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Preface

The increasing complexity of telecommunication networks puts at the forefront the

problem of developing adequate mathematical models for them. The main goals are

finding their characteristics, solving the problems of their optimization subject to

chosen criteria, and developing the corresponding control algorithms.

The basic mathematical tool that allows us to build both adequate analytical and

numerical models of telecommunication networks is queueing theory. The core of

this theory was founded more than 100 years ago in the pioneering work of Agner

Erlang. He studied only the then recently telephony systems, but since then the

models and methods of queueing theory have been widely used for studying service

processes in various branches of science and industry, among them economics,

manufacturing systems, military science, and transportation.

Remarkably, the most important reason for studying queueing theory, now as

well as 100 years ago, is telecommunication networks. However, there are many

distinctions between the models of the past and modern telecommunication net-

works. We should first note that in classical Erlang’s models, it was assumed that

calls do not differ from each other, i.e., calls are identical. In other words, early

telecommunication networks were queueing systems with single traffic. However,

in modern telecommunication networks, the calls (messages) essentially differ from

each other with respect to some parameters. For example, calls can vary in arrival

intensity and/or processing time, in the level of priorities, in the service

mechanism, etc.

These facts show that classical queueing models with single traffic can serve

only as rough (approximate) mathematical models of modern telecommunication

networks. The functioning of modern telecommunication networks can be

described only by means of queueing models with several types of traffic—ade-

quate models of modern telecommunication networks are multidimensional ones.

Such kinds of models are especially useful for studying integrated networks in

which real-time calls, for voice, video, etc., and non-real-time calls, for data, fax,

e-mail, etc., are handled.

Queueing models with single traffic are well studied, and they are described in

well-known textbooks and monographs, but multidimensional queueing models are
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insufficiently studied, and there are only a few monographs on this theme. This

book is devoted to the problem of applying multidimensional Markov models in

modern telecommunication networks.

Unlike one-dimensional models, using exact and simple formulas to calculate

the quality-of-service (QoS) metrics of multidimensional models is usually impos-

sible. This is explained by the fact that in many cases the appropriate system of

global balance equations (SGBE) for the steady-state probabilities has no explicit

solutions—e.g., the solution in the multiplicative form. In such cases, various

numerical (exact or approximate) methods must be used.

The classical approach to calculating the steady-state probabilities is based on

the theory of multidimensional generating functions. However, there are well-

known associated computational difficulties because we must solve systems of

partial differential equations and equations for boundary states as well.

The alternative and more effective approach based on the use of SGBE for

calculating the QoS metrics of multidimensional Markov models contains the

following stages. First of all, note that this approach is used mainly for models

with finite dimension of state space.

In the first stage, the state of the system is defined, and the set of all possible

states (state space) is formed. As a rule, the system’s state is described by a vector of

corresponding dimension. In the second stage, an infinitesimal matrix (Q-matrix) of

the appropriate multidimensional Markov chain (MC) is constructed. It is known

that constructing the Q-matrix is enough to develop the SGBE. In the third stage,

steady-state probabilities are found from the SGBE. In the final stage, the desired

QoS metrics are calculated via steady-state probabilities, i.e., the QoS metrics are

determined as appropriate marginal distributions of the initial multidimensional

MC. By taking into account the unique property of Markov models, it is possible

that the stationary probability of a state represents part of the sojourn time of the

system in a corresponding state for a large supervision time interval.

The main problem in this approach is solving the SGBE, i.e., realizing the third

stage, since the growing traffic and the increasing number of channels, as well as the

buffer sizes of the corresponding telecommunication network, rapidly lead to an

increase in the dimension of the state space. In some cases, by using the specific

structure of a corresponding Q-matrix, it is possible to simplify this problem. So, for

instance, it becomes simpler for networks that are described by models of reversible

Markov chains since for such models the analytical solution in multiplicative form

can be obtained. If the analytical solution of the SGBE is not available, as men-

tioned above, then various numerical methods are used. In this book, we use both

approaches to investigate models of telecommunication networks.

The book consists of five chapters. In Chap. 1, both single-rate and multi-rate

Erlang’s models are considered, and we examine known computational algorithms

to calculate their QoS metrics. Here also we propose hybrid access schemes in

mono-service cellular networks without buffers, and we develop both exact and

approximate methods to calculate the QoS metrics of such access schemes. In

Chap. 2, we develop an analytical method to investigate the models of multi-rate
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Erlang’s models with randomized access schemes. We also consider analytical

methods to study the models of multiservice cellular networks with various parti-

tion schemes of common radio channels. In Chap. 3, we investigate models of

mono-service cellular networks. Two types of models are considered: models with

either finite or infinite buffers for both types of new and handover calls and retrial

models. Numerical algorithms to calculate their QoS metrics are developed. We

investigate models of multiservice cellular networks with buffers in Chap. 4.

Finally, in Chap. 5, we examine models of packet-switching networks with prior-

ities. Here we examine in detail nonclassical priority schemes with multiple space

and time priorities as well as jump priorities.

Each chapter of the book contains results from numerical experiments carried

out using the developed algorithms, and each chapter contains comments and

references that allow the reader to understand the current situation in the

corresponding areas of research.

This book is recommended for researchers engaged with the mathematical

theory of teletraffic. It will be useful for graduate and PhD students in informatics

and applied mathematics as well as other fields.

Baku, Azerbaijan Agassi Melikov

Kiev, Ukraine Leonid Ponomarenko
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Chapter 1

Multidimensional Loss Models of Queueing

Systems and Their Applications in

Telecommunication Networks

This chapter presents the foundations of multidimensional Erlang’s models, and the

discussion has been concentrated on Markov models with pure losses. Both single-

rate and multi-rate Erlang’s loss models with uncontrolled access schemes are

considered. Effective computational procedures to calculate the main quality of

service (QoS) metrics are shown.

A separate section is devoted to applications of multidimensional loss models

with parametric access schemes in telecommunication networks. For simplicity

here models of isolated cell of mono-service cellular networks with single-traffic

class (second-generation networks) are investigated. Along with well-known access

schemes (guard channels and cutoff schemes), a new hybrid access scheme is also

considered. Both exact and approximate methods to calculate the QoS metrics are

developed, and high accuracy of approximate solutions is shown. Problems related

to selecting appropriate values of parameters of the proposed hybrid access scheme

are solved.

1.1 Multi-flow Loss Models with Deterministic Access

Schemes

Among multidimensional models of telecommunication networks, the most impor-

tant is generalized version of classical single-traffic Erlang’s model M|M|N|0. Here
we consider multi-traffic Erlang’s models with deterministic and uncontrolled

access schemes.

First we consider single-rate models. The brief description of this system

consists in the following. The unbuffered system contains N, N> 1, identical and

parallel channels (slots, basic bandwidth units, etc., depending on specific techno-

logy). The call arrival process is a composition of K, K> 1, type Poisson flows with

© Springer International Publishing Switzerland 2014

A. Melikov, L. Ponomarenko, Multidimensional Queueing Models in
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intensities λi, i¼ 1, 2, . . .,K. The service time for calls of type i (i-calls) has

exponential distribution with means μ� 1
i , i¼ 1, 2, . . .,K.

Uncontrolled call access scheme or call admission control (CAC) scheme is

defined as follows. If at the arrival epoch of the call of any type in system there is at

least one free channel, this call is accepted on service; otherwise an arrived call is

lost. Usually such scheme is called complete sharing (CS) one.

Consider the problem of calculation the steady-state probabilities of this model.

By taking into account the form of distribution functions both of arrival and service

processes, we conclude that operating of the investigated queueing system might be

described by K-dimensional Markov chain (MC). So, states of the system at

equilibrium at any time are described by vectors n¼ (n1, . . ., nK), where ni is the
number of i-calls in the system. Then state space (i.e., set of all possible states) S is
defined as

S ¼ n : ni ¼ 0, 1, . . . ,N;
XK
i¼1

ni � N

( )
: ð1:1Þ

Transition intensities between states (i.e., elements of infinitesimal or Q-matrix)

of the given K-dimensional MC are calculated as follows:

q n; n0ð Þ ¼
λi, if n0 ¼ nþ ei,
niμi, if n0 ¼ n� ei,
0 in other cases,

8<
: ð1:2Þ

where ei is the ith orthogonal vector in K-dimensional Euclidean space, i¼ 1, 2, . . .,
K.

Note 1.1 In special case when μi¼ μ for all i¼ 1, . . .,K, the state of the system

might be described by scalar parameter k, which indicate the total number of calls in

the system, k¼ 0, 1, . . .,N. So, in this case the model of this system is

one-dimensional birth-death process (1-D BDP) with parameters

q k; k0ð Þ ¼
Λ if k0 ¼ k þ 1,

kμ, if k0 ¼ k � 1,

0 in other cases,

8<
:

where Λ¼∑ K
i¼ 1λi.

Let p(n) denote the probability of state n ∈ S. Relation (1.2) allows to construct
the system of global balance equations (SGBE) for the state probabilities:

2 1 Multidimensional Loss Models of Queueing Systems and Their Applications in. . .



XK
i¼1

λiI N �
XK
j¼1

nj > 0

 !
þ
XK
i¼1

niμi

 !
p nð Þ ¼

XK
i¼1

λip n� eið ÞI ni > 0ð Þþ

þ
XK
i¼1

niμip nþ eið ÞI N �
XK
j�1

nj > 1

 !
, n∈ S;

ð1:3Þ

X
n∈ S

p nð Þ ¼ 1: ð1:4Þ

Henceforth, let I(A) denote the indicator function of event A. Equation (1.4) is

called normalizing condition over state space (1.1).

The solution of the SGBE (1.3), (1.4) has a multiplicative form:

p nð Þ ¼ G �1ð Þ N;Kð Þ
YK

i¼1

vnii
ni!
, n∈ S, ð1:5Þ

where vi¼ λi/μi, G(N,K) is normalizing constant which provides condition (1.4),

i.e.,

G N;Kð Þ ¼
X
n∈ S

YK

i¼1

vnii
ni!
: ð1:6Þ

From Eq. (1.5) we obtain p(0)¼G� 1(N,K ), where 0 is K-dimensional zero

vector.

To prove presentation (1.5) construct the system of local balance equations

(SLBE). The SLBE has the following form:

q n; n0ð Þp nð Þ ¼ q n0; nð Þp n0ð Þ, 8 n, n0 ∈S,

or in explicit form

λip nð Þ ¼ ni þ 1ð Þμip nþ eið Þ,8 n, nþ ei ∈S: ð1:7Þ

Now show that Eq. (1.5) is the solution of SLBE (1.7). Indeed, from Eqs. (1.5)

and (1.7) we have

p nþ eið Þ
p nð Þ ¼ vi

ni þ 1
¼ λi

ni þ 1ð Þμi
,

or in other words, Eq. (1.5) is the solution of SLGE (1.7); thus Eq. (1.5) is the

solution of SGBE (1.3), (1.4).

The main characteristic of the given model is stationary probability of blocking

(PB) By using the PASTA theorem [36] we conclude that this characteristic is same

for each traffic class, i.e.,

1.1 Multi-flow Loss Models with Deterministic Access Schemes 3



PB ¼
X
n∈ Sd

p nð Þ, ð1:8Þ

where Sd¼ {n ∈ S :∑ K
i¼ 1ni¼N} is set of diagonal states (see Fig. 1.1).

It is more important to note that multiplicative solution (1.5) is independent on

the form of the service time distribution function with fixed mean value. Moreover

it is true for closed models, i.e., for the models with finite number of sources.

Calculation of the steady-state probabilities by means of Eq. (1.5) is connected

with huge difficulties for models with many channels and types of traffic. This

results from the fact that direct calculation G(N,K ) via the formula (1.6) is

accompanied by overflow (at vi> 1) and order disappearance (at vi! 0).

To overcome these specified difficulties, various approaches are offered. One of

the effective approaches is the use of Buzen’s algorithm [4] based on

two-dimensional recurrent formulas. In this algorithm normalizing constant is

calculated as

G j; ið Þ ¼
Xj
l¼0

v li
l!
G j� l, i� 1ð Þ, i ¼ 2, . . . ,K, j ¼ 0, 1, . . . ,N;

G j; 1ð Þ ¼
Xj
l¼0

v l1
l!
: ð1:9Þ

An alternative method is based on principles of state space merging approach. In

this case the following splitting of state space (1.1) is considered:

6 

5 

4 

3 

2 

1 

0      1 2 3 4 5 6 n1

n2

. . . .

n1+n2 =5

Sd

Fig. 1.1 State space (1.1)

for N¼ 6, K¼ 2
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S ¼ [N
j¼0Sj, Si \ Sj ¼ Ø, i 6¼ j, ð1:10Þ

where Sj¼ {n ∈ S :∑ K
i¼ 1ni ¼ j} contains all microstates from Eq. (1.1) in which

the total number of calls equals j, j¼ 0, 1, . . .,N (see Fig. 1.1).

Stationary probability of merged state Sj is denoted by π( j), j¼ 0, 1, . . .,N.
These probabilities are defined as

π jð Þ ¼
X
n∈ Sj

YK

i¼1

vnii
i!
G�1 N;Kð Þ, j ¼ 0, 1, . . . ,N: ð1:11Þ

Proposition 1.1 Probabilities of merged states satisfy the following system of

equations:

vπ j� 1ð Þ ¼ jπ jð Þ, j ¼ 0, 1, . . . ,N;

XN
j¼0

π jð Þ ¼ 1, ð1:12Þ

where v¼∑ K
i¼ 1vi, π( j)¼ 0 if x< 0.

For the proof of this fact we will preliminary prove the following lemma.

Lemma 1.1

viπ j� 1ð Þ ¼ E ni
��j� �

π jð Þ , i ¼ 1, 2, . . . ,K; j ¼ 0, 1, . . . ,N, ð1:13Þ

where E(�|�) is symbol of conditional mathematical expectation.

Proof of Lemma 1.1 Rewrite the SLBE (1.7) in the following form:

viγi nð Þp n� eið Þ ¼ nip nð Þ , i ¼ 1, 2, . . . ,K, ð1:14Þ

where γi nð Þ ¼ 1, if ni � 1,

0, if ni ¼ 0:

�

Summing Eq. (1.14) over all n ∈ Sj, we have

vi
X
n∈ Si

γi nð Þp n� eið Þ ¼
X
n∈ Si

nip nð Þ: ð1:15Þ

Transform the left side of Eq. (1.15) as follows:

vi
X
n∈ Si

γi nð Þp n� eið Þ ¼ vi
X

n∈ Sj\ ni�1f g
p n� eið Þ, ð1:16Þ

where Sj\ {ni� 1}¼ {n ∈ Sj :∑ l 6¼ inl+ (ni� 1)¼ j� 1, nl� 0, l 6¼ i}.
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So we have

vi
X
n∈ Sj

γi nð Þp n� eið Þ ¼ viπ j� 1ð Þ, j � 1: ð1:17Þ

Now transform the right side of Eq. (1.15) as follows:

X
n∈ Si

nip nð Þ ¼
X
n∈ Si

ni
p nð Þ
π jð Þ π jð Þ, j ¼ 0, 1, . . . ,N, i ¼ 1, 2, . . . ,K:

Since

P n
��j� � ¼

p nð Þ
π jð Þ , if n∈ Sj,

0 otherwise,

8<
:

we have

X
n∈ Si

nip nð Þ ¼
X
n∈ Si

niP n
��j� � !

π jð Þ ¼ E ni
��j� �

π jð Þ,8 j ¼ 0, 1, . . . ,N, i

¼ 1, 2, . . . ,K: ð1:18Þ

Thus, from Eqs. (1.17) and (1.18), we conclude that

viπ j� 1ð Þ ¼ E ni
��j� �

π jð Þ , j ¼ 0, 1, . . . ,N, i ¼ 1, 2, . . . ,K: ð1:19Þ

Now to prove proposition 1.1, we take summation in both sides of Eq. (1.19) for

all i¼ 1, . . .,K. Then we have

vπ j� 1ð Þ ¼
XK
i¼1

E ni
��j� � !

π jð Þ ¼ E
XK
i¼1

ni
��j

 !
π jð Þ ¼ jπ jð Þ:

The algorithm (1.12) has some advantages with comparison with Buzen’s

algorithm. First, unlike the Buzen’s algorithm equations (1.12) are

one-dimensional recurrent equations for arbitrary K, and second the last algorithm

does not depend on K.
By using Eqs. (1.6) and (1.11) from Eq. (1.12), we obtain

G�1 N;Kð Þ ¼ π 0ð Þ , PB ¼ π Nð Þ:

The algorithm (1.12) is the generalized version of the well-known Erlang’s

formulas for multi-flow systems:
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π jð Þ ¼
vj

j!XN
i¼0

vi

i!

, j ¼ 0, 1, . . . ,N:

Described above computational procedures can be trivially generalized to multi-

rate queues (MRQ) with CAC based on CS scheme. In MRQ, i-call requests bi� 1

channels whose service start and end times are simultaneous; i-call is blocked and

lost if at its arrival moment the number of free channels is less than bi, i¼ 1, 2, . . .,
K.

For MRQ state space is defined as

S ¼ n : ni ¼ 0, 1, . . . ,
N

bi

� �
, n � b � N

� �
, ð1:20Þ

where [x] denotes the integer part of x, b¼ (b1, . . ., bK), n � b¼∑ K
i¼ 1nibi.

Note 1.2 Unlike the classical single-rate models, in multi-rate models even in

special case when μi¼ μ for all i¼ 1, . . .,K, it is impossible to describe the state

of system by scalar parameter k, which denotes the total number of busy channels,

k¼ 0, 1, . . .,N.

Note 1.3 Hereinafter, for simplicity, we use the same notations for state spaces,

stationary distributions, etc., in different models. This should not lead to misunder-

standing, as it will be clear what model is considered from the context.

Stationary distribution of this model has multiplicative form (1.5) also, but in

this case normalizing constant G(N,K) is defined over state space (1.20).

Unlike the classical multidimensional models, in the MRQ models, blocking

probabilities of polytypic calls differ from each other. So, blocking probability of

i-calls (PBi) is calculated as (see Fig. 1.2)

.32
1

n1

n2

.. . . . .
0 1 2 3 4 5 6

Fig. 1.2 State space (1.20)

for N¼ 6, K¼ 2, b¼ (1, 2);

open circles, blocking of

calls of both type; open
diamonds, blocking of calls

of type 2 only
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PBi ¼
X
n∈ S

p nð ÞI f nð Þ < bið Þ, ð1:21Þ

where f(n)¼N� (n � b) denotes the number of free channels in state n ∈ S
Other QoS metrics of the MRQ models is the channel utilization (Cu) which is

measured via the average number of busy channels. This metric is calculated as

follows:

Cu ¼
X
n∈ S

n � bð Þp nð Þ: ð1:22Þ

Buzen’s algorithm to calculate the normalizing constant for MRQ models is

defined as follows:

G j; ið Þ ¼
Xj

bi

h i

l¼0

v li
l!
G j� lbi, i� 1ð Þ, i ¼ 2, . . . ,K, j ¼ 0, 1, . . . ,N,

G j; 1ð Þ ¼
Xj

bi

h i

l¼0

v l1
l!
:

The alternative way to calculate the steady-state probabilities of MRQ models is

the Kaufman [17] and Roberts [31] algorithm.

The following splitting of state space (1.20) is considered:

S ¼ [N
j¼0Sj, Si \ Sj ¼ ∅ , i 6¼ j,

where Sj¼ {n ∈ S :n � b¼ j}, i.e., the class of states Sj, contains all microstates

from Eq. (1.20) in which the number of busy channels equals j, j¼ 0, 1, . . .,N.

Proposition 1.2 Probabilities of merged states in MRQ model satisfy the following

system of equations:

XK
i¼1

vibiπ j� bið Þ ¼ jπ jð Þ, j ¼ 0, 1, . . . ,N;

XN
j¼0

π jð Þ ¼ 1, ð1:23Þ

where π(x)¼ 0 if x< 0.

To prove this proposition, the following lemma is used.
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Lemma 1.2

viπ j� bið Þ ¼ E ni
��j� �

π jð Þ , i ¼ 1, 2, . . . ,K; j ¼ 0, 1, . . . ,N:

The proof of lemma 1.2 and proposition 1.2 is made similarly to proofs of lemma

1.1 and proposition 1.1, respectively.

The blocking probabilities PBi are calculated from the stationary distribution of

merged model in the following way:

PBi ¼
Xbi�1

j¼0

π N � jð Þ, i ¼ 1, . . . ,K: ð1:24Þ

The following algorithm is modification of the Kaufman–Roberts algorithm for

the models MRQ with CAC based on CS scheme.

Proposition 1.3 The QoS metrics (1.21) and (1.22) are calculated as follows:

PBi ¼
XN

j¼N�rþ1

gj

 !	 XN
j¼0

gj

 !
, i∈A rð Þ, ð1:25Þ

Cu ¼
XN
i¼1

igi

 !	 XN
i¼0

gi

 !
, ð1:26Þ

where A(r)¼ {i : calls of type i require r channels}, r¼ 1, . . .,N;

gj ¼
1, if j ¼ 0,

1

j

Xj
i¼1

iαigj�i, if j ¼ 1, . . . ,N;

8><
>:

αr ¼
0, if A rð Þ ¼ ∅,X
i∈A rð Þ

vi, if A rð Þ 6¼ ∅:

8<
:

To achieve the absolute fair handling in MRQ in terms of equalization of

blocking probabilities of the heterogeneous calls, the CAC based on complete

sharing with equalization (CSE) is proposed [6]. This scheme is defined as follows:

the newly arrived call is accepted if at the moment of arrival the number of free

channels is more than or equal to b, where b¼max{bi : i¼ 1, . . .,K}.

Proposition 1.4 The blocking probability in MRQ with CAC based on CSE

scheme is calculated as follows:
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PB ¼
XN

j¼N�bþ1

gj

 !	 XN
j¼0

gj

 !
, ð1:27Þ

where

gj ¼
1, if j ¼ 0,

1

j

Xj
i¼1

iαigj�iFi j� ið Þ, if j ¼ 1, . . . ,N;

8><
>:
Fj i� bj
� � ¼ 1 if i� bj � N � b,

0 otherwise:

�

The generalization of two CAC based on CS and CSE schemes is CAC based on

trunk reservation (TR) scheme [30]. This scheme is defined as follows: the newly

arrived i-call is accepted if at the moment of arrival the number of free channels is

more than or equal to bi + ri, where 0� ri�N� bi, i¼ 1, . . .,K.

Proposition 1.5 The blocking probability in MRQ with CAC based on TR scheme

is calculated as follows:

PB ¼
XN

j¼N�i�riþ1

gj

 !	 XN
j¼0

gj

 !
, ð1:28Þ

where

gj ¼
1, if j ¼ 0,

1

j

Xj
i¼1

iαigj�iGi j� ið Þ, if j ¼ 1, . . . ,N

8><
>: ;

Gi jð Þ ¼ 1 if j � N � bi � ri,
0 otherwise:

�

In both CAC based on CSE scheme and TR scheme, channel utilization is

calculated like formula (1.26).

Proofs of propositions 1.3–1.5 might be found in [29], Chap. 4. Note that a major

advantage of the last algorithms is their low computational complexity.
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1.2 Applications of Multi-flow Loss Models

in Mono-service Cellular Networks

Uncontrolled multidimensional queueing models have been above considered. At

the same time, in practice several parameters of the models of telecommunication

networks might be controlled in some way. In most cases, controllable parameters

are call admission control ones.

In this section, applications of multidimensional queueing models in telecom-

munication networks are shown. The problem of finding the appropriate access

scheme is an actual issue. It is crucial to guaranteeing maximum throughput and

QoS fulfillment, and it is critical to define efficient algorithms to solve the indicated

problem. In telecommunication networks, access scheme decides the amount of

resources that must be assigned to each call, and it also defines the state-dependent

rules to determine to either accept or reject the arrived calls in real-time regime.

Here for simplicity and concreteness, the models of mono-service cellular

networks (e.g., traditional voice-oriented networks) are considered.

In cellular networks, when a subscriber crosses the boundary of a cell (while on a

call), the subscriber releases this cell’s channel and requests an empty channel in a

neighboring cell. This process is called a handover. If a neighboring cell has at least

one empty channel, then such a handover call (h-call) is delivered continuously and
almost transparently to the subscriber; otherwise, the call is dropped. Usually,

dropping an ongoing call from a different cell is less desirable than blocking new

attempts originating within the cell (o-calls). Thus, h-calls are considered to be

more important (have a higher priority) than o-calls.
Here we will analyze the model of a cell belonging to a homogeneous cellular

network that experiences the same traffic patterns. Henceforth, a homogeneous

network is defined as one for which the traffic parameters of all cells within the

network are statistically identical; that is, we can study the operation of a repre-

sentative cell in isolation. This assumption is true for the networks with small cells

(e.g., networks with microcells).

Our models in this section are based on the following assumptions.

• The mentioned cell contains N channels, 1<N<1, which are intended to

handle the Poisson flows of new and handover calls. The intensity of x-calls
equals λx, x ∈ {o, h}.

• Channel occupancy times are defined not only by the required service time of

different types of calls but also by the mobility of subscribers within cells. We

assume that the required service times of x-calls and the duration for which

the subscribers reside within the cell are exponentially distributed with different

parameters τx and γ
x
, x∈ o; hf g, respectively. Thus, the channel occupancy

time of x-calls is defined as the minimum of two exponentially distributed

stochasticvariables, i.e., for x-calls, it has an exponential form with parameter

μx¼ τx+ γx, x ∈ {o, h}. In other words, the distribution functions of the channel
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occupancy time of both types of calls are exponential, but their parameters are

different: the intensity of handling new (handover) calls equals μo(μh), and
generally speaking, μo 6¼ μh.

1.2.1 Model with Guard Channels

The classical guard channel (GC) scheme is defined as follows. If at least one free

channel exists upon the arrival of an h-call, then the call seizes one of the free

channels; otherwise, the call is dropped. A new arriving call is accepted only when

the number of busy channels is less than g, for some fixed g satisfying 1� g�N
(in the case where g¼N, there are no restrictions on new calls); otherwise, the new

call is blocked.

Cell functionality is described by a two-dimensional Markov chain (2-D MC);

that is, the state of the given system at an arbitrary moment in time is described

by a two-dimensional vector k¼ (ko, kh) where ko(kh) indicates the number of

o-calls (h-calls) in the cell. Thus, the state space of the corresponding 2-D MC is

determined as follows:

S ¼ k : ko ¼ 0, 1, . . . , g; kh ¼ 0, 1, . . . ,N; ko þ kh � Nf g: ð1:29Þ

The nonnegative elements of Q-matrix of this 2-D MC are determined as

follows:

q k; k0ð Þ ¼

λo, if ko þ kh < g, k0 ¼ kþ e1,
λh, if k0 ¼ kþ e2,
koμo, if k0 ¼ k� e1,
khμh, if k0 ¼ k� e2,
0 in other cases,

8>>>><
>>>>:

ð1:30Þ

where e1¼ (1, 0), e2¼ (0, 1).

Let us denote the stationary probability of state k ∈ S as p(k). These probabil-

ities are found from the appropriate SGBE which is developed by using Eq. (1.30):

λoI koþ kh < gð Þþ λhI koþ kh <Nð Þþ koμoþ khμhð Þp kð Þ
¼ λop k� e1ð ÞI ko > 0ð Þ þ λhp k� e2ð ÞI kh > 0ð Þþ
þ koþ1ð Þμop kþ e1ð Þþ khþ1ð Þp kþ e2ð Þ :

ð1:31Þ

The normalizing condition has the following form:

X
k∈ S

p kð Þ ¼ 1: ð1:32Þ

Then SGBE (1.31), (1.32) is used to calculate all the required QoS metrics of the
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model. The primary QoS metrics are the loss probability of h-calls (Ph) and the

blocking probability of o-calls (Po). They are defined as follows:

Po ¼
X
k∈ S

p kð ÞI ko þ kh � gð Þ, ð1:33Þ

Ph ¼
X
k∈ S

p kð Þδ ko þ kh,Nð Þ, ð1:34Þ

where δ(i, j) are Kronecker’s symbols.

From formulas (1.33), (1.34), we obtain Po¼Ph when g¼N, i.e., the loss

probability of h-calls and the blocking probability of o-calls are equal each other

when CS scheme is used.

Other QoS metrics, namely channel utilization (Cu) which is measured by mean

number of busy channels, are also calculated via steady-state probabilities as

follows:

Cu ¼
XN
i¼1

iσi, ð1:35Þ

where σi¼∑ k ∈ S p(k)δ(ko+ kh, i), i¼ 1, 2, . . .,N, are marginal probability mass

functions.

It is important to note that the given 2-D MC has a reversibility property [22]

only in a special case g¼ 0 and hence for its steady-state probabilities has a

multiplicative form (see Sect. 1.1). In other cases (i.e., when g 6¼ 0), this MC is

not reversible. Indeed, according to relation (1.30), there exists the transition

(ko, kh)! (ko� 1, kh) with intensity koμowhere ko+ kh� g, but the inverse transition
does not exist.

The last means that for calculating the steady-state probabilities at concrete

values of loading parameters of polytypic traffic and number of channels, it is

necessary to solve the corresponding system of the linear algebraic equations. For

models with moderate dimension (about some thousand states), this system of the

linear equations is easily solved by means of existing software. For models with

large dimension to overcome computational difficulties, known approximate

approaches might be used [5].

1.2.2 Model with Cutoff Scheme

Now consider other schemes for assigning the high priority to h-calls. As in

previous scheme, here h-call is accepted if upon its arrival moment there is at

least one free channel. However, in considered scheme (cutoff scheme), decision

either accepts or rejects new calls depending on the number of such kind of calls

in a cell. In other words, a new arriving call is accepted only when the number of
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o-calls is less than b, for some fixed b satisfying 1� b�N (in the case where b¼N,
there are no restrictions on new calls); otherwise, the new call is blocked.

Cell functionality under such access scheme also is described by the 2-D MC

with states k¼ (ko, kh) where ko(kh) indicates the number of o-calls (h-calls) in the

cell. In this scheme, the state space of the corresponding 2-D MC and the nonneg-

ative elements of its generating matrix are determined like Eqs. (1.29) and (1.30),

respectively, i.e.,

q k; k0ð Þ ¼

λo, if ko < b, k0 ¼ kþ e1,
λh, if k0 ¼ kþ e2,
koμo, if k0 ¼ k� e1,
khμh, if k0 ¼ k� e2,
0 in other cases:

8>>>><
>>>>:

In this scheme, the loss probability of h-calls and channel utilization are calcu-

lated like Eqs. (1.34) and (1.35), respectively. New calls are blocked if upon their

arrivals moments either (a) all channels are busy or (b) number of o-calls is equal
b regardless number of busy channels. Since in this scheme the blocking probability

of o-calls is calculated as

Po ¼
X
k∈ S

p kð Þ δ ko þ kh,Nð Þ þ 1� δ ko þ kh,Nð Þð Þδ ko; bð Þð Þ: ð1:36Þ

Steady-state probabilities satisfy the following SGBE:

λoI ko < bð Þ þ λhI ko þ kh < Nð Þ þ koμo þ khμhð Þp kð Þ ¼ λop k� e1ð ÞI ko > 0ð Þ
þ λhp k � e2ð ÞI kh > 0ð Þ
þ ko þ 1ð Þμop kþ e1ð Þ þ kh þ 1ð Þp kþ e2ð Þ :

ð1:37Þ

Unlike the previous scheme, here the appropriate 2-D MC has a reversibility

property for any possible values of b, and hence SGBE (1.37) together with

appropriate normalizing condition has a multiplicative solution, i.e., steady-state

probabilities are determined as

p ko; khð Þ ¼ G�1 N; bð Þ v
ko
o

ko!

vkhh
kh!

, ð1:38Þ

where G� 1(N, b) is normalizing constant over appropriate state space.

Thus under cutoff scheme, QoS metrics of the cell are calculated by using

explicit formulas.
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1.2.3 Model with Hybrid Access Scheme

In the access scheme based on the classical guard channel one, h-calls almost

completely occupy the channels, and therefore o-calls are very often lost. In the

access scheme based on a cutoff one, it is impossible to effectively use channels’

capacity. The defined below hybrid access scheme has two degrees of freedom and

helps avoid such situations.

The proposed hybrid CAC scheme is defined as follows. If, upon the arrival of an

h-call, there is at least one free channel and the number of such types calls in the

channels is less than r, 1� r�N, then the arriving h-call is accepted (for r¼N there

are no restrictions for h-calls); otherwise, the arriving h-call is dropped. An arriving
o-call is accepted only when the number of busy channels is less than g, 1� g�N
(for g¼N there are no restrictions for o-calls). It is clear that the condition r+ g�N
must be satisfied; otherwise, N� g� r channels of the cell will be unused.

Special cases:

1. From the given access scheme, we obtain a complete sharing scheme when

g¼ r¼N.
2. From the given access scheme, we obtain a scheme based on a guard channel

scheme when r¼N.

Here we develop both exact and approximate methods to calculation of QoS

metrics of the investigated hybrid access scheme.

First consider exact method. As in previous models, the state of the system at an

arbitrary moment in time is described by a two-dimensional vector k¼ (ko, kh),
where ko (kh) indicates the number of new (handover) calls in the channels. Thus,

the state space of the corresponding 2-D MC is determined as follows:

S ¼ k : ko ¼ 0, 1, . . . , g; kh ¼ 0, 1, . . . , r; ko þ kh � Nf g: ð1:39Þ

The nonnegative elements of the Q-matrix of this 2-D MC are defined as follows

(see Fig. 1.3):

q k; k0ð Þ ¼

λo, if ko þ kh < g, k0 ¼ kþ e1,
λh, if kh < r, k0 ¼ kþ e2,
koμo, if k0 ¼ k� e1,
khμh, if k0 ¼ k� e2,
0 in other cases:

8>>>><
>>>>:

ð1:40Þ

The steady-state probabilities are determined from the respective SGBE, which

is constructed by using relation (1.40). The indicated SGBE has the form like

Eqs. (1.31) and (1.37), and its explicit form does not show here. Then, the solution

of this SGBE is used to calculate all required QoS metrics of the proposed hybrid

access scheme.
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The blocking probability of o-calls and channel utilization are calculated like

Eqs. (1.34) and (1.35), respectively. However, under this access scheme, the

dropping probability of h-calls is defined as follows:

Ph ¼
X
k∈ S

p kð Þ δ kh; rð Þ þ 1� δ kh; rð Þδ ko þ kh,Nð Þð Þð Þ: ð1:41Þ

The method based on the solution of SGBE to calculate QoS metrics is referred

to as the exact method. Note that for the real-life networks indicated above, the

SGBE have large size, which is why their solution is difficult to calculate. To

overcome this obstacle, we developed an approximate method for calculating QoS

metrics when using the proposed hybrid access scheme.

The developed method is based on the principles of state space merging of

Markov processes [23]. To correctly apply this method, below it is assumed that

λo<< λh, μo<< μh. Note that these conditions define a regime that commonly

occurs in cellular networks with microcells (i.e., when the cell size is small) in

which new calls have both longer holding times and significantly lower arrival rates

than handover calls. Moreover, as it will be shown below, QoS metrics are

lh lh lh

lo

lo

lo

00 01 02 03 04 05 

10 11 12 13 14 15 

20 21 22 23 24 25 

30 31 32 33 34 35 

40 41 42 43 44 45 

50 51 52 53 54 55 

60 61 62 63 64 

µh 2µh 5µh

µo

2µo

6µo

Fig. 1.3 State diagram for the model with hybrid access scheme
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determined via loads of heterogeneous traffic (i.e., vo¼ λo/μo, vh¼ λh/μh) and are

independent of specific values of traffic parameters.

By using relationship (1.40), it is easy to show that a given 2-D MC is strongly

continuous with respect to the second component and weakly continuous with

respect to the first component (for appropriate definitions, see Appendix of the

book [29]). Taking into account this fact considers the following splitting of the

state space (1.39):

S ¼ [ g
n¼0Sn, Sn \ Sm ¼ ∅, n 6¼ m, ð1:42Þ

where Sn¼ {k ∈ S : ko¼ n}. In other words, we consider the split of the state

diagram in Fig. 1.3 along the rows.

Furthermore, state classes Sn are combined into separate merged states hni, and
the following merging function in state space S is defined:

U kð Þ ¼ nh i if k∈ Sn, n ¼ 0, 1, . . . , g: ð1:43Þ

Function (1.43) determines a merged model that is a 1-DMCwith the state space

Ω¼ {hni : n¼ 0, 1, . . ., g}. Thus, the stationary distribution of the initial model

approximately equals (see Appendix of book [29])

p n;mð Þ � ρn mð Þπ nh ið Þ, n;mð Þ∈ Sn, n ¼ 0, 1, . . . , g, ð1:44Þ

where {ρn(m) : (n,m) ∈ Sn} is the stationary distribution of the split model with

state space Sn and {π(hni) : hni ∈ Ω} is the stationary distribution of the merged

model.

From the state diagram of the split model with state space Sn (see Fig. 1.3), we
conclude that its stationary distribution coincides with an appropriate Erlang’s

model. Here, we must distinguish two cases: (1) 0� n�N� r and (2) N� r
+ 1� n� g. In case (1), the stationary distribution of all of the split models

coincides with that of Erlang’s model M/M/r/0 with load vn erl (i.e., independent
of n), while in case (2) these distributions coincide with those of Erlang’s model

M/M/N� n/0 with the same load (i.e., dependent on n). Therefore, the stationary

distribution of the split model with state space Sn is defined as follows:

Case 1:

ρn mð Þ ¼ vmh
m!

	Xr
i¼0

v ih
i!
, m ¼ 0, 1, . . . r, ð1:45Þ
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Case 2:

ρn mð Þ ¼ vmh
m!

	XN�r

i¼0

v ih
i!
, m ¼ 0, 1, . . .N � n: ð1:46Þ

Then, from Eqs. (1.40), (1.45), and (1.46), the elements of Q-matrix of a

merged model q(hni, hn0i), hni, hn0i ∈ Ω are determined as

q nh i; n0h ið Þ ¼
λo, if n � g� 1� r, n0 ¼ nþ 1,

λoα nð Þ, if n > g� 1� r, n0 ¼ nþ 1,

nμo, if n0 ¼ n� 1,

0 in other cases,

8>><
>>:

ð1:47Þ

where α(n)¼∑ g� n� 1
i¼ 0 ρn(i).

The latter formula allows for the calculation of the stationary distribution of a

merged model. It coincides with the appropriate distribution of state probabilities of

a 1-D BDP for which transition intensities are determined in accordance with

Eq. (1.47). Hence, the desired stationary distribution is calculated as follows:

Case r� g� 1:

π nð Þ ¼

vno
n!
π 0h ið Þ, if 1� n� g� r,

vno
n!

Yn�1

k¼g�r
α kð Þπ 0h ið Þ, if g� rþ 1� n� g,

8>>><
>>>:

ð1:48Þ

where π 0h ið Þ ¼
Xg�r

n¼0

vno
n!

þ
Xg

n¼g�rþ1

vno
n!

Yn�1

k¼g�r
α kð Þ


 ��1

Case r> g� 1:

π nh ið Þ ¼ vno
n!

Yn�1

k¼0
α kð Þπ 0h ið Þ, ð1:49Þ

where π 0h ið Þ ¼
Xg

n¼0

vno
n!

Yn�1

k¼0
α kð Þ


 ��1

.

Hereinafter, we assume that ∑ m
i¼ nxi¼ 0 and∏ m

i¼ nxi¼ 1 if m< n.
By using Eqs. (1.45)–(1.49), after some algebraic manipulation, we can obtain

the following approximate formulas for calculating the QoS metrics of the model

studied:
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Case r� g� 1:

Po � π gh ið Þ þ
Xg�1

n¼g�r

nh ið Þ
Xr
i¼g�n

ρn ið Þ, ð1:50Þ

Cu �
Xr
n¼1

n
Xn
i¼0

ρi n� ið Þπ ih ið Þ þ
Xg
n¼rþ1

n
Xn
i¼n�r

ρi n� ið Þπ ih ið Þ

þ
XN
n¼gþ1

n
Xg
i¼n�r

ρi n� ið Þπ ih ið Þ, ð1:51Þ

Case r> g� 1:

Po � π gh ið Þ þ
Xg�1

n¼0

π nh ið Þ
Xr
i¼g�n

ρn ið Þ, ð1:52Þ

Cu �
Xg
n¼1

n
Xn
i¼0

ρi n� ið Þπ ih ið Þ þ
Xr
n¼gþ1

n
Xg
i¼0

ρi n� ið Þπ ih ið Þ

þ
XN
n¼rþ1

n
Xg
i¼n�r

ρi n� ið Þπ ih ið Þ: ð1:53Þ

In both cases r� g� 1 and r> g� 1, the QoS metric Ph is calculated as

follows:

Ph � ρ0 rð Þ
XN¼r

n¼0

π nh ið Þ þ
Xg�1

n¼N�rþ1

ρn N � nð Þπ nh ið Þ: ð1:54Þ

From formulas (1.50)–(1.54), we conclude that the QoS metrics of the proposed

hybrid CAC are determined via loads vo and vh of heterogeneous traffic only and are
independent of specific values of traffic parameters.

In the special case r¼N, we obtain CAC based on a classical guard channel

scheme. In this case, formulas (1.50)–(1.54) completely coincide with the results

obtained in [26], where a great number of computational experiments demonstrate

the high accuracy of the proposed approach. In special case g¼ r¼N from

Eqs. (1.50)–(1.54), we obtain formulas for CAC based on a complete sharing

scheme (see [26] also).

At the end of this subsection, note that adaptation of the proposed hybrid access

scheme for use in multiservice cellular networks is straightforward.
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1.2.4 Selection of Optimal Values for Parameters of Hybrid
Access Scheme

The problem of how to provide a desired QoS level for different call types is

scientifically and practically very interesting. The solution of such kind of problems

requires some regulated parameters. Thus, in some networks, for which the distri-

bution of channels between cells is fixed, only call admission control parameters

can be regulated because controlling loads present a difficult task and one that is

sometimes practically impossible.

Thus, we address several problems arising from trying to find optimal parameter

values for the proposed in Sect. 1.2.3 hybrid scheme to meet the required QoS level.

This scheme has two controlled parameters g and r. To be brief, we address here

only two problems of finding the optimal values for the parameters of the proposed

hybrid CAC scheme to meet a required QoS level.

Problem 1 It is required to minimize the loss probability of h-calls subject to given
restriction to loss probability of o-calls, i.e.,

Ph g; rð Þ ! min,

s:t:Po g; rð Þ � εo, ð1:55Þ

where εo> 0 is given value.

Hereinafter, to underline the dependence of functions Po and Ph on parameters

r and g, we specify these parameters in brackets.

Note that solution of the problem (1.55) does not represent any difficulties for

moderate size of state space (1.39), i.e., for such models this problem might be

solved simply by considering all possible values of the parameters g and r.
However, below we propose an effective algorithm to solving similar problems.

First of all, note that to solve this problem and problem 2 (see below), the

following unimprovable limits for the investigated functions are useful:

When parameter r is fixed,

Po N � 1, rð Þ � Po g; rð Þ � Po N � r, rð Þ, ð1:56Þ
Ph N � r, rð Þ � Ph g; rð Þ � Ph N � 1, rð Þ: ð1:57Þ

When parameter g is fixed,

Po g,N � gð Þ � Po g; rð Þ � Po g;Nð Þ, ð1:58Þ
Ph g;Nð Þ � Ph g; rð Þ � Ph g,N � gð Þ: ð1:59Þ

Taking into account the monotonic property of functions Po(g, r) and Ph(g, r)
with respect to both parameters and relations (1.56)–(1.59), the following algorithm

can be suggested as a solution of the given problem.
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Fix the value either g or r. To be concrete, fix the value of g over interval [1,N].
The solution of the problem (1.55) for given value of g, if it exists, is denoted by

(g, r*(g)).

Algorithm 1

Step 1. If εo<Po(g,N� g), then the given problem has no solution.

Step 2. If εo�Po(g,N ), then solution of the given problem is (g, r*(g))¼ (g,N ).

Step 3. If εo>Po(g,N ) and Po(g,N� g)� εo<Po(g,N ), then solution of the given

problem is (g, r*(g))¼ (g, r1) where r1 is determined as solution of the following

problem:

r1 ¼ arg max Po g; rð Þ � εof g:

Then the solution of the investigated problem denoted by (g*, r*) is found as

g*¼ argminPh(g, r*(g)).
Results of the problem (1.55) for initial data N¼ 40 channels vo¼ 5 Erl and

vh¼ 10 Erl are shown in Table 1.1.

Problem 2 Let the QoS for different types of calls be measured by the limit values

of the blocking and dropping probabilities, i.e., their upper bounds are set:

Po g; rð Þ � εo, ð1:60Þ
Ph g; rð Þ � εh, ð1:61Þ

where εo> 0 and εh> 0 are given values.

The optimization problem is formulated as follows: it is required to find extreme

values of parameters g and r such that conditions (1.60) and (1.61) are met.

Again taking into account the monotonic property of functions Po(g, r) and Ph(g, r)
with respect to both parameters and relations (1.56)–(1.59), the following algorithm

can be suggested to the solution of the given problem.

Fix the value of g, g ∈ [1,N ].

Algorithm 2

Step 1. If εo<Po(g,N� g) or εh<Ph(g,N ), then the problem has no solution.

Step 2. If εo>Po(g,N ) and εh>Ph(g,N� g), then the solutions are the pairs (g, r),
where r ∈ [N� g,N].

Step 3. If εo>Po(g,N ) and Ph(g,N )� εh�Ph(g,N� g), then the following prob-

lem is to be solved:

Table 1.1 Solution results for the problem (1.55)

εo E-2 E-3 E-4 E-5 E-6 E-7 E-8 E-9 E-10 E-11

(g*, r*) (26,40) (29,40) (32,40) (35,40) (38,40) (40,40) (40,24) (40,20) (40,17) (40,15)

min Ph 2.45E-8 3.5E-8 3.97E-8 4.1E-8 4.1E-8 4.1E-8 7.32E-5 0.002 0.013 0.036
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rh ¼ argmin Ph g; rð Þ � εhf g:

The solutions are the pairs (g, r), where r ∈ [rh,N].
Step 4. If εh>Ph(g,N� g) and Po(g,N� g)� εo�Po(g,N ), then the following

problem is to be solved:

ro ¼ argmax Po g; rð Þ � εof g:

The solutions are the pairs (g, r), where r ∈ [N� g, ro].
Step 5. If Po(g,N� g)� εo�Po(g,N ) and Ph(g,N )� εh�Ph(g,N� g), then the

problem has no solution if ro< rh; otherwise, the solutions are the pairs (g, r),
where r ∈ [rh, ro].

Note that particularly for the solutions of the problems in steps 3 and 4, a

dichotomy method can be used due to the monotonic property of the investigated

functions.

Combining the solutions of the problem for different possible values of param-

eter g, we find a range of parameters g and r for which both conditions (1.60) and

(1.61) are met.

Some solutions of problems (1.60) and (1.61) for the same initial data, i.e., for

N¼ 40 channels, vo¼ 5 Erl and vh¼ 10 Erl, εo¼ 10� 3, are presented in Figs. 1.4 and

r
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 o o
2 o o o
3 o o o o
4 o o o o o
5 o o o o o o
6 o o o o o o o
7 o o o o o o o o
8 o o o o o o o o o
9 o o o o o o o o o o

10 o o o o o o o o o o o
11 o o o o o o o o o o o o
12 o o o o o o o o o o o o o
13 o o o o o o o o o o o o o o
14 o o o o o o o o o o o o o o o
15 o o o o o o o o o o o o o o o o
16 x x x x x x x x x x x x x x x x x
17 x x x x x x x x x x x x x x x x x x
18 x x x x x x x x x x x x x x x x x x x
19 x x x x x x x x x x x x x x x x x x x x
20 x x x x x x x x x x x x x x x x x x x x x
21 x x x x x x x x x x x x x x x x x x x x x x
22 x x x x x x x x x x x x x x x x x x x x x x x
23 x x x x x x x x x x x x x x x x x x x x x x x x
24 x x x x x x x x x x x x x x x x x x x x x x x x x
25 o x x x x x x x x x x x x x x x x x x x x x x x x x
26 o o x x x x x x x x x x x x x x x x x x x x x x x x x
27 o o o x x x x x x x x x x x x x x x x x x x x x x x x x
28 o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
29 o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
30 o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
31 o o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
32 o o o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
33 o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
34 o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
35 o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
36 o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
37 o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
38 o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
39 o o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
40 o o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x x x x x
g

Fig. 1.4 Solution set for the problems (1.60), (1.61) in case εh¼ 10�4
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1.5, where symbol 0 indicates no solution and symbol x indicates that this point is a

solution of the given problem.

From these figures, we conclude that a stronger restriction of either one or both

functions Po and Ph leads to a reduction in the solution set of the indicated problem.

1.3 Numerical Results

In the literature, there are large number numerical experiments which were carried

out by means of algorithms from Sect. 1.1. Therefore, here we will not consider the

results related to classical models of multidimensional models. Here only we will

notice that the presence of explicit formulas to calculate the QoS metrics essentially

facilitates the solution of the problem.

Below, we consider results of numerical experiments which are carried out by

using algorithms developed in Sect. 1.2. The mentioned algorithms suggested allow

one to study the behavior of the QoS metrics of the proposed hybrid scheme over all

admissible ranges of their structural and load parameters.

For brevity, only results regarding the dependence of QoS metrics on the

parameters of the hybrid CAC scheme (i.e., g and r) are presented in detail.

r
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 o o
2 o o o
3 o o o o
4 o o o o o
5 o o o o o o
6 o o o o o o o
7 o o o o o o o o
8 o o o o o o o o o
9 o o o o o o o o o o
10 o o o o o o o o o o o
11 o o o o o o o o o o o o
12 o o o o o o o o o o o o o
13 o o o o o o o o o o o o o o
14 o o o o o o o o o o o o o o o
15 o o o o o o o o o o o o o o o o
16 x x x x x x x x x x x x x x x x x
17 x x x x x x x x x x x x x x x x x x
18 x x x x x x x x x x x x x x x x x x x
19 x x x x x x x x x x x x x x x x x x x x
20 x x x x x x x x x x x x x x x x x x x x x
21 o x x x x x x x x x x x x x x x x x x x x x
22 o o x x x x x x x x x x x x x x x x x x x x x
23 o o o x x x x x x x x x x x x x x x x x x x x x
24 o o o o x x x x x x x x x x x x x x x x x x x x x
25 o o o o o x x x x x x x x x x x x x x x x x x x x x
26 o o o o o o x x x x x x x x x x x x x x x x x x x x x
27 o o o o o o o x x x x x x x x x x x x x x x x x x x x x
28 o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
29 o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
30 o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
31 o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
32 o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
33 o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
34 o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
35 o o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
36 o o o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
37 o o o o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
38 o o o o o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
39 o o o o o o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
40 o o o o o o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x x x x x
g

Fig. 1.5 Solution set for the problems (1.60), (1.61) in case εh¼ 10�6
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Some results of numerical experiments performed using the model for N¼ 40

channels, vo ¼ 1 Erl and vh¼ 5 Erl, are shown in Figs. 1.6, 1.7, and 1.8.

The results confirm all theoretical expectations. Thus, at the fixed threshold

values for h-calls (i.e., r), the probability of dropping h-calls grows, and the

probability of blocking o-calls falls as the number of guard channels (i.e., g)
increases (see Fig. 1.6). In both cases r¼ 20 (see Fig. 1.6a) and r¼ 30 (see

Fig. 1.6b) function Ph is nearly constant, increasing at a very slow rate. However,

the absolute values of this function in the two indicated cases essentially differ from

each other. Therefore, for r¼ 20, the value of function Ph� 10� 6, whereas for

r¼ 30, Ph� 10� 13. In both cases, r¼ 20 (see Fig. 1.6a) and r¼ 30 (see Fig. 1.6b),

LgPx

Po

Ph

a

g 

LgPx

Po

Ph

b

g 
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Fig. 1.6 Loss probabilities versus g, a� r¼ 20; b� r¼ 30
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function Po decreases at a high rate, and the intervals of change are essentially

different from each other: for r¼ 20, the value of function Po varies over the

interval [10� 25, 10� 5], whereas for r¼ 30, the appropriate interval is

[10� 20, 10� 2].

Similarly, at fixed values of the number of guard channels (i.e., g), the proba-

bility of dropping h-calls falls (see Fig. 1.7a), and the probability of blocking o-calls
grows (see Fig. 1.7b) as the value of threshold for h-calls (i.e., r) increases. Unlike
in the previous graphs, for g¼ 20 (see Fig. 1.7a) and g¼ 30 (see Fig. 1.7b), function

Ph falls at high rates. For g¼ 20 (see Fig. 1.7a), function Po is nearly constant (i.e.,

LgPx

Po

Ph

a

r 

Po

Ph

b

r 

LgPx

-25

-20

-15

-10

-5

0
20 22 24 26 28 30 32 34 36 38

-25

-20

-15

-10

-5

0
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Fig. 1.7 Loss probabilities

versus r, a� g¼ 20;

b� g¼ 30
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it increases at a very slow rate), whereas for and g¼ 30 (see Fig. 1.7b), the

function’s rate of change is sufficiently high. However, the absolute values of this

function in the two indicated cases are essentially different from each other, i.e., for

g¼ 20, the value of function Po� 10� 5, whereas for g¼ 30, Po ∈ [10� 20, 10� 12].

The channel utilization metric is an increasing function with respect to both

parameters g and r (see Fig. 1.8a, b). However, for given traffic loads, this metric

has no high rate of change with respect to parameters g and r. As was expected,

a

b

Fig. 1.8 Coefficient of

utilization versus

r (a) and g (b), a� g¼ 30;

b� r¼ 30
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function Cu is an increasing function with respect to the loads of heterogeneous

calls, which holds for all QoS metrics.

Another objective of the numerical experiments was to estimate the accuracy of

the proposed formulas. For small models (i.e., when the number of channels is not

too large), the exact values of the QoS metrics are determined by the solving

appropriate system of global balance equations. Note that the approximate values

of QoS metrics are nearly identical to their exact values when the accepted

assumption about the ratios of the load parameters of o- and h-calls is valid.

Moreover, the approximate formulas are highly accurate even when the accepted

assumption is not valid, which might be explained by the fact that, as mentioned

above, QoS metrics are determined via vo and vh and are independent of specific

values of traffic parameters. For brevity, results that compare the exact and approx-

imate values of QoS metrics are considered for special case, i.e., for model with

CAC based on classical guard channel scheme [26].

For the indicated special case (i. e., r¼N ) from Eqs. (1.50)–(1.54), we have

Ph �
Xg
i¼0

EB vh,N � ið Þπ ih ið Þ, ð1:62Þ

Po �
Xg
i¼0

XN�i

j¼g�i

ρi jð Þπ 0h i: ð1:63Þ

In last formulas the following notations are used:

EB(v,N )—Erlang’s B-formula, i.e., EB(v,N )¼ (vN/N !)(∑N
i¼ 0(v

i/I !))� 1;

ρi jð Þ ¼ v j
h

j! ρi 0ð Þ, i ¼ 0, 1, . . . , g; j ¼ 0, 1, . . . ,N � i, where ρi 0ð Þ ¼
Xg

j¼0

v jh
j!

 !�1

;

π ih ið Þ ¼ v io
i!

Y i

j¼1
Λ jð Þπ 0h ið Þ, i ¼ 1, 2, . . . , g,

where

π 0h ið Þ ¼
Xg
i¼0

v io
i!

Y i

j¼1
Λ jð Þ

 !�1

,

Λ iþ 1ð Þ ¼ ρi 0ð Þ
Xg�i�1

j¼0

v jh
j!
, i ¼ 0, 1, . . . , g� 1:

The results achieved with this algorithm nearly coincide with those from exact

calculations under the indicated above conditions: λo<< λh, μo<< μh. Under
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these conditions, the exact values of the QoS metrics for a model of moderate

dimensions are calculated with SGEE.

In [11] also introduced an approximation algorithm for solving this problem,

which was based on the following heuristic considerations. The different channel

occupation times are replaced with their averages, and the traffic intensities are

replaced by their loads; that is, the following approximations are made:

μo¼ μh¼ 1, λo¼ vo, λh¼ vh. The paper [11] proposed the following approximate

formulas for calculating the QoS metrics:

Ph � ρN, ð1:64Þ

Po �
XN
i¼g

ρi, ð1:65Þ

where

ρi ¼

vi

i!
ρ0, if i � g,

vgv
i�g
h

i!
ρ0, if gþ 1 � i � N,

8>>>><
>>>>:

ð1:66Þ

ρ0 ¼
Xg
i¼0

vi

i!

XN
i¼gþ1

vgv
i�g
h

i!

 !�1

, v ¼ v0 þ vh: ð1:67Þ

The authors [11] noted that it is impossible to measure the accuracy of the

proposed formulas analytically; therefore, they demonstrated the high accuracy of

these formulas using simulations.

Another way of transforming an adequate two-dimensional model to an approxi-

mate one-dimensional model is as follows. Different average channel occupation

times are replaced with weighted average μ¼ v/λ, where λ¼ λo+ λh. Such an

approach to the problem solution is called traditional [11]. In this case, for QoS

parameter calculations, they also use formulas (1.64) and (1.65); however, in formulas

(1.66) and (1.67), parameters vh and vo are defined as follows: vh¼ λh/μ, vo¼ λo/μ.
Paper [11] also showed low accuracy of this traditional approach, especially

when μo and μh vary greatly. As was expected, results of last two approaches

coincide at μo¼ μh.
Tables 1.2, 1.3, and 1.4 contain results of numerical experiments for the above

three methods. The comparison shows that the results of papers [11] and [26] do not

differ significantly, even when condition λo<< λh, μo<< μh does not hold true

(see Tables 1.3 and 1.4).
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Table 1.2 Comparison of different algorithms for the case N¼ 10, λo¼ 1, λh¼ 5, μo¼ 1, μh¼ 5

m

Po Ph

[26] [11] Traditional [26] [11] Traditional

1 0.7310586 0.7746003 0.8374876 3.4676E-07 1.24228E-07 8.88776E-06

2 0.4621171 0.4891989 0.5577866 1.1128E-06 1.87684E-07 9.67381E-06

3 0.2516532 0.2588479 0.2998047 3.1089E-06 3.26787E-07 1.10285E-05

4 0.1163676 0.1153544 0.1327018 7.2415E-06 6.15877E-07 1.29415E-05

5 0.0453591 0.0435004 0.0492806 1.3815E-05 1.20496E-06 1.54023E-05

6 0.0149759 0.0140255 0.0156344 2.1738E-05 2.39303E-06 1.84346E-05

7 0.0042446 0.0039216 0.0043088 2.8994E-05 4.77667E-06 2.21056E-05

8 0.0010474 0.0009644 0.0010449 3.4104E-05 9.54873E-06 2.65221E-05

9 0.0002249 0.0002101 0.0002227 3.6928E-05 1.90954E-05 3.18253E-05

Table 1.3 Comparison of different algorithms for the case N¼ 10, λo¼ 5, λh¼ 1, μo¼ 5, μh¼ 1

m

Po Ph

[26] [11] Traditional [26] [11] Traditional

1 0.73105860 0.77460030 0.7035873 3.4676E-07 1.24228E-07 8.29989E-12

2 0.46211714 0.48919887 0.42770452 1.1128E-06 1.87684E-07 3.20498E-11

3 0.25165324 0.25884799 0.22508059 3.1089E-06 3.26787E-07 1.5623E-10

4 0.11636757 0.11535437 0.10127703 7.2415E-06 6.15877E-07 8.58268E-10

5 0.04535909 0.04350037 0.03875433 1.3815E-05 1.20496E-06 4.9833E-09

6 0.01497587 0.01402552 0.01267733 2.1738E-05 2.39303E-06 2.95839E-08

7 0.00424458 0.00392164 0.00358918 2.8994E-05 4.77667E-06 1.76973E-07

8 0.00104741 0.00096442 0.00089234 3.4104E-05 9.54873E-06 1.06105E-06

9 0.00022489 0.00021005 0.00019732 3.6928E-05 1.90954E-05 6.36523E-06

Table 1.4 Comparison of different algorithms for the case N¼ 10, λo¼ λh¼ 5, μo¼ μh¼ 5

m

Po Ph

[26] [11] Traditional [26] [11] Traditional

1 0.73105860 0.77460030 0.7746003 3.4676E-07 1.24228E-07 1.24228E-07

2 0.46211714 0.48919887 0.48919887 1.1128E-06 1.87684E-07 1.87684E-07

3 0.25165324 0.25884799 0.25884799 3.1089E-06 3.26787E-07 3.26787E-07

4 0.11636757 0.11535437 0.11535437 7.2415E-06 6.15877E-07 6.15877E-07

5 0.04535909 0.04350037 0.04350037 1.3815E-05 1.20496E-06 1.20496E-06

6 0.01497587 0.01402552 0.01402552 2.1738E-05 2.39303E-06 2.39303E-06

7 0.00424458 0.00392164 0.00392164 2.8994E-05 4.77667E-06 4.77667E-06

8 0.00104741 0.00096442 0.00096442 3.4104E-05 9.54873E-06 9.54873E-06

9 0.00022489 0.00021005 0.00021005 3.6928E-05 1.90954E-05 1.90954E-05
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1.4 Conclusion

There are fundamental monographs that are not only focused to foundations of

queueing theory but also to advanced up-to-date methods to application in tele-

communication networks [13, 14, 16, 20, 21, 28]. In these books detailed analysis of

main problems in applied queueing theory is considered.

Classical Erlang’s model [7] has been widely used for more than hundred years

for the analysis of various communication systems. Its scientific value has essen-

tially increased after the Kovalenko’s classical result [24]: the stationary distribu-

tion of this model has been proved to be invariant with respect to the distribution

function of holding time for fixed mean value. This fact has essentially expanded

application area of the MRQ models since the exponential distribution function of a

holding time causes serious disputes among researchers and specialists in telecom-

munication area. Insensitivity of the stationary distribution was confirmed later by

other authors (see, e.g., [3] and the bibliography therein).

Since modern telecommunication networks are multiservice, models with het-

erogeneous calls (i.e., multidimensional Erlang’s models) are actively investigated.

Here we will not discuss the known results which are related to classical

multidimensional Erlang’s models since these results can be found in the

abovementioned books. But instead we briefly consider the review of the applied

works in cellular networks.

Almost in all early works devoted to modeling of cellular networks, it was

supposed that both handover and new calls are identical in terms of channel

occupancy time (see [1, 2, 32] and references therein). However, this assumption

is unrealistic [8–11, 19, 25, 26, 35]. So, let us briefly review the results of previous

studies of models of cellular networks with nonidentical channel occupancy times

for calls of different types.

One of the first works to investigate such models was [11]. This paper examined

models featuring various GC schemes for h-calls or establishing thresholds (limits)

for o-calls. For the latter type of model, simple formulas are easily developed for

calculating the loss probability of h-calls as well as the blocking probability of o-
calls. The development of simple formulas is possible because there is an explicit

(multiplicative) solution to an appropriate SGBE for the state probabilities. How-

ever, there is no closed form solution to the corresponding equations for models

with CAC based on the GC scheme; therefore, the authors suggested approximation

formulas for QoS calculations based on some heuristic considerations. The accu-

racy of the suggested formulas was determined by simulation. The authors also

suggested another approximation scheme, which they dubbed traditional and in

which different occupancy times are replaced by a single (unified) time by using

some procedure. It was shown that the traditional scheme gives a rough approxi-

mation, especially as the occupancy times of different calls differ substantially. The

common idea underlying both approximation methods is the unification of the

channel occupancy times of heterogeneous calls. A similar approximation approach

based on this idea is proposed in [37].
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In [8], the results of the paper [11] were generalized to multimedia networks. In

this study, the decision to accept arriving calls was determined by probabilities that

depend on the number of busy channels or the number of ongoing calls belonging to

a given class. However, in [8], the proposed schemes were analyzed under the

assumptions that all traffic required the same number of channels and their channel

occupancy times were identical. In [34], these CAC schemes were generalized to

models in which different types of calls require an arbitrary number of channels

(i.e., multi-rate models) and exhibit service times that are not identical. This last

paper also provided a detailed review of known results in this direction.

A generalized reservation scheme called fractional guard channels (FGC) and its

own special case, i.e., uniform fractional guard channel (UFGC) was considered in

[12, 15, 33] as well. In [18] an analytical approach for calculating models of a

wireless network with nonidentical channel occupancy times for h- and o-calls in
which the CAC are based on GC, FGC, and UFGC schemes is developed. In this

paper, it is proved that the formulas suggested in [11, 37] are not merely approx-

imations but are exact if the model satisfies a local balance condition; otherwise,

these formulas are approximations. Method to finding the number of guard channels

which is adaptive to instantaneous cell traffics is proposed in [38]. Note that in [38]

different channel holding time for new and handoff calls takes into account, i.e., to

model the investigated cell 2-D MC is used; state probabilities of the appropriate

2-D MC are determined by using the Gauss–Seidel iterative algorithm.

A detailed review of mathematical methods used to study the QoS metrics of

wireless networks with different CAC schemes may be found in [5].

Problems relating to analysis and optimization of a new hybrid access scheme

examined in this chapter are investigated in [27]. Although here we studied mono-

service networks to simplify the described models and corresponding calculations,

the results achieved can be adapted to multiservice networks.
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Chapter 2

Analytical Methods for Analysis of Integral

Cellular Networks

The classical theory of multidimensional queueing systems is based on many

assumptions, one of them is basic: one call—one channel. However, in modern

integral (multiservice) communication networks, this assumption is not carried out.

Thus, in them, for example, a video information requires the wider band in a digital

transmission line than data or voice information. In the teletraffic theory the calls,

requiring a large number of channels in a transmission line, are called wideband,

and the calls that require a smaller number of channels—narrowband. As it was

noted in the previous chapter, the multi-flow system, in which heterogeneous calls

require for simultaneous maintenance a random number of channels, is called

multi-rate queue (MRQ).

Since in MRQ with inelastic calls in the absence of the required number of free

channels call service cannot be started, one would expect that wideband calls will

be lost more often than narrowband. Therefore, in such systems to maintain the

quality of service (QoS) of heterogeneous calls at the desired level, it is necessary to

determine the appropriate CAC scheme.

The alternative way for satisfying the desired QoS level is determining the

appropriate schemes to partition of common pool of channels among heterogeneous

calls.

In this chapter the new method to study the MRQ model with the randomized

access scheme is proposed, and on its basis the efficient algorithms to calculate

the QoS metrics in specific telecommunication network models are developed. In

addition both isolated and virtual schemes to partition of common pool of channels

in integral telecommunication networks are proposed, and exact formulas to calculate

the QoS metrics of such networks are obtained. The results of numerical experiments,

performed with the help of the developed algorithms, and the meaningful analysis

of these results are given.
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2.1 Model of Multi-rate Queue with Randomized Access

Scheme

Let the input of the multichannel system, containing N> 1 channels, receive a

Poisson stream of heterogeneous calls with the total intensity Λ. Every new

incoming call with the probability σi requires for service simultaneously bi chan-
nels, 1� bi�N, i¼ 1, . . .,K; meanwhile σ1 + . . .+ σk¼ 1. It is believed that at the

moment of call arrival the number of channels, requested by it for service, is known.

Then, subject to the known properties of the Poisson flow, one can argue that at the

input of N channel system K types of the Poisson streams of calls enter, the intensity

of the ith stream being λi¼Λσi, i¼ 1, . . .,K; meanwhile the calls of the ith type

(i-calls) require simultaneously bi channels, i¼ 1, . . .,K. The holding time of the

i-calls is a random variable subjected to an exponentially distribution law with the

parameter μi, i¼ 1, . . .,K.
The system uses a randomized scheme for access. For this, the access matrix of

the dimension K�N is determined, in which elements define the rules of reception

of heterogeneous calls, depending on their type and the number of busy channels.

More precisely, the element αi(n) of the matrix indicates the probability of recep-

tion of the i-call for service, if at the time of its arrival the number of busy channels

equals n; with the complementary probability 1� αi(n), this call is lost. In this

model interruption of service process of the call of any type is not allowed, i.e., it is

assumed that αi(n)¼ 0 for any i¼ 1, . . .,K, if n>N� bi. Note that the condition

bi¼ bj at i 6¼ j not in the least means that the equality αi(n)¼ αj(n) is to be fulfilled.

Let us consider the problem of determining the QoS metrics of the studied model

while using the proposed access scheme. The main QoS metrics are stationary loss

(blocking) probability of i-calls (PBi, i¼ 1, . . .,K ) and the average number of the

busy channels (Nav).

The state of the system at arbitrary time instant is described by the

K-dimensional vector m¼ (m1, . . .,mK), where mi is a number of the i-calls in the

system (i.e., in the channels), i¼ 1, . . .,K. In other words, the functioning of the

given MRQ is described by K-dimensional Markov chain with the following state

space:

S ¼ m : mi ¼ 0, 1, . . . , N=bi½ �; m; bð Þ � Nf g, ð2:1Þ

where b¼ (b1, . . ., bk); [x] is an integer part of x; (m, b) is a scalar product of the

vectors m and b.
Note that from this scheme one can obtain in particular cases the well-known

deterministic access schemes. Let us consider some of them:

1. If αi(n)¼ 1 for every i¼ 1, . . .,K at n�N� bi, then one gets the model with full

available group of channels, i.e., model with the complete sharing (CS) scheme

[13, 29].

2. Assume that the parameters αi(n) for every i¼ 1, . . .,K are defined as follows:
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αi nð Þ ¼ 1 if n � N � b,
0 in other cases,

�
ð2:2Þ

where b¼max{bi : i¼ 1, . . .,K}. Then one gets the complete sharing with

equalization (CSE) scheme [7], i.e., the received call of any type is served, if

at this moment the number of free channels is not less than b.
3. Assume that the parameters αi(n) for every i¼ 1, . . .,K are defined as follows:

αi nð Þ ¼ 1 if n � N � bi � ri,
0 in other cases,

�
ð2:3Þ

where 0� ri�N� bi. Then one gets the trunk reservation (TR) scheme [28], i.e.,

if at the time of receiving the i-call the number of free channels is not less than

bi+ ri, then it is served; otherwise the received call is lost with probability 1. The

parameter ri is called the backup parameter of the channels for i-calls, i¼ 1, . . .,K.

Let us state the proposed method of solving the problem. Transitions between

the states m and m0 ∈ S occur only at the moment of receiving calls and their

leaving the system after completion of service. In view of this, the nonnegative

elements of the Q-matrix of the given multidimensional Markov chain are deter-

mined from the following relationships:

q m;m0ð Þ ¼
λiαi m; bð Þð Þ if m0 ¼ mþ ei,
miμi if m0 ¼ m� ei,
0 in other cases,

8<
: ð2:4Þ

where m, m0 ∈ S, ei is the ith orthogonal vector in K-dimensional Euclidean space,

i¼ 1, . . .,K.
For any positive values of the parameters of incoming traffics, all the states are

communicating and, consequently, the system is ergodic. Let us denote the station-

ary probability of state m ∈ S as p(m). The desired QoS metrics are determined in

terms of the steady-state probabilities. Thus the stationary probability of blocking

the i-calls is calculated as follows:

PBi ¼
XN
n¼0

1� αi nð Þð Þ
X
m∈ Sn

p mð Þ, i ¼ 1, . . . ,K, ð2:5Þ

where Sn¼ {m ∈ S : (m, b)¼ n}, n¼ 0, 1, . . .,N, i.e., the sets Sn combine the micro-

states from state space (2.1) with the same number of busy channels.

Note 2.1 From formula (2.5), one gets that if αi(n)¼ αj(n) at bi¼ bj for some i,
j, i 6¼ j, then PBi¼ PBj, for any values of the model load parameters.
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The average number of busy channels is defined as

Nav ¼
XN
n¼1

n
X
m∈ Sn

p mð Þ: ð2:6Þ

The main problem in finding the QoS metrics (2.5) and (2.6) is the calculation of

p(m), m ∈ S, which satisfies the corresponding system of global balance equations

(SGBE):

XK
i¼1

λiαi m; bð Þð ÞI m; bð Þ � N � bið Þ þ
XK
i¼1

miμi

 !
p mð Þ

¼
XK
i¼1

λiαi m� ei, bð Þð Þp m� eið ÞI mi > 0ð Þ

þ
XK
i¼1

mi þ 1ð Þp mþ eið ÞI mþ ei ∈ Sð Þ, ð2:7Þ
X
m∈ S

p mð Þ ¼ 1: ð2:8Þ

The given SGBE has no explicit solution, and this fact complicates the solution

of the considered problem for large state space dimensions (2.1).

In this regard, we propose another approach based on the use of the fact that the

QoS metrics (2.5) and (2.6) are defined in terms of the probabilities of the merged

states Sn, n¼ 0, 1, . . .,N. Since the sets Sn, n¼ 0, 1, . . .,N define some splitting of

the state space (2.1), then the desired QoS metrics can be calculated using the

probabilities of merged states. Indeed, it is clear that the probabilities of the merged

states are defined as follows:

π nð Þ ¼
X
m∈ Sn

p mð Þ, n ¼ 0, 1, . . . ,N: ð2:9Þ

It is obvious that (see normalizing condition (2.8))

XN
n¼0

π nð Þ ¼ 1: ð2:10Þ

Consequently, taking into account (2.5), (2.6), (2.9), and (2.10), one finds that

PBi ¼
XN
n¼0

1� αi nð Þð Þπ nð Þ, i ¼ 1, . . . ,K, ð2:11Þ
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Nav ¼
XN
n¼1

nπ nð Þ: ð2:12Þ

Thus, without determining the stationary distribution of the original (initial)

model, one can calculate the QoS metrics (2.5) and (2.6), if it is possible to

determine the values of the probabilities of merged states π(n), n¼ 0, 1, . . .,N.
With the help of the following statement, one can solve this problem.

Proposition 2.1 If μi¼ μj, i, j¼ 1, . . .,K, then QoS metrics (2.5) and (2.6) are

defined as follows:

PBi ¼
XN
n¼0

1� αi nð Þð Þgn
 !� XN

n¼0

gn

 !
, i ¼ 1, . . . ,K, ð2:13Þ

Nav ¼
XN
n¼1

ngn

 !� XN
n¼0

gn

 !
: ð2:14Þ

Henceforward, the following notations are used: vi¼ λi/μi , i¼ 1, . . .,K;

evι n� ið Þ ¼
X

j∈A ið Þ
vjαj n� ið Þ, ð2:15Þ

where A(i)¼ {j : j ‐ calls demand i channels}, i¼ 1, . . .,N;

gn ¼
1, n ¼ 0,

1

n

Xn
i¼1

ievι n� ið Þgn�i, n ¼ 1, . . . ,N:

8><
>: ð2:16Þ

To prove Proposition 2.1, let us first prove the following fact.

Proposition 2.2 If μi¼ μj, i, j¼ 1, . . .,K, then probabilities of merged states are

defined as

π nð Þ ¼ gnπ 0ð Þ, n ¼ 0, 1, . . . ,N, ð2:17Þ

where π(0)¼ (∑N
n¼ 0gn)

� 1.

Note 2.2 In special case, if αi(n)¼ αj(n) for bi¼ bj, from Eqs. (2.15) and (2.16) one

finds that the parameters gn, n¼ 0, 1, . . .,N are determined as follows:
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gn ¼
1, n ¼ 0
1

n

Xn
i¼1

ievιαi n� ið Þgn�i, n ¼ 1, . . . ,N,

8><
>:

where evι ¼
X

j∈A ið Þvj ifA ið Þ 6¼ ∅,

0 if A ið Þ ¼ ∅:

(

Proposition 2.2 is a direct consequence of a following one.

Proposition 2.3 If μi¼ μj, i, j¼ 1, . . .,K, then the following equalities hold true:

XK
i¼1

vibiαi n� bið Þπ n� bið Þ ¼ nπ nð Þ, n ¼ 1, . . . ,N, ð2:18Þ

where π(x)¼ 0 for x< 0.

Proof of Proposition 2.3 For simplicity, we present the proof of this fact for a

single-rate model, i.e., for a model in which bi¼ 1 for all i¼ 1, . . .,K. Generaliza-
tion for a multi-rate model is straightforward.

Let us use the scheme proposed in [13]. Taking into account relationship (2.4),

one obtains that the SGBE for the states m ∈ Sn� 1 has the following form:

XK
i¼1

λiαi n� 1ð Þþ
XK
i¼1

miμi

 !
p mð Þ ¼

XK
i¼1

λiαi n� 2ð Þp m� eið Þ

þ
XK
i¼1

mi þ 1ð Þμip mþ eið Þ: ð2:19Þ

For simplicity, it is assumed that the states m, m� ei, m + ei participating in

Eq. (2.19) are in state space (2.1); otherwise the corresponding members are zeroed.

Summing both sides of Eq. (2.19) over all possible m ∈ Sn� 1, after collecting

similar terms and taking into account structure of SGBE, one gets

XK
i¼1

λiαi n� 1ð Þ
X

m∈ Sn�1

p mð Þ ¼
X
m∈ Sn

miμip mð Þ: ð2:20Þ

In latter transformations, while rearranging the terms in the sum, the two facts

essentially have been taken into account: relationship (2.9) as well as the following

fact: for all states m ∈ Sn , n¼ 1, . . .,N the value ∑ K
j¼ 1vjαj(n) is the same.
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Taking into account Eq. (2.9), Eq. (2.20) might be rewritten as follows:

π n� 1ð Þ
XK
i¼1

λiαi n� 1ð Þ ¼
X
m∈ Sn

miμip mð Þ: ð2:21Þ

From Eq. (2.21) for μi¼ μj, i, j¼ 1, . . .,K, we have

π n� 1ð Þ
XK
i¼1

viαi n� 1ð Þ ¼
X
m∈ Sn

mip mð Þ: ð2:22Þ

The right side of Eq. (2.22) can be represented as follows:

X
m∈ Sn

mip mð Þ ¼
X
m∈ Sn

mi
p mð Þ
π nð Þ π nð Þ: ð2:23Þ

From the definition of the conditional probability, one has

P m
��n� � ¼ P m

XK
i¼1

mi ¼ n

�����
 !

¼
p mð Þ
π nð Þ if m∈ Sn

0 in othercases,

8<
: ð2:24Þ

where P(� | �) is a sign of conditional probability.

Then from Eq. (2.23), taking into account Eq. (2.24), one obtains

XK
i¼1

X
m∈ Sn

mip mð Þ ¼
XK
i¼1

X
m∈ Sn

miP m
��n� � !

π nð Þ

¼
XK
i¼1

E mi

��n� �
π nð Þ ¼ E

XK
i¼1

mi

��n
 !

π nð Þ ¼ nπ nð Þ, ð2:25Þ

where E(� | �) is a sign of conditional expectation.

Consequently, taking into account (2.22) and (2.25), one concludes that relation-

ships (2.18) are valid for single-rate model. As it has been noted above, the

generalization of this proof for a multi-rate model is straightforward.

Now one can prove Proposition 2.2. Indeed, after some algebraic transforma-

tions one finds that the system of equations (2.18), taking into account the normal-

ization condition (2.10), has the following augmented matrix:
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ev1 0ð Þ �1 0 . . . 0 0 0

2ev2 0ð Þ ev1 1ð Þ �2 . . . 0 0 0

: : : : : : :
NevN 0ð Þ N � 1ð ÞevN�1 1ð Þ N � 2ð ÞevN�2 2ð Þ . . . ev1 N � 1ð Þ �N 0

1 1 1 . . . 1 1 1

0
BBBB@

1
CCCCA

Hence, one finds that the stationary probabilities of merged states, while using

randomized access scheme, are determined from Eq. (2.17).

Consequently, taking into account (2.11) and (2.12), one finds that QoS metrics

of model (2.5) and (2.6) are calculated from relations (2.13) and (2.14). In other

words, Proposition 2.1 is proved.

An important advantage of this algorithm is that its computational complexity

does not depend on the total number of types of calls (i.e., on K ) and is estimated as

O(N ). Such invariance is achieved through merging of flows by the number of

required channels (see the definition of the sets A(n), n¼ 1, . . .,N ).

Note that in special cases we exactly obtain results from the above-indicated

well-known access schemes based on CS, CSE, and TR schemes (see Propositions
1.3, 1.4, and 1.5 in Sect. 1.1).

To calculate the QoS metrics of the system, the computational procedure,

described above, can be used even in cases where the service intensities of hetero-

geneous calls are unessentially different from one another. And in the cases, where

the service intensities of heterogeneous calls are essentially different, one can use

different schemes of “unification” (“averaging”) of their values. So, from a practi-

cal standpoint, the use of the following three general values is most interesting:

(1) μ¼max{μ1, . . ., μK}; (2) μ¼min{μ1, . . ., μK}; (3) μ ¼ 1
Λ

XK

i¼1
vi, where

Λ¼∑ K
i¼ 1λi.

Note that for every “averaging” scheme (this and others), the accuracy of the

used approximations can be studied numerically, since analytical solution does not

exist. For the models of small dimension, the exact solution can be found

from SGBE.

2.1.1 Model of Integral Wireless Network
with Multi-parametric Access Scheme

The multi-rate queueing model in the problems of calculating the QoS metrics of

the integral wireless communication network of a cellular structure was used in

[25]. In mentioned work, four types of calls are considered: handover voice calls

(hv-calls), new voice calls (ov-calls), handover data calls (hd-calls), and new data

calls (od-calls). The network uses a fixed channel allocation scheme (FCA scheme),

and every cell has N> 1 radio channels. The intensity of the x-calls is λx, x ∈ {hv,

ov, hd, od}.
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To service one voice call (v-call), it is required only one free channel, and one

nonelastic data call (d-call) requires b> 1 channels simultaneously. The distribu-

tion functions of channels holding time by heterogeneous calls are exponential, the

average intensity of processing one v-call (new or handover) is μv, and the

corresponding parameter for d-calls (new or handover) is μd.
In the system the following multi-parametric access scheme is used (see [25]).

For defining the success scheme, three parameters N1, N2, and N3 are introduced. It

is assumed that parameters N1 and N2 are multiples of b. These parameters satisfy

the inequality 0<N1�N2�N3�N. The proposed access scheme is determined by

the following rules of receiving heterogeneous calls:

• If upon arrival of an od-call the number of busy channels is no more than N1� b,
it is served; otherwise, it is rejected.

• If upon arrival of an hd-call the number of busy channels is no more than N2� b,
it is served; otherwise, it is rejected.

• If upon arrival of an ov-call the number of busy channels is less than N3, it is

served; otherwise, it is rejected.

• If upon arrival of an hv-call there is at least one free channel, it is served;

otherwise, it is rejected.

To calculate the QoS metrics of the pointed model in [25], a recursive method is

developed. This method faces the well-known computational difficulties for models

of a large dimension. The approximate method of solving this problem for certain

ratios of loads of heterogeneous traffics is developed in [16]. Here we develop an

accurate and computationally efficient method to solving this problem [17, 23].

It is easy to see that the given model of an integral network with the multi-

parametric access scheme is a special case of the model, studied in Sect. 2.1, with a

randomized access scheme. Indeed, we obtain the given model if in the studied

above model one will set K¼ 4 and the parameters αi(n) will be determined as

follows:

αod ¼ 1 if n � N1 � b,
0 inothercases;

�
ð2:26Þ

αhd ¼ 1 if n � N2 � b,
0 inothercases;

�
ð2:27Þ

αov ¼ 1 if n < N3,

0 inothercases;

�
ð2:28Þ

αhv ¼ 1 if n < N,
0 inothercases:

�
ð2:29Þ

In view of Eqs. (2.26)–(2.29), one finds that the sets A(i), i¼ 1, . . .,N
(see formula (2.15)) are defined as follows:
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A ið Þ ¼
ov; hvf g if i ¼ 1,

od; hdf g if i ¼ b,
∅ inothercases:

8<
:

After certain transformations from Eqs. (2.15), (2.16), one gets that in this model

for μv¼ μd the parameters gn, n¼ 0, 1, . . .,N are determined from the following

simple formulas:

g0 ¼ 1,

gn ¼
1

n
vvI n� 1 < N3ð Þ þ vhvI n� 1 � N3ð Þð Þgn�1 þ b vdI n � N1ð Þðð

þvhdI N1 < n � N2ð ÞÞgn�bÞ,

where n¼ 1, . . .,N and gx¼ 0 if x< 0. Here the following notation is taken:

vov¼ λov/μv, vhv¼ λhv/μv, vv¼ vov + vhv; vod¼ λod/μd, vhd¼ λhd/μd, vd¼ vod + vhd.
Consequently, the desired QoS metrics are calculated as follows:

PBhv ¼ π Nð Þ; PBov ¼
XN
n¼N3

π nð Þ; PBod

¼
XN

n¼N1�bþ1

π nð Þ; PBhd ¼
XN

n¼N2�bþ1

π nð Þ: ð2:30Þ

In other words, the computation of the QoS metrics of the given model by

formulas (2.30) does not offer difficulties for models of any dimension, and it is

much easier than the known algorithms [16, 25].

In the case μv 6¼ μd, as it is indicated above, one can use different schemes of

approximate solution of the problem.

Note that problems of obtaining prescribed QoS level for heterogeneous calls are

of definite scientific and practical interest. In this case, some adjustable parameters

should exist for the solution of such problems. In this connection, note that, in

networks with FCA schemes, only threshold parameters of the CAC scheme can be

controlled since the control of load parameters is a rather complicated and some-

times even an unsolvable problem from the practical viewpoint.

Here a problem of finding the set of values of threshold parameters of the

described above CAC scheme is considered for which a prescribed QoS level for

heterogeneous calls is satisfied. We call this set (if it is not empty) the set of efficient

values (SEVs) of threshold parameters.

For the models being investigated, there exist great possibilities of solution of

these problems since there are three degrees of freedom (i.e., the thresholds N1, N2,

and N3) in them. Hence, various statements of problems of finding the set of

efficient values of threshold parameters are possible.

A verbal definition of the problem being considered is as follows. In an FCA

scheme under fixed loads, upper bounds are prescribed for possible values of loss
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probabilities of heterogeneous calls. It is required to find values of threshold

parameters N1, N2, and N3 that satisfy the prescribed constraints.

For small values of N, the solution of this problem can be found by a simple

exhaustive search for all possible combinations of parameters N1, N2, and N3.

However, this approach becomes inefficient with the growth in N and sometimes

is simply impossible. Therefore, an algorithmic approach is proposed below to the

solution of the mentioned problem without using an exhaustive search for variants.

For simplicity, assume that new and handover calls are not distinguished in a

data traffic, i.e., assume that N1¼N2. Then, according to relationship (2.30), we

have PBod¼ PBhd.

We denote PBd¼ PBod¼ PBhd. Then the problem is mathematically written as

follows: it is required to find pairs (N2,N3) where N2�N3, for which the following

constraints are satisfied:

PBhv � εhv, ð2:31Þ
PBov � εov, ð2:32Þ
PBd � εd, ð2:33Þ

where εhv, εov, and εd are given values.

A possible algorithm for solution of problem (2.31)–(2.33) using monotonic

property of QoS metrics being investigated is presented below.

The main idea of such an iterative algorithm is as follows: for each fixed value of

the parameter N3, the search for the set of efficient values is performed due to the

choice of the corresponding values of the parameter N2. For convenience, this

argument is shown in the notation of these functions.

For generality, we consider the kth iteration, k¼ 1, 2, . . .,N.

Step 1 Set N3¼ k and check the following conditions:

PBhv 1ð Þ � εhv, ð2:34Þ
PBov 1ð Þ � εov, ð2:35Þ
PBd N3ð Þ � εd: ð2:36Þ

If all conditions (2.34)–(2.36) are satisfied, go to the next step. Otherwise, for the

prescribed value of N3, the problem has no solution.

Note 2.3 Since the function PBhv does not decrease with respect to the parameter

N3, the nonfulfillment of condition (2.34) for a definite value of N3 implies its

nonfulfillment for all k>N3. Allowance for this fact considerably accelerates the

operation of the algorithm.
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Step 2 Solve the following problem:

N2 ¼ argminN2 ∈ 1;N3½ � PBd N2ð Þ � εdf g: ð2:37Þ

Step 3 If PBhv N2

� �
� εhv and PBov N2

� �
� εov, then go to the next step. Other-

wise, for this value of N3, the problem has no solution.

Step 4 Simultaneously solve the following problems:

N hv
2 ¼ argmaxN2 ∈ ½N2 ;N3� PBhv N2ð Þ � εhvf g, ð2:38Þ

N ov
2 ¼ argmaxN2 ∈ ½N2 ;N3� PBov N2ð Þ � εovf g: ð2:39Þ

Step 5 Determine the sought-for interval of appropriate values of N2 for a given

value of N3 as N2 , N2

h i
where N2 ¼ min N hv

2 , N ov
2

� �
.

Step 6 If N3<N, then set N3¼N3 + 1 and go to step 1. Otherwise, terminate the

algorithm.

Note 2.4 Based on monotonic property of the functions being investigated, the dicho-

tomy (binary search) method can be used for the solution of problems (2.37)–(2.39).

Hence, for each fixed value of the threshold N3, the set of admissible values of N2

is found (if they exist), and the set of efficient values of threshold parameters is

found by uniting all the solutions obtained.

Numerical experiments were performed using the developed algorithm. For a

sample model, the following initial data for test problems (2.31)–(2.33) were used:

N¼ 50, vov¼ 8/9, vhv¼ 1/3, vod¼ 1/2, vhd¼ 1/4. The corresponding SEVs for the

problem under various constraints on the values of loss probabilities of heteroge-

neous calls are shown in Table 2.1. Here, the Cartesian product [a, b]� [c, d] means

that N2 ∈ [a, b] and N3 ∈ [c, d].
As is obvious from Table 2.1, the weakening of requirements on the QoS metrics

of d-calls leads to an extension of SEVs owing to the decrease in inefficient values

of the parameter N2 (see rows 1–4 in Table 2.1). This would be expected since the

loss probability of d-calls decreases with increasing the parameter N2. In this case,

an SEV is rather smoothly extended with respect to the change in the upper bound

of the loss probability of d-calls (i.e., εd). It should also note that, for a fixed value of
εd, an SEV retains its form for rather wide range of varying the other bounds εhv and
εov (see rows 5–8 in Table 2.1).

In practice, loads of heterogeneous traffics are changed in time. Therefore,

problems of investigating the sensitivity of efficient values of threshold parameters

with respect to a change in loads are topical questions. In this connection, we note

that any analytical investigation of this problem is impossible in principle; it can be

investigated only by means of numerical experiments. In particular, performed

numerical experiments show that efficient values of threshold parameters of
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problem (2.31)–(2.33) are preserved within a sufficiently wide load variation

interval. This is explained by a rather smooth change in the QoS metrics being

investigated with respect to loads of heterogeneous traffics.

2.1.2 Numerical Results

Let us consider the results of numerical experiments for the model of multi-rate

queue with three types of traffics. The appropriate algorithm to calculate the QoS

metrics is quite simple and allows us to study their behavior in all ranges of

changing the values of the load and structural parameters of the system. To keep

it brief only dependency of QoS metrics on the number of channels is shown in two

schemes of determining the access probabilities of heterogeneous calls. In both

schemes the bandwidth and load parameters are fixed and chosen as follows:

b1¼ 2, b2¼ 5, b3¼ 8; v1¼ 0.03 Erl, v2¼ 0.02 Erl, v3¼ 0.01 Erl.

In the first scheme it is assumed that αi( j)¼ bi/( j+ bi), and in the second one,

αi( j)¼ ( j+ 1)/( j+ bi), i¼ 1, 2, 3. In other words, in the first scheme access proba-

bilities of heterogeneous calls are determined by decreasing function, while in the

second one the indicated parameters are defined by increasing function with respect

to the number of busy channels. Besides these properties, the introduced access

probabilities have the following properties: for the first scheme

α1( j)< α2( j)< α3( j); for the second scheme α1( j)> α2( j)> α3( j) for any

j, j¼ 1, 2, . . .,N. It means that in the first scheme for the given number of busy

channels, access probabilities are determined by increasing function with respect to

their bandwidth, while in the second scheme we have inverse situation.

Here our goal is comparison of QoS metrics of the system under different access

schemes. Corresponding results are summarized in Figs. 2.1, 2.2, and 2.3 where

labels 1 and 2 denote loss probabilities for the first scheme and second scheme,

respectively. Their analysis enables us to make the following conclusions. First of

all, note that all the QoS metrics under study are decreasing functions with respect

to the total number of channels. They completely confirmed all theoretical expec-

tations. However, unlike the function PB1 the rates of change of the functions PB2

Table 2.1 Results of solution

of problem (2.31)–(2.33)
Parameter values

SEVεhv εov εd

10�4 10�5 10�6 [12,30]� [31,50]

10�4 10�5 10�5 [10, 30]� [31,50]

10�4 10�5 10�4 [9, 30]� [31,50]

10�4 10�5 10�3 [8, 30]� [31,50]

10�4 10�4 10�3 [8, 30]� [31,50]

10�4 10�3 10�3 [8, 30]� [31,50]

10�4 10�2 10�3 [8, 30]� [31,50]

10�2 10�4 10�3 [8, 30]� [31,50]
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and PB3 in first scheme are sufficiently high for small values of channels, i.e., for

N� 56 both functions PB2 and PB3 become almost constant.

It is worth noting that for given initial data the first scheme is preferable.

However, quite probably, for other values of initial data of the QoS metrics (either

all or some of them), the second scheme will be better than the first one. Note that

finding the optimal (in known sense) values of access probabilities is not a trivial

problem especially for large-size models with many types of heterogeneous calls.

However, note that for solving such kind of problems, the methods of Markov

decision processes are useful.
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2.2 Models of Integral Cellular Networks with Partition

of Channels

In majority of known CAC schemes all channels of a cell are equally accessible to a

call of any type. However, to reduce the possibility of occurrence of conflict

situations using the appropriate schemes of partition of the entire pool of channels

between heterogeneous calls is effective also. The analysis of the accessible

literature has shown that models of integral cellular networks with such kind of

access schemes are insufficiently investigated. Note that the isolated (rigid) parti-

tion of channels not always is effective [9], so other partition schemes are required.

Thereupon note that non-isolated schemes of partition of channels in network with

single traffic (networks of the second generation) have been offered in [20] and in

[27], Chap. 1. Feature of these schemes consists that in them partition of channels is

not rigid, i.e., the scheme of virtual partition of channels (virtual partitioning, VP)

is used.

Here two multi-parametric schemes to partition of entire pool of channels

between heterogeneous calls in models of integral wireless networks with voice

and data calls (see Sect. 2.1.1) are proposed. Exact algorithms to calculate the QoS

metrics of heterogeneous calls under given partition schemes are developed.

Results related to determining the efficient partition scheme are carried out.
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2.2.1 Model with Complete Partition

At first consider the complete (or isolated) partition scheme (CP scheme) for

distribution of channels between zones in which reassignment of the channel

from one zone to another is not allowed.

The entire pool of N> 1 channels of an isolated cell of integral networks is

divided into two groups: exactly Nv channels are assigned for voice calls only and

remains Nvd¼N�Nv; channels are used commonly by voice and data calls. In

other words, pool of channels is divided into individual zone with Nv channels

(v-zone only for voice calls) and common zone with Nvd channels (vd-zone for both

voice calls and data calls). Disconnection (isolation) of division of channels means

that any channel cannot be transferred from one zone to another.

For the sake of simplicity here assume that call of any type to service required

only one free channel (i.e., b¼ 1).

The following rules to access of v-calls are used:

• If upon arrival of an ov-call there is at least one free channel in v-zone, this call

seizes one of them; otherwise this call is rejected.

• If upon arrival of an hv-call there is at least one free channel in v-zone, this call

seizes one of them; otherwise free channel is searched in vd-zone. At that there is

a limit to the number of hv-calls in vd-zone, i.e., an hv-call is accepted to

vd-zone only if the number of hv-calls in this zone is less than Rhv, 1�Rhv�Nvd;

otherwise it is rejected.

Note that channel holding time of hv-calls in vd-zone has exponential distribu-

tion with the same average 1/μv.
Accesses of d-calls are controlled by the following rules:

• If upon arrival of an hd-call there is at least one free channel in vd-zone, this call

seizes one of them; otherwise this call is rejected.

• Arrived od-call is accepted to vd-zone only if the number of d-calls in this zone

is less than Rod, 1�Rod�Nvd; otherwise it is rejected.

Consider the problem of finding the main QoS metrics (i.e., loss probabilities of

heterogeneous calls) of the network under given partition scheme of the channels.

From the description of the proposed CP scheme, we conclude that the loss

probability of new voice calls is easily defined as loss probability in a classical

Erlang’s model M/M/Nv/Nv with load vv Erl, where vv¼ (λov + λhv)/μv. In other

words, to calculate this QoS metrics the well-known Erlang’s B-formula might be

used:

PBov ¼ EB vv;Nvð Þ ð2:40Þ

where EB(v, n)¼ (vn/n !)/(∑n
i¼ 0(v

i/i !)).
However, the loss probability of hv-calls cannot be defined by means of the

formula (2.40) since the hv-calls not accepted in the v-zone under certain conditions
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are transferred to vd-zone. Thus, intensity of hv-calls to vd-zone eλhv
� �

is deter-

mined as eλhv ¼ λhvPBov.

Therefore, to calculate the remaining three QoS metrics, it is required to study

the multi-flow Erlang’s model M/M/Nvd/Nvd with three types of calls, i.e., hv-calls

(with intensity eλhv), od-calls (with intensity λod), and hd-calls (with intensity λhd).
Since the channel holding times of heterogeneous calls differ from each other, the

state of the mentioned model is described by 2-D vector n¼ (nd, nv), where nd
(respectively, nv) is the total number of data (respectively, handover voice calls)

calls in the channels. Then the state space of the corresponding 2-D MC describing

this model is defined thus

S ¼ n : nd ¼ 0, 1, . . . ,Nvd; nv ¼ 0, 1, . . . :,Rhv; nd þ nv � Nvdf g:

Taking into account the proposed CP scheme for heterogeneous calls, we

conclude that the nonnegative elements of the Q-matrix of the appropriate 2-D

MC in this model are determined as follows (see Fig. 2.4):

q n; n0ð Þ ¼

λd if nd < Rod, n0 ¼ nþ e1,
λhd if nd � Rod, n0 ¼ nþ e1,eλhv if nv < Rhv, n0 ¼ nþ e2,
ndμd if n0 ¼ n� e1,
nvμv if n0 ¼ n� e2,
0 inothercases,

8>>>>>><
>>>>>>:

ð2:41Þ

where λd¼ λod + λhd, e1¼ (1, 0), e2¼ (0, 1).

It is easy to show that all states of this 2-DMC are communicating, so in this

chain stationary mode exists. Let p(n) denote the stationary probability of state

n ∈ S.
Desired QoS metrics of the proposed CP scheme are determined via marginal

distribution of the above-indicated 2-D MC. Indeed, in this scheme losses of

hv-calls occur in the following cases: (a) upon arrival of hv-call, the number of

calls of this type in the system is equal Rhv regardless of the number of busy

channels, and (b) upon arrival of hv-calls, all channels are busy. Therefore by

using PASTA theorem, we obtain

PBhv ¼
X
n∈S

p nð Þ δ nv;Rhvð Þ 1� δ nd þ nv,Nvdð Þð Þþ 1� δ nv;Rhvð Þð Þδ nd þ nv,Nvdð Þð Þ:

ð2:42Þ

Arguing similarly, we find that loss probabilities of od-calls (PBod) and hd-calls

(PBhd) are determined as follows:
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... ...

ld µd

µv

1,0 1,1 1,Rhv...

... ...

...
Nvd-Rhv,0 Nvd-Rhv,1 Nvd-Rhv,

Rhv

...

... ...
2µv Rhv µv

ld 2µd

lhd (Rod+1)µd

lhd Nvd µd

Fig. 2.4 State transition

diagram of the model with

CP scheme for partition of

channels

52 2 Analytical Methods for Analysis of Integral Cellular Networks



PBod ¼
X
n∈ S

p nð ÞI nd � Rodð Þ; ð2:43Þ

PBhd ¼
X
n∈ S

p nð Þ nd þ nv,Nvdð Þ: ð2:44Þ

System of global balance equations (SGBE) for stationary probabilities is

constructed by using relationship (2.41) (we left it to reader). However stationary

probabilities can be determined analytically without the numerical solution of the

indicated SGBE which for real system has a large dimension.

Proposition 2.4 Stationary distribution of the system at use CP scheme has the

following multiplicative form:

p i; jð Þ ¼

v id
i!

ev j
hv

j!
p 0;0ð Þ if 0� i � Rod, 0� j �min Rhv,Nvd � ið Þ,

vd
vhd

	 
Rod v ihd
i!

ev j
hv

j!
p 0;0ð Þ if Rod þ 1 � i � Nvd, 0� j �min Rhv,Nvd � ið Þ,

8>>>><
>>>>:

ð2:45Þ

where p(0,0) is determined from the normalizing condition, i.e., ∑ n ∈ Sp(n)¼1 and

evhv ¼ eλhv=μv.
Proof of this fact is based on Kolmogorov’s theorem about reversibility of 2-D

MC [18]. Indeed, it is easily shown that there is no circulation between states

n, n + e1, n + e2, n+ e1 + e2 of the state diagram of the underlying 2-DMC, i.e., there

is a general solution of the system of local balance equations (SLBE) for state

probabilities. Thus by choosing the path (0, 0), (1, 0), . . ., (i, 0), (i, 1), . . ., (i, j) from
state (0, 0) to state (i, j), we find that multiplicative solution (2.45) is holding (see

Fig. 2.4, area in a dashed line). Note that in this proof scheme it is required to take

into account two cases which are indicated in the right side of formula (2.45).

Finally, after calculating the state probabilities, the QoS metrics (2.42)–(2.44)

are determined from the following explicit formulas:

PBhv ¼
XNvd�Rhv

i¼0

p i;Rhvð Þ þ
XNvd

i¼Nvd�Rhvþ1

p i,Nvd � ið Þ, ð2:46Þ

PBod ¼ I Rod � Nvd � Rhvð Þ
XNvd

i¼Rod

Xmin Rhv,Nvd�ið Þ

j¼0

p i; jð Þ

þ I Rod > Nvd � Rhvð Þ
XRod�1

i¼Nvd�Rhv

p i,Nvd � ið Þ þ
XNvd

i¼Rod

XNvd�i

j¼0

p i; jð Þ
 !

,

ð2:47Þ

2.2 Models of Integral Cellular Networks with Partition of Channels 53



PBhd ¼
XNvd

i¼Nvd�Rhv

p i,Nvd � ið Þ: ð2:48Þ

2.2.2 Model with Virtual Partition

Now consider similar model with virtual partition (VP scheme) of channels

between two zones. The basic difference of the given scheme from the previous

one consists in the following: upon completion of servicing of a v-call in v-zone, the

relinquished channel is transferred to the vd-zone if there is a v-call present here,

while the channel in the vd-zone that has servicing v-call is switched to the v-zone.

In other words, partition is a virtual one, and this procedure is similar to channel

reallocation scheme.

Note that at use VP scheme the loss probability of new voice calls cannot be

calculated simply from classical Erlang’s B-formula (2.40). It is explained by the

fact that in this scheme reallocation of channels is allowed.

As abovementioned scheme, here the state of the model is described by 2-D

vector n¼ (nd, nv) also, where nd (respectively, nv) is the total number of data

(respectively, handover voice calls) calls in the channels. However, the state space

of the corresponding 2-D MC is defined as follows:

S ¼ n : nd ¼ 0, 1, . . . ,Nvd; nv ¼ 0, 1, . . . :,Nv þ Rhv; nd þ nv � Nf g:

In VP scheme the nonnegative elements of the Q-matrix of the appropriate 2-D

MC is determined as follows (see Fig. 2.5):

q n; n0ð Þ ¼

λd if nd < Rod, n
0 ¼ nþ e1,

λhd if nd � Rod, n
0 ¼ nþ e1,

λv if nv < Nv, n
0 ¼ nþ e2,

λhv ifNv � nv < Nv þ Rhv, n
0 ¼ nþe2,

ndμd if n0 ¼ n� e1,
nvμv if n0 ¼ n� e2,
0 inothercases,

8>>>>>>>><
>>>>>>>>:

ð2:49Þ

where λv¼ λov + λhv.
Using the scheme of the proof of the Proposition 2.4, it is possible to show that

the following fact is true (see Fig. 2.5, area in a dashed line).

Proposition 2.5 Stationary distribution of the system at use VP scheme has the

following multiplicative form:
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Case Rod�Nvd�Rhv:

p i; jð Þ ¼

v id
i!

v jv
j!
p 0;0ð Þ if 0� i� Rod,0� j�Nv,

vd
vhd

	 
Rod v ihd
i!

v jv
j!
p 0;0ð Þ ifRodþ 1� i�Nvd,0� j�Nv,

vv
vhv

	 
Nv v id
i!

v jhv
j!
p 0;0ð Þ if 0� i� Rod,Nvþ 1� j�NvþRhv,

vd
vhd

	 
Rod

vv
vhv

	 
Nv v ihd
i!

v jhv
j!
p 0;0ð Þ ifRodþ 1� i�Nvd� 1,Nv

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

þ1� j�min NvþRhv,N� ið Þ; : ð2:50Þ

0,0 0,1 0,Nv...

Rod,0 Rod,1 Rod,
N-Rod

...

...

... ...

l v

ld µd

µv

1,0 1,1 1, Nv...

... ...

...

N-Nv-
Rhv,0

N-Nv-
Rhv,1

N-Nv-
Rhv, Nv

...

... ...

...

lv l v

2µv Nv µv

ld 2µd

lhd (Rod +1)µd

0,Nv+Rhv

1,Nv+Rhv

...

N-Nv-Rhv, 
Nv+Rhv

...

lv l

(Nv+Rhv) µv

Rod,Nv...

Nvd,0 Nvd,1 Nvd, Nv...

...

ld Rod µd

l hd Nvd µd

...

...

Fig. 2.5 State transition diagram of the model with VP scheme for partition of channels
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Case Rod>Nvd�Rhv:

p i; jð Þ¼

v id
i!

v jv
j!
p 0;0ð Þ if 0� i�Rod,0� j�Nv,

vd
vhd

	 
Rod v ihd
i!

v jv
j!
p 0;0ð Þ ifRodþ1� i�Nvd,0� j�Nv,

vv
vhv

	 
Nv v id
i!

v jhv
j!
p 0;0ð Þ if0� i�Rod,Nvþ1� j�min NvþRhv,N� ið Þ,

vd
vhd

	 
Rod

vv
vhv

	 
Nv v ihd
i!

v jhv
j!
p 0;0ð Þ ifRodþ1� i�Nvd�1,Nv

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

þ1� j�N� i: : ð2:51Þ

In both formulas (2.50) and (2.51), p(0,0) is determined from the normalizing

condition.

Finally we obtain the following explicit formulas to calculate the QoS metrics at

use VP scheme for partition of channels’ pool:

PBov ¼
XNvd�Rhv

i¼0

XNvþRhv

j¼Nv

p i; jð Þ þ
XNvd

i¼Nvd�Rhvþ1

XN�i

j¼Nv

p i; jð Þ, ð2:52Þ

PBhv ¼
XNvd�Rhv

i¼0

p i,Nv þ Rhvð Þ þ
XNvd

i¼Nvd�Rhvþ1

p i,N � ið Þ, ð2:53Þ

PBod ¼
XNvd

i¼Rod

Xmin NvþRhv,N�ið Þ

j¼0

p i; jð Þ, ð2:54Þ

PBhd ¼
XNv�1

i¼0

p Nvd; ið Þ þ
XNvd

i¼Nvd�Rhv

p i,N � ið Þ: ð2:55Þ

2.2.3 Numerical Results

The developed above explicit formulas allow to investigate the behavior of QoS

metrics of the both partition schemes over any range of change of values of loading

parameters of heterogeneous calls and number of channels. First of all, here it is
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assumed that allocation of entire pool of channels between zones is fixed, and only

regulated parameters are Rhv and Rod. It is clear that the behavior of QoS metrics

with respect to the indicated parameters is identical in both partition schemes. In

other words, the increase in value of one of the parameters Rhv and Rod (in an

admissible area) favorably influences the QoS metric of calls of the corresponding

type only.

The initial data for total number of channels and loading parameters of hetero-

geneous calls are as in [4], i.e., N¼ 30, λov + λhv¼ 0.15 call/s, λod + λhd¼ 0.3 call/s,

μ� 1
v ¼ 2 s, and μ� 1

d ¼ 120 s. Below, assume that Nv¼ 12, Nvd¼ 18 and 30 % of the

total intensity of voice calls are handover voice calls and 80 % of the total intensity

of data calls are new data calls.

First consider the results of numerical experiments for the model with CP

scheme for partition of channels. Some results for behavior of QoS metrics versus

Rhv are shown in Fig. 2.6. Since loss probability of ov-calls is determined by

Erlang’s B-formula (i.e., it is independent on Rhv), then function PBov is constant
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one, while loss probability of hv-calls (PBhv) is decreasing function versus Rhv (see

Fig. 2.6a). Note that function PBhv is almost piecewise linear one and has high rate

of decreasing especially for small values of Rhv. Both QoS metrics for data calls are

non-decreasing function with respect to Rhv, and they become almost constant for

the large values of indicated parameter (see Fig. 2.6b). The last facts are explained

by the following arguments: for given initial data, intensity of handover voice calls

essentially is less than intensity of data calls, and at the same time handle rate of

data calls essentially is more than appropriate parameter for voice calls.

Results for behavior of QoS metrics versus Rod are shown in Fig. 2.7. As above,

function PBov is a constant one, but here PBhv is a non-decreasing function, since

increase in value of parameter Rod leads to decreasing the chances of hv-calls for

access to the channels of vd-zone (see Fig. 2.7a). At that rate of change of function,

PBhv is inconsiderable for large values of parameter Rod. In this case, function PBod

is decreased with high speed in small values of parameter Rod, while function PBhd

has a small increasing rate in large values of indicated parameter.
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Now consider the results of numerical experiments for the model with VP

scheme for partition of channels (see Figs. 2.8 and 2.9). In Fig. 2.8, the dependency

of QoS metrics on the parameter Rhv is shown. It is seen from Fig. 2.8a that function

PBhv decreases in small values of parameter Rhv with high speed; thereafter, it

becomes almost constant; function PBov increases with insignificant speed in small

values of indicated parameter; thereafter, it becomes almost constant also. Almost

constants are both functions PBod and PBhd versus Rhv (see Fig. 2.8b). Such

behavior of functions PBod and PBhd is explained via small intensity of handover

voice calls.

Dependency of QoS metrics on the parameter Rod is shown in Fig. 2.9. Here both

functions PBod and PBhv increase with insignificant speed in small values of

indicated parameter; thereafter, it becomes almost constant (see Fig. 2.9a). How-

ever, function PBod decreases with significant speed versus PBod and PBod, while

function PBod and PBhd is almost constant one (see Fig. 2.9b).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 3 5 7 9 11 13 15 17

-12

-10

-8

-6

-4

-2

0
1 3 5 7 9 11 13 15 17

Pv

Pov

Phv

a

LgPd

b

Pod

Phd

Rod

Rod

Fig. 2.8 QoS metrics

versus Rod under VP scheme

of partition

2.2 Models of Integral Cellular Networks with Partition of Channels 59



Now briefly consider comparative analysis of the QoS metrics of two partition

schemes at fixed values of structural and loading parameters of the model. Con-

trollable parameters are PBhv and PBod. As shown above (see Figs. 2.6, 2.7, 2.8, and

2.9), the behavior of QoS metrics versus these controllable parameters in different

partition schemes is identical.

Some results of the comparison are shown in Figs. 2.10, 2.11, 2.12, and 2.13

where labels 1 and 2 denote QoS metrics for CP scheme and VP scheme, respec-

tively. The input data are the same as for Figs. 2.6, 2.7, 2.8, and 2.9.
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It is interesting to note that character of change of QoS metrics versus change of

parameters PBhv and PBod is almost identical at both partition schemes of channels

(except for the QoS metric PBhv versus Rhv, see Fig. 2.11b). However, in some

cases, their absolute values are in different quantitative ranges.

From Fig. 2.10a, we conclude that for the chosen initial data, QoS metric PBov is

better under VP scheme of partition for values Rod� 2 and for Rod� 3 both partition

schemes have the same performance. However, from Fig. 2.10b it is seen that this

QoS metric is better under VP scheme of partition for values Rod� 8 and in cases

Rod> 9 favorably scheme for QoS metric PBov is CP scheme of partition.
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In Fig. 2.11 comparative results are shown for QoS metric PBhv. It is seen from

Fig. 2.11a that this QoS metric is essentially better under VP scheme of partition for

all values of Rod. However, this QoS metric is better under VP scheme for values of

Rhv ∈ [3, 7], and in other values this metric favorably is CP scheme (see

Fig. 2.12b).

It is seen from Fig. 2.12a that for QoS metric PBod at Rod< 12 both partition

schemes have the same performance, but at Rod� 12 one of schemes, i.e., VP

scheme, has good performance for this metric. Note that this QoS metric is

essentially better under CP scheme of partition for all values of Rhv (see Fig. 2.12b).
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From Fig. 2.13 we conclude that QoS metric PBhd is essentially better under VP

scheme of partition for all values of both parameters Rod and Rhv.

The numerical results show that all QoS metrics in both partition schemes have

monotony property. These facts allow to develop the algorithms to finding the set of

effective values (SEVs) in order to satisfy the given QoS level. Such kind of

problems has been considered in Sect. 2.1.1; thus they are not considered here.

We left them to reader.
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2.3 Conclusion

In the last decades are published many books [1, 2, 5, 6, 10–12, 19, 27, 30, 31, 33]

and reviews [3, 14, 15, 24] which deal with applications of queueing theory in

telecommunication networks. In this direction, multi-rate Erlang’s models are

subjects of many researches. Rather detailed description of the MRQ results can

be found in appropriate chapters of books [11, 19, 27, 30] and in papers [14, 15, 23,

26]. Here we only note that in the theory of MRQmodels, the main results are based

on the following fact [13, 29]: the stationary distribution of unbuffered Markov

model of MRQ in the full availability of channels (i.e., in CS scheme) has a

multiplicative form. Note that as in case of single-rate multidimensional Erlang’s

models, a multiplicative solution exists also in the cases when the distribution

function of the service time of multi-rate traffic is arbitrary with the fixed mean

value.

-12

-10

-8

-6

-4

-2

0
1 3 5 7 9 11 13 15 17

-12

-10

-8

-6

-4

-2

0
1 3 5 7 9 11 13 15 17

LgPhd

a

1

2

Lg Phd

b

1

2

Rod

Rhv

Fig. 2.13 Comparison for

Phd under different partition

schemes; (a) Rhv¼ 9; (b)

Rod¼ 9

64 2 Analytical Methods for Analysis of Integral Cellular Networks



In this chapter an analytical approach to the analysis of a multi-rate Erlang’s

model with the state-dependent randomized access strategy is proposed [21, 23]. In

contrast to the known numerical methods, the proposed approach does not require

generation of the large state space of the model, and, therefore, finding the desired

QoS metrics is carried out by explicit formulas. It is shown that from the results of

this chapter, the results for the MRQ models with the known access schemes can be

easily obtained. It is proved that the results, obtained in previous studies using

heuristic considerations, which have been regarded as approximate, are in fact

accurate ones in some cases. The proposed method also allows one to develop

simple one-dimensional recurrence formulas for calculating QoS metrics of integral

wireless networks of voice calls and data calls. The simplicity of the obtained

formulas allows one to formulate and solve important problems of optimization of

the studied models.

Note that Kaufman–Roberts algorithm together with its various modifications is

the main tool to study the characteristics of multi-rate queues. For instance, in [8]

the formula to calculate the occupancy distribution in the CS scheme for the model

MRQwith mixture of flows of Erlang, Engset, and Pascal type is proposed. Here the

considered models of MRQ systems with randomized access strategy have been

studied in [31], Chap. 7, where they are called state-dependent systems. In the

indicated book, the equations (2.18) are obtained also. However, in [31] these

equations are obtained subject to the following conditions: (αi(n))/(αi(n+ bj))¼
(αj(n))/(αj(n+ bi)) for any i, j¼ 1, 2, . . .,K. The last conditions are necessary to

providing the reversibility of appropriate K-dimensional Markov chain which are

results from Kolmogorov’s theorem [18]. At the same time, as authors noted, in

practice the fulfillment of these conditions is extremely difficult problem. The

equations (2.18) without any proofs are resulted in the book [19], Chap. 11 also.

Authors simply verbally assume that these equations are true. Alternative and

effective approach to calculate the QoS metrics of multi-rate models is using

convolution algorithms [11].

Attempt to the solution of similar problems which appear in communication

networks has been made in work [32]. Unfortunately, this attempt has appeared

unsuccessful [22].

Here two partition schemes for distribution of entire pool of channels among

voice and data calls in integral wireless networks are proposed also. One of them

uses isolated (rigid) distribution of channels, while in another scheme, virtual

distribution procedure is applied. In both schemes, a voice call seizes the free

channel in own zone, and if there is no free channel in this zone, only handover

voice calls might search free channel in another zone. Moreover the state-dependent

limit to the both number of handover voice calls and new data calls in zone of

channels for data calls are defined. It is shown that in both partition schemes

stationary distribution of appropriate 2-D MC has multiplicative form. By using

this fact the explicit formulas to calculate the QoS metrics of the integral networks

under given partition schemes are developed. The proposed formulas allow to

perform comparative analysis of QoS metrics in various partition schemes.
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Chapter 3

Algorithmic Methods for Analysis

of Mono-service Cellular Networks

In this chapter, methods for exact and approximate evaluation of the characteristics

of mono-service cellular networks with single traffic are developed. In other words,

models with only one type of traffic in which new and handover calls have the same

bandwidth requirements and identically distributed channel holding time with

common average value are investigated. Two kinds of models have been consid-

ered. In models with queues (finite or infinite) of both new and handover calls, it is

assumed that unlike calls may leave the queue if their waiting time is greater than

some threshold value. Another type of models takes into account repetitions of new

calls, while to provide high priority to handover calls, guard channel scheme is

used. For both types of models results of numerical experiments are presented.

3.1 Models of Mono-service Cellular Networks

with Buffers

To support the given level of QoS cellular networks employ various strategies for

the access to radio channels of base stations (BSs) and/or organize buffer stores to

wait for unlike calls either in queue or in an orbit (retrial queues).

Since h-calls are more sensitive to possible losses and delays than o-calls, the
proposed schemes often imply that guard channels are used for h-calls and/or only
their queues in the base station are organized. A queue of h-calls can be organized

in networks where microcells are covered with some macrocell, i.e., there is some

zone (handover zone) inside which a mobile user (MU) can be served in any of the

neighboring cells. The time it takes an MU to cross the handover zone is called

degradation interval. When an MU arrives at a handover zone, the presence of free

channels in a new cell is checked. If there is a free channel, the h-call immediately

occupies it, and the handover procedure is considered to be successfully completed

at this stage; otherwise the channel of the previous cell is still used by this h-call and
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is simultaneously queued to wait until any channel of the new cell becomes free. If a

free channel does not appear before the end of the degradation interval, the

conversation of the h-call is forcedly interrupted.

Note that to compensate for chances of o-calls in some networks, buffers are

organized for this type of calls as well. Alternative way is using access scheme with

retrial new calls. The last scheme is characterized by the feature that arriving calls

who find all channels busy join the retrial group (orbit) to try again for their requests

in random order and at random intervals. Obviously, both schemes increase the total

throughput of the network.

In this section we study models with buffers for both types of calls as well as

models with retrial o-calls where h-calls are handled in accordance with guard

channel scheme.

Models with finite buffers are analyzed in the literature. However, the known

approaches allow analyzing models with only a small buffer store. In this connec-

tion, here we propose an approach to analyzing both models with arbitrary volume

of finite buffer store and models with infinite buffer store. One more advantage of

the proposed approach is that, in contrast to the known approaches, it allows

deriving simple analytic formulas to evaluate the unknown QoS metrics of net-

works under study. Note that though we consider here mono-service networks

(to simplify model description and intermediate computations), the results obtained

can easily be adapted to multiservice networks.

3.1.1 Models with Buffers

Here, consider a model of an isolated cell of a wireless network whose base station

contains N > 1 radio channels. We assume that o-calls (h-calls) arrive according to
the Poisson law with the rate λo(λh), and the time a channel is occupied with calls of

any type is an exponentially distributed random variable with the mean value μ� 1.

If a handover takes place during servicing of a call of any type, the residual service

time of a call in a new cell is also exponentially distributed with the same mean

value since exponential distribution has no memory.

First consider model with finite separate buffers for unlike calls. These calls are

served with channel reservation scheme for h-calls, i.e., an o-call arrived is

accepted only if the number of free radio channels of the BS is greater than

g, 0� g�N� 1 (or, equivalently, if the number of busy radio channels of the BS

is less than N� g). Otherwise the o-call is queued if the number of such calls in the

corresponding buffer does not exceed a prescribed value Ro, where 0<Ro<1;

otherwise the o-call arrived is blocked. A handover call is accepted if there is at

least one free channel. Otherwise the h-call is queued if the number of such calls

in the corresponding buffer does not exceed Rh, where 0<Rh<1; otherwise the

h-call arrived is blocked.

Channel allocation scheme for a call to be chosen from the queue is defined as

follows. If the number of free channels in the BS at this moment is g, then one o-call
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is chosen from the queue (if any) for service; otherwise, the free channel stands idle

even if a queue of o-calls exists. Channels standing idle are inadmissible if there are

h-calls in the cell. Any service discipline can be used inside each queue; for the sake
of determinacy, we imply the first-come first-served (FCFS) discipline.

Consider models with impatient o-calls. This means that an o-call may leave the

queue before the service starts if its time of waiting in the buffer exceeds a random

variable with finite mean value τ� 1
0 . Similarly, an h-call may leave the queue before

the service starts if the time of its degradation (i.e., the time it takes to cross the

handover zone) exceeds a random variable with the finite mean value τ� 1
h . The

above random variables are assumed to be independent of each other and equally

exponentially distributed.

The main metrics of this model are loss probabilities for unlike calls, their

average queue lengths, and the mean waiting time for unlike calls. Below, both

the exact and approximate methods to calculate QoS metrics of models under study

are developed.

3.1.2 Models with Finite Buffers

Let us first consider a model with finite queues of unlike calls. To describe the

operation of the system under study, a two-dimensional Markov chain (MC) is

used. The state of a cell at an arbitrary time can be defined by a two-dimensional

vector k¼ (k1, k2), where k1 indicates the total number of busy channels and h-calls
in the queue and k2 is the number of o-calls in the queue. The state space of the

system is defined as follows:

S ¼ [Ro

i¼0Si, ð3:1Þ

where

S0 ¼ k : k1 ¼ 0, 1, . . . ,N þ Rh; k2 ¼ 0f g,
Si ¼ k : k1 ¼ N � g, . . . ,N þ Rh; k2 ¼ if g, i � 1:

Considering the mechanism of system operation, we find that the nonnegative

elements of the given 2-D MC are determined as follows (see Fig. 3.1):
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q k; k0ð Þ ¼

λo þ λh if k1 < N � g, k2 ¼ 0, k0 ¼ kþ e1,
λo if k1 � N � g, k0 ¼ kþ e2,
λh if k1 � N � g, k0 ¼ kþ e1,
f k1ð Þμþ k1 � Nð Þþτh if k0 ¼ k� e1,
N � gð Þμδ k1,N � gð Þ þ k2τo if k0 ¼ k� e2
0 in other cases:

8>>>>>><
>>>>>>:

ð3:2Þ

Hereinafter, we introduce the following notation: f(x)¼min(x,N), x+¼max(0,

x).
The unknown QoS metrics are determined via the stationary distributions of the

state probabilities of the model. So, the average number of o-calls (Lo) and the

average number of h-calls (Lh) in the queue are determined as the corresponding

marginal distributions of the original chain:

Lo ¼
XRo

k2¼1

k2
XNþRh

k1¼N�g

p k1; k2ð Þ, ð3:3Þ

Lh ¼
XNþRh

k1¼Nþ1

k1 � Nð Þ
XRo

k2¼0

p k1; k2ð Þ: ð3:4Þ

Fig. 3.1 State diagram of the model with guard channels and finite buffers for impatient calls
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To find the loss probability for unlike calls, the following approach can be used.

As indicated above, o-calls are lost in case of the following events: (1) at the time an

o-call arrives, there are already Ro such calls in the corresponding buffer; (2) the

time an o-call is waiting in the buffer exceeds a prescribed threshold τ� 1
o . Hence,

the loss probability for o-calls (Po) can be determined as follows:

Po ¼
XNþRh

k1¼N�g

p k1;Roð Þ þ 1

λo

XRo

k2¼1

k2τo
XNþRh

k2¼N�g

p k1; k2ð Þ: ð3:5Þ

The first and second terms of the sum in the last formula denote the probability of

events (1) and (2), respectively.

Similarly, we conclude that h-calls are lost in case of the following events: (3) at
the time an h-call arrives, there are already Rh such calls in the corresponding

buffer; (4) the degradation interval for an h-call ends earlier than it gets access to the
free channel.

Hence, the loss probability for h-calls (Ph) can be determined as follows:

Ph ¼
XRo

k2¼0

p N þ Rk, k2ð Þ þ 1

λh

XNþRh

k1¼Nþ1

k1 � Nð Þτh
XRo

k2¼0

p k1; k2ð Þ: ð3:6Þ

Formula (3.6) can be commented similarly to Eq. (3.5). Further, formulas (3.3)–

(3.6) and a modified Little’s formula can be used to evaluate the mean waiting time

for o-calls (Wo) and h-calls (Wh) in the buffer:

Wx ¼ Lx
λx 1� Pxð Þ , x∈ o; hf g: ð3:7Þ

Thus, to find QoS metrics (3.3)–(3.7), it is necessary to determine the steady-

state probabilities of the model from the corresponding SGBE. It is composed based

on relations (3.2); its explicit form and a solution algorithm for the problem are

presented in [7]. Such approach to calculating the QoS metrics is called exact one.

However, being combinatory, this approach is efficient only for small values of

Ro and Rh and is absolutely unsuitable even for their moderate values. At the same

time, from the practical standpoint, of interest are models with arbitrary size of

buffer stores for waiting unlike calls (they are also of certain scientific interest).

In view of the above facts, to overcome the mentioned computational difficul-

ties, below we propose to use an approximate method based on the principles of

state space merging of 2-D MC.

This method is applicable to analyze models of popular microcells, with the

intensity of h-calls being much greater than the intensity of o-calls. In other words,

below we assume that λh� λo. It is important to note that this assumption is not

extraordinary for cellular networks, since this is a regime that commonly occurs in

microcells, in which mobile users have high mobility and short duration calls

[6]. Indeed in 3.5G wireless network (e.g., IEEE 802.16e), the radius of a microcell
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is about 100 m, and so the arrival rate of h-calls is larger than that of o-calls, and
holding time in a microcell is quite short. Thus microcell in 3.5G wireless networks

satisfies the above conditions. Moreover, as is seen from the further presentation,

final results do not depend directly on loading parameters of incoming traffic but

only on their relations vx :¼ λx/μ, x ∈ {o, h}.
By the above assumptions on the relationships between loading parameters of

the traffic of different types, we find that in representation (3.1), the transition rates

between states inside each class Si much exceed the rates of transitions between

classes. Based on this, the sets Si are then united into individual merged states hii,
and the following merging function with the domain (3.1) is introduced:

U kð Þ ¼ ih i if k∈ Si, i ¼ 0, 1, . . . ,Ro: ð3:8Þ

The merged function (3.8) defines a merged model, which is a 1-D MC with the

finite state space eS :¼ ih i : i ¼ 0, 1, 2, . . . ,Rof g.
To find the stationary distribution of the original model, a preliminary determi-

nation of stationary distributions of split models is required. A split model with the

state space So is described by a 1-D BDP whose parameters are defined as follows

(see Eq. (3.2)):

λj ¼ λo þ λh if j < N � g,
λh if j � N � g;

μj ¼ jμ if j � N,
Nμþ j� Nð Þτh if j > N:

��
ð3:9Þ

The probabilities of states in this split model are denoted by ρo(i), i¼ 0, 1, 2, . . .,
N +Rh. Considering Eq. (3.9), they can be determined as follows:

ρ0 ið Þ ¼

vi

i!
ρ0 0ð Þ if 1 � i � N � g,

v
vh

� �N�g v ih
i!
ρ0 0ð Þ ifN � gþ 1 � i � N,

vN�g

N!
v
g
h

Y i

j¼Nþ1

λh
Nμþ j� Nð Þτh ρ0 0ð Þ ifN þ 1 � i � N þ Rh,

8>>>>>>>>><
>>>>>>>>>:

ð3:10Þ

where v¼ vo+ vh and ρ0(0) are defined from normalizing condition, i.e.,XNþRh

i¼0
ρ0 ið Þ ¼ 1.

Split models with the state space Si are 1-D BDP, identical for all i� 1. The birth

rate is a constant and equal to λh, and the death rate in the state j is equal to f( j)μ
+ ( j�N )+τh, where j¼N� g, . . .,N +Rh. Hence, steady-state probabilities of split

models with the state space Si, i� 1, denoted by ρi( j), can be calculated as follows

(since all the split models with the state space Si, i� 1 have identical distributions,

the index i below in the notation ρi( j) is omitted):
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ρ jð Þ ¼

v jh
j!

N � gð Þ!
vN�g
h

ρ N � gð Þ ifN � gþ 1 � j � N,

vgh
N � gð Þ!
N!

Y j

i¼Nþ1

λh
Nμþ i� Nð Þτhρ N � gð Þ ifN þ 1 � j � N þ Rh,

8>>>><
>>>>:

ð3:11Þ

where ρ(N� g) is defined from normalizing condition, i.e.,
XNþRh

i¼N�g
ρ ið Þ ¼ 1.

To find the stationary distribution π ih ið Þ , ih i∈eS of the merged model, it will

suffice to determine its generating matrix. Considering Eqs. (3.2), (3.10), and

(3.11), we find that the elements of indicated matrix q ih i; jh ið Þ, ih i, jh i∈eS can

be determined from the following relationships:

q ih i, jh ið Þ ¼
λ�o if i ¼ 0, j ¼ 1,

λo if i > 0, j ¼ iþ 1,

N � gð Þμþ iτoð Þρ N � gð Þ þ iτo 1� ρ N � gð Þð Þ if j ¼ i� 1,

0 inothercases,

8>><
>>:

ð3:12Þ

where λ�o¼ λo(1�∑ N�g�1
i¼ 0 ρ0(i)).

Hence, the state probabilities of the merged model can be determined as the

stationary distribution of the 1-D BDP with the rates specified by Eq. (3.12), i.e.,

π jh ið Þ ¼ λ�oλ
j�1
oY j

i¼1
q ih i; i� 1h ið Þ

π 0h ið Þ, j ¼ 1, . . . ,Ro, ð3:13Þ

where π(hii) is defined from normalizing condition, i.e.,
XRo

i¼0
π ih ið Þ ¼ 1.

Considering Eqs. (3.10)–(3.13), the stationary distribution of the original model

can approximately be found as follows:

p 0; k2ð Þ � ρ0 k2ð Þπ 0h ið Þ;
p k1; k2ð Þ � ρ k2ð Þπ k1h ið Þ, k1 � 1: ð3:14Þ

Then with Eqs. (3.3) and (3.14) we find that the average number of o-calls in the
queue is defined by

Lo �
XRo

i¼1

i
XNþRh

j¼N�g

ρ jð Þπ ih ið Þ ¼
XRo

i¼1

iπ ih ið Þ
XNþRh

j¼N�g

ρ jð Þ ¼
XRo

i¼1

iπ ih ið Þ: ð3:15Þ

Let us write the average number of h-calls in the queue as follows (see Eq. (3.4)):
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Lh �
XRh

i¼1

i
XRo

j¼0

ρj N þ ið Þπ jh ið Þ ¼
XRh

i¼1

i ρ0 N þ ið Þπ 0h ið Þ þ
XRo

j¼1

ρ N þ ið Þπ jh ið Þ
 !

¼
XRh

i¼1

i ρ0 N þ ið Þπ 0h ið Þ þ ρ N þ ið Þ
XRo

j¼1

π jh ið Þ
 !

¼
XRh

i¼1

i ρ0 N þ ið Þπ 0h ið Þ þ ρ N þ ið Þ 1� π 0h ið Þð Þð Þ:

ð3:16Þ

The loss probability for o-calls can approximately be determined as follows (see

Eq. (3.5)):

Po �
XNþRh

i¼N�g

ρRh
ið Þπ Roh ið Þ þ τo

λo

XRo

j¼1

j
XNþRh

i¼N�g

ρ ið Þπ jh ið Þ

¼ π Roh ið Þ þ τo
λo

XRo

j¼1

jπ jh ið Þ: ð3:17Þ

Similarly, we find the following approximate formula to calculate the loss

probability for h-calls (see Eq. (3.6)):

Ph �
XRo

i¼0

ρi N þ Rhð Þπ ih ið Þ þ τh
λh

XNþRh

i¼Nþ1

i� Nð Þ
XRo

j¼0

ρj ið Þπ jh ið Þ

¼ ρ0 N þ Rhð Þπ 0h ið Þ þ ρ N þ Rhð Þ
XRo

i¼1

π ih ið Þ

þ τh
λh

XRh

i¼1

i
XRo

j¼0

ρj N þ ið Þπ jh ið Þ

¼ ρ0 N þ Rhð Þπ 0h ið Þ þ ρ N þ Rhð Þ 1� π 0h ið Þð Þ

þ τh
λh

XRh

i¼1

i ρ0 N þ ið Þπ 0h ið Þ þ ρ N þ ið Þ
XRo

j¼1

π jh ið Þ
 !

¼ ρ0 N þ Rhð Þπ 0h ið Þ þ ρ N þ Rhð Þ 1� π 0h ið Þð Þ

þ τh
λh

XRh

i¼1

i ρ0 N þ ið Þπ 0h ið Þ þ ρ N þ ið Þ 1� π 0h ið Þð Þð Þ: ð3:18Þ

Considering Eqs. (3.15)–(3.18), we use Eq. (3.7) to calculate the approximate

values of average waiting times in the buffer of unlike calls.

Let us now consider some special cases of the model under study, which are

often met in the analysis of real networks. Note that to simplify the presentation the
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previous notation is used in partial models for their stationary distribution of state

probabilities of split models and the merged model.

Model with Patient New Calls This model implies that o-calls do not leave the

queue without service; in other words, τo¼ 0. Then the stationary distributions

inside the split models can also be calculated using Eqs. (3.10) and (3.11). How-

ever, state probabilities of the merged model are evaluated as follows in this case:

π ih ið Þ ¼ λ�o
μ�

σi�1
o π 0h ið Þ, i ¼ 1, . . . ,Ro,

where

μ� ¼ N � gð Þμρ N � gð Þ, σo ¼ λo=μ
� , π 0h ið Þ ¼ 1þ λ�o

μ�
1� σRo

o

1� σo

� ��1

:

We find from formula (3.17) that the loss probability for o-calls is defined as

follows: Po� π(hRoi). The other QoS parameters are calculated from the

corresponding formulas.

Model with Infinite Degradation Interval This model implies that τh¼ 0. In this

case the stationary distributions within the split models are calculated as follows:

ρ0 ið Þ ¼

vi

i!
ρ0 0ð Þ if 1 � i � N � g,

v
vh

� �N�g v ih
i!
ρ0 0ð Þ ifN � gþ 1 � i � N,

v
vh

� �N�g NN

N!
vh
N

� �i

ρ0 0ð Þ ifN þ 1 � i � N þ Rh;

8>>>>>>>>><
>>>>>>>>>:

ð3:19Þ

ρ jð Þ ¼

v jh
j!

N � gð Þ!
vN�g
h

ρ N � gð Þ ifN � gþ 1 � j � N,

vh
N

� �j�N

v
g
h

N � gð Þ!
N!

ρ N � gð Þ ifN þ 1 � j � N þ Rh,

8>>>><
>>>>:

ð3:20Þ

where ρ0(0) and ρ(N� g) are defined from appropriate normalizing conditions.

The stationary distribution of the merged model is determined similarly to

Eq. (3.13). In this case, it is necessary to take into account that stationary distribu-

tions of the split models are determined from Eqs. (3.19) and (3.20). In this model,

the loss probability for h-calls can be written as

Ph � ρ0 N þ Rhð Þπ 0h ið Þ þ ρ N þ Rhð Þ 1� π 0h ið Þð Þ:

The other QoS parameters can be found from the corresponding formulas.
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Model with Patient New Calls and Infinite Degradation Interval This model is

a combination of two previous models, i.e., it is assumed that τo¼ τh¼ 0. Not

repeating the procedures described above, we note only that QoS metrics can be

calculated by the following formulas:

Lo � π 0h ið Þ λ
�
o

λo

XRo

i¼1

iσ i
o;

Lh � aπ 0h ið Þ þ b 1� π 0h ið Þð Þð Þ
XRh

i¼1

i
vh
N

� �i
;

Po � π Roh ið Þ;

Ph � aπ 0h ið Þ þ b 1� π 0h ið Þð Þð Þ vh
N

� �Rh

:

In what follows, the following notation is introduced:

a ¼ vN�g

N!
v
g
h ρ0 0ð Þ, b ¼ N � gð Þ!

N!
v
g
h ρ N � gð Þ:

3.1.3 Models with Infinite Buffers

Let us now consider a model with infinite queues. Its state space is defined as

follows:

S ¼ [1
i¼0Si, ð3:21Þ

where S0¼ {k : k1¼ 0, 1, . . .; k2¼ 0}, Si¼ {k : k1¼N� g,N� g+1, . . .; k2¼ i}, i� 1.

For simplicity, consider the model with patient new calls and infinite degrada-

tion interval for handover calls. The elements of the generating matrix of the

corresponding 2-D MC can be determined similarly to Eq. (3.2). The average

number of o-calls (Lo) and h-calls Lh in the queue is determined similarly to

Eqs. (3.3) and (3.4), respectively, where the upper limits of summation are assumed

to be infinite.

To find the stationary distribution of the model, we can use the method of 2-D

generating functions. However, it involves huge computational and methodological

difficulties, and on the other hand, it is nonconstructive. To overcome these

difficulties, we propose to use the above approximate method of calculating the

stationary state probabilities of 2-D MC. Not repeating the procedures described

above, we note only that the state space splitting scheme similar to Eq. (3.1) is also

used here. In this case, the stationary distribution of state probabilities of the split

model with the state space So is defined as follows:

78 3 Algorithmic Methods for Analysis of Mono-service Cellular Networks



ρ0 ið Þ ¼

vi

i!
ρ0 0ð Þ if 1 � i � N � g,

v
vh

� �N�g v ih
i!
ρ0 0ð Þ ifN � gþ 1 � i � N,

vN�g

N!
v
g
h

vh
N

� �i�N

ρ0 0ð Þ if i � N þ 1,

8>>>>>>>>><
>>>>>>>>>:

ð3:22Þ

where ρ0(0) is defined from appropriate normalizing condition, i.e.,

ρ0 0ð Þ ¼
XN�g

i¼0

vi

i!
þ v

vh

� �N�g XN
i¼N�gþ1

v ih
i!
þ vN�g

N!
v
gþ1
h

1

N � vh

 !�1

:

From Eq. (3.22) we find the first ergodicity condition for the model under study:

vh<N.
The split models with the state space Si are identical for all i� 1, where the birth

rate is constant and equal to λh and the death rate in the state j is equal to f( j)μ,
where j�N� g. Hence, certain algebraic transformations yield that the stationary

distribution of state probabilities for the split models with the state space Si, i� 1,

denoted by ρi( j), j�N� g, can be calculated as follows:

ρ jð Þ ¼

v jh
j!

N � gð Þ!
vN�g
h

ρ N � gð Þ ifN � gþ 1 � j � N,

vh
N

� �j�N

vgh
N � gð Þ!
N!

ρ N � gð Þ if j � N þ 1,

8>>>><
>>>>:

ð3:23Þ

where

ρ N � gð Þ ¼ 1þ vgh N � gð Þ!
XN

i¼N�gþ1

vi�N
h

i!
þ 1

N!

vh
N � vh

 ! !�1

:

Taking into account Eqs. (3.2), (3.22), and (3.23), we find that the rates of

transitions between states of the infinite-dimensional merged model are determined

from the following relations:

q ih i; jh ið Þ ¼
λ�o if i ¼ 0, j ¼ iþ 1,

λo if i > 0, j ¼ iþ 1,

μ� if j ¼ i� 1,

0 inothercases:

8>><
>>:

ð3:24Þ

Thus, the stationary distribution of states of the merged model is determined as

the stationary distribution of states of the 1-D BDP with the rates specified by

Eq. (3.25), i.e.,
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π ih ið Þ ¼ λ�o
μ�

σi�1
o π 0h ið Þ, i � 1, ð3:25Þ

where

π 0h ið Þ ¼ 1þ λ�o
μ�

1

1� σo

� ��1

:

In deriving formulas (3.25), the easy-to-verify second condition for ergodicity

can be found:

vo < N � gð Þρ N � gð Þ: ð3:26Þ

Note 3.1 Condition (3.26) has a simple probabilistic interpretation. Since o-calls
from the queue are served only if the number of channels occupied is equal to N� g,
their total service rate is equal to μ(N� g)ρ(N� g), where ρ(N� g) determines the

probability of the fact that the number of channels occupied is equal to N� g if

there is a queue of o-calls. For the stationary mode to exist, it is required that the

intensity of the incoming traffic of o-calls (λo) is less than the total rate of their

service, and hence condition (3.26) can be found.

If both ergodicity conditions are satisfied, we find that the average number of o-
calls in the queue is determined as follows:

Lo �
X1
i¼1

i
X1
j¼N�g

ρ jð Þπ ih ið Þ ¼
X1
i¼1

iπ ih ið Þ ¼ 1

1� σoð Þ2
λ�o
μ�

π 0h ið Þ: ð3:27Þ

The average number of h-calls in the queue is determined as follows:

Lh �
X1
i¼1

iρ0 N þ ið Þ
 !

π 0h ið Þ þ
X1
i¼1

i
X1
j¼1

ρ N þ ið Þπ jh ið Þ

¼ π 0h ið Þ
X1
i¼1

iρ0 N þ ið Þ þ 1� π 0h ið Þð Þ
X1
i¼1

iρ N þ ið Þ

¼ v�h
1� v�h
� �2 aπ 0h ið Þ þ b 1� π 0h ið Þð Þð Þ, ð3:28Þ

where v�h ¼ vh/N.
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3.1.4 Numerical Results

The developed above approximate formulas for evaluating unknown QoS metrics

of models of mono-service networks allow analyzing them easily for arbitrary

volumes of buffer stores for unlike calls.

First, let us consider the results of numerical experiments for the general model

with finite buffers, i.e., for the model where τo 6¼ 0 and τh 6¼ 0. We will analyze the

behavior of QoS metrics with respect to variations in the parameter g for fixed

values of other parameters of the model. The corresponding curves for a hypothet-

ical model are shown in Figs. 3.2, 3.3, and 3.4, where the initial data were taken as

follows: N¼ 10; λo¼ 0.2; λh¼ 2.6; μ¼ 5; τo¼ 0.1 and τh¼ 0.2. As is seen from
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these curves, an increase in the parameter g increases the loss probability of o-calls
(see Fig. 3.2a) and decreases the loss probability of h-calls (see Fig. 3.2b). This can
be explained by the fact that as the number of guard channels increases, the chances

of o-calls to access the channels decrease, and vice versa, the chances of h-calls to
access the channels increase. As one would expect, an increase in the volume of the

buffer for calls of each type (for a fixed buffer volume for calls of other type)

reduces their loss probability (see Fig. 3.2). Note also that growth of the rate of any

flow increases the loss probability.

The average queue length of o-calls grows with increase in the number of guard

channels (see Fig. 3.3a), and the corresponding parameter for h-calls decreases with
respect to the parameter specified (see Fig. 3.3b). At the same time, both functions

are increasing with respect to the size of the corresponding buffer. Average waiting

times for unlike calls in the queue have a similar form (see Fig. 3.4).
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The behavior of QoS metrics with respect to variations in the intensities of

incoming traffic for fixed values of other parameters was also analyzed. Note that

these studies are important since in practice the rates of incoming traffic are

determined with some errors, and their values vary with time. Therefore, of great

interest is the analysis of invariance (or weak variability) intervals of QoS metrics

of the model with respect to variations in the intensity of incoming traffic for fixed

values of other parameters. The corresponding results are shown in Figs. 3.5, 3.6,

and 3.7.

Another field of studies was the accuracy of the formulas developed to evaluate

the approximate values (AVs) of QoS parameters of the model under study.
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As exact values (EVs) of these quantities, their values calculated using the approach

stated in [13] were used. As indicated above, such an approach allows studying QoS

parameters of the model only for small buffer stores. For the above-indicated initial

data and for Ro¼Rh¼ 1, the corresponding AVs and EVs are compared in
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Tables 3.1 and 3.2. As follows from the tables, the approximate formulas derived

are sufficiently accurate.

Let us now consider some results of numerical experiments for a model with

infinite buffer stores. The initial data for a hypothetical model were taken as

follows: N¼ 30, λh¼ 12 and μ¼ 1. For λo¼ 2 and λo¼ 4, the ergodicity condition
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(3.27) is satisfied for 0� g� 15 and for 0� g� 18, respectively; therefore, these

ranges of the parameter g are specified for the corresponding curves (Fig. 3.8). As is
seen from Fig. 3.8, an increase in the parameter g leads to an increase in the function
Lo but reduces the function Lh.

These results have quite logical explanation since as the number of guard

channels increases, the chances of h-calls for direct access to channels grow;
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however, at the same time, the chances of o-calls for direct access to channels

decrease and they are forcedly queued. Note that the average number of o-calls in
the queue grows with a greater velocity than the average number of h-calls in the

queue (see Fig. 3.8b). As is seen from these curves, there is no need for the system

to organize an infinite buffer to wait for unlike calls since average lengths of queues

of unlike calls are rather short. For example, if buffers of sizes 5 and 3 are organized

in a hypothetical network under study to wait for o- and h-calls in queue, respec-

tively, they will appear to be sufficient to handling the unlike calls, their loss

probability being within comprehensible limits. In other words, in each specific

case, there are possibilities to study the choice of necessary volumes of buffer stores

to satisfy specified constraints for QoS metrics of the network.

Table 3.1 Comparison for o-calls in mono-service model with finite buffers

g

Po Lo Wo

EV AV EV AV EV AV

0 3.16236E-12 2.43785E-12 1.62726E-02 1.62730E-02 1.65440E-03 1.65453E-03

1 6.30767E-11 7.86103E-11 3.73811E-02 3.73832E-02 3.88478E-03 3.88485E-03

2 1.15364E-09 2.44697E-09 7.42411E-02 7.42422E-02 8.02593E-03 8.02599E-03

3 1.91132E-08 5.78531E-08 1.34232E-01 1.34237E-01 1.55284E-02 1.55296E-02

4 2.84055E-07 3.14851E-07 2.24514E-01 2.24518E-01 2.90355E-02 2.90361E-02

5 3.74555E-06 3.77654E-06 3.49392E-01 3.49395E-01 5.39924E-02 5.39931E-02

6 4.33084E-05 4.35672E-05 5.06623E-01 5.06628E-01 1.03750E-01 1.03757E-01

7 4.34859E-04 4.35532E-04 6.82404E-01 6.82407E-01 2.19583E-01 2.19589E-01

8 3.80973E-03 3.80652E-03 8.45889E-01 8.45890E-01 5.80761E-01 5.80763E-01

9 3.17847E-02 3.17850E-02 9.54261E-01 9.54271E-01 2.63631E+00 2.63636E+00

Table 3.2 Comparison for h-calls in mono-service model with finite buffers

g

Ph Lh Wh

EV AV EV AV EV AV

0 2.67415E-11 4.04561E-11 2.12586E-02 2.12673E-02 1.08633E-03 1.08641E-03

1 2.48432E-11 3.77538E-11 1.48829E-02 1.48832E-02 7.55501E-04 7.55512E-04

2 2.30828E-11 3.72416E-11 1.04747E-02 1.04768E-02 5.29343E-04 5.29367E-04

3 2.14511E-11 3.68643E-11 7.47977E-03 7.47985E-03 3.76848E-04 3.76853E-04

4 1.99403E-11 2.99853E-11 5.45992E-03 5.45979E-03 2.74515E-04 2.74528E-04

5 1.85443E-11 2.92375E-11 4.10648E-03 4.10661E-03 2.06187E-04 2.0618E-04

6 1.72599E-11 2.83243E-11 3.21075E-03 3.21112E-03 1.61061E-04 1.61059E-04

7 1.60904E-11 2.73051E-11 2.63707E-03 2.63853E-03 1.32213E-04 1.32235E-04

8 1.50534E-11 2.61631E-11 2.30184E-03 2.30195E-03 1.15367E-04 1.15372E-04

9 1.41935E-11 2.58932E-11 2.14829E-03 2.14852E-03 1.07654E-04 1.07663E-04

3.1 Models of Mono-service Cellular Networks with Buffers 87



3.2 Models with Retrial Calls

Now consider a cell with handling both new calls and handover calls where retrial

phenomenon occurs. In other words, here we study a single cell in mono-service

network with retrial o-calls where h-calls are handled in accordance with guard

channel scheme [26].

Note that if upon arrival of h-call there is at least one free channel, it is admitted;

otherwise it is forcedly terminated. When o-call’s arrival finds g or more channels

being busy, this o-call is blocked and enters the retrial group with probability Ho or

leaves the system forever with probability 1�Ho. The blocked calls in the retrial

group try to redial after retrial time whose distribution is exponential with rate η.
The blocked o-calls in the retrial group after an unsuccessful retrial return to retrial

group with probability H1 or leave the system with probability 1�H1. Channel
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holding time of both types of calls is exponential with the same parameter μ. The
capacity of the retrial group (R) might be either finite or infinite.

3.2.1 Exact Method

First we assume that the capacity of the retrial group is infinite, i.e., R¼1. The state

of a cell at an arbitrary time can be described by a two-dimensional vector k¼ (k1,
k2), where k1 indicates the total number of blocked o-calls in the retrial group and k2 is
the number of calls in service. The state space of the system is defined as follows:

S ¼ k : k1 ¼ 0, 1, . . . ; k2 ¼ 0, 1, . . . ,Nf g: ð3:29Þ

On the basis of the adopted access scheme, we can conclude that the nonnegative

elements of Q-matrix of the given 2-D MC are given by (see Fig. 3.9)

q k; k0ð Þ ¼

λ if k2 < g, k0 ¼ kþ e2,
λh if k2 � g, k0 ¼ kþ e2,
k1η if k2 < g, k0 ¼ k� e1 þ e2,
k1η 1� H1ð Þ if k2 � g, k0 ¼ k� e1,
λoHo if k2 � g, k0 ¼ kþ e1,
k2μ if k0 ¼ k� e2,
0 inothercases:

8>>>>>>>><
>>>>>>>>:

ð3:30Þ

State probabilities satisfy the following SGBE which is constructed on the basis

of relations (3.30):

For case k2< g,

λþ k1ηþ k2μð Þp kð Þ ¼ λp k� e2ð Þ þ k2 þ 1ð Þμp kþ e2ð Þ
þ k1 þ 1ð Þηp kþ e1 � e2ð Þ: ð3:31Þ

For case g� k2�N,

λh þ λoHo þ k1η 1� H1ð Þ þ k2μð Þp kð Þ
¼ λoHop k� e1ð Þ þ k2 þ 1ð Þμp kþ e2ð Þ

þ k1 þ 1ð Þη 1� H1ð Þp kþ e1ð Þ: ð3:32Þ

We add normalizing condition to SGBE (3.31), (3.32):

X
k∈ S

p kð Þ ¼ 1: ð3:33Þ
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The main QoS metrics of special interest are:

(i) The probability that an o-call does not receive service on its first attempt is

Po ¼
X1
k1¼0

XN
k2¼g

p k1; k2ð Þ: ð3:34Þ

Fig. 3.9 State diagram of

the model with retrial calls

and infinite capacity of

retrial group
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(ii) Loss probability of h-calls is

Ph ¼
X1
k1¼0

p k1;Nð Þ: ð3:35Þ

(iii) The probability of a random retrial o-call being blocked is

Pr ¼
X1
k1¼1

XN
k2¼g

p k1; k2ð Þ: ð3:36Þ

(iv) The average number of an o-call in retrial group is

Lr ¼
X1
k1¼1

XN
k2¼0

k1p k1; k2ð Þ: ð3:37Þ

(v) The average rate of the retrial o-call blocking is

Rr ¼
X1
k1¼1

XN
k2¼g

k1p k1; k2ð Þ: ð3:38Þ

An analytical solution of stationary distribution of multi-server retrial queue

with H0, H1> 0 is not known yet. So we need an approximation method.

3.2.2 Approximate Method

For accurate application of phase merging algorithms, it is assumed that transition

intensities between states within one column are considerably greater than those of

different columns (see Fig. 3.9). Note that this assumption is realistic particularly in

the cellular networks where incoming or servicing intensities of one type of calls

exceed greatly those of different type. In other words, we need to assume that

λh� λoHo, μ� η and λh� η(1�H1). As it was mentioned above (see Sect. 3.1.1),

this assumption is not extraordinary for wireless networks, since this is a regime

that commonly occurs in microcells, in which mobile users have high mobility and

short duration calls [6, 10].

Consider the following splitting of state space (3.29):

S ¼ [1
i¼0Si, Si \ Sj ¼ ∅, if i 6¼ j, ð3:39Þ

where Si¼ {k ∈ S : k1¼ i, 0� k2�N}.
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Based on splitting (3.39) the sets Si are then united into individual merged states

hii, and the following merged function with the domain (3.29) is introduced (see

Fig. 3.9):

U kð Þ ¼ ih i if k∈ Si, i ¼ 0, 1, . . . :

State probabilities within classes Si are denoted by

ρi( j), i¼ 0, 1, . . ., j¼ 0, 1, . . .,N. These probabilities are independent on index i,
and they coincide with state probabilities of the model M/M/N/N with constant

service rate μ and state-dependent arrival rates which are determined as

λj ¼ λo þ λh if 0 � j � g� 1,

λh if g � j � N � 1:

�

Hence the indicated state probabilities are

ρi jð Þ ¼

vj

j!
ρi 0ð Þ if 1 � j � g,

v
vh

� �g v jh
j!
ρi 0ð Þ if g < j � N,

8>>>><
>>>>:

ð3:40Þ

where v ¼ λo þ λhð Þ=μ, vh ¼ λh=μ,

ρi 0ð Þ ¼
Xg

j¼0
vj=j!
� �þ v=vhð Þg

XN

j¼gþ1
v
j

h=j!
� �� ��1

:

Since quantities ρi( j), i¼ 0, 1, . . ., j¼ 0, 1, . . .,N do not depend on i below in the

notation ρi( j), this index is omitted. Then from Eqs. (3.30) and (3.40), we conclude

that nonnegative elements of Q-matrix are

q ih i; jh ið Þ ¼
λoH0

XN
n¼g

ρ nð Þ if i � 0, j ¼ iþ 1,

iη
Xg�1

n¼0

ρ nð Þ þ 1� H1ð Þ
XN
n¼g

ρ nð Þ
 !

if i � 1, j ¼ i� 1,

0 inothercases:

8>>>>>><
>>>>>>:

ð3:41Þ

Thus, the stationary distribution of a merged model π(hii), i¼ 0, 1, . . . is defined
as the stationary distribution of classical model M/M/1 with load v1¼ λ1/μ1,

where
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λ1 ¼ λoH0

XN
n¼g

ρ jð Þ, μ1 ¼ η
Xg�1

n¼0

ρ nð Þ þ 1� H1ð Þ
XN
n¼g

ρ nð Þ
 !

:

In other words, the stationary distribution of a merged model is determined as

π ih ið Þ ¼ v i1
i!

e�v1 , i ¼ 0, 1, 2, . . . : ð3:42Þ

By using Eqs. (3.40) and (3.42) state probabilities of the initial 2-D MC is found

as follows:

p k1; k2ð Þ � ρ k2ð Þπ k1h ið Þ:

After some mathematical transformation the following approximate formulas to

calculate the QoS metrics of the model with infinite capacity of retrial group are

found:

Po � 1� ρ 0ð Þ
Xg�1

n¼0

vn

n!
ð3:43Þ

Pr � 1� e�v1ð ÞPo ð3:44Þ

Ph � ρ 0ð Þ v
gv

N�g
h

N!
ð3:45Þ

Lr � v1 ð3:46Þ
Rr � v1Po ð3:47Þ

The developed approximate approach might be used for the model with finite

capacity of retrial group, i.e., for case R<1. Note that in this case the exact

approach can be successfully used for the model with moderate size of retrial group.

Dropping well-known steps in solution of this problem, below are given the final

formulas for approximate calculation of QoS metrics of the model with finite

capacity of retrial group. Note that in this case the stationary distribution of a

merged model is the same as the classical Erlang’s model M/M/R/R with load

v1Erl. The QoS metrics Po and Ph are determined by the formulas (3.43) and

(3.44), respectively. In other words, these QoS metrics are independent of the

capacity of retrial group. This fact can be easily explained if one takes into account

the accepted above assumptions concerning the ratio of load characteristics of the

model. However to calculate the remains of QoS metrics, the following approxi-

mate formulas are obtained:
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Pr � 1� π 0h ið Þð ÞPo ð3:48Þ

Lr � π 0h ið Þ
XR
i¼1

v i1
i� 1ð Þ! ð3:49Þ

Rr � LrPo ð3:50Þ

3.2.3 Numerical Results

Consider some numerical results for model with retrial calls. In both cases R¼ 5 and

R¼1, the initial data is chosen as follows: N¼ 20, λh¼ 20, λo¼ 2,μ ¼ 5, η ¼ 0.5,

H0¼ 0.9, H1¼ 0.6.

In Fig. 3.10 the dependency of both functions Po andPh on the parameter g is

shown. Note that for given input data values of indicated functions in both cases

R¼ 5 and R¼1 are almost same. As it was expected, function Po is decreasing

function versus g, since increase of the value of given parameter leads to increase of

the access chances of o-calls to channels; however, at the same time increase of the

value of parameter g leads to decrease of the access chances of h-calls to channels,

i.e., function Ph is increasing function versus g.
Figure 3.11 demonstrates the dependency of function Pr on the parameter g in

both cases R¼ 5 and R¼1. It is seen from this figure that the blocking probability

of a random retrial o-call in both cases is decreasing function. This fact is also

excepted one, since, as it is mentioned above, increase of the value of parameter

g leads to increase of the access chances of o-calls to channels.

Dependency of function Lr on the parameter g is shown in Fig. 3.12. The average
number of an o-call in retrial group in the case R¼ 5 is almost constant (i.e., does

not depend on the parameter g), while in the case R¼1 it has high decreasing rate.

The curve for an average rate of blocking of the retrial o-calls (Fig. 3.13) has

precisely the same form as a curve for blocking probability of retrial o-calls (see
Fig. 3.11).
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Note that an increase of size of retrial group for o-calls has no beneficial effect

on all QoS metrics Pr, Lr, andRr. Remarkably, at maximal value of parameter

g¼ 19, values of functions Pr, Lr, andRr in both cases R¼ 5 and R¼1 are same

(see Figs. 3.11, 3.12, and 3.13).

Estimation of the accuracy of the developed approximate formulas is given in

[10]. The developed simple formulas allow investigating the behavior of QoS

metrics versus any other parameters and finding their desired values to satisfy the

given QoS level as well. Due to space limitation these results are not

considered here.

3.3 Conclusion

There is a very large literature published in mono-service cellular networks with

various admission schemes. The main objective of the early investigations requires

that the probability of a call loss during handoff be no larger than the probability of

blocking new calls. In unbuffered systems this objective is achieved by reserving

some amount of reserve channels (i.e., guard channels) which are available only to

handover calls. Detailed review of related works in this direction might be found in

[11, 13, 29].

The alternative way to reduce the loss probabilities for new and handover calls is

organizing the buffer stores to wait for unlike calls. Since h-calls are more sensitive

to possible losses and delays than o-calls, the proposed schemes often imply that

guard channels are used for h-calls and/or only their queues in the base station are

organized. Evaluating the QoS metrics of such networks is the subject of many

studies [15, 17, 19, 28]. At the same time, note that to compensate for chances of

o-calls in some networks, buffers are organized for this type of calls as well [14, 18,

22]. Detailed review of related works in this direction might be found in [1, 4, 5].

From the practical standpoint, of greatest interest are models of networks with

buffer stores for both types of calls. Obviously, such a scheme increases the total

throughput of the network. Model of networks with buffering of both new and

handover calls is analyzed in [7]. However, the approach proposed therein allows

analyzing models with only a small buffer store. Note that another attempt to the

study such kind of models has been made in [4]. Unfortunately, this attempt has

appeared unsuccessful [20].

In this connection, this chapter proposes an alternative approach for the inves-

tigation of the models of mono-service networks allowing both limited and unlim-

ited queues of impatient heterogeneous calls of both types [21, 25]. Such an

approach was earlier used for the investigation of models allowing queues of only

one type of calls (see [24], Chap. 2). The main advantages of the proposed method

are as follows. First, unlike the approach of [7], it serves to study not only models

with small dimensions of their buffer storage but also with large dimensions of their

buffer storage; second, at the use of this approach, simple analytical formulas for

the calculation of the sought QoS metrics of the studied networks have been
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successfully developed; third, the method developed makes it possible to solve the

important problems of determining rational sizes of buffer stores and/or the number

of guard channels to optimize the desired QoS metrics of a network.

The problem of development of effective numerical algorithms for calculation of

retrial queueing models of wireless networks is a subject for many researches.

Detailed list of works in this direction might be found in [2]. Note that the main

mathematical tool to investigate such kind of models is matrix analytical method. In

order to use this method, the maximum number of blocked call who can retry to

access the servers is restricted by some threshold parameter. So, by restricting finite

capacity of retrial group (see [8, 9]) or by allowing a fixed number of blocked calls

in the infinite capacity of retrial group to be able to retry (see [3, 16, 23]), the matrix

analytical method can be applied to the multidimensional Markov chain. In [27],

the condition of the existence of stationary mode in model of retrial queue with

variable arrival rate is found, and the approximate approach to calculate its state

probabilities is proposed. Recently model of retrial queue with the fractional guard

channel policy is applied in mono-service cellular networks [12]. In this chapter, an

algorithmic method is applied to cell’s model to find approximate stationary

distribution and then to obtain its performance measures. As author’s knowledge

is concerned, analytical solution of stationary distribution of multi-server retrial

queue with positive retrial probabilities is not known yet. Developed here is the

simple approximation method based on the results of the paper [10].
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Chapter 4

Algorithmic Methods for Analysis of Integral

Cellular Networks

In the previous chapter, the second-generation cellular networks which are primar-

ily concerned with single service class (voice traffic) communications were inves-

tigated. However, future generation wireless networks need to incorporate

multimedia services (e.g., voice, video, data, etc.). In such networks all traffics

(type of services) can be broadly divided into two types of real-time (such as voice,

video transmission) and non-real-time (such as data transmission) services. In this

chapter, models of integral cellular networks with real-time (RT) and non-real-time

(NRT) calls are investigated. For easy reference here we define the RT calls as

voice calls, while NRT calls are considered as data calls. In such networks four

types of calls are distinguished: handover voice calls (hv-calls), new

(or originating) voice calls (ov-calls), handover calls of data (hd-calls), and new

(or originating) calls of data (hd-calls). The importance of these calls decreases in

the above order. Voice calls (v-calls) are handled according to the pure loss scheme

(i.e., the calls not accepted at the time of arrival are lost), and data calls (d-calls) are

relatively tolerant to possible delays, i.e., they can wait in a queue of finite or

infinite length. The access of heterogeneous voice calls is controlled by means of

two-parameter state-dependent strategies, which limits the access on new and

handover voice calls. Two schemes for buffering of data calls have been consid-

ered. In the first scheme only handover data calls can form a queue of finite and

infinite length, while in the second one both new and handover data calls might be

waiting in queue. In the second scheme the access of new data calls to buffer is

restricted by means of state-dependent reservation scheme. Both methods for exact

and approximate evaluation of the QoS metrics in such networks are developed.

There has been also an investigation of the problems of choosing the required

values of parameters for the introduced access strategies satisfying the given quality

levels of servicing the heterogeneous calls. The results of comparative analysis of

QoS metrics of the model under different access schemes have been presented.

Results of numerical experiments are presented.
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4.1 Models with Buffering of Handover

Non-Real-Time Calls

In this section we consider the models in which only buffering of hd-calls is

admitted and for access control several threshold parameters are introduced. The

indicated parameters restrict the access of heterogeneous calls (except for hv-calls)

depending on the state of the cell. Consideration is given to an isolated cell of

homogeneous multiservice wireless cellular network in which voice calls and data

packages (further just data calls) are being processed. Network homogeneity means

that traffics in its different cells are statistically identical and, hence, the network

study on a cell level is proper. Note that in networks of microcell structure (i.e., with

relatively small geometrical sizes of cells), the assumption on statistical identity of

heterogeneous traffics is almost always fulfilled.

We consider two state-dependent schemes to restrict the access of heterogeneous

voice calls to channels. In the first scheme the decision on access of heterogeneous

v-calls is taken on the basis of a general number of such kind of calls in a cell (cutoff

scheme), while in the second scheme the indicated decision is based on the total

number of busy channels of the cell (guard channel scheme).

4.1.1 Various Access Schemes to Channels

The network applies a fixed scheme of channel distributions among its cells and each

cell has N> 1 radio channels. Channels are used jointly by Poisson flows of hv-, ov-,

hd-, and od-calls. The intensity of x-calls is denoted by λx, x ∈ {hv, ov, hd, od}.

Here for simplicity of intermediate transformations, a call of any type is assumed

to be processed only by one free channel (although consideration can be given to

models with broadband data calls). Note that the time of channel occupation is

determined as a minimum of two random values which describe the duration of call

processing (i.e., a time of call processing without considering a handover effect)

and a time of a mobile user staying within a cell. Here, as in most of the known

papers, for obtaining analytically tractable results, the mentioned two random

variables are assumed to be exponentially distributed. Then the time distribution

functions of heterogeneous calls occupying the channels are also exponential but

with different average values. Assume that the average time of channel occupation

for one voice call (a new one or a handover) equals 1/μv and the corresponding

metric for data calls (the new ones or handover) equals 1/μd.
Now we are passing to describing the call admission control (CAC) scheme.

First we note that if upon arrival of od-call there exists at least one free channel of

the system, then such a call is taken for service; otherwise it is lost. If upon arrival of

hd-call all channels of cell are busy, then it joins a queue (of finite or infinite

length).
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Access of voice calls is performed by the following scheme:

• If at the moment of ov-call entering the total number of voice calls is less than

Rov, 0<Rov<N, then it is taken for service; otherwise it is lost.

• If at the moment of hv-call entering the total number of voice calls is less than

Rhv,Rov�Rhv<N, then it is taken for service; otherwise it is lost.

The problem consists in finding QoS metrics for the given system, i.e., the

blocking (loss) probabilities of calls of each type and the average number of

hd-calls in a queue.

In the given system a stationary mode exists if the following condition holds

true: λd< (N�Rhv)μd where λd is the total arrival intensity of data calls.

In a stationary mode a cell state at the arbitrary time instant is described by 2-D

vector n¼ (nv, nd), where components nv and nd denote the number of voice calls in

channels and the total number of data calls in the system, respectively. Since voice

calls are served in a block mode and the system is conservative (i.e., with the queue

of hd-calls available, channel idling is not allowed), then in any possible state n the

number of d-calls in channels (nsd) and in the queue (nqd) is determined as follows:

n s
d ¼ min N � nv, ndf g, nq

d ¼ nv þ nd � Nð Þþ,

where x+¼max{0, x}
Hence, the state space of the given 2-D MC is of the form

S ¼ n : nv ¼ 0, 1, . . . , Rhv, nd ¼ 0, 1, . . . ; nv þ n s
d � N

� �
: ð4:1Þ

According to the introduced CAC scheme the nonnegative elements of Q-matrix

of the given 2-DMC q(n,n0), n,n0 ∈ S are determined from the following relations:

q n; n0ð Þ ¼

λv if nv � Rov � 1, n0 ¼ nþ e1,
λhv ifRov � nv � Rhv � 1, n0 ¼ nþ e1,
λd if nv þ n s

d < N, n0 ¼ nþ e2,
λhv if nv þ n s

d � N, n0 ¼ nþ e2,
nvμv if n0 ¼ n� e1,
n s
dμd if n0 ¼ n� e2,

0 inothercases,

8>>>>>>>><
>>>>>>>>:

ð4:2Þ

where λd¼ λod + λhd, λv¼ λov + λhv.
Let Px be the stationary blocking probability of the calls of type x, x ∈ {hv, ov,

hd, od}. Then, in view of the proposed CAC scheme, we obtain that the above-

indicated QoS metrics are determined as the corresponding marginal distributions

of the 2-D MC. Indeed, hv-calls are lost when the following events occurred: (a) at

the moment of hv-call entering the number of v-calls in channels equals Rhv and

(b) at the moment of hv-call entering all channels are busy regardless of the number

of v-calls in the system. Therefore, the loss probability of hv-calls is determined as
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Phv ¼
X
n∈ S

p nð Þ δ nv;Rhvð Þ þ 1� δ nv;Rhvð Þð ÞI nv þ n s
d � N

� �� �
: ð4:3Þ

In formula (4.3) the first term of the sum defines the probability of event

(a) occurrence, and the second, the event (b) occurrence.

Using the analogous line of reasoning, we put down the loss probability of

ov-calls:

Pov ¼
X
n∈ S

p nð Þ I nv � Rovð Þ þ I nv < Rovð ÞI nv þ n s
d � N

� �� �
: ð4:4Þ

Losses of od-calls occur only when at the moment of the given type call entering

all channels of cell are busy, i.e.,

Pod ¼
X
n∈ S

p nð ÞI nv þ n s
d � N

� �
: ð4:5Þ

The average number of hd-calls in the queue (Lhd) is determined as follows:

Lhd ¼
X1
k¼1

kξ kð Þ, ð4:6Þ

where ξ(k)¼∑ n ∈ Sp(n)δ(n
q
d, k).

Hence, to find the required QoS metrics by the expressions (4.3)–(4.6) one needs

to calculate the steady-state probabilities p(n), n ∈ S. It is known that the men-

tioned probabilities satisfy the corresponding system of global balance equations

(SGBE).
Using Kolmogorov’s theorem [7] on reversibility of 2-D MC it is easy to show

that in the given system the condition of local balance does not hold true. In other

words, there is no multiplicative solution to the mentioned SGBE for stationary

state probabilities. The alternative approach to solution of the given problem based

on the 2-D generating function method is cumbersome and not constructive even

for models of small dimension and with the simplest call access schemes. In this

connection further we propose another approach which allows one to develop

simple calculation procedure for approximate calculation of QoS metrics (4.3)–

(4.6).

The given algorithms have high accuracy for the models in which parameters of

heterogeneous traffics essentially differ from each other. The last condition almost

always holds true in multiservice communication networks since there the average

time of voice call transmission is measured by a few minutes, whereas the trans-

mission of packages of data calls takes a few microseconds on average [2]. More-

over, in modern (and the next-generation networks, the ones that are expected)

communication networks the data calls form a larger part of a common traffic [3]. In

other words, further we take the following assumption: λd� λv, μd� μv.
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The following presentation implies that the final results do not depend directly on

λv, λd, μv and μd and depend only on their ratios.

Consider the following splitting of state space (4.1):

S ¼ [Rhv

k¼0Sk, Si \ Sj ¼ ∅, i 6¼ j, ð4:7Þ

where Sk¼ {n ∈ S : nv¼ k}. In other words, one performs the partitioning of state

space of the model by the value of the first component of 2-D state vector.

Note 4.1 Under fulfillment of the above assumption one preserves the basic

principle of applicability of space merging algorithms [14]: in splitting (4.7) the

state space of initial model has been partitioned in such classes that the transition

probabilities between states inside classes essentially exceed transition probabilities

between states from different classes.

The classes of states Sk are combined in merged states hki and in the initial state

space S, the following merging function is constructed:

U nð Þ ¼ kh i if n∈ Sk, k ¼ 0, 1, . . . ,Rhv: ð4:8Þ

The function (4.8) defines the merged model which represents the 1-D BDP with

state spaceeS ¼ kh i : k ¼ 0, 1, . . . ,Rhvf g. Hence, steady-state probabilities of initial
model are approximately determined as follows (see Appendix of the book [14]):

p k; ið Þ � ρk ið Þπ kh ið Þ, k; ið Þ∈ Sk, k ¼ 0, 1, . . . ,Rhv, i ¼ 0, 1, . . . , ð4:9Þ

where ρk(i) : (k, i) ∈ Sk and π kh ið Þ : kh i∈eS� �
are the stationary distributions of

state probabilities inside the class Sk and the merged model, respectively.
The nonnegative elements of Q-matrix of split model with state space Sk are

denoted by qk(i,j). Considering Eqs. (4.2) and (4.7) we obtain that these parameters

are determined from the following relations:

qk i; jð Þ ¼
λd if i � N � k � 1, j ¼ iþ 1,

λhd if i � N � k, j ¼ iþ 1,

min i,N � kð Þμd if j ¼ i� 1,

0 inothercases:

8>><
>>:

ð4:10Þ

From formula (4.10), one can see that the stationary distribution of state prob-

abilities of the split model with the state space Sk coincides with stationary

distribution of state probabilities of queueing model M|M|N� k|1 with state-

dependent arriving intensity and constant service intensity of one channel which

is equal μd. Hence, with ergodicity condition being fulfilled, i.e., at λd< (N� k)μd
stationary state probabilities of the split model with the state space Sk are deter-

mined as follows:

4.1 Models with Buffering of Handover Non-Real-Time Calls 103



ρk kð Þ ¼

v id
i!
ρk 0ð Þ if 1 � i � N � k,

vd
vhd

� �N�k N � kð ÞN�k

N � kð Þ!
vhd
N�k

� �i

ρk 0ð Þ if i � N � k þ 1,

8>>>><
>>>>:

ð4:11Þ

where

vd ¼ λd=μd, vhd ¼ λhd=μd, ρk 0ð Þ ¼
XN�k

i¼0

v id
i!
þ vN�k

d

N � kð Þ!
vhd

N � k � vhd

 !�1

:

Since the ergodicity condition vd<N� k must to be hold true for each

k¼ 0, 1, . . .,Rhv, then we obtain the ergodicity condition of the initial model

vd<N�Rhv (above this condition was determined by intuition). Then under

fulfillment of this condition taking into account Eq. (4.11) from Eq. (4.2), we obtain

the following relations for calculating nonnegative elements of Q-matrix for the

merged model (for brevity of presentation here and further the corresponding

mathematical transformations are omitted):

q kh i; k0h ið Þ ¼
λvαk if 0 � k � Rov � 1, k0 ¼ k þ 1,

λhvαk ifRov � k � Rhv � 1, k0 ¼ k þ 1,

kμv if k0 ¼ k � 1,

0 inothercases,

8>><
>>:

ð4:12Þ

where αk¼ ρk(0)∑ N� k� 1
i¼ 0 vid/i ! , k¼ 0, 1, . . .,Rhv� 1.

The relations (4.12) allow one to determine steady-state probabilities of merged

model which is described by 1-D BDP. Hence, the required distribution of state

probabilities of the merged model is determined in the following way:

π kh ið Þ ¼

vkv
k!

Yk�1

i¼0
αiπ 0h ið Þ if 1 � k � Rov,

vv
vhv

� �Rov vkhv
k!

Yk�1

i¼0
αiπ 0h ið Þ ifRov þ 1 � k � Rhv,

8>>>><
>>>>:

ð4:13Þ

where vv¼ λv/μv, vhv¼ λhv/μv and π 0h ið Þ is determined from normalizing condition,

i.e.,
XRhv

k¼0
π kh ið Þ ¼ 1.

Here and further we put ∏ n
i¼mxi¼ 1 if n<m.

Using Eqs. (4.11)–(4.13) and after certain mathematical transformations we

finally obtain the following approximate formulas for calculating QoS metrics

from expressions (4.3)–(4.6):
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Phv ¼
X

n∈ SRhv

p nð Þ þ
XRhv�1

k¼0

X
n∈ Sk

p nð ÞI nv þ n s
d � N

� � �π Rhvh ið Þ

þ
XRhv�1

k¼0

π kh ið Þ 1� ρk 0ð Þ
XN�k�1

i¼0

v id
i!

 !
; ð4:14Þ

Pov ¼
XRhv

k¼Rov

X
n∈ Sk

p nð Þþ
XRov�1

k¼0

X
n∈ Sk

p nð ÞI nv þ n s
d � N

� �

�
XRhv

k¼Rov

π kh ið Þ þ
XRov�1

k¼0

π kh ið Þ 1� ρk 0ð Þ
XN�k�1

i¼0

v id
i!

 !
; ð4:15Þ

Pod ¼
XRhv

k¼0

X
n∈ Sk

p nð ÞI nv þ n s
d � N

� � �XRhv

k¼0

π kh ið Þ 1� ρk 0ð Þ
XN�k�1

i¼0

v id
i!

 !
;

ð4:16Þ

Lhd ¼
X1
k¼1

k
X
n∈ S

p nð Þδ nq
d ; k

� � �X1
k¼1

k
XRhv

i¼0

ρi N þ k � ið Þπ ih ið Þ

¼
XRhv

k¼0

π kh ið Þ
X1
i¼1

iρk N � k þ ið Þ

¼
XRhv

k¼0

π kh ið ÞL M=M=N � k=1ð Þ: ð4:17Þ

In the last formula L(M|M|N� k|1) represents the average length of queue in

the above-described model M|M|N� k|1 (see the description of split model with

state space Sk), i.e.,

L M=M=N � k=1ð Þ ¼ ρk 0ð Þ vN�k
d

N � kð Þ!
vhd kð Þ

1� vhd kð Þð Þ2 ,

where vhd(k)¼ vhd/(N� k).
Now consider a special case of the studied CAC scheme in which there was no

difference between new and handover calls of voice traffic, i.e., it is assumed that

Rov¼Rhv. In other words, the proposed call access scheme contains only one

threshold parameter. The stationary distribution of state probabilities of split

model in this case is also determined by the relations (4.11). However, state

probabilities of merged model in the given case are determined as

π kh ið Þ ¼ vkv
k!

Yk�1

i¼0
αiπ 0h ið Þ, k ¼ 1, . . . ,Rhv,

where π 0h ið Þ ¼
XRhv

k¼0
vkv=k!
� �Yk�1

i¼1
αi

� 	�1

.

4.1 Models with Buffering of Handover Non-Real-Time Calls 105



For this case from Eqs. (4.14) and (4.15), we have

Pov ¼ Phv � π Rhvh ið Þ þ
XRhv�1

k¼0

π kh ið Þ 1� ρk 0ð Þ
XN�k�1

i¼0

v id
i!

 !
:

The values of Pod and Lhd are determined from Eqs. (4.16) and (4.17),

respectively.

The proposed approach can be also applied in models with limited queue of

hd-calls. Let the maximal buffer size for hd-calls waiting be equal to Rhd. Then by

the above procedure we obtain that in the given model the stationary distribution of

state probabilities of split model with the state space Sk coincides with the stationary
probability distribution of states for the queueing model M|M|N� k|Rhd with state-

dependent arrival rate and the constant intensity of one channel service equal μd. In
models with a limited queue, the condition of stationary mode always holds true and,

hence, steady-state probabilities of split model with state space Sk are determined as

ρk kð Þ ¼

v id
i!
ρk 0ð Þ if 1 � i � N � k,

vd
vhd

� �N�k N � kð ÞN�k

N � kð Þ!
vhd
N�k

� �i

ρk 0ð Þ ifN � k þ 1 � i � N � k þ Rhd,

8>>>><
>>>>:

ð4:18Þ

where ρk(0) is determined from normalizing condition, i.e.,
XN�kþRhd

i¼0
ρk ið Þ ¼ 1.

Further by Eq. (4.13) we determine the stationary distribution of merged model

taking into account that the parameters αk are calculated in view of Eq. (4.18). The QoS

metrics (4.3)–(4.5) are also determined by the formulas (4.14)–(4.16), respectively. In

the given model the average length of queue of hd-calls is calculated as follows:

Lhd �
XRhv

k¼0

π kh ið ÞL M=M=N � k=Rhdð Þ, ð4:19Þ

where L(M|M|N� k|Rhd) is the average length of queue in the above model M|M|

N� k|Rhd, i.e.,

L M=M=N � k=Rhdð Þ ¼ ρk 0ð Þ vN�k
d

N � kð Þ!
XNþRhd�k

i¼1

i vhd kð Þð Þi:

Note that in the given model a new QoS metric which denotes the blocking

probability of handover data calls appears. It is determined as follows:
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Phd �
XRhv

k¼0

ρk N � k þ Rhdð Þπ kh ið Þ: ð4:20Þ

The model with a limited queue of impatient hd-calls can be studied in analo-

gous way, and in this case one also manages to obtain the explicit formulas.

Regardless of the fact that for the model with unlimited queue of impatient

hd-calls one is not able to obtain explicit formulas, in the given case it is possible

to use the known approximate scheme ([14], Chap. 2]).

Now consider the second scheme to restrict the access of voice calls to channels

in which the decision on access of heterogeneous v-calls is based on the total

number of busy channels of the cell (guard channel scheme). First of all note that

the access scheme for data calls remains same as in previous scheme.

The access of voice calls in this scheme is performed by the following rules:

• If at the moment of arrival of ov-call, the total number of busy channels is less

than Gov, 0<Gov<N, then it is accepted for service; otherwise it is rejected.

• If at the moment of arrival of hv-call, the total number of busy channels is less

than Ghv,Gov�Ghv<N, then it is accepted for service; otherwise it is rejected.

In the given scheme the stationary mode in the cell exists under fulfillment of

condition λd< (N�Ghv)μd, where λd is the total intensity of data calls. Then in a

stationary mode the cell state at the arbitrary time instant is described by

two-dimensional vector n¼ (nv, nd), where nv and nd indicate the number of voice

calls in channels and the total number of data calls in the cell, respectively. Hence,

the space of states of the given 2-D MC is determined similar to Eq. (4.1), i.e.,

S ¼ n : nv ¼ 0, 1, . . . ,Ghv, nd ¼ 0, 1, . . . ; nv þ n s
d � N

� �
:

According to the given access scheme the nonnegative elements of Q-matrix of

the given 2-D Markov chain q(n,n0), n, n0 ∈ S are determined from the following

relations:

q n; n0ð Þ ¼

λv if nv þ n s
d � Gov � 1, n0 ¼ nþ e1,

λhv ifGov � nv þ n s
d � Ghv � 1, n0 ¼ nþ e1,

λd if nv þ n s
d < N, n0 ¼ nþ e2,

λhv if nv þ n s
d � N, n0 ¼ nþ e2,

λvμv if n0 ¼ n� e1,
n s
dμd if n0 ¼ n� e2,

0 inothercases:

8>>>>>>>><
>>>>>>>>:

ð4:21Þ

Then, according to the proposed call access scheme, we find that the loss

probabilities of heterogeneous v-calls are determined as the corresponding mar-

ginal distributions of initial 2-D MC, i.e.,
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Phv ¼
X
n∈ S

p nð ÞI nv þ n s
d � Ghv

� � ð4:22Þ

Pov ¼
X
n∈ S

p nð ÞI nv þ n s
d � Gov

� � ð4:23Þ

The remains QoS metrics, i.e., the loss probability of od-calls and the average

number of hd-calls in the queue (Lhd), are determined by Eqs. (4.5) and (4.6),

respectively.

As it was mentioned above, the approach to finding the state probabilities based

on application of two-dimensional generating function method is cumbersome and

ineffective even for simple access schemes. In this connection further we use the

above-developed approach, which allows one to develop simple algorithms for

approximate calculation of QoS metrics for the given call access scheme.

Under the above-accepted assumption related to ratios of loading parameters,

consider the following splitting of state space:

S ¼ [Ghv

k¼0Sk, Si \ Sj ¼ ∅, i 6¼ j, ð4:24Þ

where Sk¼ {n ∈ S : nv¼ k}.
As the scheme of splitting of the state space completely defines the split and

merged models, some intermediate stages are omitted below.

Hence, with the ergodicity condition fulfilled (i.e., at λd< (N� k)μd), the steady-
state probabilities of the split model with the state space Sk, k¼ 0, 1, . . .,Ghv are

determined by the similar formulas (4.11). Since the ergodicity condition

vd<N� k should be fulfilled for each k¼ 0, 1, . . .,Ghv then the ergodicity condition

for the initial model is obtained: vd<N�Ghv. Then with this condition fulfilled and

in view of Eq. (4.11) from Eq. (4.21), we obtain the following relations to calculate

the nonnegative elements of Q-matrix of the merged model:

q kh i; k0h ið Þ ¼
λvβk if 0 � k � Gov � 1, k0 ¼ k þ 1,

λhvβk ifGov � k � Ghv � 1, k0 ¼ k þ 1,

kμv if k0 ¼ k � 1,

0 inothercases,

8>><
>>:

where

βk ¼
ρk 0ð Þ

XGov�k�1

i¼0

v id
i!

if 0 � k � Gov � 1,

ρk 0ð Þ
XGhv�k�1

i¼0

v id
i!

ifGov � k � Ghv � 1:

8>>>>><
>>>>>:

These relations allow one to determine the steady-state probabilities of the

merged model, which is described by 1-D BDP, i.e.,
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π kh ið Þ ¼

vkv
k!

Yk�1

i¼0
βiπ 0h ið Þ if 1 � k � Gov,

vv
vhv

� �Gov vkhv
k!

Yk�1

i¼0
βiπ 0h ið Þ ifGov þ 1 � k � Ghv,

8>>>><
>>>>:

ð4:25Þ

where π(h0i) is determined from normalizing condition, i.e.,
XGhv

k¼0
π kh ið Þ ¼ 1.

After certain transformations we obtain the following approximate formulas for

calculating QoS metrics of the given CAC scheme:

Phv � π Ghvh ið Þ þ
XGhv�1

k¼0

π kh ið Þ 1� ρk 0ð Þ
XGhv�k�1

i¼0

v id
i!

 !
; ð4:26Þ

Pov �
XGhv

k¼Gov

π kh ið Þ þ
XGov�1

k¼0

π kh ið Þ 1� ρk 0ð Þ
XGov�k�1

i¼0

v id
i!

 !
; ð4:27Þ

Pod �
XGhv

k¼0

π kh ið Þ 1� ρk 0ð Þ
XN�k�1

i¼0

v id
i!

 !
; ð4:28Þ

Lhd �
XGhv

k¼0

π kh ið Þρk 0ð Þ vN�k
d

N � kð Þ!
vhd kð Þ

1� vhd kð Þð Þ2 : ð4:29Þ

Here we can also consider some special cases of the CAC scheme under study.

For instance, when there is no differences between new and handover calls of voice

traffic (i.e., Gov¼Ghv and Ghv<N ), the steady-state probabilities of the merged

model are determined as follows:

π kh ið Þ ¼ vkv
k!

Yk�1

i¼0
βiπ 0h ið Þ, k ¼ 1, . . . ,Ghv,

where

βi ¼ ρi 0ð Þ
XGhv�i�1

j¼0

v jd
j!
:

For this case from Eqs. (4.26) and (4.27), we have

Pov ¼ Phv � π Ghvh ið Þ þ
XGhv�1

k¼0

π kh ið Þ 1� ρk 0ð Þ
XGhv�k�1

i¼0

v id
i!

 !
:

The values of Pod and Lhd are determined from Eqs. (4.28) and (4.29),

respectively.
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The proposed approach can be applied also to calculating QoS metrics of the

models with the given CAC scheme and with the limited queue of hd-calls. Since

the analogous formulas for calculating the models with the cutoff strategy have

been presented above, they are omitted here.

4.1.2 Selection of Effective Values of Access Scheme
Parameters

The formulas obtained in Sect. 4.1.1 allow one to study the behavior of QoS metrics

for fixed values of number of channels and parameters of the introduced access

schemes. However, of certain scientific and practical interest are the problems

satisfying the given level of QoS for heterogeneous calls due to choice of appro-

priate values of CAC being used.

There can be different statements of problems of determining such values of

threshold parameters. In what follows consideration is given to problems of

searching for the set of values of parameters of the introduced CAC schemes

satisfying the given level of service quality of heterogeneous calls. This set (if it

is not empty) will be called the set of efficient values (SEVs) of access scheme

parameters.

First consider CAC based on cutoff scheme. Verbal definition of the problem

considered consists in the following. Let under the fixed loads there be given upper

limits for possible values of loss probabilities of heterogeneous calls and the

average length of queue of hd-calls (at the same time the last limitation means

that there is given the limitation on the average waiting time of hd-calls in a queue).

One needs to find such values of parameters Rov and Rhv that the given limitations

would be satisfied.

Note that for small values of N this problem solution can be found by simple

enumeration of all possible combinations of the values of parameters Rov and Rhv.

However, with N growing such approach is not efficient and sometimes not

feasible. Hence, further we propose the algorithmic approach to solution of the

stated problem which does not use the complete enumeration of variants.

Mathematically the mentioned problem is written as follows: one needs to find

the pairs (Rov, Rhv), Rov�Rhv, satisfying the following limitations:

Px � εx, x∈ ov; hv; odf g, ð4:30Þ
Lhd � lhd, ð4:31Þ

where εhv, εov, εod, lhd are the given values.

One of the possible algorithms of solving the problem (4.30), (4.31) based on

application of monotony property of studied QoS metrics is described further. The

main idea of this iterative algorithm consists in the fact that for each fixed value of

parameter Rhv the search for SEV is performed due to the choice of corresponding
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values of parameter Rov. In other words, the functions involved in the given

problem have just one argument Rov. For simplicity of presentation this argument

is explicitly indicated in records of these functions.

For generality we consider the kth iteration, k¼ 1, 2, . . .,Rhv:

Step 1. We put Rhv¼ k and verify the condition Pov(k)� εov. If it holds true, then we
pass to the next step; otherwise, for the given value of Rhv the problem has no

solution.

Step 2. In parallel the following problems are solved:

R�
ov ¼ argminRov ∈ 1;k½ � Pov Rovð Þ � εovf g; ð4:32Þ
R1 ¼ argminRov ∈ 1;k½ � Phv Rovð Þ � εhvf g; ð4:33Þ
R2 ¼ argmaxRov ∈ 1;k½ � Pod Rovð Þ � εodf g; ð4:34Þ
R3 ¼ argmaxRov ∈ 1;k½ � Lhd Rovð Þ � lodf g: ð4:35Þ

We put R� �
ov :¼min{R1, R2, R3}.

Step 3. The required interval of appropriate values of Rov for the given value of Rhv

is determined as [1, R� �
ov ]\ [R�

ov, k].
Step 4. If Rhv<N, then we put Rhv :¼Rhv + 1 and pass to the step 1. Otherwise the

algorithm operation terminates.

Note 4.2 On the basis of monotony property of functions studied to solve the

problems (4.32)–(4.35), one can employ a dichotomy method.

Therefore, for every fixed value of threshold Rhv, the algorithm given above

searches for the set of admissible values of Rov (if they exist) so that by integrating

all obtained solutions to obtain SEV of threshold parameters.

With application of developed algorithm the numerical experiments were perfor-

med. The initial data of test problems (4.30), (4.31) for the hypothesizedmodel is chosen

in the following way: N¼ 20; λov¼ 0.2; λhv¼ 0.1; λod¼ 2; λhd¼ 1; μv¼ 0.1; μd¼ 2.

For clearness the results of solving the problems (4.30), (4.31) under different

limitations on values of loss probability of heterogeneous calls are gathered in

Table 4.1, where∅ denotes that the problem has no solution.

Now consider the similar problem of finding the set of effective values of

threshold parameters for CAC based on guard channel scheme. In other words, it

is necessary to find the pairs (Gov,Ghv),Gov�Ghv such that the restrictions (4.30),

(4.31) are fulfilled.

To solve this problem one can use the modification of the algorithm developed

above. With its help the numerical experiments have been performed. Initial data

for test problems for the hypothesize model were selected as above. The results of

problem solution under different limitations on values of loss probabilities of

heterogeneous calls are demonstrated in Table 4.2.

The behavior of QoS metrics of model with respect to change of variable

parameters Gov,Ghv (in the CAC based on guard channel scheme) and Rov,Rhv

(in the CAC based on cutoff scheme) is identical. Hence, the comparison of SEV

4.1 Models with Buffering of Handover Non-Real-Time Calls 111



under different access schemes when initial data of model remains unchangeable

represents practical interest. In this connection, it is worth noting that under all

limitations on QoS metrics which are demonstrated in Table 4.1, SEV of the

problem for CAC based on guard channels represents the empty set. In other

words, it should be expected that for the same values of number of cell channels,

loads, and the required change of value ranges of QoS metrics, these limitations will

be satisfied by one strategy and will not by the other. Since both strategies have the

same degree of implementation complexity, then in each particular case one should

make a serious study before selecting the appropriate access scheme.

Note that in practice the loads of heterogeneous traffics change in time. How-

ever, the above numerical experiments were performed under fixed loads. Hence,

problems of studying sensitivity of efficient values of threshold parameters versus

load change are urgency also. In this connection, it is worth noting that the

analytical study of the given problem is not feasible in principle. Hence, it can be

studied only by application of numerical experiments. Fortunately, the simplicity of

Table 4.1 Solution results for problems (4.30) and (4.31) in CAC based on cutoff scheme

εov εod εhv εhd

[R�
ov,R

� �
ov ]

Rhv¼ 10 Rhv¼ 13 Rhv¼ 16

E-02 4E-07 5E-05 5E-05 Ø [8, 13] [8, 16]

E-02 E-07 E-04 E-08 [8, 8] [8, 13] [8, 16]

E-02 E-07 E-04 E-10 [8, 8] [8, 8] [8, 8]

E-02 E-07 E-04 E-09 [8, 8] [8, 11] [8, 11]

E-01 E-06 E-04 E-10 [6, 8] [6, 8] [6, 8]

5E-02 4E-09 5E-04 2E-10 [7, 9] [7, 8] [7, 8]

8E-02 4E-08 5E-09 5E-10 Ø Ø [6, 9]

8E-02 4E-08 5E-05 5E-08 [6, 7] [6, 13] [6, 16]

15E-02 4E-07 5E-05 5E-12 [5, 5] [5, 5] [5, 5]

15E-02 4E-07 5E-06 5E-11 [5, 5] [5, 7] [5, 7]

Table 4.2 Solution results for problems (4.30) and (4.31) in CAC based on guard channel scheme

εov εod εhv εhd

[G�
ov,G

� �
ov ]

Ghv¼ 10 Ghv¼ 13 Ghv¼ 16

15E-02 E-09 E-03 E-11 Ø [7, 7] [7, 7]

15E-03 E-08 E-03 E-10 Ø [10, 11] [10, 11]

5E-02 E-08 14E-03 E-10 [9, 10] [9, 10] [9, 10]

5E-02 5E-07 14E-03 2E-05 [9, 10] [9, 13] [9, 16]

5E-02 5E-09 14E-03 2E-05 Ø [9, 11] [9, 11]

7E-02 2E-09 4E-03 2E-10 Ø [8, 10] [8, 10]

E-02 2E-08 3E-03 2E-08 Ø [11, 13] [11, 13]

4E-02 2E-08 12E-03 2E-08 [9, 9] [9, 13] [9, 13]

3E-02 2E-08 E-01 2E-08 [10, 10] [10, 13] [10, 13]

9E-02 2E-08 E-02 2E-08 [8, 8] [8, 13] [8, 13]
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proposed numerical procedures to calculating the QoS metrics allows one to solve

this problem easily. The experiments performed showed that the efficient values of

threshold parameters in both CAC are invariable in sufficiently wide range of load

change. It is accounted for by a smooth change of studied QoS metrics with respect

to loads of heterogeneous traffics (see next subsection).

4.1.3 Numerical Results

Let us first examine the results of numerical experiments for the CAC based on

cutoff scheme. Some results for hypothetical models are depicted in Figs. 4.1, 4.2,

and 4.3. They illustrate the plots of the studied QoS metrics for the following initial

data: N¼ 20; Rhv¼ 14; λov¼ 0.2; λhv¼ 0.1; λod¼ 5; λhd¼ 2; μv¼ 0.1; μd¼ 0.6.

In the model considered for the fixed value of the total number of channels (N ),

one can change the values of two parameters of the given CAC (Rov and Rhv). In

other words, there exist two degrees of freedom for the given model. Note that the

increase of value of one parameter (in admissible domain) favorably affects only

the loss probability of calls of the corresponding type.

Hence, in these experiments the increase of value of threshold Rov leads to the

decrease of loss probability of ov-calls, with three other QoS metrics (i.e., Phv, Pod,

and Lhd) growing. However, the speeds of their change are different. From Fig. 4.1

one can see that the value of function Pov decreases with high speed especially at

values of Rov close to maximal possible value (i.e., Rhv), and at the point Rov¼Rhv,

the values of functions Pov and Phv are equal (as it was to be expected; see formulas

(4.3) and (4.4)). However, speeds of other functions growing are sufficiently low,

and for values of Rov close to maximal possible value, they almost do not change.

Note that the increase of loads of traffics worsens all QoS metrics (see Figs. 4.2 and

4.3).
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The behavior of QoS metrics (4.3)–(4.6) with respect to change of traffic is

shown in Figs. 4.4, 4.5, and 4.6, where the value to change is the load of voice calls.

Here the initial data was selected as follows: N¼ 20; Rhv¼ 14;

Rov¼ 5; λov¼ 0.2; λhv¼ 0.1; λod¼ 5; λhd¼ 2; μd¼ 2. This plot analysis shows a

smooth growth of functions under study with respect to the increased load of voice

calls. The analogous results were obtained with respect to the changed load of data

calls. As it was mentioned above (see Sect. 4.1.2), this research is very important in

terms of determining sensitivity of optimal (in a certain sense) values of parameters

of the applied CAC scheme under the change of traffic parameters.

Formodelswith the finite queue of hd-calls, one can study the accuracy of proposed

approximate algorithms of calculating the values of QoS metrics. However, this

research is feasible only for small dimensions of state space (4.1) since in this case

the exact values of QoS metrics are obtained by solving the corresponding SGBE.

Numerical experiments showed sufficiently high accuracy of developed algorithms

provided that the above conditions hold true: λd� λv,μd� μv. Tables 4.3 and 4.4

depict just minor part of results of these experiments for the model with parameters

N¼ 20;Rhv¼ 14;Rhd¼ 10; λov¼ 0.2; λhv¼ 0.1; λod¼ 5; λhd¼ 2; μv¼ 0.1; μd¼ 0.6,

where Rhd is the maximal size of buffer for waiting for hd-calls: EV—exact values;

AV—approximate values. Table 4.3 presents results of comparative analysis of

accuracy for voice calls and Table 4.4 for data calls.

Unfortunately, studying the accuracy of developed formulas for models with

infinite queue is not feasible analytically. Such research can be conducted via

simulation alone, although it is evident that the results of simulation are also

approximate.

Now consider some results of numerical experiments for the CAC based on

guard channel scheme. In Figs. 4.7, 4.8, and 4.9 the dependences of QoS metrics of
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the model on the value of two threshold parameters at the fixed value of total

number of channels are demonstrated.

Here we present the plots of QoS metrics under study for the following initial

data: N¼ 20,Ghv¼ 14, λov¼ 0.2, λhv¼ 0.1, λod¼ 5, λhd¼ 2, μv¼ 0.1. As in case of

CAC based on cutoff scheme, the increased value of one of thresholds (in the

admissible region) favorably affects only the loss probability of calls of the

corresponding type. In these experiments with the increased value of threshold

Gov the loss probability of ov-calls decreases; therewith the other three QoS metrics

(Phv,Pod, Lhd) grow. As expected, Phv¼Pov when Gov¼Ghv. We also note that the

increased value of each traffic intensity and (or) decreased intensity of their service

lead to the growing values of the above QoS metrics (see Figs. 4.8 and 4.9).

Results related to the behavior of QoS metrics with respect to change of loads of

voice calls are depicted in Figs. 4.10, 4.11, and 4.12, where the initial data are

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14

LgLhd 

2

1

Rov
Fig. 4.3 Average length of

queue of hd-calls versus

Rov; 1—μd¼ 0.6, 2—

μd¼ 0.7

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

2

1

LgPv

Rov

Fig. 4.4 Blocking

probability of v-calls versus

μv; 1—Pov, 2—Phv

4.1 Models with Buffering of Handover Non-Real-Time Calls 115



chosen as follows: N¼ 20,Ghv¼ 14,Gov¼ 5, λov¼ 0.2, λhv¼ 0.1, λod¼ 5, λhd¼ 2;

therewith, in Fig. 4.10 we put μd¼ 2. This plot analysis shows that the QoS metrics

under study change smoothly with respect to change of loads of entering traffics

(analogous studies have been performed also for data calls loads; however, due to

being short the appropriate results are not presented here).

-12

-10

-8

-6

-4

-2

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

2

1  

LgPod 

μv

Fig. 4.5 Blocking

probability of od-calls

versus μv; 1—μd¼ 2, 2—

μd¼ 3

-14

-12

-10

-8

-6

-4

-2

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

1 

2

LgLhd 

μv

Fig. 4.6 Average length of

queue of hd-calls versus μv;
1—μd¼ 2, 2—μd¼ 3

116 4 Algorithmic Methods for Analysis of Integral Cellular Networks



Sufficiently high accuracy of the developed approximate procedures to calcu-

lating the QoS metrics under using CAC based on guard channels was observed by

numerical experiments also. Since the analogous results have been shown above for

Table 4.3 Comparison for

v-calls in CAC based on

cutoff scheme
Rov

Rov Rhv

EV AV EV AV

1 0.851256 0.844055 0.008129 0.007523

2 0.628789 0.624688 0.009611 0.009503

3 0.422075 0.417093 0.012315 0.011958

4 0.273341 0.252182 0.014603 0.014415

5 0.140492 0.139387 0.017012 0.016435

6 0.078063 0.073291 0.017309 0.017787

7 0.043031 0.040325 0.018742 0.018523

8 0.029452 0.026328 0.018901 0.018853

9 0.023543 0.021232 0.018952 0.018979

10 0.021788 0.019624 0.019431 0.019023

11 0.021631 0.019179 0.019479 0.019037

12 0.021607 0.019071 0.019481 0.019042

13 0.021598 0.019048 0.019489 0.019043

14 0.021435 0.019043 0.021435 0.019043

Table 4.4 Comparison for

d-calls in CAC based on

cutoff scheme
Rov

Rod Lhd
EV AV EV AV

1 0.007673 0.007523 0.009335 0.009229

2 0.009628 0.009503 0.011893 0.011720

3 0.011977 0.011958 0.014743 0.014847

4 0.014501 0.014415 0.018146 0.018024

5 0.016671 0.016435 0.020759 0.020681

6 0.017799 0.017787 0.022503 0.022492

7 0.018605 0.018523 0.023512 0.023494

8 0.018901 0.018853 0.023988 0.023945

9 0.018988 0.018979 0.024245 0.024111

10 0.019031 0.019023 0.024279 0.024162

11 0.019044 0.019037 0.024281 0.024176

12 0.019058 0.019042 0.024295 0.024179

13 0.019077 0.019043 0.024296 0.024179

14 0.019077 0.019043 0.024296 0.024179
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CAC based on cutoff scheme, then due to the limited size of the book they are not

presented here.

Note that the comparative analysis of QoS metrics of different CAC schemes

presents a certain interest. In both strategies the total number of channels is fixed,

and the variables are the parameters Gov and Ghv (in the CAC based on guard

channel scheme) and Rov and Rhv (in the CAC based on cutoff scheme). It is evident

that the behavior of QoS metrics of the model with respect to change of the above

variable parameters is identical.
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Some comparisons are depicted in Figs. 4.13, 4.14, 4.15, and 4.16, where

1 indicates the curve of QoS metrics when using the CAC based on cutoff

scheme and 2 the analogous curve when using the CAC based on guard channel

scheme. The following initial data was selected: N¼ 20,Ghv¼ 14,

Gov¼ 5, λov¼ 0.2, λhv¼ 0.1, λod¼ 5, λhd¼ 2, μv¼ 0.1, μd¼ 0.6. In the described
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plots on the abscissa axis there is the parameter of guard channel scheme Gov, and,

as mentioned above, it corresponds to parameter Rov of the CAC based on cutoff

scheme.

From these plots one can see that for selected required initial data, the QoS

metrics, which determine the level of voice call service, are much better with
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application of cutoff scheme, and QoS metrics of data calls prefer another access

scheme. However, it should be expected that with other values of initial data the

guard channel scheme would be preferable for voice calls, and on the contrary, at

certain initial data the cutoff scheme would be preferable for data calls.
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4.2 Models with Buffering of Both New and Handover

Non-Real-Time Calls

In Sect. 4.1 models with buffering only hd-calls are examined. However, in modern

networks it is permitted not only buffering hd-calls but also od-calls. It is important

to note that the method based on the use of balance equations is effective only for

models of low and moderate dimension and cannot be used for large-scale models,

especially for the models with infinite buffers. Based on these facts, there is

provided an efficient numerical method for the study of such models of any

dimension of the buffer, including models with an infinite buffers. Here a unified
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approach to the study of multiservice models (see Sect. 4.1) with finite and infinite

queues of calls of both types’ data is proposed. On the basis of this method the

approximate method of calculating QoS metrics is developed, which has a low

computational complexity for models of any dimension.

4.2.1 Integrated Access Schemes to Channels and to Buffer

Note that in this section all notations remain the same as in previous section.

First consider the model in which the access of v-calls is implemented using the

cutoff scheme (see Sect. 4.1.1). However, the access of the buffered d-calls is

implemented as follows:

• If upon arrival of the d-call of any type, there is at least one free channel in the

system, then such call is accepted for service.

• If an incoming call belongs to the class of the od-calls and at the moment of its

entry all the channels are busy, then it is taken into the buffer only when the total

number of calls in the buffer is less than the value Rod, 1<Rod�B, where B is a

maximum buffer size (in the case of model with the finite buffer); otherwise the

od-call is lost.

• If the incoming call belongs to the class of the hd-calls and at the moment of its

entry all channels are busy, then it is taken to the buffer in the presence of at least

one free space in the buffer; otherwise the hd-call is lost.

Upon release of any channel of the cell one d-call from the buffer is selected for

transmission; any conservative queueing discipline can be used (recall that a

discipline is called conservative if it does not admit idle channels in case of a

queue). Since the buffer does not distinguish between types of data calls, then it is

reasonable to use non-preemptive high priorities for the hd-calls.

The problem is to find QoS metrics of the system—the loss probabilities of calls

of every type and average number of the d-calls in the queue, as well as their

waiting time in a queue.

Let us first consider the model of a cell with the finite size of a buffer, i.e.,

assume that the maximum size of the buffer for queueing of the d-calls is B, where
0<B<1.

In a steady-state mode the cell state at any given time is described by the 2-D

vector n¼ (nv, nd), where nv and nd indicate the number of voice calls in channels

and total number of data calls in the system, respectively. The state space of the

corresponding 2-D MC is defined as

S ¼ n : nv ¼ 0, 1, . . . ,Rhv, nd ¼ 0, 1, . . . , N þ B; nv þ n s
d � N

� �
:

According to the introduced schemes of call access into the channels and buffer,

nonnegative matrix elements of the Q-matrix of the given 2-D MC are determined

from the following relations:
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q n; n0ð Þ ¼

λv if nv � Rov � 1, n0 ¼ nþ e1,
λhv ifRov � nv � Rhv � 1, n0 ¼ nþ e1,
λd if nq

d < Rod, n
0 ¼ nþ e2,

λhv if nq
d � Rod, n

0 ¼ nþ e2,
nvμv if n0 ¼ n� e1,
n s
dμd if n0 ¼ n� e2,

0 inothercases:

8>>>>>>>><
>>>>>>>>:

ð4:36Þ

In view of the proposed access scheme for voice calls one gets that QoS metrics

for such kind of calls are defined similar to Eqs. (4.3) and (4.4), respectively.

However, the loss probabilities of d-calls of different types are defined from the

following relations:

Pod ¼
X
n∈ S

p nð ÞI nq
d � Rod

� �
; ð4:37Þ

Phd ¼
X
n∈ S

p nð Þδ nq
d ;B

� �
: ð4:38Þ

The average number of d-calls in the queue (Ld) is defined similar to Eq. (4.6)

where the upper bound of sum is substituted by B. So, the average waiting time in

the queue of data calls is

Wd ¼ Ld


 X
x∈ od;hdf g

λx 1� Pxð Þ: ð4:39Þ

Finding the analytical solution of the appropriate SGBE is very complicated,

probably unsolvable, problem. And using numerical methods of linear algebra for

model with large state space is connected with the known computational difficul-

ties. Below another approach is proposed, which allows for an approximate calcu-

lation of QoS metrics of the given system to obtain simple computational

procedures, using explicit formulas.

The algorithms developed here are based on the assumptions indicated above,

i.e., λd� λv, μd� μv. Under this assumption the splitting of the state space S similar

to Eq. (4.7) and merging function similar to Eq. (4.8) are constructed. Note that the

stationary distribution of split model with state space Sk coincides with the proba-

bility distribution of states of the modelM/M/N� k/N� k +Bwith a constant rate of

service of one channel, equal to μd and state-dependent arrival intensity of the calls.
The arrival intensity depends upon the state i as follows:

λi ¼ λod if i < N � k þ Rod,

λhd if i � N � k þ Rod:

�

Hence, the state probabilities of split model with state space Sk are determined as

follows:
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ρk kð Þ ¼

v id
i!
ρk 0ð Þ if 1� i�N� k,

N� kð ÞN�k

N� kð Þ! vd kð Þð Þiρk 0ð Þ ifN� kþ1� i�N� kþRod,

vN�k
d

N� kð Þ! vd kð Þð ÞRod vhd kð Þð Þi�Nþk�Rodρk 0ð Þ ifN� kþRod < i�N� kþB,

8>>>>>>>>><
>>>>>>>>>:

ð4:40Þ

where vd(k)¼vd/(N�k) and ρk(0) are found from the normalizing condition, i.e.,

∑N�kþB
i¼0 ρk(i)¼1.

The nonnegative elements of the Q-matrix of the merged model are calculated

from Eq. (4.36) by taking into account Eq. (4.40). The calculation formulas

coincide with Eq. (4.12), but in this case parameters αk (see formula (4.12)) are

determined by using relations (4.40). Thus, state probabilities of merged model are

defined by using formula (4.13).

For the given model approximate values of QoS metrics Pov,Phv,Ld and Phd are

determined similar to Eqs. (4.14), (4.15), (4.19), and (4.20), respectively. Note that

in these formulas it is required to take into account the above-indicated fact, i.e.,

state probabilities of split models are determined from Eq. (4.40). The new QoS

metrics—loss probability of od-calls in this model—is determined as follows:

Pod �
XRhv

k¼0

π kh ið Þ
XN�kþB

i¼N�kþB�Rod

ρk ið Þ: ð4:41Þ

Let us consider some important special cases of the proposed integrated scheme

of admission to channels and to the buffer. One of them, i.e., when there is no

difference between new and handover voice calls, has been considered above (see

Sect. 4.1.1). Another important special case is no difference between new and

handover data calls, i.e., Rod¼B. In this case the stationary distribution of the

split model is determined by the following relations:

ρk kð Þ ¼

v id
i!
ρk 0ð Þ if 1 � i � N � k,

N � kð ÞN�k

N � kð Þ!
vd

N�k

� �i

ρk 0ð Þ ifN � k þ 1 � i � N � k þ B,

8>>>><
>>>>:

where ρk(0) can be found from the normalizing condition. For this case we obtain

Phd ¼ Pod ¼
XRhv

k¼0

ρk N þ B� kð Þπ kh ið Þ:
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It is also possible to consider a combination of these two special cases, i.e., to

assume within the framework of a uniform model that Rov¼Rhv and Rod¼B. Then
the corresponding formulas become simpler.

The proposed approach can also be used for the analysis of a model with infinite

buffer, i.e., for the case B¼1. In this model, as before, if all the channels are busy

at the time of arrival of an od-call, the call is accepted in the buffer only if the total

number of calls in the buffer is less than Rod, 1<Rod<1; if the call arrived

belongs to the class of hd-calls and at the time of its arrival all the channels are

busy, it is always accepted in the buffer.

Applying the procedure described above, we obtain that the stationary distribu-

tion of split model with state space Sk coincides with the stationary distribution of

the model M/M/N� k/1 with constant service rate of one channel, equal to μd, in
which call arrival rate depends on the system state (see the similar model with a

finite queue described above).

In split model with state space Sk, stationary mode exists if the ergodicity

condition vhd(k)< 1 is satisfied. Since it should be satisfied for each k¼ 0, 1, . . ., Rhv,

the ergodicity condition for the original model has the form vhd(Rhv)< 1. Hence, if

the ergodicity condition is satisfied, the state probabilities of the split model with

state space Sk are determined as follows:

ρk kð Þ ¼

v id
i!
ρk 0ð Þ if 1� i�N� k,

N� kð ÞN�k

N� kð Þ! vd kð Þð Þiρk 0ð Þ ifN� kþ 1� i�N� kþRod,

vN�k
d

N� kð Þ! vd kð Þð ÞRod vhd kð Þð Þi�Nþk�Rodρk 0ð Þ if i�N� kþRodþ 1,

8>>>>>>>>><
>>>>>>>>>:

where ρk(0), as above, can be found from the normalizing condition.

As above, the parameters Pov and Phv are determined from Eqs. (4.14) and (4.15),

respectively, and parameter Pod is calculated as follows (in this model Phd¼ 0):

Pod � 1�
XRhv

k¼0

XNþRod�k�1

i¼0

ρk ið Þπ kh ið Þ:

After rather complex mathematical transformation, we obtain that the average

queue length in this model is determined as follows:

Ld �
XRhv

k¼0

π kh ið ÞL M=M=N � k=1ð Þ,

where L(M/M/N� k/1) denotes average queue length in the above system M/M/

N� k/1 with variable call arrival rate, i.e.,
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L M=M=N � k=1ð Þ

¼ ρk 0ð Þ vN�k
d

N � kð Þ!
XRod

i¼1

i vd kð Þð Þi þ vd
vhd

� �Rod vhd kð Þ
1� vhd kð Þð Þð Þ2 �

XRod

i¼1

i vhd kð Þð Þi
 ! !

:

Now consider another restriction rules for the access of voice calls to channels

based on guard channel scheme. The access of voice calls in this scheme is

performed as follows:

• If at the moment of arrival of ov-call, the total number of busy channels is less

than Gov, 0<Gov<N, then it is accepted for service; otherwise it is rejected.

• If at the moment of arrival of hv-call, the total number of busy channels is less

than Ghv,Gov�Ghv<N, then it is accepted for service; otherwise it is rejected.

In the given scheme as well as above d-calls are accepted according to above-

described СAС scheme on the basis of reserving some places for hd-calls. Let us

again first consider the model with the finite size of a buffer, i.e., assume that the

maximum size of the buffer for queueing of the d-calls is B, where 0<B<1.

In a stationary mode, the cell state at the arbitrary time instant is described by

2-D vector n¼ (nv, nd), where nv and nd indicate the number of voice calls in

channels and the total number of data calls in the cell, respectively. Hence, the

state space of the given 2-D MC is

S ¼ n : nv ¼ 0, 1, . . . ,Ghv, nd ¼ 0, 1, . . . ,B; nv þ n s
d � N

� �
:

The nonnegative elements of Q-matrix of the given 2-D Markov chain q(n,
n0), n,n0 ∈ S is determined from the following relations:

q n; n0ð Þ ¼

λv if nv þ n s
d � Gov � 1, n0 ¼ nþ e1,

λhv ifGov � nv þ n s
d � Ghv � 1, n0 ¼ nþ e1,

λd if nq
d < Rod, n

0 ¼ nþ e2,
λhv if nq

d � Rod, n
0 ¼ nþ e2,

nvμv if n0 ¼ n� e1,
n s
dμd if n0 ¼ n� e2,

0 inothercases:

8>>>>>>>><
>>>>>>>>:

ð4:42Þ

Loss probabilities of heterogeneous voice calls are defined similarly to Eqs. (4.22)

and (4.23), and average number of d-calls in queue and average time of their waiting

in queue are defined similarly to Eqs. (4.37) and (4.38), respectively.

Here, as well as above, for a finding of exact values of required QoS metrics, it is

possible to use the corresponding SGBE which is made on the basis of relations

(4.42). The computing difficulties specified above which arises at a finding of QoS

metrics by means of an exact method are actual in the given model as well.

Therefore, here it is necessary to use the approximate method developed above.

Since above this method is described in detail, therefore below its some obvious

stages are omitted.
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In this case, a class of microstates are defined as Sk¼ {n ∈ S : nv¼ k}, k¼
0, 1, . . .,Ghv. From the definition of the splitting scheme of the state space, it is clear

that the state probabilities of split model with state space Sk in this case are defined
similarly to Eq. (4.40). The relations (4.40) and (4.42) allow one to determine the

nonnegative elements of Q-matrix of the merged model:

q k; k0ð Þ ¼
λvαk þ λhvβkð Þρk 0ð Þ if 0 � k � Gov � 1, k0 ¼ k þ 1,

λhv αk þ βkð Þρk 0ð Þ ifGov � k � Ghv � 1, k0 ¼ k þ 1,

kμv if k0 ¼ k � 1,

0 inothercases,

8>><
>>:

where αk ¼
XGov�k�1

i¼0
v id=i!, βk ¼

XGhv�k�1

i¼Gov�k
v id=i!.

Thus, state probabilities of the merged model are determined as

π kh ið Þ ¼

1

k!

Yk�1

i¼0
xiπ 0h ið Þ if 1 � k � Gov,

1

k!

YGov�1

i¼0
xi
Yk�Gov

j¼Gov

yjπ 0h ið Þ ifGov þ 1 � k � Ghv,

8>>><
>>>:

where vv :¼ λv/μv, vhv :¼ λhv/μv, xi :¼ (vvαi + vhvβi)ρi(0), yi :¼ vhv(αi+ βi)ρi(0) and

π(0) are from the normalizing condition, i.e.,
XGhv

i¼0
π ið Þ ¼ 1.

Finally, after some transformations, one obtains the following approximate

formulas for the calculation of QoS metrics for d-calls (QoS metrics for v-calls

are determined similarly to CAC based on cutoff scheme):

Pod �
XGhv

k¼0

π kh ið Þ
XN�kþB

i¼N�kþRod

ρk ið Þ;

Phd �
XGhv

k¼0

ρk N � k þ Bð Þπ kh ið Þ;

Ld �
XB
k¼1

k
XGhv

i¼0

ρi N þ k � ið Þπ ih ið Þ;

Using the last formulas, one finds from Eq. (4.39) the average waiting time of

d-calls in the queue.

Some important special cases, i.e., Gov¼Ghv and/or Rod¼B, might be consid-

ered as it is investigated above. Then, the corresponding formulas are even more

simplified. The proposed approach can be used to study the model with an infinite

buffer, i.e., for the case B¼1. Since the above similar model is described in detail,

here this case is not considered.
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4.2.2 Numerical Results

Let us present the results of numerical experiments for the models with limited

buffers. First, consider results for CAC based on a cutoff scheme for access of voice

calls.

The initial data of the model were as follows [2]: N¼ 30,

B¼ 50, λov + λhv¼ 0.15 call/s, λod + λhd¼ 0.3 call/s, μ� 1
v ¼ 2 s, and μ� 1

d ¼ 120 s.

Thus, 30 % of the total intensity of voice calls are handover voice calls, and

80 % of the total intensity of data calls are new data calls.

For fixed values of the total number of channels and buffer size, it is possible to

vary three parameters of the considered CAC scheme, i.e., Rov,Rhv and Rod. In other

words, the model has three degrees of freedom. Since simultaneous variation in all

three parameters of the CAC scheme makes it impossible to make analytical

conclusions concerning the behavior of the QoS metrics under study, in the

numerical experiments described below, the parameter Rhv is fixed and takes the

greatest possible value, i.e., Rhv¼ 29.

Some results of the numerical experiments for Rod¼ 45 are shown in Figs. 4.17,

4.18, 4.19, and 4.20. Note that an increase in one of the parameters (in the

admissible domain) has a favorable effect only on QoS metrics of calls of the

corresponding type. For example, in these experiments, the increase in the threshold

value Rov reduces the loss probability of ov-calls and increases the other QoS

metrics (i.e., Phv,Pod,Phd, Lhd and Wd). The function Pov decreases with low rate

(see Fig. 4.17), especially for small value of Rov; however, the function Phv

increases rather rapidly, and the values of the functions Pov and Phv are equal at

the point Rov¼Rhv. For some values of the initial data, the increase in Rod from 5 to

50 influences neither the behavior of these functions nor their absolute values.

The characteristic of variations in functions Pod and Phd is identical; however,

their absolute values vary within significantly different ranges (see Fig. 4.18).

Similar conclusions can be made for functions Lhd and Wd; however, the ranges

of these are almost identical in this case (see Figs. 4.19 and 4.20).

-12

-10

-8

-6

-4

-2

0
1 4 7 10 13 16 19 22 25 28

1

2

LgPv

Rov

Fig. 4.17 Blocking

probability of v-calls versus

Rov in integrated CAC

based on a cutoff scheme;

1—Pov, 2—Phv

4.2 Models with Buffering of Both New and Handover Non-Real-Time Calls 129



-30

-25

-20

-15

-10

-5

0
1 4 7 10 13 16 19 22 25 28

1

2

LgPd

Rov

Fig. 4.18 Blocking

probability of d-calls versus

Rov in integrated CAC

based on a cutoff scheme;

1—Pod, 2—Phd

-12

-10

-8

-6

-4

-2

0
1 4 7 10 13 16 19 22 25 28

LgLd

Rov
Fig. 4.19 Average length

of queue of d-calls versus

Rov in integrated CAC

based on a cutoff scheme

-12

-10

-8

-6

-4

-2

0
1 4 7 10 13 16 19 22 25 28

LgWd

Rov
Fig. 4.20 Average waiting

time in queue for d-calls

versus Rov in integrated

CAC based on a cutoff

scheme

130 4 Algorithmic Methods for Analysis of Integral Cellular Networks



The computational complexity of the developed approximate algorithms is

essentially low than the exact ones. So, state space of the moderate-size model

considered here contains 1995 states (i.e., in exact approach, SGBE contains 1995

equations), while approximate approach allows to solve the problem by means of

explicit formulas (in general, the number of states is equal to (N +B + 1� (Rhv/2))

(Rhv + 1)). Moreover the indicated formulas contain tabulated Erlang’s formula.

The behavior of the QoS metrics versus changing the ratios of intensities of the

different types of the data calls under the assumption that their sum load remains

constant, i.e., λod + λhd¼ 0.3, is examined. The values of other parameters of the

model remain unchanged. The purpose of these numerical experiments was to study

the accuracy of the proposed algorithms. The exact values of the considered QoS

metrics, as in [2], are found by solving SGBE for stationary probabilities of states.

Note that to solve the given SGBE, the Gauss–Seidel method has been used. Some

comparisons for the initial data indicated above are shown in Tables 4.5, 4.6, and

4.7. From these tables, we conclude that along with computational simplicity, the

developed approximate algorithms have also high accuracy even for models with

small dimension. The performed numerical results show that accuracy of approx-

imate formulas increases as the ratios λd/λv and μd/μv grow.
The conducted numerical experiments also allow us to determine the desirable

ranges of variation of parameters of the introduced CAC schemes in order to satisfy

the constraints imposed on the QoS metrics of calls of different types. For example,

an absolute fair service in the sense of equal loss probabilities for voice calls of

different types is observed for Rod¼Rhv (see Fig. 4.17). However, an absolute fair

service is often not required in practice, and then it is possible to introduce the

concept of ε-fair service, i.e., service where the difference between loss probabil-

ities of voice calls of different types does not exceed a preset value ε> 0. With the

use of the numerical experiments, it is easy to solve the last problem.

Table 4.5 Comparison for

v-calls in integrated CAC

based on a cutoff scheme
Rov

LgPov LgPhv

EV AV EV AV

2 �0.008911 �0.008906 �1.11E+01 �1.11E+01

4 �0.035523 �0.035573 �1.09E+01 �1.10E+01

6 �0.080449 �0.080454 �1.07E+01 �1.08E+01

8 �0.140400 �0.140401 �1.03E+01 �1.04E+01

10 �0.214288 �0.214296 �9.79E+00 �9.84E+00

12 �0.303119 �0.303127 �9.28E+00 �9.19E+00

14 �0.409457 �0.409466 �8.39E+00 �8.45E+00

16 �0.537237 �0.537250 �7.61E+00 �7.62E+00

18 �0.691643 �0.691667 �6.74E+00 �6.72E+00

20 �0.878928 �0.878947 �5.79E+00 �5.77E+00

22 �1.105837 �1.105843 �4.81E+00 �4.78E+00

24 �1.379010 �1.379023 �3.79E+00 �3.78E+00

26 �1.708702 �1.708719 �2.844532 �2.843629

29 �2.322441 �2.322455 �1.746493 �1.744843
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Now consider results for CAC based on guard channel scheme for access of

voice calls. Here also the results of numerical experiments are given only for the

model with a limited queue. The original model data are chosen as they indicated

above.

First, consider the behavior of QoS metrics relative to changing the parameters

of the adopted access scheme. Here, at the fixed values of the total number of

channels and buffer size, one can change the values of three parameters of the taken

Table 4.7 Comparison for

average length of queue of

d-calls in integrated CAC

based on cutoff scheme

Rov

LgLd
EV AV

2 �1.14E+01 �1.15E+01

4 �1.13E+01 �1.14E+01

6 �1.10E+01 �1.11E+01

8 �1.09E+01 �1.07E+01

10 �1.01E+01 �1.02E+01

12 �9.51E+00 �9.54E+00

14 �8.79E+00 �8.80E+00

16 �7.92E+00 �7.97E+00

18 �7.03E+00 �7.07E+00

20 �6.11E+00 �6.12E+00

22 �5.10E+00 �5.13E+00

24 �4.11E+00 �4.12E+00

26 �3.09E+00 �3.12E+00

29 �1.73E+00 �1.78E+00

Table 4.6 Comparison for

d-calls in integrated CAC

based on cutoff scheme
Rov

LgPov LgPhv

EV AV EV AV

2 �1.11E+01 �1.12E+01 �2.69E+01 �2.69E+01

4 �1.10E+01 �1.11E+01 �2.67E+01 �2.68E+01

6 �1.09E+01 �1.08E+01 �2.64E+01 �2.65E+01

8 �1.05E+01 �1.04E+01 �2.62E+01 �2.61E+01

10 �9.88E+00 �9.89E+00 �2.59E+01 �2.56E+01

12 �9.27E+00 �9.24E+00 �2.48E+01 �2.50E+01

14 �8.48E+00 �8.50E+00 �2.45E+01 �2.42E+01

16 �7.69E+00 �7.67E+00 �2.31E+01 �2.34E+01

18 �6.71E+00 �6.77E+00 �2.23E+01 �2.25E+01

20 �5.80E+00 �5.82E+00 �2.12E+01 �2.15E+01

22 �4.81E+00 �4.83E+00 �2.07E+01 �2.05E+01

24 �3.88E+00 �3.84E+00 �1.99E+01 �1.95E+01

26 �2.912331 �2.911525 �1.88E+01 �1.85E+01

29 �1.935995 �1.936709 �1.71E+01 �1.69E+01
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CAC (Gov,Ghv,Rod); in other words, this model also has three degrees of freedom.

In the following numerical experiments the parameter Ghv is fixed, taking the

largest possible value, i.e., Ghv¼ 29.

As above CAC scheme, the increase in the value of one of the parameters (in the

feasible region) significantly increases only the loss probability of calls of the

corresponding type. Thus, in the conducted experiments, the increase of the thresh-

old value Gov reduces the probability of losing the ov-calls, while the remaining

QoS metrics are increasing. However, their speeds of change are different. Indeed,

the function Pov decreases with sufficiently high speed (Fig. 4.21a), especially for

the values Gov close to the maximum possible value (i.e., Ghv); however, the

function Phv increases with a low speed at small values Gov and is almost constant

at its high values (Fig. 4.21b). As expected, at the point Gov¼Ghv the values of the

functions Pov and Phv are equal. It is significant to note that, as in CAC based on

cutoff scheme, for the chosen values of initial data, the increase of parameter value

Rod from 5 to 50 almost has impact neither on the behavior of these functions nor

on their absolute values. These properties of the pointed functions are clearly

visible especially for large values Gov (here and below the curve 1—Rod¼ 5;

curve 2—Rod¼ 50).
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The speeds of growth of the functions Pod and Phd are quite low, and for the

values Gov, close to the maximum possible value, they almost do not change

(Fig. 4.22). However, their absolute values vary insignificantly in different ranges,

wherein, unlike the functions Pov and Phd, increasing the value of the parameter Rod

essentially affects the values of both functions. As expected, increasing the value of

the parameter Rod has positive effects on the value of the function Pod (Fig. 4.22a)

and the negative one on the value of the function Phd (Fig. 4.22b).

The function Ld also changes with a very low speed (Fig. 4.23a), while sharply

increasing the value of the parameter Rod almost does not affect either the nature of

its changes or its absolute values. The functionWd (Fig. 4.23b) has a similar nature

of the changes.

The results of numerical experiments noted above have shown that for the

selected initial data, all investigated functions, except Wd, are almost constant

while changing the value of the ratio λhd/λod. That is why the corresponding graphs

are not listed here. In this case, even a tenfold increase in the value of the parameter

Rod has little effect on the value of the function Pod, which is to be expected. It is

easy to see that the function Wd is nonlinear, due to the nature of changes of the
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functions Pod and the fact thatWd is essentially dependent on the specific values λhd
and λod, but not on their relationship.

The accuracy of proposed algorithms is estimated for given CAC also. Note that

for the chosen source data, the exact and approximate values of the studied QoS

metrics almost coincide, and therefore, for the sake of brevity the relevant com-

parisons are not shown here.

We conducted a study of the behavior of the QoS metrics of the model with an

infinity queue relative to changing its structural and load parameters. Such studies

allow us to determine the required dimension of the buffer storage to meet the

specified requirements for QoS metrics. In other words, one can answer the

question whether it makes sense to use the buffer of a large enough volume for a

particular system at given loads. Here let us also note that, unfortunately, the study

of the accuracy of the developed formulas for models with an infinite queue cannot

be done analytically. Such studies can be carried out only by simulation tools.
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At the end of this section consider comparisons of QoS metrics in various CAC

schemes. In such study we assume that load parameters are fixed. So, controllable

parameters areGov,Ghv (in CAC based on guard channel scheme), Rov, Rhv (in CAC

based on guard channel scheme), and Rod (in both CAC).

In numerical experiments below the values ofGhv(Rhv) and Rod are fixed, i.e., we

assume that Ghv¼Rhv¼ 29 and Rod¼ 45. Some comparisons are shown in

Figs. 4.24, 4.25, and 4.26, where labels 1 and 2 denote QoS metrics for CAC

based on cutoff scheme and CAC based on guard channel scheme. The input data

are the same as for the above-indicated numerical experiments. In the graphs the

parameter CAC based on guard channel scheme (i.e., Gov) is specified along x-axis,
and as has been specified above, it corresponds to parameter Rov of CAC based on

cutoff scheme.
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From these graphs we conclude that all QoS metrics, except for the loss

probability of ov-calls, in integrated CAC based on guard channel scheme for

voice calls are almost linear nature, i.e., they increase with very low rates. However,

all QoS metrics in integrated CAC based on cutoff scheme for voice calls have

strictly nonlinear nature. In addition note that for chosen initial data, only Pod is

essentially better under CAC based on cutoff scheme. However, quite probably, for

other values of initial data for Pod, CAC based on guard channel scheme will be

better than CAC based on cutoff scheme. In other words, the problems of searching

the appropriate CAC scheme and its parameters that allow to satisfy the given QoS

levels for heterogeneous calls are of certain scientific and practical interest. Various

problem formulations of identifying such values of the threshold parameters of

integrated CAC schemes are possible. Since in Sect. 4.1.2 similar problems and
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algorithms of their solutions for nonintegrated CAC schemes were examined in

detail, here these problems are not considered.

4.3 Conclusion

In this chapter, the models of integrated (multiservice) cellular networks in which

processing of real-time calls (e.g., voice calls) and non-real-time calls (i.e., buffered

data calls) takes place are studied. In such networks, data traffics are relatively

tolerant to possible delays, whereas voice calls are sensitive to such delays.

A review of publications dealing with different aspects of problems related to

calculation of QoS metrics in integrated cellular networks without queues has been
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made in works [1, 5, 15]. Note that models with queue of non-real-time calls are

insufficiently investigated. Below, we give a brief consideration to the known

results for models of such type.

Network models with absolute priorities of voice calls over data calls which can

form a queue of limited length have been studied in [17]. Therewith, d-calls are

assumed impatient, i.e., they can quit the queue without being served if their

waiting time exceeds a certain random value. Iterative procedure has been devel-

oped for calculating the QoS metrics of heterogeneous calls.

The models in which interruption of data processing being under way was not

allowed have been discussed in works [6, 13, 16]. The work [13] has investigated

the model with full-accessible call admission control strategy for all four types of

calls and infinite queue of impatient hd-calls. The model with special communica-

tion channels for v- and d-calls and common channels for their joint handling and

the infinite buffer for d-calls has been studied in the work [16]. The analogous

model with the finite buffer has been studied in [6], the approximate results being

obtained from the corresponding results of the work [16] by applying the known

cutoff procedure of distribution tail of a queue length. In the works [6, 13, 16] for

calculating metrics of QoS, one employs the 2-D generating function method.

However, as mentioned by authors, such approach is cumbersome and

unconstructive since it does not allow one to develop the efficient calculation

procedures for solving a stated problem even for models of small dimension.

In models with queues of non-real-time calls along with strategy of access to

channels, it is necessary to define also the strategy of access to the buffer. So, in [2]

buffering both new and handover data calls is admitted, while in [8] and [9] buffer is

assigned only for handover data calls. Thus, in [2] and [9], СAС strategy to

channels is based on the guard channels, and in [8] СAС strategy uses the cutoff

scheme. Since in [8] and [9] buffering is allowed only hd-calls, СAС strategy to the

buffer is defined by simple scheme, i.e., any arrived hd-call is accepted if the buffer

is not full. In [2], CAC strategy to buffer is controlled by the scheme based on the

reservation of some capacity of the buffer for handover data calls. Note that the

method offered in [2] to calculate QoS metrics is based on the use of the system of

balance equations. It is effective only for models of small and moderate dimension

of the buffer and cannot be applied to models with the large dimension of the buffer,

especially for models with infinite queues. An approximate method for solving the

above-indicated problems for the model with queues (finite and infinite) of both

new and handover data calls is proposed in [10–12]. The approximate calculation

method has comparatively low computation complexity for models of arbitrary

dimension. The proposed approximate method can also be used to analyze the

models with impatient and wideband data calls.

Models of integrated voice/data wireless network with finite common queue of

real-time calls (i.e., new and handover voice calls) are considered in [4]. In this

work, fixed guard channel scheme is used (i.e., exclusive channels for handover

voice calls are fixed), and there is no difference between new and handover data

calls. It is assumed that channel holding times of the non-guard and guard channels

have different means and a recursive approach to calculate the steady-state prob-

abilities of appropriate 2-D MC is developed.
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Chapter 5

Priority Schemes in Packet Switching

Networks

In this chapter, new queueing models of switching equipment in packet networks

and corresponding algorithms necessary for their analyzing are developed. Tradi-

tional approaches to solving the indicated problems focused mainly on simple

queueing models with single traffic and do not take into account various QoS

requirements of heterogeneous cells (packets). However, nowadays we have to

consider the models of switch that supported both delay-sensitive applications

(such as real-time voice calls) and delay-insensitive applications (such as non-

real-time data calls). Note that usually delay-insensitive applications are loss

sensitive, while delay-sensitive applications have some tolerance to loss. In other

words, in unique model, it is necessary to take into consideration various QoS

requirements for heterogeneous cells which contradict each other.

Here both kinds of models of shared memory switches with typed and common

output ports are considered. For these models state-dependent priority schemes are

introduced. In models of the switch with typed output ports only space priorities are

defined, while for models of switch with common output ports the multiple space

and time priorities are used. Moreover, models of switches with jump priorities are

investigated in detail. Note that in all models there are some controllable parame-

ters which allow to regulate the values of QoS metrics. Both exact and approximate

approaches to calculate and optimize the QoS metrics of considered switches are

developed.

5.1 Space and Time Priorities in Switch Modeling

First of all, note that within this chapter we will use the terms “user,” “application,”

“connection,” or “flow” to describe the traffic carried by the switch. And also the

terms “packet” and “cell” are used as synonyms.

The main building block of high-performance packet networks is the switching

equipment which connects the several incoming and outgoing links together.
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In other words, the main function of the switch is to transfer the data flows from one

incoming link to outgoing link. To determine the proper outgoing link for each

incoming packet switch, use the information in its header. A switch is a hardware

device that contains several components: a network processor unit, a controller, an

input/output ports, and switch fabric. Here we do not consider in more details the

review to known switch design, but we study the basic performance measures of the

switch. Among them more important are two QoS metrics: packet loss and packet

delay. Both QoS metrics essentially influence on performance of the entire packet

switching network (PSN).

The switch-limited resources being shared among the users are available output

link bandwidth and local buffer space. In order to realize the appropriate resource

sharing schemes, a scheduling algorithm must be implemented at each network

switch. The goal of scheduler is to provide the given QoS level for different types of

flows going through the switch. To reach this goal the scheduler in the switch

performs two main functions: (1) select packet from the buffer (queue) for

forwarding to a certain switch output; (2) select packet from the buffer for dropping

during the periods of congestion.

As it was noted above, in modern PSN different service classes are supported by

the switch, and they do not require an equal share of bandwidth and buffer. It means

that the scheduler must allocate the limited switch resources in some optimal

(suboptimal or fair) manner so that it satisfies the desired QoS level for each class

of service. In other words, the scheduling problem is an optimization problem.

Before study the scheduler functions consider traffic aggregation problems in

PSN. In order to reach the desired QoS level, the scheduler has to keep state

information about each active flow, i.e., a scheduling algorithm must operate on a

per-flow basis. However, the large numbers of states that must be processed lead the

scheduler to slow down and thus limit the number of packets that can be accepted.

In other words, the scheduler must be easy to implement in switch especially at

high-speed networks, i.e., computations to be done by the scheduler to be small in

number and simple to calculate. It means that effective schedulers should aggregate

several traffics into broad service classes to reduce the amount of state information

and workload. In order to carry out aggregation heterogeneous traffics, it is neces-

sary take into account their common properties. By considering the QoS ratios

between the service classes and their physical properties, it is expedient that packets

in PSN divide into two classes—real-time packets and non-real-time packets. This

approach is promising since it deals with large aggregates of network traffic and

thus mathematical analysis of switches becomes simpler. Note that in this aggre-

gation procedure the scheduler loses specific information about the status of each

user and thus guarantees can be provided on the QoS metrics for aggregated groups

of users, but each user cannot be guaranteed specific QoS level. Below, we will

investigate the proposed aggregation procedure that does not require full per-flow

state information since it is more likely to be implemented in practice.

Now consider each scheduler functions separately. Packet selecting scheme for

forwarding to a switch output becomes actual when several packets in buffer will

request to access a certain output port. In such situations, the scheduler must decide
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which stored packet must be sent next. Different selection schemes could be

implemented depending on the switch architecture (i.e., location of the buffers

within switch and output port assignment) and service classes of the queues. For

example, for switch with typed output ports (i.e., switch in which output ports are

divided between service classes), this problem might be solved trivially. In such

switch there are no conflict situations within same flow of packets. Absolutely other

situation arises for switch with common output ports since in such switch it is

necessary to solve the nontrivial problems.

To solve problems that arise in packet selecting from buffer of switch with

common output ports, various time priorities (TP) are used. As it was mentioned

above, real-time applications have rigid constraints on delay, while non-real-time

applications are handled using best-effort packet transfer policy with no delay

guarantees. So, real-time applications have high priority compared to non-real-

time applications to select the packet for forwarding to a switch output. However,

such static TP assignment is not a very effective one since in this case non-real-time

applications will be waiting in buffer for a long time. It means that state-dependent

(or time-dependent) TP should be used to satisfy the given QoS level of heteroge-

neous users.

Another scheduler function is determining the packet dropping scheme. This

function is implemented by space priorities (SP) in switches for which common

buffer is shared among different users. Space priorities might be divided into two

broad classes: reactive SP and preventive SP. The class of reactive SP contains

priority schemes which decide to drop the packet during period of congestion, i.e.,

when buffer has become full and new packet has arrived. In such case the scheduler

should decide which packets to drop (in literature this kind of SP is called tail-

dropping scheme also). Usually reactive SP uses the push-out schemes, i.e., one

type of packet might push out the other type of packet from the buffer and takes its

replace. Unlike the reactive SP, preventive space priorities belong to the class of

early drop schedulers where a packet might be dropped even when the buffer is not

full. In other words, in preventive SP, the switch drops arriving packet when the

queue size (separate or total) exceeds a certain state-dependent threshold. It is clear

that preventive SP is based on non-push-out scheme. Note that space priorities

might contain some probabilistic parameters.

It is important to note that application of high-priority scheme for one type of

traffic (either for real-time type or non-real-time type) in switches of multimedia

networks is unacceptable since lower priority traffic will have both large delay and

high loss which does not satisfy the QoS requirements of the mentioned traffics.

This is why we need multiple priorities in switches such as high TP and low SP for

delay-sensitive (i.e., real-time) traffic and high SP and low TP for loss-sensitive

(non-real-time) traffic. Here we again underline that any priority scheme in the

scheduling algorithm must be easy to implement and does not require a huge

computations.

The placement of the buffers in the switch has direct impact on the overall switch

performance. There are many switches buffering architecture. Three main switch

types are the following: input queueing switch, output queueing switch, and shared
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buffer switch. Advantages and disadvantages of each buffer design schemes are

well known and here we do not discuss these issues. Below we consider models of

shared buffer (memory) switches with a single common buffer to store all arriving

packets.

5.2 Models of Switches with Typed Output Ports

In high-speed packet switching networks, different users impose different require-

ments on the QoS metrics. As it was mentioned above, real-time traffics place rigid

requirements regarding potential delays, while for non-real-time data the number of

lost packets is an extremely important factor. To meet these requirements, effective

utilization of the network resources, i.e., the buffer space and transmission bands, is

essential. Obviously, the QoS metrics of users depend largely on the load of the

flows, the dimension of the buffer, as well as the particular distribution scheme

adopted for the common network resources. It is assumed that the load of the data

flows is irregular and that, therefore, any improvement in QoS metrics is possible

only through management of the buffer, i.e., by varying the buffer dimension and

the buffer sharing scheme. The selection of an efficient buffer sharing scheme is

important, since a trivial technique for improving QoS metrics through increasing

the buffer dimension is not always an acceptable procedure for solving the problem.

Buffer allocation schemes may be divided into two classes: push-out

(PO) schemes and non-push-out (NPO) schemes. When push-out schemes are

employed, packets of any type are received into the buffer when there are free

spaces present, and, in certain cases, a newly arrived packet may take the place of

another type of packet in a completely full buffer. Such substitution is called push-

out. If a non-push-out scheme is employed, there is the guarantee that a packet

which has been accepted into the buffer will be transmitted through the appropriate

outgoing port. Note that non-push-out schemes are simpler to implement in

practice.

In this section we are considering SP based on both classes of buffer allocation

schemes for the switch in which the outgoing ports are specialized relative to type

of packet. The basic problems in the study of buffer sharing schemes are known as

the “tyranny of dimension.” Such a situation occurs when there are a large number

of different types of packets and/or a high-dimension buffer. In this case, the

problem is complicated even further by the fact that in the presented schemes,

unlike the other well-known sharing schemes, a multiplicative solution for appro-

priate multidimensional MC does not exist. This means that under such assump-

tions, the only way of investigating such a scheme is to solve SGBE of very large

dimension (an alternative approach is to perform simulation modeling). Below to

overcome these difficulties an approximate approach is proposed.
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5.2.1 Space Priorities Based on Non-Push-Out Schemes

First, consider the space priorities based on NPO scheme; more particularly, we

study partial sharing (PS) scheme of the common buffer. In this scheme, some

threshold for packets of a definite type is established. In other words, once the total

number of different types of packets in the buffer has reached the threshold value,

new packets of the same type are lost (blocked), while packets of another type are

accepted until the buffer is completely full. The main advantage of this scheme is

that, first, it is a generalization of the well-known and commonly accepted complete

sharing (CS) scheme; hence its characteristics will be no worse than those of the CS

scheme; second, it possesses an element of adaptability due to the threshold

parameter, and hence, optimization problems for this type of scheme with respect

to some selected QoS metrics may be formulated and solved.

The model description consists in the following. A buffer space of dimension

B is used simultaneously by two types of packets, and the outgoing ports are

specialized relative to type of packet, i.e., only packets of type i are transmitted

through port i, i¼ 1, 2. The process of arrival of packets of type i obeys a Poisson
law with parameter λi, while the packet service time is an exponentially distributed

random variable with mean μ� 1
i , i¼ 1, 2. A packet of either type frees its place in

the buffer only after its transmission is complete, i.e., during the period it is serviced

in the buffer, it continues to occupy space in the buffer.

The PS scheme is realized in the following way. Packets of type 1 are received

only when at the time they arrive, the total number of packets of both types is less

than some specified number r, 0< r�B; otherwise these packets are lost. Packets
of type 2 are lost only after the buffer is completely full, i.e., they are always

received into the buffer if there is at least a single free space in the buffer.

Note 5.1 Complete sharing scheme is a special case of a PS scheme, i.e., when

r¼B, the present scheme coincides with the CS scheme.

The problem is to develop an effective approach to the calculation and optimi-

zation of the QoS metrics of the PS scheme. The main QoS metrics are cell loss

probability (CLP) and cell transfer delay (CTD).

By virtue of the above assumptions concerning the type of distribution functions

governing outgoing flows and their processing times, the performance of the switch

is described by a 2-D MC with states of type n¼ (n1, n2), where ni indicates the
number of packets of type i in the system, i¼ 1, 2. The state space of this switch is

specified in the following form:

S ¼ n : n1 ¼ 0, 1, . . . , r; n2 ¼ 0, 1, . . . ,B; n1 þ n2 � Bf g: ð5:1Þ

The nonnegative elements of the Q-matrix of the 2-D MC are determined as

follows:
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q n; n0ð Þ ¼
λ1 if n1 þ n2 < r, n0 ¼ nþ e1,
λ2 if n0 ¼ nþ e2,
μi if n0 ¼ n� ei, i ¼ 1, 2,

0 inothercases:

8>><
>>:

ð5:2Þ

The stationary probability of state n ∈ S is denoted p(n) (the existence of a

stationary mode follows from the finiteness and irreducibility of the particular 2-D

MC).

The QoS metrics of the model are defined in terms of its stationary distribution.

So, the basic QoS metrics—the probability that cells of type i are lost CLPi(B, r),
i¼ 1, 2, are determined from the following formulas:

CLP1 B; rð Þ ¼
X
n∈ S

p nð ÞI n1 þ n2 � rð Þ; ð5:3Þ

CLP2 B; rð Þ ¼
X
n∈ S

p nð Þδ n1 þ n2,Bð Þ: ð5:4Þ

The average cell transfer delay for the cells of type i is denoted by CTDi(B, r),
i¼ 1, 2. These parameters are calculated by modified Little’s formula:

CTDi B; rð Þ ¼ Qi B; rð Þ
λi 1� CLPi B; rð Þð Þ , ð5:5Þ

where Qi(B, r) is the average number of cells of type i in the buffer, i¼ 1, 2. Last

parameters are calculated as follows:

Qi B; rð Þ ¼
Xxi
k¼1

kξi kð Þ, ð5:6Þ

where xi ¼ r if i ¼ 1,

B if i ¼ 2;

�
ξi kð Þ ¼

X
n∈ S

p nð Þδ ni; kð Þ, i ¼ 1, 2 are marginal

distributions of the initial model.

State probabilities are determined from appropriate SGBE which is constructed

by using relations (5.2). Note that when PS scheme is used to buffer allocation,

there will not exist a multiplicative solution for the stationary distribution of the

given 2-D MC. Indeed, from relations (5.2), we conclude that the investigated 2-D

MC is not reversible, i.e., there exists the transition (n1, n2)! (n1� 1, n2) with

intensity μ1 where n1 + n2� r, but the inverse transition does not exist. That is, to

determine the QoS metrics (5.3)–(5.5), it is necessary in this case to solve an SGBE

each time for specific values of the structure and load parameters of the system.

This step entails enormous computational difficulties if the state space (5.1) has

large dimension.

Below, we propose an approximate approach as a way of overcoming these

difficulties. It is assumed that cells of some type arrive at a higher rate and that they
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are also serviced more rapidly than cells of another type. To make the discussion

concrete, below we assume that λ2>> λ1 and μ2>> μ1. Note that such a perfor-

mance mode is the ordinary mode for multimedia networks in which the load

parameters of voice cells somewhat exceed the corresponding parameters of cells

of video information.

Let us consider the following splitting of the state space S:

S ¼ [ r
i¼0Si, Si \ Sj ¼ ∅, ð5:7Þ

where Si¼ {n ∈ S : n1¼ i}, i¼ 0, 1, . . ., r. In other words, in splitting Eq. (5.7),

subset Si contains those states of S in which the number of cells of type 1 is equal

to i.

Note 5.2 The accepted assumption ensures realization of the requirement neces-

sary for correct application of algorithms of state space merging. Indeed, the

assumption ensures small transition probabilities between states which belong to

different classes in splitting Eq. (5.7), as compared with respect to transition

probabilities between the states inside the classes.

Further, the classes of states Si, i¼ 0, 1, . . ., r are combined into individual

merged states hii, and a merge function on the state space S is introduced:

U nð Þ ¼ ih i if n∈ Si, i ¼ 0, 1, . . . , r: ð5:8Þ

Thus, the merge function (5.8) defines a merged model, which is

one-dimensional birth-and-death process (1-D BDP) with state space

Ω ¼ hi; i; :; i;¼ 0; 1; , ; . . . ; , ; rf g. To construct the Q-matrix of a merged model,

it is necessary to determine the stationary distribution within each split model with

state space Si, i¼ 0, 1, . . ., r.
The probability of state (i, j) ∈ Si is denoted by ρi( j). In light of Eq. (5.2), it is

defined as the stationary distribution of a 1-D BDP. We will distinguish two cases:

Case v2 6¼ 1, where v2¼ λ2/μ2:

ρi jð Þ ¼ v j2
1� v2

1� vBþ1�j
2

: ð5:9Þ

Case v2¼ 1:

ρi jð Þ ¼
1

Bþ 1� i
, i ¼ 0, 1, . . . :, r : j ¼ 0, 1, . . . ,B� i: ð5:10Þ

Then, from Eqs. (5.2), (5.9), and (5.10), we conclude that the elements of the
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Q-matrix of the merged model, which is 1-D BDP, are determined in the

following way:

Case v2 6¼ 1:

q ih i, jh ið Þ ¼
λ1

1� vr�i
2

1� vBþ1�i
2

if j ¼ iþ 1,

μ1 if j ¼ i� 1,

0 inothercases:

8>>><
>>>:

ð5:11Þ

Case v2¼ 1:

q ih i; jh ið Þ ¼
λ1

r � i

B� iþ 1
if j ¼ iþ 1,

μ1 if j ¼ i� 1,

0 inothercases:

8>><
>>:

ð5:12Þ

Using conditions (5.11) and (5.12), we find the stationary distribution π
�
ih i�,

ih i∈Ω of the merged model:

Case v2 6¼ 1:

π ih ið Þ ¼ v i1
Yi�1

j¼0
C jð Þπ 0h ið Þ, i ¼ 0, 1, . . . , r, ð5:13Þ

where v1¼ λ1/μ1, C( j)¼ (1� vr� j
2 )/(1� vB� jþ 1

2 ).

Case v2¼ 1:

π ih ið Þ ¼ v i1
Yi�1

j¼0
D jð Þπ 0h ið Þ, i ¼ 0, 1, . . . , r, ð5:14Þ

where D( j)¼ (r� j)/(B� j+ 1).

In both cases, π(h0i) is determined from normalizing condition, i.e.,

∑ r
i¼ 0π(hii)¼ 1.

Now the stationary distribution p(i, j), (i, j) ∈ S of the initial model may be

approximately determined as follows:

p i; jð Þ � ρi jð Þπ ih ið Þ: ð5:15Þ

Finally, using Eqs. (5.9)–(5.15) we find the following approximate formulas to

calculate the QoS metrics:

148 5 Priority Schemes in Packet Switching Networks



Case v2 6¼ 1:

CLP1 B; rð Þ � 1� vB�rþ1
2

� �Xr
i¼0

vr�i
2

1� vB�iþ1
2

π ih ið Þ: ð5:16Þ

CLP2 B; rð Þ �
XB
i¼B�r

L v2; ið Þπ B� ih ið Þ: ð5:17Þ

Q1 B; rð Þ �
Xr
i¼1

iv i1
Yi�1

j¼0
C jð Þπ 0h ið Þ: ð5:18Þ

Q2 B; rð Þ � 1� v2ð Þ
Xr
i¼0

π ih ið Þ
1� vB�iþ1

2

XB�r

j¼1

jv j2 þ
XB

i¼B�rþ1

iv i2
XB�i

j¼0

π jh ið Þ
1� vB�jþ1

2

 !
:

ð5:19Þ

Hereinafter, L(v, k) denotes the stationary probability of a loss in the classical
queueing system M/M/1/k+ 1 with load v Erl, i.e., L(v, k)¼ vk(1� v)/(1� vk+ 1).

Case v2¼ 1:

CLP1 B; rð Þ � B� r þ 1ð Þ
Xr
i¼0

π ih ið Þ
B� iþ 1

: ð5:20Þ

CLP2 B; rð Þ �
XB
i¼B�r

π B� ih ið Þ
iþ 1

: ð5:21Þ

Q1 B; rð Þ �
Xr
i¼1

iv i1
Yi�1

j¼0
D jð Þπ 0h ið Þ: ð5:22Þ

Q2 B; rð Þ � B� r þ 1ð Þ B� rð Þ
2

Xr
i¼0

π ih ið Þ
B� iþ 1

þ
Xb

i¼B�rþ1

i
XB�i

j¼0

π jh ið Þ
B� jþ 1

: ð5:23Þ

After calculating the quantities CLPi(B, r) andQi(B, r), the QoS metrics

CTDi(B, r), i¼ 1, 2 are calculated from formulas (5.5).
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Note that the complexity of computing CLPi(B, r), i¼ 1, 2 is estimated as O
(Br) and that tabulated parameters L(v, k) are used in the computation of these

parameters.

Note 5.3 As it was indicated above, a complete sharing strategy is a special case of

a partial sharing strategy. In fact, if we set r¼B in formulas (5.16)–(5.19) (or in

formulas (5.20)–(5.23)), the corresponding results for CS scheme are obtained. So,

in the case r¼B, we have

CLP1 B;Bð Þ ¼ CLP2 B;Bð Þ �
XB
i¼0

L v2; ið Þπ B� ih ið Þ:

Thus, explicit (approximate) formulas to calculate the QoS metrics of the PS

scheme have been obtained.

5.2.2 Space Priorities Based on Push-Out Schemes

Now consider the space priorities based on push-out scheme. For PO schemes, the

newly arrived cell may substitute (i.e., push-out), in some cases, a cell of another

type being already in the buffer. Here, we analyze PO schemes in which decisions

about push-out are made only at the moment when new cell arrives if the buffer is

full, i.e., a cell of any type is accepted at the buffer while there is a free space there.

These schemes may be considered as a space priority mechanism, according to

which priority cells push-out low-priority ones from the queue if there is no free

space in the buffer when a high-priority cell arrives.

Let us consider the model of a switch which was described above (see

Sect. 5.2.1). The proposed PO scheme of access (generalized push-out, GPO) is

defined as follows. Arrived cell of type 1 (high-priority) pushes out cells of type

2 (low-priority) from the full buffer only when the current number of cells of type

1 is less than the given threshold c, 1� c�B; otherwise, i.e., when there are no cells
of type 2 in the full buffer, arrived cell of type 1 is lost, and cells of type 2 are lost

when the buffer is full. Note that when c¼B, the given scheme reduces to the

simple push-out scheme (SPO).

Note that this scheme might be treated as follows: the common buffer of size B is

virtually divided between two kinds of traffic with preemption for cell of type

2, which gives a higher priority to cell of type 1 over cell of type 2. In other words,

while buffer is not full it is used in accordance to complete sharing scheme, and

when the buffer is full, arrived cell of type 1 will push out cell of type 2 if they (i.e.,

cells of type 2) already used their own limits (i.e., the number of cells of type 2 in

buffer is more than B� c).
Operation of this switch can be described by a 2-D MC with the states of the

form n¼ (n1, n2), where ni specifies the number of packets of the ith type, i¼ 1,2.

Then the state space of this chain is specified as follows:
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S ¼ n : ni ¼ 0, 1, . . . , B, i ¼ 1, 2; n1 þ n2 � Bf g: ð5:24Þ

The nonnegative elements of the Q-matrix of the given chain are determined as

follows:

q n; n0ð Þ ¼
λi if n1 þ n2 < B, n0 ¼ nþ ei, i ¼ 1, 2,

λ1 if n1 þ n2 ¼ B, n1 < c, n2 > 0, n0 ¼ nþ e1 � e2,
μi if n0 ¼ n� ei, i ¼ 1, 2,

0 inothercases:

8>><
>>:

ð5:25Þ

Let Sd¼ {n ∈ S : n1 + n2¼B} denote the set of diagonal states. According to the
introduced GPO scheme cell of type 1 is lost if upon its arrival system is in some

state from the subset Scd of diagonal states, where S
c
d ¼ {n ∈ Sd : n1� c}. Then the

loss probability of cells of type 1, CLP1(B, c), is determined as follows:

CLP1 B; cð Þ ¼
X
n∈ S c

d

p nð Þ: ð5:26Þ

Cells of type 2 are lost in the following cases: (a) upon arrival of this type of cell,

system is in some of the diagonal states; (b) upon arrival of cell of type 1, system is

in some of diagonal states of the kind n ∈ Sd� Scd, i.e., in these cases an arrived cell
of type 1 pushes out cell of type 2. Thus, CLP2(B, c) is determined as follows:

CLP2 B; cð Þ ¼
X
n∈ Sd

p nð Þ þ v12
1þ v12

X
n∈ Sd�S c

d

p nð Þ, ð5:27Þ

where v12¼ λ1/μ2.
The first term in formula (5.27) denotes the probability of event (a), while

coefficient at the second term indicates the probability of the following event:

during handling of cell of type 2 arrived at least one cell of type 1.

It is seen from Eqs. (5.26) and (5.27) that CLP1(B, c)<CLP2(B, c) 8 c ∈ [1, B].
Cell transfer delays for cells of different types are calculated similar to Eq. (5.5)

where the average number of cells of the ith type in the system, Qi(B, c), i¼ 1, 2,

is determined by the stationary distribution of the initial model:

Qi B; cð Þ ¼
XB
k¼1

kξi kð Þ, ð5:28Þ

where ξi(k)¼∑ n ∈ S
p(n)δ(ni, k), i¼ 1, 2.

As in case space priorities based on PS scheme (see Sect. 5.2.1), here also there

is no multiplicative form of stationary distribution of the investigated 2-D

MC. Therefore, the only way to calculate QoS metrics under GPO scheme is to

set up and solve an SGBE. For large size of buffer, this is a complex (even not
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solvable sometimes) computing problem; therefore, we propose here an approxi-

mate solution of the problem.

Let us consider the following splitting state space:

S ¼ [B
i¼0Si, Si \ Sj ¼ ∅, ð5:29Þ

where Si¼ {n ∈ S : n1¼ i}, i¼ 0, 1, . . .,B.
As in Sect. 5.2.1, we will assume that λ2>> λ1 and μ2>> μ1. According to state

space merging algorithm, classes of states Si are united into individual merged

states hii, and the appropriate merging function is introduced (see Eq. (5.8)). The

merge function determines a merged model, which also is a 1-D BDP with the state

space Ω ¼ ih i : i;¼ 0; 1; . . . ;B
� �

.

Omitting intermediate mathematical calculations, let us present an algorithm for

calculation of QoS metrics for v2 6¼ 1 (if at least one of the parameters v1 or v2 is
equal to unity, then the formulas below can be simplified much more):

Step 1. Calculate

π ih ið Þ ¼
v i1π 0h ið Þ if 1 � i � c,

v i1
YB�c

j¼B�iþ1
1� L v2; jð Þð Þπ 0h ið Þ if cþ 1 � i � B,

(
ð5:30Þ

where π 0h ið Þ is determined from normalizing condition, i.e., ∑ B
i¼ 0π ih ið Þ ¼ 1.

Step 2. Calculate

CLP1 B; cð Þ �
XB
i¼c

L v2,B� ið Þπ ih ið Þ; ð5:31Þ

CLP2 B; cð Þ �
XB
i¼0

L v2,B� ið Þπ ih ið Þ þ v12
1þ v12

Xc�1

i¼0

L v2, B� ið Þπ ih ið Þ; ð5:32Þ

Q1 B; cð Þ �
XB
i¼1

iπ ih ið Þ; ð5:33Þ

Q2 B; cð Þ �
XB
i¼1

i
XB�i

j¼0

ρj ið Þπ jh ið Þ: ð5:34Þ

After calculating the QoS metrics CLPi(B, r) andQi(B, r) from relations

(5.31)–(5.34), the quantities CTDi(B, r), i¼ 1, 2 are calculated from formulas

(5.5).
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In the special case c¼B from the given algorithm appropriate formulas for the

SPO scheme are carried out.

5.2.3 Numerical Results

First consider some results of numerical experiments for the space priorities based

on non-push-out scheme (i.e., SP based on PS scheme for buffer allocation).

Some of these results for symmetric (v1¼ v2) and nonsymmetric (v1 6¼ v2) loads
with buffer size B¼ 300 are shown in Figs. 5.1 and 5.2. In order to be short, here

only dependence of QoS metrics on threshold parameter r is shown.
The numerical results completely confirm the theoretical expectations concerning

the behavior of the investigated QoS metrics CLPi(B, r) andCTDi(B, r), i¼ 1, 2. So,

the increase in value of parameter r leads to increase in chances of cells of type 1 for
acceptance in the common buffer, and thus, with growth of this parameter the

probability of their loss decreases. At the same time, such increase simultaneously
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Fig. 5.1 CLP versus r for
the model with space

priorities based on PS

scheme; (a)—v2¼ 0.8,

(b)—v2¼ 0.9
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leads to reduction of chances of cells of type 2 for acceptance in the common buffer,

i.e., the loss probability of cells of type 2 grows (see Fig. 5.1). From this figure we

see that CLP1(B,B)¼CLP2(B,B).
As a result of analysis of the numerical results, we see that for fixed v1, a slight

decrease in v2 leads to a substantial decrease in CLP2(B, r), while if v2 is decreased
by 90 %, the decrease in CLP2(B, r) becomes catastrophic. However, with fixed v2,
a decrease in v1 does not have a strong effect on the value of CLPi(B, r), i¼ 1, 2,

particularly where the specified number of parameter r is small.

Increases in value of parameter r lead to decreasing of the loss probability of

cells of type 1, i.e., the number of such cells in the buffer increases. Therefore

average time of their waiting time in the buffer increases. However, conversely, the

situation is observed at behavior research of an average waiting time in the buffer of

cells of type 2 concerning parameter r (see Fig. 5.2).
Another goal of the computational experiments was to determine the accuracy of

the proposed formulas. Note that the value of QoS metric determined by means of
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an SGBE was adopted as the exact one. Computational experiments to determine

the exact values of QoS metrics were performed for small values of buffer size.

Results of the comparison demonstrated that the proposed formulas were highly

accurate, since in the worst case the difference between the exact and approximate

values of QoS metrics did not exceed 0.1 %, this difference systematically decreas-

ing as the size of the buffer grows (see Table 5.1).

On the other hand, by means of the proposed formulas the optimization problem

relative to some (selected) performance criterion may be formulated and solved. As

noted earlier, in real-world networks, packets of different types often impose

different requirements on the quality of service. So, it is assumed that the QoS of

different types of cells are estimated by means of their loss probabilities, i.e.,

constraints on the upper bounds of these QoS metrics are specified:

CLPi B; rð Þ � εi, i ¼ 1, 2, ð5:35Þ

where εi> 0, i¼ 1, 2 are the specified parameters (e.g., in ATM networks, εi varies
within the range 10�10–10�8).

Here it will be assumed that the size of the switch buffer is fixed and that the load

of the flows is uncontrolled. Then the optimization problem is formulated in the

following way. It is required to find minimal (r) and maximal (r) values of parameter

r for which constraints (5.35) are fulfilled, i.e., it is necessary to solve the following
problem:

r � r ! max ð5:36Þ

subject to Eq. (5.35).

In solving the latter problem the bounds for the CLPi(B, r), i¼ 1, 2 will be

important:

CLP1 B;Bð Þ � CLP1 B; rð Þ � CLP1 B; 1ð Þ; ð5:37Þ
CLP2 B; 1ð Þ � CLP2 B; rð Þ � CLP2 B;Bð Þ: ð5:38Þ

It is important to bear in mind that the ranges of variation (5.37) and (5.38) are

un-improvable, since they are reached at certain combinations of parameters of the

model.

In light of the above-indicated monotony properties of the investigated QoS

metrics and unimprovable bounds (5.37) and (5.38), the following algorithm for

solving problem (5.36) is proposed:

Step 1. If ε1<CLP1(B,B) or ε2<CLP2(B, 1), the problem (5.36) has no solution.

Step 2. If ε1>CLP1(B, 1) and ε2<CLP2(B, 1), then r ¼ 1, r ¼ B.
Step 3. In parallel, the following problems are solved:
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r1 ¼ arg min
r

CLP1 B; rð Þ � ε1f g:
r2 ¼ arg max

r
CLP2 B; rð Þ � ε2f g:

The dichotomy method may be used for solution of the last problems.

Step 4. If r1> r2, then problem (5.36) has no solution; otherwise its solution will be

r ¼ r1, r ¼ r2.

The results of computational experiments for the solution of problem (5.36) are

presented in Table 5.2. Hereinafter, the symbol∅ denotes that the problem does not

have a solution.

Analyses of these data lead us to the following conclusions:

For fixed loads of flows, as ε2 decreases, r also decreases, while r remains

unchanged.

For fixed ε2, as v2 grows, r increases, while r decreases.

It is evident that CS scheme of buffer sharing is an absolutely fair servicing, in

the sense of equality of the loss probabilities for different types of cells; it is realized

in PS scheme when r¼B. In practice, however, sometimes such an absolutely fair

servicing is not required, and then the concept of an ε-fair servicing may be

introduced. In ε-fair servicing the difference between the loss probabilities of

different types of cells does not exceed some specified ε> 0. So, the problem of

finding an ε-fair servicing with the use of the PS scheme of buffer sharing is

formulated mathematically as follows:

r� ¼ argminr CLP1 B; rð Þ � CLP2 B; rð Þ < εf g: ð5:39Þ

By taking into account monotony properties of the functions CLPi(B, r),

Table 5.2 Results of a

solution of problem (5.28) in

the case B¼ 100,

v1¼ 0.9 Erl, ε1¼ 10� 2

v2 ε2 r; r
� �

0.2 10� 5 ∅
0.2 10� 6 [23,99]

0.2 10� 7 [23,97]

0.2 10� 8 [23,96]

0.2 10� 5 [23,94]

0.2 10� 10 [23,93]

0.8 10� 5 ∅
0.8 10� 6 [35,93]

0.8 10� 7 [35,75]

0.8 10� 8 [35,55]

0.8 10� 5 [35,35]

0.8 10� 10 ∅
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r¼ 1, 2, the method of dichotomy may be used to solve problem (5.39). The initial

interval of uncertainty [1, B] is divided into half, i.e., a point b¼ int((B+ 1)/2) is

found, where int(x) denotes the integer part of x. If the condition of problem (5.39)

is satisfied at this point, the interval [1, b] is considered next; otherwise, the interval
[b,B] is considered. The condition that determines the termination of the algorithm

is as follows: find an interval of unit length such that the right endpoint satisfies the

condition of problem (5.39) but the left endpoint does not satisfy it. It is precisely

this right endpoint which is the desired quantity r*. The algorithm terminates in a

finite number of steps; in the worst case the condition of problem (5.39) will be

satisfied at the point r¼B.
The results of a solution of problem (5.39) are shown in Table 5.3. As it was

expected, r* grows with decreasing ε.
Now consider some results of numerical experiments for the space priorities

based on push-out scheme. Formulas found in Sect. 5.2.2 allow to analyze the

performance of SP based on GPO scheme of access. For brevity here we omit the

detailed analysis of the corresponding graphs, and below we give short comments

related to performance of the GPO scheme.

Numerical experiments show that function CLP1(B, c) is decreasing one while

function CLP2(B, c) is increasing one versus threshold c subject to fixed loads and

buffer size. It is interesting to note that both functions CLP1(B, c) andCLP2(B, c) are
increasing one with respect to loads of traffics and parameter v12. Function Q1(B, c)
is increasing one, while function Q2(B, c) is decreasing one with respect to thresh-

old parameter c. At the same time, the behavior of both functions CTD1(B, c)
andCTD2(B, c) essentially depends on the rate of change of functions CLPi(B, c)
andQi(B, c), i¼ 1, 2, i.e., their monotonic properties for any initial data are not

guaranteed.

i. At the same time, the behavior of the QoS metrics versus loading parameters of

model (at fixed values of B and c) is quite predicted. For instance, the function

CTD2(B, c) is nonincreasing one with respect to handling intensity of cell of type

Table 5.3 Results of a

solution of problem (5.31) in

the case B¼ 100, v2¼ 0.8 Erl

v1 ε r*

0.9 10� 2 35

0.9 10� 4 78

0.9 10� 5 97

0.9 10� 6 100

0.1 10� 4 42

0.1 10� 5 52

0.1 10� 6 63

0.1 10� 7 73

0.1 10� 8 83

0.1 10� 5 93

0.1 10� 10 99

0.1 10� 11 100
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2 (i.e., μ2). It is necessary to notice that with growth of the parameter μ2, the
function CLP1(B, c) decreases and the function Q1(B, c) increases. These facts

are explained as follows: with the growth of parameter μ2 the speed of clearing of
the buffer from cells of type 2 is increased and that chance of cells of type 1 to

capture the place in buffers increases. Thus for function Q1(B, c) such depen-

dence is especially brightly observed at small values of the threshold parameter

c since at large values of the specified parameter, arriving cells of type 1 at the

overflowed buffer almost always supersede cells of the type 2.

Here we show only high accuracy of the proposed formulas for SP based on GPO

scheme (see Tables 5.4 and 5.5) where B¼ 50, v1¼ 0.75, v2¼ 1.6, v12¼ 0.6.

Optimization problem for SP based on GPO scheme for the determination of the

minimal (c) and maximal (c) values of parameter c for which constraints (5.30) are

fulfilled is set as follows: it is necessary to solve the following problem:

c� c ! max ð5:40Þ

subject to Eq. (5.35).

Table 5.4 Comparison for

QoS metrics of cells of the

first type in GPO scheme
c

CLP1 CTD1

EV AV EV AV

5 4.79E-02 4.18E-02 0.704096 0.711035

10 1.02E-02 1.00E-02 0.887377 0.882259

15 2.38E-03 2.11E-03 0.962189 0.977513

20 5.60E-04 5.03E-04 0.988287 0.990452

25 1.32E-04 1.07E-04 0.996561 0.997430

30 3.15E-05 2.29E-05 0.999026 0.999157

35 7.48E-06 6.99E-06 0.999731 0.999789

40 1.78E-06 1.05E-06 0.999927 0.999871

45 4.43E-07 2.46E-07 0.999979 0.999980

49 1.71E-07 8.02E-08 0.999992 0.999997

Table 5.5 Comparison for

QoS metrics of cells of the

second type in GPO scheme
c

CLP2 CTD2

EV AV EV AV

5 0.702105 0.699005 19.437348 20.068437

10 0.739757 0.723128 21.949898 21.999958

15 0.747625 0.739056 22.512933 22.668755

20 0.749439 0.748854 22.634315 22.788849

25 0.749867 0.748910 22.659983 22.789900

30 0.749685 0.748943 22.665318 22.790341

35 0.749993 0.748968 22.666406 22.794153

40 0.749998 0.748978 22.666626 22.795037

45 0.749999 0.749788 22.666679 22.795102

49 0.750000 0.749997 22.666708 22.797305
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Before starting to describe the algorithm of solution of problem (5.40), note that

similar to Eqs. (5.37) and (5.38) the unimprovable bounds for these QoS metrics

might be obtained. This allows us to propose the following algorithm for solution of

problem (5.40):

Step 1. If CLP1(B,B)> ε1 and CLP2(B, 1)> ε2, then problem (5.40) has no solution.

Step 2. If CLP1(B, 1)� ε1 and CLP2(B,B)� ε2, then c ¼ 1, c ¼ B.
Step 3. In parallel, the following problems are solved:

c1 ¼ arg min
c

CLP1 B; cð Þ � ε1f g;
c2 ¼ arg max

c
CLP2 B; cð Þ � ε2f g:

Step 4. If c1> c2 then problem (5.40) has no solution. Otherwise, the solution of

problem (5.35) is c ¼ c1, c ¼ B.

The results of solution of problem (5.40) for a sample model are shown in

Table 5.6. As in the given problem, if there are a large number of initial data, it is

difficult to draw the general conclusions for its optimal solution.

Similar to problem (5.39) finding of an ε-fair servicing for space priorities based
on GPO scheme may be formulated and solved. We left it to the reader.

Table 5.6 Results of a

solution of problem (5.40) in

the case B¼ 100

λ1 μ1 λ2 μ2 ε1 ε2 c; c
� �

0.2 0.5 5 5 10�1 10�5 Ø

0.2 0.5 5 6 10�2 10�5 [1, 98]

0.2 0.5 5 12 10�2 10�5 [1, 98]

0.2 0.5 10 6 10�4 10�5 Ø

0.3 0.5 5 6 10�8 10�5 [1, 98]

0.3 0.5 5 6 10�9 10�5 [4, 98]

0.3 0.5 5 6 10�11 10�7 [11, 98]

0.3 0.5 5 2 10�6 10�1 [25, 90]

0.4 0.5 5 2 10�6 10�1 [55, 90]

0.5 0.5 5 2 10�6 10�1 Ø

0.5 0.8 5 2 10�7 10�2 [16, 98]

0.5 0.8 5 2 10�6 10�2 [14, 98]

0.5 0.9 5 2 10�6 10�2 [12, 98]

0.5 0.9 5 2 10�8 10�1 [17, 98]

0.3 0.5 5 10 10�8 10�6 [1, 98]

0.3 0.5 5 12 10�8 10�6 [1, 98]

0.3 2 5 12 10�8 10�6 [1, 98]

0.3 2 5 12 10�6 10�6 Ø
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5.3 Models of Switches with Common Output Ports

In this section we are considering combination of the space and time priorities in

buffer allocation schemes for the switch in which the outgoing ports are common

for both types of packets. Here we classify multimedia traffics into two types of

traffic: traffic of type 1 (such as data) is delay insensitive and loss sensitive, and

traffic of type 2 (such as voice) is delay sensitive and loss insensitive. As it was

mentioned above, application of fixed priority scheme for one type of traffic (either

for type 1 or type 2) in such multimedia traffic is unacceptable since lowerpriority

traffic will have both large delay and high loss which does not satisfy the require-

ments of heterogeneous packets. This is why in switch with common output ports

we need multiple priorities such as both high TP for delay-sensitive traffic and high

SP for loss-sensitive traffic.

The multiple priorities might be realized by using different schemes. In other

words, SP might use both non-push-out and push-out schemes for loss-sensitive

traffic, and TP might use both preemptive and non-preemptive priority schemes for

delay-sensitive traffic. As it was mentioned in Sect. 5.1, the scheduler must be easy

to implement in hardware. According to this recommendation here we assume that

time priorities are based on non-preemptive scheme. At the same time, proposed

here is the approach that allows to investigate the TP based on preemptive prior-

ities. However, we consider both SP based on push-out and non-push-out schemes.

5.3.1 Multiple Priorities Based on Non-Push-Out Scheme

A single output port of switch is shared by common finite buffer of size B for two

types of cells; cells of type i arrive according to a Poisson process with intensity

λi, i¼ 1, 2 and are serviced by exponentially distributed time with the same (com-

mon) parameter μ. We assume that cells of type 1 are delay insensitive and loss

sensitive and cells of type 2 are delay sensitive and loss insensitive. High TP for

delay-sensitive traffic and high preventive SP based on non-push-out scheme for

loss-sensitive traffic are applied. In other words, the switch drops arriving cell when

the queue size of cells of type 2 exceeds a certain threshold.

Since the cells of type 1 are more sensitive to possible loss due to buffer overflow

than cells of type 2, cells of type 1 have higher SP based on non-push-out scheme

with a threshold r as follows. Cells of type 2 are received only when at the time they

arrive, the number of cells of the given type is less than some specified threshold

r, 0< r�B; otherwise these cells are lost. Cells of type 1 will be lost if and only if

the buffer is full at the time of arrival, i.e., they are always received into the buffer if

there is at least a single free space in the buffer. However, high non-preemptive TP

for delay-sensitive traffic (i.e., for traffic of type 2) is applied as follows: whenever

channel is available for traffic, output port chooses the cell of type 2, and the cell of

type 1 is chosen only when there is no cell of type 2 in the queue.
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Mathematical model of the given system is the following 2-D MC. The states of

the indicated Markov chain have the form n¼ (n1, n2) where ni is the number of

cells of type i in the system, i¼ 1, 2. So, state space of this 2-D MC is

S ¼ n : n1 ¼ 0, 1, . . . ,B; n2 ¼ 0, 1, . . . , r; n1 þ n2 � Bf g:

Nonnegative elements of the given 2-D MC are determined as follows:

q n; n0ð Þ ¼
λ1 if n1 þ n2 < B, n0 ¼ nþ ei,
λ2 if n2 < r, n0 ¼ nþ e2,
μ if n2 ¼ 0, n0 ¼ n� e1 orn2 > 0, n0 ¼ n� e2,
0 inothercases:

8>><
>>:

ð5:41Þ

The given 2-D MC always has a stationary distribution since the state space is

finite and all its states communicate. The exact analysis of the QoS metrics of the

investigated system is based on solving an appropriate GSBE which is constructed

by using relations (5.41) (we left it to the reader). To overcome the known

computational difficulties of exact analysis below we develop simple (approximate)

explicit formulas.

The loss probability for cells of type i, i¼ 1, 2 are determined as

CLP1 B; rð Þ ¼
XB

i¼B�rþ1

p i, B� ið Þ;

CLP2 B; rð Þ ¼
XB�r

i¼0

p i; rð Þ þ
XB

i¼B�rþ1

p i, B� ið Þ:

Average number of cells of type i, i¼ 1, 2, in the buffer (Qi(B, r)), is obtained
similar to Eq. (5.6), and their average waiting time (CTDi(B, r)) is calculated similar

to Eq. (5.5).

Approximate analysis of the given 2-D MC is based on splitting its state space

similar to Eq. (5.29). Next, the class Si in splitting Eq. (5.29) is merged into one

state hii, and merged space Ω¼ {hii : 0� i�B} is defined. Steady-state probabil-

ities within class Si are calculated as follows (for brevity, we consider here the case
v2 6¼ 1 where v2¼ λ2/μ):

Case 0� i�B� r:

ρi jð Þ ¼
v j2 1� v2ð Þ
1� vrþ1

2

, j ¼ 0, 1, . . . , r;

Case B� r+ 1� i�B:
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ρi jð Þ ¼
v j2 1� v2ð Þ
1� vBþ1�i

2

, j ¼ 0, 1, . . . ,B� i:

By using the last formulas, we obtain the following relations to calculate the

elements of Q-matrix of the merged model:

q i; jð Þ ¼
λ1 if 0 � i � B� r � 1, j ¼ iþ 1,

λ1 1� L v2,B� ið Þð Þ ifB� r � i < B, j ¼ iþ 1,

μρi 0ð Þ if j ¼ i� 1,

0 inothercases:

8>><
>>:

Therefore, the stationary distribution of the merged model is

π ih ið Þ ¼
v i1
Y i

j¼1
ρj 0ð Þ

	 
�1

π 0h ið Þ if 1� i� B� r,

v i1
Y i

j¼1
ρj 0ð Þ

	 
�1Y r

j¼B�iþ1
1� L v2; jð Þð Þπ 0h ið Þ ifB� rþ 1� i� B,

8><
>:

where π(h0i) is obtained from normalizing condition.

After performing the necessary mathematical transformations, one obtains the

following approximate formulas for the cell loss probabilities:

CLP1 B; rð Þ �
XB

i¼B�rþ1

L v2, B� ið Þπ ih ið Þ; ð5:42Þ

CLP2 B; rð Þ � L v2; rð Þ
XB�r

i¼0

π ih ið Þ þ CLP1 B; rð Þ; ð5:43Þ

Approximate values of QoS metrics Qi(B, r), i¼ 1, 2 are obtained from formulas

(5.33) and (5.34), respectively (in Eq. (5.34), the upper limit of the first sum must be

substituted by parameter r). Cell transfer delays for heterogeneous cells are calcu-
lated by using formula (5.5).

5.3.2 Multiple Priorities Based on Push-Out Scheme

Now consider model of switch in which SP are based on push-out scheme. So, fixed

non-preemptive TP and reactive SP based on push-out scheme are applied in

switch. In other words, reactive SP decide to drop the packet during period of

congestion, i.e., when buffer of switch has become full and new packet has arrived.

The detailed description of model consists in the following.

Traffic of type 1 has higher SP based on push-out scheme with a threshold c as
follows. Cell of type 1 will be lost if and only if the buffer is full at the time of its
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arrival and the number of cell of type 1 in the buffer is greater than or equal to

c, 1� c�B, and if the buffer is full at the time of arrival of type 1 cell and the

number of such cell in the buffer is less than c, then this cell pushes out a cell of type
2 from the buffer and takes its place. An arriving cell of type 2 will be lost if at the

arrival moment the buffer is full.

As in previous case, since traffic of type 2 is more sensitive to possible delay

than traffics of type 1, traffic of type 2 has higher strict non-preemptive priority, i.e.,

whenever channel is available for traffic, server chooses the traffic of type 2, and the

traffic of type 1 is chosen only when there is no traffic of type 2 in the queue.

The exact analysis of the given model is based on using GSBE of appropriate

2-D Markov chain. The states of the mentioned chain have the form n¼ (n1, n2)
where ni is the number of cells of type i in the system, i¼ 1, 2. Thus, state space of

the 2-D MC is defined as Eq. (5.24), while its transition rates are determined as

follows:

q n; n0ð Þ ¼
λi if n1 þ n2 < B, n0 ¼ nþ ei, i ¼ 1, 2,

λ1 if n1 þ n2 ¼ B, n1 < c, n0 ¼ nþ e1 � e2,
μ if n2 ¼ 0, n0 ¼ n� e1 orn2 > 0, n0 ¼ n� e2,
0 in othercases:

8>><
>>:

ð5:44Þ

The given 2-D MC always has a stationary distribution since the state space is

finite and all its states communicate. Its stationary distribution is obtained by

solving GSBE which is constructed by using relations (5.44) (we left it to reader).

Then the loss probability for cells of types 1 and 2 is determined from formulas

(5.26) and (5.27), respectively, where in Eq. (5.27) coefficient v12 is substituted

by v1.
The average number of cells of type i, i¼ 1, 2 in the buffer is obtained by

Eq. (5.28), and their average waiting time is calculated similar to Eq. (5.5).

Approximate analysis of the given 2-D MC is based on splitting its state space

similar to Eq. (5.29). Omitting intermediate mathematical calculations, let us

present an algorithm for calculation of QoS metrics for v2 6¼ 1. So, the conditional

stationary distribution within class Si coincides with steady-state probabilities of the
queueing model M(λ2)/M(μ)/1/B� i:

ρi jð Þ ¼
v j2 1� v2ð Þ
1� vBþ1�i

2

, j ¼ 0, 1, . . . ,B� i:

So, by using Eq. (5.46), we define Q-matrix of the merged model:
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q i; jð Þ ¼
λ1 if 0 � i � c, j ¼ iþ 1,

λ1 1� L v2; ið Þð Þ if cþ 1 � i < B, j ¼ iþ 1,

μρi 0ð Þ if j ¼ i� 1,

0 inothercases:

8>><
>>:

Thus the stationary distribution of the merged model is obtained as follows:

π ih ið Þ ¼
v i1
Y i

j¼1
ρj 0ð Þ

	 
�1

π 0h ið Þ if 1 � i � c,

v i1
Y i

j¼1
ρj 0ð Þ

	 
�1YB�c

j¼B�iþ1
1� L v2; jð Þð Þπ 0h ið Þ if cþ 1 � i � B,

8><
>:

where π(h0i) is obtained from normalizing condition.

Finally, we find the following approximate formula for the QoS metrics:

CLP1 B; cð Þ �
XB
i¼cþ1

L v2, B� ið Þπ ih ið Þ; ð5:45Þ

CLP2 B; cð Þ �
XB
i¼0

L v2,B� ið Þπ ih ið Þ þ v1
1þ v1

Xc�1

i¼0

L v2, B� ið Þπ ih ið Þ: ð5:46Þ

Approximate values of QoS metrics Qi(B, r), i¼ 1, 2 are obtained exactly from

formulas (5.33) and (5.34), respectively. Cell transfer delays for heterogeneous

cells are from Eq. (5.5). So, calculation of QoS metrics of the model with multiple

priorities is obtained by simple computational procedures.

5.3.3 Numerical Results

First consider results of numerical experiments for multiple priorities based on non-

push-out scheme. In order to be short here only the dependency of QoS metrics on

the threshold parameter r is shown in Figs. 5.3 and 5.4 where buffer size and loads

are fixed, i.e., in numerical examples the initial data are selected as follows:

B¼ 30, λ1¼ 0.3, λ2¼ 5, μ¼ 2.

With the growth of parameter r, chances for acceptance in the buffer of cells of

type 2 grow, and thus, the probability of their loss decreases and at the same time

the loss probability of cells of type 1 increases (see Fig. 5.3). Note that the rate of

change of functions CLPk(B, r), k¼ 1, 2 is very slow especially for large values of

parameter r and for r� 7 both functions become almost constant, and moreover we

have CLP1(B, r)�CLP2(B, r). In other words, for some values of threshold param-

eter r, loss probabilities of loss-sensitive and loss-tolerance traffics become the

same. However, with growth of the given parameter, both functions CTD1(B, r) and
CTD2(B, r) increase (see Fig. 5.4). The last facts are explained as follows: with
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increase in this parameter the number of cells of type 2 in the buffer also grows, and

as a result their delay in the buffer increases also; at the same time, since traffic of

type 2 has high TP over traffic of type 1, then function CTD1(B, r) also increases

with respect to threshold parameter r. Unlike the loss probabilities the rate of

changes of functions CTDk(B, r), k¼ 1, 2 is very high at small values of parameter

r; however, again for r� 7 this function becomes almost constant. At the same time

note that CTD2(B, r)<<CTD1(B, r) for any values of parameter r, i.e., the pro-

posed multiple priority scheme allows to fulfill the required QoS level for delay-

sensitive traffic.

Now consider the results of numerical experiments for multiple priorities based

on push-out scheme. In order to be short here only the dependency of QoS metrics

on the threshold parameter c is shown in Figs. 5.5 and 5.6 where buffer size and
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loads are fixed. In these numerical examples, we select the following initial data:

B¼ 30, λ1¼ 0.01, λ2¼ 0.08, μ¼ 1/12.

As it was expected, with growth of parameter c chances for acceptance in the

buffer of cells of type 1 grow, and thus, the probability of their loss decreases and at

the same time the loss probability of cells of type 2 increases (see Fig. 5.5). Note

that with growth of the given parameter function CTD1(B, c) increases, and

CTD2(B, c) decreases (see Fig. 5.6). The last facts are explained as follows: with

increase in this parameter the number of cells of type 1 in the buffer also grows, and

simultaneously as a result of push-out from the buffer, the number of cells of type

2 in the buffer decreases.
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Here we also give several numerical examples to show the accuracy of devel-

oped approximate formulas for proposed multiple priority schemes. In order to be

short below we demonstrate the results only for multiple priorities based on push-

out scheme. So, in Tables 5.7 and 5.8 we show that approximation values of CLPi
and CTDi are quite close to the exact values obtained by the balanced equations.

The obtained formulas for QoS metrics allow not only to study the behavior of

the specified QoS metrics but also to optimize them to meet a certain service quality

criterion. Let us consider one of such problems. For fixed values of parameters of

traffic and size of buffer, it is required to find such ranges of value within which the

given constraints to QoS metrics are fulfilled. Since traffic of type 1 is loss sensitive

and traffic of type 2 is delay sensitive, constraints are defined only for these kinds of

QoS metrics. This suggests solving the following problem:

c� c ! max ð5:47Þ

s.t. CLP1 B; cð Þ � ε1 andCTD2 B; cð Þ � ε2 8c∈ c, c
� �

.

Some numerical results are given in Table 5.9.

Here we consider the sensitivity of optimal solution with respect to the change of

traffic load because the traffic rate may be varied while systems are working. The

optimal solutions of the problem in Eq. (5.47) are little affected by the change of λ2.
For instance, at B¼ 70; μ¼ 1; λ1¼ 0.4; λ2¼ 6.3 for the given

ε1¼ 2.5E� 0.8; ε2¼ 10, the optimal solution is [67, 69], and this interval is

changed as follows:

Table 5.7 Comparison of exact and approximate values of CLP for the model of switch with

multiple priorities

c

CLP1 CLP2

EV AV EV AV

1 8.1580614E-02 7.4074126E-02 8.1580844E-02 7.4074757E-02

3 8.1572253E-02 7.4071513E-02 8.1581889E-02 7.4075058E-02

5 8.1508712E-02 7.4060373E-02 8.1589832E-02 7.4076423E-02

7 8.1280457E-02 7.4016650E-02 8.1618364E-02 7.4081858E-02

9 8.0737111E-02 7.3861260E-02 8.1686282E-02 7.4101248E-02

11 7.9711689E-02 7.3368782E-02 8.1814460E-02 7.4162773E-02

13 7.8008493E-02 7.1999697E-02 8.2027359E-02 7.4333872E-02

15 7.5363698E-02 6.8719692E-02 8.2357959E-02 7.4743835E-02

17 7.1396643E-02 6.2069565E-02 8.2853841E-02 7.5575066E-02

19 6.5564797E-02 5.0876795E-02 8.3582821E-02 7.6974133E-02

21 5.7154532E-02 3.5629074E-02 8.4634104E-02 7.8880076E-02

23 4.5421671E-02 1.9523734E-02 8.6100712E-02 8.0893231E-02

25 3.0217959E-02 7.3169717E-03 8.8001176E-02 8.2419071E-02

27 1.3735356E-02 1.4973871E-03 9.0061501E-02 8.3146518E-02

29 2.3915558E-03 1.0355513E-04 9.1479477E-02 8.3320747E-02
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c; c
� � ¼

68; 69½ � if λ2 ∈ 6:4; 7:3½ �,
69; 69½ � if λ2 ∈ 7:4; 19:5½ �,
∅ if λ2 > 19:5:

8<
:

So we may conclude that the optimal solutions of the given problem (5.47) are

almost insensitive with respect to the arrival rate of traffics of type 2. Analogous

results were observed with respect to the arrival rate of traffics of type 1.

At the end of this section we give the computation time ratio of exact and

approximation analysis (see Table 5.10). From this table it is concluded that with

growth of the buffer size, the efficiency of the approximate approach increases as

well.

Table 5.8 Comparison of exact and approximate values of CTD for the model of switch with

multiple priorities

c

CTD1 CTD2

EV AV AV EV

1 1.6913177E+03 2.0440386E+03 6.9524129E+01 6.7557307E+01

3 1.6913191E+03 2.0440427E+03 6.9522098E+01 6.7556877E+01

5 1.6913189E+03 2.0440597E+03 6.9508105E+01 6.7555040E+01

7 1.6912763E+03 2.0441159E+03 6.9463046E+01 6.7548219E+01

9 1.6910765E+03 2.0442700E+03 6.9368094E+01 6.7525738E+01

11 1.6905175E+03 2.0446084E+03 6.9211745E+01 6.7460540E+01

13 1.6892959E+03 2.0451283E+03 6.8989089E+01 6.7296880E+01

15 1.6869640E+03 2.0453659E+03 6.8699049E+01 6.6948435E+01

17 1.6828537E+03 2.0438275E+03 6.8344293E+01 6.6333216E+01

19 1.6759882E+03 2.0379494E+03 6.7935066E+01 6.5455459E+01

21 1.6650468E+03 2.0257374E+03 6.7496977E+01 6.4479103E+01

23 1.6485941E+03 2.0087581E+03 6.7081383E+01 6.3682756E+01

25 1.6261442E+03 1.9930056E+03 6.6769804E+01 6.3258212E+01

27 1.6010313E+03 1.9841532E+03 6.6641409E+01 6.3140980E+01

29 1.5834234E+03 1.9817098E+03 6.6663420E+01 6.3133124E+01

Table 5.9 Solution results for the problem (5.47)

B 50 70 70 70 70 50 50

λ1 0.4 0.4 0.4 0.4 0.4 0.4 0.4

λ2 0.5 0.5 0.5 0.5 6.3 0.5 0.5

ε1 2E-06 2E-08 2.5E-08 2.56E-08 2.56E-08 2.56E-08 2E-06

ε2 2 5 5 10 10 10 10

c; c
� �

[46, 49] [68, 69] [63, 69] [63, 69] [57, 69] [67, 69] Ø
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5.4 State-Dependent Jump Priorities

In this section we consider models of switch with state-dependent jump priorities

(JP). Specific property of these priorities consists in the following: in some situa-

tions low-priority cell (L-cell) might jump to queue of high-priority cells (H-cell)

and thus become H-cell. The main questions arising at the introduction of the jump

priorities are as follows: (1) determination of the instant of passage from the

L-queue to the H-queue, (2) determination of the number of L-cells passing to the

H-queue, and (3) determination of the state parameter (or parameters) which

depend on the jump priorities.

Here we consider the jump priorities which are activated at the instants of arrival

of the L-cells. This scheme for determination of JP is explained by the following

reason: these priorities are introduced with the aim of increasing the chances of the

L-cells to be serviced in an acceptable time, that is, to prevent their ageing in the

queue, it is only natural to expect that they must be activated at the instants of their

arrival.

Concerning the second problem, notice that only one L-cell could be passed in

H-queue. This assumption is accepted to simplify the intermediate mathematical

calculations, and therefore, it is possible to obtain analytically treatable results.

Finally, concerning the third problem, notice that here we investigate in detail

only two kinds of jump priorities: (a) JP which depends on the number of L-cells in

buffer and (b) JP which depends on the number of H-cells in buffer.

Note that here only models with finite (separate) buffers are considered since in

practice switches have no infinite storage. At that, two kinds of jump priorities are

investigated.

5.4.1 Various Schemes to Determination of State-Dependent
Jump Priorities

First consider the model with JP which depends on the number of L-cells in buffer.

Detailed description of the appropriate queueing model consists in the following.

Two Poisson flows of heterogeneous cells arrive to the input of the single-server

system, the intensity of the ith flow being λi, i¼ 1, 2. The first flow is that of real-

time cells (H-cells), whereas the second flow is that of the non-real-time cells

(L-cells). The time of channel occupation is a random variable obeying the expo-

nential distribution with the parameter μ for cells of both types. There are different

Table 5.10 Comparison of the computation time ratio of exact (TE) and approximation

(TA) approaches

Buffer size 30 40 45 50 55 60

TA/TE 0.02 0.01 0.005 0.004 0.003 0.001
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buffers for the waiting heterogeneous cells, the size of the buffer for the cells of the

ith type being Ri, 0<Ri<1, i¼ 1, 2. We also notice that the H-cells have

non-preemptive high priorities over the L-cells.

Note that the H-cells are always received with the probability one if at the instant

of their arrival there is at least one free place in the H-buffer; otherwise, they are lost

with the probability one. If at the instant of arrival of an L-cell the number of

buffered cells of this type is k, k<R2 and that there is a free place in the H-queue,

then one L-cell immediately goes to the H-buffer with the probability α(k)
(we assume for certainty that it is the L-cell at the queue head that goes to the

H-buffer); the arriving L-cell is queued with the complementary probability 1� α
(k) if there is a free place on the queue. If there is no free place upon arrival of the

L-cell on the H-queue, then with the probability one the arriving L-cell is added to

the L-queue if it has a free place; otherwise, the L-cell is lost with the

probability one.

If upon the arrival of an L-cell there is no free place on the L-queue, then the

arriving L-cell is added to the H-queue with the probability α(R2) if there is a free

place. Otherwise, the arriving L-cell is lost with the probability 1� α(R2). We note

that in the case of a successful jump the L-cell becomes an H-cell serviced and then

as an H-cell according to the non-preemptive high-priority rules.

We notice that a number of the well-known servicing disciplines are obtained

under particular values of the parameters α(k), k¼ 0, 1, . . .,R2. For example, for

α(k)¼ 0 for all k¼ 0, 1, . . .,R2, the classical non-preemptive high-priority rule is

obtained. Additionally, one can introduce a threshold scheme to determine the

probabilities α(k), where α(k)¼ αi if Li� 1� k< Li, i¼ 1, . . ., r,L0¼ 0, L0¼R2. At

that, the probabilities αi, i¼ 1, . . ., r can be determined using different techniques.

The state of buffers at an arbitrary time instant is describable by the

two-dimensional vector n¼ (n1, n2), where ni is the number of buffered i-cells,
i¼ 1, 2. Stated differently, operation of this system follows the two-dimensional

Markov chain with the state space:

S ¼ n : ni ¼ 0, 1, . . . ,Ri, i ¼ 1, 2f g: ð5:48Þ

The nonnegative elements of the Q-matrix of this 2-D MC (see Fig. 5.7) are

given by

q n;n0ð Þ¼

λ1þλ2α n2ð Þ if n0 ¼ nþe1,
λ2δ n1;R1ð Þ
þλ2 1�α n2ð Þð Þ 1�δ n1;R1ð Þð Þ ifn0 ¼ nþe2,
μ ifn1> 0, n0 ¼ n�e1orn1¼ 0, n0 ¼ n�e2,
0 inothercases:

8>>>><
>>>>:

ð5:49Þ

All states of this 2-D MC are communicating, and, consequently, it is ergodic.

The stationary state probability n∈ S is denoted by p(n). Solution of the
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corresponding SGBE is the standard way of determining the stationary probabili-

ties. It is constructed with regard for Eq. (5.49) and we left it to the reader.

After determining the state probabilities, one can establish QoS metrics of the

switch. For example, the H-cell loss probability is given by

CLP1 ¼
XR2

k¼0

p R1; kð Þ: ð5:50Þ

The L-cell loss probability is given by

CLP2 ¼
XR1�1

k¼0

p k;R2ð Þ 1� α R2ð Þð Þ þ p R1;R2ð Þ: ð5:51Þ

To determine the mean number of the heterogeneous cells in the queue the

standard technique for determining the mean value of the discrete random variable

is used (see Eq. (5.6)). The mean cell transmission delay for the heterogeneous cells

is determined from Eq. (5.5).

Therefore, to determine the exact values of the QoS metrics one has to solve the

SGBE for the state probabilities p(n), n ∈ S. It has no analytical solution, but the

numerical methods of the linear algebra may be used to calculate these metrics.

This approach (exact method) can be used only for the models of low dimensions

and becomes inefficient with growing their dimensions. Therefore, a need arises for
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Fig. 5.7 State diagram of the model with jump priorities which depends on the number of L-cells

in buffer
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a more efficient approximate method to solve this problem. It has high accuracy for

models in which intensity of H-cells is much more than intensity of L-cells, that is,

it is assumed below that λ1>> λ2. Note that this assumption is not extraordinary

because introduction of the jump priorities for the L-cells makes sense, namely, in

the systems with heavy intensity of H-cells.

Consideration is given to the following splitting of the state space of the model:

S ¼ [R2

i¼0Si, Si \ Sj ¼ ∅ if i 6¼ j, ð5:52Þ

where Si¼ {n ∈ S : n2¼ i}, i¼ 0, 1, . . .,R2.

The classes of microstates Si in splitting Eq. (5.52) are united into individual

merged states hii, and in the original state space (5.48) appropriate merge function

is constructed. The stationary probability of the state (k, i) in the split model with

the state space Si is denoted by ρi(k), i¼ 0, 1, . . .,R2, k¼ 0, 1, . . .,R1. Each split

model with state space Si is a 1-D BDP with the parameters (see Fig. 5.7):

qi k1; k2ð Þ ¼
λ1 þ λ2α ið Þ if k2 ¼ k1 þ 1,

μ if k2 ¼ k1 � 1,

0 inothercases:

8<
:

As can be seen from the last formula, to determine the desired ρi(k), one can use
the formulas for calculation of the state probabilities of the queueing system with

state-independent intensity of the input trafficM(λ1 + λ2α(i))|M(μ)|1|R1. A modified

Kendall notation where the symbol M is followed by the parameters of the

corresponding distributions is used here and below to denote the queueing system.

Consequently,

ρi kð Þ ¼ θ k
i

1� θi

1� θR1þ1
i

, k ¼ 0, 1, ::,R1,

where θi¼ v1 + v2α(i). The formulas for the case of θi 6¼ 1 are given for brevity.

The elements of the generating matrix of the merged model (see Fig. 5.7) are

given by

q ih i; jh ið Þ ¼
λ2 1� α ið Þð Þ 1� ρi R1ð Þð Þ þ λ2ρi R1ð Þ if j ¼ iþ 1,

μρi 0ð Þ if j ¼ i� 1,

0 inothercases:

8<
:

So, the probabilities of the merged states π(hii), hii ∈ Ω are

5.4 State-Dependent Jump Priorities 173



π ih ið Þ ¼
Y i

j¼1
Ajπ 0h ið Þ, i ¼ 1, 2, . . . ,R2,

where

Aj ¼ v2
1� α j� 1ð Þð Þ 1� ρj�1 R1ð Þ� �þ ρj�1 R1ð Þ

ρj 0ð Þ , π 0h ið Þ

¼ 1þ
XR2

k¼1

Y k

i¼1
Ai

 !�1

:

After certain transformation, we establish that

CLP1 �
XR2

k¼0

ρk R1ð Þπ kh ið Þ ð5:53Þ

CLP2 � π R2h ið Þ 1� α R2ð Þð Þ 1� ρR2
R1ð Þ� �þ ρR2

R1ð Þ ð5:54Þ

Q1 �
XR1

k¼1

k
XR2

i¼0

ρi kð Þπ ih ið Þ ð5:55Þ

Q2 �
XR2

k¼1

kπ kh ið Þ ð5:56Þ

The parameters CTDk, k¼ 1, 2 are determined from Eq. (5.5).

Now consider the model with JP which depends on number of H-cells in buffer.

As above, H-cell is accepted if upon its arrival there is at least one free place in

corresponding buffer; otherwise, arrived H-cell is lost with probability 1. However,

in this model if upon arrival of an L-cell the number of buffered H-cells is k, k<R1,

then one L-cell immediately goes to the H-buffer with the probability α(k); the
arriving L-cell is queued in L-buffer with the complementary probability 1� α(k) if
it has a free place. If there is no free place upon arrival of the L-cell on the H-queue,

then with the probability 1� α(R1) the arriving L-cell is added to the L-buffer if it

has a free place; otherwise, the L-cell is lost with the probability α(R1). If upon

arrival of the L-cell both buffers are full, then arrived cell is lost with probability 1.

The two-dimensional state vector and state space for this model are determined

by Eq. (5.48). However, here nonnegative elements of Q-matrix are calculated as

follows (see Fig. 5.8):
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q n; n0ð Þ ¼
λ1 þ λ2α n1ð Þ if n0 ¼ nþ e1,
λ2 1� α n1ð Þð Þ if n0 ¼ nþ e2,
μ if n1 > 0, n0 ¼ n� e1 orn1 ¼ 0, n0 ¼ n� e2,
0 in othercases:

8>><
>>:

ð5:57Þ

Cell loss probabilities now are determined from following relations:

CLP1 ¼
XR2

k¼0

p R1; kð Þ; ð5:58Þ

CLP2 ¼
XR1�1

k¼0

p k;R2ð Þ 1� α kð Þð Þ þ α R1ð Þ
XR2�1

k¼0

p R1; kð Þ þ p R1;R2ð Þ: ð5:59Þ

Not repeating the stages of the approximate approach for solution to a similar

problem, final formulas to calculate the QoS metrics are given below. In this case

stationary distribution of the split models with state space Si, i¼ 0, 1, . . .,R2,

does not depend on index i, i.e., for any i, i¼ 0, 1, . . .,R2 transition intensities

within split models with state space Si are defined as (see Fig. 5.8)

q k1; k2ð Þ ¼
λ1 þ λ2α k1ð Þ if k2 ¼ k1 þ 1,

μ if k2 ¼ k1 � 1,

0 inothercases:

8<
: ð5:60Þ

0,0 1,0 ,02,0

0,1 1,1 ,12,1

0, 1, ,2,

. . .

. . .

. . .

Fig. 5.8 State diagram of the model with jump priorities which depends on the number of H-cells

in buffer
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As can be seen from Eq. (5.60), to determine the ρ(k) within each split model,

the formulas for calculation of the state probabilities of the queueing system with

state-dependent intensity of the input traffic M(λ1 + λ2α(k))|M(μ)|1|R1 can be used,

i.e., arrived intensity at state k is λ1 + λ2α(k). So, we have

ρ kð Þ ¼
Yk�1

i¼0
v1 þ v2α ið Þð Þρ 0ð Þ, k ¼ 0, 1, . . . ,R1, ð5:61Þ

where ρ 0ð Þ ¼
XR1

k¼0

Yk�1

i¼0
v1 þ v2α ið Þð Þ

	 
�1

.

From Eqs. (5.60) and (5.61) we conclude that transition intensities between

merged states are calculated as

q ih i; jh ið Þ ¼
λ2α if j ¼ iþ 1,

μρ 0ð Þ if j ¼ i� 1,

0 inothercases,

8<
:

where a¼∑ R1
i¼ 0ρ(i)(1� α(i)).

Thus stationary probabilities of merged states are

π kh ið Þ ¼ θkπ 0h ið Þ, k ¼ 0, 1, . . . ,R2

where θ¼ v2a/(ρ(0)).
Finally, approximate values of QoS metrics at using such kind of JP are

calculated as follows:

CLP1 �
XR2

k¼0

ρ R1ð Þπ kh ið Þ ¼ ρ R1ð Þ; ð5:62Þ

CLP2�π R2h ið Þ ρ R1ð Þþ
XR1�1

k¼0

ρ kð Þ 1�α kð Þð Þ
" #

þ 1�π R2h ið Þð Þα R1ð Þρ R1ð Þ; ð5:63Þ

Q1 �
XR1

k¼1

kρ kð Þ: ð5:64Þ

The mean number of the cells of type 2 is determined similar to Eq. (5.56).

Note that models with common buffers for heterogeneous cells and JP which

depends on the total number of heterogeneous cells in buffers might be investigated

by similar way.
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5.4.2 Numerical Results

Consider the results of numerical experiments obtained for the models with jump

priorities. First consider the results for the model with JP which depends on the

number of L-cells in buffer.

Here we present only a small part of the computational experiments for the

sample model with the parameters R2¼ 15, λ1¼ 2, λ2¼ 1 and μ¼ 0.8. Consider-

ation is given to three schemes for determination of the jump priorities: (1) α(i)¼
0 for all i¼ 0, 1, . . .,R2, (2) α(i)¼ 0.7 for all i¼ 0, 1, . . .,R2, and (3) α(i)¼ (i+ 1)/
(i+ 2) for i¼ 0, 1, . . .,R2.

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

1

2

3

CLP1

1

2

3

CLP2

R1

R1

a

b

Fig. 5.9 Dependence of the

loss probabilities of the (a)

H-cells and (b) L-cells on

R1 in the model with jump

priorities which depends on

the number of L-cells in

buffer

5.4 State-Dependent Jump Priorities 177



The results are shown in Figs. 5.9 and 5.10 where the numbers of the graphs 1, 2,

and 3 correspond to schemes (1), (2), and (3).

The probability of losing the H-cells decreases with an increase of the buffer

space for the cells of the given type, which is a quite expectable result (see

Fig. 5.9a).

It deserves noting the identity in the nature of variations of the function CLP1
under all schemes of determination of the parameters α(i), that is, for R1> 5 this

function falls at a very low rate, which is due to the fact that the chances for arrival

of L-cells in a buffer increase concurrently with an increase in the size of the buffer

for H-cells. We note that in the case of using scheme (3) for determination of the

parameters (αi), the value of the function CLP1 is always greater than the
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corresponding values in the cases of using other schemes. It also deserves noting

that scheme (2) stands in between the other two schemes.

An increase in the loss probability of the L-cells relative to the size of the buffer

for H-cells also is an expectable result (sec Fig. 5.9b). It also deserves noting the

identity in the nature of variations of the function CLP2 under all schemes for

determination of the parameters α(i), that is, for R1> 5, this function grows at a

very low rate. In contrast to the function CLP1, for the function CLP2, scheme (3) is

most desirable. These facts have a quite logical substantiation: the increasing

function α(i) improves the chances for servicing of the L-cells. Scheme (2) here

also is intermediate between the two other schemes.

The functions CTD1 and CTD2 are no decreasing relative to the size of the H-cell

buffer, but the nature of their variations is different (see Fig. 5.10). For example, for

all three schemes for determination of the parameters α(i), the function CTD1 is

almost linear (see Fig. 5.10a). The function CTD2 is nonlinear only for small values

of R1, and for R1> 5, it becomes almost constant for schemes (2) and (3) (see

Fig. 5.10b) and grows catastrophically for scheme (1). It also deserves noting that

scheme (1) is the best one for the function CTD1, and on the contrary, for the

function CTD2 it is scheme (3) that is the best one. For both functions, scheme (2) is

intermediate between schemes (1) and (3).

Now consider the results of numerical experiments obtained for the model with

JP which depends on the number of H-cells in buffer.

Below we present the results of computational experiments for the sample model

with the parameters R2¼ 20, λ1¼ 5, λ2¼ 2 and μ¼ 10. To define the jump priori-

ties, two schemes are used: (1) α(i)¼ (i+ 1)/(i+ 2) for all i¼ 0, 1, . . .,R1 and

(2) α(i)¼ 1/(i+ 2) for all i¼ 0, 1, . . .,R1. In other words, in scheme 1, parameters

α(i) are increasing one’s subject to i, i¼ 0, 1, . . .,R1, while in scheme 2 we have the

inverse situation.

The results are shown in Figs. 5.11 and 5.12 where the numbers of the graphs

1 and 2 correspond to schemes (1) and (2), respectively.

The loss probabilities of the both kinds of cells decrease with an increase of the

size of H-buffer (i.e., waiting space for the H-cells) in each scheme which are quite

expectable results (see Fig. 5.11). The identity in the nature of variations of the both

loss probabilities under both schemes of determination of the parameters α(i) is
observed, i.e., both functions CLPk, k¼ 1, 2 are almost linear decreasing functions

with respect to R1 and their rate of change is high enough. The analysis of the

graphs shows that intervals of changes of loss probabilities of heterogeneous cells

in scheme 1 are quite close each other. However, in scheme 2, intervals of changes

of loss probabilities of heterogeneous cells significantly differ from each other; it is

accurately visible at great values of parameter R1. Moreover, in scheme 2, the loss

probabilities of L-cells become even less than the loss probabilities of H-cells.

These facts show that by using the appropriate scheme to determination of jump

probabilities, it is possible to control the loss probabilities of heterogeneous cells.

Remarkably that for the indicated QoS metrics CLPk, k¼ 1, 2, scheme 2 is

favorable. In other words, in scheme 2, values of loss probabilities of both kinds

of cells are significantly less than in scheme 1. It means that the decreasing schemes
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for determination of parameters (αi) are desirable for selected initial data, i.e., for

the given initial data, policy for decreasing the cell loss probabilities is as follow-

ing: probabilities of jumping to H-buffer should be decreasing subject to number of

H-cells in buffer.

Unlike the cell loss probabilities, the rate of change of functions CTDk, k¼ 1, 2

is very low especially for large values of R1 (see Fig. 5.12). For instance, function

CTD2 is almost constant in scheme 1. Note that in scheme 1 the average cell transfer

delay for H-cells is almost three times more than the appropriate metric for L-cells

when R1> 7, while the difference between their values is about 15 % in scheme 2.

Remarkably unlike the cell loss probabilities, scheme 2 is favorable for H-cells,

while for L-cells scheme 1 is favorable. Let’s notice that when R1> 10, the values

of function CTD1 in scheme 1 are almost for 50 %more than its values in scheme 2,

and values of function CTD2 in scheme 2 are almost in two times more than its

values in scheme 1.
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Note that the behavior of the QoS metrics of the given system with respect to its

other parameters is investigated as well. However, these results are omitted for the

reasons of space. For the same reason are omitted the results of studying the

accuracy of the developed approximate formulas. At that, the exact values of the

QoS metrics for the models of moderate size were established from the

corresponding SGBE (some analytical considerations about the high accuracy of

these formulas can be found above). Here we just note that under the above

assumption about the system loads, the exact and approximate values of the QoS

metrics differ in the worst case only at the third position after decimal point. At the

same time, rejection of this assumption leads to substantial errors, their absolute
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values being dependent on the particular system parameters, that is, in this case high

accuracy of the developed algorithms cannot be guaranteed.

5.5 Conclusion

The queueing systems with calls of several types are adequate mathematical models

to describe the processing heterogeneous packets at the nodes of multiservice

networks. The reader is referred to numerous fundamental books for detailed

information [4, 10, 13, 42, 44–46]. In multiservice networks, as a rule, the real-

time and non-real-time traffics present different, sometimes contradictory, require-

ments on the quality of service. Therefore, in literature, several approaches to

satisfy the QoS requirements of the heterogeneous packets are proposed. Among

them approach based on applications of various priorities is more efficient [12, 15,

16, 41, 43, 47, 49]. In theoretical terms, the study of priorities in different models of

the queueing systems was started long ago. We will not dwell on listing the existing

results and present only the information related to the studies above.

First of all note that in known works space priorities have been considered as

access schemes to the buffer of switch which define its allocation schemes; respec-

tively, time priorities are treated as queue discipline for the packets in buffer of

switch. In other words, both kinds of space and time priorities together define a

buffer management policy.

In excellent review papers [1, 3, 11, 17, 18], authors pointed out the major pros

and cons of the various buffer management schemes in switches.

Pioneer work in the analyzing of different allocation schemes of shared finite

storage is [14]. In this paper five non-push-out schemes were proposed and nowa-

days they are used in realization of switch with typed output ports. Authors of the

indicated classical paper showed that appropriate multidimensional Markov chains

for all five schemes have multiplicative stationary distributions. In papers [26–29],

the approximate approach for calculation and optimization of the characteristics of

these allocation schemes for the case of two types of traffics is developed. Similar

approach for PS scheme and several push-out schemes is used in [30, 31] and

[32, 35, 36], respectively. Slight modification of PS scheme which is called limited

PS scheme was proposed in [25]. Developing the algorithms for allocation, the

buffers in order to support the required QoS level subject to known constraints are

important problems [52].

Multidimensional Markov chains which are models of switches with push-out

schemes for use in a shared finite buffer storage have no multiplicative stationary

distributions. Therefore their analysis becomes very difficult. Such models are

investigated in many works via simulation techniques (see, e.g., [5, 6]). The papers

[7, 9, 48, 50, 51, 54] are devoted to finding a form of optimal access scheme in the

class of PO schemes.

Note that a new type of the so-called multiple priorities was thoroughly studied

during the last decade [2, 8, 19, 33, 37]. In distinction to the classical priorities, in
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the case of multiple priorities, the real-time cells have high time priorities and low

space priorities, and the non-real-time cells, low time priorities and high space

priorities. In this section a simple numerical approximation method to calculate the

QoS measures of the queueing model with multiple space and time priorities is

proposed. Space priorities are realized by the non-push-out and push-out schemes,

whereas time priorities are realized by fixed non-preemptive priority scheme. This

approach allows developing a simple computational procedure to find the desired

QoS metrics of the model and solve the problem of finding the appropriate values of

the proposed access scheme’s parameter under restrictions to both the loss proba-

bility of the loss-sensitive traffic and the waiting time of the delay-sensitive traffic.

The recent publications study a new type of priorities—jump priorities. The first

paper in this area was [20] whose authors investigate the time-dependent jump

priorities. In this model for each type of calls, the deterministic type-dependent

parameters are defined, and if the waiting time of an i-call at the head of the ith
queue reaches the same threshold, then the call goes to the queue i� 1, i¼ 2, . . .,N,
and this process goes on until a call of any type gets access to a channel or reaches a

queue with the highest priority, that is, the queue number one. Formulas for

calculation of the mean waiting time of the heterogeneous calls were established

in [20]. Note that the jump priorities proposed in [20] are inconvenient for realiza-

tion in switches because they need additional facilities to monitor the waiting time

for the heterogeneous cells.

For the discrete-time queueing system, different kinds of JP were proposed in

[21–24, 53]. In these papers, models with infinite buffers for waiting calls of each

type are examined. A scheme, of head-of-line merge-by-probability (HOL-MBP)

according to which at the end of each time slot all L-calls go to the end of the queue

of H-calls with the probability β, 0< β< 1, was proposed in [21]. A modification of

the HOL-MBP scheme was considered in [22]. It was named head-of-line jump-or-

serve (HOL-JOS), and, in contrast to the scheme of [21], in it only one L-call goes

from the queue head into the H-queue. In contrast to the HOL-JOS scheme, in the

head-of-line jump-if-arrival (HOL-JIA) scheme [24], the transition of the L-call

into the H-queue depends not only on the state of the H-queue at the beginning of

the slot but also on the number of arrivals of L-calls during this slot. The only

distinction of the first HOL-JIA scheme [24] from the second HOL-JIA scheme [23]

lies in that in the latter scheme the L-calls can pass immediately to the H-queue.

Formulas for the generating functions of the call queue lengths of both types and

the time of H-call waiting on the queue, as well as their moments, were developed

in [21–24, 53]. Additionally, the mean time of waiting on the queue of L-calls was

determined.

It deserves noting that [21–24, 53] are devoted to studying the models of

queueing systems with infinite buffers which cannot be used as adequate models

of switches in packet switching networks because, as a rule, their switches have

limited buffers for temporal storage of the heterogeneous cells. Stated differently,

for wide introduction of the jump priorities, their efficiency in the PSN must be

determined. So, the papers [34, 38–40] introduce for the continuous-time queueing

systems a new class of randomized jump priorities. They make it possible to pass
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from the L-queue into the H-queue only at the instants of arrival of the L-calls, the

probability of such transitions depending on the number of heterogeneous calls in

the system. Introduction of the constraints on the size of buffer (buffers, in the case

of queueing systems with separate queues) for waiting for the heterogeneous cells

necessitates the determination of a new QoS metrics, the cell loss probability.

Another distinction of the papers [34, 38–40] from [21–24, 53] lies in using an

approach based on the space merging theory of the states of the 2-D MC for model

analysis. This approach enabled development of simple computational procedures

for determination of all QoS metrics of the switches under consideration.

Note that it is possible to solve various optimization problems of the switch with

jump priorities. For example, of great scientific and practical interest is the problem

of determining the optimal threshold scheme under the given constraints on all

(or some) system QoS metrics. Additionally, the problem of determining the

optimal values of the introduced probabilities of transition of the L-calls to the

H-queue where these probabilities are controllable also deserves consideration. For

the last problem, solution may be based on the methods of the theory of Markov

decision processes, and various system QoS metrics may be used as the optimiza-

tion criteria; consideration can be given also to the multi-criteria problems. The

search of the optimal buffer sizes for maintaining the given level of the quality of

service is also of interest.
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