvuiieeeeennnnnn. 140
8.3.1 Uncertain Trajectory Modelingcccoviinne. 140

8.3.2 Database Operations for Uncertainty Management....... 144

84 SUMMAIY .. .ottt e 147
References......o.oviiii i 147
Statistical Analysis on Moving Object Trajectories..................... 149
9.1 INtroduCtion.........coouiiiiiiii i 149
9.2 Representative Methods............ccoiiiiiiiiiiiiiiiiiiiiii, 151
9.2.1 BasedonFCDsccoooiiiiiiiiiiiiiiiiiii 151

922 BasedonMODSccociiiiiiiiiii 151

9.3 Real-Time Traffic Analysis on Dynamic Transportation Networks 152
9.3.1 Modeling Dynamic Transportation Networks............. 152

9.3.2 Real-Time Statistical Analysis of Traffic Parameters 156

0.4 SUMMAIY ...ttt 160
References......o.ovviii i 161
Clustering Analysis of Moving Objects 163
101 INtroduction......oouueiiei i 163
10.2 Underlying Clustering Analysis Methods.......................... 164
10.3 Clustering Static Objects in Spatial Networks 166
10.3.1 Problem Definitionocooiiiiiiiiiiiin... 167

10.3.2 Edge-Based Clustering Algorithm......................... 168

10.3.3 Node-Based Clustering Algorithm......................... 172

10.4 Clustering Moving Objects in Spatial Networks.................... 175
10.4.1 CMON Frameworkccoooiiiiiiiiiiiiiiinenn... 176

10.4.2 Construction and Maintenance of CBs 177

10.4.3 CMON Construction with Different Criteria.............. 179

10.5 Clustering Trajectories Based on Partition-and-Group 183
10.5.1 Partition-and-Group Framework 183

10.5.2 Region-Based CIustercccevviiiiiiiiiiinnnen... 186
10.5.3 Trajectory-Based Cluster.........c.ccoovvuiiiiieniinnnee... 187

10.6 Clustering Trajectories Based on Features Other Than Density ... 188
10.6.1 Preliminary.......o..eeeeeeiiiii i eiiieeen. 188

10.6.2 Big Region Reconstruction..............ooeeeeeviinnnee... 190

10.6.3 Parameters Determination in Region Refinement......... 193

107 SUMMATY ..ttt e e e e 193

R OIENCES .. i 194

Contents xiii

11

12

Dynamic Transportation Navigationcco 197
111 INtroduction......ooueiiei i 197
11.2 Typical Dynamic Transportation Navigation Strategies 199
11.2.1 D*FAlgorithmo.vvveiiiii e 199
11.2.2 Hierarchy Aggregation Tree Based Navigation 200
11.3 Incremental Route Search Strategy..............coevviiiiiieennn. 201
11.3.1 Problem Definitionsccoviiiiiiiiiiiiein... 201
11.3.2 Pre-computationoveueeeeeeiniiieeeennnninee... 203
11.3.3 Top-K Intermediate Destinationsee.... 204
11.3.4 Route Search and Updatec.oooeeiiiiiiiie... 206
114 SUMMATY .ottt e e 207
References.c.oviii i 207
Location Privacyccooiiiiiiiiiiiiiiiiiiiee e 211
12,1 INtroductionoouuei it 211
12.2 Privacy Threats in LBS ... 212
12.3 System ArchiteCture...........oovvuuiieeeeiiiiiiieeiiiiiiieeeannn. 215
12.3.1 Non-cooperative Architecture..............cccovviiunee... 215
12.3.2 Centralized Architecturecoooiiiiiioin... 216
12.3.3 Peer-to-Peer Architecturecoooeiiiiiin... 217
12.4 Location Anonymization Techniquesooooeeeia. 217
12.4.1 Location K-Anonymity Modeloo... 218
12.4.2 p-Sensitivity Modelot 219
12.4.3 Anonymization Algorithmscooeiiiiiio... 222
12.5 Evaluation Metricscooiuiiiiiiiiiiiiiiiiiii i 223
126 SUMMATY .. nnetet ettt et e e e 224
References......o.oviiii i 224

Acronyms

ADT
ANN
AU

CA

CN

cu

DS
DSS
DTTLU
DyNSA

GCA
GPS
HAT
IER
INE
ITLU
LBS
LP
MBR
MO
MOD
MODTN
MOST
MRM
NN
PDQ
PTSS
QoS
RER
RNE

Abstract data type

Aggregate nearest neighbor

Adaptive unit

Cellular automaton

Cluster node

Cluster unit

Dense segment

Dense segment set

Distance-threshold triggered location update

Dynamic navigation system based on moving objects stream

aggregation

Graph of cellular automata
Global positioning system
Hierarchy aggregation tree
Incremental Euclidean restriction
Incremental network expansion
ID-triggered location update
Location-based service

Linear prediction

Minimum bounding rectangle
Moving object

Moving objects databases
Moving objects on dynamic transportation networks
Moving objects spatio-temporal
Mobile resource management
Nearest neighbor

Period density queries
Prediction with time-segmented
Quality of service

Range Euclidean restriction
Range network expansion

XV

XVi

RNN
SDQ

SP
STTLU
UT-Unit
UTR-Tree

Reverse nearest neighbor

Snap-shot density queries
Simulation-based prediction
Speed-threshold triggered location update
Uncertain trajectory unit

Uncertain trajectory R-tree

Acronyms

Chapter 1
Introduction

Abstract The fast development of geo-positioning and wireless sensor network
technologies has aroused widespread use of location-based services (LBS), which
provide useful location-dependent information to users. LBS have become so
important nowadays that people rely on it to plan trip, book cabs, and find share
car partners. Moving objects database, which plays a key role in supporting LBS
applications, has attracted great attention from both academy and industry in
recent years. In this chapter, we introduce the concept of moving object data
management first and then describe the wide applications of location-based service.
Key techniques related to moving objects database are discussed and analyzed
afterwards. After that, we mention the purpose and organization of this book.

Keywords Mobile computing ¢ Location-based service ¢ Moving objects
management * Moving object databases * Model ¢ Index ¢ Query ¢ Update °
Prediction ¢ Uncertainty management * Clustering * Traffic statistical analysis
Traffic navigation ¢ Location privacy

1.1 Concept of Moving Objects Data Management

The general idea of moving object data management is to represent the moving
entities in databases and process queries about them efficiently. Moving entities
could be human, animals, all kinds of vehicles like cars, trucks, air planes, ships,
etc., and people often issue queries about their location, such as finding all vacant
taxicabs inside a requested spatial area. However, existing database management
systems (DBMSs) are not well equipped to handle the massive dynamic location
data sampled from moving objects. Therefore, moving objects database (MOD),
which particularly includes the management of the moving objects location and
related information, has become an enabling technology that can find various LBS
applications nowadays.

X. Meng et al., Moving Objects Management: Models, Techniques 1
and Applications, DOI 10.1007/978-3-642-38276-5__1,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

2 1 Introduction

Moving objects database belongs to the area of spatio-temporal databases, which
in turn have its root in spatial database, dealing with descriptions of geometry in
databases, and temporal database, addressing the development of data over time.
The major difference between them is that moving objects database focuses on the
continuous spatial position change with time (their movement is seen as trajectory),
while other spatio-temporal databases only support the discrete changing of spatial
information for all moving entities in database.

We can actually understand the idea of moving objects database from two
different perspectives. Firstly, moving objects database is to represent, store, index,
and query on the continuously changing locations of moving objects and to predict
the future positions of them; secondly, the focus is to store the whole history of
moving object movement in database, so as to answer queries on the location of
moving objects at any instance (including both history and future). Essentially,
the former approach is to analyze from the location management perspective,
while the second one stands on the spatio-temporal data perspective. As a result,
research on moving objects database can be made from two aspects as well: location
management view and spatio-temporal data view.

The key problem of MOD is how to manage the locations of a set of moving
objects in database, e.g., position of all taxicabs inside a city road network. Given a
time instance, it is not a problem. However, as the taxicabs move, it is necessary to
have the location frequently updated, so that we can derive its current location. Here
we encounter an unpleasant trade-off between update cost and location precision.
From the data management perspective, MOD focuses on issues like how to manage
the information of moving objects location dynamically and how to process different
types of complex queries about current and future positions efficiently.

So far, considerable research has been carried out on moving object data
management. In the following sections, we introduce some typical applications and
key technologies related to MOD, including the modeling and tracking of location
information, spatio-temporal indexing, uncertainty management, query processing,
trajectory data mining (including traffic flow analysis), and privacy issues.

1.2 Applications of Moving Objects Database

Moving objects database is a fundamental technique for LBS, from which people
can get useful information and entertainment services through mobile devices. In
a typical LBS application, moving objects use e-services that involve location
information. The objects disclose their positional information (position, speed,
velocity, etc.) to the services, which in turn use this and other information to provide
specific functionality. The following five categories described next characterize
what may be thought of as standard location-based services; they do not attempt
to describe the diversity of services possible [28].

1.3 Key Technologies in Moving Objects Database 3

1. Traffic coordination and management: Based on past and up-to-date positional
data on the subscribers to a service, the service may identify traffic jams and
determine the currently fastest route between two positions; it may give estimates
and accurate error bounds for the total travel time, and it may suggest updated
routes for the remaining travel. It also becomes possible to automatically charge
fees for the use of infrastructure such as highways or bridges (termed as road
pricing and metered services).

2. Location-aware advertising and general content delivery: Users may receive sales
information (or other content) based on their current locations when they indicate
to the service that they are in “shopping mode.” Positional data is used together
with an accumulated user profile to provide a better service, e.g., advertisements
that are more relevant to the user.

3. Integrated tourist services: This covers the advertising of the available options for
various tourist services, including all relevant information about these services
and options. Services may include overnight accommodation at campgrounds,
hostels, and hotels; transportation via train, bus, taxi, or ferry; and cultural events,
including exhibitions, concerts, etc. For example, this latter kind of service
may cover opening-hour information, availability information, travel directions,
directions to empty parking, and ticketing. It is also possible to give guided tours
to tourists, e.g., that carry online cameras.

4. Safety-related services: It is possible to monitor tourists traveling in dangerous
terrain and then react to emergencies (e.g., skiing or sailing accidents); it is
possible to offer senile senior citizens more freedom of movement and a service
that takes traffic conditions into account to guide users to desired destinations
along safe paths.

5. Location-based games and entertainment: One example of this is treasure
hunting, where the participants compete in recovering a treasure. The treasure
is virtual, but is associated with a physical location. By monitoring the positions
of the participants, the system is able to determine when the treasure is found and
by whom. In a variation of this example, the treasure is replaced by a “monster”
with “vision,” “intelligence,” and the ability to move. Another example in this
category is a location-based ICQ service.

1.3 Key Technologies in Moving Objects Database

1.3.1 Moving Objects Modeling

The modeling of moving object in databases is a basic technique for MOD. In
conventional databases, attribute values stored in table are assumed to be constant
unless they are explicitly updated. However, in MOD, the location of moving object
changes continuously, and people issue queries to find their history, current, and

4 1 Introduction

even future position. As conventional database models are unable to represent
dynamic location information, moving objects modeling plays an important role
in effective location management. Current research on MOD modeling can be gen-
erally classified into two categories: Euclidean (EU)-based modeling and network
(NET)-based modeling.

EU-based modeling targets to represent the trajectories of free movement objects
in Euclidean space. Wolfson et al. propose a moving objects spatio-temporal
(MOST) model in [43,51] first. Its core idea is to consider location of moving
objects as a dynamic attribute, which is represented as a function of time. In this
way, we do not need to update this attribute until this function is no longer valid.
However, long trajectories cannot be well supported by the MOST model because
of the limited representation capacity of simple functions. Later, Forlizzi et al.
in [19] present a discrete moving object data model to overcome this drawback,
with a feasible solution for complex moving object trajectory representation. Also,
models like linear constraint [45], abstract data types [25], and space-time grid
storage [11] are proposed. However, these EU-based models do not take into account
the network constraint, while objects move with road network constraint in most
real-life applications, especially for the vehicles in transportation scenarios.

As moving objects move according to the topology of underlying road network,
the interaction between modeling and network structure enables better object
movement representation, and this contributes to improve the performance of object
tracking, data indexing, and query processing. To represent the movement of objects
under road-network constraint, we need to model the road network first and then to
model how the objects move on this network. Static road network can be generally
represented in three ways: road-based representation, two-dimensional geographic
coordinate-based representation, and graph-based representation. For the moving
objects on road network, we can further use road segment and trajectory to model
the movement of objects.

Vazirgiannis et al. propose a road-network-based moving object model that com-
bines the trajectory with road network in [49], where road network is represented
as a digital map and trajectory is represented as the path from starting point to
destination. In recent years, some other network constraint models based on graph
representation such as [24, 37, 44] have been proposed. But they simply assume
linear movement and cannot reflect the real movement feature of moving objects in
a road network, and they only consider static transportation networks. That limits
their applicability in a majority of real-life applications. An advanced model is also
proposed in [46] to integrate the past movement features to improve the capability
of moving object representation.

1.3.2 Location Tracking of Moving Objects

In moving objects tracking, current position is periodically sent to the central server
and stored in database. When the number of tracked moving objects becomes large,

1.3 Key Technologies in Moving Objects Database 5

the scale of sampled data would be extremely huge if the update is too frequent.
Therefore, a key issue is to find a proper balance between reducing update cost and
improving precise location for query results. Current researches on moving object
tracking mainly focus on location update and prediction, and they can be classified
into two categories: EU-based tracking and NET-based tracking.

Existing EU-based tracking approaches generally include Fixed-Time Loca-
tion Update Mechanisms (FTLU), Fixed-Distance Location Update Mechanisms
(FDLU), and Euclidean-Motion-Vector-Based Location Update Mechanisms (Eu-
MVLU). FTLU and FDLU mean to update according to fixed time duration and
Euclidean distance, respectively, and they are widely used in real-world systems
because of their simplicity. Eu-MVLU assumes the movements of an object can
be represented with a motion vector. Eu-MVLU is generally much superior to
FTLU and FDLU in terms of accuracy, and as a result, it has become increasingly
influential in moving objects databases.

As for the road-network-based tracking, existing update strategies are mainly
based on Network-Motion-Vector-Based Location Update Mechanism (Net-
MVLU), and they can be classified according to the threshold, future position
prediction, and group-based update mode. In threshold-based Net-MVLU
approaches, we only update location when threshold is reached, so as to reduce
update cost. Wolfson et al. propose a “dead-reckoning” tracking strategy in [50]
first, but it only works for the scenarios with fixed and known path. Later, people
improve it by proposing a new dead-reckoning policy based on angular and linear
deviation [22]. Lam et al. further develop an adaptive threshold-based update
mechanism that considers the effect of continuous queries on threshold [34], with a
core idea to improve the accuracy of location tracking on objects (by setting lower
threshold) frequently covered by query results.

More recently, update mechanisms [12, 13,52] based on location prediction have
been proposed to improve tracking accuracy. They use different functions (e.g.,
linear and constant functions) to estimate future location of moving objects and
update only if the difference between sampled and estimated locations exceeds a
threshold. As their tracking performance greatly depends on estimating function,
Civilis et al. in [12, 13] propose three updated policies: point, vector, and segment-
based policies. Furthermore, Ding et al. discuss the use of what is essentially
segment-based tracking in [16] on the basis of their proposed data model for the
management of road-network-constrained moving objects [14].

Different from most existing update strategies that aim to improve the efficiency
of single object tracking, group-based update strategy [10] uses clustering tech-
niques to reduce the communication cost. Specifically, moving objects are clustered
into groups based on position and velocity, and location tracking is carried out on
the group level. Repeated location data upload from objects in a same cluster can be
avoided as a result.

6 1 Introduction
1.3.3 Moving Objects Database Indexes

As the data sampled from moving objects could be extremely large, another key
problem is how to construct proper indexes for speeding up query processing.
Conventional spatio-temporal indexes fail here because of the high dynamics of
moving objects, which lead to the frequent updates of indexes and then cause
huge overloads. So far, many moving objects index structures have been proposed
to handle this issue, and they can be generally classified to three categories: (1)
historical trajectory-based indexes, (2) current location-based indexes, and (3) future
position-based indexes.

Trajectory data are usually scalable dynamic data. Several indexing approaches
[36, 40, 46] based on 3D variations of R-tree and R*-tree have been proposed
to manage them, with a goal to minimize storage and query cost. However, the
structure of underlying network is not considered in these indexes. In recent
years, more efforts have been made for trajectory data indexing on moving objects
in spatial networks, with typical methods like dimension transformation-based
indexes [39] and two-layered FNR-tree [21]. In addition, the MON-tree approach [2]
further improves the performance of the FNR-tree by representing each edge by
multiple line segments (i.e., polyline) instead of just one line segment.

Keeping the current position of moving objects in database is challenging
because they change their location frequently. Lots of index structures have been
proposed so far to support queries like kNN based on current moving object
location. In the LUR-tree [33], the index is not updated if the moving object still lies
inside previous minimum bounding rectangle (MBR), i.e., only update the current
location. The bottom-up approach [35] is an extension of LUR-tree based on R-
trees. LUGrid [54] exploits a lazy insertion and deletion method to handle frequent
location updates, where incoming updates having the same to-be-updated disk pages
are stored in memory and flushed into disk in batch.

Another important issue is to efficiently find objects that will satisfy some
spatial condition at a future time based on their present motion vectors. Some early
studies [1,32] employ dual transformation techniques that represent the predicted
positions as points moving in a two-dimensional (2D) space. Recent works focus
more on practical implementation, including the R-trees-based TPR-tree [42] and
its variations [41] and the BT -tree-based B*-tree [29]. But the update performance
of the above index mechanisms is not satisfactory. A novel PMR Quad-tree-based
index is proposed in [23], which adopts a trajectory segment shared structure while
depicting an efficient update algorithm. A dynamic data structure, called adaptive
unit, is introduced in [7], which groups neighboring objects with similar movement
patterns and captures the movement bounds of the objects based on traffic behavior
to reduce updates. A spatial index for the road network is then built over the adaptive
unit structures, which forms the ANR-tree [8]. The ANR-tree supports efficient
predictive queries and is robust for frequent updates.

1.3 Key Technologies in Moving Objects Database 7
1.3.4 Uncertainty Management

As moving objects update their location to server periodically, the server cannot
return the exact position of a moving object between two updates, and the only
way is to infer the possible position according to the saved trajectory. Such inherent
uncertainty has various implications for database modeling, querying, and indexing.
Therefore, uncertain management is a very important research issue for moving
object databases.

A lot of research has been focused on uncertainty management problem in recent
years with many effective models and algorithms being proposed [38,47,48]. But
most of them are based on Euclidean space in the form of X x ¥ x T, while
the topology of road network can be used to guide the uncertainty management.
Recently, researchers have realized the importance of their interaction, and the
modeling of moving objects uncertainty with network constraint has also been
studied in [3, 6, 16]. However, a more important problem is how to effectively index
the moving object trajectories with uncertainty considered.

1.3.5 Moving Objects Database Querying

Based on moving object data model and indexes, we process the MOD queries to
find results. As moving objects have spatial and temporal attributes, spatial and
temporal predicates must be indicated to answer queries for moving objects. Hence,
there are many types of MOD queries according to different kinds of spatial and
temporal predicates.

From the spatial predicates perspective, the typical queries for moving objects
mainly include: point query, range query, k-nearest neighbor (kNN) query [31],
etc. While from the temporal predicates perspective, queries can be classified into
three classes: historical, current, and future queries. Generally, historical queries are
usually based on moving object trajectories (e.g., to find moving objects that passed
crime region yesterday morning), while current queries and kNN queries are often
point query (e.g., to find the vacant taxi closest to a user). Also, all these queries can
be divided into Euclidean space-based queries and spatial network-based queries,
where different measures of distance are used.

Given that the use of location sensors such as GPS becomes popular, some
advanced queries for moving objects database have been increasingly useful.
A typical example is similar trajectory query [40], which attempts to find the moving
patterns embedded in trajectories, and it has various applications: we can find
suspicious objects with abnormal behavior characteristics or discover the movement
habit of opponent key sport players through such queries; another example is density
query [26, 30] for moving objects in spatial networks, and it provides important
real-time traffic information to drivers like the areas with high concentration of

8 1 Introduction

moving objects. Also, we further need to monitor the density change and process
continuous queries due to the high dynamics of moving objects. In comparison,
advanced queries are much more computational intensive than basic queries.

Traditional querying techniques for MOD are based on single database node.
However, moving objects usually produce large-scale dynamic data, and we thus
have to manage them in database cluster sometimes. As a result, it is necessary
to find high-performance querying approaches for processing the above (basic and
advanced) queries in distributed moving object databases effectively.

1.3.6 Statistical Analysis and Data Mining of Moving
Object Trajectories

Statistical analysis and data mining of moving object trajectories have become
important techniques to improve transportation system performance nowadays. By
process the traffic data using statistical and mining approaches, knowledge, and
intrinsic patterns of the road networks can be discovered and then further used to
guide route planning as well as traffic control decision making.

Most of current research on trajectory statistical analysis is based on float car
architecture (FCA): Moving objects report its position, speed, and direction to
data center, and such data are processed in data center to derive real-time traffic
information. The relationship between moving objects data update frequency and
statistical results has been discussed, and lots of methods and algorithms have been
proposed to address issues like road map matching and real-time traffic parameter
computation. However, the FCA-based statistical approaches have some significant
drawbacks: (1) The cost of communication and statistical computation based on
periodical sampling is very expensive; (2) statistics on discrete float car data impacts
the precision and efficiency of traffic flow analysis because it misses the valuable
information provided by network topology; and (3) real-time traffic report cannot
be supported by FCA-based approaches because of their off-line processing nature.
To handle the above problems, Ding and Giiting in [15] propose the SBDTN model
in which each dynamic moving object data is associated with the underlying road
segment and an incremental traffic flow analysis approach using trajectory-based
statistical algorithms in [17] based on SBDTN model.

For some new applications, trajectory-based data mining such as real-time
clustering analysis is becoming one of the most important requirements, especially,
clustering objects in spatial networks [5, 9]. One of the objectives for clustering
objects is to identify traffic congestions. A unified framework for clustering moving
objects in spatial networks (CMON) is proposed in [5]. The goals are to optimize the
cost of clustering moving objects and support multiple types of clusters in a single
application. The framework is composed of two components: (1) the continuous
maintenance of cluster blocks (CBs) and (2) the periodical construction of clusters
with different criteria based on CBs. The network features are explored to reduce
the search space and avoid unnecessary computation of network distance.

1.4 Applications of Mobile Data Management 9
1.3.7 Location Privacy

Protection of user’s privacy has been a central issue for location-based services.
Privacy threats related to location-based services are classified into two categories:
communication privacy threats and location privacy threats. Location privacy is a
particular type of information privacy [4]. In [53], two kinds of privacy protection
requirements in LBS are identified: location anonymity and identifier anonymity. To
strike a balance between the location privacy and quality of service (QoS), a quality-
aware anonymity model for protecting location privacy while meeting user-specified
QoS requirements is necessary.

1.4 Applications of Mobile Data Management

The combination of computing techniques and wireless networks makes mobile
computing more and more pervasive. Compared with traditional distributed com-
puting environment based on stable networks, mobile computing has the following
features: mobility, frequent disconnection, variety of bandwidth, asymmetry of
network communication, scalability, limited power of mobile devices, low reliability
of the networks, and so on [20]. In such environments, some new technologies in
particular the positioning technologies have merged and enabled a variety of new
applications such as location-based services.

In mobile computing environments, many new applications deal with a sig-
nificant amount of data, which leads to the need for mobile data management
techniques [18, 27]. Mobile data management mainly includes mobile database
techniques, small footprint databases design and implementation, and moving
object data management. Mobile database techniques include mobile transac-
tion management, data caching and replication, synchronization, and publication.
Small footprint databases techniques include flash-based storage and index model
design, query processing and optimization in limited memory, transaction manage-
ment, recovery techniques, and synchronization. Moving object data management
includes modeling and tracking of dynamic location information, uncertainty
management, indexing and location-dependent query processing, data mining (e.g.,
traffic and location prediction), privacy and security, and location dissemination.

In addition, the strong growth in wireless communications and the ever-
increasing availability of mobile multipurpose devices have created a global
computing environment. People communicate, work, and confer using a wide
range of devices all connected via an array of communication networks that
provide voice and data access regardless of geographic position. This infrastructure
aggregation presents a number of challenges especially when it comes to data-
intensive applications such as LBS and PIM and those with sensor networks.
Therefore, nontraditional issues including semantics of data, location-centric data
services, broadcast and multi-cast delivery, data availability techniques, security of
data, as well as privacy questions should be given considerable attention [18,20].

10 1 Introduction
1.5 Purpose of This Book

Moving object data management is a technically challenging research area that can
find various interesting applications in our life. This book gives a comprehensive and
complete view of a moving object management system, with the leading techniques
of this area to be introduced and discussed. Specifically, it focuses on the hot
topics related to MOD, including moving objects modeling, location updating and
indexing, querying and prediction for moving objects, uncertainty management,
statistical analysis and data mining on moving object trajectories, location privacy,
as well as advanced applications in intelligent transportation management and
location-based services. It is predictable that moving objects management will
become one of the most influential information techniques in the future.

References

—

. Agarwal PK, Arge L, Erickson J (2000) Indexing moving points. In: Proceedings of the
19th ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems (PODS
2000), Dallas, pp 175-186
2. Almeida VT, Giiting RH (2004) Indexing the trajectories of moving objects in networks.
Geolnformatica 9(1):33-60
3. Almeida VT, Giiting RH (2005) Supporting uncertainty in moving objects in network
databases. In: Proceedings of the 13th annual ACM international workshop on geographic
information systems (GIS 2005), Bremen, pp 31-40
4. Beresford AR, Stajano F (2003) Location privacy in pervasive computing. IEEE Pervasive
Comput 2(1):46-55
5. Chen J, Lai L, Meng X, Xu J, Hu H (2007) Clustering moving objects in spatial networks. In:
Proceedings of the 12th international conference on database systems for advanced applications
(DASFAA 2007), Bangkok, pp 611-623
6. Chen J, Meng X (2007) Indexing future trajectories of moving objects in a constrained network.
J Comput Sci Technol 22(2):245-251
7. Chen J, Meng X (2009) Update-efficient indexing of moving objects in road networks.
Geolnformatica 13(4):397-424
8. Chen J, Meng X, Guo Y, Grumbach S (2007) Indexing future trajectories of moving objects in
a constrained network. J Comput Sci Technol 22(2):245-251
9. Chen J, Meng X, Lai C (2007) Clustering objects in road networks (in Chinese). J Softw
18(2):332-344
10. Chen J, Meng X, Li B, Lai C (2006) Tracking network-constrained moving objects with group
updates. In: Proceedings of WAIM, Hong Kong, pp 158-169

11. Chon HD, Agrawal D, Abbadi AE (2001) Using space-time grid for efficient management of
moving objects. In: Proceedings of the 2nd ACM international workshop on data engineering
for wireless and mobile access (MobiDE 2001), Santa Barbara, pp 59-65

12. Civilis A, Jensen CS, Nenortaite J, Pakalnis S (2004) Efficient tracking of moving objects with
precision guarantees. In: Proceedings of the 1st annual international conference on mobile and
ubiquitous systems, networking and services, Cambridge, pp 164-173

13. Civilis A, Jensen CS, Pakalnis S (2005) Techniques for efficient road-network-based tracking

of moving objects. IEEE Trans Knowl Data Eng 17(5):698-712

References 11

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

Ding Z, Giiting RH (2004) Managing moving objects on dynamic transportation networks.
In: Proceedings of the 16th international conference on scientific and statistical database
management (SSDBM 2004), Santorini Island, pp 287-296

Ding Z, Giiting RH (2004) Modeling temporally variable transportation networks. In: Proceed-
ings of DASFAA, Jeju Island, pp 154-168

Ding Z, Giiting RH (2004) Uncertainty management for network constrained moving objects.
In: Proceedings of the 2004 international conference on database and expert systems applica-
tions (DEXA 2004), Zaragoza, pp 411-421

Ding Z, Huang G (2009) Real-time traffic flow statistical analysis based on network-
constrained moving object trajectories. In: Proceedings of DEXA, Linz, pp 173-183

Dunham MH, Helal A (1995) Mobile computing and databases: anything new? SIGMOD Rec
24:5-9

Forlizzi L, Giiting RH, Nardelli E, Schineider M (2000) A data model and data structures for
moving objects databases. In: Proceedings of the ACM SIGMOD international conference on
management of data, Dallas, pp 319-330

Forman GH, Zahorjan J (1994) The challenges of mobile computing. Computer 27:387-403
Frentzos E (2003) Indexing objects moving on fixed networks. In: Proceedings of the 8th
international symposium on spatial and temporal databases (SSTD 2003), Santorini Island,
pp 289-305

Gowrisankar H, Nittel S (2002) Reducing uncertainty in location prediction of moving objects
in road networks. In: Proceedings of the international conference on information networking,
Cheju Island, pp 81-90

Guttman A (1984) A dynamic index structure for spatial searching. In: Proceedings of the
ACM SIGMOD international conference on management of data (SIGMOD 1984), Boston,
pp 47-57

Giiting RH, Almeida VT, Ding Z (2006) Modeling and querying moving objects in networks.
J Very Large Data Bases 15(2):165-190

Giiting RH, Bohlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M
(2000) A foundation for representing and querying moving objects. ACM Trans Database Syst
25(1):1-42

Hadjieleftheriou M, Kollios G, Gunopulos D, Tsotras VJ (2003) On-line discovery of dense
areas in spatio-temporal databases. In: Proceedings of the 8th international symposium on
advances in spatial and temporal databases (SSTD 2003), Santorini Island, pp 306-324
Imielinski T, Badrinath BR (1993) Data management for mobile computing. SIGMOD Rec
22:349

Jensen CS, Friis-Christensen A, Pedersen TB, Pfoser D, Saltenis S, Tryfona N (2001) Location-
based services — a database perspective. In: Proceedings of the 8th Scandinavian research
conference on geographical information science (ScanGIS 2001), As, pp 59-68

Jensen CS, Lin D, Ooi BC (2004) Query and update efficient B T tree based indexing of moving
objects. In: Proceedings of the 30th international conference on very large data bases (VLDB
2004), Toronto, pp 768-779

Jensen CS, Lin D, Ooi BC, Zhang R (2006) Effective density queries on continuously moving
objects. In: Proceedings of the 22nd international conference on data engineering (ICDE 2006),
Atlanta, p 71

. Kolahdouzan M, Shahabi C (2004) Voronoi-based K nearest neighbor search for spatial

network databases. In: Proceedings of the 30th international conference on very large data
bases (VLDB 2004), Toronto, pp 840-851

Kollios G, Gunopulos D, Tsotras VJ (1999) Effective density queries on continuously moving
objects. In: Proceedings of the 22nd international conference on data engineering (ICDE 1999),
Atlanta, p 71

Kwon D, Lee SL, Lee S (2002) Indexing the current positions of moving objects using the lazy
update R-tree. In: Proceedings of the 3rd international conference on mobile data management
(MDM 2003), Singapore, pp 113-120

12

34.

35.

36.

37.

38.

30.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

SI.

1 Introduction

Lam K, Ulusoy O, Lee T, Chan E, Li G (2001) An efficient method for generating location
updates for processing of location-dependent continuous queries. In: Proceedings of the
7th international conference on database systems for advanced applications, Hong Kong,
pp 218-225

Lee ML, Hsu W, Jensen CS, Cui B, Teo KL (2003) Supporting frequent updates in R-trees: a
bottom-up approach. In: Proceedings of 29th international conference on very large data bases
(VLDB 2003), Berlin, pp 608-619

Nascimento MA, Silva JRO (1998) Towards historical R-trees. In: ACM symposium on applied
computing (SAC 1998), Atlanta, pp 235-240

Papadias D, Zhang J, Mamoulis N, Tao Y (2003) Query processing in spatial network
databases. In: Proceedings of the 29th international converence on very large data bases
(VLDB), Berlin, pp 802-813

Pfoser D, Jensen CS (1999) Capturing the uncertainty of moving object representations. In:
Proceedings of the 6th international symposium on advances in spatial databases (SSD 1999),
Hong Kong, pp 111-132

Pfoser D, Jensen CS (2003) Indexing of network constrained moving objects. In: Proceedings
of the 11th ACM international symposium on advances in geographic information systems
(GIS 2003), New Orleans, pp 25-32

Pfoser D, Jensen CS, Theodoridis Y (2000) Novel approaches in query processing for moving
object trajectories. In: Proceedings of the 26th international conference on very large data bases
(VLDB 2000), Cairo, pp 395-406

Saltenis S, Jensen CS (2002) Indexing of moving objects for location-based service. In:
Proceedings of the 18th international conference on data engineering (ICDE 2002), San Jose,
pp 463472

Saltenis S, Jensen CS, Leutenegger ST, Lopez MA (2000) Indexing the positions of contin-
uously moving objects. In: Proceedings of the ACM SIGMOD international conference on
management of data (SIGMOD 2000), Dallas, pp 331-342

Sistla P, Wolfson O, Chamberlain S, Dao S (1997) Modeling and querying moving objects.
In: Proceedings of the 13th international conference on data engineering (ICDE 1997),
Birmingham, pp 422-432

Speicys L, Jensen CS, Kligys A (2003) Computational data modeling for network-constrained
moving objects. In: Proceedings of the 7th ACM international symposium on advances in
geographic information systems, New Orleans, pp 118-125

Su J, Xu H, Ibarra O (2001) Moving objects: logical relationships and queries. In: Proceedings
of the 7th international symposium on spatial and temporal databases (SSTD 2001), Redondo
Beach, pp 3-19

Tao Y, Faloutsos C, Papadias D, Liu B (2004) Prediction and indexing of moving objects with
unknown motion patterns. In: Proceedings of the ACM SIGMOD international conference on
management of data (SIGMOD 2004), Paris, pp 611-622

Trajcevski G, Wolfson O, Cao H, Lin H, Zhang F, Rishe N (2002) Managing uncertain
trajectories of moving objects with domino. In: Proceedings of the 4th international conference
on enterprise information systems (ICEIS 2002), Ciudad Real, pp 769-771

Trajcevski G, Wolfson O, Chamberlain S, Zhang F (2002) The geometry of uncertainty in
moving objects databases. In: Proceedings of the 8th international conference on extending
database technology: advances in database technology (EDBT 2002), Prague, pp 233-250
Vazirgiannis M, Wolfson O (2001) A spatialtemporal model and language for moving objects
on road networks. In: Proceedings of the 7th international symposium on spatial and temporal
databases, Redondo Beach, pp 20-35

Wolfson O, Sistla A, Chamberlain S, Yesha Y (1999) Updating and querying databases that
track mobile units. Distrib Parallel Databases 7(3):257-387

Wolfson O, Xu B, Chamberlain S, Jiang L (1998) Moving object databases: issues and
solutions. In: Proceedings of the 10th international conference on scientific and statistical
database management (SSDBM 1998), Capri, pp 111-122

References 13

52. Wolfson O, Yin H (2003) Accuracy and resource consumption in tracking and location
prediction. In: Proceedings of the 7th international symposium on spatial and temporal
databases (SSTD 2003), Santorini Island, pp 325-343

53. Xiao Z, Meng X, Xu J (2007) Quality aware privacy protection for location-based services. In:
Proceedings of the 12th international conference on database systems for advanced applications
(DASFAA 2007), Bangkok, pp 434-446

54. Xiong X, Mokbel MF, Aref WG (2006). LUGrid: update-tolerant grid-based indexing for mov-
ing objects. In: Proceedings of the 7th international conference on mobile data management
(MDM 2006), Nara, p 13

Chapter 2
Moving Objects Modeling

Abstract Location modeling is the foundation for moving objects databases. Exist-
ing database management systems are not well equipped to handle continuously
changing data, such as the position of moving objects. The reason for this is that in
traditional databases, data is assumed to be constant unless it is explicitly modified.
This is unsatisfactory for MOD since locations of moving objects are continuously
changing. In this chapter, we overview some representative models for moving
objects and present two moving object models that are based on the concept of
dynamic transportation networks.

Keywords Location modeling ¢ Dynamic transportation network moving objects
model * Moving object trajectory ¢ Spatial network * Moving object database

2.1 Introduction

The continuous advances in wireless sensor networks and position technologies
enable traffic management and location-based services that track continuously
changing positions of moving objects. Timely location information is becoming one
of the key features of these applications. In existing DBMSs, data is assumed to be
constant unless it is explicitly modified. Therefore, the continuously changing data,
such as the location of moving objects, are hard to handle.

In order to represent trajectories of moving objects in databases and to answer
queries about their position, a straightforward way is to update the position of
moving objects continuously. This is not feasible yet because of the excessive
I/O and wireless-bandwidth cost if updates are frequent enough to guarantee high
tracking precision. Also, due to the disconnections, it is not possible for an object
to continuously update its position to the server. Therefore, new location modeling
methods are needed to solve this problem.

Figure 2.1 illustrates this dilemma. As Fig. 2.1a shows, when the moving object
frequently reports its location updates to the database server, the trajectories are

X. Meng et al., Moving Objects Management: Models, Techniques 15
and Applications, DOI 10.1007/978-3-642-38276-5_2,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

16 2 Moving Objects Modeling

a b
Database Server Database Server

Location Location

Update Update
N ~ N

¢ ¢ o o e i) o

Joll P2 P3 P4 Ps Ps P17 Ds P1 P4 Ps
/h t2 ty ty ts te t7 tg /n to ty tyg ts te t7 tg

Fig. 2.1 Challenge of moving objects modeling. (a) Query (t3) = ps. (b) Query (t3) =?

stored as intensive samples in database and queries like: what is the location of the
moving object at 73 can be preciously answered, i.e., p3. It however has such a high
update cost that the database server cannot bear simultaneous updates sent from a
large number of moving objects. On the other hand, as Fig. 2.1b, when the moving
objects make location updates for a long time interval, the trajectories are stored
as sparse samples and the same queries cannot be preciously answered at the most
time, though the workload of database server is reduced. Such dilemma is caused
by the conflict between the continuous movement of objects and the discrete storage
in databases. Therefore, it is crucial to find a proper balance between updating cost
and tracking precision.

So far, many models and algorithms have been proposed to handle the continu-
ously changing positions of moving objects. Basically, each attribute of a moving
object can be modeled either statically or dynamically. A static attribute only
changes when an explicit update of the database occurs; in contrast, a dynamic
attribute changes over time according to some functions, even if it is not explicitly
updated. For example, assume that a moving object whose position at any point in
time is given by a (x, y) coordinate sequence in two-dimensional space, each of
the object’s coordinates is a dynamic attribute. The main difference between the
dynamic attribute of moving objects and attributes in traditional database systems is
that the values of (dynamic) location attribute are continuously changing.

Wolfson et al. in [15,20] first propose a moving objects spatio-temporal (MOST)
model, which represents the location as a dynamic attribute. Later, models based
on linear constraints [17], abstract data types [9], and space-time grid storage [3]
for moving objects are proposed. In these modeling approaches, attributes of
the moving objects are dynamic and change continuously as a function of time,
avoiding explicitly updates. Corresponding data types and operations are defined
with considerations of dynamic attributes to provide a feasible DBMS model
capable of handling such time-dependent characteristic of moving object. To retrieve
and query the moving objects, various sorts of functions are proposed, such as:
direct interpolation or exploration, linear function based, and nonlinear function
based. However, in most real-life applications, objects move within constrained
networks, especially in the case of transportation networks (e.g., vehicles move
on road networks). These models do not take into account the interaction between
moving objects and the underlying transportation networks.

2.2 Representative Models 17

The interaction is another very important aspect in the management of moving
objects. For example, in location tracking, the road-network representation of
moving objects can be exploited to reduce the number of updates from moving
objects to the database server [4]. For indexing moving objects in road networks,
the temporal aspect can be distinguished and related to the road network to save
considerable index storage space [l, 7], since the spatial property of objects’
movement is already captured by the network. In addition, by using the network
constraints, the query processing can also be improved [10, 14]. Hence, a lot of
models connecting moving objects with the road-network representation have been
proposed [8, 13, 16, 19]. Considering the underlying road network has brought a lot
of benefits in indexing and querying. However, it also leads to the difficulties to
model the road network and the moving object simultaneously. The major reason is
that the road network should be viewed dynamically also. In a road network, a route
can have different states, like: blocked, opened, or closed, etc. Moreover, different
events can happen on the road network, such as: traffic jams, car accidents, road
construction, or road repairs, etc. Therefore, it is necessary to dynamically model
the underlying road network. Based on that consideration, Ding and Giiting [5] have
proposed a method to model the moving object on dynamic road network. In the
scenario of a realistic traffic system, especially in intelligent transportation system
which is popular nowadays, the model needs to reflect real-time traffic conditions of
the road networks. The goodness of reflecting real-time traffic conditions includes
two folds. For one thing, precise route planning requires full facilitation of the GPS
samples. For another thing, dynamic is an inherent characteristic of moving object
and road network which both require corresponding dynamic model.

More recently, the graph of cellular automata (GCA) is proposed in [2] to
integrate the traffic movement features into the model of moving objects and the
underlying road network. The GCA model exploits the stochastic behavior of the
real traffic by the cellular automaton which is used in the traffic simulation. It also
combines the road-network model with the real movement of objects and therefore
can support the management of network-constrained moving objects.

In this chapter, we first give a brief introduction of some representative models
of moving objects and then present a moving object model called DTNMOM which
considers the dynamics of underlying road network. Finally, a DTNMOM based
on atomic route section model called ARS-DTNMOM is further presented, which
introduces the concept of atomic route section and defines its corresponding data
types and operations in database. One noteworthy feature shared by the two models
is that both of them can reflect real-time traffic conditions of the road network.

2.2 Representative Models

2.2.1 Moving Object Spatio-Temporal (MOST) Model

Wolfson et al. in [15,20] first propose a moving objects spatio-temporal (MOST)
model for databases with dynamic attributes, i.e., attributes that change continuously

18 2 Moving Objects Modeling

as a function of time, without being explicitly updated. In the MOST model, the
location as a dynamic attribute is represented as a function of time. Formally, a
dynamic attribute A is represented by three sub-attributes, A.value, A.updatetime,
and A.function, where A.function is a function of a single variable ¢ that has value 0
att = 0. The value of a dynamic attribute depends on the time, and it is defined as
follows. At time A.updatetime, the value of A is A.value, and until the next update
of A, the value of A at time A.time + to is given by A.value + A.function(ty).
An explicit update of a dynamic attribute may change its value sub-attribute, or its
function sub-attribute, or both sub-attributes. For example, the position of a car is
given as a function of its motion vector (e.g., north, at 60 miles/h). In other words, it
considers a higher level of data abstraction, where an object’s motion vector (rather
than its position) is represented as an attribute of the object. Obviously, the motion
vector of an object can change (and thus it can be updated), but in most cases it
does so less frequently than the position of the object. When a dynamic attribute is
queried, the answer returned by the MOD consists of the value of the attribute at the
time the query is entered. In this sense, the MOST model is different from existing
database systems, since, unless an attribute has been explicitly updated, a DBMS
returns the same value for the attribute, independent of the time at which the query
is posed. With the motion vector, the MOST model is capable of representing not
only the current but also the near-future position of moving objects.

However, due to the limited expression ability of the simple function in dynamic
attributes, the MOST model can only represent the future positions of moving
objects in a short period. The study [6] solves this problem by presenting the moving
object’s discrete data model, in which the complicated trajectory of a moving object
can be represented by a set of relatively simple discrete segments. In addition, Su
et al. in [17] present a data model for moving objects based on linear constraint
databases. Chon et al. in [3] propose a space-time grid storage model for moving
objects. In [9], Giiting et al. present a data model and data structures for moving
objects based on abstract data types. These studies focus on the modeling of objects
moving in free spaces, not constrained by any spatial network.

2.2.2 Abstract Data Type (ADT) with Network

Take the abstract data type (ADT) proposed by Giiting et al. as an example. The goal
of abstract data type is to provide a DBMS data model and query language capable
of handling such time-dependent geometries, including those changing continuously
that describe moving objects. Two fundamental abstractions in ADT are moving
point and moving region. Moving point describes the time-dependent position of a
moving object, and moving region describes the time-dependent extent of a moving
object. ADT represents such time-dependent geometries as attribute data types with
suitable operations to provide an abstract data type extension to a DBMS data model
and query language. Besides the main types of ADT, moving point and moving
region, a relatively large number of auxiliary data types are included. For example,

2.2 Representative Models 19

ADT includes a line type to represent the projection of a moving point into the
plane or a “moving real” to represent the time-dependent distance of two moving
points. ADT has three advantages: (1) achieves orthogonally in the design of the
type system, i.e., type constructors can be applied uniformly; (2) genericity and
consistency of operations, i.e., operations range over as many types as possible
and behave consistently; and (3) closure and consistency between structure and
operations of nontemporal and related temporal types. Satisfying these goals leads
to a simple and expressive system of abstract data types that can be integrated into
a query language to yield a powerful language for querying spatio-temporal data,
including moving objects.

For moving objects in a spatial network, when adding the network constraint, we
need to consider not only the location representation but also the modeling of the
spatial network as well as the spatial objects. To represent moving objects in road
network, ADT adopts the graph representation which gives the definitions of routes
and junctions and offers two kinds of routes called simple and dual routes. There are
also two concepts for positions on roads called route measure and route location.
The route measure is independent from the kind of route (simple or dual); it is just
a distance from the origin of the route. Junctions between two routes are positioned
at two distinct route measures. The route location depends on the route type. For
a simple route, it is the same as the route measure; for a dual route, it is a route
measure plus a flag from the set {up,down}. Similarly, on a simple route, a route
interval is given by two measures, on a dual route by two measures plus an up-down
flag. Hence, a route description consists of an identifier, a length, a curve describing
its geometry in the plane, a route type, and a flag indicating how route locations are
to be embedded into space. The geometry is a simple, non-self-intersecting curve in
the plane which may be open or closed (a cycle). It is represented by a polyline. In
spatial databases and also in ADT framework, a data type line is available that can
represent such values.

The presented abstract data types can now be embedded into any DBMS data
model as attribute data types, and the operations be used in queries.

Let us use a junction in road network for illustration. A junction in road network
is a triple consisting of two route measures in road network with distinct route
identifiers and a connectivity code, an integer value encoding which movements
through the junction are possible. At a junction between routes A and B, various
transitions may be possible or not for a moving object, for example, a transition
Aup — Byp. This is illustrated in Fig.2.2a, b. In most cases, junctions are built to
allow for all eight possible transitions from one route to the other. However, this
is not always true. Figure 2.2a shows an example of a physical highway junction
where in fact only the transitions A,, — B.p, Aup = Baown, and Agown — Baown
are possible. ADT can represent the possible transitions in a 4 x 4 matrix as shown
in Fig. 2.2c. The 1’s in the diagonal represent the fact that it is possible to stay on a
route in the same direction. A transition such as, for example, A,, — Agoun Would
be set to 1 if a U-turn were possible. In general, for the definition of the transition
matrix, A and B are chosen such that the route identifier of A is smaller than that of B.

20 2 Moving Objects Modeling

a b N
- Bdown A”p
Ve
P A) - ‘]
) X
- B
/ > ‘\
_> kkkkk /7 S T (' Bup
B ~ Adoufn V
- c
e Au Ad Bu Bd A
- Aul1]o]1]1
Adlol1]o]1
A Bul0]0[1]0
Bd|0]|0|0]1

Fig. 2.2 (a) A physical highway junction, (b) its diagrammatical representation, (¢) the transition
matrix

2.2.3 Graph of Cellular Automata (GCA)

The graph of cellular automata (GCA) [2] integrates the traffic movement features
into the model of moving objects and the underlying road network, which models
the road intersections as graph nodes and the road segments with no intersections
as graph edges. Different from the general graph model, each edge in GCA consists
of a cellular automaton (CA), which is represented, in a discrete mode, as a finite
sequence of cells. Each cell corresponds in practice to some road segment of about
7.5m. Cellular automata were originally introduced by von Neumann [12] and
Ulam [18] in the 1960s with the particular purpose of modeling biological self-
reproduction. Since then, they have been used broadly for physics applications such
as particle transport simulations and thermodynamics studies. The CA model was
used in this context in [11] because in the CA model it is quite simple and easy to
describe the interaction of cells; it is suitable for computer simulations of discrete
phenomena. A moving object is represented as a symbol attached to the cell in
the GCA, and it can move several cells ahead at each time unit. The motion of an
object is represented as information in the form (time, location). Representing such
information of a moving object as a trajectory is a typical approach [19]. In the GCA
model [2], the trajectory of a moving object can be divided into two types: the in-
edge trajectory for the object’s movement in one edge (CA) and the global trajectory
for the object that may move cross several edges (CAs) during its movement.

Figure 2.3 shows an example of a road network and its GCA model. Each node
has a label that represents an intersection of the road network. The wide lines
represent edges and each edge treated as one CA connects many cells.

A graph of cellular automata can be formally defined as follows.

Definition 2.1. The structure of a GCA is a directed weighted graph G = (V, E, /)
where V' is a set of vertices (i.e., nodes), E is a set of edges, and [: £ — N
is a function that associates to each edge the number of cells of the corresponding
cellular automaton.

2.3 DTNMOM 21

Fig. 2.3 An example of a road network and its GCA model. (a) A road network. (b) An instance
of GCA

We assume a countably infinite alphabet 2 : {«, B,y,---}, denoting moving
objects’ names. Let C be the set of cells of a GCA.

A configuration or an instance of a GCA is a mapping from the cells of the
GCA to constants in £2 together with a given velocity. Intuitively, the velocity is the
number of cells an object can traverse during a time unit.

Definition 2.2. An instance / of a GCA is defined by two functions:
u: C — 2 J{0} (1—1 mapping).
v:2 — N

A moving object is represented as a symbol attached to the cell in the GCA, and
it can move several cells ahead at each time unit. Figure 2.3b is an instance of the
GCA corresponding to the road network of Fig.2.3a. In Fig. 2.3b, moving objects
are denoted by squares. A moving object lies on exactly one cell of the edge and its
location can be obtained by computing the number of cells relative to the start node.
For instance, the object « lies on the edge (N;, N;) and it is two cells away from N
along the edge. Therefore, its position can be expressed by (N;, Ny, 2).

2.3 DTNMOM

The route-based dynamic transportation networks moving objects model (DTN-
MOM) [5] is composed of two steps. The first step is to model the underlying
dynamic transportation networks with traffic state, and the second one is the
modeling of moving objects on transportation network. In DTNMOM, the trans-
portation network is modeled as “dynamic” graphs, so that we can express traffic
state changes (e.g., from unobstructed state to congested state) and topology
changes (e.g., insertion and deletion of junctions or routes) easily. For simplicity,
“dynamic transportation networks” and “dynamic graphs” will be used interchange-
ably throughout this chapter.

22 2 Moving Objects Modeling

[t1, t2), (opened, &)

[t2, t3), (blocked, {(traffic-jam, [0.2,0.3])})
opened blocked closed , opened .

——— = .j_b_\, > t [t3, t4), (closed, &)

tl 2 t3 t4 tnow [t4 , J_), (Opened, @)

Fig. 2.4 State changes of a route and their temporal units

In modeling dynamic graphs, a state-based method is utilized. The basic idea is
to associate a temporal attribute to every route or junction of the graph system, so
that the state of the route or junction at any time instant can be retrieved. Since the
changes to the graph system are discrete, we can use a series of temporal units to
represent a temporal attribute with each temporal unit describing one single state
of the route or junction during a certain time period. In this way, the whole spatio-
temporal history of the graph system can be stored and queried.

As for the modeling of movement of objects, since in most cases a moving object
can be viewed as a point, they are modeled as moving graph points in the dynamic
transportation networks. A moving graph point is a function from time to graph
point, which can be represented as a group of moving units in the discrete model.
The methodology proposed in DTNMOM can be easily extended to deal with more
complicated situations where moving objects need to be modeled as moving graph
lines or moving graph regions.

Definition 2.3. The temporal attribute associated with a junction or a route, denoted
by tp, describes the state history of the junction or route, which is defined as a
sequence of the following form:

tp = ((1i.51))i=;

where [; is a time interval and s; is the state of the junction or route during /;.
(1;,s:)(1 <i < n) is called the i th temporal unit of p.

For a certain temporal unit (/;,s;) (1 < i < n), I; is composed of two time
instant values, min(l;) and max(I;), which indicate the starting point and the
end point of I;, respectively. min(l;) must be a defined value, while max(I;)
can be either defined or undefined. If max(/;) is an “undefined” value L, then
I; is called an open temporal unit. Otherwise, it is called a closed temporal unit.
Semantically, L means “until now.” Therefore, if a junction or route is still active
in the transportation network, its temporal attribute will contain exactly one open
temporal unit, which forms its last temporal unit. Otherwise, if it has already been
deleted from the transportation network, then its temporal attribute will only contain
closed temporal units.

The insertion and deletion time of a junction or a route can be decided by
min(l;) and max(l,), respectively. Figure 2.4 illustrates an example temporal
attribute value.

2.3 DTNMOM 23

\f_ Blockage

Fig. 2.5 A blocked route with moving objects

Definition 2.4. A state of a junction or a route, denoted by s, is defined as follows:
§ = (87 (bris BPi)::l=l)

where § € {opened,closed,blocked}.1f § = blocked,then s must be associated
with a route, and (br;, BP;)!_, is needed in this situation to describe the blockages
of the route where br; describes the reason (traffic jam, construction, traffic control,
etc.) and BP; C [0, 1] describes the location of the i th blockage of the route.

In the above definition, we assume that the location of the blockage is static so
that it can be expressed as a closed interval over [0, 1], whose boundaries indicate
the location of the borders of the blockage.

In dynamic transportation networks, there are two possible states of each
junction, opened and closed, and a route has three possible states: opened, closed,
and blocked. If a junction or a route is opened, then it is entirely available to moving
objects. If a junction or a route is closed, then it is entirely unavailable to moving
objects, which means that no moving objects are allowed to stay or move on any
part of it. A closed junction or route is not deleted from the system. Instead, it is
only temporarily unavailable to moving objects and can be reopened afterwards.

The blocked state is used to describe a special kind of state of a route, which
means “partially available” to moving objects. That is, the unblocked part of the
route is still available to moving objects, but no moving objects can move through
the blocked part. Figure 2.5 gives an example of blocked route.

In the dynamic graph system, since every junction or route has a temporal
attribute associated, we can know its state at any given time instant. This is very
useful in moving objects databases since a lot of queries can only be processed
efficiently by accessing the states of the transportation networks. For instance,
“please tell me all the routes which are currently blocked by traffic jams and the
moving objects affected by them.” Besides, through the temporal attribute, we can
also know the life span of any junction or route of the graph system so that the
topology changes of the transportation networks can also be expressed and queried.
For instance, “find the shortest path from a to b at time instant ¢.”

Definition 2.5. A dynamic route, denoted by r, is defined as follows:
r = (gid,rid,route,len, fdr,tp)

where gid and rid are identifiers of the road networks and the route, respectively,
route is a polyline which describes the geometry of 7, len is the length of the route,
fdr € {0,1,2} is the traffic flow directions allowed in the route, and #p is the
temporal attribute associated with 7.

24 2 Moving Objects Modeling

‘ 0-end (in) = rl+ rl- 2-
| AA 0 CLep 0D (Lsh
S5 0y sp Lsp
1+ e e
oy 1A T Tond r; ©n Lop (5h
r2- |1-end (out)

Fig. 2.6 A junction and its connectivity matrix

The polyline route in the above definition can be defined as a series of points in
the Euclidean space. For simplicity, we suppose that the graph system is spatially
embedded in the X x Y plane so that the polyline can be presented as a series of
points in the X x Y plane. The polyline is considered directed, whose direction is
from the first vertex to the last vertex, which enables us to speak of the beginning
point (or 0-end) and the end point (or 1-end) of the route.

The traffic flow directions allowed in a route can have three possibilities that
are specified by fdr, whose value can assume 0, 1, 2, which corresponds to “from
0-end to 1-end,” “from 1-end to 0-end,” and “both directions allowed,” respectively.

There will be multiple graphs coexisting, while each graph is composed of a
set of routes and a set of junctions. For each route, its geometry is described
by a polyline so that it can actually be assumed as an arbitrary shape instead
of just a straight line. A junction connects two or more routes of the graph
system. The connected routes can come from one graph (the junction is called “in-
graph junction”) or belong to different graphs (the junction is called “inter-graph
junction”).

Definition 2.6. A dynamic in-graph junction of graph G, denoted by j, is defined
as follows:

J = (gd, jid,loc, ((rid;, pos;));—,,m,tp)

where gid and rid are identifiers of the road networks and the route, respectively,
loc is the location of j which can be presented as a point value in the X x Y plane,
((rid;, pos;))i_, describes the routes connected by j, m is the connectivity matrix
of j, and tp is the temporal attribute associated with j.

(rid;, pos;) in the above definition indicates the i th route connected by j, where
rid; is the identifier of the route and pos; € [0, 1] describes the position of the
junction inside the route. We suppose that the total length of any route is 1, and then
every location in the route can be presented by a real number p € [0, 1].

The matrix m describes the connectivity of the junction. It contains possible
matches of traffic flows in the routes connected by the junction, and the element
value associated with each match can assume either O or 1, which indicates whether
moving objects can transfer from the “in” traffic flow to the “out” traffic flow
through this junction, as shown in Fig. 2.6.

2.3 DTNMOM 25

Definition 2.7. A dynamic inter-graph junction, denoted by j*, is defined as
follows:

J* = (jid,loc,((gid;,rid;, pos;))'—,,m,tp)

The definition of the inter-graph junction is very similar to that of the in-graph
junction. The 3-tuple (gid;, rid;, pos;)(1 <i < n) describes the routes connected
by j*, which comes from different graphs.

Definition 2.8. A dynamic graph, G, is defined as a pair:
G=R,J

where R is a set of dynamic routes and J is a set of dynamic in-graph junctions.

Definition 2.9. A dynamic graph system, GS, is defined as a set of dynamic graphs
and inter-graph junctions:

GS = leGZs'"7Gnsj1*sj2*s"'7j,:;

wheren > 1,m > 0, G;(1 <i < n) is a dynamic graph and j]:‘(l <k <m)isan
inter-graph junction.

Definition 2.10. A moving graph point, mgp, is defined as a function from time to
graph point, that is,

mgp=f:T —GP

where T is the domain of time and GP is the domain of graph point of the graph
system.

To apply the model to the low-sampling-rate samples, a moving graph point can
also be expressed as a set of moving units, and each moving unit describes one
single moving pattern of the moving object for a certain period of time.

Definition 2.11. A discrete presentation of moving graph point, dmgp, is defined
as a sequence:

dmgp = ((t;,(gid;, rid;, pos;),vm;))'_,

where #; is a time instant, (gid;,rid;, pos;) = gp; is a graph point describing
the location of the moving object at time #;, and vm; is the speed measure of the
moving object at time ¢;, and (¢;, (gid;, rid;, pos;)) = w; is called the ith moving
unit of dmgp.

The speed measure vm is a real number value. Its abstract value equals to the
speed of the moving object, while its sign (either positive or negative) depends
on the direction of the moving object. If the moving object is moving from 0-end
towards 1-end, then the sign is positive. Otherwise, if it is moving from 1-end to
0-end, the sign is negative.

26 2 Moving Objects Modeling
24 ARS-DTNMOM

To model the moving object and the underlying dynamic transportation networks,
it is crucial to describe the concept of route precisely. For each route, its geometry
is described by a polyline so that it can actually assume an arbitrary shape instead
of just a straight line. The polyline is considered as directed, whose direction is
from the first vertex to the last, which enables us to speak of the beginning point
(or 0-end) and the end point (or 1-end) of the route. A route is composed of a
set of directed atomic route sections (ARS). Conceptually, a directed atomic route
section is a directed segment of the traffic flow within a route, which connects two
junctions and does not contain any other junctions from which moving objects can
exit. The direction of ARS is indicated by the order of the two junctions (from
the first junction toward the second). Since ARS is the basic unit for navigation,
we choose it as the basic unit for keeping traffic states and parameters. Figure 2.7
illustrates the atomic route sections in the ARS-DTNMOM.

In Fig.2.7, route r1 has two traffic flow directions, “+” and “—” (“+” means
that traffic flow is from 0-end to 1-end and “—” is from 1-end to 0-end; see
Definition 2.2). Therefore, the directed atomic route sections are also in two
directions. Some ARSs are symmetrical (say, arsl and arsl0), but essentially,
ARSs of the two route sides can be asymmetrical (e.g., ars2 and ars9, ars3 and
arsg).

Additionally, to support the realization of ARS-DTNMOM, the underlying
transportation network is modeled as a dynamic graph so that the state, topology,
and traffic parameters of the transportation graph at any time instant can be tracked
and queried. Moving objects are modeled as moving graph points which move only
within predefined transportation networks. The data model is given as a collection
of data types and operations which can be plugged as attribute types into a DBMS
to obtain a complete data model and query language.

The above ARS-DTNMOM can describe complicated traffic network and the
traffic flows in it. The benefit of this network framework is twofold. First, since
routes are explicitly presented, the MOD system can take routes as the basic unit
for network position representation and for location updates. Therefore, if a moving

route r2

route r3

0-end | ars10 X

Fﬂnarg ‘.. % B Intersections & Endpoints })
- r4 m Exits & Entrances Junctions
route r1 , ars2)) .
\ —» Directed Atomic Route Sections
+ a

<
0]

Fig. 2.7 ARS-based DTNMOM

2.4 ARS-DTNMOM 27

Fig. 2.8 Directed atomic route section

object moves in a certain route with roughly steady speed, no location updates will
be triggered even though it may pass through several junctions along the route.
As a result, the location update cost can be reduced. In this aspect, it is superior
to the DTNMOM. Second, through atomic route sections, we can describe traffic
parameters and state information in more detail so that important utilities such as
traffic aware navigation can be better supported, and in this aspect, it is superior to
the DTNMOM.

Definition 2.12. A directed atomic route section (ARS), denoted by ars, is a
directed edge which connects two nearby junctions of the network and does not
contain any other junctions in between along the same traffic flow direction, which
is defined as

ars = (aid, (jidy, posy), (jid,., pos.))

where aid € int is the identifier of ars and (jidy, poss) and (jid,, pos.) describe
the starting point and the end point of ars, respectively, where jid; and jid, are
junction identifiers and poss and pos, are the starting position and end position
of ars which are measured just outside the junction area borders, as illustrated in
Fig.2.8.

Figure 2.9 presents the type system of the ARS-DTNMOM. Type constructors
listed in Group 1 are basic ones which have been defined and implemented in [6]. In
the following, we mainly focus on the type constructors listed in Group 2. Some type
constructors in Group 2, such as graph state data types, have been discussed in [5],
but most of them are modified to fit into the atomic route section-based moving
object model in dynamic transportation network.

Among the type constructors listed in Group 2, graph state (GSTATE) data
types, graph temporal (GTEMPORAL) data types, and dynamic graph (GRAPH)
data types are used to describe dynamic transportation networks. Graph spatial
(GSPATIAL) data types describe static graph objects, which form the basis for
the modeling and querying of moving objects. Temporal (TEMPORAL) data types
describe moving objects.

As shown in Fig.2.9, temporal data types are obtained by “extending” the
previously defined type constructors moving and intime so that the gpoint data type
is included as their arguments. SPATTAL data types are still reserved for these two

28 2 Moving Objects Modeling

Group | Type constructor Signature
int, real, string, bool - BASE
point, points, line, region - SPATIAL
1 instant - TIME
range BASE u TIME - RANGE
intime, moving BASE U SPATIAL - TEMPORAL
status, blockage, blockreason, blockpos,
traffpara, traffparas, state > GSTATE
intimeevent, intimestate, g_temporal -> GTEMPORAL
2 dynroute, dynjunct, ars - GRAPH
gpoint, gpoints, grsect, gline, gregion - GSPATIAL
lextendin intime, moving {gpoint} U BASE U SPATIAL - TEMPORAL

Fig. 2.9 Signatures describing the type system of ARS-DTNMOM

type constructors to deal with the situations when moving objects move outside of
the predefined transportation network, for instance, moving in a lake or in a big
square.

In ARS-DTNMOM, the transportation network is modeled as a dynamic graph,
with every junction or route associated with a g_temporal attribute which describes
its state history.

Definition 2.13. A polyline can be expressed by a sequence of points which
correspond to the vertexes of the polyline. Therefore, we can define polylines as
follows:

polyline = < py, pa,=++,pp > |n>22,Vi € 1,-+-,n: p; € Dpoins

Definition 2.14. A dynamic route in ARS-DTNMOM can be viewed as a normal
graph route with a temporal attribute associated. The carrier set of the dynroute
data type is defined as follows:

Daynrowe = {(rid, geo, (jid;, pos;)i—,,len, ARS tp)}

where rid is the identifier of the route which is isomorphic to integer; geo is a
polyline which describes the geographical shape of the route; (jid;, pos;)(1 <i <
n) indicates the ith junction associated with the route, where jid; is the identifier
of the junction and pos; € [0, 1] describes its position inside the route (we suppose
that the total length of the road section is 1, and then any location in the road section
can be represented by a real number p € [0, 1]); len is the length of the route; ARS
is the set of atomic route sections of the route; and fp € Dy _semporar is the graph
temporal attribute associated with the route.

In the earlier work on moving objects databases [6], Giiting et al. have defined
and implemented a rich set of operations on the data types. In this subsection, we
show how these predefined operations are to be systematically adapted to the ARS-
DTNMOM by an “Extending” technique. The basic idea of the “Extending” is to
add the newly introduced data types into the signatures of the previously defined

2.4 ARS-DTNMOM 29

Group Class Operations
Predicates isempty, =, #,<,<,>, >, intersects, inside, before
touches, attached, overlaps, on_border, in_interior
Set operations intersection, union, minus, crossings, touch_points,
common_border
Non- Aggregation min, max, avg, avg|center], single
Temporal | Numeric no_components, size, perimeter, size[duration], size[length], size[area]
Distance & direction distance, direction
Base type specific and, or, not

Projection to Domain/Range deftime, rangevalues, locations, trajectory, routes, traversed, inst, val
Temporal | Interaction with

Domain/Range atinstant, atperiods, initial, final, present, at, atmin, atmax, passes

When when
Lifting (All new operations inferred)
Rate of Change derivative, speed, turn, velocity
Transformation graph_euc, euc_graph, getjunct, getroute, getid
Graph Construction gpoint, grsect
Specific | Data Extraction geo, g_temporal, g_atinstant, xstate, xstatus, xblocs, xtraffpara
Truncation g_atperiods, g_present
Projection g deftime

Fig. 2.10 Operations of ARS-DTNMOM

operations so that the extension of these operations can be expanded to include the
newly defined data types. In addition to the extended operations, we will also define
a set of new operations, which are mainly focused on graph-specific data types.
Figure 2.10 gives a summary of the operations in the ARS-DTNMOM.

The ARS-DTNMOM operations are extended from [6]. The general rules for
extending can be summarized as follows:

1. Every operation whose signature involves point is extended to include gpoint.

2. Every operation whose signature involves line is extended to include grsect and
gline.

3. Some of the operations whose signature involves region are extended to include
gregion.

4. Operations which are only suited for 1D data types (see [6]) and for some specific
data types (such as region) are not extended.

According to the above rules, the underscored (line- and dot-underscored)
operations in Fig. 2.10 are extended, while other operations are not affected.

The nontemporal operations are listed in Fig.2.10. Previously, the signatures
of most nontemporal operations (see the line-underscored nontemporal operations,
such as isempty) are defined with two data type variables = and §, where = €
int, bool, string, real, instant, point and § € range(int), range(bool), range(string),
range(real), periods, points, line, region. In ARS-DTNMOM, we extend the domain
of 7 and § like this:

€ int, bool, string, real, instant, point U gpoint, status § € range(int),
range(bool), range(string), range(real), periods, points, line, region U gpoints,
grsect, gline, gregion.

30 2 Moving Objects Modeling

As a result of this change, all operations whose signatures are defined with
7, 8 variables are extended to cover the newly introduced data types in ARS-
DTNMOM and DTNMOM. As for operations whose signatures are not defined
with 7, § variables (see the dot-underscored nontemporal operations in Fig.2.10,
such as crossings), supplement of their signatures can be made by including the
newly introduced data types while keeping their original semantics.

Meanwhile, for the temporal operations listed in Fig.2.10, the extension can
be made in a similar way. The signatures of most temporal operations (see the
line-underscored temporal operations, such as deftime) are defined by two data
type variables « and 8, (o, 8 € BASE |J SPATIAL). The domain of « and j
can be extended like this: @ € BASE | J SPATIAL | gpoint, B € BASE | J SPA-
TIAL |) GSPATIAL.

2.5 Summary

For managing moving objects in a spatial network, the challenging first step is to
precisely represent and model their locations. In this chapter, we first introduce a few
representative models for moving objects databases. Then we present a DTNMOM,
where the transportation network is modeled as “dynamic” graphs, so that traffic
state changes and topology changes can be easily expressed. Afterwards, the atomic
route section-based DTNMOM (ARS-DTNMOM) which describes the concept of
route more precisely in atomic route sections is introduced finally.

References

—

. Almeida VT, Giiting RH (2005) Indexing the trajectories of moving objects in networks.
Geolnformatica 9(1):33-60

2. Chen JD, Meng XF, Guo YY, Grumbach S, Sun H (2006) Modeling and predicting future
trajectories of moving objects in a constrained network. In: 7th international conference on
mobile data management (MDM 2006), Nara, pp 156-166

3. Chon HD, Agrawal D, Abbadi AE (2001) Using space-time grid for efficient management of
moving objects. In: Proceedings of the 2nd ACM international workshop on data engineering
for wireless and mobile access (MobiDE 2001), Santa Barbara, pp 59-65

4. Civilis A, Jensen CS, Pakalnis S (2005) Techniques for efficient road-network-based tracking
of moving objects. IEEE Trans Knowl Data Eng 17(5):698-712

5. Ding Z, Giiting RH (2004) Modeling temporally variable transportation networks. In: Pro-
ceedings of the 9th international conference on database systems for advanced applications
(DASFAA 2004), Berlin, pp 154-168

6. Forlizzi L, Giiting RH, Nardelli E, Schneider M (2000) A data model and data structures for
moving objects databases. In: Proceedings of the ACM SIGMOD international conference on
management of data (SIGMOD 2000), Dallas, pp 319-330

7. Frentzos E (2003) Indexing objects moving on fixed networks. In: Proceedings of the 8th

international symposium on spatial and temporal databases (SSTD 2003), Santorini Island,

pp 289-305

References 31

8.

9

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

Giiting RH, Almeida VT, Ding Z (2006) Modeling and querying moving objects in networks.
VLDB J 15(2):165-190

. Giiting RH, Bohlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M

(2000) A foundation for representing and querying moving objects. ACM Trans Database Syst
25(1):1-42

Kolahdouzan M, Shahabi C (2004) Voronoi-based K nearest neighbor search for spatial
network databases. In: Proceedings of the 30th international conference on very large data
bases (VLDB 2004), Toronto, pp 840-851

. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffc. J Phys

2:2221-2229

Neumann JV (1966) Theory of self-reproducing automata. University of Illinois Press,
Champaign

Papadias D, Zhang J, Mamoulis N, Tao Y (2003) Query processing in spatial network
databases. In: Proceedings of the 29th international conference on very large data bases (VLDB
2003), Berlin, pp 790-801

Shababi C, Kolahdouzan MR, Sharifzadeh M (2003) A road network embedding technique for
K-nearest neighbor search in moving objects databases. Geolnformatica 7(3):255-273

Sistla P, Wolfson O, Chamberlain S, Dao S (1997) Modeling and querying moving objects.
In: Proceedings of the 13th international conference on data engineering (ICDE 1997),
Birmingham, pp 422-432

Speicys L, Jensen CS, Kligys A (2003) Computational data modeling for network-constrained
moving objects. In: Proceedings of the 7th ACM international symposium on advances in
geographic information systems (GIS 2003), New Orleans, pp 118-125

Su J, Xu H, Ibarra O (2001) Moving objects: logical relationships and queries. In: Proceedings
of the 7th international symposium on spatial and temporal databases (SSTD 2001), Redondo
Beach, pp 3-19

Ulam S (1972) Some ideas and prospects in biomathematics. Annu Rev Biophys Bioeng
1:272-292

Vazirgiannis M, Wolfson O (2001) A spatio-temporal model and language for moving objects
on road networks. In: Proceedings of the 7th international symposium on spatial and temporal
databases (SSTD 2001), Redondo Beach, pp 20-35

Wolfson O, Xu B, Chamberlain S, Jiang L (1998) Moving object databases: issues and
solutions. In: Proceedings of the 10th international conference on scientific and statistical
database management (SSDBM 1998), Capri, pp 111-122

Chapter 3
Moving Objects Tracking

Abstract The moving objects tracking system aims to monitor the locations of
a set of objects which are traveling in a certain space, such as animals in fields
and cars in road networks. It is a popular problem due to the importance in
various application scenarios. In a typical moving objects application, large numbers
of geographical positions of moving objects can be sampled by sensors or GPS
following certain strategies, e.g., periodically, then sent from moving clients to the
server and stored in a database. Therefore, continuously maintaining the current
locations of moving objects in databases by proper tracking strategy becomes very
important. The key problem is to reduce the location updates required to guarantee
the error bound between an object’s actual location and its current location in
the tracking system, to provide precise results for locations query. In this chapter,
we will introduce some typical researches on moving object tracking. Then, we
introduce three representative network-constrained location update strategies (Net-
LUM, ANLUM, and EuNetMOD), which can achieve better performances in terms
of communication costs and location tracking accuracy.

Keywords Moving object tracking ¢ Location updating e« Traffic-adaptive
location update ¢ Traffic road network * Moving object databases

3.1 Introduction

Continuously maintaining current locations of moving objects in a database has
become a fundamental issue nowadays because of its various applications, e.g.,
traffic management, logistics, taxi control, etc. As a result, moving object tracking
has attracted great attention in recent years. In many LBS service systems, we hope
to provide precise location of moving objects at any query time, but only some of
the location updates of moving object can be preserved in central servers due to the
limit of wireless bandwidth and the I/O of servers. The key problem is to find a
proper balance between update cost and query precision.

X. Meng et al., Moving Objects Management: Models, Techniques 33
and Applications, DOI 10.1007/978-3-642-38276-5_3,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

34 3 Moving Objects Tracking

The number of updates from moving objects to the server database depends
on both the update frequency and the number of tracked objects. To reduce the
location updates, most existing studies propose to lower the update frequency by a
prediction method [3, 24, 25]. They usually use the model-based prediction which
represents objects locations by some mathematical formulas based on their recent
movements. The objects do not update their locations to server unless their actual
positions deviate from the predicted positions by a given threshold. This provides a
general principle for the location update policies in the moving objects database. In
this chapter, we will introduce some typical location update strategies following this
principle and three improved ones that have better performance in terms of tracking
precision and update cost.

3.2 Representative Location Update Policies

So far, the research on tracking of moving objects has mainly focused on loca-
tion update policies. Existing methods can be classified into four categories:
threshold-based location updating, motion vector-based location updating, group-
based location updating, and network-constrained location updating.

3.2.1 Threshold-Based Location Updating

In most real-world applications, the mostly used location tracking mechanisms
include Fixed-Time Location Update Mechanisms (FTLU) and Fixed-Distance
Location Update Mechanisms (FDLU) because of their simplicity. In FTLU and
FDLU, moving objects update their position to central server at regular time
or distance intervals. To improve efficiency and accuracy of tracking, Wolfson
et al. [24] proposed the dead-reckoning update policies to reduce the update cost.
The dead-reckoning update policies have three parts according to the threshold,
namely, Speed Dead Reckoning (SDR) having a fixed threshold for all location
updates, Adaptive Dead Reckoning (ADR) having different thresholds for different
location updates, and Disconnection Detection Reckoning (DDR) with continuously
decreasing threshold since the last location update. In [10], Gowrisankar and Nittel
proposed a dead-reckoning policy that uses angular and linear deviations. Both of
the two works assume that the destination and motion plan of the moving objects
is known a priori. That means, the route traveled by moving objects is fixed and
known. Lam et al. further proposed two location update mechanisms considering
the effect of the continuous query results on the threshold [16]. The idea is that
moving objects covered by the answers of queries have a lower threshold, leading
to a higher location accuracy. Zhou et al. [26] also consider the precision of query
results as a result of a negotiated threshold by the Aqua location updating scheme
that they proposed.

3.2 Representative Location Update Policies 35
3.2.2 Motion Vector-Based Location Updating

Motion vector-based location updating (MVLU) assumes the movements of an
object can be represented with a motion vector o(t), which can return the location of
the object at any given future time stamp 7. The motion vectors can be divided into
two types: linear models [20,25] and nonlinear models [1,22]. Given location o (%)
of an object 0" and its velocity vy at time £y, the linear models estimate the object’s
position at time ¢ by the formula o(¢) = o(#y) + vo X (t —tp). The nonlinear models
capture the object’s movements by more sophisticated mathematical formulas. For
example, Aggarwal and Agrawal [1] uses a quadratic function o(¢) = o(ty) + vo X
(t—to) +aox (t —t9)?/2, where ay is the current acceleration profile of 0. Paper [21]
introduces the recursive motion function (RMF) method to support both types of
motion functions for accuracy improvement. By performing location prediction
at both front side (moving objects) and back side (server) with the same motion
function, the time of location updates can be reduced. Clearly, this method relies
on an assumption that historical motion pattern of an object will continue in the
future, but it is often true only for a near future. In reality, a group of them may
show common motion patterns for a period of time. To further reduce the location
updates, this observation motivates the group-based tracking.

3.2.3 Group-Based Location Updating

With the emergence of short-range communication (e.g., mobile P2P) supporting
effective grouping together of individual objects, group-based location update
mechanism that attempts to reduce the update cost of large-scale moving objects has
become increasingly popular. The idea of partitioning objects nearby into coarse-
grained groups as the basic tracking units is widely accepted especially in the area
of Personal Communication Networks (PCS) [12, 18]. The early concept of group-
based location updating can be referred to [15, 23]. Objects in the same group
are assumed to move identically as a particular object elected to represent others.
For the elected object in each group, the group location can be predicted with the
motion vector-based tracking techniques. Since the objects are moving at their own
discretion, the grouping is dynamic and it is done by online group self-organizing
with local view in [2, 15]. The principal concept of group is a set of objects moving
closely and similarly. By applying moving object clustering on trajectory data, we
can achieve even better dynamic grouping with consideration of historical patterns.
That is, moving objects in the same group are not only crowding closely enough
in spatial aspect but also accompanying long enough with each other in temporal
aspect. These works are moving cluster [13], flock [11], convoy [14], etc.

36 3 Moving Objects Tracking
3.2.4 Network-Constrained Location Updating

More recently, increasing research interests are focused on network-constrained
moving objects tracking [4,9, 17, 19], in which the network distance is used instead
of Euclidean distance. Since moving objects are constrained in the networks, it
is possible to use the spatial and topology features of road network to facilitate
moving object tracking. In [4], Civilis and Jensen et al. proposed a road-network-
based location tracking mechanism for moving objects based on the speed patterns
and acceleration profiles of road segments, so as to reduce the time of location
updates. Such mechanism could be quite effective, but its performance heavily
depends on GPS logs and accelerating profiles, which limits its usability in some
real-world applications. In [6], Ding and Giiting have proposed an MODTN
model and provided some rough location update principles for network-constrained
moving objects. And later, it is also noted that they have achieved a series of
novel location update mechanisms based on the proposed data model, such as
the essentially segment-based tracking method (Net-LUM) [9], the MVLU/FDLU-
adaptive tracking method (ANLUM) [8], and the “mobile-map-free” tracking
method (EuNetMOD) [5].

As most of the LBS services target to the scenarios where objects move on a
predefined network like road network, we will particularly introduce three repre-
sentative moving object tracking strategies (Net-LUM, ANLUM, and EuNetMOD)
in the following sections of this chapter.

3.3 Network-Constrained Moving Objects Modeling
and Tracking

Location update strategy is one of the most important factors that affect the
performance of moving objects databases. In this section, a new location update
mechanism, Location Update Mechanism for Network-Constrained Moving Objects
(Net-LUM), is proposed. Through active motion vector-based network matching
and special treatment with junctions, Net-LUM can achieve better performances in
terms of communication costs and location tracking accuracy.

3.3.1 Data Model for Network-Constrained Moving Objects

In this section, we present the data model for network-constrained moving objects.
The model is an improvement to the MODTN model proposed in [6]. The main
improvements are as follows: (1) The geometry of a junction is expressed by a
point plus a radius so that it is considered as an area instead of as a point; (2) a
“graph point” value can be expressed either by a (rid, pos) pair or by a junction

3.3 Network-Constrained Moving Objects Modeling and Tracking 37

ID, to accommodate the situation when the moving object is inside a junction area;
and (3) the “motion vector” and the “moving graph point” definitions are extended
accordingly to meet the situation when the moving object is inside a junction.
Let junct(jid) and route(rid) be functions which return the junction and the route
corresponding to the specified identifiers, respectively.

Definition 3.1 (Graph). A transportation graph (or graph) G is defined as a pair:
G = (Routes, Juncts)

where Routes is a set of routes and juncts is a set of junctions.

Definition 3.2 (Route). A route of graph G, denote by r, is defined as follows:
r = (rid, geo, len, fd)

where rid is the identifier of r, geo is a polygon line (or polyline) which describes
the geometry of r (the beginning point and the end point of geo are called “0-end”
and “l-end,” respectively), len is the length of r, and fd € {+,—, £} is the traffic
flow directions allowed in r.

Definition 3.3 (Junction). A junction of graph G, denoted by j, is defined as
follows:

Jj = (jid,loc, ((rid;, pos;))i—,,y,m)

where jid is the identifier of j, /oc is the location of j which can be presented as a
point value in the X x Y plane, ((rid;, pos;))!_, describes the routes connected by
J» v is the radius of the junction area, and m is the connectivity matrix [6] of j.

The radius y can describe the size of the junction. That is to say, the junction is
viewed as a junction area instead of a point in this model.

Definition 3.4 (Graph Point). A graph point is a point residing in the graph. The
position of a graph point gp can have two possibilities: it is either in a junction
(called “in junction”) or on a route (called “in route”). For every route, we suppose
that its total length is 1, so that any location inside the route can be presented by
a real number p € [0, 1]. We also define two Boolean functions IsinJunct(gp) and
IsinRoute(gp) to check whether gp is in junction or in route.

The dynamic position of a network-constrained moving object is modeled as a
moving graph point, which is a function from time to graph point. Discretely, a
moving graph point is expressed as a sequence of motion vectors, and each motion
vector describes the movement of the moving object at a certain time instant.

Definition 3.5 (Motion Vector). A motion vector, mv, is a snapshot of the moving
object’s movement and is generated by location updates. mv is defined as follows:

mv = (t,gp,_v))

38 3 Moving Objects Tracking

where ¢ is a time instant, gp € GP is a graph point describing the location of the
moving object at time 7, and T is the speed measure of the moving object at time
t. UV is areal number value representing the current speed (its absolute value) and
direction (its sign) if gp is on the route and set as L (L means “undefined”) if gp is
in a junction.

Definition 3.6 (Moving Graph Point). A moving graph point mgp is defined as
dmgp = (mvi)j_,

where mv; = (;, gpi, V:)(1 < i < n) is the i th motion vector of the moving graph
point, and for Vi € {1,...,n — 1}, we have: t; < t; 1.
. —_
For a running moving object mo, its last motion vector, mv, = (t,, gPn, U n),
contains key information for prediction and location updates, and we call it “active
motion vector.” Through the active motion vector (i.e., the latest one), we can derive
the estimated location of the moving object.

3.3.2 Location Update Strategies for Network-Constrained
Moving Objects

In this section, we propose Location Update Mechanism for Network-Constrained
Moving Objects (Net-LUM). The basic idea of Net-LUM is the “Inertia Principle,”
which assumes that the moving object will continue to move along the current route
at roughly steady speed for some more time. Whenever this assumption becomes
invalid, the moving object will launch a location update so that the up-to-date
information of the moving object can be reported to the database server.

Moving objects continuously compare their current moving parameters (e.g.,
route identifier, location, speed, and direction) with the active motion vector it has
submitted at last location update. The key problem of tracking is to find proper
criteria for decision making on when a new location update should be made with
both high precision and low cost guarantee.

In Net-LUM, we define three kinds of location updates, IDTLU, DTTLU,
and STTLU. Each of them corresponds to an application domain, and they work
together to fulfill effective location tracking of moving objects. Generally, IDTLU
and DTTLU are basic strategies, while STTLU is optimal and only needed for
uncertainty management [7].

Definition 3.7 (ID-Triggered Location Update (IDTLU)). For a running moving
object, whenever it transfers from one route to another, a location update will be
triggered to reflect the change of route identifiers. We call this kind of location
updates ID-Triggered Location Updates (IDTLU).

Definition 3.8 (Distance-Threshold-Triggered Location Update (DTTLU)).
When the moving object mo is running along a certain route, it repeatedly compares

3.3 Network-Constrained Moving Objects Modeling and Tracking 39

its actual position (denoted as gpg,s) with the computed position derived from the
active motion vector (denoted as gpcmp). If one of the following two conditions
is met, (1) the distance between gpg,s and gp.m, exceeds a threshold & and (2)
&Pemp 18 In junction while gp,, is in the active route, a new location update will
be triggered to report the actual location of the moving object. This kind of location
updates is called Distance-Threshold-Triggered Location Updates (DTTLU).

Let us consider how to derive the estimated location gp.,, from the active
motion vector mv,=(t,, gpn, U). If gp, is inroute (suppose gp, = (rid,, posy,)),
then the estimated position at the current time f,oy 1S gPemp = (ridy, poScmp),
where pos¢;, can be computed with the following formula:

vmy, X ([naw - Z‘n)

OSpow = pPOS, +
POSnow = PO%n route(rid,).length

Otherwise, if gp, is in junction (suppose gp, = jid,), the estimated position
at time #,,,, is still in the junction, and therefore we have gp.m, = jid,. A special
case of position estimation that should be considered is that when the moving object
is near the end of a route and the actual speed is lower than |7n| (i.e., the absolute
value of 7,1). In such case, the estimated position can exceed the scope of [0, 1]
and we can interpret the extra value as the distance covered by the moving object in
other routes after it finishes the current route, so that the location update policy does
not need to be changed.

Definition 3.9 (Speed-Threshold-Triggered Location Update (STTLU)). Sup-
pose that the active motion vector of the moving object mo is mv, = (t,, gpn, _v),,).
If ¥, is defined, then mo will repeatedly compare its actual speed measure v g,
with 7, during its move. Location update is triggered if one of the following two
conditions is met: (1) The difference between _v)gps and 7,1 exceeds a threshold
Y¥; and (2) v ¢ps and _v)n are in different directions. We call this update mechanism
Speed-Threshold-Triggered Location Updates (STTLU).

STTLU ensures that the speed of the moving object is between (|7,| —) and
(|3),-| +) for any two consecutive location updates with motion vector mv; =
(lj, gpi, _U),) and mv; 4+; = (tl‘+j, gPi+i, _U)H-i) if gDi is in route.

Based on the above definitions, we can have the following two important
inferences (proofs omitted).

Theorem 3.1. Location update can happen at most one time inside a junction area.

Theorem 3.2. [f moving object mo triggers a location update inside a junction,
then when it drives out of the junction, it will update another location immediately.

From the above analysis, we can see that Net-LUM can dramatically reduce
location update costs around junctions. In real-world traffic systems, moving objects
often run most irregularly around junctions. If junctions are not treated separately,
there would be a lot of location updates, as illustrated in Fig.3.1a. In comparison
based on Net-LUM-based tracking as Fig. 3.1b, much less updates around junction

40 3 Moving Objects Tracking

r2 |0-end mo2 |0-end
A

r1-

H H 1-
r1 o . =P moi ri FL _.*..; mo1
I ST e 1-end
O-end T fe- 1-end 0-end 1747 [| tast loc. update

1. % |1-end " & l1-end

Fig. 3.1 Location updates around a junction. (a) Location updates without treating junctions
separately. (b) Location updates around a junction in Net-LUM

(mol) is required or even no update is needed if the moving object passes junction
(mo2) in a roughly steady speed. As an ideal situation, moving object may drive
through the whole route without any location update, even though it passes through
multiple junctions.

In Net-LUM, IDTLU, DTTLU, and STTLU work together to provide a complete
location tracking mechanism for moving objects. The overall location update
algorithm is shown in Algorithm 1 (we suppose that the algorithm is called
frequently enough so that key location update chances will not be missed). In
Algorithm 1, the function TransformtoRoute(gp, gp*, rid) transforms a graph point
value from the jid form to the (rid, pos) form inside route(rid); Create LUM() and
SendtoSVR() create and send a location update message, respectively.

3.4 A Traffic-Adaptive Location Update Mechanism

Traffic in big city like New York is usually heavy especially in rush hours. In
traffic jams, moving objects have to frequently speed up and gear down for a long
time, which means that intensive location updates should be triggered in a short
distance. In this section, we propose Adaptive Network-constrained moving object
Location Update Mechanism (ANLUM) to solve this problem. In ANLUM, the
moving object can switch between different location tracking policies (e.g., MVLU
and FDLU) based on the traffic condition. When the moving object is not inside
traffic jams, the MVLU method is used. If the moving object encounters a traffic
jam, we switch to the distance based on FDLU tracking. To well balance different
policies, the key problem is to detect traffic jam accurately and effectively.
Automatic traffic jam detection in real time is a necessary but challenging prob-
lem. Under the general ANLUM principle, we have two alternatives: Autonomic
ANLUM (ANLUM-A), which detects traffic jams on the moving object itself, and
Centralized ANLUM (ANLUM-C), which detects traffic jams on the server side.

3.4 A Traffic-Adaptive Location Update Mechanism 41

Algorithm 1: Net_LUM,,,(G;§&; ;) //Algorithm running at the moving
object end

Input: the graph of the traffic network G, the distance threshold £, and the speed threshold
begin
while mo is active do
Read GPS signal, and get Euclidean position p = (x, y), speed v, and direction d;;
Transform (p, d, gp, fd); //metwork-matching; T o« fd *v;
mvy, < (ty, &Pu, ?,,) the active motion vector sent at the last location update;;
actv_rid < be the ID of the active route; if IsinJunct(gp,) then
if NOT (IsinJunct(gp) and (gp = gp,)) then

| SendtoSVR(CreateLUM(mid, t,,,, gp,L)); //DTTLU or IDTLU;
end

else
if IsinJunct(gp) then
| TransformtoRoute(gp, gp_inactvroute,actv_rid);;

else
| gpinactvroute < gp;,

end
/l gp_inactvroute is in route. suppose gp_inactvroute = (rid, pos); if
rid # actv_rid then

| SendtoSVR(CreateLUM(mid, t, oy, €D, 7)); /IDTLU

else
&Pemp < the computed position derived from mv,; if one of the DTTLU

conditions is met then
| SendtoSVR(CreateLUM(mid, t, o, P, 7)); //IDTTLU
else if one of the STTLU conditions is met then
| SendtoSVR(CreateLUM(mid, t, oy, gP, 7)); //ISTTLU
end
end

end

end
end

Fig. 3.2 Route-based route 12 route r3

transportation network model route r4

route r1 junct j3
junct j4

In ANLUM, we use the route-based model to represent the transportation
network. A network N is modeled as the form Definition 3.1. Let junct(jid) and
route(rid) be functions which return the junction and the route corresponding to the
specified identifiers, respectively. From Fig. 3.2 we can see that two or more routes
can intersect each other either at their end points or at the middle points, so that a
junction can appear at any position of a route.

42 3 Moving Objects Tracking

b
GPS pos Net-LUM mode last pos
£ computed pos } £,GPS pos
* % * %
% ok > AL >
K —9
DTTLU STTLU switch to FDLU

switch to Net-LUM again

Fig. 3.3 Location updates in traffic jam with Net-LUM and ANLUM-A. (a) Net-LUM.
(b) Reduced location updates with ANLUM-A

A network position npos € D(N) is a point residing in N, whose position have
two possibilities: either in route or in junction. In the former case, a real number
p € [0, 1] has to be indicated to further describe its position inside the route.

For a network-constrained moving object mo, its trajectory mw.traj is a function
from time to network position, that is, f : T — D(N), where T is the domain
of time instants. In implementation, the function f has to be translated to a
discrete form represented as a sequence of motion vectors. A motion vector mv
is defined as mv = (t,npos,v,d), where ¢ is a time instance, npos is a network
position, v is the speed, and d is moving direction of the object. The trajectory
of a network-constrained moving object mo is defined as traj = (mv;)7_, where
mv; = (t;,npos;,v;,d;)(1 <i < n) is the ith motion vector of mo.

In the following, we introduce ANLUM-A and ANLUM-C methods in detail and
discuss how they collaborate in the ANLUM mechanism.

3.4.1 The Autonomic ANLUM (ANLUM-A) Method

In [6, 9], we have defined an MVLU-based mechanism, Net-LUM, for network-
constrained moving objects. Net-LUM basically consists of three kinds of location
updates, IDTLU, DTTLU, and STTLU. It is a motion vector-based approach, and it
may encounter some problem when there exist lots of traffic jams in the network, as
previously stated. For instance, the moving object can spend a long period of time
before driving through a traffic jam with very low speed. Since the moving pattern
changes frequently inside the jammed area, the moving object can trigger multiple
location updates in the jammed area, as illustrated in Fig. 3.3a.

To reduce location updates in traffic jams, we propose the Autonomic ANLUM
(ANLUM-A) method as follows. Given a new location update, it continuously
computes the average speed between the last location update time and the current
time, denoted as . The update will work in the distance-based FDLU mode if T is
slower than a predefined slow speed threshold vy;,,, and work in the Net-LUM mode
otherwise. In this way, the overall location update cost can be reduced, as illustrated
in Fig. 3.3b. The detailed ANLUM-A algorithm, running on the moving object side,
is shown in Algorithm 2.

3.4 A Traffic-Adaptive Location Update Mechanism 43

Algorithm 2: ANLUM-A(N; vs0,) //The ANLUM-A algorithm

Input: the transportation network N, the slow speed threshold vy,
begin
mode <— Net-LUM;;
while mo is active do
Read GPS signal, and get Euclidean position p = (x, y), speed v, and direction d;
Transform p — npos;
MU <= (tnow, Npos, v, d);
muv, < (t,,npos,, v,, d,); //the active motion vector sent at the last location
update;
if (mode = Net-LUM) AND (Net-LUM(mv,,, mvy,,,)=True) then
if AverageSpeed(mv, , mv,,,) < Vs, then
mode <— FDLU;

‘ SendtoSVR(CreateLUM(mid, t,, 4, npos, 0, L));

else

mode <— Net-LUM,;
SendtoSVR(CreateLUM(mid, oy, npos, v, d));

end
end
if (mode = FDLU) AND (Distance(npos,,npos) > &) then
if AverageSpeed(mv,, , mv,s,) < Vg0, then
mode <— FDLU;

‘ SendtoSVR(CreateLUM(mid, t,,4,, npos, 0, L));
else
mode <— Net-LUM;
SendtoSVR(CreateLUM(mid, t,,0,, npos, v, d));

end

end

end
end

In Algorithm 2, the function Net-LUM(@mv,,, mv,,,,) selects the best policy from
(IDTLU, DTTLU, and STTLU) according to the current condition based on the rules
stated in previous section. Function Distance() returns the distance between two
network positions, functions CreateLUM() and SendtoSVR() generate the location
update message and send it to the server respectively, and function AverageSpeed()
derives the average speed T from muy,, MUy, as follows:

- distance(npos, npos,,)

Z‘naw - Z‘n

This algorithm works on the moving object side, and it notifies the server about
its mode through the parameters v and d. If v and d are set to 0 and L (undefined),
respectively, then the moving object is in the FDLU mode. Otherwise, if v and d
assume real values sampled from GPS, the moving object is in the Net-LUM mode.
In this way, the server and the moving object are synchronized so that the computed
position can be derived correctly at the server.

44 3 Moving Objects Tracking

a b)
switch to FDLU mode switch to FDLU mode
—p keep FDLU modg —
x X
*x
Net-LUM mode R Net-LUM mode R

switch to Net-LUM again switch to Net-LUM again

Fig. 3.4 Location updates in traffic jam with ANLUM-A and ANLUM-C. (a) ANLUM-A. (b)
ANLUM-C

3.4.2 The Centralized ANLUM (ANLUM-C) Method

The above ANLUM-A method can reduce location updates inside traffic jams
to some extent. However, there are still some drawbacks with this method. For
instance, moving objects may mistakenly detect that it is inside a traffic jam when
it only slows down temporarily. Besides, it needs at least two location updates to
switch from MVLU to FDLU or vice versa so that the location update cost could
still be unnecessarily high in some cases, especially when it drives through small-
sized traffic jams, as shown in Fig. 3.4a.

To solve this problem, we further propose an improved ANLUM method, the
Centralized ANLUM method (ANLUM-C), which detects traffic jams on the server
side by analyzing the recent trajectory data of moving objects. Detected traffic jam
status is broadcasted to moving objects in real time, so that moving objects can know
whether they are inside traffic jams and use proper tracking mode accordingly. With
such global jam information available, the update cost around jams can be further
reduced, as shown in Fig. 3.4b.

The problem is how to compute the jammed areas of a certain route r from the
trajectory data. A jammed area is defined as a continuous part of the route where
all moving objects pass through with speed slower than the predefined slow speed
threshold vy;,,, in the last Af time (At is called “statistic window” whose duration
could be 5-10 min). Multiple jammed areas could coexist in r.

The basic idea of the jam detection in ANLUM-C method is to compute the
slow segment of each moving object from the corresponding trajectory first, then to
compute the intersection of all moving objects’ slow segments, so that the jammed
areas of r can be found. In this procedure we should consider the “driving range” of
each moving object, which is the route segment where the moving object has driven
through. Since the moving object can only have a voice for its driving range, we
modify the intersection operator with driving range considered.

Suppose that traj = (t;,npos;,v;,d;)]_, is an arbitrate trajectory. Function
SlowSegRange(traj, r, fd, At, vg,,) returns a pair (8, ¢), where § < [0,1] is a
segment of r through which the corresponding moving object drives along the
direction fd with a speed slower than a given threshold vy, and ¢ < [0, 1] is a
segment of r that the moving object has driven through along the direction fd. We
call the pair (8, ¢) “Slow Segment with Range (SSR).” SSR can be computed easily

3.4 A Traffic-Adaptive Location Update Mechanism 45

route r4 route r5
route r3
p0s=0.82

route r2

route rl

pos=04

pos=1

pos=0.2 k

slow segments|

route 6
Fig. 3.5 Trajectories and the corresponding slow speed segments and driving ranges

route r5

route r4

pos=0.8

route r2
route rl pos=0.68 k
k (p2-91) N 862 pos=1
pos=0 pos=02 W (ol N @2) N6l N 82

(pl-¢2) N 61

Fig. 3.6 Semantics of the N operator

from traj since the average speed between any two adjacent updates can be derived
from the corresponding motion vectors. Figure 3.5 shows some example trajectories
and the derived SSR of three moving objects.

Based on SSR, we define an “intersection with range” operator N, which
works very similar to the intersection operator N except that the driving range is
considered. Suppose that A = (61, ¢1) and B = (62, ¢2) are two arbitrary SSRs.
The semantics of the N, operator is defined as follows:

AN B =(1N82)U ((pl —p2) N1 U ((92 — 1) N §2)

The N operator is designed for detecting the jammed area from trajectories.
Suppose we have only two moving objects mo; and mo,. The jammed area can
have three possibilities: (1) the part of the route where both mo; and mo, have
driven through with slow speed, that is, §1 N §2; (2) the part of the route where only
moq has driven through with slow speed while mo, does not drive through, that is,
(¢l — ¢2) N 61; and (3) the part of the route where only m o, has driven through but
mo; does not touch, that is, (¢2 — ¢1) N §2, as shown in Fig. 3.6.

Suppose that ¥ = traj,, traj,, . .., traj, is the set of trajectories in the MOD
system. Then for route r along the fd direction, its traffic jams can be computed as
follows:

o= ﬁLl(SlowSegRange(traji, fd,r, At, vgon))

46 3 Moving Objects Tracking

There are two ways to refresh the traffic jam status of the system: the incremental
refreshment and the overall refreshment. In the incremental refreshment, whenever
a location update occurs in a certain route r, the system will refresh the traffic jam
status of the route in real time. In the overall refreshment, the system triggers the
jam detection procedure for all routes in a periodical way. Some techniques can be
used to speed up the statistical analysis of traffic jams. For instance, we can utilize
index structures to find all trajectories related to a certain route quickly without
traversing the whole database. Besides, we can discard the old trajectory data or
keep them elsewhere so that the statistics can be conducted only on recent trajectory
information which has much smaller size.

Algorithm 3: ANLUM-C(N; €; Jam) //The ANLUM-C algorithm

Input: the traffic network N, the distance threshold £, the traffic jams of the system Jam
begin
mode <— Net-LUM;
while mo is active do
Read GPS signal, and get Euclidean position p = (x, y), speed v, and direction d;
Transform p — npos;
MU <= (tnow, Npos, v, d);
muv, < (t,,npos,, v,, d,); //the active motion vector sent at the last location
update;
if (mode = Net-LUM) AND (Net-LUM(mv,,, mvy,,,)=True) then
if inside(npos, Jam) then
mode <— FDLU;

‘ SendtoSVR(CreateLUM(mid, t,,4,, npos, 0, L));

else

mode <— Net-LUM;
SendtoSVR(CreateLUM(mid, t, o, npos, v, d));

end
end
if (mode = FDLU) AND (Distance(npos,,npos) > &) then
if inside(npos, Jam) then
mode <— FDLU;

‘ SendtoSVR(CreateLUM(mid, t,,4,, npos, 0, L));
else
mode <— Net-LUM,;
SendtoSVR(CreateLUM(mid, oy, npos, v, d));

end

end
end

end

The result of the traffic jam detection is broadcasted to the moving objects so
that any moving object knows its nearby traffic condition. Based on the traffic
jam information, the moving object can decide which location update mode to be
utilized. The detailed ANLUM-C algorithm running at the moving object side is
given in Algorithm 3. In Algorithm 3, the moving objects switch between Net-LUM

3.5 A Hybrid Network-Constrained Location Update Mechanism 47

and FDLU according to whether it is located in a jammed area. The FDLU mode
will be used if it is true, and otherwise it will switch to the Net-LUM mode.

3.5 A Hybrid Network-Constrained Location
Update Mechanism

To track network-matched trajectories of moving objects is important in a lot
of applications such as trajectory-based traffic-flow analysis and trajectory data
mining. However, current network-based location tracking methods for moving
objects need digital maps installed at the moving object side, which is not realistic
for many scenarios. In this section, we briefly introduce a new framework, Euclidean
batch sampling and Network-matched trajectory-based Moving Objects Database
(EuNetMOD) model, to support network-matched trajectory tracking without digi-
tal maps installed at the moving object side.

In EuNetMOD, moving objects can read motion vectors at any time and send
them to the server repeatedly. We call the operations of “reading motion vectors”
and “sending them to server” as “sampling” and “location update,” respectively.

For a certain moving object mo, its locations can be tracked by using a “Fixed-
Time Sampling plus Fixed-Time Location Update (FTS + FTLU)” method. That is,
in every t, time (say in every 155s), mo samples a Euclidean-based motion vector of
the form (¢, (x, y),v,d), where ¢ is a time stamp and (x, y), v, d are the location,
the speed, and the direction of mo at time 7, respectively. Besides, every time when
mo’s direction change or speed change exceeds certain predefined thresholds, mo
will trigger an extra sampling. The sampled motion vectors are temporarily kept in
the local storage of the moving object, and in every t, time (say in every 3 min), mo
sends the sampled motion vectors to the database server in batch.

Except the abovementioned “FTS + FTLU” location tracking strategy, we can
also adopt other location update policies such as “FDS + FTLU” (Fixed-Distance
Sampling plus Fixed-Time Location Update) or “FDS +FDLU” (Fixed Distance
Sampling plus Fixed-Distance Location Update). The general rule is that mo should
sample its Euclidean-based motion vectors relatively densely and sends the sampled
data in batch to the server in relatively sparse time intervals.

When the database server receives a location update message which contains
multiple Euclidean-based motion vectors, it will match the Euclidean-based motion
vectors to the network so that we can get network-matched motion vectors of
the form (¢, (x, y),v,d,npos), where t, (x,y), v, and d are from the original
Euclidean-based motion vector and npos is the corresponding network position.
After that, it will find a network path between any two neighboring network-
matched motion vectors so that the network path for the whole trajectory becomes
available. Then it will discard unimportant motion vectors which are implicitly
inferable from its predecessor and successor. The returned trajectory is “network
matched” since the path information is explicitly expressed in the trajectory, as

48 3 Moving Objects Tracking

mo’s network-matched b
trajectory

>

Y . n
> <—nmy possible path 1

\...)74 possible path 2

S
i Rl

»

X

network-matched trajectory of moving non network-matched trajectory
object mo (XxY)

Fig. 3.7 Network-matched vs. non-network-matched trajectories

shown in Fig. 3.7a. Figure 3.7b shows a non-network-matched trajectory which can
have ambiguity in deciding the path between two neighboring sampling points.

As stated above, since the path information (expressed as an edge sequence) is
contained in the trajectory, unimportant motion vectors can be discarded if it is
inferable from its neighboring motion vectors. In extreme cases, a network-matched
trajectory can have only two network-matched motion vectors nmv;, nmv, and
the path between them (if the moving object runs in roughly steady speed), as
illustrated in Fig. 3.7. Therefore, the storage of the network-matched trajectory can
be optimized while the precision can still be reserved.

Each network-matched trajectory can describe a continuous movement of the
moving object. To describe the dynamic locations of a moving object over a long
period of time (say 3 months), multiple trajectories are needed. For simplicity, we
still call the multiple trajectories of the same moving object as “trajectory” in this
paper. In real-world applications, there exist situations when moving objects run
outside the traffic network occasionally. In this case, EuNetMOD will keep it in
the trajectory as its original Euclidean form. Besides, EuNetMOD allows network-
matching to have multiple candidate network points coexisting so that the model
can deal with more flexible situations.

3.6 Summary

This chapter introduces a few location update techniques to track network-
constrained moving objects. On one hand, the techniques lower the location
update frequency and ensure the accurate locations in tracking by a new prediction
method and also minimize the cost of communication between tracking clients and
tracking server. On the other hand, hybrid and adaptive location update strategies are
presented according to movement features of objects moving on a Euclidean space
and a road network, which further reduces the total number of location updates.

References 49

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

Aggarwal C, Agrawal D (2003) On nearest neighbor indexing of nonlinear trajectories. In:
PODS, San Diego, 2003, pp 252-259

Chen J, Meng X, Li B, Lai C (2006) Tracking network-constrained moving objects with
group updates. In: Proceedings of the 7th international conference on web-age information
management (WAIM 2006), Hong Kong, pp 158-169

. Civilis A, Jensen CS, Nenortaite J, Pakalnis S (2004) Efficient tracking of moving objects with

precision guarantees. In: Proceedings of the 1st annual international conference on mobile and
ubiquitous systems, networking and services, Cambridge, pp 164—173

. Civilis A, Jensen CS, Pakalnis S (2005) Techniques for efficient road-network-based tracking

of moving objects. IEEE Trans Knowl Data Eng 17(5):698-712

. Ding Z, Deng K (2011) Collecting and managing network-matched trajectories of moving

objects in databases. In: Proceedings of the 22nd international conference on database and
expert systems applications (DEXA 2011), Toulouse, pp 270-279

. Ding Z, Giiting RH (2004) Managing moving objects on dynamic transportation networks.

In: Proceedings of the 16th international conference on scientific and statistical database
management (SSDBM 2004), Santorini Island, pp 287-296

. Ding Z, Giiting RH (2004) Uncertainty management for network constrained moving objects.

In: Proceedings of the 15th international conference on database and expert systems applica-
tions (DEXA 2004), Zaragoza, pp 411-421

. Ding Z, Guo L, Meng X (2009) Adaptive location update mechanism for network-constrained

moving objects in changeful traffic conditions. In: Proceedings of the 10th international
conference on mobile data management: systems, services and middleware (MDM 2009),
Taipei, pp 417423

. Ding Z, Zhou X (2008) Location update strategies for network-constrained moving objects. In:

Proceedings of the 14th international conference on database systems for advanced applications
(DASFAA 2008), New Delhi, pp 644-652

Gowrisankar H, Nittel S (2002) Reducing uncertainty in location prediction of moving
objects in road networks. In: Proceedings of the 2nd international conference on geographic
information science (GIS 2002), Boulder, pp 228-242

Gudmundsson J, Kreveld M (2006) Computing longest duration flocks in trajectory data. In:
Proceedings of the 14th ACM international symposium on geographic information systems
(GIS 2006), Arlington, pp 35-42

Huh Y, Kim C (2002) Group-based location management scheme in personal communication
networks. In: Proceedings of the international conference on information networking (ICOIN
2002), Cheju Island, pp 81-90

Jensen CS, Lin D, Ooi BC (2007) Continuous clustering of moving objects. IEEE Trans Knowl
Data Eng 19(9):1161-1174

Jeung H, Yiu ML, Zhou X, Jensen CS, Shen H (2008) Discovery of convoys in trajectory
databases. In: Proceedings of the 34th international conference on very large data bases (VLDB
2008), Auckland, pp 1068-1080

Lam GHK, Leong HV, Chan SC (2004) GBL: group-based location updating in mobile
environment. In: Proceedings of the 9th international conference on database systems for
advanced applications (DASFAA 2004), Jeju Island, pp 762-774

Lam KY, Ulusoy O, Lee TSH, Chan E, Li G (2001) An efficient method for generating location
updates for processing of location-dependent continuous queries. In: Proceedings of the 6th
international conference on database systems for advanced applications (DASFAA 2001),
Hong Kong, pp 218-225

Li X, Han H, Lee J, Gonzalez H (2007) Traffic density-based discovery of hot routes in
road networks. In: Proceedings of the 10th international symposium on spatial and temporal
databases (SSTD 2007), Boston, pp 441-459

50

18.

19.

20.

21.

22.

23.

24.

25.

26.

3 Moving Objects Tracking

Mao Z, Douligeris C (2006) Group registration with local anchor for location tracking in
mobile networks. IEEE Trans Mob Comput 5(5):583-595

Pfoser D, Jensen CS (2003) Indexing of network constrained moving objects. In: Proceedings
of the 11th ACM international symposium on geographic information systems (GIS 2003),
New Orleans, pp 25-32

Saltenis S, Jensen CS, Leutenegger ST, Lopez MA (2003) Indexing the positions of continu-
ously moving objects. SIGMOD Rec 29(2):331-342

Tao Y, Faloutsos C, Papadias D, Liu B (2004) Prediction and indexing of moving objects with
unknown motion patterns. In: SIGMOD 2004, Paris, pp 611-622

Trajcevski G, Wolfson O, Xu B, Nelson P (2002) Real-time traffic updates in moving objects
databases. In: Proceedings of the 13th international conference on database and expert systems
applications (DEXA 2002), Aix-en-Provence, pp 698-704

Wang KH, Li B (2002) Efficient and guaranteed service coverage in partitionable mobile
ad-hoc networks. In: Proceedings of the 21st international conference on computer commu-
nications (INFOCOM 2002), New York, pp 1089-1098

Wolfson O, Sistla AP, Camberlain S, Yesha Y (1999) Updating and querying databases that
track mobile units. Distrib Parallel Databases 7(3):257-387

Wolfson O, Yin H (2003) Accuracy and resource consumption in tracking and location
prediction. In: Proceedings of the 7th international symposium on spatial and temporal
databases (SSTD 2003), Santorini Island, pp 325-343

Zhou J, Leong HV, Lu Q, Lee KC (2005) Aqua: an adaptive query-aware location updating
scheme for mobile objects. In: Proceedings of the 11th international conference on database
systems for advanced applications (DASFAA 2005), Beijing, pp 612-624

Chapter 4
Moving Objects Indexing

Abstract For querying large amounts of moving objects, a key problem is to create
efficient indexing structures that make it possible to effectively answer various types
of queries. Traditional spatial indexing approaches cannot be used because the
locations of moving objects are highly dynamic, which leads to frequent updates
of index structures, which in turn will cause huge overheads. In this chapter, we
first introduce a few of representative indexing methods including the R-Tree,
TPR-tree, STR-Tree, TB-tree, and MON-tree. Then, we propose two new index
methods for moving objects, one for indexing frequently updated trajectories in
spatial networks and another for indexing the past, present, and anticipated future
positions of moving objects.

Keywords Spatial index ¢ Spatio-temporal index ¢ Index update e Trajectory
* Spatial network ¢ Moving object databases

4.1 Introduction

The trajectory data to be managed by moving objects databases are essentially
massive dynamic data due to the large number of moving objects for manage and
their frequent location updates. As a result, processing of queries with complex
spatio-temporal constraints on trajectory data is usually time consuming, none to
speak when the concurrency of queries is considered. To ensure that desired result
data in the huge data set can be efficiently located, it is thus important to create
effective index structures for performance guarantee.

Effective indexing on massive trajectory data is a challenging issue because of the
intrinsic spatio-temporal features and frequent location updates of moving objects.
They cause the fact that traditional indexing approaches cannot be applied: First,
indexing on moving object trajectory data requires a 3-dimensional index structure
inthe X x Y x T space, but it cannot be derived by simply adding a dimension to
traditional 2-dimensional spatial index because of the complex feature interaction;

X. Meng et al., Moving Objects Management: Models, Techniques 51
and Applications, DOI 10.1007/978-3-642-38276-5_4,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

52 4 Moving Objects Indexing

second, given that the location of an object keeps changing along its movement,
it is not realistic to update the index once the moving object location is changed.
Otherwise, index update would be so frequent that the index itself could become a
bottleneck of the system.

To handle the challenges mentioned above, lots of efforts have been made so
far to develop effective moving object indexes. In general, existing index methods
for moving objects database can be divided into two categories: (1) indexing the
historical trajectories and (2) indexing their current positions for prediction of future
trajectories.

In historical trajectory indexes, typical indexing approaches include [12, 14, 17],
all based on 3-D variations of R-Tree and R*-tree with a goal to minimize the
storage and query processing cost. However, they still have too expensive update
cost, which can be greatly reduced if the structure of underlying network is available
for use (road network constraint movement scenarios). In recent years, more efforts
have been made for trajectory data indexing on moving objects in spatial networks,
with methods like dimension transformation-based indexes [13] and two-layered
FNR-Tree [8] been proposed. In addition, the MON-tree approach [2] improves
the performance of the FNR-tree by representing each edge by multiple line
segments (i.e., polyline) instead of just one line segment. Also, the Spatio-Temporal
R-Tree(STR-tree) [14] and the Trajectory-Bundle tree(TB-tree) [14] further con-
sider the trajectory property as well as allow for typical range queries.

In current position indexes of moving objects, some early studies [1, 11]
employ dual transformation techniques that represent the predicted positions as
points moving in a two-dimensional (2D) space. Recent works are more focused
on practical implementation, including the R-Trees-based TPR-tree [16] and its
variations [15] and the Bt -tree-based B¥-tree [10]. But the update performance of
above index mechanisms is not satisfactory. As an improvement, the PMR Quad-
tree-based index is proposed in [9], which adopts a trajectory segment shared
structure while depicting an efficient update algorithm. A dynamic data structure,
called adaptive unit, is introduced in [4], which groups neighboring objects with
similar movement patterns and captures the movement bounds of the objects based
on traffic behavior to reduce updates. Also, a spatial index for the road network is
then built over the adaptive unit structures, which forms the ANR-tree [5].

However, the update performance of all above index strategies is not good
enough for many practical applications yet. A network-constrained Moving Object
Sketched-Trajectory R-Tree(MOSTR-Tree) is proposed in [6] by Ding to handle this
problem. It is robust for frequent updates because a coarser granularity trajectory
named sketched trajectory instead of original trajectory is used. Also, because of
the lacking of index model that can support queries on historical, present, and
near-future possible locations, Ding et al. further developed a Network-constrained
moving objects Dynamic Trajectory R-Tree(NDTR-Tree) in [7] where a hybrid
structure with two layers (each layer based on R-Tree) is used to achieve this.

In this chapter, several typical moving object indexes in Euclidean space and
in spatial networks are introduced first, specifically including R-Tree, TPR-tree,

4.2 Representative Indexing Methods 53

Spatio-Temporal R-Tree, Trajectory-Bundle tree, and MON-tree. Afterwards, two
advanced moving objects indexing methods (MOSTR-Tree and NDTR-Tree) are
presented and discussed in detail.

4.2 Representative Indexing Methods

This section presents several representative indexing methods including the
R-Tree [9], the TPR-tree [16], the Spatio-Temporal R-Tree [14], the Trajectory-
Bundle tree [14], and MON-tree [2].

4.2.1 The R-Tree

The R-Tree [9] is proposed by Antomn Guttman, which is a height-balanced
indexing structure as an extension of the B-tree in multidimensional space.

Each node of the R-Tree contains a hyper-rectangle in d dimensions. The
rectangles of leaf nodes contain spatial objects indexed, and the rectangles of
internal nodes cover all rectangles in the lower nodes. The boundaries of the
rectangles are made as tight as possible. These rectangles are called minimum
bounding rectangles or MBRs. An entry in a leaf node is of the form: (M BR,, p,),
where M BR, is the MBR of the indexed spatial object and p, is a pointer to the
actual object tuple in the database. An entry in an internal node is of the form:
(MBR., p.), where M BR, is the MBR covering all MBRs in its child node and p,
is the pointer to its child node c. The number of entries in each R-Tree node, except
for the root node, is between two specified parameters m and M (m < M/2). The
parameter M is termed the fanout of the R-Tree. Unlike B-tree, the MBRs of nodes
at the same level in an R-Tree are allowed to overlap. Hence, searching an object
may involve traversing several paths in the R-Tree. When a node becomes overfull,
it undergoes a split. Efficient heuristics and pruning are used to reduce the expected
number of paths visited by subsequent searches.

Figure 4.1 represents the R-Tree corresponding to the spatial distribution of
objects (solid rectangles in this case) below it.

The R-Tree has the following features:

* The R-Tree is height balanced. The root node has at least two children nodes, and
all leave nodes are in the same level of the tree.

e If M is the maximum number of entries in an R-Tree, then m < M/2, where m
is the minimum number of entries.

* Height of the R-Tree is | log,, N| — 1.

+ Maximum number of nodes is [N/m] + [N/m?*] + --- + 1.

54 4 Moving Objects Indexing

(ko [x7] |

Ri4| | [ris[rie] | [Ri7[R18]R19]

1ot

[r8 [Ro [R10] [R11]RI2]][R13
Py

|
|
|
|
R19 |
|
|
|
|

Fig. 4.1 Structure of the R-Tree

4.2.2 The TPR-Tree

The time-parameterized R-Tree(TPR-tree) [16] is proposed by Simonas Saltenis,
which is a balanced, multi-way tree with the structure of the R-Tree. The TPR-Tree
naturally extends the R*-tree [3] and efficiently indexes the current and anticipated
future positions of moving point objects (or “moving points” for short).

Entries in leaf nodes are pairs of the position of a moving point and a pointer to
the moving point, and entries in internal nodes are pairs of a pointer to a subtree
and a rectangle that bounds the positions of all moving points or other bounding
rectangles in that subtree.

In the TPR-Tree, a moving object o is represented by (1) an MBR oy that
denotes its extent at reference time 0 and (2) a velocity bounding rectangle(VBR)
oy = {oyi—,0y1+,0y2—,0y2+}, Where oy;—(oy;+) describes the velocity of the
lower (upper) boundary of og along the ith dimension (1 <i < 2).

4.2 Representative Indexing Methods 55
a b
v y
101 10+
N»
L | a2 i
i T % v 8 ’;
oM 1p-2 e ,
| i i N
6 A -2 | 6
=9 = g
) ST 2 i
o ST, af [] ‘
| S 1 I
2t 'V 1Y 20
B qr
1 1 1 1 1 1 1 1 1 1 1 1 1

1
2 4 6 8

1
2 4 6 8

I
10 x

Fig. 4.2 Entry representations in a TPR-Tree. (a) MBRs and VBRs at time 0. (b) MBRs at time 1

Fig. 4.3 N, is tightened
during an insertion at time 1

Vi

10

L Ny
8 d

TN, =
6[is tightened

a c
ab
b

s

L ‘i ——inserted at time |
0 1 1 L L 1 L | L | o

(S0 o
4
o
=]
”

Figure 4.2a shows the MBRs and VBRs of four objects a, b, ¢, and d. The arrows
(numbers) denote the directions (values) of their velocities, where a negative value
implies that the velocity is toward the negative direction of an axis. The VBR of
ais ay = {1,1,1,1} (the first two numbers are for the X dimension), while
those of b,c, and d are by = {-2,-2,-2,-2},cy = {-2,0,0,2},and dyy =
{—1,—1,1, 1}, respectively. A non-leaf entry is also represented by an MBR and a
VBR. Specifically, the MBR (VBR) tightly bounds the MBRs (VBRs) of the entries
in its child node. In Fig. 4.2b, the objects are clustered into two leaf nodes N, N>,
whose VBRs are N1y = {—2,1,—2, 1} and N,y = {-2,0, —1, 2} (their directions
are indicated using white arrows).

Figure 4.3 shows the MBRs at time stamp 1 (notice that each edge moves
according to its velocity). The MBR of a non-leaf entry always encloses those of
the objects in its subtree, but it is not necessarily tight. For example, N; (N,) at
time stamp 1 is much larger than the tightest bounding rectangle for a,b(c,d).
A predictive window query is answered in the same way as in the R*-tree, except
that it is compared with the (dynamically computed) MBRs at the query time.

56 4 Moving Objects Indexing

For example, the query gr at time stamp 1 in the figure visits both N; and N,
(although it does not intersect them at time 0). The TPR-Tree is optimized for time
stamp queries in interval [T¢, Tc + H], where T¢ is the current update time and
H is a tree parameter called the horizon (i.e., how far the tree should “see” in the
future). The update algorithms are exactly the same as those for the R*-tree and
are obtained by simply replacing the four penalty metrics of the previous section
with their integral counterparts. Specifically, the area (or perimeter) of an entry N
equals TTCC+H A(N, t)dt (or fTTCC+H P(N, t)dt), where A(N, t) (or P(N,t)) returns

the area (perimeter) of N at time 7. Similarly, the overlap (or the centroid distance)

between two MBRs N; and N, is computed as fTTCC+H OVR(Ny, Ny, t)dt (or

2T CDist(Ny, Ny, 1)dt), where OVR(NY, N, 1) (or CDist(Ny, Ny, 1)) returns
the overlapping area (centroid distance) between N; and N, at time ¢. These
integrals are solved into closed formulas. When an object is inserted or removed,
the TPR-Tree tightens the MBR of its parent node. Figure 4.3 shows the MBRs
after inserting a new object e (into N}) at time 1. N, is adjusted to the tightest MBR
bounding a, b, e, by computing their respective extents at time 1. Note that this does
not compromise the update cost because N; must be loaded (written back) from (to)
the disk anyway to complete the insertion. On the other hand, the MBR of N, is
not tightened because it is not affected by the insertion (attempting to adjust N, will

increase the update cost).

4.2.3 The Spatio-Temporal R-Tree

The Spatio-Temporal R-Tree(STR-tree), proposed by Dieter Pfoser et al. in [14],
is an extension of R-Tree to support trajectory identity. Generally, STR-tree is a
balanced tree with node entries in the format of (p¢r, MBR), which is similar to
R-Tree. However, as R-Tree cannot be used for indexing 3-dimensional trajectory
data, STR-tree adopts a totally different insertion and split mechanism to achieve
trajectory orientation.

The insertion process in the STR-tree considers not only spatial closeness but
also partial trajectory preservation, i.e., to keep line segments belonging to the same
trajectory together in the index entries. In order to ensure trajectory preservation,
STR-tree involves a new algorithm, FindNode, to find the proper node that contains
the predecessor. Figure 4.4 shows an example of insertion on the STR-tree, where
a leaf node returned by FindNode is marked with an arrow and p is a preservation
parameter to indicate the number of levels for the preservation of trajectories.

The insertion process works as follows: Firstly, a leaf node is returned by
FindNode, and the new segment is inserted there if there is room in this node.
Otherwise, as a node must be split, the insert algorithm checks whether the p-1
parent nodes are full (in Fig. 4.4, for p = 2, only the node at non-leaf level 1 needs
to be checked). In case one of them is not full, the leaf node is split. In case that all
of the p-1 parent nodes are full, the STR-tree would choose another leaf node on

4.2 Representative Indexing Methods 57

non-leaf level 3

non-leaf level 2

non-leaf level 1

p=2
leaf level ‘ ‘ ‘
insertion
Fig. 4.4 Insertion of STR-tree
Fig. 4.‘5 l?ii:tflfresrl} 1sapiit a b c
scenarios in the -tree A y - o —
\ 7 = \\
/ <)
/ N o
Vs \
y T r y
~
: // P //

the subtree, including all the nodes further to the right of the current insertion path
(the gray-shaded tree in Fig.4.4), and then insert as R-Tree.

The general idea of split in the STR-tree is to put newer and thus more recent
segments into new nodes. Splitting non-leaf nodes is simple because it only needs
to create a new node for a new entry. Splitting leaf nodes is shown in Fig. 4.5: If leaf
node contains all disconnected segments, then split as Fig. 4.5a; if leaf node contains
disconnected and other types of segments, then put all disconnected segments in a
new node and split as Fig. 4.5b; otherwise, if it contains single and disconnected
segments, then put the newest single connected segment in a new node and split as
Fig.4.5c.

Using this insertion and split strategy, STR-tree is an index that preserves
trajectories and considers time as the dominant dimension when decomposing the
occupied space.

4.2.4 The Trajectory-Bundle Tree

The Trajectory-Bundle tree(briefly TB-tree), proposed by Dieter Pfoser et al. in [14],
is an index method that strictly preserves trajectories such that a leaf node only
contains segments belonging to a same trajectory.

58 4 Moving Objects Indexing

non-leaf level 3

non-leaf level 1

leaf level ‘

Fig. 4.6 Insertion into the TB-tree

Indexing on trajectory data has to find a balance between spatial discrimination
and trajectory preservation. The TB-tree gives up the space discrimination to
guarantee trajectory preservations, having spatially close line segments to be stored
in different nodes because of their belongings to different trajectories. Though it
increases the cost of classical range query, this mechanism is important because it
works well on answering “pure spatio-temporal” queries.

The insertion procedure is illustrated in Fig. 4.6. Important stages throughout the
procedure are marked with black color.

Given a new entry for insertion, the leaf node that contains its predecessor in the
trajectory has to be found. The tree is searched from the root and stepped down to
every child node that overlaps with the MBR of the new line segment. The leaf node
containing a segment connected to the new entry is chosen (stage 1 in Fig. 4.6). The
finding of a segment is similar to that of the STR-tree. If the leaf node is full, a
node split is needed. However, due to the violation to trajectory preservation, a new
node is actually created in STR-tree instead. Thus, as seen in Fig. 4.6, the tree is
searched upwards until a non-full parent node is found (stages 2—4). The rightmost
path (stage 5) is chosen to insert the new node. If there is room in the parent node
(stage 6), then insert the new leaf node as Fig.4.6. Otherwise, the node would be
split by creating a new node at non-leaf level 1 and having the new leaf node as its
only descendant. The split is propagated upwards when necessary. Therefore, the
TB-tree grows from left to right; the leftmost leaf node was the first inserted node
and the rightmost was the last inserted node.

4.2.5 The MON-Tree

The MON-tree, proposed by Victor Teixeira de Almeida and Giiting in [2], is an
index structure to store and retrieve past trajectory of network-constrained moving
objects. It assumes that moving objects move along polylines, which belong to edges
or routes. The MON-tree is composed by a 2D R-Tree (the top R-Tree) indexing
polylines bounding boxes and a set of 2D R-Trees (the bottom R-Trees) indexing
the movement of objects along the polylines.

4.3 Network-Constrained Moving Object Sketched-Trajectory R-Tree 59

NARS
ik

Fig. 4.7 MON-tree index structure

elL e\‘

fn

o

>
~

I
oo

W N = O
| @ O O O
N

(¢

o

Entries in the top level are of the form < polyid, bottreept >, where polyid is the
polyline identification and bottreept is a pointer to the corresponding bottom R-Tree.
Moreover, a hash structure organized by polyid is used in the top level. Thus, MON-
tree is a two-level index structures the R-Tree and a hash structure pointing to bottom
level R-Trees. The reason for its two-leveled structures is that the insertion algorithm
of moving objects takes a polyline identification as an argument and then uses the
top level hash structure to find the place of bottom level R-Tree for insertion. On the
other hand, the search algorithm takes a spatio-temporal window as an argument and
starts the search on the top R-Tree, which contains the polylines’ bounding boxes.

Figure 4.7 is an example of the MON-tree index structure. In the top R-Tree,
the polylines are indexed using an MBR approximation. In this way, the leaf nodes
contain entries of the form < mbr, polypt, treepti >, where mbr is the MBR of the
polyline, polypt points to the real representation of the polyline, and treept points to
the corresponding bottom R-Tree of that polyline. Internal nodes contain entries of
the form < mbr, childpt >, where mbr is the MBR that contains all MBRs of the
entries in the child node and childpt is a pointer to the child node.

The bottom R-Tree indexes the movement of moving objects inside a polyline.
The movement is represented by the position interval (p;, p;) and a time interval
(t1, 1), where 0 < py, p» < 1. These two values p; and p; store the relative position
of the objects inside the polyline at times #; and #,, respectively.

4.3 Network-Constrained Moving Object
Sketched-Trajectory R-Tree

The moving object index problem has been intensely studied in recent years with
a lot of methods proposed, especially the network-based trajectory index methods.
However, most existing trajectory index methods take trajectory units as the basic

60 4 Moving Objects Indexing

index records. In such methods, an index update is triggered for each location
update, and as a result, the index updating cost is turned out to be acceptable. Also,
the current network-based trajectory indices can only support the cases when the
moving objects completely match the network. In addition, they adopt two-layered
architectures which cannot be easily implemented in general DBMSs.

To solve the above problems, this section introduces a novel index method called
network-constrained Moving Object Sketched-Trajectory R-Tree (MOSTR-Tree)
for trajectory data indexing.

4.3.1 Data Model

The MOSTR-Tree index structure is based on such a data model: A traffic network
N is defined as a set of routes R and a set of junctions J, and network position is
defined as npos, which is the same as defined in chapter Moving Objects Modeling.

Definition 4.1. A motion vector mv is a snapshot of moving objects movement at a
certain time instant and it is defined as follows:

mv = (t,(x,y),v,d,npos)

where ¢ is a time instant; (x, y), v, d are the location, the speed, and the direction
of the moving object at time ¢, respectively; and npos is the network position of the
moving object at time 7.

If npos #1(L means “undefined”), mv is called “network matched.” If
npos =, then mv is not network matched.

Definition 4.2. The trajectory of a moving object, traj, is a sequence of motion
vectors sent by the moving object through location updates during its journey and is
defined as follows:

traj = (mvi)i—y = ((t;, (xi, yi), vi, di,npos;))i_

Two neighboring motion vectors of the trajectory, mv; and mv;+; (I < i <
n—1), can form a trajectory unit, denoted as p(mv;, mv; 4+1). Depending on whether
mv; and mv; 4 are network matched, pu(mv;, mv;4) can correspond to different
shapes in the X x Y x T space. If mv; and mv; 4+ are both network matched, then
p(mv;, mv; ;1) describes the movement from mv; to mv; 4 along the shortest path
between npos; and npos;+1, i.e., the curve in the X xY x T space (see p(mvy, mv,)
and p(muvy, mvs) in Fig. 4.8). If one of or both mv; and mv;4; are not network
matched, then p(mv;, mv; +1) corresponds to a straight line segment in the X xY xT'
space (see w(mv,, mv3) and pu(mvs, mvs) in Fig. 4.8).

4.3 Network-Constrained Moving Object Sketched-Trajectory R-Tree 61

Y T
ly
+v
N
¥ e WV
mvy / mvz mﬁ}
>X

Fig. 4.8 Movement of a moving object and the corresponding trajectory

4.3.2 Index Structure

To transform trajectories to sketched ones, the X xY x T space should be partitioned
into several grid cells first. Assume the grid cells are equal sized ones, each of
them can be identified by a triple (N, Ny, N;), where N,, N, and N; are the cell’s
corresponding serial numbers along the X, Y, T axles. For instance, the gray-colored
grid cell in Fig. 4.9 is identified as (4, 3, 2).

Based on the space partition, each trajectory can be transformed into its
corresponding sketched trajectory. Here, the trajectory discussed in Definition 4.2 is
called “original trajectory” for convenience.

Definition 4.3. Suppose that the original trajectory of a moving object is traj =
((ti, (xi, yi), vi, di,npos;))!_,. traj’s sketched trajectory, denoted as sketch(traj), is
defined as follows:

sketch(traj) = (c;)i—, = ((t;, X}, ¥;))i=

where ¢; = (¢j,x;,y;)(1 < j < k) is the center’s coordinate of the jth grid cell
that traj travels through. Two neighboring coordinates ¢; and ¢;11(1 < j <k —1)
of sketch(traj) form a Sketched-Trajectory Unit (STU), denoted as (c;, ¢ +1), which
corresponds to a straight line segment connecting ¢; and cj 4 inthe X x Y x T
space. A sketched trajectory can be seen as a sequence of sketched trajectory units
so that it forms a polyline in the X x Y x T space, as shown in Fig. 4.9.

As depicted in Fig. 4.9, the sketched trajectory approximates to the shape of the
original trajectory but has much less trajectory units. Given an original trajectory
traj, it is obvious that the number of the sketched trajectory units in sketch(traj) is
in reverse proportion to the size of grid cells.

Algorithm 4 describes the procedure of transforming an original trajectory to a
corresponding sketched trajectory. In this algorithm, function getCellLocated (mv)
returns the grid cell that mv relates to; Function gerCellsTravelled(i) returns the
grid cell sequence trajectory unit p travels through; Function extractCell(cellseq, i)
extracts the 7th grid cell from a grid cell sequence cellseq; Function getCenter(cell)
returns the center’s coordinate of a grid cell cell; |cellseq| returns the number of cells

62 4 Moving Objects Indexing

A

™ Grid Cell (4, 3,2)

A~ Original Trajectory

e Sketched Trajectory

Fig. 4.9 Partition of grid cells and the resulted sketched trajectory

in a grid cell sequence cellseq; and function doNothing() simply returns without
doing anything.

In Algorithm 4, the trajectory units of traj are processed one by one. In dealing
with a new trajectory unit p(mv;—, mv;), the algorithm first computes the grids
cell(s) that the unit travels through by calling getCellsTravelled() function and then
appends the grid cell center(s) to sketchTraj.

Algorithm 4: Transforming original trajectory into sketched trajectory

input : Spatio-temporal Range of the database: I, X I, X I;;
Parameters describing the size of grid cells: &,&,,&; ;
traj = (mv;)i=; = ((ti, (xi, yi), vi, di, npos;))i=,
output: sketchTraj = ((t;,x;,y;))
sketchTraj=NULL;
startingCell = getCellLocated(mvy);
append(sketchTraj, getCenter(startingCell));
if » = 1 then

| return sketchTraj;
else

J=1

currentCell = startingCell,
for i =2t ndo
cellsTravelled = getcellsTravelled(pu(mv;—;, mv;));
if (|cellsTravelled| = 1)AND(extractCell(cellsTravelled, 1) = currentCell) then
| doNothing();
else
for j = 2 1o |cellsTravelled| do
| apppend(sketchTraj, getCenter(extractCell(cellsTravelled, j)));
end
currentCell = extactCell(cellsTravelled, |cellsTravelled));
end

end
return sketchTraj,

end

4.3 Network-Constrained Moving Object Sketched-Trajectory R-Tree 63

wWmvi, mvy)

: Case (1): w(mvy.1, mv;)
a T* H is within currentCell
T w(mviy, mv;) 7 ‘cellsTravelled
=
A T Case (2): w(mvi1, mv)
T travels through 2 grid
cells
et * “cellsTravelled
ot
."é o
: ske;ch Traj 4 K L) Case (3): p(mvi.1, mv;)
traj - T Ygpaioo travels through 3 or
T . more grid cells
o }ooeneetoiifi cells Travelled
—»x

Fig. 4.10 Transforming original trajectory to sketched trajectory. (a) Original and Sketched
trajectories in X X Y X T space. (b) Three cases in dealing with p(mv;—;, mv;) (X X T plane)

| stul | stu3| | stu2 | stud | stu® | | stus | stu9 | | | stu, | é—Sketched Trajectory Units
-_

~ | — ~

Fig. 4.11 Structure of the MOSTR-Tree

Figure 4.10 shows three typical cases in dealing with a new trajectory unit
w(mv;—y, mv;). The gray-colored grid cells in Fig. 4.10 are the cells in which mv;_;
is located (i.e., currentCell); in case (1), w(mv;—y, mv;) is still inside currentCell
and nothing will be done in this case. In case (2) and case (3), u(mv;—;, mv;) travels
through 2 or more grid cells, and therefore, the center’s coordinates of the cells
(except currentCell) are appended to sketchTraj.

After the original trajectories are transformed to sketched ones, the sketched
trajectory units can be organized into an R-Tree so that the MOSTR-Tree can be
constructed. Figure 4.11 depicts the structure of the MOSTR-Tree.

The leaf nodes of MOSTR-Tree are in the form of < stu, MBR, PT,,, >,
where stu is a sketched trajectory unit, MBR is the MBR of stu, and PT,, is the
pointer or identifier leading to the complete database record of the corresponding
moving object. Internal nodes of the MOSTR-Tree contain records in the form of
< MBR, PT,,4. >, where MBR is the MBR bounding all the MBRs of the records
in its child node and P T,,4. is a pointer leading to the child node.

64 4 Moving Objects Indexing

When constructing the MOSTR-Tree, the database server will transform every
trajectory to its corresponding sketched trajectory and insert the sketched trajectory
units to the MOSTR-Tree.

4.3.3 Index Update

As moving objects frequently send location update messages to the server, the scale
of trajectories grows over time at the server side. Accordingly, index has to be
efficiently updated to ensure that latest updating record can be found.

Given a moving object mo, suppose its original trajectory is traj = (mv;)’_,
and its corresponding sketched trajectory is sketch(traj). When mo launches a
location update, it sends to the database server a new motion vector mv,, which will
be appended to traj by the server. When doing this, the server checks if u(mv,, mv,)
has traveled across the boundary of the original grid cell. If not, the appending of
mu, to traj does not trigger the sketch(traj) (MOSTR-Tree) to update. Otherwise, the
new sketched trajectory unit(s) corresponding to u(mv,, mv,) need to be inserted
to MOSTR-Tree.

Since the granularity of the sketched trajectory is much coarser than that of the
original trajectory, the sketched trajectory is updated in a far less frequency, and
the updating cost of the MOSTR-Tree can thus be greatly reduced. Algorithm 5
describes how the MOSTR-Tree is maintained during a location update.

In Algorithm 5, function getTrajectory(moid) retrieves the original trajectory of
the moving object with identifier moid, and function final(traj) extracts the last
motion vector from trajectory traj.

Algorithm 5: Maintaining the MOSTR-Tree when receiving a location update
message

input : Location Update Message: LUM sg = (moid,t,x,y,v,d,npos), MOSTR-Tree:
mostrTree
mv, = (¢, (x,y),v,d,npos);
mv, = final(getTrajectory(moid));
currentCell = getCellLocated(mvy);
cellsTravelled = getCellsTravelled(u(mv,, mv,));
if (|cellsTravelled| = 1)AND (extractCell(cellsTravelled,1) = currentCell) then
| doNothing();
else
for j =2 to |cellsTravelled| do
skecthUnit = (getCenter(currentCell), getCenter(extractCell(cellsTravelled, j)));
insert(mostrTree, skecthUnit);
currentCell = extactCell(cellsTravelled, j),

end
end

4.3 Network-Constrained Moving Object Sketched-Trajectory R-Tree 65

T

;| range(Q)=0.x0,x0,

di g range(0)-0.x0,x0,
Extended part = N B .)
" b ; “Extended part

- ’/
N > X
7 X
Fig. 4.12 Structure of the MOSTR-Tree
T
=
- |range(0)-0, x 0, x 5 < range(0)=0. x O, x .
¢ 2o T ; |<- *+ query range after alignment
el
X > X

Fig. 4.13 Alignment of the query range to grid cell centers

When constructing and maintaining the MOSTR-Tree with ongoing updates,
these location update messages are temporarily saved in buffer. After the MOSTR-
Tree is constructed, all the buffered location update messages are then processed
with through Algorithm 5 until the buffer is empty, and then the server accepts new
location update messages directly and maintain the MOSTR-Tree accordingly.

4.3.4 Query

This part describes the query processing mechanism of the MOSTR-Tree. Suppose
that Q is an arbitrary query on moving object trajectories with a query range
(Q)=0x x Qy x Qy, where O, = [q7,¢,], Oy = [4).¢,], and O/ = [¢/.¢;].
Query range describes X, Y, T ranges that the query concerns and corresponds to a
cube in the X x Y x T space.

In dealing with such a query, to guarantee all valid objects can be returned, the
query time range Q; should be extended to Q, = [¢° — 7, ¢!], as it can be imagined
that the original trajectory has a vertical line segment of length v following the
last trajectory unit, where this vertical line segment is missing (not expressed as a
record) in the index. Figure 4.12 shows the extension of query range.

After the query range is extended, the system needs to align the query range to
grid cell centers, as shown in Fig. 4.13.

In Fig.4.13, the original trajectory of the moving object intersects range
(D=0, x 0, x Q, and should be included in the query result. However, the
sketched trajectory does not intersect with range (Q). To solve this problem, the

66 4 Moving Objects Indexing

query range should be adjusted. From the analysis, it can be seen that if the query
range is aligned to the corresponding grid cell centers, then all moving objects
whose original trajectories intersect the query range, their sketched trajectories will
intersect the aligned query range.

Let us first consider Oy = [¢%, ¢!]. O, can be transformed as the following:

= (5] o)
= (5] o)

0, =[q).q;] and 0, = [¢° — t.q]] can make similar transformations, so that the
query range is aligned to the corresponding grid cell centers.

After the alignment transformation is conducted, the whole query processing
procedure based on the MOSTR-Tree is provided in Algorithm 6.

In Algorithm 6, the function timeExend(Q,,) extends the query time range
for t time as described above, function gridCenterAlign(Q, x Q, x Q,) aligns
the query range to grid cell centers and returns the aligned query range as result,
function search(mostrTree, R) search the MOSTR-Tree mostrTree according to the
specified query range R, function getTuple(PT,,,) retrieves the tuple from the
moving objects database according to P T,,,,, and function evaluate(moTuple, Q)
evaluates the query Q based on the moving object tuple moTuple. The computa-
tional result is returned if moTuple satisfies the query condition. Otherwise, it simply
returns NULL.

Algorithm 6: Query processing based on MOSTR-Tree

input : the Query whose Query Range is range(Q) = Q. X O, X Q,: Q, mostrTree, Time
Interval: ©
output: Query Result: refineResult
Q, = timeExend(Q;, 7);
filterResultsearch(mostrTree , gridCenterAlign(Q . X Q, X Q,));
refineResult = O,
for VPT,, € filterResult do
moTuple =getTuple(PT,,);
if evaluate(moTuple, Q) # NULL then
| refineResult = refineResultU evaluate(moTuple, Q);
end
end
return refineResult;

As described in Algorithm 6, the query processing based on the MOSTR-Tree
consists of two phases: the filtering phase (lines 1 and 2) and the refinement phase
(lines 3—10). In the filtering phase, a set of moving objects are retrieved from the

4.4 Network-Constrained Moving Objects Dynamic Trajectory R-Tree 67

MOSTR-Tree according to the query range, and the results are kept at filterResult.
In the refinement phase, the moving objects contained in filterResult are further
evaluated according to the query, and the computation results are kept in refineResult
which is finally returned to the querying user.

According to the Algorithm 6, the overall query processing time depends on
both the index retrieval time and tuple refinement time. The index retrieval time is
affected by the index updating cost and the index searching cost. From analysis it
can be seen that the larger the grid cell size is, the lower the index updating cost
will be, and the more the useless records will be contained in filterResult, leading to
greater cost in tuple refinement, and vice versa. Thus, to get the best overall query
processing performance, a suitable grid cell size should be chosen.

4.4 Network-Constrained Moving Objects Dynamic
Trajectory R-Tree

In this section, we would introduce a new index structure for network-constrained
moving objects, Network-constrained moving objects Dynamic Trajectory R-Tree
(NDTR-Tree), which can deal with not only the historical locations of moving
objects but also their current and near-future location information. The NDTR-Tree
employs a hybrid structure with two layers. Its upper layer is edge-based R-Tree,
which indexes the directed atomic route sections with smaller granularity, so that the
intersection between different MBRs can be greatly reduced, while its lower layered
R-Trees are route based, with each lower R-Tree corresponding to a route which has
a greater granularity, so that location update and index maintaining costs can be
reduced. In this way, the query processing and index maintaining performances can
be improved.

For better understanding the NDTR-tree, a two-layered, route-ARS-based traffic
network framework is introduced first, which compromises the network constrained
moving objects and trajectories.

A traffic network N is defined as a set of routes R and a set of junctions J, a
directed atomic route section (ARS) is defined as ars, and a network position is
defined as npos. Based on the traffic network, a motion vector mv is a snapshot of
moving object’s movements, and the trajectory of moving object is a sequence of
motion vectors, which is denoted as T'r.

4.4.1 Index Structure of NDTR-Tree

The NDTR-Tree is two-layered structure. The upper layer is a single R-Tree which
indexes the directed atomic route sections of the traffic network, and the lower layer
consists of a forest of R-Trees, with each R-Tree corresponding to a certain route

68 4 Moving Objects Indexing

c xoy
—) MBR; [MBR; MBR: [MBR Upper R-Tree

[rrairras] [rraa] s [sa2] [2an] sal] [al] mat] ripaip

} Lower R-Tree

Lower R-Tree of r,,

Lower R-Tree of 71 Lower R-Tree of 2

Fig. 4.14 Structure of the NDTR-Tree. (a) Traffic network. (b) UT-Units submitted in route r1.
(¢) The corresponding NDTR-Tree

and indexing the trajectory units submitted in the route. Figure 4.14 illustrates the
structure of the NDTR-Tree.

As shown in Fig.4.14, the upper layer of the NDTR-Tree is a standard R-Tree
which takes directed atomic route sections as the basic structural unit. The records of
the leaf nodes take the form < MBR,,,rid.aid, ptroue, Ptiree >, Where MBR
is the two-dimensional MBR that covers directed atomic route sections, rid.aid is
a combination of the route and ARS identifiers, pt,,.. is a pointer to the detailed
route record, and pt;,.. is a pointer to the lower R-Tree corresponding to route(rid).
The root or internal nodes contain records of the form < MBR,, pt,,q4c >, Where
MBR,, is the MBR (in the X x Y plane) containing all MBRs of its child records
and pt,,4. 1s a pointer to the child node.

The lower layer of the NDTR-Tree is composed of a set of R-Trees. Each R-Tree
only corresponds to a route (e.g., John Street) and indexes all the trajectory unit on
it. The format of the leaf nodes is < MBR,;,mid, mvs, mv, >, where MBR,,
is the MBR of the associated trajectory units, mid is the identifier of the moving
object, and mvy; = (&5, rid, poss,v) and mv, = (t.,rid, pos.,v.) are the two
consecutive motion vectors which form the trajectory units. If the trajectory is active
unit, then mv, is NULL and the MBR is < t,, pos,, min(tg,ty), 1 >. The format
of both root and internal nodes is < M BR ;, ptyoq. >, where MBR ,; is the MBR
covering all MBRs of its child records and p#,,4. is the pointer to its child node.

4.4.2 Active Trajectory Unit Management

To support queries on current and future position of moving objects, it is necessary
to put active trajectory unit in the NDTR-Tree. However, as an active trajectory
unit w(mv,) is essentially a ray / between points (pos,, t,), and the slope of / is
determined by U, Thus, the first problem is setting of length of /. In the following
discussion, we assume an object mo moves from the starting node 0 towards the end
node 1 of a route r. Let point (¢, 1) to be the intersection between [and pos = 1;
tx can be easily computed as

4.4 Network-Constrained Moving Objects Dynamic Trajectory R-Tree 69

a | b X
pos A Trigger IDTLU =i pos g g a~ (L, pos*)
| A g8 A 1) : A V4
Moving Trajectry <y
u (mv,) u (mvy)
mvy mvy
0 0

tll t.“

Fig. 4.15 Determining the MBRs of active trajectory units. (a) Speed > v,,. (b) Speed < v,

(1 — posy) x rlength

1% =1, + -
[vn|

where r.length is the length of route r. If mo does not update its location before
reaching the end node of r (i.e., to move as the predicted trajectory), there are
generally two possible cases: (1) its actual speed v >, According to Fig. 4.15a,
an IDTLU update is triggered at the time 7, in such case, therefore the computing
of mo’s current position only relevant to the section of ray / under pos=1 (the
full line). (2) its actual speed o < v,. Based on the updating policy, the minimum
speed of mo is U?:Fn) — E) (Ut) is a speed threshold). Based on the time F;, the time
t; needed for reaching end node 1 can be calculated as:

(1 — posy) x r.length

ty =ty + .
[v5 |

The intersection between ray / and line ¢ =t; is (z;, poss), and pos; can be
calculated as

—
(ts —1y) x Ivnl

oS, = pos, +
poss =p r.length

As shown the full line of Fig. 4.15b, current location of mo in the second case
could be at any position on / below the point (;, pos;).

Based on (1) and (2), the NDTR-Tree index only need to preserve the active
trajectory unit as the MBR=< t,, pos,, t;, poss > corresponding to the ray /,
and this region is sufficient to answer both current and future position queries over
moving objects, where

1 — pos,) x rlength t—1,) % |v,
[S:[n—}-(p nl) 8 R posS:posn_i_w
Uy

r.length

70 4 Moving Objects Indexing

4.4.3 Constructing, Dynamic Maintaining, and Querying
of NDTR-Tree

When the NDTR-Tree is first constructed in database, the system read the informa-
tion of road network and build the upper R-Tree based on routes. At this moment, the
lower layer of the index structure is null yet. After the construction, whenever a new
location update message is received from any moving object, the server generates
corresponding trajectory units and then insert them into their related R-Tree(s) in
the lower layer. Since active trajectory units contain predictive information, when a
new location update occurs, the current active trajectory unit of the moving object
should be replaced by newly generated records.

The construction and dynamic maintenance algorithm for the NDTR-Tree is
given in Algorithm 7, where function MBR(u) returns the MBR of a given trajectory
unit # and functions Insert() and Delete() means to conduct the insertion and
deletion of trajectory units in the corresponding lower R-Trees, respectively.

Algorithm 7: Constructiion and dynamic maintenance algorithm of NDTR-
Tree

input : Traffic Network: N = (Routes, Junctions)
Read route records of N, and insert the related ARSs into the upper R-Tree;
Set all lower R-Trees to empty tree;
while MOD is running do
Receive location update package LUM from moving objects (Suppose the moving
object ID is mid);
if LUM contains 1 motion vector mv, = (t,,rid,, pos,,v,) then
Let mv, be the current active motion vector of mo in RT reey,,,(rid,);
if mv, = NULL then
| Insert(RT reejy,(rid,), (mid, u(mv,), mbr(u(mv,))));
else
Delete(RT reey,, (rid,), (mid, p(mv,), mbr(u(mvy))));
Insert(RT reejy, (rid,), (mid, u(mv,, mv,), mbr(u(mv,, mv,))));
Insert(RT ree;y, (rid,), (mid, u(muv,), mbr(u(mv,))));
end
else if LUM contains 3 motion vectors mv,y, mv,,, mv,; then
Let mv, be the current active motion vector of mo in RTree;,,,(rid,);
Delete(RT reejo, (rida), (mid, p(mvy,), mbr(u(mv,))));
Insert(RT reejo, (ridyy), (mid, pu(mv,, mv,), mbr((mv,, mv,))));
Insert(RT reejo, (ridyy), (mid, p(muvgy, mvgs), mbr(u(mvaa, mvgs))));
Insert(RT reejo, (ridys), (mid, p(mvgs), mbr(u(mvgs))));

end

end

Since in moving objects databases, the most common query operators, such as
possibly inside (trajectory, I, x I, x I;) and possibly intersect (trajectory, I, x I, x ;)
(where I, 1,, I; are intervals in X, Y, T domains), belong to range queries, that is,

4.5 Summary 71

i
\\ d
m3 '\.T5=t

Fig. 4.16 Range query through NDTR-Tree. (a) Search the upper R-Tree and receive (ridXperiod)
pairs. (b) Search the lower R-Trees and output moving object identifiers (12, m3)

the input of the query is a range in the X x ¥ x T space, we take range query as an
example to show how the query processing is supported by the NDTR-Tree.

We use the most common query type, i.e., spatial range queries over moving
objects, as example to illustrate and analyze the query processing. The querying
of the NDTR-Tree can be finished in two steps. When processing a range query
(suppose the range is I, x I, x I;), the system will first query the upper R-Tree of
the NDTR-Tree according to I, x I, and will receive a set of (rid, period) pairs
as the result, where period € [0, 1] and can have multiple elements; then for each
(rid, period) pair, search the corresponding lower R-Tree to find the trajectory units
intersecting period x I; and output the corresponding moving object identifiers.
Figure 4.16 illustrates the range query processing based on the NDTR-Tree.

The query algorithm is given in Algorithm 8.

Algorithm 8: Range query algorithm of NDTR-Tree
input : Quering Range: I, X I, X I,
output: Set of moving objects identifiers: Result
Search the upper R-Tree according to I, X I, and receive a set of pairs: (rid;, period;)]_;
for1 <i <ndo
for Vp € period; x I, do
Let u be the set of trajectory units in RT reey,,, (rid;) which intersectp;
Result= ResultU the set of moving object IDs contained in the element of u;
end
end
return Result;

4.5 Summary

In this chapter, we discuss the indexing for moving objects; several representative
indexing methods are introduced for moving objects including R-Tree, TPR-
tree, STR-tree, TB-tree, and MON-tree. We proposed two new index methods,

72

4 Moving Objects Indexing

MOSTR-Tree and NDTR-Tree, which are used for indexing frequently updated
trajectories of network-constrained moving objects and indexing the whole trajec-
tories with historical, current, and near-future positions, respectively.

References

1.

10.

11.

12

13.

14.

15.

16.

17.

Agarwal PK, Arge L, Erickson J (2000) Indexing moving points. In: Proceedings of the
19th ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems (PODS
2000), Dallas, pp 175-186

. Almeida VT, Giiting RH (2005) Indexing the trajectories of moving objects in networks.

Geolnformatica 9(1):33-60

. Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) The R*-tree: an efficient and

robust access method for points and rectangles. In: Proceedings of the 1990 ACM SIGMOD
international conference on management of data (SIGMOD 1990), Atlantic City, pp 322-331

. Chen J, Meng X (2009) Update-efficient indexing of moving objects in road networks.

Geolnformatica 13(4):397-424

. Chen J, Meng X, Guo Y, Grumbach S (2007) Indexing future trajectories of moving objects in

a constrained network. J Comput Sci Technol 22(2):245-251

. Ding Z (2011) Indexing frequently updated trajectories of network-constrained moving objects.

In: Proceedings of DEXA, Toulouse, pp 464-474

. Ding Z, Li X, Yu B (2009) Indexing the historical, current, and future locations of network-

constrained moving objects. J Softw 20(12):3193-3204 (in Chinese)

. Frentzos E (2003) Indexing objects moving on fixed networks. In: Proceedings of the 8th

international symposium on spatial and temporal databases (SSTD 2003), Santorini Island,
pp 289-305

. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of

the ACM SIGMOD international conference on management of data (SIGMOD 1984), Boston,
pp 47-57

Jensen CS, Lin D, Ooi BC (2004) Query and update efficient B tree based indexing of moving
objects. In: Proceedings of the 30th international conference on very large data bases (VLDB
2004), Toronto, pp 768-779

Kollios G, Gunopulos D, Tsotras VI (1999) Effective density queries on continuously moving
objects. In: Proceedings of the 22nd international conference on data engineering (ICDE 1999),
Atlanta, p 71

. Nascimento MA, Silva JRO (1998) Towards historical R-trees. In: ACM symposium on applied

computing (SAC 1998), Atlanta, pp 235-240

Pfoser D, Jensen CS (2003) Indexing of network constrained moving objects. In: Proceedings
of the 11th ACM international symposium on advances in geographic information systems
(GIS 2003), New Orleans, pp 25-32

Pfoser D, Jensen CS, Theodoridis Y (2000) Novel approaches in query processing for moving
object trajectories. In: Proceedings of the 26th international conference on very large data bases
(VLDB 2000), Cairo, pp 395-406

Saltenis S, Jensen CS (2002) Indexing of moving objects for location-based service. In:
Proceedings of the 18th international conference on data engineering (ICDE 2002), San Jose,
pp 463-472

Saltenis S, Jensen CS, Leutenegger ST, Lopez MA (2000) Indexing the positions of contin-
uously moving objects. In: Proceedings of the ACM SIGMOD international conference on
management of data (SIGMOD 2000), Dallas, pp 331-342

Tao Y, Faloutsos C, Papadias D, Liu B (2004) Prediction and indexing of moving objects with
unknown motion patterns. In: Proceedings of the ACM SIGMOD international conference on
management of data (SIGMOD 2004), Paris, pp 611-622

Chapter 5
Moving Objects Basic Querying

Abstract Once we build the model and index for moving objects, we can answer
the queries for moving objects. There are many types of queries in moving objects
databases such as the nearest neighbor (NN) query, range query, and density
query. In this chapter, we will introduce the basic querying types for moving
objects according to spatial predicates, temporal predicates, and moving spaces.
Though there are many techniques to support moving objects queries, most of
the existing studies consider Euclidean spaces, where the distance between two
objects is determined solely by their relative position in space. However, in practice,
objects can usually move only on a predefined set of trajectories as specified by the
underlying network. Hence, we will introduce how to answer range queries and
NN queries for moving objects in a spatial network, which is based on the work
of Papadias in Papadias et al. (Query processing in spatial network databases. In:
Proceedings of the 29th international conference on very large data bases (VLDB
2003), Berlin, pp 790-801, 2003).

Keywords Spatio-temporal query ¢ Nearest neighbor query ¢ Range query
* Spatial network ¢ Moving object databases

5.1 Introduction

Considerable research has been carried out on moving object databases, which has
resulted in the development of numerous indexes and query processing techniques.
Surprisingly, most of the existing studies consider Euclidean spaces, where the
distance between two objects is determined solely by their relative position in
space. However, in many applications that manage spatial data (e.g., location-based
services), the position and accessibility of spatial objects are constrained by spatial
networks such as road, railway, and river. In such cases, the actual distance between
two objects corresponds to the length of the shortest path connecting them in the
network, i.e., the network distance.

X. Meng et al., Moving Objects Management: Models, Techniques 73
and Applications, DOI 10.1007/978-3-642-38276-5_5,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

74 5 Moving Objects Basic Querying

Fig. 5.1 Road network query
example

For instance, consider the spatial network of Fig.5.1, where the rectangles
correspond to hotels. If a user at location ¢ poses the range query “find the hotels
within a 15 km range”, the results will contain a, b, and ¢ (the numbers in the figure
correspond to network distance). Similarly, a nearest neighbor query will return
hotel 5. Note that the results of the corresponding conventional queries are different
(e.g., the Euclidean nearest neighbor is d, which is actually the farthest hotel in the
network). Furthermore, queries may combine both location and network aspects,
such as “find the nearest hotel to the south” (e.g., hotel a).

In this chapter, we will introduce the basic querying types for moving objects
according to spatial predicates, temporal predicates, and moving spaces. Then we
propose how to process range queries and NN queries for moving objects in a spatial
network based on the Euclidean restriction and network expansion frameworks.
The resulting algorithms expand conventional processing techniques by integrating
connectivity and location information for efficient pruning of the search space [11].

5.2 Classifications of Moving Object Queries

The moving object has two kinds of attributes — spatial and temporal. Therefore, to
answer the queries for moving objects, the spatial and temporal predicates must
be indicated. The answers for these queries are moving objects that satisfy the
predicates. Hence, there are many kinds of queries for moving object data according
to spatial and temporal predicates. We introduce them in this section.

5.2.1 Based on Spatial Predicates

The spatial predicate indicates a point or range. The queries for moving objects can
be divided into four classes as follows:

1. Range Query: A range query is to find the objects within some specific area that
corresponds to a rectangular window or a circular area around a query point. For
example, “find all of the people who walked within one mile of the buildings at

5.2 Classifications of Moving Object Queries 75

the time.” The range queries are the most basic queries and are widely used. Most
moving objects indexing methods can support range query processing.

2. Nearest Neighbor Query: A nearest neighbor (NN) query is to find the object
which is nearest to a query point. The most popular NN query is kNN query,
which is to find the k nearest neighbors to a query point. There is another kind
of NN query, called reverse nearest neighbor (RNN) query. The RNN query is to
find the object whose nearest neighbor is the query point. For example, consider
some taxies and some passengers. The passenger wants to know which taxi is
closest to him. The taxi wants to find the passenger who has this taxi as a nearest
neighbor, so he will be a possible customer. So far, two kinds of approaches
have been developed to process an NN query: index traverse and region pre-
computation. Most research studies adopt the first approach and use the R-Tree
or Quad-tree to index the moving objects. A typical algorithm is the branch-
and-bound algorithm proposed by Roussopoulos et al. in [18]. This approach
traverses the R-Tree to find the nearest neighbor of the query point in a depth-
first manner. For region pre-computation, the Voronoi graph is a typical method
to find the result of an NN query [7].

3. Aggregate Nearest Neighbor Query: An aggregate nearest neighbor (ANN) query
returns the object that minimizes an aggregate distance function with respect to
a set of query points. Consider, for example, several users at specific locations
(query points) that want to find the restaurant (data point), which leads to the
minimum sum of distances that they have to travel in order to meet. ANN
queries are a natural way to express requests by groups of mobile users who
want to optimize their routes according to an aggregate function applying on the
traveling distances. Apart from the meeting-restaurant example, other application
instances include (1) establishing a meeting station for members of a new church
based on its distances from their homes and (2) selecting the location of a
touristic office based on its distances to attractions in a city. Yiu et al. [22]
solve the ANN queries for objects in spatial networks. They consider alternative
aggregate functions and techniques that utilize Euclidean distance bounds, spatial
access methods, and/or network distance materialization structures.

4. Density Query: Density query [4, 6, 10] involves finding dense areas with high
concentration of moving objects, where the density of moving objects is higher
than the given threshold. Hadjieleftheriou et al. [4] first propose the density
query for moving objects. They define density region as density(R, At) =
minAtN/area(R), where minAtN is the minimum total number of objects
in region R during time interval A¢; area(R) is the area of R. Based on the
definition, they introduced two types of density queries: snapshot density queries
(SDQ) and period density queries (PDQ). In the case of SDQ, users require
information about the dense regions in a specific time, for example, “tell me
the region where the total number of cars is more than 100 at 3 pm.” In the
case of PDQ, users require information about the dense regions within a time
period, for instance, “tell me the region where the total number of cars is always
more than 100 in 10 minutes.” Jensen et al. [6] focus on how to find the dense
regions in a specific time. Similar to the work of [4], they also assume there

76 5 Moving Objects Basic Querying

are a lot of moving objects in a Euclidean space and these objects move in a
linear manner. The difference is that they can avoid the answer loss. Both studies
assume the objects to be moving in a freestyle and thereby define the density
query in Euclidean space. However, efficient dynamic density query in spatial
networks is more crucial for many real-life applications.

5.2.2 Based on Temporal Predicates

There are three kinds of different temporal predicates in moving objects queries.
Accordingly, the queries can be classified to three classes: historical, current, and
future query. There are different indexes supporting the different queries. In the case
of range query, historical indexes such as TB-tree [16] can support range queries for
historical data; current indexes such as LUR-tree [8], which is based on R-Tree, can
support queries for current locations; future indexes can answer future range queries
by predicting the location of moving objects for a limited time period and the query
result precision is determined by the prediction model. For historical queries and
current queries, the processes are relatively simple; but in the case of future queries,
the process is more complex because the future location needs to be predicted. There
are two typical approaches for future queries: space transformation technology in
multidimension space, such as STRIPES [13] and expanding approach such as the
TPR-tree, TPR*-tree, and B*-tree. The transformation approach divides space into
non-overlapping parts and transfers the trajectory in (d — 1) dimension into points
in 2-dimensional space. The expanding approach can be divided into two forms:
query range expanding and MBR expanding, which is more widely used than the
transformation approach.

5.2.3 Based on Moving Spaces

Moving objects queries can be divided into queries in Euclidean spaces and
in spatial networks. Most of the existing studies focus on query processing in
Euclidean spaces. For query processing in spatial networks, the distance metric is
different from the Euclidean distance, and so the method used in Euclidean spaces
cannot be used in spatial networks. There are two main differences: “nearest” refers
not to the nearby location but the smallest network distance; the distance between
objects is not determined by locations of objects but the connection of network.
There are three kinds of approaches for query processing in spatial networks:
(1) combining the tree traversing with route searching, (2) applying the multi-
pass shortest path algorithm to the network distance computations that starts from
a single source to all destinations, and (3) transforming the spatial network to
hyperspace and using the Euclidean measurement method. The main idea in these
approaches is filtering out the unnecessary objects using some space partitioning

5.3 Point Queries 77

methods to reduce shortest path computation and then refine the candidate set by
network distance to get the final results. The disk-based network representation
method [3] can support NN queries, range queries, and closet pair queries by
combining spatial network connections and Euclidean location information. The
ANN queries in spatial networks can be processed by using the boundary prop-
erties of Euclidean distances, spatial data access method, and network distance
materialization technology [22]. In [23], the authors use graph theory and query
result materialization technology to reduce the network expansion in the Dijkstra
algorithm and improve the efficiency of processing RNN queries.

5.3 Point Queries

Given a moving object’s trajectory, it is fundamentally important to query its
position in both temporal and spatial dimensions in many scenarios such as fleet
management, air traffic control. As introduced in Chap.2, Wolfson first proposed
a model to query a point’s position on a given trajectory. Based on different data
models, researchers introduced several approaches for querying a point on the
trajectory. In general, the point query involves interpolation between sampling
points. As a result, the accuracy is heavily influenced by the representation of
trajectory. The initial research works take the trajectory between sampling points as
linear. However, in many cases, the objects movements are constrained by underling
transportation networks. For example a bus may move along a specific route. So, the
interaction between the moving object and the underling transportation networks
should be taken into count for the query. For better indexing, the temporal aspect
of moving object is related to the transport network on which interpolation is
implemented.

As is known well, a representation of moving-point trajectories is inherently
imprecise: imprecision is introduced by the measurement process used in the sam-
pling of positions and by the sampling approach itself, therefore these uncertainties
and the subsequent imprecisions should be taken into account when process the
data within the trajectory. Pfoser and Jensen [14] consider the inherent uncertainty
and imprecision within the sample data about the positions of the moving-point
objects by quantifying the error and uncertainty of these samples in their modular
presentation. Then the positions in-between the sampled positions of objects are
obtained to help trace the complete trajectory and deal with trajectory queries with
probability. Mokhtar and Su [9] use a vector of uniform stochastic processes to
model the uncertain trajectories of moving objects, so as to increase the accuracy of
the queries.

Although lots of methods in machine learning exist for prediction, to predict
the future locations of the objects effectively and fast can be a challenge. Recent
studies show that using new data structures can be a potential solution for this. Tao
et al. [21] integrate novel insertion and deletion algorithms to propose the TPR*-
tree algorithm, which is based on the mainstream practical method TPR-tree and

78 5 Moving Objects Basic Querying

can be nearly optimal when calculating the future queries. Pfoser and Jensen [15]
convert the three-dimensional (x, y,t) trajectory data into two-dimensional (x, ¢)
by reducing the movements to occur in one spatial dimension for processing the
data. Given the right circumstances, their method performs more efficient than
using a three-dimensional index method. Song and Roussopoulos [20] transform the
history records of the objects into points and then use SEB-tree to store the history
records of one zone. Experiments show this new indexing structure can accelerate
the interpolation queries compared to other counterparts.

5.4 NN Queries

Given a source point g and an entity dataset S, a kNN query retrieves the k (>1)
objects of S closest to g according to the network distance (e.g., “find the hotel
within the shortest driving distance”). This section presents two algorithms for
nearest neighbor queries, based on the Euclidean restriction and network expansion
frameworks. Euclidean restriction takes advantage of the Euclidean lower-bound
property to prune the search space. On the other hand, the network expansion
framework performs query processing directly on the network [11].

5.4.1 Incremental Euclidean Restriction

The Incremental Euclidean Restriction (IER) algorithm applies the multi-step kNN
methodology [2, 19], traditionally used for high-dimensional similarity retrieval.
Specifically, assuming that only one NN is required, IER first retrieves the Euclidean
nearest neighbor pg; of g, using an incremental NN algorithm (e.g., [5]) on the
entity R-Tree of S. Then, the network distance dy(q, pg1) of pgi is computed.
Owing to the Euclidean lower-bound property, objects closer (to ¢) than pg; in the
network should be within Euclidean distance dg,,qx = dy(q, pE1) fromg, i.e., they
should lie in the shaded area of Fig. 5.2a. In Fig. 5.2b, the second Euclidean NN pg»
is then retrieved (within the dg,, range). Since dy(q, pe2) < dn(q, PE1), PE2
becomes the current NN and d g4, is updated to dy (¢, pg2), after which the search
region (for potential results) becomes smaller (the shaded area in Fig. 5.2b). Since
the next Euclidean NN p g3 falls outside the search region, the algorithm terminates
with pg» as the final result.

The extension to k nearest neighbors is straightforward. The k Euclidean NN’
are first obtained using the entity R-Tree, sorted in ascending order of their network
distance to ¢, and d g, is set to the distance of the kth point. Similar to the single
NN case, the subsequent Euclidean neighbors are retrieved incrementally, while
maintaining the k (network) NNs and d g, (except that d g, equals the network
distance of the kth neighbor), until the Euclidean distance of the next Euclidean NN
is larger than dg,,,y. Algorithm 9 illustrates the pseudo-code of IER.

5.4 NN Queries 79

dﬁmaxzdrV' (q’ PI'2)

Fig. 5.2 Finding the NN pg,. (a) First Euclidean NN. (b) Second Euclidean NN

Algorithm 9: IER (¢, k)

input : g is the query point, k is the number of query results
output: k nearest neighbors to ¢
{p1,..., pr}=Buclidean_NN(q, k);
for each entity p; do
| dn(q. pi) = compute_ND(q, p;);
end
sort py, ..., px in ascending order of dy (g, p;);
dEmax = dN (q’ pk);
while di(q, p) < dgmax do
(p, dg (g, p))=next_Euclidean_NN(q);
ifdy(q, p) <dn(g, pi) then
insert pin {py,..., px};
dEmax = dN(qv pk);
end

end

5.4.2 Incremental Network Expansion

IER (and the Euclidean restriction framework in general) is more effective if the
ranking of the data points by their Euclidean distance is similar to that with respect
to the network distance. Otherwise, a large number of Euclidean NNs may be
inspected before the network NN is found. Figure 5.3 shows an example where
the black points represent the nodes in the modeling graph and rectangles denote
entities. The nearest entity to the query g (white point) is ps. The subscripts of
the entities (pi, pa2, ..., ps) are in ascending order of their Euclidean distance to
q. Since ps has the largest Euclidean distance, it will be examined after all other
entities, i.e., p;—ps, correspond to false hits, for which the network distance
computations are redundant.

80 5 Moving Objects Basic Querying

Fig. 5.3 Finding the NN ps

To remedy this problem, the incremental network expansion (INE) algorithm
performs network expansion (starting from ¢) and examines entities in the order
they are encountered. Specifically, INE first locates the segment n 71, that covers ¢
and retrieves all entities on n n,. Since no point is covered by nn,, the node (n;)
closest to the query is expanded (while the second endpoint n, of n;n, is placed
in a queue Q). No data point is found in n;n7 and n7 is inserted to Q = <(n,,5),
(n7,12)>. The expansion of n, reaches n4 and n3, after which Q = <(n4,7), (n3,9),
(n7,12)> and point ps is discovered on n,n4 (while no point is found on nyn;3).
The distance dy (¢, ps) = 6 provides a bound d ;4 to restrict the search space. The
algorithm terminates now since the next entry 74 in Q has larger distance (i.e., 7)
than dy .. Algorithm 10 shows the pseudo-code of INE.

Algorithm 10: INE (¢, k)

input : ¢ is the query point, & is the number of query results
output: k nearest neighbors to ¢
ninj = find_segment(q);
Scover = find_entities(nin;);
{p1...., pr} = the k (network) nearest entities in S.,y., sorted in ascending order of their
network distance;
deax = dN (q’ pk);
0 =< (n;,dy(q.n:)), (nj,dy(g,n;)) >;
de-queue the node n in Q with the smallest dy (¢, n);
while dN(q, l’l) < deax do
for each non-visited adjacent node n, of n do
Secover = find_entities(nyn);
update {plv CERE) Pk} from {plv e pk} U S('over;
Anmax = dN(qv pk);
en-queue (1, dy(q,ny));
end
de-queue the next node n in Q;
end

5.5 Range Queries 81
5.5 Range Queries

Given a source point ¢, a value e, and a spatial dataset S, a range query retrieves
all objects of S that are within the network distance e from ¢. This section applies
the Euclidean restriction and network expansion paradigms for processing such
queries [11].

5.5.1 Range Euclidean Restriction

The Range Euclidean Restriction (RER) method first performs a range query at the
entity dataset and returns the set of objects S’ within (Euclidean) distance e from
q. Assuming the Euclidean lower-bound property, S’ is guaranteed to avoid false
misses (i.e., dy (¢, p) < e = dg(gq, p) < e), but it may contain a large number of
false hits. In order to reduce the number of network distance computations, RER
performs network expansion only once, examining all segments within network
distance e from ¢. Points of S’ that fall on some segment are removed from S’
and returned to the user. The process terminates when all the segments in the range
are exhausted, or when S’ becomes empty. Algorithm 11 illustrates the pseudo-code
of the algorithm. S’ contains the results of the Euclidean range query sorted on some
dimension. When a new segment is encountered, the sorted list is used to efficiently
check if any point falls inside its MBR (filter step). Such points are then compared
with the polyline representation of the segment to determine whether they belong

Algorithm 11: RER (q, e)

input : g is the query point, e is the network distance threshold
output: objects of S that are within network distance e from ¢
result = @;
S’ = Euclidean-range(q, e);
ninj = find_segment(q);
Q =< (nide(qvn]))’ (n]ﬁdN(qvnj)) >3
de-queue the node n in Q with the smallest dy (¢, n);
while dy (¢, n) < eand S’ # @ do
for each non-visited adjacent node n, of n do
for each point s of S’ do
if check_entity(nyn,s) then
result = result | J{s};
S =8 —{s};
end
end
en-queue(n,, dy(q,ny));

end
de-queue the next node n in Q;

end

82 5 Moving Objects Basic Querying

ns a ns
S

i E, I Root
E; 3 @ E | E
) o E, S E,

i f Ey |
B —~ L[[][]

L 1y ny

g o———

Fig. 5.4 An example of RNE. (a) Network and objects. (b) The object R-tree

to the actual result (refinement step). Part of some segments at the boundary may
exceed the query threshold e, but these segments must be considered nonetheless
since they may contain data points that satisfy the query.

5.5.2 Range Network Expansion

The Range Network Expansion (RNE) algorithm first computes the set QS of
qualifying segments within network range e from g and then retrieves the data
entities falling on these segments. The methodology is similar to INE, but now
numerous queries, one for each qualifying segment, are performed simultaneously.
To illustrate RNE, assume that QS contains the segments shown in Fig.5.4a.
Starting from the root of the object R-Tree, RNE visits nodes that intersect the
MBR of at least one segment in Q.S. Figure 5.4b illustrates the visited nodes and
the qualifying objects in gray.

In order to avoid joining the entire Q.S (which may be large) with every entry,
we perform the following optimization. QS is divided into (possibly overlapping)
sets QS;, one for each entry E; in the current R-Tree node. A segment is assigned
to all entries that intersect its MBR. When the children of E; are visited, they
are only compared against QS;. Thus, as RNE descends the tree, the number of
comparisons performed for each entry is reduced. In Fig. 5.4, the set of qualifying
segments QS =0, while for E,, OS, consists of all segments except nn4 and
nsng. Similarly, QSs={n,n»,nons,nne} and Q Se=1{nyny, none,nsn7}. When the
node of Es5(Es) is visited, its points will only be checked against the segments of
085(05Ss).

An object can be reported more than once if it lies at the intersections of the
segments in Q.S. Such duplicates are easy to remove, by sorting the results at each
leaf node before reporting them. RNE is I/O optimal (since it only accesses R-Tree
nodes that overlap some qualifying segment, and therefore, may contain results).

5.6 Summary 83

The pseudo-code of RNE is presented in Algorithm 12. The initial parameters of
the algorithm are root of R-tree S, QS, @. To reduce the number of intersection
tests, at lines 2 and 7, we apply a plane sweep algorithm [1].

Algorithm 12: RNE (node_id, QS,result)

input : id of a node; segments within network range e from ¢ in entry of node_id; result
set

if node_id is an intermediate node then
compute QS; for each entry E; in node_id;
for each entry E; in node_id do

if 0S; # (then

| RND(E;.node_id, QS;, result);

end

end

else

result, 4. iq = plane-sweep(node_id.entries, QS;);
sort resultyoq._ia to remove duplicates;

result = result \Jresultyoqe ia;

end

An alternative is to use the methodology suggested in [12]. In particular, the
MBR of all segments in QS is applied as a range query to the object R-Tree. When
a leaf node is reached, its contents are joined with Q S, using plane sweep. This
technique performs a simple intersection test at each visited R-Tree node; however,
if the network range is large and irregular, it may visit numerous tree nodes that do
not overlap any qualifying segment (e.g., E; in Fig.5.4). Finally, if Q.S does not
fit in memory, the join is performed in a block-nested loops fashion, i.e., RNE is
repeatedly applied for subsets of QS that fit in memory and the partial results are
materialized. Another approach is to compute all qualifying segments, materialize
them, and join them with the object R-Tree using one of the spatial join algorithms
that are applicable in the presence of a single tree [17].

5.6 Summary

In this chapter, we introduce the query types for moving objects, such as the
NN, range, and density query. We also discuss how to process range and NN
queries in a spatial network, based on the Euclidean restriction and network
expansion frameworks, covering the most common processing tasks. This provides
an introduction to several interesting and practical directions for moving objects

querying.

84 5 Moving Objects Basic Querying
References
1. Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter JS (1998) Scalable sweeping-based spatial

10.

11.

12.

13.

14.

15.

16.

17.

18.

join. In: Proceedings of the 24th international conference on very large data bases (VLDB
1998), New York City, pp 570-581

. Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-

series databases. In: Proceedings of the 1994 ACM SIGMOD international conference on
management of data (SIGMOD 1994), Minneapolis, pp 419429

. Giiting R, Bohlen M, Erwig M, Jensen C, Lorentzos N, Schneider M, Vazirgiannis M (2000)

A foundation for representing and querying moving objects. ACM Trans Database Syst
25(1):1-24

. Hadjieleftheriou M, Kollios G, Gunopulos D, Tsotras VJ (2003) On-line discovery of dense

areas in spatio-temporal databases. In: Proceedings of the 8th international symposium on
advances in spatial and temporal databases (SSTD 2003), Santorini Island, pp 306-324

. Hjaltason G, Samet H (1999) Distance browsing in spatial databases. ACM Trans Database

Syst 24(2):265-318

. Jensen CS, Lin D, Ooi BC, Zhang R (2006) Effective density queries on continuously moving

objects. In: Proceedings of the 22nd international conference on data engineering (ICDE 2006),
Atlanta, p 71

. Kolahdouzan M, Shahabi C (2004) Voronoi-based K nearest neighbor search for spatial

network databases. In: Proceedings of the 30th international conference on very large data
bases (VLDB 2004), Toronto, pp 840-851

. Kwon D, Lee SL, Lee S (2002) Indexing the current positions of moving objects using the lazy

update R-tree. In: Proceedings of the 3rd international conference on mobile data management
(MDM 2003), Singapore, pp 113-120

. Mokhtar H, Su J (2004) Universal trajectory queries for moving object databases. In:

Proceedings of the 2004 IEEE international conference on mobile data management (MDM
2004), Berkeley, pp 133-144

Ni J, Ravishankar CV (2007) Pointwise-dense region queries in spatio-temporal databases. In:
Proceedings of the 23rd international conference on data engineering (ICDE 2007), Istanbul,
pp 1066-1075

Papadias D, Zhang J, Mamoulis N, Tao Y (2003) Query processing in spatial network
databases. In: Proceedings of the 29th international conference on very large data bases (VLDB
2003), Berlin, pp 790-801

Papadopoulos A, Rigaux P, Scholl MA (1999) Performance evaluation of spatial join pro-
cessing strategies. In: Proceedings of the 6th international symposium on advances in spatial
databases (SSD 1999), Hong Kong, pp 286-307

Patel JM, Chen Y, Chakka VP (2004) STRIPES: an efficient index for predicted trajectories.
In: Proceedings of the 2004 ACM SIGMOD international conference on management of data
(SIGMOD 2004), Paris, pp 637-646

Pfoser D, Jensen CS (1999) Capturing the uncertainty of moving-object representations, In:
Proceedings of the 6th international symposium of SSD 1999, Hong Kong, pp 111-131
Pfoser D, Jensen CS (2003) Indexing of network constrained moving objects. In: Proceedings
of the 11th ACM international symposium on advances in geographic information systems
(GIS 2003), New Orleans, pp 25-32

Pfoser D, Jensen CS, Theodoridis Y (2000) Novel approaches in query processing for moving
object trajectories. In: Proceedings of the 26th international conference on very large data bases
(VLDB 2000), Cairo, pp 395-406

Rigaux P, Scholl M, Voisard A (2002) Spatial databases: with application to GIS. Morgan
Kaufmann, San Francisco

Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. In: Proceedings of the
1995 ACM SIGMOD international conference on management of data (SIGMOD 1995), San
Jose, pp 71-79

References 85

19. Seidl T, Kriegel H (1998) Optimal multi-step K-nearest neighbor search. In: Proceedings of
the 1998 ACM SIGMOD international conference on management of data (SIGMOD 1998),
Seattle, pp 154-165

20. Song Z, Roussopoulos N (2003) SEB-tree an approach to index continuously moving objects.
In: Proceedings of the 4th MDM conference, Melbourne, pp 340-344

21. Tao Y, Papadias D, Sun J, The TPR*-tree: an optimized spatio-temporal access method for
predictive queries. In: Proceedings of the 29th VLDB conference, Berlin, pp 790-801

22. Yiu ML, Mamoulis N, Papadias D (2005) Aggregate nearest neighbor queries in road networks.
IEEE Trans Knowl Data Eng 17(6):820-833

23. Yiu ML, Papadias D, Mamoulis N, Tao Y (2006) Reverse nearest neighbors in large graphs.
IEEE Trans Knowl Data Eng 18(4):540-553

Chapter 6
Moving Objects Advanced Querying

Abstract So far, we have introduced the basic querying for moving objects. There
are still some advanced querying for moving objects. It is more difficult to deal
with these queries. In this chapter, we introduce a few advanced queries, especially
similar trajectory queries and density queries for moving objects. The goal of similar
trajectory queries is to find the moving patterns in the trajectories of moving objects,
while density queries are to efficiently find dense areas with high concentration of
moving objects. We will discuss how to process both the snapshot and continuous
density queries in this chapter.

Keywords Spatio-temporal query ¢ Density query e Similar trajectory
query * Convoy query ¢ Spatial network ¢ Moving object databases

6.1 Introduction

Recently, many location sensors such as GPS have been developed, and we can
obtain the trajectory of users and moving objects using these sensors. Trajectory
data are widely used in location-aware systems, transportation navigation systems,
and other location-based information systems. These applications have stored within
them several trajectories, and these trajectories may include useful individual
patterns of each user. For example, by analyzing trajectories of users who work
in a building, we can find passages, rooms, stairs, and other facilities that are
used frequently. The result of the analysis can be used for the management and
maintenance of the buildings. In the case of a navigation system, a driver can
check the route to a city by referring to the trajectories of other users who have
driven to the city earlier. In another case, we can study movement characteristics
to improve performance in a sport by analyzing the motion data measured by the
sensors attached to the bodies of top sport players. Thus, similar trajectory queries
are produced to find the moving patterns embedded in the trajectories.

X. Meng et al., Moving Objects Management: Models, Techniques 87
and Applications, DOI 10.1007/978-3-642-38276-5_6,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

88 6 Moving Objects Advanced Querying

Fig. 6.1 Density query

The distance-based queries such as range queries or NN queries that are defined
using the distance between the trajectory of a moving object and an indicated point
in a space are useful in location management of moving objects. However, these
queries do not have enough power to analyze the pattern of the objects’ motion.
As mentioned above, because we are interested in the extraction of the individual
moving patterns of each object from the trajectories, it is necessary to develop
more powerful tools to analyze the trajectories. The similar sequence matching has
been studied for many years [1,2,4, 13, 15, 25], but the traditional techniques for
data sequence including distance function and index cannot be used in the case
of the trajectories of moving objects. In this chapter, we present a data model for
trajectories of mobile data and a similar trajectory query based on the distance
between two trajectories by extending the similarity used in the time series database
systems.

Density queries are another type of important queries for moving objects. The
objective is to efficiently find dense areas with high concentration of moving objects.
Density queries can be used in traffic management systems to identify and predict
the congested areas or traffic jams. For example, the transportation bureau may
monitor the dense regions periodically in order to identify traffic jams. An instance
of density query is shown in Fig. 6.1. The lines depict the road network, points
indicate moving objects, and the dense regions are marked in different colors.

6.2 Similar Trajectory Queries for Moving Objects 89

Existing studies on density queries [14, 16] assume the objects to be moving
in a freestyle and define the density query in the Euclidean space. In this setting,
it is difficult to efficiently answer the general density-based queries. The focus is
hence turned to simplified queries [14] or specialized density queries without answer
loss [16]. These methods use the grid to partition the data space into disjoint cells
and report the dense regions with the fixed size. However, the real dense areas may
be larger or smaller than the fixed-size rectangle and appear in different shapes.
Simplifying the dense query to return the area with fixed size and shape cannot
reflect the natural congested area in real-life applications. We focus on density
queries in the road- network setting, where the dense area consists of road segments
containing large number of moving objects and may be formed in any size and
shape. The real congested areas can therefore be obtained by finding the dense
segments. In this chapter, we introduce a cluster-based method for monitoring the
snapshot of dense areas of moving objects in a road network. Then, we discuss how
to continuously monitor dense regions for moving objects. Based on the notion of
safe interval, we propose effective algorithms to evaluate and keep track of dense
regions.

6.2 Similar Trajectory Queries for Moving Objects

Moving object trajectories can be considered as two (X-Y plane)- or three (X-
Y -Z plane)-dimensional time series data. In terms of similarity-based queries, we
are concerned with the movement shape of the trajectories; sequences of sampled
vectors are important in measuring the similarity between two trajectories, and
time component is less important so can be ignored. This separates similarity-
based retrieval from queries in spatio-temporal databases where time components
of trajectories are important to answer time slice or time interval queries [23].
Considerable research has been conducted on similarity-based retrieval on one-
dimensional time series data, such as stock or commodity prices, sales volume,
weather data, and biomedical measurements. However, the distance functions and
indexing methods proposed for one-dimensional time series data cannot be directly
applied to moving object trajectories due to their unique characteristics.

* Trajectories are usually two- or three-dimensional data sequences, and a tra-
jectory dataset often contains trajectories with different lengths. Most of the
earlier proposals on similarity-based time series data retrieval focused on one-
dimensional time series data [1,6, 18,20, 28].

» Trajectories usually have many outliers. Unlike stock, weather, or commodity
price data, trajectories of moving objects are captured by recording the positions
of the objects from time to time (or tracing moving objects from frame to frame
in videos). Thus, due to sensor failures, disturbance signals, or errors in detection
techniques, many outliers may appear. Longest common subsequences (LCSS)
has been applied to address this problem [27]; however, it does not consider

90 6 Moving Objects Advanced Querying

various gaps between similar subsequences, which leads to inaccuracy. The gap
refers to a sub-trajectory between two identified similar components of two
trajectories.

* Similar movement patterns may appear in different regions of trajectories. Dif-
ferent sampling rates of tracking and recording devices combined with different
speeds of the moving objects may introduce local shifts into trajectories (i.e., the
trajectories follow similar paths, but certain sub-paths are shifted in time). Even
though similarity measures, such as dynamic time warping (DTW) [8,17,29] and
edit distance with real penalty (ERP) [7], can be used to measure the similarity
between trajectories with local shifts, they are sensitive to noise.

In order to manage trajectories in database systems, we define a data model of
trajectories as directed lines in a space, and the similarity between trajectories is
defined as the Euclidean distance between directed discrete lines. Our proposed
similarity queries can be used to find useful patterns embedded into the trajectories,
for example, the trajectories of mobile cars in a city may include patterns for
possible traffic jams.

6.2.1 Problem Definition

It is difficult to define the similarity between lines in a space. However, we find
some useful clues through study of time series databases [5, 18, 24]. The time
series database systems can store time series data such as temperature, economic
indicators, population, and wave signals, in addition to supporting queries for
extracting patterns from the time series data. Most of the time series database
systems adopt the Euclidean distance between two time data sequences [18] for
analysis. Since trajectory is a type of time series data, the time series databases can
deal with trajectories efficiently. However, trajectory not only has a time series data
feature but also has a space feature. For example, it is difficult for the time series
database to find data for geographic and spatial queries.

In order to define the similarity between trajectories, it is necessary first to define
the trajectory. Hence, we define the data model for the trajectory of moving objects.

A real-world trajectory is a directed continuous line with a start and an end point
(Fig. 6.2a). Given a two-dimensional space R? and a closed time interval I, = [¢, ']
withz < t/, a trajectory A is defined as follows.

Definition 6.1. A trajectory is the image of a continuous mapping: A : I; — R2.

This definition is a temporal extension of the definition of a simple line described
in [3]. Next, we denote the length of trajectories in R? as Lg and the interval of
trajectories in temporal space as L.

Definition 6.2. The length of trajectory A during a period [ty, ;] is denoted as
Ls (A, [to, t1]) calculated as follows:

6.2 Similar Trajectory Queries for Moving Objects 91

a b ;
Y| 4 Y N
/12 ! .ﬂ,]
*.,.’ \\
s f ¢

f] /’ — IQ; /14
24 é % e ,\/_.__._._—.
¢ te_ I

X X

Fig. 6.2 Trajectory of moving objects. (a) Trajectory in the real world. (b) Trajectory stored in a
database

Ls(A, [to. 11]) = / ! \/(dx/dt)z—i—(dy/dt)zdt,where A() = (x,y) (6.1

The length of the whole trajectory is denoted as Lg(A) = Ls (4, [t,t]).

Definition 6.3. Given that the x = (x, y) is a vector in space R?, the temporal
interval of trajectory A between X; and x; on A is defined as follows:

LT(As [X[,Xj]) = |Z] _ti|sWhere A(l‘l) = Xisk(tj) = stand Zivtj € I/\[th/]
6.2)
Lr(A) =|t'—1] (6.3)

However, a positioning device such as GPS does not continuously measure the
coordinates of a moving object, but samples such data. The measured data are thus
a sequence of coordinates of positions shown in Fig. 6.2b. Hence, we define discrete
trajectory A as a discrete function. Each vector x; represents a position of a moving
object at each time T; = {to, 11, ..., t,} in the space.

Definition 6.4. A discrete trajectory is the image of a discrete mapping: A
Ti — Rz.

A discrete trajectory can be represented as a vector sequence < X1, ..., Xyn >
as well. If T; = {1,2,...,m}, we denote the discrete trajectory A as just a simple
vector sequence < Xp,...,X, >. Additionally, where i(ti) = X;, we introduce
several notations: T; (i) = #;, X;(i) = x;, and [A] is the number of the vectors
included in i(lil = |T;|). Next, we define the distance between two vectors x, X’
in R2.

Definition 6.5. The distance of vectors x, x" is defined as:

D(x,xX) = v (x —x)2 + (y = y')? (6.4)

92 6 Moving Objects Advanced Querying

L Li

Fig. 6.3 Distance between trajectories. (a) EU distance based trajectory similarity. (b) Shape
based trajectory similarity

a b
Val
o |
I
I
I I
M
I I
Lq*»'
I I
| |
Time

Fig. 6.4 Existing kNN approaches. (a) Previous spatial kNN. (b) Previous temporal kNN

6.2.2 Trajectory Similarity

In time series databases, the similarity between two sets of time series data is
typically measured by the Euclidean distance [5, 18], which can be calculated
efficiently. However, there have been few discussions on the similarity between
two lines in space because the previous approaches for spatial queries have focused
on the “distance” between a point and a line [9, 10, 19]. The aim of the previous
approaches is mainly to find objects that pass a point near the indicated point, such as
a car passing through a street. On the other hand, we are concerned with the “shape”
of the trajectory. In order to calculate shape-based similarities among trajectories, it
is necessary to define a new similarity for the trajectories, as shown in Fig. 6.3b.

In general, the similarity query is represented as a kNN query [9, 19]. There are
two types of existing approaches: one is based on spatial similarities, and the other
is based on similarity between two time series data. The example of the existing
spatial kNN query is illustrated in Fig. 6.4a. In this case, the answer is L,L, when
k is 2. On the other hand, the similarity between two time series data is defined

6.2 Similar Trajectory Queries for Moving Objects 93

as the Euclidean distance between two time series, where the length of each is n.
The distance is defined as the Euclidean distance between two n-dimensional vector
data [18] shown in Fig. 6.4b. While this distance of the time series data is based on
shape, the distance is defined only in the case of R! x T(T = [0, oo]), but not in the
case of R” x T, shown in Fig. 6.3b. Since the trajectory has both spatial and temporal
features, we consider three types of similarity queries for trajectories as follows:

* Spatio-temporal similarity: based on a spatio-temporal feature in R?> x T

* Spatial similarity: based on a spatial only feature in R? without temporal
features

+ Temporal similarity: Based on a temporal only feature in R! x T without spatial
features

As mentioned above, the trajectory has a time series data feature. We define
the similarity between two trajectories in the same manner as for the similarity
defined in the time series query [18]. For the time series database, the similarity
of the two time series data, where each has n values, is given by the Euclidean
distance between vectors in R”. In [5] and [18], when there are two time series data,
C =< WiLWa,...,w, >, ¢ =< wj,w,...,w, >, the distance D(c, c’) is defined
as follows:

Die.c') = \Jom =W + o+ (wy — wh)? (6.5)

This definition can be extended if each vector x is a vector in space R?, when the
time series vectors are X =< X;,Xs,...,X, >, X =< X,X>,...,X, >, and
the distance is D(c,c¢’). We define the distance between two time series vectors
D(X, X') by extending the definition of D(c, ¢’), as follows:

DX, X) = VD(x; —X'1)2 + -+ D(x, — X/,)? (6.6)

The defined distance D(X,X’) can be used only in the case where each vector
x € X is measured by the same interval, thatis, At = ;41 — ;i = 1,...,n—1),
where #; is an interval from the time when x; is measured. However, each vector in
the trajectory is not always measured by the same interval At because positioning
devices often lose the data. Therefore, to calculate the; similarity using our definition,
we define a temporal normalized discrete trajectory A, for trajectory A, as follows:

Definition 6.6. Given a trajectory A defined for time interval [fs, 7£] and a natural
number m, the temporal normalized discrete trajectory A ; is defined as follows:

Aar =< Ats), Ats + A1), ..., A(ts + mAt) >, where tg + mAt =t (6.7)

Intuitively, this discrete trajectory A Ar 18 the re-sampled trajectory per fixed
interval Az from A. In other words, A, is generated by dividing A into equal
interval Az. For discrete trajectory A, we can use the piecewise linear approximation
A instead of A.

94 6 Moving Objects Advanced Querying

Subsequence
match

'\
LAY

3 Stored trajectory

0 X O X

Fig. 6.5 Similarity query for trajectories

Definition 6.7. Given two trajectories A and A’ with the same temporal length
(ie., LT(A) = Ly(1)) and a natural number m, the spatio-temporal distance
(similarity) Drs (A, ") between A and A’ is defined as follows:

1 - . . Lr(A) Ly

Drs(A,) = il ZD(X;\A[(l),Xi/m(l))z,where Af = Tng) _ Tng)
i=0

(6.8)

Note that Drg (i,)V) can be defined as Drg ()Nk,)NV). In this definition, the
similarity is the Euclidean distance between trajectories represented as m + 1-
dimensional vectors, and the interval of each trajectory is normalized. Using this
definition, it is possible to find trajectories whose shape is more similar to the query
trajectory than that which can be found using previous methods.

6.2.3 Query Processing

Based on these definitions, we consider the shape-based similarity query for
trajectories. Here, A is the set of discrete trajectories stored in the database, and
each A;(A; € A) is adiscrete trajectory, such as Ai =<X1.Xa2,...,Xpy >.The query
trajectory)k is given as)Lq =< X|,Xp,...,X, >. The shape- based range query can
then be deﬁned using A,)Lq, and the previous defined distance between two time
series vectors, as follows:

Definition 6.8. The process for calculation of the shape-based range query
Orange(8, A4, A) is given in Algorithm 13. The range query is defined as a
subsequence match of trajectories as shown in Fig. 6.5.

6.3 Convoy Queries on Moving Objects 95

Algorithm 13: Q,4ng. (0 : integer, A,)\q) - A,

Input: /i,).tq,Q(Q is a natural number)
Output: /ia,{)'tal, o Aa € Ay
begin]
= |Aq|§ Ay = ¢;
foreach).kl- in A do
for j =1t0|A;|—1 + 1do
iij = subsequence(i,-,j, l);
//This function will return a subsequence of the original sequence)'t[, such as
<Xj,Xj41,'**,Xj4;— >,eachx € i,-;
if D(A,, ;) < 6 then
| Add i,‘j to /ia;
end
end

end

return A,
end

In addition, the nearest neighbor query can be defined using the distance between
trajectories. In our definition, the temporal features are not indicated in the query;
however, we consider that the temporal features can be indicated independently from
the range query. For example, a query “Q,ange (0, Ay, A)A11:00 < T; (1) < 12:
00 involves retrieving subsequences iai where the distance between iq and ia ; 18

less than 8. Moreover, the first vector in ia ; 1s measured within the interval [11:00,
12:00].

6.3 Convoy Queries on Moving Objects

Finding a group of objects that are likely to travel together is meaningful for many
applications. Given a set of objects’ trajectories 0, density constraints m and e, and
a lifetime k, a convoy query retrieves all convoys, each of which has at least m
objects that traveled closely with respect to a distance ¢ during at least k consecutive
time stamps. Discovering convoys in a large database involves a large number of
combinations for processing spatio-temporal join. However, join queries lead to
more expensive computations. This section presents three effective algorithms for
answering the convoy query. One method is based on a solution for finding moving
clusters and modified for the problem of convoy discovery. The other two methods
reduce the number of vertices of original trajectories by using line simplification
algorithms and then find convoys over the simplified trajectories.

96 6 Moving Objects Advanced Querying
6.3.1 Spatial Relations Among Convoy Objects

To address the issue of identifying clusters, density-based notions [12] of clustering
are used to explain the spatial closeness among the convoy objects. The neigh-
borhood of a point p is denoted by N,(p) and is defined by N,(p) = {q €
S|D(p,q) < e}, where S is a given dataset and D(p, q) is a Euclidean distance
between p and q.

A point p is directly density reachable from a point g w.r.t. distance e and
minimum number of points m, if P € N,(g) and |N.q| > m.

A point p is density reachable from a point g w.r.t. e and m, if there is a chain of
points p;, pa,-++, Pu, P1 = ¢, pn = p such that p; 4 is directly density reachable
from p;.

A point p is density connected to a point g w.r.t. e and m, if there is a point x
such that both p and g are density reachable from x w.r.t. e and m.

6.3.2 Coherent Moving Cluster (CMC)

A convoy is necessarily discovered from a sequence of consecutive snapshot clusters
if the number of identical objects among the clusters exceeds a given m. The
algorithm is shown as follows:

1. The verification of moving cluster is done by checking if two snapshot clusters
at two consecutive time stamps have a larger or equal percentage of common

objects to a given threshold 9(|SG+::| > 0), where ¢; and ¢;4+; denote two
adjacent snapshot clusters at time ¢ and ¢ + 1, respectively. Instead of using 6,
CMC modifies the verification process to |¢; N ¢;+1| > m,which is a stricter
constraint of checking identical objects.

2. A moving cluster can be formed as long as only two snapshot clusters satisfy the

6 constraint. Hence, a cluster can be checked if it lasts for at least k& time stamps.

6.3.3 Convoy Over Simplified Trajectory (CoST)

In CoST, trajectories are simplified by using the Douglas-Peucker algorithm
(DP) [11], and then apply a clustering method on simplified trajectory segments
instead of actual points. To avoid false dismissals of incorrect query results produced
by trajectory simplification, a safe bound of errors is determined by providing a
lower bounding lemma. Let O’;, O’; be two simplified trajectories of corresponding
original trajectories Oy, O, respectively. Let D,,(p, q) be the Euclidean distance
from a point p € O; to another g € O, D,,(p’, q’) be the distance between the
corresponding points p’ € O’y to g’ € O’,, and § be a tolerance value for DP. Then:

6.3 Convoy Queries on Moving Objects 97

Fig. 6.6 Adaptive sweep line
processing

n

[N
N
©
—mmmmmm—— A
o
I

j
A

o
Rl

R e B

Lemma 6.1. D,,(p'.q") <26+ D,,(p.q)

The lemma means that distance between two points of simplified trajectories
is bounded by 26+ the Euclidean distance between the corresponding points on
original trajectories. Now, another lemma is established for density clustering over
simplified trajectories. Let /] = {pj, p);} be a trajectory segment on a simplified
trajectory Of and L; = {p;, pi+1.,--, pj} be a polyline during the time interval
[i, j] on the corresponding original trajectory O;. Likewise, let [, = {q,.q,} be
a trajectory segment on O), the corresponding L2 = {q,, qu+1,** »qv} of O,. If
the distance between trajectory segments with the shortest distance is measured as
Fig. 6.7a, the following lemma applies.

Lemma 6.2. If p € L, is density connected to q € L, w.rt. e and m, l] is density
connected to I}, w.rt. 26 + e and m.

Since Dy (I].15) represents any distance between a point pair form /{ and I} as
the shortest one, the points are more likely to be within the range e of clustering. As
aresult, though a cluster ¢’ on simplified trajectories may contain some objects that
do not belong to the corresponding cluster ¢ on original trajectories, it never misses
any objects of ¢ on ¢’. This guarantees no false dismissal for query answers.

The procedure of query processing is as follows: the clustering computation is
skipped until the total number of objects is found. Consider Fig. 6.6 that describes
three simplified trajectories. Let S; be a set of trajectory segments found until the
sweep line s arrives at time . When s = 2, /{ is found and /] is detected at s = 3. So
far, only two objects O and O} are found, so this sweeping process goes on until O}
is found at s = 4. Now the clustering method is applied on Sy = {I{, 15,1}, 1}, 1. 15}.
The same process is repeated until the end of time stamps. This query processing
scheme achieves high efficiency of the convoy discovery by performing the convoy
validation between two consecutive clusters.

98 6 Moving Objects Advanced Querying

a
I P4
p1 1
\
\
\\ P
| Dyy (hih)
S e ———— Qs 6—o—= 305
h

Fig. 6.7 Different distance measures of trajectory segments

6.3.4 Spatio-Temporal Extension (CoST%)

Though the CoST method does not have a false negative by bounding errors, it
may report some false positives which need further refinement steps of the query
processing. Due to the expensive computational cost of the refinement step, the error
bound is tighten to reduce the number of false positives by applying a different
line simplification method and another distance measure of trajectory segments.
Unlike the original DP algorithm using perpendicular distance, its spatio-temporal
extension in [21], say DP*, considers the ratio of time. This fact brings a less
reduction ratio of vertices on original trajectories, since the perpendicular distance
for approximation is the shortest distance. Thus, query processing needs to perform
clustering more often, which involves lower efficiency.

On the other hand, DP* may bring stronger filtering power for query processing
by larger distance measures of trajectory segments. Because DP* computes the ratio
of time when it approximates trajectories, an omitted point after the simplification is
trackable by the combination of a liner interpolation and §. In Fig. 6.7b, for example,
p3 was inside the gray circle having d radius before applying DP* method. Hence,
the distance between the trajectory segments can be measured by Dy, * (L}, L)) =
D,,(p3.q3), which is larger than D (L, L)) in Fig.6.7a. Such larger distances
have higher probabilities to be out of the range for clustering, thus this approach
produces less numbers of false positives.

For query processing, an enhanced method, called CoST*, is developed to
replace two components of the CoST method. (1) It applies DP* for the trajectory
simplification. (2) DLL* is used for the distance measure of the density clustering,
instead of D ;. CoST* produces less numbers of false positives by the close-fitting
error bound, thus it brings higher efficiency of the discovery process.

6.4 Density Queries for Moving Objects in Spatial Networks 99
6.4 Density Queries for Moving Objects in Spatial Networks

The issue of density queries for moving objects was first proposed in [14]. The
objective is to find regions in space and time with the density higher than a given
threshold. In paper [14], the authors find the general density-based queries difficult
to be answered efficiently and hence turn to simplified queries. Specifically, they
partition the data space into disjoint cells and simplified density query report cells,
instead of arbitrary regions that satisfy the query conditions. This scheme may
result in answer loss. To solve this problem, Jensen et al. [16] define an effective
density query to guarantee that there is no answer loss. Both studies assume the
objects to be moving in a freestyle and define the density query in Euclidean space.
However, efficient dynamic density query in spatial networks is more crucial for
many applications. Consider this real-world example: in the case of queries related
to vehicle distribution in the road network, users would like to know real-time traffic
density distribution. Clearly, in this case the Euclidean density query methods are
inapplicable, since the path between two cars is restricted by the underlying road
network. Additionally, these existing query methods cannot reflect the natural dense
area in a road network since they simplify the density query to return the area with
fixed size and shape. Grid-based algorithms also ignore the network constraint and
result in inaccurate query results. It is natural to represent the dense area in a road
network as road segments containing large number of moving objects. Considering
the feature of road networks, we will introduce a cluster-based density querying
algorithm.

6.4.1 Problem Definition

As the result of density queries in the road network is a set of dense segments, we
first introduce the concepts of density and dense segment.

Definition 6.9. The density of a road segment s is represented as density(s) =
N/len(s), where N is the number of objects on s and len(s) is the length of s.

Definition 6.10. The road segment s is a dense segment (DS) if and only if
density(s) > p, where p is a user-defined density parameter.

A straightforward method to process the query is to traverse all objects moving
on a road network to compute dense regions by their number, the length of the
segment, and a given density threshold. Figure 6.8 shows a density query in a road
network. Obviously, the cost is very high and it is difficult to obtain effective results.
Specifically, the following three issues are likely to be encountered in the case of the
query results:

1. Different DS may be overlapped, such as Case 1 in Fig. 6.8.

100 6 Moving Objects Advanced Querying

Fig. 6.8 An example of

. Case3 () @
density query !

gl Case |

biss sees bessre

| oo

{Case 2

2. The distribution of moving objects may be very skewed in some DS, i.e., the
distribution of objects is dense in one part of a DS, but it is sparse in another part,
such as Case 2 in Fig. 6.8.

3. Some DS may contain very few objects, such as Case 3 in Fig. 6.8.

Such query results are less useful. Thus, we define an effective density query in
aroad network to find the useful dense regions with a high concentration of objects
and symmetrical distribution of objects as well as no overlaps.

Definition 6.11. Given density parameter p, effective road-network density query
(e-RNDQ) aims to find all dense segments that satisfy the following conditions:

1. Any dense segment set cannot be intersecting (namely, no overlaps).

2. In each dense segment set, the distance between any neighboring object is not
more than a given distance threshold 8.

. The length of dense segments is not less than a given length threshold L.

4. Any dense segment containing moving objects is in the query result set.

W

The first condition ensures that the result is not redundant. It avoids the Case 1 in
Fig. 6.8. The second condition guarantees that objects are symmetrically distributed
in a dense segment set. The third condition provides the restriction that there are
no small segments that only contain few objects in the result. The fourth condition
ensures that query results do not suffer from answer loss.

6.4.2 Cluster-Based Query Preprocessing

To reduce the cost of clustering maintenance, we introduce the definition of cluster
unit (CU). A cluster unit is a group of moving objects close to each other at present
and near-future time. The cluster unit will be incrementally maintained according to
the moving objects within it. Specifically, we constrain the objects in a cluster unit
moving in the same direction and on the same segment. For keeping the objects in
a cluster unit dense enough, the network distance between each pair of neighboring
objects in a cluster unit should not exceed a system threshold €. As mentioned

6.4 Density Queries for Moving Objects in Spatial Networks 101

earlier, we assume that objects move in a piecewise linear manner and the next
segment to move is known in advance. Formally, a cluster unit is defined as follows:

Definition 6.12. A cluster unit is represented by (O,n,,np, head, tail,
ObjNum), where O is a list of objects {01,02,...,0;,...,0,}, 0; =(0id;, ng,
ny, pos;, speed;, next_node;), where pos; is the relative location to n,, speed;
is the moving speed, and (n;,next_node) is the next segment to move. Without
loss of generality, assuming pos, < pos, < ... < pos,, it must satisfy
|pos; 1 —pos;| < € (1 <i < n—1). Since all objects are on the same segment
(ng, nyp), the position of the CU is determined by an interval (kead, tail) in terms of
the network distance from n,. Thus, the length of the CU is |tail — head|. ObjNum
is the number of objects in the CU.

Initially, based on the definition, a set of CUs are created by traversing all
segments in the network and their associated objects. The CUs are incrementally
maintained after their creation. As time elapses, the distance between adjacent
objects in a CU may exceed €. Thus, we need to split the CU. A CU may also merge
with its adjacent CUs when they are within the distance of €. Hence, for each CU,
we predict the time when they may split or merge. The predicted split and merge
events are then inserted into an event queue. Subsequently, when the first event in
the queue takes place, we process it and update the affected CUs. This process is
continuously repeated. The key challenges are: (1) how to predict split/merge time
of a CU and (2) how to process a split/merge event of a CU.

The split of a CU may occur in two cases. The first one is when the CU arrives
at the end of the segment (i.e., an intersection node of the road network). When the
moving objects in a CU reach an intersection node, the CU has to be split since they
may head in different directions. Split time refers to the time when the first object
in the CU arrives at the node. In the second case, the split of a CU occurs when
the distance between some neighboring objects moving on the segment exceeds €.
However, it is not easy to predict the split time since the neighborhood of objects
changes over time. Therefore, the main task is to dynamically maintain the order of
objects on the segment. We compute the earliest time instance when two adjacent
objects in the CU meet at f,,,. We then compare the maximum distance between
each pair of adjacent objects with € until #,,. If this distance exceeds € at some time,
the process stops and the earliest time exceeding € is recorded as the split time of
CU. Otherwise, we update the order of objects starting from #,, and repeat the same
process until some distance exceeds € or one of the objects arrives at the end of
the segment. When the velocity of an object changes over the segment, we need to
re-predict the split and merge time of the CU.

To reduce the processing cost of splitting at the end of segment, we propose the
group split scheme. When the first object leaves the segment, we split the original
CU into several new CUs according to the objects’ directions (which can be implied
by next_node). On the one hand, we compute a fo-be-expired time (i.e., the time
until the departure from the segment) for each object in the original CU and retain
the CU until the last object leaves the segment. On the other hand, we attach a

102 6 Moving Objects Advanced Querying

to-be-valid time (with the same value as the to-be-expired time) for each object in
the new CUs. Only valid objects will be considered while constructing CUs.

The merge of CUs may occur when adjacent CUs in a segment are moving
together (i.e., their network distance < ¢). To predict the initial merge time of CUs,
we dynamically maintain the boundary objects of each CU and their validity time
(the period when they are treated as boundary of the CU) and compare the minimum
distance between the boundary objects of two CUs with the threshold € at their
validity time. The boundary objects of CUs can be obtained by maintaining the
order of objects during computation of the split time.

The processing of the merge event is similar to the split event on the segment. We
get the merge event and time from the event queue to merge the CUs into one CU and
compute the split time and merge time of the merged CU. Finally, the corresponding
affected CUs in the event queue are updated.

Besides the split and merge of CUs, new objects may come into the network or
existing objects may leave. For a new object, we locate all CUs of the same segment
that the object enters and check whether the new object can join any CU according
to the CU definition. If the object can join some CU, its split and merge events are
updated. If no such CUs are found, a new CU for the object is created and the merge
event is computed. For a leaving object, we update the split and merge events of its
original CU if necessary.

6.4.3 Density Query Processing

Based on the dynamic CUs, density queries at any time point can be processed
efficiently to return dense areas in the road networks. The dense segment we defined
in Sect. 6.4.1 is represented as (CU, n,, np, startpos, endpos, len, N'), where CU is
the set of cluster units on segment (14, 1), startpos is the start position of the DS,
endpos is the end position of the DS, len is the length of DS, and N is the number of
objects. To obtain the effective dense areas restricted in the e-RNDQ, we introduce
the parameter § to DS.

Definition 6.13. A DS is §-DS if and only if the distance between any adjacent
CUs is not more than § (this guarantees that the distance between any two adjacent
objects satisfies Distance(0;,0;+1) < §8) and density is not less than p. (For
convenience, we abbreviate the term §-DS to DS in the rest of this chapter.)

In fact, § is a user-defined parameter of the density query and € is a system
parameter to maintain the CUs. Since the distance of adjacent objects is not more
than € in a CU, in order to retrieve dense areas based on CUs, we require € <
maxi{é, %}. In the road network, a dense area is represented as a dense segment
set, which may contain several DSs in different segments. Therefore, we leverage
network nodes to optimize the combination of these DSs.

6.4 Density Queries for Moving Objects in Spatial Networks 103

Definition 6.14. In each DS, n, is §-cluster node (§-C N') of the DS if and only if
| startpos-n, |< 8; np is §-C N of the DS if and only if | endpos-n;, | < 6.

Definition 6.15. A dense segment set (DSS) consists of different DSs where the
distance between adjacent DSs is not more than §, the total length of DSs in the
DSS is not less than L, and the density in the DSS is not less than p.

Actually, DSS may contain DSs located in different segments where DSs are
joined by 6-C N. DSS constitutes the road-network density query results. Suppose
the density query parameter is given as (p, 8, L, #,), where ¢, is the query time. For
query processing based on CUs, our algorithm includes two steps:

1. The filtering step: Merge CUs into DSs by checking the parameters p and 4,
which can prune some unnecessary segments. In this step, we can obtain a series
of dense segments, specifically, a list of DSs and §-C Ns.

2. The refinement step: Merge the adjacent DSs around 6-C N's to construct the
DSS by checking the parameters p, §, L and finally find out the effective density
query result consisting of dense segment sets.

Algorithm 14: Filter(p, 8,t,)

Input: density threshold p, query time ¢,

begin

foreach e(n,,n,) of edgeList do

if e.cuList # null then

create a new DS: ds;

cu < getFirstCU(e);

ds.addCU(cu); ds.startpos = cu.pos;,

if ds.startpos < § then

| ds.putCN(n.); 8-CN [n.].putDS(ds);

end

while getNextCU(e) # null do

nextcu <— getNextCU (e);

if Dd(ds, nextcu) > § or

Dens(ds, nextcu) < p then
ds.endpos = cu.pos + cu.len; e.addDS(ds);
create a new DS: ds;
ds.startpos = nextcu.pos;

end

ds.addCU (nextcu); cu = nextcu,

end
ds.endpos = cu.pos + cu.len;
if 1 — ds.endpos < § then
| ds.putCN(ny); 6-CN [n,].putDS(ds);
end
e.addDS(ds);

end

end
end

104 6 Moving Objects Advanced Querying

Fig. 6.9 An example to
construct DS and DSS

We explain the two steps of density query processing in detail. First, according
to the network expansion approach [22], we traverse each segment to retrieve CUs
sequentially and then compute the distance between adjacent CUs and their density.
If the distance is not more than § and the density is not less than p, the CUs are
merged to form a DS. Figure 6.9 shows an example. Given p = 1.5and § = 2,
we compute DS at query time f,. The road segment s; (represented as < Jy, J, >)
includes two CUs named cu; and cu,. Assume that the distance between cu; and
cuy is 1.2 at #,, which is less than §, and the density is 1.8 after merging cu; with
cuy, which is more than p, and therefore cu; and cu; can construct a DS (we call
it DSy). The start position of DS is the head of cu; and the end position of DS; is
the tail of cu,. The number of objects in DS is the sum of the number of objects
in cu; and in cu,. Assume that the distance between DS; and node J, is 1.0, which
is less than &, and J, is the §-CN of DS; (we call it §-CN;). We insert DS; into the
DS list of §-CNj. In this way, we can obtain DS, on s3 including cuy and DS3 on
s4 including cu3. The §-CN of DS, (§-CN,) is J4 and that of DS3 is J,. Thus, the
DS list of §-CNj includes DS; and DS3, while the DS list of §-CN, includes DS,.
Algorithm 14 shows the pseudo-code.

In the refinement step, we compute dense segment sets so that the effective dense
areas can be obtained. We traverse the list of each §-CN and evaluate whether those
DSs around the §-CN can construct DSS based on Definition 6.15. For example,
in Fig.6.9, L = 100. As the Distance(DS;, 6-CN;)=1.0 and Distance(DSs3,
6-CN1)=0.7, the distance between DS; and DS5 is 1.7, which is less than §. In
addition, if DS, is merged with DS3, the density is more than p. Therefore, DS,
and DS3 can be merged to form a DSS named DSS;. In the same way, we check if
there are other dense segments that can be merged with DSS; by utilizing its §-CN
and insert it into DSS;. Finally, we check if the total length of DSS; is more than
L. If so, DSS; is one of the answers of the density query. This process is repeated
until all §-CNs containing dense segments are accessed. Then, we can obtain all
dense areas that are represented as dense segment sets at 7,. Note that a DS may be
involved in the lists of two §-CNs. To avoid scanning the same nodes repeatedly, we
mark the scanned §-CN as accessed node. Algorithm 15 shows the pseudo-code of
the refinement step.

6.5 Continuous Density Queries for Moving Objects 105

Algorithm 15: Refinement(p,d, L, ;)

Input: density threshold p, length threshold of DSS L
Output: Result: The set of DSSs
begin
foreach §-C N; of 6-CNList do
if (8-C N; .dsList # null) and (not §-C Nj; .accessed) then
/*Q is a priority queue to store all DSs around 5-C N; */;
/%6-Q is a priority queue to store all unaccessed §-CNs*/;
QO <— null; §-Q.put(5-CN;);
while §-Q # null do
cn = §-Q.pop(); cn.accessed = true;
Q.addDSs(cn); /*add all DSs around cn and sorted*/;
create a new DSS: dss;
ds = Q.pop(); dss.addDS(ds);
8-Q.putdscn(ds); /*add all unaccessed §-C N around ds*/;
while O # null do
nextDS = Q.pop();
if Dist(dss, nextDS) < § and Dens(dss, nextDS) > p then
dss.addDS(nextDS);
8-Q.putdscn(nextDS);

end
end

end
if dss.len > L then
| Result.insert(dss);

end

end
return Result;

end

6.5 Continuous Density Queries for Moving Objects

Although many studies have been done on density queries for moving objects, they
all focused on how to answer snapshot density queries, where the results are found
based on a snapshot of the location dataset. In this section, we focus on continuously
monitoring dense regions for moving objects in a highly dynamic environment
where the density regions may be changed with location updates of the moving
objects. Continuous density query is an important research but has received attention
only recently [16]. We provide a definition of continuous density queries for moving
objects, which returns useful answers and is amenable to efficient computation.
Furthermore, we propose the notion of safe interval for dense/sparse regions to
support efficient processing of continuous density queries.

106 6 Moving Objects Advanced Querying
6.5.1 Problem Definition

We assume that a collection of objects are moving on the space under consideration,
where each object is capable of transmitting its location and velocity to the central
server. The central server can predict the object positions based on the location
and velocity information and continuously answer density queries. When an object
changes its velocity, it updates the new velocity to the central server.

Definition 6.16. A continuous density query returns all the regions that satisfy the
following three conditions:

1. The density of the region is not less than p.

2. The minimum area of our interest is s and any subarea of the region with an area
larger than s must be dense.

3. No two regions in the result set overlap with each other.

Conditions 1 and 2 indicate that each dense region must have more than p - s
objects. Condition 3 is provided to simplify the search of dense regions, as in the
previous study.

We use the TPR-tree to index the moving objects [26]. In the TPR-tree, the
position of a moving object is represented by a vector including the reference
position and the velocity — (p(#.7), v). We can predict the future location at time ¢
using the following formula:

p(t) = p(tref) +v- (Z - Z‘ref) (69)

In order to find local dense regions, we recursively partition the space by a Quad-
tree. The Quad-tree is used to store the state (i.e., dense or sparse) of a subspace,
as well as the validity in time, which we call safe interval of the subspace. Thus, a
node in the Quad-tree is represented as ((row, col), level, state, safe_interval), where
(row, col) is an index to identify the node and level denotes the level of the tree that
the node belongs to. If the node is a leaf, the state can be O or 1, which indicates that
the region represented by the node is sparse or dense. For a non-leaf node, the state
can be 0, 1, or 2, where O indicates all its children nodes are sparse, 1 indicates all
its children nodes are dense, and otherwise, the state is 2. The safe_interval is the
valid time of the state, which is formally defined as follows.

Definition 6.17. The safe interval is the time period for which the region remains
in its current state. For example, if the region is dense, it will remain dense for at
least a time period of safe interval. After that, the state of the region may or may not
change.

Next, we proceed to discuss how to build a Quad-tree and compute the safe
intervals, followed by how to answer continuous density queries using the Quad-
tree.

6.5 Continuous Density Queries for Moving Objects 107

e

“El | B

:
; : .
> l 1 5, t===1 T 1 T 1 1 L T
J‘_S‘ QH | ; ! !
i) 1 1
1 1 1 L

Fig. 6.10 An example of the Quad-tree

6.5.2 Building the Quad-Tree

To facilitate searching dense regions, we partition the space into a grid by employing
a Quad-tree. More specifically, the space is recursively divided into four quadrants
until the area of the subspace is less than the threshold s given in the density query
definition. We set s as the stop condition since it is the minimum area we should
consider for a dense region according to the definition. Given a space with an area
of §, the depth of the Quad-tree is:

L= log,S/s]+1 (6.10)

In the Quad-tree, each node corresponds to a cell in the grid. Recall that a node
is represented by ((row, col), level, state, safe_interval). The cell can be easily
determined by some of these parameters. More specifically, the left-bottom point
of the cell is given by:

S
Slevel x [row — 1, col — 1] (6.11)

The right-upper point of the cell is given by:

S
Sevel X [row, col] (6.12)

Figure 6.10 shows an example of the Quad-tree. Given S=32,5=2, and p = 1.5,
based on Eq. (6.10), the level number of the Quad-tree is 3. The root of the Quad-
tree corresponds to the largest cell c;. Its level number is 0, the row value is 1, and
the col value is also 1. Each internal node is one quadrant of the root, including
2, €3, C4, and ¢5. The leaf nodes correspond to the minimum cells (called leaf cells
hereafter), such as cg, c7, cg, and cg.

108 6 Moving Objects Advanced Querying

Fig. 6.11 An example of I
03

dense region \
01 /
02

—
05 04 C

ya

Based on the Quad-tree, initially we count the number of moving objects for each
leaf cell and determine if the cell is dense or sparse. By definition, a high-level cell
is dense if and only if all the leaf cells below it are dense. For example, in Fig. 6.10,
if ¢ through cg are dense while some other leaf cell is sparse, then ¢ is returned as
a dense region but ¢; is not.

6.5.3 Safe Interval Computation

A safe interval of a dense (sparse) cell means the minimum time period for which
the cell is still dense (sparse). Due to the movement of objects, a dense cell may
turn into a sparse one, and vice versa. Thus, to support continuous density queries,
we maintain the safe intervals for leaf cells of both types, but the safe intervals for
high-level cells only if they are dense (i.e., only for dense regions). In the following,
we discuss how to compute the safe intervals for dense and sparse leaf cells. The
safe interval of a dense high-level cell can be recursively set as the smallest one of
its child nodes.

6.5.3.1 Safe Interval of Dense Leaf Cell

For a dense leaf cell, to simplify the computation, we only focus on the objects
leaving from it, without considering the entering objects. This is because an entering
object will not change the state of a dense cell. It can only change the state of a sparse
cell, that is, make the sparse cell dense. Thus, we compute the shortest time interval
for which the cell remains dense.

Figure 6.11 shows an example where cell C is dense. There are totally five objects
in C, i.e., 01, 02, 03, 04, and 05. Let the object number threshold for a dense cell be
3. We compute the time before each object will leave this cell to obtain the safe
interval of the dense cell. Suppose the leaving times of these objects are #s, 13, #1, 14,
and 75, sorted in an ascending order. Then, #; is the safe interval of the dense cell
since this cell may become sparse after o; leaves.

Algorithm 16 formally describes how to compute the safe interval for a dense
leaf cell, where (xmin, ymin) and (xmax, ymax) are the bounding coordinates

6.5 Continuous Density Queries for Moving Objects 109

of cell, (x, y) is the coordinate of obj at time ¢, and (vx, vy) is the object’s speed
in the x and y dimensions. We use a heap H to store the last several objects leaving
from the cell. Let S..;; be the area of the cell. The size of H is setto p- S¢e;;, which
is the density threshold of the cell in terms of the number of objects. For every object
in the cell, we compute its leaving time and push the time into H. After processing
all the objects, when the object with the minimum leaving time in H leaves from
the cell, the object number in the cell will be lower than the density threshold if
not considering the objects entering this cell from the outside. Hence, the minimum
value in H is the earliest possible time at which that the cell changes its state. This
value is returned as the safe interval of cell.

Algorithm 16: SlofDense(cell)

input : The region that needs to be processed
output: Safe Interval of a dense region cel!l
H is a min-heap, whose size is p * S¢e17;
for every obj in cell do
if (obj.vx >0) then
Ix = cell. xmax — obj.x;

else if (obj.vx <0) then

| Ix = cell.xmin — obj.x;
else

| Ix = cell. xmax — cell.xmin;
end
if (obj.vy >0) then

| ly = cell.ymax — obj.y;
else if (obj.vy <0) then

| ly = cell.ymin — obj.y;
else

| ly = cell.ymax — cell .ymin;
end
Push min(/x /vx, ly/vy)into H;

end
Return the minimum value in H;

Note that the safe interval of a dense leaf cell we compute is the shortest time
interval for which the dense state remains. Hence, when the safe interval expires, the
state of the cell may not be changed if there have been some other objects entering
this cell. Thus, the state of this cell and the corresponding safe interval need to be
re-calculated upon expiration.

6.5.3.2 Safe Interval of Sparse Leaf Cell

Similar to the dense leaf cell, we only focus on the objects entering the sparse cell,
without considering the leaving objects. Suppose that N is the density threshold for
the sparse cell and that presently there are M objects in the cell. Then, after (N — M)

110 6 Moving Objects Advanced Querying

objects move into this cell, its state might be changed. To reduce the cost of scanning
outside objects, we expand the cell level by level until the expanding region contains
(N — M) objects. When all the objects in this expanding region enter the cell, the
cell’s state may be changed. On the other hand, a fast-moving object outside this
expanding region may have also entered into the cell. Such earliest time is given by

() = L (6.13)
’ Vmax .

where V), is the known maximum moving speed and L is the length of the
expanding distance. Thus, within the interval 7,, we only need to scan the objects in
the expanding region and estimate whether these objects can change the state of this
sparse cell by computing their entering times.

Algorithm 17 describes how to compute the safe interval for a sparse leaf cell
cell. Again, we use a heap H to store the first several objects that will enter to cell.
The size of H is (N — M). The cell is expanded to a larger region denoted as Cell
that includes at least p - Sc.;; objects. We then compute the entering times of these

Algorithm 17: SlofSparse(cell)

input : The region that needs to be processed
output: Safe Interval of a sparse region cell
H is a max-heap, whose size is (p + S¢.;;)—(number of objects in cell);
Expand cell to Cell, which includes at least (p - S..;;) objects;
L is the expanded distance and V., is the maximum velocity of all the objects;
for every additional object obj in Cell do
if (obj.vx > 0 and obj.x < cell. xmin) then
| Ix = cell.xmin — obj.x;
else if (obj.vx < 0 and obj.x > cell. xmax) then
| Ix = cell. xmax — obj.x;
else
| Ix=1L;
end
if (obj.vy >0 and obj.y < cell.ymin) then
| 1y =cell.ymin —obj.y;
else if (obj.vy <0 and obj.y > cell.ymax) then
| ly = cell.ymax — obj.y;
else
| ly=1L;
end
t =Ix/vx;
if (0bj is not in cell at time t) then
| t=1ly/vy;
if (1t > L/ V) then
| r= L/ Vmax;
Push ¢ into H;

end
Return the maximum value in H;

6.5 Continuous Density Queries for Moving Objects 111

Fig. 6.12 An example of

sparse region 0« i
0 ; ? 06
\ 07/
0y o /
*~—— . 0g
C
03/ 04 L

additional objects in Cell. If object i ’s entering time, denoted by #;, is longer than ¢,,
given in Eq. (6.13), #; is set to #,. After processing all the additional objects in Cell,
the maximum value in H is returned as the safe interval of cell.

Figure 6.12 shows an example where C is a sparse region. In the expanding
region, the objects 01, 03, 03, 04, and 05 are moving towards C. Suppose that their
entering times are #,, t1, s, 13, I4, sorted in descending order, and that they are all
smaller than ¢#,. If the region would change to a dense one after three objects move
into it, we will then use ?5 as its safe interval.

Similar to the case for a dense leaf cell, the state and the safe interval of a sparse
cell have to be recomputed when the safe interval expires.

There are two cases in which we need to update the safe interval of a dense/sparse
leaf cell: (1) When the safe interval expires, we need to recompute the state and safe
interval of the cell, as discussed in the last two subsections; (2) when the velocity of
the object changes, we need to recompute the states and safe intervals of those cells
affected by this update. Next we discuss how to deal with the second case.

When the updating object is in a sparse cell, we do not need to recompute
the safe interval of this cell since we consider only the objects entering from the
outside. However, the object may affect the safe intervals of other sparse cells that
the object’s moving trajectories cross. We only need to recompute the sparse cells
that the object’s new trajectory crosses. For those sparse cells intersected by the old
trajectory, we do not need to recompute their safe intervals until they expire because
before the current safe intervals their states would remain unchanged.

When the updating object is in a dense cell, the safe interval of this cell may be
changed because we compute the safe interval for a dense cell based on the objects
inside the cell. The sparse cells that intersect with the object’s new trajectory also
need to be recomputed.

Figure 6.13 shows an example for finding the sparse cells whose safe intervals
need to be recomputed, where S, S, S3, S4, S5 are sparse cells, Dy, Dy, D3, Dy
are dense cells, and 0; is an updating object with its velocity changed. We need not
consider the sparse cells in its old moving direction, i.e., S3. In the new moving
direction, we identify the sparse cells that 0; may affect its safe interval. In order to
reduce the computing cost, the formula

L, =v1- STy (6.14)

112 6 Moving Objects Advanced Querying

Fig. 6.13 An example of

object updating s D s
1 | 2

Sy A
AS':; 7 Ags

7 7 Lll
Old direction, /

\r/ New direction

D2 0] D3 D4

can be used to determine the length of the trajectory, where v; is the new speed of
o1 and ST, is the maximum safe interval among all cells. We only update the safe
intervals of the sparse cells that intersect with the segment L, (e.g., S4 in Fig. 6.13).

6.5.4 Query Processing

Having computed the states and safe intervals for all leaf cells, we now have the
required data to identify the dense regions. We search the Quad-tree in a bottom-up
manner. For an intermediate node, if all its child nodes are dense (i.e., with the state
value of 1), this node is also dense, otherwise it is not, by definition. The bottom-up
search of a dense region stops until an ancestor is no longer dense. Then, its child
nodes that are dense are returned as answers. The safe interval of the dense region
is set as the smallest interval of the leaf cells contained in the dense region. When
the safe interval expires, this means the safe interval of a leaf cell expires. The state
and safe interval of that leaf cell will be updated, based on which the dense region
is also reevaluated. The formal procedure is described in Algorithm 18.

6.6 Summary

In this chapter, we introduced the advanced querying for moving objects including
similar trajectory queries and density queries. The cluster-based preprocessing
can efficiently support density queries in road networks, and the Quad-tree-based
scheme with the notion of safe interval can monitor continuous density queries for
moving objects.

References 113

Algorithm 18: Query(?)

input : Query time ¢
output: Dense region
for every leaf node n do
if (n.safe_interval > t) then
if (n.state == 0) then
| break;
else
n'=n;
while (n’ parent.state == 1 and n’ parent.safe_interval >query time)
n’=n’.parent;
do
| outputn’;
end
ignore the children of n” and get the next leaf node;
end
else
count number of moving objects in 7;
if (number> p - S..;) then
| SlofDense(n);
else
| SlofSparse(n);
end
if (n.state changes) then
| adjust value of n.parent and take n as the next node;

end

end

References

—

. Agrawal R, Faloutsos C, Swami AN (1993) Efficient similarity search in sequence databases.

In: Proceedings of the 4th international conference on foundations of data organization and
algorithms (FODO 1993), Chicago, pp 69-84

. Agrawal R, Lin KI, Sawhney HS, Shim K (1995) Fast similarity search in the presence of

noise, scaling, and translation in time-series databases. In: Proceedings of the 21st international
conference on very large data bases (VLDB 1995), Zurich, pp 490-501

. Andoni A, Deza M, Gupta A, Indyk P, Raskhodnikova S (2003) Lower bounds for embedding

edit distance into normed spaces. In: Proceedings of the 14th annual ACM-SIAM symposium
on discrete algorithms (SODA 2003), Baltimore, pp 523-526

. Cai Y, Ng R (2004) Indexing spatio-temporal trajectories with chebyshev polynomials. In:

Proceedings of the 2004 ACM SIGMOD international conference on management of data
(SIGMOD 2004), Paris, pp 599-610

. Chakrabarti K, Keogh E, Mehrotra S, Pazzani M (2002) Locally adaptive dimensionality

reduction for indexing large time series databases. ACM Trans Database Syst 27(2):151-162

. Chan KP, Fu AW (1999) Efficient time series matching by wavelets. In: Proceedings of the

15th international conference on data engineering (ICDE 1999), Sydney, p 126

. Chen L, Ng R (2004) On the marriage of edit distance and Lp norms. In: Proceedings of the

30th international conference on very large data bases (VLDB 2004), Toronto, pp 792-803

114 6 Moving Objects Advanced Querying

8. Chen S, Kashyap RL (2001) A spatio-temporal semantic model for multimedia presentations
and multimedia database systems. IEEE Trans Knowl Data Eng 13(4):607-622
9. Chon H, Agrawal D, Abbadi AE (2002) Query processing for moving objects with space-

time grid storage model. In: Proceedings of the 3rd international conference on mobile data
management (MDM 2002), Singapore, pp 121-129

10. Cormode G, Muthukrishnan S (2002) The string edit distance matching problem with moves.
In: Proceedings of the 13th annual ACM-SIAM symposium on discrete algorithms (SODA
2002), San Francisco, pp 667-676

11. Douias D, Peucker T (1973) Algorithm for the reduction of the number of points required to
represent a line or its character. Am Cartogr 10(42):112-123

12. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters
in large spatial databases with noise. In: Proceedings of the 2th international conference on
knowledge discovery and data mining (SIGKDD 1996), Portland, pp 226-231

13. Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-
series databases. In: Proceedings of the 1994 ACM SIGMOD international conference on
management of data (SIGMOD 1994), Minneapolis, pp 419-429

14. Hadjieleftheriou M, Kollios G, Gunopulos D, Tsotras VJ (2003) On-line discovery of dense
areas in spatio-temporal databases. In: Proceedings of the 8th international symposium on
advances in spatial and temporal databases (SSTD 2003), Santorini Island, pp 306-324

15. Jagadish HV, Mendelzon AO, Milo T (1995) Similarity-based queries. In: Proceedings of the
14th ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems (PODS
1995), San Jose, pp 3645

16. Jensen CS, Lin D, Ooi BC, Zhang R (2006) Effective density queries on continuously moving
objects. In: Proceedings of the 22nd international conference on data engineering (ICDE 2006),
Atlanta, p 71

17. Keogh E (2002) Exact indexing of dynamic time warping. In: Proceedings of the 28th
international conference on very large data bases (VLDB 2002), Hong Kong, pp 406417

18. Keogh E, Chakrabarti K, Pazzani M, Mehrotra S (2001) Dimensionality reduction for fast
similarity search in large time series databases. J Knowl Inf Syst 3(3):263-286

19. Kollios G, Tsotras VJ, Gunopulos D, Delis A, Hadjieleftheriou M (2001) Indexing animated
objects using spatiotemporal access methods. IEEE Trans Knowl Data Eng 13(5):758-777

20. Korn F, Jagadish H, Faloutsos C (1997) Efficiently supporting Ad hoc queries in large datasets
of time sequences. In: Proceedings of the 1997 ACM SIGMOD international conference on
management of data (SIGMOD 1997), Tucson, pp 289-300

21. Martina N and By RA (2004) Spatiotemporal compression techniques for moving point
objects. In: Proceedings of the 9th international conference on extending database technology
(EDBT 2004), pp 765-782

22. Papadias D, Zhang J, Mamoulis N, Tao Y (2003) Query processing in spatial network
databases. In: Proceedings of the 29th international conference on very large data bases (VLDB
2003), Berlin, pp 802-813

23. Pfoser D, Jensen CS, Theodoridis Y (2000) Novel approaches in query processing for moving
object trajectories. In: Proceedings of the 26th international conference on very large data bases
(VLDB 2000), Cairo, pp 395406

24. Priyantha N, Miu A, Balakrishnan H, Teller S (2001) The cricket compass for context-aware
mobile applications. In: Proceedings of the 7th annual international conference on mobile
computing and networking (MOBICOM 2001), Rome, pp 1-14

25. Rafiei D (1999) On similarity-based queries for time series data. In: Proceedings of the 15th
international conference on data engineering (ICDE 1999), Sydney, pp 410417

26. Saltenis S, Jensen CS, Leutenegger ST, and Lopez MA (2000) Indexing the positions of
continuously moving objects. In: Proceedings of the 2000 ACM SIGMOD international
conference on management of data (SIGMOD 2000), Dallas, pp 331-342

References 115

27. Vlachos V, Kollios G, Gunopulos D (2002) Discovering similar multidimensional trajectories.
In: Proceedings of the 18th international conference on data engineering (ICDE 2002), San
Jose, p 673

28. Yi B, Faloutsos C (2000) Fast time sequence indexing for arbitrary Lp norms. In: Proceedings
of the 26th international conference on very large data bases (VLDB 2000), Cairo, pp 385-394

29. Yi B, Jagadish H, Faloutsos C (1998) Efficient retrieval of similar time sequences under time
warping. In: Proceedings of the 14th international conference on data engineering (ICDE
1998), Orlando, pp 201-208

Chapter 7
Trajectory Prediction of Moving Objects

Abstract The trajectory prediction is an important part for the management of
moving objects. For example, it can be used to improve the performance of the
location update strategy and to support the predictive index and queries. In this chap-
ter, we first review some linear prediction methods and analyze their problems in
handling moving objects in spatial networks and then present our simulation-based
prediction methods: Fast-Slow Bounds Prediction and Time-Segment Prediction. In
addition, we also present our uncertain path prediction method.

Keywords Trajectory prediction e Linear prediction ¢ Simulation-based
prediction * Uncertain path prediction ¢ Uncertain trajectory mining ¢ Moving
object databases

7.1 Introduction

There exist a large number of moving objects in a spatial network with their
locations continuously changing. In order to get the location of a moving object in
the future time, it is necessary to store its location into a central database via GPS.
The research issue is how to accurately maintain the location of a large number of
moving objects while minimizing the number of updates. The trajectory prediction
plays an important role to solve this problem. Most existing studies propose to lower
the update frequency by a trajectory prediction method. They usually use the linear
prediction which represents objects locations as linear functions of time. However,
the assumption of linear movement in traditional prediction methods limits the
applicability in a majority of real-life applications especially in traffic networks
where vehicles change their velocities frequently. Moreover, other prediction
models with nonlinear prediction proposed by Aggarwal et al. [1] using quadratic
predictive function and by Tao et al. [6] based on recursive motion functions for
objects with unknown motion patterns improve the precision in predicting the

X. Meng et al., Moving Objects Management: Models, Techniques 117
and Applications, DOI 10.1007/978-3-642-38276-5_17,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

118 7 Trajectory Prediction of Moving Objects

location of each object, but they ignore the correlation of adjacent objects and may
not reflect accurately the complex and stochastic traffic movement scenario.

In the management of moving objects, the trajectory prediction method is
usually used to improve the performance of the location update strategy and to
support the predictive index and queries. In this chapter, we first review some
linear prediction methods and analyze their problem in handling moving objects
in spatial networks and then present our simulation-based prediction methods: Fast-
Slow Bounds Prediction and Time-Segment Prediction, which are more accurate
than linear prediction methods in predicting future trajectories of moving objects
in spatial networks. Finally we present our uncertain path prediction method,
which can predict future trajectories based on the uncertain historical trajectories
of moving objects in spatial networks.

7.2 Underlying Linear Prediction (LP) Methods

Most current index and query processing approaches use the linear prediction
method for its simplicity and capability of approximating any curve of free
movement by piecewise linear segments. Suppose the trajectory function for an
object between time 7y and 7, is

X, =X + V(1 —10) (o<t<1) (7.1)

where X, denotes the position vector of the object at time f, and V denotes the
velocity vector of the object, which is assumed to remain fixed between 7, and ¢;.

7.2.1 General Linear Prediction

The general linear prediction method uses the object’s current position X,, and
current velocity V to predict its position in the near future. When the prediction
is deemed inaccurate, that is, its deviation from the actual position is beyond a
predefined threshold, we revise the prediction by resetting X;, and V. In situations
where object’s velocity remains largely constant, this method enables us to make
future prediction with high precision. However, when objects move with changing
velocity, their trajectory functions have to be revised frequently.

7.2.2 Road Segment-Based Linear Prediction

If objects move in a constrained environment such as a transportation network, we
can use the road segments of the network to help model the object’s movement. In

7.2 Underlying Linear Prediction (LP) Methods 119

a b
d predicted function d} —--—linear regression function
_____ real trajectory) sunulatpd trajectory
’ ’ - — — —real trajectory
L
/ _ =~ —
728 ~
/.
4
Al /

! t

Fig. 7.1 Linear prediction vs. simulation-based prediction. (a) General linear prediction.
(b) Simulation-based prediction

other words, we assume objects move at constant speed along a road segment, that
is, their trajectory functions will not change until they move out of a road segment.
When an object enters a new road segment, we reset the velocity V in its trajectory
function. The frequency of revising the trajectory function depends on the average
length of the road segments.

7.2.3 Route-Based Linear Prediction

If objects have regular and known routes in the transportation network (e.g.,
one takes the same route from home to work), we can use the routes instead
of the road segments to reduce the number of updates needed to maintain the
objects’ position. If the route is predicted incorrectly, we simply make an additional
update.

However, any real traffic system has a stochastic, dynamic, and fuzzy nature. The
accuracy of linear prediction methods mentioned above is inadequate because linear
methods can hardly reflect the movement of objects constrained by road networks.
For example, in urban road networks, because of traffic conditions, a vehicle may
travel at a constant speed, decelerate to stop, wait, accelerate, and travel again at
a constant speed. Vehicles may often repeat the above movement in modern urban
road networks.

We use Fig.7.1 to demonstrate the inadequacy of the linear prediction method
for real road networks. Figure 7.1a shows the predicted (linear) trajectory and the
actual trajectory of an object. We can see that each time the change of the object’s
velocity is above a certain threshold, an update is triggered and the trajectory is
revised by a new velocity vector. The frequent changes of the object’s velocity will
incur repeated update and prediction.

120 7 Trajectory Prediction of Moving Objects
7.3 Simulation-Based Prediction (SP) Methods

Before presenting the simulation-based prediction methods, we first recall the GCA
model introduced in Chap. 2, in particular the definition of CA and the transition of
the GCA model. A cellular automaton (CA) consists of a finite oriented sequence
of cells. In a configuration, each cell is either empty or contains a symbol. During
a transition, symbols can move forward to subsequent cells, symbols can leave the
CA, and new symbols can enter the CA. Let i be an object moving along an edge.
Let v(7) be its velocity, x (i) its position, gap(i) the number of empty cells ahead
(forward gap), and P, (i) a randomized slowdown rate that specifies the probability
that it slows down. We assume that V,,,,, is the maximum velocity of the moving
objects. At each transition of GCA, each object changes velocity and position in a
CA of length L according to the rules below:

(i) < Vipay and v(i) < gap(i), then v(i) < v(i) + 1.
CIfu(i) > gap(i), then v(i) < gap(i).

. Ifv(i) > 0 and rand() < Py(i), then v(i) < v(i) — 1.
LI (x(@) +v(i)) < L, thenx(i) < x(i) + v(@).

AW N =

Considering the simulation feature of the GCA model, we use GCAs not only to
model road networks but also to simulate future trajectories of moving objects by the
transitions of GCAs, where objects’ movement follows traffic rules. Based on the
GCA, a simulation-based prediction (SP) method to anticipate future trajectories of
moving objects is proposed. The SP method treats the object’s simulated results as
its predicted positions to obtain its future in-edge trajectory. To refine the accuracy,
based on different assumptions on the traffic conditions, we simulate two future
trajectories in discrete points for each object on its edge. Then, by linear regression
and translating, the trajectory bounds that contain all possible future positions of a
moving object on that edge can be obtained. When the object moves to another edge
in the GCA or the predicted position exceeds its actual position above the predefined
accuracy, another simulation and regression will be executed to predict new future
trajectory bounds. The process of the simulation-based prediction can be seen in
Fig.7.2.

7.3.1 Fast-Slow Bounds Prediction

Most existing work uses the CA model for traffic flow simulation in which
the parameter P, (i) is treated as a random variable to reflect the stochastic,
dynamic nature of traffic system. However, we extend this model for predicting
the future trajectories of objects by setting P, (i) to values that model different
traffic conditions. For example, laminar traffic can be simulated with P, (i) set
to 0 or a small value, and the congestion can be simulated with a larger P;(i).
By giving P, (i) two values, we can derive two future trajectories, which describe,

7.3 Simulation-Based Prediction (SP) Methods 121

d | ---simulated trajectory d
——regress function

» -

fastest - s
movement ,

1 s
/

-7 slowest movement
7/

A L
7,

! !

Fig. 7.2 Two predicted bounds of future trajectories. (a) Simulated trajectories. (b) Two predicted
bounds

respectively, the fastest and slowest movements of objects as shown in Fig. 7.2a. In
other words, the object’s future locations are most probably bounded by these two
trajectories. The value of P, (i) can be obtained by sampling from the given dataset.

For getting the future trajectory function of an object from the simulated discrete
points, we need to regress the discrete positions. We find that in most cases,
the linear regression (as shown in Fig.7.2a) fits the prediction well and at low
cost. The ordinary least square estimation (OLSE) method, for example, can be
calculated efficiently at low data storage cost. Let the discrete simulated points
be (t1,d1),...,(t.d),. .., (t,,d,), where d; (i € [1,n]) denotes the relative
distance in a network edge. The average value of them be 7 and d. After regression,
the trajectory function of the moving object is

D(t) = o+ B -1 (72)
where ,30 and ,31 are given by
po=d—p-i (7.3)
N Z -1 lid, —nt E
! 7.4
h >z Ziz —n(1)? 7

In Fig. 7.2a, the dashed curves show two future trajectories, which are the slowest
and the fastest movements simulated by using different P;. Applying the OLSE
algorithm to the two trajectories generates two linear functions, which are shown in
solid lines.

fastTrj: D(@)=ayp-t+yr (7.5)
slowTrj: D(t) = a5 -t + yq (7.6)

122 7 Trajectory Prediction of Moving Objects

Finally, in order to find the bounds of the area that contains all estimated future
positions, we translate the two regression lines, until all estimated future positions
fall within. More specifically, we translate the upper line (fastest movement)
upward until it touches the point with the max residual (denoting &, the distance
translated upward), and similarly, we translate the lower line (slowest movement)
downward (denoting &, the distance translated downward). This minimizes the loss
of information and errors brought by the OLSE algorithm.

We now define the two bound lines as the upper bound and lower bound of the
object’s future trajectories.

Definition 7.1. The upper bound of an object trajectory upperBound is the upper
bound line of its fastest future trajectory, and the lower bound lowerBound is the
lower bound line of its slowest future trajectory. They are linear functions of the
following form:

upperBound: D(t) =ay-t+ Ay (1.7)
lowerBound : D(t) = o -t + A (7.8)

where Ay =y + &1, Ay = y5 — 2.

The two bound lines are shown in Fig. 7.2b. We can treat the two predicted lines
as the bounds of the possible future positions of one object. The predicted trajectory
bounds can be used in the predictive index structure and query processing in road
network to reduce the index updates and filter unnecessary query results to improve
the performance of predictive query. For example, given a predictive range query
with the specified region R during time interval [¢;, #,] in the future, we can filter the
objects in the result during the preprocess phase if the area between their upper and
lower trajectory bounds cannot intersect the R during [¢1, 73]

However, for other applications such as the tracking of moving objects, a single
predicted function is needed to obtain the specific future positions of the object.
For example, to lower update frequency from moving objects to server database,
a general principle for location update policies is as follows: the moving objects
equipped by GPS receiver do not report their locations to the server unless their
actual positions exceed the predicted positions to a certain threshold. Their predicted
positions need to be computed by a single predicted function. In this case, we
can also adapt the SP method to obtain a compact and simple linear prediction
function. The process can be seen in Fig.7.3. After regressing the two simulated
future trajectories to two linear function denoting L and L,, we compute the middle
straight line L3, the bisector of the angle a between L and L as the final predicted
function L(z).

Although the predicted function obtained by the SP method is a simple linear
function, it is different from the linear prediction in that the SP method not only
considers the speed and direction of each moving object but also takes correlation
of objects as well as the stochastic behavior of the traffic into account.

7.4 Uncertain Path Prediction Methods 123

a b
d | - --simulated trajectory d) - - - simulated trajectory
——regress function ——regress function L,
1
/ / L
Ad 7 /s // 2
fastest 7 % fastest - 7
/, /
movement ,, movement /.,
g e
-7 b o=
XS /7
/
g // slowest movement 7 g slowest movement
A V2
7/, // a

t !

Fig. 7.3 Singe predicted future trajectory. (a) Simulated trajectories. (b) Single predicted function

7.3.2 Time-Segmented Prediction

As the prediction of in-edge trajectory only uses the GCA to simulate the movement
of objects in an edge, we have to consider the cases when objects move across the
nodes in order to make the global trajectory prediction. If the out-degree of a node in
the GCA is one, the behavior of the object in the adjacent edge is the same. However,
if the out-degree of the node is bigger than one, we cannot trace the objects cross
different edges. In this case, we could use the probability of objects changing the
edges according to the historical data.

In the last section, we only predict the in-edge trajectory of the object moving
in one edge of the GCA. When the object moves to another edge or its prediction
accuracy of the future positions cannot meet the given accuracy requirement, we
issue another prediction based on the current traffic conditions. For the predicted fast
and slow trajectory bounds, it is possible that the predicted positions at different time
stamps exceed the real positions given query precision range. In particular, as the
time goes, the predicted trajectory bounds will expand and lead to worse prediction
accuracy. Therefore, the Time-Segmented prediction method is used in this case.
The simulation and prediction are issued every fixed time internal, such as tLength.
Even within the rLength, when the predicted locations cannot meet the requirement
of query anymore, we issue another prediction. The Time-Segmented prediction
method can estimate the real trajectory of moving objects with better accuracy.

7.4 Uncertain Path Prediction Methods

Most of the moving object path prediction methods proposed so far assume that
the input historical trajectory is a complete path. However, in reality, as the
moving objects periodically update their location to server, historical trajectory

124 7 Trajectory Prediction of Moving Objects

reconstruction may have great uncertainty because of the inference on discrete
trajectory points. Such uncertainty prevents the practical use of traditional path
prediction approaches in many LBS applications. To handle this problem, a novel
method for path prediction under network constraints is introduced in this section,
particularly with uncertainty of historical moving object path considered. It uses
trajectory interpolation technique to generate several possible paths and then mines
out the future path based on the hotness and probability of the uncertain paths for
prediction.

7.4.1 Preliminary

As historical path could be incomplete due to periodical location update, it is
necessary to derive the complete historical path using interpolation techniques. In
this section, we define and explain some useful notions first.

Given two sequential location updates of a moving object, suppose that they are
mapped to road segments s and e, respectively, using map-matching algorithms, and
s and e are not adjacent in the road network. Finding the actual path between s and
e, the moving object actually passed should find out all the possible paths and then
verify them.

Definition 7.2. Suppose s and e are two road segments mapped by two continuous
location updates of a moving object, and they are not adjacent in the road network,
and there exists m possible paths between s and e, which are Ry, R, R, ..., R,
then the Path Probability of Pg,|, is defined as:

> L(R)—L(R)
- (m>1
Prjs =\ =1 ¥ LR (7.9)

1 m=1)
where L(R;) is the length of the path R; and m is the number of possible paths
between s and e.

Definition 7.3. The combination of a path and its corresponding path probability is
defined as an uncertain item, which is represented as r : p, where r presents the
path that a moving object may pass and p presents the probability of passing path r.

Definition 7.4. The uncertain itemset is a dataset composed of a series of uncertain
items, which is represented as I = (r; : p1,72: pa,---sTm : Pm)-

Definition 7.5. The uncertain path sequence is an ordered sequence of a series of
uncertain itemsets, which is represented as S =< Iy, I, ..., I, >.

Figure 7.4 is an example of an uncertain path sequence. As shown in this figure,
location updates occur in road segment s, f, and e; the dotted lines indicate the

7.4 Uncertain Path Prediction Methods 125

Fig. 7.4 Uncertain path
sequence

Uncertain Path Uncertain Path

Fig. 7.5 Uncertain path
prefix tree

0.2, 11) (0.5, 21) (0.3, 12)

possible paths from s to f and from f to e, respectively. The uncertain path
sequence S is composed of five uncertain itemsets, and it can be represented as
S =< s 1, (uus : 0.3, upuy : 0.5, upus : 0.2), f : 1, (ugu7 : 0.4, ugug : 0.6),
e:l>.

The movement of most objects usually follows a periodical pattern, for example,
most people would get up at the same time and then choose identical or similar
way to work every day. Therefore, it is essential to discover the periodical trajectory
patterns from the historical trajectory and then make use of them.

A data structure called uncertain path prefix tree is used for the frequent trajectory
pattern mining. Each uncertain itemset in an uncertain path sequence is mapped to
an uncertain path prefix tree: as shown in Fig. 7.4, uncertain itemsets I, = (uju3 :
0.3, up, ug : 0.5, upus : 0.2) and 14 = (ugu7 : 0.4, ugug : 0.6) are mapped to the two
uncertain path prefix trees, respectively. Based on the road segments that appear in
itemsets, we further construct the uncertain path prefix tree structure according to
their partial order in all possible paths.

In the uncertain path prefix tree, each node contains a two tuple of (RID, P),
where RID is the ID of a path and P is path probability. Note that path probability
of a leaf node indicates the possibility from the root node to this node, while P of
internal node is the sum of probability weight of all its child nodes. Both height and
RID of root node are 0. Given a node w in the 4 height level, assume it is the i th child
node of node v; the RID of node w is represented as RID(w) = i x 10"~' + RID(v).
Figure 7.5 shows the structure of the uncertain path prefix tree of I,. According to
Property 7.1, we can judge whether two nodes belong to a same path according to
their RID.

126 7 Trajectory Prediction of Moving Objects

Table 7.1 Uncertain path dataset
SID EID (Item, RID, P)

1 1 (s, 0, 1)
1 2 (ul, 2,0.3) (u2, 1, 0.7) (u3, 12, 0.3)(ud, 21, 0.5) (u5,11,0.2)
1 3 (. 0,1)
1 4 (u6, 1, 1) (u7, 21, 0.4) (u8, 11, 0.6)
1 5 (e, 0, 1)
Table 7.2 id-list sample Item SID EID RID P
N 1 1 0 1
uy 1 2 2 0.3
"y 1 2 1 0.7
s 1 2 12 0.3
Uy 1 2 21 0.5
us 1 2 11 0.2
f 1 3 0 1
U 1 4 1 1
g 1 4 21 0.4
ug 1 4 11 0.6
e 1 5 0 1

Property 7.1. Suppose that RID, and RID,, are the path number of nodes v and w
in an uncertain path prefix tree, v is the ancestor of w if (RID,, > RID,) N ((RID,, —
RID,)&RID, = 0) can be satisfied.

In Fig.7.5, we can derive that RID(u;) = 1, RID(us) = 11, RID(u3) = 12.
According to Property 7.1, road segment u, is the ancestor of road segment us. In
other words, they belong to the same path and u; is in order before us. In contrast,
it can be inferred that u, and u3 do not belong to a same path.

In the uncertain path dataset D, each uncertain path sequence has a unique
identification number SID; each uncertain itemset also has a unique identification
number EID. According to uncertain path prefix tree, each uncertain itemset can be
convert to a 3-tuple (Item, RID, P), where Item is the road segment. Uncertain path
dataset D can be represented as Table 7.1.

7.4.2 Uncertain Trajectory Pattern Mining Algorithm

The goal of uncertain trajectory mining is to mine out frequent trajectory patterns
from uncertain path dataset D. The support of a frequent trajectory pattern is the
sum of path probability in dataset D. A data structure named id-list similar to
Zaki [8] is used in the algorithm, where each road segment has an i d-list as shown
in Table 7.2.

7.4 Uncertain Path Prediction Methods 127

Table 7.3 id-list of road segment sequence su;

Suq
SID EID(s) EIDu;) RID(s) RIDu;) P(s) P(uy) P(sur)
1 1 4 0 21 1 0.4 0.4

The basic idea of uncertain trajectory pattern mining algorithm is that the set of
frequent 1-itemsets is found firstly, then this set is used to find the set of frequent 2-
itemsets, which is further used to find the set of frequent 3-itemsets, and so on, until
no more frequent k-itemsets can be found. It appears similar to Apriori, but they
use completely different ways to compute the support value and generate candidate
set, toward which the computational process can be finished with the help of i d -list.
Table 7.3 shows the i d-list of road su7.

Property 7.2. Given two frequent trajectory patterns Ac and Ad (same as the
patterns in Apriori), suppose their path probability are P, and P,, respectively, then
we can compute the path probability of path Acd as (1) If EID(c) > EID(d), then
P =0.Q2)IfEID(c) < EID(d), then P = P} x P(d). (3) If EID(c) = EID(d),
then P = P,.

Property 7.2 provides a way to compute path probability based on its partial
paths, and the support of trajectory pattern can be derived accordingly (i.e., its
path probability). If EID(c¢) > EID(d), it means c is ancestor of d, so the path
probabilistic of Acd is 0. If EID(c) < EID(d), we know that ¢ and d exist in
different uncertain itemsets, so the path probability of Acd is P = P; x P(d).
Otherwise, if EID(c) = EID(d), ¢ and d exist in the same uncertain itemset, and as
a result the path probability of Acdis P = P2.

Property 7.3. Candidate trajectory pattern Acd can be generated by Ac and Bd as
follows: A and B must have the same value of SID, EID, RID according to their
uncertain item and satisfy at least one of the following two conditions: (1) EID(c) <
EID(d) and EID(d) — EID(c) < WIDTH (2) EID(c) = EID(d) and (RID; >
RID.) N ((RIDy — RID.)&RID,. = 0)

Property 7.3 is the rule for candidate itemsets generation. When EID(c) <
EID(d), the difference between EID(d) and EID(c) should less than a predefined
threshold WIDTH, so as to ensure the effectiveness of prediction. When EID(c) =
EID(d), it is obvious that Acd is a valid candidate only if ¢ is the ancestor of d.
Details of uncertain trajectory pattern mining are shown in Algorithm 19.

7.4.3 Frequent Path Tree

To facilitate path estimation, we construct a data structure called Frequent Path
Tree (FPTree) for future path search. FPTree is a variation of Signature Tree [2,4].

128 7 Trajectory Prediction of Moving Objects

Algorithm 19: Uncertain trajectory pattern mining

input : Minimum Support: MIN_SUP, Uncertain Path Data Set: D, Threshold: WIDTH
F1 = the set of frequent 1-itemsets;
F2 = the set of frequent 2-itemsets;
fork =3;F— # @;k+ + do
| F;. = Enumerate(Fy,—;, MIN_SUP, WIDTH);
end
procedure Enumerate(Fy—, MIN_SUP, WIDTH) T = O;
for VA; € F_; do
for VA; € F;—, do
if (R is frequent) then
| T=TUR,

end
end
return 7';

Similar to [5], each node of FPTree contains entries of the form < sig, ptr>. In
a leaf node entry, sig is the signature of a transaction and pzr is a transaction id.
Each internal node entry is the logical OR on all signatures in its subtree. However,
there are two shortcomings in Signature Tree: (1) It has high storage space cost
because of the long bitmap of signature tree, and (2) it also could be computationally
expensive. Therefore, we use hierarchical bitmap to compress the storage of bitmap
in Signature Tree for complexity reduction purpose.

Given that the bitmap is usually sparse, great storage space can be saved if we
adopt hierarchical tree structure to compress it. In a hierarchical bitmap, each node
is formed by a [-bit bitmap and / pointers to its child nodes. Similar to Quad-
tree, it is based on a divide-and-concur method: the big bitmap is divided into /
parts from the root level. If all bits in the kth part of the bitmap are zero, then
the kth bit is simply set as zero and the kth pointer is set as null. Otherwise, if
not all of them are zero, the kth bit is set as 1, and we further partition the kth
part of bitmap in the same way. This process continues until the length of node
bitmap is /.

Figure 7.6 is an example of a hierarchical bitmap set S = 2,3,9, 12,61 where
| = 4. The nodes with dashed frame are empty nodes, i.e., all bits in this node
are zero. The hierarchical bitmap tree only index non-null nodes. As shown in
this graph, even though the hierarchical bitmap tree added 3 additional non-leaf
index nodes, it actually saved 13 leaf nodes’ storage space. That means, the space
compression rate is around 66 %.

The leaf node in FPTree contains entries in the format of <key, ¢, ptr>, where
key is a pointer point to the hierarchical bitmap, ¢ is the support of trajectory

7.4 Uncertain Path Prediction Methods

aa
10000!
ek

AR NRN

129

~ . / \ AN L / \
Y SO S T N SO S T N S S
10000} 10000} 10000} 10000} 10000} 10000} 10000} 10000 10000} ‘0000 0000} 0000}
1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Fig. 7.6 Hierarchical bitmap
Trajectory Pattern | Support
2,3,9,12 ,61 0.6
2,3,25,60 0.2
13,16 0.5
13,15 0.4
Fig. 7.7 Trajectory pattern and support
keyl|ptrl |key2|ptr2
Hierarchical Bitmap tree of set keyl|ptrl |key2| ptr2 keyl|ptrl |key2 ptr2
(2,3,9,12,25,60,61}
ke}l’l 0.6 |ptrl [key2|0.2|ptr2| [keyl| 0.5 |ptrl |key2|0.4|ptr2 keyllcl ptrl |key2 c2 [ptr2

Hierarchical Bitmap tree Hierarchical Bitmap tree
of set {2,3,9,12,61}(see of set {2,3,25,60}
Fig. 3)

Fig. 7.8 Frequent path tree

pattern, and ptr is a pointer points to the trajectory pattern. The internal node in
FPTree contains entries of the form <key, ptr>; key is a pointer to the hierarchical
bitmap of the logical OR on all bitmaps in its subtree. ptr is a pointer to the child
node.

Figure 7.7 shows a set of trajectory patterns and their support, e.g., the first
pattern is the trajectory passing road segments (2, 3,9, 12, 61) in a sequential order.
Figure 7.8 shows its corresponding FPTree.

130 7 Trajectory Prediction of Moving Objects
7.4.4 Trajectory Prediction

After searching all similar trajectory patterns from FPTree, each similarity of
trajectory pattern and query path is computed. The most similar trajectory pattern is
used for prediction; the path prediction algorithm is shown as Algorithm 20.

Algorithm 20: Path prediction
input : Query Trajectory: Q, Set of Trajectory Pattern: P = {Py, P,,..., P,}, Support of

Trajectory Pattern:Sup = {s1,52,...,5,}

S =a;
P_Max = I,
for VP; € P do

s;= Similarity(P;, Q);

S=SU{s};
end
for Vs; € S do

if (s; is most similar) then

| P_Max = P_Max U {P;};

end

if (there is only one trajectory pattern in P_Max) then
| return P_Max:;
else
for Vp_maxi € P_Max do

if (p_maxihasthelargestsupport)then
| return p_maxi;

end
end

In Algorithm 20, the trajectory patterns similar to a given (uncertain) query path
are selected out by FPT-index and saved in set S first. Then the similarity between
trajectory pattern and the query path is computed based on the total weight of their
common road segments. Future path predictions are made based on the ranking of
the similarity values of trajectory patterns to the given query path.

7.5 Other Nonlinear Prediction Methods

The prediction model plays an important role in tracking of moving objects. Most
existing prediction methods assume linear movement, which limits applicability in
the majority of real applications. In paper [1], the nonlinear models such as the
acceleration are used to represent the trajectory which is affected by the abnormal
traffic such as traffic incident. Xu and Wolfson [7] apply the time-series prediction
together with moving speed to traffic management and moving object databases.

References 131

Karimi and Liu [3] describe a technique for trajectory prediction which assigns
probabilities to the roads emanating from an intersection and uses the most probable
route within some extracted sub-road network to predict. Recently, according to the
trend of each object’s own movement regarding its recent past locations, Tao et al.
[6] propose a prediction method based on recursive motion functions for objects
with unknown motion patterns. Although these prediction methods can improve
the precision of location prediction of each object, they ignore the correlation of
movements of adjacent objects in traffic networks, and thus may not reflect the
realistic traffic movements.

7.6 Summary

Some trajectory prediction methods are introduced in this chapter, which are very
important to the management of moving objects. Motivated by the features of
vehicle’s movements in traffic networks, we propose the new simulation-based
prediction methods, which are much more precise than the linear prediction
methods. In Chaps. 3 and 4, we have used the simulation-based method to improve
the performance of the location update strategy and to support the predictive index
and queries. In addition, we also propose the new uncertain path prediction method,
which can predict future path based on uncertain historical trajectories.

References

1. Aggarwal C, Agrawal D (2003) On nearest neighbor indexing of nonlinear trajectories. In:
Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART symposium on principles of
database systems (PODS 2003), San Diego, pp 252-259

2. Hellerstein JM (1994) The Rd-tree: an index structure for sets. Technical report no. 1252,
University of Wisconsin, Madison

3. Karimi HA, Liu X (2003) A predictive location model for location-based services. In:
Proceedings of the 11st ACM international symposium on advances in geographic information
systems (GIS 2003), New Orleans, pp 126-133

4. Mamoulis N, Cheung D, Lian W (2003) Similarity search in sets and categorical data using
the signature tree. In: Proceedings of the 19th international conference on data engineering,
Bangalore, 2003. IEEE Computer Society, Washington, DC, pp 75-86

5. Morzy M, Morzy T, Nanopoulos A (2003). Hierachical bitmap index: an efficient and scalable
indexing technique for set-valued attribute. In: Proceedings of ADBIS’03, Berlin, pp. 236-252

6. Tao Y, Faloutsos C, Papadias D, Liu B (2004) Prediction and indexing of moving objects with
unknown motion patterns. In: Proceedings of the 2004 ACM SIGMOD international conference
on management of data (SIGMOD 2004), Paris, pp 611-622

7. Xu B, Wolfson O (2003) Time-series prediction with applications to traffic and moving objects
databases. In: Proceedings of the 3rd ACM international workshop on data engineering for
wireless and mobile access (MobiDE 2003), San Diego, pp 56-60

8. Zaki MJ (2001) SPADE: an efficient algorithm for mining frequent sequences. Mach Learn
42(1/2):31-60

Chapter 8
Uncertainty Management in Moving Objects
Database

Abstract The uncertainty is mainly caused by measurement error and sampling
error, which makes uncertainty as an inherent aspect of moving object database. To
manage uncertainty, lots of research has been proposed with lots of effective models
and algorithms. This chapter presents a systematic overview of the various issues
and solutions related to the uncertainty management in moving objects database. In
the first part of this chapter, we introduce three representative models to illustrate
how the uncertainty can be managed in moving object database. Afterwards, a novel
modeling framework is presented to manage uncertain trajectory and define some
database operations related to the framework.

Keywords Uncertainty management * Uncertainty trajectory ¢ Spatial network e
Moving object databases * Abstract data type

8.1 Introduction

Uncertainty management is one of the most important issues in moving objects
databases. In the MOD system, moving objects such as cars, flights, ships, and
pedestrians are uniquely identified, and each of them is equipped with a portable
computing platform and other integrated location tracking equipments like GPS.
Through location updates, moving objects report their latest location information to
server so that the location of any object at any time can be retrieved by users through
query. Since location update is made intermittently, between any two consecutive
location updates, the server cannot tell the exact location of this object, so it is
important to find ways for inference. As shown in Fig. 8.1, given a query on the
location of an object at 73, the result cannot be directly obtained from the database
server. As a result, uncertainty becomes an inherent aspect of MOD [10, 16].

In recent years, lots of research has been focused on the uncertainty management
problem, with lots of effective models and algorithms being proposed. Generally
speaking, there are two kinds of uncertainty: measurement error and sampling error.

X. Meng et al., Moving Objects Management: Models, Techniques 133
and Applications, DOI 10.1007/978-3-642-38276-5_8,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

134 8 Uncertainty Management in Moving Objects Database

Database Server

Location
Update

N

1 o (il
b1 P4 Dg

/'tl t2 t3 ty ts te t7 ts

Query (t3)=?

Fig. 8.1 Location uncertainty

With the help of GPS devices, measurement error can be very small compared with
the sampling error. As for the sampling error, uncertainty depends directly on the
update frequency of moving objects.

In [10], the authors analyze the sources of uncertainty in moving objects
databases and proposed a framework to deal with uncertain data. In [15, 16], the
authors discussed the uncertainty management strategies in the DOMINO system.
By applying an uncertainty threshold, the trajectory of a moving object is extended
from a curve to a tube in the X x Y x T space, and the operations, such as inside, are
extended by introducing the uncertainty semantics such as “sometimes,” “always,”
“possibly,” and “definitely.” Research [12] explored the uncertainty and fuzziness in
managing moving objects, and a framework is provided to deal with spatio-temporal
indeterminacies. In [14], a set of data types and operations have been proposed for
the uncertainty management of moving objects. However, all the above studies are
based on the X x Y x T Euclidean space, and nearly none of them have treated the
interaction between moving objects and the underlying transportation networks in
any way.

Recently, based on the fact that most moving objects only move in fixed
transportation networks, researchers have realized the importance of modeling
network-constrained moving objects, and meanwhile, the uncertainty of network-
constrained moving objects has also been studied. The uncertainty management
problem for network-constrained moving objects is analyzed in detail in [6].
Through reasonable location modeling and location update methods, the possible
location of a moving object at any time is reduced to a graph route section instead
of a region so that the indeterminacies can be greatly reduced. In [8], authors
propose to use transportation networks to reduce sampling noises from GPS or
to predict future positions of moving objects. In [2], authors further discuss the
uncertainty of network-constrained moving objects based on the study [6], with a
rich set of data types and operations for representing historical uncertain trajectories
defined.

8.2 Representative Models 135

Even though the modeling of uncertainty has been relatively well studied, the
research on the operations of moving object trajectories with uncertainty considered
is very limited. Previously, a lot of index methods were proposed to deal with
the trajectories of moving objects both with and without network concerned.
For instance, in [11, 13], the authors proposed an R-tree-based index method for
Euclidean space-based trajectory data. In [7], the author proposed a Fixed Network
R-Tree (FNR-Tree) to index moving objects on fixed networks. In [1], authors
proposed the MON-tree to further improve the FNR-Tree. Also, the study in [3]
deals with the future trajectories of network-constrained moving objects.

In this chapter, we first present some representative uncertainty management
approaches. After that we introduce a novel framework that can manage uncertainty
trajectory effectively and answer queries about them accurately. Particularly, we
focus on the key technical issues like uncertain trajectory modeling, database
operations, and query processing for uncertainty management.

8.2 Representative Models

8.2.1 2D-Ellipse Model

To depict the uncertainty of moving object, Pfoser and Jensen in [10] present a
2D-ellipse model in spatial space. An error ellipse is proposed to measure the
uncertainty of moving object according to its maximum speed and the sampling
interval. Suppose P; and P, are two consecutive samples from a moving object, the
sampling interval is A¢, and its maximum speed is v,,; then the possible location of
the moving object at time #,, f; < f, < fp, can be computed. If the object moves at
v, from P; and its trajectory is a straight line, its position at time 7, will be on a
circle of radius r; = v, (#; + t,) around P;. Thus, the points on the circle represent
the furthest away from P; the object can reach at time #,. If the object’s speed is
lower than v,,, or its trajectory is not a straight line, the object’s position at time ?,
will be somewhere within the area bounded by the circle of radius r;. Applying the
same assumptions again, the object’s position at time ¢, is on the circle with radius
ry = vy(ta — t) around P,. If the object moves slower or its trajectory is not a
straight line, it is somewhere within the area bounded by this circle.

As shown in Fig. 8.2, with the evolving sampling error, the possible locations of
the moving object in between two consecutive samples lie on an error ellipse with
positions P; and P, as its foci. The length of the semimajor axis is 2a = r| + r».
As the definition of an ellipse points out, it is a curve consisting of all points in
the plane whose sum of distances, r| and r,, from two fixed points, P; and P, (the
foci) separated by a distance of 2c, is a given constant, 2a. The measure 2¢ can be
interpreted as the observed distance between P; and P,, whereas 2a is the maximum
distance the object can travel. The “thickness” of the ellipse, 2b, is determined by
the equation b> = a? — 2. This means that the smaller the difference between

136 8 Uncertainty Management in Moving Objects Database

" ®)

Pi(xy y1 11

Fig. 8.2 Error ellipse

the observed distance 2¢ and the maximum distance 2a, the “thinner” the ellipse.
In extreme cases, the ellipse degrades to a line segment. In worst cases, where the
object does not move between consecutive position samples, the ellipse becomes a
circle.

8.2.2 3D-Cylinder Model

Traditionally, the trajectory of a moving object was modeled as a polyline in three-
dimensional space (two dimensions for geography, and one for time). In order to
capture uncertainty, Trajcevski et al. in [16] propose an approach to model the
trajectory as a cylindrical volume in 3D. Traditionally, spatio-temporal range queries
ask for the objects that are inside a particular region, during a particular time
interval. However, for the moving objects, one may query the objects that are inside
the region sometime during the time interval, or for those always inside during the
time interval. Similarly, one may query the objects that are possibly inside the region
or for the ones that are definitely there.

An uncertain trajectory is obtained by associating an uncertainty threshold r
with each line segment of the trajectory. For a given motion plan, the line segment
together with the uncertainty threshold constitutes an “agreement” between the
moving object and the server. The agreement specifies the following: the moving
object will update the server if and only if it deviates from its expected location
(according to the trajectory) by r or more. How does the moving object compute the
deviation at any point in time? Its onboard computer receives a GPS update every
2s, so it knows its actual location. Also, it has the trajectory, so by interpolation, it
can compute its expected location at any point in time. The deviation is simply the
distance between the actual and the expected location.

8.2 Representative Models 137

\ Time (x3.y3,t3)

(xLyLtl)

\)

possible route

Y uncertainty zone

Fig. 8.3 Possible motion curve and trajectory volume

Accordingly, Trajcevski et al. in [16] define the uncertainty threshold, r-
uncertainty area, and trajectory volume. Uncertainty threshold is defined as a tuple
(Tr, r), where Tr represents a trajectory and r is a positive real number, denoting the
uncertainty threshold. For each point (x, y,) on the Tr, its r-uncertainty area is a
horizontal circle with radius r, centered at (x, y,t), where (x, y) is the expected
location at time ¢t € [t1,1,]. Considering all the t € [t,#,] in 3D space, the
continuous r-uncertainty area constitutes a 3D volume called trajectory volume
shown in Fig. 8.3.

8.2.3 Model the Uncertainty in Database

We recall the model presented in [9] for moving objects in network that the most
important type of moving object is the moving point object. With this abstraction,
we can model the movement of cars, trains (if their extent is ignored), people, etc.,
and implement them in the database system.

Almeida and Giiting in [2] point out when an update in the DBMS is triggered
by an object, four possibilities can occur: The object is new to the system and starts
its movement; the object changes routes; the object position deviation exceeds the
threshold &; or the object speed deviation exceeds the threshold . If the object is

138 8 Uncertainty Management in Moving Objects Database

Table 8.1 Abstract data types with uncertainty

— BASE int,real,string,bool
— SPATIAL point,poinTv,liﬂ,region
— GRAPH gpoint,gline
— TIME instant
BASE\J SPATIAL\) GRAPH — UNCERTAIN uncertain
BASE\J SPATIAL| J GRAPH| J UNCERTAIN ~ —> TEMPORAL moving, intime
BASE\J TIME — RANGE range

new to the system, the first information about the moving object is stored in the
database. And if under the rest conditions, a new piece of the trajectory will be
added to the database from the position in the last update to this current one.

Assume that the measurement points are at positions p; and p, of the specified
route r taken at times #; and #,. At time ¢, the position is precise and equals to p;
with speed v;. After that, the object can travel at least with v; — ¥ and at most at
v; + V¥ or its maximum speed Vpgy, 1.€., MInv| + ¥, Vg, . Let us assume, without
loss of generality, that the object is traveling along the route side where positions
are increasing, i.e., p; < p,. Thus, the minimum position of the object at some time
t,h<t< lz,pmin(l) is

Pmin(t) = max{p + maxvy — w, 0@ —11), (8.1)
p1+§ 220 (t — 1), (8.2)
D2 — min{vl + Y, Vpan (12 — 1)} (8.3)

Analogously, the maximum position of the object at some time #, P4 (¢) is

Pmax(t) = min{p; + min{m + w, Umax }(t — 11), (8.4)
pt+e+ 270 P P, (8.5)
p2 — max{vy — ¥, 0}(t, — 1)} (8.6)

These two equations give us the geometry of a moving object between two
measurement points p; and p, at times #; and #,, respectively.

To support uncertainty in the original abstract data types, the operations (and
semantics) are extended and the data types uncertain(gpoint) and its moving
counterpart mungpoint that represents static and moving points in networks with
uncertainty are introduced. The data types with mungpoint and uncertain(gpoint)
can be seen in Table 8.1. The UNCERTAIN kind with uncertain type constructor
is added in order to support uncertain data types. As one can note in this type
constructor, we also need to use an extension of the base (BASE) and spatial
(SPATIAL) types to support uncertainty.

8.2 Representative Models 139

An uncertain graph point belongs to a network, and the uncertainty is represented
only inside the same route. Given a set N = {N; = (R, J1),..., Ny = (Rk, Ji)}
containing all the networks in the database, the ungpoint data type is represented as

Dungpoint ={(i, rid, side, pos)} U{J_}|
1<i <k,
pos € unreal,
A(rid, len, cc, kind, sm) € R;, such that
kind = simple < side = noneA

Vp epos,0<p <len

There are two approaches for representing the geometry of a moving uncertain
graph point as a mungpoint data type, i.e., representing a moving object as a set of
slices, called temporal units. Within each slice, the development of the value can be
represented by a temporal function. For example, for the mreal data type, a quadratic
polynomial function or the secure root of such is used, and for the mpoint data type,
just a simple linear function.

The temporal functions are represented by the generic function 7 that evaluates
the unit function at a given time instant. Given a nontemporal type «, its correspond-
ing unit type D,, = Interval(Instant) x S,, where S, is a suitably defined set and
an Interval(T) is an interval over a set (U,<) with a total order with the following
definition:

Interval(U) ={(s,e,lc,rc)}|s,e € U,lc,rc € bool,

s<e,(s=e)=(c=rc=T)}

where s and e define the boundaries of the interval and /¢ and rc¢ define whether the
interval is right and/or left-closed. The function 7, or simply 7 is defined as

Ty = S¢ X Instant — D,
Another approach is a slightly modified version of the t function that receives
also as argument the time interval of the unit, i.e., the whole unit. The new t function
is then represented as

Ty = Dyo X Instant — D,

The use of the T function should become clearer when we instantiate it in the two
approaches to represent the moving graph point object.

140 8 Uncertainty Management in Moving Objects Database
8.3 Uncertain Trajectory Management

In this section, we first model a road network framework for the UTR-tree hybrid
index structure, as well as the network-constrained moving objects and uncertain
trajectories. Based on this uncertainty model, we afterwards describe the database
operations for uncertainty management.

For simplicity, we model the whole transportation network as a single graph, and
we will use “transportation network™ and “transportation graph” interchangeably.

8.3.1 Uncertain Trajectory Modeling

Definition 8.1. Motion vectors are snapshots of a moving object’s movements and
are generated by location updates. A motion vector, mv, is defined as follows:

mv = (¢, (rid, pos), V) 8.7)

where ¢ is a time instant, (rid, pos) is a network position describing the location
of the moving object at time 7, and v is the speed measure of the moving object at
time .

The speed measure v is a real number, which contains both speed and direction
information. Its abstract value is equal to the speed of the moving object at time
t, while its sign (either positive or negative) indicates the traffic flow direction the
moving object belongs to. If the moving object is moving from 0-end towards 1-end,
then the sign is positive. Otherwise, if it is moving from 1-end to 0-end, the sign is
negative.

In network-constrained moving objects databases, three kinds of location updates
are defined in [5], that is, ID-Triggered Location Update (IDTLU), Distance-
Threshold Triggered Location Update (DTTLU), and Speed-Threshold Triggered
Location Update (STTLU). DTTLU and STTLU are triggered when the moving
object exceeds the distance threshold & and the speed threshold v, respectively,
and will generate one motion vector mv,; IDTLU is triggered when the moving
object transfers from one route r; to another route r,, and will generate three
motion vectors, mv,1, MVy2, MU43, Where mv,; and mv,; correspond to the junction
location and mv,3 corresponds to the location when IDTLU is triggered. These three
kinds of location updates work together to complete the trajectory data sampling
process.

Definition 8.2. The trajectory of a moving object mo is a sequence of motion
vectors sent by mo through location updates during its journey. A trajectory, denoted
as Tr, is defined as follows:

Tr = (mv;)i—, = ((t, (rid;, pos;), vi))i—, (8.8)

8.3 Uncertain Trajectory Management 141

Fig. 8.4 Uncertain trajectory g b
units of moving objects. (a) pos ; pos
Non-active UT-Unit. (b) 1 i 1

Active UT-Unit(pentagon).
(¢) Active UT-Unit(triangle)

mu,

mu,

where mv, is the last motion vector submitted by the moving object, and we call it
the “active motion vector” of the moving object, which contains the key information
for computing the current or near-future locations of the moving object and for
triggering the next location update.

As stated in [6], through the trajectory, we can only know the exact location
of the moving object at the location update time. Between two location updates
and after the last location update, the location of the moving object is uncertain,
and we can only compute the possible locations according to the corresponding
motion vectors. Therefore, the trajectory of the moving object actually describes
the “uncertain locations” of moving objects, and therefore we call it “uncertain
trajectory” in this chapter. For simplicity, trajectory and uncertain trajectory will
be used interchangeably throughout this chapter.

In [2, 6], the authors have analyzed the possible locations that can be derived
from the trajectories. Between any two consecutive motion vectors mv; and mv,,
the possible locations of the moving object mo form a hexagon in the POS x T
plane. After the last motion vector mv,, we can predict the possible location of the
moving object until the end (either 0-end or 1-end, depending on the direction of
mo) of the route, and the possible locations of the moving object form a pentagon,
quadrangle, or triangle, depending on the distance threshold &, speed threshold
¥, and the active motion vector mv,. We call the above-mentioned polygons
“uncertain trajectory unit,” or UT-Unit for short. The UT-Unit corresponding to
two consecutive motion vectors mv; and muv, is called non-active UT-Unit and
is denoted as UT-Unit(mvy, mv,), and the UT-Unit corresponding to the active
motion vector mv, = (¢4, (rid,, pos,), v,) is called active UT-Unit and is denoted as
UT-Unit(mv,). Figure 8.4 illustrates the geometry of the possible locations derived
from UT-Units.

142 8 Uncertainty Management in Moving Objects Database

a b
' i cid
1

Vg
pos

Fig. 8.5 Uncertain trajectory of a moving object. (a) Uncertain trajectory 7r. (b) Part of Tr
corresponding to a route

The uncertain trajectory of a moving object is a set of consecutive uncertain
trajectory units, as shown in Fig. 8.5.

For simplicity, in the following discussion, we suppose that the moving object
runs from 0-end towards 1-end during the time period corresponding to the UT-
Unit. The methods proposed can be easily adapted to deal with the situation when
moving objects run from 1-end to 0-end.

Let us first analyze non-active uncertain trajectory units. From the loca-
tion update strategies for network-constrained moving objects [5], we know
that for a non-active trajectory unit UT-Unit(mvg, mv,) (where mvy, =
(ts, (rids, pos,), vs),mv, = (t., (rid,,pos,),v.), and rid; = rid,), the location
of the moving object at any given time #, € [t,, #.], denoted as pos|[t,], should meet
the following condition:

pos[tq] € [posqmimpasqmux] (8.9)

where pos,iy, POSma, can be computed in the following way [6] (since we use
relative position pos € [0, 1], we suppose that the speed measures v;, V., v, the
distance threshold &, and the speed threshold v have already been divided by
r.length, the length of the route, before computation):

posqmin = max(poslj - §,p0ss + (VS - W)
X(Zq —t5),pos, — (Vs + ¥) X (te — Zq)) (8.10)

posqmax = min(l"’s; - gvposs + (Vs + I//)
X(tq - ts),pose — (Vs =) x (t, — Zq)) (8.11)

where pos; = pos, + Vs X (tg — 1).

We can depict the geometry of UT-Unit(mvy, mv,) as a hexagon (see the shad-
owed part of Fig. 8.6). As shown in Fig. 8.6, the hexagon of UT-Unit(muv,, mv,) is
actually formed and surrounded by six lines corresponding to Egs. (8.10) and (8.11).

8.3 Uncertain Trajectory Management 143

Fig. 8.6 Geometry and MBR A (3) (4)
of UT-Unit(mu,, mv,) e - '
(5) mv,

l=— mbr{muv,, mv,)

0

Fig. 8.7 Geometry and MBR] (10) (9) (7) (8) (10)49) (7).~ (8)
of UT-Unit(mv,) pos LT s

mu,

Now let us analyze the MBR of this hexagon. Suppose that (#*, posx*) is an
arbitrary point inside the hexagon, where #; < ¢*x < t,. Since the moving object
runs along route(rid;) monotonically from pos, towards pos, during the time period
from #; to 7., we can assure that pos* must meet the following condition: pos, <
posx =< pos,. Therefore, the MBR of UT-Unit(mv,, mv,) is: mbr(mv,, mv,)=<
ty, posg, te, pos, >, as shown in Fig. 8.6.

In the following, let us consider active trajectory units. For an active trajectory
unit UT-Unit(mv,), the location of the moving object at a given time #,(f, < t;, <
Inow), denoted as pos[t,], should meet the following condition:

pOS[lq] € [posqmin’posqmax] (812)

where pos,,,;,, and pos,,,,, can be computed in the following way [6]:

gmax

POSgin = max(pos;> —&,pos, + (Vo —) x (t; — ta)) (8.13)

POSgmax = min(l,posy + &, pos, + (Va + V) x (tg — ta)) (8.14)

where pos; = pos, + Vo X (tg — 14).
The geometry of UT-Unit(mv,) is illustrated in Fig. 8.7 (see the shadowed parts).

144 8 Uncertainty Management in Moving Objects Database

a
y “(0, 100) (100, 100) b
1.2
11 - 21 {22
1.3 A - 1
1;ea 1.4 Area 2 % Universit
o i >3 ',i niversity
- 3.3- \24)
saliread a2\ 25 .
©,0) (100,0)

Fig. 8.8 Partition of the underlying traffic network. (a) Partition of traffic network. (b) Overlap of
partition areas

8.3.2 Database Operations for Uncertainty Management

By adjusting the distance threshold £ and the speed threshold v/, the uncertainty
model presented in the previous section can support variable precisions in presenting
the locations of moving objects. However, sometimes this is still “too precise.” In a
lot of cases, much lower precisions in presenting the locations of moving objects (for
instance, “from 8:00 to 10:00, I was traveling in the city center; after that until 13:00
I was visiting the museum area; and from 13:00 to 15:00 I was in the university
area”) are quite acceptable.

To better support variable precisions in presenting the locations of moving
objects, we define a new data type, discretely moving graph region, to describe the
possible locations of moving objects.

Definition 8.3. A discretely moving graph region is defined as a sequence of the
following form:

dmgr = ((;, gregion;))}_,

where #; is a time instant and gregion; is a graph region value. For Vi € {1,---,n—1},
t; < ti+1, and the moving object is assumed to move inside gregion; between ¢; and
lit1.

The locations of moving objects can be tracked in the following way. First, the
whole transportation network is partitioned into a group of areas with each area
to be a graph region. To support multiple granularity in uncertainty management,
the system can have multiple partitions on the same traffic network, which form
a hierarchical structure, as shown in Fig.8.8a. The graph regions are uniquely
numbered, and both the server and the moving object need to keep the partition
information. To avoid frequent location updates when moving objects are moving
near the border between two partitions, these partition areas should overlap each
other to some extent, as shown in Fig. 8.8b.

8.3 Uncertain Trajectory Management 145

a b .
cido Aeid oid3 eid ¢ loc. ugdaletlme
1 g By g
t eidglaI
eid : 'g(!
-0 etcts
1 [1 —— -
LI 7 6] (7
cidk = =g — = —+ — 4 = Jpt e e (L
. Ogg) ;70 2
4 Ioc.upda%e 7’ TS 3P
pos g posp’ T

Fig. 8.9 “Trajectories” of moving objects. (a) A moving graph route section. (b) A discretely
moving graph region

a b
) ible loc. of mo
FOCTA "'* -

Fig. 8.10 Semantics of (a) inside_possibly and (b) inside_definitely

In [9], Giiting RH et al. have defined a rich set of operations for network-
constrained moving objects and the related data types. Through some extension,
these operations can be upgraded to support uncertainty. In this section, we aim
to present some general ideas behind the design of the operations and query
processing. First let us see the “trajectories” of moving objects. If a moving object
is modeled directly in the Euclidean space, its trajectory is a curve (or a tube when
uncertainty is considered) in the X x ¥ x T space [10, 16]. However, in network-
constrained moving objects databases, the trajectory of a moving object can have
totally different forms, as shown in Fig. 8.9.

As illustrated in Fig. 8.9, the possible location of a moving object at any given
time instant ¢,, denoted by w(t,), is the intersection of its trajectory and the plane
corresponding to , (which is vertical to the axis). w(t,) can be either a graph route
section (see Fig. 8.9a) or a graph region (see Fig. 8.9b).

Let dw(t,) be the set of points contained in w(f;). In designing an operation
which involves the whole trajectory or part of the trajectory, say, inside, we
need to extend it to inside_possibly and inside_definitely with the following
semantics:

inside_possibly(w(#,), A) < Ip € dw(t,):inside(p, A) <intersects(w(t,), A)
inside_definitely(w(z,). B) & Vp € dw(t,):inside(p, B) < inside(w(t,), B)
(Fig. 8.10).

Following the strategy described above, we can extend other operations, such
as at, intersect, atperiod, and atinstant, with uncertainty involved. For instance,
the signature of the atperiod and atinstant operations can be extended as follows

146 8 Uncertainty Management in Moving Objects Database

Fig. 8.11 Range query through UTR-tree. (a) Search the upper R-tree and receive (rid X period)
pairs. (b) Search the upper R-tree and output moving obj.identifiers (15, ms)

(mgrs, dmgr, grs, gr are the data types corresponding to moving graph route section,
discretely moving graph region, graph route section, and graph region, respectively):

atperiod: mgrsxperiod—mgrs,dmgrxperiod—dmgr

atinstant: mgrsxperiod—mgrs,dmgrxperiod—dmgr

Since in moving objects databases, the most common uncertain query operators,
such as possibly-inside (zrajectory, Ix xIy x It) and possibly-intersect (trajectory,
Ixx1IyxIt)(wherelx, Iy, It areintervalsin X, Y, T domains), belong to range
queries, that is, the input of the query is a range in the X x ¥ x T space, we take
range query as an example to show how the uncertain query processing is supported
by the UTR-tree [4].

The querying of the UTR-tree can be completed in two steps. When processing a
range query (suppose the range is 1 x x Iy x I t), the system will first query the upper
R-tree of the UTR-tree according to I x x I'y and will receive a set of (rid x period)
pairs as the result, where period C [0, 1] and can have multiple elements; then for
each (rid x period) pair, search the corresponding lower R-tree to find the UT-Units
intersecting period x It, and output the corresponding moving object identifiers.
Figure 8.11 illustrates the range query processing based on the UTR-tree. The query
algorithm is given in Algorithm 21.

Algorithm 21: RNE (node_id, QS, result)
input : Ix X Iy X It
output: Result
Search the upper R-Tree according to / x X Iy, and receive a set of pairs: (rid;, period;){_;
fori:=1ton do
for Vp € period X It do
Let p be the set of UT-Units in RTreey,,, (rid;) which intersect p;
Result = ResultUthe set of moving object IDs in the element of u;
end
end
Return Result;

References 147
8.4 Summary

Uncertainty management is a key research issue with moving objects databases, and
a lot of research has been focused on this problem recently. However, most studies
focus on the modeling (data types, operations, and algorithms) of uncertainty,
leaving the index of uncertain trajectories for moving objects, especially network-
constrained ones, as an unsolved problem. In this chapter, we firstly present three
representative uncertainty models and then discuss uncertainty management on road
networks with two subsections: uncertainty modeling and uncertainty operations.
Meanwhile, we present how to process the uncertainty query on this framework.
Some other techniques related with uncertainty indexing are also described in other
chapters.

References

1. Almeida VT, Giiting RH (2005) Indexing the trajectories of moving objects in networks.
Geolnformatica 9(1):30-66
2. Almeida VT, Giiting RH (2005) Supporting uncertainty in moving objects in network
databases. In: Proceedings of the 13th annual ACM international workshop on geographic
information systems (GIS 2005), Bremen, pp 31-40
3. Chen J, Meng X (2007) Indexing future trajectories of moving objects in a constrained network.
J Comput Sci Technol 22(2):245-251
4. Ding Z (2008) UTR-tree: an index structure for the full uncertain trajectories of network-
constrained moving objects. In: 9th international conference on mobile data management
(MDM 2008), Beijing, pp 27-30
5. Ding Z, Giiting RH (2004) Managing moving objects on dynamic transportation networks.
In: Proceedings of the 16th international conference on scientific and statistical database
management (SSDBM 2004), Santorini Island, p 287
6. Ding Z, Giiting RH (2004) Uncertainty management for network constrained moving objects.
In: Proceedings of the 2004 international conference on database and expert systems applica-
tions (DEXA 2004), Zaragoza, pp 411-421
7. Frentzos E (2003) Indexing objects moving on fixed networks. In: Proceedings of the 8th
international symposium of advances in spatial and temporal databases (SSTD 2003), Santorini
Island, pp 289-305
8. Gowrisankar H, Nitte S (2002) Reducing uncertainty in location prediction of moving objects
in road networks. In: Proceedings of the 2002 conference on geographic information science
(GIScience 2002), Boulder, pp 228-242
9. Giiting RH, de Almeida VT, Ding Z (2005) Modeling and querying moving objects in
networks. VLDB J 15(2):165-190
10. Pfoser D, Jensen CS (1999) Capturing the uncertainty of moving object representations. In:
Proceedings of the 6th international symposium on advances in spatial databases (SSD 1999),
Hong Kong, pp 111-132
11. Pfoser D, Jensen CS, Theodoridis Y (2000) Novel approaches in query processing for moving
object trajectories. In: Proceedings of the 26th international conference on very large data bases
(VLDB 2000), Cairo, pp 395406
12. Pfoser D, Tryfona N (2001) Capturing fuzziness and uncertainty of spatiotemporal objects. In:
Proceedings of the 5th East European conference on advances in databases and information
systems (ADBIS 2001), Vilnius, pp 112-126

148 8 Uncertainty Management in Moving Objects Database

13. Saltenis S, Jensen CS, Leutenegger ST, Lopez MA (2000) Indexing the position of continu-
ously moving objects. In: Proceedings of the 2000 ACM SIGMOD international conference on
management of data (SIGMOD 2000), Dallas, pp 331-342

14. Tgssebro E, Nygard M (2002) Uncertainty in spatio-temporal databases. In: Proceedings of
the 2nd international conference on advances in information systems (ADVIS 2002), Izmir,
pp 43-53

15. Trajcevski G, Wolfson O, Cao H, Lin H, Zhang F, Rishe N (2002) Managing uncertain
trajectories of moving objects with domino. In: Proceedings of the 4th international conference
on enterprise information systems (ICEIS 2002), Ciudad Real, pp 769-771

16. Trajcevski G, Wolfson O, Chamberlain S, Zhang F (2002) The geometry of uncertainty in
moving objects databases. In: Proceedings of the 8th international conference on extending
database technology: advances in database technology (EDBT 2002), Prague, pp 233-250

Chapter 9
Statistical Analysis on Moving Object
Trajectories

Abstract Traffic behavior analysis based on moving object trajectories is a basic
technique for intelligent transportation system (ITS) applications like traffic control.
In this chapter, we firstly propose a new model for objects moving on dynamic
transportation networks (MODTN). In the MODTN system, moving objects are
modeled as moving graph points that move only within predefined transportation
networks. To express general events of the system, such as traffic jams, temporary
constructions, and insertion and deletion of junctions or routes, the underlying
transportation networks are modeled as dynamic graphs so that the state and the
topology of the graph system at any time instant can be tracked and queried.
Based on this model, we secondly introduce a real-time traffic flow statistical
analysis method called NMOD-TFSA. By analyzing the spatio-temporal trajectories
of moving objects, NMOD-TFSA can get the real-time traffic parameter values of
the transportation network.

Keywords Statistical analysis * Real-time traffic flow analysis ¢ Dynamic
transportation network * Moving object databases

9.1 Introduction

Analyzing or monitoring traffic behavior on transportation network, such as col-
lecting the traffic jam, is an important research direction in the fields of mobile
computing and ITS. It is considered very practical to improve traffic conditions,
manage transportation systems more effectively, and improve their accessibility.
Statistical analysis based on moving object trajectories is recently one of the most
used methods to discover the collective behaviors from large scale of individual
“moving sensors” (vehicle, pedestrian etc.), hence it has attracted lots of academic
researchers and become a key research issue in recent years.

There exist various techniques which have been adopted to collect traffic data,
such as stationary sensor-/camera-based methods (monitoring from traffic sensors or

X. Meng et al., Moving Objects Management: Models, Techniques 149
and Applications, DOI 10.1007/978-3-642-38276-5_9,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

150 9 Statistical Analysis on Moving Object Trajectories

optical devices), air-/spaceborne methods (monitoring from airplanes or satellites),
and floating-car-based methods (monitoring from floating/probe cars). However,
these methods have a lot of limitations. For example, stationary sensor-/camera-
based methods can only measure traffic data at fixed positions. To get the traffic
information of the whole transportation network, a large number of detectors are
needed so that the system can be very expensive. Air-/spaceborne methods can
monitor traffic conditions over large areas, but the data are available only when
the air-/spaceborne detectors are flying over the monitored areas.

Comparing with above-mentioned traditional methods, a novel kind of method
which derives traffic information from the floating-car method [6, 9] (or FCM
for short) has attracted increasing research interests in recent years, with a lot
of feasible solutions achieved. In the FCM system, certain kinds of vehicles (for
instance, taxicabs, buses, or specially equipped probe cars) are equipped with GPS
and wireless communication interfaces and periodically (say, once in every 2 min or
in every 500 m) report to the central server their locations, velocities, and directions
(these data are called floating-car data, or FCD for short). In every certain time
interval (say, 5 min), the server launches a statistical process to match the FCD with
the traffic network so that traffic flow parameters (for instance, average speed, travel
time, and traffic jam of each route) of the network can be computed and refreshed.
However, all the above methods are mainly focused on traffic estimation, leaving
the balance between data collecting efficiency and statistical analysis accuracy
not well studied.

The problems mentioned above are not easy to solve due to two major
challenges:

1. How to model the transportation network reasonably? Since the transportation
networks can be subject to discrete changes over time, they should be modeled
as “dynamic” graphs that allow us to express state changes (such as traffic
jams and blockages caused by temporary constructions) and topology changes
(such as insertion and deletion of junctions or routes). Correspondingly, moving
objects are constrained by the networks in nature; their movement should be also
represented as some kind of moving units in the discrete model. In other words,
moving objects modeled in the network space are much more complex than
them in the European space. Actually, modeling of transportation networks is
not trivial as practical situations are really complicated. For example, a logistics
network may consist of multiple road graphs, while it may also be organized in
different granularity.

2. How to enforce the traffic statistics in real time? First, it needs to determine which
kinds of parameters can be used to define the real-time traffic states based on the
underlying model. A principle is that these parameters should be suitable both
for data sampling and for traffic aware navigation purposes. Second, efficient
statistics data structure and access method are needed to speed up the statistical
analysis process.

Towards upper considerations, in this chapter, we introduce a novel model of
traffic-parameterized road networks and provide several functions and algorithms
[3-5] to do statistical analysis of traffic flow in real time.

9.2 Representative Methods 151
9.2 Representative Methods

Traditional traffic monitoring techniques based on stationary sensors/cameras
require a large number of surface detectors or spaceborne detectors to equip and
surely suffer from the challenge of scalability and efficiency. To overcome the above
limits, two novel kinds of methods have attracted increasing research interests in
recent years, i.e., the methods based on floating-car data (or FCD for short) or based
on trajectories in moving object databases (or MOD for short).

9.2.1 Based on FCDs

Currently, a lot of traffic aware solutions are achieved based on FCD data. In order
to simplify the discussion, we term the traffic collection methods based on FCDs
as FCM for short. FCM is a “moving sensor”-based method as floating cars collect
traffic data during their move. In earlier works [16], the authors have analyzed the
architecture and the data sampling methods in floating-car systems. In the FCM
system, certain kinds of vehicles (for instance, taxicabs, buses, or specially equipped
probe cars) are equipped with GPS and wireless communication interfaces and
periodically (say, once in every 2 min or in every 500 m) report to the central server
their locations, velocities, and directions (i.e., FCD). In every certain time interval
(say, Smin), the server launches a statistical process to match the FCD with the
traffic network so that traffic flow parameters (for instance, average speed, travel
time, and traffic jam of each route) of the network can be computed and refreshed.
In [6, 9], the authors have proposed several data analysis methods for floating-car
systems. The paper has analyzed the data sampling frequency for floating cars.
In [15], the optimal number of probe cars is analyzed for traffic networks in order to
get reasonable statistical results. In [18], the authors have discussed how to derive
traffic information through periodically collected GPS data from moving objects.
All the above methods are mainly focused on traffic estimation, leaving the balance
between data collecting efficiency and statistical analysis accuracy not well studied.

9.2.2 Based on MODs

In recent years, trajectory data collected from large scale of moving objects has
greatly enriched the research on data warehouse, OLAP, and data mining. There
exist various works on spatio-temporal mining, such as motion pattern discovery [1],
trajectory clustering [12], classification [10], outlier detection [11], prediction [14],
etc., but most of them are based on Euclidean space. In other words, nearly
none of these works have treated the interaction between moving objects and the
transportation networks in any way. Euclidean-based solutions are imprecise in
describing the network paths the moving objects have taken, because multiple paths

152 9 Statistical Analysis on Moving Object Trajectories

over the network can coexist between two consecutive sampling points. These
methods are not suitable for mining transportation network-constrained trajectory
patterns, so they are hard to be directly used to maintain the traffic network and to
optimize the traffic flow control. On the other hand, previous research on moving
objects databases is mainly focused on modeling single moving objects [8, 17].
Some recent work has dealt with clustering moving objects to find moving patterns
from MOD [7], but the patterns are not as detailed as the real-time traffic parameters
as discussed in this section.

More recently, some research has been conducted on traffic flow statistical
analysis for trajectories with road network constraints [12, 13]. However, they
only consider either the topological features of road networks or the spatio-
temporal features of trajectories, and few of them have systematically dealt with
more featured traffic patterns, such as uncrowded hot routes, trajectory clusters of
resulting traffic blockages, chains of traffic jams, etc.

Recent methods in statistical analysis of traffic flow have a lot of limitations
in terms of data sampling costs, data processing efficiency, and statistical analysis
accuracy. In other words, existing works would suffer from two shortcomings in
practical systems: (1) These limitations make real-time analysis very hard and
expensive; (2) the measure error of traffic flow is not trivial because of mismatching
between moving object motions and transportation behaviors.

9.3 Real-Time Traffic Analysis on Dynamic
Transportation Networks

9.3.1 Modeling Dynamic Transportation Networks

In this section, we first give an example of practical transportation network and then
introduce two models of underlying transportation networks. One is the State-Based
Dynamic Transportation Network model, which can be used to describe the spatio-
temporal aspect of temporally variable transportation networks. The second is the
network-constrained moving objects database-based traffic flow statistical analysis
(NMOD-TFSA) model, which aims to collect real-time traffic parameter values of
the transportation network.

9.3.1.1 An Example of Application Scenarios

Let us first give an example to show how practical transportation networks can be
organized in databases. We suppose that the whole system is composed of multiple
graphs that can overlap each other. Figure 9.1 gives an example which shows how
a modern logistic system works. The whole highway network is expressed as a
graph in the database, while the street network of each city is also stored as an
independent graph.

9.3 Real-Time Traffic Analysis on Dynamic Transportation Networks 153

HighwayNet

AT
e

N .

)
/ Moving object _ N

P 1
) =...."loc. update
1 g

s N s /
F" Traffic | M “db. update
' |

" db. updates

T R

/

- "CityStrectNet-l

Fig. 9.1 Transportation networks

Each graph can be composed of a set of routes and a set of junctions. The
junctions can be further classified into two types: the “in-graph junction” which
connects two or more routes of the same graph or “inter-graph junction” which
connects multiple graphs. Correspondingly, a certain vehicle can move either by
highway between two cities or by street inside a city, during its whole journey.
Therefore, it can pass through several different graphs during one trip.

9.3.1.2 The Model of State-Based Dynamic Transportation Network
(SBDTN)

The management of moving objects has been intensely investigated in recent years.
However, the interaction between moving objects and the underlying transportation
networks has been largely ignored. To explore this relationship by involving
transportation networks into the modeling of moving objects is one of the main
aims of the research project databases for moving objects, which we participate
in. In order to meet these requirements, we propose a State-Based Dynamic
Transportation Network (SBDTN) model in this section. Its basic idea is to associate
a temporal attribute to every node or edge of the graph system so that its state at any
time instant can be retrieved. Since the changes of the graph system are discrete,
we can use a series of temporal units to represent a temporal attribute with each
temporal unit describing one single state during a certain period of time. In this
way, the whole state and topology history of the graph system can be presented and
queried.

The data model is given as a collection of data types and operations which
can be plugged as attribute types into a DBMS to obtain a complete data model
and query language. These data types and operations are designed as a discrete
model which offers a precise basis for the implementation of data structures in an
extensible DBMS such as Secondo [2]. The content of this section mainly focuses
on the definitions of graph state, one of the major contributions of Ding and Giting’s
work [4].

154 9 Statistical Analysis on Moving Object Trajectories

r Blockage

= S SE Gl = =

Fig. 9.2 A blocked edge with moving objects

Graph state data types and graph blockage data types are used to describe the
state of a node or an edge. In dynamic transportation networks, a node can have
two states, opened and closed, while an edge can have three states, opened, closed,
and blocked. If a node or an edge is opened, then it is entirely available to moving
objects. If a node or an edge is closed, then it is entirely unavailable to moving
objects, which means that no moving objects are allowed to stay or move in any
part of it. A closed node or edge is not deleted from the system. Instead, it is only
temporarily unavailable to moving objects and can be reopened afterwards.

The blocked state is used to describe a special kind of state of an edge, which
means “partially available” to moving objects. That is, the unblocked part of the
edge is still available to moving objects, but no moving objects can move through
the blocked part. Figure 9.2 gives an example of blocked edge.

Definition 9.1 (State). The carrier set of the state data type is defined as follows:

Dy = {opened, closed, blocked}.

In a transportation system, blockages can happen quite frequently. For instance,
a road section can be blocked for hours by a car accident or by a temporary
construction, or even by heavy traffic jams. Typically, the location of a blockage
is static. We suppose that the total length of the road section is 1, and then every
location in the road section can be represented by a real number p € [0, 1]. The
location of a blockage can then be expressed as a closed interval over [0, 1], whose
boundaries indicate the border of the blocked area.

Definition 9.2 (Blockage Reason). The data type blockreason describes the reason
of a blockage, and its carrier set is defined as follows:

Dpiockreason = {temporal-construction, traffic-jam, car-accident, others}.

Definition 9.3 (Interval). Let (S, <) be a set with a total order. Intervals and closed
intervals over S can be defined as follows:

interval(S) = {(s,e,lc,rc)|s,e € S,lc,rc € bool,s <e,(s =e)

= (lc = rc = true)}.
cinterval(S) = {(s,e,lc,rc)|s,e € S,lc,s <e,lc = rc = true},

where /¢ and rc are two flags indicating “left-closed” and “right-closed,” respec-
tively.

9.3 Real-Time Traffic Analysis on Dynamic Transportation Networks 155

b

[t1, t2), (opened, <)

a [t2, t3), (blocked, {(traffic-jam, [0.2,0.3])})
| opened _ blocked closed opened .

v) [[13, t4), (closed, <)

tl 2 3 t4 now [t4 , l), (opened,<:>)

Fig. 9.3 An example temporal attribute value. (a) State changes of an edge. (b) The corresponding
temporal units

Definition 9.4 (Blockage Position). The data type blockpos is used to describe the
position of a blockage, and its carrier set is defined as follows:

Dyiocipos = (W | € cinterval([0, 1])}.

In Definition 9.4, we assume that a blockage cannot move during its lifetime. In
most cases, this is true. However, sometimes, a blockage can also be dynamic if we
take the blockages caused by floods or parades into consideration. In these cases, a
blockage should be modeled as a moving interval over [0, 1].

Definition 9.5 (Blockage). The blockage data type is used to describe a blockage,
including its reason and its location. The blockages data type is used to describe
multiple blockages inside one single edge. Their carrier sets are defined as follows:

Dblockage = {(br, lI/)|br S Dblockreamna v e Dblockpox}
Dblockages = {B|B - Dblockage}-

Definition 9.6 (State Detail). The data type statedetail is used to describe the
detailed state of a node or an edge, and its carrier set is defined as follows:

Dblockages = {(S, B)|S € Dsmre» B e Dblockagesvs 7é blocked < B = Q}

Definition 9.6 is based on the fact that several blockages can exist in one road
section at the same time so that they should be described as a set of blockages
instead of a single blockage value.

We further define the graph temporal data types are used to track the state history
and also the life span of a node or an edge in similar way. During its lifetime, a
node or an edge can discretely assume a series of states, and each state can last for a
certain period of time. In this way, we can decide the topology of the graph system
at any time instant. Figure 9.3 illustrates an example temporal attribute value.

In this model, every node or edge of the graph system is associated with a
temporal attribute which is composed of a series of temporal units. Each temporal
unit describes the state of the node or edge during a certain period of time; hence the
model can present the whole state and topology history of the graph system. Much
more detail can be found in Ding and Giiting’s work [4].

156 9 Statistical Analysis on Moving Object Trajectories

Fig. 9.4 Appending current

; . thow -
moving vector mv,,,,, to traj

active motion:
viector mv,,

9.3.2 Real-Time Statistical Analysis of Traffic Parameters

As stated earlier, each ARS or junction of the transportation network in NMOD-
TFSA has a set of traffic parameters associated to describe its current traffic
condition. These basic parameters are refreshed whenever a location update related
to the corresponding ARS junction occurs.

Suppose that the functions route(rid), ars(rid, aid), and junct(jid) return the
route, ARS, and junction corresponding to the identifiers, respectively.

In the following discussion, we first define some trajectory transformation
functions, then we provide traffic parameter refreshing algorithms for ARSs and
junctions, and finally we describe the statistical data structure and the real-time
statistical analysis method in NMOD-TFSA.

9.3.2.1 Trajectory Transformation Functions

Suppose that traj is a trajectory, and its last motion vector is mv,= (¢, (rid,, pos,,),
5\”, actvy).

The function appcurr(fraj) appends the current motion vector muv,,, to the
end of traj. If the last motion vector of traj is active (i.e., actv, = true), then
appcurr(traj) first computes the location of the moving object at the current time
instant #,,,,, denoted as pos,,,,, and then generates a new motion vector muv,,, =
(tnow, (ridy, pos,,,,), L, false) and appends it to traj, as shown in Fig. 9.4. If the last
motion vector of traj is inactive (i.e., actv, = false), the function will do nothing.

Function truncate_t(traj, I') returns part of traj (the result is still a trajectory)
which is corresponding to the given time interval / = [t;, #;] temporally. Function
truncate_g(traj, ars) returns part of traj which is corresponding to the given atomic
route section ars geographically. Function truncate_v(traj, vy,,) returns part of traj
during which the speed of the moving object is slower than vslow. Necessary
interpolation may be required to get the end points of the resulted trajectory, as
shown in Fig. 9.5.

Function project_t(traj) projects traj on the time axle and returns a set of
time intervals. Function project_g(traj) projects traj on the geographical plane and
returns a set of network route sections.

9.3 Real-Time Traffic Analysis on Dynamic Transportation Networks 157

endpoint 2

-

................... K " \runcate_t(trj,) N

t
A
]
|
1 {I: trunc-ate,gitraj, arsy)
1 : o
|
1 endpoint 1
1
1

.
arsy ars, arsy ars, arsy ars, ars; ars,

Fig. 9.5 Truncation operators of moving object trajectories

9.3.2.2 Traffic Parameter Refreshing Algorithms for ARSs and Junctions

In this subsection, we consider how to compute traffic parameters through network-
constrained moving object trajectories. Let us first consider ARSs. When the traffic
parameter refreshing process for a certain directed atomic route section ars is
triggered, the system will check all trajectories of the moving objects that have
stayed in or passed through ars in the last At time (Af? is a time period of 5—10 min,
called statistics window). From each trajectory, the system can derive the travel time
and the current position of the corresponding moving object. Therefore, ars’s traffic
parameters 7,,, and t can be computed accordingly.

To get ars’s traffic jam status B, the system first needs to compute the jammed
area of ars as follows:

n

Cjam = ﬂ (projectg (truncate, (truncate, (traj;, ars), Vgiow)))

i=1

where () is the spatial intersection operator between network route sections.

From the formula, we can see that o, is a section of ars through which all
moving objects move with speed slower than vy, in the last Az time. Therefore, if
Qjam 1s not NULL, then ars is blocked. Otherwise, no blockage exists in ars. That is:

true; (if Qjam # 90)
false; (if otjgy = 0)

The traffic parameter refreshing algorithm for ARSs is given as below:

1. The algorithm first retrieves all the trajectories of moving objects that have passed
through route(rid) in the last At time and gets TrajSet.

2. For each trajectory traj in TrajSet, the algorithm checks whether its latest position
is in route(rid). If the position of traj’s last moving vector is inside ars, adjust
Nmo accordingly.

158 9 Statistical Analysis on Moving Object Trajectories

route r2

(in) = rl+ rl- r2-

i+ ((Lgp O (LpAHY (ml)
- Loy (1Lzp (Ln,H<4 (mims)
2- 10y (Lzp (L4 (M2,m3)

3

matrix

Fig. 9.6 Traffic parameter statistics for junctions

3. Then the algorithm computes the slow speed segments for every trajectory and
gets the union of them to &4y,

4. The jam status B of ars can then be determined from the final result of &j,.

5. We can compute the travel time of each moving object through ars by computing
two time instants tin and tout (the entering time and exiting time of the moving
object on ars), so that ars’s average travel time 7 can be derived.

6. When the statistics is finished, the parameters of ars are refreshed with the new
values.

The traffic parameter refreshing method for junctions is similar to that of ARSs.
For example, 7,,, can be computed by counting the moving objects whose current
position is inside the junction area. The difference is that 7 and B need to be
computed for each traffic flow inside the junction, as shown in Fig. 9.6.

Suppose that &,,, is a traffic flow of the junction junct (the in-flow and out-flow
are (4 and v, respectively). When computing the average travel time of the junction
along £,,,, denoted as t,,,, we only need to consider the moving objects running
along &,,,. The traffic jam status of §,,, denoted as f,,,, can be derived from 7,,,. If
7,y is longer than a predefined threshold v, then B,,, = true, and otherwise, B, =
false.

After that, the in and out traffic flows will be determined, so that the trajectory
will only contribute to the statistical computation of the traffic flow it belongs.
The parameters are kept in the matrix which is again used to refresh the junction
parameters when the statistics is finished for junctions.

9.3.2.3 Statistical Data Structure and Real-Time Traffic Parameter
Refreshment

To speed up the statistical analysis, we propose a statistical data structure, called
the Current Traffic-status Statistical Analysis Graph (CTSAG), in this subsection.
Figure 9.7 illustrates the structure of CTSAG.

As shown in Fig.9.7, CTSAG includes two B+-Trees, RouteB+-Tree and
JunctB+-Tree, which are interconnected with each other through the route and
junction records.

9.3 Real-Time Traffic Analysis on Dynamic Transportation Networks 159

|Location Update Messagesl

B+-Tree

(on route ID)
Tid. rid, rig),
. 2 Z B+-Tree
SDB1| SDB, | SDB, (on junct ID)
Geoinfo]ARSPara| (Geoinfo [ARSPard] Geoinfo]ARSParal . .
Trajectory pieces | |Trajectory pieces ° Trajectory pieces |/Id1 | | /Idn |
in route(ridy) for in route(ridy) for in route(ridy,) for - N
the last 4t time the last At time the last 4t time |JRecord| |JReCOld |. e |JReCOld|

— * 1

Fig. 9.7 Truncation operators of moving object trajectories

RouteB+-Tree organizes the route records on the rid attribute into a B+-Tree
structure. The leaf nodes contain records of the form (rid, SDBPointer), where rid
is the identifier of the route and SDBPointer is a pointer to SDB(rid), the statistical
data block (SDB) of route(rid). Each SDB takes the form

(geo, len, (aid;, (jid, posy), (jid,;, pos,;), Paraa;)!_,, datasource),

where (geo, len, (aid;, (jid;, pos), (jid,;, pos,;), Paraa;)}_,) is the route record
(with ARS information included) and datasource is a set of trajectory pieces acting
as the data source for the statistical computation. Each trajectory piece in SDB(rid)
is still in a trajectory form, but it only contains the motion vectors corresponding
to route(rid). For the sake of efficiency, only the recent A¢ time trajectory data
corresponding to route(rid) are kept in datasource. Each SDB has a set of pointers
((pointer ; , pos j))’}’zl leading to the records of junctions within the route.

JunctB+-Tree organizes the junction records on the jid attribute into a B+-
Tree structure. The leaf nodes contain records of the form (jid, JRecordPointer),
where jid is the junction identifier and JRecordPointer is a pointer to the junction
record of the form (jid, loc, y, matrix, Paraj). Each junction has a set of pointers
((SDBPointer;, pos;))!_, leading to the SDBs of the routes connected by the
Junction.

When a location update occurs with a moving object mo, the system will first
save the newly generated motion vector(s) to the corresponding SDB(s) and then
refresh the traffic parameters of the related ARSs and junctions by calling traffic
parameter refreshing algorithm for ARSs and junctions, respectively, as shown in
Fig.9.8.

Suppose that the last motion vector of mo is mv, = (t,, (rid,, pos,), ?n, actvy),
and the new location update occurs at position (rid,, pos,). We notate the geograph-
ical path that mo has covered from (rid,, pos,) to (rid,, pos,) as path,,,.

If mo triggers a DTTLU or an STTLU, then a new motion vector mv, =
(ty, (ridy, pos,,), Vo, actv,) will be generated (with rid, = rid,). In this case, the
system will first save mv, to mo’s trajectory piece in SDB(rid,), and meanwhile,

160 9 Statistical Analysis on Moving Object Trajectories

a b

pathy,
(ridy, posy) ¥

(ridy, posy)
(rid, pos,) e
pathy,

(ridy, posy) save tg SDB(rid,)

save to SDB(rid,) save to SDB(rid},)

Fig. 9.8 Real-time refreshing at location updates. (a) DTTLU or STTLU. (b) IDTLU

discard motion vectors in SDB(rid,) which are older than A¢. After that, the traffic
parameters of all ARSs and junctions that intersect path,, will be refreshed, as
illustrated in Fig. 9.8a.

If mo transfers from route(rid,) to route(rid,) via junct(jidnu) and triggers an
IDTLU, then three motion vectors, mv,1 = (¢,1, (rid,1, pos,;), v ul,actvul) mvy, =
(tuz, (ridyus, pos,,), vuz,actvuz) and mvys = (43, (rid,3, pos,3), vu3,actvug) will
be generated (with rid,; = rid,, rid,, = rid,3 = rid,). In this case, the system
will save mv,; to mo’s trajectory piece in SDB(rid,) and save mv,, and mv,3 to
mo’s trajectory piece in SDB(rid,), and then refresh parameters for all ARSs and
junctions that intersect path,,,, as shown in Fig. 9.8b.

Since all the trajectory pieces associated with route(rid) are kept together
in SDB(rid), the system can support the trajectories projection and information
gathering functions through CTSAG efficiently so that the performance of statistical
analysis can be improved.

9.4 Summary

With the recent advancement in mobile computing, sensor networks, and intelligent
transportation systems, the network dynamic traffic flow statistical analysis has
become a hot research issue. However, current traffic flow analysis methods have
a lot of limitations such as high communication costs, low statistical precision, and
considerable time delay. To solve these problems, we propose an NMOD-TFSA
model in this paper. The experimental results show that compared with floating-car
methods which are widely used in real-world applications, NMOD-TFSA provides
better performance in terms of data sampling efficiency and statistical precision.
In the future work, the traffic aware continuous query based on NMOD-TFSA and
the dynamic traffic data broadcasting mechanisms will be dealt with. Also, data
warehousing and data mining techniques based on NMOD-TFSA will be studied.

References 161

References

1.

2.

10.

11.

12.

13

14.

15.

16.

17.

18.

Benkert M, Gudmundsson J, Hubner F, Wolle T (2008) Reporting flock patterns. Comput
Geom Theory Appl 41(3):111-125 (2008)

Dieker S, Giiting RH (2000) Plug and play with query algebras: SECONDO. A generic
DBMS development environment. In: Proceedings of international database engineering and
applications symposium (IDEAS 2000), Yokohoma, pp 380-392

. Ding Z, Giiting RH (2004) Managing moving objects on dynamic transportation networks.

In: Proceedings of the 16th international conference on scientific and statistical database
management (SSDBM 2004), Santorini Island, pp 287-296

. Ding Z, Giiting RH (2004) Modeling temporally variable transportation networks. In: Pro-

ceedings of the 9th international conference on database systems for advanced applications
(DASFAA 2004), Jeju Island, pp 154-168

.Ding Z, Huang G (2009) Real-time traffic flow statistical analysis based on network-

constrained moving object trajectories. In: Proceedings of the 20th international workshop on
database and expert systems applications (DEXA 2009), Linz, pp 173-183

. Fouladvand M, Darooneh AH (2005) Statistical analysis of floating-car data: an empirical

study. Eur Phys J 47(2):319-328

. Gidofalvi G, Pedersen TB (2009) Mining long, sharable patterns in trajectories of moving

objects. Geoinformatica 13(1):27-55

. Giiting RH, De Almeida VT, Ding Z (2006) Modeling and querying moving objects in

networks. VLDB J 15(2):165-190

. Lahrmann H (2007) Floating car data for traffic monitoring. In: Proceedings of the i2TERN

conference, Aalborg, June 2007

Lee JG, Han J, Li X, Gonzalez H (2008) TraClass: trajectory classification using hierarchical
region-based and trajectory-based clustering. Proc VLDB Endow 1(1):441-459. (PVLDB
2008)

Lee J, Han J, Li X (2008) Trajectory outlier detection: a partition-and-detect framework. In:
Proceedings of the 24th international conference on data engineering (ICDE 2008), Cancun,
pp 140-149

Li X, Han J, Lee JG, Gonzalez H (2007) Traffic density-based discovery of hot routes in road
networks. In: Proceedings of international conference on advances in spatial and temporal
databases (SSTD 2007), Boston, pp 441-459

. Lo CH, Peng WC, Chen CW et al (2008) CarWeb: a traffic data collection platform. In:

Proceedings of the 9th international conference on mobile data management (MDM 2008),
Beijing, pp 221-222

Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) Wherenext: a location predictor on
trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD international conference
on knowledge discovery & data mining (KDD 2009), Paris, pp 637-646

Park CG, Oh J, Kim S (1998) Determination of optimal number of probe vehicles for real-
time traffic flow information. In: Proceedings of the 5th world congress on intelligent transport
systems (ITS 1998), Seoul, p 4088

Sarvi M, Horiguchi R, Kuwahara M, Shimizu Y (2003) A methodology to identify traffic
condition using intelligent probe vehicles. In: Proceedings of the 10th world congress on
intelligent transport systems (ITS 2003), Madrid, pp 17-21

Speicys L, Jensen CS, Kligys A (2003) Computational data modeling for network-constrained
moving objects. In: Proceedings of the 11th ACM international symposium on advances in
geographic information systems (GIS 2003), Louisiana, pp 118-125

Yoon J, Noble B, Liu M (2007) Surface street traffic estimation. In: Proceedings of the Sth
international conference on mobile systems, applications and services, San Juan, pp 220-232

Chapter 10
Clustering Analysis of Moving Objects

Abstract In many moving objects management applications, real-time data
analysis such as clustering analysis is becoming one of the most important
requirements. Most spatial clustering algorithms deal with objects in Euclidean
space. In many real-life applications, however, the accessibility of spatial objects is
constrained by spatial networks (e.g., road networks). It is therefore more realistic to
work on clustering objects in a road network. The distance metric in such a setting
is redefined by the network distance, which has to be computed by the expensive
shortest path distance over the network. The existing methods are not applicable to
such cases. Therefore, we use the information of nodes and edges in the network
to present two new static clustering algorithms that prune the search space and
avoid unnecessary distance computations. In addition, we present the problem of
clustering moving objects in spatial networks and propose a unified framework
to address it. The goals are to optimize the cost of clustering moving objects and
support multiple types of clusters in a single application. Furthermore, we introduce
two trajectory clustering algorithms in detail: One is that partitions a trajectory
into set of line segments and groups similar line segments together into a cluster,
and the other is that clusters trajectories based on features other than density; the
primary advantage of this clustering is to avoid the big region problem suffered
from density-based clustering.

10.1 Introduction

Clustering is one of the most important analysis techniques. It groups similar data to
provide a summary of data distribution patterns in a dataset. Early research mainly
focused on clustering a static dataset [6-8, 12, 13, 18, 19, 21, 26]. In recent years,
there has been increasing research on clustering moving objects [5,11,16,25], which
has various applications in the domains of weather forecast, traffic jam prediction,

X. Meng et al., Moving Objects Management: Models, Techniques 163
and Applications, DOI 10.1007/978-3-642-38276-5__10,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

164 10 Clustering Analysis of Moving Objects

and animal migration analysis, to name but a few. However, most existing work on
clustering moving objects assumed a free movement space and defined the similarity
between objects by their Euclidean distance.

In the real world, objects move within spatially constrained networks, e.g.,
vehicles move on road networks and trains on railway networks. Thus, it is more
practical to define the similarity between objects by their network distance — the
shortest path distance over the network. Therefore, by exploiting unique features
of road networks, two new clustering algorithms for static objects are presented,
which use the information of nodes and edges in the network to prune the search
space and avoid some unnecessary distance computations. For clustering moving
objects in road networks, we propose a unified framework for “clustering moving
objects in spatial networks” (CMON). Due to the innate feature of continuously
changing positions of moving objects, the clustering results dynamically change.
By exploiting the unique features of road networks, the CMON framework first
introduces a notion of cluster block (CB) as the underlying clustering unit. We
then divide the clustering process into the continuous maintenance of CBs and
periodical construction of clusters with different criteria based on CBs. The
algorithms for efficiently maintaining and organizing the CBs to construct clusters
are proposed.

The trajectory of moving object is movements of moving object generated
by location updates; an efficient clustering algorithm for trajectories is essential
for analysis tasks; therefore, two trajectory clustering algorithms are presented,
which use the partition-and-group framework for clustering trajectories and a filter-
refinement framework for hot region discovery, respectively.

10.2 Underlying Clustering Analysis Methods

The goal of clustering analysis is to divide a collection of objects into groups,
such that the similarity between objects in the same group is high and objects
from different groups are dissimilar. In spatial databases, objects are characterized
by their position in the Euclidean space, and, naturally, dissimilarity between two
objects is defined by their Euclidean distance. Several clustering techniques have
been proposed for static datasets in a Euclidean space. They can be classified into the
partitioning [13, 21], hierarchical [6, 19, 26], density-based [18], grid-based [1, 22],
and model-based [4] clustering methods.

The generic definition of clustering is usually refined depending on the type of
data to be clustered and the clustering objective. In other words, different clustering
paradigms use different definitions and evaluation criteria. Partitioning methods
divide the objects into k groups and iteratively exchange objects between them
until the quality of the clusters does not further improve. k-means and k-medoids
are representative methods from this class. In k-means algorithms, clusters are
represented by a mean value (e.g., a Euclidean centroid of the points in it), and
object exchanging stops if the average distance from objects to their cluster’s mean

10.2 Underlying Clustering Analysis Methods 165

value converges to a minimum value. k-medoids algorithms represent each cluster
by an actual object in it. First, k-medoids are chosen randomly from the dataset.
An evaluation function sums the distance from all points to their nearest medoid.
Then, a medoid is replaced by a random object, and the change is committed only if
it results in a smaller value of the evaluation function. A local optimum is reached,
after a large sequence of unsuccessful replacements. This process is repeated for a
number of initial random medoid sets, and the clusters are finalized according to the
best local optimum found.

Another class of (agglomerative) hierarchical clustering techniques define the
clusters in a bottom-up fashion, by first assuming that all objects are individual
clusters and gradually the closest pair of clusters are merged until a desired number
of clusters remain. Several definitions for the distance between clusters exist; the
single-link approach considers the minimum distance between objects from the two
clusters. Others consider the maximum such distance (complete-link) or the distance
between cluster representatives. Divisive hierarchical methods operate in a top-
down fashion by iteratively splitting an initial global cluster that contains all objects.
The cost of brute-force hierarchical methods is O(N?), where N is the number
of objects, which is not suitable for practical use. Moreover, they are sensitive to
outliers (like partitioning methods). Algorithms like BIRCH [26] and CURE [6]
were proposed to improve the scalability of agglomerative clustering and the quality
of the discovered partitions. C2P [19] is another hierarchical algorithm similar to
CURE, which employs closest pairs algorithms and uses a spatial index to improve
scalability.

Density-based methods discover dense regions in space, where objects are close
to each other and separate them from regions of low density. DBSCAN [18] is the
most representative method in this class. First, DBSCAN selects a point p from
the dataset. A range query, with center p and radius ¢, is applied to verify if the
neighborhood of p contains at least a minimum number of points, that is, MinPts
(i.e., it is dense). If so, these points are put in the same cluster as p, and this process
is iteratively applied again for the new points of the cluster. DBSCAN continues
until the cluster cannot be further expanded; the whole dense region in which p
falls is discovered. The process is repeated for unvisited points until all clusters and
outlier points have been discovered. A limitation of this approach (addressed in [2])
is that it is hard to find appropriate values for ¢ and MinPts.

In many real applications, however, the accessibility of spatial objects is con-
strained by spatial (e.g., road) networks. It is therefore realistic to define the
dissimilarity between objects by their network distance, instead of the Euclidean
distance. The network distance between two objects p and g is defined by the
length of the shortest path that reaches ¢ from p and vice versa, assuming an
undirected network graph. There are also a few studies [8, 12,23, 24] on clustering
nodes or objects in a spatial network. Jain and Dubes [8] used the agglomerative
hierarchical approach to cluster nodes of a graph. They treat each node as a cluster
and then merge the clusters until one remains. The single-link variant of this
method has complexity O(|V|?), whereas the complete-link variant comes with
complexity O(|V|?log|V|). Both methods are not scalable for large networks.

166 10 Clustering Analysis of Moving Objects

Another variant [24] applies divisive clustering on the minimum spanning tree of
the graph, which can be computed in O(|V|log|V|) time. However, this method
is very sensitive to outliers. CHAMELEON [12] is a general-purpose algorithm,
which transforms the problem space into a weighted kNN graph, where each
object is connected with its k nearest neighbors. The weight of each edge reflects
the similarity between the objects. Yiu and Mamoulis [23] defined the problem
of clustering objects based on the network distance. They proposed algorithms
for three different clustering paradigms, i.e., k-medoids for K-partitioning, e-link
for density-based, and single-link for hierarchical clustering. These algorithms
avoid computing distances between every pair of network nodes by exploiting the
properties of the network. However, all these solutions assumed a static dataset.
A straightforward extension of these algorithms to moving objects by periodical
reevaluation is inefficient. Besides, Jin et al. [10] studied the problem of mining
distance-based outliers in spatial networks and found the problem to be only a by-
product of clustering.

Clustering analysis on moving objects has recently drawn increasing attention.
Li et al. [16] first addressed this problem by proposing a concept of micro moving
cluster (MMC), which denotes a group of similar objects both at current time
and at near-future time. Each MMC is tightly bounded by a rectangle, whose
size grows with time. In order to obtain high-quality clusters, the MMCs are kept
geographically small. Specifically, they identify the split and merge events and
dynamically maintain the bounding boxes of clusters by their width or height of
the bounding box. Each MMC maintains a bounding box for the moving objects
contained, whose size grows over time. Zhang and Lin [25] proposed a histogram
construction technique based on a clustering paradigm. In [11], Kalnis proposed
three algorithms to discover moving clusters from historical trajectories of objects.
Nehme and Rundensteiner [20] applied the idea of clustering moving objects to
optimize the continuous spatio-temporal query execution. The moving cluster is
represented by a circle in their algorithms. However, most of the studies only
considered moving objects in unconstrained environments and defined the similarity
between objects by their Euclidean distance. This chapter specifies the problem
of clustering network-constrained moving objects whose similarity is defined by
network distance.

10.3 Clustering Static Objects in Spatial Networks

For clustering objects in a spatial network, the distance metric is redefined by
the network distance, which has to be computed by the expensive shortest path
distance over the network. We presented two new clustering algorithms that use
the information of nodes and edges in the network to prune the search space and
avoid some unnecessary distance computations.

10.3 Clustering Static Objects in Spatial Networks 167
10.3.1 Problem Definition

In this section, we formally define the problem space to which we apply clustering
and the distance metric used in our settings. We introduce the definition of network,
network distance between objects, and network distance between clusters. We then
identify the peculiarities of the problem by definition of cluster block and discuss
why existing clustering algorithms are inapplicable or inefficient for objects that lie
on a network.

Definition 10.1. A network is an undirected weighted graph G = (V, E, W) where
V is the set of vertices (i.e., nodes), E is the set of edges, and W : E — IRT
associates each edge to a positive real number. An object (i.e., point) is located on
an edge e € E in the network. The position of the object in the network can be
expressed by the triplet <n;, n, pos;>, where pos € [0, W(e)] is the distance of the
point from node 7n; along the edge.

A point lies on exactly one edge. (In real-life problems, some objects may not
lie on edges of the network. In such cases, we assume that the object is represented
by the position on the network which is most directly accessible from it.) To ensure
the position of the object is expressed unambiguously by one triplet, we require that
n; < n; (assuming a total ordering of node labels).

Let p and g be two points, whose positions are <ng, np, pos, > and <n.,nq,
pos,,>, respectively. The network distance Dd (n;, n;) is defined in Definition 10.2.

Definition 10.2. The network distance is defined as follows:

1. The direct distance between points in the same network edge: Dd(p,q) = |
pos,, — pos,. | (p and g lie on the same edge, e.g., n, = n. and n, = ny);
otherwise, it is defined as oo.

2. The direct distance between a point and a node in the same network edge:
Dd(p,ng) = pos,; Dd(p,np) = W(na,np) — pos,.

3. The network distance between nodes: Dn(n;,n ;) is the distance of the shortest
path from n; to n;.

4. The network distance between objects in different network edges: Dn(p,q) =
minxe{u,b},ye{c,d}Dd(p7 nx) + Dn(}’l,(’ ny) + Dd(ny ’ q)

From the definition, in the computation of the network distance of objects,
the first two cases are defined as the direct distance, which is not necessarily the
network distance and can be found in constant time. However, the last two cases
are defined as the network distance, which needs the computation of the shortest
distance between nodes.

Definition 10.3. The network distance between clusters is the minimum network
distance among different boundary objects of the clusters. Let the boundary objects
of the cluster Cy be py,, px,. -, Px, and the boundary objects of the cluster
C, be py,,py,, ", Py,; the similarity of the clusters Cy and C,, M(C,,C,) =
minicimy.jc{iayPDn(Py;, Py;).

168 10 Clustering Analysis of Moving Objects

It is necessary to find the boundary objects of the clusters in the network distance
computation of clusters. In the road network, we treat the closest object in the cluster
to the nodes as the boundary object of the cluster since the boundary of the clusters
is relevant to nodes.

The object cluster results in the road network are usually composed of object
sets in a few of network edges. Therefore, for representing the cluster results better
and reducing the computation of the network distance of objects, we introduce the
definition of cluster block (CB).

Definition 10.4. A cluster block is represented by (O, ng, ny, head, tail, ObjNum),
where O is a list of objects {01,023, ,0i,- ,0,},0; = (0idi,ng,np, pos;).
Without loss of generality, assuming pos; < pos, < --- < pos,, it must satisfy
|pos; 1 — pos;| < e (1 < i < n—1). Since all objects are on the same edge
(ng, np), the position of the cluster is determined by an interval (head, tail) in terms
of the network distance from n,. Thus, the length of the CB is |tail-head|. ObjNum
is the number of objects in the CB.

There could be several CBs in the same edge, but each CB only belongs to one
edge. A CB itself is a cluster. Therefore, clusters in the network are composed of
one or several adjacent CBs. Given a collection of N object points that lie on a
network, our objective to group them into a set of clusters becomes constructing
the CBs according to their direct distance and merging these CBs by their network
distance.

Existing spatial clustering methods group objects only by their spatial similarity,
which is either infeasible or inefficient for clustering network-based objects. The
replacement of the Euclidean distance by the network distance increases the com-
plexity, since now the distance between two arbitrary objects cannot be computed
in constant time, but an expensive shortest path algorithm is required. However, we
find that the cluster results in a network are relevant to the edges and nodes of the
network. For example, the objects in the same edge or adjacent edges are likely to
be grouped into a cluster. Similarly, the chance that the objects around one node are
clustered together is large (e.g., traffic jams usually occur in the crossroad). Based
on these observations, we exploit the information of edges and nodes and propose
two clustering methods, edge-based clustering and node-based clustering, in the
following sections.

10.3.2 Edge-Based Clustering Algorithm

Most hierarchical clustering methods initially assume that each point is a cluster
and then iteratively merge the closest pair of clusters until one cluster remains.
The user may opt to stop the algorithm after a desired number of k clusters
have been discovered. Since the algorithm initializes one cluster for each point
in the dataset, considerable merging of clusters is involved when the number of
objects becomes high. The edge-based clustering algorithm is actually a hierarchical

10.3 Clustering Static Objects in Spatial Networks 169

Fig. 10.1 Initiation phase

method. However, it solves the scalability issues of the traditional hierarchical
clustering methods by constructing initial groups according to the edges in which
the objects lie and refining the results through group splitting and merging. During
the merging process, the algorithm only merges the clusters adjacent to nodes and
further reduces the number of merges by introducing the ¢ parameter so that the
fine-granular cluster results can be found at the earliest.

The edge-based clustering algorithm involves the following three phases:

 Initiation phase: Construct initial groups according to edges in which the objects
lie. This involves assigning the objects in the same edge into one cluster. The
number of initial clusters is the number of edges in the network. This phase can
filter out those edges in which no objects lie. Therefore, unnecessary network
traverse processes are reduced.

» Splitting phase: Split large initial groups into smaller cluster blocks to obtain the
intermediate results. Specifically, for each initial group, if the network distance
of two adjacent objects in this group is larger than the predefined threshold
&, the group needs to be split into two smaller cluster blocks from the two
adjacent objects. Otherwise, the group is treated as an individual cluster block.
The process ensures the compactness of cluster blocks.

* Merging phase: Iteratively merge the adjacent cluster (blocks) to form the final
cluster results. Specifically, for each node, the process merges the adjacent cluster
(blocks) around the node iteratively until they cannot merge anymore according
to the threshold € and the network distance of clusters.

Figure 10.1 shows an example of the edge-based clustering process. A part of
the road network is represented as road segments (denoted as S) and intersections
(denoted as J) in the figure, which correspond to edges and nodes, respectively,
in the network graph. Objects (denoted as P) are represented by small rectangles
and clusters by circles or polygons. In the initial phase, all objects in the same road
segment are clustered into one group. For example, for segment S}, the objects po,
Ds» Pss D7, Ps» P12 and other objects between them are grouped together. Similarly,
the cluster in segment S, contains all objects between p, and ps. In the splitting
phase, since the network distances between ps and pg, as well as between p; and

170 10 Clustering Analysis of Moving Objects

Fig. 10.2 Splitting phase

Fig. 10.3 Merging phase

Ps, are larger than the threshold ¢, the corresponding cluster is split into three parts
as shown in Fig. 10.2. In the merging phase, for cluster blocks around nodes Ji, J3,
and J3, since the network distances between adjacent cluster blocks are less than the
threshold ¢, they are merged into a large cluster. Figure 10.3 shows the final results
after repeating this merging process.

The pseudo-codes of the edge-based algorithm are shown in Algorithm 22.

To reduce the number of object access in the network, in the initial phase, the
algorithm creates clusters for each edge having objects instead of assigning objects
to clusters. In the splitting phase, when traversing the objects in the corresponding
edge, objects are assigned the split CBs. The key part of the algorithm is merging of
the clusters (blocks). After splitting, there are two cases for which clusters need to be
merged: (1) clusters adjacent to the nodes and (2) clusters across a small edge having
no other clusters but with network distance between them less than the threshold.
The algorithm maintains a e-nodelist for each cluster in which each entry is the pair
of (e-node, e-dist). e-node is the adjacent node of the cluster satisfying the condition
that the network distance between the node and the cluster is less than & and e-dist
denotes the network distance. The algorithm uses the list of e-node for clusters and
sorts the clusters by the network distance during merging. This will filter out some
unnecessary clusters whose distance to the nodes is larger than & and reduce the

10.3 Clustering Static Objects in Spatial Networks

171

Algorithm 22: Edge. CMON()

/I Q: priority queue which is used to store clusters to be merged around nodes;
// Initial Phase;
for each network edge (ny, ny) in edge-list with moving objects on it do

| Create a new cluster C for edge (1., 1), assign ¢;q4 for it;

end

// Splitting Phase;

for each cluster C; do

o is the first object on edge (n,, n,) in which C; lies;
o.c;d = C; .cid,

if Dd(0.pos,nx) < ¢ then

Insert < nx, Dd(o.pos, nx) > into nodelist of C;;

end

end

nexto is the next object on edge (n,, n,) fromo ton,; C = C;;
while nexto is not NULL do
if Dd(0.pos, nexto.pos) > ¢ then

end

end

Split C into CB; and CB,; C = CBy;

if nexto is the last object on edge (n, n,) AND Dd(nexto.pos,n,) < ¢ then
| Insert < ny, Dd(nexto.pos, ny) > into nodelist of C;;

end

0 = nexto;

nexto is the next object on edge (n,,n,) from o ton,;

o.cid = C.cid,

/I Merging Phase;
for each n; in nodelist of C; do

end

Q =new priority queue;
Insert clusters in n; into Q according to their distance to n;;
if notempty(Q) then
C; is the first cluster in Q; C; is the next cluster in Q;
while (Dd(C;,n;) + Dd(Cj,n;)) < edo
Merge C; into C; and merge the nodelist of C; into the one of C;;
if notempty(Q) then

| C; is the next cluster in Q;
end
else

| Break;

end

for each adjacent node ngs of n; do

if no cluster in edge (n;,ny) and (Dd(Ci, ni) + W(ni, ns)) < ¢ then
| Insert < ns, (Dd(C;, n;)+W (n;, ns))> into nodelist of C;;

end

end
end

172 10 Clustering Analysis of Moving Objects

repeated computation of the distance change of clusters due to the distance change
between clusters and nodes after merging.

10.3.3 Node-Based Clustering Algorithm

Given a random point p, the density-based clustering method identifies the cluster,
to which p belongs, by applying an e-range query around p and checking if there are
at least MinPts points in this range. If so, a new cluster for p is created containing the
points in the range query. It iteratively applies range queries for the new points in the
cluster, until it cannot be expanded any further. The node-based clustering algorithm
involves adapting this density method to our network model. A main module of the
algorithm finds the e-neighborhood of a point p in the network. This can be done
by expanding the network around p and assigning points until the distance exceeds
€.

The node-based clustering algorithm further optimizes the network-expanding
process by exploiting the nodes information of the network, which avoids the
redundant computation of random expanding. The main idea is to traverse the
network starting from the node and the group objects around the node according to
the condition that their network distance is less than €. Then, the algorithm expands
the cluster to the adjacent nodes so that the other objects around the adjacent nodes
are also grouped into this cluster when these objects satisfy the same condition
as well. The process continues until the cluster cannot expand (e.g., the distance
between any adjacent object and the cluster exceeds ¢). For other nodes which are
not traversed, we repeat this process until all objects around the nodes are assigned
to some cluster. Finally, we check the isolated objects that cannot join some cluster
to check whether they can form the individual clusters.

The core part in the node-based clustering algorithm is to cluster objects around
one node and expand to other adjacent nodes. The clustering process based on one
node can be divided into two steps: initial phase and expanding phase. In the initial
phase, the algorithm first filters out the edges containing the node in which the
distance between objects and the node is larger than ¢. Then, the objects satisfying
the distance condition are sorted by the distance to the node. In this way, the nearest
object to the node is treated as an initial cluster. During the expanding phase, we
expand the initial cluster according to the ordered objects in the adjacent edges.
Then we continue the sorting and expanding process for the adjacent nodes until the
network distance between adjacent objects is larger than ¢ and the cluster cannot
expand again. The algorithm is shown in Algorithm 23.

Figure 10.4 shows an example of the node-based clustering process, which starts
from the node J;. The objects around J; are traversed and ordered according to their
distance to Ji. Then, the initial cluster expands from J; to the adjacent node J;
until the next adjacent node J3. Consequently, the objects around these nodes are

10.3 Clustering Static Objects in Spatial Networks 173

Algorithm 23: Node_ CMON()

/I Q: priority queue in which each entry B is < nodel, node2, dist >. This represents that
the distance between nodel and adjacent objects in edge (nodel,node2) is dist;
/I Ndist[ni]: store the distance of the nearest object in adjacent edges to ni. Default value is
set to 0o;
for each adjacent node nz to ni do
o is the first object in edge (ni,nz);
if (0 is not Null AND Dd(o.pos,ni) < &) OR (0 is NULL AND W (ni,nz) < ¢) then
Insert < ni, nz, Dd(o.pos, ni) > or < ni, nz, W(ni, nz) > into Q by the distance
between o or nz to ni;
end
end
if Notempty(Q) then
| Create a new cluster C, assign cid for it;
end
// Expanding Phase;
while Notempty(Q) do
B =Dequeue(Q); nx=B.nodel; ny = B.node2,;
if B.dist < Ndist[nx] then
| Ndistlnx] = B.dist;
end
o is the first object in edge (nx,ny);
if Dd(0.pos,nx) + Ndist[nx] < & OR o is the closest object to nx then
o.cid = C.cid; clustered(o)=True;
nexto is the next object in edge (nx, ny) from o to ny;
while nexto is not Null AND Dd(o.pos, nexto.pos) < e do
nexto.cid=C .cid; Clustered(nexto)=True;
0 = nexto; nexto is the next object in edge (nx, ny) from o to ny;
if Dd(o.pos, ny) < ¢ then
if Dd(o.pos, ny) < Ndist[ny] then
| Ndistlny] = Dd(o.pos.ny);
end
visited(ny)=True;
for each adjacent node nz (except nx) to ny do
o is the first object in edge(ny, nz);
if 0 is not Null AND Dd(0.pos, ny) < e OR (o is Null AND
Ndist[ny]+W(ny, nz) < ¢) then
Insert < ny,nz, Dd(o.pos,ny) > or
< ny,nz, Ndistiny] + W(ny,nz) > into Q by the distance
between o or nzto ny;

end
end

end

end
end

end

174 10 Clustering Analysis of Moving Objects

Fig. 10.4 Cluster of the
node J;

Fig. 10.5 Clusters of all
nodes

traversed and assigned to this cluster if they satisfy the distance condition. When
the cluster cannot expand anymore, the algorithm selects other nodes that are not
traversed and repeats this process until all nodes are traversed (shown as Fig. 10.5).
Finally, it checks the individual objects such as pg, p7, and objects between them to
see whether they can form an individual cluster according to the distance between
each pair of adjacent objects. The final clustering results in this example are shown
in Fig. 10.6. If the user sets the minimum object number in a cluster to be five, for
example, the objects pg, p7, and the ones between them are treated as outliers.

The algorithm needs a priority queue Q to keep the adjacent edges of a node and
network distance of objects adjacent the node. In Q, edges are grouped by nodes and
sorted according to their distance to each node. The traversed nodes in the network-
expanding process are inserted into the head of Q. The array Ndist keeps the nearest
distance of adjacent objects to each node to decide which adjacent edge needs to be
traversed and which objects need to be added into initial clusters. The algorithm
also deals with the case of clusters across a small edge having no other clusters but
with network distance between them less than the threshold. In this case, the objects
need to be added into initial clusters and expanded.

10.4 Clustering Moving Objects in Spatial Networks 175

Fig. 10.6 Clusters of all
objects

10.4 Clustering Moving Objects in Spatial Networks

Clustering moving objects in spatial networks is more complex than in free space.
The increasing complexity is mainly due to the network distance metric. The
distance between two arbitrary objects cannot be obtained in constant time, but
requires an expensive shortest path computation. Moreover, the clustering results
are related to the segments of the network, and their changes will be affected by the
network constraint. For example, a cluster is likely to move along the road segments
and change (i.e., splitting and merging) at the road junctions due to the objects’
diversified spatio-temporal properties (e.g., moving in different directions). It is not
efficient to predict their changes only by measuring their compactness. Thus, the
existing clustering methods for free space cannot be applied to spatial networks
efficiently.

On the other hand, the existing clustering algorithms based on the network
distance [23] mainly focus on the static objects that lie on spatial networks. To
extend to moving objects, we can apply them to the current positions of the objects
in the network periodically. However, this approach is highly expensive since
each time the expensive clustering evaluation starts from scratch. In addition, the
clustering algorithms for different clustering criteria (e.g., K-partitioning, distance,
and density based) are totally different in their implementation. This is inefficient
for many applications that require to execute multiple clustering algorithms at the
same time. For example, in a traffic management application, it is important to
monitor densely populated areas (by density-based clusters) so that traffic control
can be applied, but at the same time, there may be a requirement for assigning K
police officers to each of the congested areas. In this case, it is favorable to partition
the objects into K clusters and keep track of the K-partitioned clusters. Separate
evaluation of different types of clusters may incur computational redundancy.

In this section, we introduce a unified framework for clustering moving objects in
spatial networks (CMON). The goals are to optimize the cost of clustering moving
objects and support multiple types of clusters in a single application. The CMON

176 10 Clustering Analysis of Moving Objects

Fig. 10.7 CMON framework | Clustering results of MO on road network |

Periodical construction of CMON

Minimum Density K-parti-
distance based tioning
CMON CMON CMON

Combination of CBs

CMON framework ?

Continuous maintenance of CB

Predict split =
Construct- ! and merpe Process
ion of CB & the events
event ™
L e e e e e —

framework divides the clustering process into the continuous maintenance of cluster
blocks (CBs) and the periodical construction of clusters with different criteria based
on CBs. A CB groups a set of objects on a road segment in close proximity to
each other at present and in the near future. In general, a CB satisfies two basic
requirements: (1) It is inexpensive to maintain in a spatial network setting; (2) it
serves as a building block for different types of application-level clusters.

10.4.1 CMON Framework

We model a spatial network as a graph where objects are moving on the edges (we
use the word “segments” for “edges” interchangeably). The distance between any
two objects, called network distance, is measured by the length of the shortest path
connecting them in the network. We employ a similar motion model as in [16],
where moving objects are assumed to move in a piecewise linear manner (i.e., each
object moves at a stable velocity at each edge). We assume that an object location
update has the following form (oid, n,, ny, pos, speed, next_node), where oid is the
id of the moving object, (n,,np) represents the edge on which the object moves
(from n, towards ny), pos is the relative location to n,, and speed is the moving
speed. We also assume that the next edge to move along, (n,, next_node), is known
in advance. The requirement is to continuously monitor the moving clusters with
various criteria at some predefined period.

As shown in Fig. 10.7, the proposed CMON framework is composed of two
components: the incremental maintenance of cluster blocks (CBs) and the periodical
construction of different types of application-level clusters. We have defined a CB
in Definition 10.4. A CB is a group of moving objects close to each other at
present and near-future time. For easy maintenance, we constrain the objects in a

10.4 Clustering Moving Objects in Spatial Networks 177

CB moving in the same direction and on the same edge segment. Additionally, a CB
imposes a strict clustering criterion so as to support different types of application-
level clusters. Specifically, the network distance between the pairs of neighboring
objects in a CB does not exceed a preset threshold e. We incrementally maintain
each CB by taking into account the objects’ anticipated movements. We capture the
predicted update events (including split and merge events) of each CB during the
continuous movement and process these events accordingly. At any time, clusters
of different criteria can be constructed from the CBs, instead of the entire set of
moving objects, which makes the construction processing cost efficient. Moreover,
to reduce unnecessary computation of the network distance between the CBs, we
adapt the network expansion method to combine CBs to construct the application-
level clusters.

10.4.2 Construction and Maintenance of CBs

Initially, based on the CB definition, a set of CBs are created by traversing all edge
segments in the network and their associated objects. The CBs are incrementally
maintained after their creation. As time elapses, the distance between adjacent
objects in a CB may exceed ¢, and hence, we need to split the CB. A CB may also
merge with adjacent CBs when they are within the distance of €. Thus, for each CB,
we predict the time when they may split or merge. The predicted split and merge
events are then inserted into an event queue. Afterwards, when the first event in the
queue takes place, we process it and update (compute) the split and merge events
for affected CBs (new CBs if any). This process is continuously repeated. The key
problems are: (1) how to predict split/merge time of a CB and (2) how to process a
split/merge event of a CB.

The split of a CB may occur in two cases. The first is when a CB arrives at
the end of the segment (i.e., an intersection node of the spatial network). When the
moving objects in a CB reach an intersection node, the CB has to be split since they
may head in different directions. Obviously, a split time is the time when the first
object in the CB arrives at the node. In the second case, the split of a CB is when
the distance between some neighboring objects moving on the segment exceeds &.
However, it is not easy to predict the split time since the neighborhood of objects
changes over time. Therefore, the main task is to dynamically maintain the order of
objects on the segment. We compute the earliest time instance when two adjacent
objects in the CB meet as 7,,. We then compare the maximum distance between each
pair of adjacent objects with ¢ until #,,. If this distance exceeds ¢ at some time, the
process stops and the earliest time exceeding ¢ is recorded as the split time of the
CB. Otherwise, we update the order of objects starting from #,, and repeat the same
process until some distance exceeds € or one of the objects arrives at the end of
the segment. When the velocity of an object changes over the segment, we need to
re-predict the split and merge time of the CB.

178 10 Clustering Analysis of Moving Objects

Fig. 10.8 Prediction of]

splitting CB
P I 0y 05 01 04
e

|
h hts t4\ ts le t
IIS

Figure 10.8 shows an example. Given ¢ = 7, we compute the split time
as follows. At the initial time #y, the CB is formed with a list of objects
<01, 03,03, 04,05>. We first compute the time 7, when the first object (i.e., 0;)
arrives at the end of the segment (i.e., /,). For adjacent objects, we find that the
earliest meeting time is #; at which o0, and o3 first meet. We then compare the
maximum distances of each pair of adjacent objects during [ty, #;] having no distance
no larger than 7. At ¢, the object list is updated into <oy, 03, 02,04, 05>. In the
same way, the next meeting time is at #, for 0, and 04. There are also no neighboring
objects whose distance exceeds 7 during [t1, ;]. As the algorithm continues, at t4,
the object list becomes < 03,01, 04, 05,0, > and ¢s is the next time for 0, and 04
to meet. When comparing neighboring objects during [t4, 5], we find the 04 and 05
whose distance is longer than 7 at time #,. Since #;, < f,, we obtain #; as the split
time of the CB.

We now discuss how to handle a split event. If the split event occurs on the
segment, we can simply split the CB into two ones and predict the split and merge
events for each of them. If the split event occurs at the end of the segment, the
processing would be more complex. One straightforward method is to handle the
departure of the objects individually each time an object reaches the end of the
segment. Obviously, the cost of this method is high. To reduce the processing cost,
we propose a group split scheme. When the first object leaves the segment, we split
the original CB into several new CBs according to objects’ directions (which can
be implied from next_node). On one hand, we compute a fo-be-expired time (i.e.,
the time until the departure from the segment) for each object in the original CB
and retain the CB until the last object leaves the segment. On the other hand, we
attach a ro-be-valid time (with the same value as fo-be-expired time) for each object
in the new CBs. Only valid objects will be counted in constructing application-level
clusters. Figure 10.9 illustrates this split example. When CB| reaches J;, objects p;
and p3 will move to the segment <J;, J,>, while p, and ps will follow <J;, Je>.
Thus, CB; is split into two such that p, and p4 join CBj3, and p; and p3 form a
new cluster CB4. We still keep CB) until py4 leaves <Jy4, J;>. As can be observed,
the group split scheme reduces the number of split events and hence the cost of CB
maintenance.

10.4 Clustering Moving Objects in Spatial Networks 179

Fig. 10.9 Group split at an a
edge intersection. (a) When
first object leaves. (b) When
last object leaves

Js

The merge of CBs may occur when adjacent CBs in a segment are moving
together (i.e., their network distance < ¢). To predict the initial merge time of
CBs, we dynamically maintain the boundary objects of each CB and their validity
time (the period when they are treated as the boundary of the CB) and compare the
minimum distances between the boundary objects of two CBs with the threshold &
at their validity time. The boundary objects of CBs can be obtained by maintaining
the order of objects while computing the split time. For the example in Fig. 10.8,
the boundary objects of the CB are represented by (0, 05) for validity time [#y, 3],
(03, 05) for [t3,14], and (03, 07) for [t4,1.]. The processing of the merge event is
similar to the split event on the segment. We obtain the merge event and time from
the event queue to merge the CBs into one CB and compute the split time and merge
time of the merged CB. Finally, the corresponding affected CBs in the event queue
are updated.

Besides the split and merge of a CB, new objects may come into the network or
existing objects may leave. For a new object, we locate all CBs of the same segment
that the object enters and see if the new object can join any CB according to the
CB definition. If the object can join some CB, the CB’s split and merge events are
updated. If no such CBs are found, a new CB for the object is created and the merge
event is computed. For a leaving object, we update its original CB’s split and merge
events if necessary.

10.4.3 CMON Construction with Different Criteria

This section discusses how to construct application-level clusters of different criteria
from CBs. We focus our discussions on three common clustering criteria, i.e.,
distance based, density based, and K -partitioning.

10.4.3.1 Distance-Based CMON

A common clustering criterion is based on the minimum distance metric. The
Minimum Distance CMON is defined as follows.

180 10 Clustering Analysis of Moving Objects

Fig. 10.10 The combination
of CBs

Definition 10.5. For each object in a Minimum Distance CMON (MD-CMON)),
the minimum network distance with other objects in the cluster is not longer than a
user specified threshold § (8 > ¢).

The requirement of ¢ < § is necessary because it guarantees that a CB does
not cross two clusters in the MD-CMON. The MD-CMON can be constructed by
combining the CBs. Generally, for two CBs, we need to compute their network
distance (i.e., the minimum network distance of their boundary objects) to determine
whether to combine them. This simple method has a time complexity of O(N?),
where N is the number of CBs. In order to reduce the computation cost, we adapt the
incremental network expansion method to combine the CBs. The detailed algorithm
can be found in Algorithm 24.

The algorithm starts with a CB and adds its adjacent nodes that are within § to
a queue Q using the Dijkstra algorithm. Take Fig. 10.10 as an example. Suppose
8 = 10 and the algorithm starts with CB;. Thus, initially CB; is marked “visited”
and J; is added to Q. The algorithm proceeds to dequeue the first node in Q
(i.e., Ji). All adjacent edges of J; (except the checked edge < Jg, J; >) are
examined. For each edge < Ji, J; >, assuming dist(Jy, J;) to be the edge length,
if J; satisfies dist(CBy, J1) +dist(J1, J;) < 6, J; is added to Q and dist(CBy, J;) =
dist(CBy, Jy) + dist(Jy, J;). Moreover, all unvisited CBs on each adjacent edge are
checked. For a CB; on <J, J;>, if dist(CBy, J)+dist(J;, CB;) < §, CB; is merged
into C B;’s MD-CMON cluster. If dist(CB;, J;) < § and J; has not been added to Q,
it is added to Q. The algorithm continues with the same process until Q becomes
empty and the CBs around CB); are combined into a cluster C;. Afterwards, the
algorithm picks up another unvisited CB and repeats the same process until all CBs
are visited.

10.4.3.2 Density-Based CMON

The second clustering criterion is Density based, which is suitable for filtering out
noise data.

10.4 Clustering Moving Objects in Spatial Networks

181

Algorithm 24: MD_CMON()

foreach CB; do

if CB;.visited == false then

Q = new priority queue;

find edge n,, n, where CB; lies;

CB=CB;; C =CB;

nextCB = Next CB on n,, ny, from CB; tony;
while (nextCB # null) and Dist(CB.head,nextCB.tail) < § do
Merge_Expand(CB,nextCB,C iy ,ny);

if (nextCB == null) and Dist(CB.head,n,)< § then
B.node =ny; B.dist = Dist(CB.head,n);
Enqueue(Q,B);

while notempty(Q) do

B = Dequeue(Q);

foreach node n, adjacent to B.node do

end

end

nextCB = Next CB from B.node to n;
if (nextCB # null) and Dist(B.node,nextCB.tail)+B.dist < § then
newd,_ = Dist(nextCB.head,n);
Merge_Expand(CB,nextCB,C ,B.node,n);
while (nextCB # null) and Dist(CB.head,nextCB.tail) < § do
newd,,, = Dist(nextCB.head,n);
Merge_Expand(CB,nextCB,C ,B.node,n.);

end
if (no CBs on edge (B.node,n,)) then
| newd, =B.dist+Dist(B.node,n.);
if (nextCB == null) and (newd,, < §) then
Byew.node = n_; By, .dist = newd,_;
‘ Enqueue(Q. B,):

Procedure MergeExpand(C B,CB,,C ,node;,node;,)

if CB,.visited == false then
C=MergeClst(C,CB,);
CB; = CBy; CB .visited = true;
CB; = Next CB from node; to node;

else

C,=FindCluster(CB2);
C=MergeClst(C,C);

end

182 10 Clustering Analysis of Moving Objects

Definition 10.6. For each cluster in the density-based CMON (DB-CMON), the
average density should be higher than a given threshold p. Moreover, there should
not be any empty segment (without any objects lying on it) whose length is longer
than E.

Suppose there are m(m > 1) objects in a CB; the density of CB is 8(”:”—_1) > é
The second condition is necessary to avoid very skewed clusters. It is equivalent
to the condition that for any object in the cluster, the nearest object is within a
distance E. Thus, to construct the DB-CMON clusters from CBs, we require ¢ <
max{E, %}.

The cluster formation algorithm is the same as the one described in Algorithm 24
except that the minimum distance constraint (transformed from the density con-
straint) is dynamic. Suppose the density of the current cluster with k objects is o’
and a CB has m objects with a length of L. If a CB can be merged into the cluster,

/
their minimum distance D must satisfy k/;fj—fw > p,ie, D < w.

10.4.3.3 K -Partitioning CMON

K -Partitioning CMON is similar to the K-partitioning clustering method [13,21].
It can be defined as follows.

Definition 10.7. Given a set of objects, K-partitioning CMON (KP-CMON)
groups them into K clusters such that the sum of distances between all adjacent
objects in each cluster is minimized.

According to the definition of CBs, the sum of distances between all adjacent
objects in each CB is minimized. Therefore, it is intuitive to construct the KP-
CMON clusters from the CBs. An exhaustive method is to iteratively combine the
closest pairs of CBs until K clusters are obtained. This method requires to compute
the distances between all pairs of CBs, which is costly. Hereby, we propose a
low-complexity heuristic similar to the K-means algorithm [13,21]. We initially
select K CBs as the seeds for K clusters. For the remaining CBs, we assign
them to their nearest clusters to minimize the sum of distances between adjacent
objects. Note that this heuristic may not lead to the optimal solution. Suppose that
in Fig. 10.11, the distances between CBs are: dist(CB,, CB3) < dist(CB;, CBs)
< dist(CB3,CBy) < dist(CB,,CB;) < dist(CB3, CBs) and that the initial seed
CBs are CB; and CBs for K = 2. When CBj is checked, it will be assigned to
the cluster of {CB;}. Then, CB, will be assigned to the cluster of {CBs}, which is
different from the optimal solution where CB; and CB3 should be grouped together
since dist(CB,,CB3) < dist(CB;, CBs). To compensate for such mistakes, we
introduce the concept of Cross-CB. For adjacent CBs lying around the same node,
if their minimum distance is less than ¢, we group them into a Cross-CB. Then, the
clustering algorithm is applied over the CBs and Cross-CBs.

10.5 Clustering Trajectories Based on Partition-and-Group 183

Fig. 10.11 The cross-CB

10.5 Clustering Trajectories Based on Partition-and-Group

Trajectory data of moving objects includes vehicle position data, hurricane track
data, and animal movement data. While most existing trajectory clustering algo-
rithms group similar trajectories as a whole, [14, 15] proposed a new partition-and-
group framework for clustering trajectories and two types of clustering methods:
region based and trajectory based.

First, each trajectory is partitioned into a set of trajectory partitions. Second,
region-based clustering is performed recursively as long as homogeneous regions
of reasonable size are found. The trajectory partitions that are not covered by
homogeneous regions are passed to the next step. Third, trajectory-based clus-
tering is performed repeatedly as long as discriminative clusters are found. The
procedure of hierarchical region-based and trajectory-based clustering is shown in
Fig.10.12.

10.5.1 Partition-and-Group Framework

Fartition-and-group framework partitions a trajectory into a set of line segments and
then groups similar line segments together into a cluster. In particular, trajectory
clustering based on this framework consists of the following two phases: (1) The
partitioning phase: Each trajectory is optimally partitioned into a set of line
segments. These line segments are provided to the next phase. (2) The grouping
phase: Similar line segments are grouped into a cluster. Here, a density-based
clustering method is exploited. The primary advantage of the partition-and-group
framework is the discovery of common sub-trajectories from a trajectory database.

Based on the partition-and-group framework, a set of clusters O =
Ci,..., Cum,, as well as a representative trajectory for each cluster C; can be

184 10 Clustering Analysis of Moving Objects

Fig. 10.12 The procedure of (Trajectory partitions)
hierarchical region-based and

trajectory-based clustering Recursively qu@

non-homogenequs Region-Based Clustering M
regions |

Trajectory partitions in
non-homogeneous regions

Repeatedly find L
ﬁner—granularitC Trajectory-Based Clustering

clusters
Region-based and
trajectory-based clusters

generated from a set of trajectories I = TRy,..., TRym,,, Where the trajectory,
cluster, and representative trajectory are defined as follows.

A trajectory is a sequence of multidimensional points. It is denoted as TR; =
PiD2P3 ... Dj ... Dien(1 < i < numtra). Here, p;(1 < j < len;) is a d-
dimensional point. The length len; of a trajectory can be different from those of
other trajectories. A trajectory p¢, Pe, ... pe, (1 < cl <2 < ... < ¢ < len;) is
called a sub-trajectory of TR;.

A cluster is a set of trajectory partitions. A trajectory partition is a line segment
pipj(i < j), where p; and p; are the points chosen from the same trajectory.
Line segments that belong to the same cluster are close to each other according to
the distance measure. Notice that a trajectory can belong to multiple clusters since
a trajectory is partitioned into multiple line segments, and clustering is performed
over these line segments.

A representative trajectory is a sequence of points just like an ordinary trajectory.
It is an imaginary trajectory that indicates the major behavior of the trajectory
partitions (i.e., line segments) that belong to the cluster. Notice that a representative
trajectory indicates a common sub-trajectory.

Figure 10.13 shows the overall procedure of trajectory clustering in the partition-
and-group framework. First, each trajectory is partitioned into a set of line segments.
Second, line segments which are close to each other according to our distance
measure are grouped together into a cluster. Then, a representative trajectory is
generated for each cluster.

Algorithm 25 shows the skeleton of the above clustering process.

The distance function used in clustering line segments is composed of three
components: (i) the perpendicular distance (d_1), (ii) the parallel distance (d), and
(iii) the angle distance (dy). They are illustrated in Fig. 10.14.

The perpendicular distance between L; and L; is defined as Formula (10.1).
Suppose the projection points of the points s; and e; onto L; are ps and p,,
respectively. /] 1 is the Euclidean distance between s; and p;; [is that between ¢
and p,.

2 2
I, +11,

di(Li,Lj)= T

(10.1)

10.5 Clustering Trajectories Based on Partition-and-Group 185

TR, TR;

A set of trajectories

A representative trajectory

'

—7 = ié% (2) Group

A set of line segments

A cluster

Fig. 10.13 An overall procedure of trajectory clustering in the partition-and-group framework

Fig. 10.14 Three . ¢) 5
components of the distance L di= Lrvhr
. . do I+ 112
function for line segments D 12
Y dj = MIN(j1,/j2)
S ; 7 1 ¢ do = |Ljxsin(6)
I p pe 2
Algorithm 25: TRACLUS
input : A set of trajectories: I = {TRy, ..., TRy ¥
output: A set of clusters:0 = {C\, ..., Cpum,, }» A set of representative trajectories

/* Partitioning Phase */

for VIR € I do
Execute Approximate Trajectory Partitioning;
Get a set L of line segments using the result;
Accumulate L into a set D;

end

/* Grouping Phase */

Execute Line Segment Clustering for D;

Get a set O of clusters as the result;

for VC € O do
Execute RepresentativeTrajectory Generation;
Get a representative trajectory as the result;

end

The parallel distance between L; and L is defined as Formula (10.2). Suppose
the projection points of the points s; and e; onto L; are p, and p,, respectively. /|,
is the minimum of the Euclidean distances of py to s; and ¢;. Likewise, / 2 is the
minimum of the Euclidean distances of p, to s; and e;.

dy(Li, Lj) = MIN(j1:12) (10.2)

186 10 Clustering Analysis of Moving Objects

The angle distance between L; and L ; is defined as Formula (10.3). Here, || L; ||
is the length of Lj, and 8(0° < 6 < 180°) is the smaller intersecting angle between
Ll‘ and Lj .

| L; || xsin(@), if0° <6 <90°

do(Li,L;) =
o L, if 90° < 6 < 180°

(10.3)

The distance between two line segments is defined as follows: dist(L;, L;) =
wi X dJ_(L,', Lj) +w) X d”(Li, Lj) + wy X d@(L,', Lj). The weights w , wi, and
wp are determined depending on applications.

10.5.2 Region-Based Cluster

A region-based cluster is formally defined through Definitions 10.8 and 10.9.
This definition is very intuitive: a region-based cluster contains many of trajectory
partitions of one major class, but very few of trajectory partitions of other minor
classes.

Definition 10.8. A region in a 2-dimensional space is homogeneous if only one
class ¢uq4jor has trajectory partitions from > 1 trajectories within the region, but all
other classes do not. The class ¢,,qjor is called the major class of the region, and other
classes are called minor classes.

Definition above, ¥ designates the minimum population of the major class in a
homogeneous region. y typically shares the parameter value with MinLns to reduce
the number of parameters to optimize. The two parameters, in fact, play the same
role in region-based and trajectory-based clustering.

Definition 10.9. A region-based cluster is a set of trajectory partitions of the major
class within a homogeneous rectangular region.

Figure 10.15 shows an example of region-based clustering. Suppose there is a set
of trajectories from two classes ¢; and ¢;, where the trajectories of ¢ are represented
by solid lines and those of ¢, by dashed lines.

First, regions having one major (dominating) class are discovered as in (1). The
regions B, F', and H are said to be homogeneous in the sense that they contain
trajectories mostly of the same class. Second, the nonhomogeneous regions D and
E are recursively quantized to find more of homogeneous regions. The region J is
found to be homogeneous within E as in (2). These homogeneous regions are used
as region-based clusters. Then, parts of trajectories in nonhomogeneous regions are
passed to the next step.

10.5 Clustering Trajectories Based on Partition-and-Group 187

(1A B C QA |B C

G

Fig. 10.15 An example of region-based clustering

G 4)

Fig. 10.16 An example of trajectory-based clustering

10.5.3 Trajectory-Based Cluster

A trajectory-based cluster is formally defined in Definition 10.10. This definition is
essentially the same as the original definition of a trajectory cluster except the class
constraint.

Definition 10.10. A trajectory-based cluster is a density-connected set of trajec-
tory partitions of the same class.

Figure 10.16 shows an example of trajectory-based clustering. Suppose there is
a set of trajectories from two classes ¢; and ¢, where the trajectories of ¢; are
represented by solid lines and those of ¢, by dashed lines.

As shown in Fig. 10.16, common movement patterns of each class are discovered
from nonhomogeneous regions as in (3). The patterns 3—6 are said to be discrim-
inative in the sense that they are different from those of the other class. Then, the
nondiscriminative patterns 1 and 2 are repeatedly investigated in finer granularity to
find more of discriminative patterns. The horizontal movements are now represented
by two patterns for each class rather than one. The patterns 7-10 newly discovered
are discriminative as in (4). These discriminative patterns are used as trajectory-
based clusters.

188 10 Clustering Analysis of Moving Objects

10.6 Clustering Trajectories Based on Features
Other Than Density

Knowledge discovery from trajectories of moving objects has aroused a growing
number of academic interests recently, due to the importance in various application
scenarios such as traffic monitoring, vehicle navigation, urban planning, and various
kinds of location-based services. One of the essential means takes advantage of
density to concisely represent the intensive behaviors of moving objects, refine the
density of spatial area as the number of distinct objects that pass through this area,
and consequently to find out hot regions and more interesting results. Unfortunately,
regions obtained based on density would suffer from the big region problem, which
is critical for applications requiring precise representation of trajectory patterns.

In fact, the big region problem is not easy to resolve for the inherent reason that
the density attribute for trajectories is not significant enough to constrain the size of
region. As shown in Fig. 10.17, with an object moving, it may pass by a continuous
spatial area. In other words, the density of subregions enveloped in this area will
be added up by 1 equally; hence, the boundary of hot region covering neighboring
dense subregions is really hard to restrict. For example, the whole CBD of a city or
a not short motorway may be treated as one region, which is too loose to be applied
to various environments, such as pattern-based movement prediction, as we would
never know accurately where the object is once it enters this region, even when we
can predict which region it goes next.

In this section, we introduce two novel metrics other than the density, together
with corresponding evaluation functions and threshold determination strategies, and
introduce a filter-refinement framework of hot region construction. In the filter
step, we apply simple but efficient grid-based techniques to form dense regions.
In the refinement step, the candidate regions are further reconstructed to obtain the
compact regions.

10.6.1 Preliminary

This part studies the problem of discovering hot regions from trajectory databases
first and then briefly introduces the framework and system. It starts by defining
related concepts used in this work as follows.

P L e |
O~ L LA F A F T I IS w7 i
og—t+——7-—7—""" "
Fig. 10.17 The big region R I ‘
problem in density-based hot L{,J
04 ™ dense region

region clustering

10.6 Clustering Trajectories Based on Features Other Than Density 189

Definition 10.11 (Region Density). Given a spatial region r and a time interval At,
its density can be measured by density(r, At) = N(r, At)/area(r), where N(r, At)
is the number of trajectories crossing region r during At and area(r) is the area
of r. O

It has been proved that fixed shaped bounding containers are too rigid to be
used, otherwise their restrictions on shape may make the hot regions suffer from
various problems such as redundant pattern [17] or flock-lossy [9]. Correspondingly,
density-based region discovering techniques have the advantages of both capturing
clusters of arbitrary shapes and being robust with respect to noise.

Definition 10.12 (Hot Region). A region r is called a hot region if and only if it
satisfies the following conditions:

o Itis dense, i.e., its density is higher than a density threshold 6.

» It has a compact shape that it must be able to cover a disk with diameter «; and
be covered by a disk with diameter o,.

* No two hot regions overlap. I

This definition gives us a coarse constraint on area and makes hot regions
discovered more meaningful in practical, e.g., overcoming the phenomenon of
out-of-focus. However, more precise arbitrary shape is recommended to use.
Theoretically, a spatial region with a narrow and long belt shape may be assigned
with high density, i.e., it satisfies the density constraint, but it has little meaning in
practice. That is why we set a lower bound (i.e., ;) for hot region.

Definition 10.13 (Hot Region Query). Given a trajectory database D, a density
threshold 8, and o, a2, find out all kot regions that satisfy the definition. [

Any hot region in the query results is represented by a spatial region and a set
of trajectories (intersecting this region) whose number divided by the area of the
region is higher than a density threshold §, and any region with diameter out of
range [o], orz] will be filtered and refined.

To construct the hot regions that fulfill the definition above, a filter-refinement
framework of hot region construction is proposed. In the filter step, we apply simple
but efficient grid-based techniques to cluster dense regions, in the borrowed idea of
the work [17] which is an optimization of the well-known DBSCAN [3] algorithm,
and use the metric of density only to discover dense clusters. Detail of this part is
roughly described as follows. We firstly partition the space objects moving on using
a number of disjoint cells and consider the problem of finding the most dense cells.
Since the movement of a moving object is known from geo-tags, we then extrapolate
its trajectories and find all the cells that the object may cross. By maintaining the
number of crossing per cell, we know each cell’s density. We next reduce space
by keeping only the cells that have been crossed so far and discard cells with
zero density. With the constraints of the density threshold, we can finally combine
neighboring cells into (coarse) dense regions with arbitrary shapes and sizes.

Likewise, regions obtained above would suffer from the big region problem. To
solve this, in the refinement step, we introduce more rational metrics other than the

190 10 Clustering Analysis of Moving Objects

a b c
o) region Ry:{A,B,C,D} SoD value with J
0r — | | - trajectory sequences: quadratic function: — [| 1 ——+
0—f A 8 +—Cc—+Db I 0,*ABCD* wp 1.0 — | —
0,*ABCD* wg: 0.25
R /04 05*ABCD* II: > wer 0.25 / Ry Rz
04 *ABCD* wp: 1.0
05 | — 2 — ! —— | —
05 — 1] — - region Rz: {H,1.J,KL} — 1 Ry | ——1
7 trajectory sequences: wy: 0.75 \
Ry d 05 HIJK* w: 0.375 Res Rz
06 *HIJK* |:“> wy:0.188
o7 "HI'L* wy: 0.5
07 ‘ \ 0O 0 KJL* w:0.75 ‘ \

Fig. 10.18 An example of trend-based region reconstruction (TBRR). (a) Two big regions. (b)
Score of domination (SoD). (¢) Reconstruction (minSoD = 0.5)

density to reconstruct the regions whose sizes exceed that of the coverage constraints
(or; and), together with heuristic algorithms on how to reconstruct big regions and
how to select proper values of the parameters used in the reconstruction algorithms.
We proceed to detail these algorithms as follows.

10.6.2 Big Region Reconstruction

This part introduces two novel metrics and corresponding optimization algorithms
to refine big regions as follows: trend-based region reconstruction (TBRR) and
dissimilarity-based region reconstruction (DBRR), and then discusses how to select
proper values for the parameters used in these two algorithms.

10.6.2.1 Trend-Based Region Reconstruction (TBRR)

It has been observed that, when an object enters (leaves) a region, the first (last)
cells it meets potentially have greater effect on depicting the movement trend of
this object than other cells of this region, because the contribution of inner cells is
greatly dominated by entry-cells and exit-cells. Furthermore, cells visited frequently
by moving objects are also much more important than those low-density ones.

Therefore, a novel weight metric, score of domination (SoD), is developed to
weigh each cell according to its distance to the entry and exit where the trajectories
pass through a big region. Next the total dominant score of each cell is calculated,
and finally we can use these scores to reconstruct the big region into more compact
pieces. Figure 10.18 illustrates an example of TBRR algorithm.

To count the distance between each cell and the nearest entry/exit of a given big
region, each trajectory intersecting this big region is transformed into a sequence
of the form cyc; ... c,, where ¢; is a spatial cell contained in this big region or the
special character *, which indicates any other cells of the whole spatial universe.
For instance, the sequence 07 : xHI x Lx in Fig. 10.18b implies that the object 07

10.6 Clustering Trajectories Based on Features Other Than Density 191

stays outside region R, (it can be anywhere) at the beginning, then it is found in cell
H, then it goes to region I, and after that it moves out of region R;, until it is found
in cell L and finally it exits the region again.

Let S, denote a set of cell sequences, each of which is generated by a trajectory
passing by the big region r, for any non-* cell ¢ on any sequence s,s € S,. The
distance d, . between cell ¢ and nearest entry/exit (i.e., *) can be calculated with the
following formula:

min{distance(c, *) | * € s} ifc es,
00 otherwise.

dye = (10.4)

where d;, — oo (i.e., a’sﬁc_l = 0) if ¢; never appears in the sequence, otherwise
1> a’sﬁc_l > (. To calculate SoD, we introduce three weight functions as below:

* Quadratic function: @, = Y e dsc /1S
 Exponential function: w. =) . s, 21=dse /18, |
« Factorial function: We =Y es, ds ' 7V/1S

Figure 10.18c shows an example of the hot regions reconstructed with parameter
minSoD = 0.5. The effectiveness of TBRR is sensitive to threshold minSoD. How
to select a proper value for minSoD is a complex problem; we discuss it later.

10.6.2.2 Dissimilarity-Based Region Reconstruction (DBRR)

Another interesting observation is that the cells passed by diverse dissimilar
trajectories should be paid more attentions. This is because the differentiation
reflects the more precise distribution of objects.

Based on this, we have another novel weight metric, degree of dissimilarity
(DoD), which measures the overall dissimilarity of a given cell. Before calculating
the degree of dissimilarity, we formalize the concepts (and corresponding variables)
used in weight functions as follows.

Neighborhood: Given a cell ¢, we call the cells in immediate proximity to cell ¢
as its neighbors (at most eight). We term the set of ¢’s neighbors as NB,, together
with the neighboring cells of region r as NB,, where NB, = {c|3c; € r A ¢ €
NB,, Anc &r}.

Cell bucket: For each cell ¢, we term the set of objects passing by cell ¢ as H(c)
(i.e., N. = |H(c)|). Figure 10.19b shows an example of these cell buckets, parts of
which are gray colored corresponding to external neighboring cells.

Coverage region: We extend a big region r with its neighboring cells and get
a virtual coverage region 7. And we further remove the empty cells from N B, and
N B, to reduce the scale of dissimilarity calculation and then get a compact neighbor
set NB! and a compact coverage region 7 = r U {c|c € NB, A |H(c)| > 0}.
Figure 10.19a illustrates an example of coverage regions, R, and R, in which
dashed squares denote those external neighboring cells.

192 10 Clustering Analysis of Moving Objects

a R b c
| I R {A,B,C,D,EF,G H} DoD value with
| | cell buckets: mean function : |
o1 | T =/ | A: {01,05,03,04} ws: 0.33
22 | =tatB8+oc b [Gcl B: {01,02,05,04} w 0.25] —————
S — C: (01040509 T e 0.25
- ! wp: 0.33 R R
R 1 [F D- / 11 12
A]
1—= -— R2:{O,P,QR,S,T,UV W}
os1 1T | o b \ETFA\/N | cell buckets: wo: 0.17 I I —
06 L |~ | —F— g {(05,06,07}} wp: 0.36 — L—
- -_—— - {05,06,07, :0.38
wq
7 1y Q: {os5,0¢} = wr: 0.25 Res
2 | R: {05,06,08} .
ws: 0.28
- S: {o07,04}
07| ‘ V\ 108 T: {05,06,07}, U: 02,0304
| | V: {os}, W: {os}
[E—

Fig. 10.19 An example of dissimilarity-based region reconstruction (DBRR). (a) Two extended
big regions. (b) Degree of dissimilarity (DoD). (¢) Reconstruction (minDoD =0.3)

With variables above, given a big region r and two neighboring cells ¢;, ¢; which
are both contained in coverage region 7, the dissimilarity between ¢; and c; is
measured by

H(ci) N H(c))

diss(ci,cj) =1 — H(CTH(C])

(10.5)

The dissimilarity of cell ¢ (¢ € r) is a summary of the dissimilarly between ¢ and
its neighboring cells, i.e.,

DISS(c) = Y _diss(c.c;). (10.6)

Cci €T
In addition, we define the relative hotness of cell ¢ as follows:

|H (o)
|Ueyer He)l

hotness(c) = (10.7)

Next, the standard degree of dissimilarity of cell ¢ (¢ € r) can be calculated by
the following aggregate functions:

. 7 diss(c.ci 2
Zell% . hotess(c)

e Square root of 2nd-order origin moment: w, =

e Summary value estimation function: W = Wm - hotness(c)
1 1
.) . > enp! diss(c.ci)
» Mean value estimation function: w, = =4 " hotness(c)

I7l
Figure 10.19 demonstrates the whole process of DBRR. Likewise, the effective-
ness of DBRR is sensitive to threshold minDoD.

10.7 Summary 193
10.6.3 Parameters Determination in Region Refinement

Proper values of minSoD and minDoD are difficult to find in some applications
since they are dependent on the characteristics of trajectory data; normally little a
priori knowledge of the data can be used to enlighten users on parameter selection.
This part introduces the guidelines for determining these parameters. To reconstruct
big regions adequately and consequently and fasten the execution of refinement, it
needs an efficient method to determine the individual parameters for each big region
during the reconstruction algorithms.

First, a recursive cut-and-try method (RCTM) is proposed to refine the coarse
regions with individual parameters. Given a big region r consisting of n cells and
assuming each cell has annotated with a weight (i.e., SoD or DoD), RCTM is carried
out as follows:

. Sort cells in r according to their weights in descending order.

. Choose cell ¢; with heuristic strategies from the sequence of sorted cells.
. Reconstruct r using ¢;’s weight as the individual parameter.

. If big regions still exist, reconstruct each of them from step 1.

. Till r is refined adequately.

[T I S OST \R

It is easy to prove that the RCTM method converges. Each round of reconstruc-
tion (i.e., step 3 of RCTM) discards at least i — 1 cells from r, and the overall area
of regions after reconstruction is smaller than that of r. After finite iterations of
reconstruction, a (or empty) set of appropriate regions are obtained.

Next, introduce two heuristic strategies to determine which cell to choose:

* With the first strategy, we choose the cell ¢; closest to p % position in the
sequence S, e.g., the middle of the sequence ¢,,,, m = [50 % x S.len].

* With the second strategy, we find the largest variance between two adjacent
weights of cells in S and then select the cell with the smaller weight.

The first strategy is quantitative, and it can always reduce the size of big regions
effectively. Correspondingly, the second strategy is qualitative, as it considers the
nonuniformity of cell weight distribution. The idea behind the second strategy
is to find a relatively small threshold that achieves a reasonable effectiveness of
reconstruction. The principle that both have in common is they are insensitive to
the size of regions. In other words, no matter how big the region is, algorithms with
these parameters can reconstruct the coarse regions just as effectively.

10.7 Summary

In this chapter, we studied the problem of clustering moving objects in a spatial
network and proposed a framework to address this problem. By introducing a notion
of cluster block, this framework, on one hand, amortizes the cost of clustering into

194 10 Clustering Analysis of Moving Objects

CB maintenance and combination based on the object movement feature in the road
network; on the other hand, it efficiently supports different clustering criteria. We
have exploited the features of the road network to predict the split and merge of CBs
accurately and efficiently. Three different clustering criteria have been defined, and
the cluster construction algorithms based on CBs were proposed.

References

1. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of
high dimensional data for data mining applications. In: Proceedings of the ACM SIGMOD
international conference on management of data (SIGMOD 1998), Seattle, pp 94-105

2. Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) OPTICS: ordering points to identify
the clustering structure. In: Proceedings of the ACM SIGMOD international conference on
management of data (SIGMOD 1999), Philadelphia, pp 49-60

3. Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discovering clusters
in large spatial databases with noise. In: Proceedings of the 2nd ACM SIGKDD international
conference on knowledge discovery and data mining (KDD 1996), Portland, pp 226-231

4. Fisher D (1987) Knowledge acquisition via incremental conceptual clustering. Mach Learn
2:139-172

5. Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Proceedings
of the 13th ACM SIGKDD international conference on knowledge discovery and data mining
(KDD 2007), San Jose, pp 330-339

6. Guha S, Rastogi R, Shim K (1998) CURE: an effcient clustering algorithm for large databases.
In: Proceedings of the ACM SIGMOD international conference on management of data
(SIGMOD 1998), Seattle, pp 73-84

7. Han J, Kamber M (2005) Data mining: concepts and techniques, 2nd edn. Morgan Kaufmann

Publishers Inc., San Francisco
. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall, Englewood Cliffs
9. Jeung H, Yiu HL, Zhou X, Jensen CS, Shen H (2008) Discovery of convoys in trajectory
databases. In: Proceedings of the 34th international conference on very large data bases (VLDB
2008), Auckland, pp 1068-1080
10. Jin W, Jiang Y, Qian W, Tung AKH (2006) Mining outliers in spatial networks. In: Proceedings
of the 11th international conference on database systems for advanced applications (DASFAA
2006), Singapore, pp 156-170
11. Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal
data. In: Proceedings of the 9th symposium on spatial and temporal databases (SSTD 2005),
Angra dos Reis, pp 364-381

12. Karypis G, Han EH, Kumar V (1999) Chameleon: hierarchical clustering using dynamic

modeling. IEEE Comput 32(8):68-75
13. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis.
Wiley, New York

14. Lee JG, Han J, Li X, Gonzalez H (2008) TraClass: trajectory classification using hierarchical
region-based and trajectory-based clustering. In: Proceedings of VLDB 2008, Auckland,
pp 24-30

15. Lee JG, Han J, Whang KY (2007) Trajectory clustering: a partition-and-group framework.
In: Proceedings of the 2007 ACM SIGMOD international conference on management of data
(SIGMOD 2007), Beijing, pp 593-604

16. Li YF, Han JW, Yang J (2004) Clustering moving objects. In: Proceedings of the 10th ACM
SIGKDD international conference on knowledge discovery and data mining (KDD 2004),
Seattle, pp 617-622

e

References 195

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Mamoulis N, Cao H, Kollios G, Hadjieleftheriou M, Tao Y, Cheung D (2004) Mining, indexing,
and querying historical spatiotemporal data. In: Proceedings of the 10th ACM SIGKDD
international conference on knowledge discovery and data mining (KDD 2004), Seattle,
pp 236-245

Martin E, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Proceedings of the 2nd ACM SIGKDD
international conference on knowledge discovery and data mining (SIGKDD 1996), Portland,
pp 226-231

Nanopoulos A, Theodoridis Y, Manolopoulos Y (2001) C2P: clustering based on closest pairs.
In: Proceedings of the 27th international conference on very large data bases (VLDB 2001),
Roma, pp 331-340

Nehme RV, Rundensteiner EA (2006) SCUBA: scalable cluster-based algorithm for evaluating
continuous spatio-temporal queries on moving objects. In: Proceedings of the 10th interna-
tional conference on extending database technology (EDBT 2006), Munich, pp 1001-1019
Ng RT, Han J (1994) Efficient and effective clustering methods for spatial data mining. In:
Proceedings of the 20th international conference on very large data bases (VLDB 1994),
Santiago de Chile, pp 144155

Wang W, Yang J, Muntz R (1997) STING: a statistical information grid approach to spatial data
mining. In: Proceedings of the 23rd international conference on very large data bases (VLDB
1997), Athens, pp 186—195

Yiu ML, Mamoulis N (2004) Clustering objects on a spatial network. In: Proceedings of
the ACM SIGMOD international conference on management of data (SIGMOD 2004), Paris,
pp 443454

Zahn C (1971) Graph-theoretical methods for detecting and describing gestalt clusters. IEEE
Trans Comput 20(1):68-86

Zhang Q, Lin X (2004) Clustering moving objects for spatio-temporal selectivity estima-
tion. In: Proceedings of the 15th Australasian database conference (ADC 2004), Dunedin,
pp 123-130

Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an effcient data clustering method for
very large databases. In: Proceedings of the ACM SIGMOD international conference on
management of data (SIGMOD 1996), Montreal, pp 103-114

Chapter 11
Dynamic Transportation Navigation

Abstract The widespread use of GPS navigation and trip planning on web has
aroused considerable interests in fast and scalable path query processing. Existing
research has mainly focused on static route optimization where the traffic network
is assumed to be stable. Nevertheless, in most cases, route planning is in presence
of frequent updates to the traffic graph due to the dynamic nature of traffic network,
and such updates always greatly affect the performance of route planning. Most
existing methods, however, cannot efficiently support traffic aware route planning.
In this chapter, we overview some existing approaches for dynamic transportation
navigation, and then introduce an novel traffic aware route planning strategy,
in which a set of effective techniques are employed to avoid both unnecessary
calculations on huge graph and excessive re-calculations caused by traffic condition
updates.

11.1 Introduction

As the prices of equipment like smart cell phones, PDA devices, wireless modems,
and GPS devices continue to drop rapidly, the number of wireless subscribers
worldwide will soar. As a result, location based services is growing in popularity
in recent years. Many online route planning services such as Google Maps and
Microsoft MapPoint have become one of the most important tools for our life
nowadays. In addition, the popular use of location based services such as GPS
navigation and logistic control has led to great interests in real time route planning
techniques.

Finding the shortest or fastest paths from road network is a classical problem
that has been intensively studied. Most route search algorithms [1, 17,22] mainly
focus on static network, where road conditions are assumed to be stable. But
in reality, a key feature of actual road condition is its high dynamics: just
consider how road speed changes in peak hours. As such, it is essential to achieve

X. Meng et al., Moving Objects Management: Models, Techniques 197
and Applications, DOI 10.1007/978-3-642-38276-5_11,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

198 11 Dynamic Transportation Navigation

traffic aware navigation, so that users can be guided to bypass congestions and
continuously follow the best path, without been affected by new congestions
occurred ahead.

The major challenge of traffic aware navigation comes from the expensive
computational overhead caused by frequent road condition updates and the scalable
graph of road network. On the Boston road network that contains over 40,000
links [19], even a single calculation for fastest path search could cost iCarTel
(an iphone application) several seconds. It is obviously not realistic to simply re-plan
the route for each road condition update, and it is thus crucial to improve classical
algorithms, by finding ways to reduce the search space of each route search and to
avoid time of re-computation caused by road condition changes.

Finding the shortest paths from road network is a classical problem, with
many efforts have been made on it so far. Dijkstra algorithm is a well known
algorithm that finds shortest path on graph, and A* and its variation [15, 18]
improves the search performance by using effective heuristics. Later, some pre-
computation based techniques like estimation [21], transit node routing [1], network
indexing [2, 22,23, 27], hierarchical routing [8, 24] and landmark [9] are further
proposed to speed up route search. Also, some other major efforts related to this
topic mainly include probabilistic path queries [12], dynamic kNN [20], path oracles
and efficient processing [6,7,25], skyline queries [4, 16], trip planning with multiple
destinations [17] and complex road network structure [13].

Above pure distance-dependent approaches are not effective because they do not
consider the road condition factor in route planning. Recently, increasing attentions
have been put on time-dependent shortest path search problem, where the shortest
path search is based on a dynamic graph due to speed changes. Classical algorithms
like D* can be used to find shortest path continuously on dynamic graph. Also
some mining based approaches are proposed: Gonzalez et al. in [10] use mining
techniques to derive frequent driving patterns, and then compute the adaptive fastest
path based on the match pattern. Route update is made when the matched pattern
switches. Ding et al. in [5] proposed Dijkastra based algorithm proposed to find
the best departure time and fastest path over the network, according to the speed
pattern based on statistical average road condition in different time intervals. Also,
a critical-time-point approach is presented in [11] to generate best routes and
their corresponding time intervals, and the issue of finding fastest paths on a road
network with speed patterns is discussed in [14]. However, they only rely on the
speed patterns derived from traffic data, which means, the searched path is un-
likely to be optimal because the real time information on road condition is not
considered.

More recently, some novel route planning approaches with considering real-time
road condition are proposed. Malviya et al. in [19] targeted to answer continuous
route planning queries over a road network in presence of speed updates on road
segments. Its basic idea is to calculate k fastest paths (based on speed patterns)
between any two vertexes with variance guarantee at the build time, and then to
keep ranking the k fastest paths from current position to destination at the run
time. Also, a heuristic based bidirectional route planning algorithm is proposed

11.2 Typical Dynamic Transportation Navigation Strategies 199

in [3] to speed up the search process. However, above approaches requires huge
computational overhead, and they are thus not feasible for applications where the
road conditions are frequently updated.

In this chapter, we will review some typical existing strategies that can be used for
dynamic transportation navigation. Afterwards, some novel model and algorithms
are particularly introduced to support traffic aware route planning.

11.2 Typical Dynamic Transportation Navigation Strategies

The task of dynamic transportation navigation has received considerable attention
in the research literature. Existing strategies mainly focus on path search and update
policies. In this section, we introduce some typical methods including the D*,
Hierarchy Aggregation Tree (HAT) based navigation.

11.2.1 D* Algorithm

D* [26] is an algorithm capable of planning paths in unknown, partially known and
changing environments in an efficient, optimal and complete manner. The name of
the D* was chosen because it resembles A*, except that it is dynamic in the sense
that arc cost parameters can change during the problem solving process.

Like Dijkstra and A* algorithm, D* maintains the “OPEN list” to propagate
information about changes to the arc cost function and to calculate path costs to
states in the space. Each state X has an associated tag #(X) having one of several
states:

* NEW: it has never been placed on the OPEN list

* OPEN: it is currently on the OPEN list

* CLOSED: it is no longer on the OPEN list

* RAISE: its cost is higher than the last time it was on the OPEN list
*» LOWER: its cost is lower than the last time it was on the OPEN list

In the D* algorithm, a node is iteratively selected from the OPEN list from
the OPEN list according to certain criterions. Then the weight changes to all
neighboring nodes caused by this node are calculated and corresponding updates
are made on OPEN list. This process is termed “expansion”. In contrast to A*, the
search process of D* is in backwards direction from destination. Each expanded
node has a back pointer which refers to the next node leading to the target, and each
node knows the exact cost to the target. The algorithm finishes when the start node
is the next node to be expanded, and the route to the destination can be found by
simply following the back pointers.

When an obstruction occurs on the planned path, all the affected points (by
obstruction) are inserted to the OPEN list, and this list is then marked as RAISE

200 11 Dynamic Transportation Navigation

list. For a node in RAISE increases cost, the algorithm checks its neighbors and
examines whether it can reduce the node’s cost. If not, the RAISE state is propagated
to all descendants of the nodes that have back pointers to them. These nodes are
evaluated, and the RAISE state passed on, forming a wave. When a RAISED
node can be reduced, we update its back pointer and pass the LOWER state to its
neighbors. By this point, a whole series of other points are prevented from being
‘touched’ by the wave with the help of threshold. The algorithm has therefore only
worked on the points which are affected by change of cost.

11.2.2 Hierarchy Aggregation Tree Based Navigation

Since classical spatial indices like R-tree and Quad-tree are not suitable for optimal
path searching in traffic environments, a new indexing method named Hierarchy
Aggregation Tree (HAT) can be used to improve the efficiency of query processing.
It is based on two structures: road and region (similar to MBR). In addition,
it contains supplement information that stores an aggregated value over it. The
principal functionality of aggregated information is to filter the regions having a
high traffic density on the same hierarchy level.

HAT is set up based on the spatial information of roads. Unlike the R-tree,
HAT references edges and nodes so that it avoids dead space. The search is more
efficient because node MBRs do not overlap. This method is inspired from the non-
overlapping index like Quad-tree, except that the space partitioning in HAT may be
skewed and the resulting tree will be balanced. For each region, HAT stores traffic
density information at different granularity levels to provide a filter capability for
the path-finding process.

HAT is constructed by partitioning the index space recursively. The space is
divided according to the distribution of network segments, by an adaptive and
recursive split of space in four sub-regions. When the amount of roads, namely
capacity in a leaf node N, exceeds a predefined threshold B for split, N is to
be split and the corresponding region to be partitioned into four sub-regions. The
split of HAT satisfies the following two rules: (1) Capacities in four sub-regions
should almost be the same; (2) The sub-regions crossed by a road should be as
few as possible, namely, the copies of entries for the road should be as few as
possible.

Adopting the aforementioned index structure and navigation method, an intel-
ligent city traffic control system have been designed and implemented, named
DyNSA (Dynamic Navigation System based on moving objects stream Aggrega-
tion), with the aim of providing high quality of dynamic navigation services. An
overview of this system architecture is shown in Fig. 11.1.

This system consists of multiple managers: Traffic Information Receiver (TIR),
Traffic Information Manager (TIM) and Query Processor. TIR is an information
receiver, which continuously sends traffic information to TIM. In TIM, aggregated

11.3 Incremental Route Search Strategy 201

View Tree

- — HAT RIM [c
= T | gy B -l o l(l{uad‘ = l.l r:tlllg
g =|DSEVICE ASE) 0 .| ¥ AN, | Information Information
A e db - & I | Manager) Receirer)
m Service Agent| ™ = / \
- < VN -

Z

2

=

Query Processor

Map
Fig. 11.1 System architecture of DyNSA

information of each road segment is refreshed regularly according to current traffic
information and the region aggregation on each HAT’s hierarchy level is thus
recalculated. Query process is in charge of users’ navigation requests. When a
navigation request arrives, it is sent to a View Manager, and then a corresponding
view tree on HAT will be created. The Service Agent will perform the view-based
hierarchy search on it, and finally, the optimal path will return to the user. Since
the View Manager maintains a consistency between the view tree and the HAT, a
recalculation will happen if necessary and will be sent to the user until she/he arrives
at her/his destination. The underlying index structure of RIM and Query Processor
are both based on HAT.

11.3 Incremental Route Search Strategy

This section introduces an incremental route planning approach proposed in [28]
to achieve efficient traffic aware route planning. Particularly, each time we com-
pute a partial path rather than the whole route from start to end. It enables
the computational overhead to be greatly reduced for two main reasons: firstly,
excessive re-calculations (particularly on faraway road segments) due to frequent
road condition updates can be avoided; secondly, it guarantees the real time response
to route queries because each partial route search is restricted in a small region. In
our approach, a set of graph reduction and filtering mechanisms are used to improve
algorithm efficiency, and issues like driving flexibility and congestion evolution
are considered to improve the effectiveness of route planning under dynamic road
networks.

11.3.1 Problem Definitions

Given a road network defined as a directed graph G = (V, E), where V' = {v} is the
set of vertices representing road ends or intersections, and £ = {(v;,v;) | vi,v; €

202 11 Dynamic Transportation Navigation

V'} is the set of directed edges representing road segments. Assume v is a vertex on
G, we use ind(v) and outd(v) to represent the in-degree and out-degree of v.

The in-degree and out-degree of vertices are important attributes for route
planning. Given a vertex v, congestions are more likely to occur on v if ind(v)
is high because of the greater in-flux traffic flow, and we should thus avoid them.
In contrast, vertices with high outd(v) are preferred because drivers have more
(outgoing) paths to choose from. Such flexibility is very useful to bypass the new
congestion occurs ahead.

Definition 11.1 (Road Condition). The road condition of a road network can be
expressed by C =<S,T, D>, where S and T are the speed and required traveling
time for road segments, and D denotes the time duration when this road condition
is valid. For each road segment e, the speed on e is represented as s, € S, and the
time required for passing e is #, € T. Given a time ¢, we use function traffCond(t)
to return the road condition C which satisfies € C.D.

Definition 11.2 (Fastest Route Query). In a dynamic road network G, a fastest
route query is defined as gry = (src, dst, CS), where src is the source vertex and dst
is the destination vertex specified by users, and CS is a set of road conditions that
affect route planning (having temporal intersection with the travel).

Problem Definition. We target to solve the problem of traffic aware route planning
which is formally defined as: Given a fastest route query gry = (src,dst, CS)
on road network G = (V, E), particularly with traffic condition updates CS =
(CO0,C1,C2,...) we process the query for a continuous optimal path (route) pth =
(v, v,v’,...,v;) on this dynamic road network that satisfies the following spatio-
temporal optimization goals and constraints:

1. Spatial constraints: source vertex vy = src and end vertex v, = dst;

2. Traffic condition constraints: The planned route pth must be temporally consis-
tent with traffic conditions CS;

3. Optimization goal: The total travel time should be minimized.

It is a computationally hard problem due to the huge scale of graph and the
continuous recalculation caused by the excessive traffic condition updates on this
graph. However, GPS navigation requires efficient query processing for immediate
response. Therefore, an efficient route search approach is highly sought after.

Targeting to this problem, we propose a novel strategy for traffic aware route
planning. Firstly, we apply basic graph reduction to facilitate route planning. Then
we select the top-k intermediate destinations according to a set of spatio-temporal
criterions. We afterwards introduce how to plan the route based on the top-k
intermediate destinations. In this way, we can support real time response and avoid
excessive re-calculation due to frequent road condition updates. Lastly, we discuss
the monitoring technique to achieve adaptive route planning.

11.3 Incremental Route Search Strategy 203

Fig. 11.2 Basic graph
reduction

11.3.2 Pre-computation

In initialization phase, we conduct a basic graph reduction to settle a small sub-
graph as the region relative to route query processing: an eclipse region G’ is
efficiently derived from the whole space G in the same way as [19], as shown in
Fig. 11.2.

Since an ellipse is the simplest geometric shape that we can employ besides a
circle to deal with distance, we first introduce how to reduce the search space using
some features of an ellipse. An ellipse is the trajectory of a point whose combined
distance to two foci is fixed, and the distance is equal to the length of its principle
axis. An important characteristic of an ellipse is that all points within the ellipse are
closer to the two foci than those on its boundary, and all points outside an ellipse to
the two foci are farther than those on its boundary.

In our approach, we first calculate the network distance d between source vertex
src and destination dst. It is simply processed by A* algorithm because it is effective
for distance based search. Then we use d as the length of the principle axis and use
the locations of the two vertexes src and dst to position the foci to construct an
ellipse. It can be proved that if there is a shortest path between src and dst, then this
path lies within the ellipse: Assume a vertex v belongs to the shortest path of src
and dst, and that v is located outside the ellipse; we then have |src¢ — v| + [v —
dst| > d. As aresult, even if there exist straight-line paths between src and v as
well as v and dst, the length of this path must be greater than d. Therefore, vertex
v does not belong to the shortest path between src and dst. Based on this theorem,
we can use an ellipse to prune the vertexes that cannot possibly be on the shortest
path.

Therefore, only the road segments in this ellipse region are considered as relevant
to route planning. However, as only positions of source and end vertexes are
considered, this eclipse region is very likely to be over-sized, and we only use it
to set a base for route planning operations used in remaining sections.

204 11 Dynamic Transportation Navigation

Region 1 Region 2 Region 3

ssseoe essoee

start node |\ /A" end node
(sm) -

o - o (en)
/ \ intermediale&slinalion (id)

c2. proper distance cl. proper angle ¢3. more driving flexibility
from sn to id from sn to id (out-going choices)

Fig. 11.3 (a) Intermediate destinations. (b) Evaluation criterions

11.3.3 Top-K Intermediate Destinations

In traditional approaches, a path strictly from source point to destination is usually
planned in each time. However it is not effective for earliest arriving route search
because the frequent updates on road condition are likely to cause excessive re-
calculation, particularly on faraway road segments. For example, if congestion
occurs on a road segment that is part of planned route, re-planning is needed to
guarantee service quality. For efficiency purpose, it is thus reasonable to plan partial
path in a limited scope, rather than plan the whole route. Re-calculations caused by
dynamic road condition can be greatly reduced accordingly. To set the boundary of
route search properly, we must select some intermediate destinations as shown in
Fig. 11.3a, toward which effective route planning are conducted afterwards.

The selection of intermediate destinations must follow a set of spatio-temporal
standards. First of all, the direction from source point to intermediate destination
has great evaluating merit. To evaluate the direction preference of selecting v, as
intermediate destination, we use d w(v,) to measure the direction weight of v, as:

— s —
dw(vy) = cos(vg, vy, Vg, V7)

where cos(m, m) is the cosine value of an angle regarding to two lines V5. v,
and m, e.g., “c1”in Fig. 11.3b. It can be seen as the difference between direction
to intermediate destination and that to final destination. We judge their direction are
consistent if their angle is small, so we prefer vertexes with less value of dw(vy)
because the cosine value is in reverse proportion to the degree of angle.
Meanwhile, the position of a vertex regarding to source and end points is
an important criterion according to “c2” of Fig.11.3b. A faraway intermediate
destination may cause excessive re-calculation due to the frequent updates on traffic
condition. Also, the distance should not be too close because the global view is
neglected: it is hard to satisfy global optimization when searching a partial path to an
intersection 200 m away. To achieve a good balance between reducing re-calculation

11.3 Incremental Route Search Strategy 205

(not too faraway) and achieving global optimization (not too close), we use position
weight pw(v,) to measure intersection v, as:

pw(vx) = score — |disgy(vs, V) — diSpeg|

where disgy(vy, vy) denotes the Euclidean distance (e.g., 10 miles) from v to vy,
and disp.y; 1s the best distance from v, to intermediate destination based on statistics.
score is the standard weight of each vertex (for been selected), and distance
|disgy (v, vy) — dispes| can be seen as the penalty on vertex v, ’s position.

Another important criterion to evaluate intermediate destinations is the flexibility
of future driving. According to ‘c3’ of Fig. 11.3b, high flexibility means better
capability for exception handling, e.g., to bypass new occurred congestions. Driving
flexibility of an intermediate destination is determined by a set of spatio-temporal
features. It is obvious that more out-going paths from an intersection give us more
flexibility to choose. Among out-going edges, those in the same direction to final
destination are definitely preferred. Wrapping up these issues, the flexibility weight
Jfw(vy) for selecting vertex v, as intermediate destination is calculated as:

Fwy) = Z cos(vy, U, Uy, v7)

vEFV (vy)

where FV(vy) = {v|le = (vx,v) € E} is the forward vertices set of v,. More out-
going edges give drivers greater flexibility of route selection. For each out-going
edge to v from v,, the angle between m and m is preferred to be small
because it is in the consistent direction to destination. We thus use the sum of cosine
value to evaluate the preference of its out-going paths.

To select proper intermediate destinations, issues mentioned above like spatial
features and driving flexibility must be considered, as they benefit us to reduce re-
calculations and to be more reliable under dynamics. In particular, the selectivity of
intermediate destinations follows the following criterion:

w(vy) = dw(vy)/cd + pw(v)/cp + fw(vi)/cf.

Where dw(v,) is the direction weight, pw(vy) is the position weight, fw(v,)
is the flexibility weight. Factors cd, cp and cf represent the standard direction
weight, position weight and flexibility weight required for capable intermediate
destinations respectively. Thus, only vertices that satisfies w(v) > 3 are suitable
as intermediate destination. By ranking w(v) on vertices meeting this requirement
and not belonged to the congested region, k best vertices and final destination
are selected in intermediate destination candidate set /DC. Route search is then
conducted towards vertices in IDC. If intermediate destination candidate cannot be
detected, A* algorithm is simply used to search time-dependent shortest path to final
destination v;.

206 11 Dynamic Transportation Navigation
11.3.4 Route Search and Update

Route search is made to find a path (possibly a partial route) to one of the top-k
intermediate destination selected from last step. We propose a novel algorithm to
search the partial route efficiently. The exact time from the source vertex to any
intermediate destination is considered, while from the intermediate destination to
final destination we use the estimated time to avoid traversing huge scale faraway
road segments. Notice that it also contributes to reduce re-calculations caused by
dynamics of road conditions on those road segments.

Compared with the conventional shortest path search, the targets of the route
search in our strategy are intermediate destinations here, rather than the final
destination. Therefore, we present a partial path search algorithm, which can
efficiently find the partial path to an intermediate destination in terms of minimal
estimated time cost from static of view (current road condition).

Algorithm 26: Partial path search algorithm (src, dst, G, IDC)

input : src, dst, G'andIDC are the source vertex, destination, search graph after filtering and
set of intermediate destination candidates respectively
output: ppath is the optimal partial path to return
Create the set of reached vertexes RV = {src} and OPEN list OL = {vertexes have an
edge from src to it} ;
while no intermediate destination in IDC is reached do
if OL is empty then
stop and report error;

/** destination cannot be reached*/
end

MinDistIncr = 0,
toExtendedVert = null ;
for vertex v € OL do
compute estimated time D via v to dst, D is the sum of actual time from src to v
and estimated time from v to dst based on EU distance and allowed speed ;
if D < MinDistIncr then
MinDistIncr = D
toExtendedVert = v ;
end

end

set v as reached, and record the shortest path to it ;

if v € IDC then

set partial path ppath = as the recorded shortest path to v ;
break ;

end
Update the OPEL list OL regarding to vertex v ;

end
return ppath ;

Algorithm 26 specifies how the route search algorithm works. Like most shortest
path search algorithms, we first create and initialize the set of reached vertexes RV
and OPEN list OL. RV contains all vertexes we have processed such that the path

References 207

from current position to them are known, and OL contains all visible vertexes open
for next expansion. In each step, we expand on the vertex v in OPEN list that has
minimal value of estimated time D, which is the sum of actual time from source
vertex to it and its estimated time to destination (based on Euclidean distance and
maximal allowed speed), and the shortest path from src to the expanded vertex v
is recorded. We continue doing the search process (i.e., the expansion) until one
intermediate destination is finally reached.

Due to the high dynamics of road condition in rash hour, it is essential to monitor
the road condition and react to the relevant updates on it. In the IRS strategy, we
conduct road condition monitoring in the same way as [9]. On arrival of a batch
of delay updates, we check if the number of road segments affected by the updates
that lie inside the pre-computed ellipse for a routing query exceeds ¢ (a threshold)
times the average number of segments lying inside an ellipse of this area. If so,
we re-run the intermediate destination and route search and return a real-time
optimal path to the end user. In this way, computational overhead for the continuous
monitoring can be significantly reduced.

11.4 Summary

Traffic navigation is a basic service for people’s travel nowadays. However, most
studies focus on route planning on static road network, without considering the
high dynamics of road network, which can greatly affect the performance of route
search. In this chapter, we present a traffic aware route planning strategy based
on incremental planning method. By selecting intermediate destinations, a partial
path rather than whole path is planned each time for long distance queries. In this
way, route planning is more efficient because it is carried out in a much smaller
region, and unnecessary re-calculations caused by the dynamic road conditions can
be avoided.

References

1. Bast H, Funke S, Matijevic D, Sanders P, Schultes D (2007) In transit to constant time shortest-
path queries in road networks. In: Proceedings of the workshop on algorithm engineering and
experiments (ALENEX 2007), New Orleans

2. Chen S, Tu YC, Xia Y (2011) Performance analysis of a dual-tree algorithm for computing
spatial distance histograms. VLDB J 20(4):471-494

3. Demiyurek U, Kashani FB, Shahabi C, Ranganathan A (2011) Online computation of fastest
path in time-dependent spatial networks. In: Proceedings of 12th international symposium on
spatial and temporal databases (SSTD 2011), Minneapolis, pp 92-111

4. Deng K, Zhou X, Shen HT (2007) Multi-source skyline query processing in road networks. In:
Proceedings of the 23rd international conference on data engineering (ICDE 2007), Istanbul,
pp 796-805

208 11 Dynamic Transportation Navigation

5. Ding B, Yu JX, Qin L (2008) Finding time-dependent shortest paths over large graphs. In:
Proceedings of the 11th international conference on extending database technology (EDBT
2008), Nantes, pp 205-216

6. Gao J, Jin R, Zhou J, Yu JX, Jiang X, Wang T (2011) Relational approach for shortest path
discovery over large graphs. Proc PVLDB 5(4):358-369

7. Gao J, Qiu H, Jiang X, Wang T, Yang D (2010) Fast top-k simple shortest paths discovery
in graphs. In: Proceedings of the 19th ACM conference on information and knowledge
management (CIKM 2010), Toronto, pp 509-518

8. Geisberger R, Sanders P, Schultes D, Delling D (2008) Faster and simpler hierarchical routing
in road networks. In: Proceedings of 7th international workshop WEA 2008, Provincetown,
pp 319-333

9. Goldberg A, Harrelson C (2005) Computing the shortest path, a search meets graph theory. In:
Proceedings of the 6th annual ACM-SIAM symposium on discrete algorithms (SODA 2005),
Vancouver, pp 156-165

10. Gonzalez H, Han J, Li X, Myslinska M, Sondag J (2007) Adaptive fastest path computation on
aroad network: a traffic mining approach. In: Proceedings of the 33rd international conference
on very large data bases (VLDB 2007), Vienna, pp 794-805

11. Gunturi V, Nunes E, Yang K, Shekhar S (2011) A critical-time-point approach to all-start-
time Lagrangian shortest paths: a summary of results. In: Proceedings of 12th international
symposium on spatial and temporal databases (SSTD 2011), Minneapolis, pp 74-91

12. Hua M, Pei J (2010) Probabilistic path queries in road networks: traffic uncertainty aware
path selection. In: Proceedings of the 13th international conference on extending database
technology (EDBT 2010), Lausanne, pp 347-358

13. Huang B, Wu Q, Zhan F (2007) A shortest path algorithm with novel heuristics for dynamic
transportation networks. Int J Geogr Inf Sci 21(6):625-644

14. Kanoulas E, Du Y, Xia T, Zhang D (2006) Finding fastest paths on a road network with speed
patterns. In: Proceedings of the 22nd international conference on data engineering (ICDE
2006), Atlanta, p 10

15. Koenig S, Likhachev M, Furcy D (2004) Lifelong planning A*. Artif Intell 155(1-2):93-146

16. Kriegel H, Renz M, Schubert M (2010) Route skyline queries: a multi-preference path planning
approach. In: Proceedings of the 26th international conference on data engineering (ICDE
2010), Long Beach, pp 261-272

17. Li F, Chen D, Hadjieleftheriou M, Kollios G, Teng S (2005) On trip planning queries in spatial
databases. In: Proceedings of 7th international symposium on spatial and temporal databases
(SSTD 2005), Angra dos Reis, pp 273-290

18. Likhachev M, Ferguson D, Gordon G, Stentz A, Thrun S (2005) Anytime dynamic A*: an
anytime, replanning algorithm. In: Proceedings of ICAPS 2005, Monterey, pp 262-271

19. Malviya N, Madden S, Bhattacharya A (2011) A continuous query system for dynamic route
planning. In: Proceedings of the 27th international conference on data engineering (ICDE
2011), Hannover, pp 792-803

20. Mouratidis K, Yiu M, Papadias D, Mamoulis N (2006) Continuous nearest neighbor monitor-
ing in road networks. In: Proceedings of the 32nd international conference on very large data
bases (VLDB 2006), Seoul, pp 43-54

21. Potamias M, Bonchi F, Castillo C, Gionis A (2009) Fast shortest path distance estimation in
large networks. In: Proceedings of the 18th ACM conference on information and knowledge
management (CIKM 2009), Hong Kong, pp 867-876

22. Rice M, Tsotras V (2010) Graph indexing of road networks for shortest path queries with label
restrictions. Proc PVLDB 4(2):69-80

23. Samet H, Sankaranarayanan J, Alborzi H (2008) Scalable network distance browsing in spatial
databases. In: Proceedings of the ACM SIGMOD international conference on management of
data (SIGMOD 2008), Vancouver, pp 43-54

24. Sanders P, Schultes D (2005) Highway hierarchies hasten exact shortest path queries. In:
Proceedings of ESA 2005, Palma de Mallorca, pp 568-579

References 209

25. Sankaranarayanan J, Samet H, Alborzi H (2009) Path oracles for spatial networks. Proc
PVLDB 2(1):1210-1221

26. Stentz A (1994) Optimal and efficient path planning for partially-known environments.
In: Proceedings of the international conference on robotics and automation, San Diego,
pp 3310-3317

27. Xiao Y, Wu W, Pei J, Wang W, He Z (2009) Efficiently indexing shortest paths by exploiting
symmetry in graphs. In: Proceedings of the 12th international conference on extending database
technology (EDBT 2009), Saint-Petersburg, pp 493-504

28. Xu J, Guo L, Ding Z, Sun X, Liu C (2012) Traffic aware route planning in dynamic road
networks. In: Proceedings of the 17th international conference on database systems for
advanced applications (DASFAA 2012), Busan, pp 576-591

Chapter 12
Location Privacy

Abstract With rapid development of sensor and wireless mobile devices, it is
easy to access mobile users’ location information anytime and anywhere. On
one hand, LBS is becoming more and more valuable and important. On the
other hand, location privacy issues raised by such applications have also gained
more attention. However, due to the specificity of location information, traditional
privacy-preserving techniques in data publishing cannot be used. In this chapter,
we will introduce location privacy, analyze the challenges of location privacy
preserving, and give a survey of existing work including the system architecture,
location anonymity, and query processing.

Keywords Location-based service * Moving object * Location privacy * Privacy
preserving ¢ Location anonymization

12.1 Introduction

In LBS applications, mobile users send their location information to service
providers and enjoy various types of location-based services, such as mobile yellow
page (e.g., “Where is my nearest restaurant”), mobile buddy list (e.g., “Where
is my nearest friend”), traffic navigation (e.g., “What is my shortest path to the
Summer Palace”), and emergency support services (e.g., “I need help and send me
the nearest police”). LBS is playing an important role in people’s daily life. In 2010,
the total population of GPS-enabled LBSs subscribers reached 315 million, up from
12 million in 2006, according to a new study from ABI Research.

While people get much benefit from the useful and convenient information
provided by LBSs, the privacy threat of revealing a mobile user’s personal infor-
mation (including the identifier and location) has become a severe issue. It has been

X. Meng et al., Moving Objects Management: Models, Techniques 211
and Applications, DOI 10.1007/978-3-642-38276-5_12,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

212 12 Location Privacy

reported in [17] and an article in USA Today Dec., 2002 that a man was tracking his
ex-girlfriend with GPS. Some companies increasingly use GPS-enabled cell phones
to track employees.” Although many cases illustrate the various benefits of mobile
devices, the user’s privacy is threatened. In order to enjoy a good quality of LBS,
an exact location is needed. However, an exact location needs to be hidden, to meet
privacy requirements.

In this chapter, we first give an LBS example and show what kind of privacy
issues are threaten. Then, the state of the art of privacy in location-based services
is introduced, including challenges, system architecture, and cloaking methods.
Finally, compared with traditional query processing, the key challenges of privacy-
aware query on moving objects are introduced.

12.2 Privacy Threats in LBS

A major privacy threat specific to LBS usage is the location privacy breaches [8].
Such breaches take place when a party that is not trusted gets access to information
that reveals the locations visited by the individual as well as the times during which
these visits took place. An adversary can utilize such location information to infer
details about the private life of an individual, such as political affiliations, alternative
lifestyles, or medical problems of an individual, or the private businesses of an
organization, such as new business initiatives and partnerships. First, using her PDA
phone, Alice issues a query to the service provider (e.g., Google Map) to find out
“where is the nearest hospital with specialty in cancer.” Alice wants to hide her exact
location (e.g., being in a hospital or at home), as well as the information that it is
her (Alice) who issued a query about cancer. Or else, an adversary may infer that
Alice has some medical problem.

Location privacy is a particular type of information privacy [2]. Westin defined
information privacy as “the claim of individuals, groups, or institutions to deter-
mine for themselves when, how, and to what extent information about them is
communicated to others” [21]. Whereas location privacy is defined as the ability to
prevent other parties from learning one’s current or past location. Sensitive data [3]
refers to information of general concern, like medical information or financial data
that could be transmitted as part of a service request; it may also be the spatio-
temporal information regarding the user, as possibly collected by a location-based
service provider. Examples include (1) information on the specific location of

1“GPS system used to stalk woman” (http://www.usatoday.com/tech/news/2002-12-30-gps-
stalker_x.html).

2“Companies increasingly use GPS-enabled cell phones to track employees” (http://

wifi.weblogsinc.com/2004/09/24/companies-increasingly-use- gps-enabled-cell-phones- to-track/)
Weblogsinc. September, 2004

http://www.usatoday.com/tech/news/2002-12-30-gps-stalker_x.html
http://www.usatoday.com/tech/news/2002-12-30-gps-stalker_x.html
http://{wifi.weblogsinc.com/2004/09/24/companies-increasingly-use-gps-enabled-cell-phones-to-track/}
http://{wifi.weblogsinc.com/2004/09/24/companies-increasingly-use-gps-enabled-cell-phones-to-track/}

12.2 Privacy Threats in LBS 213

individuals at specific times, (2) movement patterns of individuals (specific routes
at specific times and their frequency), and (3) personal points of interest (frequent
visits to specific shops, clubs, or institutions).

Privacy threats related to location-based services are classified into two cat-
egories [11]: communication privacy threats and location privacy threats. In the
communication privacy domain, sender anonymity is maintained, which implies that
eavesdroppers on the network and LBS providers cannot determine the originator of
a message. Compared to non-LBS web services, the location information is the key
problem: an adversary can re-identify the sender of an otherwise anonymous mes-
sage by correlating the location information with prior knowledge or observations
about a subject’s location. Consider the case where a subject reveals his/her location
L in a message M to a location-based service and an adversary A has access to this
information. Then, sender anonymity and location privacy is threatened by location
information in the following ways:

* Restricted Space Identification. If A knows that space L exclusively belongs to
subject S then A learns that S is in L and S has sent M. For example, when
the owner of a suburban house sends a message from his garage or driveway,
the coordinates can be correlated with a database of geocoded postal addresses
to identify the residence. An address lookup in phone or property listings then
reveals the owner and likely originator of the message.

* Observation Identification. If A has observed the current location L of subject S
and finds a message M from L, then A learns that S has sent M. For example,
the subject has revealed its identity and location in a previous message and then
wants to send an anonymous message. The latter message can be linked to the
previous one through the location information.

* Location Tracking. If A has identified subject S at location L; and can link a
series of location updates Ly, L,,...,L;,..., L, to the subject, then A learns
that S visited all locations in the series.

Location privacy threats describe the risk that an adversary learns the locations
that a subject visited (and the corresponding times). Through these locations, the
adversary receives clues about private information such as political affiliations,
alternative lifestyles, or medical problems. Assuming that a subject does not
disclose his/her identity at such a private location, an adversary could still gain this
information through location tracking. If the subject transmits his/her location with
high frequency, the adversary can, at least in less populated areas, link subsequent
location updates to the same subject. If at any point the subject is identified, his/her
complete movements are also known.

There have been a number of follow-up studies based on location privacy
preserving, which can be divided into two directions.

1. How to perform location anonymization. Anonymity is the state of being not
identifiable within a set of subjects, referred to the anonymity set [19]. Location
anonymity guarantees the inability to associate location information to a partic-
ular individual/group/institution through inference attacks [15]. Specifically, its

214 12 Location Privacy

goal is to prevent disclosure of unnecessary information, including the individual
identity and location of an individual, through explicit or implicit control of what
information is given to “whom and when.”

2. How to efficiently answer location-based queries (e.g., nearest neighbor and
range queries) with cloaked regions [12, 18]. In a privacy-aware LBS system,
location information is fuzzy instead of being exact. It can be a set of locations or
an obfuscated location. Such that query processing in traditional moving object
databases is not applicable now. We have to extend it or find new methods for
answering queries with anonymized location.

The challenges faced in location privacy preserving can be summarized as
follows:

1. It needs a trade-off between location privacy protecting and location-based
services enjoying. As the data precision increases, so does the data utility;
however, the privacy is threatened. It is often desirable to strike a balance between
the location privacy and quality of services (QoS) requirements. A similar case
occurs with regard to location privacy preserving. When a user issues a query, he
has to publish his exact location. The more exact the location data is, the QoS
correspondingly rises, but the privacy preserving is at a very low level. The QoS
here includes response time, communication cost, etc.

2. Location information is multidimensional data, and they are dependent with
each other. By contrast, data in publishing has independent attributes. And the
attribute has one-dimensional value. In privacy preserving in data publishing,
the data are partitioned into different groups based on all attributes. The
anonymization method on each dimension can be different. However, in location
privacy preserving, location is multidimensional information. We cannot handle
it separately.

3. Location privacy preservation is online and service centric, which should tolerate
the high frequency of location updates. Data anonymization in data publishing
is applicable for the current snapshot of data. It is off-line and data centric.
Therefore, it has no constraints on response time. However, for location privacy
protection, the processor has to face so many moving objects with locations
being updated frequently. Therefore, the cloaking time is a very important factor
for location anonymization. Meanwhile, the problem of privacy compromise in
location cloaking for continuous location updates should be considered, e.g.,
trajectory anonymization.

4. QoS is a very important factor. In privacy protection in data publishing, the
focus is only on whether the user’s privacy information is protected. However, in
location privacy preserving, privacy protection is only one of the several issues.
Other issues include how long users have to wait for the query answer and how
much it costs when the answer is got. Specifically, the location is fuzzy as a
result of anonymization. Therefore, it is a challenge to provide highly efficient,
accurate, and anonymous location-based services based on the knowledge of
the cloaked spatial areas rather than the exact location information. Therefore,
how to provide highly efficient, accurate, and anonymous location-based services

12.3 System Architecture 215

based on the knowledge of the cloaked spatial areas rather than the exact location
information is another problem that users are concerned.

5. Privacy requirements are personalized. Different people have different privacy
requirements. Moreover, the privacy levels for the same person may be different
when the place or time is different. For example, when someone is shopping,
his/her privacy level is low. However, if he/she is in a hospital, the privacy level
increases. Therefore, we cannot unify everyone’s privacy requirements or force
users to accept a minimum level of privacy.

In order to accommodate personalized privacy requirements, each user can
specify four parameters for protecting the location privacy at least:

e k: It represents the anonymity level in the location k-anonymity model. More
specifically, each cloaked region should cover at least k different users. The larger
the value of k, the more privacy is protected.

e Apin: It specifies the minimum area that the cloaked region should have. This is
to prevent the cloaked region from being too small for highly populated areas.

* Apay: It constrains the maximum area of the cloaked region. As the area of
the cloaked region would affect the accuracy and size of the query result, this
parameter stands for one kind of quality of service.

e §;: It is the maximum tolerable cloaking delay, which is a QoS parameter. The
larger is the &, value, the worse is the service quality, since the user will have a
higher chance of moving away from the location where the query was issued.

The former two parameters are the constraints for location anonymization, which
is the minimum of QoS. And the latter two are constraints for location service
quality, which indicate the worst QoS.

12.3 System Architecture

System architectures for location privacy are classified into three categories: non-
cooperative architecture, centralized architecture, and peer-to-peer architecture.
Users in non-cooperative architecture depend only on their knowledge to preserve
their location privacy. However, in centralized architecture, a centralized entity is
responsible for gathering information and providing the required privacy for each
user. For peer-to-peer architecture, users collaborate with each other without the
centralized entity to provide customized privacy for each single user.

12.3.1 Non-cooperative Architecture

The non-cooperative architecture system [4] consists of many mobile users and an
untrusted service provider. It is assumed in this architecture that each of the clients

216 12 Location Privacy

is location-aware — they can position their own locations (e.g., using GPS or WLAN
based positioning). It has strong capability for calculation and storage to get the
anonymized location according to the personalized privacy requirement.

Location obfuscation is performed at client’s end. On receiving the anonymized
location, the untrusted service provider processes the request and sends back the
candidate results to the user. As the client knows its own exact location, it obtains the
true result on its own. In a word, the location anonymization and results refinement
are both completed by clients themselves.

The good point of this architecture is that it is simple and easy to be incorporated
with other technologies. But the requirement for client is too high. The most worst is
that it generates the anonymized location only by its own knowledge, but ignores the
other users’ locations. Therefore, privacy is easily threatened in this architecture. For
example, [6] reduces the resolution of location for location privacy protection, and
thus a cloaked region is issued. However, only one user is covered in this region,
such that the query issued from this region can be easily to be matched with the
issuer. Query privacy is disclosed.

12.3.2 Centralized Architecture

The system consists of many mobile users, a trusted anonymizing proxy, and an un-
trusted service provider. Compared with non-cooperative architecture, a third-party
anonymization proxy (middleware) is required for all communications between
mobile users and LBS applications. Its functions can be summarized as follows:

» Itreceives the exact locations from clients.

It blurs the locations and sends the blurred locations to the service provider.

e It receives and refines the candidate results, which are sent by the service
provider. Moreover, it relays the exact query result to clients.

Mobile clients communicate with third-party LBS providers through the
anonymity proxy. The mobile user sends location-based queries to the anonymizing
proxy. The anonymity proxy is a secure gateway to the LBS providers for the
mobile clients. Upon receiving the location-based query, the anonymizing proxy
removes any identifiers, such as IP addresses. In the meantime, it invokes the
location cloaking algorithm to generate a cloaked region in accordance with the
user’s privacy requirement. Then, it forwards the modified query to the service
provider. Finally, the anonymizing proxy will relay the result returned from the
service provider to the mobile user.

With a trusted anonymizing proxy, it provides powerful privacy guarantees with
high-quality services. But it still suffers from that [10]:

e The centralized anonymizer proxy is a bottleneck due to handling of query
requests, frequent updates of user locations, and result post-processing. More-
over, the anonymizer is a single point of failure; the system cannot function
without it.

12.4 Location Anonymization Techniques 217

* The complete knowledge of the locations and queries of all users is a serious
security threat, if the anonymizer is compromised. Even if there is no attack,
the centralized anonymizer may be subject to governmental control and may be
banned or forced to disclose sensitive user information.

12.3.3 Peer-to-Peer Architecture

Similar to non-cooperative architecture, peer-to-peer architecture consists of mobile
clients and service providers. However, the users collaborate with each other to
keep their customized privacy information. In this aspect, peer-to-peer architecture
is different from non-cooperative architecture.

Each mobile user carries mobile devices (e.g., mobile phones, PDAs) with
embedded positioning capabilities (e.g., GPS). The devices have processing power
and access the network through a wireless protocol such as WiFi, GPRS, or
3G. Moreover, each device has a unique network identity (e.g., IP address) and
can establish point-to-point communication (e.g., TCP/IP sockets) with any other
devices in the system through a base station (i.e., the two devices do not need to be
within communication range of each other). For security reasons, all communication
links are encrypted.

In addition, there is a trusted central Certification Server (CS), where users are
registered. Prior to entering the system, a user # must authenticate against the CS and
obtain a certificate. Users having a certificate are trusted by all other users. Typically,
a certificate is valid for a few hours; it can be renewed by recontacting the CS. Apart
from the certificate, the CS returns to u the IP addresses of some users who are
currently in the system. u uses this list to identify an entry point to the distributed
network. Note that the CS does not know the locations of the users and does not
participate in the anonymization process. Therefore, the workload of the CS is low
(i.e., no location updates); moreover, it does not store any sensitive information.

Each user corresponds to a peer. Peers are partitioned into different groups,
according to their location. Within each group, peers elect a head. The anonymiza-
tion process can be completed by the group head or the user who issues the service.
However, the group head refines the candidate results for the users in its group. To
achieve load balancing, group heads can be rotated in a round-robin manner [10].
There are three main issues to be addressed in this architecture: anonymization,
query processing, and head selection. Group Formation [5] and PRIVE [10] are the
two representative works.

12.4 Location Anonymization Techniques

The goal of location anonymization is to protect the user’s location while meeting
user-specified QoS requirements. A query in LBS can be formalized as r =
(id,l,q), where id is the user’s identifier, [= (x, y) is the user’s current location,

218 12 Location Privacy

Fig. 12.1 Location (x4 Vir)
4-anonymity o/ D e

B eo(C

(x> Vpp)

and ¢ is the query content. These three parameters have different implications.
First, id uniquely identifies a user. It cannot be revealed to any third party and
should be removed before being forwarded to the LBS server. Second, / could
be a quasi-identifier (QI) attribute, which cannot directly identify a user but may
reveal a user’s association with requests by joining with external data (e.g., some
background knowledge such as yellow pages and location data obtained by network-
based positioning). Thus, / should be cloaked (enlarged) in the request sent to
the LBS server. Third, ¢ is a sensitive attribute, which may be confidential to
an individual (subject to her/his preference) but must be sent to the LBS server
in order to answer the request. Following the above analysis, the simplest way
is to replace his/her identity with a pseudonym before sending the query to the
service provider. However, as described in Sect. 12.2, it is not enough. We have to
anonymize the location information. There have been a number of follow-up studies
on this issue [4, 6,10, 13-15,22].

12.4.1 Location K-Anonymity Model

Location k-anonymity model is the most widely accepted metric for location privacy
preserving. The k-anonymity model was originally proposed for privacy protection
in data publishing by Sweeny [20]. As defined in [20], a release of data provides
k-anonymity protection if the information for each individual contained in the
release cannot be distinguished from at least k — 1 individuals whose information
also appear in the release.

To address the location privacy issue, location k-anonymity was proposed by
Gruteser and Grunwald [11]. A mobile user is considered as location k-anonymous
if and only if the location information sent to the service provider is indistinguish-
able from those of at least k — 1 other users. More specifically, location information
is represented by a tuple containing three intervals ([x1, x2], [y1, ¥2], [t1, 22]). The
intervals [x;, x,] and [y;, 2] describe a two-dimensional area where the subject
is located. [t;,] describes a time period during which the subject was present in
the area. Note that the intervals represent uncertainty ranges; we only know that at
some point in time within the temporal interval, the subject was present at some
point of the area given by the spatial intervals. Thus, a location tuple for a subject
is k-anonymous, when it describes not only the location of the subject but also
the locations of (k — 1) other subjects. In other words, (k — 1) other subjects
also must have been presented in the area and the time period described by the
tuple. For example, Fig. 12.1 shows a location 3-anonymity example (for stating

12.4 Location Anonymization Techniques 219

Table 12.1 Location

. User Real location Anonymity location
4-anonymity

A (x4, ¥4) (Lxp1 s Xurds Doty YurD
B (xB,¥B) (Lxo1 Xurds (Vo1 Yur])
C (xc,yc) Lxp1 s Xurs o1+ YurD
D (xp,¥p) (xpts Xurds [yots Yur])

conveniently, time interval is omitted here). Locations of A, B, C, and D are all
extended to a reCtangle CR = ([Xb[, xur]s [ybl , yur])’ where (xbl , ybl) and (-xurs yur)
are the bottom-left and up-right location of cloaked region. If it is represented by a
table form, it is shown as Table 12.1. Thus, the adversary cannot be sure the exactly
location of each mobile user. The users in the cloaked region constitute the cloaking
set. In this example, cloaking set is {4, B, C, D}. Generally speaking, the larger
the anonymity set k is, the higher is the degree of anonymity. Note here that k is
specified by the user, which is one of the four parameters mentioned in Sect. 12.2.
Generally speaking, the larger k is, the larger the size of cloaked region is. It largely
depends on the surrounding environment. Let k& = 100, and if the user is in the
shopping mall, the cloaked region will be very small. However, if the user is in the
desert, the cloaked region may be very large.

12.4.2 p-Sensitivity Model

Several methods have been proposed to support location-based services without
revealing mobile users’ privacy information. There are two types of privacy
concerns in location-based services: location privacy and query privacy. Existing
studies, based on location k-anonymity, mainly focus on location privacy and
are insufficient to protect query privacy. In particular, due to lack of semantics,
location k-anonymity has the drawback of query homogeneity attack. In many LBS
applications, mobile users do not mind to reveal their exact location information.
However, they would like to hide the fact that they have issued queries that
contain sensitive content as such information may reveal their personal interest (e.g.,
searching the nearest clinic when the user is in an insensitive public place). In this
section, we will discuss protection of query privacy for LBS applications.

Existing location k-anonymity technique can be used to improve protection of
query privacy. Nevertheless, the protection provided by location k-anonymity is not
sufficient. Consider a scenario where each query location is enlarged in accordance
with k-anonymity. That is, each query location is covered by at least k queries
(hereafter called anonymity set). Thus, even though the adversary knows the exact
location of a user, he is not able to link the user to a specific query (rather k
queries). However, one main weakness of k-anonymity is that it considers only
spatial proximity in forming anonymity sets, but not query semantics. In an extreme
case, if all queries in the anonymity set contain the same content, the query privacy
is still revealed. This situation is not uncommon. For example, when friends meet

220 12 Location Privacy

Original Table R Anonymized Table R’ External Table R*
location | query location’ query’ id | location*
I=(x, y) q L'=@xuy), 2 02) | ¢’ U | I=(x*, p)
I * | 1 * |
Owned by Trust Proxy Owned by Attacker

Fig. 12.2 Original table, anonymized table, and external table

Anonymized Table R’ External Table R*

location’ query’ id* location*
(7,6),(9,7) Cancer Hospital U (7, 6)
(2, 4), (4, 6) Bank 0y (2, 4)
(4, 6), (5, 8) Club s (4, 6)
(2,5),(5,8) Beer Club Uy (5,8
2.5),(5,8) Gay Club s 2,7)
2.5), (5, 8) Club s 3,5)

Fig. 12.3 Query homogeneity attack

after office hours and discuss visiting some club, they may all issue location-based
queries containing the keyword “club.” Since these query locations are spatially
proximate, they are very likely to be anonymized together in the same anonymity
set. As a result, although the adversary cannot infer which user issued which query,
he would know all users queried about clubs. Consider another example, several
specialty clinics are located in a small area of the downtown, and people would
easily lose their way after leaving the highway exit. The users may often issue
a location-based query to find the way to some specialty clinic near the highway
exit. These queries are then likely to be anonymized with each other. Furthermore,
even if the k queries in an anonymity set are not of the same kind (e.g., satisfying
[-diversity in [16]), it is still not acceptable to some users if they all contain sensitive
information (e.g., some queries ask about clubs and some others ask about clinics).
In a word, due to lack of semantics, location k-anonymity can just prevent the
association between users and requests, but not the association between users and
(sensitive) query contents, and hence suffers from the aforementioned attacks.

To protect query privacy, first we define the query semantics. For simplicity, we
simply assume that each query can be classified into two types according to its
content: (1) insensitive query (Q;), e.g., queries about traffic, and (2) sensitive query
(0Qy), e.g., queries about bar, clinic, and political information.

Following our assumption, the attacker may obtain the tables R’ and R* (as
shown in Fig. 12.2) and attempt to establish their relationship. We use an example
to illustrate each of these two attacks. Figure 12.3 shows an example of query

12.4 Location Anonymization Techniques 221

homogeneity attack. We assume that there are six users | through ug. In the external
table R*, user uy has the location of I,* = (5,8). When [, is joined with R’, the
attacker can observe that [;* is covered by the cloaking regions of four requests,
each of which covers more than one location in R*. Thus, the attacker can only
know that u4 has sent one of the four queries but cannot tell which one. However,
all the four queries are about “club.” Hence, the attacker can conclude that x4 must
have queried about “club,” which might be sensitive with respect to u4’s privacy
preference. In a word, the attacker can infer that a user has issued some sensitive
query with high confidence.

To protect against location linking attack, each query can be de-linked from its
issuer by confusing the attacker with more than one users appearing in the cloaking
region of the query; each user can be de-linked from his/her query by confusing
the attacker with more than one query having cloaking regions that cover the user’s
location.

Given an anonymized query r’, denote by P(r’ — u*) the probability of the
user u* in r’, S, being the true issuer of r’. Given a user u*, denote by P(u* — r’)
the probability of the query r’ in u*, S, being sent by u*. By the assumption of
uniform background knowledge, the probability of a query being sent by any user
in its S, is equal and each user has the same probability of sending any request in
the user’s S,. Thus, in order to defend against location linking attack, it is required
that P(r' — u*) and P(u* — r’) are both less than or equal to the user-specified
threshold %:

. 1 1

P’ —u*) = S < Z (12.1)
. 1 1

P —r) = S| =z (12.2)

To protect against query homogeneity attack, each user can be de-linked from
sensitive queries by confusing the attacker with some insensitive queries in the
user’s S,. Given a user u*, denote by P(u* — Q) the probability that u* has
sent some sensitive query. Hence, it is required that P(u* — Q) is always less
than the user-specified threshold p. It can be formalized as

Zr,- cu*.S, Vi <

(12.3)

where v; is the sensitivity value of query r; and X'v; computes the total number of
sensitive queries in the request anonymity set of user u*.

Equations (12.1) and (12.2) ensure that any query will be linked with at least k
users and any user will be linked with at least k queries. Equation (12.3) ensures
that the probability of any user sending some sensitive query is less than p. Finally,
we wrap up the p-sensitivity model as

222 12 Location Privacy

Fig. 12.4 Dummies
4 oC
o ¢ o
]
"E
Fig. 12.5 Cloaking y Actual
Location

4

[. i
Uncertainty region time
seen by service
provider

p-Sensitivity: p-sensitivity is satisfied if and only if:

* For each user u*, P(u* — r') < L, P(u* — Q,) < p.

e Foreach query r’, P(r' — u*) < %

12.4.3 Anonymization Algorithms

In terms of the techniques used for protecting location privacy, the existing
approaches can be classified into three categories: dummy, cloaking, and
encryption.

The first technique is to generate dummies. A user specifies a dummy location
instead of his/her genuine location. As shown in Fig. 12.4, circle point represents the
query, and the square point represents the object queried. The black point represents
the true location, and the white points represent dummies. The user location is
represented with a wrong value, such that the privacy is achieved from the fact that
the reported location is false. The QoS and the amount of privacy mainly depend
on how far the dummy is from. The larger the distance, the worst QoS, but much
privacy is preserved.

The second technique is cloaking. The main idea of cloaking is to reduce the
spatio-temporal resolution of the user location. A precise location is replaced with
a cloaked region, which is shown in Fig. 12.5, so that the attacker cannot know
the exact location of the user. The cloaked region is a closed region, which can be
any shape with a predefined probability distribution of this object in the region. In
general, most existing work uses a rectangle or a circle to present a cloaked region
and assumes that the probabilities of the users being in a cloaking region are the

12.5 Evaluation Metrics 223

same. The difference between cloaking and dummy is that the location in the former
case is a fuzzy location, whereas in the latter case, the locations are all precise and
the attacker just cannot tell which one is real. The larger is the cloaked region, the
more privacy is preserved, but the less specific is the request.

Third, some work [9] suggested using encryption for location privacy protection
recently. Its main idea is that the query is encrypted so that the service provider
answers the queries without knowing what kind of information is being retrieved.
Then, the user de-encrypts the result candidates and refines them at the client side.
For example, Ghinita et al. [9] proposed a framework that is based on Private
Information Retrieval (PIR). The framework partitions the space into grid cells and
then the user requests the content of cell where he/she is located. Thanks to PIR, the
user can encrypt which cell is requested while receiving the correct content.

12.5 Evaluation Metrics

Compared with dummies and encryption, cloaking is the most widely used method
[1,7,8,13]. In this section, we introduce several evaluation metrics for system-level
control of the balance between privacy value and performance implication in terms
of QoS. These metrics [8] can be used to evaluate the effectiveness and the efficiency
of anonymization algorithms based on cloaking.

Success rate is an important measure for evaluating the effectiveness of the
proposed location k-anonymity model. It can be defined over a set S C S of
requests as the percentage of messages that are successfully anonymized, which
is formally represented as:

_ 18
S|

SR (12.4)

where S’ is the number of requests that have been anonymized successfully and S
is the number of requests issued.

Relative anonymity level is a measure of the level of anonymity provided by the
cloaking algorithm, normalized by the level of anonymity required by the messages.
It is measured by k’/k, where k' is the number of users actually included in the
cloaking region while k is the number that user required. Note that the relative
anonymity level cannot go below 1. Higher relative anonymity levels mean that on
the average messages are getting anonymized with larger k values than the user-
specified minimum k-anonymity levels. In general, we prefer algorithms that can
provide higher relative anonymity levels.

Relative spatial resolution is a measure of the spatial resolution provided by
the cloaking algorithm, normalized by the minimum acceptable spatial resolution
defined by the spatial tolerances. Higher relative spatial resolution values imply that
anonymization is performed with smaller spatial cloaking regions relative to the
constraint boxes specified.

224 12 Location Privacy

Relative temporal resolution is a measure of the temporal resolution provided
by the cloaking algorithm, normalized by the minimum acceptable temporal resolu-
tion defined by the temporal tolerances. Higher relative temporal resolution values
imply that anonymization is performed with smaller temporal cloaking intervals
and thus with smaller delays due to perturbation. Relative spatial and temporal
resolutions cannot go below 1.

Message processing time is a measure of the running time performance of the
anonymization algorithm. It is the period from when a request is received to when
the request is successfully cloaked. It includes the cloaking time as well as the
waiting time for cloaking. The message processing time may become a critical issue,
if the computational power at hand is not enough to handle the incoming messages
at a high rate.

Important measures of efficiency include relative anonymity level, relative
temporal resolution, relative spatial resolution, and message processing time. The
first three are measures related with quality of service, whereas the last one is a
performance measure.

12.6 Summary

This chapter presents the definition, the models, and the techniques of location
privacy preserving. It consists of four main components. First, we introduced
location privacy threats and gave an overview of the state-of-the-art research.
Second, we presented three system architectures for location privacy preserving.
Third, we discussed the various location privacy models and techniques. Finally,
we introduced several evaluation metrics for system-level control of the balance
between privacy value and performance implication in terms of QoS.

In real life, several major privacy threats are occurring due to the use of
location-detection devices. Therefore, location privacy is a major obstacle in the
ubiquitous deployment of location-based services. Location privacy protection is a
new developing field, and there are several open issues to be researched.

References

1. Bamba B, Liu L, Pesti P, Wang T (2008) Supporting anonymous location queries in mobile
environments with PrivacyGrid. In: Proceedings of the 17th international conference on world
wide web (WWW 2008), Beijing, pp 237-246

2. Beresford AR, Stajano F (2003) Location privacy in pervasive computing. IEEE Pervasive
Comput 2(1):46-55

3. Bettini C, Wang XS, Jajodia S (2005) Protecting privacy against location-based personal
identification. In: Proceedings of the VLDB workshop on secure data management (SDM
2005), Trondheim, pp 185-199

References 225

4.

10.

11

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Cheng R, Zhang Y, Bertino E, Prabhakar S (2006) Preserving user location privacy in mobile
data management infrastructures. In: Proceedings of the 6th workshop on privacy enhancing
technologies (PET 2006), Cambridge, pp 393412

. Chow CY, Mokbel MF, Liu X (2006) A peer-to-peer spatial cloaking algorithm for anonymous

location-based services. In: Proceedings of the 14th ACM international symposium on
geographic information systems (GIS 2006), Arlington, pp 171-178

. DuJ, XuJ, Tang Z, Hu H (2007) iPDA: supporting privacy-preserving location-based mobile

services. In: Proceedings of the 8th international conference on mobile data management
(MDM 2007), Mannheim, pp 212-214

. Gedik B, Liu L (2005) Location privacy in mobile systems: a personalized anonymization

model. In: Proceedings of the 25th international conference on distributed computing systems
(ICDCS 2005), Columbus, pp 620-629

. Gedik B, Liu L (2008) Protecting location privacy with personalized k-anonymity: architecture

and algorithms. IEEE Trans Mob Comput 7(1):1-18

. Ghinita G, Kalnis P, Khoshgozaran A, Shahabi C, Tan K (2008) Private queries in location

based services: anonymizers are not necessary. In: Proceedings of the ACM SIGMOD
international conference on management of data (SIGMOD 2008), Vancouver, pp 121-132
Ghinita G, Kalnis P, Skiadopoulos S (2007) MobiHide: a mobile peer-to-peer system for
anonymous location-based queries. In: Proceedings of the 10th symposium on spatial and
temporal databases (SSTD 2007), Boston, pp 221-238

. Gruteser M, Grunwald D (2003) Anonymous usage of location based services through spatial

and temporal cloaking. In: Proceedings of the 1st international conference on mobile systems,
applications, and services (MobiSys 2003), San Francisco, pp 31-42

Hu H, Lee D (2006) Range nearest-neighbor query. IEEE Trans Knowl Data Eng 18(1):78-91
Kalnis P, Ghinita G, Mouratidis K, Papadias D (2006) Preserving anonymity in location based
services. Technical report TRB6/06, Department of Computer Science, National University of
Singapore

Kido H, Yanagisawa Y, Satoh T (2005) An anonymous communication technique using dum-
mies for location-based services. In: Proceedings of the 2005 IEEE international conference
on pervasive services (ICPS 2005), Santorini, pp 88-97

Liu L (2007) From data privacy to location privacy: models and algorithms. In: Proceed-
ings of the 33rd international conference on very large data bases (VLDB 2007), Vienna,
pp 1429-1430

Machanavajjhala A, Gehrke J, Kifer D (2006) [-diversity: privacy beyond k-anonymity. In:
Proceedings of the 22nd international conference on data engineering (ICDE 2006), Atlanta,
pp 24-37

Man Accused of Stalking Ex-girlfriend with GPS. Fox News. September, 2004. http://www.
foxnews.com/story/0,2933,131487,00.html

Mokbel MF, Chow C, Aref WG (2006) The New Casper: a privacy-aware location-based
database server. In: Proceedings of the international conference on very large data bases
(VLDB 2006), Seoul, pp 1499-1500

Pfitzmann A, Koehntopp M (2000) Anonymity, unobservability, and pseudonymity. A proposal
for terminology. In: Proceedings of the international workshop on design issues in anonymity
and unobservability, Berkeley, pp 1-9

Sweeney L (2002) K-anonymity: a model for protecting privacy. Int J Uncertain Fuzziness
Knowl Based Syst 10(5):557-570

Westin AF (1967) Privacy and freedom. Atheneum, New York

Xiao Z, Meng X, Xu J (2007) Quality-aware privacy protection for location-based services. In:
Proceedings of the 12th international conference on database systems for advanced applications
(DASFAA 2007), Bangkok, pp 434-446

http://www.foxnews.com/story/0,2933,131487,00.html
http://www.foxnews.com/story/0,2933,131487,00.html

Index

Symbols C
B*-tree, 76 CA, 120
CB, 164, 168
density of CB, 182
A cell, 109, 120
A*, 198 dense cell, 109
abstract data type, 16, 18 dense leaf cell, 108
adaptive unit, 52 sparse cell, 109
ADT, 18 centralized architecture, 216
adversary, 213 certification server, 217
aggregate nearest neighbor cloaked region, 214, 219
query, 75 cloaking, 212, 222
animal migration analysis, 164 cluster block, 164, 168, 176
ANLUM, 40 cluster unit, 100
ANLUME-A, 40, 42 clustering
ANLUM-C, 40, 44 density-based, 164, 165, 172, 180
ANN query, 75 DBSCAN, 165
anonymity, 213 grid-based, 164
anonymity proxy, 216 hierarchical, 164, 168
ANR-tree, 52 agglomerative, 165
answer loss, 99 divisive, 165
Apriori, 127 model-based, 164
ARS, 26, 156 partitioning, 164, 182
k-means, 164
k-medoids, 164
B clustering analysis, vi, 164
big region, 188 clustering criteria, 164, 175, 179
DBRR, 190 clustering moving object, 163
TBRR, 190 CMON, 164, 175
blockage, 155 coarse constraint, 189
blockage position, 155 compactness, 175
blockage reason, 154 computational redundancy, 175
bottom-up, 112, 165 congestion, 120
boundary, 179 continuous route planning, 198
branch-and-bound, 75 continuous spatio-temporal query, 166
X. Meng et al., Moving Objects Management: Models, Techniques 227

and Applications, DOI 10.1007/978-3-642-38276-5,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2014

228

convoy, 35

critical-time-point approach, 198

CTSAG, 158

CU, 101

Current Traffic-status Statistical Analysis
Graph, 158

D

D*, 198, 199

data anonymization, 214

data mining, vi

data publishing, 214

DB-CMON, 182

DBMS, 15

dense area, 75, 88

dense region, 165

dense segment, 89, 99

dense segment set, 103

density, 99

density query, 73, 75, 88, 99
continuous density query, 105
effective density query, 100
period density query, 75
snapshot density query, 75, 105

depth-first, 75

Dijkstra algorithm, 77, 180, 198

directed atomic route section, 67

discrete change, 150

discrete point, 121

disjoint cell, 99

dissimilarity, 164

distance metric, 167

distance of vector, 91

DTNMOM, 21

DTTLU, 38, 43

dummy, 222

dummy location, 222

dynamic attribute, 16, 17

dynamic transportation network, 152

dynamic transportation networks, 21

DyNSA, 200

E

edge, 20, 168, 169

edge-based clustering, 169
emergency support service, 211
encryption, 222

Euclidean distance, 76, 90, 164
Euclidean restriction, 78
Euclidean space, v, 73, 76

EuNetMOD, 47, 48
event queue, 177

F

Fastest Route Query, 202
FCD, 151

flock, 35

flock-lossy, 189
FNR-tree, 6, 52

fuzzy, 214

G

GCA, 20, 120
transition, 120

graph, 37

graph point, 37

grid, 107

H

HAT, 200

head selection, 217
hierarchical routing, 198

Hierarchy Aggregation Tree, 200

histogram, 166
hot region, 189
hot region query, 189

I
IDTLU, 38

incremental network expansion, 180

index traverse, 75
inference attack, 213
information privacy, 212
insensitive query, 220

integrated location tracking, 133

intersection, 169
intersection node, 177

J
junction, 37, 153
in-graph junction, 153

intergraph junction, 153

K

k-anonymity model, 215, 218

k-means algorithm, 182

Index

Index

kNN, 7
kNN query, 78, 92
KP-CMON, 182

L

laminar traffic, 120

landmark, 198

LBS, 1

linear constraint, 16

linear constraint database, 18

linear function, 16

linear prediction, 117, 118

linear regression, 120

location anonymity, 213

location anonymization, 213, 217

location evaluation metric, 223
message processing time, 224
relative anonymity level, 223
relative spatial resolution, 223

relative temporal resolution, 224

success rate, 223
location linking attack, 221
location management, v
location modeling, 15
location obfuscation, 216
location privacy, vi, 212, 219
location privacy breach, 212
location privacy threat, 213
location representation, 19
location tracking, 34, 213

ANLUM, 36

dead-reckoning, 34

ADR, 34
DDR, 34
SDR, 34

FDLU, 5, 34

FTLU, 5, 34

group-based tracking, 35

MVLU, 5, 35

Net-LUM, 36
location update, 34, 118, 140
location-based service, v, 211
lower bound, 122
LUGrid, 6
LUR-tree, 6, 76

M

map-matching, 124
MBR, 53, 55
MD-CMON, 180

micro moving cluster, 166
minimum bounding rectangle, 53
minimum distance metric, 179
MMC, 166

mobile buddy list, 211

mobile yellow page, 211

MOD, 1, 3

model based prediction, 34
MON-tree, 58

MOST model, 4, 17
MOSTR-Tree, 52

MOSTR-tree, 60

motion vector, 18, 34, 37, 140, 141, 156
moving cluster, 35

moving graph point, 38

moving object, 15

moving objects database, v
moving objects management, v
moving pattern, 88

moving space, 74

N

NDTR-Tree, 52

NDTR-tree, 67

Net-LUM, 38

network, 167

network constraint, 17, 175
network distance, 73, 76, 164, 165, 167
network expansion, 77, 78, 80
network indexing, 198
NMOD-TFSA, 156

NN query, 73-75

node, 168, 169

node-based clustering, 172
non-cooperative architecture, 215
non-linear function, 16
non-linear prediction, 117

(0]

observation identification, 213
OLSE, 121

OPEN list, 199

ordinary least square estimation, 121
out-degree, 123

outlier, 89, 165, 166

P
p-sensitivity model, 221
parallel distance, 185

230

Partition-and-group, 183

path oracle, 198

path probability, 124, 127

peer, 217

peer-to-peer architecture, 217
perpendicular distance, 184
piece-wise linear segment, 118
point-to-point communication, 217
pre-computation, 75, 198
pre-process, 122

priority queue, 174

privacy preserving, 213

privacy requirement, 215

privacy threat, 211, 213
privacy-aware LBS, 214
privacy-aware query, 212

private information retrieval, 223
probabilistic path query, 198

Q

QosS, 214

Quad-tree, 106

quadrant, 107

quality of service, 214
quasi-identifier, 218

query homogeneity attack, 221
query privacy, 216, 219

query processing, 73

R
R*-tree, 54
R-tree, 54

range query, 73, 74, 81

Recursive Motion Function, 35
redundant pattern, 189

region density, 189

restricted space identification, 213
reverse nearest neighbor query, 75
risk, 213

RNN query, 75

road segment, 119, 169
round-robin, 217

route, 34, 37, 119, 153

route planning, 197

S

safe interval, 89, 105, 106, 112
SBDTN, 153

scalability, 165

Secondo, 153

sender anonymity, 213

Index

sensitive data, 212
sensitive query, 220
shape, 93
shortest path, 73, 165
multi-pass shortest path, 76
shortest path distance, 164, 166
similar motion model, 176
similar movement pattern, 90
similar sequence matching, 88
similar trajectory query, 87, 88
similarity, 93, 164
similarity query
shape-based similarity query, 94
spatial similarity, 93
spatio-temporal similarity, 93
temporal similarity, 93
simulation, 120
sketched trajectory, 61
skewed cluster, 182
space partitioning, 76
space transformation, 76
spatial closeness, 56
spatial network, v, 17, 73, 76, 99, 175
spatial predicate, 74
spatio-temporal database, 89
spatio-temporal property, 175
spatio-temporal similarity, 94
speed pattern, 198
split, 53
SSR, 44
state change, 150
State-Based Dynamic Transportation Network,
153
static attribute, 16
STR-tree, 52, 56
STTLU, 39, 43
sub-trajectory, 90

T

TB-tree, 52, 57,76
temporal predicate, 74

time interval query, 89

time series data, 89

time series database, 88, 90
time slice query, 89
time-segmented prediction, 123
time-series prediction, 130
to-be-expired time, 101, 178
to-be-valid time, 102, 178
top-down, 165

topology change, 150
TPR*-tree, 76

TPR-tree, 54, 76

Index

traffic aware navigation, 198
traffic condition, 120
traffic flow analysis, v, 149
traffic flow parameters, 150
traffic flow statistical analysis, 152
traffic jam, 88
traffic jam prediction, 163
traffic jam status, 157
traffic navigation, 211
traffic parameter refreshing algorithm, 159
traffic rule, 120
trajectory, 60, 90, 140
discrete trajectory, 91
global trajectory, 123
in-edge trajectory, 120, 123
length, 90
temporal interval, 91
temporal normalized discrete trajectory, 93
trajectory anonymization, 214
trajectory prediction, 117
trajectory preservation, 56
trajectory unit, 68, 70
transit node routing, 198
transportation network, 16

U

uncertain item, 124

uncertain itemset, 124
uncertain itemsets, 127
uncertain location, 141
uncertain path prefix tree, 125
uncertain path sequence, 124
uncertain query operator, 146
uncertain trajectory, 141
uncertain trajectory unit, 141
uncertainty management, vi, 133
uncertainty semantics, 134
update frequency, 34

upper bound, 122

UTR-tree, 146

v

validity time, 102

VBR, 54, 55

velocity bounding rectangle, 54
vertice, 20

virtual coverage region, 191
Voronoi graph, 75

231

	Preface
	Organization of the Book
	Acknowledgments

	Contents
	Acronyms
	1 Introduction
	1.1 Concept of Moving Objects Data Management
	1.2 Applications of Moving Objects Database
	1.3 Key Technologies in Moving Objects Database
	1.3.1 Moving Objects Modeling
	1.3.2 Location Tracking of Moving Objects
	1.3.3 Moving Objects Database Indexes
	1.3.4 Uncertainty Management
	1.3.5 Moving Objects Database Querying
	1.3.6 Statistical Analysis and Data Mining of Moving Object Trajectories
	1.3.7 Location Privacy

	1.4 Applications of Mobile Data Management
	1.5 Purpose of This Book
	References

	2 Moving Objects Modeling
	2.1 Introduction
	2.2 Representative Models
	2.2.1 Moving Object Spatio-Temporal (MOST) Model
	2.2.2 Abstract Data Type (ADT) with Network
	2.2.3 Graph of Cellular Automata (GCA)

	2.3 DTNMOM
	2.4 ARS-DTNMOM
	2.5 Summary
	References

	3 Moving Objects Tracking
	3.1 Introduction
	3.2 Representative Location Update Policies
	3.2.1 Threshold-Based Location Updating
	3.2.2 Motion Vector-Based Location Updating
	3.2.3 Group-Based Location Updating
	3.2.4 Network-Constrained Location Updating

	3.3 Network-Constrained Moving Objects Modeling and Tracking
	3.3.1 Data Model for Network-Constrained Moving Objects
	3.3.2 Location Update Strategies for Network-Constrained Moving Objects

	3.4 A Traffic-Adaptive Location Update Mechanism
	3.4.1 The Autonomic ANLUM (ANLUM-A) Method
	3.4.2 The Centralized ANLUM (ANLUM-C) Method

	3.5 A Hybrid Network-Constrained Location Update Mechanism
	3.6 Summary
	References

	4 Moving Objects Indexing
	4.1 Introduction
	4.2 Representative Indexing Methods
	4.2.1 The R-Tree
	4.2.2 The TPR-Tree
	4.2.3 The Spatio-Temporal R-Tree
	4.2.4 The Trajectory-Bundle Tree
	4.2.5 The MON-Tree

	4.3 Network-Constrained Moving Object Sketched-Trajectory R-Tree
	4.3.1 Data Model
	4.3.2 Index Structure
	4.3.3 Index Update
	4.3.4 Query

	4.4 Network-Constrained Moving Objects Dynamic Trajectory R-Tree
	4.4.1 Index Structure of NDTR-Tree
	4.4.2 Active Trajectory Unit Management
	4.4.3 Constructing, Dynamic Maintaining, and Querying of NDTR-Tree

	4.5 Summary
	References

	5 Moving Objects Basic Querying
	5.1 Introduction
	5.2 Classifications of Moving Object Queries
	5.2.1 Based on Spatial Predicates
	5.2.2 Based on Temporal Predicates
	5.2.3 Based on Moving Spaces

	5.3 Point Queries
	5.4 NN Queries
	5.4.1 Incremental Euclidean Restriction
	5.4.2 Incremental Network Expansion

	5.5 Range Queries
	5.5.1 Range Euclidean Restriction
	5.5.2 Range Network Expansion

	5.6 Summary
	References

	6 Moving Objects Advanced Querying
	6.1 Introduction
	6.2 Similar Trajectory Queries for Moving Objects
	6.2.1 Problem Definition
	6.2.2 Trajectory Similarity
	6.2.3 Query Processing

	6.3 Convoy Queries on Moving Objects
	6.3.1 Spatial Relations Among Convoy Objects
	6.3.2 Coherent Moving Cluster (CMC)
	6.3.3 Convoy Over Simplified Trajectory (CoST)
	6.3.4 Spatio-Temporal Extension (CoST*)

	6.4 Density Queries for Moving Objects in Spatial Networks
	6.4.1 Problem Definition
	6.4.2 Cluster-Based Query Preprocessing
	6.4.3 Density Query Processing

	6.5 Continuous Density Queries for Moving Objects
	6.5.1 Problem Definition
	6.5.2 Building the Quad-Tree
	6.5.3 Safe Interval Computation
	6.5.3.1 Safe Interval of Dense Leaf Cell
	6.5.3.2 Safe Interval of Sparse Leaf Cell

	6.5.4 Query Processing

	6.6 Summary
	References

	7 Trajectory Prediction of Moving Objects
	7.1 Introduction
	7.2 Underlying Linear Prediction (LP) Methods
	7.2.1 General Linear Prediction
	7.2.2 Road Segment-Based Linear Prediction
	7.2.3 Route-Based Linear Prediction

	7.3 Simulation-Based Prediction (SP) Methods
	7.3.1 Fast-Slow Bounds Prediction
	7.3.2 Time-Segmented Prediction

	7.4 Uncertain Path Prediction Methods
	7.4.1 Preliminary
	7.4.2 Uncertain Trajectory Pattern Mining Algorithm
	7.4.3 Frequent Path Tree
	7.4.4 Trajectory Prediction

	7.5 Other Nonlinear Prediction Methods
	7.6 Summary
	References

	8 Uncertainty Management in Moving Objects Database
	8.1 Introduction
	8.2 Representative Models
	8.2.1 2D-Ellipse Model
	8.2.2 3D-Cylinder Model
	8.2.3 Model the Uncertainty in Database

	8.3 Uncertain Trajectory Management
	8.3.1 Uncertain Trajectory Modeling
	8.3.2 Database Operations for Uncertainty Management

	8.4 Summary
	References

	9 Statistical Analysis on Moving Object Trajectories
	9.1 Introduction
	9.2 Representative Methods
	9.2.1 Based on FCDs
	9.2.2 Based on MODs

	9.3 Real-Time Traffic Analysis on Dynamic Transportation Networks
	9.3.1 Modeling Dynamic Transportation Networks
	9.3.1.1 An Example of Application Scenarios
	9.3.1.2 The Model of State-Based Dynamic Transportation Network (SBDTN)

	9.3.2 Real-Time Statistical Analysis of Traffic Parameters
	9.3.2.1 Trajectory Transformation Functions
	9.3.2.2 Traffic Parameter Refreshing Algorithms for ARSs and Junctions
	9.3.2.3 Statistical Data Structure and Real-Time Traffic Parameter Refreshment

	9.4 Summary
	References

	10 Clustering Analysis of Moving Objects
	10.1 Introduction
	10.2 Underlying Clustering Analysis Methods
	10.3 Clustering Static Objects in Spatial Networks
	10.3.1 Problem Definition
	10.3.2 Edge-Based Clustering Algorithm
	10.3.3 Node-Based Clustering Algorithm

	10.4 Clustering Moving Objects in Spatial Networks
	10.4.1 CMON Framework
	10.4.2 Construction and Maintenance of CBs
	10.4.3 CMON Construction with Different Criteria
	10.4.3.1 Distance-Based CMON
	10.4.3.2 Density-Based CMON
	10.4.3.3 K-Partitioning CMON

	10.5 Clustering Trajectories Based on Partition-and-Group
	10.5.1 Partition-and-Group Framework
	10.5.2 Region-Based Cluster
	10.5.3 Trajectory-Based Cluster

	10.6 Clustering Trajectories Based on Features Other Than Density
	10.6.1 Preliminary
	10.6.2 Big Region Reconstruction
	10.6.2.1 Trend-Based Region Reconstruction (TBRR)
	10.6.2.2 Dissimilarity-Based Region Reconstruction (DBRR)

	10.6.3 Parameters Determination in Region Refinement

	10.7 Summary
	References

	11 Dynamic Transportation Navigation
	11.1 Introduction
	11.2 Typical Dynamic Transportation Navigation Strategies
	11.2.1 D* Algorithm
	11.2.2 Hierarchy Aggregation Tree Based Navigation

	11.3 Incremental Route Search Strategy
	11.3.1 Problem Definitions
	11.3.2 Pre-computation
	11.3.3 Top-K Intermediate Destinations
	11.3.4 Route Search and Update

	11.4 Summary
	References

	12 Location Privacy
	12.1 Introduction
	12.2 Privacy Threats in LBS
	12.3 System Architecture
	12.3.1 Non-cooperative Architecture
	12.3.2 Centralized Architecture
	12.3.3 Peer-to-Peer Architecture

	12.4 Location Anonymization Techniques
	12.4.1 Location K-Anonymity Model
	12.4.2 p-Sensitivity Model
	12.4.3 Anonymization Algorithms

	12.5 Evaluation Metrics
	12.6 Summary
	References

	Index

